new exception_|ists/packagi ng

R R R R

26867 Sat Aug 18 10:36:54 2012
new exception_|ists/packagi ng
dccp: finish nove headers, cleanup dccp states

R R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opment and Distribution License (the "License")

6 # You may not use this file except in conpliance with the License

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END
20 #
22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved
24 # Copyright 2011 Nexenta Systems, Inc. Al rights reserved
25 #
27 #
28 # Exception List for validate_pkg
29 #
31 #
32 # The following entries are built in the /proto area
33 # but not included in any packages - this is intentional
34 #

35 usr/include/auth_list.h

36 usr/include/bsm audit_door_infc.h
37 usr/include/ bsm audit_private.h
38 usr/include/ bsm deval | oc. h

39 usr/incl ude/ get xby_door. h

40 usr/incl ude/ passwdutil.h

41 usr/include/priv_utils.h

42 usr/include/rpcsvc/ daenon_utils. h
43 usr/incl ude/rpcsve/ sve_dg_ prlv h
44 usr/include/ security/pam.inpl.

45 usr/incl ude/ sys/cl ock_inpl.h

46 usr/include/ sys/ieeefp.h

47 usr/incl ude/ sys/wi nl ockio. h

48 usr/incl ude/ scsi/ plugins/ses/vendor/sun_inpl.h

49 #

50 # Private/lnternal libraries of the Cryptographic Franmework
51 #

52 |ib/libkcfd.so

53 lib/llib-lelfsign

54 lib/llib-lelfsign.In

55 lib/Ilib-lkcfd

56 lib/Ilib-1kcfd.In

57 usr/include/libelfsign.h

58 usr/lib/llib-1softcrypto

59 usr/lib/Ilib-Isoftcrypto.In

60 usr/lib/anmd64/11ib-1softcrypto.ln i 386
61 usr/lib/sparcv9/llib-lsoftcrypto.ln sparc

new exception_|ists/packagi ng

63 #
64 # The following files are used by the DHCP service, the
65 # standal one’s DHCP i npl enentation, and the kernel (nfs_dl boot)
66 # They contain interfaces which are currently private.
#

68 usr/include/ dhcp_svc_confkey. h
69 usr/include/dhcp_svc_confopt.h
70 usr/include/dhcp_svc_private. h
71 usr/include/ dhcp_synbol . h
72 usr/include/ sys/sunos_dhcp_cl ass. h
73 usr/lib/libdhcpsvc. so
74 usr/lib/l1lib-1dhcpsvec
75 usr/lib/llib-1dhcpsvec.In
76 #
77 # Private MAC driver header files
78 #
79 usr/include/inet/iptun.h
80 usr/include/sys/aggr inp
81 usr/include/ sys/aggr.
82 usr/include/sys/dld_ |np| h
83 usr/include/sys/dld_ioc.h
84 usr/include/sys/dls_inpl.h
85 usr/include/sys/dls.h
86 usr/include/sys/mac_client_inpl.h
87 usr/include/sys/mac_client.
88 usr/include/sys/ mac_fl ow |np
89 usr/include/sys/ mac_i npl .
90 usr/incIude/sys/nac_soft_ring.h
91 usr/include/ sys/mac_stat.h
92 #
93 # Private GLDv3 userland libraries and headers
94 #
95 usr/include/libdladm.inpl.h
96 usr/include/libdl aggr.h
97 usr/include/libdlether.h
98 usr/include/libdlflow_inpl.h
99 usr/include/libdlflow h
100 usr/include/libdliptun.h
101 usr/include/libdl nmgnt.h
102 usr/include/libdlsimh
103 wusr/include/libdlstat.h
104 usr/include/libdlvnic.h
105 usr/include/libdlw an |np
106 usr/include/libdl w an.
#

108 # Virtual Network Interface Card (VN Q)
#

110 usr/include/sys/vnic.h
111 usr/include/ sys/vnic_inpl.h
#

113 # Private libipadmlint library and header files
#

115 usr/include/i padm.i pmgnt. h
116 usr/incl ude/i padm ndpd. h
117 usr/include/l1 bi padm h

118 lib/I1ib-1ipadm

119 lib/llib-1ipadmlIn

120 lib/libi padm so

121 #

122 # Private |ibsocket header file

123 #

124 usr/include/libsocket_priv.h

125 #

126 # I KE and | Psec support library exceptions. The |IKE support
127 # library contains exclusively private interfaces, as does

new exception_|ists/packagi ng

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

|ibipsecutil.
#
usr/include/errfp.h

usr/include/ikedoor. h
usr/include/ipsec_util.h

usr/1ib/libike.so

usr/1ib/anmd64/1i bi ke. so i 386
usr/lib/sparcv9/libike.so sparc
usr/lib/libipsecutil.so

usr/| amd64/ | i bi psecutil.so i 386
parcv9/libi psecutil.so sparc
l'ib-1ike

lib-like.In

64/11ib-like.In i 386
9/1lib-like.ln sparc
i psecuti |

ipsecutil.ln

Il

9

My apol ogi es for the glut of header files here

ib-lipsecutil.ln i 386
/11ib-1ipsecutil.In sparc

OCoOOoOoOOoUTOoUTUT
S S S
N "0 ——n

usr/lnclude/lnet/dccp inpl.h
#endif /* | codereview */
usr/lncludellnetllp_lnp
usr/include/inet/ip_ndp.h
usr/include/inet/ip2mac_inpl.h
usr/include/inet/ip2mac. h
usr/include/inet/raw p_i npl.h
usr/include/inet/tcp_inpl.h
usr/include/inet/udp_inpl.h
usr/include/libmail.h
usr/include/libnwam priv.h
usr/incl ude/ protocol s/ ripngd. h
usr/include/s_string.h

usr/incl ude/ sys/ | ogi ndmux_i npl . h
usr/incl ude/ sys/vgareg. h

#

Sone | Psec headers can't be shipped lest we hit export controls..
#

usr/include/inet/ipsec_inpl.h
usr/include/inet/ipsec_info.h
usr/include/inet/ipsecah.h
usr/include/inet/ipsecesp.h
usr/include/inet/keysock. h
usr/include/inet/sadb. h
usr/include/ sys/shal_consts. h
usr/incl ude/ sys/ sha2_consts. h

#

#

Filtering out directories not shipped

177 #

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

usr/4lib i 386

These files contain definitions shared privately between the kerne
and libc. There is no reason for themto be part of a package that
a custoner should ever see. They are installed in the proto area by
the uts build because |ibc and and ot her conponents, |ike truss, are
dependent upon their contents and should not have their own copies

sr/include/sys/libc_kernel.h
sr/incl ude/ sys/synch32. h

These files are installed in the proto area by the build of |ibproc for
the benefit of the builds of cnd/truss, cnd/gcore and cnd/ ptools, which
use |ibproc as their comon process-control library. These are not
interfaces for custonmer use, so the files are excluded from packagi ng

HHFEHHFCOCHTHHTE IR

new exception_|ists/packagi ng

194 lib/Ilib-1proc

195 lib/llib-lproc.ln

196 |ib/amd64/11ib-1proc.ln i 386

197 lib/sparcv9/llib-lIproc.In sparc

198 usr/include/libproc.h

199 #

200 # Private interfaces for |ibdisasm

201 #

202 usr/include/libdisasmh

203 usr/lib/1llib-1disasm

204 usr/lib/llib-l1disasmlIn

205 usr/lib/amd64/11ib-1disasmln i 386
206 usr/lib/sparcv9/llib-ldisasmln sparc
207 #

208 # Private interfaces for |ibraidcfg

209 #

210 usr/include/raidcfg_spi.h

211

usr/include/raidcfg.h

212 usr/lib/libraidcfg.so

213 usr/lib/anmd64/ i braidcfg. so i 386

214 usr/lib/sparcv9/libraidcfg.so sparc

215 usr/lib/llib-lraidcfg

216 usr/lib/llib-lraidcfg.ln

217 usr/lib/and64/11ib-1raidcfg.ln i 386

218 usr/lib/sparcv9/llib-lraidcfg.In sparc

219 #

220 # This file is used for private communi cation between mdb, drv/kndb, and
221 # msc/knmdb. The interfaces described herein are not intended for custoner
222 # use, and are thus excluded from packagi ng

223 #

224 usr/incl ude/ sys/ knmdb. h

225 #

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

These files are installed in the proto area by the build of |ibdhcpagent
and |ibdhcputil for the benefit of DHCP-rel ated networki ng conmands such
as dhcpagent, dhcpinfo, ifconfig, and netstat. These are not interfaces
for custoner use, so the files are excluded from packagi ng

bdhcpagent . so
bdhcputil. so

i b-1 dhcpagent

i b-1 dhcpagent.|n

i b-1 dhcputi |

i b-1dhcputi

cl ude/ dhcp_| hostconf h
usr/incl ude/ dhcp_i npl .
usr/incIude/dhcp_inittab.h
usr/incl ude/ dhcp_stabl e. h
usr/incl ude/ dhcp_synbol _conmon. h
usr/incl ude/ dhcpagent _i pc. h
usr/incl ude/ dhcpagent _util.h
usr/incl ude/ dhcpnsg. h
usr/1ib/libdhcpagent.so

i
i
|
|
|
|
n

usr/1ib/libdhcputil.so
usr/lib/l1ib-Idhcpagent
usr/lib/llib-1dhcpagent.|n
usr/1ib/llib-1dhcputi
usr/lib/11ib-1dhcputil.In
#

These files are installed in the proto area by the build of |ibinstzones
and |i bpkg

#

usr/1ib/Ilib-1instzones
usr/lib/l1ib-1instzones.|n
usr/lib/l1lib-1pkg
usr/lib/11ib-1pkg.ln

#

new exception_|ists/packagi ng

260 # Don't ship header files private to |ibipnmp and in.npathd

261 #

262 usr/include/ipnp_query_inpl.h

263 #

264 # These files are installed in the proto area by the build of |ibinetsvc,
265 # an inetd-specific library shared by inetd, inetadmand inetconv. Only
266 # the shared object is shipped.

267 #

268 usr/include/inetsvc. h

269 usr/lib/libinetsvc.so

270 usr/lib/1lib-linetsvc

271 usr/lib/1lib-linetsvec.ln

272 #

273 # These files are installed in the proto area by the build of |ibinetutil
274 # a general purpose library for the benefit of internet utilities. Only
275 # the shared object is shipped

276 #

277 lib/libinetutil.so

278 |ib/and64/1i binetutil.so i 386

279 lib/sparcv9/libinetutil.so sparc

280 lib/Ilib-linetutil

281 lib/Ilib-linetutil.In

282 lib/and64/11ib-linetutil.In i 386

283 lib/sparcv9/llib-linetutil.ln sparc

284 usr/include/libinetutil.h

285 usr/incl ude/ netinet/inetutil.h

286 usr/include/ofnt.h

287 usr/lib/libinetutil.so

288 usr/lib/and64/1ibinetutil.so i 386

289 usr/lib/sparcv9/libinetutil.so sparc

290 usr/lib/l1ib-linetuti

291 usr/lib/Ilib-linetutil.In

292 usr/lib/amd64/11ib-linetutil.ln i 386

293 usr/lib/sparcv9/llib-linetutil.In sparc

294 #

295 # M scel | aneous kernel interfaces or kernel <->user interfaces that are
296 # consolidation private and we do not want to export at this tine.
297 #

298 usr/incl ude/sys/cryptnod. h

299 usr/incl ude/ sys/ dunpadm h

300 usr/include/sys/ontrap.h

301 usr/include/sys/sysnsg_inpl.h

302 usr/include/sys/vlan.h

303 #

304 # These files are installed in the proto area so |vm can use

305 # them during the build process.

306 #

307 lib/Ilib-1neta

308 lib/Ilib-lnmeta.ln

309 usr/include/sdssc. h

310 usr/lib/llib-Ineta

311 usr/lib/Ilib-Imeta.ln

312 #

313 # non-public pci header

314 #

315 usr/incl ude/sys/pci_inpl.h

316 usr/include/sys/pci_tools.h

317 #

318 # Exception list for RCM project, included by |ibrcmand rcm daenon
319 #

320 usr/include/librcmevent.h

321 usr/include/librcminpl.h

322 #

323 # MDB deliverables that are not yet public

324 #

325 usr/lib/mdb/ proc/ ndb_t est. so

new exception_|ists/packagi ng

326 usr/li b/ mdb/ proc/sparcv9/ ndb_test. so sparc

327 #

328 # SNCA project exception list

329 #

330 usr/include/inet/kssl/kssl.h

331 usr/include/inet/kssl/ksslinpl.h

332 usr/include/inet/kssl/ksslproto.h

333 usr/include/inet/nca

334 #

335 # these are "renoved" fromthe source product build because the only

336 # packages that currently deliver themare renpved

337 # they really should't be in here

338 #

339 etc/sfw

340 #

341 # Entries for the |libmech_krb5 symink, which has been included

342 # for build purposes only, not delivered to custoners

343 #

344 usr/lib/gss/libmech_krb5. so

345 usr/|ib/anmd64/ gss/ | i bnmech_krb5. so i 386

346 usr/lib/sparcv9/gss/libmech_krb5. so sparc

347 usr/lib/libmech_krb5. so

348 usr/|ib/anmd64/1i bnmech_krb5. so i 386

349 usr/lib/sparcv9/libnmech_krb5. so sparc

350 #

351 # Entries for headers from ef code project which user does not need to see
352 #

353 usr/pl atform sundu/include/sys/fc_plat.h sparc
354 usr/ pl atforn sundu/include/sys/fcode. h sparc
355 #

356 # Private net80211 headers

357
358
359
360
361
362
363

#

usr/incl ude/ sys/ net 80211_crypto. h
usr/incl ude/ sys/ net80211_ht. h
usr/incl ude/ sys/ net 80211_proto. h
usr/incl ude/ sys/ net 80211. h

#

usr/incl ude/ net/wpa. h

364 #

365

PPPOE files not delivered to custoners

366 #

367

usr/incl ude/ net/ pppoe. h

368 usr/include/ net/sppptun.h

369 #

370 # Si met

371 #

372 usr/include/net/simet.h

373 #

374 # Bridging internal data structures

375 #

376 usr/include/net/bridge_inpl.h

377 #

378 # User<->kernel interface used by cfgadnf USB only
379 #

380 usr/incl ude/sys/ usb/ hubd/ hubd_i npl . h

381 #

382 # User<->kernel interface used by cfgadnl SATA only
383 #

384 usr/includel/sys/satalsata_cfgadmh i 386
385 #

386 # Private ucred kernel header

387 #

388 usr/include/sys/ucred. h

389 #

390 # Private and/or platformspecific snf(5) files

391 #

new exception_|ists/packagi ng

392 lib/librestart.so

393 lib/llib-lrestart

394 lib/llib-lrestart.In

395 lib/and64/11ib-lrestart.In
396 lib/sparcv9/llib-lrestart.In

397 usr/include/libcontract_priv.h
398 usr/include/librestart_priv.h
399 usr/include/librestart.h

400 usr/lib/librestart.so

401 usr/lib/sparcv9/librestart.so
402 |i b/ svc/ mani fest/ pl atform sundu
403 |i b/ svc/ mani fest/ pl at f or m sundv
404 var/svc/ mani f est/ pl at f or ml sun4u
405 var/svc/ mani fest/ pl at f or m sundv

406 etc/svc/profilel/platformsundv. xm

407 etc/svc/ profilelplatform SUNW SPARC- Ent er pri se. xm

408 etc/svc/profilelplatform SUNW Sun-Fire-15000. xni

409 etc/svc/profilelplatform SUNW Sun-Fire-880. xm

410 etc/svc/profile/platform SUNW Sun-Fi re-V890. xm

411 etc/svc/profilelplatformSUNW Sun-Fire.xm

412 etc/svc/profilel/platform SUNWU tra-Enterprise-10000. xni
413 etc/svc/profilelplatformSUNW U traSPARC- || e- NetraCT-40. xm
414 etc/svc/profilel/platformSUNW U traSPARC-I|e-NetraCT-60. xm
415 etc/svc/profile/platform SUNWU traSPARC-11i-Netract.xnl
416 #

417 # Private libuutil files

418 #

419 lib/libuutil.so

420 lib/ITib-lTuutil

421 lib/Ilib-lTuutil.In

422Iib/sparcvgllllbqutiI.In sparc

423 usr/include/li buut _inmpl.h

424 usr/lib/libuutil.

425 usr/1ib/sparcv9/li buutl I. sparc

426 #

427 # Private Miultidata file.

428 #

429 usr/include/sys/multidata_inpl.h

430 #

431 # The following files are used by wanboot.

432 # They contain interfaces which are currently private.
433 #

434 usr/incl ude/ sys/ wanboot _i npl . h

435 usr/incl ude/ wanboot

436 usr/include/ wanbootutil.h

437 #

438 # Even though all the objects built under usr/src/stand are |ater gl omed
439 # together into a couple of second-stage boot |oaders, we dunp the static
440 # archives and lint libraries into $(ROOT)/stand for internedi ate use
441 # (e.g., for lint, linking the second-stage boot | oaders, i

442 # these are nerely internediate objects, they do not need to be packaged.
443 #

444 st and sparc

445 #

446 # Private KCF header files

447 #

448 usr/incl ude/ sys/crypto/ el fsign.h

449 usr/include/ sys/crypto/inpl.h

450 usr/incl ude/ sys/crypto/ops_inpl.h

451 usr/incl ude/ sys/crypto/ sched_i npl . h

452 #

453 # The following files are installed in the proto area
454 # by the build of libavl (AVL Tree Interface Library)

455 # |ibavl contains interfaces which are all private interfaces.

456 #
457 lib/libavl.so

i 386
sparc

sparc
i 386
i 386
i 386
i 386
i 386
i 386
i 386
i 386
i 386
i 386
i 386
i 386
i 386
i 386

Si nce

new exception_|ists/packagi ng

458 |i b/ and64/1i bavl . so i 386
459 | i b/ sparcv9/libavl. so sparc
460 lib/Ilib-1av

461 lib/Ilib-lavl.In

462 |ib/and64/11ib-lavl.In i 386
463 |ib/sparcv9/Illib-lavl.In sparc
464 usr/lib/libavl.so

465 usr/|ib/anmd64/1i bavl . so i 386
466 usr/llb/sparcv9/|ibav|.so sparc
467 usr/1ib/Ilib-1avl

468 usr/lib/Ilib-lavl.In

469 usr/lib/amd64/11ib-1avl.ln i 386
470 usr/lib/sparcv9/llib-lavl.In sparc
471 #

472 # The following files are installed in the proto area
473 # by the build of libcndutils (Command Utilities Library)
474 # libcndutils contains interfaces which are all private interfaces.

475 #

476 lib/libcndutils. so

477 i b/ anmd64/1i bcndutils. so i 386
478 1ib/sparcv9/libcndutils. so sparc
479 lib/I1ib-Icndutils

480 lib/IlTib-lcndutils.In

481 |ib/amd64/11ib-l1cndutils.In i 386
482 lib/sparcv9/llib-lcndutils.In sparc
483 usr/include/libcrdutils.h

484 wusr/lib/libcndutils. so

485 usr/1ib/anmd64/1ibcndutils. so i 386
486 usr/|ib/sparcv9/libcndutils.so sparc
487 usr/lib/Ilib-1cndutils

488 usr/lib/Ilib-1cmdutils.In

489 usr/lib/amd64/11ib-1cndutils.In i 386
490 usr/lib/sparcv9/llib-lcndutils.In sparc
491 #

492 # Private interfaces in |ibsec

493 #

494 usr/include/aclutils.h

495 #

496 # USB skel eton driver stays in sync with the rest of USB but doesn’t ship.
497 #

498 kernel / drv/ usbskel i 386
499 kernel / drv/ and64/ usbskel i 386
500 kernel /drv/sparcv9/ usbskel sparc
501 kernel /drv/usbskel . conf

502 #

503 # Consolidation and Sun private |ibdevid interfaces
504 # Public |ibdevid interfaces provided by devid.h

505 #

506 usr/include/sys/libdevid.h

507 #

508 # The following files are installed in the proto area by the build of
509 # libprtdiag. |libprtdiag contains interfaces which are all private.
510 # Only the shared object is shipped.

511 #

512 usr/platform sundu/lib/llib-1prtdiag sparc
513 usr/platform sundu/lib/Ilib-Iprtdiag.In sparc
514 usr/platform sundv/lib/Ilib-Iprtdiag.In sparc

515 #

516 # The following files are installed in the proto area by the build of
517 # mdesc driver in sund4v. These header files are used on in the build
518 # and do not need to be shipped to custoners.

519 #
520 usr/include/sys/ mlesc. h sparc
521 usr/include/sys/ nmdesc_inpl.h sparc
522 usr/ pl atf ornf sun4v/ i ncl ude/ sys/ mach_descrip. h sparc
523 #

new exception_|ists/packagi ng

524 # The following files are installed in the proto area by the build of
525 # libpcp. |ibpcp contains interfaces which are all private.

526 # Only the shared object is shipped.

527 #

528 usr/platform sundv/lib/llib-1pcp.In sparc
529 usr/pl at f or mf SUNW Net r a- CP3060/ i b/ 11i b-1pcp.In sparc
530 usr/pl atform SUNW Netra-CP3260/1ib/11ib-1pcp.In sparc
531 usr/pl at f or mf SUNW Net ra- T5220/ i b/11ib-1pcp.In sparc
532 usr/pl atfornm SUNW Netra-T5440/1ib/11ib-Ipcp.In sparc
533 usr/ pl at f or M SUNW SPARC- Ent er pri se-T5120/ 11 b/11ib-1pcp.In sparc
534 usr/pl at f or mf SUNW Sun- Bl ade- T6300/ i b/11i b-1pcp.In sparc
535 usr/pl atforn SUNW Sun- Bl ade- T6320/ i b/ I lib-1pcp.In sparc
536 usr/platform SUNW Sun- Fire-T200/1ib/11ib-1pcp.In sparc
537 usr/platform SUNWT5140/1ib/I1ib-Ipcp.In sparc
538 usr/ pl at f or m SUNW USBRDT- 5240/ i b/ 111 b-1pcp.In sparc
539 #

540 # ZFS internal tools and lint libraries

541 #

542 usr/lib/11ib-1zfs_jni

543 usr/lib/llib-1zfs jni.In

544 usr/lib/amd64/11ib-1zfs_jni.ln i 386

545 usr/lib/sparcv9/Ilib-1zfs_jni.lIn sparc

546 usr/lib/l1ib-1zpool

547 usr/lib/11ib-1zpool.In i 386

548 usr/lib/amd64/11ib-1zpool.In i 386

549 usr/lib/sparcv9/llib-1zpool.ln sparc

550 #

551 # ZFS JNI headers

552 #

553 usr/include/libzfs_jni_dataset.h

554 usr/include/libzfs_jni_disk.h

555 usr/include/libzfs_jni_diskngt.h

556 usr/include/libzfs_jni_ipool.h

557 usr/include/libzfs_jni_min.h

558 usr/include/libzfs_jni_pool.h

559 usr/include/libzfs_jni property h

560 usr/include/libzfs_jni_util.

561 #

562 # These files are installed in the proto area for Solaris scsi_vhci driver
563 # (for MPAPI support) and shoul d not be shi pped

564 #

565 usr/include/sys/ scsi/adapters/ npapi_inpl.h

566 usr/include/sys/scsi/adapters/npapi_scsi_vhci.h

567 #

568 # This library is installed in the proto area by the build of |ibdisasm and is
569 # only used when buil ding the KMDB di sasm nodul e.

570 #

571 usr/lib/libstanddi sasm so

572 usr/lib/and64/1i bst anddi sasm so i 386

573 usr/lib/sparcv9/libstanddi sasm so sparc

574 #

575 # TSol: tsol doesn't ship lint source, and tsnet isn't for custonmers at all.
576 #

577 lib/libtsnet.so

578 usr/lib/llib-Itsnet

579 usr/lib/1lib-Itsol

580 #

581 # nss interfaces shared between libnsl and other ON libraries.

582 #

583 usr/include/nss. h

584 #

585 # AT&T AST (ksh93) files which are currently needed only to build OS/ Net
586 # (msgcc&co.)

587 # | i bast

588 usr/lib/libast.so

589 usr/lib/ami64/1i bast.so i 386

new exception_lists/packagi ng 10
590 usr/lib/sparcv9/libast.so sparc
591 usr/lib/l1lib-Ilast
592 usr/lib/llib-last.In
593 usr/lib/and64/11ib-last.In i 386
594 usr/llb/sparcvgllllb last.ln sparc
595 # bcmd
596 usr/lib/llib-lcmj
597 usr/lib/Ilib-1cnmd.In
598 usr/lib/and64/11ib-1cnd.In i 386
599 usr/lib/sparcv9/Illib-lcnd.In sparc
600 # |ibdlI
601 usr/lib/libdll.

602 usr/|ib/and64/| | de I. i 386
603 usr/|ib/sparcv9/libdl I sparc
604 usr/lib/I1ib-1dll

605 usr/lib/Ilib-1dll.In

606 usr/lib/and64/11ib-1dll.In i 386
607 usr/lib/sparcv9/Illib-1dll.In sparc
608 # |libpp (a helper library needed by AST' s nsgcc)
609 usr/lib/libpp.so

610 usr/lib/11ib-1pp

611 usr/lib/llib-Ipp.In

612 usr/lib/local e/ C/ LC_MESSAGES/ | i bpp

613 # |ibshell

614 usr/lib/libshell.so

615 usr/|i b/ amd64/ | i bshel I . i 386
616 usr/|ib/sparcv9/libshel I sparc
617 usr/lib/11ib-Ishell

618 usr/lib/llib-Ishell.In

619 usr/|ib/amd64/11ib-ishell.ln i 386
620 usr/lib/sparcv9/llib-Ishell.In sparc
621 # |ibsum

622 usr/lib/libsumso

623 usr/|ib/and64/|ibsum so i 386
624 usr/lib/sparcv9/libsum so sparc
625 usr/lib/11ib-1sum

626 usr/lib/1lib-Isumln

627 usr/lib/and64/11ib-1sumln i 386
628 usr/lib/sparcv9/Illib-Isumlin sparc
629 #

630 # This file is used in ONto build DSCP clients. It is not for custoners.
631 #

632 usr/include/libdscp.h sparc

633 #

634 # These files are used by the i SCSI Target and the i SCSI Initiator
635 #

636 usr/include/sys/iscsi_protocol.h

637 usr/include/sys/iscsi_authclient.h

638 usr/include/sys/iscsi_authclientglue. h

639 #

640 # These files are used by the COMSTAR i SCSI target port provider
641 #

642 usr/include/sys/idm

643 usr/include/sys/iscsit/chap.h

644 usr/include/sys/iscsit/iscsi_if.h

645 usr/include/sys/iscsit/isns_protocol.h

646 usr/include/sys/iscsit/radius_packet.h

647 usr/include/sys/iscsit/radius_protocol.h

648 #

649 # libshare is private and the 64-bit sharengr is not delivered.
650 #

651 usr/lib/libshare.so

652 usr/|ib/antd64/|ibshare. so i 386
653 usr/lib/sparcv9/libshare. so sparc
654 usr/lib/fs/autofs/libshare_autofs.so

655 usr/lib/fs/autofs/and64/1i bshare_autofs. so i 386

new exception_|ists/packagi ng

656 usr/lib/fs/autofs/sparcv9/libshare_autofs.so sparc
657 usr/lib/fs/nfs/libshare_nfs.so

658 usr/lib/fs/nfs/and64/1ibshare_nfs. so i 386

659 usr/lib/fs/nfs/sparcv9/libshare_nfs.so sparc

660 usr/lib/fs/snb/libshare_snb.so

661 usr/|ib/fs/snb/and64/1i bshare_snb. so i 386

662 usr/lib/fs/snb/sparcv9/libshare_snb. so sparc

663 usr/lib/fs/snbfs/libshare_snbfs.so

664 usr/lib/fs/snbfs/and64/1ibshare_snbfs. so i 386

665 usr/|ib/fs/snbfs/sparcv9/libshare_snbfs.so sparc

666 usr/include/libshare_inpl.h
667 usr/include/scfutil.h

668 #

669 # These files are installed in the proto area by the build of libpri for
670 # the benefit of the builds of FMA Iibldom Zeus, picld plugins, and/or
671 # other libpri consunmers. However, the libpri interfaces are private to
672 # Sun (Consolidation Private) and not intended for custonmer use. So these
673 # files (the symink and the lint library) are excluded from packagi ng
674 #

675 usr/lib/libpri.so sparc

676 usr/lib/llib-1pri sparc

677 usr/lib/llib-lpri.ln sparc

678 usr/lib/sparcv9/libpri.so sparc

679 usr/lib/sparcv9/Illib-lTpri.In sparc

680 #

681 # These files are installed in the proto area by the build of |ibds for
682 # the benefit of the builds of sund4v 10 FMA and/or other |ibds

683 # consurmers. However, the libds interfaces are private to Sun

684 # (Consolidation Private) and not intended for custoner use. So these
685 # files (the symink and the lint library) are excluded from packagi ng
686 #

687 usr/lib/libds.so sparc

688 usr/lib/sparcv9/libds. so sparc

689 usr/lib/llib-lds sparc

690 usr/lib/llib-lds.In sparc

691 usr/lib/sparcv9/Ilib-Ids.In sparc

692 usr/lib/libdscfg.so

693 usr/lib/llib-ldscfg.In

694 usr/pl atform sundv/incl ude/ sys/libds.h sparc

695 usr/pl atform sundv/incl ude/ sys/ vl ds. h sparc

696 #

697 # Private/lnternal u8_textprep header file. Do not ship

698 #

699 usr/include/sys/u8_textprep_data.h

700 #

701 # SQLite is private, used by SMF (svc.configd), idmapd and |ibsnb
702 #

703 usr/include/sqglite

704 usr/lib/libsqlite-native.o

705 usr/lib/libsqglite.o

706 usr/lib/llib-Isqglite.ln

707 usr/lib/snbsrv/libsqlite.so

708 #

709 # Private/lnternal kiconv header files. Do not ship
710 #

711 usr/incl ude/ sys/kiconv_big5_utf8.h

712 usr/incl ude/ sys/ ki conv_cck_comon. h

713 usr/incl ude/ sys/ ki conv_cp950hkscs_utf8. h
714 usr/incl ude/ sys/ ki conv_eneal. h
715 usr/incl ude/ sys/ ki conv_enea2. h
716 usr/incl ude/ sys/ ki conv_euckr _utf8.
717 usr/include/sys/ ki conv_euctw_utf8.
718 usr/incl ude/ sys/ ki conv_gbh18030_ut f
719 usr/incl ude/ sys/ ki conv_gb2312_utf8. h
720 usr/include/sys/kiconv_hkscs_utf 8.
721 usr/include/sys/kiconv_ja_jis_to_unicode.h

h
h
8.h
h

11

new exception_|ists/packagi ng

722 usr/include/sys/kiconv_ja_unicode_to_jis.h

723 usr/include/sys/kiconv_ja.h

724 usr/include/sys/kiconv_ko. h

725 usr/include/sys/kiconv_latinl. h

726 usr/include/sys/kiconv_sc.h

727 usr/include/sys/kiconv_tc.h

728 usr/include/sys/kiconv_uhc_utf8.h

729 usr/include/sys/kiconv_utf8_big5.h

730 usr/include/sys/ ki conv_utf8_cp950hkscs. h

731 usr/include/sys/kiconv_utf8_euckr.h

732 usr/incl ude/ sys/ ki conv_utf8 euctw. h

733 usr/incl ude/ sys/ ki conv_ut f 8_gh18030. h

734 usr/include/sys/kiconv_utf8_gh2312. h

735 usr/include/sys/kiconv_utf8_hkscs. h

736 usr/include/sys/klconv utf8 uhc. h

737 #

738 # At this time, the ttydefs.cleanup file is only useful on sund4u systens
739 #

740 etc/flash/ postdepl oynent/ttydefs. cleanup i 386

741 #

742 # This header file is shared only between the power commands and
743 # ppm srn nodul es # and should not be in any package

744 #

745 usr/include/sys/srn.h

746 #

747 # Privatel/lnternal header files of snmbsrv. Do not ship
748 #

749 usr/incl ude/ snb

750 usr/incl ude/ snbsrv

751 #

752 # Private/lnternal dtrace scripts of snbsrv. Do not ship
753 #

754 usr/lib/smbsrv/dtrace

755 #

756 # Private/lnternal (lint) libraries of snbsrv. Do not ship
757 #

758 usr/lib/reparse/llib-Ireparse_snb
759 usr/lib/reparse/llib-lreparse_snb.ln
760 usr/lib/smbsrv/Ilib-Inmrpc

761 usr/lib/smbsrv/Ilib-Imrpc.In

762 usr/lib/smbsrv/I1ib-1msvc

763 usr/lib/smbsrv/Ilib-1msvec.ln

764 usr/lib/smbsrv/Ilib-Isnmb

765 usr/lib/snmbsrv/Ilib-Isnb.In

766 usr/lib/smbsrv/I1ib-Isnmbns

767 usr/lib/smbsrv/I1ib-Isnmbns.|n

768 #

769 #

770 # Private/lnternal 64-bit libraries of snbsrv. Do not ship
771 #

772 usr/lib/ snbsrv/and64 i 386
773 usr/lib/snmbsrv/sparcv9 sparc
775 usr/lib/reparse/ and64/1i breparse_snb. so i 386
776 usr/lib/reparse/ and64/1i breparse_snb.so.1 i 386
777 usr/lib/reparse/and64/11ib-Ireparse_snb.In i 386
778 usr/lib/reparse/sparcv9/libreparse_snb. so sparc
779 usr/lib/reparsel/ sparcv9/libreparse_snb.so.1 sparc
780 usr/lib/reparsel/sparcv9/llib-lreparse_snb.ln sparc

781 #

782 # Private dirent, extended to include flags, for use by SMB server
783 #

784 usr/include/sys/extdirent.h

785 #

786 # Private header files for vscan service

787 #

12

new exception_|ists/packagi ng 13 new exception_|ists/packagi ng

788 usr/include/libvscan. h 854 usr/lib/l1ib-1HBAAPI.In

789 usr/include/sys/vscan. h 855 usr/|lib/anmd64/11ib-1 HBAAPI . I n i 386
790 # 856 usr/lib/sparcv9/Illib-IHBAAPI.In sparc
791 # libvscan is private 857 #

792 # 858 usr/bin/dscfgcli

793 usr/lib/vscan/llib-Ivscan 859 usr/bi n/sd_di ag

794 usr/lib/vscan/llib-lvscan.In 860 usr/bin/sd_stats

795 # 861 usr/include/nsctl.h

796 # i86hvmis not a full platform It is just a home for paravirtualized 862 usr/include/sys/ncall

797 # drivers. There is no usr/ conponent to this sub-platform but the 863 usr/include/sys/nsc_ddi.h

798 # directory is created in the proto area to keep other tools happy. 864 usr/include/sys/nsc_thread. h

799 # 865 usr/include/sys/nsctl

800 usr/platforni86hvm i 386 866 usr/include/sys/ nskernd. h

801 # 867 usr/include/ sys/ unistat

802 # Private sdcard framework headers 868 usr/lib/libnsctl.so

803 # 869 usr/lib/librdc.so

804 usr/include/sys/sdcard 870 usr/lib/libunistat.so

805 # 871 usr/lib/llib-Insctl.In

806 # |ibsnbfs is private 872 usr/lib/llib-lrdc.In

807 # 873 usr/lib/llib-lunistat.In

808 usr/incl ude/ net snb 874 #

809 usr/lib/libsnbfs.so 875 # These files are used by the i SCSI initiator only.
810 usr/lib/anmd64/1i bsnbfs. so i 386 876 # No reason to ship them

811 usr/lib/sparcv9/libsnbfs.so sparc 877 #

812 usr/lib/l1lib-1snbfs 878 usr/includel/sys/scsi/adapters/iscsi_door.h
813 usr/lib/llib-1snmbfs.In 879 usr/include/sys/scsi/adapters/iscsi_if.h
814 usr/|ib/amd64/11ib-1 nbfs.ln i 386 880 #

815 usr/lib/sparcv9/Illib-Isnbfs.In sparc 881 # shd ioctl hdr

816 # 882 #

817 # denp & test program for snbfs (private) ACL support 883 usr/include/sys/stnf_sbhd_ioctl.h

818 # 884 #

819 usr/lib/fs/snbfs/chacl 885 # proxy port provider interface

820 usr/lib/fs/snbfs/l|sacl 886 #

821 usr/lib/fs/snbfs/testnp 887 usr/include/sys/pppt_ic_if.h

822 # 888 usr/include/sys/pppt_ioctl.h
823 # FCrelated files 889 #

824 kernel / knmdb/ fcip i 386 890 # proxy daenon lint library

825 kernel / kndb/ and64/ f ci p i 386 891 #

826 kernel /kmdb/ sparcv9/fcip sparc 892 usr/lib/llib-Istnfproxy

827 kernel / kndb/ fcp i 386 893 usr/lib/llib-Istnfproxy.In

828 kernel / kndb/ and64/ f cp i 386 894 usr/lib/anmd64/11ib-I|stnfproxy.In i 386
829 kernel / kndb/ sparcv9/ fcp sparc 895 usr/lib/sparcv9/llib-Istnfproxy.In sparc
830 kernel / kndb/fctl i 386 896 #

831 kernel / kndb/ and64/ f ct | i 386 897 # portable object file and dictionary used by |ibfnd_nsg test
832 kernel / kndb/ sparcv9/fctl sparc 898 #

833 kernel / knmdb/ gl ¢ i 386 899 wusr/lib/fmdict/TEST. dict

834 kernel / kndb/ and64/ gl ¢ i 386 900 usr/lib/local e/ G/ LC_MESSAGES/ TEST. no
835 kernel / kndb/ sparcv9/ gl c sparc 901 usr/lib/local e/ C/ LC_MESSAGES/ TEST. po
836 lib/llib-la5k sparc 902 #

837 lib/lIlib-1a5k.In sparc 903 # Private idmap RPC protocol

838 |ib/sparcv9/llib-1a5k.In sparc 904 #

839 lib/llib-lg_fc sparc 905 usr/include/rpcsvc/idmap_prot.h

840 lib/Ilib-1g_fc.ln sparc 906 usr/include/rpcsvc/idmap_prot. x

841 lib/sparcv9/llib-lg_fc.In sparc 907 #

842 usr/include/a_state.h sparc 908 # Private idmap directory API

843 usr/incl ude/ a5k. h sparc 909 #

844 usr/include/exec. h sparc 910 usr/include/directory.h

845 usr/include/g_scsi.h sparc 911 #

846 usr/include/g_state.h sparc 912 # librstp is private for bridging

847 usr/include/gfc.h sparc 913 #

848 usr/include/l _common. h sparc 914 usr/incl ude/ st p_bpdu. h

849 usr/include/l _error.h sparc 915 usr/include/stp_in.h

850 usr/include/romh sparc 916 usr/include/stp_vectors.h

851 usr/include/stgcom h sparc 917 usr/lib/librstp.so

852 usr/include/sys/fibre-channel 918 usr/lib ib-lrstp

/11
853 wusr/lib/11ib-1HBAAPI 919 wusr/lib/Ilib-Irstp.In

new exception_lists/packagi ng 15

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

941
942
943
944
945

947
948
949
950
951
952
953
954
955
956
957
958
959
960

#

Private nvfru API

#

usr/include/nvfru.h

#

vrrp

#
usr/include/libvrrpadm h
usr/lib/libvrrpadm so

usr/1ib/amd64/1ibvrrpadm so i 386
usr/1ib/sparcv9/libvrrpadm so sparc
usr/1ib/I1ib-1vrrpadm
usr/lib/Ilib-1vrrpadml|n
usr/1ib/amd64/11ib-1vrrpadml|n i 386
usr/1ib/sparcv9/llib-lvrrpadmln sparc
#

This is only used during the -t tools build
#

opt/ onbl d/ bi n/i 386/ el fsign i 386

opt/ onbl d/ bi n/ sparc/ el fsign sparc

#

Private |ibdwarf

#

opt/onbl d/lib/i386/1ibdwarf.so i386
opt/onbl d/lib/sparc/libdwarf.so sparc

#
Private socket filter API
#

usr/include/ sys/sockfilter.h

#

We don’t actually validate |icense action payl oads, and the |icense
staging area is provided as a separate basedir for package

publication. The net result is that everything therein should be
1 gnored for packagi ng validation.

#

|'i censes

Libbe is private

I+

usr/include/libbe_priv.h

new usr/src/cnd/ cnd-i net/ etc/ sock2pat h. d/ syst enP@Fker nel

R R R R

1303 Sat Aug 18 10: 36:55 2012

new usr/src/cnd/ crnd-i net/ et c/ sock2pat h. d/ syst enP@Fker nel

dccp: lint fixes, dccp_conn_create_v6
IR E SRS R RS RS SRR R R R R R E SRS ESE SRS EESESEEEEEEEREEREEREEEEERSE]
1 # CDDL HEADER START
2 #
3 # The contents of this file are subject to the terms of the
4 # Cormmon Devel opnment and Distribution License (the "License").
5 # You may not use this file except in conpliance with the License.
6 #
7 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
8 # or http://ww.opensol aris.org/os/licensing.
9 # See the License for the specific |anguage governi ng perm ssions
10 # and limtations under the License.
11 #
12 # Wen distributing Covered Code, include this CDDL HEADER i n each
13 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
14 # |f applicable, add the follow ng below this CDDL HEADER, with the
15 # fields enclosed by brackets "[]" replaced with your own identifying
16 # information: Portions Copyright [yyyy] [nane of copyright owner]
17 #
18 # CDDL HEADER END
19 #
20 # Copyright (c) 1995, 2010, Oracle and/or its affiliates. Al rights reserved.
21 #
22 # socket configuration information
23 #
24 # Family Type Protocol Dev| Modul e
25 2 2 0 tcp
26 2 2 6 tcp
28 26 2 0 tcp
29 26 2 6 tcp
31 2 1 0 udp
32 2 1 17 udp
34 26 1 0 udp
35 26 1 17 udp
37 1 2 0 /dev/ticotsord
38 1 6 0 /dev/ticotsord
39 1 1 0 /dev/ticlts
41 2 4 0 icnp
42 26 4 0 icmp
44 2 2 132 socksctp
45 26 2 132 socksctp
46 2 6 132 socksctp
47 26 6 132 socksctp
49 24 4 0 rts
51 27 4 2 / dev/ keysock
52 29 4 1 / dev/ spdsock
54 31 1 0 trill
56 6 88 dccp

2
57 #endif /* | codereview */

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

R R R R

189148 Sat Aug 18 10:36:55 2012
new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c
dccp: conpl ete netstack

R R R

__unchanged_portion_onitted_

138 static mb_itemt *m bget (i nt sd);

139 static void m bfree(mb_itemt *firstitem;

140 static int m bopen(voi d);

141 static void m b_get_constants(mb_itemt *item;

142 static mb_itemt *mb_itemdup(mb_itemt *item;

143 static mb_itemt *mb_itemdiff(mb_itemt *|teml

144 mb_itemt *itenR);

145 static void mb_itemdestroy(mb_itemt **item;

147 static bool ean_t octetstrmatch(const Cctet_t *a, const Octet_t *b);
148 static char *octetstr(const Cctet_t *op, int code,

149 char *dst, uint_t dstlen);

150 static char *pr_addr (ui nt _t addr,

151 char *dst, uint t dstlen);

152 static char *pr_addrnz(i paddr t addr, char *dst, uint_t dstlen);
153 static char *pr_addr 6(const in6_addr _t *addr,

154 char *dst, uint_t dstlen);

155 static char *pr_mask(ui nt _t addr,

156 char *dst, uint_t dstlen);

157 static char *pr_prefix6(const struct in6_addr *addr,

158 uint_t prefixlen, char *dst, uint_t dstlen);
159 static char *pr_ap(uint_t addr, uint_t port,

160 char *proto, char *dst, uint_t dstlen);

161 static char *pr_ap6(const in6_addr_t *addr, uint_t port,

162 char *proto, char *dst, uint_t dstlen);

163 static char *pr_net(uint_t addr, uint_t mask,

164 char *dst, uint_t dstl en);

165 static char *pr_net addr(w nt _t addr, uint_t nmask,

166 char *dst, uint_t dst | en);

167 static char *f nodest r (ui nt _t fnode);

168 static char *portname(uint _t port, char *proto,

169 char *dst, uint_t dstlen);

171 static const char *mtcp_state(int code,

172 const m b2_transport MPEntry_t *attr);

173 static const char *m udp_state(int code,

174 const mb2_transport MLPEntry_t *attr);

176 static void stat_report(mib_itemt *item;

177 static void nrt_stat_report(mb_itemt *item;

178 static void arp_report(mb_itemt *item;

179 static void ndp_report(mb_itemt *item);

180 static void nmt_report(mb_itemt *item;

181 static void if_stat_total (struct ifstat *ol dstats,

182 struct ifstat *newstats, struct ifstat *sumstats);
183 static void if report(mb_itemt *item char *ifnang,

184 int Iflag_only, bool ean_t once_only);

185 static void if report_l p4(m b2_i pAddrEntry t *ap,

186 char ifname[], “char 1 ogintnane[],

187 struct ifstat *statptr, bool ean_t ksp_not _null);
188 static void if_report_ip6(m b2_i pv6AddrEntry_t *ap6,

189 char ifnanme[], char |ogintname[],

190 struct ifstat *statptr, boolean_t ksp_not_null);
191 static void ire_report(const mb_itemt *item;

192 static void tcp_report(const mib_itemt *item;

193 static void udp_report(const nmib_itemt *item;

194 static void group_report(mb_itemt *item;

195 static void dce_report(mb_itemt *item;

196 static void sctp_report(const mb_itemt *item;

new usr/src/cnd/ cnd-i net/ usr.

197
198
199
200
201
202
203
204
205
206
207
208
209
196
210
211
212
213
214
215

217
218
219
220
221
222
223
224
225

227
228

230
231
232
233
234
235

238
239
240
241
242
243
244
245
246
247
248
249
250
251

255
256

258
259
260
261

bi n/netstat/netstat.c 2

static void dccp_report(const mib_itemt *item;
#endi f /* | codereview */

static void print_ip_stats(mb2_ip_t *ip);

static void print_icrmp_stats(m b2_icnp_t *|crrp)

static void print_ip6_: stats(mb2|pv6IfStatsEntryt *ip6);

static void prin _| cnp6_stats(m b2_i pv6l flcnpEntry_t *i crrp6);
static void print_sctp_stats(m b2_sctp_t *tcp);

static void print_tcp_stats(m b2_tcp_t *tcp);

static void print_udp_stats(m b2_udp_t *udp);

static void pri nt_r aw p_stats(m b2_rawi p_t *raw p);

static void print_ignp_stats(struct igrrpstat *igps);

static void prlnt nrt_stats(struct nrtstat *mrts);

static void print_dccp_stats(m b2_dccp_t *dccp);

static void sctp_report(const mb_itemt *item;

static void sum_i p6_stats(m b2_i pv6l f Stat sEntry_t *ip6,

m b2_i pv6l fStatsEntry_t *sunb);
static void sum.icnp6_stats(m b2_i pv6l flcnpEntry_t *icnpé6,
m b2_i pv6l flcnpEntry_t *sung);

static void m report(void);

static void dhcp_report(char *);

static uint64_t kst at _nanmed_val ue(kstat _t *, char *);

static kid_t saf e_kstat _read(kstat_ctl _t *, kstat_t *, void *);
static int i snun(char *);

static char *plural (int n);

static char *pluraly(int n);

static char *plurales(int n);

static void process_filter(char *arg);

static char *ifindex2str(uint_t, char *);

static bool ean_t fam ly_selected(int famly);

static void usage(char *);

static void fatal (int errcode, char *stril, ...);
#define PLURAL(n) plural ((int)n)
#defi ne PLURALY(n) pluraly((int)n)
#defi ne PLURALES(n) plural es((int)n)
#define | FLAGMOD(fl g, val 1, val2) if (flg ==vall) flg = val2
#define MDIFF(diff, elenR, elenl, menber) (diff)->menber =\

(el en?) - >menber - (el eml) - >menber

static bool ean_t Afl ag = B_FALSE; /* Al sockets/ifs/rtng-tbls */
static bool ean_t Dfl ag = B_FALSE; /* DCE info */

static bool ean_t Iflag = B_FALSE; /* 1P Traffic Interfaces */
static bool ean_t Ml ag = B_FALSE; /* STREAMS Menory Statistics */
static bool ean_t Nfl ag = B_FALSE; /* Nuneric Network Addresses */
static bool ean_t Rfl ag = B_FALSE; /* Routing Tables */

static bool ean_t RSECf 1 ag = B_FALSE; /* Security attributes */
static bool ean_t Sflag = B_FALSE; /* Per-protocol Statistics */
static bool ean_t Vflag = B_FALSE; /* Verbose */

static bool ean_t Pflag = B_FALSE /* Net to Media Tables */
static bool ean_t G'lag = B_FALSE; /* Ml ticast group nenbership */
static bool ean_t MM | ag = B_FALSE /* Milticast routing table */
static bool ean_t DHCPfl ag = B_FALSE /* DHCP statistics */

static bool ean_t Xflag = B_FALSE; /* Debug Info */

static int vdconpat = O; /* Conpatible printing format for status */
static int proto = | PPROTO_MNAX; /* all protocols */

kstat_ctl _t *kc = NULL;
/*

* Sizes of data structures extracted fromthe base nib.

* This allows the size of the tables entries to grow while preserving

* binary conpatibility.

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

262 */

263 static int ipAddrEntrySize;

264 static int ipRouteEntrySize;

265 static int ipNetToMedi aEntrySi ze;
266 static int ipMenberEntrySize;

267 static int ipGoupSourceEntrySize;
268 static int ipRouteAttributeSize;
269 static int vifctlSize;

270 static int nfcctlSize;

272 static int ipv6elfStatsEntrySize;
273 static int ipv6elflcnpEntrySize;

274 static int ipv6AddrEntrySize;

275 static int ipv6RouteEntrySize;

276 static int ipv6Net ToMedi aEntrySi ze;
277 static int ipvéMenberEntrySize;

278 static int i pv6G oupSourceEntrySize;
280 static int ipDestEntrySize;

282 static int transport MPSi ze;

283 static int tcpConnEntrySize;

284 static int tcp6ConnEntrySize;

285 static int udpEntrySize;

286 static int udp6EntrySi ze;

287 static int sctpEntrySi ze;

288 static int sctpLocal EntrySize;

289 static int sctpRenpteEntrySize;

290 static int dccpEntrySi ze;

291 static int dccp6EntrySi ze;

292 #endif /* | codereview */

294 #define protocol _sel ected(p) (proto == | PPROTO_ MAX || proto == (p))

296 /* Machinery used for -f (filter) option */
297 enum{ FK_AF = 0, FK_QUTIF, FK_DST, FK FLAGS, NFILTERKEYS };

299 static const char *filter_keys[NFI LTERKEYS] = {

300 "af", "outif", "dst", "flags"

301 };

303 static mlabel _t *zone_security_label = NULL;

305 /* Flags on routes */

306 #define FLF_A 0x00000001

307 #define FLF_ b 0x00000002

308 #define FLF_D 0x00000004

309 #define FLF_G 0x00000008

310 #define FLF_H 0x00000010

311 #define FLF_L 0x00000020

312 #define FLF_U 0x00000040

313 #define FLF_M 0x00000080

314 #define FLF_S 0x00000100

315 #define FLF_C 0x00000200 /* I RE_I F_CLONE */
316 #define FLF_I 0x00000400 /* RTF_I NDI RECT */
317 #define FLF_R 0x00000800 /* RTF_REJECT */
318 #define FLF_B 0x00001000 /* RTF_BLACKHOLE */
319 #define FLF_Z 0x00100000 /* RTF_ZONE */

321 static const char flag_list[] = "AbDGHLUVSCI RBZ";
323 typedef struct filter_rule filter_t;
325 struct filter_rule {

326 filter_t *f_next;
327 uni on {

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

328 int f_famly;

329 const char *f_ifnane;

330 struct {

331 struct hostent *f_address;

332 i n6_addr _t f_nask;

333 } &

334 struct {

335 uint_t f_flagset;

336 uint_t f_flagclear;

337 }f;

338 } oy

339 };

341 /*

342 * The user-specified filters are linked into |ists separated by
343 * keyword (type of filter). Thus, the matching algorithmis:
344 * For each non-enpty filter |ist

345 * If no filters in the list match

346 * then stop here; route doesn’t match
347 * If | oop above conpletes, then route does match and will be
348 * di spl ayed.

349 *

350 static filter_t *filters[NFILTERKEYS];

352 static uint_t timestanp_fnt = NODATE;

354 #if !defined(TEXT_DOVAI N) /* Shoul d be defined by cc -D */
355 #define TEXT_DOVAIN "SYS TEST" /* Use this only if it isn't */
356 #endif

358 int

359 main(int argc, char **argv)

360 {

361 char *nare;

362 mb_itemt *item = NULL;

363 mb_itemt *previtem = NULL;

364 int sd = -1;

365 char *ifname = NULL;

366 i nt interval = 0; /* Single time by default */

367 int count = -1; /* Forever */

368 int C;

369 int d;

370 /*

371 * Possible values of "Iflag_only’:

372 * -1, no feature-flags;

373 * 0, IFlag and other feature-flags enabl ed

374 * 1, IFlag is the only feature-flag enabl ed

375 * trinary variable, nodified using | FLAGVOD()

376 *

377 int Iflag_only = -1;

378 bool ean_t once_only = B_FALSE; /* '-i’ with count > 1 */
379 extern char *opt ar g;

380 extern int optind;

381 char *defaul t _i p_str = NULL;

383 name = argv[O0];

385 v4dconpat = get_conpat _flag(&defaul t_ip_str);

386 if (vdconpat == DEFAULT_PROT_BAD_ VALUE)

387 fatal (2, "%: %: Bad value for % in %\n", nane,
388 default ip_str, DEFAULT |P, | NET_DEFAULT FILE);
389 free(default_ip_str);

391 (void) setlocal e(LC_ALL, "");

392 (voi d) textdomai n(TEXT_DOVAIN);

new usr/src/cnd/ cnd-i net/ usr.

bi n/netstat/netstat.c

394 whil e ((c getopt (argc, argv, "adi mrspMgvxf:P:1:DRT:")) != -1) {
395 itch ((char)c) {

396 case ra’: /* all connections */

397 Aflag = B_TRUE;

398 br eak;

400 case 'd: /* DCE info */

401 Dflag = B_TRU

402 IFLAGMJD(IfIag only, 1, 0); /* see macro def’'n */
403 br eak;

405 case 'i’: /* interface (ill/ipif report) */
406 Iflag = B_TRUE;

407 | FLAGVOD(I flag_only, -1, 1); /* '-i' exists */
408 break;

410 case 'm: /* streams nsg report */

411 Ml ag = B_TRUE;

412 | FLAGMOD(Tflag_only, 1, 0); /* see macro def’'n */
413 br eak;

415 case 'n’: /* nuneric format */

416 Nfl ag = B_TRUE;

417 br eak;

419 case 'r’: /* route tables */

420 Rfl ag = B_TRUE;

421 | FLAGMOD(Tflag_only, 1, 0); /* see macro def’n */
422 br eak;

424 case 'R : /* security attributes */

425 RSECfl ag = B_TRU

426 | FLAGVOD(| f | ag_ only, 1, 0); /* see nacro def’'n */
427 br eak;

429 case 's’: /* per-protocol statistics */

430 Sflag = B_TRUE;

431 IFLAG\/(D(IfIag only, 1, 0); /* see macro def’'n */
432 br eak;

434 case 'p’: /* arp/ndp table */

435 Pflag = B_TRUE;

436 | FLAGMOD(| flag_only, 1, 0); /* see macro def’'n */
437 break;

439 case 'M: /* multicast routing tables */
440 MM | ag = B_TRUE;

441 | FLAGVOD(| f1 ag_ only, 1, 0); /* see macro def’'n */
442 br eak;

444 case 'g': /* multicast group nmenbership */
445 Glag = B _TRUE

446 IFLAGMJD(IfIag only, 1, 0); /* see macro def’'n */
447 br eak;

449 case 'V': /* verbose output format */

450 Vflag = B_TRUE;

451 | FLAGVO(Tflag_only, 1, 0); /* see macro def’n */
452 br eak;

454 case 'x': /* turn on debugging */

455 Xflag = B_TRUE;

456 br eak;

458 case 'f’:

459 process_filter(optarg);

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

460

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

494
495
496
497
498

500
501
502
503

505
506
507
508
509
510
511
512
513
514
515
516

518
519
520
521
522

524
525

#endi f

br eak;

case 'P:
if (strcnp(optarg, "ip") == 0) {
proto = IPPROTO_IP
} else if (strcnp(optarg, |pv6) =0
strcnp(optarg, "ip6") ==

v4coerat = 0; /* O/errl dden */

proto = | PPROTO | PV6;
} else if (strcnp(optarg,
proto = | PPROTO

"icnp”) == 0) {
I QvP;

} else if (strcnp(optarg |Crrpv6") =0 ||
strcnp(optarg, "icnp6") == 0
v4dconpat = O; /* O/errl dden */

proto = IPPROI'OICNPVG
else if (strcnp(optarg
proto = | PPROTO |
else if (strcnp(optarg,
proto = | PPROTO UDP,
else if (strcnp(optarg "tcp") == 0)
proto = | PPROTO TCP'
else if (strcnp(optarg
proto = | PPROTO
else if (strcnp(optarg,
strcnp(optarg, "raw p")
proto = | PPROTO_RAW
} else if (strcnp(optarg,
proto = | PPROTO_

“udp") == 0)
-

B e e e

“raw') == 0 |
=0 {

/* ! codereview */

} else {
fatal (1, "%: unknown protocol.\n",
}
br eak;
case 'I|’:
i fname = optarg;
Iflag = B_TRUE;
| FLAGVOD(Tflag_only, -1, 1); /* see macro def’'n */
break;
case 'D:
DHCPf | ag = B_TRUE;
Iflag_only = 0
break;
case 'T':
if (optarg)
if (*optarg = u’)
tlrrestanp fm = UDATE;
else if (*optarg == 'd’
timestanp_fnt = DDATE;
el se
usage(nane) ;
} else {
usage(nane) ;
}
break;
case ' ?':
defaul t:
usage(nane) ;
}
}
/*

* Make sure -R option is set only on a | abel ed system

"ignp") == 0) {
P

{
{

"sctp") == 0) {
S

"decp) == 0) {

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

526 */
527 if (RSECflag && !is_system|abeled()) {

528 (void) fprintf(stderr, "-R set but labeling is not enabled\n");

529 usage(nane) ;
530 }

532 /
533

534

535

536

537 */

538 if (Iflag || Sflag|| Ml ag) {

539 for = tind; d < argc; d++) {

540 |f (|snun(argv[d])) {

541 interval = atoi(argv[d]);
542 if (d +1<argc &

543 isnum(argv[d + 1]))

Handl e other arguments: find interval, count; the
flags that accept 'interval’ and 'count’ are OR d
in the outernost 'if'; nore flags nmay be added as
requi red

* ok ok ok ¥

544 count = atoi(argv[d + 1]);

545 opti nd++;

546 }

547 opti nd++;

548 if (interval == 0 || count == 0)
549 usage(nane) ;

550 br eak;

551 }

552 }

558 }

554 if (optind < argc) {

555 if (Iflag & isnunm(argv[optind])
556 count = atoi(argv[optind
557 if (count ==

558 usage(nane) ;

559 opti nd++;

560 }

561 1

562 if (optind < argc) {

563 (void) fprintf(stderr,

564 "Os: extra argunments\n", nane);
565 usage(nane) ;

566 }

567 if (interval)

568 set buf (stdout, NULL);

) A
1);

570 if (DHCPflag) {

571 dhcp_report(lflag ? ifname : NULL);
572 exit(0);

573 1

5175 /*

576 * Get this process’s security label if the -Rswitch is set.
577 * W use this |abel as the current zone's security |abel.

578 */

579 if (RSECflag) {

580 zone_security_|label = m|abel _all oc(MAC LABEL);
581 if (zone_security_label == NULL

582 fatal (errno, "mlabel _alloc() failed");
583 if (getplabel (zone_security_|label) < 0)

584 fatal (errno, "getplabel () failed");

585 }

587 /* Get data structures: primng before iteration */
588 if (fam|ly_selected(AF_INET) || famil

589 sd = mbopen()

590 if (s == -1)

591 fatal(l "can’t open mb streamn");

y_sel ected(AF_I NET6)) {

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

592 if ((item= mbget(sd)) == NULL) {

593 (void) close(sd);

594 fatal (1, "m bget() failed\n");

595

596 /* Extract constant sizes - need do once only */

597 m b_get _constants(item;

598 }

599 if ((kc = kstat_open()) == NULL) {

600 m bfree(item;

601 (voi d) cI ose(sd)

602 fail (1, "kstat open(): can’t open /dev/kstat");

603 }

605 if (interval <= 0) {

606 count = 1;

607 once_only = B_TRUE;

608 }

609 [* *for’ loop 1. */

610 for (;;) {

611 mb_itemt *curritem= NULL; /* only for -[Ms */
613 if (timestanmp_fm != NODATE)

614 print_timestanp(timestanp_fnt);

616 /* netstat: AF_INET[6] behaviour */

617 if (famly_selected(AF_INET) || fam |y_sel ected(AF_I NET6)) {
618 if (Sflag) {

619 curritem= nmb_itemdiff(previtem item;
620 if (curritem == NULL)

621 fatal (1, "can't process mb data, "
622 "out of menmory\n");

623 mb_itemdestroy(&previtem;

624 }

626 if (!(Dflag || Iflag || Rflag || Sflag || Mlag ||
627 Mflag || Pflag || Gflag || DHCPflag)) {
628 if (protocol_sel ected(| PPROTO_UDP))
629 udp_report(iten);

630 if (protocol_selected(l PPROTO) TCP))
631 tcp_report(item;

632 if (protocol_selected(l PPROTO) SCTP))
633 sctp_report(item;

634 if (protocol_sel ected(l PPROTO_DCEP))
635 dccp_report(item;

636 #endif /* | codereview */

637 }

638 if (1flag)

639 if_report(item ifname, Iflag_only, once_only);
640 if (Mlag)

641 mreport();

642 if (RfI ag)

643 ire_report(item;

644 if (Sflag & MMl ag) {

645 nrt_stat_report(curritem;

646 } else {

647 if (Sflag)

648 stat_report(curritem;

649 if (M1 ag)

650 nrt_report(iten;

651 }

652 if (&lag)

653 group_report(item;

654 if (Pflag) {

655 if (famly_sel ected(AF_I NET))

656 arp_report(ite

657 if (famly_sel ected(AF_I NET6))

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

658 ndp_report(item;

659 }

660 if (Dflag)

661 dce_report(item;

662 m b_item destroy(&curriten);

663 }

665 /* netstat: AF_UN X behavi our */

666 if (famly_sel ected(AF_UNI X) &&

667 (!'(Dflag || Iflag || Rflag || Sflag || Mlag ||
668 IVMIag|| Pflag|| Glag)))

669 xpr (kc);

670 (voi d) kst at _cl ose(kc);

672 /* iteration handling code */

673 if (count > 0 && --count == 0)

674 r eak;

675 (void) sl eep(l nterval);

677 /* re-popul ati ng of data structures */

678 if (famly_ seIected(AFINET) || famly_sel ected(AF_I NET6)) {
679 if (Sflag) {

680 /* previtemis a cut-down list */
681 previtem= mb_itemdup(iten);

682 If (previtem == NULL)

683 fatal (1, "can’t process mib data,
684 "out of menmory\n");

685 }

686 m bfree(itemn;

687 (void) cl ose(sd);

688 if ((sd = m bope n()) == -1)

689 fatal (1, ‘can't open m b stream anynore\n");
690 f ((item= mbget(sd)) == NULL) {

691 (void) close(sd);

692 fatal (1, ‘m'bget() failed\n");

693 }

694 }

695 if ((kc = kstat_open()) == NULL)

696 fail (1, "kstat_open(): can't open /dev/kstat");
698 } /* "for’ loop 1 ends */

699 m bfree(item;

700 (void) close(sd);

701 if (zone_security_label !'= NULL)

702 m | abel _free(zone_security_| abel);

704 return (0);

705 }

708 static int
709 isnum(char *p)

710 {

711 int | en;

712 int i;

714 len = strlen(p);

715 for (i =0; i <len; i++)

716 if (lisdigit(p[i]))

717 return (0);

718 return (1);

719 }

T22 | % cmem e MBGET ------mmmmmm e

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

724 static mib_itemt *
725 m bget (i nt sd)

726 {

727 /*

728 * buf is an automatic for this function, so the

729 * conpiler has conplete control over its alignnent;

730 * it is assuned this alignment is satisfactory for

731 * it to be casted to certain other struct pointers

732 * here, such as struct T_optngnt_ack * .

733 */

734 uintptr_t buf[512 / sizeof (uintptr_t)];

735 int fl ags;

736 int i, |, getcode;

737 struct strbuf ct | buf, databuf;

738 struct T_optngnt_req *tor = (struct T_optngnt_req *)buf;
739 struct T_optngnt _ack *toa = (struct T_optngnt_ack *)buf;

740 struct T_error_ack *tea = (struct T_error_ack *)buf;

741 struct opthdr *req;

742 mb_itemt *first_item = NULL;

743 mb_itemt *last _item = NULL;

744 mb_itemt *tenp;

746 tor->PRIMtype = T _SVR4 OPTMGMI_REQ

747 tor->0PT of fset = sizeof (struct T optrmgnt _req);

748 tor->0PT_l ength = sizeof (struct opthdr);

749 tor->MAMI_flags = T_CURRENT;

752 /*

753 * Note: we use the special |evel value below so that IP wll return
754 * us information concerning | RE_ MARK TESTHH DDEN rout es.

755 */

756 = (struct opthdr *)&or[1];

757 req >l evel = EXPER_| P_AND ALL_ | RES;

758 reg- >nane = 0,

759 req->l en = 1;

761 ctlbuf.buf = (char *)buf;

762 ctlbuf.len = tor->0PT_length + tor->0PT_of fset;

763 flags = 0;

764 if (putmsg(sd, &ctlbuf, (struct strbuf *)0, flags) == -1) {
765 perror("m bget: putmsg(ctl) failed");

766 goto error_exit;

767 1

769 /*

770 * Each reply consists of a ctl part for one fixed structure
771 * or table, as defined in mb2.h. The format is a T_OPTMGMI_ACK,
772 * containing an opthdr structure. |level/nane identify the entry,
773 * len is the size of the data part of the message.

774 */

775 req = (struct opthdr *)& oa[1];

776 ctl buf. maxl en = sizeof (buf);

777 i =1

778 for (;;) {

779 flags = O;

780 getcode = getm;g(sd &ct | buf, (struct strbuf *)0, &flags);
781 if (getcode == -1) {

782 perror ("m bget getnsg(ctl) failed");

783 i f (Xflag)

784 (void) fputs("# | evel nanme len\n",
785 stderr);

786 i = 0;

787 for (last_item= first_item last_item
788 last_Ttem = last_item>next_item

789 (void) printf("% %d 9%d 9%\ n",

10

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

809
810
811
812
813
814

816
817
818
819

821
822
823
824
825
826
827

829
830
831
832
833
834
835

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

++i,

| ast _i tem >group,
last_item>nib_id,

| ast _item >l ength);

goto error_exit;

}
1f (getcode == 0 &&
ctl buf.len >= sizeof (struct T optngm _ack) &&
toa->PRIM type == T OPTMGMI_ACK &&
toa->l\/GMl’ fI ags == T_SUCCESS &&
reg->len == 0) {
if (Xflag)
(void) printf("mbget getnmsg() % returned "
"EOD (level %d, nane %d)\n",
j, reg->level, reqg->nane);
return (first_item; /* this is EOD msg */
}

if (ctlbuf.len >= sizeof (struct T_error_ack) &&
tea->PRIM type == T_ERROR _ACK) {
(void) fprintf(stderr,
"m bget %l gives T_ERROR ACK: TLI _error = O0x% X,
"UNI X_error = Ox% x\n",
j, tea->TLI _error, tea->UNI X error);

errno = (tea->TLI _error == TSYSERR) ?
tea->UNI X_error : EPROTQ
goto error_exit;

}

if (getcode != MOREDATA ||
ctlbuf.len < sizeof (struct T_optmgnt_ack) ||
toa->PRIM type != T_OPTMGMI_ACK | |
toa->MGMI_flags ! = T_SUCCESS) {
(void) printf("m bget getmsg(ctl) %l returned %,
"ctlbuf.len = %d, PRIMtype = %d\n
j, getcode, ctlbuf. len, toa- >PRIMtype)

if (toa->PRIMtype == T_OPTMGMI_ACK)
(voi d) prlntf("T OPTMGMI_ACK: "
MGMI_flags = Ox% x, reqg->len = %d\n",
toa- >MAMT_f | ags, req->len);
errno = ENOVBG
goto error_exit;

}

tenp = (mib_itemt *)nalloc(sizeof (mb_itemt));
if (temp == NULL)

perror("mbget nalloc failed");

goto error_exit;

}
if (last_item!= NULL)

last _item >next _item = tenp;
el se

first_item= tenp;
last_item = tenp;
| ast _i tem >next _i tem = NULL;
| ast _item >group = reqg->l evel;
last_item>m b_id = req->naneg;
last_item >l ength = req->l en;
last_item>valp = malloc((int)req->len);
if (last_item>val p == NULL)

goto error_exit;
if (Xflag)

(void) printf("nsg %: group = %id mb_id = 9%d"

11

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

856 "length = %\ n",

857 j, last_item>group, last_item>mb_id,
858 last _item >l ength);

860 dat abuf . maxl en = | ast_i tem >l engt h;

861 dat abuf . buf = (char *)last_item >val p;

862 dat abuf . | en = 0;

863 flags = 0;

864 getcode = getnsg(sd, (struct strbuf *)0, &databuf,
865 if (getcode == -1) {

866 perror(m bget getnsg(data) failed");
867 goto error_exit;

868 } else if (getcode != 0)

869 (void) printf("m bget getnmsg(data) returned
870 "dat abuf . maxl en = %, databuf.|en "
871 get code, dat abuf. maxl en, dat abuf.
872 goto error_exit;

873

874]+

875 }

876 /* NOTREACHED */

878 error_exit:;

879 m bfree(first_item;

880 return (NULL);

881 }

883 /*

884 * mibfree: frees a linked |ist of type(mbltemt *)

885 * returned by mibget(); this is NOT THE SAME AS

886 * mb_itemdestroy(), so should be used for objects

887 * returned by m bget() only

888 */

889 static void

890 mibfree(mb_itemt *firstitem

891 {

892 mb_itemt *lastitem

894 while (firstitem!= NULL) {

895 lastitem= firstitem

896 firstitem= firstitem>next_item

897 if (lastitem>valp !'= NULL)

898 free(lastitem >val p);

899 free(lastitem;

900

901 }

903 static int

904 mi bopen(voi d)

905 {

906 int sd;

908 sd = open(/dev/arp", O RDWR);

909 if (sd ==-1) {

910 perror (" arp open");

911 return (-

912 1

913 if (ioctl(sd, I_PUSH, "tcp") == -1) {

914 perror("tcp |_PUSH");

915 (voi d) close(sd);

916 return (-1);

917 }

918 if (ioctl(sd, |I_PUSH, "udp") == -1) {

919 perror("udp |_PUSH");

920 (void) close(sd);

921 return (-1);

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 13 new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

922 } 988 int nitems = 0; /* no. of itens initenR */
923 if (ioctl(sd, I_PUSH "icnmp") == -1) { 989 mb_itemt *tenmpp2; /* walking copy of itenR */
924 perror("icnp | _PUSH"); 990 mb_itemt *tenppl; /* walking copy of itenl */
925 (void) close(sd); 991 mb_itemt *diffp;
926 return (-1); 992 mb_itemt *diffptr; /* walking copy of diffp */
927 } 993 mb_itemt *prevp = NULL;
928 return (sd);
929 } 995 if (iteml == NULL) {
996 diffp = mb_itemdup(itenR);
931 /* 997 return (diffp);
932 * mb_itemdup: returns a clean mib_itemt * Iinked 998 }
933 * Ilst so that for every elenent item>mb_id is O;
934 * to deallocate this linked list, use mib_itemdestroy 1000 for (tenpp2 = iteng;
935 */ 1001 t enpp2;
936 static mb_itemt * 1002 tenpp2 = tenpp2->next_iten) {
937 mib_itemdup(mb_itemt *item 1003 if (tempp2->mib_id ==
938 { 1004 switch (tenpp2->group) {
939 int c = 0; 1005 /*
940 mb_itemt *localp; 1006 upon addi ng a case here, the sane

*
941 mb_itemt *tenpp; 1007 * must al so be added in the next
1008 * switch statement, alongwth

*

943 for (tenpp = item tenpp; tenpp = tenpp->next_item 1009 appropri ate code
944 if (tenpp->nmib_id == 0) 1010 */
945 (Chigt 1011 case MB2_I P:
946 tenpp = NULL; 1012 case M B2_| P6:

1013 case EXPER_DVMRP:
948 localp = (mb_itemt *)malloc(c * sizeof (mb_itemt)); 1014 case EXPER_| GWP:
949 if (localp == NULL) 1015 case M B2_| CVP:
950 return (NULL); 1016 case M B2_| C\VP6:
951 c = 0; 1017 case M B2_TCP:
952 for (; item item= item>next_item { 1018 case M B2_UDP:
953 if (item>mb_id == 0) { 1019 case M B2_SCTP:
954 /* Replicate itemin localp */ 1020 case EXPER_RAW P:
955 (local p[c]).next_item = NULL; 1021 case M B2_DCCP:
956 (local p[c]). group = item >group; 1022 #endif /* | codereview */
957 (localp[c]).mb_id = item>mb_id; 1023 nitenms++;
958 (localp[c]).length = item >l ength; 1024 }
959 (localp[c]).valp = (uintptr_t *) mal | oc(1025 }
960 item >l ength); 1026 tenpp2 = NULL;
961 if ((loc alp[c]) valp—— NULL) { 1027 if (nitems == 0) {
962 m b_item destroy(& ocal p); 1028 diffp = mb_itemdup(iten);
963 eturn (NULL); 1029 return (diffp);
964 } 1030 }
965 (void *) rrem:py((l ocal p[c]).valp,
966 item >val 1032 diffp = (mb_itemt *)calloc(nitens, sizeof (mb_itemt));
967 item>| engt h); 1033 if (diffp == NULL)
968 tempp = &l ocal p[c]) 1034 return (NULL);
969 if (c > 0) 1035 diffptr = diffp;
970 (local p[c - 1]).next_item = tenpp; 1036 /* for’ loop 1: */
971 Cc++; 1037 for (tenpp2 = itenR2; tenpp2 != NULL; tenpp2 = tenpp2->next_iten) {
972 } 1038 if (tenmpp2->nib_id != 0)
973 } 1039 continue; /* "for’ loop 1 */
974 return (localp); 1040 /[* "for’ loop 2: */
975 } 1041 for (tenmppl = itenil; tenppl != NULL;

1042 temppl = tenppl->next_item {
977 | * 1043 if (!(temppl->mib_id == 0 &&
978 * mb_itemdiff: takes two (mb_itemt *) linked lists 1044 tenppl- >group == tenpp2->group &&
979 * itenl and iten2 and conputes the difference between 1045 tenmppl->mb_id == tenpp2->nmb_id))
980 * differentiable values in itenR against itenml for every 1046 continue; /* "for’ loop 2 */
981 * given nmenber of itenR; returns an mb_itemt * |inked 1047 /* found conparabl e data sets */
982 * list of diff’s, or a copy of itenR if itenl is NULL; 1048 if (prevp !'= NULL)
983 * will return NULL if systemout of nenory; works only 1049 prevp->next_item = diffptr;
984 * for item>mb_id == 1050 switch (tenpp2->group) {
985 */ 1051 /*

986 static mb_|

itemt * 1052 * | ndenting note: Because of |ong variabl e nanes
987 nib_itemdiff(m

mb_itemt *iteml, mib_itemt *iten2) { 1053 * in cases MB2_IP6 and MB2_I CW6, their contents

new usr/src/cnd/ cnd-i net/ usr.

1054
1055
1056
1057
1058
1059

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

bi n/ netstat/netstat.c
* have been indented by one tab space only
&/

case MB2_IP: {

mb2_ip_t *i2 = (m b2_ip_t *)tenpp2->val p;
mb2_ip_t *il = (mb2_ip_t *)tenppl->val p;
mb2_ip_t *d;

t enpp2- >gr oup;
tenpp2->m b_i d;
t enpp2- >l engt h;

diffptr->group =
diffptr->mb_id
di ff
d =

ptr->| engt h

(mb2_ip_t *)calloc(tenpp2- > ength, 1);

if (d == NULL)
goto m bdi ff_out _of _nmenory;
diffptr->valp = d;

d->i pForwar di ng = i 2->i pFor war di ng;
d->i pDefaul t TTL = i 2->i pDef aul t TTL
MDI FF(d, i2, i1, iplnReceives);

MDI FF(d, |2, i1, iplnHdrErrors);
MDI FF(d, 12, i1, iplnAddrErrors);
MDI FF(d, i2, i1, iplnCksunErrs);
MDI FF(d, 2, i1, ipForwDatagrans);
Ml FF(d, 12, i1, ipForwProhibits);
MDI FF(d, 12, i1, iplnUnknownProtos);
MDI FF(d, i2, i1, iplnDi scards);

MDI FF(d, i2, i1, iplnDelivers);

MDI FF(d, i2, i1, ipQutRequests);
MDI FF(d, 12, i1, ipQutDiscards);
MDIFF(d, i2, i1, ipQutNoRoutes);
MDI FF(d, i2, i1, ipReasnili neout);
MDI FF(d, i2, i1, ipReasnReqds);

M FF(d, 12, i1, ipReasnOKs);

MDI FF(d, 12, i1, ipReasnfails);

MDI FF(d, i2, i1, ipReasnDuplicates);
MDI FF(d, i2, i1, ipReasnPartDups);
MDI FF(d, 12, i1, ipFragCKs);

MDI FF(d, i2, i1, ipFragFails);

MDI FF(d, i2, i1, ipFragCreates);
MDI FF(d, i2, i1, ipRoutingDiscards);
MDI FF(d, 12, i1, tcplnErrs);

MDI FF(d, 12, i1, udpNoPorts);

MDI FF(d, i2, i1, udplnCksunErrs);
MDI FF(d, 2, i1, udplnOverflows);
M FF(d, 12, i1, raw plnOverfl ows);
Ml FF(d, 12, i1, ipseclnSucceeded);
MDI FF(d, i2, i1, ipseclnFailed);
MDI FF(d, i2, i1, iplnlPv6);

MDI FF(d, i2, i1, ipQutlPv6);

Ml FF(d, 12, i1, ipQutSw tchlPv6);
prevp = diffptr++;

br eak;

}

case M B2_| P6:

m b2_i pv6l fStatsEntry_t *i2;
m b2_i pv6l fStatsEntry_t *il;
m b2_i pv6l f StatsEntry_t *d;

i2 = (mb2_ipvelfStatsEntry_t *)tenpp2->val p;
il = (mb2 |pv6IfStatsEntry t *)tenppl->val p;
di ffptr->group = tenpp2->group;
diffptr->mb_id = tenpp2->nib_id;
diffptr->length = tenpp2->l ength;

d = (mb2_ipvelfStatsEntry_t *)call oc(

tenmpp2->l ength, 1);
if (d == NULL)
goto m bdiff_out _of _nenory;
diffptr->valp = d;

15

new usr/src/cnd/ cnd-i net/ usr.

1120
1121
1122

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

bi n/netstat/netstat.c

d- >i pv6Forwar di ng = i 2->i pv6For war di ng;
d- >i pv6Def aul t HopLi mit =
I 2->i pv6Def aul t HopLi mi t;

MDI FF(d, , , i pv6l nRecei ves);

MDI FF(d, , i pv6l nHdr Errors)
MDI FF(d, , i pv6l nTooBi gEr rors)
MDI FF(d, , i pv6él nNoRout es) ;

i pv6l nAddr Errors)

i pv6l nUnknownPr ot os)
i pv6l nTruncat edPkt s) ;
i pvél nDi scar ds) ;

i pvél nDel i vers);

i pv6Qut For wDat agrarrs)
i pv6Qut Request s) ;

i pv6Qut Di scards) ;

i pv6Qut NoRout es) ;

i pv6Qut Fr agOKs) ;

i pv6Qut FragFai | s)

i pv6Qut Fr agCr eat es)
i pv6ReasnReqds) ;

i pv6ReasnOKs) ;

i pv6Reasnfai | s)

i pv6l nMcast Pkt s)

i pv6Qut Mcast Pkt s)

i pv6ReasnDupl i cat es)
i pv6ReasnPar t Dups) ;

i pv6For wPr ohi bits);
udpl nCksunErrs);

udpl nOverfl ows);

raw pl nOverf |l ows)

i pv6l nl Pv4) ;

i pvéQut | Pv4)

| pv601t Swi t chl Pv4);

555555555558585555588888888

_"Nl\)I\)I\)NNI\JNNNNNNNJ\)NI\)NNNI\)NNNI\)NNNI\)N

..
SRRRRRPRRRRPRRRPRPRPRPRPRPRPRPRPRPRRPRPRPRRPRRPRRRRRER

+
+

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
t

N0 0000000000000000000

[=R

p

® ®

~— oo
==

case EXPER DVMRP: {
struct nmrtstat *ng;
struct nrtstat *ni;
struct nrtstat *d;

m2 = (struct nrtstat *)tenpp2->valp;

mL = (struct nrtstat *)tenppl->valp;

di ffptr->group = tenpp2->group;
diffptr->mb_id = tenpp2 >m b_id;
diffptr->length = tenpp2->length;

d = (struct nrtstat *)calloc(tenpp2->length,
i

f (d == NULL)
goto m bdi ff_out _of _menory;
diffptr->valp = d;

MOl FF(d, n2, ml, nrts_nfc_hits);

MDI FF(d, n2, ml, nrts_nfc msses)

MDI FF(d, n2, ml, nrts_fwd_in);

MDI FF(d, n2, ni, mtsfwd out)
d->nrts_upcalls = n2->nrts upcal l's;
MDI FF(d, n2, i, mts _fwd_drop);

MDI FF(d, n2, ml, nrts_bad_ t unnel);

MDI FF(d, n2, ml, nrts_cant tunnel)

MOl FF(d, n2, ml, nrts_wong_if);

MDI FF(d, n2, ml, nrts_upqg_ovflw);

MDI FF(d, n2, ml, nrts_cache_cl eanups);
MDI FF(d, n2, nl, nrts_drop_sel);

Ml FF(d, n2, ml, nrts_q_overflow);

MOl FF(d, n2, ml, nrts_pkt2l|arge);

MDI FF(d, n2, ml, nrts_pi mbadversion);

16

1);

new usr/src/cnd/ cnd-i net/ usr.

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

bi n/netstat/netstat.c

MDI FF(d, n2, nl, nrts_pimrcv_badcsum;
MDI FF(d, n2, ml, nrts_pi mbadregisters);
MDI FF(d, n2, ml, nrts_pi mregforwards);
MDI FF(d, n2, nl, nrts_pimregsend_drops);
MDI FF(d, n2, nl, nrts_pi mnalformed);

Ml FF(d, n2, ml, nrts_pi mnonenory);
prevp = diffptr++;

br eak;

}

case EXPER | GW: {
struct ignpstat *i2;
struct ignpstat *il;
struct ignpstat *d;

= (struct ignpstat *)terrpp2->va| p;
= (struct |ngpst at *)tenppl->val p;

i ffptr->group = tenpp2->group;

iffptr->mb_id = tenpp2->m b_id;

iffptr->ength = tenpp2->l engt h;

= (struct ignpstat *)call oc(

goto m bdi ff_out _of _nmenory;
diffptr->valp = d;

MDI FF(d, i2, il, igps_rcv_total);

MDI FF(d, i2, i1, igps_rcv tooshort)
MDI FF(d, 12, i1, igps_rcv_badsum;

MDI FF(d, i2, i1, igps_rcv_queri es)

MDI FF(d, 2, i1, igps_rcv_badqueri es)
MDI FF(d, i2, i1, igps_rcv_reports);

M FF(d, 12, i1, igps_| rcv_badreports);
MDI FF(d, 12, i1, igps_rcv_ourreports);
MDI FF(d, i2, i1, igps_snd_reports);
prevp = diffptr++;

br eak;

}

case M B2_| CWP: {
m b2_icnp_t *i2;
m b2_icnp_t *il;
mb2_icnmp_t *d;

i2 = (mb2_icnp_t *)tenpp2->val p;
il = (mb2_icnp_t *)tenppl->val p;
di ffptr->group = tenpp2->group;
diffptr->mb_id = tenpp2->m b_i d;
diffptr->length = tenpp2->length;
d = (m' b2_i cnp_t *)cal l oc(tenpp2->length, 1);
if (d == NULL)

goto m bdi ff_out _of _nmenory;
diffptr->valp = d;
MDI FF(d, i2, i1, icnplnMsgs);
MDI FF(d, 12, i1, icnplnErrors);
MDI FF(d, i2, i1, icnplnCksunErrs);
MDI FF(d, 2, i1, icnplnUnknowns)
MDI FF(d, 2, i1, icnplnDestUnreachs);
MDI FF(d, 12, i1, icnplnTinmeExcds);
MDI FF(d, 12, i1, icnplnParnProbs);
MDI FF(d, i2, i1, icnplnSrcQuenchs);
MDI FF(d, i2, i1, icnplnRedirects);
MDI FF(d, 12, i1, icnplnBadRedirects);
MDI FF(d, 12, i1, icnplnEchos);
MDI FF(d, i2, i1, icnplnEchoReps);
MDI FF(d, 2, i1, icnplnTinmestanps);
MDI FF(d, 12, i1, icnplnAddrMasks);
MDI FF(d, 12, i1, icnplnAddrMaskReps);
MDI FF(d, i2, i1, icnplnFragNeeded);

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317

3.33
o oo
NN R

o —aogo-—-
e)

= 1| —h—h—
—h—h—h)

8883

TTNTTTNTTTTNTTTTNTTNTTITTNTTNTTTTTIT T T T T T TO
e A A A A A A A A A A A A A A A A N S A S A A A S S s s s o

(
f
E
E
E
E

5555585558555855588558858888

MDI F

MDI FF(d, 2, i1, icnpQutMsgs);

MDI FF(d, 12, i1, icnpQutDrops);

MDI FF(d, i2, i1, icnmpQutErrors);

MDI FF(d, 2, i1, icnpQutDestUnreachs);
MDI FF(d, 2, i1, icnpQutTinmeExcds);
MDI FF(d, 12, i1, icnpQutParnProbs);
MDI FF(d, i2, i1, icnpQutSrcQuenchs);
MDI FF(d, i2, i1, icnpQutRedirects);
MDI FF(d, 2, i1, icnpQutEchos);

MDI FF(d, 12, i1, icnpQutEchoReps);

MDI FF(d, 12, i1, icnpCQutTinestanps);
MDI FF(d, i2, i1, icnpQutTimestanpReps);
MDI FF(d, 2, i1, icnpCQutAddrMasks);
MDI FF(d, 12, i1, icnpQutAddrMaskReps);
MDI FF(d, 12, i1, icnpQutFragNeeded);
Ml FF(d, i2, i1, icnplnOverflows);
prevp = diffptr++;

break;

}
case M B2_| CWP6: {

_ipvelflcmpEntry_t *i2;

i pv6l flcmpEntry_t *i1l;

“ipv6l flcnpEntry t *d;

(m b2_i pvel flcnpEntry_t *)tenpp2->val p;
(m b2_i pvél flcnpEntry_t *)tenppl->val p;

tr->group = tenpp2->group;
tr->mb_id = tenmpp2->m b_i d;
tr->length = tenpp2->l| ength;

m b2_i pv6l fl cnpEntry_t *)calloc(tenppz >l ength, 1);
== NULL)

goto mbdlff _out _of _nmenory;

v
==d3
DY
o
I

i pvél f | cnpl nMsgs) ;

ipvel flcnmplnErrors);

i pv6l f | cnpl nDest Unr eachs) ;

i pv6l f | cnpl nAdmi nPr ohi bs)

i pv6l f | cnpl nTi neExcds) ;

i pv6l f | cnpl nPar nPr obl ens) ;

i pv6l f | cnpl nPkt TooBi gs) ;

i pv6l f | cnpl nEchos) ;

i pv6l f | cnpl nEchoRepl i es);

i pv6l flcnpl nRouterSolicits);

i pv6l f | cnpl nRout er Adver ti senents) ;
i pv6l f | cnpl nNei ghbor Sol i cits);

i pv6l f |1 cnpl nNei ghbor Adverti senents);
i pv6l fl cnpl nRedi rects);

i pv6l f | cnpl nBadRedi rects) ;

i pv6l fl cnpl nG oupMenbQueri es) ;

i pv6l f | cnpl nG- oupMenbResponses) ;

i pv6l f | cnpl nGr oupMenbReduct i ons) ;

i pv6l flcnpl nOverfl ows);

i pv6l f | cnpQut Msgs) ;

i pv6l flcrmpQut Errors);

i pv6l f | cnpQut Dest Unr eachs) ;

i pv6l f | cmpQut Admi nPr ohi bs) ;

i pv6l f | cnmpQut Ti meExcds) ;

i pv6l f | cnpQut Par nPr obl ens) ;

i pv6l f | cnpQut Pkt TooBi gs) ;

i pv6l f | cmpQut Echos) ;

i pv6l f | cmpQut EchoRepl i es) ;

i pv6l f | cnpQut Rout er Sol i ci ts);

i pv6l f | cnpQut Rout er Adver ti senents);
i pv6l f | cmpQut Nei ghbor Solicits);

i pv6l f | cnpQut Nei ghbor Adverti senments);
i pv6l f 1 cnpQut Redi rects);

Q.QQQQ_QQQQ_QQQQ.Q.Q_QQ_Q_QQQQ_QQQQ_QQQQ_QQQ"

NNRNNNNNNNNNNNNNNNDNDNNNDNDNDNNDNDNDNNDNDNDNNDNDN

PRRRPRRRPRRRRRRRRRRRRRRRRRRRRRR R R R
Q.

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383

MDI FF(d, i2, i1, ipv6lflcnmpQutG oupMenbQueries);
MDI FF(d, 12, i1, ipv6lflcnpQutG oupMenbResponses);
Ml FF(d, i2, i1, ipv6lflcnmpQutG oupMenbReductions);
prevp = diffptr++;

br eak;

}

case MB2_TCP: {
mb2_tcp_t *t2;
mb2_tcp_t *t1;
mb2_tcp_t *d;

got o m bdi ff_out _of _nenory;

t2 = (mb2_tcp_t *)tenpp2->val p;

tl = (mb2_tcp_t *)tenppl->valp;

di ffptr->group = tenpp2->group;
diffptr->mb_id = tenpp2->m b_i d;
diffptr->length = tenpp2->l ength;

d = (mb2_tcp_t *)calloc(terrppz S| engt h,
if (d == NULL)

diffptr->valp = d;

d->tcpRtoM n
d- >t cpRt oMax
d- >t cpMaxConn
MDI FE(d,
MDI FF(d,
MDI FE(d,
MDI FF(d,
d- >t cpCur
MDI FF(d,
MDI FF(d,

— -+

NNNN

—
L e

Q. G
NN RNRNNNRNNNRNNNRNNRNRNNRNNNNNNRNNNNNNNN N NN
PRRPPRRPRPRRPRRPRRPRRPRRRPRRRRRRRERRPRRERRPRRPRRRRRTRRRRI

00000000000000000000000000000000000

2
2.
t

->tcpRt oM n;

>t cpRt oMaxX;

2- >t cpMaxConn;

t cpAct i veOpens) ;
t cpPassi veOpens) ;
tcpAttenpt Fails);
t cpEst abReset s) ;

= t2->tcpCurrEst ab;

t cpHCQut Segs) ;

t cpQut Dat aSegs) ;

t cpQut Dat aByt es) ;

t cpRet r ansSegs) ;
tcpRetransBytes);

t cpQut Ack) ;

t cpQut AckDel ayed) ;
tcpQut Urg);

t cpQut W nUpdat e) ;

t cpQut W nPr obe) ;

tcpQut Control);

tcpQut Rst s) ;

t cpQut Fast Retrans) ;

t cpHCl nSegs) ;

t cpl nAckSegs) ;

tcpl nAckByt es) ;

t cpl nDupAck) ;

t cpl nAckUnsent) ;

t cpl nDat al nor der Segs) ;
t cpl nDat al nor der Byt es) ;
t cpl nDat aUnor der Segs) ;
t cpl nDat aUnor der Byt es) ;
t cpl nDat aDupSegs) ;

t cpl nDat aDupByt es) ;

t cpl nDat aPar t DupSegs) ;
t cpl nDat aPar t DupByt es) ;
t cpl nDat aPast W nSegs) ;
t cpl nDat aPast W nByt es) ;
t cpl nW nPr obe) ;

t cpl nW nUpdat e) ;

tcpl nd osed);

t cpRt t NoUpdat e) ;

t cpRt t Updat e) ;

tcpTi nRetrans) ;

t cpTi nRet ransDr op) ;

t cpTi nKeepal i ve) ;

t cpTi nKeepal i vePr obe) ;
t cpTi nKeepal i veDr op) ;

19

new usr/src/cnd/ cnd-i net/ usr.

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394

1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

bi n/netstat/netstat.c

MDI FF(d, t2, t1, tcpListenDrop);

MDI FF(d, t2, t1, tcpListenDropQ);

MDI FF(d, t2, t1, tcpHalfQpenDrop);

MDI FF(d, t2, t1, tcpQutSackRetransSegs);
prevp = diffptr++;

br eak;

}

case M B2_UDP: {
m b2_udp_t *u2;
m b2_udp_t *ul;
m b2_udp_t *d;

u2 = (mb2_udp_t *)tenpp2->valp;
u1 = (mb2_ udp t *)tenppl->val p;

di ffptr->group = tenpp2->group;
diffptr->mb_id = tenpp2 >m b_id;
diffptr->length = tenpp2->length;

d = (m b2_udp_t *)calloc(ten’ppz >l ength, 1);
if (d == NULL)

goto m bdi ff_out _of _nmenory;
dlffptr >valp = d;
MOl FF(d, u2, ul, udeCI nDat agr ans) ;
MDI FF(d, u2, ul, udplnErrors);
MDI FF(d, u2, ul, udeCQJtDatagranB);
MDI FF(d, u2, ul, udpQutErrors);
prevp = diffptr++;
br eak;

}

case M B2_SCTP:
m b2_sctp_t *s2;
m b2 sctp_t *si;
m b2 sctp_t *d;

= (m b2_sctp_t *)tenpp2->val p;
= (m b2_sctp_t *)tenppl->val p;
di ffptr->group = tenpp2->group;
d|ffptr >mib_id = tenpp2->mb_id;
ffp r->length = tenpp2->length;
= (mb2_sctp_t *)calloc(tenmpp2->length, 1);
|f (d == NULL)
got o m bdiff_out_of _nenory;
diffptr->valp = d;
d- >sct pRt oAl gorithm = s2->sct pRt oAl gorithm
d->sctpRtoM n = s2->sctpRt oM n;
d- >sct pRt oMax = s2->sct pRt oMax;
d->sctpRtolnitial = s2->sctpRtolnitial;
d- >sct pMaxAssocs = s2->sct pMaxAssocCs;
d- >sct pVal Cooki eLi fe = s2->sct pVal Cooki eLi fe;
d->sct pMaxl nit Retr = s2->sct pMaxlnitRetr;
d- >sct pCurr Estab = s2->sctpCurr Est ab;
MDI FF(d, s2, sl1, sctpActiveEstab);
MDI FF(d, s2, sl1, sctpPassiveEstab);
MDI FF(d, s2, sl1, sctpAborted);
MDI FF(d, s2, sl1, sctpShutdowns);
MDI FF(d, s2, sl1, sctpCQutOBlue);
MDI FF(d, s2, sl1, sctpChecksunError);
MDI FF(d, s2, sl1, sctpQutCtrl Chunks);
MDI FF(d, s2, sl1, sctpQut O derChunks);
MDI FF(d, s2, s1, sctpQutUnorder Chunks);

MDI FF(d, s2, sl1, sctpRetransChunks);
MDI FF(d, s2, s1, sctpQutAck);

MDI FF(d, s2, sl1, sctpQutAckDel ayed);
MDI FF(d, s2, sl1, sctpCQutW nUpdate);
MDI FF(d, s2, sl1, sctpQutFastRetrans);
MDI FF(d, s2, sl1, sctpQutW nProbe);
MDI FF(d, s2, sl1, sctplnCrl Chunks);

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 21 new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

1450 MDI FF(d, s2, s1, sctplnO derChunks); 1516 * that was created by calling mb_itemdup or
1451 MDI FF(d, s2, s1, sctplnUnorder Chunks); 1517 * mb_itemdiff
1452 MDI FF(d, s2, sl1, sctplnAck); 1518 */
1453 MDI FF(d, s2, s1, sctplnDupAck); 1519 static void
1454 MDI FF(d, s2, sl1, sctplnAckUnsent); 1520 mi b_i tem destroy(m b_i tem t **itenmp) {
1455 MDI FF(d, s2, sl1, sctpFragUsrMsgs); 1521 int nitems = 0;
1456 MDI FF(d, s2, sl1, sctpReasnlsrMsgs); 1522 int c =0;
1457 MDI FF(d, s2, sl1, sctpQut SCTPPkts); 1523 mb_itemt *t enpp;
1458 MDI FF(d, s2, sl1, sctplnSCTPPkts);
1459 MDI FF(d, s2, s1, sctplnlnvalidCookie); 1525 if (itemp == NULL || *itenp == NULL)
1460 MDI FF(d, s2, s1, sctpTinRetrans); 1526 return;
1461 MDI FF(d, s2, sl1, sctpTinRetransDrop);
1462 MDI FF(d, s2, sl1, sctpTinHeartBeat Probe); 1528 ro(t errpp = *itemp; tenpp != NULL; tenpp = tenpp->next_item
1463 MDI FF(d, s2, sl1, sctpTinmHeartBeatDrop); 1529 I1f (tempp->mib_id == 0)
1464 MDI FF(d, s2, sl1, sctpListenDrop); 1530 nit ems++;
1465 MDI FF(d, s2, sl1, sctplnd osed); 1531 el se
1466 prevp = diffptr++; 1532 return; /* cannot destroy! */
1467 br eak;
1468 } 1534 if (nitems == 0)
1469 case M B2_DCCP: { 1535 return; /* cannot destroy! */
1470 /* XXX: DCCP */
1471 br eak; 1537 for (c = nitems - 1; ¢ >= 0; c--) {
1472 } 1538 if ((itemp[0O][c]).valp !'= NULL)
1473 #endif /* | codereview */ 1539 free((itemp[O][c]).valp);
1474 case EXPER RAWP: { 1540 }
1475 mb2_rawi p_t *r2; 1541 free(*itemp);
1476 mb2raW|pt *ri;
1477 m b2_rawi p_t *d; 1543 *itenp = NULL;
1544 }
1479 r2 = (mb2_rawi p_t *)tenmpp2->val p;
1480 rl = (mb2_rawi p_t *)tenppl->valp; 1546 /* Conpare two Octet_ts. Return B_TRUE if they match, B_FALSE if not.
1481 diffptr->group = tenpp2->group; 1547 static bool ean_t
1482 diffptr->mb_id = tenmpp2->m b_i d; 1548 octetstrmatch(const Cctet_t *a, const Octet_t *b)
1483 di ffptr->| ength = tenpp2->length; 1549 {
1484 d=(m b2_raW| p_t *)calloc(tenmpp2->length, 1); 1550 if (a == NULL || b == NULL)
1485 if (d == NULL) 1551 Treturn (B FAL sa
1486 goto m bdi ff_out_of _nmenory;
1487 diffptr->valp = d; 1553 if (a->o_length != b->0_| ength)
1488 MDI FF(d, r2, r1, raw plnDatagrans); 1554 return (B_FALSE);
1489 MDI FF(d, r2, r1, rawi plnErrors);
1490 MOl FF(d, r2, ri1, raw plnCksunErrs); 1556 return (nmencnp(a->o_bytes, b->o0_bytes, a->o_length) == 0);
1491 MDI FF(d, r2, rl1, raw pCutDatagr ams) ; 1557 }
1492 MDI FF(d, r2, rl1, rawi pQutErrors);
1493 prevp = |ffptr++ 1559 /* |f octetstr() changes make an appropriate change to STR_EXPAND */
1494 br eak; 1560 static char *
1495 } 1561 octetstr(const Cctet_t *op, int code, char *dst, uint_t dstlen)
1496 /* 1562 {
1497 * there are nore "group" types but they aren’'t 1563 int i;
1498 * required for the -s and -Ms options 1564 char *cp;
1499 */
1500 } 1566 cp = dst;
1501 } /* "for’ loop 2 ends */ 1567 if (op) {
1502 tenppl = NULL; 1568 for (i =0; i < op->o_length; i++) {
1503 } /* "for’ loop 1 ends */ 1569 swtch (code) {
1504 tenpp2 = NULL; 1570 case 'd’:
1505 diffptr--; 1571 if (cp— dst +4>dst|en) {
1506 di ffptr->next _item = NULL; 1572 cp ='\0
1507 return (diffp); 1573 return (dst)
1574 }
1509 mi bdi ff_out _of _nmenory: 1575 (void) snprintf(cp, 5, "%l.
1510 mb_item destroy(&dl ffp); 1576 Oxff & op->o0_bytes[i]);
1511 return (NULL); 1577 cp = strchr(cp, "\0);
1512 } 1578 br eak;
1579 case 'a’:
1514 /* 1580 if (cp- dst +1 > dstlen) {
1515 * mib_itemdestroy: cleans up a mb_itemt * 1581 *cp ="\

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 23 new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 24

1582 return (dst); 1648 case TCPS_TI ME_VAIT:
1583 } 1649 cp = "TIME_WAI T";
1584 *cp++ = op->0_bytes[i]; 1650 br eak;
1585 br eak; 1651 defaul t:
1586 case 'h': 1652 (void) snprintf(tcpsbuf, sizeof (tcpsbuf),
1587 defaul t: 1653 "UnknownSt ate(%l)", state);
1588 if (cp - dst + 3 > dstlen) { 1654 cp = tcpsbuf;
1589 *cp = '\0; 1655 br eak;
1590 return (dst); 1656 }
1591 }
1592 (void) snprintf(cp, 4, "%2x:", 1658 if (RSECflag & attr != NULL && attr->tne_flags != 0) {
1593 Oxff & op->o0_bytes[i]); 1659 if (cp != tcpsbuf) {
1594 cp += 3; 1660 (void) strlcpy(tcpsbuf, cp, sizeof (tcpsbuf));
1595 br eak; 1661 cp = tcpsbuf;
1596 } 1662 }
1597 } 1663 if (attr->tme_flags & M B2_TMEF_PRI VATE)
1598 } 1664 (void) strlcat(tcpsbuf, " P*, sizeof (tcpsbuf));
1599 iIf (code !'="a && cp != dst) 1665 if (attr->tme_flags & M B2_TMEF_SHARED)
1600 cp--; 1666 (void) strlcat(tcpsbuf, " S", sizeof (tcpsbuf));
1601 *cp = '\0"; 1667 }
1602 return (dst);
1603 } 1669 return (cp);
1670 }
1605 static const char *
1606 mitcp_state(int state, const m b2_transport MPEntry_t *attr) 1672 static const char *
1607 { 1673 miudp_state(int state, const m b2_transport MPEntry_t *attr)
1608 static char tcpsbuf[50]; 1674 {
1609 const char *cp; 1675 static char udpsbuf[50];
1676 const char *cp;
1611 switch (state) {
1612 case TCPS_CLOSED: 1678 switch (state) {
1613 cp = "CLOSED'; 1679 case M B2_UDP_unbound:
1614 br eak; 1680 cp = "Unbound";
1615 case TCPS_| DLE: 1681 br eak;
1616 cp = "IDLE"; 1682 case M B2_UDP_idl e:
1617 br eak; 1683 cp = "ldle";
1618 case TCPS_BOUND: 1684 br eak;
1619 cp = "BOUND'; 1685 case M B2_UDP_connect ed:
1620 br eak; 1686 cp = "Connected";
1621 case TCPS_LI STEN: 1687 br eak;
1622 cp = "LISTEN'; 1688 defaul t:
1623 br eak; 1689 (void) snprintf(udpsbuf, sizeof (udpsbuf),
1624 case TCPS_SYN_SENT: 1690 "Unknown State(%l)", state);
1625 cp = "SYN SENT"; 1691 cp = udpsbuf;
1626 br eak; 1692 br eak;
1627 case TCPS_SYN _RCVD: 1693 }
1628 cp = "SYN_RCVD';
1629 br eak; 1695 if (RSECflag & attr != NULL && attr->tne_flags != 0) {
1630 case TCPS_ESTABLI SHED: 1696 if (cp !'= udpsbuf) {
1631 cp = "ESTABLI SHED"; 1697 (void) strlcpy(udpsbuf, cp, sizeof (udpsbuf));
1632 br eak; 1698 cp = udpsbuf;
1633 case TCPS_CLOSE_WAIT: 1699 1
1634 cp = "CLOSE_WAI T"; 1700 if (attr->tme_flags & M B2_TMEF_PRI VATE)
1635 br eak; 1701 (void) strlcat(udpsbuf, " P", sizeof (udpsbuf));
1636 case TCPS_FIN WAIT_1: 1702 if (attr->tnme_flags & M B2_TMEF_SHARED)
1637 cp = "FIN.WAIT_1"; 1703 (void) strlcat(udpsbuf, " S", sizeof (udpsbuf));
1638 br eak; 1704 }
1639 case TCPS_CLCSI NG
1640 cp = "CLOSING'; 1706 return (cp);
1641 br eak; 1707 }
1642 case TCPS_LAST ACK:
1643 cp = "LAST_ACK"; 1709 static int odd;
1644 br eak;
1645 case TCPS_FIN WAIT_2: 1711 static void
1646 cp = "FINWAIT 2"; 1712 prval _init(void)

1647 br eak; 1713 {

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 25

1714 odd =

1715 }

1717 static void

1718 prval (char *str, Counter val)

1719 {

1720 (void) printf("\t% 20s=%u", str, val);
1721 if (odd++ & 1)

1722 (void) putchar(’\n");

1723 }

1725 static void

1726 prval 64(char *str, Counter64 val)

1727 {

1728 (void) printf("\t%20s=%l1u", str, val);
1729 if (odd++ & 1)

1730 (void) putchar(’\n");

1731 }

1733 static void

1734 pr_int_val (char *str, int val)

1735 {

1736 (void) printf("\t%20s=9%d", str, val);
1737 if (odd++ & 1)

1738 (void) putchar(’\n");

1739 }

1741 static void

1742 pr_sctp_rtoal go(char *str, int val)

1743 {

1744 (void) printf("\t%20s=", str);

1745 switch (val)

1746 case M B2_SCTP_RTCALGO OTHER:
1747 (void) printf("9.6s", "other");
1748 br eak;

1750 case M B2_SCTP_RTQOALGO VANJ:
1751 (void) printf("u.6s", "vanj");
1752 br eak;

1754 defaul t:

1755 (void) printf("96d", val);
1756 break;

1757 1

1758 if (odd++ & 1)

1759 (void) putchar(’\n");

1760 }

1762 static void

1763 prval _end(voi d)

1764 {

1765 if (odd++ & 1)

1766 (void) putchar(’\n’);

1767 }

1769 /* Extract constant sizes */

1770 static void

1771 mib_get_constants(mb_itemt *item

1772 {

1773 [* *for’ loop 1: */

1774 for (; item item= item>next_item {
1775 if (item>nib_id !=0)

1776 continue; /* "for’ loop 1 */
1778 switch (item >group) {

1779 case MB2_IP: {

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 26
1780 m b2_ip_t *ip = (mb2_ip_t *)item>valp;
1782 i pAddr EntrySi ze = i p->i pAddrEntrySi ze;

1783 i pRout eEntrySi ze = 1 p->i pRout eEntrySi ze;

1784 i pNet ToMedi aEntrySi ze = 1| p->i pNet ToMedi aEntrySi ze;
1785 i pMenber EntrySi ze = i p->i pMenber EntrySi ze;

1786 i pG oupSour ceEntrySi ze = 1 p->i pG oupSour ceEntrySi ze;
1787 i pRouteAttributeSi ze = i p->i pRouteAttributeSi ze;
1788 transport MLPSi ze = ip->transport M.PSi ze;

1789 i pDest EntrySi ze = ip->i pDest EntrySi ze;

1790 assert (I S_P2ALI GNED(i pAddr EntrySi ze,

1791 sizeof (m b2_i pAddrEntry_t *)));

1792 assert (1 S_P2ALI GNED(i pRout eEntrySi ze,

1793 sizeof (mib2_ipRouteEntry t *)));

1794 assert (1'S_P2ALI GNED(i pNet ToMedi aEnt ryS| ze,

1795 si zeof (m b2_i pNet ToMedi aEntry t *)));

1796 assert (1 S_P2ALI GNED(i pMenber Ent rySi ze,

1797 sizeof (ip_nenber_t *)));

1798 assert (1 S_P2ALT GNED(i pGr 0upSour ceEntrySi ze,

1799 sizeof (ip_grpsrc_t *)));

1800 assert (1 S_P2ALI GNED(i pRout eAttributeSi ze,

1801 sizeof (mib2_ipAttributeEntry t *)));

1802 assert (I S_P2ALI GNED(t r ansport MLPSi ze,

1803 si zeof (m b2_transport MPEntry_t *)));

1804 br eak;

1805 }

1806 case EXPER_DVMRP:

1807 struct nrtstat *nrts = (struct nrtstat *)item >valp;
1809 vifctl Size = nmrts->mts_vifctlSize;

1810 nfcctl Size = nrts->nrts_nfcctl Si ze;

1811 assert (1S_P2ALI GNED(vi fctl Si ze,

1812 sizeof (struct vifclt *)));

1813 assert (1 S_P2ALI GNED(nf cct | Si ze,

1814 sizeof (struct nfcctl *)));

1815 break;

1816 }

1817 case M B2_| P6:

1818 m b2_i pv6l f Stat sEntry_t *i p6;

1819 /* Just use the first entry */

1821 ip6 = (mb2_ipvelfStatsEntry t *)item >val p;
1822 i pv6l f Stat sEntrySi ze = i p6->i pv6l f Stat sEntrySi ze;
1823 i pv6Addr EntrySi ze = i p6->i pv6Addr EntrySi ze;

1824 i pv6Rout eEnt rySi ze = 1 p6->I pv6Rout eEntrySi ze;
1825 i pv6Net ToMedi aEntrySi ze = i p6->i pv6Net ToMedi aEntrySi ze;
1826 i pv6Menber EntrySi ze = i p6->I pv6Menber EntrySi ze;
1827 i pv6G oupSour ceEnt rySl ze =

1828 i p6->i pv6G oupSour ceEntrySi ze;

1829 assert (|1 S_P2ALI GNED(i pv6l f St at sEntrySi ze,

1830 sizeof (mb2_ipv6lfStatsEntry_t *)));

1831 assert (| S_P2ALI GNED(i pv6Addr EntrySi ze,

1832 si zeof (mib2_i pv6AddrEntry_t *)));

1833 assert (1 S_P2ALI GNED(i pv6Rout eEnt rySi ze,

1834 si zeof (mib2_i pv6RouteEntry_t *)))'

1835 assert (1S_P2ALI GNED(i pv6Net ToMedi aEnt rySi ze,
1836 si zeof (m b2_i pv6Net ToMedi aEntry t *)));

1837 assert (1 S_P2ALI GNED(i pv6Menber EntrySi ze,

1838 si zeof (ipv6_nenber_t *)));

1839 assert (1'S_P2ALI GNED(i pv6Gr oupSour ceEntrySi ze,
1840 sizeof (ipv6_grpsrc_t *)));

1841 br eak;

1842 }

1843 case M B2_| CwP6: {

1844 m b2_i pv6l flcnpEntry_t *icnp6;

1845 /* Just use the first entry */

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 27 new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 28
1912 (void) printf("\tipv6AddrEntrySi ze %\ n", ipv6AddrEntrySize);
1847 icnp6 = (mib2_ipv6lflcnpEntry_t *)item >val p; 1913 (void) printf("\tipv6RouteEntrySize %\ n", |pv6RouteEntrySize);
1848 i pv6l flcnpEntTySi ze = i cnp6->i pv6l flcnpEntrySi ze; 1914 (void) printf("\tipv6Net ToMedi aEntrySize %\ n",
1849 assert (1 S_P2ALI GNED(i pv6l f | cnpEntrySi ze, 1915 i pv6Net ToMedi aEnt rySi ze) ;
1850 sizeof (mb2_ipv6lflcnpEntry_t *))); 1916 (void) printf("\tipveMenber Ent rySize %\ n",
1851 br eak; 1917 i pvéMenber EntrySi ze) ;
1852 } 1918 (void) printf("\tipv6lfl crrpEnt rySize %\ n",
1853 case M B2_TCP: { 1919 i pv6l fl cnpEntrySi ze) ;
1854 m b2_tcp_t *tcp = (mb2_tcp_t *)item >val p; 1920 (void) pri ntf("\tl pDest Ent rySize %\ n", ipDestEntrySize);
1921 (void) printf("\ttransportMPSi ze %\ n", transportMPSize);
1856 tcpConnEntrySi ze = tcp->tcpConnTabl eSi ze; 1922 (void) printf("\ttcpConnEntrySize %l\ n", tcpConnEnt rySi ze) ;
1857 t cp6ConnEnt rySi ze = tcp->tcp6ConnTabl eSi ze; 1923 (void) printf("\ttcp6ConnEntrySize %\ n", tcp6ConnEntrySize);
1858 assert (1 S_P2ALI GNED(t cpConnEntrySi ze, 1924 (void) printf("\tudpEntrySize %l\n", udpEntrySize);
1859 sizeof (mib2_tcpConnEntry t *))); 1925 (void) printf("\tudp6EntrySize %\ n", udp6EntrySize);
1860 assert (1 S_P2ALI GNED(t cp6ConnEntrySi ze, 1926 (void) printf("\tsctpEntrySize %\ n", sctpEntrySize);
1861 si zeof (m b2_tcp6ConnEntry t *))); 1927 (void) printf("\tsctpLocal EntrySi ze %\ n", sctplLocal EntrySize);
1862 br eak; 1928 (void) printf("\tsctpRenoteEntrySi ze %\ n",
1863 } 1929 sct pRenot eEnt rySi ze) ;
1864 case M B2_UDP: { 1930 (void) printf("\tdccpEntrySize %\ n", dccpEntrySize);
1865 m b2_udp_t *udp = (m b2_udp_t *)item >val p; 1931 (void) printf("\ttcp6EntrySize %\ n", dccp6EntrySize);
1932 #endif /* | codereview */
1867 udpEnt rySi ze = udp- >udpEntrySi ze; 1933
1868 udp6EntrySi ze = udp- >udp6EntrySi ze; 1934 }
1869 assert (1 S_P2ALI GNED(udpEntrySi ze,
1870 sizeof (m b2_udpEntry_t *)));
1871 assert (|1 S_P2ALI GNED(udp6Ent rySi ze, 1937 /% e e STAT_REPORT - ----mmmmmmmm i oo */
1872 si zeof (m b2_udp6Entry_t *)));
1873 br eak; 1939 static void
1874 } 1940 stat_report(mb_itemt *itemn
1875 case M B2_SCTP: { 1941 {
1876 m b2_sctp_t *sctp = (mb2_sctp_t *)item >val p; 1942 int jtemp = O;
1943 char i fname[LI FNAMSI Z + 1];
1878 sctpEntrySi ze = sctp->sctpEntrySi ze;
1879 sctpLocal EntrySi ze = sct p->sct pLocal EntrySi ze; 1945 /* "for’ loop 1: */
1880 sct pRenot eEntrySi ze = sct p->sct pRenpt eEntrySi ze; 1946 for (; item item= item>next_item {
1881 br eak; 1947 if (Xflag) {
1882 } 1948 (void) printf("\n--- Entry %l ---\n", ++tenp);
1883 case M B2_DCCP: ({ 1949 (void) printf("Goup = %, mb_id = %, "
1884 m b2_dccp_t *dccp = (m b2_dccp_t *)item >val p; 1950 "length = %, valp = Ox%\n",
1951 item>group, item>mb_id,
1886 dccpEntrySi ze = dccp->dccpConnTabl eSi ze; 1952 item>length, item>valp);
1887 dccp6EntrySi ze = dccp->dccp6ConnTabl eSi ze; 1953 }
1888 assert (| S_P2ALI GNED(dccpEntrySi ze, 1954 I1f (item>mb_id !=0)
1889 si zeof (m b2_dccpConnEntry_t *))); 1955 continue; /* "for’ loop 1 */
1890 assert (1 S_P2ALI GNED(dccp6Ent rySi ze,
1891 si zeof (m b2_dccp6ConnEntry_t *))); 1957 switch (item >group) {
1892 br eak; 1958 case MB2_IP: {
1893 } 1959 m b2_i p_t *ip = (mb2_ip_t *)item>valp;
1894 #endif /* | codereview */
1895 } 1961 if (protocol _sel ected(lPPROTO | P) &&
1896 } /* "for’ loop 1 ends */ 1962 fam |ly_sel ected(AF_I NET)) {
1963 (void) fputs(vd4conmpat ? "\nlP" : "\nlPv4",
1898 if (Xflag) { 1964 stdout);
1899 (vord) puts("mb_get_constants:"); 1965 print_ip_stats(ip);
1900 (voi d) printf("\tipv6lfStatsEntrySize %\ n", 1966 }
1901 i pv6l f St at sEntrySi ze) ; 1967 br eak;
1902 (void) printf("\tipAddr Ent rySize %\ n", ipAddrEntrySize); 1968 }
1903 (void) printf("\tipRouteEntrySize %l\n", | pRouteEntrySize); 1969 case M B2_|I CWP: {
1904 (voi d) printf("\ti pNet ToMedi aEntrySi ze %l\ n", 1970 m b2_icnp_t *icnp =
1905 i pNet ToMedi aEntrySi ze) ; 1971 (mb2_icnp_t *)item >val p;
1906 (void) printf("\tipMenber Ent rySize %d\n", ipMenberEntrySize);
1907 (void) printf("\tipRouteAttributeSize %\ n", 1973 if (protocol_sel ected(l| PPROTO | CVP) &&
1908 i pRout eAttri but eSi ze) ; 1974 fam |l y_sel ected(AF_I NET)) {
1909 (void) printf("\tvifctlSize %l\n", vifctlSize); 1975 (void) fputs(vdconpat ? "\nlCWP" : "\nl CWPv4",
1910 (void) printf("\tnfcctlSize %\ n", nfcctlSize); 1976 stdout);
1977 print_icnp_stats(icnp);

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

1978
1979
1980
1981
1982
1983

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043

break;

}

case M B2_| P6:
m b2_i pv6l f Stat sEntry_t *i p6;
m b2_i pv6l f Stat sEntry_t sunb;

if (l(protocol sel ect ed(| PPROTO_I PV6)) ||
I(famly_ sel ect ed(AF_I NET6)))
b

bzer o(&sunsb, si zeof (sumb));
/* "for’ loop 2a: */
for (ip6 = (m b2_i pv6l fStatsEntry_t *)item >val p;
(char *)ip6 < (char *)item>valp + item >l ength;
/* LINTED: (note 1) */
ip6 = (mb2_ipvelfStatsEntry_t *)((char *)ip6 +
i pvel f Stat sentrySi ze))
if (ip6->ipvelflndex == 0) {
/*

* The "unknown interface" ip6
* mb. Just add to the sum
*/

sum i p6_stats(i p6 &sunb) ;
continue; /* "fo | oop 2a */

}
if (Aflag) {
(void) printf("\nlPv6 for 9%\n"
i findex2str(ip6->ipv6lfl ndex,
i fname));
print_ip6_ StatS(IpG)

}
sum i p6_stats(ip6, &sunb);
/* "for’ loop 2a ends */
(void) fputs("\nlPv6", stdout);
print_i p6_stats(&sunb);
break;

}

case M B2_| CwP6: {
m b2_i pv6l flcnpEntry_t *icnp6;
m b2_i pv6l flcnpEntry_t sunb;

if (!(protocol _sel ected(!|PPROTO | CWPV6)) ||
I(fam ly_sel ect ed(AF_I NET6)))
br eak;
bzer o(&sunsb, S|zeof (sunﬁ))
/* "for’ Ioop 2b:
for (icmp6 = (m b2_| pvel flcnpEntry_t *)item >val p;
(char *)icnp6 < (char *)item>valp + item >l ength;
icnmp6 = (void *)((char *)icnp6 +
i pvel flcnpEntrySize)) {
if (icnp6->ipv6lflcnplflndex == 0) {
/*

* The "unknown interface" icnp6
* mb. Just add to the sum

*/

sum_i cnp6_st at s(i cnp6, &sunb) ;
continue; /* "for’ loop 2b: */

}
if (Aflag)
(void) printf("\nlCMWPv6 for %\n",
i findex2str(

29

i cnp6->i pv6l flcnpl flndex, ifname));

print_icnp6_stats(icnp6);

}
sumlcrrpﬁ stats(icnp6, &sunb);
} /* "for’ loop 2b ends */

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 30
2044 (void) fputs("\nlCVWPv6", stdout);

2045 print_icnp6_st ats(&sunﬁ)

2046 br eak;

2047 }

2048 case M B2_TCP: {

2049 m b2 _tcp_t *tcp = (mb2_tcp_t *)item >val p;
2051 if (protocol _sel ected(l PPROTO TCP) &&
2052 (fam ly_sel ect ed(AF_I NET) | |

2053 fam | y_sel ect ed(AF I NET6)))

2054 (void) fputs("\nTCP", st dout) ;
2055 print_tcp_stats(t cp);

2056

2057 break;

2058 }

2059 case M B2_UDP: {

2060 m b2_udp_t *udp = (mb2_udp_t *)item >val p;
2062 if (protocol _sel ected(l PPROTO UDP) &&
2063 (fam ly_sel ected(AF_I NET) ||

2064 fam | y_sel ect ed(AF_I NET6)))

2065 (void) fputs("\nUDP", stdout);
2066 print_udp_stats(udp);

2067 }

2068 br eak;

2069 }

2070 case M B2_SCTP: {

2071 m b2_sctp_t *sctp = (mb2_sctp_t *)item >valp;
2073 if (protocol _sel ected(l| PPROTO SCTP) &&
2074 (family_sel ected(AF_I NET) ||

2075 fam |y_sel ected(AF_I NET6))) {

2076 (void) fputs("\nSCTP", stdout);
2077 print_sctp_stats(sctp);

2078

2079 break;

2080 }

2081 case EXPER_RAW P: {

2082 m b2_raw p_t *rawip =

2083 (mb2_rawi p_t *)item >val p;

2085 if (protocol _sel ected(| PPROTO RAW &&
2086 (fam ly_sel ected(AF_I NET) ||

2087 fam ly_sel ected(AF_I NET6))) {

2088 (void) fputs("\nRAWP", stdout);
2089 print_raw p_stats(raw p);

2090

2091 break;

2092 }

2093 case EXPER | GW: {

2094 struct ignpstat *igps =

2095 (struct ignpstat *)item >val p;

2097 if (protocol _sel ected(l PPROTO | GWP) &&
2098 (famly_sel ect ed(AF INET)))

2099 (void) fputs("\nlGW:\n", stdout);
2100 print_ignp_stats(igps);

2101

2102 br eak;

2103 }

2104 1

2105 } /* "for’ loop 1 ends */

2106 (void) putchar(’\n");

2107 (void) fflush(stdout);

2108 }

new usr/src/cnd/ cnd-i net/ usr.

2110 static void

2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137

2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150

2152
2153

print
{

}

_ip_stats(mb2_ip_t *ip)

prval _init ()

pr_int_val (" i pFor war di ng",
pr_int_val (i pDefaul t TTL",
prval ("i pl nRecei ves",
prval ("i pl nHdr Errors",
prval ("i pl nAddr Errors",
prval ("i pl nCksunErrs",
prval ("i pForwDat agr ans”,
prval ("i pForwProhi bits",
prval ("i pl nUnknownPr ot os",
prval ("i pl nDi scards",
prval ("i pl nDelivers",
prval ("i pQut Requests",
prval ("i pQut Di scards",
prval ("i pQut NoRout es”,

pr_int_val ("i pReasnili meout ",

prval ("i pReasnReqds",
prval ("i pReasnKs",

prval ("i pReasnfail s",
prval ("i pReasnDupl i cat es",
prval ("i pReasnPart Dups",
prval ("i pFragOKs",

prval ("i pFragFail s",

prval ("i pFragCreates”,
prval ("i pRoutingDi scards",

prval ("tcpl nErrs",

prval ("udeoPort s",

prval ("udpl nCksunErrs"
prval ("udpl nOverfl ows"
prval (" raW| pl nOverfl ons” ,
prval ("i psecl nSucceeded",
prval ("i psecl nFail ed",
prval ("i pl nl Pv6",

prval ("i pQut | Pv6",

prval ("i pQut Swi t chl Pv6",
prval _end();

static void

print

2154 {

2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175

_icnp_stats(m b2_icnp_t *icnp)

prval _init();
prval ("i cnpl nMsgs",

prval ("icnpl nErrors” ,

prval ("i cnpl nCksunErrs”,
prval ("i cnpl nUnknowns",
prval ("i cnpl nDest Unreachs",
prval ("i cnpl nTi meExcds”,
prval ("i cnpl nPar nPr obs",
prval ("i cnpl nSrcQuenchs"”,
prval ("i cnpl nRedi rects",
prval ("i cnpl nBadRedi rects"”,
prval ("i cnpl nEchos",

prval ("i cnpl nEchoReps",
prval ("i cnpl nTi nest anps”,
prval ("i cnpl nTi mest anpReps”,
prval ("i cnpl nAddr Masks",
prval ("i cnpl nAddr MaskReps",
prval ("i cnpl nFragNeeded",
prval ("i cmpQut Msgs”,

prval ("i cnpQut Dr ops",

prval ("icnmpQut Errors”,

Cc
Cc
C

Cc
Cc
C
3
Cc
Cc
Cc
C
C
Cc
Cc

Cc
Cc
Cc
Cc

bi n/netstat/netstat.c

- >i pFor war di ng) ;
->i pDefaul t TTL) ;
->i pl nRecei ves) ;
->iplnHdrErrors);
->i pl nAddr Errors);
->i pl nCksunErrs) ;
- >i pFor wDat agr ans) ;
->j pForwProhi bits);
- >i pl nUnknownPr ot 0s) ;
->i pl nDi scards);
->i pl nDel ivers);
- >j pQut Request s) ;
->j pQut Di scards);

- >j pQut NoRout es) ;

- >i pReasnili meout) ;

- >i pReasnReqds) ;

- > pReasn(Xs) ;

->i pReasnfFail s);

- > pReasnDupl i cat es) ;
- >i pReasnPar t Dups) ;

- > pFragQKs) ;

->j pFragFail s);

->i pFragCreates);

->i pRout i nghi scards) ;

->tcplnErrs);
->udpNoPorts) ;

- >udpl ansurrErrs)
->udpl nOver fl ows) ;
->raw pl nOverfl ows) ;
->i psecl nSucceeded) ;
->j psecl nFai |l ed) ;

->i pl nl Pv6) ;

->j pQut | PvG) ;

->i pQut Swi t chl Pv6) ;

nmp- >i cnpl nMsgs) ;
nmp->i cnpl nErrors);
nmp- >i cnpl nCksunErrs) ;

cnp- >i cnpl nUnknowns) ;
mp- >i cnpl nDest Unr eachs) ;

mp- >i cnpl nTi meExcds) ;
nmp- >i cnpl nPar nPr obs) ;
np- >i cnpl nSr cQuenchs) ;
np- >i cnpl nRedi rects);

mp- >i cnpl nBadRedi rects) ;

nmp- >i cnpl nEchos) ;
np- >i cnpl nEchoReps) ;
nmp- >i cnpl nTi mest anps) ;

mp- >i cnpl nTi mest anpReps) ;

nmp- >i cnpl nAddr Masks) ;

cnp- >i cnpl nAddr MaskReps) ;

nmp- >i cnpl nFr agNeeded) ;
- >i cnmpQut Msgs) ;

nmp- >i cnpQut Dr ops) ;
mp->i cmpQut Errors);

new usr/src/cnd/ crd-

2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190

2192
2193

}

prval ("i cnpQut Dest Unr eachs",
prval ("i cnpQut Ti mreExcds",
prval ("i cnpQut Par nPr obs",
prval ("i cnpQut SrcQuenchs”,
prval ("i cnpQut Redi rects",
prval ("i cnpQut Echos",
prval ("i cnpQut EchoReps",
prval ("i cnpQut Ti mest anps”,
prval ("i cnpQut Ti mest anpReps",
prval ("i cnpQut Addr Masks",
prval ("i cnpQut Addr MaskReps",
prval ("i cnpQut Fr agNeeded",

i

p i cnpl nOver f1 ows",
prval _end();

static void

print

2194 {

2195
2196
2197

2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230

2232
2233

}

_ip6_stats(m b2_i pv6lfStatsEntry_t

prval _init();
prval ("i pv6Forwar di ng",
prval ("i pv6Def aul t HopLimt",

prval ("i pv6l nRecei ves",
prval ("i pv6l nHdr Errors",
prval ("i pvél nTooBi gErrors",
prval ("i pv6l nNoRout es"”,
prval ("i pv6l nAddr Errors",
prval ("i pvél nUnknownPr ot os",
prval ("i pv6l nTruncat edPkt s",
prval ("i pv6l nDi scards",
prval ("i pv6l nDel i vers",
prval ("i pv6Qut For wDat agr ans" ,
prval ("i pv6Qut Request s",
prval ("i pv6Qut Di scards",
prval ("i pv6Qut NoRout es",
prval ("i pv6Qut FragOKs",

prval ("i pvéQut FragFai |l s",
prval ("i pv6Qut FragCr eat es”,
prval ("i pv6ReasnReqds",
prval ("i pv6ReasnOKs",

prval ("i pv6Reasnfai | s",
prval ("i pv6l nMcast Pkt s",
prval ("i pv6Qut Mcast Pkts",
prval ("i pv6ReasnDupl i cat es",
prval ("i pv6ReasnPart Dups",
prval ("i pv6For wPr ohi bi ts",
prval ("udpl nCksunErrs",
prval ("udpl nOverfl ows",
prval ("raw pl nOverfl ows",
prval ("i pv6él nl Pv4",

prval ("i pv6Qut | Pv4",

prval ("i pv6Qut Swi t chl Pv4",
prval _end();

static void

print

2234 {

2235
2236
2237
2238
2239
2240
2241

_icnp6_stats(m b2_i pvel flcnpEntry_t

prval _i nit();
prval ("i cnp6l nMsgs",

prval ("i cnp6l nErrors",

prval ("i cnp6l nDest Unr eachs",
prval ("i cnp6l nAdm nPr ohi bs",
prval ("i cnp6l nTi mreExcds",
prval ("i cnp6l nPar nPr obl ens"”,

*

i net/usr.bin/netstat/netstat.c

i cnp->i cnpQut Dest Unr eachs) ;

cnp- >i cnpCQut Ti meExcds) ;

i cnp->i cnpQut Par nPr obs) ;
i cnp- >i cnpQut SrcQuenchs);
i cnp- >i cnpQut Redi rects);
i cnp->i cnmpQut Echos) ;

cnp- >i cpQut EchoReps) ;

i cnp->i cnpQut Ti mest anps) ;
i cnp->i cnpQut Ti mest anpReps) ;

cnp- >i cnpQut Addr Masks) ;

i cnp- >i cnpQut Addr MaskReps) ;
i cnp- >i cnpQut Fr agNeeded) ;
i cnp- >i cnpl nOver fl ows) ;

i p6)

p6- >i pv6For war di ng) ;
p6- >i pv6Def aul t HopLim t);

p6->i pv6l nRecei ves) ;

p6->i pv6l nHdr Errors);
p6->i pv6l nTooBi gErrors);
p6- >i pv6l nNoRout es) ;

p6->i pv6l nAddr Errors);
p6- >i pv6l nUnknownPr ot 0s) ;
p6->i pv6l nTruncat edPkt s) ;
p6- >i pv6l nDi scar ds) ;

p6- >i pv6l nDel i vers);

p6- >i pv6Qut For wDat agr ans) ;
p6- >i pv6Qut Request s) ;

p6- >i pv6Qut Di scar ds) ;

p6- >i pv6Qut NoRout es) ;

p6- >i pv6Qut Fr agCKs) ;

p6- >i pv6Qut FragFai |l s);
p6- >i pv6Qut Fr agCr eat es) ;
p6- >i pv6ReasnReqds) ;

p6- >i pv6ReasnKs) ;

p6- >i pv6Reasntai | s) ;

p6- >i pv6l nMcast Pkt s) ;

p6- >i pv6Qut Mcast Pkt s) ;
p6- >i pv6ReasnDupl i cat es) ;
p6- >i pv6ReasnPar t Dups) ;
p6- >i pv6For wPr ohi bi ts);
p6- >udpl nCksunErrs) ;

p6- >udpl nOver fl ows) ;
p6->rawi pl nOverfl ows);
p6->i pv6l nl Pv4);

p6- >i pv6Qut | Pv4) ;

p6->i pv6Qut Swi t chl Pv4) ;

*i cnp6)

cnp6- >i pv6l f | cnpl nMsgs) ;

cnp6->i pv6l f I cnpl nErrors);

cnp6- >i pv6l f | cnpl nDest Unr eachs) ;
cnp6- >i pv6l f | cnpl nAdnmi nPr ohi bs) ;
cnp6- >i pv6l f | cnpl nTi neExcds) ;
cnp6- >i pv6l f | cnpl nPar nPr obl ens) ;

new usr/src/cnd/ cnd-

i net/usr.bin/netstat/netstat.c 33

2242 prval ("i cnp6l nPkt TooBi gs", i cnp6- >i pv6l f | cnpl nPkt TooBi gs) ;

2243 prval ("i cnp6l nEchos", i cnp6- >i pv6l f | cnpl nEchos) ;

2244 prval ("i cnp6l nEchoRepl i es", i cnp6- >i pv6l f | cnpl nEchoRepl i es) ;
2245 prval ("i cnp6l nRout er Sol s", i cnp6- >i pv6l f | cnpl nRout er Sol i cits);
2246 prval ("i cnp6l nRout er Ads",

2247 i cr’rpG- >j pv6l f | cnpl nRout er Adverti sements);

2248 prval ("1 cnp6l nNei ghbor Sol s" i cnp6- >i pv6l f | cnpl nNei ghbor Sol i cits);
2249 prval ("i cnp6l nNei ghbor Ads",

2250 i cnp6 >ji pvél f | cnpl nNel ghbor Advertisenents);

2251 prval ("1 cnp6l nRedi rect s" i cnp6->i pv6l f | cnpl nRedi rect s) ;

2252 prval ("i cnp6l nBadRedi rect s", i cnp6- >i pv6l f | cnpl nBadRedi rect s) ;
2253 prval ("i cnp6l nG oupQueri es", i cnp6- >i pv6l f | cnpl nGr oupMenbQueri es) ;
2254 prval ("i cnp6l nG oupResps", i cnp6- >i pv6l f | cnpl nGr oupMenbResponses) ;
2255 prval ("i cnmp6l nG oupReds", i cp6- >i pv6l f | cnpl nG oupMenbReduct i ons) ;
2256 prval ("i cnp6l nOverfl ows", i cnp6->i pv6l f | cnpl nOver f | ows) ;

2257 prval _end();

2258 prval _i nit();

2259 prval ("i cnrp6Qut Msgs", i cnp6- >i pv6l f | cpQut Msgs) ;

2260 prval ("i cnp6Qut Errors", i cnp6->i pv6l f I cnpQut Errors);

2261 prval ("i cnp6Qut Dest Unr eachs", i cnp6- >i pv6l f | cnpQut Dest Unr eachs) ;
2262 prval ("i cnp6Qut Adm nProhi bs", i cnp6- >i pv6l f | cnpQut Admi nPr ohi bs) ;
2263 prval ("i cnp6Qut Ti meExcds", i cnp6- >i pv6l f | cpQut Ti meExcds) ;

2264 prval ("i cnmp6Qut Par nPr obl ens", i cnp6- >i pv6l f | cnpQut Par nPr obl ens) ;
2265 prval ("i cnp6Qut Pkt TooBi gs", i cnp6- >i pv6l f | cnpQut Pkt TooBi gs) ;
2266 prval ("i cnp6Qut Echos", i cnp6- >i pv6l f | cnpQut Echos) ;

2267 prval ("i cnp6Qut EchoRepl i es", i cnp6- >i pv6l f | cnpQut EchoRepl i es) ;
2268 prval ("i cnp6Qut Rout er Sol s", i cnp6->i pv6l f | cmpQut Rout er Sol i cits);
2269 prval ("icnp6Qut Rout er Ads"

2270 cnp6- >i pv6l f | cnpQut Rout er Adver t i sement S);

2271 prval ("i cnp6Qut Nei ghbor Sol s", i cnp6- >i pv6l f i cnmpQut Nei ghbor Sol i cits);
2272 prval ("i cnp6Qut Nei ghbor Ads",

2273 i crrp6 >i pv6l f | cnmpQut Nei ghborAdvert i sements);

2274 prval ("1 cnp6Qut Redi rects”, i cnp6- >i pv6l f | CerOJt Redi rects);

2275 prval ("i cnp6Qut G oupQueri es", i cnp6- >i pv6l f | cnpQut GoupranJeri es);
2276 prval ("i cnp6Qut Gr oupResps”,

2277 i cnp6- >i pv6l f | cnpQut GroupMsanesponses)

2278 prval ("i cnp6Qut Gr oupReds",

2279 i cnp6- >i pv6l f | cnpQut GroupMeaneducti ons);

2280 prval _end();

2281 }

2283 static void

2284 print_sctp_stats(m b2_sctp_t *sctp)

2285 {

2286 prval _init();

2287 pr_sctp_rtoal go("sctpRtoAl gorithni, sctp->sctpRtoA gorithm;

2288 prval ("sctpRtoM n", sct p->sct pRtoM n);

2289 prval ("sct pRt oMax", sct p- >sct pRt oMax) ;

2290 prval ("sctpRtolnitial", sctp->sctpRtolnitial);

2291 pr_int_val ("sct pMaxAssocs", sct p- >sct pMaxAssocs) ;

2292 prval ("sct pVal Cooki eLi fe", sct p- >sct pVal Cooki eLi fe);

2293 prval ("sctpMaxlnitRetr", sct p->sct pMaxl nitRetr);

2294 prval ("sct pCurrEstab", sct p- >sct pCurr Est ab) ;

2295 prval ("sct pActi veEst ab", sct p- >sct pActi veEst ab) ;

2296 prval ("sct pPassi veEst ab", sct p- >sct pPassi veEst ab) ;

2297 prval ("sct pAborted", sct p- >sct pAbort ed) ;

2298 prval ("sct pShut downs", sct p- >sct pShut downs) ;

2299 prval ("sct pQut Of Bl ue", sct p- >sct pQut O Bl ue) ;

2300 prval ("sct pChecksunError” sct p- >sct pChecksunError);

2301 prval 64("sct pQut Ctrl Chunks", sct p->sct pQut & r | Chunks) ;

2302 prval 64("sct pQut Or der Chunks", sct p- >sct pQut Or der Chunks) ;

2303 prval 64("sct pQut Unor der Chunks", sct p->sct pQut Unor der Chunks) ;

2304 prval 64("sct pRet ransChunks", sct p- >sct pRet r ansChunks) ;

2305 prval ("sct pQut Ack", sct p- >sct pQut Ack) ;

2306 prval ("sct pQut AckDel ayed", sct p- >sct pQut AckDel ayed) ;

2307 prval ("sct pQut W nUpdat e", sct p- >sct pQut W nUpdat e) ;

new usr/src/cnd/ cnd-i net/ usr.

2308 prval ("sct pQut Fast Retrans",
2309 prval ("sct pQut W nProbe",
2310 prval 64("sctplnCrl Chunks",
2311 prval 64("sct pl nOr der Chunks",
2312 prval 64("sct pl nUnor der Chunks",
2313 prval ("sctpl nAck",

2314 prval ("sct pl nDupAck",

2315 prval ("sctpl nAckUnsent ",
2316 prval 64("sct pFragUsr Msgs",
2317 prval 64("sct pReasniJsr Msgs”,
2318 prval 64("sct pQut SCTPPkt s",
2319 prval 64("sct pl nSCTPPkt s",
2320 prval ("sctpl nl nval i dCooki e",
2321 prval ("sctpTi nRetrans”,
2322 prval ("sct pTi nRet ransDr op”,
2323 prval ("sct pTi nHear Beat Pr obe",
2324 prval ("sct pTi nHear Beat Dr op",
2325 prval ("sctpLi stenDrop",
2326 prval ("sct pl nCl osed",

2327 prval _end();

2328 }

2330 static void

2331 print_tcp_stats(m b2_tcp_t *tcp)
2332 {

2333 prval _init();

2334 pr_int_val ("tcpRt oAl gorithni,
2335 pr_int_val ("tcpRtoM n",
2336 pr_int_val ("tcpRt oMax",
2337 pr_int_val ("tcpMaxConn",
2338 prval ("tcpActiveQpens",
2339 prval ("t cpPassi veQpens",
2340 prval ("tcpAttenptFails",
2341 prval ("t cpEst abReset s",
2342 prval ("tcpCurrEstab",

2343 prval 64("t cpQut Segs",

2344 prval ("t cpQut Dat aSegs",
2345 prval ("t cpQut Dat aByt es",
2346 prval ("tcpRetransSegs",
2347 prval ("tcpRetransBytes",
2348 prval ("tcpQut Ack",

2349 prval ("tcpQut AckDel ayed",
2350 prval ("tcpQut Urg",

2351 prval ("t cpQut W nUpdat e",
2352 prval ("t cpQut W nProbe",
2353 prval ("tcpQut Control ",

2354 prval ("tcpQut Rsts",

2355 prval ("t cpQut Fast Retrans",
2356 prval 64("tcpl nSegs",

2357 prval _end();

2358 prval ("tcpl nAckSegs",

2359 prval ("tcpl nAckByt es”,

2360 prval ("tcpl nDupAck",

2361 prval ("tcpl nAckUnsent ",
2362 prval ("tcpl nl nor der Segs"”,
2363 prval ("tcpl nl nor der Byt es",
2364 prval ("tcpl nUnor der Segs",
2365 prval ("tcpl nUnor der Byt es",
2366 prval ("tcpl nDupSegs",

2367 prval ("tcpl nDupByt es"”,

2368 prval ("tcpl nPart DupSegs",
2369 prval ("tcpl nPart DupByt es",
2370 prval ("tcpl nPast W nSegs",
2371 prval ("tcpl nPast W nByt es",
2372 prval ("tcpl nW nProbe”,

2373 prval ("tcpl nW nUpdat e",

bi n/netstat/netstat.c 34

sct p- >sct pQut Fast Ret rans) ;
sct p- >sct pQut W nPr obe) ;

sct p->sct pl nCtr| Chunks) ;

sct p- >sct pl nOr der Chunks) ;
sct p- >sct pl nUnor der Chunks) ;
sct p- >sct pl nAck) ;

sct p- >sct pl nDupAck) ;

sct p- >sct pl nAckUnsent) ;

sct p- >sct pFragUsr Msgs) ;

sct p- >sct pReasnlsr Msgs) ;

sct p- >sct pQut SCTPPkt s) ;

sct p- >sct pl nSCTPPkt s) ;

sct p- >sct pl nl nval i dCooki €) ;
sct p- >sct pTi nRetrans) ;

sct p- >sct pTi nRet ransDr op) ;
sct p- >sct pTi nHear t Beat Pr obe) ;
sct p- >sct pTi nHear t Beat Dr op) ;
sct p- >sct pLi st enDr op) ;

sct p- >sct pl nCl osed) ;

tcp->t cpRt oAl gorithm;
tcp->tcpRtoMn);

t cp- >t cpRt oMax) ;

t cp- >t cpMaxConn) ;

t cp- >t cpActi veOpens) ;
t cp- >t cpPassi veOpens) ;
tcp->tcpAttenpt Fails);
t cp- >t cpEst abReset s) ;
tcp->t cpCurr Est ab) ;

t cp- >t cpHCQut Segs) ;

t cp- >t cpQut Dat aSegs) ;
t cp- >t cpQut Dat aByt es) ;
t cp- >t cpRet r ansSegs) ;
t cp- >t cpRet r ansByt es) ;
t cp- >t cpQut Ack) ;

t cp- >t cpQut AckDel ayed) ;
tcp->tcpQut Urg) ;

t cp- >t cpQut W nUpdat e) ;
t cp- >t cpQut W nPr obe) ;
tcp->tcpQut Control);
tcp->tcpQut Rsts);

t cp- >t cpQut Fast Retr ans) ;
t cp- >t cpHCl nSegs) ;

t cp- >t cpl nAckSegs) ;

t cp- >t cpl nAckByt es) ;

t cp- >t cpl nDupAck) ;

tcp->tcpl nAckUnsent) ;

t cp- >t cpl nDat al nor der Segs) ;
t cp- >t cpl nDat al nor der Byt es) ;
t cp- >t cpl nDat aUnor der Segs) ;
t cp- >t cpl nDat aUnor der Byt es) ;
t cp- >t cpl nDat aDupSegs) ;

t cp- >t cpl nDat aDupByt es) ;

t cp- >t cpl nDat aPar t DupSegs) ;
t cp- >t cpl nDat aPar t DupByt es) ;
t cp- >t cpl nDat aPast W nSegs) ;
t cp- >t cpl nDat aPast W nByt es) ;
t cp- >t cpl NW nPr obe) ;

t cp- >t cpl NW nUpdat e) ;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386

2388 }

prval ("tcpl nCl osed",

prval ("tcpRtt NoUpdat e",
prval ("tcpRtt Update",

prval ("tcpTi nRetrans",

prval ("tcpTi nRetransDrop",
prval ("tcpTi mKeepal i ve",
prval ("tcpTi mKeepal i vePr obe",
prval ("tcpTi mKeepal i veDr op",
prval ("tcpLi stenDrop",

prval ("tcpLi stenDropQ",
prval ("t cpHal f OQpenDr op”,
prval ("t cpQut SackRet rans",
prval _end();

tcp->tcpl nd osed);

t cp- >t cpRt t NoUpdat e) ;
tcp->tcpRtt Update);
tcp->tcpTi nRetrans);
tcp->tcpTi nRetransDrop) ;

t cp- >t cpTi nKeepal i ve) ;

tcp- >t cpTi nKeepal i vePr obe) ;
tcp->t cpTi nKeepal i veDrop) ;
tcp->tcpLi stenDrop) ;

t cp- >t cpLi st enDr opQ0) ;

t cp- >t cpHal f OpenDr op) ;

t cp- >t cpQut SackRet r ansSegs) ;

2390 static void
2391 print_udp_stats(m b2_udp_t *udp)

2392 {
2393
2394
2395
2396
2397
2398
2399 }

prval _i nlt(),

prval 64(udpl nDat agr ans" ,
prval ("udpl nErrors"”,

prval 64("udpQut Dat agr ans",
prval ("udpQutErrors",
prval _end();

udp- >udpHCl nDat agr ans) ;
udp- >udpl nErrors);

udp- >udpHCQut Dat agr ans) ;
udp- >udpQut Errors);

2401 static void

2402 print

2403 {
2404
2405
2406
2407
2408
2409
2410
2411 }

2413 void
2414 print

2415 {
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437 }

_raw p_stats(m b2_rawi p_t *raw p)

prval _init();

prval ("raw pl nDat agr ans",
prval ("raw pl nErrors",
prval ("raw pl nCksunErrs",
prval ("raw pQut Dat agr ans",
prval ("raw pQutErrors",
prval _end();

raw p->raw pl nDat agr ans) ;
rawi p->raw plnErrors);

raw p- >rawi pl ansurTErrs);
raw p- >r awi pQut Dat agr ans) ;
raw p->raw pQut Errors);

_ignp_stats(struct ignpstat *igps)

(voi d) printf(" %0u nmessage% received\n"
i gps->igps_rcv_total, PLURAL(igps->i gps rcv_total));
(void) printf(" 9%4.0u massage% received wth too few byt es\n",
i gps->igps_rcv_tooshort, PLURAL(igps->igps_rcv_tooshort));
(voi d) printf(" %0u nessage%; recei ved with bad checksum n",
i gps->i gps_rcv_badsum PLURAL(i gps->i gps_rcv badsun))
(void) printf(" 940u member ship quer % recei ved\n
i gps->igps_rcv_queries, PLURALY(igps->i gps_rcv_querl es));
(void) printf(" %0u nenber shi p quer% received with invalid "
"field(s)\n",

i gps->i gps_rcv_badqueri es, PLURALY(i gps->i gps_rcv_badqueries));

(void) printf(" %0u nenbership report% received\n",
igps->igps_rcv_reports, PLURAL(igps->igps_rcv_reports));
(void) printf(" %0u menbership report% received with invalid "
"field(s)\n",
i gps->i gps_rcv_badreports, PLURAL(igps->i gps_rcv_badreports));
(voi d) printf(" %0u nenmbership report% received for groups to "
"whi ch we bel ong\ n",
i gps->igps_rcv ourreports PLURAL(i gps- >i gps_rcv _ourreports));
(void) printf(" %0u nmembership report% sent\n"
i gps->igps_snd_reports, PLURAL(i gps->i gps_snd_r eports));

2439 static void

35

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 36

2440 print_nrt_stats(struct nrtstat *nrts)
2441 {

2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487

2489
2490

2492
2493
2494

2496
2497
2498
2499
2500
2501
2502
2503
2504
2505

}

(void) puts("DVMRP nmulticast routing:");

(void) printf(" %0u hit% - kernel forwarding cache hits\n",
mts->nrts_nfc_hits, PLURAL(mTts->ntts_nfc_hits));

(void) printf(" %0u mss% - kernel forwarding cache m sses\n",
nrts->nrts_nfc_m sses, PLURALES(nmrts->mrts_nfc_nm sses));

(void) printf(" %0u packet% potentially forwarded\n",
mts->nrts_fwd_in, PLURAL(nTts->nrts_fwd_in));

(void) printf(" %0u packet% actually sent out\n",
nmts->nrts_fwd_out, PLURAL(mTts->nrts_fwd_out));

(void) printf(" %0u upcall % - upcalls nade to nrouted\n",
nrt s—>mts_upcal I's, PLURAL(nrts->nrts_upcalls));

(void) printf(" %0u packet% not sent out due to | ack of resources\n",
nrts->nrts_fwd_drop, PLURAL(mTts->nrts_fwd_drop));

(void) printf("™ 9%0u datagran¥s with nal forned tunnel options\n",
nrts->nrts_bad_tunnel, PLURAL(nTts->nrts_bad_tunnel))

(void) printf(" %0u datagram’/s with no room for tunnel options\n",
nmrts->nrts_cant _tunnel, PLURAL(nrts->mrts_cant_tunnel));

(void) printf(" %0u datagran?s arrived on wong interface\n",
nrts->nrts_wong_if, PLURAL(nTts->nTts_wong_if));

(void) printf(" %0u dat agran®s dropped due to upcall Q overflow n",
nrts->nrts_upg_ovflw, PLURAL(nTts->nmrts_upqg_ovflw));

(void) printf(" %0u datagran¥s cleaned up by the cache\n",
nrt s—>mts_cache_c| eanups, PLURAL(nTts->nrts_cache_cl eanups));

(void) printf(" 9%0u datagran?s dropped selectively by ratelimter\n",
nrts->nrts_drop_sel, PLURAL(nmrts->nrts_drop_sel));

(void) printf(" %0u dat agran®s dropped - bucket Q overflow n",
nrts->nrts_qg_overflow, PLURAL(nTts->nrts_qg_overflow));

(void) printf(" 9%0u datagran?s dropped - |arger than bkt size\n",
nrts->nrts_pkt2l arge, PLURAL(nrts->nrts_pkt2l arge));

(void) printf("\nPIMnulticast routing:\n");

(void) printf(" 9%0u datagran¥s dropped - bad version number\n"
nrts->nrts_pi mbadversion, PLURAL(nTts->nrts_pi m badversi on))

(void) printf(™ %40u datagran¥s dropped - bad checksum n"
nrts->nrts_pimrcv_badcsum PLURAL(NTts->nTts p|mrcv badcsun))

(void) printf("™ %40u datagran¥s dropped - bad register packets\n",
nrts->nrts_pi mbadregisters, PLURAL(nTts->nrts_pi m badregi st er s));

(void) printf(
" 9%0u datagran®s potentially forwarded - regi ster packets\n"
nrts->nrts_pimregforwards, PLURAL(mMTts->nTts plmregforwards))

(void) printf(™ 9%0u datagran¥s dropped - register send drops\n",
nrts->nrts_pimregsend_drops, PLURAL(nTts->nrts_pimr egsend_dr ops));

(void) printf(" %0u datagran?s dropped - packet nalfornmed\n",
nrts->nrts_pimumal formed, PLURAL(mTts->nrts_pi mnal forned));

(void) printf(" 9%0u datagran?s dropped - no nmenory to forward\n",
nrts->nrts_pi mnonmenory, PLURAL(nTts->nrts_pi mnonenory));

static void
sum i p6_stats(m b2_i pv6lfStatsEntry_t *ip6, mb2_ipv6lfStatsEntry_t *sunb)
2491 {

/* First few are not additive */
sunb- >i pv6For war di ng = i p6->i pv6For war di ng;
sunB- >i pv6Def aul t HopLi m t = i p6->i pv6Def aul t HopLi mi t;

sunB- >i pv6l nRecei ves += i p6- >i pv6l nRecei ves;

sunbB- >i pv6l nHdr Errors += | p6->i pv6l nHdrErrors;

sunB- >i pv6l nTooBi gErrors += i p6->i pv6l nTooBi gErrors;
sunmB- >i pv6l nNoRout es += i p6- > pv6l nNoRout es;

sunB->i pv6l nAddr Errors += i p6->i pv6l nAddrErrors;

sunB- >i pv6l nUnknownPr ot os += i p6->i pv6l nUnknownPr ot 0s;
sunB- >i pv6l nTruncat edPkts += i p6->i pv6l nTruncat edPkt s;
sunmB- >i pv6l nDi scards += i p6->i pv6l nDi scar ds;

sunB->i pv6l nDel i vers += i p6->i pv6l nDel i vers;

sunB- >i pv6Qut For wDat agr ans += i p6- >i pv6Qut For wDat agr ans;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

2506 sunB- >i pv6Qut Request s += i p6- >i pv6QuUt Request s;

2507 sunmB- >i pv6Qut Di scards += i p6->i pv6Qut Di scar ds;

2508 sunmB- >i pv6Qut FragOKs += i p6->i pv6Qut Fr agOKs;

2509 sunB- >i pv6CQut FragFai | s += i p6->i pv6CQut FragFai | s;

2510 sunB- >i pv6Qut FragCr eat es += i p6->i pv6Qut Fr agCr eat es;

2511 sunmb- >i pv6ReasnReqds += i p6->i pv6ReasnReqds;

2512 sunB- >i pv6ReasnKs += i p6- >i pv6ReasnKs;

2513 sunB- >i pv6Reasnfai | s += i p6- >i pv6Reasnfai | s;

2514 sunB- >i pv6l nMcast Pkt s += | p6- > pv6l nMcast Pkt s;

2515 sunmB- >i pv6Qut Mcast Pkt s += | p6- > pv6Qut Mcast Pkt s;

2516 sunB- >i pv6Qut NoRout es += i p6- >i pv6Qut NoRout es;

2517 sunB- >i pv6ReasnDupl i cat es += i p6->i pv6ReasnDupl i cat es;

2518 sunB- >i pv6ReasnPar t Dups += i p6->i pv6ReasnPar t Dups;

2519 sunmB- >i pv6For wPr ohi bits += i p6->i pv6For wPr ohi bi ts;

2520 sunB- >udpl nCksunErrs += i p6->udpl nCksunErrs;

2521 sunB- >udpl nOver fl ows += i p6->udpl nOverfl ows;

2522 sunB->rawi pl nOverfl ows += i p6->raw pl nOverfl ows;

2523 }

2525 static void

2526 sum.icnp6_stats(m b2_i pv6lflcnmpEntry_t *icnp6, m b2_ipv6lflcnpEntry_t *sunb)
2527 {

2528 sunB- >i pv6l f | cnpl nMsgs += i cnp6- >i pv6l f 1 cnpl nMsgs;

2529 sunB->i pv6l flcnpl nErrors += icnp6->i pv6l flcnplnErrors;

2530 sunB- >i pv6l f | cnpl nDest Unreachs += i cnp6- >i pv6l f | cnpl nDest Unr eachs;
2531 sunB- >i pv6l f | cnpl nAdm nProhi bs += i cnp6- >i pv6l f | cnpl nAdm nPr ohi bs;
2532 sunB- >i pv6l f | cnpl nTi neExcds += i cnp6->i pv6l f 1 cnpl nTi meExcds;

2533 sun6- >i pv6l f | cnpl nPar nProbl ems += i cnp6- >i pv6l f | cnpl nPar nPr obl ens;
2534 sunB- >i pv6l f | cnpl nPkt TooBi gs += i cnp6->i pv6l f | cnpl nPkt TooBi gs;
2535 sunB- >i pv6l f | cnpl nEchos += i cnp6- >i pv6l f | cnpl nEchos;

2536 sunmB- >i pv6l f | cnpl nEchoRepl i es += i cnp6->i pv6l f | cnpl nEchoRepl i es;
2537 sunB->i pv6l f I cnpl nRouterSolicits += icnp6->i pv6l flcnpl nRout er Solicits;
2538 sunB- >i pv6l f | cnpl nRout er Adverti sements +=

2539 i cnp6- >i pv6l f | cnpl nRout er Adver ti senents;

2540 sunmB- >i pv6l f | cnpl nNei ghbor Solicits +=

2541 i cnp6->i pv6l f | cnpl nNei ghbor Sol i ci ts;

2542 sunB- >i pv6l f | cnpl nNei ghbor Adverti sements +=

2543 i cnp6->i pv6l f | cpl nNei ghbor Adver ti senents;

2544 sunmB- >i pv6l f | cnpl nRedi rects += i cnp6->i pv6l flcnpl nRedi rects;

2545 sunB- >i pv6l f | cnpl NG oupMenbQueri es +=

2546 i cnp6->i pv6l f | cnpl nGroupMenbQuer i es;

2547 sunB- >i pv6l f | cnpl NG oupMenbResponses +=

2548 i cnp6- >i pv6l f | cnpl nGr oupMenbResponses;

2549 sunB- >i pv6l f | cnpl nG oupMenbReduct i ons +=

2550 i cnp6->i pv6l f | cnpl NG oupMenbReduct i ons;

2551 sunB- >i pv6l f | cnrpQut Msgs += 1 cnp6- >i pv6l f | crrpOut Msgs;

2552 sunB->i pv6l f I cnpQut Errors += i cnp6->i pv6l flcnpQut Errors;

2553 sunB- >i pv6l f | cnpQut Dest Unr eachs += i cnp6- >i pv6l f | cnpQut Dest Unr eachs;
2554 sunB- >i pv6l f | cnpQut Admi nProhi bs += i cnp6- >i pv6l f | cnpQut Adm nPr ohi bs;
2555 sunB- >i pv6l f | cnpQut Ti meExcds += i cnp6->i pv6l f | cnpQut Ti meExcds;
2556 sunB- >i pv6l f | cnpQut Par nProbl ens += | cnp6- >i pv6l f | cnpQut Par nPr obl ens;
2557 sunmB- >i pv6l f | cnpQut Pkt TooBi gs += i cnp6- >i pv6l f | cnpQut Pkt TooBi gs;
2558 sun6- >i pv6l f | cnpQut Echos += i cnp6- >i pv6l f | cnpQut Echos;

2559 sunB- >i pv6l f | cnrpQut EchoRepl i es += i cnp6- >i pv6l f | cnpQut EchoRepl i es;
2560 sunB->i pv6l f I cnpQut RouterSolicits +=

2561 i cnp6- >i pv6l f | cmpQut Rout er Sol i cits;

2562 sunB- >i pv6l f | cnpQut Rout er Adverti senents +=

2563 i cnp6- >i pv6l f | cnpQut Rout er Adverti senents;

2564 sunB- >i pv6l f | cnpQut Nei ghbor Solicits +=

2565 i cnp6- >i pv6l f | cnmpQut Nei ghbor Sol i cits;

2566 sunB- >i pv6l f | cnpQut Nei ghbor Adverti senents +=

2567 i cnp6- >i pv6l f | cnpQut Nei ghbor Adverti senments;

2568 sunB->i pv6l f | cnpQut Redi rects += i cnp6->i pv6l f | cnpQut Redi rect s;
2569 sunmB- >i pv6l f | cnpQut G oupMenbQueri es +=

2570 i cnp6->i pv6l f I cnpQut G oupMenbQuer i es;

2571 sunB- >i pv6l f | cnpQut G oupMenbResponses +=

37

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

2572 i cnp6- >i pv6l f | cnpQut G oupMenbResponses;

2573 sunB- >i pv6l f | cnpQut G oupMenbReducti ons +=

2574 i cnp6- >i pv6l f | cmpQut G oupMenbReduct i ons;

2575 sunB->i pv6l f I cnpl nOverfl ows += i cnp6->i pv6l flcnpl nOverfl ows;

2576 }

S7® (| ccccoscccccosscccsooscacsosss MRT_STAT _REPORT ------scmmmmmmcammaeeeeo -

2580 static void

2581 mrt_stat _report(mb_itemt *curritemn
2582 {

2583 int ;
2584 mb_itemt *tenpl tem

2586 if (!(famly_sel ected(AF_I NET)))
2587 return;

2589 (void) putchar(’\n’);

2590 [* "for’ loop 1. */

2591 for (tenpitem= curritem

2592 tenpi tem

2593 tenpitem = tenpitem >next _item) {

2594 if (Xflag) {

2595 (void) printf("\n--- Entry % ---\n",
2596 (v0|d) prlntf("Group—%j mb_ id = %
2597 length = %, valp = Ox%\n",

2598 tenpitem >group, tenpitem >m b_id,
2599 tenpitem >l ength, tenpitem >valp);
2600 }

++j tenp);

2602 if (tempitem>mb_id == {

2603 switch (tenpitem >group) {

2604 case EXPER _DVMRP: {

2605 struct nrtstat *nrts;

2606 nmts = (struct nrtstat *)tenpitem >val p;

2608 if (! (famly_sel ected(AF_| INET)))
2609 continue; /* "for’ loop 1 */

2611 print_nrt_stats(nrts);
2612 br eak;

2613 }

2614 }

2615 }

2616 } /* "for’ loop 1 ends */

2617 (void) putchar('\n");

2618 (void) fflush(stdout);

2619 }

2621 /*

2622 * if_stat_total ()
2623 *

2624 */

2625 static void

2626 if_stat_total (struct ifstat *ol dstats,

Conputes totals for interface statistics
and returns result by updating sunstats.

struct ifstat *newstats,

2627 struct ifstat *sunstats)

2628 {

2629 sunst at s- >i packets += newst at s->i packets - ol dstats->i packets;

2630 sunst at s- >opackets += newst at s->opackets - ol dstats->opackets;

2631 sunstats->ierrors += newstats->ierrors - oldstats->ierrors;

2632 sumst at s->oerrors += newstats->oerrors - ol dstats->oerrors;

2633 sunst at s- >col | i si ons += newstats->col lisions - oldstats->collisions;
2634 }

B%® % =cccosscccsssscocasss | F_REPORT (netstat -i) ------scoommomeommnaaa--

38

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 39

2638 static struct

2639
2640

2642
2643
2644
2645
2646
2647
2648
2649
2650
2651

2653
2654
2655
2656
2657
2658
2659
2660
2661

2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674

2676
2677
2678
2679
2680
2681
2682

2684
2685
2686
2687

2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703

1%

ifstat zerostat = {

OLL, OLL, OLL, OLL, OLL

static void
if_report(mb_itemt *item char *matchnaneg,
int Iflag_only, boolean_t once_only)

{

static bool ean_t reentry = B_FALSE;
bool ean_t al readydone = B_FALSE;
int jtemp = 0;
ui nt32_t ifindex_v4 =0
ui nt32_t ifindex_v6 = 0;
bool ean_t first_header = B_TRUE;
/* "for’ loop 1: */
for (; item item=item>next_item {

if (Xflag) {

(void) prin

tf("\n--- Entry % ---\n", ++jtenp);
(void) printf("Goup = %l, mb_id = %, "
"length = %, valp = Ox¥%\n",
item>group, item>mb_id, item>length,
item >val p);

}

switch (item >group) {
case MB2_I| P:
if (item>nib_id!= MB2_IP_ADDR ||
Ifam |l y_sel ect ed(AF_I NET))
continue; /* "for’ loop 1 */

static struct ifstat
static struct ifstat

old = {OL, OL, OL, OL, OL};
new = {OL, OL, OL, OL, OL};

struct ifstat sum
struct iflist *new i st = NULL;
static struct iflist *oldlist = NULL;

kstat _t *ksp;

if (once_only) {
char i fname[LI FNAVSI Z + 1];
char | ogi nt nane[LI FNAMSI Z + 1];
m b2_i pAddrEntry_t *ap;
struct ifstat stat = {OL, OL, OL, OL, OL};

bool ean_t first = B_TRUE;
ui nt 32_t new_i fi ndex
if (Xflag)

(void) printf("if_report: % itens\n",
(item >l ength
/ sizeof (m b2_ipAddrEntry_t));

/* *for’ loop 2a: */
for (ap = (mb2_i pAddrEntry_t *)item >val p;
(char *)ap < (char *)item >valp
+ item >l engt h;
ap++)
(voi d) octetstr(&ap->i pAdEnt | fl ndex,
*a', |ogintnane,
si zeof (1 ogintnane));
(void) strcpy(ifnanme, |ogintnane);

(void) strtok(ifname, ":");

if (matchname !'= NULL &&
strcnp(matchnane, ifnane) != 0 &&
strcnp(mat chname, | ogi ntnane) != 0)

continue; /* "for’ loop 2a */
new_i findex =

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745

2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766

2768

40
i f _nanet oi ndex(| ogi nt nane) ;

First lookup the "link" kstats in
case the link is renamed. Then
fallback to the | egacy kstats for
t hose non-G.Dv3 |inks.

* ok kb k%

if (new_ifindex !'=ifindex_v4 &%
(((ksp = kstat_| ookup(kc, "link", O,
i fnanme)) != NULL)
((ksp = kstat_Il ookup(kc, NULL, -1,
ifname)) !'= NULL))) {
(voi d) safe_kstat_read(kc, ksp,
NULL) ;
stat.ipackets =
kst at _naned_val ue(ksp,
"i packets");
stat.ierrors =
kst at _nanmed_val ue(ksp,
"ierrors");
stat. opackets =
kst at _named_val ue(ksp,
"opackets");
stat.oerrors =
kst at _nanmed_val ue(ksp,
"oerrors");
stat.collisions =
kst at _naned_val ue(ksp,
"col l'isions");
if (first) {
if (!first_header)
(void) putchar(’\n’);
first_header = B_FALSE
(void) printf(
"%5.55 %5.55% 13. 13s "
"% 14.14s %6.6s %5.5s "
"%6.6s %5.5s5 %6.6s "

"% 6.6s\n",

"Nane", "Mu", "Net/Dest",
" Address", "Ipkts",
"lerrs", "Opkts", "Qerrs",

"Collis", "Quete"):
first = B_FALSE;

if_report_ip4(ap, ifnane,
| ogi nt nane, &stat, B _TRUE);
i findex_v4 = new_ifindex;
} else {
if_report_ip4(ap, ifnane,
| ogi nt nane, &stat, B_FALSE);

}
/* "for’ |loop 2a ends */
} else if (!alreadydone) {
char i fname[LI FNAMVSI Z + 1] ;
char buf [LI FNAMSI Z + 1];
m b2_i pAddrEntry_t *ap;
struct ifstat t;
struct iflist *tlp = NULL;
struct iflist **next new = &new i st ;
struct iflist *wal kol d;
struct iflist *cleanlist;
bool ean_t found_i f = B_FALSE;

al readydone = B_TRUE; /* ignore other case */

new usr/src/cnd/ cnd-i net/ usr.

2770
2771
2772
2773
2774
2775
2776

2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791

2793
2794
2795
2796
2797
2798
2799
2800
2801
2802

2804
2805
2806
2807
2808
2809
2810

2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826

2828

2830
2831
2832
2833
2834
2835

bi n/netstat/netstat.c

/*
* Check if there is anything to do.
*
/
if (item>length <

S|zeof (m b2 |pAddrEntry t)) {
1 (0, "No conpatible Interfaces");

-

"for’ loop 2b: find the "right" entry:
If an interface name to match has been
supplied then try and find it, otherw se

Use 100 if all else fails.

O * * * ok * ok *

—
L

(ap = (m b2_i pAddrEntry_t *)item >val p;
(char *)ap < (char *)item >valp
+ item >l ength;
ap++)
(voi d) oct et str(&p->i pAdEnt | f I ndex,
*a', ifnane, S|zeof (|fnama))
(void) strtok(ifname, ":");

if (matchname) {
if (strcnp(matchnane,
ifname) == 0) {
/* for’ loop 2b */
found_if = B_TRUE;
) br eak;
} else if (strcnp(ifnane, "100") != 0)
break; /* 'for’ loop 2b */
} /* "for’ loop 2b ends */

if (matchname == NULL) {

mat chnane = i f nane;
} else {
if (!fou _if)
(O tel %; no such "
interface.", matchnane);
}
if (Iflag_only == 0 || !reentry) {
(voi d) printf(" i nput % 6. 6S
"out put ",
mat chnane) ;
(void) printf(" input (Total)

"out put\n");

(voi d) prlntf(%7.7s %5.55 %7.7s "
"%5 5s %6 6s
packets “errs” " packet s",
“errs”, "colls s");

(voi d) prlntf(%7.75 %5.55 %7.7s "
"%5.5s %6.6s\n",

" packet s", "errs", " packet s",
"errs", "colls");
}
sum = zerostat;
/* "for’ loop 2c: */
for (ap = (mb2_i pAddrEntry_t *)item >val p;
(char *)ap < (char *)item>valp
+ item >l ength;
ap++) {

(voi d) octetstr(&ap->i pAdEnt | fl ndex,

41

match the first non-loopback interface found.

new usr/src/cnd/ cnd-i net/ usr.

2836
2837

2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853

2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868

2870
2871
2872
2873
2874
2875
2876
2877
2878
2879

2881
2882

2884

2886
2887
2888
2889
2890
2891

2893
2894
2895
2896

2898
2899
2900
2901

bi n/netstat/netstat.c 42

buf, S|zeof (buf))
(voi d) strtok(buf :

-

—h ok ok o ok kR % R X ok %
-~

W have reduced the IP interface
nanme, which could have been a

| ogical, down to a nane suitable
for use with kstats.

We treat this name as uni que and
only collate statistics for it once
per pass. This is to avoid falsely
anplifying these statistics by the
the nunber of |ogical instances.

if ((tlp !'= NULL) &&
((strcnp(buf, tlp->ifnane) == 0))) {
conti nue;
}
/*
* First |lookup the "link" kstats in

* case the link is renaned. Then

* fallback to the | egacy kstats for
* those non-G.Dv3 |inks.

*

if (((ksp = kstat_| ookup(kc, "link",
0, buf)) 1= NULL ||
(ksp = kstat_l ookup(kc, NULL, -1,
buf)) !'= NULL) && (ksp->ks_type ==
KSTAT_TYPE_NAMED)) {
(voi d) safe_kstat_read(kc, ksp,

NULL) ;

}

t.ipackets = kstat_naned_val ue(ksp,
"i packets");

t.ierrors = kstat_naned_val ue(ksp,
"ierrors");

t.opackets = kstat_naned_val ue(ksp,
"opackets");

t.oerrors = kstat_naned_val ue(ksp,
"oerrors");

t.collisions = kstat_naned_val ue(ksp,
"collisions");

if (strcnp(buf, nmatchnane) == 0)
new = t;

/* Build the interface list */

tlp = malloc(sizeof (struct iflist));

(void) strlcpy(tlp->ifnane, buf,
sizeof (tlp->ifnane));

tlp->tot = t;

*nextnew = tlp;

nextnew = &t | p->next _if;

/*

* First tinme through.

* Just add up the interface stats.
*/

if (oldlist == NULL)
if_stat_total (&erostat,
&, ∑
conti nue;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 43

2902

2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930

2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942

2944
2946

2948
2949
2950
2951
2952
2953
2954

2956
2957
2958
2959

2961
2962
2963

2965
2966
2967

Walk old list for the interface.
If found, add difference to total.

If not, an interface has been plunbed
up. In this case, we will sinply
ignore the new interface until the
next interval; as there’'s no easy way
to acquire statistics between tine
of the plunb and the next interval
boundary. This results in inaccurate
total values for current interval.

Note the case when an interface is
unpl unbed; as simlar probl ems exist.
The unpl unbed interface is not in the
current list, and there’'s no easy way
to account for the statistics between
the previous interval and time of the
unpl unb. Therefore, we (in a sense)
ignore the renoved interface by only
involving "current" interfaces when
conputing the total statistics.
Unfortunately, this also results in
inaccurate values for interval total.
/

I I T

for (wal kold = oldlist;
wal kol d !'= NULL;
wal kol d = wal kol d->next _i f
if (strcnp(wal kol d->i f
buf) == 0)
if_stat_total (
&nal kol d- >t ot ,
&, ∑
br eak;

) {
n

ane,

}

} /* "for’ loop 2c ends */
*next new = NULL;

(void) printf("%7llu %5llu %7lu"
"%5llu %6llu ",
new. i packets - ol d.ipackets,
new. ierrors - old.ierrors,
new. opackets - ol d. opackets,
new. oerrors - old.oerrors,
new. col lisions - old.collisions);

d) printf("%7llu %5llu %7lu"
"%5llu %6llu\n", sumipackets,
sumierrors, sum opackets,
sumoerrors, sumcollisions);

* Tidy things up once finished.
*
/

new,

cleanlist = oldlist;
oldlist = newist;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 44
2968 while (cleanlist !'= NULL) {

2969 tlp = cleanlist->next_if;

2970 free(cleanlist);

2971 cleanlist = tlp;

2972 }

2973 }

2974 br eak;

2975 }

2976 case M B2_| P6:

2977 if (item>nib_id != MB2_| P6_ADDR | |

2978 Ifam |y_sel ect ed(AF_I NET6))

2979 continue; /* "for’ loop 1 */

2980 {

2981 static struct ifstat oldé = {OL, OL, OL, OL, OL};
2982 static struct ifstat newé = {OL, OL, OL, OL, OL};
2983 struct ifstat sunb;

2984 struct iflist *new i st6 = NULL;

2985 static struct iflist *oldlist6 = NULL;

2986 kstat _t *ksp;

2988 if (once_only) {

2989 char i fname[LI FNAMBI Z + 1];

2990 char | ogi nt nanme[LI FNAMSI Z + 1];

2991 m b2_i pv6AddrEntry_t *ap6;

2992 struct ifstat stat = {OL, OL, OL, OL, OL};
2993 bool ean_t first = B_TRUE;

2994 ui nt 32_t new_i fi ndex;

2996 if (Xflag)

2997 (void) printf("if_report: % itenms\n",
2998 (1tem >l ength)

2999 / sizeof (m b2_ipv6AddrEntry_t));
3000 /* "for’ loop 2d: */

3001 for (ap6 = (m b2_i pv6AddrEntry_t *)item >val p;
3002 (char *)ap6 < (char *)item >valp

3003 + item >l engt h;

3004 ap6++) {

3005 (voi d) octetstr(&ap6->i pv6Addrl fl ndex,
3006 'a', |ogintnane,

3007 si zeof (I ogintnane));

3008 (void) strcpy(ifnanme, |ogintnane);
3009 (void) strtok(ifname, ":");

3010 if (matchname != NULL &&

3011 strcnp(mat chnane, ifnane) !'= 0 &&
3012 strcnp(mat chname, | ogi ntnane) != 0)
3013 continue; /* 'for’ |loop 2d */
3014 new_i findex =

3015 i f _nanet oi ndex(| ogi nt nane) ;

3017 /*

3018 * First |lookup the "link" kstats in
3019 * case the link is renaned. Then
3020 * fallback to the | egacy kstats for
3021 * those non-GLDv3 | i nks.

3022 */

3023 if (new_ifindex = ifindex_v6 &&

3024 (ksp = kstat_l ookup(kec, "link", O,
3025 i fname)) != NULL ||

3026 (ksp = kstat_l ookup(kc, NULL, -1,
3027 i fname)) !'= NULL)) {

3028 (voi d) safe_kstat_read(kc, ksp,
3029 NULL) ;

3030 stat.ipackets =

3031 kst at _nanmed_val ue(ksp,
3032 "i packets");

3033 stat.ierrors =

new usr/src/cnd/ cnd-i net/ usr.

3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079

3081

3083
3084
3085
3086
3087
3088
3089

3091
3092
3093
3094
3095
3096
3097
3098
3099

bi n/ netstat/netstat.c 45

kst at naned _val ue(ksp,
“ierrors");
st at. opackets =
kst at _naned_val ue(ksp,
"opackets");
stat.oerrors =
kst at _naned_val ue(ksp,
"oerrors");
stat.collisions =
kst at _named_val ue(ksp,
"col li si ons");
if (first) {
if (!first header)
(void) putchar(’\n’);
first_header = B_FALSE;
(void) printf(
"%5.5s5 %5.55%
"-27.27s % 27.27s "
"%6.6s %5.5s "
"%6.6s %5.5s5 "
"% 6. Gs\n"

first = B_FALSE;

}
if_report_ip6(ap6, ifnarme,
| ogi nt nane, &stat, B _TRUE);
ifindex_v6 = new.ifi ndex;
} else {
if_report_ip6(ap6, ifname,
| ogi nt nane, &stat, B_FALSE);

}
/* *for’ loop 2d ends */

} else if (!alreadydone) {

char i fname[LI FNAMVSI Z + 1] ;

char buf [FNAMSI Z + 1];

m b2_i pv6Addr Ent ry_| t *ap6;

struct ifstat

struct iflist *tlp=NULL;
struct iflist **next new = &new i st 6;
struct iflist *wal kol d;
struct iflist *cleanlist;
bool ean_t found_i f = B_FALSE;

al readydone = B_TRUE; /* ignore other case */

/*
* Check if there is anything to do.
if (item>length <

sizeof (m b2_ipv6AddrEntry_t)) {
fail (0, "No conpatible interfaces");

-

"for’ loop 2e: find the "right" entry:

If an interface name to match has been
supplied then try and find it, otherw se

mat ch the first non-1oopback interface found.
Use 100 if all else fails.

O * * % *F ¥ ok ¥
= -

—
—~

= (m b2_i pv6AddrEntry_t *)item >val p;
(ar *)ap6 < (char *)item>valp

new usr/src/cnd/ cnd-i net/ usr.

3100
3101
3102
3103
3104

3106
3107
3108
3109
3110
3111
3112
3113
3114
3115

3117
3118
3119
3120
3121
3122
3123

3125
3126
3127
3128
3129
3130
8131
3132
3133
3134
8135
3136
3137
3138
3139
3140

3142

3144
3145
3146
3147
3148
3149
3150
3151

3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163

3165

bi n/ netstat/netstat.c 46

+ item >l engt h;
ap6++)
(voi d) oct et str(&p6->i pv6Addr | f | ndex,
'a', ifnane, sizeof (|fnama))
(voi d) strtok(lfnane N

if (matchname) {
if (strcrrp(r'ratchnane
i fname) == O)
/* *for’ loop 2e */
found_i f = B_TRUE;
) br eak;
} else if (strcnp(ifnane, "100") != 0)
break; /* 'for’ loop 2e */
} /* "for’ loop 2e ends */

if (matchname == NULL) {

mat chnane = i f nane;
} else {
if ('fou i f)
(O el f’/s no such "
‘interface.", matchnane);
}
if (Iflag_only == 0 || !reentry) {
(voi d) pr| ntf(
i nput % 6. 65"
" out put ",
mat chnane) ;
(v0|d) printf(" input (Total)"
output\n");
(void) printf("%7. 7s %5.55 %7.7s "
"%5 5s %6 6s ',
packets "errs", "packets",
"errs”, "colls' ")
(voi d) prlntf(”@@? 7S %5.55 %7.7s "
"%5.5s %6.6s\n"
"packets", "errs", "packets",
"errs", "colls");
}

sunmb = zerostat;

/* *for’ loop 2f: */
for (ap6 = (m b2_i pv6AddrEntry_t *)item >val p;
(char *)ap6 < (char *)item>valp
+ item >l ength;
ap6++) {
(voi d) oct et str(&ap6->i pv6Addr | f | ndex,
a', buf, sizeof (buf));
(voi d) strtok(buf ")

/*

We have reduced the IP interface
nanme, which could have been a

| ogical, down to a name suitable
for use with kstats.

We treat this name as uni que and
only collate statistics for it once
per pass. This is to avoid falsely
anmplifying these statistics by the
the nunber of |ogical instances.

/

* ok ok ok ok ok ok Ok k%

if ((tlp !'= NULL) &&

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 47 new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 48
3166 ((strcrrp(buf, tlp->ifname) == 0))) { 3232 *
3167 conti nue; 3233 * Note the case when an interface is
3168 } 3234 * unpl unbed; as simlar problens exist.
3235 * The unplunbed interface is not in the
3170 /* 3236 * current list, and there’'s no easy way
3171 * First |ookup the "link" kstats in 3237 * to account for the statistics between
3172 * case the link is renaned. Then 3238 * the previous interval and tine of the
3173 * fallback to the | egacy kstats for 3239 * unplunmb. Therefore, we (in a sense)
3174 * those non-GL.Dv3 |inks. 3240 * jgnore the removed interface by only
3175 */ 3241 * involving "current" interfaces when
3176 if (((ksp = kstat_Il ookup(kc, "link", 3242 * conputing the total statistics.
3177 0, buf)) !'= NULL || 3243 * Unfortunately, this also results in
3178 (ksp = kstat_l ookup(kc, NULL, -1, 3244 * inaccurate values for interval total.
3179 buf)) !'= NULL) && (ksp->ks_type == 3245 */
3180 KSTAT_TYPE_NAMED))
3181 (voi d) safe_kstat _read(ke, 3247 for (wal kold = oldlist6;
3182 ksp, NULL); 3248 wal kol d !'= NULL;
3183 } 3249 wal kol d = wal kol d->next _i f) {
3250 if (strcnp(v\al kol d- >i f nane,
3185 t.ipackets = kstat_naned_val ue(ksp, 3251 buf) == {
3186 "i packets"); 3252 if_stat_total (
3187 t.ierrors = kstat_naned_val ue(ksp, 3253 &wal kol d->t ot ,
3188 "ierrors"); 3254 &, &sun®);
3189 t.opackets = kstat_naned_val ue(ksp, 3255 br eak;
3190 "opackets"); 3256 }
3191 t.oerrors = kstat_nanmed_val ue(ksp, 3257 }
3192 "oerrors");
3193 t.collisions = kstat_naned_val ue(ksp, 3259 } /* "for’ loop 2f ends */
3194 "col l'isions");
3261 *next new = NULL;
3196 if (strcnp(buf, matchnane) == 0)
3197 news = t; 3263 (void) printf(" %7llu %5l1lu %7llu "
3264 "%5llu %6llu
3199 /* Build the interface list */ 3265 newb. i packets - ol dé. i packet s,
3266 newe.ierrors - old6.ierrors,
3201 tlp = mall oc(sizeof (struct iflist)); 3267 new6. opackets - ol d6. opacket s,
3202 (void) strlcpy(tlp->ifnanme, buf, 3268 new6. oerrors - ol d6.oerrors,
3203 sizeof (tlp->ifnane)); 3269 new6. col lisions - ol d6.collisions);
3204 tlp->tot =t;
3205 *nextnew = tlp; 3271 (void) printf("%7llu %5llu %7llu"
3206 nextnew = & | p->next _if; 3272 "%5l1u %6l1u\n", sunb.ipackets,
3273 sunb.ierrors, sunb.opackets,
3208 e 3274 sunb. oerrors, sunb. collisions);
3209 * First time through.
3210 * Just add up the interface stats. 3276 0%
3211 */ 3277 * Tidy things up once finished.
3278 */
3213 if (oldlist6 == NULL) {
3214 if_stat_total (&erostat, 3280 ol d6 = news;
3215 &, &suns); 3281 cleanlist = oldlisté6;
3216 conti nue; 3282 oldlist6 = newisté6;
3217 } 3283 while (cleanlist !'= NULL) {
3284 tlp = cleanlist->next_if;
3219 /* 3285 free(cleanlist);
3220 * Walk old list for the interface. 3286 cleanlist = tlp;
3221 * 3287 }
3222 * |f found, add difference to total. 3288 }
3223 * 3289 br eak;
3224 * |f not, an interface has been pl unbed 3290 }
3225 * up. Inthis case, we will sinply 3291 }
3226 * jgnore the new interface until the 3292 (void) fflush(stdout);
3227 * next interval; as there’'s no easy way 3293 } /* "for’ loop 1 ends =Y
3228 * to acquire statistics between tinme 3294 if ((Iflag_only == 0) && (!once_only))
3229 * of the plunb and the next interval 3295 (v0| d) putchar(\n');
3230 * boundary. This results in inaccurate 3296 reentry = B _TRUE;
3231 * total values for current interval. 3297 }

new usr/src/cnd/ cnd-i net/ usr.

3299
3300
3301
3302

3304
3305

3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329

3331
3332
3333
3334
3335
3336
3337

3339
3340
3341
3342
3343
3344
3345

3347
3348
3349
3350

3352
3353

3355
3356
3357
3358
3359
3360
3361
3362
3363

static void

if_report_i p4(m b2_i pAddrEntry_t *ap,
char ifnane[],
bool ean_t ksp_not _null)

char abuf [MAXHOSTNAMELEN + 1];

char | ogi ?t nane[],

bi n/ netstat/netstat.c 49

struct ifstat *statptr,

char dst buf [MAXHOSTNAMELEN + 1] ;

if (ksp_not_null) {

(void) printf("%5s %4u ",

i fnane,
if (ap->i pAdEntInfo ae

ap- >i pAdEnt I nf 0. ae_nt u) ;

_flags & | FF_PO NTOPO! NT)

(voi d) pr_addr(ap->i pAdEnt I nf 0. ae_pp_dst _addr,
abuf, sizeof (abuf));

el se

(voi d) pr_netaddr (ap->i pAdEnt Addr,

ap- >i pAdEnt Net Mask, abuf,

si zeof (abuf));

(void) printf("%13s %14s %6i1u %5l lu %6l Tu %5iiu "

"%6llu %6lluln",
abuf, pr_addr (ap->i
st at ptr->i packet s,
st at ptr- >opacket s,

statptr->collisions,

}
1*

pAdEnt Addr, dst buf,
statptr->ierrors,
statptr->oerrors,
OLL);

si zeof (dstbuf)),

* Print logical interface info if Aflag set (including |ogical unit 0)
*

if (Aflag) {
*statptr = zerostat;

stat ptr->i packets = ap-
st at ptr->opackets = ap-

(void) printf("%5s %4u ",

if (ap->i pAdEnt | nfo. ae

>i pAdEnt I nf 0. ae_i bent ;
>i pAdEnt I nf 0. ae_obcnt ;

| ogi nt nane, ap->i pAdEnt | nfo.ae_ntu);
_flags & | FF_PO NTOPO NT)

(voi d) pr_addr (ap->i pAdEnt Tnf 0. ae_pp_dst _addr, abuf,

si zeof (abuf));
el se

(voi d) pr_netaddr(ap->i pAdEnt Addr,

ap- >i pAdEnt Net Mask,

abuf, sizeof (abuf));

(void) printf("%13s % 14s %6llu %5s %6s "

"%5s %6s %6l1u\n",
pr _addr (ap- >i pAdEnt Addr,

st at ptr->i packets,

}

static void

abuf ,
dst buf,

si zeof (dstbuf)),
NA TNA

"N A", "N A",

if_report_ip6(m b2_i pv6AddrEntry_t *ap6,

char ifnane[], char |ogintnanme[],
{

bool ean_t ksp_not _null)

char abuf [MAXHOSTNAMELEN + 1] ;

struct ifstat *statptr,

char dst buf [MAXHOSTNAMELEN + 1] ;

if (ksp_not_null) {

(void) printf("%5s %4u ",

i fname, ap6->i pv6Addr I nfo. ae_ntu);

if (ap6->i pv6Addrinfo.ae_flags &

I FF_POl NTOPOI NT) {

(voi d) pr_addr6(&ap6->i pv6Addr | nf o. ae_pp_dst _addr,
abuf, sizeof (abuf));

} else {
(void) pr_prefi

x6(&p6- >i pv6Addr Addr ess,

ap6->i pv6Addr Pf xLengt h, abuf,

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 50
3364 si zeof (abuf));

3365 }

3366 (void) printf("%27s %27s %6llu %5/1lu "

3367 "%6llu %5/1u %6l1uln",

3368 abuf, pr_addr6(&ap6->i pv6Addr Addr ess, dst buf,

3369 si zeof (dstbuf)),

3370 statptr->i packets, statptr->ierrors, statptr->opackets,
3371 statptr->oerrors, statptr->collisions);

3372 }

3373 /*

3374 * Print logical interface info if Aflag set (including |ogical unit 0)
3375 *

3376 if (Aflag) {

3377 *statptr = zerostat;

3378 stat ptr->i packets = ap6->i pv6Addr | nfo. ae_i bent;

3379 st at ptr->opackets = ap6->i pv6Addr | nfo. ae_obcnt;

3381 (void) printf("%5s %4u ", |ogintnang,

3382 ap6- >i pv6Addr | nf 0. ae_nt u) ;

3383 if (ap6->i pv6Addrinfo.ae_flags & | FF_PO NTOPO NT)

3384 (voi d) pr_addr6(&ap6->i pv6Addr | nfo. ae_pp_dst_addr,
3385 abuf, sizeof (abuf));

3386 el se

3387 (void) pr_prefix6(&p6->i pv6Addr Addr ess,

3388 ap6 >i pv6Addr Pf xLengt h, abuf, sizeof (abuf))
3389 (void) printf("%27s %27s %6llu %5s % 65 % 5s % 6s\ n”
3390 abuf, pr_addr6(&ap6->i pv6Addr Addr ess, dst buf,

3391 si zeof (dstbuf)),

3392 statptr->i packets, "N A", "NA", "NA", "NA");

3393 }

3394 }

3396 [* --------ioaioioos DHCP_REPORT (netstat -D) ---------------commononnn */
3398 static bool ean_t

3399 dhcp_do_i pc(dhcp_i pc_type_t type, const char *ifnanme, bool ean_t printed_one)
3400 {

3401 dhcp_i pc_request _t *request;

3402 dhcp ipc_reply_t *reply;

3403 int error;

3405 request = dhcp_i pc_alloc_request(type, ifname, NULL, 0, DHCP_TYPE_NONE);
3406 if (request == NU L)

3407 fail (0, "dhcp_do_ipc: out of menory");

3409 error = dhcp_i pc_neke_request (request, & eply, DHCP_I PC_WAI T_DEFAULT);
3410 if (error '=0) {

3411 free(request);

3412 fail (0, "dhcp_do_ipc: %", dhcp_ipc_strerror(error));

3413 }

3415 free(request)

3416 error = reply->return_code;

3417 if (error == DHCP_I PC_E_UNKIF) {

3418 free(reply);

3419 return (printed_one);

3420 1

3421 if (error '=0) {

3422 free(reply);

3423 fail (0, "dhcp_do_ipc: %", dhcp_ipc_strerror(error));

3424

3426 if (timestanp_fnt != NODATE)

3427 print_timestanmp(timestanp_fnt);

3429 if (!printed_one)

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 51 new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 52
3430 (void) printf("%", dhcp_status_hdr_string()); 3496 if (!famly_sel ected(AF_INET) && !fam |y_sel ect ed(AF_I NET6))
3497 return;
3432 (void) printf("%", dhcp_status_reply_to_string(reply));
3433 free(reply); 3499 printed_one = B _FALSE;
3434 return (B_TRUE); 3500 if (ifname != NOLL) {
3435 } 3501 if (famly_sel ect ed(AF I NET)) {
3502 printed_one dhcp_do_i pc(DHCP_STATUS, i f nane,
3437 /| * 3503 print ed_one) ;
3438 * dhcp_wal k_interfaces: walk the list of interfaces for a given address 3504 }
3439 * famly (af). For each, print out the DHCP status using dhcp_do_ipc. 3505 1f (fam|ly_sel ected(AF_I NET6)) {
3440 */ 3506 printed_one = dhcp_do_i pc(DHCP_STATUS | DHCP_V6,
3441 static bool ean_t 3507 i fname, printed_one);
3442 dhcp_wal k_i nterfaces(int af, boolean_t printed_one) 3508 }
3443 { 3509 1f (!printed_one) {
3444 struct lifnum ||ifn; 3510 fail (0, "%: %", ifnane,
3445 struct lifconf lifc; 3511 dhcp_i pc_strerror (DHCP_I PC_E UNKIF));
3446 int n_ifs, i, sock fd; 3512 }
3513 } else {
3448 sock_fd = socket(af, SOCK_DGRAM 0) ; 3514 if (famly_sel ected(AF_I NET)) {
3449 if (sock_fd == -1) 3515 printed_one = dhcp_wal k_i nterfaces(AF_I NET,
3450 return (printed_one); 3516 printed_one);
3517 }
3452 I* 3518 1f (famly_sel ect ed(AF_I NET6))
3453 * SIOCGLIFNUM is just an estimate. |f the ioctl fails, we don't care; 3519 (voi d) dhcp_wal k_i nterfaces(AF_I NET6, printed_one);
3454 * just drive on and use S| OCGLI FCONF with increasing buffer sizes, as 3520 }
3455 * is traditional. 3521 }
3456 */
3457 (void) menmset (& ifn, 0, sizeof (lifn)); 3523 /% cee e GROUP_REPORT (netstat -Qg) ------------ccccmmmnononn- */
3458 Ilfn.llfnfamly—af;
3459 lifn. lifn_flags = LIFC_ALLZONES | LIFC_ NOXM T | LI FC_UNDER | PMP; 3525 static void
3460 if (ioctl(sock_fd, SIOCGLIFNUM & ifn) == -1) 3526 group_report(mb_itemt *item
3461 n_ifs = Li FN_GUARD_VAL UE; 3527 {
3462 el se 3528 mb_itemt *v4grp = NULL, *vdsrc = NULL;
3463 n_ifs = 1lifn.lifn_count + LI FN_GUARD VALUE; 3529 mb_itemt *v6grp = NULL, *v6src = NULL;
3530 int jtemp = 0;
3465 (void) menset (& i fc 0, sizeof (lifc)); 3531 char i fname[LI FNAMVSI Z + 1] ;
3466 lifc.lifc_famly = af ; 3532 char abuf [MAXHOSTNAMELEN + 1];
3467 Iifc.Iifchags=I|fn||fnf|ags 3533 i p_menber _t *i pnp;
3468 lifc.lifc_len = n_ifs * sizeof (struct lifreq); 3534 i p_grpsrc_t *ips;
3469 lifc.lifc_buf = malloc(lifc.lifc_len); 3535 i pv6_nenber _t *i pnpé;
3470 if (lifc.lifc_buf !'= NULL) { 3536 i pv6_grpsrc_t *i ps6;
3537 bool ean_t first, first_src;
3472 if (ioctl(sock_fd, SIOCGLIFCONF, &ifc) == -1) {
3473 (void) close(sock_fd); 3539 /* "for’ loop 1: */
3474 free(lifc.lifc_buf); 3540 for (; item item=item>next_item {
3475 return (NULL); 3541 if (Xflag) {
3476 } 3542 (void) printf("\n--- Entry % ---\n", ++jtenp);
3543 (void) printf("Goup = %, mb_id = %, "
3478 n_ifs = lifc.lifc_len / sizeof (struct lifreq); 3544 "length = %, valp = Ox¥%\n",
3545 item>group, item>mb_id, item>length,
3480 for (i =0; i <n|fs i++) { 3546 item >val p);
3481 printed _one = dhcp_do |pc(DHCP STATUS | 3547 1
3482 (af AF_INET6 ? DHCP_V6 : 0), 3548 if (item>group == MB2_IP && fanily_sel ected(AF_I NET)) {
3483 lifc. Ilfc _req[i].lifr nane printed_one); 3549 sw tch (|tem->mb|d) {
3484 } 3550 case EXPER_| P_GROUP_MEMBERSHI P:
3485 } 3551 vagrp = item
3486 (void) close(sock_fd); 3552 if (Xflag)
3487 free(lifc.lifc_buf); 3553 (void) printf("itemis v4grp info\n");
3488 return (printed_one); 3554 br eak;
3489 } 3555 case EXPER_| P_GROUP_SOURCES:
3556 vdsrc = item
3491 static void 3557 if (Xflag)
3492 dhcp_report(char *ifnane) 3558 (void) printf("itemis vdsrc info\n");
3493 { 3559 br eak;
3494 bool ean_t printed_one; 3560 defaul t:
3561 conti nue;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 53

3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581

3583
3584
3585
3586

3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602

3604
3605
3606
3607
3608
3609

3612
3613

3615
3616
3617
3618

3620
3621
3622
3623
3624
3625
3626
3627

cont i nue;

}
if (item>group == MB2_IP6 & fam|ly_sel ected(AF_I NET6)) {
sw tch (|tem>mb|d)
case EXPER | P6_GROUP_MEMBERSHI P:
vegrp = item
if (Xflag)
(void) printf("itemis végrp info\n");

br eak;
case EXPER | P6_GROUP_SOURCES:
veésrc = item
if (Xflag)
(void) printf("itemis vésrc info\n");
br eak;
defaul t:
continue;
}
}
}
if (fam|ly_sel ected(AF_I NET) && v4grp != NULL) {
if (Xflag)
(void) printf("% records for ipG oupMenber:\n",
vagrp->length / sizeof (ip_nmenber_t));
first = B_TRUE;
for (ipmp = (ip_nenber_t *)vd4grp->valp;
(char *)ipnp < (char *)v4grp >val p + v4grp- >l engt h;
/* LINTED: (note 1) *
ipmp = (i p_menber_t *)((char *)ipnp + i pMenberEntrySize)) {
if (first
(voi d) put s(v4conpat ?
G oup Menberships" :
"Group Menberships: |Pv4");
(voi d) puts(Interface "
"G RefCnt");
(voi d) puts(—————————
-------------------------- ")
first = B_FALSE;
}

(void) printf("%9s % 20s %u\n",
oct et str (& pnp->i pG oupMenber|flndex, "a',
i fname, sizeof (ifnane)),
pr _addr (i pnp- >i pG oupMenber Addr ess,
abuf, sizeof (abuf)),
i pnp- >i pG oupMenber Ref Cnt) ;

if (!Vvflag || v4src == NULL)
cont I nue;

if (Xflag)
(voi d) printf(" scannl ng % i pG oupSource
records.
vasrc- >l engt h/3| zeof (ip_grpsrc_t));

first_src = B_TRUE;
for (ips = (|p grpsrc_t *)vdsrc->val p;
(char *)ips < (char *)v4src->val p + v4src->l ength;
[* LINTED: (note 1) */
ips = (ip_grpsrc_t *)((char *)ips +
i pG oupSour ceEntrySi ze)) {
/*
* We assunme that all source addrs for a given

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 54
3628 * interface/group pair are contiguous, so on
3629 * the first non-match after we’ ve found at
3630 * | east one, we bail.

3631 *

3632 if ((iprp->i pGroupMenber Address !=

3633 i ps->i pG oupSour ceG oup) | |

3634 (!octetstrmatch(& pnp->i pG oupMenber| f | ndex,
3635 & ps->i pG oupSour cel f I ndex))) {

3636 if (first_src)

3637 cont i nue;

3638 el se

3639 br eak;

3640 }

3641 1f (first_src) {

3642 (void) printf("\t%: %s\ n",

3643 f modest r (

3644 i prp- >i pG oupMenber Fi | t er Mode) ,
3645 pr_addr (i ps- > pG oupSour ceAddr ess,
3646 abuf, sizeof (abuf)));

3647 first_src = B_FALSE;

3648 conti nue;

3649 }

3651 (void) printf("\t %8\ n"

3652 pr_addr (i ps->i pG&r oupSourceAddress abuf,
3653 si zeof (abuf)));

3654 }

3655 }

3656 (void) putchar(’\n");

3657 }

3659 if (famly_sel ected(AF_I NET6) && végrp != NULL) {

3660 if (Xfla

3661 (void) printf("% records for ipv6G oupMenber:\n",
3662 végrp->l ength / sizeof (ipv6_nenber_t));

3664 first = B_TRUE;

3665 for (ipnp6 = (ipv6_nmenber_t *)veégrp->val p;

3666 (char *)ipnp6 < (char “*)vegrp->val p + végrp->l ength;
3667 /* LINTED (note 1)

3668 ipnp6 = (ipv6_nenber_t *)((char *)ipnp6 +

3669 i pv6Menber EntrySi ze)) {

3670 if (first) {

3671 (voi d) put s(G oup Menber shi ps:

3672 "1 Pve"

3673 (voi d) puts("

3674 'Go Ref Cnt");

3675 (voi d) puts(—————

3676 M eeeeeeeeeeeceicceeas oo ")
3677 first = B_FALSE;

3678 }

3680 (void) printf("%5s %27s %u\n",

3681 i Tindex2str (i pnp6->i pv6G oupMenber | f I ndex, ifnane),
3682 pr_addr 6(& pnp6- >i pv6G oupMenber Addr ess,

3683 abuf, sizeof (abuf)),

3684 i prrp6 >i pv6G oupNErrber Ref Cnt) ;

3686 if (!vflag || vésrc == NULL)

3687 cont I nue;

3689 if (Xflag)

3690 (voi d) pri ntf("scannl ng % i pv6G oupSource "
3691 records.

3692 vésrc- >l engt h/ si zeof (ipve_grpsrc_t));

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720

3722
3723
3724
3725
3726
3727
3728

3730
3731
3732

3734
3736

3738
3739
3740

3742

3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754

3756
3757

3759

first_src
for (ipsé6

B_TRUE;
(i pv6_grpsrc_t *)v6src->val p;

55

(char *)ips6 < (char *)v6src->valp + v6src->l ength;

/* LINTED: (note 1) */
ips6é = (ipve_grpsrc_t *)((char *)ips6 +
i pv6G oupSour ceEntrySi ze)) {
/* same assunption as in the v4 case above */
if ((ipnp6->i pv6G oupMember|flndex !=
i ps6- >i pv6G oupSour cel f I ndex) ||
(I N6_ARE_ADDR EQUAL(
&i pnp6- >i pv6G oupMenber Addr ess,
&i ps6->i pv6G oupSour ceG oup))) {
if (first_src)
conti nue;
el se
br eak;

}
1f (first_src) {
(void) printf("\t%: %s\ n",
f modest r (
i pnp6- >i pv6Gr oupMenber Fi | t er Mode) ,
pr_addr 6(
& ps6->i pv6G oupSour ceAddr ess,
abuf , 5| zeof (abuf)));
first_src = B_FALSE;
conti nue;

}

(voi d) prlntf("\t s\ n"
pr_addr 6(& ps6- >i pVGGroupSourceAddress
abuf, sizeof (abuf)));
}

%voi d) putchar(’\n);

putchar(’\n");
flush(stdout);

------------------- DCE_REPORT (netstat -d) -----------c-ccucenonnno ¥/

#def i ne FLBUFSI ZE 8

| *

Assunes flbuf is at |east 5 characters; callers use FLBUFSI ZE */

static char *
dceflags2str(uint32_t flags, char *fl buf)
3741 {

}

char *str = fl buf;

if (flags & DCEF DEFAULT)
*str++ = 'D;

if (flags & DCEF PMTU)
*str++ = P

if (flags & DCEF UINFO)
*str++ = 'U;

if (flags & DCEF_TOO SMALL_PMIU)
*str++ = 'S

*str++ = '\0";

return (flbuf);

static void
dce_report(mb_itemt *item
3758 {

mb_itemt *v4dce = NULL;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 56
3760 mb_itemt *v6dce = NULL;

3761 int jtemp = 0;

3762 char i fname[LI FNAMSI Z + 1];

3763 char abuf [MAXHOSTNAMELEN + 1];

3764 char f 1 buf [FLBUFSI ZE] ;

3765 bool ean_t first;

3766 dest _cache_entry_t *dce;

3768 /* for’ loop 1: */

3769 for (; item item= item>next_item {

3770 if (Xflag) {

3771 (void) printf("\n--- Entry %l ---\n", ++tenp);
3772 (void) printf("Goup = %, mb_id = %, "

3773 "length = %, valp = Ox%\n",

3774 item>group, item>mb_id, item>length,

3775 item >val p);

3776 }

3777 1f (item>group == MB2_IP && family_sel ected(AF_I NET) &&
3778 item>mb_id == EXPER | P_DCE) {

3779 vddce = item

3780 if (Xflag)

3781 (void) printf("itemis v4dce info\n");
3782 }

3783 if (item>group == MB2_IP6 && fam |y_sel ect ed(AF_I NET6) &&
3784 |tem>mb|d—— EXPER | P_DCE) {

3785 vedce = item

3786 if (Xflag)

3787 (void) printf("itemis v6dce info\n");
3788 }

3789 }

3791 if (famly_sel ected(AF_I NET) && v4dce != NULL) {

3792 if (Xflag)

3793 (void) printf("% records for DestCacheEntry:\n",
3794 vddce->l ength / ipDestEntrySize);

3796 first = B_TRUE;

3797 for (dce = (dest_cache_entry_t *)vddce->val p;

3798 (char *)dce < (char *)v4dce->val p + v4dce->| ength;
3799 /* LINTED: (note 1) */

3800 dce = (dest_cache_entry_t *)((char *)dce +

3801 i pDest EntrySi ze))

3802 if (first) {

3803 (void) putchar(’\n’);

3804 (void) puts("Destination Cache Entries: |Pv4");
3805 (voi d) puts(

3806 " Addr ess PMIU Age Flags");
3807 (void) puts(

3808 B L ")
3809 first = B_FALSE;

3810 }

3812 (void) printf("%20s %u %u % 5s\n",

3813 pr_addr (dce- >Dest | pv4Addr ess, abuf, sizeof (abuf)),
3814 dce->Dest Pnt u, dce- >Dest Age,

3815 dcef | agsZstr(dce >Dest Fl ags, flbuf));

3816 }

3817 }

3819 if (fam I y sel ect ed(AF_I NET6) && v6dce != NULL) {

3820 (Xf1ag)

3821 (void) printf("% records for DestCacheEntry:\n",
3822 védce->l ength / ipDestEntrySi ze);

3824 first = B_TRUE;

3825 for (dce = (dest_cache_entry_t *)v6dce->val p;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

57

3826 (char *)dce < (char *)védce->val p + v6dce- >l engt h;
3827 /* LINTED: (note 1) */

3828 dce = (dest_cache_entry_t *)((char *)dce +

3829 i pDest EntrySi ze))

3830 if (first) {

3831 (void) putchar(’\n’);

3832 (void) puts("Destination Cache Entries:
3833 (voi d) puts(

3834 " Addr ess PMIU
3835 " Age Flags If ");

3836 (void) puts(

3837 B I
3838 Meeeen e ---"

3839 first = B_FALSE;

3840 }

3842 (void) printf("%27s %u %u %5s ¥%\n",

3843 pr_addr 6(&ce- >Dest | pv6Addr ess, abuf,

3844 si zeof (abuf)),

3845 dce- >Dest Pnt u, dce->Dest Age

3846 dcefl agsZstr(dce >Dest FI ags flbuf),

3847 dce->Dest|findex == 0 ?

3848 i findex2str(dce->Destl fi ndex i fname));
3849 }

3850

3851 (void) fflush(stdout);

3852 }

3854 [* e ARP_REPORT (netstat -p) -------=----------------
3856 static void

3857 arp_report(mb_itemt *item

3858 {

3859 int jtemp = 0O;

3860 char i fname[LI FNAMVSI Z + 1] ;

3861 char abuf [MAXHOSTNAMELEN + 1];

3862 char maskbuf [STR_EXPAND * OCTET_LENGTH + 1];

3863 char flbuf[32]; /* ACE_F_ flags */

3864 char xbuf [STR_ EXPAND * OCTET_LENGTH + 1] ;

3865 m b2_i pNet ToMedi aEntry_t *np;

3866 int fl ags;

3867 bool ean_t first;

3869 if ('(famly sel ect ed(AF_I NET)))

3870 return;

3872 /* "for’ loop 1: */

3873 for (; item item= item>next_item {

3874 if (Xflag) {

3875 (void) printf("\n--- Entry % ---\n", ++jtenp);
3876 (void) printf("Goup = %, mb_id = %, "

3877 "length = %, valp = Ox%\n",

3878 item>group, item>mb_id, item>length,
3879 item >val p);

3880 }

3881 1f (I(item>group == MB2_IP && item>mb_id == M B2_| P_MEDI A))
3882 continue; /* "for’ loop 1 */

3884 if (Xflag)

3885 (voi d) printf("% records for "

3886 | pNet ToMedi aEntryTabl e: \ n"

3887 item >l ength/sizeof (mb2_i pNet ToMedi aEntry_t));
3889 first = B_TRUE;

3890 [* "for’ loop 2: */

3891 for (np = (m b2_i pNet ToMedi aEntry_t *)item >val p;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

3892 (char *)np < (char *)item>valp + item >l ength;
3893 /* LINTED: (note 1) */

3894 np = (m b2_i pNet ToMedi aEntry_t *)((char *)np +
3895 i pNet ToMedi aEntrySi ze)) {

3896 if (first) {

3897 (void) puts(vdconpat ?

3898 "Net to Media Table" :

3899 "Net to Media Table: |Pv4");
3900 (voi d) puts(Devi ce "

3901 | P Address Mask
3902 "Fl ags Phys Addr");

3903 (void) puts("------ "

3904 R T T "
3905 B ")
3906 first = B_FALSE;

3907 }

3909 flbuf[0] ="\O

3910 flags = np->i pNet ToMedi al nf o. nt m f I ags;
3911 /*

3912 * Note that not all flags are possible at the same
3913 * time. Patterns: SPLAy DUo

3914 */

3915 if (flags & ACE_F_PERMANENT)

3916 (void) strcat(flbuf, "S");

3917 if (flags & ACE_F_PUBLI SH)

3918 (void) strcat(flbuf, "P");

3919 if (flags & ACE_F_DYI NG

3920 (void) strcat(flbuf, "D");

3921 if (!(flags & ACE_F_RESCOL ED))

3922 (void) strcat(flbuf, "U");

3923 if (flags & ACE_F_NAPP

3924 (void) strcat(flbuf, "M);

3925 if (flags & ACE_F_MYADDR)

3926 (void) strcat(flbuf, "L");

3927 if (flags & ACE_F_UNVERI Fl ED)

3928 (void) strcat(flbuf, "d");

3929 if (flags & ACE_F_AUTHORI T

3930 (void) strcat(flbuf, "A");

3931 if (flags & ACE F_OLD)

3932 (void) strcat(flbuf, "o");

3933 if (flags & ACE_F_DELAYED)

3934 (void) strcat(flbuf, "y");

3935 (void) printf("%6s % 20s % 155 %8s s\ n"
3936 oct et st r (&p- >i pNet ToMedi al f I ndex, ' a . ,
3937 i fname, sizeof (ifnane)),

3938 pr _addr (np- >i pNet ToMedi aNet Addr ess,
3939 abuf, sizeof (abuf)),

3940 oct et st r(&np->i pNet ToMedi al nfo. nt m_mask, ’'d’,
3941 maskbuf, sizeof (maskbuf)),

3942 f1 buf,

3943 oct et str(&np >i pNet ToMedi aPhysAddress, 'h’,
3944 xbuf, sizeof (xbuf)));

3945 /* "for’ |oop 2 ends */

3946 } /* "for’ loop 1 ends */

3947 (void) fflush(stdout);

3948 }

3950 /% ---iiioiiiia o NDP_REPORT (netstat -p) --------------------------
3952 static void

3953 ndp_report(mb_itemt *item

3954 {

3955 int jtemp = 0;

3956 char abuf [MAXHOSTNAMELEN + 1];

3957 char *state;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

3958
3959
3960
3961
3962

3964
3965

3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978

3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018

4020
4021
4022
4023

char *type;

char xbuf[STR EXPAND * OCTET_LENGTH + 1];
m b2_i pv6Net ToMedi aEntry_t *npé6;

char i fname[LI FNAMSI Z + 1] ;

bool ean_t first;

if (! (famly_sel ected(AF_I NET6)))
return;

[* *for’ loop 1. */
for (; item item= item>next_item {
if (Xflag) {
(void) printf("\n--- Entry % ---\n", ++jtenp);
(void) printf("Goup = %, mb_id = %l, "
"length = %, valp = Ox%\n",
item>group, item>mb_id, item>length,
item >val p);

}
i1f (!(item>group == MB2_IP6 &&
item>mb_id == M B2_TP6_NEDI A))
continue; /* "for’ loop 1 */

first = B_TRUE;
/* "for’ Ioop 2: */
for (np6 = (m b2_i pv6Net ToMedi aEntry_t *)item >val p;
(char *)np6 < (char *)item>valp + item >l ength;
/* LINTED: (note 1) */
np6 = (m b2_i pv6Net ToMedi aEntry_t *)((char *)np6 +
i pv6Net ToMedi aEnt rySi ze)) {
if (first) {
(void) puts("\nNet to Media Table: |Pv6");
(voi d) puts(" If Physi cal Address "
Type State Dest i nati on/ Mask") ;
(voi d) pUES(=== s "
TR oL L LT LR LT LR ")
first = B _FALSE;
}

switch (np6->i pv6Net ToMedi aState) {
case ND_I NCOVPLET
state = "I NCO\/PLETE“;
br eak;
case ND_REACHABLE:
state = "REACHABLE";
br eak;
case ND_STALE:
state = "STALE";
br eak;
case ND_DELAY:
state = "DELAY";
br eak;
case ND_PROBE:
state = "PROBE";
br eak;
case ND_UNREACHABLE:
state = "UNREACHABLE";

br eak;
defaul t:
state = " UNKNOMW";
}
switch (np6->i pv6Net ToMedi aType) {
case 1:

type = "other";
br eak;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 60
4024 case 2:

4025 type = "dynam c";

4026 br eak;

4027 case 3:

4028 type = "static";

4029 br eak;

4030 case 4:

4031 type = "local";

4032 br eak;

4033 }

4034 (void) printf("%5s %17s %7s % 12s % 27s\n",

4035 i findex2str(np6->i pv6Net ToMedi al f I ndex, ifnane),
4036 oct et str(&np6- >i pv6Net ToMedi aPhysAddress, 'h’,
4037 xbuf, sizeof (xbuf)),

4038 type,

4039 state,

4040 pr_ addr 6(&np6- >i pv6Net ToMedi aNet Addr ess,

4041 abuf, sizeof (abuf)));

4042 }y /* "for’ Ioop2ends */

4043 } /* "for’ loop 1 ends */

4044 (void) putchar('\n");

4045 (void) fflush(stdout);

4046 }

4048 [* e ire_report (netstat -r) -----------mooooon */
4050 typedef struct sec_attr_list_s {

4051 struct sec_attr_list_s *sal _next;

4052 const mi b2 i pAttributeEntry_t *sal _attr;

4053 } sec_attr_list_t;

4055 static boolean_t ire_report_itemv4(const mb2_i pRouteEntry_t *, boolean_t,
4056 const sec_attr_list_t *);

4057 static boolean_t ire_report_itemv6(const m b2_i pv6RouteEntry_t *, bool ean_t,
4058 const sec_attr_list_t *);

4059 static const char *pr_secattr(const sec_attr_list_t *);

4061 static void

4062 ire_report(const nmib_itemt *item

4063 {

4064 int jtemp = 0;

4065 bool ean_t print_hdr_once_v4 = B TRUE;

4066 bool ean_t print_hdr_once_v6 = B_TRUE;

4067 m b2_i pRout eEntry_t *rp;

4068 m b2_i pv6Rout eEntry_t *rp6;

4069 sec_attr_list_t **v4_attrs, **vda;

4070 sec_attr_list_t **v6_attrs, **vé6a;

4071 sec_attr_list_t *al |l _attrs, *aptr;

4072 const mb_itemt *iptr;

4073 int i pv4_route_count, ipv6_route_count;

4074 int route_attrs_count;

4076 /*

4077 * Preparation pass: the kernel returns separate entries for IP routing
4078 * table entries and security attributes. W |oop through the

4079 * attributes first and link theminto lists.

4080 */

4081 i pv4_rout e_count = ipv6_route_count = route_attrs_count = O;

4082 for (iptr = item iptr !'= NULL; iptr = iptr->next_item {

4083 if (iptr->group == MB2_IP6 & iptr->nmb_id == M B2_| P6_ROUTE)
4084 i pv6_route_count += iptr->length / ipv6RouteEntrySize;
4085 if (iptr->group == MB2_IP & iptr->mb_id == M B2_I P_ROUTE)
4086 i pva_i route count += iptr->length / ipRouteEntrySize;
4087 if ((iptr->group == MB2_IP || iptr->group == M B2_I P6) &&
4088 iptr->mb_id == EXPER IP RTATTR

4089 route_attrs_count += iptr->length /

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118

4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138

4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155

i pRout eAt tri but eSi ze;

}
v4_attrs = v6_attrs = NULL;
all _attrs = NULL;
if (fam|ly_sel ected(AF_I NET) && ipv4_route_count > 0) {
v4_attrs = calloc(ipv4_route_count, sizeof (*v4_attrs));
if (v4_attrs == NULL) {
perror("ire_report calloc v4_attrs failed");
return;

}

}
if (famly_sel ected(AF | NET6) && i pv6_route_count > O) {
v6_attrs = cal Toc(i pv6_route_count, sizeof (*v6_attrs));
if (v6_attrs == NULL) {
perror("ire_report calloc v6_attrs failed");
goto ire_report_done;

}

if (route_attrs_count > 0)

{
all _attrs = malloc(route_attrs_count * sizeof (*all_attrs));

if (all_attrs == NULL)
perror("ire_report malloc all_attrs failed");
goto ire_report_done;

}

aptr = all_attrs;

for (iptr = item iptr !'= NULL; iptr = iptr->next_item) {
m b2_i pAttributeEntry_t *iae;
sec_attr_list_t **alp;

if (vd4_attrs I= NULL && iptr->group == MB2_IP &&
iptr->mb_id == EXPER | P_RTATTR) {
alp = v4_attrs;
} else if (v6_ attrs != NULL &% iptr->group == M B2_I P6 &&
iptr->mb_id == EXPER | P_RTATTR) {
alp = v6_attrs;
} else {
conti nue;

for (iae = iptr->valp;
(char *)iae < (char *)iptr->valp + iptr->length;
/* LINTED: (note 1) */
iae = (m b2_i pAttributeEntry_t *)((char *)iae +
i pRout eAttri but eSi ze))
aptr->sal _next = al p[iae->i ae_routeidx];
aptr->sal _attr = iae;
al p[i ae->i ae_routei dx] = aptr++;

}

/* "for’ loop 1: */
vda = v4_attrs;
v6a = v6_attrs;
for (; item!= NULL; item = item >next_item {
if (Xflag) {
(void) printf("\n--- Entry %l ---\n", ++jtenp);
(void) printf("Goup = %, mb_id = %, "
"length = %, valp = Ox%\n",
item>group, item>mb_id,
item>length, item>valp);

}
if (!((item>gr0up == MB2_IP &&
item>mb_id == M B2_| P_ROUTE) ||
(item>group == M B2_I P6 &&
item>mb_id == M B2_| P6_ROUTE)))
continue; /* "for’ loop 1 */

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 62
4157 if (item>group == MB2_IP && !family_sel ect ed(AF_I NET))
4158 conti nue; /* ’for’ loop 1 */

4159 else if (item>group == MB2_IP6 & !famni|y_sel ected(AF_I NET6))
4160 continue; /* "for’ loop 1 */

4162 if (Xflag) {

4163 if (item>group == MB2_IP) {

4164 (voi d) prlntf("%J records for "

4165 | pRout eEnt ryTabl e: \ n"

4166 i tem >l engt h/ si zeof (m b2_i pRouteEntry_t));
4167 } else {

4168 (voi d) printf("% records for "

4169 | pv6Rout eEnt ryTabl e: \ n"

4170 item >l engt h/

4171 sizeof (m b2_i pv6RouteEntry_t));

4172 }

4173 }

4175 if (|tem>gr0up == MB2_IP)

4176 for (rp—(mb2|pRouteEntryt *)item >val p;

4177 (char *)rp < (char *)item>valp + item >l ength;
4178 /* LINTED: (note 1) */

4179 rp = (mb2_i pRouteEntry_t *)((char *)rp +
4180 i pRout eEntrySi ze))

4181 aptr = vda == NULL ? NULL : *vda++

4182 print_hdr_once_v4 = ire_report_itemv4(rp,
4183 print_hdr_once_v4, aptr);

4184

4185 } else {

4186 for (rp6 = (m b2_i pv6RouteEntry_t *)item >val p;
4187 (char *)rp6 < (char *)item>valp + item >l ength;
4188 [* LINTED. (note 1) */

4189 rp6 = (mb2 |pv6RouteEntry_t *)((char *)rp6 +
4190 i pv6Rout eEntrySi ze)) {

4191 aptr = v6a == NULL ? NULL : *v6at++

4192 print_hdr_once_v6 = ire_report_itemv6(rp6,
4193 print_hdr_once_v6, aptr);

4194 }

4195 }

4196 } /* "for’ loop 1 ends */

4197 (void) fflush(stdout);

4198 ire_report_done:

4199 if (v4_attrs !'= NULL)

4200 free(v4_attrs);

4201 if (v6_attrs !'= NULL)

4202 free(v6_attrs);

4203 if (all_attrs !'= NULL)

4204 free(all_attrs);

4205 }

4207 | *

4208 * Match a user-supplied device nane. W do this by string because

4209 * the MB2 interface gives us interface nane strings rather than

4210 * iflndex nunbers. The "none" rule matches only routes with no

4211 * interface. The "any" rule matches routes with any non-bl ank

4212 * interface. A base nane ("hnme0") matches all aliases as well

4213 * ("hne0: 1")

4214 */

4215 static bool ean_t

4216 dev_nane_nat ch(const Devi ceNane *devnam const char *ifnane)

4217 {

4218 int iflen;

4220 if (ifname == NULL)

4221 return (devnam >o_l ength == 0); /* "none" */

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 63 new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 64
4222 if (*ifname == '\0") 4288 /* ‘for’ loop 2: */
4223 return (devnam >o0_l ength = 0); /* "any" */ 4289 for (; fp !'= NULL; fp = fp->f_next) {
4224 iflen = strlen(ifnane); 4290 switch (|dx) {
4225 /* The check for ':’ here supports interface aliases. */ 4291 case FK_AF:
4226 if (iflen > devham >o_l ength || 4292 Tif (fp->u.f famly‘-AFINEl')
4227 (iflen < devham >0_| ength && devnam >o_bytes[iflen] !=":")) 4293 continue; /* "for’ loop 2 */
4228 return (B_FALSE); 4294 br eak;
4229 return (strncnp(ifnane, devnam >o_bytes, iflen) == 0); 4295 case FK_QUTIF:
4230 } 4296 if (!dev_name_nmat ch(&rp >i pRout el f | ndex,
4297 fp->u.f_ifnane))
4232 | * 4298 continue; /* "for’ loop 2 */
4233 * Match a user-supplied IP address list. The "any" rule natches any 4299 br eak;
4234 * non-zero address. The "none" rule nmatches only the zero address. 4300 case FK_DST:
4235 * | Pv6 addresses supplied by the user are ignored. |If the user 4301 if (!v4_addr_match(rp->i pRout eDest,
4236 * supplies a subnet nmask, then match routes that are at |east that 4302 r p- >i pRout eMask, fp))
4237 * specific (use the user's mask). If the user supplies only an 4303 continue; /* "for’ loop 2 */
4238 * address, then select any routes that would match (use the route’s 4304 br eak;
4239 * nask). 4305 case FK_FLAGS:
4240 */ 4306 if ((flag_b & fp->u.f.f_flagset) !=
4241 static bool ean_t 4307 fp->u.f.f_flagset ||
4242 v4_addr _mat ch(| pAddress addr, |pAddress mask, const filter_t *fp) 4308 (flag_b & fp->u.f.f_flI agcl ear))
4243 { 4309 continue; /* "for’ Toop 2
4244 char **app; 4310 br eak;
4245 char *aptr; 4311
4246 in_addr_t faddr, fnask; 4312 br eak;
4313 } /* "for’ loop 2 ends */
4248 if (fp->u.a.f_address == NULL) { 4314 if (fp == NULL)
4249 if (1N6_I'S_ADDR_UNSPECI FI ED(& p->u. a. f _nask)) 4315 return (B_FALSE);
4250 return (addr != | NADDR _ANY); /* "any" */ 4316 }
4251 el se 4317 /* "for’ loop 1 ends */
4252 return (addr == | NADDR_ANY); /* "none" */ 4318 return (B_TRUE);
4253 1 4319 }
4254 if (11N6_I'S VAMASK(fp->u.a.f_mask))
4255 return (B_FALSE); 4321 [*
4256 | N6_VAVAPPED_TO | PADDR(&fp >u. a. f _mask, fnmask); 4322 * Gven an IPv4 MB2 route entry, formthe |list of flags for the
4257 if (frask !="|P_HOST MASK) { 4323 * route.
4258 if (frmask > mask) 4324 */
4259 return (B_FALSE); 4325 static uint_t
4260 mask = fmask; 4326 formv4_route_flags(const m b2_i pRouteEntry_t *rp, char *fl ags)
4261 1 4327 {
4262 for (app = fp->u.a.f_address->h_addr_list; (aptr = *app) != NULL; app++) 4328 uint_t flag_b;
4263 /* LINTED: (note 1) */
4264 if (IN6_I'S ADDR VAMAPPED((i n6_addr_t *)aptr)) { 4330 flag_b = FLF_U;
4265 “/* LINTED: (note 1) */ 4331 (void) strcpy(fl ags, "U');
4266 | N6_VAMAPPED_TO | PADDR((i n6_ addr t *)aptr, faddr); 4332 [* RTF_INDI RECT Wi ns over RTF_GATEWAY - don't display both */
4267 if (((faddr ™ addr) & mask) == 0) 4333 if (rp->i pRoutelnfo.re_flags & RTF_I NDI RECT) {
4268 return (B_TRUE); 4334 (void) strcat(flags, "I1");
4269 } 4335 flag_b |= FLF_I;
4270 return (B_FALSE); 4336 } elseif (rp >I pRout el nfo.re ire _type & | RE_OFFLINK) {
4271 } 4337 (void) strcat(flags, "G');
4338 flag_b | = FLF_G
4273 | * 4339 }
4274 * Run through the filter list for an IPv4 MB2 route entry. |If all 4340 /* I RE_I F_CLONE Wi ns over RTF_HOST - don’t display both */
4275 * filters of a given type fail to match, then the route is filtered 4341 if (rp->ipRoutelnfo.re_ire_type & IRE_| F_CLONE) {
4276 * out (not displayed). |If no filter is given or at |east one filter 4342 (void) strcat(flags, "C');
4277 * of each type natches, then display the route. 4343 flag_b | = FLF_C
4278 */ 4344 } else if (rp->i pRouteMask == I P_HOST _MASK) {
4279 static bool ean_t 4345 (void) strcat(flags, "H');
4280 ire_filter_match_v4(const nib2_ipRouteEntry t *rp, uint_t flag_b) 4346 flag_b | = FLF_H;
4281 { 4347 }
4282 filter_t *fp; 4348 if (rp->pRoutelnfo.re_flags & RTF_DYNAM C) {
4283 int idx; 4349 (voi d) strcat(flags, "D');
4350 flag_b | = FLF_D
4285 [* *for’ loop 1: */ 4351 }
4286 for (idx = 0; idx < NFILTERKEYS; idx++) 4352 if (rp->pRoutelnfo.re_ire_type == | RE_BROADCAST) { /* Broadcast */
4287 if ((fp = filters[idx]) !'= NULL) { 4353 (void) strcat(flags, "b")

new usr/src/cnd/ cnd-i net/ usr.

bi n/netstat/netstat.c 65

4354 flag_b | = FLF_b;

4355 1

4356 if (rp->ipRoutelnfo.re_ire_type == I RE_LOCAL) { /* Local */
4357 (voi d) strcat (fI ags, "L");

4358 flag_b | = FLF_

4359 }

4360 if (rp->ipRoutelnfo.re_flags & RTF_MJULTIRT) {

4361 (void) strcat(flags, "M); /* Multiroute */
4362 flag_b | = FLF_M

4363 }

4364 if (rp->ipRoutelnfo.re_flags & RTF_SETSRC) {

4365 (void) strcat(flags, "S"); /* Setsrc */
4366 flag_b | = FLF_S;

4367 }

4368 if (rp->ipRoutelnfo.re_flags & RTF_REJECT) {

4369 (void) strcat(flags, "R');

4370 flag_b | = FLF_R;

4371 }

4372 if (rp->ipRoutelnfo.re_flags & RTF_BLACKHOLE) ({

4373 (void) strcat(flags, "B");

4374 flag_b | = FLF_B;

4375 }

4376 if (rp->ipRoutelnfo.re_fl ags & RTF_ZONE) {

4377 (void) strcat(fla "Z");

4378 flag_b | = FLF_Z;

4379 }

4380 return (flag_b);

4381 }

4383 static const char ire_hdr_v4[] =

4384 "\n% Table: |Pv4\n";

4385 static const char ire_hdr_v4_conpat[] =

4386 "\n% Table:\n";

4387 static const char ire_hdr_v4_verbose[] =

4388 " Destination Mask Gat enway Devi ce

4389 " MIU Ref Flg Qut In/Fwd %\n"

e L T "
4391 "----- T LT s\ n"

4393 static const char ire_hdr_v4_normal [] =

4394 " Destination Gat enway Fl ags Ref Use Interface
R L N "
4396 "--------- %\ n";

4398 static bool ean_t

4399 ire_report_itemv4(const mb2_i pRouteEntry_t *rp, boolean_t first,
4400 const sec_attr_list_t *attrs)

4401 {

4402 char dst buf [MAXHOSTNAMELEN + 1];

4403 char maskbuf [MAXHOSTNAMELEN + 1] ;

4404 char gwbuf [MAXHOSTNAMELEN + 1] ;

4405 char i fname[LI FNAMVSI Z + 1] ;

4406 char flags[10]; /* RTF_ flags */

4407 ui nt _t flag_b;

4409 if (!(Aflag || (rp->ipRoutelnfo.re_ire_type != IRE |F_CLONE &&
4410 rp->i pRoutelnfo.re_ire_type ! = | RE_BROADCAST &&

4411 rp->i pRoutelnfo.re ire_type != | RE_MILTI CAST &&

4412 rp->i pRoutelnfo.re_ire_type != | RE_NOROUTE &&

4413 rp->ipRoutelnfo.re_ire_type != IRE_LOCAL))) {

4414 return (first);

4415 }

4417 flag_b = formv4_route_flags(rp, flags);

4419 if (lire_filter_match_v4(rp, flag_b))

new usr/src/cnd/ cnd-i net/ usr.

4420

4422
4423
4424
4425
4426
4427
4428
4429

4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462

4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480

4482
4483
4484
4485

bi n/netstat/netstat.c 66
return (first);

if (first) {

(void) printf(v4conpat ? ire_hdr_v4_conpat
Vflag ? "I RE" : "Routlng)

(voi d) prlntf(VfIag ? ire_hdr_v4_verbose : ire_hdr
RSECflag ? " Gateway security attributes " :
RSECflag ? "----------commmmimai ot "o);

first = B_FALSE;

ire_hdr_v4,

_v4_nornmal ,

}

if (flag_b & FLF_H {
voi d) pr_addr (rp->i pRout eDest,
} else {
(void) pr
dst buf,

dst buf, sizeof (dstbuf));

_net (rp->i pRout eDest ,
si zeof (dstbuf));

r p- >i pRout eMask,

}
if (Mflag) {
(void) printf("%20s % 15s % 20s % 6s %bu %3u "
"% 4s%u Y6u Ys\n",
dst buf,
pr_mask(r p->i pRout eMask, naskbuf, sizeof (maskbuf)),
pr_addr nz(r p- >i pRout eNext Hop, gwbuf, sizeof (gwbuf)),
octetstr (& p->i pRoutel flndex, "a, ifname, sizeof (ifnane)),
rp->i pRout el nfo. re_max_frag,
rp->i pRoutel nfo.re_ref,
fl ags,
r p- >i pRout el nf 0. re_obpkt,
r p- >i pRout el nf o. re_i bpkt,
pr_secattr(attrs));
} else {
(voi d) printf("%20s % 20s %5s %lu %0u % 9s %\n",
dst buf,
pr_addrnz(rp >i pRout eNext Hop, gwbuf, sizeof (gwbuf)),
flags,
rp->i pRoutelnfo.re_ref,
r p- >i pRout el nf 0. re_obpkt + rp->i pRout el nfo.re_ibpkt,
octetstr (& p->i pRoutel flndex, "a’,
i fname, sizeof (ifnane)),
pr_secattr(attrs));

}
return (first);

Match a user-supplied |P address |ist against an | Pv6 route entry.
If the user specified "any," then any non-zero address matches. |f
the user specified "none," then only the zero address matches. |If
the user specified a subnet mask |l ength, then use that in matching
routes (select routes that are at |east as specific). |If the user
specified only an address, then use the route’s mask (sel ect
that would match that address). |Pv4 addresses are ignored.

* ok Ok ok Ok Ok ko

routes
*/

static bool ean_t

v6_addr _mat ch(const | p6Address *addr, int masklen, const filter_t *fp)
{

const uint8_t *ucp;

int fmasklen;

int i;

char **app;

const uint8_t *aptr;

if (fp->u.a.f_address == NULL)
if (1N6_I'S ADDR UNSPECI FI ED(& p- >u. a. f _nask))
return ('IN6 |'S_ADDR_UNSPECI FI ED(addr)) ;
return (I N6_I S_ADDR_UNSPECI FI ED(addr)) ;

/* any */

/* "none" */

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 67 new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 68
4486 } 4552 if (!v6_addr_match(& p6->i pv6Rout eDest,
4487 fmaskl en = 0; 4553 r p6- >i pv6Rout ePf xLengt h, fp))
4488 /* *for’ loop la: */ 4554 /* "for’ loop 2 */
4489 for (ucp = fp->u.a.f_mask.s6_addr; 4555 conti nue;
4490 ucp < fp->u.a.f_nask.s6_addr + sizeof (fp->u.a.f_nask.s6_addr); 4556 br eak;
4491 ucp++) { 4557 case FK_FLAGS:
4492 if (*ucp !'= Oxff) { 4558 if ((flag_b & fp->u.f.f_flagset) !=
4493 if (*ucp !'=0) 4559 fp->u.f.f_flagset ||
4494 fmaskl en += 9 - ffs(*ucp) 4560 (flag b & fp >u. f.f_flagclear))
4495 break; /* 'for’ loop 1 4561 "for’ loop 2 */
4496 } 4562 cont i nue;
4497 fmaskl en += 8; 4563 br eak;
4498 } /* "for’ loop la ends */ 4564 }
4499 if (fmasklen !'= | PV6_ABITS) { 4565 br eak;
4500 if (frmaskl en > maskl en) 4566 } /* "for’ loop 2 ends */
4501 return (B FALSE) 4567 if (fp == NULL)
4502 maskl en = fmaskl e 4568 return (B_FALSE) ;
4503 } 4569 }
4504 /* " for’ Ioop 1b: */ 4570 /* "for’ loop 1 ends */
4505 for (app = fp >u. a. f _address->h_addr _Ii st; 4571 return (B_TRUE);
4506 (aptr = (uint8_t *)*app) != NULL; app++) { 4572 }
4507 /* LINTED: (note 1) */
4508 if (IN6_I'S_ADDR VAMAPPED((i n6_addr _t *)aptr)) 4574 [*
4509 continue; /* 'for’ loop 1b * 4575 * Gven an IPv6 MB2 route entry, formthe list of flags for the
4510 ucp = addr->s6 addr 4576 * route.
4511 for (i = masklen; i >=8; i -=8) 4577 */
4512 if (*ucp++ != *aptr++) 4578 static uint_t
4513 break; /* "for’ loop 1b */ 4579 formv6_route_flags(const m b2_i pv6RouteEntry_t *rp6, char *flags)
4514 if (i ==01]]| 4580 {
4515 (i < 8 && ((*ucp ”~ *aptr) & ~(O0xff >>1i)) == 0)) 4581 uint_t flag_b;
4516 return (B_TRUE);
4517 } /* "for’ loop 1b ends */ 4583 flag_b = FLF
4518 return (B_FALSE); 4584 (v0| d) st r cpy(fl ags, "U');
4519 } 4585 RTF_I NDI RECT wi ns over RTF_GATEWAY - don’'t display both */
4586 |f (rpG >i pv6Rout el nfo.re_flags & RTF_I NDI RECT) {
4521 | * 4587 (void) strcat(flags, "I1");
4522 * Run through the filter list for an IPv6 MB2 |RE. For a given 4588 flag_b | = FLF_I;
4523 * type, if there’'s at least one filter and all filters of that type 4589 } else if (rp6- >|pv6RouteInfo re_ire_type & | RE_OFFLI NK) {
4524 * fail to match, then the route doesn’t match and isn’t displayed. 4590 (void) strcat(flags, "G');
4525 * |f at |east one matches, or none are specified, for each of the 4591 flag_b | = FLF_G
4526 */types, then the route is selected and di spl ayed. 4592 }
4527 *
4528 static bool ean_t 4594 /* I RE_I F_CLONE wi ns over RTF_HOST - don’t display both */
4529 ire_filter_match_v6(const m b2_i pv6RouteEntry_t *rp6, uint_t flag_b) 4595 if (rp6->ipv6Routelnfo.re_ire_type & IRE IF_CLONE) {
4530 { 4596 (voi d) strcat(fl ags, "C");
4531 filter_t *fp; 4597 tlag_b |= FLF_C,
4532 int idx; 4598 } else if (rp6->i pv6RoutePf xLengt h == I PV6_ABITS) {
4599 (voi d) strcat(flags, "H');
4534 /* "for’ loop 1. */ 4600 flag_b | = FLF_H
4535 for (idx = 0; idx < NFILTERKEYS; idx++) 4601 }
4536 if ((fp=f Iters[idx]) !'= NULL) {
4537 /* "for’ loop 2: */ 4603 if (rp6->ipvbRoutelnfo.re_flags & RTF_DYNAM C) {
4538 for (; fp !'= NULL; fp = fp->f_next) { 4604 (voi d) strcat(flags, "D');
4539 switch (idx) { 4605 flag_b | = FLF_D;
4540 case FK_AF: 4606 }
4541 Tif (fp- >uf famly I'= AF_| NET6) 4607 if (rp6->ipv6Routelnfo.re |retype == | RE_LOCAL) { /* Local */
4542 "for’ loop 2 */ 4608 (voi d) strcat (flags, "L");
4543 cont i nue; 4609 flag_b | = FLF_L;
4544 br eak; 4610 }
4545 case FK_QUTI F: 4611 if (rp6->ipv6Routelnfo.re flags & RTF_MULTI RT) {
4546 Tif (!dev_name_mat ch(& p6-> 4612 (v0|d) strcat(flags, "M); /* Miltiroute */
4547 i pv6Rout el f I ndex, fp->u.f_ifname)) 4613 flag_b | = FLF_M
4548 /* "for’ Ioop 2 %/ 4614 }
4549 conti nue; 4615 1 f (rp6->ipv6Routelnfo.re_fl ags & RTF_SETSRC) {
4550 br eak; 4616 (voi d) strcat(flags, "S"); /* Setsrc */
4551 case FK_DST: 4617 flag_b | = FLF_S;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

4618 }

4619 if (rp6->ipvb6Routelnfo.re_flags & RTF_REJECT) {

4620 (void) strcat(flags, "R');

4621 flag_b | = FLF_R;

4622 }

4623 if (rp6->ipvb6Routelnfo.re_flags & RTF_BLACKHOLE) {

4624 (void) strcat(flags, "B");

4625 flag_b | = FLF_B;

4626 }

4627 if (rp6->ipvbRoutelnfo.re_flags & RTF_ZONE) {

4628 (void) strcat(flags, "Z");

4629 flag_b | = FLF_zZ;

4630 }

4631 return (flag_b);

4632 }

4634 statl ¢ const char |re hdr_v6[] =

4635 "\n% Table: |Pv6\n

4636 static const char i re_hdr_v6_ver bose[] =

4637 " Desti nation/ Mask Gat eway | f MU "
4638 "Ref Flags CQut I'n/Fwd %\ n"

] B e
4640 "--- ----- ------ ------ %s\ n";

4641 static const char ire_hdr_v6_normal [] =

4642 " Destination/ Mask Gat eway Fl ags Ref Use "
4643 " If s\ n"

I Veccccccccomomomononanonmnns oo0o0000000000800eRE0000055 Sooos co= coocoos
4645 "----- %\ n";

4647 static bool ean_t

4648 ire_report_itemv6(const m b2_i pv6RouteEntry_t *rp6, bool ean_t first,
4649 const sec_attr_list_t *attrs)

4650 {

4651 char dst buf [MAXHOSTNAMELEN + 1];

4652 char gwbuf [MAXHOSTNAMELEN + 1];

4653 char i fname[LI FNAMVSI Z + 1] ;

4654 char flags[10]; /* RTF_ flags */

4655 uint_t flag_b;

4657 if (1(Aflag || (rp6->ipv6Routelnfo.re_ire_type != IRE |F _CLONE &&
4658 rp6->i pv6Routel nfo.re_ire_type != | RE_MILTI CAST &&

4659 rp6->i pv6Routel nfo.re_ire_type != | RE_NOROUTE &&

4660 rp6->i pv6Routelnfo.re_ire_type != IRE_LOCAL))) {

4661 return (first);

4662 }

4664 flag_b = formv6_route_flags(rp6, flags);

4666 if (lire_filter_match_v6(rp6, flag_b))

4667 return (first);

4669 if (first) {

4670 (void) printf(ire_hdr_v6, Vflag ? "IRE" "Routing");
4671 (void) printf(Vflag ? ire_hdr_v6_verbose : ire_hdr v6 nor mal ,
4672 RSECflag ? " Gateway security attributes "

4673 RSECIlag ? "----------cmmmmmi - "

4674 first = B_FALSE;

4675 }

4677 if (Mlag) {

4678 (void) printf("%27s % 27s %5s %u %3u '

4679 "% 5s %u Y%Bu s\ n",

4680 pr_prefix6(& p6->i pv6Rout eDest,

4681 rp6- >i pv6Rout ePf xLengt h, dstbuf, sizeof (dstbuf)),
4682 I'N6_I S_ADDR_UNSPECI Fi ED(& p6- > pv6Rout eNext Hop) ~ ?
4683 --

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

4684 pr_addr 6(& p6- >i pv6Rout eNext Hop, gwbuf, sizeof (gwbuf)),
4685 octetstr(& p6->i pv6Routel flndex, "a’,

4686 i fname, sizeof (ifnane)),

4687 r p6->i pv6Rout el nfo. re_nmax_frag,

4688 r p6- >i pv6Rout el nfo. re_ref,

4689 fl ags,

4690 r p6->i pv6Rout el nf 0. re_obpkt,

4691 r p6->i pv6Rout el nf o. re_i bpkt,

4692 pr_secattr(attrs));

4693 } else {

4694 (void) printf("%27s %27s %5s %Bu %u %5s %\n",
4695 pr_prefix6(& p6->i pv6Rout eDest ,

4696 r p6- >i pv6Rout ePf xLengt h, dstbuf, sizeof (dstbuf)),
4697 I N6_I' S | ADDR UNSPEC! FI ED(&r p6- >i pv6Rout eNext Hop) ?
4698

4699 pr ader(&rpB >i pv6Rout eNext Hop, gwbuf, sizeof (gwbuf)),
4700 flags,

4701 rp6- >i pv6Rout el nfo. re_ref,

4702 rp6->i pv6Rout el nfo.re obpkt + rp6->i pv6Rout el nfo. re_i bpkt,
4703 octetstr (& p6->i pv6Rout el f1ndex, 'a’,

4704 ifname, sizeof (ifname)),

4705 pr_secattr(attrs));

4706 1

4707 return (first);

4708 }

4710 /*

4711 * Common attribute-gathering routine for all transports.

4712 */

4713 static mb2_transport MPEntry_t **

4714 gather _attrs(const mb_itemt *item int group, int mb_id, int esize)
4715 {

4716 int transport_count = O;

4717 const mb_itemt *iptr;

4718 m b2_transport MLPEntry_t **attrs, *tne;

4720 for (iptr = item iptr !'= NULL; iptr = iptr->next_item {
4721 if (iptr->group == group & iptr->mb_id == mb_id)
4722 transport _count += iptr->length / esize;

4723 1

4724 if (transport_count <= 0)

4725 return (NULL);

4726 attrs = calloc(transport_count, sizeof (*attrs));

4727 if (attrs == NULL)

4728 perror("gather_attrs calloc failed");

4729 return (NULL);

4730 }

4731 for (iptr = item iptr I:NULL iptr = iptr->next itenj {
4732 if (ptr->group == group && iptr->mb_id == EXPER_XPORT_M.P) {
4733 for (tnme = iptr->valp;

4734 (char *)tme < (char *)iptr->valp + iptr->length;
4735 /* LINTED: (note 1) */

4736 tme = (mb2_transport MLPEntry_t *)((char *)tne +
4737 transport MLPSi ze)) {

4738 attrs[tme->tnme_conni dx] = tne;

4739 }

4740 }

4741

4742 return (attrs);

4743 }

4745 static void

4746 print_transport_| abel (const m b2_transport MPEntry_t *attr)

4747 {

4748 if (IRSECflag || attr == NULL

4749

||
I(attr->tnme_flags & M B2_TMEF_I S _LABELED))

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

4750 return;

4752 if (bisinvalid(&ttr->tme_|abel)) {

4753 (void) printf(" I NVALI D\ n") ;

4754 } else if (!blequal (&ttr->tme_| abel, zone_security_label)) {
4755 char *sl _str;

4757 sl_str = sl _to_str(&ttr->tme_| abel);

4758 (void) printf(" %\ n", sl_str);

4759 free(sl_str);

4760 1

4761 }

4763 [* ---om oo TCP_REPORT-----------cmmmmm - - -
4765 static const char tcp_hdr_v4[] =

4766 "\nTCP: | Pv4\n";

4767 static const char tcp_hdr_v4_conpat[] =

4768 "\ nTCP\n";

4769 static const char tcp_hdr_v4_verbose[] =

4770 "Local / Renote Address Swi nd Snext Suna Rwi nd Rnext Rack "
4771 " Rto Mss State\n"

R I I L I
V17778 Pocccs coccc cosscscosos D

4774 static const char tcp_hdr_v4_nornmal [] =

4775 " Local Address Renpt e Addr ess Swi nd Send-Q Rwi nd Recv-Q "
4776 " State\n"

R e T T]
4778 "----------- \n";

4780 static const char tcp_hdr_v6[] =

4781 "\ nTCP: |Pv6\n";

4782 static const char tcp_hdr_v6_verbose[] =

4783 "Local / Renpt e Address Swi nd Snext Suna Rwi nd Rnext "
4784 " Rack Rt o Mss State 1f\n'

e e e R
4786 "-------- m--o- oo eeoeioioo -o--- \n";

4787 static const char tcp_hdr_v6_nornmal[] =

4788 " Local Address Renpt e Addr ess

4789 "Swi nd Send-Q Rwind Recv-Q State 1f\n"

178 P=ccccccccccocococsmmaccsooosoooa50 So00090905050s0s05055505555555555 "
A N R \n"

4793 static boolean_t tcp_report_itemv4(const m b2_tcpConnEntry_t *,

4794 bool ean_t first, const mib2_transport MPEntry_t *);

4795 static boolean_t tcp_report_itemv6(const m b2_tcp6ConnEntry_t *,

4796 bool ean_t first, const m b2_transport MPEntry_t *);

4798 static void

4799 tcp_report(const mb_itemt *item

4800 {

4801 i nt jtemp = 0;

4802 bool ean_t print_hdr_once_v4 = B_TRUE;

4803 bool ean_t print_hdr_once_v6 = B _TRUE;

4804 m b2_t cpConnEntry_t *tp;

4805 m b2_t cp6ConnEntry_t *t p6;

4806 m b2_transport MLPEntry_t **v4_attrs, **v6_attrs;

4807 m b2_transport MLPEntry_t **vda, **v6a;

4808 m b2_transport MLPEntry_t *aptr;

4810 if (!protocol _sel ected(l PPROTO TCP))

4811 return;

4813 /*

4814 * Preparation pass: the kernel returns separate entries for TCP
4815 * connection table entries and Miultilevel Port attributes. W |oop

71

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 72
4816 * through the attributes first and set up an array for each address
4817 * famly.

4818 */

4819 v4_attrs = fam|ly_sel ected(AF_I NET) && RSECflag ?

4820 gather_attrs(item M B2_TCP, M B2_TCP_CONN, tcpConnEntrySize)
4821 NULL;

4822 v6_attrs = famly_sel ected(AF_I NET6) && RSECfl ag ?

4823 gather_attrs(item M B2_TCP6, M B2_TCP6_CONN, tcp6ConnEntrySi ze)
4824 NULL;

4826 /* "for’ loop 1: */

4827 vda = v4_attrs;

4828 vba = v6_attrs;

4829 for (; item!= NULL; item= item >next_item {

4830 if (Xflag) {

4831 (void) printf("\n--- Entry %l ---\n", ++tenp);
4832 (void) printf("Goup = %, mb_id = %, "

4833 "length = %, valp = Ox%\n",

4834 item>group, item>mb_id,

4835 item>length, item>valp);

4836 }

4838 if (!'((item>group == M B2_TCP &&

4839 item>nmb_id == MB2_TCP_CONN) ||

4840 (item>group == M B2_TCP6 &&

4841 item>mb_id == M B2_TCP6_CO\N)))

4842 continue; /* "for’ loop 1 */

4844 if (item>group == M B2_TCP && !famly_sel ect ed(AF_I NET))
4845 continue; /* "for’ loop 1 */

4846 else if (item>group == MB2_TCP6 && !fam|y_sel ect ed(AF_I| NET6))
4847 continue; /* "for’ loop 1 */

4849 if (item>group == M B2_TCP) {

4850 for (tp = (m b2_tcpConnEntry_t *)item >val p;

4851 (char *)tp < (char *)item>valp + item >l ength;
4852 /* LINTED: (note 1) */

4853 tp = (mb2_tcpConnEntry_t *)((char *)tp +

4854 tcpConnEntrySi ze))

4855 aptr = vd4a == NULL ? NULL : *vda++,;

4856 print_hdr_once_v4 = tcp_report_itemv4(tp,
4857 print_hdr_once_v4, aptr);

4858 }

4859 } else {

4860 for (tp6 = (m b2_tcp6ConnEntry_t *)item >val p;

4861 (char *)tp6 < (char *)item>valp + item >l ength;
4862 [* LINTED: (note 1) */

4863 tp6 = (m b2_tcp6ConnEntry_t *)((char *)tp6 +
4864 tcp6ConnEnt rySi ze))

4865 aptr = v6a == NULL ? NULL : *v6a++;

4866 print_hdr_once_v6 = tcp_report_itemv6(tp6,
4867 print_hdr_once_v6, aptr);

4868 }

4869 }

4870 } /* "for’ loop 1 ends */

4871 (void) fflush(stdout);

4873 if (v4_attrs !'= NULL)

4874 free(v4_attrs);

4875 if (v6_attrs !'= NULL)

4876 free(vé_attrs);

4877 }

4879 static bool ean_t

4880
4881

tcp_report _itemv4(const m b2 _tcpConnEntry t *tp,
const m b2_transport MPEntry_t *attr)

bool ean_t first,

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

4882 {

4883 /*

4884 * | nane and fname bel ow are for the hostname as well as the portnane
4885 * There is no limt on portname length so we assume MAXHOSTNAMELEN
4886 * as the limt

4887 */

4888 char | name[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];

4889 char f name[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1] ;

4891 if (!(Aflag || tp->tcpConnEntrylnfo.ce_state >= TCPS_ESTABL| SHED))
4892 return (first); /* Nothing to print */

4894 if (first) {

4895 (void) printf(v4conpat ? tcp_hdr_v4_conpat tcp_hdr_v4);
4896 (void) printf(Vflag ? tcp_hdr_v4_verbose : tcp_hdr_v4_normal);
4897 }

4899 if (Mflag) {

4900 (void) printf("% 20s\n% 20s %u %8x %08x %bu %08x %O8x "
4901 "9%u %u %s\n",

4902 pr_ap(tp->tcpConnLocal Addr ess,

4903 t p- >t cpConnLocal Port, "tcp", |name, sizeof (lnane)),
4904 pr_ap(tp->t cpConnRemAddr ess,

4905 t p- >t cpConnRenPort, "tcp", fname, sizeof (fnane)),
4906 t p- >t cpConnEntryl nfo. ce_swnd,

4907 t p- >t cpConnEnt ryl nf 0. ce_snxt,

4908 t p- >t cpConnEnt ryl nf 0. ce_suna,

4909 t p->t cpConnEntryl nfo. ce_rwnd,

4910 t p- >t cpConnEntryl nfo. ce_r nxt,

4911 t p- >t cpConnEnt ryl nf o. ce_r ack,

4912 t p- >t cpConnEntryl nfo.ce_rto,

4913 t p- >t cpConnEnt ryl nf 0. ce_nss,

4914 mtcp_state(tp- >tchonnEntryI nfo.ce_state, attr));
4915 } else {

4916 int = (int)tp->tcpConnEntryl nfo.ce_snxt -

4917 (| nt)tp >t cpConnEntryl nfo. ce_suna - 1;

4918 int (int)tp->tcpConnEntrylnfo.ce_rnxt -

4919 (| nt)tp >t cpConnEnt ryl nf o. ce_rack;

4921 (void) printf("%20s % 20s %u %d %u %d %\n",

4922 pr_ap(tp->t cpConnLocal Addr ess,

4923 t p- >t cpConnLocal Port, "tcp", |nane, sizeof (lnane)),
4924 pr_ap(tp->t cpConnRemAddr ess,

4925 t p- >t cpConnRenPort, "tcp", fname, sizeof (fnane)),
4926 t p- >t cpConnEnt ryl nfo. ce_swnd,

4927 (sq >=0) ? sq :

4928 t p- >tcpC0nnEntryInf0 ce_rwnd,

4929 (rqg>=0) ?2rq: O,

4930 mtcp state(tp- >tcpConnEntry| nfo.ce_state, attr));
4931 }

4933 print_transport_| abel (attr);

4935 return (B_FALSE);

4936 }

4938 static bool ean_t

4939 tcp_report_itemv6(const m b2_tcp6ConnEntry_t *tp6, boolean_t first,

4940 const m b2_transport MPEntry_t *attr)

4941 {

4942 I*

4943 * | nane and fname bel ow are for the hostname as well as the portnane
4944 * There is no limt on portname length so we assume MAXHOSTNAMELEN
4945 * as the limt

4946 */

4947 char | name[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];

73

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 74

4948 char f name[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];

4949 char i fname[LI FNAMSI Z + 1];

4950 char *i f nanep;

4952 if (! (Aflag || tp6->tcp6ConnEntrylnfo.ce_state >= TCPS_ESTABLI SHED))
4953 return (first); /* Nothing to print */

4955 if (first) {

4956 (void) printf(t c p_hdr_v6);

4957 (void) printf(Vf a ? tcp_hdr_v6_verbose : tcp_hdr_v6_nornal);
4958 1

4960 i fnamep = (tp6->tcp6Connlflndex != 0) ?

4961 if_i ndextonama(t p6- >t cp6Connl f I ndex, ifname) : NULL;

4962 if (ifnamep == NULL)

4963 ifnamep = "";

4965 if (Mflag) {

4966 (void) printf("%33s\n% 33s %u %8x %08x %bu %08x %O8x "
4967 "%u %u % 11s ¥%s\n",

4968 pr_ap6(& p6- >t cp6ConnLocal Addr ess,

4969 t p6- >t cp6ConnLocal Port, "tcp", |name, sizeof (lnane)),
4970 pr_ap6(& p6- >t cp6ConnRemAddr ess,

4971 t p6- >t cp6ConnRenPort, "tcp", fname, sizeof (fnane)),

4972 t p6- >t cp6ConnEnt ryl nf 0. ce_swnd,
4973 t p6- >t cp6ConnEnt ryl nf 0. ce_snxt,

4974 t p6- >t cp6ConnEnt ryl nf 0. ce_suna,
4975 t p6- >t cp6ConnEnt ryl nf 0. ce_rwnd,
4976 t p6- >t cp6ConnEnt ryl nf 0. ce_r nxt,

4977 t p6- >t cp6ConnEnt ryl nf 0. ce_r ack,

4978 t p6- >t cp6ConnEntryl nfo. ce_rto,

4979 t p6- >t cp6ConnEnt ryl nf 0. ce_nss,

4980 m t cp_st at e(t p6- >t cp6ConnEnt ryI nfo.ce_state, attr),
4981 i f nanmep) ;

4982 } else {

4983 int = (int)tp6->tcp6ConnEntryl nfo.ce_snxt -

4984 (int)tp6->tcp6ConnEntrylnfo.ce_suna - 1;

4985 int rq = (int)tp6->tcp6ConnEntrylnfo.ce_rnxt -

4986 (int)tp6->tcp6ConnEntryl nfo.ce_rack;

4988 (void) printf("%33s % 33s %u %6d %u %6d % 1ls ¥%s\n",
4989 pr_ap6(& p6- >t cp6ConnLocal Addr ess,

4990 t p6- >t cp6ConnLocal Port, "tcp", |name, sizeof (lnane)),
4991 pr_ap6(& p6- >t cp6ConnRemAddr ess,

4992 t p6- >t cp6ConnRenPort, "tcp", fname, sizeof (fnane)),
4993 t p6- >tcp6C0nnEntryI nfo. ce_swnd,

4994 (sq >=0) ? sq: O,

4995 t p6- >t cp6ConnEnt ryl nf 0. ce_rwnd,

4996 (rqg >=0) ?rq: O

4997 mtcp_state(tp6->tcp6ConnEntrylnfo.ce_state, attr),
4998 i f namep) ;

4999 }

5001 print_transport_| abel (attr);

5003 return (B_FALSE);

5004 }

5006 /* ------coiiiio oo UDP_REPORT---------commmam oo */

5008 static boolean_t udp_report_itemv4(const m b2_udpEntry_t *ude,
5009 bool ean_t first, const mb2_transport MPEntry_t *attr);

5010 static boolean_t udp_report_itemv6(const m b2_udp6Entry_t *ude6,
5011 bool ean_t first, const mi b2_transport MPEntry_t *attr);

5013 static const char udp_hdr_v4[] =

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 75

5014 "
5015 "

5017
5018

5019 "
5020 "

5021

5023
5024

static cons

State

static void
udp_report (

5025 {

5026
5027
5028
5029
5030
5031
5032
5033

5035
5036

5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048

5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065

5067
5068
5069
5070

5072
5073
5074
5075
5076
5077
5078
5079

int
boo
boo
mb
mb
m b
m b
mb

if

* %k ok

*/

v4_
V6_

vda
v6a
/*

for

Local Address

Local Address

Renot e Addr ess State\n"

t char udp_hdr_v6[] =
1f\n"

const mb_itemt *item

jtemp = 0;
| ean_t print_hdr_once_v4 = B_TRUE;
| ean_t print_hdr_once_v6 = B_TRUE;
2_udpEntry_t *ude;
2_udp6Entry_t *ude6;

2_transport MLPEntry_t **v4_attrs, **v6_attrs;
2"transport MLPEntry_t **vd4a, **v6a;
2_transport MLPEntry_t *aptr;

(!'protocol _sel ect ed(| PPROTO_UDP))
return;

Preparation pass: the kernel returns separate entries for UDP
connection table entries and Miultilevel Port attributes. W |oop
through the attributes first and set up an array for each address
famly.

attrs = fam|y_sel ected(AF_I NET) && RSECfl ag ?
gather _attrs(item M B2_UDP, M B2_UDP_ENTRY, udpEntrySize) : NULL;
attrs = family_sel ect ed(AF_ INET6) && RSECf | ag ?

gather_attrs(item M B2_UDP6, M B2_UDP6_ENTRY,
NULL;

udp6Ent rySi ze)

v4_attrs;

v6_attrs;

"for’ loop 1: */

(; item item=item>next_item {
if (Xflag) {

(voi d) printf("\n-—— Entry %l ---\n", ++tenp);
(void) printf("Goup = %, mb_id = %, "
"l ength = %l, vaI p = Ox%\n",
item>group, item>mb_id,
item>length, item>valp);

}
1f (!'((item>group == M B2_UDP &&
item>mibid == M B2_UDP_ENTRY) ||
(item>group == M B2_UDP6 &%
|tem>mb|d--MBZ UDP6_ENTRY)))
continue; /* *for’ loop 1 */

if (item>group == M B2_UDP && Ifam |ly_sel ect ed(AF_I NET))
continue; /* for’ loop 1 */

else if (item>group == M B2_UDP6 && !fam|y_sel ect ed(AF_I NET6))
continue; /* "for’ loop 1 */

/* XXX. XXX. XXX. XXX, pppp SSS... */
if (item>group == M B2_UDP)
for (ude = (m b2 _udpEntry_ t *)item >val p;
(char *)ude < (char *)item>valp + item >l ength;
/* LINTED: (note 1) */
ude = (m b2_udpEntry_t *)((char *)ude +
udpEntrySi ze)) {

aptr = vd4a == NULL ? NULL : *vda++

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095

5097
5098
5099
5100
5101

5103
5104
5105

}

print_hdr_once_v4 = udp_report_item v4(ude,
print_hdr_once_v4, aptr);

} else

(ude6 = (m b2_udp6Entry_t *)item >val p;

(char *)ude6 < (char *)item>valp + item >l ength;

/* LINTED: (note 1) */

ude6 = (m b2_udp6Entry_t *)((char *)ude6 +

udp6Ent rySi ze)) {
aptr = v6a == NULL ? NULL : *v6a++;
print_hdr_once_v6 = udp_report_itemv6(ude6,

) print_hdr_once_v6, aptr);
} /* "for’ loop 1 ends */

(void) fflush(stdout);

if (v4_attrs !'= NULL)
free(v4_attrs);

if (v6_attrs !'= NULL)
free(vé_attrs);

static bool ean_t

udp_report _itemv4(const mb2_udpEntry_t *ude,
const m b2_transport MPEntry t *attr)

5106 {

5107
5108

5110
5111

5113
5114
5115
5116
5117

5119
5120
5121
5122
5123
5124
5125
5126
5127

5129

5131
5132

5134
5135
5136

}

bool ean_t first,

char | name[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
/* hostname + portnanme */

if (!(Aflag || ude->udpEntrylnfo.ue_state >= M B2_UDP_connect ed))
return (first); /* Nothing to print */

if (first) {
(void) printf(va4conpat ?
(voi d) pr| ntf (udp_hdr_v4);
first = B_FALSE;

"\ nUDP\ n" "\ nUDP: | Pv4\n");

}

(void) printf("%20s "
pr_ap(ude- >udpLocaI Addr ess,
| nane, sizeof (Inane)));

(voi d) pri ntf("%20s %\n",
ude- >udpEntryl nf o. ue_state == M B2_UDP_connected ?
pr_ap(ude- >udpEnt ryl nf 0. ue_Renot eAddr ess,
ude- >udpEntryl nf o. ue_Renot ePort, "udp", |nane,

ude- >udpLocal Port, "udp",

si zeof (I nane))
m hdp_st at e(ude- >udpEntryl nfo. ue_state, attr));
print_transport_| abel (attr);

return (first);

static bool ean_t
udp_report_itemv6(const m b2 _udp6Entry t *ude6, boolean_t first,

5137 {

5138
5139
5140
5141

5143
5144

const m b2 _transport MPEntry t *attr)

char | name[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1] ;
/* hostnane + portnane */
char i fname[LI FNAVSI Z + 1] ;

const char *ifnanep;

if (!(Aflag || ude6->udp6Entrylnfo.ue_state >= M B2_UDP_connect ed))
return (first); /* Nothing to print */

new usr/src/cnd/ cnd-i net/ usr.

5146 if (first) {

5147 (void) printf("\nUDP: |Pv6\n");

5148 (void) printf(udp_hdr_v6);

5149 first = B_FALSE;

5150 }

5152 i fnamep = (ude6->udp6lflndex != 0) ?

5153 i f _i ndext oname(ude6- >udp6l f | ndex, ifname) NULL;
5155 (void) printf("%33s ",

5156 pr_ap6(&ude6- >udp6Local Addr ess,

5157 ude6- >udp6Local Port, "udp", |nane, sizeof (Inane)));
5158 (void) printf("%33s % 10s %\n",

5159 ude6- >udp6Ent ryl nf o. ue_state == M B2_UDP_connected ?
5160 pr _ap6(&ude6- >udp6Ent ryl nf o. ue Rermt eAddress,
5161 ude6- >udp6Ent ryl nf 0. ue_Renot ePort, "udp", Inama,
5162 "

5163 m udp st at e(ude6- >udp6Ent rylnfo.ue_state, attr),
5164 i fnamep == NULL ? i fnanmep) ;

5166 print_transport_| abel (attr);

5168 return (first);

5169 }

[A R B e SCTP_REPORT--------------------
5173 static const char sctp_hdr[] =

5174 "\ nSCTP: ";

5175 statl ¢ const char sctp_hdr_normal [] =

5176 Local Address Renot e Addr ess

5177 "Swind Send-Q Rwvind Recv-Q Strsl/O State\n"

578 P=ccccccccccocscscossscscsossacs cossososossossoosossssssososoos
[e B LT R T "

5181 static const char *

5182 ?ssct p_state(int state, const mi b2_transport MLPEntry t *attr)
5183

5184 static char sctpsbuf[50];

5185 const char *cp;

5187 switch (state) {

5188 case M B2_SCTP_cl osed:

5189 cp = "CLOSED';

5190 br eak;

5191 case M B2_SCTP_cooki eWi t :

5192 cp = "COOKI E_WAI T*;

5193 br eak;

5194 case M B2_SCTP_cooki eEchoed:

5195 cp = " COOKI E_ECHCED"

5196 br eak;

5197 case M B2_SCTP_est abl i shed:

5198 cp = "ESTABLI SHED';

5199 br eak;

5200 case M B2_SCTP_shut downPendi ng:

5201 cp = "SHUTDOMN_PENDI NG';

5202 br eak;

5203 case M B2_SCTP_shut downSent :

5204 cp = "SHUTDOAN_SENT";

5205 br eak;

5206 case M B2_SCTP_shut downRecei ved:

5207 cp = " SHUTDOM_RECEI VED';

5208 br eak;

5209 case M B2_SCTP_shut downAckSent :

5210 cp = " SHUTDOMN_ACK_SENT";

5211 br eak;

bi n/netstat/netstat.c

si zeof (Il nane))

7

new usr/src/cnd/ cnd-i net/ usr.

5212
5213
5214
5215
5216
5217
5218
5219
5220

5222
5223
5224
5225
5226
5227
5228
5229
5230
5231

5233
5234

5236
5237
5238
5239
5240
5241

5243
5244
5245
5246
5247

5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269

5271
5272
5273
5274
5275
5276

bi n/netstat/netstat.c

case M B2_SCTP_listen:
cp = "LISTEN';
br eak;
defaul t:
(voi d) snprintf(sct psbuf si zeof (sctpsbuf),
UNKNOWN STATE(%l) ", state);
cp = sctpsbuf;
br eak;
}
if (RSECflag && attr = NULL && attr->tnme_flags !'= 0) {
if (cp !'= sctpsbuf)
(void) strli cpy(sct psbuf, cp, sizeof (sctpsbuf));
cp = sctpsbuf
}
i1f (attr->tme_flags & M B2_TMEF_PRI VATE)
(void) strlcat(sctpsbuf, " P", sizeof (sctpsbuf));
if (attr->tme_flags & M B2_TMEF_SHARED)
(void) strlcat(sctpsbuf, " S", sizeof (sctpsbuf));
}
return (cp);
}
static const m b2_sctpConnRenoteEntry_t *

sct p_get next _ren(const mib_itemt **itenp,

const mi b2_sctpConnRendteEntry t *current, uint32_t associd)
{
const mb_itemt *item= *itenp;
const m b2_sct pConnRenpt eEntry_t *sre;
for (; item!= NULL; item— item>next_item current = NULL) {
if (|(|tem>group == M B2_SCTP &&
item>nmb_id == M B2_SCTP_CONN_REMOTE)) {
cont i nue;
}
if (current !'= NULL)
/* LINTED: (note 1) */
sre = (const m b2_sctpConnRenoteEntry_t *)
((const char *)current + sctpRenpteEntrySize);
} else {
sre = item >val p;
}
for (; (char *)sre < (char *)item>valp + item >l ength;
/* LINTED: (note 1) *
sre = (const m b2_sctpConnRenpteEntry_t *)
((co nst char *)sre + sct pRenot eEntrySi ze)) {
if (sre->sctpAssocld != associd)
conti nue;
}
*itenp = item
return (sre);
}
I8
*itenp = NULL,
return (NULL);
}
static const nib2_sctpConnLocal Entry_t *

sctp_get next | ocal (const mib_itemt **itenp,
const mi b2_sctpConnLocal Entry_t *current, uint32_t associd)
{
const mb_itemt *item= *itenp;
const m b2_sctpConnLocal Entry_t *sle;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 79 new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

5278 for (; item!= NULL; item= item>next_item current = NULL) { 5344 }
5279 if ('(|tem>group == M B2_SCTP &&
5280 item>mib_id == M B2_SCTP_CONN_LOCAL)) { 5346 static void
5281 conti nue; 5347 sctp_conn_report_itemconst mb_itemt *head, const m b2_sctpConnEntry_t *sp,
5282 } 5348 const m b2_transport MLPEntry_t *attr)
5349 {
5284 if (current !'= NULL) { 5350 char | name[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
5285 [LI NTED: (note 1) */ 5351 char f name[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1] ;
5286 sle = (const m b2_sctpConnLocal Entry_t *) 5352 const m b2_sct pConnRenpt eEntry_t *sre = NULL;
5287 ((const char *)current + sctplLocal EntrySize); 5353 const m b2_sctpConnLocal Entry_t *sle = NULL;
5288 } else { 5354 const mb_itemt *local = head;
5289 sle = item>val p; 5355 const mib_itemt *renote = head;
5290 } 5356 ui nt32_t id = sp->sct pAssocl d;
5291 for (; (char *)sle < (char *)item>valp + item >l ength; 5357 bool ean_t printfirst = B TRUE;
5292 [* LINTED: (note 1) */
5293 sle = (const m b2_sctpConnLocal Entry_t *) 5359 sct p_pr_addr (sp- >sct pAssocRenPri mAddr Type, fnane, sizeof (fnane),
5294 ((const char *)sle + sctplocal Ent rySl ze)) { 5360 &sp- >sct pAssocRenPri mAddr, sp->sctpAssocRenPort);
5295 if (sle->sctpAssocld != associd) { 5361 sct p_pr_addr (sp- >sct pAssocRenPri mAddr Type, | name, sizeof (|nane),
5296 conti nue; 5362 &sp- >sct pAssocLocPri mAddr, sp->sct pAssoclLocal Port);
5297
5298 *itenp = item 5364 (voi d) printf("%31ls % 31s %u %d Y%6u %d 93d/ % 3d ¥%s\n",
5299 return (sle); 5365 | name, fnane,
5300 } 5366 sp- >sct pOonnEntryI nfo. ce_swnd,
5301 } 5367 sp- >sct pConnEnt ryl nf 0. ce_sendq,
5302 *itenp = NULL; 5368 sp->sct pConnEnt ryl nf 0. ce_rwnd,
5303 return (NULL); 5369 sp- >sct pConnEnt ryl nf 0. ce_recvq,
5304 } 5370 sp- >sct pAssocl nStreans, sp->sct pAssocCQut St reans,
5371 nssct p_st at e(sp- >sct pAssocState, attr));
5306 static void
5307 sctp_pr_addr(int type, char *nane, int nanelen, const in6_addr_t *addr, 5373 print_transport_| abel (attr);
5308 int port)
5309 { 5375 if (IVflag) {
5310 i paddr _t vdaddr; 5376 return;
5311 in6_addr _t v6addr ; 5377 }
5313 I* 5379 /* Print renote addresses/|ocal addresses on following lines */
5314 * Address is either a v4 mapped or v6 addr. If 5380 while ((sre = sctp_getnext_renm & enmpte, sre, id)) !'= NULL) {
5315 * it's a v4 napped, convert to v4 before 5381 if (!IN6_ARE_ADDR EQUAL(&sre->sct pAssocRemAddr,
5316 * di spl ayi ng. 5382 &sp- >sct pAssocRenPri mAddr)) {
5317 */ 5383 if (printfirst == B TRUE) {
5318 switch (type) { 5384 (voi d) fputs("\t<Reerte ", stdout);
5319 case M B2_SCTP_ADDR VA4: 5385 printfirst = B_FALSE;
5320 I* v4 */ 5386 } else {
5321 v6addr = *addr; 5387 (void) fputs(", ", stdout);
5388
5323 | N6_VANMAPPED_TO | PADDR(& 6addr, v4addr); 5389 sct p_pr_addr (sre->sct pAssocRemAddr Type, fnane,
5324 if (port > 0) { 5390 si zeof (fnane), &sre->sctpAssocRemAddr, -1);
5325 (void) pr_ap(vdaddr, port, "sctp", nane, nanelen); 5391 if (sre->sctpAssocRemAddr Active == M B2_SCTP_ACTI VE) {
5326 } else { 5392 (void) fputs(fnanme, stdout);
5327 (voi d) pr_addr(v4addr, nanme, nanel en); 5393 } else {
5328 } 5394 (void) printf("(%)", fnanme);
5329 br eak; 5395 }
5396 }
5331 case M B2_SCTP_ADDR V6: 5397 }
5332 /* v6 */ 5398 if (printfirst == B_FALSE) {
5333 if (port >0) { 5399 (void) puts(">");
5334 (void) pr_ap6(addr, port, "sctp", name, nanelen); 5400 printfirst = B_TRUE;
5335 } else { 5401 }
5336 (void) pr_addr6(addr, nanme, nanelen); 5402 while ((sle = sctp_getnext_|local (& ocal, sle, id)) !'= NULL) {
5337 1 5403 if (I | N6_ARE_ADDR_EQUAL(&sl e- >sct pAssocLocaI Addr,
5338 br eak; 5404 &sp- >sct pAssocLocPri mAddr)) {
5405 if (printfirst ::BTRUE) {
5340 defaul t: 5406 (voi d) fputs(\t<Local: ", stdout);
5341 (v0| d) snprintf(name, nanel en, "<unknown addr type>"); 5407 printfirst = B_FALSE;
5342 br eak; 5408 } else {

5343 } 5409 (void) fputs(", ", stdout);

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 81

5410
5411
5412
5413
5414
5415
5416
5417
5418
5419

5421
5422

5424
5425
5426
5427
5428

5430
5431
5432
5433
5434
5435
5436
5437
5438

5440
5441
5442

5444
5445
5446

5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466

5468

5470
5471
5472
5473
5474
5475

}

}

sct p_pr_addr (sl e->sct pAssocLocal Addr Type, | nane,
si zeof (Il nane), &sle->sctpAssoclLocal Addr, -1);

(void) fputs(lname, stdout);

}

if (printfirst == BFALSE {
) (void) puts(">"

static void
sctp_report(const mb_itemt *item
5423 {

}

const mb_itemt *head;
const mi b2_sctpConnEntry_t *sp

bool ean_t first = B_TRUE;

m b2_transport MLPEntry t **attrs, **aptr;
m b2_transport MLPEntry_t *attr;

/
Preparation pass: the kernel returns separate entries for SCTP
connection table entries and Miultilevel Port attributes. W |oop
through the attributes first and set up an array for each address
famly.

EE
-~

attrs = RSECflag ?
gather_attrs(item M B2_SCTP, M B2_SCTP_CONN, sctpEntrySize)
NULL;

aptr
head
for (;

attrs;

item
item!= NULL; item= item>next_iten) {
if ('(|tem>group == M B2_SCTP &&
item>nmb_id == M B2_SCTP_CO\N))
conti nue;

for (sp = item>valp;
(char *)sp < (char *)item>valp + item >l ength;
[* LINTED: (note 1) */
sp = (m b2_sctpConnEntry_t *)((char *)sp + sctpEntrySize)) {
attr = aptr == NULL ? NULL : *aptr++;
if (Aflag ||
sp- >sct pAssocState >= M B2_SCTP_est abl i shed) {
if (first == B_TRUE) {
(void) puts(sctp_hdr);
(void) puts(sctp_hdr_normal);
first = B_FALSE;

sctp_conn_report_item head, sp, attr);

}

}
if (attrs !'= NULL)
free(attrs);

static const char dccp_hdr_v4[] =

"\ nDCCP:

| Pv4\ n";

static const char dccp_hdr_v4_conpat[] =
"\ nDCCP\ n";
static const char dccp_hdr_v4_verbose[] =

"Local / Renot e Address Swind Snext

Suna Rwi nd Rnext Rack "

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

)

5476 " Rto Mss State\n"

[A b e T T
5478 "----- oo aeooo---- \n";

5479 static const char dccp_hdr v4 normal [] =

5480 " Local Address Renot e Address Swi nd Send-Q Rwi nd Recv-Q "
5481 " State\n"

o S I e T
5483 "----------- \n";

5485 stati c const char dccp_hdr_v6[] =

5486 "\ nDCCP: | Pv6\n"

5487 static const char dccp_hdr_v6_verbose[] =

5488 "Local / Renpt e Address Sw nd Snext Suna Rwind Rnext
5489 " Rack Rt o Mss State If\n"

5060 Psccccooscccomsoscccascocccassoocs Sococ coscoccs Socoooss cooos Socooooc
5491 "M-------- cieo- ool ieieiiioios oo--- \n";

5492 static const char dccp_hdr_v6_normal [] =

5493 " Local Address Renot e Addr ess

5494 "Swi nd Send-Q Rwind Recv-Q State 1f\n"

e L "
o L \n"

5498 static bool ean_t dccp_report_itemv4(const m b2_dccpConnEntry_t *,
5499 bool ean_t, const mi b2 transportNLPEntry to*);

5500 static boolean_t dccp_report_itemv6(const m b2_dccp6ConnEntry_t *,
5501 bool ean_t, const m b2_transport MPEntry_t *);

5503 static void

5504 dccp_report(const mib_itemt *item

5505 {

5506 m b2_dccpConnEntry_t *dp;

5507 m b2_transport MLPEntry_t **v4_attrs;

5508 m b2_transport MLPEntry_t **y6_attrs;

5509 m b2_transport MLPEntry_t **y4a;

5510 m b2_transport MLPEntry_t **yv6a,;

5511 m b2_transport MLPEntry_t *aptr;

5512 bool ean_t print_hdr_once_v4 = B_TRUE;
5513 bool ean_t print_hdr_once_v6 = B _TRUE;
5514 int jtemp = 0;

5516 if (!protocol_sel ected(l PPROTO DCCP)) {

5517 return;

5518 }

5520 v4_attrs = fam ly_sel ect ed(AF_I NET) && RSECflag ?

5521 gather_attrs(item M B2_DCCP, M B2_DCCP_CONN, dccpEntrySize)
5522 NULL;

5523 v6_attrs = fam |ly_sel ected(AF_| NET6) && RSECf|ag ?

5524 gather_attrs(item M B2_DCCP6, M B2_DCCP6_CONN, dccp6EntrySize
5525 NULL;

5527 vda = v4_attrs;

5528 v6a = v6_attrs;

5529 for (; item!= NULL; item= item>next_item {

5530 if (Xflag) {

5531 (void) printf("\n--- Entry %l ---\n", ++jtenp);
5532 (void) printf("Goup = %, mb_id = %, "

5533 "length = %, valp = Ox%\n",

5534 item>group, item>mb_id,

5535 item>length, item>valp);

5536 }

5538 if (item>group == M B2_DCCP)

5539 for (dp = (m b2_dccpConnEntry_t *)item >val p;
5540 (char *)dp < (char *)item>valp + item >l ength;
5541 = (m b2_dccpConnEntry_t *)((char *)dp +

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 83

5542 dccpEntrySi ze)) {

5543 aptr = vd4a == NULL ? NULL : *vda++,
5544 print_hdr_once_v4 = dccp_report_itemv4(dp
5545 print_hdr_once_v4, aptr);

5546 }

5547 }

5548 }

5550 (void) fflush(stdout)

5552 if (v4_attrs !'= NULL)

5553 free(v4_attrs)

5554

5555 if (v6_attrs !'= NULL) {

5556 free(vé_attrs)

5557

5558 }

5560 static bool ean_t

5561 dccp_report _itemvé4(const mib2_dccpConnEntry t *dp, boolean_t first
5562 const mib2_transportMPEntry_t *attr)

5563 {

5564 char | name[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];

5565 char f name[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1] ;

5567 if (first) {

5568 (void) printf(v4conpat ? dccp_hdr_v4_conpat dccp_hdr_v4)
5569 (void) printf(Vflag ? dccp_hdr_v4_verbose : dccp_hdr_v4_normal);
5570 }

5572 (void) printf("%20s % 20s %u %d %u %6d %s\n"

5573 pr_ap(dp- >dccpConnLocal Addr ess

5574 dp- >dccpConnLocal Port, "dccp", |name, sizeof (lnane))
5575 pr_ap(dp->dccpConnRemAddr ess

5576 dp- >dccpConnRenPort, "dccp", fnane, sizeof (fnane))
5577 s

5578 0,

5579)

5580 0,

5581 0);

5583 print_transport_| abel (attr);

5585 return (B_FALSE);

5586 }

5588 static bool ean_t

5589 dccp_report _itemv6(const mi b2 _dccp6ConnEntry t *dp, boolean_t first
5590 const m b2_transport M.PEntry_t *attr)

5591 {

5592 return (B_FALSE);

5593 }

5595 #endif /* | codereview */

5596 static char *

5597 plural (int n)

5598 {

5599 return (n!=1 7?2 "s" : "")

5600 }

5602 static char *

5603 pluraly(int n)

5604 {

5605 return (n!=1 7?2 "ies" : "y");

5606 }

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 84

5608 static char *

5609 plural es(int n)

5610 {

5611 return (n!=17? "es" : "");
5612 }

5614 static char *
5615 pktscal e(n)

5616 int n;

5617 {

5618 static char buf[6]

5619 char t

5621 if (n< 1024) {

5622

5623 } else |f (n < 1024 * 1024) {

5624 t Tk

5625 n /= 1024

5626 } elseif (n < 1024 * 1024 * 1024) {

5627 t ='m;

5628 n /= 1024 * 1024;

5629 } else {

5630 t ='g

5631 n /= 1024 * 1024 * 1024

5632 }

5634 (void) snprintf(buf, sizeof (buf), "%u%", n, t);
5635 return (buf);

5636 }

5638 [* - nrt_report (netstat -m -------------------------- */

5640 static void
5641 nrt_report(mb_itemt *item

5642 {

5643 int jtemp =

5644 struct vifctl *VI p;

5645 vifi _t vifi;

5646 struct nfcctl *nfccp

5647 int nunvifs = 0;

5648 int nnfc = 0;

5649 char abuf[N%XF[STNANELEN + 1];

5651 if ('(fan]ly sel ect ed(AF_I NET)))

5652 return;

5654 /* *for’ loop 1: */

5655 for (; item item= item>next_item {

5656 if (Xflag) {

5657 (void) printf("\n--- Entry % ---\n", ++jtenp)
5658 (void) printf("Goup = %, mb_id = %, "

5659 "length = %, valp = Ox%\n",

5660 item>group, item>mb_id, item>length,
5661 i tem >val p)

5662 }

5663 1f (item>group != EXPER Ehmﬁ%%

5664 continue; /* "for’ loop 1 */

5666 switch (item>mb_id) {

5668 case EXPER _DVVMRP_VI F:

5669 i f(Xflag)

5670 (void) printf("% records for ipVifTable:\n
5671 item >l engt h/ si zeof (struct VIfC th));
5672 if (item>length/sizeof (struct vifctl) == 0) {

5673 (void) puts("\nVirtual Interface Table is "

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 85 new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 86
5674 "enpty"); 5740 nfccp->nfcc_parent);
5675 br eak;
5676 } 5742 for (vifi =0; vifi < MAXVIFS; ++vifi) {
5743 if (nfcep->nfee_ttls[vifi]) {
5678 (voi d) puts("\ nVirtual Interface Table\n" 5744 (void) printf(" % ()",
5679 Vif Threshold Rate_Linmt Local - Address” 5745 vifi,
5680 " Renot e- Addr ess Pkt _in Pkt _out"); 5746 nfccp->nfece_ttls[vifi]);
5747 }
5682 /* "for’ loop 2: */
5683 for (vip = (struct vifctl *)item>valp; 5749 }
5684 (char *)vip < (char *)item>valp + item >l ength; 5750 (void) putchar(’\n’);
5685 /* LI NTED: (note 1) */ 5751 }
5686 vip = (struct vifctl *)((char *)vip + 5752 (void) printf("\nTotal no. of entries in cache: %\ n",
5687 Vi f ctlSize)) { 5753 nnfc);
5688 if (vip->vifc_lcl_addr.s_addr == 0) 5754 br eak;
5689 continue; /* 'for’ Ioop 2 %/ 5755 }
5690 /* nunvifs = vip->vifc_vifi; */ 5756 } /* "for’ loop 1 ends */
5757 (void) putchar(’\n’);
5692 nunvi f s++; 5758 (void) fflush(stdout);
5693 (void) printf(" 9%u %3u " 5759 }
5694 "%lu % 15. 15s",
5695 vip->vifc_vifi, 5761 /*
5696 vi p->vifc_threshol d, 5762 * Get the stats for the cache named 'name’. |If prefix =0, then
5697 vip->vifc_rate_limt, 5763 * interpret the nane as a prefix, and sumup stats for all caches
5698 pr addr(w p->vifc_lcl_addr.s_addr, 5764 * naned ' nane*’ .
5699 abuf, sizeof (abuf))); 5765 */
5700 (voi d) pri ntf(" %15.15s 9%Bu 9%Bu\n", 5766 static void
5701 (vip->vifc_flags & VI FF_TUNNEL) ? 5767 kmem cache_stats(char *title, char *nane, int prefix, int64_t *total _bytes)
5702 pr_addr (vi p->vifc_rnt_addr.s_addr, 5768 {
5703 abuf, sizeof (abuf)) o 5769 int |en;
5704 vi p->vi fc_pkt _in, 5770 int alloc;
5705 vi p->vi f c_pkt _out); 5771 inté4_t total _alloc = O;
5706 } /* "for’ loop 2 ends */ 5772 int alloc_fail, total_alloc_fail = 0;
5773 int buf_size =0
5708 (void) printf("Nunvifs: %l\n", nunvifs); 5774 int buf_avail;
5709 break; 5775 int buf_total;
5776 int buf_max, total _buf_max = 0;
5711 case EXPER_DVMRP_MRT: 5777 int buf_inuse, total_buf_inuse = 0;
5712 if (Xflag) 5778 kstat _t *ksp;
5713 (void) printf("% records for ipMcTable:\n" 5779 char buf[256] ;
5714 item >l ength/ si zeof (struct vifctl));
5715 if (item>length/sizeof (struct vifctl) == 0) { 5781 len = prefix ? strlen(name) : 256;
5716 (void) puts("\nMilticast Forwarding Cache is "
5717 "enpty"); 5783 /* "for’ loop 1: */
5718) br eak; 5784 for (ksp = kc->kc_chain; ksp !'= NULL; ksp = ksp->ks_next) {
5719
5786 if (strcnp(ksp->ks_class, "knem cache") != 0)
5721 (voi d) puts("\nMil ticast Forwarding Cache\n" 5787 continue; /* "for’ loop 1 */
5722 Ori gi n- Subnet Mcast gr oup '
5723 "# Pkts In-Vif CQut-vifs/Forwttl"); 5789 /*
5790 * Hack alert: because of the way streanms nessages are
5725 for (nf = (struct nfcctl *)item>valp; 5791 * allocated, every constructed free dbl k has an associ at ed
5726 (c har *)nfccp < (char *)item>valp + item >l ength; 5792 * nblk. Fromthe allocator’s viewoint those nblks are
5727 /* LI NTED (note 1) */ 5793 * allocated (because they haven't been freed), but from
5728 nfccp (struct nfcctl *)((char *)nfccp + 5794 * our viewpoint they re actually free (because they're
5729 m‘cctl Si ze)) { 5795 * not currently in use). To account for this caching
5796 * effect we subtract the total constructed free dbl ks
5731 nnf c++; 5797 * fromthe total allocated nmbl ks to derive nblks in use.
5732 (void) printf(" 9% 30.15s", 5798 */
5733 pr_addr (nf ccp->nfcc_origin.s_addr, 5799 if (strcnp(name, "streanms_nbl k") == 0 &&
5734 abuf, sizeof (abuf))); 5800 strncnp(ksp->ks_nane, "streans_dbl k", 12) == 0) {
5735 (void) printf("% 15.15s %s 98U " 5801 (voi d) safe_kstat_read(kc, ksp, NULL),
5736 pr_net (nfccp->nfcc_ntastgrp.s addr 5802 total _buf_inuse -=
5737 nf ccp->nf cc_nctast grp. s_addr, 5803 kst at _named_val ue(ksp, "buf _constructed");
5738 abuf, sizeof (abuf)), 5804 continue; /* "for’ loop 1 */
5739 pkt scal e((int)nfccp- Snf cc_pkt_cnt), 5805 }

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

5807 if (strncnp(ksp->ks_nane, nane, len) != 0)

5808 continue; /* "for’ loop 1 */

5810 (void) safe_kstat_read(kc, ksp, NULL);

5812 al |l oc = kstat_naned_val ue(ksp, "alloc");

5813 all oc_fail = kstat_named_val ue(ksp, "alloc_fail");
5814 buf _si ze = kst at_naned_val ue(ksp, "buf_size");
5815 buf _avai | = kstat _naned_val ue(ksp, "buf_avail");
5816 buf _t ot al = kstat _naned_val ue(ksp, "buf_total");
5817 buf _max = kstat _naned_val ue(ksp, "buf_nmax");
5818 buf _i nuse = buf _total - buf_avail;

5820 if (Vflag && prefix) {

5821 (voi d) snprintf(buf, si zeof (buf), "us%", title,
5822 ksp- >ks_name + ien

5823 (void) printf(" % 185 9%u %Ou %dlu %dlu\ n",
5824 buf, buf_inuse, buf_max, alloc, alloc_fail);
5825 }

5827 total _all oc += al | oc;

5828 total _alloc_fail += alloc_fail;

5829 total _buf _nmax += buf _max;

5830 total _buf _i nuse += buf _i nuse;

5831 *total _bytes += (int64_t)buf_inuse * buf_size;
5832 } /* "for’ loop 1 ends */

5834 if (buf_size == 0) {

5835 (voi d) printf("%22s [couldn't find statistics for %]\n
5836 title, nane);

5837 return;

5838 }

5840 if (Vflag & prefix)

5841 (void) snprintf(buf, sizeof (buf), "% _total", title);
5842 el se

5843 (void) snprintf(buf, sizeof (buf), "%", title);

5845 (void) printf("%22s %d 9%d %1l1d %1id\n", buf,

5846 total _buf_inuse, total _buf_max, total al loc, total _alloc_fail);
5847 }

5849 static void

5850 m report(void)

5851 {

5852 int64_t total _bytes = 0;

5854 (void) puts("streans allocation:");

5855 (void) printf("983s\n", "cunulative allocation");

5856 (void) printf("9%63s\n",

5857 "current maxi mum total failures");

5859 kmam_cache_st ats("strean‘s",

5860 "stream head_cache", 0, &total _bytes);

5861 kmem cache_st at s(" queues "queue_cache", 0, &total_bytes);

5862 kmem cache_st at s(" nbl k" " st reans_nbl k", 0, &otal _bytes);

5863 kmem_cache_st at s(" dbl k" "streanms_dbl k", 1, &t otal _bytes);

5864 kmem cache_stats("li nkbl k", "linkinfo_cache", 0, &total byt es);
5865 kmem cache_stats("syncq", "syncq_cache", 0, &total _bytes);

5866 kmem cache_st at s("gband", "gband_cache", 0, &total _bytes);

5868 (void) printf("\n%ld Kbytes allocated for streans data\n",
5869 total _bytes / 1024);

5871 (void) putchar(’\n’);

87

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

5872
5873

5875

5877
5878
5879
5880
5881
5882

(void) fflush(stdout);

/*
* Print an | Pv4 address.
* fromthe returned nane.
*/

static char *
pr_addr (ui nt _t addr,

Renove the matching part of the donmin nane

char *dst, uint_t dstlen)

5883 {

5884
5885
5886
5887
5888

5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918

5920
5921
5922
5923
5924

char *cp;

struct hostent *hp = NULL;

static char domai n[MAXHOSTNAMELEN + 1];
static bool ean_t first = B_TRUE;

int error_num

if (first) {
first = B_FALSE;
if (syS| nfo(SI HOSTNAME, donwi n,
(cp = strchr(domain, '."))) {
(void) strncpy(domain, cp + 1,

MAXHOSTNAMVELEN) !'= -1 &&

si zeof (domain));
} else
donmi n[0] = O;

}
cp = NULL
if ('Nflag) {
hp = geti pnodebyaddr ((char *)&addr,
_ &error_num;
if (hp) {

if ((cp = strchr(hp->h_nane, ’)) I'= NULL &&

strcasecnp(cp + 1, “donai n) == 0)
p =
cp = hp->h_| nama

sizeof (uint_t),

}

if (cp !'= NULL) {
(voi d) strncpy(dst cp, dstlen);
dst[dstlen - 1] O,
} else {
(void) inet_ntop(AF_I NET, (char *)&addr, dst, dstlen);

}

if (hp != NULL)

freehost ent (hp);
return (dst);

}

/*

* Print a non-zero |Pv4 address. Print " --" if the address is zero.
*/

static char *

pr_addrnz(i paddr_t addr, char *dst, uint_t dstlen)

5925 {

5926
5927
5928
5929
5930
5931

5933
5934
5935
5936
5937

if (addr == | NADDR {
(void) stricpy(dst, " --", dstlen);
return (dst);

}
return (pr_addr(addr, dst, dstlen));
}
/*
* Print an | Pv6 address.
* fromthe returned nane.
*
/

Renove the matching part of the donmmin nane

static char *

AF_| NET

88

new usr/src/cnd/ cnd-i net/ usr.

bi n/netstat/netstat.c 89

5938 pr_addr6(const struct in6_addr *addr, char *dst, uint_t dstlen)
5939 {

5940 char *cp;

5941 struct hostent *hp = NULL;

5942 static char domai n[MAXHOSTNAMELEN + 1];

5943 static bool ean_t first = B_TRUE;

5944 int error_num

5946 if (flrst) {

5947 first = B_FALSE;

5948 if (sysinfo(SI HOSTNAME, dommin, NMAXHOSTNAMELEN) != -1 &&
5949 (cp = strchr(donain, .’ {

5950 (void) strncpy(domain, cp + 1, sizeof (donmin));
5951 } else

5952 domai n[0] = O;

5953 }

5954 cp = NULL;

5955 if (INflag) {

5956 hp = geti pnodebyaddr ((char *)addr,

5957 si zeof (struct in6_addr), AF_INET6, &error_nunj;
5958 if (hp) {

5959 if ((cp = strchr(hp->h_name, '.")) != NULL &&
5960 strcasecnp(cp + 1, donmi n) == 0)

5961 *cp = 0;

5962 cp = hp->h_nane;

5963 }

5964 }

5965 if (cp !'= NULL) {

5966 (voi d) strncpy(dst cp, dstlen);

5967 dst[dstlen - 1]

5968 } else {

5969 (void) inet_ntop(AF_INET6, (void *)addr, dst, dstlen);
5970 }

5971 if (hp !'= NULL)

5972 freehost ent (hp) ;

5973 return (dst);

5974 }

5976 /* For |Pv4 nmasks */

5977 static char *

5978 pr_mask(uint _t addr, char *dst, uint_t dstlen)

5979 {

5980 uint8_t *ip_addr = (uint8_t *)&addr;

5982 (void) snprintf(dst, dstlen, "%l %l. % %",

5983 ip_addr[0], ip_ addr[l] ip_addr[2], ip_addr[3]);

5984 return (dst);

5985 }

5987 /*

5988 * For ipv6 masks format is : dest/mask

5989 * Does not print /128 to save space in printout. Hflag carries this notion.
5990 */

5991 static char *

5992 pr_prefix6(const struct in6_addr *addr, uint_t prefixlen, char *dst,
5993 uint_t dstlen)

5994 {

5995 char *cp;

5997 if (IN6_IS ADDR_UNSPECI FI ED(addr) && prefixlen == 0) {

5998 “(void) st rncpy(dst "defaul t", dstlen);

5999 dst[dstlen - 1] = O,

6000 return (dst);

6001 }

6003 (void) pr_addr6(addr, dst, dstlen);

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

6004 if (prefixlen !'= IPV6_ABITS) {

6005 /* How much roomis left? */

6006 cp = strchr(dst, '\0");

6007 if (dst + dstlen > cp) {

6008 dstlen -= (cp - dst);

6009 (void) snpri ntf(cp, dstlen, "/%l",
6010 }

6011 }

6012 return (dst);

6013 }

6015 /* Print |IPv4 address and port */

6016 static char *

6017 pr_ap(uint_t addr, uint_t port, char *proto,

6018 char *dst, uint_t dstlen)

6019 {

6020 char *cp;

6022 if (addr == | NADDR {

6023 (voi d) strncpy(dst " *" dstlen);
6024 dst[dstlen - 1] O,

6025 } else {

6026 (void) pr_addr(addr, dst, dstlen);
6027

6028 /* How much roomis left? */

6029 cp = strchr(dst, '\0");

6030 if (dst +dst|en>cp+l) {

6031 *cp+t+ =

6032 dstlen -= (cp - dst);

6033 dstlen--;

6034 (voi d) portname(port, proto, cp, dstlen);
6035 1

6036 return (dst);

6037 }

6039 /* Print |IPv6 address and port */

6040 static char *

6041 pr_ap6(const in6_addr_t *addr, uint_t port, char *proto,
6042 char *dst, uint_t dstlen)

6043 {

6044 char *cp;

6046 if (1N6_I S _ADDR_UNSPECI FI ED(addr)) {

6047 (voi d) strncpy(dst " , dstlen);
6048 dst[dstlen - 1] = O,

6049 } else {

6050 (void) pr_addr6(addr, dst, dstlen);
6051

6052 /* How much roomis left? */

6053 cp = strchr(dst, '\0");

6054 if (dst +dst|en+l>cp) {

6055 *cp+t =

6056 dstlen -= (cp - dst);

6057 dstlen--;

6058 (void) portname(port, proto, cp, dstlen);
6059 }

6060 return (dst);

6061 }

6063 /*

6064 * Return the nane of the network whose address is given.
6065 * assumed to be that of a net or subnet, not a host.
6066 */

6067 static char *

6068 pr_net(uint_t addr, uint_t mask, char *dst, uint_t dstlen)

6069 {

prefixlen);

The address

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

6070
6071
6072
6073
6074
6075

6077
6078
6079
6080
6081

6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130 }

6132 /*

char *cp = NULL;

struct netent *np = NULL;

struct hostent *hp = NULL;

uint_t net ;

int subnetshift;

int error_num

if (addr == | NADDR_ANY && mask == | NADDR ANY) {
(v0| d) st rncpy(dst "default", dstlen);
dst[dstlen - O,
return (dst);

}

if (INflag & addr) {

if (mask == 0) {
if (INCLASSA(addr)) {
k = (uint t)INCLASSA NET;

subnetshlft =

} elseif (INCLASSB(addr)) {
mask = (uint t)IN CLASSB_NET;
subnetshift = 8;

} else {
mask = (uint_t)I N CLASSC NET;
subnetshift = 4;

*

* If there are nore bits than the standard mask

* woul d suggest, subnets nust be in use. Guess at

* the subnet mask, assuming reasonable w dth subnet
* fields.

whil e (addr & ~mask)
/* conpiler doesn’t sign extend! */
mask = (mask | ((int)mask >> subnetshift));

net = addr & mmask;
while ((mask & 1) == 0)

mask >>= 1, net >>= 1;
np = getnetbyaddr(net, AF_INET);
if (np & np->n_net == net)

cp = np->n_nane;

el se {
/*
* Look for subnets in hosts nmap.
hp = geti pnodebyaddr ((char *)&addr, sizeof (uint_t),
AF_I NET, &error_num;
if (hp)
cp = hp->h_nane;
}

}
if (cp !'= NULL) {
(voi d) strncpy(dst cp, dstlen);
dst[dstlen - 1] = 0;
} else {
(void) inet_ntop(AF_I NET, (char *)&addr, dst, dstlen);

if (hp !'= NULL)
freehostent (hp);
return (dst);

6133 * Return the nane of the network whose address is given.
6134 * The address is assuned to be a host address.

6135 */

91

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 92

6136 static char *
6137 pr_netaddr(uint_t addr, uint_t mask, char *dst, uint_t dstlen)

6138 {
6139
6140
6141
6142
6143
6144
6145
6146
6147

6149
6150
6151
6152
6153
6154
6155

6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186

6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201

char *cp = NULL;
struct netent *np = NULL;
struct hostent *hp = NULL;
uint_t net;
ui nt _t netshifted;
int subnetshift;
struct in_addr in;
int error_num
ui nt _t nbo_addr = addr; /* network byte order */
addr = ntohl (addr);
mask = ntohl (mask) ;
if (addr == | NADDR_ANY && mask == | NADDR_ANY) {
(v0| d) strncpy(dst "default", dstlen);
dst[dstlen - O,
return (dst);
}
/* Figure out network portion of address (with host portion = 0) */
if (addr) {
[* Try f|gur|ng out mask if unknown (all 0s). */
if (mask ==
if (I N CLASSA(addr)) {
mask = (uint t)IN_CLASSA_NEl’;
subnetshift = 8;
} else if (IN CLASSB(addr)) {
(uint_t)I N CLASSB_NET;
subnetshlft = &
} else {
mask = (uint t)IN CLASSC_NET;
subnetshift =
}
/*
* |f there are nore bits than the standard nask
* woul d suggest, subnets nust be in use. Guess at
* the subnet nask, assuming reasonable w dth subnet
* fields.
*
while (addr & ~mask)
/* conpiler doesn’'t sign extend! */
mask = (mask | ((int)mask >> subnetshift));
}
net = netshifted = addr & mask;
while ((nmask & 1) == 0)
mask >>= 1, netshifted >>= 1;
el se

net = netshifted =

/* Try looking up name unless -n was specified. */
{

if (!Nflag)
np = get net byaddr (netshifted, AF_INET);
if (np & np->n_net == netshifted)

cp = np->n_nane;
el se {
/*

* Look for subnets in hosts map.
*/

hp = geti pnodebyaddr ((char *)&nbo_addr, sizeof (uint_t),
AF_I NET, &error_num;
if (hp)
cp = hp->h_nane;

new usr/src/cnd/ cnd-i net/ usr.

bi n/netstat/netstat.c

6203 if (cp !'= NULL) {

6204 (void) strncpy(dst, cp, dstlen);
6205 dst[dstlen - 1] = O,
6206 if (hp !'= NULL)

6207 freehostent (hp);
6208 return (dst);

6209 }

6210 /*

6211 * No name found for net: fallthru and return in decimal
6212 * dot notation.

6213 */

6214 }

6216 in.s_addr = htonl (net);

6217 (void) inet_ntop(AF_ INEI' (char *)& n, dst, dstlen);
6218 if (hp !'= NULL

6219 freehost ent (hp) ;

6220 return (dst);

6221 }

6223 [*

6224 * Return the filter node as a string:

6225 * 1 => "| NCLUDE"

6226 * 2 => "EXCLUDE"

6227 * ot herw se "<unknown>"

6228 */

6229 static char *

6230 frodestr(uint_t fnode)

6231 {

6232 switch (frode) {

6233 case 1:

6234 return ("1 NCLUDE");

6235 case 2:

6236 return ("EXCLUDE");

6237 defaul t:

6238 return ("<unknown>");

6239 }

6240 }

6242 #define MAX_STRI NG _SI ZE 256

6244 static const char *

6245 pr_secattr(const sec_attr_list_t *attrs)

6246 {

6247 int i;

6248 char buf[MAX_STRI NG SI ZE + 1], *cp;

6249 static char *sbuf;

6250 static size_t sbuf_len;

6251 struct rtsa_s rtsa;

6252 const sec_attr_list_t *aptr;

6254 if (IRSECflag || attrs == NULL)

6255 return ("");

6257 for (aptr = attrs, i = 1; aptr != NULL; aptr = aptr->sal _next)
6258 i += MAX_STRI NG Sl ZE;

6259 if (i > sbuf_len) {

6260 cp = realloc(sbuf, i);

6261 if (cp == NULL)

6262 perror("realloc security attribute buffer");
6263 return ("");

6264

6265 sbuf _len =i;

6266 sbuf = cp;

6267 }

93

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

6269 cp = sbuf;

6270 while (attrs !'= NULL) {

6271 const mb2_ipAttributeEntry_t *iae = attrs->sal _
6273 /* note: effectively hard-coded in rtsa_keyword */
6274 rtsa.rtsa_mask = RTSA CIPSO | RTSA SLRANGE | RTSA DO ;
6275 rtsa.rtsa_sl range = i ae- >i ae_sl range;

6276 rtsa.rtsa_doi = iae->iae_doi;

6278 (void) snprintf(cp, MAX_STRI NG SI ZE,

6279 "<UYs>% ", rtsa_ to _str(&tsa, buf si zeof (buf)),
6280 attrs->sal _next == NULL ? "" ");

6281 cp += strlen(cp);

6282 attrs = attrs->sa| _next;

6283 }

6284 *cp = '\0";

6286 return (shuf);

6287 }

6289 /*

6290 * Pretty print a port nunber. If the Nflag was

6291 * specified, use nunbers instead of nanes.

6292 */

6293 static char *

6294 portnane(uint_t port, char *proto, char *dst, uint_t dstlen)
6295 {

6296 struct servent *sp = NULL;

6298 if ('Nflag&&port)

6299 get servbyport (htons(port), proto);

6300 if (sp || port =0

6301 (void) snprintf(dst, dstlen, "% *s", MAXHOSTNAMELEN,
6302 Sp ? sp->s_nanme : "*");

6303 el se

6304 (voi d) snprlntf(dst dstlen, "9%d", port);

6305 dst[dstlen - 1] 0;

6306 return (dst);

6307 }

6309 /*PRI NTFLI KE2*/

6310 void

6311 fail (int do_perror, char *nessage, ...)

6312 {

6313 va_list args;

6315 va_start (args, nessage);

6316 (void) fputs("netstat: ", stderr);

6317 (void) vfprintf(stderr, nmessage, args);

6318 va_end(args);

6319 if (do_perror)

6320 (void) fprintf(stderr, ": %", strerror(errno));
6321 (void) fputc('\n', stderr);

6322 exit(2);

6323 }

6325 /*

6326 * Return value of named statistic for given kstat_nanmed kstat;
6327 * return OLL if naned statistic is not in list (use "lIl" as a
6328 * type qualifier when printing 64-bit int’s with printf())
6329 */

6330 static uint64_t

6331 kstat_naned_val ue(kstat _t *ksp, char *namne)

6332 {

6333 kstat _naned_t *knp;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c 95

6334 ui nt64_t val ue;

6336 if (ksp == NULL)

6337 return (OLL)

6339 knp = kstat_data_| ookup(ksp, nane);

6340 if (knp == NULL)

6341 return (OLL)

6343 switch (knp->data type) {

6344 case KSTAT_DATA | NT32

6345 case KSTAT DATA | UINT32

6346 val ue = (uint64_t)(knp->val ue. ui 32);
6347 br eak;

6348 case KSTAT_DATA_ | NT64

6349 case KSTAT_DATA Ul NT64

6350 val ue = knp->val ue. ui 64;

6351 br eak;

6352 defaul t:

6353 val ue = OLL;

6354 br eak;

6355 }

6357 return (val ue);

6358 }

6360 kid_t

6361 safe_kstat_read(kstat_ctl _t *kc, kstat_t *ksp, void *data)
6362

6363 kid_t kstat_chain_id = kstat_read(kc, ksp, data);
6365 if (kstat chain_id == -1)

6366 fail (1, "kstat _read(%, '%’') failed", (void *)kc,
6367 ksp->ks_nane) ;

6368 return (kstat_chain_id);

6369 }

6371 /*

6372 * Parse a list of IRE flag characters into a bit field.
6373 */

6374 static uint_t
6375 flag_bits(const char *arg)

6376 {

6377 const char *cp;

6378 uint_t val;

6380 if (*rarg == '\0")

6381 fatal(, "missing flag list\n");

6383 val = 0;

6384 Wmle(arg'-’\O’){

6385 if ((cp = strchr(flag list, *arg)) == NULL)
6386 fatal (1, "%: |Ilegal flag\n", *arg);
6387 val |=1 << (cp - flag_list);

6388 ar g++;

6389 }

6390 return (val);

6391 }

6393 /*

6394 * Handle -f argunent. Validate input format, sort by keyword, and
6395 * save off digested results

6396 */

6397 static void

6398 process_filter(char *arg)

6399 {

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

6400
6401
6402
6403
6404
6405
6406
6407
6408

6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421

6423
6424
6425

6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444

6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463

6465

int idx;

int klen = 0;
char *cp, *cp2;
int val;

filter_t *newf;
struct hostent *hp;
int error_num
uint8_t *ucp;

int maxv;

/* Look up the keyword first */
if (strchr(arg, "17) == NULL) {
dx = FK_AF;

} else {

for (idx = 0; idx < NFI LTERKEYS; |dx++) {
klen = strlen(filter keys[| x])
if (strncnp(fllter keys[ldx] arg, klen) == 0 &&
arg[klen] == ")
br eak;

}
1f (idx >= NFI LTERKEYS)
fatal (1, "%: unknown filter keyword\n", arg);

/* Advance past keyword and separator. */
arg += klen + 1;

}

if ((newf = malloc(s zeof (*newf))) == NULL) {
perror("filter");
exit(1);

}
switch (idx) {
case FK_AF:
if (strcnp(arg, "inet") == 0) {
newf - >u. f famly = AF_I NET;
} else if (strcnp(arg, net6") == 0) {
newf - >u. f fanlly = AF_I NET6
} else |f (strcmp(arg, "unix") == 0) {
newf->u.f_famly = AF_UN X;
} else {
newf->u.f_famly = strtol(arg, &cp, 0);
if (arg ==cp || *cp !="10")

fatal (1, "9%s: unknown address family.\n",

}
br eak;

case FK_QUTIF:
Tif (strcnp(arg, "none") == 0) {
newf - >u. f _i fnane = NULL
break

}
if (strcnp(arg, any) == 0) {
newf ->u. f_ifname = "";

break
val = strtol (arg, &cp, 0);
if (val <=0 || arg == cp |] ecp[0] !="\0")
if ((val = if_nanetoindex(arg)) == 0) {
perror(arg);
exit(1);
}
newf->u.f_ifnane = arg;
br eak;
case FK_DST:

arg);

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520

6522
6523
6524
6525
6526
6527
6528
6529
6530
6531

VANMASK_TO V6(| P_HOST_MASK, newf ->u. a.f_mask)
if (strcnp(arg, "any") == 0)
/* Special semantics; any address *but* zero */
newf - >u. a. f _address = NULL;
(voi d) nenset (&ew ->u. a.f_mask, O,
si zeof (newf->u.a.f_nask));
br eak;

}
if (strcnp(arg, "none") == 0) {
newf - >u. a. f _address = NULL;
break

}
if ((cp = strrchr(arg, /7)) = NULL)
*cp++ \ 0’
hp = geti pnodebyname(arg, AF_INET6, Al _VANMAPPED| Al _ALL,
&error_num;
if (hp == NULL)

97

fatal (1, "%: invalid or unknown host address\n", arg);

new - >u. a. f _address = hp;
if (cp == NULL) {
VAMASK_TO V6(| P_HOST_MASK, newf ->u. a.f_nask);
} else {
val = strtol (cp, &cp2, 0);
if (cp!=cp2 & cp2[0] == "\0") {
/*

* |f decode as "/n" works, then translate
* into a nask.
*

/
if (hp->h_addr_list[0] != NULL &&
/* LINTED: (note 1) *
I N6_I S_ADDR V4NAPPED((| n6_addr _t *)
hp->h_; addr _list[0])) {
mexv = | P_ABITS;
} else {
maxv = | PV6_ABI TS;

}
if (val <0 |] val >= maxv)
fatal (1, "%: not in range O to %\ n",
val, maxv - 1);
if (maxv == | P_ABITS)
val += IPV6_ABITS - | P_ABITS;
ucp = newf->u. a.f_mask. s6_addr;
while (val >= 8)
*ucp++ = Oxff, val -=
*ucp++ = (Oxff << (8 - val)) & Oxff
while (ucp < newf ->u.a.f_nask.s6 addr +
sizeof (newf->u.a.f_nmsk.s6_addr))
*ucp++ = 0
/* OCtherwise, try as nuneric address */
} else if (inet_pton(AF_INET6,
cp, &newf ->u.a.f_mask) <= 0) {

fatal (1, "%: illegal mask format\n", cp);

}

}

br eak;

case FK_FLAGS:

if (*arg == "+") {
newf->u.f.f_flagset = flag_bits(arg + 1);
newf->u.f.f_flagclear = O;

} elseif (*arg =="-")
newf->u.f.f_flagset = O;
newf->u.f.f_flagclear = flag_bits(arg + 1);

} else {

newf->u.f.f_flagset = flag_bits(arg);
newf->u. f.f_flagclear = ~newf->u.f.f_flagset;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

6532
6533

6535
6536
6537
6538
6539
6540 }

br eak;

defaul t:
assert (0);

newf - >f _next = filters[idx];
filters[idx] = new;

6542 /* Determine if user wants this address famly printed. */
6543 static bool ean_t
6544 fam |ly_selected(int famly)

6545 {
6546

6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558 }
/

6560
6561
6562
6563

6565
6566
6567
6568 {
6569
6570

6572
6573 }

6575 /*

*
*
*
*
6564 *
*/
st al
ifi

const filter_t *fp;

if (vdconpat && fam |y == AF_| NET6)
return (B_FALSE);
if ((fp =

filters[FK_ AF]) == NULL)
while (fp !'= NULL)
if(

return (B_TRUE);
{
fp->u.f_famly == famly)
return (B_TRUE);
fp = fp->f_next;

return (B_FALSE);

Convert the interface index to a string using the buffer ‘ifnane’, which
nmust be at |east LIFNAVSIZ bytes.

We first try to map it to nane. |f that
(e.g., because we're inside a zone and it does not have access to

interface for the index in question), just return "if#<num".

ic char *
dex2str(uint_t ifindex, char *ifnane)

if (if_indextoname(ifindex, ifname) == NULL

(void) snprintf(ifname, LIFNAMSIZ, "if#%", ifindex);

return (ifname);

6576 * print the usage line
*/

6577

6578 static void
6579 usage(char *cndnane)

6580 {
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597 }

(voi d) fprintf(stderr, "usage: % [-anv] [-f address_famly]

"[-T dlu]\n", cmdnane);

(v0|d) fprlntf(stderr " % [-n] [-f address_family] "
'"[-P protocol] [- leu] [-9 | -p| -s [interval [count]]]\n",
crmdnane) ;

(void) fprintf(stderr, " % -m[-v] [-T du] "
"[interval [count]]\n cnmdnane) ;

(v0|d) fprintf(stderr, " % -1 [-] interface] [-an]
"[-f address famly] [-T dlu] [interval [count]]\n",

(v0|d) fprintf(stderr, " 9% -r [- anv] "
'"[-f address famly|f||ter] [T dlu]l\n", cndnane);

(v0|d) fprintf(stderr, -M[-ns] [f address _fam ly]

-T dlu]\n", crrdnarre);

(void) fprintf(stderr, " % -D[-1 interface]
"[-f address_family] [-T dju]\n", cndnane);

exi t (EXI T_FAI LURE)

cnmdnane) ;

new usr/src/cnd/ cnd-i net/usr. bin/netstat/netstat.c

6599 /*

6600 * fatal: print error message to stderr and
6601 * call exit(errcode)

6602 */

6603 /* PRI NTFLI KE2*/

6604 static void

6605 fatal (int errcode, char *format, ...)

6606 {

6607 va_list argp;

6609 if (format == NULL)

6610 return;

6612 va_start(argp, format);

6613 (void) viprintf(stderr, format, argp);
6614 va_end(argp);

6616 exit(errcode);

6617 }

99

new usr/src/cnd/ cnd-i net/ usr. sbin/ipadnipadmc 1 new usr/src/cnd/ cnd-i net/ usr. sbin/ipadnipadmc
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
57122 Sat Aug 18 10:36:56 2012 874 opterr = 0;
new usr/src/cnd/ crnd-i net/usr. sbin/ipadnlipadm c 875 bzero(&state, sizeof (state));
dccp: properties 876 state.sps_propval = NULL;
LEEE R R R EE SRR EEEEEEEEEEE RS SRR EEEEEEEEEEEEREREEEEEEEEESE] 877 SIaIe.SpS_parsame = _B_FALSE’
__unchanged_portion_onitted_ 878 state.sps_nodprop = _B TRUE;
879 state.sps_status = state.sps_retstatus = | PADM SUCCESS;
634 /* 880 while ((option = getopt_long(argc, argv, ":p:co:", show_ prop_| ongopts,
635 * Properties to be displayed is in ‘statep->sps_proplist’. If it is NULL, 881 NULL)) !'= -1)
636 * for all the properties for the specified object, relevant information, wll 882 switch (option) {
636 * for all the properties for the specified object, relavant information, wll 883 case 'p’:
637 * be displayed. Qtherwise, for the selected property set, display relevant 884 if (p_ar g)
638 * information 885 die("-p nmust be specified once only");
639 */ 886 p_arg = _B TRUE;
640 static void 887 if (ipadmstr2nvlist(optarg, &proplist,
641 show_properties(void *arg, int prop_class) 888 | PADM_NORVAL) !'= 0
642 { 889 die("invalid protocol properties specified");
643 show_prop_state_t *statep = arg; 890 br eak;
644 nvlist_t *nvl = statep->sps_proplist; 891 case 'c’:
645 uint_t proto = statep->sps_proto; 892 state.sps_parsable = _B TRUE;
646 nvpair_t *curr_nvp; 893 br eak;
647 char *buf, *nane; 894 case '0':
648 i padm status_t st at us; 895 fields_str = optarg;
896 br eak;
650 /* allocate sufficient buffer to hold a property value */ 897 defaul t:
651 if ((buf = malloc(MAXPRO?VALLEN)) == NULL) 898 di e_opterr(optopt, option, use);
652 die("insufficient menmory"); 899 br eak;
653 st at ep- >sps_propval = buf; 900 }
901
655 /* if no properties were specified, display all the properties */ 902 if (optind == argc - 1)
656 if (nvl == NULL) { 903 protostr = argv[optind];
657 (void) 1 padmwal k_proptbl (proto, prop_class, show property, 904 1f ((proto = ipadmstr2proto(protostr)) == MOD_PROTO_NONE)
658 statep); 905 die("invalid protocol "%’ specified", protostr);
659 } else { 906 state.sps_proto = proto;
660 for (curr_nvp = nvlist_next_nvpair(nvl, NULL); curr_nvp; 907 } else if (optind != argc) {
661 curr_nvp = nvlist_next_nvpair(nvl, curr_nvp)) { 908 di e("Usage: %", use);
662 nanme = nvpair_nanme(curr_nvp); 909 } else {
663 status = | padm wal k_prop(nanme, proto, prop_class, 910 if (p_arg)
664 show_property, statep); 911 di e("protocol nust be specified when "
665 if (status == | PADM PROP_UNKNOMN) 912 "property nanme is used");
666 (v0| d) show _property(statep, name, proto); 913 state.sps_proto = MOD_PROTO_NONE;
667 } 914 }
668 }
916 state.sps_proplist = proplist;
670 free(buf);
671 } 918 if (state.sps_parsable)
__unchanged_portion_onitted_ 919 of mflags | = OFMI_PARSABLE;
920 el se
856 /* 921 of mflags |= OFMI_WRAP;
857 * Display information for all or specific protocol properties, either for a 922 oferr = ofnt _open(fields_str, nodprop_fields, ofnflags, 0, &ofnt);
858 * given protocol or for supported protocols (IP/|Pv4/I|Pv6/ TCP/ UDP/ SCTP/ DCCP) 923 i padm of nt _check(oferr, st ate. sps_parsabl e, ofnt);
858 * given protocol or for supported protocols (IP/1Pv4/lPv6/ TCP/ UDP/ SCTP) 924 state.sps_ofnm = ofnt;
859 */
860 static void 926 /* handles all the errors */
861 do_show_prop(int argc, char **argv, const char *use) 927 show_properties(&state, | PADMPROP_CLASS_MODULE) ;
862 {
863 char option; 929 nvlist_free(proplist);
864 nvlist_t *proplist = NULL; 930 of mt _cl ose(ofnt);
865 char *fields_str = NULL;
866 char *protostr; 932 if (state.sps_retstatus != | PADM SUCCESS) ({
867 show_prop_state_t state; 933 i padm cl ose(i ph);
868 of mt _handl e_t of nt; 934 exi t (EXI T_FAl LURE ;
869 of m_status_t oferr; 935
870 uint_t of mfi ags = 0; 936 }
871 uint_t proto; __unchanged_portion_onitted_
872 bool ean_t p_arg = _B FALSE;

new usr/src/ cnd/ cnd-i net/ usr. sbin/snoop/ Makefile 1

R R R R

2254 Sat Aug 18 10:36:57 2012
new usr/src/cnd/ cnd-i net/ usr. sbi n/ snoop/ Makefile
dccp: snoop, build system fixes

R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

22 #

23 # Copyright 2009 Sun Mcrosystenms, Inc. Al rights reserved.

24 # Use is subject to license terns.

25 #

27 PROG= snoop
28 OBJS= nfs4_xdr.o snoop.o snoop_aarp. o snoop_adsp. o snoop_aecho.o \

29 snoop_appl e. 0 snoop_arp. o snoop_atp. o snoop_bparamo \

30 snoop_bpdu. o \

31 snoop_capture. o snoop_dccp. o snoop_dhcp. o snoop_dhcpv6. o \

32 snoop_di spl ay. o snoop_dns. o snoop_ether.o \

31 snoop_capture. o snoop_dhcp. o snoop_dhcpv6. o snoop_di splay.o \

32 snoop_dns. o snoop_ether.o \

33 snoop_filter.o snoop_http.o snoop_icnp.o snoop_i gnp. o snoop_ip.o \
34 snoop_i paddr. o snoop_i psec. o snoop_isis.o \

35 snoop_| dap. 0 snoop_m p. o snoop_nount.o \

36 snoop_nbp. o snoop_net bi 0os. 0 snoop_nfs. o snoop_nfs3.0 snoop_nfs4.0 \
37 snoop_nfs_acl.o snoop_nis.o snoop_nlmo snoop_ntp.o \

38 snoop_pf.o snoop_ospf.o snoop_ospf6.0 snoop_pmap. 0 snoop_ppp. o \

39 SNOOp_pppoe. 0 snoop_rip.o snoop_ri p6.0 snoop_rpc. o snoop_rpcprint.o \
40 SNoop_rpcsec. 0 snoop_rport.o snoop_rquota.o snoop_rstat.o snoop_rtnp.o \
41 snoop_sctp. o snoop_sl p.o snoop_snb. o snoop_socks. o snoop_solarnet.o \
42 snoop_tcp. o snoop_tftp.o snoop_trill.o snoop_udp.o snoop_zip.o

44 SRCS= $(0BJS:.o0=.¢)
45 HDRS= snoop. h snoop_ni p. h at.h snoop_ospf.h snoop_ospf6. h

47 include ../../../Makefile.cnd

49 CPPFLAGS += -1. -1$(SRC)/comon/ net/dhcp

50 LDLIBS += -Idhcputil -1dlpi -lIsocket -Insl -ltsol
51 LDFLAGS += $(MAPFI LE. NGB: %- M/

53 . KEEP_STATE:

55 . PARALLEL: $(OBJS)

57 all: $(PROG

59 $(PROG: $(0BJS) $(MAPFI LE. NGB)

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ Makefile

60 $(LINK. ¢) -0 $@$(CBJS) $(LDLI BS)
61 $(POST_PROCESS

63 install: al | $(ROOTUSRSBI NPROG)

65 cl ean:

66 $(RVM $(0BIS)

68 lint: i nt _SRCS

70 include ../../../Makefile.targ

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop. h

R R R R

12779 Sat Aug 18 10:36:57 2012
new usr/src/cnmd/ cnd-i net/ usr. sbi n/ snoop/ snoop. h
dccp: snoop, build system fixes

R R R R

__unchanged_portion_onitted_

121 /*

122 * Used to print nested protocol |ayers. For exanple, an ip datagram included
123 * in an icnp error, or a PPP packet included in an LCP protocol

124 */

125 extern char *prot_nest_prefix;

127 extern char *get_sum.line(void);

128 extern char *get_detail _line(int, int);

129 extern int want_packet(uchar_t *, int, int);
130 extern void set_vlan_id(int);

131 extern struct tinmeval prev_ting;

132 extern void process_pkt(struct sb_hdr *, char *, int, int);
133 extern char *getflag(int, int, char *, char *);
134 extern void show _header(char *, char *, int);
135 extern void show _count (void);

136 extern void xdr_init(char *, int);

137 extern char *get_line(int, int);

138 extern int get_line_renain(void);

139 extern char getxdr_char(void);

140 extern char showxdr_char(char *);

141 extern uchar_t getxdr_u_char(voi d);

142 extern uchar_t showxdr_u_char(char *);

143 extern short getxdr_short(void);

144 extern short showxdr_short(char *);

145 extern ushort_t getxdr_u_short(void);

146 extern ushort_t showxdr_u_short(char *);

147 extern long getxdr_| ong(void);

148 extern | ong showxdr_l ong(char *);

149 extern ulong_t getxdr_u_l ong(void);

150 extern ulong_t showxdr_u_l ong(char *);

151 extern longlong_t getxdr_| ongl ong(void);

152 extern |l onglong_t showxdr_l ongl ong(char *);
153 extern u_l ongl ong_t getxdr_u_l ongl ong(void);
154 extern u_l onglong_t showxdr_u_Il ongl ong(char *);
155 extern char *getxdr_opaque(char *, int);

156 extern char *getxdr_string(char *, int);

157 extern char *showxdr_string(int, char *);
158 extern char *getxdr_bytes(uint_t *);

159 extern void xdr_skip(int);

160 extern int getxdr_pos(void);

161 extern void setxdr_pos(int);

162 extern char *getxdr_context(char *, int);
163 extern char *showxdr_context(char *);

164 extern enumt getxdr_enum(void);

165 extern void show space(void);

166 extern void show_ trailer(vol d)

167 extern char *getxdr_date(void);

168 extern char *showxdr_date(char *);

169 extern char *getxdr_date_ns(void);

170 char *format_time(int64_t sec, uint32_t nsec);
171 extern char *showxdr_date_ns(char *);

172 extern char *getxdr_hex(int);

173 extern char *showxdr_hex(int, char *);

174 extern bool _t getxdr_bool (void);

175 extern bool _t showxdr_bool (char *);

176 extern char *concat_args(char **, int);

177 extern int pf_conpile(char *, int);

178 extern void conpile(char *, int);

179 extern void | oad_nanmes(char *);

reject.

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop. h

180 extern void cap_wite(struct sb_hdr *, char *, int, int);
181 extern void cap_open_read(const char *);
182 extern void cap_open_wite(const char *);

183 extern void cap_read(int, int, int, void (*)(), int);

184 extern void cap_cl ose(void);

185 extern bool ean_t open_datal i nk(dl pi _handle_t *, const char *);

186 extern void init_datalink(dlpi _handle_t, ulong_t, ulong_t, struct tineval *
187 struct Pf_ext. _packetfilt *Y;

188 extern void net_read(dl pi _handle_t, size_t, int, void (*)(), int);

189 extern void click(int);

190 extern void show pktinfo(int, int, char *, char *, struct tineval *,

191 struct timeval *, int, int);

192 extern void show_ |ine(char *);

193 /* PRI NTFLI KE1*/

194 extern void show printf(char *fnmt, ...)

195 __PRINTFLI KE(1) ;

196 extern char *getxdr_tine(void);

197 extern char *showxdr_time(char *);

198 extern char *addrtonane(int, const void *);

199 extern char *show string(const char *, int, int);

200 extern void pr_err(const char * ;

201 extern void pr_errdl pi (dl pi handl e’ t "const char *,int);

202 extern void check_retransmit(char *, ulong_t);

203 extern char *nameof _prog(int);

204 extern char *getproto(int);

205 extern uint8_t print_ipv6_extensions(int, uint8_t **, uint8_t *, int *, int *);

206 extern void protoprint(int, int, ulong_t, int, int, int, char *, int);
207 extern char *getportname(int, in_port_t);

209 extern void interpret_arp(int, struct arphdr *, int);

i
210 extern void interpret_bparan(int, int, int, int, int, char *, int);
211 extern void interpret_dns(int, int, const uchar_t *, int, int);
212 extern void interpret_nount(int, int, int, int, int, char *,int);
213 extern void interpret_nfs(int, int, int, int, int, char *, int);
214 extern void interpret_nfs3(int, int, int, int, int, char *, int);
215 extern void interpret_nfs4(int, int, int, int, int, char *, int);
216 extern void interpret_nfs4_cb(int, int |nt, int, int, char *, int);
217 extern void interpret_nfs_acl(int, int, int, int, int, char *, int);
218 extern void interpret_nis(int, int, int, int, int, char *, int);
219 extern void interpret_nisbind(int, int, int, int, int, char *, int);
220 extern void interpret_nin(int, int, int, int, int, char *, int);
221 extern void interpret_pmap(int, int, |nt int, int, char *, int);
222 extern int interpret_reserved(int, int, |n_port_t, in_port_t, char *, int);
223 extern void interpret_rquota(int, int, int, int, int, char *, int);
224 extern void interpret_rstat(int, int, int, int, int, char *, int);
225 extern void interpret_solarnet_fw(int, int, int, int, int, char *, int);

226 extern void interpret_|ldap(int, char *, int, int, int),
227 extern void interpret_icnp(int, struct icnp *, int, int);
228 extern void interpret |cr'rpv6(|nt icnp6_t *, int, int);
229 extern int interpret_ip(int, const struct ip *, int);
230 extern int i |nt),

i

231 extern int interpret_ppp(int, uchar_t *,
232 extern int interpret_pppoe(int, poep_t *,
233 struct tcphdr;

234 extern int interpret_tcp(int, struct tcphdr *, int, int);

235 struct udphdr;

236 extern int interpret_udp(int, struct udphdr *, int, int);

237 extern int interpret_esp(int, uint8_t *, int, int);

238 extern int interpret_ah(int, uint8_t *, int, int);

239 struct sctp_hdr;

240 extern void interpret_sctp(int, struct sctp_hdr *, int, int);
241 struct dccphdr;

242 extern int interpret_dccp(int, struct dccphdr *, int, int);
243 #endif /* ! codereview */

244 extern void interpret_mip_cntrlnsg(int, uchar_t *, int);

245 struct dhcp;

p
nterpret_i pv6(int, const i p6 *
nt
in

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop. h

246 extern int interpret_dhcp(int, struct dhcp *, int);
247 extern int interpret_dhcpv6(int, const uint8_t *, int);
248 struct tftphdr;

249 extern int interpret_tftp(int, struct tftphdr *, int);
250 extern int interpret_http(int, char *, int);

251 struct ntpdata;

252 extern int interpret_ntp(int, struct ntpdata *, int);

253 extern void interpret_netbios_ns(int, uchar_t *, int);

254 extern void interpret_netbios_datagran(int, uchar_t *, int)
255 extern void interpret_netbios_ses(int, uchar_t *, int);

256 extern void interpret_slp(int, char *, int);
257 struct rip;
258 extern int
259 struct rip6;
260 extern int i
261 extern int
262 extern int
263 extern int
264 extern int interpret_isis(int, char *, int, boolean_t);

265 extern int interpret_bpdu(int, char *, int);

266 extern void init_|dap(void);

267 extern boolean_t arp_for_ether(char *, struct ether_addr *);
268 extern char *ether_oui nanme(uint32_t);

269 extern char *tohex(char *p, int len);

270 extern char *printether(struct ether_addr *);

271 extern char *print_ethertype(int);

272 extern const char *arp_htype(int);

273 extern int valid_rpc(char *, int);

nterpret_rip(int, struct rip *, int);

nterpret_rip6(int, struct rip6é *, int);
nterpret_socks_call (int, char *, int);
nterpret_socks_reply(int, char *, int);

275 [*

276 * Describes characteristics of the Media Access Layer.

277 * The mac_type is one of the supported DLPI nedia

278 * types (see <sys/dlpi.h>).

279 * The ntu_size is the size of the largest frane.

280 * network_type_offset is where the network type

281 * is located in the link |ayer header.

282 * The header length is returned by a function to

283 * allow for variable header size - for ethernet it’'s

284 * just a constant 14 octets.

285 * The interpreter is the function that "knows" how

286 * to interpret the frane.

287 * try_kernel _filter tells snoop to first try a kernel

288 * filter (because the header size is fixed, or if it could
289 * be of variable size where the variable size is easy for a kernel
290 * filter to handle, for exanple, Ethernet and VLAN tags)
291 * and only use a user space filter if the filter expression
292 * cannot be expressed in kernel space.

293 */

294 typedef uint_t (interpreter_fn_t)(int, char *, int, int);
295 typedef uint_t (headerlen_fn_t)(char *, size_t);
296 typedef struct interface {

e

297 uint_t mac_type;

298 ui nt _t nt u_si ze;

299 ui nt _t net wor k_t ype_of f set;
300 size_t networ k_t ype_| en;
301 uint_t networ k_type_ip;

302 uint_t net wor k_t ype_i pv6;
303 headerlen_fn_t *header_| en;

304 interpreter_fn_t *interpreter;

305 bool ean_t try_kernel _filter;

306 } interface_t;

308 extern interface_t | NTERFACES[], *interface;
309 extern char *dl c_header;

310 extern char *src_nane, *dst_naneg;

311 extern char *prot_prefix;

nterpret_trill (int, struct ether_heade’r ** char *, int *);

new usr/src/cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop. h

312 extern char *prot_nest_prefix;
313 extern char *prot_title;

315 /* Keep track of how many nested | P headers we have. */
316 extern unsigned int encap_| evels, total _encap_| evels;

318 extern int quitting;
319 extern boolean_t Iflg, Pflg, rflg;

321 /*

322 * Gobal error recovery routine: used to reset snoop variables after
323 * catastrophic failure.

324 */

325 voi d snoop_recover (void);

327 /| *
328 * G obal alarmhandler structure for managing nmultiple alarms within
329 * snoop.
*
/

330

331 typedef struct snoop_handler {

332 struct snoop_handl er *s_next; /* next al arm handl er */
333 tinme_t s_tinme; /* tinme to fire */

334 void (*s_handler)(); /* alarm handl er */

335 } snoop_handl er_t;

337 #defi ne SNOOP_MAXRECOVER 20 /* maxi um nunber of recoveries */
338 #defi ne SNOOP_ALARM GRAN 3 /* alarm() tineout nultiplier */
340 /*

341 * dobal alarm handl er nanagenent routine.

342 =/

343 extern int snoop_alarn(int s_sec, void (*s_handler)());

345 [*

346 * The next two definitions do not take into account the |length

347 * of the underlying link header. |In order to use them you nust
348 * add link_header_len to them The reason it is not done here is
349 * that later these macros are used to initialize a table.

350 */

351 #define | PVvA_TYPE_HEADER OFFSET 9

352 #define | PV6_TYPE_HEADER OFFSET 6

354 #ifdef __cplusplus
355 }
356 #endif

358 #endif /* _SNOOP_H */

new usr/src/ cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_dccp. c 1

R R R R

10243 Sat Aug 18 10:36:57 2012
new usr/src/cnd/ cnd- i net/ usr. sbi n/ snoop/ snoop_dccp. ¢
dccp: snoop, build system fixes

R R R R

CDDL HEADER END
/

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License, Version 1.0 only
6 * (the "License"). You nmay not use this file except in conpliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
10 * or http://ww. opensol aris.org/os/licensing.
11 * See the License for the specific |anguage governi ng perm ssions
12 * and linmtations under the License.
13 =
14 * Wen distributing Covered Code, include this CDDL HEADER i n each
15 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 * |f applicable, add the follow ng below this CODL HEADER, wth the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy]l [nane of copyright owner]
*
19 B
*
*

23 * Copyright 2005 Sun M crosystens, Inc. Al rights reserved.
24 * Copyright 2012 David Hoeppner. Al rights reserved.
*/

27 #include <stdio.h>
28 #include <ctype. h>
29 #include <string.h>
30 #include <fcntl.h>
31 #include <string. h>
32 #include <sys/types. h>
33 #include <sys/tine. h>

35 #include <sys/socket. h>

36 #include <sys/sockio. h>

37 #include <net/if.h>

38 #include <netinet/in_systm h>
39 #include <netinet/in.h>

40 #include <netinet/ip.h>

41 #include <netinet/if_ether.h>
42 #incl ude <netinet/dccp. h>

43 #i ncl ude "snoop. h"

45 [*
46 * Snoop interpreter for DCCP (RFC4340)
47 *
48 */

50 extern char *dl c_header;

52 static char *get _type(uint8_t);
53 static void print_dccpoptions_sumary(uchar_t *, uchar_t *);
54 static void print_dccpoptions(uchar_t *, uchar_t *);

56 static char *
57 get_type(uint8_t type)
{

58
59 switch (type) {
60 case 0:

61 return ("DCCP-Request");

new usr/src/ cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_dccp. c

62 case 1

63 return ("DCCP-Response");

64 case 2

65 return ("DCCP-Data");

66 case 3

67 return ("DCCP-Ack");

68 case 4

69 return (" DCCP- Dat aAck");

70 case 5:

71 return ("DCCP-C oseReq");

72 case 6

73 return ("DCCP-C ose");

74 case 7

75 return ("DCCP-Reset");

76 case 8

77 return ("DCCP-Sync");

78 case 9:

79 return ("DCCP-SyncAck");

80 case 10 ... 15:

81 return ("Reserved");

83 defaul t:

84 return ("Unknown");

85 }

86 }

88 int

89 i{nterpret_dccp(int flags, struct dccphdr *dccp, int
90

91 char *dat a;

92 char *1ine;

93 char *endl i ne;

94 ui nt 64_t seq;

95 ui nt 64_t ack;

96 int hdrl en;

97 int dccepl en;

98 int option_of fset;

99 int i;

101 hdrl en = dccp->dh_of fset * 4;

102 data = (char *)dccp + hdrlen;

103 dccplen = iplen - hdrlen;

104 fraglen -= hdrlen;

106 if (fraglen < 0) {

107 return (fraglen + hdrlen); /* I nconpl ete header
108 }

110 if (fraglen > dccplen) {

111 fraglen = dccpl en;

112 }

114 if (dccp->dh_x == 1) {

115 switch (dccp->dh_type) {

116 case O: [* DCCP- Request */
117 option_of fset = 20;

118 break;

119 case 1: /* DCCP- Response */
120 option_of fset = 28;

121 br eak;

122 case 7: /* DCCP- Reset */
123 option_of fset = 28;

124 br eak;

125 case 8: /* DCCP- Sync */
126 case 9: /* DCCP- SyncAck */
127 option_of fset = 24;

new usr/src/ cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_dccp. c 3 new usr/src/cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_dccp. c
128 br eak; 194 (voi d) sprl nt f (get Ilne((char *)(U| nt ptr _t)dccp->dh_sport -
195 header, 2), "Source port = %"
130 defaul t: 196 nt ohs(dccp >dh_sport));
131 option_of fset = 20;
132 br eak; 198 (voi d) SpI’I nt f (get Ilne((char *)(uintptr t)dccp >dh_dport -
133 } 199 ader, 2), "Destination port =
200 nt ohs(dccp >dh_dport));
135 /* Sequence nunber */
136 seq = nt ohs(dccp >dh_seq); 202 (voi d) SpI’I ntf(get_line(((char *)(uintptr_t)dccp->dh_of fset -
137 seq <<= 32 203 header) + 4, 1), "Data offset = %l bytes",
138 seq += (ui nt 32 _t)dccp + sizeof (struct dccphdr); 204 dccp >dh_ offset * 4);
140 ack = (uint32_t)(dccp + 16) & Oxffff; 206 (voi d) SpI’I ntf(get_line(((char *)(uintptr_t)dccp->dh_ccval -
141 } else { 207 header) + 4, 1), "CCval = %l",
142 switch (dccp->dh_type) { 208 dccp >dh ccval)
143 case 0: /* DCCP- Request */
144 case 1: /* DCCP- Response */ 210 (voi d) SpI’I ntf(get_line(((char *)(uintptr_t)dccp->dh_cscov -
145 case 7: /* DCCP- Reset */ 211 header) + 4, 1), "Checksum coverage (CsCov) = %",
146 case 8: /* DCCP- Sync */ 212 dccp >dh cscov)
147 case 9: /* DCCP- SyncAck */
148 br eak; 214 (voi d) sprl ntf(get Ilne(((char *)(ul ntptr t)dccp >dh_sum -
215 header) + 1), "Checksum = 0x%94x
150 defaul t: 216 nt ohs(dccp >dh sun))
151 option_of fset = 20;
152 br eak; 218 (voi d) sprl ntf (get Ilne(((char *)(ul nt ptr _t)dccp->dh_type -
153 } 219 _header) + 4, 1), "Type d (%8)"
220 dccp >dh_t ype, get_type(dccp >dh_type))
155 /* Sequence nunber */
156 seq = dccp->dh_res_seq << 16; 222 (voi d) sprl ntf (get Ilne(((char *)(uintptr_t)dccp->dh_x -
157 seq | = ntohs(dccp->dh_seq); 223 _header) + 1), "Extended sequence nunbers = %",
158 } 224 dccp >dh_x);
160 if (flags &FSUM { 226 (void) sprintf(get Ilne(((char *)(uintptr t)dccp >dh_seq -
161 line = get sum |ine(); 227 dl c_header) + 4, 1), "Sequence nunber =
162 endline = Tine + MAXLI NE; 228 seq);
164 (void) snprintf(line, endline - line, "DCCP D=% S=%l", 230 /*
165 nt ohs(dccp- >dh_dport), ntohs(dccp->dh_sport)); 231 * Al packets except DCCP- Request and DCCP-Data carry
166 line += strlen(line); 232 * an acknow edgenent nunber.
233 */
168 (void) snprintf(line, endline - line, "CCval =% CsCov=%d", 234 if (dccp->dh_type != 0 && dccp->dh_type != 2)
169 dccp- >dh_ccval , dccp->dh_cscov); 235 (void) sprintf(get_line(((char *)(uintptr_t)dccp->dh_seq -
236 dl c_header) + 4, 1), "Acknow edgenent nunber = %",
171 (void) snprintf(line, endline - line, " Seq=%u Len=%", 237 seq);
172 seq, dccplen); 238 }
173 line += strlen(line);
240 print_dccpoptions((uchar_t *)dccp + option_offset,
175 /* 241 (uchar_t *)dccp + dccp->dh_offset * 4);
176 * Al packets except DCCP-Request and DCCP-Data carry
177 * an acknow edgenent nunber. 243 show_space();
178 */ 244 }
179 if (dccp->dh_type != 0 && dccp->dh_type !'= 2) {
180 (void) snprintf(line, endline - line, " Ack=%", 246 return (dccplen);
181 seq, dccplen); 247 }
182
183 line += strlen(line); 249 static void
250 print_dccpoptions_summary(uchar _t *up, uchar_t *end)
185 print_dccpoptions_sumary((uchar_t *)dccp + option_offset, 251 {
186 (uchar _t *)dccp + dccp->dh_offset * 4); 252 uchar _t *val ue;
187 } 253 ui nt8_t option_type;
254 uint8_t option_| engt h;
255 int | en;
190 if (flags & F_DTAIL) { 256 bool ean_t mandatory = B_FALSE;
191 show_header ("DCCP: ", "DCCP Header", dccplen);
192 show_space(); 258 while (up !'= end) {
259 option_length = 0;

new usr/src/ cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_dccp. c

260 option_type = *up++;

262 /*

263 * |s this a variable length option?
264 */

265 if (option_type > 31) {

266 option_l ength = *up++;

267 option_length -= 2;

268 val ue = up;

270 up += option_l ength;

271 }

272 switch (option_type) {

273 case 0: /* Paddi ng */

274 br eak;

275 case 1: /* Mandatory */
276 mandatory = B_TRUE;

277 break;

278 case 2: /* Slow receiver */
279 br eak;

280 case 3 ... 31: /* Reserved */
281 break

282 case 32: /* Change L */
283 br eak;

284 case 33: /* ConfirmlL */
285 br eak;

286 case 34: /* Change R */
287 br eak;

288 case 35: /* ConfirmR */
289 br eak;

290 case 36: /* Init cookie */
291 break;

292 case 37: /* NDP count */
293 br eak;

294 case 38: /* Ack Vector 0 */
295 break;

296 case 39: /* Ack vector 1 */
297 br eak;

298 case 40: /* Data dropped */
299 break;

300 case 41: /* Tinmestanp */
301 br eak;

302 case 42: /* Tinmestanp echo */
303 break;

304 case 43: /* El apsed time */
305 br eak;

306 case 44: /* Data checksum */
307 break;

309 defaul t:

310 br eak;

311 }

313 if (option_type !'=1) {

314 mandatory = B_FALSE;

315 }

316 1

317 }

319 static void
320 print_dccpoptions(uchar_t *up, uchar_t *end)

321 {

322 uchar _t *val ue;

323 ui nt8_t option_type;
324 uint8_t option_| engt h;
325 int | en;

new usr/src/ cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_dccp. c

326 bool ean_t mandatory = B_FALSE;

328 if (up == end) {

329 (voi d) sprl ntf(get line((char *)&up - dl c_header,

330 "No options");

331 return;

332 }

334 (voi d) sprl nt f (get Ilne((char *)&up - dl c_header, 1),

335 tions: (% bytes)", (int)(end - up));

337 while (up !'= end) {

338 option_length = 0;

339 option_type = *up++;

341 /*

342 * |s this a variable length option?

343 */

344 if (option_type > 31) {

345 option_|l ength = *up++;

346 option_length -= 2;

347 val ue = up;

349 up += option_l ength;

350 }

352 switch (option_type) {

353 case 0: /* Paddi ng */

354 (voi d) sprl ntf(get_line(((char *)(U| ntptr_t)up
355 _header) + 4, 1), "Padding");

356 break

357 case 1: /* Mandatory */

358 (void) sprintf(get_line(((char *)(w ntptr_t)up
359 di c_header) + 4, 1), "Mandatory");

360 mandat ory = B_TRUE;

361 break;

362 case 2: /* Slow receiver */

363 (void) sprintf(get_line(((char *)(uintptr_t)up
364 dl c_header) + 4, 1), "Slow receiver");

365 break;

366 case 3 ... 31: /* Reserved */

367 (void) sprintf(get_line(((char *)(uintptr_t)up
368 dl c_header) + 4, 1), "Reserved");

369 break;

370 case 32: /* Change L */

371 (void) sprintf(get_li ne(((char *)(U| ntptr_t)up
372 dl c_header) + 4, 1), "Change L");

373 br eak;

374 case 33: /* ConfirmlL */

375 (void) sprintf(get_li ne(((char *)(U| ntptr_t)up
376 dl c_header) + 4, 1), "ConfirmlL");

377 br eak;

378 case 34: /* Change R */

379 (void) spri ntf(get l'ine(((char *)(w ntptr_t)up
380 di c_header) + 4, 1), "Change R');

381 br eak;

382 case 35: /* ConfirmR */

383 (void) sprintf(get_line(((char *)(uintptr_t)up
384 dl c_header) + 4, 1), "ConfirmR");

385 break;

386 case 36: /* Init cookie */

387 (void) sprintf(get_line(((char *)(uintptr_t)up
388 dl c_header) + 4, 1), "Init cookie");

389 break;

390 case 37: /* NDP count */

391 (void) sprintf(get_line(((char *)(uintptr_t)up

new usr/src/cnd/ cnd-i net/ usr.

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

423
424
425
426
427

429

430

431

432

433 }

434 #endif /* |

case

case

case

case

case

case

case

defaul t:

if (opti

38:

39:

40:

41:

42:

43:

44:

shi n/ snoop/ snoop_dccp. c

dl c_header) + 4, 1), "NDP count");
break;
/* Ack vector 0 */
(v0|d) sprlntf(get _line(((char *)(uintptr_t)up
| c_header) + 4, 1), "Ack vector 0");
break
/* Ack vector 1 */
(v0|d) sprlntf(get_lme(((char *)(uintptr_t)up
c_header) + 4, 1), "Ack vector 1");
break
/* Data dropped */
(v0|d) sprlntf(get line(((char *)(uintptr_t)up

c_header) + 4, 1), "Data dropped");
break
/* Tinestanp */
(v0|d) sprlntf(ge _line(((char *)(w ntptr_t)up
c_header) + 4, 1), "Tinestanmp");
break
/* Tinmestanp echo */
(v0|d) sprlntf(get_line(((char *) (ui ntptr _t)up
c_header) + 4, 1), "Tlnestanp echo");
break
/* El apsed time */
(vord) sprrntf(get line(((char *)(urntptr _t)up
| c_header) + 4, 1), "El apsed tine");
break

/* Data checksum */
(voi d) sprl ntf(get_line(((char *)(uintptr_t)up
c_header) + 4, 1), "Data checksuni);
break

(void) sprintf(get_line(((char *)(uintptr_t)up
dl c_header) + 4, 1), "Unknown");
break;

on_type !'=1) {
mandat ory = B_FALSE;

coder evi ew */

new usr/src/cnd/ cnd-i net/ usr. shin/ snoop/ snoop_filter.c

R R R R

63156 Sat Aug 18 10:36:58 2012
new usr/src/cnd/ cnd-i net/ usr. shin/ snoop/ snoop_filter.c
dccp: options and features

R R R R R

____unchanged_portion_onitted_

1322 static match_type_t ether_match_types[] = {
1323 /*

1324 * Table initialized assum ng Ethernet data |ink headers.

1325 * moffset is an offset beyond the offset op, which is why

1326 */the of fset is zero for when snoop needs to check an ethertype.
1327 *

1328 "ip", 0, 2, ETHERTYPE_IP, -1, OP_OFFSET_ETHERTYPE
1329 "ip6", 0, 2, ETHERTYPE_I PV6, -1, OP_OFFSET_ETHERTYPE,
1330 "arp", 0, 2, ETHERTYPE_ARP, -1, OP_OFFSET_ETHERTYPE,
1331 "rarp", 0, 2, ETHERTYPE_REVARP, -1, OP_OFFSET_ETHERTYPE,
1332 " pppoed", 0, 2, ETHERTYPE_PPPCED, -1, OP_OFFSET_ETHERTYPE,
1333 " pppoes”, 0, 2, ETHERTYPE_PPPCES, -1, OP_OFFSET_ETHERTYPE,
1334 "tcp”, 9, 1, IPPROTO TCP, 0, OP_OFFSET_LI NK,
1335 "tcp", 6, 1, |PPROTO TCP, 1, OP_OFFSET_LI NK,

1336 "udp”, 9, 1, |PPROTO UDP, 0, OP_OFFSET_LI NK,
1337 "udp", 6, 1, |1 PPROTO _UDP, 1, OP_OFFSET_LI NK

1338 "icmp", 9, 1, I PPROTO | CWP, 0, OP_OFFSET_LI NK,

1339 "icnp6", 6, 1, |PPROTO | CVPV6, 1, OP_OFFSET_LI NK,

1340 "ospf", 9, 1, |PPROTO CSPF, 0, OP_OFFSET_LI NK,
1341 "ospf", 6, 1, |PPROTO COSPF, 1, OP_OFFSET_LI NK,
1342 "ip-in-ip", 9, 1, 1PPROTO ENCAP, 0, OP_OFFSET_LI NK,

1343 "esp", 9, 1, |PPROTO ESP, 0, OP_OFFSET_LI NK,

1344 "esp", 6, 1, |PPROTO ESP, 1, OP_OFFSET_LI NK,

1345 "ah", 9, 1, IPPROTO_AH, 0, OP_OFFSET_LI NK

1346 "ah", 6, 1, |PPROTO _AH, 1, OP_OFFSET_LI NK

1347 "sctp", 9, 1, |PPROTO_SCTP, 0, OP_OFFSET_LI NK,
1348 "sctp”, 6, 1, |PPROTO SCTP, 1, OP_OFFSET_LI NK,

1349 "dccp”, 9, 1, |PPROTO DCCP, 0, OP_OFFSET_LI NK,

1350 "dccp”, 6, 1, |PPROTO _DCCP, 1, OP_OFFSET_LI NK

1351 #endif /* ! codereview */

1352 0, o, 0O, O, 0, 0

1353 };

1355 static match_type_t ipnet_match_types[] = {

1356 /*

1357 * Table initialized assum ng Ethernet data |ink headers.

1358 * moffset is an offset beyond the offset op, which is why

1359 */the offset is zero for when snoop needs to check an ethertype.
1360 *

1361 ip", 0, 1, |PV4_VERSION, =, OP_OFFSET_ETHERTYPE,
1362 "i p6", 0, 1, 1PV6_VERSION, -1, OP_OFFSET_ETHERTYPE,
1363 "tcp", 9, 1, |PPROTO TCP, 0, OP_OFFSET_LI NK

1364 "tcp”, 6, 1, |PPROTO TCP, 1, OP_OFFSET_LI NK

1365 "udp", 9, 1, | PPROTO _UDP, 0, OP_OFFSET_LI NK,

1366 “udp”, 6, 1, |PPROTO UDP, 1, OP_OFFSET_LI NK,
1367 "icmp”, 9, 1, IPPROTO | C\P, 0, OP_OFFSET_LI NK,
1368 "i cnpé", 6, 1, |PPROTO | CMPVG, 1, OP_OFFSET_LI NK,
1369 "ospf", 9, 1, |PPROTO OSPF, 0, OP_OFFSET_LI NK

1370 "ospf", 6, 1, |PPROTO OSPF, 1, OP_OFFSET_LI NK,
1371 "ip-in-ip", 9, 1, | PPROTO ENCAP, 0, OP_OFFSET_LI NK,

1372 "esp", 9, 1, |PPROTO _ESP, 0, OP_OFFSET_LI NK

1373 "esp", 6, 1, |PPROTO ESP, 1, OP_OFFSET_LI NK

1374 "ah", 9, 1, |IPPROTO _AH, 0, OP_COFFSET_LI NK,

1375 "ah", 6, 1, |PPROTO AH, 1, OP_OFFSET_LI NK

1376 "sctp", 9, 1, |PPROTO SCTP, 0, OP_OFFSET_LI NK

1377 "sctp”, 6, 1, |PPROTO _SCTP, 1, OP_OFFSET_LI NK

1378 "dccp”, 9, 1, |PPROTO DCCP, 0, OP_OFFSET_LI NK,

1379 "dccp", 6, 1, |PPROTO DCCP, 1, OP_OFFSET_LI NK

1380 #endif /* ! codereview */

new usr/src/cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_filter.c

1381
1382

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406

1408
1409

1411
1412
1413
1414
1415
1416
1417

1419
1420
1421
1422

1424

1426
1427
1428

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439

1441
1442

1444
1445
1446

p", .
! coderevi ew

* not cyclic.
/

B

0, 0, 0

static match_type_t iptun_match_types[] = {
"ip" I PPROTO_ENCAP,
| PPROTO | PV6,

oo

| PPROTO_TCP,
| PPROTO_TCP,
| PPROTO_UDP,
| PPROTO_UDP,

| PPROTO_ESP,
| PPROTO_ESP,
| PPROTO_AH,
| PPROTO_AH,

O RPRRRPRPRRRPRRRRRRRRERRRE

9
6
9
6
9
6
9
6
9
9
6
9
6
9
6
9
6
*/
0

0,

gener at e_check(match_type_t match_types[],
1410 {

match_type_t *mtp = &match_types[index];
/*

'
N e

| PPROTO_| CVP,

| PPROTO | CVPV6,
| PPROTO_OSPF,

| PPROTO_OSPF,

| PPROTO_ENCAP,

| PPROTO_SCTP,
| PPROTO_SCTP,
| PPROTO_DCCP,
| PPROTO_DCCP,

O POFRPOFRPOFROORORORORO!

OP_OFFSET_ETHERTYPE,
OP_OFFSET_ETHERTYPE,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK;
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,
OP_OFFSET_LI NK,

0

int type)

this code assunmes the above dependencies are

if (mp->mdepend != -1

)
gener at e_check(mat ch_t ypes,

em t op(mt p- >m opt ype) ;
| oad_val ue(nt p->m of f set,
| oad_const (nt p- >m val ue) ;
eni t op(OP_OFFSET_PCP) ;

em t op(OP_EQ) ;
if (mp->mdepend != -1)

em t op(OP_AND) ;

Generate code based on the keyword argunent.
This word is |ooked up in the match_types table
and checks a field within the packet for a given
ether or ip type field.
can al so have a dependency on another entry e.g.
requi res that the packet also be "ip".

conpari son(char *s)

1440 {

unsi gned i nt i, n_checks = 0;
mat ch_type_t *mat ch_t ypes;

switch (interface->mac_type) {
case DL_ETHER:
mat ch_types = et her_nmatch_t ypes;

Thi s *shoul d* al ways be true.

nt p- >m si ze) ;

The match

nt p- >m depend, type);

new usr/src/cnd/ cnd-i net/ usr. shin/ snoop/ snoop_filter.c 3 new usr/src/cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_filter.c
1447 br eak; 1513 freehp = 1;
1448 case DL_| PNET: 1514 1
1449 mat ch_types = i pnet_nmatch_t ypes; 1515 if (hp == NULL) {
1450 br eak; 1516 if (error_num== TRY_AGAIN) {
1451 case DL_| PV4: 1517 pr_err("couldn't resolve % (try again later)"
1452 case DL_I PV6: 1518 host nane) ;
1453 case DL_6TO4: 1519 } else {
1454 “match_types = iptun_match_types; 1520 pr_err("couldn’t resolve %", hostnane);
1455 br eak; 1521 }
1456 defaul t: 1522
1457 return (0); 1523 Inet_type = IPV4_O\ILY;
1458 } 1524 } elseif (tokent ype == ADDR | P6) {
1525 hp = | geti pnodebynane(host nane, AF_| NET6, 0, &error_num;
1460 for (i = 0; match_types[i].muname != NULL; i++) { 1526 if (hp == ULL) {
1461 if (strcnp(s, match_types[i].mnane) != 0) 1527 hp = getl pnodebynane(host nanme, AF_I NET6, 0, &error_num;
1462 conti nue; 1528 freehp = 1;
1529 }
1464 n_checks++; 1530 1f (hp == NULL) {
1465 gener at e_check(match_types, i, interface->nac_type); 1531 if (error_num == TRY_AGAI N)
1466 if (n_checks > 1) 1532 pr_err("couldn’t resolve % (try again later)"
1467 em top(OP_OR); 1533 host nane) ;
1468 } 1534 } else {
1535 pr_err("couldn’t resolve %", hostnane);
1470 return (n_checks > 0); 1536 }
1471 } 1537
1538 inet_type = | PV6_ONLY;
1473 enumdirection { ANY, TO FROM}; 1539 } else {
1474 enumdirection dir; 1540 /* Sonme hostnane i.e. tokentype is ALPHA */
1541 switch (| net type)
1476 /* 1542 case | PV4_ONLY:
1477 * Generate code to match an | P address. The address 1543 /* Owly | Pv4 address is needed */
1478 * may be supplied either as a hostnane or in dotted fornat. 1544 hp = Iget| pnodebynarre(host name, AF_I NET, 0, &error_num;
1479 * For source packets both the IP source address and ARP 1545 f (hp =
1480 * src are checked. 1546 hp = getl pnodebynane(host nanme, AF_I NET, O,
1481 * Note: we don’t check packet type here - whether IP or ARP. 1547 &error_num ;
1482 * It's possible that we’'ll do an inproper natch. 1548 freehp = 1;
1483 */ 1549 }
1484 static void 1550 if (hp !'= NULL) {
1485 i paddr _mat ch(enum di recti on which, char *hostnane, int inet_type) 1551 found_host = 1,
1486 { 1552 }
1487 bool _t found_ host 1553 br eak;
1488 int m=0, n=0; 1554 case | PV6_ONLY:
1489 uint_t *addrd4ptr; 1555 /* Only | Pv6 address is needed */
1490 uint_t addr4; 1556 hp = | geti pnodebynane(host name, AF_I NET6, O,
1491 struct in6_addr *addr6ptr; 1557 &error_num;
1492 int h_addr_i ndex; 1558 if (hp == NULL) {
1493 struct hostent *hp = NULL; 1559 hp = geti pnodebynane(host nane, AF_|I NET6, O,
1494 int error_num= 0; 1560 &error_num ;
1495 bool ean_t freehp = B_FALSE,; 1561 freehp = 1;
1496 bool ean_t first = B_TRUE; 1562 }
1563 if (hp !'= NULL)
1498 [1564 found_host = 1;
1499 * The addr4offset and addr6offset variables sinplify the code which 1565
1500 * generates the address conparison filter. Wth these two variables, 1566 br eak;
1501 * duplicate code need not exist for the TO and FROM case. 1567 case | PV4_AND | PV6:
1502 * A value of -1 describes the ANY case (TO and FROV). 1568 /* Both IPv4 and | Pv6 are needed */
1503 */ 1569 hp = | geti pnodebynane(host nane, AF_I NET6,
1504 int addr4offset; 1570 Al _ALL | Al _VAMAPPED, &error_nunj;
1505 int addr6offset; 1571 if (hp == NULL)
1572 hp = geti pnodebynanme(host name, AF_I NET6,
1507 found_host = 0; 1573 Al _ALL | Al _VANMAPPED, &error_nun);
1574 freehp = 1;
1509 if (tokentype == ADDR IP) { 1575 }
1510 hp = Igetl pnodebynama(host name, AF_I NET, O, &error_num; 1576 if (hp !'= NULL) {
1511 if (hp == NULL) { 1577 found_host = 1;
1512 hp = geti pnodebynane(host nanme, AF_I NET, 0, &error_num; 1578 }

new usr/src/cnd/ cnd-i net/ usr. shin/ snoop/ snoop_filter.c

1579
1580
1581
1582

1584
1585
1586
1587
1588
1589
1590
1591
1592

1594
A595]
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607

1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

br eak;
defaul t:

found_host = 0;
}

if (!found_host) {
if (error_num== TRY_AGAIN) {

pr_err("could not resolve % (try again later)"

host nane) ;
} else {
pr_err("could not resolve %", hostnane);
}
}
}
switch (which) {
case TO
addr 4of f set = | Pv4_DSTADDR _OFFSET;
addr 60of f set = | PV6_DSTADDR_OFFSET;
br eak;
case FROM
addr 4of f set = | Pv4_SRCADDR_OFFSET;
addr 60of f set = | PV6_SRCADDR_OFFSET;
br eak;
case ANY:
addr 4of f set = -1;
addr 6of fset = -1;
br eak;
}
/*

* The code bel ow generates the filter.
*

if (hp !'= NULL && hp->h_addrtype == AF_I NET) {
ethertype_mat ch(interface->network_type_ip);
em t op(OP_BRFL) ;
n = chain(n);
em t op(OP_ CFFSEl' LI NK) ;
h_addr i ndex = 0;
addr 4ptr = (UI nt_t *)hp->h_addr_list[h_addr_i ndex];
while (addrdptr T= NULL) {
if (addr4offset == -1) {
conpar e_addr _v4(| Pv4_SRCADDR_OFFSET, 4,
*addr4ptr);
em t op(OP_BRTR) ;
m = chain(m;
conpar e_addr _v4(| Pv4_DSTADDR _OFFSET, 4,
*addr4ptr);
} else {
conpar e_addr _v4(addr4of fset, 4, *addr4ptr);

}
addr4ptr = (uint_t *)hp->h_addr_Ilist[++h_addr_i ndex] ;
if (addr4ptr != NULL) {
eni t op(OP_BRTR) ;
m = chain(m;
}

i}f (mt=0) {
resol ve_chain(m;

}
em t op(OP_OFFSET_POCP) ;
resol ve_chai n(n);
} else {
/* first pass: | Pv4 addresses */
h_addr |ndex = 0;
addr6ptr = (struct in6_addr *)hp->h_addr_list[h_addr_index];

new usr/src/cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_filter.c

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710

fir = B_TRUE;
whi (aderptr = NULL) {
if (IN6_I S_ADDR VAMAPPED(addr6ptr)) {

Tif(first) {
et hertype_mat ch(
i nterface->network_type_ip);
em t op(OP_BRFL) ;
n = chain(n);
emtop(GD CFFSEl' LI NK) ;
first = B _FALSE;
} else {
em t op(OP_BRTR) ;
m = chain(m;

}
1 N6_VANMAPPED_TO_ | NADDR(addr 6pt r
(struct in addr *) &addr 4) ;
if (addr4offset == -1)
conpar e_addr _v4(| Pv4_SRCADDR_CFFSET, 4,
addr 4) ;
em t op(OP_| BRTR)
m = chain(m;
conpar e_addr _v4(| Pv4_DSTADDR_CFFSET, 4,
addr 4) ;
} else {

}

}
addr6ptr = (struct in6_addr *)
hp->h_addr _| i st [++h_addr _i ndex] ;

conpar e_addr _v4(addr4offset, 4, addr4);

/* second pass: |Pv6 addresses */

h_addr |ndex = 0;

addr6pt r = (struct i n6_addr *)hp->h_addr _I|ist[h_addr_i ndex];
first = B_TRUE;

while (addr6ptr != NULL) {
if (! IS_ADDR VANAPPED(addr 6ptr)) {
if (f |rs;) {

* bypass check for |Pv6 addresses
* when we have an | Pv4 packet
*
if (n!=0) {
em t op(OP_BRTR) ;
m = chain(m;
em t op(OP_ BRFL)
m = chain(m;
resol ve_chal n(n);
n = 0;

}
et hertype_mat ch(
i nterface->network_type_i pv6);
em t op(OP_BRFL) ;
n = chain(n);
em t op(OP_OFFSET_LI NK) ;
first = B_FALSE;
} else {
em t op(OP_BRTR) ;
m = chain(m;

}
1 f (addr6offset == -1) {
conpar e_ addr _Vv6(| PV6_SRCADDR OFFSET,
16, *addré6ptr);
emtop((P BRTR) ;
m = chain(m;
conpar e_addr _v6(| Pv6_DSTADDR _OFFSET,
16, *addré6ptr);

new usr/src/cnd/ cnd-i net/ usr. shin/ snoop/ snoop_filter.c

new usr/src/cnd/ cnd-i net/ usr. shin/ snoop/ snoop_filter.c

1777 conpar e_val ue(AT_SRC _NET_OFFSET, 2, net);
1778 em t op(OP_BRFL) ;

1779 m = chain(0);

1780 conpar e_val ue(AT_SRC_NODE_OFFSET, 1, node);
1781 resol ve_chain(m;

1782 br eak;

1783 case ANY:

1784 conpar e_val ue(AT_DST_NET_OFFSET, 2, net);
1785 em t op(OP_BRFL) ;

1786 m = chai n(0);

1787 conpar e_val ue(AT_DST_NODE_OFFSET, 1, node);
1788 resol ve_chain(m;

1789 em t op(OP_BRTR) ;

1790 n = chain(0);

1791 conpar e_val ue(AT_SRC_NET_CFFSET, 2, net);
1792 em t op(OP_BRFL) ;

1793 m = chai n(0);

1794 conpar e_val ue(AT_SRC_NCDE_OFFSET, 1, node);
1795 resol ve_chain(m;

1796 resol ve_chain(n);

1797 br eak;

1798 }

1799 eni t op(OP_OFFSET_POP) ;

1800 }

1802 /*

1803 * Conpare ethernet addresses. The address may

1804 * be provided either as a hostname or as a

1805 * 6 octet col on-separated address.

1806 */

1807 static void

1808 et heraddr _mat ch(enum di recti on which, char *hostnane)

1711 } else {

1712 conpar e_addr _v6(addr 60of f set, 16,
1713 *addr6ptr);

1714 }

1715 }

1716 addr6ptr = (struct in6_addr *)

1717 hp->h_addr _I i st [++h_addr _i ndex] ;
1718 }

1719 if (m!=0) {

1720 resol ve_chain(m;

1721 }

1722 em t op(OP_OFFSET_POCP) ;

1723 resol ve_chai n(n);

1724 }

1726 /* only free struct hostent returned by geti pnodebynane() */
1727 if (freehp)

1728 freehost ent (hp) ;

1729 1

1730 }

1732 /*

1733 * Match on zoneid. The arg zone passed in is in network byte order.
1734 */

1735 static void

1736 zone_mat ch(enum direction which, uint32_t zone)

1737 {

1739 switch (which) {

1740 case TQ

1741 conpar e_val ue_zone(| PNET_DSTZONE_OFFSET, zone);
1742 br eak;

1743 case FROM

1744 conpar e_val ue_zone(| PNET_SRCZONE_OFFSET, zone);
1745 br eak;

1746 case ANY:

1747 conpar e_val ue_zone(| PNET_SRCZONE_OFFSET, zone);
1748 conpar e_val ue_zone(| PNET_DSTZONE_OFFSET, zone);
1749 em top(OP_OR);

1750 }

1751 }

1753 /*

1754 * Generate code to match an Appl eTal k address. The address
1755 * nust be given as two nunmbers with a dot between

1756 *

1757 */

1758 static void

1759 at addr _mat ch(enum di recti on which, char *hostnane)

1760 {

1761 uint_t net;

1762 uint_t node;

1763 uint_t m n;

1765 sscanf (host name, "%. %", &net, &node);

1767 eni t op(OP_OFFSET_LI NK) ;

1768 switch (which) {

1769 case TQ

1770 conpar e_val ue(AT_DST_NET_CFFSET, 2, net);

1771 eni t op(OP_BRFL) ;

1772 m = chain(0);

1773 conpar e_val ue(AT_DST_NODE_OFFSET, 1, node);
1774 resol ve_chain(m;

1775 br eak;

1776 case FROM

1809 {
1810
1811
1812
1813
1814

1816
1817
1818
1819
1820
1821
1822
1823
1824

1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1837
1838
1839
1840

1842

uint _t addr;

ushort_t *addrp;

int to_offset, fromoffset;
struct ether_addr e, *ep = NULL;
int m

/*
* First, check the interface type for whether src/dest address
* is determnable; if not, retreat early.
*
/
switch (interface->mac_type) {
case DL_ETHER:
from of f set = ETHERADDRL;
to_offset = 0;

br eak;
case DL_IB:
/*
* If an ethernet address is attenpted to be used
* on an |PolB interface, flag error. Link address
* based filtering is unsupported on |PolB, so there
* is no ipibaddr_match() or parsing support for |PolB
* 20 byte link addresses.
*/
pr_err("filter option unsupported on nedia");
br eak;
case DL_FDDI
fromoffset = 7;
to_offset = 1;
br eak;

defaul t:

new usr/src/cnd/ cnd-i net/ usr. shin/ snoop/ snoop_filter.c

1843 /*

1844 * Where do we find "ether" address for FDDI & TR?
1845 * XXX can inprove? ~sparker

1846 *

1847 | oad_const (1);

1848 return;

1849 }

1851 if (isxdigit(*hostnane))

1852 ep = ether_aton(hostnane);

1853 if (ep == NULL)

1854 if (ether_hostton(hostnane, &e))

1855 if (larp_for_ether(hostnanme, &e))

1856 pr_err("cannot obtain ether addr for %"
1857 host nane) ;

1858 ep = &e;

1859

1860 mencpy(&addr, (ushort_t *)ep, 4);

1861 addrp = (ushort_t *)ep + 2;

1863 emi t op(OP_OFFSET_ZERO) ;

1864 switch (which) {

1865 case TO

1866 conpare_val ue(to_of fset, 4, ntohl (addr));

1867 em top(OP_BRFL) ;

1868 m = chai n(0);

1869 conmpare_val ue(to_offset + 4, 2, ntohs(*addrp));
1870 resol ve_chain(m;

1871 br eak;

1872 case FROM

1873 conmpar e_val ue(fromof fset, 4, ntohl (addr));
1874 eni t op(OP_BRFL) ;

1875 m = chai n(0);

1876 conpare_val ue(fromoffset + 4, 2, ntohs(*addrp));
1877 resol ve_chain(m;

1878 br eak;

1879 case ANY:

1880 conpare_val ue(to_of fset, 4, ntohl (addr));

1881 conmpare_val ue(to_offset + 4, 2, ntohs(*addrp));
1882 eni t op(OP_AND) ;

1883 em top(OP_ BRTR)

1884 m = chai n(0);

1886 conpare_val ue(fromoffset, 4, ntohl (addr));
1887 conpare_val ue(fromoffset + 4, 2, ntohs(*addrp));
1888 eni t op(OP_AND) ;

1889 resol ve_chain(m;

1890 br eak;

1891 }

1892 eni t op(OP_OFFSET_PCP) ;

1893 }

1895 static void

1896 et hertype_natch(int val)

1897 {

1898 int ether_offset = interface->network_type_of fset;

1900 /*

1901 * |f the user is interested in ethertype VLAN,

1902 * then we need to set the offset to the beginning of the packet.
1903 * But if the user is interested in another ethertype,
1904 * such as I Pv4, then we need to take into consideration
1905 * the fact that the packet m ght be VLAN tagged.

1906 */

1907 if (interface->mac_type == DL_ETHER ||

1908 interface->mc_type == DL_CSMACD) {

new usr/src/cnd/ cnd-i net/ usr. sbin/snoop/ snoop_filter.c 10
1909 if (val != ETHERTYPE_VLAN) {

1910 /*

1911 * OP_COFFSET_ETHERTYPE puts us at the ethertype
1912 * field whether or not there is a VLAN tag,
1913 * so ether_offset goes to zero if we get here.
1914 */

1915 em t op(OP_OFFSET_ETHERTYPE) ;
1916 et her _of fset = 0;

1917 } else {

1918 em t op(OP_OFFSET_ZERO) ;

1919 }

1920 }

1921 conpar e_val ue(et her _of fset, interface->network_type_|len, val);
1922 if (interface->mac_type == DL_ETHER ||

1923 interface->mac_type == DL_CSMACD) ({

1924 em t op(OP_OFFSET_PCP) ;

1925 }

1926 }

1928 /*

1929 * Match a network address. The host part

1930 * is masked out. The network address may

1931 * be supplied either as a netnane or in

1932 * IP dotted format. The mask to be used

1933 * for the conparison is assuned fromthe

1934 * address format (see coment bel ow).

1935 */

1936 static void

1937 ?et addr _mat ch(enum direction which, char *netnane)

1938

1939 uint_t addr;

1940 uint_t mask = Oxff000000;

1941 uint_t m

1942 struct netent *np;

1944 if (isdigit(*netnanme)) {

1945 addr = inet_network(netnane);

1946 } else {

1947 np = get net bynanme(net nane) ;

1948 if (np == NULL)

1949 pr_err("net % not known", netnane);
1950 addr = np->n_net;

1951 }

1953 /*

1954 * Left justify the address and figure

1955 * out a mask based on the supplied address.
1956 * Set the mask according to the nunber of zero
1957 * | oworder bytes.

1958 * Note: this works only for whole octet masks.
1959 */

1960 if (addr) {

1961 whil e ((addr & ~mask) !'= 0) {

1962 k | = (mask >> 8);

1963 }

1964 }

1966 emi t op(OP_OFFSET_LI NK) ;

1967 switch (which) {

1968 case TQ

1969 conpar e_val ue_mask(16, 4, addr, nask);
1970 br eak;

1971 case FROM

1972 conpar e_val ue_mask(12, 4, addr, nask);
1973 br eak;

1974 case ANY:

new usr/src/cnd/ cnd-i net/ usr. sbin/snoop/ snoop_filter.c 11

1975 conpare_val ue_rmask(12, 4, addr, mask);
1976 em t op(OP_BRTR) ;

1977 m = chain(0);

1978 conpar e_val ue_nmask(16, 4, addr, mask);
1979 resol ve_chai n(n;

1980 br eak;

1981 }

1982 eni t op(OP_OFFSET_PCP) ;

1983 }

1985 /*

1986 * Match either a UDP or TCP port nunber.

1987 * The port nunber may be provided either as

1988 * port nane as listed in /etc/services ("nntp") or as
1989 * the port nunber itself (2049).

1990 */

1991 static void

1992 port_match(enum directi on which, char *portnane)

1993 {

1994 struct servent *sp;

1995 uint_t m port;

1997 if (isdigit(*portname)) {

1998 port = atoi (portnane);

1999 } else {

2000 sp = getservbynane(portnanme, NULL);
2001 if (sp == NULL

2002 pr_err("invalid port nunber or nanme: %", portnane);
2003 port = ntohs(sp->s_port);

2004 }

2006 eni t op(OP_OFFSET_I P) ;

2008 switch (which) {

2009 case TQ

2010 conpare_val ue(2, 2, port);

2011 br eak;

2012 case FROM

2013 conpare_val ue(0, 2, port);

2014 br eak;

2015 case ANY:

2016 conpare_val ue(2, 2, port);

2017 em t op(OP_BRTR) ;

2018 m = chain(0);

2019 conpare_val ue(0, 2, port);

2020 resol ve_chain(m;

2021 br eak;

2022 1

2023 emni t op(OP_OFFSET_PCP) ;

2024 }

2026 /*

2027 * Cenerate code to match packets with a specific
2028 * RPC program number. |f the prognane is a nane
2029 * it is converted to a nunber via /etc/rpc.

2030 * The program version and/or procedure may be provi ded
2031 * as extra qualifiers.

2032 */

2033 static void

2034 rpc_match_prog(enum direction which, char *prognanme, int vers, int proc)
2035 {

2036 struct rpcent *rpc;

2037 uint _t prog;

2038 uint_t m n;

2040 if (isdigit(*prognane)) {

new usr/src/cnd/ cnd-i net/ usr. sbin/snoop/ snoop_filter.c 12
2041 prog = atoi (prognane);

2042 } else {

2043 rpc = (struct rpcent *)getrpcbynane(prognane);
2044 if (rpc == NULL)

2045 pr_err("invalid programnane: %", prognane);
2046 prog = rpc->r_nunber;

2047 }

2049 eni t op(OP_OFFSET_RPC) ;

2050 em t op(OP_BRFL) ;

2051 n = chain(0);

2053 conpar e_val ue(12, 4, prog);

2054 em t op(OP_BRFL) ;

2055 m = chai n(0);

2056 if (vers >= 0)

2057 conpar e_val ue(16, 4, vers);

2058 em t op(OP_BRFL) ;

2059 m = chain(m;

2060 }

2061 if (proc >= 0) {

2062 conpar e_val ue(20, 4, proc);

2063 em t op(OP_BRFL) ;

2064 m = chain(m;

2065 }

2067 switch (which) {

2068 case TQO

2069 conpare_val ue(4, 4, CALL);

2070 em t op(OP_BRFL);

2071 m = chain(m;

2072 br eak;

2073 case FROM

2074 conpar e_val ue(4, 4, REPLY);

2075 em t op(OP_BRFL) ;

2076 m = chain(m;

2077 br eak;

2078

2079 resol ve_chain(m;

2080 resol ve_chain(n);

2081 eni t op(OP_OFFSET_PCP) ;

2082 }

2084 | *

2085 * Generate code to parse a field specification

2086 * and |oad the value of the field fromthe packet

2087 * onto the operand stack.

2088 * The field offset may be specified relative to the
2089 * beginning of the ether header, |P header, UDP header,
2090 * or TCP header. An optional size specification may
2091 * be provided following a colon. |f no size is given
2092 * one byte is assuned e.g.

2093 *

2094 * et her[0] The first byte of the ether header
2095 * ipl2:2] The second 16 bit field of the |IP header
2096 */

2097 static void

2098 | oad_field()

2099 {

2100 int size = 1;

2101 int s;

2104 if (EQ"ether")

2105 eni t op(OP_OFFSET ZERO) ;

2106 else if (EQ"ip") || EQ"ip6") || EQ"pppoed") || EQ"pppoes"))

new usr/src/cnd/ cnd-i net/ usr. sbin/snoop/ snoop_filter.c 13
2107 em t op(OP_OFFSET_LI NK);

2108 else if (EQ("udp") || EQ"tcp") || EQ"icmp") || EQ"ip-in-ip") ||
2109 EQ "ah") || EQ"esp"))

2110 em t op(OP_OFFSET_I P) ;

2111 el se

2112 pr_err("invalid field type");

2113 next();

2114 s = opstack;

2115 expression();

2116 if (opstack !=s + 1)

2117 pr_err("invalid field offset");

2118 opst ack- - ;

2119 if (*token == ":") {

2120 next () ;

2121 if (tokentype != NUMBER)

2122 pr_err("field size expected");
2123 size = tokenval ;

2124 if (size!=1 && size =2 && size != 4)
2125 pr_err("field size invalid");
2126 next();

2127

2128 if (*token !="]

2129 pr_err("right bracket expected");

2131 | oad_val ue(-1, size);

2132 eni t op(OP_OFFSET_PCP) ;

2133 }

2135 /*

2136 * Check that the operand stack
2137 * contains n argunents

2138 */

2139 static void

2140 checkstack(int nunargs)

2141 {

2142 if (opstack != numargs)

2143 pr_err("invalid expression at \"%\".", token);
2144 }

2146 static void
2147 primry()

2148 {

2149 int m n2, s;

2151 for (;;) {

2152 if (tokentype == FIELD) {
2153 load_field();
2154 opst ack++;

2155 next();

2156 br eak;

2157 }

2159 if (comparison(token)) {
2160 opst ack++;

2161 next();

2162 break;

2163 }

2165 if (EQ"not") || EQ"!")) {
2166 next ();

2167 s = opstack;

2168 primry()

2169 checkstack(s + 1);
2170 em t op(OP_NQT) ;
2171 break;

2172 }

new usr/src/cnd/ cnd-i net/ usr.

2174
2175
2176
2177
2178
2179
2180
2181
2182

2184
2185
2186
2187
2188

2190
2191
2192
2193
2194

2196
2197
2198
2199
2200

2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229

2231
2232
2233
2234
2235
2236
2237
2238

if (BEQ"

}
if (EQ"

if (BEQ"

if (EQ"

}
if (EQ"

}
if (EQ"

}
if (EQ"

shi n/ snoop/ snoop_filter.c 14

(") {

next ();

s = opstack;

expression();

checkstack(s + 1);

if (FEQ)™)

pr_err("right paren expected");

next();

to") |]
dir = TG
next ();
cont i nue;

EQ"dst")) {

from') || EQ"src")) {
dir = FROM

next();

conti nue;

ether")) {
eaddr = 1;
next();
cont i nue;

proto”)) {
next ();
if (tokentype != NUMBER)
pr_err("IP proto type expected");
emi t op(OP_OFFSET_LI NK) ;
conpar e_val ue(| PVv4_TYPE_HEADER OFFSET, 1, tokenval);
em t op(OP_OFFSET_POP) ;
opst ack++;
next();
conti nue;

broadcast")) {
/*

* Be tricky: FDDI ether dst address begins at
* byte one. Since the address is really six
* bytes long, this works for FDDI & ethernet.
* XXX - Token ring?

*

/
em t op(OP_OFFSET_ZERO) ;
if (interface->mac_type == DL_I B)

pr_err("filter option unsupported on nedia");

conpare_val ue(1, 4, Oxffffffff);
em t op(OP_OFFSET_POP) ;
opst ack++;
next();
break;

mul ticast")) {

/* XXX Token ring? */

em t op(OP_OFFSET_ZERO) ;

if (interface->mac_type == DL_FDDI)
conpar e_val ue_mask(1, 1, 0x01, O0x01);

} else if (interface->mac_type == DL_IB) {
pr_err("filter option unsupported on nedia");

} else {

new usr/src/cnd/ cnd-i net/ usr. sbin/snoop/ snoop_filter.c 15

2239
2240
2241
2242
2243
2244
2245

2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275

2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292

2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304

}
if (EQ"

if (BEQ"

if (BEQ"

conpar e_val ue_mask(0, 1, 0x01, 0x01);

em t op(OP_OFFSET_POP) ;
opst ack++;

next();

break;

decnet")) {
/* XXX Token ring? */
|f (interface->mac_type == DL_FDDI)
| oad_val ue(19, 2); /* ether type */
| oad const(OxGOOO)
em t op(OP
emi t op(OP_| BRFL)
m = chai n(0);
| oad_val ue(19, 2); /* ether type */
| oad_const (0x6009) ;
em t op(OP_LE) ;
resol ve_chai n(m;

} else {
em t op(OP_OFFSET_ETHERTYPE) ;
| oad_val ue(0, 2); /* ether type */
| oad const(OxGOOO)
emni t op(OP_

eni top(OP_ BRFL)

m = chai n(0);

| oad_val ue(O, 2); /* ether type */
| oad_const (0x6009) ;

em top(OP_LE);

resol ve_chain(m;

em t op(OP_OFFSET_POP) ;

opst ack++;
next ();
break;

vlian-id")) {

next ();

if (tokentype != NUMBER)

pr_err("vlan id expected");

em t op(OP_OFFSET_ZERO) ;

et hertype_mat ch(ETHERTYPE = VLAN) ;

em t op(OP_BRFL) ;

m = chai n(0);

conpar e_val ue_mask(VLAN_| D_OFFSET, 2, tokenval,
VLAN | D_MASK) ;

resol ve_chai n(m;

em t op(OP_OFFSET_PCP) ;

opst ack++;

next ();

br eak;

apple”)) {
/*

* Appl etal k al so appears in 802.2
* packets, so check for the ethertypes
* at offset 12 and 20 in the MAC header.
*

/

et hert ype_nat ch(ETHERTYPE_AT) ;
em t op(OP_BRTR) ;

m = chai n(0);

et hertype_mat ch(ETHERTYPE_AARP) ;
em t op(OP_BRTR) ;

new usr/src/cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_filter.c

2305
2306
2307
2308
2309
2310
2311
2312
2313
2314

2316
2317
2318
2319
2320
2321
2322
2323
2324

2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349

2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370

}

m = chain(m;

conpar e_val ue(20, 2, ETHERTYPE_AT); /* 802.2 */
em t op(OP_BRTR) ;

m = chain(m;

conpar e_val ue(20, 2, ETHERTYPE_AARP); /* 802.2 */
resol ve_chain(m;

opst ack++;

next();

br eak;

if (EQ"vlan"))

if (EQ"

if (EQ"

{
et hert ype_nmat ch(ETHERTYPE_VLAN) ;
conpar e_val ue_mask(VLAN_| D_OFFSET, 2, 0, VLAN_|D MASK);
em t op(OP_NQT) ;
em t op(OP_AND) ;
opst ack++;
next ();
break;

bootp*) || EQ"dhcp")) { _
ethertype_mat ch(interface->network_type_ip);
em t op(OP_BRFL) ;
m = chai n(0);
em t op(OP_ OZFSET LI NK) ;
conpare_val ue(9, 1, | PPROTO_UDP);
em t op(CP_CFFSEF_PCP) ;
em t op(OP_BRFL) ;
m = chai n(m ;
em t op(OP_ OZFSEI' 1 P);
conpare_val ue(0, 4,
(1 PPORT_BOOTPS << 16) | | PPORT_BOOTPC);
emt op(GD BRTR) ;
nm2 = chain(0);
corrpare val ue(O, 4,
(1 PPORT_BQOOTPC << 16) | | PPORT_BOOTPS);
resol ve_chai n(n®) ;
em t op(OP_OFFSET_POP) ;
resol ve_chain(nm;
opst ack++
dir = ANY;
next ();
break;

dhcp6”)) {

et hertype_mat ch(i nterface->network_type_i pv6);
em t op(OP_BRFL) ;

m = chai n(0);

emi t op(OP_OFFSET_LI NK) ;

conpare_val ue(6, 1, |PPROTO _UDP);
em t op(OP_OFFSET_POP) ;

em t op(OP_BRFL) ;

m = chai n(m ;

em t op(OP_ OZFSEI' 1 P);

conpar e_val ue(2, "2, i PPORT_DHCPV6S) ;
em t op(OP_BRTR) ;

n2 = chain(0);

conpare_val ue(2, 2, |PPORT_DHCPV6C);
resol ve_chai n(nR) ;

em t op(OP_OFFSET_POP) ;

resol ve_chai n(m;

opst ack++;

dir = ANY;

next();

new usr/src/cnd/ cnd-i net/ usr. sbin/snoop/ snoop_filter.c 17

2371
2372

2374
2375
2376
2377
2378
2379
2380
2381
2382

2384
2385
2386
2387
2388
2389
2390
2391

2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403

2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415

2417
2418
2419
2420
2421
2422

2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434

2436

}
ifo(EQ

if (BEQ"

if (EQ"

if (BEQ"

if (EQ"

}
it (EQ

}
if (EQ"

br eak;

ethertype")) {
next () ;

if (tokentype != NUMBER)
pr_err("ether type expected");
et hertype_mat ch(t okenval) ;
opst ack++;
next ();
break;

pppoe”)) {

et hert ype_mat ch(ETHERTYPE_PPPCED) ;
et hert ype_nmat ch(ETHERTYPE_PPPCES) ;
em top(OP_OR);

opst ack++;

next ();

br eak;

inet")) {

next () ;

if (EQ("host"))
next();

if (tokentype != ALPHA && tokentype != ADDR | P)
pr_err("host/IPv4 addr expected after inet");

i paddr _nmatch(dir, token, |PV4A_O\LY);

opst ack++;

next ();

break;

inet6")) {
n

ext();
if (EQX"host"))
next();
if (tokentype != ALPHA && tokentype != ADDR | P6)
pr_err("host/IPv6 addr expected after ineté6");
i paddr _match(dir, token, |PV6_ONLY);

opst ack++;

next ();

break;

length")) {

em t op(OP_LOAD_LENGTH) ;
opst ack++;

next();

br eak;

less")) {

next();

if (tokentype != NUMBER)
pr_err("packet |ength expected");
em t op(OP_LOAD_LENGTH) ;
| oad_const (t okenval);
em t op(OP_LT);
opst ack++;
next();
br eak;

greater")) {

new usr/src/ cnd/ cnd-i net/ usr. sbin/snoop/ snoop_filter.c 18
2437 next();

2438 if (tokentype != NUMBER)

2439 pr_err("packet |ength expected");
2440 emi t op(OP_LOAD_LENGTH) ;

2441 | oad_const (t okenval);

2442 em t op(OP_QT) ;

2443 opst ack++;

2444 next();

2445 br eak;

2446 }

2448 if (EQQ"nofrag")) {

2449 emi t op(OP_OFFSET_LI NK) ;

2450 conpar e_val ue_nmask(6, 2, 0, Ox1fff);
2451 eni t op(OP_OFFSET_POP) ;

2452 em t op(OP_BRFL) ;

2453 m = chai n(0);

2454 et hertype_mat ch(i nterface->network_type_ip);
2455 resol ve_chain(m;

2456 opst ack++;

2457 next();

2458 break;

2459 }

2461 if (EQ"net") || EQ"dstnet") || EQ"srcnet")) {
2462 if (EQQ"dstnet"))

2463 dir = TQ

2464 else if (EQ("srcnet"))

2465 dir = FROM

2466 next();

2467 net addr _match(dir, token);

2468 dir = ANY;

2469 opst ack++;

2470 next();

2471 break;

2472 }

2474 if (EQ"port") || EQ"srcport") || EQ"dstport")) {
2475 1 f (EQ("dstport"))

2476 dir = TQ

2477 else if (EQ"srcport"))

2478 dir = FROM

2479 next ();

2480 port_match(dir, token);

2481 dir = ANY;

2482 opst ack++;

2483 next();

2484 break;

2485 }

2487 if (EQ"rpc")) {

2488 uint_t vers, proc;

2489 char savet oken[32];

2491 vers = proc = -1;

2492 next ();

2493 (void) strlcpy(savetoken, token, sizeof (savetoken));
2494 next();

2495 if (*token ==",")

2496 next ();

2497 if (tokentype != NUMBER)

2498 pr_err("versi on nunber expected");
2499 vers = tokenval ;

2500 next ();

2501

2502 if (*token ==",") {

new usr/src/cnd/ cnd-i net/ usr. sbin/snoop/ snoop_filter.c 19

2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513

2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528

2530
2531
2532
2533
2534
2535
2536

2538
2539
2540
2541
2542
2543
2544

2546
2547
2548

2550
2551
2552
2553
2554
2555
2556
2557
2558

2560
2561
2562
2563
2564
2565
2566
2567
2568

}
if (EQ"

if (B

if (BEQ"

if (EQ"

}
it (EQ

next();
if (tokentype != NUMBER)
pr_err("proc nunber expected");
proc = tokenval;
next();

rpc_match_prog(dir, savetoken, vers, proc);
dir = ANY;

opst ack++;

break;

sl p")

/* filter out TCP handshakes */

eni t op(OP_OFFSET LI NK) ;

conpare_val ue(9, 1, |IPPROTO TCP);

emi t op(OP_LQOAD_CONST) ;

em tval (52);

eni t op(OP_LOAD CONST) ;

em tval (2);

em top(OP_ LOAD) SHORT) ;

em t op(OP_CE) ;

emtop((P_AND) /* proto == TCP && len < 52 */
em t op(OP_NQT) ;

em top(OP_ BRFL) /* pkt too short to be a SLP call */
m = chai n(0);

em t op(OP_OFFSET_POP) ;
emi t op(OP_OFFSET_SLP) ;
resol ve_chai n(m;

opst ack++;

next ();

br eak;

|dap)) {
di

port natch(dl r, "ldap");
opst ack++;

next ();

br eak;

and) [l EQ"or™)) {

br eak

zone")) {
next();
if (tokentype != NUMBER)
pr_err("zoneid expected");
zone_mat ch(dir, BE_32((uint32 t)(tokenval)));
opst ack++;
next();
br eak;

gateway")) {
next();

if (eaddr || tokentype != ALPHA)
pr_err("hostnanme required: %", token);

et heraddr _nat ch(dir, token);

dir = ANY;

em t op(OP_BRFL) ;

m = chai n(0);

i paddr _match(dir, token, |PVA_AND | PV6);

new usr/src/cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_filter.c

2569 em t op(OP_NQT) ;

2570 resol ve_chai n(rr)

2571 opst ack++;

2572 next();

2573 }

2575 if (EQ"host") || EQ "between") ||

2576 tokentype == ALPHA || /* assume its a hostname */
2577 tokentype == ADDR IP ||

2578 t okent ype == ADDR | P6 | |

2579 t okent ype == ADDR AT ||

2580 tokentype == ADDR ETHER) {

2581 if (EQ"host") || EQ"between"))

2582 next ();

2583 if (eaddr || tokentype == ADDR_ETHER) {
2584 et her addr match(dlr t oken);
2585 } else if (tokentype == ALPHA

2586 i paddr _mat ch(dir, token, |PV4_AND | PV6);
2587 } else if (tokentype == ADDR AT) {
2588 at addr match(dlr t oken) ;

2589 } else if (tokentype == ADDR IP) {
2590 i paddr _mat ch(dir, token, |PV4_ONLY);
2591 } else {

2592 i paddr_mat ch(dir, token, |PV6_ONLY);
2593

2594 dir = ANY;

2595 eaddr = O;

2596 opst ack++;

2597 next();

2598 br eak;

2599 }

2601 if (tokentype == NUMBER) {

2602 | oad_const (t okenval);

2603 opst ack++;

2604 next ();

2605 br eak;

2606 }

2608 break; /* unknown token */

2609 }

2610 }

2612 struct optable {

2613 char *op_t ok;

2614 enum opt ype op_type;

2615 };

2617 static struct optable
2618 mul ops[] = {

2619 g P ML,
2620 vgo, P DV
2621 "o OF_REM
2622 O, OP_AND,
2623 o OP_STCP,
2624 };

2626 static struct optable
2627 addops[] = {

2628 R OP_ADD,
2629 DT OP_SUB,
2630)@, OP_OR,
2631 hm T XOR,
2632 L) OP_STOP,
2633 };

new usr/src/cnd/ cnd-i net/ usr. shin/ snoop/ snoop_filter.c

2635 static struct optable
2636 conpareops[] = {

2637 oP_EQ
2638 OP_EQ
2639 OP_NE,
2640 OP G,
2641 oP_GE,
2642 oP LT,
2643 : OP_LE
2644) OP_STCP,
2645 };

2647 |+

2648 * Using the table, find the operator
2649 * that corresponds to the token.

2650 * Return O if not found.

2651 */

2652 static int

2653 find_op(char *tok, struct optable *table)
2654 {

2655 struct optable *op;

2657 for (op = table; *op->op_tok; op++) {
2658 if (strcnp(tok, op->op_tok) == 0)
2659 return (op->op_type);
2660 }

2662 return (0);

2663 }

2665 static void
2666 expr_mul ()

2667 {

2668 int op;

2669 int s = opstack;

2671 primry();

2672 while (op = find_op(token, mulops)) {
2673 next();

2674 pri mary()

2675 checkst ack(s + 2);
2676 em top(op);

2677 opst ack- - ;

2678 1

2679 }

2681 static void
2682 expr_add()

2683 {

2684 int op, s = opstack

2686 expr_mul ();

2687 while (op = find_op(token, addops)) {
2688 next();

2689 expr_mul ();

2690 checkstack(s + 2);
2691 em top(op);

2692 opst ack- -;

2693 }

2694 }

2696 static void

2697 expr_conpare()

2698 {

2699 int op, s = opstack

new usr/src/cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_filter.c

2701 expr_add();

2702 while (op = find_op(token, conpareops)) {
2703 next();

2704 expr add()

2705 checkstack(s + 2);
2706 em top(op);

2707 opst ack- - ;

2708 }

2709 }

2711 | *

2712 * Alternation ("and") is difficult because
2713 * an inplied "and" is acknow edge between
2714 * two adjacent prinmaries. Just keep calling
2715 * the |lower-level expression routine unti
2716 * no value is added to the opstack.
2717 */

2718 static void

2719 al ternation()

2720 {

2721 int m= 0;

2722 int s = opstack;

2724 expr_conpare();

2725 checkstack(s + 1);

2726 for (;;) {

2727 if (EQQ"and"))

2728 next();

2729 em t op(OP_BRFL)

2730 m = chain(m;

2731 expr_conpare();

2732 if (opstack I'=s + 2)
2733 br eak;

2734 opst ack- -;

2735 }

2736 unenit(2);

2737 resol ve chaln(ﬂ

2738 }

2740 static void

2741 expression()

2742 {

2743 int m= 0;

2744 int s = opstack;

2746 alternatlon()

2747 while (EQ("or") || EQ",")) {
2748 em t op(OP_BRTR) ;

2749 m = chain(m;

2750 next();

2751 alternation();

2752 checkstack(s + 2)
2753 opst ack- - ;

2754 }

2755 resol ve_chai n(m;

2756 }

2758 [*

2759 * Take n args fromthe argv |ist
2760 * and concatenate theminto a single string
2761 */

2762 char *

2763 concat _args(char **argv, int argc)
2764 {

2765 int i, len;

2766 char *str, *p

new usr/src/cnd/ cnd-i net/ usr. shin/ snoop/ snoop_filter.c 23 new usr/src/cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_filter.c 24

2833 nenset(&ar 0, sizeof (ar));
2768 /* First add the lengths of all the strings */ 2834 sin = (struct sockaddr in *)&ar ar p_pa;
2769 len = O 2835 sin->sin_fanmily = AF_INET;
2770 for (i =0; i < argc; i++) 2836 hp = getT| pnodebynarre(host name, AF_INET, O, &error_num;
2771 len += stri en(argv[i]) + 1; 2837 if (hp == NULL)
2838 return (B_FALSE);
2773 /* allocate the big string */ 2839 }
2774 str = (char *)nalloc(len); 2840 nencpy(&sin->sin_addr, hp->h_addr, sizeof (sin->sin_addr));
2775 if (str == NULL) 2841 s = socket (AF_I NET, SOCK_DGRAM 0);
2776 pr_err("no ment'); 2842 if (s <0) {
2843 return (B_FALSE);
2778 p = str; 2844 }
2845 if (ioctl(s, SIOCGARP, &ar) < 0) {
2780 I* 2846 cl ose(s);
2781 * Concat the strings into the big 2847 return (B_FALSE);
2782 * string using a space as separator 2848 }
2783 */ 2849 cl ose(s);
2784 for (i =0; i < arge; i++) { 2850 mencpy(ep- >et her _addr _octet, ar.arp_ha.sa_data, sizeof (*ep));
2785 strcpy(p, argv[il); 2851 return (B_TRUE);
2786 p += strl en(p) 2852 }
2787 *ptt+ =
2788
2789 *--p = '\0";
2791 return (str);
2792 }
2794 | *
2795 * Take the expression in the string "expr"
2796 * and conpile it into the code array.
2797 * Print the generated code if the print
2798 * arg is set.
2799 */
2800 void
2801 conpil e(char *expr, int print)
2802 {
2803 expr = strdup(expr)
2804 if (expr == L)
2805 pr_err("no nent);
2806 curr_op = oplist;
2807 tkp = expr;
2808 dir = ANY;
2810 next ();
2811 if (tokentype != EQL)
2812 expression();
2813 eni t op(OP_STCP) ;
2814 if (tokentype 1= EQL)
2815 pr_err("invalid expression");
2816 optimze(oplist);
2817 if (print)
2818 codeprint();
2819 }
2821 [*
2822 * Lookup hostnane in the arp cache.
2823 */

2824 bool ean_t
2825 arp_for_ether(char *hostnane, struct ether_addr *ep)

2826 {

2827 struct arpreq ar;

2828 struct hostent *hp;
2829 struct sockaddr _in *sin;
2830 int error_num

2831 int s;

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

R R R R

39402 Sat Aug 18 10:36:58 2012
new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c
dccp: snoop, build system fixes

R R R R

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns.
*

/

26 #include <stdio. h>
27 #include <string. h>
28 #include <fcntl. h>
29 #include <string.h>
30 #include <sys/types. h>
31 #include <sys/tine. h>

33 #include <sys/stropts. h>

34 #include <sys/socket.h>

35 #include <net/if.h>

36 #include <netinet/in_systm h>
37 #include <netinet/in.h>

38 #include <netinet/ip.h>

39 #include <netinet/ip6.h>

40 #include <netinet/ip_icnp.h>
41 #include <netinet/icnp6. h>

42 #include <netinet/if_ether.h>
43 #include <inet/ip.h>

44 #include <inet/ip6.h>

45 #incl ude <arpal/inet.h>

46 #include <netdb. h>

47 #include <tsol/label.h>

48 #include <sys/tsol/tndb. h>

49 #include <sys/tsol /| abel _macro. h>

51 #i

ncl ude "snoop. h"

54 | *

55 * | Pv6 extension header masks. These are used by the print_ipv6_extensions()
56 * function to return information to the caller about which extension headers
57 * were processed. This can be useful if the caller wants to know if the

58 * packet is an IPv6 fragnent, for exanple.

59 =/

60 #defi ne SNOOP_HOPOPTS 0x01U

61 #define SNOOP_ROUTING 0x02U

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

62 #define SNOOP_DSTOPTS 0x04U
63 #defi ne SNOOP_FRAGMVENT 0x08U

64 #define SNOOP_AH 0x10U

65 #define SNOOP_ESP 0x20U

66 #define SNOOP_| PV6 0x40U

68 static void prt_routing_hdr(int, const struct ip6_rthdr *);
69 static void prt_fragment_hdr(int, const struct i1p6_frag *);
70 static void prt_hbh_options(int, const struct ip6_hbh *);
71 static void prt_dest_options(int, const struct ip6_dest *);
72 static void print_route(const uchar_t *);

73 static void print_ipoptions(const uchar_t *, int);

74 static void print_ripso(const uchar_t *);

75 static void print_cipso(const uchar_t *);

77 |* Keep track of how many nested | P headers we have. */
78 unsigned int encap_| evels;
79 unsigned int total _encap_levels = 1;

81 int

82 interpret_ip(int flags, const struct ip *ip, int fraglen)
83 {

84 uchar_t *data;

85 char buff[24];

86 bool ean_t isfrag = B_FALSE;

87 bool ean_t norefrag;

88 uint16_t fragoffset;

89 int hdrlen;

90 uint16_t iplen, uitnp;

92 if (ip->p_v == |PV6_VERSION) {

93 iplen = interpret_ipv6(flags, (ip6_t *)ip, fraglen);
94 return (iplen);

95 }

97 if (encap_levels == 0)

98 total _encap_l evels = 0;

99 encap_| evel s++;

100 total _encap_| evel s++;

102 hdrlen = ip->ip_hl * 4

103 data = ((uchar_t *)ip) + hdrlen;

104 iplen = ntohs(ip->p_len) - hdrlen;

105 fraglen -= hdrlen;

106 if (fraglen > iplen)

107 fraglen = iplen;

108 if (fraglen < 0)

109 (void) snprintf(get_sumline(), MAXLINE,
110 "I P truncated: header missing % bytes", -fraglen);
111 encap_| evel s--;

112 return (fraglen + iplen);

113 }

114 /*

115 * W flag this as a fragnent if the nore fragnents bit
116 * if the fragment offset is non-zero.

117 */

118 norefrag = (ntohs(ip->p_off) & IP_.M) == 0 ? B_FALSE :
119 fragoffset = (ntohs(ip->ip_off) & Ox1FFF) * 8;
120 if (morefrag || fragoffset != 0)

121 isfrag = B_TRUE;

123 src_nanme = addrtonanme(AF_I NET, & p->i p_src);

124 dst_name = addrtoname(AF_I NET, & p->ip_dst);

126 if (flags & F_SUM {

127 if (isfrag) {

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

128 (voi d) snprintf(get_: sum line(), MAXLINE,

129 "% I P fragrrent ID=% Off set=% 4d MF=%l TOS=0x% "
130 "TTL=%"

131 get prot o(| p->ip_p),

132 nt ohs(i p->ip_id),

133 fragof f set,

134 nor ef r ag,

135 i p->i p_tos,

136 ip->ip_ttl);

137 } else {

138 (void) strlcpy(buff, inet_ntoa(ip->ip_dst),

139 si zeof (buff));

140 uitmp = ntohs(ip->ip_len);

141 (voi d) snprintf(get_sumli ne() MAXLI NE,

142 "IP D=% S=% LEN=%%, D:%'i, TOS=0x%, TTL=%d",
143 buf f,

144 i net _nt oa(ip->ip_src),

145 ui tnp,

146 iplen > fraglen ? "?2" : "",

147 nt ohs(i p->ip_id),

148 i p->i p_tos,

149 ip->ip_ttl);

150 }

151 }

153 if (flags & F_DTAIL) {

154 show_header ("1 P: ", "I P Header", iplen);

155 show_. _space();

156 (voi d) snpri ntf(get line(0, 0), get_line_remain(),

157 ersion = %", ip->ip_v);

158 (voi d) snpri ntf(get line(0, 0), get_line_remain(),

159 Header length = %l bytes", hdrlen);

160 (voi d) snprintf(get_li ne(O O) get _line_renain(),

161 Type of service = O0x%02x", 1p->ip_tos);

162 (voi d) snprintf(get_Iline(O, 0) get _l 1 ne_remain(),

163 XXX. = % (precedence)

164 ip->ip_tos >> 5);

165 (voi d) snprintf(get_line(0, 0), get_|line_remain(),

166 %;", getfl ag(ip->i p_ tos, | PTOS_LOADELAY,

167 "l ow del ay", "nornal delay"));

168 (void) snpri ntf(get _line(0, 0), get_line_remain(), " %",
169 getflag(ip->ip_tos, |PTOS_THROUGHPUT,

170 "hi gh throughput", "normal throughput"));

171 (void) snprintf(get_line(0, 0), get_line_remain(), %"
172 getflag(ip->ip_tos, |PTOS RELIABILITY,

173 "high reliability", "normal reliability"));

174 (void) snprintf(get_line(0, 0), get_line_remain(), %s"
175 getflag(ip->ip_tos, | PTCB ECT,

176 "ECN capabl e transport"”, "not ECN capable transport)):
177 (void) snprintf(get_line(0, 0) get _line_remain(), /s",
178 getflag(lp > p_tos, IPTCSCE

179 "ECN congestion experienced"

180 "no ECN congestion experi enced"));

181 /* warning: ip_len is signed in netinet/ip.h */

182 uitnp = ntohs(ip->ip_len);

183 (voi d) snprintf(get_Iine(O, 0), get _line_remain(),

184 "Total length = % bytes¥%", uitnp,

185 iplen > fraglen ? " -- truncat ed" "

186 (void) snprintf(get_line(0, 0), get_line r emi n(),

187 “ldentification = %", ntohs(ip >ip_id));

188 /* vrarning: ip_off is signed in netinet/ip.h*/

189 uitmp = ntohs(ip->ip_off);

190 (voi d) snpri ntf(get line(0, 0), get_line_remain(),

191 Fl ags = Ox9%" U| tnp >> 12);

192 (void) snpri ntf(get line(0, 0), get_line_remain(), %"

193 getflag(uitnmp >> 8, IPDF>> 8,

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

194 "do not fragment", "may fragment")

195 (void) snprintf(get_line(0, 0), get_Ii ne remai n(), %"
196 getflag(urtrrp >> 8, IPNF>>8

197 "nmore fragnents"”, "l ast fragment "

198 (void) snpri ntf(get_l ine(0, 0), get_li ne remain(),

199 "Fragment offset = % bytes",

200 fragoffset);

201 (void) snprintf(get_line(0, 0), get_line_remain(),

202 "Time to live = % seconds/ hops",

203 ip->ip_ttl);

204 (void) snprintf(get_line(0, 0), get_line_remain(),

205 "Protocol =% (%)", ip->ip_p,

206 getproto(ip->ip_p));

207 /*

208 * XXX need to conpute checksum and print whether it’s correct
209 */

210 (voi d) snprintf(get_li ne(O O) get _line_remain(),

211 Header checksum =

212 nt ohs(ip->i p_sum);

213 (void) snprintf(get_Ii ne(O O) get _line_remain(),

214 "Source address = %, %"

215 inet_ntoa(ip->ip_sr c) addrt oname(AF_I NET, & p->ip_src));
216 (voi d) snprintf(get_li ne(O 0), get line_remain(),

217 "Destination address = %, %"

218 i net_ntoa(ip->ip_dst), addrt onarre(AF I NET, & p->ip_dst));
220 /* Print 1P options - if any */

222 print_ipoptions((const uchar_t *)(ip + 1),

223 hdrien - sizeof (struct Tp));

224 show_space();

225 1

227 /*

228 * If we are in detail node, and this is not the first fragnent of
229 * a fragnented packet, print out alittle line stating this.

230 * Otherwise, go to the next protocol layer only if this is not a
231 * fragnment, or we are in detail node and this is the first fragnent
232 * of a fragnented packet.

233 */

234 if (flags & F_DTAIL && fragoffset != 0) {

235 (void) snprintf(get_detail_line(0, 0), MAXLI NE,

236 "%: [% byte(s) of data, continuation of |P ident=%]",
237 getproto(ip->ip_p),

238 iplen,

239 ntohs(ip->ip_id));

240 } else if (lisfrag || (flags & F_DTAIL) && isfrag && fragoffset == 0)
241 /* go to the next protocol |ayer */

243 if (fraglen > 0) {

244 switch (ip- >|p p) {

245 case IPPROTO

246 bre

247 case | PPROTO ENCAP

248 (void) interpret_ip(flags,

249 /* LINTED: alignment */

250 (const struct ip *)data, fraglen);

251 br eak;

252 case | PPROTO_| CVP:

253 (void) interpret_icnmp(flags,

254 /* LINTED: alignnment */

255 (struct icnp *)data, iplen, fraglen);
256 br eak;

257 case | PPROTO_| GWP:

258 |nterpret _igmp(flags, data, iplen, fraglen);
259 br eak;

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

260
261
262
263
264
265

267
268
269
270
271
272
273
274

276
277
278

280
281
282
283
284
285
286

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

311
312
313

315
316
317
318
319
320
321
322
323
324
325

case | PPROTO_GGP:
break;
case | PPROTO_TCP:
(void) interpret_tcp(flags,
(struct tcphdr *)dat a, iplen, fraglen);
br eak;

case | PPROTO_ESP:
(voi d) interpret_esp(flags, data, iplen,
fraglen);
br eak;
case | PPROTO . AH:
(voi d) interpret_ah(flags, data, iplen,
fraglen);
br eak;

case | PPROTO_OSPF:
interpret_ospf(flags, data, iplen, fraglen);
break;

case | PPROTO_EGP:
case | PPROTO_PUP:
br eak;
case | PPROTO_UDP:
(void) interpret_udp(flags,
(struct udphdr *)data, iplen, fraglen);
br eak;

case | PPROTO | DP:
case | PPROTO HELLO
case | PPROTO_ND:
case | PPROTO RAW
bre
case IPPROTO | PV6: /* | PV6 encap */
/* LUNTED: alignment */
(void) interpret_ipv6(flags, (ip6_t *)data,
iplen);
br eak;
case | PPROTO_SCTP:
(void) interpret_sctp(flags,

(struct sctp_hdr *)data, iplen, fraglen);

br eak;
case | PPROTO_DCCP:
(void) interpret_dccp(flags,
(struct dccphdr *)data, iplen, fraglen);
br eak;

#endif /* ! codereview */

}
}

encap_| evel s--;
return (iplen);

erpret_ipv6(int flags, const ip6_t *ip6h, int fraglen)

uint8 t *data;

int hdrlen, iplen;

int version, flow, class;
uchar_t proto;

bool ean_t isfrag = B_FALSE;
uint8_t extmask;

*

* The print_srcnane and print_dstname strings are the hostname

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

326
327
328
329
330
331
332

334
335
336
337
338
339

341

343
344

346
347
348
349
350
351
352

354
355
356
357
358
359
360
361
362
363

365
366
367
368

370

372
373
374
375
376
377

379
380
381
382
383
384

386
387

389
390
391

* parts of the verbose | Pv6 header output, including the comm
* and the space after the litteral addr ess strings.
*
/
char print_srcnane[MAXHOSTNAMELEN + 2] ;
char print_dst nane[MAXHOSTNAMELEN + 2] ;
char src_addrstr[| NET6_ADDRSTRLEN ;
char dst_addrstr[| NET6_ADDRSTRLEN] ;

i pl en = ntohs(ip6h->i p6 pl en);
hdrlen = | PV6_HDR LEN;
fraglen -= hdrlen;
if (fraglen < 0)

return (fraglen + hdrlen);
data = ((uint8_t *)ip6h) + hdrlen;

proto = ip6h->i p6_nxt;

src_nanme = addrtonanme(AF_I NET6, & p6h->i p6_src);
dst _nane = addrtonane(AF_I NET6, & p6h->i p6_dst);
/*
* Use endi an-aware masks to extract traffic class and
* flowinfo. Also, flowinfo is now 20 bits and class 8
* rather than 24 and 4.

*/

class = ntohl (
flow = ntohl (i

/

(i p6h->i p6_vcf & | PV6_FLON NFO TCLASS) >> 20);
p6h->i p6_vcf & |1 PV6_FLOW NFO FLOAABEL) ;

so the code within the first part of the following if statenent
will not affect the detailed printing of the packet.
*

if (flags & F_SUM {
(voi d) snprintf(get_sumline(), MAXLINE,
IPv6 S=% D=% LEN=-% HCPS—%! CLASS=0x%x FLOW-0x%x"
src_nane, dst_nane, iplen, ip6h->ip6_hops, class, fl ow);
} else if (flags & F_DTAIL) {

*
* NOTE: the F_SUM and F_DTAIL flags are mutual ly excl usive,
*
*

(void) inet_ntop(AF_I NET6, & p6h->ip6_src, src_addrstr,
| NET6_ADDRSTRLEN) ;

(voi d) inet_ntop(AF_ INETG & p6h->i p6_dst, dst_addrstr,
| NET6_ADDRSTRLEN) ;

version = ntohl (i p6h->i p6_vcf) >> 28;

if (strcnp(src_name, src_addrstr) == 0) {
print srcnama[o] ='\0";
} else {
snprlntf(prlnt srcname, sizeof (print_srcnane),
, %", src_nane);

}

if (strcnp(dst_name, dst_addrstr) == 0) {
print_dstname[0] = '\0";

} else {
snprintf(print_dstnane, sizeof (print_dstnane),

", 9", dst_nanme);
}
show_header ("I Pv6: ", "I Pv6é Header", iplen);

show_space();

(voi d) snpri ntf(get line(0, 0), get_line_remain(),
"Version = %", version);
(void) snpri ntf(get _line(0, 0), get_line_remin(),

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

392
393
394
395
396
397
398
399
400
401
402
403
404
405

407
408

410
411
412
413
414
415
416
417
418
419
420
421
422

424
425
426
427
428
429
430
431

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

"Traffic dass = %", class);
(voi d) snprintf(get_li ne(O 0), get_line_remain(),
"Fl ow | abel = Ox%", flow);

(void) snpri ntf(get _li ne(O, O)| get _line_remain(),
"Payl oad | ength = %", iplen);

(void) snprintf(get_line(0, 0), get_line_remain(),
"Next Header = % (%)", proto,
getproto(proto));

(voi d) snprl ntf(get_line(0, 0), get_line_remain(),

Hop Limt = %", ip6h->ip6_hops);

(void) snpri ntf(get _I ine(0, 0), get_line_remain(),
"Source address = %%", src_addrstr, print_srcnane);

(voi d) snprintf(get_li ne(O 0), get l'i ne_renain()

"Destination address = %%", dst_addrstr, pri nt _dst nane) ;

show_space();

}

/*

* Print |Pv6 Extension Headers, or skip themin the summary case.
* Set isfrag to true if one of the extension headers encounterred
* was a fragnent header.

*
/
if (proto == | PPROTO HOPOPTS || proto == | PPROTO DSTOPTS | |
proto == | PPROTO_ROUTING || proto == | PPROTO_FRAGVENT)
extmask = print_i pv6_extensions(flags, &data, &proto, & plen,
&f ragl en);
if ((extmask & SNOCP > FRAGVENT) !'= 0) {
isfrag = B_TRUE;
}
}
/*
* We only want to print upper layer information if this is not
* a fragnent, or if we're printing in detail. Note that the
* proto variable will be set to | PPROTO NONE if this is a fragnment
*

with a non-zero fragnent offset.

*/

if ('|sfrag || flags & F_DTAIL)

* go to the next protocol |ayer */

switch (proto) {
case | PPROTO_| P:
break;
case | PPROTO_ENCAP:
/* LINTED: alignment */
(void) interpret_ip(flags, (const struct ip *)data,
fragl en);
bre
case | PPROTO | CVPV6:
/* LTNTED: alignment */

(void) interpret_icnpv6(flags, (icnp6_t *)data, iplen,

fraglen);
br eak;
case | PPROTO_| GWP:
interpret_ignp(flags, data, iplen, fraglen);
break;
case | PPROTO_GGP:
br eak;
case | PPROTO _TCP:
(void) interpret_tcp(flags, (struct tcphdr *)data,
iplen, fraglen);
br eak;
case | PPROTO _ESP:
(void) interpret_esp(flags, data, iplen, fraglen);
br eak;

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

493
494

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

515
516

518
519
520

522
523

case | PPROTO_AH:
(void) interpret_ah(flags, data, iplen, fraglen);
br eak;
case | PPROTO_EGP:
case | PPROTO_PUP:
break;
case | PPROTO_UDP:
(void) interpret_udp(flags, (struct udphdr *)data,
i plen, fraglen);
br eak;
case | PPROTO_I DP:
case | PPROTO HELLO
case | PPROTO_ND:
case | PPROTO_RAW
break;
case | PPROTO | PV6:
/* LINTED: alignment */
(void) interpret_ipv6(flags, (const ip6_t *)data,
i plen);
br eak;
case IPPROTO_SCT P:
(void) interpret_sctp(flags, (struct sctp_hdr *)data,
i plen, fraglen);
br eak;
case | PPROTO_CSPF:
interpret_ospf6(flags, data, iplen, fraglen);
break;
case | PPROTO_DCCP:
(voi d) interpret_dccp(flags, (struct dccphdr *)data,
i plen, fraglen);
br eak;

#endi f /* | codereview */

ui nt 8_t
print

{

}

return (iplen);

ip_ext: data including the extension header.

length of the data remmining in the packet.

Returns a mask of | Pv6 extension headers it processed.

“ipv6_extensions(int flags, uint8_t **hdr, uint8_t *next, int *iplen,
int *fraglen)

uint8_t *data_ptr;

uchar_t proto = *next;

bool ean_t i s_extensi on_header;
struct ip6_hbh *ipv6ext_hbh;
struct ip6_dest *ipv6ext_dest;
struct ip6_rthdr *ipv6ext_rthdr;
struct ip6_frag *ipv6ext_frag;
uint32_t exthdrlen;

uint8_t extmask = 0;

if ((hdr == NULL) || (*hdr == NULL) || (next == NULL) || (iplen == 0))
return (0);

data_ptr = *hdr;
i s_extensi on_header = B_TRUE;
whil e (is_extension_header) {

/*
* There nust be at |east enough data left to read the

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

524 * next header and header length fields fromthe next
525 * header.

526 */

527 if (*fraglen < 2)

528 return (extmask);

529 }

531 switch (proto) {

532 case | PPROTO_HOPOPTS:

533 i pv6ext _hbh = (struct ip6_hbh *)data_ptr;
534 exthdrlen = 8 + ipv6ext _hbh->i p6h_l en * 8;
535 if (*fraglen <= exthdrlen) {

536 return (extmask);

537 }

538 prt_hbh_options(flags, ipv6ext_hbh);

539 ext mask | = SNOOP_HOPOPTS;

540 proto = i pvéext_hbh->i p6h_nxt;

541 br eak;

542 case | PPROTO DSTOPTS:

543 i pv6ext _dest = (struct ip6_dest *)data_ptr;
544 exthdrlen = 8 + i pv6ext _dest->i p6d_|len * 8;
545 if (*fraglen <= exthdrlen) {

546 return (extmask);

547 }

548 prt_dest _opti ons(fl ags i pv6ext _dest);

549 ext mask | = SNOOP_DSTOPTS;

550 proto = | pv6ext_dest >i p6d_nxt ;

Bl br eak;

552 case | PPROTO | ROUTI NG

553 i pvéext _ rthdr = (struct ip6_rthdr *)data_ptr;
554 exthdrlen = 8 + ipv6ext _rthdr->i p6r_len * 8;
555 if (*fraglen <= exthdrlen) {

556 return (extmask);

551 }

558 prt_routing_hdr(flags, ipv6ext_rthdr);

559 ext mask | = SNOOP_ROUTI NG,

560 proto = ipv6ext_rthdr->i pér_nxt;

561 br eak;

562 case | PPROTO_FRAGMENT:

563 /* LINTED: alignnent */

564 i pvbéext _frag = (struct ip6_frag *)data_ptr;
565 exthdrlen = sizeof (struct ip6_frag);

566 if (*fraglen <= exthdrlen) {

567 return (extmask);

568 }

569 prt_fragnment _hdr(flags, ipv6ext_frag);

570 ext mask | = SNOOP_FRAGVENT;

571 /*

572 * |f this is not the first fragnent, forget about
573 * the rest of the packet, snoop decoding is
574 * statel ess.

575 */

576 if ((ipveext_frag->i p6f_offlg & | PBF_OFF_MASK) != 0)
577 proto = | PPROTO_NONE;

578 el se

579 proto = ipv6ext_frag->i p6f_nxt;

580 break;

581 defaul t:

582 i s_extensi on_header = B_FALSE;

583 break;

584 }

586 if (is_extension_header) {

587 *iplen -= exthdrlen;

588 *fraglen -= exthdrlen;

589 data_ptr += exthdrlen;

10

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c
590 }
591 1
593 *next = proto;
594 *hdr = data_ptr;
595 return (extmask);
596 }
598 static void
599 print_ipoptions(const uchar_t *opt, int optlen)
600 {
601 int len;
602 int remin;
603 char *line;
604 const char *truncstr;
606 if (optlen <= 0) {
607 (void) snprintf(get_line(0, 0), get_line_remain(),
608 "No options");
609 return;
610 }
612 (voi d) snprintf(get_li ne(O 0), get_line_renain(),
613 "Options: (% bytes)", optlen);
615 while (optlen > 0) {
616 line = get_line(0, 0);
617 remain = get_line_remain();
618 len = opt[l];
619 truncstr = len > optlen ? "?"
620 swtch(opt[O]) {
621 case | POPT_E
622 (voi d) stricpy(line, " - End of option list", renain);
623 return;
624 case IPCPT_NCP:
625 (void) strlicpy(line, " - No op", renmin);
626 len = 1;
627 br eak;
628 case | POPT_RR
629 (v0|d) snprintf(line, remain,
630 - Record route (% byt es%)", len, truncstr);
631 print_route(opt);
632 break;
633 case | POPT_TS:
634 (v0|d) snprintf(line, remain,
635 - Time stanp (% byt eso/s) len, truncstr);
636 br eak;
637 case | POPT_SECURITY:
638 (void) snprintf(line, remain, " - RIPSO (%l bytes%)",
639 len, truncstr);
640 print_ripso(opt);
641 break;
642 case | POPT_COVBEC
643 (void) snprintf(line, remain, " - CIPSO (% bytes%)",
644 len, truncstr);
645 prl nt_ci pso(opt);
646 br eak;
647 case | POPT_| LSRR:
648 (voi d) snprintf(line, remain
649 - Loose source route (%j bytes%)", |en,
650 truncstr);
651 print_rout e(opt);
652 br eak;
653 case | POPT_SATI D
654 (v0|d) snprintf(line, remain,
655 - SATNET Streamid (O/d byt es¥%s) "

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

656 len, truncstr);

657 break;

658 case | POPT_SSRR:

659 (voi d) snprintf(line, remain

660 - Strict source rout e (% byt
661 truncstr);

662 print_rout e(opt);

663 br eak;

664 defaul t:

665 (v0|d) snprintf(line, renmain

esys)", len,

666 - Option % (unknown S oo bytes¥%s) %",

667 opt[0], len, truncstr,

668 tohex((char *)&opt[2], len - 2));
669 break;

670 }

671 if (len <= 0) {

672 (voi d) snprlntf(llne remai n

673 - Inconpl ete option len %", |
674 break;

675 }

676 opt += len;

677 optlen -= len;

678 1

679 }

681 static void

682 print_route(const uchar_t *opt)
683 {

684 int len, pointer, renuin;
685 struct in_addr addr;

686 char *line;

688 len = opt[1];
689 pointer = opt[2]

691 (voi d) snprl ntf(get line(0, 0), get_line_remain(),
692 Poi nter = %", point er)

694 poi nter -= | POPT_M NOFF;
695 opt += (| POPT_OFFSET + 1)
696 len -= (1 POPT_OFFSET + 1);

698 Wmle(len>0)

699 line get _line(0, 0);

700 remain = get_line remaln()

701 mencpy((char “*)&addr, opt, sizeof (addr));
702 if (addr.s_addr == 1| NADDR _ANY)

703 (void) stricpy(line, " -", remai
704 el se

705 (void) snprintf(line, remain,
706 addrt oname(AF_I NET, &addr));
707 if (pointer == 0

)
708 (void) strlcat(line, " <-- (current)",

710 opt += sizeof (addr);
711 len -= sizeof (addr);

712 pointer -= sizeof (addr);
713 }

714 }

716 char *

717 getproto(int p)

718 {

719 switch (p)

720 case | PPROTO_HOPOPTS:

) return ("I Pv6- HopOpts");
721 case | PPROTO | PV6:

return ("1 Pv6");

en);

n);

%",

remain);

11

new usr/src/ cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_i p.c 12
722 case | PPROTO_ROUTI NG return ("1 Pv6-Route");
723 case | PPROTO FRAGVENT: return ("1Pv6-Frag");
724 case | PPROTO_RSVP: return ("RSVP");
725 case | PPROTO_ENCAP: return ("I P-in- i P");
726 case | PPROTO_AH: return (' AH") ;
727 case | PPROTO_ESP: return (" ESP)
728 case | PPROTO | CvP: return (")
729 case | PPROTO_| CVPV6: return (" I CWPVE");
730 case | PPROTO DSTOPTS: return ("I Pv6- Dst Opt s");
731 case | PPROTO | GWP: return ("I GW");
732 case | PPROTO_GGP: return ("GGP");
733 case | PPROTO_TCP: return ("TCP");
734 case | PPROTO EGP: return (" EGP");
735 case | PPROTO_PUP: return ("PUP"),
736 case | PPROTO_UDP: return ("UDP");
737 case | PPROTO | DP: return ("1 DP");
738 case | PPROTO HELLO return (" HELLO'")
739 case | PPROTO_ND: return ("ND");
740 case | PPROTO_EON: return ("EON');
741 case | PPROTO_RAW return ("RAW);
742 case | PPROTO_OSPF: return (" GOSPF") ;
743 case | PPROTO_DCCP: return ("DCCP"),
744 #endif /* | codereview */
745 defaul t: return ("");
746
747 }
749 static void
750 ?rt_r outing_hdr(int flags, const struct ip6_rthdr *ipv6ext_rthdr)
751
752 uint8_t nxt_hdr;
753 uint8_t type;
754 uint32_t len;
755 uint8_t segl eft
756 ui nt 32_t numaddrs
757 int i;
758 struct ip6_rthdrO *ipv6ext _rthdrO;
759 struct in6_addr *addrs;
760 char addr[| NET6_ADDRSTRLEN ;
762 /* in summary node, we don’t do anything. */
763 if (flags & F_SUM {
764 return;
765 1
767 nxt _hdr = i pv6ext _rthdr->i p6r_nxt;
768 type = ipVBext rthdr->i pér_type;
769 len = (| pv6ext rthdr->i pér_len + 1);
770 segl eft = i pv6ext _rthdr->i pér_segleft;
772 show_header ("I Pv6- Rout e: "1 Pv6 Routing Header", 0);
773 show_space();
775 (voi d) snprintf(get_line(0, 0), get_line_remain(),
776 "Next header = % (%)", nxt_hdr, getproto(nxt_hdr));
777 (voi d) snpri ntf(get I ne(O 0) get _line_remain(),
778 "Header length = %", len);
779 (void) snprintf(get_|i ne(O 0), get_line_renmain(),
780 "Routlngtype:%d' typ)'
781 (void) snprintf(get_li ne(O 0), get_line_renmain(),
782 "Segnents left = %", segl eft);
784 if (type == | PV6_RTHDR TYPE_0) {
785 /*
786 * XXX This loop will print all addresses in the routing header,
787 * XXX not just the segnents left.

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

788 * XXX (The header length field is twi ce the nunber of
789 * XXX addresses)

790 * XXX At sone future tine, we nay want to change this
791 * XXX to differentiate between the hops yet to do
792 * XXX and the hops al ready taken.

793 */

794 /* LINTED: alignnment */

795 i pvéext _rthdrO = (struct ip6_rthdrO *)lpv6ext rthdr;
796 numaddrs = i pv6ext_rthdr0->i p6r0_len /

797 addrs = (struct in6_addr *)(ipv6ext_| rthdro + 1);

798 for (i =0; i < numaddrs; i++) {

799 (void) inet_ntop(AF_I NET6, &addrs[i], addr,
800 | NET6_ADDRSTRLEN) ;

801 (void) snprintf(get_line(0, 0), get_line_renain(),
802 "address[%] =%", i, addr);

803 }

804 }

806 show_space();

807 }

809 static void

810 prt_fragment _hdr(int flags, const struct ip6_frag *ipv6ext_frag)

811 {

812 bool ean_t norefrag;

813 uint16_t fragoffset;

814 uint8_t nxt_hdr;

815 uint32_t fragi dent

817 /* extract the various fields fromthe fragment header */

818 nxt_hdr = ipv6ext_frag->i p6f_nxt;

819 nmorefrag = (i pvaext _frag->i p6f _ of f g & | PBF_MORE_FRAG ==

820 ? B_FALSE : B_TRUE;

821 fragoffset = ntohs(l pvéext _frag->i p6f _offl g & | P6F_OFF_MASK);
822 fragi dent = ntohl (i pv6ext_frag->i p6f_ident);

824 if (flags & F_SUM {

825 (void) snprintf(get_sumline(), MAXLINE,

826 "I Pv6 fragment |ID=% O fset=%4d M=%",

827 fragi dent,

828 fragof f set,

829 nor ef rag) ;

830 } else { /* F_DTAIL */

831 show header ("I Pv6-Frag: ", "IPv6 Fragment Header", 0);
832 show_space();

834 (voi d) snprintf(get_line(0, 0), get_line_renain(),

835 Next Header = % (%)", nxt_hdr, getproto(nxt_hdr));
836 (void) snprintf(get_line(0, 0), get_line_remain(),

837 "Fragment Offset = %", fragoffset);

838 (voi d) snprintf(get_line(0, 0), get_line_renain(),

839 "More Fragnents Flag = %", norefrag ? "true” "fal se");
840 (void) snprintf(get_line(0, 0), get_line_remain(),

841 "ldentification = %", fragident);

843 show_space();

844 1

845 }

847 static void

848 print_ip6opt_I| s(const uchar_t *data, unsigned int op_|en)

849 {

850 uint32_t doi;

851 uint8_t sotype, solen;

852 uint16_t val ue, val ue2;

853 char *cp;

13

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

854
855

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

int remen;
bool ean_t printed;

(v0|d) snprintf(get_line(0, 0), get_line_rengi n()|

Label ed Security Option len = % bytes¥%", op_len,

op len < sizeof (uint32_t) || (op_len & 1) =02 "?2" : "");

if (op_ Ien < sizeof (uint32_t))

return;
GETI NT32(d0| dat a);
(v0|d) snprlntf(get I|ne(0 0), get_line_remain(),

DA

= od (%)", doi, doi == IP6LS DO V4 2 "IPv4" : "222");

op_len -= S|zeof (ui nt 32 _t);
while (op_len > 0)
GETI NT8(sotype, data);
if (op_len < 2)
(voi d) snprintf(get_line(0, 0), get_line_renain(),
truncated % suboptlon (no len)", sotype);
break;

}
GETI NT8(sol en, data);
if (solen <2 || sol en > op_len) {
(voi d) snprintf(get_line(0, 0), get_line_remai n()
bad % suboption (len 2 <= % <= %i)"
sotype, solen, op_len);
if (solen < 2)
solen = 2;
if (solen > op_len)
solen = op_l en;

op_len -= sol en;

solen -= 2;

cp = get_l ine(0, 0);

rem en = get_line_renai n()

(void) strlcpy(cp, " , remen);

cp += 4;

remen -= 4;

printed = B_TRUE;

switch (sotype)

case | P6LS_TT_LEVEL:

if (solen != 2)

printed =
br eak;

B_FALSE;

}
CGETI NT16(val ue, data);
(void) snpr| ntf(cp, rem en, "Level %", value);
solen = 0;
br eak;
case | P6LS TT VECTOR:
(void) strlcpy(cp, "Bit-Vector: ", remen);
rem en -= strlen(cp);
cp += strlen(cp);
while (solen > 1) {
GETI NT16(val ue, data);

solen -= 2;
(void) snprintf(cp, renlen, "% 4x", value);
remen -= strlen(cp);

cp += strlen(cp);

br eak;
case | P6LS _TT_ENUM
(void) strlcpy(cp, "Enunmeration:", renlen);
remen -= strlen(cp);
cp += strlen(cp);
while (solen > 1) {
GETI NT16(val ue, data);
solen -= 2;

14

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

15

ue,

sol en) ;

920 (void) snprintf(cp, renmlen, " %", value);
921 remen -= strlen(cp);

922 cp += strlen(cp);

923

924 br eak;

925 case | P6LS_TT_RANGES:

926 (void) strlcpy(cp, "Ranges:", renien);

927 rem en -= strlen(cp);

928 cp += strlen(cp);

929 while (solen > 3)

930 GETI NT16(val ue, data);

931 GETI NT16(val ue2, data);

932 solen -= 4;

933 (void) snprintf(cp, remen, " %-%", val
934 val ue2);

935 remen -= strlen(cp);

936 cp += strlen(cp);

937

938 br eak;

939 case | P6LS_TT_V4:

940 (v0| d) strl cpy(cp, "IPv4 Option", remen);

941 print_i popt ions(data, solen);

942 solen = 0;

943 br eak;

944 case | P6LS_TT_DEST:

945 (void) snprintf(cp, renlen,

946 "Destination-Only Data | ength %", solen);
947 solen = 0;

948 br eak;

949 defaul t:

950 (voi d) snprintf(cp, renlen,

951 unknown % subopt| on (len %)", sotype,
952 solen = 0;

953 br eak;

954 }

955 if (solen I'=0) {

956 if (printed) {

957 cp = get_line(0, 0);

958 remen = get_line_remain();

959 }

960 (voi d) snprintf(cp, renlen,

961 nal f orned % subopt ion (renmining %)"
962 sotype, solen);

963 data += sol en;

964 }

965 }

966 }

968 static void

969 prt_hbh_options(int flags, const struct ip6_hbh
970 {

971 const uint8_t *data, *ndata;

972 uint32_t len;

973 uint8_t op_type;

974 uint8_t op_len;

975 uint8_t nxt_hdr;

977 /* in summary node, we don’t do anything.
978 if (flags & F_SUM {

979 return;

980 1

982 show_header ("I Pv6- HopOpts: ", "IPv6 Hop-
983 show_space();

985 /*

*i pv6ext _hbh)

*/

by- Hop Options Header",

0);

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

986 * Store the lengh of this ext hdr in bytes. The caller has

987 * ensured that there is at |least len bytes of data left.

988 */

989 len = ipv6ext_hbh->ip6h_len * 8 + 8;

991 ndata = (const uint8_t *)ipv6ext_hbh + 2;

992 len -= 2;

994 nxt _hdr = i pv6ext _hbh->i p6h_nxt ;

995 (voi d) snprintf(get_line(0, 0), get_line_remin(),

996 "Next Header = % (%)", nxt_hdr, get proto(nxt_hdr));

998 while (len > 0) {

999 data = ndat a;

1000 GETI NT8(op_type, data);

1001 /* This is the only one-octet |Pv6 option */

1002 if (op_type == | PEOPT_PAD1)

1003 (voi d) snprintf(get_|ine(0, 0), get_line_remain(),
1004 "padl option ");

1005 len--;

1006 ndata = data;

1007 conti nue;

1008 }

1009 GETI NT8(op_l en, data);

1010 if (len <2 || pIen+2>I n) {

1011 (voi d) snprintf(get_line(0, 0), get_line_remain(),
1012 "Error: option % truncated (% + 2 >)",
1013 op_ type op_len, len);

1014 op_|len len - 2;

1015 /*

1016 * Continue processing the mal formed option so that we
1017 * can display as nuch as possible.

1018 */

1019 }

1021 /* advance pointers to the next option */

1022 len -= op_len + 2;

1023 ndata = data + op_| en;

1025 /* process this option */

1026 switch (op_type) {

1027 case | P6OPT_PADN:

1028 (voi d) snprintf(get_line(0, 0), get_line_remain(),
1029 "padN option len = %", op_len);

1030 br eak;

1031 case | P6OPT_. JUvBO {

1032 ui nt32_t payl oad_| en;

1034 (void) snprintf(get_line(0, 0), get_line_remain(),
1035 "Junbo Payl oad Option len = % bytes¥%", op_|len,
1036 op_len == sizeof (uint32_t) ? "" : "?");

1037 if (op_len == sizeof (uint32_t)) {

1038 GETI NT32(payl oad_l en, data);

1039 (void) snprintf(get_line(0, 0),

1040 get _|line_remain(),

1041 "Junbo Payl oad Length = % bytes",
1042 payl oad_l en);

1043

1044 br eak;

1045 }

1046 case | PEOPT_ROUTER_ALERT: {

1047 uint16_t val ue;

1048 const char *label[] = {"M.D', "RSVP', "AN'};

1050 (void) snprintf(get_line(0, 0), get_line_renain(),
1051 "Router Alert Q) on len = % bytes%", op_len,

16

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

1073
1074 }

op_len == sizeof (uintl6_t) ? "" : "?");
if (op_len == sizeof (uintl6_t)) {

GETI NT16(val ue, data);

(void) snpri ntf(get li ne(0, 0),
get _ I'ine_remain(),

"Alert Type = %l (O/s) val ue

val ue < sizeof (I abel) I sizeof (label [0])
| abel [val ue] "7

break;
}
case | P6OPT_LS:

pI’I nt _i p6opt _I| s(dat a,
br eak;

op_len);
defaul t:
(v0|d) snprintf(get_line(0, 0), get_line_remain()

"Option type = %, len = %", op_type, op_len);
br eak;

}

show_space();

1076 static void

1077 prt_dest_options(int flags,

1078 {
1079
1080
1081
1082
1083
1084

1086
1087
1088
1089

1091
1092

1094
1095
1096
1097
1098

1100
1101

1103
1104
1105

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117

const struct ip6_dest *ipv6ext_dest)

const uint8_t *data,
uint32_t len;

*ndat a;

uint8_t op_type;
uint32_t op_len;
uint8_t nxt_hdr;
uint8_t val ue;

/* in sunmary node,

if (flags & F_SUM {
return;

}

show_header ("1 Pv6-Dst Opts: ",
show_space();

we don’t do anything. */

"I Pv6 Destination Options Header", 0);

/*

* Store the length of this ext hdr in bytes. The caller has
* ensured that there is at |least len bytes of data left.

*/

len = ipv6ext_dest->ip6d_len * 8 + §;

ndata = (const uint8_t *)ipv6ext_dest + 2;
len -= 2;

/* skip hdr/len */

nxt _hdr = ipv6ext _dest->i p6d_nxt;
(voi d) snprintf(get_line(0, 0), get l'ine_renain(),

Next Header = % (%)", nxt_hdr getproto(nxt _hdr));
whi | e (Ien > 0) {
data = ndat a;
GETI NT8(op_ type dat a) ;

if (op_type == | P6OPT PADl)
(voi d) snprl ntf(get_line(0, 0), get_line_remin(),
"padl option ");
len--;
ndata = data;
conti nue;

}
GETINT8(op_l en, data);

17

?

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. ¢

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

1129
1130
1131

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

LIl
1156

1158

1160
1161

1163
1164
1165
1166

1168
1169
1170
1171
1172
1173
1174

1176
1177
1178
1179
1180
1181
1182
1183

}

}

show_

if (len<2 || op_len + 2 > len
(voi d) snprintf(get_line(0, 0), get_line_renain(),

"Error: option % truncated (% + 2 > %)",
optype op Ien len);
op_len =len - 2;
/*
* Continue processing the mal formed option so that we
* can display as nuch as possi bl e.
}
/* advance pointers to the next option */
len -= op_len + 2;

ndata = data + op_len;

/* process this option */
switch (op_ type)
case | P6OPT_PADN:
(voi d) snpri ntf(get_line(0, 0), get_line_renain(),
"padN option len = %", op_len);
br eak;
case | P6OPT_TUNNEL_LIMT:
GETI NT8(val ue, data);
(void) snpri ntf(get_l ine(0, 0), get_line_renain(),
"tunnel encapsulation limt len = %, value = %",
op_|l en, value);
break;
case | P6OPT_LS:

grl n}(i péopt _| s(data, op_len);
defaul t:
(voi d) snprintf(get_li ne(O 0), get_l ine_remain(),
"Option type = %, len = " op_type, op_len);
br eak;
}
space();

#define ALABEL_MAXLEN 256

static
static

struct

}

static

1%

static

char ascii_| abel [ALABEL_MAXLEN] ;
char *pl abel = ascii_| abel;
snoop_pair {

int val;

const char *nane;

struct
TSAL_
TSOL_
TSOL_
TSOL_
-1,

struct
TSAL_
TSOL_
TSOL_|
TSOL_|

TSOL_

0x04,
0x02,

snoop_pair ripso_ class _thblI[] ={
CL_TOP_SECRET, TOP SECRET",
CL_SECRET, " SECRET",
"CCNFIDENTIAUH

CL_CONFI DENTI AL,

CL_UNCLASSI FI ED, " UNCLASSI FI ED",
NULL

snoop_pair ripso_ pr ot _thlI[] = {

PA_GENSER, ' GENSER',

PA_SI OP_ESI, "SI OP- ESI

PA_SCl, "sC ",

PA_NSA " NSA",

PA_DCE, " DOE",
" UNASSI GNED',
" UNASSI GNED",

new usr/src/ cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_i p.c 19

1184 = NULL
1185 };

1187 static struct snoop_pair *

1188 get _pair_byval (struct snoop_pair pairlist[], int val)
1189 {

1190 int i

1192 for (i =0; pairlist[i].name !'= NULL; i++)
1193 if (pairlist[i].val == val)

1194 return (&pairlist[i]);
1195 return (NULL);

1196 }

1198 static void

1199 print_ripso(const uchar_t *opt)

1200 {

1201 struct snoop_pair *ripso_class;
1202 int i, index, prot_len;

1203 bool ean_t first_prot;

1204 char line[100], *ptr;

1206 prot_len = opt[1] - 3;
1207 if (prot_| Ien < 0)
1208 return;

1210 show_header ("RIPSO. ", "Revised IP Security Option", 0);
1211 show_space();

1213 (void) snprintf(get_line(0, 0), get_line_remain(),
1214 "Type = Basic Security Option (%), Length = %", opt[0], opt[1]);

1216 /*

1217 * Display O assification Level

1218 */

1219 ri pso_class = get_pair_byval (ripso_class_thl, (int)opt[2]);
1220 if (ripso_class != NULL)

1221 (void) snprintf(get_line(0, 0), get_line_remain(),
1222 "Classification = Unknown (0x%02x)", opt[2]);
1223 el se

1224 (void) snprintf(get_line(0, 0), get_line_remain(),
1225 "Classification = % (0x%02x)",

1226 ri pso_cl ass->nane, ripso_class->val);

1228 /*

1229 * Display Protection Authority Flags

1230 */

1231 (void) snprintf(line, sizeof (line), "Protection Authority = ");
1232 ptr = line;

1233 first_prot = B_TRUE

1234 for (i =0; i <prot_len; i++) {

1235 index = 0;

1236 while (ripso_prot_tbl[index].nane != NULL) {

1237 if (opt[3 +i] & ripso_prot_tbl[index].val) {
1238 ptr = strchr(ptr, 0);

1239 1f (!first_prot) {

1240 (void) strlcpy(ptr, ", ",
1241 si zeof (line) - (ptr - line));
1242 ptr = strchr(ptr, 0);

1243 }

1244 (void) snprintf(ptr,

1245 sizeof (line) - (ptr - line),
1246 "% (0x9%®2x)",

1247 ripso_prot_tbl[index].nane,

1248 ripso_prot_tbl[index].val);

1249 }

20

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. c

1250 i ndex++;

1251 }

1252 if ((opt[3 +i] & 1) == 0)

1253 br eak;

1254 }

1255 if (!first_prot)

1256 (void) snprintf(get_line(0, 0), get_line_remain(), "%", line);
1257 el se

1258 (voi d) snprintf(get_line(0, 0), get_line_renain(), "%None",
1259 line);

1260 }

1262 #define Cl PSO_GENERI C_ARRAY_LEN 200

1264 |/
1265
1266
1267
1268
1269
1270
1271 */

1272 static bool ean_t

1273 ci pso_hi gh(const uchar_t *opt)
1274 {

1275 int i

Return 1 if CIPSO SL and Categories are all 1's; 0 otherwi se.
Note: opt starts with "Tag Type":
|tag_type(1l)|tag_length(1l)|align(l)|sl(1)|categories(variable)|

* Ok ok k% k%

1277 i f (((int)opt[l] + 6) < | P_MAX_OPT_LENGTH)

1278 return (B_FALSE);

1279 for (i =0; i < ((|nt)opt[1] - 3); i+

1280 if (opt[3 + i] = Oxff)

1281 return (B_FALSE);

1282 return (B_TRUE);

1283 }
/

1285
1286
1287
1288
1289
1290
1291
1292 */

1293 static void

1294 ci pso2sl (const uchar_t *opt, bslabel _t *sl, int *high)

Converts CIPSO | abel to SL.
Note: opt starts with "Tag Type":
|tag_type(1l)|tag_length(1l)|align(l)|sl(1)|categories(variable)|

* ok ok Ok Ok Ok

1295 {

1296 int i, taglen;

1297 uchar_t *q = (uchar_t *)&(_bslabel _inpl_t *)sl)->conpartnents;
1299 *high = 0;

1300 taglen = opt[l]

1301 menset ((caddr t)sl 0, sizeof (bslabel_t));

1303 if (ci pso h| gh(opt)) {

1304 H GH(sl);

1305 *h| gh = 1;

1306 } else {

1307 LCLASS_SET((_bsl abel _inmpl _t *)sl, opt[3]);

1308 for (i =0; T <taglen - TSOL TT1 MNLENGTH i++)
1309 gli] = opt[TSOL_TT1_M N LENGTH + i];

1310 1

1311 SETBLTYPE(sl, SUN SL_ID);

1312 }

1314 static int
1315 interpret_cipso_tagtypel(const uchar_t *opt)

new usr/src/ cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_i p.c 21

1316 {

1317 int i, taglen, ishigh;

1318 bsl abel _t sl ;

1319 char |ine[Cl PSO_GENERI C_ARRAY_LEN], *ptr;

1321 taglen = opt[1];

1322 if (taglen < TSOL_TT1_M N_LENGTH |

1323 taglen > TSOL_TT1_MAX_LENGTH)

1324 return (taglen);

1326 (voi d) snprlntf(get _line(0, 0), get_line_remai n(),

1327 "Tag Type = %, Tag Length = 9™, opt[0], opt[1]);

1328 (voi d) snprlntf(get _line(0, 0), get_| line remi n(),

1329 "Sensitivity Level = OX%JZX", opt[3]);

1330 ptr = line;

1331 for (i =0; i <taglen - TSOL_TT1_MN_ LENGTH i++) {

1332 (void) snprintf(ptr, sizeof (Tine) (ptr - line), "9%®2x",
1333 opt[TG_TTl M N_LENGTH + i]);

1334 ptr = strchr(ptr, 0);

Ak335] }

1336 if (i '=0) {

1337 (voi d) snpri ntf(get line(0, 0), get_line_remain(),

1338 "Categories = "Y;

1339 (voi d) snprintf(get_line(0, 0), get_line_remain(), "\t%",
1340 line);

1341 } else {

1342 (voi d) snprl ntf(get _Ii ne(O 0), get_line_remain(),

1343 Cat egories = None");

1344 }

1345 ci pso2sl (opt, &sl, & shigh);

1346 if (is_systemlabeled()) {

1347 if (bsltos(&sl, &plabel, ALABEL_ MAXLEN

1348 LONG _CLASSI FI CATI ON| LONG WORDS| VI EW | NTERNAL) < 0) {
1349 (void) snprintf(get_line(0, 0), get_line_remain(),
1350 "The Sensitivity Level and Categories can't be "
1351 "mapped to a valid SL");

1352 } else {

1353 (voi d) snprintf(get_line(0, 0), get_line_remain(),
1354 "The Sen5|t|V|ty Level and Categories are mapped "
1355 "to the SL:");

1356 (voi d) snpri ntf(get line(0, 0), get_line_remain(),
1357 tus", ascii_|abel);

1358 }

1359 1

1360 return (taglen);

1361 }

1363 /*

1364 * The followi ng struct definition #define's are copied from T TS1. x. They are
1365 * not used here (except TTYPE_3_MAX_TOKENS), but included as a reference for
1366 * the tag type 3 packet fornmat.

*

/

1367

1368 #define TTYPE_3_MAX_TOKENS 7

1370 /*

1371 * Display CIPSO tag type 3 which is defined by MAXSI X.
1372 */

1373 static int
1374 interpret_cipso_tagtype3(const uchar_t *opt)

1375 {

1376 uchar _t tagtype;

1377 int index, nuntokens, taglen;
1378 uint16_t nmask;

1379 uint32_t token;

1380 static const char *nane[] = {
1381 "SL",

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i p. ¢

1382 " NCAV",

1383 "I NTEG',

1384 "SI D',

1385 "undef i ned",

1386 "undef i ned",

1387 "L,

1388 "PRIVS",

1389 "LU D',

1390 "PID',

1391 "1 DS,

1392 " ACL"

1393 }s

1395 tagtype = *opt ++;

1396 (void) mencpy(&mask, opt + 3, sizeof (mask));

1397 (voi d) snpri ntf(get line(0, 0), get_line_remain(),
1398 "Tag Type = %l (WSI X)", tagtype);

1399 (voi d) snprintf(get_line(O, 0), get _line_remain(),
1400 "Generation = Ox%02x%02x%2x, Mask = 0x%4x", opt[0], opt[1],
1401 opt[2], mas k)

1402 opt += 3 + sizeof (mask);

1404 I*

1405 * Display tokens

1406 */

1407 nunt okens = 0;

1408 index = 0;

1409 while (mask !'= 0 && nuntokens < TTYPE_3_MAX_TOKENS) {
1410 if (mask & 0x0001) {

1411 (voi d) nencpy(&t oken, opt, sizeof (token));
1412 opt += sizeof (token);

1413 (void) snprintf(get_line(0, 0), get_line_renain(),
1414 "Attribute = %, Token = Ox%08x",
1415 i ndex < sizeof (name) | sizeof (*nane) ?
1416 nanme[i ndex] : "unknown", token);
1417 nunt okens++;

1418 }

1419 mask = mask >> 1;

1420 i ndex++;

1421 }

1423 taglen = 6 + nuntokens * 4;

1424 return (taglen);

1425 }

1427 static void
1428 print_cipso(const uchar_t *opt)

1429 {

1430 int optlen, taglen, tagnum

1431 uint32_t doi;

1432 char |ine[Cl PSO_ GENERI C_ARRAY_LEN];

1433 char *ol dnest;

1435 optlen = opt[1];

1436 if (optlen < TSO_ CIPSO_ M N_LENGTH || optlen > TSOL_CI PSO_MAX_LENGTH)
1437 return;

1439 ol dnest = prot_nest_prefix;

1440 prot _nest_prefix = prot_prefix;

1441 show_header ("CIPSO. ", "Common |P Security Option", 0);
1442 show_space();

1444 /*

1445 * Display ClPSO Header

1446 */

1447 (void) snprintf(get_line(0, 0), get_line_remain(),

22

new usr/src/ cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_i p.c 23

1448 "Type = CIPSO (%), Length = 9%@", opt[O], opt[1]);
1449 (void) mencpy(&doi, opt + 2, sizeof (dol));

1450 (void) snprintf(get_line(0, 0), get_line_remain(),

1451 "Donmain of Interpretation = %", (unsigned)ntohl (doi));
1453 if (opt[1] == TSOL_CIPSO M N _LENGTH) { /* no tags */
1454 show_space();

1455 prot_prefix = prot_nest_prefix;

1456 prot _nest_prefix = ol dnest;

1457 return;

1458 1

1459 optlen -= TSOL_CI PSO M N_LENGTH,

1460 opt += TSOL_ClI PSO_M N_LENGTH;

1462 I*

1463 * Display Each Tag

1464 */

1465 tagnum = 1;

1466 while (optlen >= TSOL_TT1_M N LENGTH) {

1467 (void) snprintf(line, sizeof (line), "Tag# %", tagnun);
1468 show_header ("CIPSO. ", line, ;

1469 /*

1470 * W handle tag type 1 and 3 only. Note, tag type 3
1471 * is MAXSI X defined.

1472 *

1473 switch (opt[0]) {

1474 case 1:

1475 taglen = interpret_cipso_tagtypel(opt);
1476 br eak;

1477 case 3:

1478 taglen = interpret_cipso_tagtype3(opt);
1479 break;

1480 defaul t:

1481 (void) snprintf(get_line(0, 0), get_line_remain(),
1482 "Unknown Tag Type %", opt[O0]);
1483 show_space();

1484 prot_prefix = prot_nest_prefix;

1485 prot _nest _prefix = ol dnest;

1486 return;

1487 }

1489 /*

1490 * Move to the next tag

1491 */

1492 if (taglen <= 0)

1493 br eak;

1494 optlen -= taglen;

1495 opt += taglen;

1496 tagnumt+;

1497 }

1498 show_space();

1499 prot_prefix = prot_nest_prefix;

1500 prot _nest _prefix = ol dnest;

1501 }

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i psec. ¢ 1 new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i psec. ¢ 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 161 "SPI = OX%(", nIOh|(a|Igned ah >ah Spl))
6896 Sat Aug 18 10: 36: 58 2012 162 (void) sprintf(get_|line((char *)&ah->ah_replay - dl c_header, 4),
new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i psec. ¢ 163 "Replay = %", ntohl (aligned_ah->ah_replay));
dccp: snoop, build system fixes
LEEE R R R EEEEEEEEE R EEE R EREEEE SRR EEEEEEEEEEEEREREEEEEEEEESE] 165 /*
__unchanged_portion_onitted_ 166 * 2 for two hex digits per auth_data byte
167 * plus one byte for trailing null byte.
102 int 168 */
103 interpret_ah(int flags, uint8_t *hdr, int iplen, int fraglen) 169 buff = malloc(auth_data_len * 2 + 1);
104 { 170 if (buff !'= NULL)
105 /* LINTED: alignnent */ 171 int i;
106 ah_t *ah = (ah_t *)hdr;
107 ah_t *aligned_ah; 173 for (i =0; i < auth_data_len; i++)
108 ah_t storage; /* In case hdr isn't aligned. */ 174 sprintf(buff + i * 2, "992x", auth_datal[i]);
109 char *line, *buff; 175 }
110 uint_t ahlen, auth_data_len;
111 uint8_t *auth_data, *data; 177 (voi d) SpI’I ntf(get Ilne((char *)auth_data - dl c_header,
112 int new.iplen; 178 auth_data_| en), I u%s",
113 uint8_t proto; 179 (buff == NULL) ? <0ut of menmory>" : buff);
115 if (fraglen < sizeof (ah_t)) 181 /* malloc(3c) says | can call free even if buff == NULL */
116 return (fraglen); /* inconpl ete header */ 182 free(buff);
118 if (!II'S_P2ALI GNED(hdr, 4)) { 184 show_space();
119 aligned_ah = (ah t *)&stora 185 }
120 bcopy(hdr, &storage, sizeof (ah t));
121 } else { 187 new_iplen = iplen - ahlen;
122 al i gned_ah = ah; 188 proto = aligned_ah->ah_nexthdr;
123 }
190 /*
125 I* 191 * Print |1Pv6 Extension Headers, or skip themin the summary case.
126 * "+ 8" is for the "constant" part that’s not included in the AH 192 *
127 *] ength. 193 if (proto == | PPROTO HOPOPTS || proto == | PPROTO DSTOPTS | |
128 * 194 proto == | PPROTO_ROUTI NG | | proto == | PPROTO_FRAGVENT) {
129 * The AH RFC specifies the |engt h field in "length in 4-byte units, 195 (void) print_ipv6_extensions(flags, &lata, &proto, &iplen,
130 * not counting the first 8 bytes" So if an AHis 24 bytes |ong, 196 & ragl en);
131 * the length field will contain "4", (4 * 4 + 8 == 24). 197 }
132 */
133 ahlen = (aligned_ah->ah_length << 2) + 8; 199 if (fraglen > 0)
134 fraglen -= ahlen; 200 switch (proto) {
135 if (fraglen < 0) 201 case | PPROTO_ENCAP:
136 return (fraglen + ahlen); /* inconpl ete header */ 202 /* LINTED: alignment */
203 (void) interpret_ip(flags, (struct ip *)data,
138 auth_data_len = ahlen - sizeof (ah_t); 204 new_i pl en);
139 auth_data = (uint8_t *)(ah + 1); 205 br eak;
140 data = auth_data + auth_data_l en; 206 case IPPROTO | PV6:
207 (void) interpret_ipv6e(flags, (ip6_t *)data,
142 if (fl ags & F SUM { 208 new_i pl en);
143 line = (char *)get_sumline(); 209 br eak;
144 (void) sprintf(iine, "AH SPI =0X9K Repl ay=%", 210 case | PPROTO | CVP:
145 nt ohl (ali gned_ah >ah_spi), ntohl (aligned_ah->ah_replay)); 211 (void) interpret_icnmp(flags,
146 line += strlen(line); 212 /* LINTED: alignnment */
147 } 213 (struct icnp *)data, new_iplen, fraglen);
214 br eak;
149 if (flags & F_DTAIL) { 215 case | PPROTO_| CMPV6:
150 show_header ("AH: ", "Authentication Header", ahlen); 216 /* LINTED: alignnent */
151 show_ /_space() ; 217 (void) interpret_icnpv6(flags, (icnp6_t *)data,
152 (void) sprintf(get_line((char *)&ah->ah_nexthdr - dlc_header, 218 new_i plen, fraglen);
153 1), "Next header = %l (%)", aligned_ah->ah_next hdr, 219 br eak;
154 get proto(al i gned_ ah >ah_nexthdr)); 220 case | PPROTO _TCP:
155 (void) sprintf(get_|ine((char *)&ah- >ah_| ength - dl c_header, 1), 221 (void) interpret_tcp(flags,
156 "AH length = %l (%l bytes)", aligned_ah->ah_l ength, ahlen); 222 (struct tcphdr *)data, new_iplen, fraglen);
157 (voi d) SpI’I ntf(get I'i ne((char *) &ah->ah_reserved - dl c_header, 223 br eak;
158 2), "<Reserved field = Ox%>"
159 nt ohs(al i gned_ah- >ah_r eserved)) 225 case | PPROTO ESP:
160 (void) sprintf(get_line((char *)&ah->ah_spi - dlc_header, 4), 226 (void) interpret_esp(flags, data, new.iplen,

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_i psec. ¢

227 fraglen);

228 break;

230 case | PPROTO_AH:

231 (void) interpret_ah(flags,
232 fraglen);

233 br eak;

235 case | PPROTO_UDP:

236 (void) interpret_udp(flags,
237 (struct udphdr *)data,
238 br eak;

239 case | PPROTO_DCCP:

240 (void) interpret_dccp(flags,
241 (struct dccphdr *)data,
242 br eak;

243 #endif /* | codereview */

244 /* default case is to not print anything else */
245 }

247 return (ahlen);

248 }

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

R R R R

39796 Sat Aug 18 10:36:59 2012
new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_pf.c

dccp: options and features
IR E SRS SRS RS R E SRR R R R SRR R SRR RS R EEEEREEEEEEEEEERSE]
__unchanged_portion_onitted_

140 static transport_table_t ether_transport_mapping_table[] = {
141 | PPROTO_TCP, ETHERTYPE_| P, | PV4A_TYPE_HEADER_OFFSET},
142 | PPROTO_TCP, ETHERTYPE_| PV6, | PV6_TYPE HEADER OFFSET},
143 | PPROTO_UDP, ETHERTYPE_I P, | PVA_TYPE_HEADER_OFFSET},
144 | PPROTO_UDP, ETHERTYPE_I PV6, | PV6_TYPE_HEADER OFFSET},
145 | PPROTO_OSPF, ETHERTYPE_| P, | PV4A_TYPE_HEADER OFFSET},
146 | PPROTO_OSPF, ETHERTYPE_| PV6, | PV6_TYPE_HEADER OFFSET},
147 | PPROTO_SCTP, ETHERTYPE_I P, | PVA_TYPE_HEADER_OFFSET},
148 | PPROTO_SCTP, ETHERTYPE_| PV6, | PV6_TYPE_HEADER OFFSET},
149 | PPROTO_| CMP, ETHERTYPE_| P, | PVA_TYPE_HEADER_OFFSET},
150 | PPROTO | CWPV6, ETHERTYPE | PV6, | PV6 TYPE HEADER _OFFSET},
151 | PPROTO_ENCAP, ETHERTYPE_TP, | PV4A_TYPE_HEADER CFFSET},
152 | PPROTO_ESP, ETHERTYPE_I P, | PVA_TYPE_HEADER CFFSET},
153 | PPROTO_ESP, ETHERTYPE_| PV6, | PV6_TYPE_HEADER OFFSET},
154 | PPROTO_AH I:_I'HERTYPE_I P, | PV4_TYPE_HEADER_O:FSI:_|' ,
155 | PPROTO_AH, ETHERTYPE_I PV6, | PV6_TYPE_HEADER OFFSET},
156 | PPROTO_DCCP, ETHERTYPE_I P, | PVA_TYPE_HEADER OFFSET},
157 | PPROTO_DCCP, ETHERTYPE_I PV6, | PV6_TYPE HEADER_ CFFSET}
158 #endif /* | codereview */
159 {-1, 0, 0} /* nust be the final entry */
160 };
162 static transport_table_t ipnet_transport_nappi ng table[] = {
163 {I PPROTO_TCP, (DL_I PNETI NFO VERSION << 8 | AF_I NET),
164 | PVA_TYPE_HEADER OFFSET},
165 {I PPROTO_TCP, (DL | PNETI NFO_VERSI ON << 8 | AF_I NET6),
166 | PV6_TYPE_HEADER OFFSET},
167 {1 PPROTO_UDP, (DL_I PNETI NFO VERSI ON << 8 | AF_I NET),
168 | PVA_TYPE_HEADER OFFSET},
169 {1 PPROTO_UDP, (DL_I PNETI NFO_VERSI ON << 8 | AF_I NET6),
170 | PV6_TYPE_HEADER OFFSET},
171 {1 PPROTO_OSPF, (DL_| PNETI NFO VERSI ON << 8 | AF_I NET),
172 | PVA_TYPE_HEADER _OFFSET},
173 {1 PPROTO_OSPF, (DL_I PNETI NFO VERSI ON << 8 | AF_I NET6),
174 | PV6_TYPE_HEADER_OFFSET},
175 {1 PPROTO_SCTP, (DL_| PNETI NFO VERSI ON << 8 | AF_I NET),
176 | PVA_TYPE_HEADER _OFFSET},
177 {1 PPROTO_SCTP, (DL_I PNETI NFO VERSI ON << 8 | AF_I NET6),
178 | PV6_TYPE_HEADER_OFFSET},
179 {1 PPROTO_| CMP, (DL_| PNETI NFO VERSI ON << 8 | AF_I NET),
180 | PVA_TYPE_HEADER OFFSET},
181 {1 PPROTO_| CMPV6, (DL_I PNETI NFO VERSI ON << 8 | AF_I NET6),
182 | PV6_TYPE_HEADER_OFFSET},
183 {1 PPROTO_ENCAP, (DL_I'PNETI NFO VERSI ON << 8 | AF_I NET),
184 | PVA_TYPE_HEADER OFFSET},
185 {1 PPROTO_ESP, (DL_I PNETI NFO VERSI ON << 8 | AF_I NET),
186 | PVA_TYPE_HEADER CFFSET}
187 {1 PPROTO_ESP, (DL_I PNETI NFO VERSI ON << 8 | AF_| NET6),
188 | PV6_TYPE_HEADER OFFSET},
189 {1 PPROTO_AH, (DL_I PNETI NFO VERSI ON << 8 | AF_I NET),
190 | PVA_TYPE_HEADER O:FSET}
191 {I PPROTO_AH, (DL_I PNETI NFO VERSI ON << 8 | AF_| NET6),
192 | PV6_TYPE_HEADER OFFSET},
193 {1 PPROTO_DCCP, (DL_I PNETI NFO VERSI ON << 8 | AF_I NET),
194 | PV4_TYPE_HEADER OFFSET},
195 {1 PPROTO_DCCP, (DL_I PNETI NFO VERSI ON << 8 | AF_| NET6),
196 | PV6_TYPE_HEADER OFFSET},
197 #endif /* | codereview */
198 {-1, 0, 0} /* must be the final entry */

new usr/src/cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_pf.c

199

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

223
224
225
226
227
228
229
230
231
232
233

237
238
239
240

242
243

245
246
247
248
249
250
251

253
254

258
259
260
261
262
263
264

§i5
static transport_table_t ib_transport_mapping_table[] = {
| PPROTO_TCP, ETHERTYPE_I P, | PV4_TYPE_HEADER OFFSET},
| PPROTO_TCP, ETHERTYPE_| PV6, | PV6_TYPE_HEADER OFFSET},
| PPROTO_UDP, ETHERTYPE | P, | PVA_TYPE_HEADER_CFFSET},
| PPROTO_UDP, ETHERTYPE_| PV6, | PV6_TYPE HEADER OFFSET}
| PPROTO_OSPF, ETHERTYPE_I P, | PVA_TYPE_HEADER OFFSET},
| PPROTO_OSPF, ETHERTYPE_| PV6, | PV6_TYPE HEADER OFFSET},
| PPROTO_SCTP, ETHERTYPE_| P, | PV4_TYPE_HEADER OFFSET},
| PPROTO_SCTP, ETHERTYPE_I| PV6, | PV6_TYPE HEADER OFFSET},
| PPROTO_| CWP, ETHERTYPE_I P, | PVA_TYPE_HEADER_OFFSET},
| PPROTO_| CMPV6, ETHERTYPE_| PV6, | PV6_TYPE HEADER OFFSET},
| PPROTO ENCAP, ETHERTYPE_ TP, | PV4 TYPE HEADER . OFFSET},
| PPROTO_ESP, ETHERTYPE_I P, | PV4A_TYPE_HEADER CFFSET},
| PPROTO_ESP, ETHERTYPE_I PV6, | PV6_TYPE HEADER OFFSET},
| PPROTO_AH, ETHERTYPE_I P, | PV4_TYPE_HEADER OFFSET},
IPPROTO AH, El'HERTYPE | PV6, | PV6_TYPE HEADER OFFSET},
| PPROTO_DCCP, ETHERTYPE | P, | PV4A_TYPE_HEADER OFFSET},
| PPROTO_DCCP, ETHERTYPE_| PV6, | PV6_TYPE_HEADER OFFSET},
#endif /* | codereview */
{-1, 0, 0} /* nust be the final entry */
be
typedef struct datalink {
ui nt _t dl _type;
voi d (*dl _match_fn) (uint_t datatype);
transport _table_t *dl _trans_nap_t bl ;
networ k_t abl e_t *dl _net _map_thbl;
int dl _I'i nk_header _| en;
i nt dl _l'i nk_type_of fset;
int dl _l'i nk_dest _of f set;
int dl _link_src_offset;
int dl _I'i nk_addr _| en;
} datalink_t;
dat al i nk_t dl;
#defi ne | PV4_SRCADDR OFFSET (dl . dl _l'ink_header_len + 12)
#defi ne | PV4_DSTADDR OFFSET (dl.dl _link_header_l en + 16)
#def i ne | PV6_SRCADDR_OFFSET (dl.dl_link_header_| en + 8)
#defi ne | PV6_DSTADDR OFFSET dl . dl _li nk_header _| en + 24)
#defi ne | PNET_SRCZONE_OFFSET 16
#define | PNET_DSTZONE_OFFSET 20
static int inBrace = 0, inBraceOR = 0;
static int foundOR = O;
char *tkp, *sav_tkp;
char *token;
enum { EOL, ALPHA, NUMBER, FIELD, ADDR_|P, ADDR ETHER, SPECI AL,

ADDR_| P6 } tokentype;
uint _t tokenval ;

enum directi
enum di recti
extern void
static void
static void
static void
static void
static void
static void
static void

on { ANY, TO, FROM};
on dir;

next();

pf _expression();

pf_check_vl an_tag(uint_t offset);
pf_clear_offset_register();

pf_em t_| oad_offset(uint_t offset);
pf _mat ch_et hertype(ui nt _t ethertype);
pf _mat ch_i pnet t ype(ui nt_t type);

pf _mat ch_i bt ype(uint _t type);

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

265
266
267
268

270
271
272
273
274
275
276
277
278
279
280
281 s

283
284
285
286
287
288
289
290

292
293
294
295
296
297
298
299

301
302
303

305
306

308
309

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

static void pf_check_transport_protocol (uint_t transport_protocol);
static void pf_conpare_val ue_mask_generic(int offset, uint_t len,

uint _t val, int mask, uint_t op);
static void pf_matchf n(const char *narre);

/
This pointer points to the function that |ast generated
instructions to change the offset register. |It's used

for conparisons to see if we need to issue nore instructions
to change the register.

it would be In after executing the instructions issued by
pf_clear_offset_register.

f-rx-x-x-:(-x-x-x-x-x-x-x-
-~

static void
pf _em t (x)

ushort _t x;
{

if (pfp > &f.Pf_Filter[PF_MAXFILTERS - 1])
Iong] nmp(env, 1);
) *pf p++ = Xx;

static void

pf _codeprint (code, |en)
ushort_t *code;
int |en;

ushort_t *pc;
ushort_t *plast = code + |len;
int op, action;

if (len > 0)

prlntf(Kernel Filter:\n");
}
for (pc = code; pc < plast; pc++) {

printf("\t98d: ", pc - code);

op = *pc & Oxfc00; /* high 10 bits */
action = *pc & Ox3ff; /* low 6 bits */

switch (action) {
case ENF_PUSHLI T:
printf("PUSHLIT ");
br eak;
case ENF_PUSHZERO
printf("PUSHZERO ") ;
br eak;
#i f def ENF_PUSHONE
case ENF_PUSHONE:
prl ntf (" PUSHONE ") ;
br eak;
#endi f
#i f def ENF_PUSHFFFF
case ENF_PUSHFFFF:
print f (" PUSHFFFF ") ;
br eak;
#endi f
#i f def ENF_PUSHFFOO
case ENF_PUSHFFO0O:
printf("PUSHFFOO ");

It’s initialized to pf_clear_offset_register because the offset
register in pfrod is initialized to zero, simlar to the state

atic void *last_offset_operation = (voi d*)pf_clear_offset_register;

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

331 br eak;

332 #endif

333 #i fdef ENF_PUSHOOFF

334 case ENF_PUSHOOFF:

335 pr| nt f (" PUSHOOFF ") ;
336 br eak;

337 #endi f

338 case ENF_LOAD_OFFSET:
339 pr| nt f("LOAD_OFFSET ");
340 br eak;

341 case ENF_BRTR

342 printf("BRTR ");
343 br eak;

344 case ENF_BRFL:

345 printf("BRFL ");
346 br eak;

347 case ENF_POP:

348 printf("POP ");
349 break;

350 }

352 if (action >= ENF_PUSHWORD)
353 printf("PUSHWORD % ", action -
355 switch (op) {

356 case ENF_EQ

357 prlntf("EQ");
358 br eak;

359 case ENF_LT:

360 printf("LT ");
361 break;

362 case ENF_LE:

363 printf("LE ");
364 br eak;

365 case ENF_GT:

366 printf("Gr ");
367 br eak;

368 case ENF_GE:

369 printf("GE ");
370 break;

371 case ENF_AND:

372 printf("AND ");
373 break;

374 case ENF_OR

375 printf("OR");
376 br eak;

377 case ENF_XOR:

378 printf("XOR ");
379 br eak;

380 case ENF_COR:

381 printf("COR");
382 break;

383 case ENF_CAND:

384 printf("CAND ");
385 br eak;

386 case ENF_CNOR

387 printf("CNOR ");
388 br eak;

389 case ENF_CNAND:

390 printf("CNAND ");
391 break;

392 case ENF_NEQ

393 printf("NEQ");
394 break;

395 }

ENF_PUSHWORD) ;

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

code,

in the nedia

397 if (action == ENF_PUSHLIT ||

398 action == ENF_LQOAD OFFSET ||

399 action == ENF_BRTR | |

400 action ENF_BRFL) {

401 pc++;

402 printf("\n\t%3d: %l (0x%4x)", pc -
403 }

405 printf("\n");

406 }

407 }

409 /*

410 * Enmit packet filter code to check a

411 * field in the packet for a particul ar val ue.

412 * Need different code for each field size.

413 * Since the pf can only conpare 16 bit quantities
414 * we have to use masking to conpare byte val ues.

415 * Long word (32 bit) quantities have to be done

416 * as two 16 bit conpari sons.

417 */

418 static void

419 pf _conpare_val ue(int offset, uint_t len, uint_t val)
420 {

421 *

422 * |f the property being filtered on is absent
423 * packet, error out.

424 *

425 if (offset == -1)

426 pr_err("filter option unsupported on nedia");
428 switch (len) {

429 case 1:

430 pf _em t (ENF_PUSHWORD + of fset / 2);

431 #if defined(_BI G_ENDI AN)

432 if (offset % 2)

433 #el se

434 if (!(offset %2))

435 #endi f

436 {

437 #ifdef ENF_PUSHOOFF

438 pf _em t (ENF_PUSHOOFF | ENF_AND);
439 #el se

440 pf_enit (ENF_PUSHLIT | ENF_AND);
441 pf _emi t (Ox00FF) ;

442 #endi f

443 pf_enit (ENF_PUSHLIT | ENF_EQ;
444 pf_emt(val);

445 } else {

446 #ifdef ENF_PUSHFFOO

447 pf _eni t (ENF_PUSHFFOO | ENF_AND);
448 #el se

449 pf_eni t (ENF_PUSHLI T | ENF_AND) ;
450 pf _em t (OxFF00) ;

451 #endi f

452 pf_enit(ENF_PUSHLIT | ENF_EQ;
453 pf_emt(val << 8);

454

455 br eak;

457 case 2:

458 pf _enit (ENF_PUSHWORD + of fset / 2);
459 pf_em t (ENF_PUSHLIT | ENF_EQ;

460 pf_em t ((ushort_t)val);

461 br eak;

*pc,

*pe);

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

463 case 4:

464 pf _em t (ENF_PUSHWORD + of fset / 2);

465 pf _emi t (ENF_PUSHLI T | ENF_EQ);

466 #if defined(_BI G_ENDI AN)

467 pf_emit(val >> 16);

468 #elif defined(_LI TTLE_ENDI AN)

469 pf _emt(val & Oxffff);

470 #el se

471 #error One of _BI G ENDI AN and _LI TTLE_ENDI AN nust be defi ned

472 #endi f

473 pf _em t (ENF_PUSHWORD + (offset / 2) + 1);

474 pf _emit (ENF_PUSHLI T | ENF_EQ;

475 #if defined(_BI G_ENDI AN)

476 pf_emt(val & Oxffff);

477 #el se

478 pf_emt(val >> 16);

479 #endi f

480 pf _em t (ENF_AND) ;

481 br eak;

482 }

483 }

485 | *

486 * sane as pf_conpare_value, but only for emting code to

487 * conpare 1 pv6 addresses.

488 */

489 static void

490 ?f _conpare_val ue_v6(int offset, uint_t len, struct in6_addr val)
491

492 int i;

494 for (i =0; i <len; i +=2) {

495 pf_emt(ENF PUSHWORD + offset / 2 + i /| 2);

496 pf_em t (ENF_PUSHLIT | ENF_EQ);

497 pf_em t(*(uintl16_t *)&val.s6 addr[l])

498 if (i '=0)

499 pf _em t (ENF_AND) ;

500 }

501 }

504 /*

505 * Same as above except nask the field val ue

506 * before doing the conparison. The conparison checks

507 * to neke sure the values are equal .

508 */

509 static void

510 pf_conpare_val ue_nask(int offset, uint_t len, uint_t val, int mask)
511 {

512) pf _conpare_val ue_mask_generic(of fset, len, val, nask, ENF_EQ;
513

515 /*

516 * Sane as above except the values are conpared to see if they are not
517 * equal .

518 */

519 static void

520 ?f _conpare_val ue_nmask_neq(int offset, uint_t len, uint_t val, int mask)
521

522 pf _conpar e_val ue_mask_generic(of fset, len, val, nmask, ENF_NEQ ;
523 }

525 [*

526 * Simlar to pf_conpare_val ue.

527 *

528 * This is the utility function that does the actual work to conpare

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

529 * two val ues using a mask. The conparison operation is passed into

530 * the function.
531 */
532 static void

533 pf_conpare_val ue_nmask_generic(int offset, uint_t len, uint_t val, int nask,
534 uint_t op)

535 {

536 /*

537 * |f the property being filtered on is absent in the nedia
538 * packet, error out.

539 */

540 if (offset == -1)

541 pr_err("filter option unsupported on nedia");
543 switch (len) {

544 case 1:

545 pf _em t (ENF_PUSHWORD + of fset / 2);

546 #if defined(_BI G_ENDI AN)

547 if (offset % 2)

548 el se

549 if (loffset % 2)

550 #endi f

551 {

552 pf _emit (ENF_PUSHLI T | ENF_AND);
553 pf_em t(mask & 0x00ff);

554 pf_em t (ENF_PUSHLIT | op);

555 pf_emt(val);

556 } else {

551 pf _emi t (ENF_PUSHLI T | ENF_AND);
558 pf_emt((mask << 8) & Oxff00);
559 pf_em t (ENF_PUSHLIT | op);

560 pf_emt(val << 8);

561 }

562 br eak;

564 case 2:

565 pf_emi t (ENF_PUSHWORD + of fset / 2);

566 pf_emi t (ENF_PUSHLI T | ENF_AND);

567 pf _em t (ht ons((ushort _t) mask));

568 pf_emt(ENF PUSHLI T | op);

569 pf _em t (ht ons((ushort t)val));

570 br eak;

572 case 4:

573 pf _em t (ENF_PUSHWORD + of fset / 2);

574 pf_emi t (ENF_PUSHLI T | ENF_AND);

575 pf_em t (htons((ushort_t)((mask >> 16) & Oxffff)));
576 pf_em t (ENF_PUSHLIT | op);

577 pf_em t (htons((ushort t)((val >> 16) & Oxffff)));
579 pf _em t (ENF_PUSHWORD + (offset / 2) + 1);
580 pf _enit (ENF_PUSHLI T | ENF_AND);

581 pf “enit (htons((ushort _t)(nmask & oxffff)));
582 pf_em t (ENF_PUSHLIT | op);

583 pf_en"it(htons((ushort_t)(val & Oxffff)));
585 pf_enit (ENF_AND) ;

586 br eak;

587

588 }

590 /*

591 * Like pf_conpare_val ue() but conpare on a 32-bit zoneid val ue.
592 * The argunment val passed in is in network byte order.

593 */

594 static void

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

595 pf_conpare_zoneid(int offset, uint32_t val)

596 {

597 int i;

599 for (i =0; i < S|zeof (uint32_t) / 2; i ++) {
600 pf_em t (ENF_PUSHWORD + offset / 2 + i);
601 pf “enit (ENF_PUSHLIT | ENF_EQ;

602 pf_emit (((uint16_t *)&val)[i]);

603 if (i 1=0)

604 pf_em t (ENF_AND) ;

605 1

606 }

608 /*

609 * Generate pf code to match an I Pv4 or |Pv6 address.
610 */

611 static void

612 pf _i paddr _mat ch(whi ch, hostnane, inet_type)

613 enum di recti on which;

614 char *host nare;

615 int inet_type;

616 {

617 bool _t found_host;

618 uint _t *addrd4ptr;

619 uint_t addr4;

620 struct in6_addr *addr6ptr;

621 int h_addr_index;

622 struct hostent *hp = NULL;

623 int error_num= 0;

624 bool ean_t first = B_TRUE;

625 int pass = 0;

626 int 1;

628 /*

629 * The addr4offset and addr6offset variables sinplify the code which
630 * generates the address conparison filter. Wth these two vari abl es,
631 * duplicate code need not exist for the TO and FROM case.

632 * A value of -1 describes the ANY case (TO and FROM .

633 */

634 int addr4offset;

635 int addr6offset;

637 found_host = 0;

639 if (tokentype == ADDR_| P)

640 hp = geti pnodebynanme(host name, AF_INET, 0, &error_nun;
641 if (hp == NULL)

642 if (error_num== TRY_AGAIN) {

643 pr_err("could not resolve % (try again later)",
644 host nane) ;

645 } else {

646 pr_err("could not resolve %", hostnane);
647 }

648

649 inet_type = | PV4_ONLY;

650 } elseif (tokentype == ADDR | P6)

651 hp = get| pnodebynanme(host nane, AF_I NET6, 0, &error_

652 if (hp == NULL) {

653 if (error_num== TRY_AGAIN) {

654 pr_err("could not resolve % (try again later)",
655 host nane) ;

656 } else {

657 pr_err("coul d not resolve %", hostnane);
658 }

659

660 inet_type = | PV6_QNLY;

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c 9 new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c 10
661 } else |f (tokentype == ALPHA) { 727 if (h_addr_index != 0)
662 * Some hostnane i.e. tokentype is ALPHA */ 728 pf _emi t (ENF_OR) ;
663 svmtch (inet_type) { 729 pf _conpare_val ue(| PV4_| DSTADDR OFFSET, 4,
664 case | PV4A_ONLY: 730 *addr4ptr);
665 /* Only IPv4 address is needed */ 731 pf _em t(ENF_O?);
666 hp = geti pnodebynane(host name, AF_I NET, O, &error_nun); 732 } else {
667 if (hp !'= NULL) { 733 pf _conpar e_val ue(addr 4of f set, 4,
668 found_host = 1; 734 *addr4ptr);
669 } 735 if (h_addr_index != 0)
670 br eak; 736 pf _em t (ENF_OR) ;
671 case | PV6_ONLY: 737 }
672 /* Only IPv6 address is needed */ 738 addr4ptr = (uint_t *)hp->h_addr_|ist[++h_addr_i ndex];
673 hp = geti pnodebynanme(host nane, AF_I NET6, O, &error_num; 739 }
674 if (hp !'= NULL) { 740 pf _eni t (ENF_AND) ;
675 found_host = 1; 741 } else {
676 } 742 /* first pass: |Pv4 addresses */
677 br eak; 743 h_addr |ndex = 0;
678 case | PV4_AND | PV6: 744 addr6ptr = (struct in6_addr *)hp->h_addr_|ist[h_addr_i ndex];
679 /* Both IPv4 and | Pv6 are needed */ 745 first = B TRUE;
680 hp = geti pnodebynane(host name, AF_I NET6, 746 whi | e (aderptr = NULL) {
681 Al _ALL | Al _VANMAPPED, &error_num; 747 f (I'N6_I S_ADDR VAMAPPED(addr 6ptr)) {
682 if (hp !'= NULL) { 748 if (first) {
683 found_host = 1; 749 pf _matchfn("ip");
684 } 750 if (dl.dl _type == DL_ETHER) {
685 br eak; 751 pf _check_vl an_t ag(
686 defaul t: 752 ENCAP_ETHERTYPE_COFF/ 2) ;
687 found_host = 0; 753 1
688 } 754 pass++;
755 }
690 if (!found_host) { 756 | N6_VAMAPPED_TO_| NADDR(addr 6pt r,
691 if (error_num== TRY_AGAIN) { 757 “(struct in addr *)&addr4)
692 pr_err(" coul d not resolve % (try again later)", 758 if (addr4offset == -1) {
693 host nane) ; 759 pf _conpar e_val ue(| PV4_SRCADDR_CFFSET, 4,
694 } else { 760 addr4) ;
695 pr_err("could not resolve %", hostnane); 761 if (!fi rst)
696 } 762 pf _enit(ENF_OR);
697 } 763 pf _conpar e_val ue(| Pv4_DSTADDR _OFFSET, 4,
698 } else { 764 addr 4) ;
699 pr_err("unknown token type: %", hostnane); 765 pf _em t (ENF_OR) ;
700 } 766 } else {
767 pf _conpar e_val ue(addr 4of f set, 4,
702 switch (which) { 768 addr 4) ;
703 case TO 769 if (!first)
704 addr 4of f set = | PV4_DSTADDR OFFSET; 770 pf _enit(ENF_OR);
705 addr 6of f set = | PV6_DSTADDR_OFFSET; 771 }
706 br eak; 772 if (first)
707 case FROM 773 first = B_FALSE;
708 addr 4of f set = | Pv4_SRCADDR_OFFSET; 774 }
709 addr 60of f set = | PV6_SRCADDR_OFFSET; 775 addr6ptr = (struct in6_addr *)
710 br eak; 776 hp->h_addr _| i st[++h_addr _i ndex] ;
711 case ANY: 777 }
712 addr 4of fset = -1; 778 1f (Mfirst) {
713 addr 6of fset = -1; 779 pf_em t (ENF_AND) ;
714 br eak; 780
715 } 781 /* second pass: |Pv6 addresses */
782 h_addr |ndex = 0;
717 if (hp !'= NULL && hp- >h_addrtype == AF_I NET) { 783 addr6pt r = (struct in6_addr *)hp->h_addr_list[h_addr_i ndex];
718 pf_ matchf n(" ip") 784 first = B_TRUE,
719 if (dl.dl _type == DL_ETHER) 785 while (addréptr != NULL) {
720 pf check vl an_t ag(ENCAP_ETHERTYPE_OFF/ 2) ; 786 if ('IN6_IS ADDR VAMAPPED(addr6ptr)) {
721 h_addr |ndex = 0; 787 if (first) {
722 addr4ptr = (uint_t *)hp->h_addr_|ist[h_addr_i ndex]; 788 pf _matchfn("i p6");
723 while (addrédptr T= NULL) { 789 if (dl.dl _type == DL_ETHER) {
724 i f (addr4offset == -1) 790 pf _check_vl an_t ag(
725 pf_conpare_val ue(| Pv4_SRCADDR OFFSET, 4, 791 ENCAP_ETHERTYPE_OFF/ 2) ;
726 *addr4ptr); 792 }

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

823
824
825
826

829
830

832
833
834

836
837
838
839
840
841

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

pass++;

if (addr6offset == -1) {

pf _conpar e_val ue_v6(| PV6_SRCADDR_OFFSET,
16, *addréptr);

if (!first)

pf_emt (ENF_OR);

pf _conpar e_val ue_v6(| PV6_DSTADDR_OFFSET,
16, *addréptr);

pf _em t (ENF_OR) ;

} else {
pf _conpare_val ue_v6(addr 6of f set, 16,
*addr 6ptr);
if (Mfirst)
pf_em t (ENF_OR);
}
if (first)
first = B_FALSE;
}
addr 6pt r

(struct in6_addr *)
>

hB— h_addr _| i st[++h_addr_i ndex];

i}f (Mfirst) {
pf_em t (ENF_AND) ;

if (pass == 2) {
pf_emt (ENF_OR);

}

if (hp !'= NULL) {
freehost ent (hp);
}

static void
pf _conpare_address(int offset, uint_t len, uchar_t *addr)
831 {

uint32_t val;
uint16_t sval;
bool ean_t di done = B_FALSE;

*

* |f the property being filtered on is absent in the nedia
* packet, error out.
*
/
if (offset == -1)
pr_err("filter option unsupported on nedia");

while (len > 0) {

if (len >= 4) {
(void) mencpy(&val, addr, 4);
pf _conpare_val ue(of fset, 4, val);
addr += 4;
of fset += 4;
len -= 4;

} else if (len >=2) {
(void) nenctpy(&sval, addr, 2);
pf _conpare_val ue(of fset, 2, sval);
addr += 2;
of fset += 2;
len -= 2;

} else {
pf _conpare_val ue(of fset ++, 1, *addr++);
len--;

11

new usr/src/cnd/ cnd-i net/ usr. sbin/ snoop/ snoop_pf.c 12
859 }
860 1 f (didone)
861 pf _eni t (ENF_AND) ;
862 di done = B_TRUE;
863 }
864 }
866 /*
867 * Conpare ethernet addresses.
868 */
869 static void
870 pf_etheraddr_mat ch(whi ch, host nane)
871 enum di rection which;
872 char *host nane;
873 {
874 struct ether_addr e, *ep = NULL;
876 if (isxdigit(*hostnane))
877 ep = ether_aton(hostnane);
878 if (ep == NULL) {
879 if (ether_hostton(hostnanme, &e))
880 if (larp_for_ether(hostnanme, &e))
881 pr_err("cannot obtain ether addr for %",
882 host nane) ;
883 ep = &e;
884 }
886 pf_clear_offset_register();
888 switch (which) {
889 case TO
890 pf _conpare_address(dl.dl _link_dest_offset, dl.dl_link_addr_Ien,
891 (uchar_t *)ep);
892 br eak;
893 case FROM
894 pf _conpare_address(dl .dl _link_src_offset, dl.dl _Iink_addr_Ien,
895 (uchar_t *)ep);
896 br eak;
897 case ANY:
898 pf _conpare_address(dl.dl _link_dest_offset, dl.dl_link_addr_Ien,
899 (uchar_t *)ep);
900 pf _conpare_address(dl.dl _link_src_offset, dl.dl_link_addr_|en,
901 (uchar_t *)ep);
902 pf_enit (ENF_OR);
903 br eak;
904 }
905 }
907 /*
908 * Enmit code to conpare the network part of
909 * an | P address.
910 */
911 static void
912 pf_netaddr_nat ch(whi ch, netnane)
913 enum di rection which;
914 char *net nane;
915 {
916 ui nt _t addr;
917 uint_t mask = Oxff000000;
918 struct netent *np;
920 if (isdigit(*netname)) {
921 addr = inet_network(netnane);
922 } else {
923 np = get net byname(net nane) ;
924 if (np == NULL)

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

925 pr_err("net % not known", netnane);
926 addr = np->n_net;

927 }

929 /*

930 * Left justify the address and figure

931 * out a nask based on the supplied address.

932 * Set the mask according to the nunmber of zero

933 * | oworder bytes.

934 * Note: this works only for whole octet masks.

935 */

936 if (addr) {

937 whil e ((addr & ~mask) !'= 0) {

938 k | = (mask >> 8);

939 }

940 }

942 pf _check_vl an_t ag(ENCAP_ETHERTYPE_COFF/ 2) ;

944 switch (which) {

945 case TQ

946 pf _conpar e_val ue_mask(| Pv4_DSTADDR _OFFSET, 4, addr,
947 br eak;

948 case FROM

949 pf _conpar e_val ue_mask(| Pv4_SRCADDR OFFSET, 4, addr,
950 br eak;

951 case ANY:

952 pf _conpar e_val ue_mask(| Pv4_SRCADDR OFFSET, 4, addr,
953 pf _conpar e_val ue_mask(| Pv4_DSTADDR_OFFSET, 4, addr,
954 pf _em t (ENF_OR);

955 br eak;

956 1

957 }

959 /*

960 * Enmit code to match on src or destination zoneid.

961 * The zoneid passed in is in network byte order.

962 */

963 static void

964 pf_mat ch_zone(enum direction which, uint32_t zoneid)

965

966 if (dl.dl_type !'= DL_I PNET)

967 pr_err("zone filter option unsupported on nedia");
969 switch (which) {

970 case TQ

971 pf _conpar e_zonei d(| PNET_DSTZONE_OFFSET, zonei d);
972 br eak;

973 case FROM

974 pf _conpar e_zonei d(| PNET_SRCZONE_OFFSET, zonei d);
975 br eak;

976 case ANY:

977 pf _conpar e_zonei d(| PNET_SRCZONE_OFFSET, zonei d);
978 pf _conpar e_zonei d(| PNET_DSTZONE_OFFSET, zonei d);
979 pf _em t (ENF_OR);

980 br eak;

981 1

982 }

984 [*

985 * A helper function to keep the code to enmit instructions

986 * to change the offset register in one place.

987 *

988 * INPUTS: offset - An value representing an offset in 16-bit
989 * wor ds.

990 * QUTPUTS: If there is enough roomin the storage for the

mask) ;

mask) ;

mask) ;
mask) ;

13

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

991 * packet filtering program instructions to |oad
992 * a constant to the offset register. GO herw se,
993 * not hi ng.

994 */

995 static void
996 pf_emt_| oad_of fset(uint_t offset)

997 {

998 pf _em t (ENF_LOAD_OFFSET | ENF_NOP);

999 pf_emt(of fset);

1000 }

1002 /*

1003 * Cear pfrnod s offset register.

1004 *

1005 * INPUTS: none

1006 * QUTPUTS: Instructions to clear the offset register if
1007 * there is enough space renmining in the packet
1008 * filtering program structure’s storage, and
1009 * the last thing done to the offset register was
1010 * not clearing the offset register. Oherw se,
1011 * not hi ng.

1012 */

1013 static void
1014 pf_clear_offset_register()

1015

1016 if (last_offset_operation != (void*)pf_clear_offset_register) {
1017 pf_enit_| oad offset(O)

1018 | ast_of fset_operation = (voi d*)pf_clear_offset_register;
1019 }

1020 }

1022 /*

1023 * This function will issue opcodes to check if a packet

1024 * is VLAN tagged, and if so, update the offset register

1025 * with the appropriate offset.

1026 *

1027 * Note that if the packet is not VLAN tagged, then the offset

1028 * register will be cleared.

1029 *

1030 * If the interface type is not an ethernet type, then this

1031 * function returns w thout doing anything.

1032 *

1033 * |If the last attenpt to change the offset register occured because
1034 * of a call to this function that was called with the sane offset,
1035 * then we don’t issue packet filtering instructions.

1036 *

1037 * INPUTS: offset - an offset in 16 bit words. The function

1038 * will set the offset register to this

1039 * value if the packet is VLAN tagged.

1040 */OJTPUTS: If the conditions are net, packet filtering instructions.
1041 *

1042 static void
1043 pf_check_vlan_tag(uint_t offset)

1044 {

1045 static uint_t last_offset = 0;

1047 if ((interface->mac_type == DL_ETHER ||

1048 interface->mac_type == DL_CSVACD) &&

1049 (1 ast _of fset_operation != (void*)pf_check_vlan_tag ||
1050 last_offset I'= offset)) {

1051 /*

1052 * First thing is to clear the offset register.
1053 * We don’t know what state it is in, and if it
1054 * is not zero, then we have no idea what we | oad
1055 * when we execute ENF_PUSHWORD.

1056 */

14

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

1057 pf_clear_offset_register();

1059 /*

1060 * Check the ethertype.

1061 */

1062 pf _conpare_val ue(dl . dl _li nk_type_of fset, 2,

1063 ht ons(ETHERTYPE_VLAN)) ;

1065 /*

1066 * And if it’s not VLAN, don't |oad offset to the offset
1067 * register.

1068 */

1069 pf _emi t (ENF_BRFL | ENF_NOCP);

1070 pf_em t(3);

1072 /*

1073 * Otherwi se, |load offset to the offset register.
1074 */

1075 pf _em t _| oad_of f set (of fset);

1077 /*

1078 * Now get rid of the results of the conparison,
1079 * we don’t want the results of the conparison to affect
1080 * other logic in the packet filtering program
1081 *

1082 pf_enit (ENF_POP | ENF_NOP);

1084 /*

1085 * Set the last operation at the end, or any tinme
1086 * after the call to pf_clear_offset because
1087 * pf_clear_offset uses it.

1088 */

1089 | ast _of fset _operati on = (voi d*)pf_check_vl an_t ag;
1090 | ast _of fset = offset;

1091 }

1092 }

1094 /*

1095 * Uility function used to enit packet filtering code

1096 * to match an ethertype.

1097 *

1098 * INPUTS: ethertype - The ethertype we want to check for.

1099 * Don’t call htons on the ethertype before
1100 * calling this function.

1101 * QUTPUTS: If there is sufficient storage avail abl e, packet
1102 * filtering code to check an ethertype. O herwise,
1103 * not hi ng.

1104 */

1105 static void

1106 pf_natch_ethertype(uint_t ethertype)

1107 {

1108 /*

1109 * |f the user wants to filter on ethertype VLAN,

1110 * then clear the offset register so that the offset

1111 * for ENF_PUSHWORD points to the right place in the
1112 * packet .

1113 *

1114 * Otherw se, call pf_check_vlan_tag to set the offset
1115 * register such that the contents of the offset register
1116 * plus the argunent for ENF_PUSHWORD point to the right
1117 * part of the packet, whether or not the packet is VLAN
1118 * tagged. We call pf_check_vlan_tag with an of fset of
1119 * two words because if the packet is VLAN tagged, we have
1120 * to nove past the ethertype in the ethernet header, and
1121 * past the lower two octets of the VLAN header to get to
1122 * the ethertype in the VLAN header.

15

new usr/src/ cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_pf.c 16
1123 */

1124 if (ethertype == ETHERTYPE_VLAN)

1125 pf_clear_offset_register();

1126 el se

1127 pf _check_vl an_tag(2);

1129 pf _compare_val ue(dl . dl _link_type_offset, 2, htons(ethertype));
1130 }

1132 static void

1133 pf_match_i pnettype(uint_t type)

1134 {

1135 pf _conmpare_val ue(dl . dl _link_type_offset, 2, htons(type));

1136 }

1138 static void

1139 pf_match_i btype(uint_t type)

1140 {

1141 pf _conpare_val ue(dl . dl _link_type_offset, 2, htons(type));

1142 }

1144 | *

1145 * This function uses the table above to generate a

1146 * piece of a packet filtering programto check a transport

1147 * protocol type.

1148 *

1149 * INPUTS: tranport_protocol - the transport protocol we're

1150 * interested in.

1151 * QUTPUTS: If there is sufficient storage, then packet filtering

1152 * code to check a transport protocol type. O herw se,

1153 * not hi ng.

1154 */

1155 static void

1156 pf_check_transport_protocol (uint_t transport_protocol)

1157 {

1158 int i;

1159 ui nt _t nunber_of _matches = 0;

1161 for (i = 0; dl.dl _trans_map_tbl[i].transport_protocol != -1; i++) {
1162 if (transport_protocol ==

1163 (uint_t)dl.dl _trans_map_tbl[i].transport_protocol) {
1164 nunber _of _mat ches++;

1165 dl . dl _match_fn(dl.dl _trans_map_tbl[i].network_protocol);
1166 pf _check_vl an_t ag(ENCAP_ETHERTYPE_OFF/ 2) ;

1167 pf _conpare_val ue(dl.dl _trans_map_tbl[i].of fset +
1168 dl.dl _l'ink_header _len, 1,

1169 transport_protocol);

1170 pf _enit (ENF_AND);

1171 if (nunber_of _matches > 1) {

1172 /*

1173 * Since we have two or nore matches, in
1174 * order to have a correct and conplete
1175 * program we need to OR the result of
1176 * each bl ock of conparisons together.
1177 */

1178 pf_em t (ENF_OR) ;

1179

1180 }

1181 }

1182 }

1184 static void

1185 pf_matchfn(const char *proto)

1186 {

1187

int i;

new usr/src/ cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_pf.c 17

1189 (i =0; dl.dl_net_map_tbl[i].nnmt_val = -1; i++) {
1190 if (strcnp(proto, dl.dl net rmp tbl[i].nnt_nane) == 0)
1191 dl . dl _match_fn(dl.dl _net_map_tbl[i].nnt_val);
1192 br eak;

1193 }

1194 1

1195 }

1197 static void

1198 pf_primary()

1199 {

1200 for (;;) {

1201 if (tokentype == FI ELD)

1202 br eak;

1204 if (EQ"ip")) {

1205 pf _matchfn("ip");
1206 opst ack++;

1207 next ()

1208 br eak;

1209 }

1211 if (EQ"ip6")) {

1212 pf _matchfn("ip6");
1213 opst ack++;

1214 next();

1215 break;

1216 }

1218 if (EQ"pppoe")) {

1219 pf _mat chf n(" pppoe");
1220 pf _mat ch_et hertype(ETHERTYPE, . PPPCES) ;
1221 pf_eni t (ENF_OR) ;

1222 opst ack++;

1223 next ();

1224 break;

1225 }

1227 if (EQ"pppoed")) {

1228 pf _mat chf n(" pppoed") ;
1229 opst ack++;

1230 next();

1231 break;

1232 }

1234 if (EQ"pppoes")) {

1235 pf _mat chf n(" pppoes");
1236 opst ack++;

1237 next();

1238 br eak;

1239 }

1241 if (EQ"arp")) {

1242 pf _mat chf n("arp");
1243 opst ack++;

1244 next ();

1245 break;

1246 }

1248 if (EQ"vlan")) {

1249 pf _matchfn("vl an");
1250 pf _conpar e_val ue_mask_neq(VLAN_| D_OFFSET, 2
1251 0, VLAN | D_MASK);
1252 pf_em t (ENF_AND) ;
1253 opst ack++

1254 next();

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c

1255
1256

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269

1271
1272
1273
1274
1275
1276

1278
1279
1280
1281
1282
1283

1285
1286
1287
1288
1289
1290

1292
1293
1294
1295
1296
1297

1300
1301
1302
1303
1304
1305

1307
1308
1309
1310
1311
1312

1314
1315
1316
1317
1318
1319

}
if

(EQ"

(BEQ"

(EQ"

(EQ™

(EQ"

(BEQ"

(EQ"

(EQ™

br eak;

vlan-id")) {
next ();
if (tokentype | = NUMBER)
pr err(VLAN | D expected");
pf _matchf n("vl an-id");
pf _conpar e_val ue rrask(VLAN | D_OFFSET, 2, tokenval,
VLAN_| D_MASK);
pf _emi t (ENF_AND) ;
opst ack++;
next();
break;

rarp" {

pf _matchfn("rarp");
opst ack++;

next();

br eak;

tcp”)) {

pf _check_transport_protocol (1 PPROTO TCP);
opst ack++;

next ();

br eak;

udp”))

pf _check_t ransport_protocol (| PPROTO_UDP) ;
opst ack++;

next();

break;

ospf")) {

pf _check_t ransport_protocol (| PPROTO_OSPF) ;
opst ack++;

next();

br eak;

sctp”)) {

pf _check_transport_protocol (I PPROTO SCTP);
opst ack++;

next();

br eak;

icnp”)) {

pf _check_transport_protocol (1 PPROTO | CWP) ;
opst ack++;

next ();

break;

icnp6”)) {

pf _check_t ransport_protocol (| PPROTO | CMPV6) ;
opst ack++;

next();

break;

new usr/src/ cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_pf.c 19 new usr/src/ cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_pf.c 20

1321 if (EQ"ip-in-ip")) { 1387 pf _i paddr _match(dir, token, |PV4_ONLY);
1322 pf _check_t ransport_prot ocol (| PPROTO_ENCAP) ; 1388 opst ack++;
1323 opst ack++; 1389 next();
1324 next(); 1390 br eak;
1325 br eak; 1391 }
1326 }
1393 if (EQ" inet6)) {
1328 if (EQ"esp")) { 1394 xt();
1329 pf _check_transport_protocol (1 PPROTO _ESP); 1395 i f (Eq "host"))
1330 opst ack++; 1396 next ();
1331 next (); 1397 if (tokentype = ALPHA &% tokentype != ADDR | P6)
1332 br eak; 1398 pr_err("host/1Pv6 addr expected after inet6");
1333 } 1399 pf _i paddr match(dir, token, |PV6_ONLY);
1400 opst ack++;
1335 if (EQ"ah")) { 1401 next();
1336 pf _check_transport_protocol (| PPROTO AH); 1402 br eak;
1337 opst ack++; 1403 }
1338 next ();
1339 br eak; 1405 if (EQQ"proto")) {
1340 } 1406 next ();
1407 if (tokentype != NUMBER)
1342 if (EQ("dccp")) { 1408 pr_err("IP proto type expected");
1343 pf _check_t ransport_prot ocol (| PPROTO_DCCP) ; 1409 pf _check_vl an_t ag(ENCAP_ETHERTYPE_OFF/ 2) ;
1344 opst ack++; 1410 pf _conpar e_val ue(
1345 next(); 1411 | PV4_TYPE_HEADER OFFSET + dl.dl _Ilink_header_len, 1,
1346 br eak; 1412 tokenval) ;
1347 } 1413 opst ack++;
1414 next();
1349 #endif /* | codereview */ 1415 br eak;
1350 if (EQ"(")) { 1416 }
1351 i nBrace++;
1352 next (); 1418 if (EQ"broadcast")) {
1353 pf _expression(); 1419 pf_clear_offset_register();
1354 if (EQX")")) { 1420 pf _conmpare_val ue(dl.dl _link_dest_offset, 4, Oxffffffff);
1355 1 f (inBrace) 1421 opst ack++;
1356 inBraceOR--; 1422 next ();
1357 i nBrace--; 1423 br eak;
1358 next(); 1424 }
1359 }
1360 br eak; 1426 if (EQ"multicast")) {
1361 } 1427 pf_clear_offset_register();
1428 pf _conpar e_val ue_mask(
1363 if (EQ"to") || EQ("dst")) { 1429 dl . dl _link_dest_offset, 1, 0x01, 0x01);
1364 dir = TQ 1430 opst ack++;
1365 next (); 1431 next ();
1366 conti nue; 1432 br eak;
1367 } 1433 }
1369 if (BEQ" from) || EQ"src")) { 1435 if (EQ"ethertype")) {
1370 dir = FROM 1436 next();
1371 next(); 1437 if (tokentype != NUMBER)
1372 continue; 1438 pr_err("ether type expected");
1373 } 1439 pf _mat ch_et hertype(tokenval);
1440 opst ack++;
1375 if (EQ"ether")) { 1441 next();
1376 eaddr = 1; 1442 break;
1377 next () ; 1443 }
1378 conti nue;
1379 } 1445 if (EQ"net") || EQ("dstnet") || EQ"srcnet")) {
1446 if (EQ"dst net "))
1381 if (EQ"inet")) { 1447 dir = TQ
1382 next () 1448 else if (EQ"srcnet"))
1383 if (Eq " host ")) 1449 dir = FROM
1384 xt(); 1450 next ();
1385 if (tokentype = ALPHA &% t okent ype != ADDR | P) 1451 pf _net addr _match(dir, token);

1386 pr_err("host/|Pv4 addr expected after inet"); 1452 dir = ANY;

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c 21 new usr/src/cnd/ cnd-i net/ usr. sbi n/ snoop/ snoop_pf.c

1453 opst ack++; 1519 if (opstack !'=s + 2)

1454 next (); 1520 break;

1455 br eak; 1521 pf _emi t (ENF_AND) ;

1456 } 1522 opst ack- -;
1523 }

1458 if (EQ"zone")) { 1524 }

1459 next();

1460 if (tokentype != NUMBER) 1526 static void

1461 pr_err("zoneid expected after inet"); 1527 pf _expression()

1462 pf _mat ch_zone(dir, BE_32((uint32_t)(tokenval))); 1528 {

1463 opst ack++; 1529 pf _alternation();

1464 next(); 1530 whil e (EQ("or") || EQ(",")) {

1465 br eak; 1531 if (inBrace)

1466 } 1532 i NBr aceOR++;
1533 el se

1468 /* 1534 f oundOR++;

1469 * G ve up on anything that’s obviously 1535 next();

1470 * not a prinary. 1536 pf_alternation();

1471 *f 1537 pf “enit (ENF_OR);

1472 if (EQ"and") || EQ"or") || 1538 opst ack- -;

1473 EQ("not") || EQ"decnet") || EQ" appl e") | | 1539 }

1474 EQ("! engt h") || EQ"less") || EQ great er’) | 1540 }

1475 EQ(" port) || EQ("srcport™) || EQ(dst port) |

1476 EQ"rpc") || EQ"gateway") || EQ"nofrag") || 1542 | *

1477 EQ("bootp") || EQ"dhcp") || Q(dhcp6") |1 1543 * Attenpt to corrpl I e the expression

1478 EQ"slp") || EQ"ldap")) { 1544 * in the string "e". |If we can generate

1479 br eak; 1545 * pf code for it then return 1 - otherw se

1480 } 1546 * return O and leave it up to the user-Ilevel
1547 * filter.

1482 if (EQ"host") || EQ"between") || 1548 */

1483 tokentype == ALPHA || /* assunme its a hostname */ 1549 int

1484 t okent ype == ADDR I P || 1550 pf_conpile(e, print)

1485 t okentype == ADDR | P6 | | 1551 char *e;

1486 tokentype == ADDR ETHER) { 1552 int print;

1487 if (EQ"host") || EQ"between")) 1553 {

1488 next (); 1554 char *argstr;

1489 if (eaddr || tokentype == ADDR_ETHER) { 1555 char *sav_str, *ptr, *sav ptr

1490 pf _etheraddr_match(dir, token); 1556 int inBr =0, aheadOR =

1491 } else if (tokentype == ALPHA) {

1492 pf _i paddr _mat ch(dir, token, |PV4A_AND | PV6); 1558 argstr = strdup(e);

1493 } else if (tokentype == ADDR 2 1P) { 1559 sav_str = eg;

1494 pf _i paddr _match(dir, token, |PV4_ONLY); 1560 tkp = argstr;

1495 } else { 1561 dir = ANY;

1496 pf _i paddr_match(dir, token, |PV6_ONLY);

1497 } 1563 pfp = &f.Pf_Filter[O0];

1498 dir = ANY; 1564 I1f (setjnp(env)) {

1499 eaddr = 0; 1565 return (0);

1500 opst ack++; 1566 }

1501 next();

1502 br eak; 1568 /*

1503 } 1569 * Set nedia specific packet offsets that this code uses.
1570 */

1505 break; /* unknown token */ 1571 if (interface->nac type == DL_ETHER) {

1506 } 1572 dl.dl _type = DL ETHER

1507 } 1573 dl . dl _match_fn = pf_match_ethertype;
1574 dl . dl _trans_map_tbl = ether_transport_nappi ng_t abl e;

1509 static void 1575 dl . dl _net _map_tbl = ether_network_nappi ng_t abl e;

1510 pf_al ternation() 1576 dl .dl _l'ink_header _| en = 14;

1511 { 1577 dl.dl _link_type_offset = 12;

1512 int s = opstack; 1578 dl.dl _|ink dest offset = 0;
1579 dl.dl _link_src offset = 6;

1514 pf_primry(); 1580 dl.dl _link_addr_len = 6;

AI5iI5) for (;;) { 1581 }

1516 if (EQ"and"))

1517 next (); 1583 if (interface->mac_type == DL_IB) {

1518 pf_primary(); 1584 dl.dl _type = DL_I B,

new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c 23 new usr/src/cnd/ cnd-i net/ usr. sbhi n/ snoop/ snoop_pf.c 24
1585 dl .dl _link_header_len = 4; 1651 aheadOR = 1;
1586 dl.dl _link_type offset = 0; 1652 br eak;
1587 dl . dl _l'ink_dest offset =dl.dl _link_src_offset = -1; 1653 case ', :
1588 dl.dl _link_addr_l en 20; 1654 if (i nBr)
1589 dl.dl “_match_fn = pf natch_ i bt ype; 1655 aheadOR = 1;
1590 dl.dl “trans_map_thl = ib_transport _mappi ng_t abl e; 1656 br eak;
1591 dl.dl _net_map_tbl = ib_network_nappi ng_t able; 1657 }
1592 } 1658 ptr++;
1659 }
1594 if (interface->mac_type == DL_I PNET) { 1660 if (laheadOR) {
1595 dl . dl _type = DL_I PNET; 1661 /* NO OR AHEAD, SPLIT UP THE FILTERI NG */
1596 dl . dl _l'ink_header _| en = 24; 1662 pf.Pf_FilterLen = pfp - &pf.Pf_Filter[O0];
1597 dl.dl _link_type_offset = 0; 1663 pf.Pf_Priority =5
1598 dl.dl _link_dest_offset = dl.dl_link_src_offset = -1; 1664 if (print) {
1599 dl.dl _link_addr_len = -1; 1665 pf_codeprint (&f.Pf_Filter[O0],
1600 dl.dl _match_fn = pf_match_i pnettype; 1666 pf.Pf_FilterLen);
1601 dl .dl _trans_map_tbl = ipnet_transport_mappi ng_table; 1667 }
1602 dl . dl _net _map_tbl = ipnet_network_nappi ng_t abl e; 1668 conpi | e(sav_ptr, print);
1603 } 1669 return (2);
1670 } else
1605 next(); 1671 return (0);
1606 pf _expression(); 1672 }
1673 1
1608 if (tokentype != EQL) {
1609 /* 1675 pf. Pf F|IterLen=pfp- &pf . Pf_Filter[0];
1610 * The idea here is to do as much filtering as possible in 1676 pf.Pf_Priority = /* uninportant, so long as > 2 */
1611 * the kernel. So even if we find a token we don’'t understand, 1677 if (print) {
1612 * we try to see if we can still set up a portion of the filter 1678 pf_codeprint (&pf.Pf_Filter[0], pf.Pf_FilterLen);
1613 * in the kernel and use the userland filter to filter the 1679
1614 * remaining stuff. Qoviously, if our filter expression is of 1680 return (1);
1615 * type A AND B, we can filter Ain kernel and then apply B 1681 }
1616 * to the packets that got through. The same is not true for
1617 * afilter of type AORB. W can't apply Afirst and then B
1618 * on the packets filtered through A
1619 *
1620 * (We need to keep track of the fact when we find an OR
1621 * and the fact that we are inside brackets when we find OR
1622 * The variable 'foundOR tells us if there was an OR behind,
1623 * "inBraceOR tells us if we found an OR before we coul d find
1624 * the end brace i.e. ')’, and variabl e 'aheadOR checks if
1625 * there is an ORin the expression ahead. if either of these
1626 * cases become true, we can’'t split the filtering)
1627 */
1629 if (foundOR || inBraceOR) {
1630 /* FORGET IN KERNEL FI LTERI NG */
1631 return (0);
1632 } else {
1634 /* CHECK | F NO OR AHEAD */
1635 sav_ptr = (char *)((uintptr_t)sav_str +
1636 (uintptr_t)sav_tkp -
1637 (uintptr_t)argstr);
1638 ptr = sav_ptr;
1639 while (*ptr !'="\0")
1640 switch (*ptr) {
1641 case '(':
1642 i NBr ++;
1643 br eak;
1644 case ')’:
1645 inBr--;
1646 br eak;
1647 case '0’:
1648 case 'O :
1649 if ((*(ptr + 1) =="R ||
1650 *(ptr + 1) =="'r") & !inBr)

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_rport.c

R R R R

10831 Sat Aug 18 10:36:59 2012
new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_rport.c
dccp: options and features

R R R R R

__unchanged_portion_onitted_

140 char *

141 getportnane(int proto, in_port_t port)

142 {

143 const struct porttable *p, *pt;

145 switch (proto) {

146 case | PPROTO DCCP: /* fallthru */
147 case | PPROTO_SCTP:

146 case | PPROTO SCTP: /* fallthru */
148 case | PPROTO TCP: pt = pt_tcp; break;
149 case | PPROTO_UDP: pt = pt_udp; break;
150 default: return (NULL);

151 }

153 for (p = pt; p->pt_num p++) {

154 if (port == p->pt_num

155 return (p->pt_short);
156 }

157 return (NULL);

158 }

__unchanged_portion_onitted_

new usr/src/cnd/ devfsadm mi sc_link.c

R R R R

18154 Sat Aug 18 10:37:00 2012
new usr/src/cnd/ devfsadm mi sc_link.c

dccep:

f

i X setsockopt bu

R R R R R R R

1

/*

/

*
*

#i
#i
#i
#i
#i
#i
#i
#i
#i

st
st
st
st
st
st
st
st
st
st
st
st
st
st
st
st
st
st
st
st
st
st
st

st

NN
-~

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 1998, 2010, Oracle and/or its affiliates. Al rights reserved.
Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

*

/

ncl ude <regex. h>

ncl ude <devfsadm h>

ncl ude <stdio. h>

ncl ude <strings. h>

ncl ude <stdlib. h>

nclude <limts.h>

ncl ude <sys/zone. h>

ncl ude <sys/zcons. h>

ncl ude <sys/cpuid_drv. h>

atic int display(di_mnor_t mnor, di_node_t node);

atic int parallel (di_mnor_t mnor, di_node_t node);

atic int node_slash_minor(di _minor_t nminor, di_node_t node);
atic int driver_mnor(di _minor_t minor, di_node_t node);
atic int node_nane(di _m nor_t m nor, di _node_t node);

atic int minor_nanme(di _mnor_t mnor, di_node_t node);
atic int wfi_mnor_nanme(di _m nor_t mnor, di_node_t node);
atic int conskbd(di _minor_t minor, di_node_t node);

atic int consms(di _mnor_t minor, di_node_t node);

atic int power_button(di _mnor_t mnor, di_node_t node);
atic int fc_port(di_mnor_t mnor, di_node_t node);

atic int printer_create(di _mnor_t mnor, di_node_t node);
atic int se_hdlc_create(di _mnor_t mnor, di_node_t node);
atic int ppm(di _minor_t mnor, di_node_t node);

atic int gpio(di _mnor_t mnor, di_node_t node);

atic int av_create(di _m nor_t minor, di_node_t node);

atic int tsalarmcreate(di _mnor_t mnor, di_node_t node)
atic int ntwdt_create(di _mnor_t minor, di_node_t node);
atic int zcons_create(di _mnor_t mnor, di_node_t node);
atic int cpuid(di_mnor_t minor, di_node_t node);

atic int glve(di _minor_t minor, di _node_t node);

atic int ses_cal [back(di _minor_t mnor, di node_t node) ;
atic int kmdrv_create(di _mnor_t minor, di_node_t node);
atic devfsadmcreatet msc_cht[] = {

{ "pseudo", "ddi_pseudo", "("sad$)",

new usr/src/cnd/ devfsadm mi sc_link.c

e i e e el e o el e e e e e P e

H
{

b
t

———

}
{
}
{

"encl osure",

"pseudo”, "ddi_pseudo”,

"pseudo”, "ddi_pseudo",

"pseudo”, "ddi_pseudo",

"pseudo”, "ddi_pseudo",

TYPE_EXACT | DRV_RE, |LEVEL_0, node_sl ash_m nor

"pseudo”, "ddi_pseudo", "zsh",

TYPE_EXACT | DRV_EXACT, |LEVEL 0, driver_ninor

"network", "ddi _network", NULL,

TYPE_EXACT, |LEVEL_0, ninor_nanme

wifi", "ddi _network:w fi", NULL,
TYPE_EXACT, |LEVEL_O, wifi_m nor_nane

"di splay", "ddi_display", NULL,

TYPE_EXACT, |LEVEL_O, display

"parallel", "ddi_parallel™, NULL,

TYPE_EXACT, |LEVEL_0, parallel

DDl _NT_SCSI _ENCLOSURE, NULL,
TYPE_EXACT, |LEVEL_0, ses_cal |l back

"(~winlock$)| (~pnB)",
TYPE_EXACT | DRV_RE, |LEVEL_O, node_nane

"conskbd",
TYPE_EXACT | DRV_EXACT, |LEVEL_0, conskbd

"consns",
TYPE_EXACT | "DRV_EXACT, |LEVEL_0, consns

"pseudo”, "ddi_pseudo", "rsni,

TYPE_EXACT | DRV_EXACT, |LEVEL_O0, minor_nane

"pseudo”, "ddi _pseudo",

"(~l ockst at $)_| ("SUNWrtve$)| (~vol $)| ("~ og$) | ("sy$)|"
N ("ksyms$) | (cl one$) | (*1$) | (~Mtnf$)| ("kstat$) | ("mjesc$) | (@ eepr ont) | "
"(nptsl $)| (Amm®) | (Mwe$) | (Ndunp$) | ("cn$) | (~svvsl o$) | (~pt
~ptc$) | ("openeepr$) | (~pol | $)| ("sysn’sg$) | (~randon®) | (" tat$)|"
"(~cryptoadn®) | (~crypt o$) | (~pool $) | (~pool ct1$)| (~bl $) | ("krrdb$) | "
"(~sysevent $) | ("kssl $) | (*physnens) ",
TYPE_EXACT | DRV_RE, ILEVEL 1, nminor_name
"pseudo”, "ddi pseudo
! ("I p$) | (~tcp$) | (“udp$) | (i cnp$) | (~decps) | "
p63$) | (Mt cp6$) | (Audpb6S) | (Mi rrp6$) | (“dccp6$) | "
"(A! PS)| (*tcp8) | (PudpS) | (M cnpS)|® |
(" p6%)| (~tcp6$)| (~udp6$)| (i cnp6$) |
" ("rt s$) | ("ar p$) | ("l psecah$) | (~i psecesp$) | (“keysock$) | (spdsock$)| "
"(~nca$)| (» rds$) | (sdp$)| (™ pnet $) | (~dl pi st ub$) | (~bpf $
TYPE_EXACT | a EVEL_1, m nor_nane

"pseudo”, "ddi_pseudo”,
& pf$) | (“ipnat$)| ("| pst at e$) | (N paut h$) | "
" (7ipsync$) | (N pscan$)| ("l pI ookup$) "
TYPE_EXACT | DRV_RE, L O, m nor _nane,

"pseudo”, "ddi_pseudo", "dld"

TYPE_EXACT | "DRV_EXACT, |LEVEL 0, node nane

"pseudo”, "ddi pseudo
" ("kdn‘ouse$) | (~root pr op3) "
TYPE_EXACT | DRV_RE, |LEVEL_0, node_name

"pseudo”, "ddi_pseudo”, "tod"

TYPE_EXACT | DRV_EXACT, ILEVEL_O, node_nane

"envctrl (two)?",

new usr/src/cnd/ devfsadm mi sc_link.c

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

}
{
}
{
}
{
}
{
}
{
}
{
}
t
}
{
}
{
}
t
}
t
}
{
}
{
}
{
}
{
}
{
}
t
}
t
}
{
}
{
}
t
}
{

TYPE_EXACT |

'pseudo”, "ddi
TYPE_ EXACT |

'power _button", _ _
I LEVEL_O, power_button,

TYPE_EXACT,

"FC port”, "ddi

TYPE_EXACT |

"printer”, "ddi
| LEVEL_O, printer_create

TYPE_ EXACT

pseudo", "ddi
TYPE EXACT |

DRV_RE, |LEVEL_1, m nor_naneg,

_pseudo", "fcode",
DRV_RE, |LEVEL_O, m nor_nane,

"ddi _power _button", NULL,
_ctl:devctl", "fp",
DRV_EXACT, ILEVELO fc_port
_printer", NULL,

_pseudo", "se",
DRV_EXACT, |LEVEL_O, se_hdlc_create

"pprt', "ddi _ppni, NULL,

TYPE EXACT,

"pseudo”, "ddi
TYPE_EXACT |

'pseudo”, "ddi
TYPE_ EXACT |

'pseudo”, "ddi
TYPE_ EXACT |

I LEVEL_0, ppm

_pseudo", "gpio_87317",
DRV_EXACT, | LEVEL_0O, gpio

_pseudo", "sckndrv",
DRV_RE, |LEVEL_0, kmdrv_create,

_pseudo”, "opl kmdrv",
DRV_RE, |LEVEL_0, kmdrv_create,

"~Addi _av: (i soch| async) $", NULL,
TYPE RE, TLEVEL_0, av_create,

"pseudo”, "ddi
TYPE_ EXACT |

pseudo", "ddi
TYPE EXACT |

'pseudo”, "ddi
TYPE_ EXACT |

"pseudo”, "ddi
TYPE_EXACT |

'pseudo”, "ddi
TYPE_ EXACT |

"pseudo”, "ddi
TYPE_ EXACT |

"pseudo”, "ddi
TYPE_EXACT |

"pseudo”, "ddi
TYPE_ EXACT |

pseudo”, "ddi
TYPE EXACT |

'pseudo”, "ddi
TYPE_ EXACT |

"pseudo”, "ddi
TYPE_EXACT |

'pseudo”, "ddi

_pseudo”, "tsalarn',
DRV_RE, |LEVEL_O, tsalarmcreate,

_pseudo”, "ntwdt"
DRV_RE, |LEVEL_ O ntwdt _create,

_pseudo”, "daplt",
DRV_EXACT, |LEVEL_O, m nor_nane

_pseudo", "zcons",
DRV_EXACT, |LEVEL_O, zcons_create,

_pseudo”, CPU D DRI VER _NAME,
DRV_EXACT, |LEVEL_0O, cpuid,

_pseudo", "glvc",
DRV_EXACT, |LEVEL_O, glvc,

_pseudo”, "dnRs",
DRV_EXACT, |LEVEL_O, m nor_nane,

_pseudo”, "nsnb",
DRV_EXACT, |LEVEL_1, m nor_nane,

_pseudo", "nmem cache",
DRV_RE, |LEVEL_1, m nor_nane,

_pseudo", "fni,
DRV_RE, |LEVEL_1, m nor_nane,

_pseudo”, "snbsrv",
DRV_EXACT, |LEVEL_1, m nor_nane,

_pseudo", "tpnt',

new usr/src/cnd/ devfsadm mi sc_link.c

192 TYPE_EXACT | DRV_EXACT,

193 1,
194 };
__unchanged_portion_omtted_

| LEVEL_O, mi nor

_nanme

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni X/ genuni x. ¢ 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
128972 Sat Aug 18 10:37:00 2012

new usr/ src/ cnd/ mdb/ common/ nodul es/ genuni X/ genuni x. ¢

dccp: build fixes, mdb (vfs sonode m ssing)

R R R R R R

__unchanged_portion_onitted_

3841 static const ndb_dcnd_t dcnds[] = {

3898
3899

* fromcred.c */
‘cred", ":[-v]", "display a credential", cnd_cred },

3843 /* from genunix.c */
3844 { "as2proc", ":", convert as to proc_t address", as2proc },
3845 { "binding_ hash _entry", ":", "print driver names hash tabl e entry",
3846 bi ndi ng_ hash entr 1,
3847 { "callout", "?[-r|n] [- s||] [-xhB] [-t | -ab nsec [-dkD]]"
3848 " [-C addr | -S seqid] [-f nane|addr] [-p nanme| addr] [-T|L [-E]]"
3849 " [-FivVvA] ",
3850 "display callouts", call out, callout_help },
3851 { "calloutid", "[-dlv] xid", "print callout by extended id"
3852 cal loutid, callouti d_hel p},
3853 "class", NULL, "print process schedul er classes", class },
3854 "cpuinfo", "?[-v]", "print CPUs and runnabl e threads" ch| nfo },
3855 "did2thread", "? kt_did", "find kernel thread for thls id"
3856 di d2thread 1,
3857 “err orq "?[-v]", "display kernel error queues", errorq },
3858 "fd" [fd nur'd" "get a file pointer froman fd", fd },
3859 “fli pone ey “the vi k_rev_level 2 special", flipone },
3860 "1 m nf o" NULL, "print lock manager infornation", Inminfo },
3861 " ndi event hdl ", "?", "print ndi _event_hdl", ndi_event_hdl },
3862 panl cinfo™, NULL, "print panic information", panicinfo },
3863 p| d2pr0c 7 "convert PID to proc_t address", pid2proc },
3864 pr 01 ect NULL, "display kernel project(s)", project },
3865 p , [-fItzTP] "l1st processes (and associated thr,lw)", ps },
3866 "pgrep’, "[-x] [- n| -0] pattern”,
3867 "pattern match against all processes", pgrep },
3868 { "ptree", NULL, "print process tree", ptree }
3869 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
3870 sysevent},
3871 { "sysevent_channel", "?", "print sysevent channel database",
3872 sysevent _channel },
3873 { "sysevent_class_list", ":", "print sysevent class list",
3874 sysevent _class_li st}
3875 {" sysevent subcTass_list", ":"
3876 "print sysevent subcl ass list” sysevent _subcl ass_list},
3877 { "systeni, NULL, "print contents of /etc/systemfi le", sysfile },
3878 { "task", NULL, "displ ay kernel task(s)", task },
3879 { "tine", "[-dIx]", "display systemtine", tine, tine_help },
3880 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
3881 { "whereopen", ":", "given a vnode, dunps procs which have it open",
3882 wher eopen },
3884 /* frombio.c */
3885 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
3887 /* frombitset.c */
3888 { "bitset", ":", "display a bitset", bitset, bitset_help },
3890 /* fromcontract.c */
3891 { "contract", "?", "display a contract", cnd_contract },
3892 { "ctevent", ":", "display a contract event", cnd_ctevent },
3893 { "ctid", ":", "convert id to a contract pointer", cnd_ctid },
3895 /* from cpupart c */
3896 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
/
{

new usr/ src/ cnd/ mdb/ common/ nodul es/ genuni X/ genuni x. ¢

3900 { "credgrp", ":[-v]", "display cred_t groups", cnd_credgrp },

3901 { "credsid", ":[-v]", "display a credsid_t", cnd_credsid },

3902 { "ksidlist", ":[-v]", "display a ksidlist_t", cnd_ksidlist },

3904 /* fromcyclic.c */

3905 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
3906 { "cycid", "?", "dunp a cyclic id", cycid },

3907 { "cycinfo", , "dump cyc_cpu info", cycinfo },

3908 { "cyclic", "devel oper information", cyclic },

3909 { "cyctrace", "?", "dunp cyclic trace buffer", cyctrace },

3911 /* from damap.c */

3912 { "damap", ":", "display a damap_t", damap, damep_help },

3914 /* fromdevinfo.c */

3915 { "devbindings", "?[-qs] [device-name | mgjor-nunj",

3916 "print devinfo nodes bound to devi ce-name or mgjor-nunt',

3917 devbi ndi ngs, devinfo_help }

3918 { "devinfo", ":[-qgs]", "detalled devinfo of one node", devinfo,
3919 devinfo_help },

3920 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
3921 devinfo_audit },

3922 { "devinfo_audit_log", "?[-v]", "systemw de devinfo configuration |og",
3923 devinfo_audit_log },

3924 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
3925 devi nf o_audi t _node },

3926 { "devinfo2driver", ":", "find driver name for this devinfo node",
3927 devi nf o2driver },

3928 { "devnames", "?[-vni [nur'ri" "print devnames array", devnanes },
3929 { "dev2mgjor", "?<dev_t>", "convert dev_t to a mmjor nunber",

3930 dev2naj or },

3931 { "dev2m nor", "?<dev_t>", "convert dev_t to a mi nor nunber",

3932 dev2mi nor 1},

3933 { "devt", "?<dev_t>", "display a dev_t's mmjor and m nor nunbers",
3934 devt },

3935 { "nmajor2nane", "?<major-nunmk", "convert mmjor nunber to dev nane",
3936 maj or 2nane },

3937 { "mnornodes", ":", "given a devinfo node, print its mnor nodes",
3938 m nor nodes },

3939 { "nodctl 2devinfo", ":", "given a nodctl, list its devinfos",

3940 nodct | 2devi nfo },

3941 { "name2maj or", "<dev-nanme>", "convert dev name to maj or numnber"
3942 name2maj or },

3943 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
3944 { "softstate", ":<instance>", "retrieve soft-state pointer",

3945 softstate },

3946 { "devinfo_fni, ":", "devinfo fault managment configuration",

3947 devinfo_fm},

3948 { "devinfo_fnte", ":", "devinfo fault nmanagnent cache entry",

3949 devi nfo_f nte},

3951 /* fromfindstack.c */

3952 { "findstack", ":[-v]", "find kernel thread stack", findstack },
3953 { "findstack_debug", NULL, "toggle findstack debuggi ng",

3954 findstack_debug },

3955 { "stacks", "?[-afiv] [-c func] [-C func] [-m nodul e] [—Mrmdul e]
3956 "[-s sobj | -S sobj] [-t tstate | -Ttstate]

3957 "print unique kernel thread stacks"

3958 stacks, stacks_help },

3960 /* fromfmc */

3961 { "ereport", "[-v]", "print ereports logged in dunp",

3962 ereport },

3964 /* fromgroup.c */

3965 { "group", "?[-q]", "display a group", group},

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ genuni X/ genuni x. ¢

3967 /* from hotplug.c */

3968 { "hotplug", "?[-p]", "display a registered hotplug attachnent",
3969 hot pl ug, hot plug_hel p },

3971 /* fromirmc */

3972 { "irnpool s", NULL, "display interrupt pools", irnpools_dcmd },

3973 { "irnregs", NULL, "display interrupt requests in an interrupt pool",
3974 |rmeqs dend },

3975 { "irnreq", NULL, "display an interrupt request", irnreq_dcnd },
3977 /* fromkgrep.c + genunix.c */

3978 { "kgrep", KGREP_USACE, "search kernel as for a pointer", kgrep,
3979 kgrep_help },

3981 /* fromkmemec */

3982 { "allocdby", ":", "given a thread, print its allocated buffers",
3983 al | ocdby },

3984 { "bufctl", ":[-vh] [—a addr] [-c caller] [-e earliest] [-] latest]
3985 "[-t thd]” “print or filter a bufctl", bufctl, bufctl_help },
3986 { "freedby", ":", "given a thread, print its freed buffers", freedby },
3987 { "kmal og", "?[fail | slab 1",

3988 "display knemtransaction |og and stack traces", kmalog },

3989 { "kmastat", "[-kmg]", "kernel menory allocator stats",

3990 kmastat },

3991 { "kmausers", "?[-ef] [cache ...]", "current nediumand |arge users "
3992 "of the kmem allocator", kmausers, knausers_help },

3993 { "knem.cache", "?[-n nane]",

3994 "print kernel nenory caches", kmem cache, kmem cache_hel p},
3995 { "kmemsl abs", "?[-v] [—n cache] [-N cache] [-b maxbins] "

3996 "[-B mnbinsize]", "display slab usage per knem cache",

3997 kmem sl abs, kmem sl abs_hel p},

3998 { "kmem debug", NULL, "toggle kmem dend/ wal k debuggl ng", kmem.debug },
3999 { "kmem.| og", "?[-b]", "dunp kmem transaction | og" kmem | og }

4000 { "knmemwverify", "?", "check integrity of kmem nanaged menory",
4001 kmem ver| fy },

4002 { "vrent', "?", "print a vmemt", vmem},

4003 { "vmem_seg ":[—sv] [-c caller] [-e earliest] [-] Iatest] "

4004 [mmnS|ze] [-M maxsi ze] [t thread] [-T type]l"

4005 "print or filter a virem 1seg”, vmemseg, vhem seg_| hel p},
4006 { "whatthread", ":[-v]", "print threads whose stack contains the "
4007 "given address", whatthread },

4009 /*fromldl.c*/

4010 { "Idi _handle", "?[-i]", "display a layered driver handle",

4011 |d| _handl e, Idi handl e_help },

4012 { "ldi _ident", NULL, "display a |ayered driver identifier",

4013 I di _ident, Idi_ident_help },

4015 /* fromleaky.c + | eaky_subr.c */

4016 { "findleaks", FINDLEAKS USAGE,

4017 "search for potential kernel nmenory |eaks", findleaks,

4018 findl eaks_help },

4020 /* fromlgrp.c */

4021 { "lgrp", "?[-q] [-p | -Pih]", "display an |l grp", lgrp},

4022 { "lgrp_set", "", "display bitmask of Igroups as a list", lgrp_set},
4024 /* fromlog.c */

4025 { "nsgbuf", "?[-v]", "print nost recent consol e nessages", nsgbuf },
4027 /* fromndi.c */

4028 { "mdipi", NULL, "given a path, dunp ndi_pathinfo "

4029 "and detailed pi_prop list", ndipl },

4030 { "ndi props", NULL, "given a pi_prop, dunp the pi _prop list",

4031 ndi props },

new usr/ src/ cnd/ mdb/ common/ nodul es/ genuni X/ genuni x. ¢

4032 { "mdi phCI , NULL, "given a phci, dunp ndi_phci and "

4033 "l'ist all paths", ndiphci },

4034 { "mdivhci", NULL, "given a vhci, dunmp ndi_vhci and |ist

4035 "all phcis", mdivhci },

4036 { "mdiclient_paths", NULL, "given a path, wal k ndi_pathinfo "

4037 "client links", ndiclient_paths },

4038 { "mdi phci _paths", NULL, "given a path, wal k through ndi_pathinfo "
4039 "phci links", ndiphci_paths },

4040 { "mdi phcis", NULL, "given a phci, walk through ndi _phci ph_next
4041 mdi phecis },

4043 /* from nenory. ¢ */

4044 "addr 2smap", ": [offset]" "translate address to smap", addr 2smap },
4045 "marﬂist", "7[—|av] "di splay a struct man1|st mem ist },
4046 rremst at", NULL, "di spl ay menory usage summary", " memst at },

4047 page" "’7" di splay a summari zed page_t ", page },

4048 " pagel ookup "?[-v vp] [-0 offset]"

4049 "find the page_t wth the nane’ {vp, offset}",

4050 pagel ookup, pagel ookup_hel p },

4051 { "page_nunkpp", ":", "find the page_t for a given page frane nunber"
4052 page_ nurerpp }

4053 "pmap", [—q] "print process nenory map , pmap },

4054 "seg", ":", prl nt address space segnent", seg },

4055 "swapi nfo", "?", "display a struct swapi nf 0", swapinfof },

4056 "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4058 /* frommmd.c */

4059 { "multidata", ":[-sv]", "display a summarized nultidata_t",

4060 mul tidata }

4061 { "patthl", ":", "display a summarized nultidata attribute table",
4062 patthl },

4063 { "pattr2nultidata", ":", "print nmultidata pointer frompattr_t",
4064 pattr2mul ti dat atl,

4065 { "pdesc2slab", ":", "print pdesc slab pointer frompdesc_t"

4066 pdeSCZSI ab },

4067 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4068 { "slab2multidata", ":", "print nultidata pointer frompdesc_slab_t",
4069 sl ab2nul tidata },

4071 /* from nodhash.c */

4072 { "nodhash", "?[-ceht] [-k key] [-v val] [-i index]"

4073 "di splay information about one or all nod_ hash structures”
4074 nmodhash, nodhash_help },

4075 { "nodent" ":[—k | -v | -t type]

4076 "di splay infornmation about a nod_hash_entry", nodent,

4077 nodent _hel p },

4079 /* fromnet.c */

4080 { "dladnt, "?<sub-conmmand> [flags]", "show data |ink infornmation",
4081 dI adm dladm help },

4082 {" [p] [-d | -m", "filter and display M object or payload",
4083

4084 {" netstat "[-arv] [-f inet | inet6 | unix] [-Ptcp | udp | icnp |
4084 { ‘netstat", "[-arv] [-f inet | inet6 | unix] [-Ptcp | udp | icnp]”
4085 "show network statistics", netstat },

4086 {" sonode "?[-f inet | inet6 | unix | # "

4087 [t stream| dgram| raw | #] [-p #]",

4088 "filter and display sonode", sonode },

4090 /* from netstack.c */

4091 { "netstack", "", "show stack instances", netstack },

4093 /* fromnvpair.c */

4094 { NVPAI R_DCVD_NAME, NVPAI R_DCMD_USAGE, NVPAI R_DCVD_DESCR,

4095 nvpair_print

4096 { NVLI ST_DCVD_NANE, NVLI ST_DCMD_USAGE, NVLI ST_DCMVD_DESCR,

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ genuni X/ genuni x. ¢

4097 print_nvlist },

4099 /* frompg.c */)

4100 { "pg", "?[-q]", "display a pg", pg},

4102 /* fromrctl.c */

4103 { "rctl_dict", "?", "print systemwi de default rctl definitions",
4104 rctl _dict },

4105 { "rctl_list", ":[handle]", "print rctls for the given proc",

4106 rctl Iist },

4107 { "rctl" : Thandl e] "print arctl_t, only if it natches the handl e",
4108 reti },

4109 { "rctl valldate ":[—v] [-n #]", "test resource control value
4110 sequence rctl_validate },

4112 /* fromsobj.c */

4113 { "rw ock", "dunp out a readers/witer |lock", rw ock },

4114 { "nutex" :[-f]1", "dunp out an adaptive or spin nutex", nutex,
4115 rmt ex heI p 1,

4116 { "sobj2ts", ™ perf ormturnstile | ookup on synch obj ect”

4117 { "wchani nfo" , " ’)[v] ", "dunmp condition variable", wchani nfo }

4118 { "turnstile", "?", dlsplayaturnstlle turnstlle},

4120 /* fromstreamc */

4121 { "nbl k" "il-qlv] [- f| F flag] [-t]T type] [-I|L|B len] [-d dbaddr]",
4122 "print an nbl k nbl k_prt, nblk_help },

4123 { "nbl k_verify", "2?", verlfylntegrlty of an mbl k" mbl k_verify },
4124 { "nbl k2dbl k", " ", "convert nblk_t address to dbl K _t address",
4125 nbl k2dbl k },

4126 q2otherq "print peer queue for a given queue", g2otherq },
4127 'prl nt read queue for a given queue", g2rdq },

4128 pr| nt syncq for a given queue", q23yncq

4129 "print stream pointer for a gi ven queue

4130 , " "print wite queue for a gl ven queue" q2qu },
4131 "queue", [-qlv] [-mnod] [-f flag] [-F flag] [-s syncq_addr]",
4132 "fil ter and di spl ay STREAM queue", queue, queue_help },

4133 {" stdata ":[-qlv] [-f flag] [-F flag]"

4134 EQ ter and di spl ay STREAM head", "stdat a, stdata_help },
4135 "str2mate", ":", "print mate of this stream', str2mate },

4136 "str2qu", ":", "print wite queue of this strean, str2wgq },
4137 "streant, ":", "display STREAM', stream},

4138 "strftevent", ":", "print STREAMS flow trace event", strftevent },
4139 "syncq', ":[-qlv] [-f flag] [-F flag] [-t type] [-T type]",

4140 "filter and di spl ay STREAM sync queue” syncq, syncq_hel p },
4141 { "syncg2q", ":", "print queue for a given syncq syncq2q }

4143 /* fromtaskqg.c */

4144 { "taskq", ":[-atT] [-mmn_maxq] [-n nane]",

4145 "display a taskq", taskq, taskq_help },

4146 { "taskqg_entry", ":", "display a taskg_ent_t", taskg_ent },

4148 /* fromthread.c */

4149 { "thread", "?[-bdfinps]", "display a summari zed kthread_t",

4150 thread_hel p },

4151 { "threadllst" "2l - t] [-v [count]]"

4152 "display threads and associ ated C stack traces”, threadi st,
4153 threadlist_help }

4154 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage",

4155 st acki nfo_hel p }

4157 /* fromtsd.c */

4158 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4159 { "tsdtot", ":", "find thread with this tsd", tsdtot },

4161 /

4162 * typegraph does not work under kndb, as it requires too nuch nenory

new usr/ src/ cnd/ mdb/ common/ nodul es/ genuni X/ genuni x. ¢

4163 * for its internal data structures.
4164 */
4165 #i fndef _KNVDB

4166 /* fromtypegraph.c */

4167 { "findlocks", ":", "find | ocks held by specified thread", findlocks },
4168 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4169 findfal se },

4170 { "typegraph', NULL, "build type graph", typegraph },

4171 { "istype", pe", "manual |y set object type", istype },

4172 { "notype", , "manual |y clear object type", notype },

4173 { "whattype", ":", "deternine object type", whattype },

4174 #endi f

4176 /* fromvfs.c */

4177 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },

4178 { 'pf||es ":[-fp]", "print process file information", pfiles,

4179 pfl les_| hel p},

4181 /* fromzone.c */

4182 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },

4183 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for
4184 "sel ected zones", zsd },

4186 { NULL }

4187 };

4189 static const ndb_wal ker _t wal kers[] = {

4191 /* from genunix.c */

4192 { "callouts_bytinme", "walk callouts by list chain (expiration tine)"
4193 cal l out _wal k_init, callout_walk_step, callout_walk_fini,
4194 (void *)CALLOUT_WALK BYLI ST },

4195 { "callouts_byid", "walk callouts by id hash chain",

4196 cal lout _wal k_init, callout_walk_step, callout_walk_fini,
4197 (void *YCALLOUT_ WALK_BYI D T,

4198 { "callout _list", "walk a callout I|st" callout_list_walk_init,
4199 call out_l ist_wal k_step, callout_list_walk_fini },

4200 { "callout_table", "walk callout table array™, callout_table_walk_init,
4201 cal | out _tabl e_wal k_step, callout_tabl e_wal k_fini },

4202 { "cpu", "walk cpu structures", cpu_walk_init, cpu_wal k_step },
4203 { "ereportqg_dunp", "walk list of ereports in dump error queue",
4204 ereportqg_dunmp_wal k_init, ereportg_dunp_wal k_step, NULL },
4205 { "ereportqg_pend", "walk |list of ereports in pending error queue",
4206 ereportqg_pend_wal k_init, ereportq_pend_wal k_step, NULL },
4207 { "errorq", "walk list of systemerror queues",

4208 errorg_wal k_init, errorq_wal k_step, NULL },

4209 { "errorqg_data", "walk pending error queue data buffers",

4210 eqd vval k_init, eqd_wal k_step, eqd_walk_fini },

4211 { "allfile", "given a proc pointer, list all file pointers",
4212 flle wal k_init, allfile_walk_step, file_walk_fini },

4213 { "file", "given a proc pointer, list of open file pointers",
4214 fil e_walk_init, file_walk_step, file_walk_fini },

4215 { "lock_descriptor", "walk |ock_descriptor_t structures”

4216 Id V\alkinit, I d_wal k_step, NULL },

4217 { "lock graph" wal k | ock graph",

4218 gv\alklnlt I g_wal k_step, NULL },

4219 { "port", "given a proc pointer, list of created event ports",
4220 port_wal k_init, port_wal k_step, NULL },

4221 { "portev", "given a port pointer, |list of events in the queue",
4222 portev_wal k_init, portev_wal k_step, portev_walk_fini },
4223 { "proc", "list of active proc_t structures",

4224 proc_wal k_init, proc_wal k_step, proc_wal k_fini },

4225 { "projects”, "walk a list of kernel projects",

4226 project_wal k_init, project_wal k_step, NULL },

4227 { "sysevent_pend", "wal k sysevent pending queue",

4228 sysevent _pend_wal k_init, sysevent_wal k_st ep,

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ genuni X/ genuni x. ¢

4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244

4246
4247
4248

4250
4251
4252

4254
4255
4256
4257
4258
4259
4260

4262
4263
4264
4265
4266
4267

4269
4270
4271

4273
4274
4275
4276
4277
4278
4279

4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294

sysevent _wal k_fini},

{ "sysevent_sent", "wal k sysevent sent queue",
sysevent _wal k_step, sysevent_wal k_fini},

{ "sysevent_channel ", "wal k sysevent channel subscriptions",
sysevent _channel _wal k_i nit, sysevent_channel _wal k_st ep,
sysevent_channel Wal k_fini }

{ "sysevent_class_list", "walk sysevent subscription's class list",
sysevent _cl ass Iist _wal k_init, sysevent_class_|list_wal k_step,
sysevent _class_list_wal k_fini }

{ "sysevent subclass_list"

"wal k sysevent subscri ption’s subclass list",
sysevent _subclass_list_walk_init,
sysevent _subcl ass_| i st_wal k_st ep,
sysevent _subcl ass_list_wal k_fini},

{ "task", "given a task pointer, walk its processes"”,
task_wal k_init, task_wal k_step, NULL },

/* fromavl.c */
{ AVL_WALK_NAME, AVL_WALK_DESC,
avl _wal k_init, avl_wal k_step, avl_walk_fini },

/* frombio.c */
{ "buf", "walk the bio buf hash",
buf _wal k_i nit, buf_wal k_step, buf_walk_fini },

/* from contract.c */

{ "contract", "walk all contracts, or those of the specified type",
ct V\al k init, generic_walk_step, NULL },

{ "ct_event", "walk events on a contract event queue"”,
ct_event_V\aI k_init, generic_wal k_step, NULL },

{ "ct_listener", "walk contract event queue |isteners",
ct_listener_walk_init, generic_wal k_step, NULL },

/* fromcpupart.c */

{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
cpupart cpul ist_walk_init, cpupart_cpul i st_wal k_step,
NULL },

{ "cpupart_wal k", "walk the set of cpu partitions",
cpupart_wal k_init, cpupart_wal k_step, NULL },

/* fromctxop.c */
{ "ctxop", "walk list of context ops on a thread",
ctxop_wal k_init, ctxop_wal k_step, ctxop_walk_fini },

/* fromcyclic.c */

{ "cyccpu", "wal k per-CPU cyc_cpu structures",
cyccpu_wal k_init, cyccpu_wal k_step, NULL },

{ "cycomi", "for an ommipresent cyclic, walk cyc_omi _cpu list",
cycomi _wal k_init, cycomi_wal k_step, NULL },

{ "cyctrace", "walk cyclic trace buffer™”
cyctrace_wal k_init, cyctrace_wal k_step, cyctrace_wal k_fini },

/* fromdevinfo.c */
{ "binding_hash", "walk all entries in binding hash table",
bi ndi ng_hash_wal k_i nit, binding_hash_wal k_step, NULL },
{ "devinfo", "wal k devinfo tree or subtree",
devi nfo _wal k_i n|t devi nfo_wal k_step, devinfo_wal k_fini },
{ "devinfo_audit_| og" "wal k devinfo audit systemw de | og",
devi nfo_audi t ' og_wal k_i nit, devinfo_audit_|og_wal k_step,
devi nfo_audit_| 0g_ wal k_fi ni }
{ "devinfo_audit_node", "wal k per- devinfo audit hist ory",
devi nf o_audi t_node_V\aI k_init, devinfo_audit_node_wal k_step,
devi nf o_audi t_node_vxal k_fini},
{ "devinfo_children", "walk children of devinfo node",
devi nfo_chi | dren_wal k_i nit, devinfo_children_wal k_step,
devinfo_children_wal k_fini },

sysevent _sent _wal k_init,

new usr/ src/ cnd/ mdb/ common/ nodul es/ genuni X/ genuni x. ¢

b

}

b

4295 { "devinfo_parents", "walk ancestors of devinfo node"

4296 devi nfo parents wal k_i nit, devinfo_parents_) val k_step,

4297 devinfo parents wal k_fini },

4298 { "devinfo_siblings", "walk siblings of devinfo node",

4299 devi nfo_si bl i ngs_wal k_i nit, devinfo_siblings_wal k_step, NULL },
4300 { "devi_next", "walk devinfo list",

4301 NULL, devi next _wal k_step, NULL },

4302 { "devnanes", "walk devnames array"

4303 devnamas _wal k_init, devnanes _wal k_step, devnames_wal k_fini },
4304 { "mnornode", "given a devinfo node, wal k minor nodes",

4305 m nor node_v\al k_init, mnor node_wal k_step, NULL },

4306 {" softst ate"

4307 " gi ven an i_ddi _soft_state*, list all in-use driver stateps"”,
4308 soft_state wal k_init, soft_state_wal k_step,

4309 NULL, NULL},

4310 {" softst ate_all"

4311 "given an'i_ddi _soft_state*, list all driver stateps"”,

4312 soft_state wal k_init, soft_state_all_wal k_step,

4313 NULL, NULL},

4314 { "devi nf o_fnt"

4315 "wal k a fault managenent handl e cache active |ist"

4316 devinfo_fnc_wal k_init, devinfo_fnc_wal k_step, NULL' },

4318 /* fromgroup.c */

4319 { "group”, "walk all elenents of a group",

4320 group_wal k_init, group_wal k_step, NULL },

4322 /* fromlrmc*/

4323 { "irmpool s", "walk global list of interrupt pools",

4324 i rmpool s wal k_init, list_walk_step, list_walk_fini },

4325 { "irnreqgs", "wal K Iist of interrupt requests in an interrupt pool",
4326 i rmeqs_wal k_init, list_walk_step, list_walk_fini },

4328 /* fromknemc */

4329 { "allocdby", "given a thread, walk its allocated bufctls",

4330 al l ocdby_wal k_i nit, allocdby_wal k_step, allocdby_walk_fini },
4331 { "bufctl", "walk a kmem cache’s bufctls",

4332 bufctl_wal k_init, kmemwal k_step, knmemwal k_fini },

4333 { "bufctl_history", "walk the available history of a bufctl",

4334 bufctl _history_wal k_init, bufctl_history_wal k_step,

4335 bufctl _history_wal k_fini },

4336 { "freedby", "given a thread, walk its freed bufctls",

4337 freedby_wal k_init, allocdby_wal k_step, allocdby_wal k_fini },
4338 { "freectl", "wal k a kmem cache’s free bufctls",

4339 freectl _wal k_init, kmemwal k_step, knmemwal k_fini },

4340 { "freectl_constructed", "wal k a kmem cache’s constructed free bufctls",
4341 freectl construct ed_wal k_init, kmem.) wal k_step, kmemwal k_fini
4342 { "freement, "walk a kmem cache’'s free menory"

4343 freerrem wal k_i nit, knem wal k_step, kmem wal k_fini },

4344 { "freemem constructed", "wal k a kmem cache’s constructed free nenory",
4345 freenem const ruct ed_wal k_init, knemwal k_step, kmem wal k_fi ni
4346 { "kneni, "wal k a kmem cache",

4347 kmemwal k_init, kmemwal k_step, kmemwal k_fini },

4348 { "kmem cpu_cache", "given a kmem cache, walk its per-CPU caches",
4349 knmem cpu_cache_wal k_i nit, knmem cpu_cache_wal k_step, NULL },
4350 { "knem_ hash", "given a kmem cache, walk its allocated hash table",
4351 kmem_hash_v\al k_init, kmem hash_wal k_step, knem hash_wal k_fi ni
4352 { "kmem.|og", "walk the knem transaction | og",

4353 knem [0g_ wal k_init, knem.|og_wal k_step, knem.|og_wal k_fini },
4354 { "knem sl ab", "given a knem cache, walk its slabs",

4355 “knmem_ sl ab _wal k_init, conbined_wal k_step, conbined_wal k_fini },
4356 {" kmam sl ab_partial"

4357 "given a knem cache, wal k its partially allocated slabs (mn 1)"
4358 kmem sl ab_wal k_partial _init, conbined_wal k_step,

4359 conbi ned_wal k_fini },

4360 { "vment, "walk vmem structures in pre-fix, depth-first order",

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ genuni X/ genuni x. ¢

4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371

4373
4374
4375
4376
4377

4379
4380
4381
4382
4383
4384
4385

4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397

4399
4400
4401

4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415

4417
4418
4419
4420
4421
4422
4423
4424
4425
4426

vnemwalklnlt vrem wal k_step, vmemwal k_fini },

{ "vmem.alloc", "given a vmemt, walk its alTocated vmem segs"
vmem_al loc_wal k_init, vn‘em_seg_wal k_step, vmem seg_wal k_fi ni },
{ "vmem free", "given a vmem_t, wal k its free vmem segs",
vrem free_wal k_init, vmem seg_wal k_step, vnmem seg_wal k_fini },
{ "vmempostfix", "walk vimem structures in post-fix, depth-first order",
veem wal k_i nit, vmem postfix_wal k_step, vmemwal k_fini },
{ "vmemseg", "given a vmemt, walk all of its vmemsegs",
virem seg_wal k_init, vmem seg_wal k_step, vmem seg_wal k_fini },
{ "vnem.span", "given a vmemt, walk its spanning vmem segs",

viem span_wal k_init, vnmem seg_wal k_step, vmemseg_wal k_fini },

/* fromldi.c */
{ "Idi _handl e", "walk the | ayered driver handl e hash",
I di _handl e_wal k_i nit, |di_handl e_wal k_step, NULL },
{ "Idi_ident", "walk the |layered driver identifier hash",
Idi _ident_wal k_init, Idi_ident_walk_step, NULL },

/* fromleaky.c + | eaky_subr.c */
{ "leak", "given a |eaked bufctl or vmemseg, find |l eaks w sanme
"stack trace"
| eaky wal k init, |eaky_wal k_step, |eaky_walk_fini },
{ "leakbuf", "given a | eaked bufct! or veem seg, wal k buffers for
"leaks W same stack trace"
leaky_wal k_init, | eaky_buf _wal k_step, leaky_walk_fini },

/* fromlgrp.c */
{ "lgrp_cpulist", "walk CPUs in a given |group",
grp_cpulist_wal k_init, Igrp_cpulist wal k_step, NULL },
{ "lgrptbl", "walk | group table"
lgrp_wal k_init, |grp_wal k_st ep, NULL },
{ "lgrp_parents", "walk up Igroup lineage from given |group",
lgrp_parents_wal k_init, |grp_parents_wal k_step, NULL },
{ "lgrp_rsrc_nment, "walk | group nenory resources of given |group",
lgrp_rsrc_memwal k_init, Igrp_set_wal k_step, NULL },
{ "lgrp_rsrc_cpu", "walk Igroup CPU resources of given |group",
lgrp_rsrc_cpu_wal k_init, lgrp_set_walk_step, NULL },

/* fromlist.c */
{ LI ST_WALK_NAME, LI ST_WALK_DESC,
list_walk_init, list_walk_step, list_walk fini },

/* fromndi.c */

{ "nmdipi_client_list", "Wl ker for
rrdi_pi_client link_walk_init,
mdi_pi_client I'i nk_wal k step,

i I|n
wal

mdi _pathinfo pi_client_link",

_pi_cli ent k_wal k_f| n },
{ "nmdi pi phCI list", ker for ndi_pathinfo pi_phci_link",
rrd_pl _phci _link_wal k_init,
mdi _pi _phci _l i nk_wal k_st ep,

mdi _pi _phci “link_wal k_fini },
{ "nmdiphci_Iist", "Wal ker for mdi_phci ph_next |ink",
mdi _phci ph next _wal k_init,
mdi _phci _ph_next _wal k_ step,
mdi _phci _ph_next _wal k_fini },

/* fromnenory.c */

{ "allpages", "walk all pages, including free pages",
al | pages_wal k_i nit, allpages_wal k_step, allpages_wal k_fini },
{ "anon", "given an anp, |ist allocated anon structures",

anon_wal k_i nit, anon_wal k_step, anon_wal k_fi ni,
ANON” V\ALK ALL(x },

{ "anon_all", "given an anp, list contents of all anon slots"
anon_wal k_init, anon_wal k_step, anon_wal k_fini,
ANON_WALK_ALL },

{ "menmist", "walk specified memist",

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni X/ genuni x. ¢ 10
4427 NULL, men i st_wal k_step, NULL },

4428 { "page" “wal k all pages, or those fromthe speci fi ed vnode"
4429 page_vxal k_init, page_wal k_step, page_wal k_fini },

4430 { "seg", "given an as, |ist of segnents",

4431 seg_wal k_init, avl_wal k_step, avi _wal k_fini },

4432 { "segvn_anon",

4433 "given a struct segvn_data, list allocated anon structures",
4434 segvn_anon_wal k_i nit, anon_wal k_step, anon_wal k_fini,
4435 ANON_WALK_ALLOC },

4436 { " segvn anon_al | "

4437 "given a struct segvn_data, list contents of all anon slots",
4438 segvn_anon_wal k_i nit, anon_wal k_step, anon_wal k_fini,
4439 ANON_WALK_ALL },

4440 { "segvn_pages",

4441 "gi ven a struct segvn_data, list resident pages in "
4442 "of fset order"

4443 segvn_pages_ wal k_in it, segvn_pages_wal k_step,

4444 segvn_pages_wal k_fini, SEGYN_PAGES_RESI DENT },

4445 { "segvn_pages_all",

4446 "for each offset in a struct segvn_data, give page_t pointer "
4447 "(if resident), or NULL.",

4448 segvn_pages_wal k_i nit, segvn_pages_wal k_st ep,

4449 segvn_pages_wal k_fini, SEGYN PAGES ALL },

4450 { "swapinfo", "wal k swapinfo structures"”,

4451 swap_wal k_i nit, swap_wal k_step, NULL },

4453 /* frommmd.c */

4454 { "pattr", "walk pattr_t structures", pattr_walk_init,

4455 g_wal k_step, mmdg_wal k_fini },

4456 { "pdesc", "wal k pdesc_t structures",

4457 pdesc_wal k_i nit, mdq_wal k_step, mmdqg_wal k_fini },

4458 { "pdesc_slab", "wal k pdesc_slab_t structures”,

4459 pdesc_sl ab_wal k_i nit, mmdg_wal k_step, mmdg_wal k_fini },
4461 /* from nodhash.c */

4462 { "nodhash", "walk |ist of mpbd_hash structures", nodhash_wal k_init,
4463 erdhash_V\aI k_step, NULL },

4464 { "modent", "walk list of entries in a given nod_hash",

4465 nndent_wal k_init, nmodent_wal k_step, nodent_wal k_fini },
4466 { "nodchain", "walk list of entries in a given nod_hash_entry",
4467 NULL nodchai n_wal k_step, NULL },

4469 /* fromnet.c */

4470 { "icnp", "walk ICWP control structures using M for all stacks",
4471 m _payl oad_wal k_i nit, m _payl oad_wal k_step, NULL,

4472 &ni _icmp_arg },

4473 { "m", "given a M_O walk the M"

4474 m V\Eilklnlt m _wal k_st ep, i walkflnl NULL },

4475 { "sonode", "given a sonode, walk its children"

4476 sonode wal k_init, sonode _wal k_step, sonode_wal k_fini, NULL },
4477 { "icnp_stacks™, "walk all the i cnp_; stack_t"

4478 i cnp_st acks_v\al k_init, icnp_stacks v\al k_step, NULL },
4479 { "tcp_stacks", "walk all the' tcp_stack_t"

4480 tep_ stacks_\/\al k_init, tcp_stacks, V\ﬂ| k_step, NULL },

4481 { "udp_stacks", "walk all the udp_stack_t"

4482 udp_ stacks_wal k_init, udp_stacks wal k _step, NULL },

4483 { "dccp_stacks", "walk all the dccp_stack_t",

4484 dccp_st acks_\/\al k_init, dccp_stacks_wal k_step, NULL },
4485 #endif /* | codereview */

4487 /* fromnetstack.c */

4488 { "netstack", "walk a list of kernel netstacks",

4489 netstack_wal k_init, netstack_wal k_step, NULL },

4491 /* fromnvpair.c */

4492 { NVPAI R_WALKER NAME, NVPAI R_WALKER_DESCR

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ genuni X/ genuni x. ¢

4493

4495
4496
4497
4498
4499
4500
4501

4503
4504
4505
4506
4507

4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523

4525
4526
4527
4528
4529
4530
4531

4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546

4548
4549
4550

4552
4553
4554
4555
4556

4558

nvpair_wal k_init, nvpair_wal k_step, NULL },

/* fromrctl.c */

{ "rctl_dict_list", "walk all rctl_dict_entry_t’'s fromrctl_lists",
rctl _dict_wal k_init, rctl_dict_wal k_step, NULL },

{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
rctl_set_wal k_step, NULL },

{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
rctl _val _walk_init, rctl_val _wal k_step },

/* from sobj.c */

{ "blocked", "wal k threads bl ocked on a given sobj",
bl ocked_wal k_i nit, bl ocked_wal k_step, NULL },

{ "wchan", "given a wchan, |ist of blocked threads",

wchan_wal k_i nit, wchan_wal k_step, wchan_wal k_fini },

* fromstreamc */
"b_cont", "walk

bl k_wal k_i ni

"b_next", "wal k
bl k

k_t list using b_cont",
t, b_cont_step, nblk_walk_fini },
k_t list using b_next",
t, b_next_step, nblk_walk_fini },
e l'ist using qg_link",
queue_l i nk_step, queue_wal k_fini },
I'ist using g_next",
queue_wal k_i ni queue_next _step, queue_wal k_fini },
"strftbl k", "given a dblk_t, wal k STREAMS flow trace event |ist",
strftblk_walk_init, strftblk_step, strftblk_walk_fini },
"readq", "wal k read queue side of stdata",
str_walk_init, strr_wal k_step, str_walk_fini },
"writeq", "walk wite queue side of stdata",
str_walk_init, strw walk_step, str_walk_fini },

_ i
"glink", "walk qu
queue_wal k_|

/
{
{

n
{ &
{ "gnext", "walk qule
{
{
{

/* fromtaskqg.c */

{ "taskq_thread", "given a taskqg_t, list all of its threads",
taskq_thread_wal k_init,
taskq_t hread_wal k_st ep,
taskqg_thread_wal k_fini },

{ "taskqg_entry", "given a taskqg_t*, list all taskg_ent_t in the list",
taskq_ent _wal k_init, taskqg_ent_wal k_step, NULL },

/* fromthread.c */

{ "deathrow', "walk threads on both Iwp_ and thread_deat hrow',
deat hrow wal k_i nit, deathrow wal k_step, NULL },

{ "cpu_dispqg", "given a cpu_t, walk threads in dispatcher queues",
cpu_di spg_wal k_i nit, dispg_wal k_step, dispqg_wal k_fini },

{ "cpupart_dispq",
"given a cpupart_t, walk threads in dispatcher queues",
cpupart_di spg_wal k_init, dispq_walk_step, dispg_walk_fini },

{ "lwp_deathrow', "walk |wp_deathrow',
| wp_deat hrow_wal k_i nit, deathrow wal k_step, NULL },

{ "thread", "global or per-process kthread_t structures",
thread_wal k_init, thread_wal k_step, thread_wal k_fini },

{ "thread_deathrow', "wal k threads on thread_deathrow',
thread_deat hrow wal k_init, deathrow wal k_step, NULL },

/* fromtsd.c */
{ "tsd", "walk list of thread-specific data",
tsd_wal k_init, tsd_wal k_step, tsd_walk_fini },

/* fromtsol.c */

{ "tnrh", "walk renpte host cache structures"”,
tnrh_wal k_init, tnrh_wal k_step, tnrh_wal k_fini },

{ "tnrhtp", "walk renpte host tenplate structures"”,
tnrhtp_wal k_init, tnrhtp_wal k_step, tnrhtp_wal k_fini },

| *

new usr/ src/ cnd/ mdb/ common/ nodul es/ genuni X/ genuni x. ¢

4559 * typegraph does not work under kndb, as it requires too nuch nenory
4560 * for its internal data structures.

4561 */

4562 #ifndef _KMVDB

4563 /* from typegraph.c */

4564 { "typeconflict", "walk buffers with conflicting type inferences",
4565 typegraph_wal k_init, typeconflict_walk_step },
4566 { "typeunknown", "wal k buffers with unknown types",
4567 typegraph_wal k_i nit, typeunknown_wal k_step },
4568 #endi f

4570 /* fromvfs.c */

4571 { "vfs", "walk file systemlist",

4572 vis_wal k_init, vfs_walk_step },

4574 /* fromzone.c */

4575 { "zone", "walk a list of kernel zones",

4576 zone_wal k_init, zone_wal k_step, NULL },

4577 { "zsd", "walk list of zsd entries for a zone",

4578 zsd_wal k_i nit, zsd_wal k_step, NULL },

4580 { NULL }

4581 };

4583 static const ndb_nodinfo_t nodinfo = { MDB_API _VERSI ON, dcnds, wal kers };
4585 | * ARGSUSED*/

4586 static void

4587 genuni x_st at echange_cb(voi d *i gnor ed)

4588 {

4589 /*

4590 * Force ::findleaks and ::stacks to let go any cached state.
4591 ki

4592 | eaky_cl eanup(1);

4593 stacks_cl eanup(1);

4595 kmem st at echange() ; /* notify knmem */

4596 }

4598 const ndb_nodi nfo_t *

4599 _ndb_init (void)

4600 {

4601 kmeminit();

4603 (voi d) ndb_cal | back_add(MDB_CALLBACK_STCHG,

4604 genuni x_st at echange_cb, NULL);

4606 return (&odinfo);

4607 }

4609 void

4610 _ndb_fini (void)

4611 T

4612 | eaky_cl eanup(1);

4613 stacks_cl eanup(1);

4614 }

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c 1

R R R R

43063 Sat Aug 18 10:37:01 2012
new usr/ src/ cnmd/ mdb/ common/ nodul es/ genuni X/ net. ¢
dccp: build fixes, mdb (vfs sonode m ssing)

R R R R R R

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns.
*

/

26 #include <ndb/ nmdb_nodapi . h>
27 #include <ndb/ nmdb_ks. h>

28 #include <ndb/ ndb_ctf. h>

29 #include <sys/types. h>

30 #include <sys/tihdr.h>

31 #include <inet/led. h>

32 #include <inet/comon. h>

33 #include <netinet/in.h>

34 #include <netinet/ip6.h>

35 #include <netinet/icnp6. h>
36 #include <inet/ip.h>

37 #include <inet/ip6.h>

38 #include <inet/ipclassifier.h>
39 #include <inet/tcp.h>

40 #include <sys/stream h>

41 #include <sys/vfs.h>

42 #include <sys/stropts. h>

43 #incl ude <sys/tpi common. h>
44 #include <sys/socket. h>

45 #incl ude <sys/socketvar.h>
46 #include <sys/cred_inpl.h>
47 #include <inet/udp_inpl.h>
48 #include <inet/raw p_inpl.h>
49 #include <inet/n.h>

50 #include <inet/dccp_inpl.h>
51 #endif /* | codereview */

52 #include <fs/sockfs/socktpi_inpl.h>
53 #include <net/bridge_inpl.h>
54 #include <io/trill_inpl.h>
55 #i nclude <sys/nmac_i npl . h>

57 #define ADDR V6_WDTH 23
58 #define ADDR V4_WDTH 15

60 #define NETSTAT_ALL 0x01
61 #define NETSTAT_VERBCSE 0x02

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c
62 #define NETSTAT_ROUTE 0x04
63 #define NETSTAT_V4 0x08
64 #defi ne NETSTAT_V6 0x10
65 #define NETSTAT_UNI X 0x20
67 #define NETSTAT_FIRST 0x80000000u

69 typedef struct netstat_cb_data_s {

70 uint_t opts;

71 conn_t conn;

72 int af ;

73 } netstat_cb_data_t;

75 int

76 icnp_stacks_wal k_i nit(nmdb_wal k_state_t *wsp)

77

78 if (mdb_ Iayered wal k("netstack" wsp) == -1) {

79 b_warn("can’t wal k 'netstack’");

80 ret urn (WALK_ERR);

81 }

82 return (WALK_NEXT) ;

83 }

85 int

86 icnp_stacks_wal k_step(ndb_wal k_state_t *wsp)

87 {

88 uintptr_t kaddr;

89 netstack_t nss

91 if (mdb_ vread(&nss sizeof (nss), wsp->wal k_addr) == -1) {
92 mdb_warn("can’t read netstack at %", wsp->wal k_addr);
93 return (WALK_ERR);

94 }

95 kaddr = (uintptr_t)nss. netstack_npdul es[NS_| CVP] ;

96 return (wsp->wal k_cal | back(kaddr, wsp->wal k_| ayer, wsp->wal k_chdata));
97 }

99 int

100 tcp_stacks_wal k_i nit(nmdb_wal k_state_t *wsp)

101

102 if (mdb_l ayered_wal k(" netstack", wsp) == -1) {

103 mdb_warn("can’t wal k 'netstack’");

104 return (WALK_ERR);

105 1

106 return (WALK_NEXT) ;

107 }

109 int

110 tcp_stacks_wal k_step(ndb_wal k_state_t *wsp)

111 {

112 uintptr_t kaddr;

113 net stack_t nss;

115 if (mdb_ vread(&nss 5|zeof (nss), wsp->wal k_addr) == -1) {
116 mdb_warn("can’t read netstack at %", wsp->wal k_addr);
117 return (WALK_ERR);

118 1

119 kaddr = (uintptr_t)nss. netstack_nodul es[NS_TCP];

120 return (wsp->wal k_cal | back(kaddr, wsp->wal k_| ayer, wsp->wal k_cbdata));
121 }

123 int

124 udp_stacks_wal k_i nit (ndb_wal k_state_t *wsp)

125

126 if (mdb_l ayered_wal k(" netstack", wsp) == -1) {

127 mdb_warn("can’t wal k 'netstack’");

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

128 return (WALK_ERR);

129 1

130 return (WALK_NEXT) ;

131 }

133 int

134 udp_stacks_wal k_step(ndb_wal k_state_t *wsp)

135 {

136 uintptr_t kaddr;

137 net stack_t nss;

139 if (ndb_vread(&nss, sizeof (nss), wsp->wal k_addr) == -1) {
140 mdb_warn("can’t read netstack at %", wsp->wal k_addr);
141 return (WALK_ERR);

142 1

143 kaddr = (uintptr_t)nss. netstack_nodul es[NS_UDP] ;

144 return (wsp->wal k_cal | back(kaddr, wsp->wal k_| ayer, wsp->wal k_cbdata));
145 }

147 int

148 dccp_stacks_wal k_i nit (ndb_wal k_state_t *wsp)

149 {

150 if (mdb_l ayered_wal k(" netstack", wsp) == -1) {

151 mdb_warn("can’t wal k ’'netstack’");

152 return (WALK_ERR);

153 }

154 return (WALK_NEXT) ;

155 }

157 int

158 dccp_stacks_wal k_step(nmdb_wal k_state_t *wsp)

159 {

160 uintptr_t kaddr;

161 net stack_t nss;

163 if (mdb_vread(&nss, sizeof (nss), wsp->wal k_addr) == -1) {
164 mdb_warn("can’t read netstack at %", wsp->wal k_addr);
165 return (WALK_ERR);

166 }

167 kaddr = (uintptr_t)nss. netstack_nodul es[NS_DCCP] ;

168 return (wsp->wal k_cal | back(kaddr, wsp->wal k_| ayer, wsp->wal k_chdata));
169 }

171 #endif /* ! codereview */

172 | *

173 * Print an I Pv4 address and port nunber in a conpact and easy to read fornat
174 * The argunents are in network byte order

175 */

176 static void

177 net _i pvdaddrport_pr(const in6_addr_t *nipv6addr, in_port_t nport)

178 {

179 uint32_t naddr = V4_PART_OF_V6((*ni pv6addr));

181 ndb_nhconvert (&port, &nport, sizeof (nport));

182 ndb_printf("%1.%5hu", ADDR VA_W DTH, naddr, nport);

183 }

185 /*

186 * Print an IPv6 address and port nunber in a conpact and easy to read fornat
187 * The argunents are in network byte order

188 */

189 static void

190 net _i pv6addrport_pr(const in6_addr_t *naddr, in_port_t nport)

191 {

192 mdb_nhconvert (&port, &nport, sizeof (nport));

193 mdb_printf ("% N. %Shu" ADDR_V6_W DTH, naddr, nport);

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c
194 }

196 static int

197 net _tcp_active(const tcp_t *tcp)

198 {

199 return (tcp->tcp_state >= TCPS_ESTABLI SHED) ;
200 }

202 static int
203 net_tcp_i pv4(const tcp_t *tcp)

204 {

205 return ((tcp->tcp_connp->conn_i pversion == | PV4_VERSION) ||

206 (1 N6_I S_ADDR_UNSPECI FI ED(& cp- >t cp_connp->conn_| addr _v6) &&
207 (tcp->tcp_state <= TCPS LI STEN)));

208 }

210 static int

211 net_tcp_i pv6(const tcp_t *tcp)

212 {

213) return (tcp->tcp_connp->conn_ipversion == | PV6_VERSI ON);
214

216 static int
217 net _udp_active(const udp_t *udp)

218 {
219 return ((udp->udp_state == TS_IDLE) ||
220 (udp->udp_state == TS_DATA XFER));
221 }

223 static int
224 net _udp_i pv4(const udp_t *udp)

225 {

226 return ((udp >udp_connp->conn_i pver si on == | PV4_VERSI ON)

227 (1 N6_I S_ADDR_UNSPECI FI ED(&udp- >udp_connp- >conn_| addr _v6) &&
228 (udp->udp_state <= TS_IDLE)));

229 }

231 static int

232 net _udp_i pv6(const udp_t *udp)

233 {

234) return (udp->udp_connp->conn_i pversion == | PV6_VERSI ON);
235

237 static int
238 net_dccp_active(const dccp_t *dccp)

239 {
240 return ((dccp->dccp_state == TS_IDLE) ||
241 (dccp->dccp_state == TS_DATA XFER));
242 }

244 static int
245 net _dccp_i pv4(const dccp_t *dccp)

246 {

247 return ((dccp->dccp_connp->conn_i pversion == | PV4_VERSION) ||

248 (1 N6_I S_ADDR_UNSPECI FI ED(&ccp- >dccp_connp->conn_| addr _v6) &&
249 (dccp->dccp_state <= DCCPS_LI STEN)));

250 }

252 static int
253 net_dccp_i pv6(const dccp_t *dccp)

254 {

255 return (dccp->dccp_connp->conn_i pversion == | PV6_VERSI ON) ;
256 }

258 #endif /* | codereview */

259 int

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ genuni X/ net. c 5 new usr/ src/ cnd/ mdb/ conmon/ nodul es/ genuni X/ net. c
260 sonode_wal k_i nit (ndb_wal k_state_t *wsp) 326 mdb_warn("m doesn’t support global wal ks\n");
261 { 327 return (WALK_ERR);
262 if (wsp->wal k_addr == NULL) { 328 }
263 GEl f _Sym sym
264 struct socklist *slp; 330 wdp = ndb_al | oc(sizeof (struct m _wal k_data), UM SLEEP);
266 if (mdb_| ookup_by_obj ("sockfs", "socklist", &ym == -1) { 332 /* So that we do not inmmediately return WALK_DONE bel ow */
267 ndb_warn("failed to | ookup sockf s sockl i st "); 333 wdp->m _wd_m of i rst = NULL;
268 return (WALK_ERR) ;
269 } 335 wsp->wal k_data = wdp;
336 return (WALK_NEXT);
271 slp = (struct socklist *)(uintptr_t)sym st_val ue; 337 }
273 if (mdb_vread(&usp->wal k_addr, sizeof (wsp->walk_addr), 339 int
274 (uintptr_t)&slp->sl_list) ==-1) { 340 m _wal k_step(ndb_wal k_state_t *wsp)
275 ndb_warn("failed to read address of initial sonode " 341 {
276 "at 9p", &slp->sl_list); 342 struct m _wal k_data *wdp = wsp->wal k_dat a;
277 return (WALK_ERR); 343 M _OP miop = &wdp->nmi _wd_ni odat a;
278 1 344 int status;
279 }
346 /* Always false in the first iteration */
281 wsp->wal k_data = mdb_al | oc(si zeof (struct sotpi_sonode), UM SLEEP); 347 if ((wsp->wal k_addr == (uintptr_t)NULL) ||
282 return (WALK_NEXT); 348 (wsp->wal k_addr == wdp->m _wd_miofirst)) {
283 } 349 return (WALK_DONE) ;
350 }
285 int
286 sonode_wal k_step(ndb_wal k_state_t *wsp) 352 if (mdb_vread(m op, sizeof (M_O, wsp->wal k_addr) == -1) {
287 { 353 mib_warn("failed to read M object at %", wsp->wal k_addr);
288 int status; 354 return (WALK_ERR);
289 struct sotpi_sonode *stp; 355 }
291 if (wsp->wal k_addr == NULL) 357 /* mlytruelntheflrst |terat|on */
292 return (V\ALK DONE) ; 358 if (wdp->m _wd_miofirst == NULL)
359 wdp->ni _wd_ni ofi rst = wsp->wal k_addr;
294 if (mdb_vread(wsp- >wa| k_dat a, sizeof (struct sotpi_sonode), 360 status = WALK_NEXT;
295 wsp->wal k_addr) == -1) { 361 } else {
296 mib_warn("failed to read sonode at %", wsp->wal k_addr); 362 status = wsp->wal k_cal | back(wsp->wal k_addr + sizeof (M_O,
297 return (WALK_ERR); 363 &m op[1], wsp->wal k_chdat a) ;
298 } 364 }
300 status = wsp->wal k_cal | back(wsp->wal k_addr, wsp->wal k_dat a, 366 wsp->wal k_addr = (uintptr_t)m op->m _o_next;
301 wsp- >wal k_chdat a) ; 367 return (status);
368 }
303 stp = wsp->wal k_dat a;
370 void
305 wsp->wal k_addr = (uintptr_t)stp->st_info.sti_next_so; 371 m _wal k_fini (ndb_wal k_state_t *wsp)
306 return (status); 372 {
307 } 373 mdb_free(wsp->wal k_data, sizeof (struct nmi_wal k_data));
374 }
309 void
310 sonode_wal k_fini (ndb_wal k_state_t *wsp) 376 typedef struct m _payl oad_wal k_arg_s {
311 377 const char *m _pwa_wal ker; /* Underlying wal ker */
312 ndb_free(wsp->wal k_data, sizeof (struct sotpi_sonode)); 378 const off_t m _pwa_head off [* Offset for m_o_head_t * in stack */
313 } 379 const size_t m_pwa_size; /* size of m payload */
380 const uint_t m_pwa_flags; /* device and/or nodul e */
315 struct m _wal k_data { 381 } mi_payl oad_wal k_arg_t;
316 umtptr t m_wd_mofirst;
317 M _O ni _wd_ni odat a; 383 #define M _PAYLOAD DEVI CE Ox1
318 }; 384 #define M _PAYLOAD_MODULE 0x2
320 int 386 int
321 ?i_wal k_init(mlb_wal k_state_t *wsp) 387 ?i_payl oad_wal k_i nit (nmdb_wal k_state_t *wsp)
322 388
323 struct m _wal k_data *wdp; 389 const mi _payl oad_wal k_arg_t *arg = wsp->wal k_arg;
325 if (wsp->wal k_addr == NULL) { 391 if (mdb_l ayered_wal k(arg->m _pwa_wal ker, wsp) == -1) {

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

392 mdb_warn("can’t walk '%'", arg->m _pwa_wal ker);
393 return (WALK_ERR);

394 }

395 return (WALK_NEXT) ;

396 }

398 int

399 ?i_payl oad_wal k_step(ndb_wal k_state_t *wsp)

400

401 const m _payl oad_wal k_arg_t *arg = wsp->wal k_arg;

402 uintptr_t kaddr;

404 kaddr = wsp->wal k_addr + arg->m _pwa_head_off;

406 if (mdb_vread(&kaddr, sizeof (kaddr), kaddr) == -1) {
407 mdb_warn("can’t read address of m head at % for %",
408 kaddr, arg->m _pwa_wal ker);

409 return (WALK_ERR);

410 1

412 if (kaddr == 0) {

413 * Enpty list */

414 return (WALK_DONE) ;

415 }

417 if (mdb_pwal k("genunix‘m", wsp->wal k_cal | back,

418 wsp->wal k_chdata, kaddr) == -1) {

419 mdb_warn("failed to wal k genunix‘m");

420 return (WALK_ERR);

421 }

422 return (WALK_NEXT);

423 }

425 const m payl oad_wal k_arg_t m _icnp_arg = {

426 "I cnp_stacks", OFFSETOF(icnp_stack_t, is_head), sizeof
427 M _PAYLOAD_DEVI CE | M _PAYLQOAD_ MODULE

428 };

430 int

431 sonode(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t
432 {

433 const char *optf = NULL;

434 const char *optt = NULL;

435 const char *optp = NULL;

436 int famly, type, proto;

437 int filter = 0;

438 struct sonode so;

440 if (!(flags & DCVMD_ADDRSPEC)) {

441 if (mdb_wal k_dcnd("genuni x‘ sonode", "genuni x‘ sonode", argc,
442 argv) == -1) {

443 mdb_warn("failed to wal k sonode");
444 return (DCVD_ERR);

445 }

447 return (DCVD_OX);

448 1

450 if (rrdb getopts(argc, argv,

451 , MDB_OPT_STR, &optf,

452 't' MDB_OPT_STR, &optt,

453 'p’, MDB_OPT_STR, &optnp,

454 NULL) != argc)

455 return (DCMD_USAGCE) ;

457 if (optf != NULL) {

(icmp_t),

*argv)

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

458 if (strcrrp(|net optf) == 0)

459 ly = AF | NET;

460 else if (strcn'p(inet6", optf) == 0)
461 famly—AFINETG

462 else if (strcn"p(uni x", optf) == 0)
463 famly = AF_ UNIX

464 el se

465 famly = mdb_strtoul | (optf);
466 filter = 1;

467 }

469 if (optt !'= NULL) {

470 if (strcrrp(streant, optt) == 0)
471 type = SCﬁK_ST

472 else if (strcrrp(dgrant, optt) == 0)
473 ype = SOCK_ DGRAM

474 else if (strcnp("ravv' optt) == 0)
475 type = SOCK_RAW

476 el se

477 type = ndb_strtoul |l (optt);
478 filter = 1;

479

481 if (optp !'= NULL) {

482 proto = ndb_strtoul | (optp);

483 filter = 1;

484 }

486 if (DCVMD_HDRSPEC(flags) && !filter) {

487 mdb_printf("%u>%?s Fam |y Type Proto State Mde Flag "
488 "AccessVP%/ u>\n", "Sonode:");
489 1

491 if (mdb_vread(&so, sizeof (so), addr) == -1) {
492 mdb_warn("failed to read sonode at %", addr);
493 return (DCVD_ERR);

494 1

496 if ((optf !'= NULL) && (so.so_family != fanily))
497 return (DCVD_OX);

499 if ((optt !'= NULL) && (so.so_type != type))
500 return (DCVD_OX);

502 if ((optp !'= NULL) && (so.so_protocol != proto))
503 return (DCMD_CXK);

505 if (filter) {

506 mdb_printf("%®?p\n", addr);

507 return (DCMD_OK);

508 }

510 ndb_printf("%?p ", addr);

512 switch (so.so_famly) {

513 case AF_UNI X

514 “ndb_printf("unix ");

515 br eak;

516 case AF_| NET:

517 mdb_printf("inet ");

518 br eak;

519 case AF_I NET6:

520 “mdb_printf("inet6 ");

521 br eak;

522 defaul t:

523 mdb_printf("%hi", so.so_famly);

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

524 }

526 switch (so.so_type) {

527 case SOCK_STREAM

528 r’rdb prlntf(" strnt);

529 br eak

530 case SOCK_DGRAM

531 ndb_printf (" dgrni);

532 br eak;

533 case SOCK_RAW

534 mdb_printf(" raw ");

535 br eak;

536 defaul t:

537 mdb_printf(" %thi", so.so_type);

538 }

540 mdb_printf(" 9%hi %05x %94x Y%©4hx\n",

541 s0.so_protocol, so.so_state, so.so_node,

542 so.so_flag);

544 return (DCVMD_CK) ;

545 }

547 #define M _PAYLQAD Ox1

548 #define M _DEVI CE 0x2

549 #define M _MODULE 0x4

551 int

552 ?i(ui ntptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
558

554 uint_t opts = 0;

555 M_O m o;

551 if (!(flags & DCMD_ADDRSPEC))

558 return (DCVD_USACE) ;

560 if (mjb getopts(argc, argv,

561 p’, MDB_OPT_SETBITS, M _PAYLOAD, &opts,

562 ’d' , MDB_OPT_SETBITS, M _DEVICE, &opts,

563 'm, MDB_OPT_SETBITS, M _MODULE, &opts,

564 NULL) != argc)

565 return (DCMD_USAGCE) ;

567 if ((opts & (M _DEVICE | M _MODULE)) (M _DEVICE | M_MODULE)) {
568 mdb_warn("at nost one filter, d for devices or m"
569 "for nodules, may be speC|f| ed\n");

570 return (DCND_USAGE) ;

571 1

573 if ((opts == 0) &&(DCND HDRSPEC(f | ags))) {

574 mdb pr| ntf(" 0/&u>%°s % ?s % ?s |sDev Dev%/u>\n"
575 "M _O', "Next", "Prev");

576 }

578 if (mdb_vread(&m o, sizeof (mo), addr) == -1) {

579 mdb_warn("failed to read ni object M_O at %", addr);
580 return (DCVD_ERR);

581 }

583 if (opts !'=0) {

584 if (mo.m_o_isdev == B_FALSE) {

585 /[*"mo is a module */

586 if (!(opts & M_MODULE) && (opts & M _DEVI CE))
587 return (DCVD_OK);

588 } else {

589 /* mio is a device */

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni X/ net . c

590 if (!(opts & M_DEVICE) && (opts & M _MODULE))
591 return (DCVD_OK) ;

592 }

594 if (opts & M _PAYLOAD)

595 mdb_printf("%\n", addr + sizeof (M_O);

596 el se

597 ndb_printf("%)\n", addr);

598 return (DOMD_CK) ;

599 }

601 mdb_printf("%?p %9?p %0?p ", addr, mio.m _o_next, mo.m _o_prev);
603 if (mo.m_o_isdev == B_FALSE)

604 mdb_printf (" FALSE");

605 el se

606 ndb_printf("TRUE ");

608 mdb_printf(" %9?p\n", mo.m _o_dev);

610 return (DCVMD_CXK) ;

611 }

613 static int
614 ns_to_stackid(uintptr_t kaddr)

615 {

616 net stack_t nss;

618 if (mdb_vread(&nss, sizeof (nss), kaddr) == -1) {

619 mdb_warn("failed to read netstack_t %", kaddr);
620 return (0);

621 1

622 return (nss.netstack_stackid);

623 }

627 static void
628 netstat_tcp_verbose_pr(const tcp_t *tcp)

629

630 ndb_printf (" 9%%i %08x %W8x YBi %O8x YO8x Bl IUBi\n",
631 tcp->tcp_swnd, tcp->tcp_snxt, tcp->tcp_suna, tcp->tcp_rwnd,
632 tcp->tcp_rack, tcp->tcp_rnxt, tcp->tcp_rto, tcp->tcp_mnss);
633 }

635 /* ARGSUSED*/
636 static int
637 netstat_tcp_cb(uintptr_t kaddr, const void *wal k_data, void *cb_data)

638 {

639 netstat_cb_data_t *ncb = cb_data;

640 uint_t opts = nch->opts;

641 int af = ncb->af;

642 uintptr_t tcp_kaddr;

643 conn_t *connp = &nch->conn;

644 tcp_t tcps, *tcp;

646 if (mdb_vread(connp, sizeof (conn_t), kaddr) == -1)

647 mdb_warn("failed to read conn_t at 0/ap kaddr)
648 return (WALK_ERR);

649 }

651 tcp_kaddr = (uintptr_t)connp->conn_tcp;

652 if (mdb_vread(& cps, sizeof (tcp_t), tcp_kaddr) == -1) {
653 mdb_warn("failed to read tcp_t at %", tcp_kaddr);
654 return (WALK_ERR);

655 }

10

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c 11

657
658
659

661
662
663
664
665

667
668
669
670
671
672
673
674
675
676
677
678
679
680

682
683

685
686
687

689
690
691
692
693
694

696
697
698
699

701
702
703
704
705
706

708
709

711
712
713
714
715

717
718
719
720
721

tcp = &cps;
connp->conn_tcp = tcp;
tcp->tcp_connp = connp;

if (!((opts & NETSTAT_ALL) || net_tcp_active(tcp)) ||
(af == AF_INET && !net _tcp_ipv4(tcp)) ||
(af == AF_INET6 & !net_tcp_ipv6(tcp))) {
return (WALK_NEXT);
}

ndb_printf("%?p %®i ",
if (af == AF_I NET)

net |pv4addr port _pr (&connp->conn_| addr _v6,

mdb_printf(" ");

net |pv4addrport _pr (&connp- >conn_f addr _v6,
} else if (af == AF_INET6) {

net |pv6addr port _pr (&connp->conn_| addr _v6,

mdb_printf("

net |pv6addrport _pr (&connp- >conn_f addr _v6,

tcp_kaddr, tcp->tcp_state);
connp->conn_| port);
connp- >conn_f port);
connp->conn_| port);
connp- >conn_f port);
}
mdb_printf (" %i", ns_to_stackid((uintptr_t)connp->conn_netstack));
mdb_printf(" %i\n", connp->conn_zoneid);
if (opts & NETSTAT_VERBCSE)

netstat_tcp_verbose_pr(tcp);

return (WALK_NEXT);

}
| * ARGSUSED* /
static int

netstat_udp_cb(uintptr_t kaddr,
{

const void *wal k_data, void *cb_dat a)
netstat_cb_data_t *ncb = cb_data;

uint_t opts = nch->opts;

int af = ncb->af;

udp_t udp;

conn_t *connp = &nch- >conn;

char *state;

if (mdb_vread(connp, sizeof (conn_t),
mdb_warn("failed to read conn_t at %",
return (WALK_ERR);

kaddr) == -1)
kaddr)

}
if (mdb_vread(&udp, sizeof (udp_t),
(uintptr_t)connp->conn_udp) == -1) {
mdb_warn("failed to read conn_udp at %",
(ui ntptr_t)connp->conn_udp);
) return (WALK_ERR);

connp->conn_udp = &udp;
udp. udp_connp = connp;

if (! ((opts & NETSTAT_ALL) || net_udp_active(&udp)) ||
(af == AF_INET && !net_udp_i pv4(&udp)) ||
(af == AF_INET6 && !net_udp_i pv6(&udp))) {
return (WALK_NEXT) ;
}

if (udp.udp_state == TS_UNBND)
state = "UNBOUND';

else if (udp. udp state == TS_| DLE)
state = "I DLE";

else if (udp.udp_st ate == TS _DATA_XFER)

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

722 state = " CONNECTED';

723 el se

724 state = " UNKNOMW";

726 ndb_pri ntf(" %)'?p %0s ", (uintptr_t)connp->conn_udp, state);

727 if (af == AF_INET) {

728 net |pv4addrport _pr (&connp->conn_| addr _v6, connp->conn_| port);
729 mdb_printf(" ");

730 net _i pv4addr port pr(&connp >conn_f addr _v6, connp->conn_fport);
731 } else if (af == AF_I NET6)

732 net _i pv6addr port pr(&connp >conn_| addr _v6, connp->conn_| port);
733 mdb_printf(" ");

734 net _i pv6addr port _pr (&connp- >conn_f addr _v6, connp->conn_fport);
735 }

736 mdb_printf(" 9%i", ns_to_stackid((uintptr_t)connp->conn_netstack));
737 ndb_printf(" %ti\n", connp->conn_zoneid);

739 return (WALK_NEXT) ;

740 }

742 | * ARGSUSED*/

743 static int

744 netstat_icnp_cb(uintptr_t kaddr, const void *wal k_data, void *cb_data)

745 {

746 netstat_cb_data_t *ncb = cb_data;

747 int af = ncb->af;

748 icnp_t icnp;

749 conn_t *connp = &nch->conn;

750 char *state;

752 if (mdb_vread(connp, sizeof (conn_t), kaddr) == -1) {

753 mdb_warn("failed to read conn_t at %", kaddr);

754 return (WALK_ERR);

755 }

757 if (mdb_vread(& cnp, sizeof (icnp_t),

758 (uintptr_t)connp->conn_icnp) == -1) {

759 mdb_warn("failed to read conn_icnp at %",

760 (uintptr_t)connp->conn_i cnp);

761 return (WALK_ERR);

762 }

764 connp->conn_i cnp = & cnp;

765 i cnp.icnp_connp = connp;

767 if ((af == AF_INET && connp->conn_i pversion != |PV4_VERSION) ||

768 (af == AF_INET6 && connp->conn_i pversion != | PV6_VERSION)) {

769 return (WALK_NEXT) ;

770 }

772 if (icnp.icnp_st ate == TS_UNBND)

773 state = " UNBOUND

774 else if (icnp.icnp_ state == TS | DLE)

775 state = "I DLE";

776 else if (icnp. |crrp state == TS _DATA_XFER)

777 state = " CONNECTED";

778 el se

779 state = " UNKNOWN';

781 mdb_pri ntf(l’/6?)‘7p %0s ", (uintptr_t)connp->conn_icnp, state);

782 if (af == AF_INET) {

783 net _i pv4addr port_pr (&connp->conn_| addr _v6, connp->conn_| port);
784 mdb_printf(" ");

785 net _I pv4addr port _pr (&onnp->conn_f addr _v6, connp->conn_fport);
786 } else if (af == AF_INET6) {

787 net _i pv6addr port _pr (&onnp->conn_| addr _v6, connp->conn_| port);

12

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

788 mdb_printf(" ");

789 net |pv6addrport _pr (&connp->conn_f addr _v6, connp->conn_fport);
790 }

791 mdb_printf(" 9%i", ns_to_stackid((uintptr_t)connp->conn_netstack));
792 ndb_printf(" 9%ti\n", connp->conn_zoneid);

794 return (WALK_NEXT) ;

795 }

797 static void

798 netstat_dccp_verbose_pr(const dccp_t *dccp)

799 {

800 /* XXX: DCCP

801 ndb_printf (" 9%i %08x %W8x Y%bi YO8x YO8x Bl Ybi\n",

802 tcp->tcp_swnd, tcp->tcp_snxt, tcp->tcp_suna, tcp->tcp_rwnd,
803 tcp->tcp_rack, tcp->tcp_rnxt, tcp->tcp_rto, tcp->tcp_nss);

804 */

805 }

807 /* ARGSUSED*/

808 static int

809 netstat_dccp_cb(uintptr_t kaddr, const void *wal k_data, void *cb_data)

810 {

811 netstat_cb_data_t *ncb = cb_data;

812 uint_t opts = ncbh->opts;

813 int af = ncb->af;

814 uintptr_t dccp_kaddr;

815 conn_t *connp = &nch->conn;

816 dccp_t dceps, *dccp;

818 if (mdb_vread(connp, sizeof (conn_t), kaddr) == -1) {

819 mdb_warn("failed to read conn_t at %", kaddr);

820 return (WALK_ERR);

821 }

823 dccp_kaddr = (uintptr_t)connp->conn_dccp;

824 if (mdb_ vread(&dccps si zeof (dccp_t), dccp_kaddr) == -1) {

825 mdb_warn("failed to read tcp_t at %", dccp_kaddr);

826 return (WALK_ERR);

827 }

829 dccp = &dccps;

830 connp->conn_dccp = dccp;

831 dccp->dccp_connp = connp;

833 if (!((opts & NETSTAT_ALL) || net_dccp_active(dccp)) ||

834 (af == AF_I NET && !net_dccp_i pv4(dccp)) ||

835 (af == AF_INET6 && !net_dccp_i pv6(dccp))) {

836 return (WALK_NEXT) ;

837 }

839 mdb_printf("%?p 9%Ri dccp_kaddr, dccp->dccp_state);

840 if (af == AF_INET) {

841 net _i pv4addr port _pr (&connp->conn_| addr _v6, connp->conn_| port);
842 mdb_printf(" ");

843 net _I pv4addr port _pr (&onnp->conn_f addr _v6, connp->conn_fport);
844 } else if (af == AF_I NET6) {

845 net _i pv6addr port _pr (&connp->conn_| addr _v6, connp->conn_| port);
846 mdb_printf(" ");

847 net _I pv6addr port _pr (&onnp->conn_f addr _v6, connp->conn_fport);
848 1

849 mdb_printf(" %i", ns_to_stackid((uintptr_t)connp->conn_netstack));
850 ndb_printf(" 9%ti\n", connp->conn_zoneid);

851 if (opts & NETSTAT_VERBCSE)

852 net stat_dccp_verbose_pr(dccp);

13

14

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

854 return (WALK_NEXT) ;

855 }

857 #endif /* | codereview */

858 /*

859 * print the address of a unix donmai n socket

860 *

861 * so is the address of a AF_UNI X struct sonode in ndb’s address space
862 * soa is the address of the struct soaddr to print

863 *

864 * returns 0 on success, -1 otherw se

865 */

866 static int

867 netstat_uni x_nanme_pr(const struct sotpi_sonode *st, const struct soaddr *soa)
868 {

869 const struct sonode *so = &st->st_sonode;

870 const char none[] =" (none)";

872 if ((so->so_state & SS_| SBOUND) && (soa->soa_len != 0)) {

873 if (st->st_info.sti_faddr noxlate)

874 mdb_printf ("% 14s ", (socketpair)");

875 } else {

876 if (soa->soa_len > sizeof (sa_famly_t)) {

877 char addr [MAXPATHLEN + 1];

879 if (mdb_readstr(addr, sizeof (addr),
880 (uintptr_t)&soa->soa_sa->sa_data) == -1) {
881 midb_warn("failed to read unix address "
882 "at %", &soa->soa_sa->sa_data);
883 return (-1);

884 }

886 ndb_printf ("% 14s ", addr);

887 } else {

888 mdb_printf ("% 14s ", none);

889 }

890

891 } else {

892 mdb_printf("% 14s ", none);

893 1

895 return (0);

896 }

898 /* based on sockfs_snapshot */

899 /* ARGSUSED*/

900 static int

901 netstat_uni x_cb(uintptr_t kaddr, const void *wal k_data, void *cb_data)
902

903 const struct sotpi_sonode *st = wal k_dat a;

904 const struct sonode *so = &st->st_sonode;

905 const struct sotpi_info *sti = &st->st_info;

907 if (so->so_count == 0)

908 return (WALK_NEXT);

910 if (so->so_famly = AF_UNIX) {

911 mdb_war n("sonode of family %i at %\n", so->so_famly, kaddr);
912 return (WALK_ERR);

913 }

915 ndb_printf("%?p ", kaddr);

917 switch (sti->sti_serv_type) {

918 case T_CLTS:

919 mdb_printf("%10s ", "dgrani);

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

920 br eak;

921 case T_COTS:

922 mdb_printf("%10s ", "streant);

923 br eak;

924 case T_COTS_ ORD:

925 mdb_printf("%10s ", “"streamord");

926 br eak;

927 defaul t:

928 mdb_printf ("% 10i ", sti->sti_serv_type);

929 }

931 if ((so->so_state & SS | SBOUND) &&

932 (sti->sti_ux_|addr.soua_magic == SOU MAG C EXPLICIT)) {
933 mdb_printf("%?p ", sti->sti_ux_|addr.soua_vp);
934 } else {

935 ndb_printf("%?p ", NULL);

936

938 if ((so->so_state & SS_| SCCNNECTED) &&

939 (sti->sti_ux_faddr.soua_nmagic == SOU MAG C EXPLICIT)) {
940 mdb_printf("9%?p ", sti->sti_ux_faddr.soua_vp);
941 } else {

942 mib_printf("%®?p ", NULL);

943 }

945 if (netstat_unix_name_pr(st, &sti->sti_laddr) == -1)
946 return (WALK_ERR);

948 if (netstat_unix_name_pr(st, &sti->sti_faddr) == -1)
949 return (WALK _ERR);

951 mdb_printf("%li\n", so->so_zoneid);

953 return (WALK_NEXT) ;

954 }

956 static void
957 netstat_tcp_verbose_header _pr(void)

958 {

959 mdb_printf (" %<u>%5s %8s %8s %5s %8s %8s ¥bs ¥Bs¥%/ u>\n",
960 "Swi nd", "Snext", "Suna", "Rwi nd", "Rack", "Rnext", "Rto", "Mss");
961 }

963 static void

964 get _i fname(const ire_t *ire, char *intf)

965 {

966 ilr_t ill;

968 *intf ='\0;

969 if (ire->ire_ill !'= NULL)

970 if (mdb_vread(& I, sizeof (ill),

971 (uintptr_t)ire->ire_ill) == -1)

972 return;

973 (voi d) ndb_readst (ntf, MNCLIFNAMSIZ, ill.ill_nane_|ength),
974 (uintptr_t)il Il _nane);

975 }

976 }

978 const in6_addr

t ipv6e_all_ones =
979 {TOxffffffffy

 OXFffffffu, OxFffffffu, OxfFFffffffuU };

981 static void

982 get_ireflags(const ire_t *ire,
983 {

984 (void) strcpy(flags, "U');

985 /* RTF_I NDI RECT wi ns over RTF_GATEWAY - don’t display both */

char *flags)

15

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c
986 if (ire->ire_flags & RTF_I NDI RECT)
987 (void) strcat(flags, "I1");
988 else if (ire- >|retype&|RECFFLINK)
989 (void) strcat(flags, "G');
991 /* IRE_I F_CLONE wi ns over RTF_HOST - don’t display both */
992 if (ire->re_type & | RE_| F_CLONE)
993 (void) strcat(flags, "C‘)
994 else if (ire->re_ipversion == | PV4 _VERSION) {
995 if (ire->re_mask == | P_HOST IVASK)
996 (void) strcat(flags, "H');
997 } else {
998 if (I N6_ARE_ADDR EQUAL(& re->ire_mask_v6, & pv6_all _ones))
999 (void) strcat(flags, "H');
1000 }
1002 if (ire->ire_flags & RTF_DYNAM (@)
1003 (void) strcat(flags, "D');
1004 if (ire->re_type == |[RE BROADO—\ST)
1005 (voi d) strcat(fl ags, "b");
1006 if (ire->ire_type == |RE NULTICAST)
1007 (void) strcat(fl ags ') ;
1008 if (ire->re_type == | RE_LOCAL)
1009 (void) strcat(flags, "L");
1010 if (ire->ire_type == | RE_NOROUTE)
1011 (void) strcat(flags, "N');
1012 if (ire->re_flags & RTF_MILTI RT)
1013 (void) strcat(flags, "M);
1014 if (ire->ire_flags & RTF_SETSRC)
1015 (void) strcat(flags, "S");
1016 if (ire->re_flags & RTF_REJECT)
1017 (void) strcat(flags, "R');
1018 if (ire->re_flags & RTF_BLACKHOLE)
1019 (void) strcat(flags, "B");
1020 }
1022 static int
1023 netstat_irev4_cb(uintptr_t kaddr, const void *wal k_data, void *cb_data)
1024 {
1025 const ire_t *ire = wal k_dat a;
1026 uint_t *opts = cb_data;
1027 i paddr_t gate;
1028 char flags[10], intf[LIFNAMSIZ + 1];
1030 if (ire->ire_ipversion != |PV4_VERSI ON)
1031 return (WALK_NEXT) ;
1033 /* Skip certain | REs by default */
1034 if (!(*opts & NETSTAT_ALL) &&
1035 (ire->ire_type &
1036 (1 RE_BROADCAST| | RE_LOCAL| | RE_MULTI CAST| | RE_NOROUTE| | RE_I| F_CLONE)))
1037 return (WALK_NEXT);
1039 if (*opts & NETSTAT_FIRST) {
1040 *opts &= ~NETSTAT_FI RST;
1041 nmdb pr| ntf("%u>% Table: | Pv4%/ u>\n",
1042 (*opts & NETSTAT_VERBOSE) ? "IRE" : "Routing");
1043 if (*opts & NETSTAT VERBCSE)
1044 ndb_printf("%u>%?s %*s %*s %*s Device Mfrg Rt
1045 " Ref Flg Qut I n/ Fwd%</ u>\ n",
1046 "Address", ADDR V4_W DTH, "Destination",
1047 ADDR_V4_W DTH, "Mask", ADDR _V4_W DTH, " Gateway");
1048 } else {
1049 mdb prl ntf (" %u>% ?s % s %*s Flags Ref Use
1050 "I nterface¥%</ u>\n"
1051 " Address", ADDR_ V4 W DTH, "Destination",

16

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

1052 ADDR_V4_W DTH, "Gateway");

1053 }

1054 }

1056 gate = ire->ire_gateway_addr;

1058 get _ireflags(ire, flags);

1060 get _ifname(ire, intf);

1062 if (*opts & NETSTAT VERBOSE)

1063 mdb_printf("%p %*l %*I %*l %6s %u% %u %Bu % 3s Y%bu
1064 "%w\n", kaddr, ADDR V4_WDTH, ire->ire_addr, ADDR V4_W DTH,
1065 ire->re_mask, ADDR V4_WDTH, gate, intf,

1066 o, ',

1067 ire->ire_netrics.iulp_rtt, ire->re_refcnt, flags,
1068 ire->ire_ob_pkt_count, ire->ire_ib_pkt_count);

1069 } else {

1070 mdb_printf("%p %*l %*l %5s %u %u %\n", kaddr,
1071 ADDR_V4_W DTH, ire->ire_addr, ADDR V4_WDTH, gate, flags,
1072 ire->ire_refcnt,

1073 ire->re_ob_pkt_count + ire->ire_ib_pkt_count, intf);
1074 1

1076 return (WALK_NEXT) ;

1077 }

1079 int

1080 i p_nask_to_pl en_v6(const in6_addr_t *v6mask)

1081 {

1082 int plen;

1083 int 1;

1084 uint32_t val;

1086 for (i =3, i >=0; i--)

1087 if (vemask->s6_addr32[i] != 0)

1088 br eak;

1089 if (i <0)

1090 return (0);

1091 plen:32+32*|'

1092 val = vémask->s6_addr32[i];

1093 while (!'(val & 1)) {

1094 val >>= 1;

1095 plen--;

1096 }

1098 return (plen);

1099 }

1101 static int

1102 netstat_irev6_cb(uintptr_t kaddr, const void *wal k_data, void *cb_data)
1103 {

1104 const ire_t *ire = wal k_dat a;

1105 uint_t *opts = cb_dat a;

1106 const in6_addr_t *gatep;

1107 char deststr[ADDR VG_W DTH + 5];

1108 char flags[10], f[LIFNAMBI Z + 1];

1109 int maskl en;

1111 if (ire->re_ipversion != |PV6_VERSI ON

1112 return (WALK_NEXT);

1114 /* Skip certain | REs by default */

1115 if (!(*opts & NETSTAT_ALL) &&

1116 (ire->ire_type &

1117 (1 RE_BROADCAST]| | RE_LOCAL| | RE_MULTI CAST| | RE_NOROUTE| | RE_I F_CLONE)))

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

1118 return (WALK_NEXT);

1120 if (*opts & NETSTAT_FIRST) {

1121 *opts & ~NETSTAT_FI RST;

1122 mdb pr| ntf("\n%u>% Table: |Pv6%/u>\n",

1123 (*opts & NETSTAT VERBCSE) ? "IRE" : "Routing")

1124 if (*opts & NETSTAT_VERBOSE)

1125 ndb_printf("%u>%?s %*s %*s |f PMIU Rt Ref
1126 "Fl ags Qut I n/ Fwd%</ u>\ n",

1127 " Addr ess", ADDR V6 _W DTH+4, "Destination/ Mask",
1128 ADDR V6 _W DTH, "Gateway");

1129 } else {

1130 ndb_printf("%u>%?s %*s %*s Flags Ref Use If"
1131 "%/ u>\n",

1132 "Address", ADDR V6_W DTH+4, "Desti nation/ Mask",
1133 ADDR_V6_W DTH, "Gateway");

1134 }

1135 }

1137 gatep = & re->ire_gateway_addr_v6;

1139 maskl en = i p_mask_to_pl en_v6(& re->ire_mask_v6);

1140 (void) mdb_snprintf(deststr, sizeof (deststr), "o %"

1141 & re->ire_addr_ve6, maskl en);

1143 get _ireflags(ire, flags);

1145 get _ifname(ire, intf);

1147 if (*opts & NETSTAT VERBCSE)

1148 mdb_printf("%p %*s %*N %5s %u% %u %Bu % 5s %u %\ n",
1149 kaddr, ADDR V6_W DTH+4, deststr, ADDR V6_W DTH, gatep,
1150 intf, 0, ’

1151 ire->ire_ metrics. iulp_rtt, ire->ire_refcnt,

1152 flags, ire->ire_ob_pkt_count, ire->re_ib_pkt_count);
1153 } else {

1154 mdb_printf("%p %*s %*N %5s %Bu %u %\n", kaddr,

1155 ADDR _V6_W DTH+4, deststr, ADDR V6_W DTH, gatep, flags,
1156 ire->re_refcnt,

1157 ire->ire_ob_pkt_count + ire->ire_ib_pkt_count, intf);
1158 }

1160 return (WALK_NEXT) ;

1161 }

1163 static void

1164 netstat_header_v4(int proto)

1165 {

1166 if (proto == | PPROTO TCP)

1167 b_pr| ntf("%u>%7?s ", "TCPv4");

1168 else if (proto == | PPROTO_UDP)

1169 mdb_printf("%u>%?s ", "UDPv4");

1170 else if (proto == | PPROTO | C\VP)

1171 mdb_printf("%u>%?s ", "ICWPv4");

1172 ndb prl ntf("State l’/ﬁs%s Y%6sYs % 5s % 4s¥%</ u>\n",

1173 , ADDR V4_W DTH, "Local Address"

1174 ", ADDR V4_WDTH, "Renote Address "Stack", "Zone");

1175 }

1177 static void

1178 net stat_header_v6(int proto)

1179 {

1180 if (proto == | PPROTO TCP)

1181 r’rdb _pri ntf(Y%<u>% ?s ", "TCPv6");
1182 else if (proto == | PPROTO _UDP)

1183 mb_printf("%u>%?s ", "UDPv6");

18

19

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

1184 else if (proto == | PPROTO_I CWP)

1185 b_printf("%u>%?2s ", "lICWPV6");

1186 mdb_printf("State %%s%Ws %6s%Ws % 5s % 45%/ us\ n"

1187 "" ADDR _V6_WDTH, "Local Address",

1188 "", ADDR_V6_WDTH, "Renpte Address", "Stack", "Zone");
1189 }

1191 static int

1192 netstat_print_conn(const char *cache, int proto, ndb_wal k_cb_t cbfunc,
1193 voi d *cbdat a)

1194 {

1195 netstat_cb_data_t *ncb = cbdata;

1197 if ((nch->opts & NETSTAT_VERBOSE) && proto == | PPROTO _TCP)
1198 netstat_tcp_verbose_header _pr();

1199 if (mdb_wal k(cache, cbfunc, cbdata) == -

1200 b_warn("failed to wal k %", cache);

1201 return (DCVD_ERR);

1202 1

1203 return (DCVD_OK);

1204 }

1206 static int

1207 netstat_print_common(const char *cache, int proto, nmdb_wal k_cb_t cbfunc,
1208 voi d *cbdat a)

1209 {

1210 netstat_ch_data_t *ncb = cbdata;

1211 int af = ncb->af;

1212 int status = DCMD_OK;

1214 if (af !'= AF_I NET6)

1215 nch->af = AF_I NET;

1216 net st at _header _v4(proto);

1217 status = netstat_print_conn(cache, proto, cbfunc, cbdata);
1218 }

1219 if (status == DCMD_OK && af != AF_INET) {

1220 nch- >af = AF_| NET6;

1221 net st at _header _v6(proto);

1222 status = netstat_print_conn(cache, proto, cbfunc, chdata);
1223 }

1224 ncb->af = af;

1225 return (status);

1226 }

1228 /* ARGSUSED*/

1229 int

1230 netstat(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
1231 {

1232 uint_t opts = 0;

1233 const char *optf = NULL;

1234 const char *optP = NULL;

1235 netstat_ch_data_t *cbdata;

1236 int status;

1237 int af = 0O;

1239 if (mib getopts(argc, argv,

1240 , MDB_OPT_SETBI TS, NETSTAT_ALL, &opts,

1241 f , MDB_OPT_STR, &optf

1242 P, NMDB_OPT_STR, &optP,

1243 ‘r’, MDB_OPT_SETBI TS, NETSTAT_ROUTE, &opts,

1244 v', MDB_OPT_SETBITS, NETSTAT VERBOSE, &opts,

1245 ULL) != argc)

1246 return (DCMD_USAGCE) ;

1248 if (optP != NULL) {

1249 if ((strcmp("tcp", optP) !=0) && (strcnp("udp", optP) != 0) &&

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c 20
1250 (strcmp("icmp”, opt P) 1=0))

1251 return (DCVD_US

1252 if (opts & NETSTAT ROJTB

1253 return (DCVD_USAGE);

1254 }

1256 if (optf == NULL)

1257 opts | = NETSTAT_V4 | NETSTAT_V6 | NETSTAT_UNI X;

1258 else if (strcnp("inet", optf) == 0)

1259 opts | = NETSTAT_V4;

1260 else if (strcnp("inet6", optf) == 0)

1261 opts | = NETSTAT_V6

1262 else if (strcnp("unix", optf) == 0)

1263 opts | = NETSTAT_UNI X;

1264 el se

1265 return (DCVD_USAGE);

1267 if (opts & NETSTAT_ROUTE)

1268 if (!(opts & (NETSTAT V4| NETSTAT V6)))

1269 return (DCVD_USAGE);

1270 if (opts & NETSTAT_V4)

1271 opts | = NETSTAT_FI RST

1272 if (mdb_wal k("ip‘ire", netstat_irev4_cb, &opts) == -1) {
1273 nmdb_warn("failed to walk ip‘ire");

1274 return (DCVMD_ERR);

1275 }

1276 }

1277 if (opts & NETSTAT_V6) {

1278 opts | = NETSTAT_| FI RST;

1279 if (mdb_wal k("ip‘ire", netstat_irev6_ch, &opts) == -1) {
1280 nﬂb_warn("failedto walk ip‘ire");

1281 return (DCVD_ERR);

1282 }

1283

1284 return (DCVD_OX);

1285 1

1287 if ((opts & NETSTAT_UNI X) && (optP == NULL)) {

1288 /* Print Unix Domain Sockets */

1289 mdb_printf("%u>%?s % 10s % ?s % ?s % 14s % 14s %%/ u>\n",
1290 "AF_UNI X', "Type", "Vnode", "Conn", "Local Addr",

1291 " Renot e Addr" " Zone");

1293 if (mdb_wal k("genunix sonode", netstat unix cb, NULL) == -1) {
1294 b_warn("failed to wal k genuni x* sonode")

1295 return (DCVMD_ERR);

1296 }

1297 if (!(opts & (NETSTAT V4 | NETSTAT V6)))

1298 return (DCVD_OK);

1299 }

1301 cbdata = ndb_al | oc(si zeof (netstat_cb_data_t), UM SLEEP);

1302 cbdat a- >opts = opts;

1303 if ((optf !'= NULL) & (opts & NETSTAT_V4))

1304 af = AF_I NET;

1305 else if ((optf I'= NULL) && (opts & NETSTAT_V6))

1306 af = AF_I NET6;

1308 chdat a- >af = af;

1309 if ((optP-- NULL) || (strenp(“tcp”, optP) == 0)) {

1310 tatus = netstat_print_comon("tcp_conn_cache", |PPROTO TCP,
1311 netstat_tcp_ch, cbdata);

1312 if (status !'= DCVD_OK)

1313 goto out;

1314 1

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ genuni X/ net. c 21 new usr/ src/ cnd/ mdb/ conmon/ nodul es/ genuni X/ net. c 22
1316 if ((optP == NULL) || (strcnp("udp", optP) == 0)) { 1382 if (rnext !'= -1 && rstart + 1 != rnext)
1317 status = netstat_print_comon("udp_conn_cache", |PPROTO_UDP, 1383 mdb_printf("-%l", rnext - 1);
1318 netstat_udp_cb, chdata); 1384 if (rstart = -1)
1319 if (status !'= DCVD_OK) 1385 nmdb_printf(",");
1320 goto out; 1386 mdb_printf("%", bit);
1321 } 1387 rstart = bit;
1388 }
1323 if ((optP == NULL) || (strcnp("icnp", optP) == 0)) { 1389 rnext = bit + 1;
1324 status = netstat_print_conmmon("raw p_conn_cache", |PPROTO | C\VP, 1390 }
1325 netstat_icnp_ch, chdata); 1391
1326 if (status !'= DCMD_CK) 1392 if (rnext !'=-1 & rstart + 1 != rnext)
1327 goto out; 1393 mdb_printf("-%l", rnext - 1);
1328 } 1394 ndb_printf("\n");
1395 }
1330 if ((optP == NULL) || (strcnp("dccp", optP) == 0)) {
1331 status = netstat_print_comon("dccp_conn_cache", |PPROTO_DCCP, 1397 /*
1332 netstat_dccp_cb, chdata); 1398 * This callback is invoked by a wal k of the links attached to a bridge. If
1333 if (status !'= DCVMD_CK) 1399 * we're showing link details, then they're printed here. |f not, then we just
1334 goto out; 1400 * count up the links for the bridge sumary.
Ak335] } 1401 */
1336 #endif /* | codereview */ 1402 static int
1337 out: 1403 do_bridge_links(uintptr_t addr, const void *data, void *ptr)
1338 mdb_free(chdata, sizeof (netstat_cb_data_t)); 1404 {
1339 return (status); 1405 show_bridge_args_t *args = ptr;
1340 } 1406 const bridge_link_t *blp = data;
1407 char macaddr [ETHERADDRL * 3];
1342 /| * 1408 const char *nane;
1343 * "::dl adm show bri dge" support
1344 */ 1410 ar gs->nl i nks++;
1345 typedef struct {
1346 uint_t opt_I; 1412 if (largs->opt_Il)
1347 uint_t opt_f; 1413 return (WALK_NEXT);
1348 uint_t opt_t;
1349 const char *nane; 1415 if (mdb_vread(&args->m, sizeof (args->m),
1350 clock_t |bolt; 1416 (uintptr_t)bl p->bl _mh) == -1)
1351 bool ean_t found; 1417 mdb_war n("cannot read mac data at %", bl p->bl_nh);
1352 uint_t nlinks; 1418 name = "?";
1353 uint _t nfwd; 1419 } else {
1420 name = args->m . m _nang;
1355 /* 1421 }
1356 * These structures are kept inside the "args’ for allocation reasons.
1357 * They're all large data structures (over 1K), and nmay cause the stack 1423 ndb_mac_addr (bl p- >bl _| ocal _nac, ETHERADDRL, nmacaddr,
1358 * to explode. ndb and kmdb will fail in these cases, and thus we 1424 si zeof (nacaddr));
1359 * allocate them fromthe heap.
1360 */ 1426 mdb_printf("%?p % 16s % 17s 993X % 4d ", addr, name, nacaddr,
1361 trill_inst_t ti; 1427 bl p->bl _flags, bl p->bl_pvid);
1362 bridge_link_t bl;
1363 mac_inpl _t m; 1429 if (blp->bl_trilldata == NULL) {
1364 } show bridge_args_t; 1430 switch (bl p->bl _state) {
1431 case BLS_BLOCKLI STEN:
1366 static void 1432 name = "BLOCK";
1367 show_vl ans(const uint8_t *vlans) 1433 br eak;
1368 { 1434 case BLS_LEARNI NG
1369 int i, bit; 1435 nanme = "LEARN';
1370 uint8_t val; 1436 br eak;
1371 int rstart = -1, rnext = -1; 1437 case BLS_FORWARDI NG
1438 name = "FWD';
1373 for (i = 0; i < BRIDGE_VLAN_ARR SIZE; i++) { 1439 br eak;
1374 val = vlans[i]; 1440 defaul t:
1375 if (i ==0) 1441 name = "?";
1376 val &= ~1; 1442 }
1377 while ((bit = mdb_ffs(val)) !'= 0) { 1443 mdb_printf("%5s ", nane);
1378 bit--; 1444 show_vl ans(bl p->bl _vl ans);
1379 val & ~(1 << bit); 1445 } else {
1380 bit += i * sizeof (*vlans) * NBBY; 1446 show_vl ans(bl p->bl _afs);
1381 if (bit !'=rnext) { 1447 }

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

1449 return (WALK_NEXT) ;
1450 }

1452 /*

1453 * |t seens a shanme to duplicate this code, but nerging it with the |ink
1454 * printing code above is nore trouble than it would be worth.

1455 */

1456 static void

1457 print_link_name(show_bridge_args_t *args, uintptr_t addr, char sep)

1458 {

1459 const char *nane;

1461 if (mdb_vread(&args->bl, sizeof (args->bl), addr) == -1) {
1462 mdb_war n("cannot read bridge link at %", addr);
1463 return;

1464 }

1466 if (mdb_vread(&args->m, sizeof (args->m),

1467 (uintptr t)args >bl . bl _mh) == -1) {

1468 name = "?"

1469 } else {

1470 name = args->m . nm _nang;

1471 1

1473 ndb_printf("%%", nane, sep);

1474 }

1476 static int
1477 do_bridge_fwd(uintptr_t addr, const void *data, void *ptr)

1478 {

1479 show_bridge_args_t *args = ptr;

1480 const bridge_fwd_t *bfp = data;

1481 char macaddr [ETHERADDRL * 3];

1482 int i;

1483 #define MAX_FWD_LI NKS 16

1484 bridge_Tink_t *Iinks[MAX_FWD_LI NKS] ;

1485 ui nt _t nlinks;

1487 ar gs- >nf wd++;

1489 if (largs->opt_f)

1490 return (WALK_NEXT) ;

1492 if ((nlinks = bfp->bf_nlinks) > MAX FWD_LI NKS)

1493 nlinks = MAX_FWD_LI NKS;

1495 if (mdb_vread(links, sizeof (links[0]) * nlinks,

1496 (uintptr_t)bfp->bf _links) == -1)

1497 mdb_war n("cannot read bridge forwarding links at %",
1498 bf p- >bf _I i nks);

1499 return (WALK_ERR);

1500 }

1502 ndb_mac_addr (bf p- >bf _dest, ETHERADDRL, macaddr, sizeof (rmacaddr));
1504 mdb_printf("%?p % 17s ", addr, nacaddr);

1505 if (bfp->bf_flags & BFF L(I:ALADDR)

1506 mdb_printf("%7s", "[self]");

1507 el se

1508 mdb_printf("t-%5d", args->lbolt - bfp->bf_|astheard);
1509 mdb_printf(" %7u ", bfp->bf_refs);

1511 if (bfp->bf tr|||_nick!=0) {

1512 mdb_printf("%\n", bfp->bf_trill_nick);

1513 } else {

23

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c

1514 for (i =0; i < bfp->bf_nlinks; i++) {
1515 print_link_name(args, (uint p r_t)l
1516 i == bfp->bf_nlinks - 1 ?2 "\n’
1517 }

1518 }

1520 return (WALK_NEXT) ;
1521 }

inks[i],
D

1523 static int
1524 do_show bridge(uintptr_t addr, const void *data, void *ptr)
1525 {

1526 show _bridge_args_t *args = ptr;

1527 bri dge inst t bi;

1528 const bridge_inst_t *bip;

1529 trill_node_t tn;

1530 trill_sock_t tsp;

1531 trill_nickinfo_t tni;

1532 char bname[MAXLI NKNANELEN]

1533 char macaddr [ETHERADDRL * 3];

1534 char *cp;

1535 uint_t nnicks;

1536 int i;

1538 if (data !'= NULL) {

1539 bi p = data;

1540 } else {

1541 if (rrdb_vread(&bi, sizeof (bi), addr) == -1) {
1542 ndb_war n(" cannot read bri dge instance at %", addr);
1543 return (WALK_ERR) ;

1544 }

1545 bip = &bi;

1546 }

1548 (void) strncpy(bnanme, bip->bi_nane, sizeof (bnane) - 1);
1549 bname[MAXLI NKNAMELEN - 1] = '\0’;

1550 cp = bnanme + strlen(bnane);

1551 if (cp > bname && cp[-1] =="'0")

1552 cp[-1] ="'\0";

1554 if (args->nanme != NULL && strcnp(args->nane, bnane) != 0)
1555 return (WALK_NEXT);

1557 args->f ound = B_TRUE;

1558 args->nlinks = args->nfwd =

1560 if (args->opt_|) {

1561 nmdb prl ntf(" %’75 % 16s % 17s 9%Bs % 4s ", "ADDR', "LINK",
1562 'MAC- ADDR', "FLG', PVI D');

1563 if (bip->bi_trill data == = NULL)

1564 mdb_printf("%5s %\n", "STATE", "VLANS');
1565 el se

1566 mdb_printf("%\n", "FWD-VLANS");

1567 }

1569 if (largs->opt_f && largs->opt_t &&

1570 mdb_pwal k("1ist", do_bridge_links, args,

1571 addr + offsetof(brldge inst_t, bi_links)) !'= DCVD_CK)
1572 return (WALK_ERR);

1574 if (args->opt_f)

1575 mdb_printf("%?s %17s %7s %7s %\n", "ADDR', "DEST", "TIME",
1576 "REFS", "QUTPUT");

1578 if (largs->opt_| && !args->opt_t &&

1579 mdb_pwal k("avl ", do_bridge_fwd, args,

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c 25

1580 addr + offsetof (bridge_inst_t, bi_fwd)) != DCVD_OK)

1581 return (WALK_ERR);

1583 nni cks = 0;

1584 if (bip- >b| trilldata !'= NULL & !args->opt_| && !args->opt_f) {
1585 if (mdb_vread(&args->ti, sizeof (args->ti),

1586 (uintptr_t)bip->bi_tr|IIdata) == -1) {

1587 ndb_warn("cannot read trill instance at %",
1588 bi p->bi _trilldata);

1589 return (WALK_ERR) ;

1590 }

1591 if (args->opt_t)

1592 nmdb_printf(" % ?s % 5s % 17s %\ n", "ADDR',

1593 NI CK", "NEXT-HOP", "LINK");

1594 for (i = 0; i < RBRIDGE_NI CKNAME_MAX: i++) {

1595 if (args->ti.ti_nodes[i] == NULL)

1596 conti nue;

1597 if (args->opt_t) {

1598 if (mdb_vread(&n, sizeof (tn),

1599 (uintptr t)args >ti.ti_nodes[i]) == -1)
1600 mdb_war n("cannot read trill node % at "
1601 "O%", i, args->ti.ti_nodes[i]);
1602 return (V\ALK ERR) ;

1603 }

1604 if (mdb_vread(&ni, sizeof (tni),

1605 (uintptr_t)tn.tn_ni) == -1)

1606 mdb_war n("cannot read trill node info "
1607 "od at %", i, tn.tn_ni);
1608 return (WALK_ERR);

1609 }

1610 mdb_mac_addr (tni . tni _adj snpa, ETHERADDRL,
1611 macaddr, sizeof (macaddr));

1612 if (tni.tni_nick == args->ti.ti_nick) {
1613 (void) strcpy(macaddr, "[self]");
1614 }

1615 mib_printf("%?p %5u %17s ",

1616 args->ti.ti_nodes[i], tni.tni_nick,
1617 macaddr) ;

1618 if (tntntsp'-NULL) {

1619 if (mdb_vread(& sp, sizeof (tsp),
1620 (uintptr_t)tn.tn_tsp) == -1)
1621 rrdb_warn("cannot read trill "
1622 "socket info at %",
1623 tn.tn_tsp);

1624 return (WALK_ ERR)

1625 }

1626 if (tsp.ts_link !'= NULL) {

1627 print_link_name(args,
1628 (uintptr_t)tsp.ts_link,
1629 \n");

1630 conti nue;

1631 }

1632 }

1633 ndb_printf("--\n");

1634 } else {

1635 nni cks++;

1636 }

1637

1638 } else {

1639 if (args->opt_t)

1640 mdb_printf("bridge is not running TRILL\n");

1641 }

1643 if (largs->opt_| && !args->opt_f && !args->opt_t) {

1644 mdb_printf("%?p %7s % 16s % 7u % 7u", addr,

1645 bi p->bi _trilldata == NULL ? "stp" : "trill", bnane,

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c 26
1646 args->nl i nks, args->nfwd);

1647 if (bip->bi trllldata!:NULL)

1648 ndb_printf(" % 7u %\ n", nnicks, args->ti.ti_nick);
1649 el se

1650 ndb_printf(" %7s %\n", "--", "--");

1651 1

1652 return (WALK_NEXT) ;

1653 }

1655 static int

1656 dl adm show_bri dge(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
1657 {

1658 show _bridge_args_t *args;

1659 CEl f _Sym sym

1660 int i;

1662 args = nmdb_zal | oc(si zeof (*args), UM SLEEP);

1664 i mdb_get opt s(argc, argv,

1665 "1’, MDB_OPT_SETBITS, 1, &args->opt_I,

1666 ’f’ , MDB_OPT_SETBITS, 1, &args->opt_f,

1667 "t', MDB_ ODT_SEFBI TS, 1, &args->opt_t,

1668 NULL) ;

1670 argc -=i;

1671 argv += i;

1673 if (argc > 1 || (argc == 1 & argv[0].a_type != MDB_TYPE_STRING) {
1674 mdb_f ree(args si zeof (*args));

1675 return (DOVD_USAGE);

1676 }

1677 if (argc ==

1678 args->nane = argv[0].a_un.a_str;

1680 if ((args->lbolt = nmdb_get_l|bolt()) ==—1) {

1681 nmdb_war n(" falledto read I bolt");

1682 goto err;

1683 }

1685 if (flags & DOMD ADDRSPEC) {

1686 if (args->name != NULL) {

1687 ndb_printf("bridge nane and address are nutually "
1688 "excl usive\n");

1689 goto err;

1690

1691 if (largs->opt_| && !args->opt_f && !args->opt t)

1692 ndb prl ntf(" %75 % 7s % 16s % 7s % 7s\n", "ADDR',
1693 PROTECT", "NAME", "NLINKS', "NFWD')

1694 if (do_show bridge(addr NULL args) =" WALK NEXT)

1695 goto err;

1696 mdb_free(args, si zeof (*args));

1697 return (DCVD_OX);

1698 } else {

1699 if ((args->opt_| || args->opt_f || args->opt_t) &&

1700 ar gs- >name == NULL

1701 mdb prlntf(need bridge name or address with -[Ift]\n");
1702 goto err;

1703 }

1704 i f (rdb_| ookup_by_obj ("bridge", "inst_list", &ym == -1) {
1705 mdb_warn("failed to find 'bridge‘inst_list'");

1706 goto err;

1707 }

1708 if (largs->opt_| && !args->opt_f && !args->opt_t)

1709 mdb prlntf(%75 % 75 % 16s %7s % 7s %7s Y%s\ n"
1710 "ADDR', "PROTECT", "NAME", "NLINKS", "NFWD',
1711 "NNI CKS", "NI CK"))

new usr/ src/ cnd/ mdb/ common/ modul es/ genuni x/ net . c 27

1712 if (mdb_pwal k("list", do_show bridge, args,
1713 (uintptr_t)symst_val ue) = DCVD_OK)
1714 goto err;

1715 if (largs->found && args->nane != NULL) {
1716 ndb_printf("bridge instance % not found\n",
1717 ar gs- >nane) ;

1718 goto err

1719 }

1720 mdb free(args si zeof (*args));

1721 return (DCVD_OK);

1722 1

1724 err:

1725 mdb_free(args, sizeof (*args));

1726 return (DCVMD_ERR);

1727 }

1729 /*

1730 * Support for the "::dl adni dcnd

1731 */

1732 int

1733 dladm(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
1734 {

1735 if (argc < 1 || argv[0].a_type != MDB_TYPE_STRI NG

1736 return (DCVD_USAGE) ;

1738 /*

1739 * This could be a bit nore el aborate, once we support nore of the
1740 * dl adm show* subcommands.

1741 */

1742 argc--;

1743 ar gv++;

1744 if (strcnp(argv[-1].a_un.a_str, "show bridge") == 0)

1745 return (dl adm show bri dge(addr flags, argc, argv));
1747 return (DCVD_USAGE);

1748 }

1750 void

1751 dl adm hel p(voi d)

1752 {

1753 ndb_print f (" Subcommands: \ n"

1754 " showbridge [-flt] [<name>]\n"

1755 "\t Show bridge information; -1 for links and -f for "
1756 "forwardi ng\ n"

1757 "\t entries, and -t for TRILL nicknames. Address is required "
1758 "if name\n"

1759 "\t is not specified.\n");

1760 }

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ genuni X/ net. h

R R R R

2239 Sat Aug 18 10:37:01 2012
new usr/ src/ cnd/ mdb/ common/ nodul es/ genuni X/ net. h
dccp: build fixes, mdb (vfs sonode m ssing)

R R R R R R

/*

*

=
w
B R
-~

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.

26 #ifndef _NET_H
27 #define _NET_H

29 #ifdef __cplusplus
30 extern "C' {
31 #endif

33 extern struct m _payl oad_wal k_arg_s m _icnp_arg;
34 extern struct mi_payload_walk_arg_s m_ill_arg;

36 extern int sonode_wal k_init(ndb_wal k_state_t *);
37 extern int sonode_wal k_step(ndb_wal k_state_t *);
38 extern void sonode_wal k_fl ni (mdb_wal k_state_t *)
39 extern int m _wal k_init(nmdb V\B|k state_t *);

40 extern int m _wal k_step(nd b_ I k_state_t *);

41 extern void m _wal k_fini (mlb_wal k_state_t *);

42 extern int mi _payl oad_wal k_init(ndb_wal k_state_t *);
43 extern int m _payl oad_wal k_step(ndb_wal k_state t *);
44 extern int icnp_stacks_walk_init(ndb_wal k_state_t *);
45 extern int icnp_stacks_wal k_step(ndb_wal k_state_t *);
46 extern int tcp_stacks_wal k_init(ndb_wal k_state_t *);
47 extern int tcp_stacks_wal k_step(ndb_wal k_state_t *);
48 extern int udp_stacks_wal k_init(ndb_wal k_state_t *);
49 extern int udp_stacks_wal k_step(ndb_wal k_state_t *);
50 extern int dccp_stacks_wal k_init(ndb_wal k_state_t *);
51 extern int dccp_stacks_wal k_step(ndb_wal k_state_t *);
52 #endif /* | codereview */

54 extern int sonode(uintptr_t, uint_t, int, const ndb_arg_t *);

i
55 extern int m(uintptr_t, uint_t, int, const mdb_arg t *);
i

56 extern

nt netstat(uintptr_t, uint_t, int, const ndb argt *);

57 extern int dladn{uintptr_t, uint_t, int, const mlb_arg_t *);
58 extern void dl adm hel p(void);

60 #ifdef _ cplusplus
}

new usr/ src/ cnd/ mdb/ common/ nodul es/ genuni X/ net .

62 #endi f
64 #endi f

| *

_NET_H */

h

new

* ok kK

9
new
dccp

* ok kK

usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c

B R

3952 Sat Aug 18 10:37:02 2012
usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c
:conn_t

IR R R R R R R L

____unchanged_portion_onitted_

342
343
344
344
345
346
347
348
349
350
351
352
353

/*

* Generic network stack wal ker initialization function. It is used by all

* other network stack wal kers.

* other netwok stack wal kers.

*/

int

ns_wal k_i nit (mdb_wal k_state_t *wsp)

{

if (mdb_l ayered_wal k(" netstack", wsp) == -1) {

mdb_warn("can’t wal k 'netstack’");
return (WALK_ERR);

}
return (WALK_NEXT) ;

354 }
____unchanged_portion_onitted_

376
377
378
379
380

/*
* DCCP network stack wal ker stepping function.
*/

i nt

dccp_stacks_wal k_step(ndb_wal k_state_t *wsp)

381 {

382
383

385
386
387
388
389
390
391
392
393

395
396
397
398
399
400
401
402

404
405
406
407
408

return (ns_wal k_step(wsp, NS_DCCP));
}

/*
#endif /* ! codereview */
* | P network stack wal ker stepping function.
*
/
i nt
i p_stacks_wal k_step(ndb_wal k_state_t *wsp)
{

}

/*
* TCP network stack wal ker stepping function.
*/

return (ns_wal k_step(wsp, NS_IP));

i nt
tcp_stacks_wal k_step(nmdb_wal k_state_t *wsp)
{

}

/*
* SCTP network stack wal ker stepping function.
*/

return (ns_wal k_step(wsp, NS_TCP));

int
sctp_stacks_wal k_step(ndb_wal k_state_t *wsp)

409 {

410
411

413
414
415
416
417
418

return (ns_wal k_step(wsp, NS_SCTP));
}

/*

* UDP network stack wal ker stepping function.
*/

int

udp_st acks_wal k_st ep(nmdb_wal k_state_t *wsp)

{

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

419
420 }

422 |*

return (ns_wal k_step(wsp, NS_UDP));

423 * Initialization function for the per CPU TCP stats counter wal ker of a given
424 * TCP stack.

425 */
426 int

428
429

431
432

434
435
436
437
438
439

441
442
443
444
445
446
447
448 }

450 /*

452
453 int

456
457
458
459

461
462
463
464
465
466
467
468
469
470
471
472

474
475
476
477
478
479
480
481 }

483 int

427 tcps_sc_wal k_i nit (mdb_wal k_state_t *wsp)
{

tcp_stack_t tcps;

if (wsp->wal k_addr == NULL)
return (WALK_ERR);

if (mdb_vread(& cps, sizeof (tcps), wsp->wal k_addr) == -1) {
mdb_warn("failed to read tcp_stack_t at %", wsp->wal k_addr);
return (WALK_ERR);

}
if (tcps.tcps_sc_cnt == 0)
return (WALK_DONE) ;

/*
* Store the tcp_stack_t pointer in walk_data. The stepping function
* used it to calculate if the end of the counter has reached.
*
/
wsp->wal k_dat a (void *)wsp->wal k_addr;
wsp- >wal k_addr (uintptr_t)tcps.tcps_sc;
return (WALK_NEXT) ;

451 * Stepping function for the per CPU TCP stats counterwal ker.
*/

454 tcps_sc_wal k_step(ndb_wal k_state_t *wsp)
{

int status;
tcp_stack_t tcps;
tcp_stats_cpu_t *stats;
char *next, *end;

if (mdb_vread(& cps, sizeof (tcps), (uintptr_t)wsp->wal k_data) == -1)
mdb_warn("failed to read tcp_stack_t at %", wsp->wal k_addr);
return (WALK_ERR);

}
if (mdb_vread(&stats, sizeof (stats), wsp->wal k_addr) == -1) {
midb_warn("failed ot read tcp_stats_cpu_t at %",
wsp->wal k_addr) ;
return (WALK_ERR);

status = wsp->wal k_cal | back((uintptr_t)stats, &stats, wsp->wal k_chdata);
if (status !'= WALK_NEXT)
return (status);

next = (char *)wsp->wal k_addr + sizeof (tcp_stats_cpu_t *);
end = (char *)tcps.tcps_sc + tcps.tcps_sc_cnt *
sizeof (tcp_stats_cpu_t *);
if (next >= end)
return (WALK_DONE) ;
wsp->wal k_addr = (uintptr_t)next;
return (WALK_NEXT) ;

484 th_hash_wal k_i ni t (ndb_wal k_state_t *wsp)

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 3 new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c
485 { 551 int
486 CEl f _Sym sym 552 illif_stack_wal k_step(ndb_wal k_state_t *wsp)
487 l'i st_node_t *next; 553 {
554 uintptr_t addr = wsp->wal k_addr;
489 if (wsp->wal k_addr == NULL) { 555 illif_walk_data_t *iw = wsp- Swal k _dat a;
490 if (mdb_l ookup_by_obj (" |p", "ip_thread_list", &ym == 0) { 556 int st = iw>ll_list;
491 wsp->wal k_addr = sym st_val ue;
492 } else { 558 if (ndb_vread(& w>ill_if, sizeof (ill_if_t), addr) == -1) {
493 ndb_war n("unable to locate ip_thread_list\n"); 559 mdb_warn(“failed to read ill_if_t at %", addr);
494 return (WALK_ERR) ; 560 return (WALK_ERR);
495 } 561 1
496 }
563 wsp->wal k_addr = (uintptr_t)iw>ill_if.illif_next;
498 if (mdb_vread(&next, sizeof (next),
499 wsp->wal k_addr + offsetof (list_t, |ist_head) + 565 if (wsp->wal k_addr ==
500 of fsetof (Iist_node_t, list_next)) == -1 || 566 (uintptr_t)iw>ill_g_heads[list].ill_g_list_head) {
501 next == NULL) {
502 mdb_war n(" non- DEBUG i mage; cannot wal k th_hash Iist\n"); 568 if (++list >= MAX_G HEADS)
503 return (WALK_ERR); 569 return (WALK_DONE) ;
504 }
571 iw>ill_list =1
506 if (mdb_| ayered_wal k("list" V\sp) == -1) { 572 wsp->wal k_addr =
507 mdb_war n("can’ t wal k list'"); 573 (uintptr_t)iw>ill_g_heads[list].ill_g_list_head,;
508 return (WALK_ERR); 574 return (WALK_NEXT);
509 } else { 575 }
510 return (WALK_NEXT);
511 } 577 return (wsp->wal k_cal | back(addr, iw, wsp->wal k_cbdata));
512 } 578 }
514 int 580 void
515 th_hash_wal k_step(ndb_wal k_state_t *wsp) 581 illif_stack_wal k_fini(ndb_wal k_state_t *wsp)
516 { 582 {
517 return (wsp->wal k_cal | back(wsp->wal k_addr, wsp->wal k_| ayer, 583 ndb_free(wsp->wal k_data, sizeof (illif_walk_data_t));
518 wsp- >wal k_chdat a)) ; 584 }
519 }
586 typedef struct illif_cbdata {
521 /* 587 uint_t ill_flags;
522 * Called with wal k_addr being the address of ips_ill_g_heads 588 uintptr_t ill_addr;
523 */ 589 int 11l_printlist; /* list to be printed (MAX_G HEADS for all) */
524 int 590 bool ean t ill_printed;
525 i{l l'if_stack_wal k_i nit(ndb_wal k_state_t *wsp) 591 } illif_chdata_t;
526
527 illif_walk_data_t *iw 593 static int
594 illif b(m ntptr_t addr, const illif_walk_data_t *iw illif_cbdata_t *id)
529 if (wsp->wal k_addr == NULL) { 595 {
530 mdb_warn("illif_stack supports only local wal ks\n"); 596 const char *version;
531 return (WALK_ERR);
532 } 598 if (id->ill_printlist < MAX_G HEADS &&
599 id->i 11 _printlist !=iw>ill_list)
534 iw = mdb_al | oc(sizeof (illif_walk_ data_t), UM SLEEP); 600 return (WALK_NEXT);
536 if (mdb_vread(iw >ill_g_heads, MAX_G HEADS * sizeof (ill_g_head_t), 602 if (id->ill_flags & DCVD_ADDRSPEC && id->ill_addr != addr)
537 wsp->wal k_addr) == -1) { 603 return (WALK_NEXT);
538 mdb_warn("failed to read "ips_ill_g_heads’ at %",
539 wsp- >wal k_addr) ; 605 if (id->ill_flags &DCNDPIPE = QUT) {
540 mdb_free(iw, sizeof (illif_walk_data_t)); 606 mdb_printf("%)\n", addr);
541 return (WALK_ERR); 607 return (WALK_| EXT)
542 } 608 }
544 iw>ill_list = 0; 610 switch (iw>ill_list) {
545 wsp- >wal k_addr = (uintptr_t)iw >i1l_g_heads[O].ill_g_list_head, 611 case | P_V4_G HEAD: version = "v4"; break;
546 wsp->wal k_data = iw 612 case | P_V6_G HEAD: version = "v6"; break;
613 defaul t: version = "??"; break;
548 return (WALK_NEXT); 614 }
549 }
616 mdb_printf("%p Rs %p %0d %p %\n",

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

617 addr, version, addr + offsetof (ill_if_t, illif_avl_by_ppa),
618 iw>ill_if.illif_avl_by_ppa.avl _numodes,

619 iw>ill_if.illif_ppa_arena, iw>ill_if.illif_nane);

621 id->ill_printed = TRUE;

623 return (WALK_NEXT) ;

624 }

626 int

627 ip_stacks_common_wal k_i nit (ndb_wal k_state_t *wsp)

628 {

629 if (mdb_ Iayered wal k("i p_ stacks wsp) == -1) {

630 b_warn("can’t wal k |p stacks’");

631 r et urn (WALK_ERR);

632 }

634 return (WALK_NEXT);

635 }

637 int

638 illif_wal k_step(ndb_wal k_state_t *wsp)

639 {

640 uintptr_t kaddr;

642 kaddr = wsp->wal k_addr + OFFSETOF(i p_stack_t, ips_ill_g_heads);
644 if (ntib_vread(&kaddr sizeof (kaddr), kaddr) == -1) {

645 mdb_warn("can’t read ips_ip_ cache tabI e at %", kaddr);
646 return (WALK_ERR);

647 }

649 if (mdb_pwal k("illif_stack", wsp->wal k_cal | back,

650 wsp- >wal k_cbdat a, kaddr) == -1)

651 mdb_warn("couldn’t walk "illif_stack’ for ips_ill_g_heads %",
652 kaddr) ;

653 return (V\ALK ERR) ;

654 }

655 return (WALK_NEXT) ;

656 }

658 int

659 illif(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
660 {

661 illif_cbdata_t id;

662 P _ift it

663 const char *opt_P = NULL;

664 int printlist = MAX_G HEADS;

666 if (mjb getopts(argc, argv,

667 MDB_OPT_STR, &opt _P, NULL) != argc)

668 ‘return (DCVD_USAGE) ;

670 if (opt_P !'= NULL) {

671 i f (strcmp("v4", opt_P) == 0) {

672 printlist :IPV4GHEAD

673 } else if (strenp("v6e", opt_P) == 0) {

674 printlist -IPVGGHEA

675 } else {

676 mdb_warn("invalid protocol '%’'\n", opt_P);
677 return (DCVD_USAGE);

678 }

679 }

681 i f (DCVD_HDRSPEC(flags) && (flags & DOMD Pl PE_QUT) == 0) {

682 mdb_printf (" %u>%s Rs %@s %0s %®s % 10s%</ u>\n",

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

683 "ADDR', "IP", "AVLADDR', "NUWNCDES"', "ARENA", "NAME");
684 1

686 id.ill_flags = flags;

687 id.ill_addr = addr;

688 id.ill prlntlist:printlist;

689 id.ill_printed = FALSE;

691 if (mdb_wal k("illif", (mdb_wal k_) I'1if_ch, &ld) == -1) {
692 mdb_warn("can’t walk ilT_if_t structures");

693 return (DCVD_ERR);

694 }

696 if (!(flags & DCMD_ADDRSPEC) || opt_P != NULL || id.ill_printed)
697 return (DCVD_OX);

699 /*

700 * |f an address is specified and the wal k doesn’t find it,
701 * print it anyway.

702 */

703 if (mdb_vread(& Il _if, sizeof (ill_if_t), addr) == -1) {
704 mdb_war n(" Failed to read ill_if_t at %", addr);
705 return (DCVD_ERR);

706 }

708 ndb_printf("%p %®s %p %0d %p ¥%s\n",

709 addr, "??", addr + offsetof(ill_if_t, illif_avl_by_ppa),
710 ill_if.illif_avl_by_ppa.avl _numodes,

711 ill_if.illif_ppa_arena, ill_if.illif_name);

713 return (DCVD_OK);

714 }

716 static void

717 illif_hel p(void)

718 {

719 nmdb_printf("Options:\n");

720 mdb_printf("\t-P v4 | vé6"

721 "\tfilter interface structures for the specified protocol\n");
722 }

724 int

725 nce_wal k_i nit (nmdb_wal k_state_t *wsp)

726 {

727 if (mdb_l ayered_wal k("nce_cache" wsp) == -1) {

728 mdb_warn("can’t wal k ' nce_| cache’ ");

729 return (WALK_ERR);

730 }

732 return (WALK_NEXT) ;

733 }

735 int

736 nce_wal k_step(nmdb_wal k_state_t *wsp)

737 {

738 nce_t nce;

740 if (mdb_ vread(&nce 5| zeof (nce), wsp->wal k_addr) == -1)
741 mdb_warn("can’t read nce at %", wsp->wal k_addr);
742 return (WALK_ERR);

743 1

745 return (wsp->wal k_cal | back(wsp->wal k_addr, &nce, wsp->wal k_cbdata));
746 }

748 static int

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

749 nce_format (uintptr_t addr, const nce_t *ncep, void *nce_cb_arg)

750 {

751 nce_chdata_t *nce_cb = nce_cb_arg;

752 ilr_t ill;

753 char ill_nanme[LI FNAMSI Z] ;

754 ncec_t ncec;

756 if (mdb_vread(&ncec, sizeof (ncec),

757 (uintptr_t)ncep->nce_common) == -1) {

758 mdb_warn("can’t read ncec at %", ncep->nce_common);
759 return (WALK_NEXT);

760 }

761 if (nce_cb->nce_ipversion !=0 &&

762 ncec. ncec_i pversi on ! = nce_cbh->nce_i pversi on)
763 return (WALK_NEXT);

765 if (mdb_vread(&!ll, sizeof (ill), (umtptr _t)ncep- >nce|||) == -1) {
766 mdb_snprintf(ill_name, sizeof (ill_nane), "--");
767 } else {

768 (void) nmdb_readstr(ill_nane,

769 M N(LIFNAVSI Z, i ll7i 11 _name_l ength),
770 (uintptr_t)ill.ill_nane);

771 1

773 if (nce_cb->nce_ill_name[0] != "\0’

774 strncnp(nce_ch->nce_i |l _nane, ill_name, LIFNAVSIZ) != 0)
775 return (WALK_NEXT);

777 if (ncec.ncec_ipversion == | PV6_VERSI ON) {

779 mdb_printf("%p %s % 18s 9%@p %d %\ n",
780 addr, ill_nane,

781 nce_ i2 addr(ncep, &ll),

782 ncep- >nce_f p_np,

783 ncep->nce_refcnt,

784 &ncep- >nce_addr) ;

786 } else {

787 struct in_addr nceaddr;

789 I N6_VAMAPPED TO | NADDR(&cep- >nce_addr, &nceaddr);
790 mdb_ pr|ntf("°/67p 9%%s % 18s 9®@p ¥%ed % \n"
791 addr, ill_name,

792 nce_I 2_addr(ncep, &ll),

793 ncep->nce_f p_np,

794 ncep- >nce_refcnt,

795 nceaddr.s_addr);

796 1

798 return (WALK_NEXT) ;

799 }

801 int

802 dce_wal k_ini t (nmdb_wal k_state_t *wsp)

803 {

804 wsp->wal k_data = (void *)wsp->wal k_addr;

806 if (mdb_l ayered_wal k("dce cache wsp) == -1) {
807 mdb_warn("can’t wal k dce cache’ ");

808 return (WALK_ERR);

809 1

811 return (WALK_NEXT) ;

812 }

814 int

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

815 dce_wal k_step(nmdb_wal k_state_t *wsp)

816 {

817 dce_t dce;

819 if (mdb_ vread(&dce si zeof (dce), wsp->wal k_addr) == -1) {

820 mdb_warn("can’t read dce at %", wsp->wal k_addr);

821 return (WALK_ERR);

822 }

824 /* If ip_stack_t is specified, skip DCEs that don't belong to it. */
825 if ((wsp->wal k_data != NULL) && (wsp->wal k_data != dce.dce_ipst))
826 return (WALK_NEXT) ;

828 return (wsp->wal k_cal | back(wsp->wal k_addr, &dce, wsp->wal k_chdata));
829 }

831 int

832 ire_wal k_init(nmdb_wal k_state_t *wsp)

833 {

834 wsp->wal k_data = (void *)wsp->wal k_addr;

836 if (mdb_l ayered_wal k("ire cache", wsp) == -1) {

837 mdb_warn("can’t walk ’ire_cache’ ");

838 return (WALK_ERR) ;

839 }

841 return (WALK_NEXT);

842 }

844 int

845 ire_wal k_step(ndb_wal k_state_t *wsp)

846 {

847 ire_t ire;

849 if (mdb_vread(& re, sizeof (ire), wsp->wal k_addr) == -1) {

850 mdb_warn("can’t read ire at %", wsp->wal k_addr);

851 return (WALK_ERR);

852 }

854 /* 1f ip_stack_t is specified, skip IREs that don’t belong to it. */
855 if ((wsp->wal k_data != NULL) && (wsp->wal k_data != ire.ire_ipst))
856 return (WALK_NEXT);

858 return (wsp->wal k_cal | back(wsp->wal k_addr, & re, wsp->wal k_chdata));
859 }

861 /* ARGSUSED */

862 int

863 ire_next_wal k_init(ndb_wal k_state_t *wsp)

864 {

865 return (WALK_NEXT) ;

866 }

868 int

869 ire_next_wal k_step(ndb_wal k_state_t *wsp)

870 {

871 ire_t ire;

872 int status;

875 if (wsp->wal k_addr == NULL)

876 return (WALK_DONE) ;

878 if (mdb_vread(& re, sizeof (ire), wsp->wal k_addr) ==)

879 mdb_warn("can’t read ire at %", wsp->wal k addr)

880 return (WALK_ERR);

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

881

882 status = wsp->wal k_cal | back(wsp->wal k_addr, &ire,

883 wsp->wal k_chdat a) ;

885 if (status !'= WALK_NEXT)

886 return (status);

888 wsp->wal k_addr = (uintptr_t)ire.ire_next;

889 return (status);

890 }

892 static int

893 ire_format(uintptr_t addr, const void *ire_arg, void *ire_cb_arg)

894 {

895 const ire_t *irep ire_arg;

896 ire_chdata_t *ire_cb = ire_cb_arg;

897 bool - ean_t verbose = ire_ch->verbose;

898 ilr_t ill;

899 char ill nane[LI FNAVSI Z] ;

900 bool ean_t condemmed = irep->ire_generati on == | RE_GENERATI ON_CONDEMN\ED;
902 static const ndb_bitmask_t tmasks[] = {

903 " BROADCAST", | RE_BROADCAST, | RE_BROADCAST s
904 " DEFAULT", | RE_DEFAULT, | RE_DEFAULT s
905 "LOCAL", | RE_LOCAL, | RE_LOCAL f
906 " LOOPBACK" , | RE_LOOPBACK, | RE_LOOPBACK s
907 " PREFI X", | RE_PREFI X, | RE_PREFI X s
908 "MJLTI CAST", | RE_MJLTI CAST | RE_MULTI CAST s
909 " NORQUTE" , | RE_ E, | RE_NOROUTE ,
910 "I F NG?ESG.VER'. | RE_| F_NORESOLVER, | RE_| F_NORESOLVER },
911 "| F_RESOLVER', | RE_|IF_RESOLVER, | RE_| F_RESOLVER
912 "I F_CLONE", | RE_I F_CLONE, | RE_| F_CLONE s
913 " HOST", | RE_ T, | RE_HOST s
914 NULL, 0, 0

915 };

917 static const mjb bi t mask_t frmasks[] = {

918 " UP' RTF_UP, RTF_UP f
919 GATEV\AY' RTF_GATEWAY, RTF_GATEWAY s
920 "HOST", RTF_HOST, RTF_HOST s
921 "REJ ECT") RTF_REJECT, RTF_REJECT s
922 "DYNAM C', RTF_DYNAM C, RTF_DYNAM C ,
923 " MODI FI ED", RTF_MODI Fl ED, RTF_MODI FI ED s
924 " DONE", RTF_DONE, RTF_DONE s
925 " MASK" , RTF_MASK, RTF_MASK s
926 "CLONI NG', RTF_CLONI NG, RTF_CLONI NG)
927 " XRESOLVE", RTF_XRESOLVE, RTF_XRESOLVE s
928 "LLI NFO', RTF_LLI NFO, RTF_LLI NFO s
929 " STATI C', RTF_STATI C, RTF_STATI C s
930 "BLACKHOLE", RTF_BLACKHCLE, RTF_BLACKHOLE 0
931 " PRI VATE", RTF_PRI VATE, RTF_PRI VATE 0
932 " PROTOR" RTF_PROTCR, RTF_PROTCR ,
933 " PROTOL" RTF_PROTOL, RTF_PROTOL ,
934 " MULTI RT" RTF_MULTI RT, RTF_MULTI RT s
935 " SETSRC', RTF_SETSRC, RTF_SETSRC f
936 "1 NDI RECT RTF_| NDI RECT, RTF_| NDI RECT s
937 NULL, 0, 0

938 s

940 if (ire_cb->ire_ipversion != 0 &&

941 irep->ire_ipversion != ire_cb->ire_ipversion)

942 return (WALK_NEXT);

944 if (mdb_vread(& I, sizeof (ill), (uintptr_t)irep- >|re|||) == -1) {
945 mdb_snprintf(ill_name, sizeof (ill_nane), "--");

946 } else {

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

947 (void) nmdb_readstr(ill_nane,

948 M N(LIFNAMSI Z, i ll7ill_name_| ength),

949 (uintptr_t)ill.ill_nane);

950 }

952 if (irep->ire_ipversion == | PV6_VERSI ON && verbose) {

954 mdb_print f (" %b>%®p%/ b>%8s %I0N <%hb%s>\ n"

955 "9®s %ON n"

956 "U®s %40d %ld <%hb> %s\n",

957 addr, condemmed ? "(Q" : "", & rep->ire_setsrc_addr_v6,
958 irep->ire_type, tmasks,

959 (irep->ire_testhidden '7", H DDEN' : ""),

960 ", & rep->ire_addr_ve6,

961 ", ips_to_stackid((uintptr_t)irep->ire_ipst),

962 irep->ire_zoneid,

963 irep->ire_flags, frmasks, ill_nane);

965 } else if (irep->ire_ipversion == | PV6_VERSION) {

967 mdb_printf("%®p¥3s ¥BON O/cBON 9%d %ld %s\n",

968 addr, condemed ? "(Q" : "", & rep->ire_setsrc_addr_v6,
969 & rep->ire_addr_v6,

970 ips_to_stackid((uintptr_t)irep->ire_ipst),

971 irep->ire_zoneid, ill_nane);

973 } else if (verbose) {

975 mdb_pri ntf(" °/$b>°/d7p°/l</ b>%38s %401 <%hb¥%s>\n"

976 "ops o4

977 e %lOd %’1d <%1b> s\ n"

978 addr, condemmed ? "(QO)" 2@ ", irep->ire_setsrc_addr,
979 irep->ire_type, tmasks

980 (irep->ire_testhidden '7", H DDEN' : ""),

981 ", lrep->ire_addr,

982 ", ips_to_ stackld((umtptr _t)irep->ire_ipst),

983 irep->ire_zoneid, irep->re_flags, fnasks, il i _namne) ;
985 } else {

987 mdb_printf (" %p%Bs %30l °/6>‘0I 9%d %ld %s\n", addr,

988 condemed ? "(C)" : "", irep->ire_setsrc_addr,

989 irep->ire_addr, ips_to_stacki d((uintptr_t)irep->ire_ipst),
990 irep->ire_ zoneld iTl _nane);

991 }

993 return (WALK_NEXT) ;

994 }

996 /*

997 * There are faster ways to do this. Gven the interactive nature of this
998 * use | don't think its worth nuch effort.

999 */

1000 static unsigned short

1001 i pcksum(void *p, int len)

1002 {

1003 int32_t sum= 0;

1005 while (len > 1) {

1006 /* alignment */

1007 sum += *(uint16_t *)p;

1008 = (char *)p + sizeof (uintl6_t);

1009 i f (sum & 0x80000000)

1010 sum = (sum & OxFFFF) + (sum >> 16);

1011 len -= 2;

1012 }

10

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 11

1014 if (len)

1015 sum += (uint16_t)*(unsigned char *)p;
1017 while (sum >> 16)

1018 sum = (sum & OxFFFF) + (sum >> 16);
1020 return (~sum;

1021 }

1023 static const ndb_bitmask_t tcp_flags[] = {

1024 { "SYN', TH_SYN, TH SYN 1},
1025 { "ACK", TH_ACK, TH ACK 1},
1026 { "FIN'", TH FI N, THFIN },
1027 { "RST", TH_RST, TH RST },
1028 { "PSH', TH_PUSH, TH PUSH },
1029 { "ECE", TH_ECE, TH ECE },
1030 { "CWR", TH_CVR, TH CWR },
1031 { NULL, 0, 0 }
1032 };

1034 /* TCP option |length */

1035 #define TCPOPT_HEADER LEN 2
1036 #define TCPOPT_MAXSEG LEN 4
1037 #define TCPOPT_WS_LEN 3
1038 #define TCPOPT_TSTAMP_LEN 1
1039 #define TCPOPT_SACK_OK_LEN 2

1041 static void
1042 tcphdr_print_options(uint8_t *opts, uint32_t opts_|en)

1043 {

1044 uint8_t *endp;

1045 uint32_t len, val;

1047 mdb_printf (" %b>0pti ons: %</ b>");

1048 endp = opts + opts_Ien;

1049 while (opts < endp) {

1050 len = endp - opts;

1051 switch (*opts) {

1052 case TCPOPT_EQL:

1053 ndb_printf (" EOL");

1054 opt S++;

1055 break;

1057 case TCPOPT_NOP:

1058 mdb_printf(" NOP");

1059 opt s++;

1060 break;

1062 case TCPOPT_MAXSEG {

1063 uint16_t nss;

1065 if (len < TCPOPT_MAXSEG LEN | |

1066 opts[1] != TCPOPT_MAXSEG LEN) {
1067 mdb_printf(" <Truncated MSS>\n");
1068 return;

1069 }

1070 ndb_nhconvert (&ss, opts + TCPOPT_HEADER LEN,
1071 si zeof (mes));

1072 mdb_printf (" MSS=%", mnsS);

1073 opts += TCPOPT_MAXSEG LEN

1074 br eak;

1075 }

1077 case TCPOPT_WSCALE:

1078 if (len < TCPOPT_ WS LEN || opts[1] != TCPOPT WS LEN) {

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 12
1079 mdb_printf(" <Truncated Ws>\n");

1080 return;

1081 }

1082 mdb_printf(" Ws=%", opts[2]);

1083 opts += TCPOPT_WS_LEN,

1084 break;

1086 case TCPODT TSTAMP: {

1087 f (len < TCPOPT_TSTAWP_LEN ||

1088 opts[1] != TCPOPT_TSTAMP_LEN)

1089 mdb_printf(" <Truncated TS>\n");

1090 return;

1091 }

1093 opts += TCPOPT_HEADER LEN;

1094 ndb_nhconvert (&val, opts, sizeof (val));

1095 ndb_printf(" TS_VAL=%, ", val);

1097 opts += sizeof (val);

1098 ndb_nhconvert (&val, opts, sizeof (val));

1099 ndb_printf (" TS_ECHO=%", val);

1101 opts += sizeof (val);

1102 br eak;

1103 }

1105 case TCPOPT_SACK_PERM TTED:

1106 if (len < TCPOPT_SACK_OK_LEN ||

1107 opts[1] != TCPOPT_SACK_OK_LEN) {

1108 mdb_printf(" <Truncated SACK_OK>\n");
1109 return;

1110 }

1111 mdb_printf (" SACK _OK");

1112 opts += TCPOPT_SACK_OK_LEN;

1113 br eak;

1115 case TCPOPT_SACK: {

1116 ui nt32_t sack_| en;

1118 if (len <= TCPOPT_HEADER LEN || len < opts[1] ||
1119 opts[1] <= TCPOPT_HEADER LEN) {

1120 mdb_printf(" <Truncated SACK>\n");
1121 return;

1122 }

1123 sack_l en = opts[1l] - TCPOPT_HEADER LEN;

1124 opts += TCPOPT_HEADER _LEN;

1126 mdb_printf (" SACK=");

1127 whiTe (sack_len > 0) {

1128 if (opts + 2 * sizeof (val) > endp) {
1129 mdb_printf("<Truncated SACK>\n");
1130 opts = endp;

1131 br eak;

1132 }

1134 mdb_nhconvert (&val , opts sizeof (val));
1135 mdb_printf("<%,", val);

1136 opts += sizeof (val);

1137 ndb_nhconvert (&val, opts, sizeof (val));
1138 mdb_printf("%>", val);

1139 opts += sizeof (val);

1141 sack_len -= 2 * sizeof (val);

1142 }

1143 break;

1144 }

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

1146 defaul t:

1147 ndb_printf(" Opts=<val =%, | en=%u>", *opts,
1148 opts[1]);

1149 opts += opts[1];

1150 break;

1151 }

1152 }

1153 mdb_printf("\n");

1154 }

1156 static void

1157 tcphdr_print(struct tcphdr *tcph)

1158 {

1159 in_port_t sport, dport;

1160 tcp_seq seq, ack;

1161 uint16_t win, urp;

1163 mdb_printf (" %b>TCP header %</ b>\n");

1165 ndb_nhconvert (&sport, &t cph->th_sport, sizeof (sport));
1166 mdb_nhconvert (&dport, & cph->th_dport, sizeof (dport));
1167 mdb_nhconvert (&seq, & cph->th_seq, sizeof (seq));

1168 nmdb_nhconvert (&ck, &tcph->th_ack, sizeof (ack));

1169 ndb_nhconvert (&win, &t cph->th_w n, sizeof (wn));

1170 ndb_nhconvert (&urp, & cph->th_urp, sizeof (urp));

1172 mdb_printf (" %u>%s %s %0s %0s %ls %bs %bs %bs % 15s%/u>\n",
1173 "SPORT", "DPORT", "SEQ', "ACK', "HLEN', "WN', "CSUM,
1174 " FLAGS")

1175 mdb_printf (" Y6hu %hu %40u 940u %d %Bhu %Bhu 9Bhu <%>\n"
1176 sport, dport, seq, ack, tcph->th_off << 2, win,

1177 tcph- Sth _sum urp, tcph >th_flags, tcp_ flags)

1178 mdb_print f ("0x%4x Ox%4x 0x%08x 0x%O8x\n\n",

1179 sport, dport, seq, ack);

1180 }

1182 /* ARGSUSED */

1183 static int

1184 tcphdr(uintptr_t addr, uint_t flags, int ac, const ndb_arg_t *av)
1185 {

1186 struct tcphdr tcph;

1187 ui nt 32_t opt _| en;

1189 if (!(flags & DCVD_ADDRSPEC))

1190 return (DCMD_USAGCE) ;

1192 if (mdb_ vread(&lcph si zeof (tcph), addr) == -1) {

1193 mdb_warn("failed to read TcP header at %", addr);
1194 return (DCMD_ERR);

1195 }

1196 t cphdr _print (&t cph);

1198 /* If there are options, print themout also. */

1199 opt_len = (tcph.th_off << 2) TCP_M N_HEADER_LENGTH;
1200 if (opt_len > 0)

1201 uint8_t *opts, *opt_buf;

1203 opt _buf = ndb_al | oc(opt _| en, UM SLEEP);

1204 opts = (u| nt8_t *)addr + si zeof (tcph);

1205 if (mdb_vread(opt_buf, opt_len, (uintptr_t)opts) == -1) {
1206 mdb_war n(" f ai ied to read TCP options at 0/-p"
1207 return (DCVMD_ERR);

1208 }

1209 t cphdr _print _options(opt_buf, opt_Ien);

1210 nmdb_free(opt _buf, opt_len);

13

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

sport,

sport,

1211 }

1213 return (DCVD_OK);

1214 }

1216 static void

1217 udphdr _print (struct udphdr *udph)

1218 {

1219 in_port_t sport dport;

1220 uint16_t hl en;

1222 mdb_printf (" %b>UDP header %</ b>\n");

1224 mdb_nhconvert (&sport, &udph->uh_sport, sizeof (sport));
1225 mdb_nhconvert (&dport, &udph->uh_dport, sizeof (dport))
1226 mdb_nhconvert (&l en, &udph->uh_ul en, sizeof (hlen));

1228 mdb_printf (" %u>%4s °/¢i4s %Ss Y%6s %</ u>\ n",

1229 "SPORT", "DPORT", "LEN', "CSUM);

1230 mdb_printf ("%hu (0x%04x) 9%hu (OX%)AX) 9%Bhu 0x%4hx\ n\ n",
1231 dport, dport, hlen, udph->uh_sum;

1232 }

1234 /* ARGSUSED */

1235 static int

1236 udphdr(uintptr_t addr, uint_t flags, int ac, const ndb_arg_t *av)
1237 {

1238 struct udphdr udph;

1240 if (!(flags & DCMD_ADDRSPEC))

1241 return (DCVD_USAGCE) ;

1243 if (mdb_vread(&udph, sizeof (udph), addr) == -1) {

1244 mdb_warn("failed to read UDP header at %", addr);
1245 return (DCVD_ERR);

1246 1

1247 udphdr _pri nt (&udph) ;

1248 return (DCVMD_CXK) ;

1249 }

1251 static void

1252 sctphdr_print(sctp_hdr_t *sctph)

1253 {

1254 in_port_t sport, dport;

1256 ndb_printf (" %SCTP header %/ b>\n");

1257 ndb_nhconvert (&sport, &sctph->sh_sport, sizeof (sport));
1258 mdb_nhconvert (&dport, &sctph->sh_dport, sizeof (dport));
1260 ndb_printf (" %u>%4s %4s 9%40s %0s%</ u>\n",

1261 "SPORT", "DPORT", "VTAG', "CHKSUM');

1262 mdb_printf("%hu (0x%4x) %hu (0x%4x) %0u O0x%O8x\ n\n",
1263 dport, dport, sctph->sh_verf, sctph->sh_chksum;
1264 }

1266 /* ARGSUSED */

1267 static int

1268 sctphdr(uintptr_t addr, uint_t flags, int ac, const ndb_arg_t *av)
1269 {

1270 sctp_hdr_t sctph;

1272 if (!(flags & DCVD_ADDRSPEC))

1273 return (DCMD_USAGCE) ;

1275 if (mdb_vread(&sctph, sizeof (sctph), addr) == -1) {
1276 mdb_warn("failed to read SCTP header at %", addr);

spor

14

t,

sport,

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 15

1277 return (DCMD_ERR);
1278 1

1280 sct phdr _pri nt (&sctph);

1281 return (DCVMD_CXK) ;

1282 }

1284 static int
1285 transport_hdr(int proto, uintptr_t addr)
{

1286

1287 mdb_printf("\n");

1288 switch (proto) {

1289 case | PPROTO_TCP:

1290 struct tcphdr tcph;

1292 if (mdb_vread(& cph, sizeof (tcph), addr) == -1) {
1293 ndb_warn("failed to read TCP header at %", addr);
1294 return (DCVMD_ERR);

1295 }

1296 tcphdr _print (& cph);

1297 br eak;

1298 }

1299 case | PPROTO_UDP:

1300 struct udphdr udph;

1302 if (rmdb_vread(&udph, sizeof (udph), addr) == -1) {
1303 mdb_warn("failed to read UDP header at %", addr);
1304 return (DCVD_ERR);

1305 }

1306 udphdr _pri nt (&udph) ;

1307 br eak;

1308 1

1309 case | PPROTO_SCTP: {

1310 sctp_hdr_t sctph;

1312 if (mdb_vread(&sctph, sizeof (sctph), addr) == -1) {
1313 ndb_warn("failed to read SCTP header at %", addr);
1314 return (DCVMD_ERR);

1315 }

1316 sct phdr _pri nt (&sct ph);

1317 br eak;

1318 }

1319 defaul t:

1320 br eak;

1321 }

1323 return (DCVMD_CXK) ;

1324 }

1326 static const ndb_bi tmask_t ip_flags[] = {

1327 { "DF*, IPH DF, |PHDF },

1328 { "MF", IPH.MF, IPH M }

1329 { NULL, O, 0 }

1330 };

1332 /* ARGSUSED */
1333 static int
1334 iphdr(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)

1335 {

1336 uint _t verbose = FALSE, force = FALSE;

1337 i pha t i ph[1];

1338 uint 16 t ver, totlen, hdrlen, ipid, off, csum
1339 ui ntptr nxt _prot o;

1340 char exp_csuni 8] ;

1342 if (mdb_getopts(argc, argv,

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

1343 'v', NMDB_OPT_SETBITS, TRUE, &verbose,

1344 ', MDB_OPT_SETBITS, TRUE, &force, NULL) I'= argc)
1345 return (DCMVD_| USAGE)

1347 if (mdb_vread(iph, sizeof (*iph), addr) == -1) {

1348 mdb_warn("failed to read | Pv4 header at %", addr);
1349 return (DCVD_ERR);

1350 }

1352 ver = (iph->i pha_version_and_hdr_length & 0xf0) >> 4;

1353 if (ver 1= IPV4 VERSION) {

1354 if (ver == I PV6_VERSION) {

1355 return (ip6hdr(addr, flags, argc, argv));
1356 } elseif (!force) {

1357 mdb_war n("unknown | P version: %l\n", ver);
1358 return (DCVD_ERR);

1359 }

1360 }

1362 ndb_print f (" %I Pv4 header %/ b>\n");

1363 ndb_printf ("% 34s % 34s\n"

1364 "Uxu>% 4s % 4s % 5s % 5s % 6s %55 %55 %6s %8s % 6s%</ u>\n",
1365 "SRC', "DST",

1366 "HLEN', "TOCS', "LEN', "ID', "OFFSET", "TTL", "PROTO',
1367 "EXP- CSUM', "FLGS");

1369 hdrlen = (iph->i pha_version_and_hdr_|l ength & 0x0f) << 2;
1370 nmdb_nhconvert (& otl en, & ph->ipha_l ength, sizeof (totlen));
1371 ndb_nhconvert (& pi d, & ph->i pha_ident, sizeof (ipid));

1372 ndb_nhconvert (&of f, & ph->i pha_fragnent_of fset_and_f I ags,
1373 if (hdrlen == | P_SI MPLE_HDR _LENGTH) {

1374 if ((csum = ipcksun(iph, sizeof (*iph))) !'= 0)
AE3i75) csum = ~(~csum + ~i ph->i pha_hdr_checksum;
1376 el se

1377 csum = i ph->i pha_hdr _checksum

1378 mdb_snprintf(exp_csum 8, "%", csum;

1379 } else {

1380 mdb_snprintf(exp_csum 8, "<n/a>");

1381 }

1383 mdb_printf("% 341 % 341%n"

1384 "% 4d % 4d % 5hu % 5hu % 6hu % 5hu % 5hu % 6u % 8s <%hb>\n",
1385 i ph->i pha_src, iph->ipha_dst,

1386 hdrl en, iph->i pha_type_of serw ce, totlen, ipid,

1387 (of f << 3) & Oxffff, iph- >i pha_ ttl i ph->i pha_protocol,
1388 i ph->i pha_hdr checksum exp_csum off, ip_flags);

1390 if (verbose) {

1391 nxt_proto = addr + hdrlen;

1392 return (transport_hdr(iph->i pha_protocol, nxt_proto));
1393 } else {

1394 return (DCVD_OX);

1395 }

1396 }

1398 /* ARGSUSED */
1399 static int

1400 i p6hdr (uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)

1401 {

1402 uint_t verbose = FALSE, force = FALSE;
1403 i p6_t i ph[1];

1404 int ver, class, flow

1405 ui nt16_t pl en;

1406 uintptr_t nxt _prot o;

1408 if (mdb_getopts(argc, argv,

16

si zeof (off));

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

1409 'v', NMDB_OPT_SETBITS, TRUE, &verbose,

1410 ', MDB_OPT_SETBITS, TRUE, &force, NULL) I= argc)
1411 return (DCMVD_| USAGE)

1413 if (mdb_vread(iph, sizeof (*iph), addr) == -1) {

1414 mdb_warn("failed to read | Pv6 header at %", addr);
1415 return (DCVD_ERR);

1416 }

1418 ver = (iph->ip6_vfc & 0xf0) >> 4;

1419 i f (ver I'= | PV6_VERSI ON) {

1420 if (ver == IPV4A_VERSION) {

1421 return (iphdr(addr, flags, argc, argv));
1422 } elseif (!force) {

1423 b_war n("unknown | P version: %l\n", ver);
1424 return (DCVD_ERR);

1425 }

1426 }

1428 mdb_printf (" %b>l Pv6 header %/ b>\n");

1429 ndb prl ntf(" Y<u>% 265 % 265 %s %'s %35 98s %’Bs%/ u>\n"
1430 SRC', "DST", "TCLS', "FLOWID', "PLEN', "NXT" HO");
1432 class = (iph->i p6_vcf & | PV6_FLON NFO TCLASS) >> 20;
1433 mdb_nhconvert (&l ass, &class, sizeof (class));

1434 flow = iph->ip6_vcf & | PV6_| FLOW NFO FLONLABEL;

1435 mdb_nhconvert (&1 ow, &flow, sizeof (fl ow));

1436 nmdb_nhconvert (&pl en, &i ph->i p6_plen, si zeof (plen));
1438 ndb_printf ("% 26N % 26N %d %d %hu %8d %8d\n",

1439 & ph->i p6_src, & ph->ip6_dst,

1440 class, flow, plen, iph->ip6_nxt, iph->ip6_hlim;
1442 if (verbose) {

1443 nxt_proto = addr + sizeof (ip6_t);

1444 return (transport_hdr(iph->i p6_nxt, nxt_proto));
1445 } else {

1446 return (DCMD_CK);

1447 }

1448 }

1450 int

1451 nce(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
1452 {

1453 nce_t nce;

1454 nce_chdata_t nce_cb;

1455 int ipversion = 0;

1456 const char *opt_P = NULL, *opt_ill;

1458 if (mjb getopts(argc, argv,

1459 MDB_OPT_STR, &opt_ill,

1460 ’P‘, MDB_OPT_STR, &opt _P, NULL) != argc)

1461 return (DCVD_USAGE);

1463 if (opt_P !'= NULL)

1464 if (strenp(”v4” opt _P) == 0)

1465 i pversi on = TPV4 _VERSI O\I

1466 } elseif (strcnp("vG" opt_P) == 0) {

1467 i pversion = | PV6_VERSI O\,

1468 } else {

1469 mdb_warn("invalid protocol '%’'\n", opt_P);
1470 return (DCVD_USAGE);

1471 }

1472 }

1474 if ((flags & DCVMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 18
1475 mdb pr| ntf(" 0/$u>°/(1>s %Ss %8s %?s % % l’/&/ u>\ n"

1476 "ADDR', "INTF", "LLADDR', "FP_MP", "REFCNT"

1477 " NCE_ADDR") ;

1478 }

1480 bzero(&nce_ch, sizeof (nce_ch));

1481 if (opt_ilT !'= NULL)

1482 strcpy(nce_cb.nce_ill_nane, opt_ill);

1483

1484 nce_ch. nce_i pversi on = ipversion;

1486 if (flags & DCVD_ADDRSPEC) {

1487 (void) ndb_vread(&nce, sizeof (nce_t), addr);

1488 (void) nce_format(addr, &nce, &nce_cb);

1489 } else if (mdb_wal k(" nce", (rrdb_wal k_cb_t)nce_format, &nce_cb) == -1) {
1490 mib_warn("failed to walk ire table");

1491 return (DCMD_ERR);

1492 }

1494 return (DCVD_OK);

1495 }

1497 /* ARGSUSED */

1498 static int

1499 ?ce_format(ui ntptr_t addr, const dce_t *dcep, void *dce_cb_arg)

1500

1501 static const rrdb bi t mask_t dmasks[] = {

1502 {" , DCEF_DEFAULT, DCEF_DEFAULT 1},

1503 {" P", DCEF_PMIU, DCEF_PMIU },

1504 { "uU', DCEF_U NFOQ, DCEF_UI NFO },

1505 { "S'. DCEF_TOO SMALL_PMTU, DCEF_TOO SMALL_PMTU }

1506 { NULL, O, 0 }

1507 };

1508 char flagsbuf[2 * A _CNT(dmasks)];

1509 int ipversion = *(int *)dce_cb_arg;

1510 bool ean_t condemmed = dcep->dce_generati on == DCE_GENERATI ON_CONDEMNED;
1512 if (ipversion != 0 & ipversion != dcep->dce_i pversion)

1513 return (WALK_NEXT);

1515 mdb_snprintf (flagsbuf, sizeof (flagsbuf), "%", dcep->dce_fl ags,

1516 dmasks) ;

1518 switch (dcep->dce_i pversion) {

1519 case | PV4_VERSI ON:

1520 mdb pr| ntf("°/$u>°/&7p°/85 9Bs 98d 980l %</ u>\n", addr, condemmed ?
1521 "(©" : "", flagsbuf, dcep->dce_pntu, &dcep->dce_v4addr);
1522 br eak;

1523 case | PV6_VERSI O\

1524 mdb pr| ntf("°/$u>°/&7p°/85 9Bs 98d ¥%BON %</ u>\n", addr, condemmed ?
1525 "(©" : "", flagsbuf, dcep->dce_pntu, &dcep >dce _v6addr) ;
1526 br eak;

1527 defaul t:

1528 mdb_printf (" %u>%®p¥Bs ¥Bs ¥Bd 9B0s %</ u>\n", addr, condemmed ?
1529 "(Q" : "", flagsbuf, dcep->dce_pntu, "");

1530 }

1532 return (WALK_NEXT) ;

1533 }

1535 int

1536 ?ce(ui ntptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)

1537

1538 dce_t dce;

1539 const char *opt_P = NULL;

1540 const char *zone_name = NULL;

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 19

1541
1542

1544
1545
1546
1547

1549
1550
1551
1552
1553
1554

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1567
1568
1569
1570

1572
1573
1574
1575
1576
1577
1578
1579

1581
1582

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593

A595]
1596
1597
1598
1599

1601
1602
1603
1604
1605
1606

{

nt
ire(uintptr_t addr,

ip_stack_t *i pst = NULL;
int ipversion = 0O;

if (mjb getopts(argc, argv,
s’, MDB_OPT_STR, &zone name,
"P', MDB_OPT_STR, &opt P, NULL) != argc)
return (DCVD_USAGE);

/* Follow the specified zone nane to find a ip_stack_t*. */
if (zone_nanme != NULL)
i pst = zone_to_i ps(zone_nane);
if (ipst == NULL)
return (DCVD_USAGE);
}

if (opt_P !'= NULL)
if (strcr'rp("v4" opt_P) == 0) {
i pversion = | PV4 VERSI o\
} else if (strenp("ve" opt_P) == 0) {
i pversion = IPV6 _VERSI ON,
} else {
mdb_war n("inval i d protocol

)| "%’\n", opt_P);
return (DCVD_USAGE);

}
}
if ((flags & DCVMD_LOOPFIRST) || !'(flags & DCMD LOOD)) {
nmdb pr| nt (" %u>9%@s%Bs 9Bs YBs ¥B0s %</ u>\n"
"ADDR', "", "FLAGS', "PMIU', "DST ADDR')
}

if (flags & DOMD ADDRSPEC) {
(void) ndb_vread(&dce, sizeof (dce_t), addr);
(void) dce_format(addr, &dce, & pversion);
} else if (ndb_pwalk("dce", (nmdb_wal k_cb_t)dce_| fornat,
(uintptr_t)ipst) == -1) {
mdb_warn("failed to wal k dce cache");
return (DCMD_ERR);

& pversion,

}
return (DCVD_OK);

uint_t flags, int argc, const ndb_arg_t *argv)
uint _t verbose = FALSE;

ire_t ire;

ire_chdata_t ire_cb;

int ipversion = 0O;

const char *opt_P = NULL;

const char *zone_name = NULL;

ip_stack_t *ipst = NULL;

if (ndb getopts(argc, argv,
, MDB_OPT_SETBI TS, TRUE, &verbose,
's', MDB_OPT_STR, &zone_| nane
"P'. MDB_OPT_STR &opt P, NULL) != argc)
return (DCMVD_ USAGE)

/* Follow the specified zone name to find a ip_stack_t*. */
if (zone_ name I'= NULL) {
i pst = zone_to_i ps(zone_nane);
if (ipst == NULL)
return (DCVD_USAGE);

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

1619

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632

1634
1635

1637
1638
1639
1640
1641
1642
1643
1644

1646
1647

1649
1650

1652
1653
1654
1655
1656
1657
1658
1659

1661
1662
1663

1665
1666

1668
1669

}

if (opt_P != NULL)

if (strcn’p(v4" opt _P) ==0) {
i pversi on = TPV4 _VERSI ON,

} elseif (strcnp("ve" opt_P) == 0) {
i pversion = | PV6_VERSI ON;

} else {
ndb_warn("invalid protocol '%’'\n", opt_P);
return (DCVD_USAGE);

}
}
if ((flags & DCVMD_LOCPFIRST) || !(flags & DCVMD_LOOP)) {
if (verbose) {
ndb_printf("%s %0s % 20s% n"
"9®s %0s % 20s% n"
" %:u>°/a>s %4 0s D/<=.¢ls % 20s %%/ u>\n",
"ADDR', "SRC', "TYPE",
wu WDSTY . VARKS'
v’ WSTACK", "ZONE', "FLAGS', "INTE") ;
} else {
mdb pr| ntf(" °/$u>°/c?s %30s O/c'BOs 9%bs %’ls 0/Gl)/$/u>\n
"ADDR', "SRC', "DST", "STACK", "ZONE", INTF]
}
}
ire_cb.verbose = (verbose == TRUE);
ire_ch.ire_ipversion =i pver5| on;
if (flags & DCVD_ADDRSPEC) {
(void) nmdb_vread(& re, sizeof (ire_t), addr)'
void) ire_format(addr, & re, & re_cb
} else if (ndb_pwal k("ire", (rrdb wal k _cb t)lre format, & re_ch,

(uintptr_t)ipst) == -1) {
mdb_warn("failed to walk ire table");
return (DCVD_ERR);

}

return (DCVD_OK);

static size_t
m _osi ze(const queue_t *q)
1651 {

}

/*
* The code in comon/inet/m.c allocates an extra word to store the
* size of the allocation. An m _o_s is thus a size_t plus an m _o_s.

struct m _block {
size_t m _nbytes;
struct m_o_s ni_o;

Im
if (mdb_vread(&m sizeof (m), (uintptr_t)qg->q_ptr -
sizeof (m) == sizeof
return (mm _nbytes - sizeof (m);
return (0);

static void

ipill

1670 {

1671
1672

_qinfo(const queue_t *q, char *buf,

size_t nbytes)

char nane[32];
ilr_t ill;

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 21

1674 if (mdb_vread(& I, sizeof (ill),

1675 (uintptr_t)qg->qg_ptr) == sizeof (ill) &&

1676 ndb_readstr(nane, sizeof (nane), (uintptr t)| I1.ill_name) > 0)
1677 (void) mdb_snprintf (buf, nbyt es, "if: 9" ame);
1678 }

1680 void

1681 i p_qi nfo(const queue_t *q, char *buf, size_t nbytes)

1682 {

1683 size_t size = mi _osize(q);

1685 if (size == sizeof (ill_t))

1686 ip_ill_ginfo(q, buf, nbytes);

1687 }

1689 uintptr_t
1690 i p_rnext (const queue_t *q)

1691 {

1692 size_t size = m _osize(q);

1693 ilr_t ill;

1695 if (size == sizeof (ill t) &&mib _vread(& I, sizeof (ill),
1696 (uintptr_t)qg->q_ptr) == sizeof (ill))

1697 return ((umtptr _t)yill.ill_rq);

1699 return (NULL);

1700 }

1702 uintptr_t

1703 i p_wnext (const queue_t *q)

1704 {

1705 size_t size = m _osize(q);
1706 i_till;

1708 if (size == sizeof (ill_t) && mdb_vread(& I, sizeof (ill),
1709 (uintptr_t)qg->qg_ptr) == sizeof (ill))
1710 return ((uintptr_t)ill.ill_wg);

1712 return (NULL);
1713 }

1715 /*

1716 * Print the core fields in an squeue_t. Wth the "-v" argunent,
1717 * provide nore verbose out put.

1718 */

1719 static int

1720 squeue(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
1721 {

1722 unsi gned i nt i;

1723 unsi gned i nt ver bose = FALSE;

1724 const int SQUEUE_STATEDELT = (int)(sizeof (uintptr_t) + 9);
1725 bool ean_t arm

1726 squeue_t squeue;

1728 if ('(flags & DCOVD_ADDRSPEC))

1729 if (mdb_wal k dcrrd(genuni x‘ squeue_cache", "ip‘'squeue",
1730 argc, argv) == -1) {

1731 ndb_warn("failed to wal k squeue cache");

1732 return (DCVD_ERR);

1733 }

1734 return (DCVD_OX);

1735 }

1737 if (mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL)

1738 I'= argc)

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 22
1739 return (DCMD_USAGE) ;

1741 if (!DCVD_HDRSPEC(fl ags) && verbose)

1742 mdb_printf("\n\n");

1744 if (DCVMD_HDRSPEC(flags) || verbose) {

1745 mdb_printf("9%s %5s %3s %s %s ¥@s\n",

1746 "ADDR', "STATE", "CPU',

1747 "FIRST", "LAST", "WORKER');

1748 }

1750 if (nﬂb_vread(&squeue, si zeof (squeue_t), addr) == -1) {
1751 mdb_war n(" cannot read squeue_t at %", addr);

1752 return (DCVD_E

1753 }

1755 ndb_printf("%0?p %95x %3d 9%©?p %O?p %O?p\n",

1756 addr, squeue.sq_state, squeue.sq_bind,

1757 squeue. sq_first, squeue.sq_l ast, squeue.sq_worker);
1759 if (!verbose)

1760 return (DCVD_CX);

1762 arm = B_TRUE;

1763 for (i = 0; squeue_states[i].bit_name != NULL; i++) {

1764 if (((squeue.sqg_state) & (1 << i)) == 0)

1765 cont i nue;

1767 if (arm {

1768 nmdb_printf("%s|\n", SQUEUE_STATEDELT, "");
1769 mdb_printf("% s+ -> ", SQUEUE STATEDELT, "");
1770 arm = B_FALSE;

1771 } else

1772 ndb_printf("%s ", SQUEUE_STATEDELT, "");
1774 mdb_printf("% 12s %\n", squeue_states[i].bit_nane,
1775 squeue_states[i].bit_descr);

1776 }

1778 return (DCVD_OK);

1779 }

1781 static void
1782 i p_squeue_hel p(voi d)

1783 {

1784 ndb_pri ntf(" Print the core information for a given NCA squeue_t.\n\n");
1785 ndb_printf("Options:\n");

1786 mdb_printf("\t-v\tbe verbose (nore descriptive)\n");

1787 }

1789 /*

1790 * This is called by ::th_trace (via a call back) when wal ki ng the th_hash

1791 * list. It calls nodent to find the entries.

1792 */

1793 /* ARGSUSED */
1794 static int
1795 nodent _sunmmary(uintptr_t addr, const void *data, void *private)

1796 {

1797 th_wal k_data_t *thw = private;

1798 const struct nod_hash_entry *nmhe = data;

1799 th_trace_t th;

1801 if (mdb_vread(&h, sizeof (th), (uintptr_t)nmhe->nhe_val) == -1) {
1802 mdb_warn("failed to read th_trace_t %", nhe->nhe_val);
1803 return (WALK_ERR);

1804 }

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 23 new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c
1871 */
1806 if (th.th_refcnt == 0 && thw >t hw_non_zero_only) 1872 mdb_printf("9%s %s %@s ¥Bs %@s\n",
1807 return (WALK_NEXT); 1873 "1 PSTACK", "OBJECT", "TRACE', "REFCNT", "THREAD');
1874 t hw. t hw_mat ch = B_FALSE;
1809 if (!'thw>thw nmatch) { 1875 } else {
1810 mdb_printf("%p %p %p %Bd %®p\n", thw >thw ipst, mnhe->nmhe_key, 1876 thw. thw_nmatch = B_TRUE;
1811 nmhe- >mhe_val , th. th _refcnt, th th _id); 1877 thw. t hw_mat chkey = addr;
1812 } else if (thw>thw rratchkey =" (uint ptr _t) nhe- >tthe _key) {
1813 int i, j, k; 1879 if ((thwthwlbol = (clock_t)ndb_ get Ibolt()) =-1) {
1814 tr_buf _t *tr; 1880 b_warn("failed to read Ibolt");
1881 return (DCVMD_ERR) ;
1816 mdb_printf("Cbject % in IP stack %:\n", nmhe->nhe_key, 1882 }
1817 thw >t hw_i pst); 1883
1818 i =th.th_trace_|l astref; 1884 i1 f (mdb_pwal k("th_hash", th_hash_summary, &t hw, NULL) == -1) {
1819 mdb_printf(" \tThread % refcnt %:\n", th.th_id, 1885 mdb_warn("can’t wal k th_hash entries");
1820 th.th_refcnt); 1886 return (DCVMD_ERR);
1821 for (j = TR_BUF_ MAX; j >0; j--) { 1887 }
1822 tr = th.th_trbuf + i; 1888 return (DCVD_OK);
1823 if (tr->tr dept h == 0]| tr->tr_depth > TR_STACK_DEPTH) 1889 }
1824 bre
1825 ndb prlntf("\t T%l d:\n", tr->tr_tinme - 1891 static void
1826 t hw >t hw_| bol t); 1892 th_tr ce_hel p(voi d)
1827 for (k = 0; K < tr->tr _depth; k++) 1893 {
1828 mdb_printf("\t\t%\n", tr->tr_stack[k]); 1894 mdb_printf("If given an address of an ill_t, ipif_t, ire_t, or ncec_t,
1829 if (--i <) 1895 "print the\n"
1830 i TR_BUF_MAX - 1; 1896 "corresponding th_trace_t structure in detail. Oherwise, if no "
1831 } 1897 "address is\n"
1832 } 1898 "given, then summarize all th_trace_t structures.\n\n");
1833 return (WALK_NEXT) ; 1899 ndb_printf("Options:\n"
1834 } 1900 "\t-n\tdisplay only entries with non-zero th_refcnt\n");
1901 }
1836 /*
1837 * This is called by ::th_trace (via a callback) when wal king the th_hash 1903 static const ndb_dcnd _t dends[] = {
1838 * list. It calls nodent to find the entries. 1904 {" conn status", ":"
1839 */ 1905 " di spl ay connection structures fromi pcl hash tabl es",
1840 /* ARGSUSED */ 1906 conn_status, conn_status_help },
1841 static int 1907 { "srcid_status", ":"
1842 th_hash_summary(uintptr_t addr, const void *data, void *private) 1908 "di spl ay connection structures fromi pcl hash tabl es",
1843 { 1909 srcid_status },
1844 const th_hash_t *thh = data; 1910 { "ill", "?[-v] [-P v4 | v6] [-s exclusive-ip-zone-nane]",
1845 th_wal k_data_t *thw = private; 1911 "display ill_t structures", ill, ill_help },
1912 { "illif", "?[-P v4 | v6]",
1847 t hw- >t hw_i pst (ui ntptr_t)thh >t hh_i pst; 1913 "display or filter IP Lower Level InterFace structures", illif,
1848 return (mdb_ V\al k(" modent", nodent_summary, private, 1914 illif_help },
1849 (uintptr t)thh >t hh hash)) 1915 { "iphdr", ":[-vf]", "display an | Pv4 header", iphdr },
1850 } 1916 { "ip6hdr", ":[-vf]", "display an | Pv6 header", |p6hdr },
1917 { "ipif", "?[-v] [-P v4 | v6]", "display ipif structures"”,
1852 /* 1918 1pif, ipif_help },
1853 * Print or summarize the th_trace_t structures. 1919 { "ire", "?[-v] [-P v4| v6] [-s exclusive-ip-zone-nanme]",
1854 */ 1920 "display Internet Route Entry structures", ire },
1855 static int 1921 { "nce", "?[-P v4|v6] [-i <interface>]"
1856 th_trace(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv) 1922 "display interface-specific Neighbor Cache structures", nce },
1857 { 1923 { "ncec", "?[-P v4 | v6]", "display Neighbor Cache Entry structures",
1858 th_wal k_data_t thw 1924 ncec },
1925 { "dce", "?[-P v4|v6] [-s exclusive-ip-zone-nane]",
1860 (void) menset (& hw, 0, sizeof (thw)); 1926 "di splay Destination Cache Entry structures", dce },
1927 { "squeue", ":[-v]", "print core squeue_t info", squeue,
1862 if (ndb getopts(argc, argv, 1928 i p_squeue_hel p },
1863 , MDB_OPT_SETBI TS, TRUE, &thw thw non_zero_only, 1929 { "tcphdr", ":", "di splay a TCP header", tcphdr },
1864 NULL) I="argc) 1930 { "udphdr", ":", di splay an UDP header" udphdr 1,
1865 return (DCVD_USAGE) ; 1931 { "sctphdr", ":", "display an SCTP header”, sct phdr },
1932 { "th_trace", "?[-n]", "display th_t race_t structures", th_trace,
1867 if (!(flags & DCVMD_ADDRSPEC)) ({ 1933 th_trace_help },
1868 /* 1934 { NULL }
1869 * No address specified. Walk all of the th_hash_t in the 1935 };
1870 * system and summarize the th_trace_t entries in each.

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

1937 static const ndb_wal ker_t wal kers[] = {

1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

e e e]

#endi f /*

e e e

{

"conn_status", "walk list of conn_t structures",

ip_ stacks_common _wal k_init, conn_status_wal k_step, NULL },
"illif", "walk Tist of ill Tnterface types for all stacks",

i p_stacks_common_wal k_init, illif_walk_step, NULL },
“illif_stack", "walk Iist of ill interface types",

ilhif stack _wal k_init, iIIif_stack_\AaI k_step,

|II|f “stack_wal k_fi ni },

"ill", "walk active ilT_t structures for all stacks",

|
ill_walk_init, ill_walk_step, NULL }
"ipif", "walk list of ipif structures for all stacks",
ipif_walk_init, ipif_walk_step, NULL },
"ipif_list", "walk the linked |7st of ipif structures "

"for a givenill",
ip_list_walk_init, ip_list_walk_step,
ip_|l Iist_V\aI k_fini, &pif_walk_arg }

"srcid", "walk list of srcid_nap structures for all stacks",
i p_st acks common_wal k_init, srcid_wal k_step, NULL },
"srcid_list", "walk list of srci d_rmp structures for a stack",

ip_li st _wal k_init, ip_list_walk_step, ip_list_walk_fini,
&rcid_wal k_arg },

"ire", "walk active ire_t structures",

ire vval k_init, ire_wal k_step, NULL },

"ire_next", "walk ire_t structures in the ctable",

i re next _walk_init, ire_next_wal k_step, NULL },
“nce", "wal k active nce_t structures",

nce_wal k_init, nce_wal k_step, NULL },
"dce", "wal k active dce_t structures",

dce_wal k_i nit, dce_wal k_step, NULL }
"dccp_stacks", "walk all the dccp_stack_t"

ns_wal k_init, dccp_stacks_wal k_step, " NULL },
! coderevi ew */

"ip_stacks", "walk all the ip_stack_t

ns_wal k_i nit, ip_stacks_wal k step, NULL },
"tcp_stacks", "wal k alT the tcp_stack_t*"

ns_wal k_init, tcp_stacks_wal k step, NULL },
"sctp_stacks", "walk allT the sctp_stack_ t",

ns_wal k_i nit, sctp_stacks_wal k _step, NULL },
"udp_stacks", "wal k all the udp_stack t"

ns_wal k_init, udp_stacks_wal k_st ep, NULL },
"th_hash™, "walk all the th_hash_t entries",
th_hash_wal k_init, th_hash_wal k_step, NULL },

“ncec", "walk list of ncec structures for all stacks",
|p stacks common_wal k_i nit, ncec_wal k_step, NULL },
"ncec_stack", "walk list of ncec structures”

ncec st ack_wal k_init, ncec_stack_wal k_step,
ncec stack “wal k_fini },

"udp_hash", "walk list of conn_t structures in ips_ipcl_udp_fanout",
i pcl _hash_v\al k_init, ipcl_hash_wal k_step,
i pcl _hash_wal k_fini, &udp_hash_arg},

"conn_hash", "walk |ist of conn_t structures in ips_ipcl_conn_fanout"
i pcl _hash_wal k_i nit, ipcl_hash_wal k_st ep,
i pcl _hash_wal k_fini, &conn_hash_arg},

"bi nd_hash™, "walk list of conn_t structures in ips_ipcl_bind_fanout",
i pcl hash_wal k_init, ipcl_hash_wal k_step,
i pcl hash wal k_fini, &bind_hash_arg},

proto hash”, "walk Tist of conn t structures in "
"ips_ipcl _pr oto_fanout"
i pcl _hash_wal k_i ni t, i pcl _hash_wal k_st ep,
i pcl _hash_wal k_fini, &proto_hash_arg},
proto v6_hash", "walk list of conn_t structures in "
“i ps_i pcl _pr ot o_fanout _v6",
i pcl _hash_wal k_i nit, ipcl_hash_wal k_st ep,
i pcl _hash_wal k_fini, &roto_v6_hash_arg},
"ilb_stacks", "walk all i i b_stack_t",
ns_wal k_i nit, ilb_stacks_wal k_step, NULL },

25

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

2018 };

{ "ilb_rules", "walk ilb rules in a given ilb_stack_t",
ilb_r uI es_vxal k_init, ilb_rules_wal k_step, NULL },

{ "ilb_servers", "walk server in a givenilb_rule_t"
ilb servers wal k_init, ilb_servers_wal k step, NULL },

{ "ilb_nat_src", "wal k NAT source table of a given ilb_stack_t"
il b_nat _sr c_wal k_init, ilb_nat_src_wal k_step,

il b_commn_wal k_fini },

{ "ilb_conns", "wal k NAT table of a given ilb_stack_t",
i1b_conn V\al k_init, ilb_conn_wal k_step, ilb_common_wal k_fini
{ "ilb_stickys", "walk tlckytable of a given ilb_stack_t”
ilb_sti cky_wal k_init, ilb_sticky_walk_step,
i1 b_common_wal k_fini },
{ "tcps_sc", "walk all the per CPU stats counters of a tcp_stack_t"
tcps_sc_wal k_init, tcps_sc_wal k_step, NULL },

{ NULL }

2020 static const ndb_qops_t

2021 static const ndb_nodinfo_t

2023 const ndb_nodi nfo_t *

2024
2025 |
2026

2028
2029

2031
2032 }

“ndb_i ni t (voi d)

GEl f _Sym sym

ip_qops = { ip_qginfo, ip_rnext, ip_wnext };

“nodinfo = { MDB_API _VERSI ON, dcnds, wal kers };

if (ndb_| ookup_by_obj ("ip", "ipwinit", &ym == 0)
(& p_gops, (uintptr_t)sym st_val ue);

mdb_qgops_i nstal |

return (&nmodinfo);

2034 void

2035
2036 |
2037

2039
2040
2041 }

_mdb_fini (void)

CEl f _Sym sym

if (mdb_l ookup_by_obj ("ip",
nd

2043 static char
2044 ncec_state(int ncec_state)

2045 {
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066 }

*

"ipwinit", &ym

= 0)
b_qgops_renove(& p_qops, (ui nt ptr t)sym st _val ue);

| nconpl ete");

)

SW tch (ncec state) {
case UNCHANGED:

“return (unchanged")
case ND_| NCOWPLET

return ("
case ND_REACHABLE:

return (" r eachabl e");
case ND_STALE:

return ("stale");
case ND_DELAY:

return ("delay");
case ND_PROBE:

return ("probe");
case ND_UNREACHABLE

return ("unreach");
case ND_I NI TI AL:

return ("initial"
defaul t:

return ("??");

2068 static char

*

26

b

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 27

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2069 ncec_| 2_addr (const ncec_t *ncec, const ill_t *ill)

2070 {

2071 uchar_t *h;

2072 static char addr_buf[L2ZMAXADDRSTRLEN ;

2074 if (ncec->ncec_lladdr == NULL) {

2075 return ("None")

2076 }

2078 if (ill->1l_net_type == | RE_| F_RESOLVER) {

2080 if (ill->ill_phys_ addr Iength== 0)

2081 return ("None"

2082 h = mdb_zal loc(ill->ill phys addr _| ength, UM SLEEP);
2083 if (mdb_vread(h, ill->iTl_phys_addr_length,

2084 (uintptr_t)ncec->ncec_|laddr) == -1) {

2085 b_warn(“failed to read hwaddr at %",
2086 ncec->ncec_| | addr) ;

2087 return ("Unknown");

2088 }

2089 mdb_mac_addr (h, ill->ill_phys_addr_| ength,

2090 addr _buf, sizeof (addr_buf));

2091 } else {

2092 return ("None");

2093 }

2094 ndb_free(h, ill->ill_phys_addr_| ength);

2095 return (addr_buf);

2096 }

2098 static char *

2099 nce_| 2_addr(const nce_t *nce, const ill_t *ill)

2100 {

2101 uchar_t *h;

2102 static char addr _buf [L2ZMAXADDRSTRLEN] ;

2103 nbl k_t np;

2104 size_t nblen;

2106 if (nce->nce_dlur_nmp == NULL)

2107 return ("None");

2109 if (ill->11_net_type == | RE_| F_RESOLVER) {

2110 if (nmdb_vread(&np, sizeof (nblk_t),

2111 (uintptr_t)nce->nce_dlur_np) == -1) {

2112 mdb_warn("failed to read nce_dlur_np at %",
2113 nce- >nce_dl ur_np);

2114 return ("None");

2115 }

2116 1t (ill->ill phys addr _length == 0)

2117 return ("None");

2118 nmblen = np. b_wptr - rrp.b_rptr,

2119 if (mblen > (sizeof (dl _unitdata req_t) + MAX SAP_LEN) ||
2120 ill->i11_phys_addr_Tength > MAX_SAP_LEN |]
2121 (NCE_LL_ADDR OFFSET(ill) +

2122 il->ill phys addr _I ength) > nblen) {

2123 return ("Unknown");

2124 }

2125 h = mdb_zal | oc(nbl en, UM SLEEP);

2126 if (nmdb_vread(h, nblen, (uintptr_t)(np.b_rptr)) == -1) {
2127 ndb_warn("failed to read hwaddr at %",
2128 np.b_rptr + NCE_LL_ADDR OFFSET(ill));
2129 return ("Unknown");

2130 }

2131 mdb_mac_addr (h + NCE_LL_ADDR OFFSET(ill),

2132 ill=>i Il _phys_addr_Tength, addr_buf, sizeof (addr_buf));
2133 } else {

2134 return ("None");

2135 }

2136 mdb_free(h, nblen);
2137 return (addr_buf);
2138 }

2140 static void
2141 ncec_header (uint_t flags)

2142 {
2143

2145
2146
2147
2148 }

2150 int

if ((flags & DCVMD_LOCPFIRST) || !(flags & DCVMD_LOOP)) {
nmdb pr| ntf(" °/$u>°/r?s % 20s % 10s % 8s % 5s %%/ u>\n"
"ADDR', "HWADDR', "STATE", "FLAGS', "ILL", "IP ADDR)

2151 ncec(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)

2152 {
2153
2154
2155
2156

2158
2159
2160

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171

2173

2175
2176
2177
2178
2179
2180
2181
2182
2183
2184

2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196 }

ncec_t ncec;
ncec_chdata_t id;

int ipversion = 0;

const char *opt_P = NULL;

if (ntib getopts(argc, argv
P, MDB_OPT_STR &opt P, NULL) != argc)
return (DOVD_USAGE);

if (opt_P != NULL)

if (strcr'rp("v4" opt_P) == 0) {
i pversion = TPV4 VERSI o\

} else if (strcnp("v6" opt_P) == 0) {
i pversion = I PV6 _VERSI O\

} else {
ndb_warn("invalid protocol '%’'\n", opt_P);
return (DCVD_USAGE);

}
if (flags & DOMD_ADDRSPEC) {

if (mdb_vread(&ncec, sizeof (ncec_t), addr) == -1)
ndb_warn("failed to read ncec at %\ n" addr)
return (DCVMD_ERR);

}

1f (ipversion != 0 & ncec.ncec_ipversion != ipversion) {
ndb_printf ("I P Version msnmatch\n");
return (DCVD_ERR);

}
ncec_header (fl ags);
return (ncec_fornat(addr, &ncec, ipversion));

} else {
id.ncec_addr = addr;
id.ncec_ipversion = ipversion;
ncec header(fl ags) ;
if (mdb_wal k("ncec", (mdb_wal k_cb_t)ncec_cb, &ld) == -1) {
ndb_war n(" failed to walk ncec table\n"”);
return (DCVD_ERR);

}
Eet urn (DCVD_CK) ;

2198 static int
2199 ncec_fornat (uintptr_t addr, const ncec_t *ncec, int ipversion)

2200 {

28

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 29

2201 static const ndb_bi t mask_t ncec_flags[] = {

2202 { P . NCE_F_NONUD, - F_NONUD }
2203 {" . NCE_F_I SROUTER, NCE_F_| SRQUTER },
2204 {" N', NCE_F_ NONUD, NCE_F_NONUD 1
2205 { "A", NCE_F_ANYCAST, NCE_F_ANYCAST },
2206 { "C', NCE_F_CONDEMNED, NCE_F_CONDEMNED 1},
2207 { "U', NCE_F_UNSOL_ADV, NCE_F_UNSOL_ADV },
2208 { "B", NCE_F_BCAST, NCE_F_BCAST 1,
2209 { NULL, O, 0 }
2210 }i

2211 #define NCE_MAX_FLAGS (sizeof (ncec_flags) / sizeof (ndb_bitmask_t))
2212 struct in_addr nceaddr;

2213 ilr_t ill;

2214 char ill nan'e[LI FNANVSI Z] ;

2215 char fl agsbuf [NCE_MAX FLAGS]

2217 if (mdb_ vread(&lll sizeof (ill), (uintptr t)ncec >ncec_ill) == -1) {
2218 mdb_war n(" failed to read ncec _ill at %",

2219 ncec->ncec_ill);

2220 return (DCMD_ERR);

2221 }

2223 (void) mdb_readstr(ill_name, MN(LIFNAMBI Z, ill.ill_nane_I ength),
2224 (uintptr_t)ill.ill_nane);

2226 ndb_snprintf(flagsbuf, sizeof (flagsbuf), "%b",

2227 ncec- >ncec_fl ags, ncec_flags);

2229 if (ipversion != 0 &k ncec->ncec_i pversion != ipversion)
2230 return (DCMD_OK);

2232 if (ncec->ncec_ipversion == | PV4_VERSION) {

2233 | N6_VANMAPPED_TO INADDR(&ncec >ncec_addr, &nceaddr);
2234 mdb_ pr| ntf("%p % 20s % 10s "

2235 "% 8s "

2236 "%5s %B\n",

2237 addr, ncec_l 2_addr(ncec, &ll),

2238 ncec_stat e(ncec->ncec_state),

2239 f I agsbuf,

2240 ill_name, nceaddr.s_addr);

2241 } else {

2242 mdb_printf("%p % 20s % 10s %8s % 5s %\ n",

2243 addr, ncec_|2_addr(ncec, &ll),

2244 ncec_stat e(ncec- >ncec_state),

2245 f I agsbuf,

2246 ill_name, &ncec->ncec_addr);

2247 }

2249 return (DCVMD_CXK) ;

2250 }

2252 static uintptr
2253 ncec_get _next hash _tbl (uintptr_t start, int *index, struct ndp_g_s ndp)

2254 {
2255
2256

2258

2260
2261
2262
2263
2264
2265
2266 }

uintptr_t addr = start;
int 1 = *index;

while (addr == NULL) {
if (++i >= NCE_TABLE_SI ZE)
break;
addr = (uintptr_t)ndp.nce_hash_tbl[i];

*index = i;
return (addr);

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

2268 static int
2269 ncec_wal k_step(mdb_wal k_state_t *wsp)

2270 {

2271 uintptr_t kaddr4, kaddr6;

2273 kaddr4 = wsp->wal k_addr + OFFSETOF(i p_stack_t, ips_ndp4);

2274 kaddr6 = wsp->wal k_addr + OFFSETOF(i p_stack_t, ips_ndp6);

2276 if (mdb_vread(&addr4, sizeof (kaddr4), kaddr4) == -1) {

2277 mdb_warn("can’t read ips_ip_cache_table at %", kaddr4);
2278 return (WALK_ERR);

2279 }

2280 i1 f (mdb_vread(&addr6, sizeof (kaddr6), kaddr6) == -1) {

2281 mdb_warn("can’t read ips_ip_cache_table at %", kaddr6);
2282 return (WALK_ERR);

2283 }

2284 i1 f (mdb_pwal k(" ncec_stack", wsp->wal k_cal | back, wsp->wal k_cbdat a,
2285 kaddr4) == -1) {

2286 mdb_warn("coul dn’t wal k 'ncec_stack’ for ips_ndp4 %",
2287 kaddr 4) ;

2288 return (WALK_ERR);

2289 1

2290 if (mdb_pwal k(" ncec_stack" wsp-- >wal k_cal | back,

2291 wsp->wal k_chdat a, kaddr6) == -1)

2292 mdb_war n(" couldn’t walk ' ncec_stack’ for ips_ndp6 %",
2293 kaddr 6) ;

2294 return (V\ALK_ERR);

2295 }

2296 return (WALK_NEXT) ;

2297 }

2299 static uintptr_t
2300 i pcl _hash_get _next _connf _tbl (i pcl _hash_wal k_data_t *iw)

2301 {

2302 struct connf_s connf;

2303 uintptr_t addr = NULL, next;

2304 int index = iw >connf_tbl _index;

2306 do {

2307 next = iw >hash_tbl + index * sizeof (struct connf_s);
2308 if (++index >= iw >hash_tbl_size) {

2309 addr = NULL;

2310 break;

2311

2312 1f (mdb_ vread(&connf si zeof (struct connf_s), next) == -
2313 ndb_war n(" failed to read conn _t at %", next);
2314 return (NULL);

2315 }

2316 addr = (uintptr_t)connf.connf_head;

2317 } while (addr == NULL);

2318 i w >connf _tbl _i ndex = index;

2319 return (addr);

2320 }

2322 static int
2323 ipcl _hash_wal k_i nit (ndb_wal k_state_t *wsp)

2324 {

2325 const hash_wal k_arg_t *arg = wsp->wal k_ar g;

2326 i pcl _hash wal k_data_t *iw

2327 uintptr_t tbladdr;

2328 uintptr_t si zeaddr

2330 iw = mdb_ aI | oc(sizeof (ipcl_hash_walk_data_t), UM SLEEP);
2331 i w>conn = ndb_al | oc(si zeof (conn_t), UM SLEEP);

2332 tbl addr = wsp->wal k_addr + arg->tbl off;

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2333

2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356

2358
2359
2360
2361
2362 }

si zeaddr = wsp->wal k_addr + arg->size_off;

if (mdb_vread(& w >hash_tbl, sizeof (uintptr_t), tbladdr) == -1)
mdb_warn("can’t read fanout table addr at %", tbladdr);
mdb_free(iw >conn, sizeof (conn_t));
mdb_free(iw, sizeof (ipcl_hash_walk_data_t));
return (WALK_ERR);

}
if (arg->tbl_off == OFFSETOF(ip_stack_t, ips_ipcl_proto_fanout_v4) ||
arg->tbl _off == OFFSETOF(i p_st ack_t, ips_ipcl_proto_fanout_v6)) {
i w>hash_t bl _size = | PPROTO | MAX

} else {
if (mdb_ vread(&Jw>hash tbl _size, sizeof (int),
si zeaddr) == {
mdb_warn("can’t read fanout table size addr at %",
si zeaddr) ;
ndb_f ree(i w >conn, sizeof (conn_t));
mdb_free(iw, sizeof (ipcl_hash_walk_data_t));
return (WALK_ERR);
}
Iw>connf _tbl _index = O;
wsp->wal k_addr = ipcl_hash_get _next_connf _thl (iw);
wsp->wal k_data = iw

if (wsp->wal k_addr != NULL)
return (WALK_NEXT);
el se
return (WALK_DONE) ;

2364 static int

2365 i pcl
2366 {
2367
2368
2369
2370

2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383

2385
2386
2387
2388
2389

2391
2392 }

_hash_wal k_step(rmdb_wal k_state_t *wsp)

uintptr_t addr = wsp->wal k_addr;

i pcl _hash_wal k_data_t *iw = wsp->wal k_dat a;
conn_t *conn = iw >conn;

int ret = WALK_DONE;

while (addr != NULL) {
if (mdb_vread(conn, sizeof (conn_t), addr) == -1) {
ndb_warn("failed to read conn_t at %", addr);
return (WALK_ERR);

}
ret = wsp->wal k_cal | back(addr, iw, wsp->wal k_cbhdat a) ;
if (ret != WALK_NEXT)

br eak;
addr = (uintptr_t)conn->conn_next;
}
if (ret == WALK_NEXT) {
wsp->wal k_addr = ipcl _hash_get _next_connf_tbl (iw);
if (wsp->wal k_addr != NULL)
return (WALK_NEXT) ;
el se
return (WALK_DONE) ;
}

return (ret);

2394 static void

2395 i pcl
2396 {
2397

_hash_wal k_fini (nmdb_wal k_state_t *wsp)

i pcl _hash_wal k_data_t *iw = wsp->wal k_dat a;

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2399 ndb_f ree(i w >conn, sizeof (conn_t));

2400 mdb_free(iw, sizeof (ipcl_hash_walk data t));
2401 }

2403 [*

2404 * Called with wal k_addr being the address of ips_ndp{4, 6}
2405 */

2406 static int
2407 ncec_stack_wal k_i ni t (nmdb_wal k_state_t *wsp)
{

2408

2409 ncec_wal k_data_t *nw,

2411 if (wsp->wal k_addr == NULL)

2412 mdb_war n("ncec_stack requires ndp_g_s address\n");
2413 return (WALK_ERR);

2414 }

2416 nw = mdb_al | oc(si zeof (ncec_wal k_data_t), UM SLEEP);
2418 if (mdb_vread(&w >ncec i p_ndp, sizeof (struct ndp_g_s),
2419 wsp- >wal k addr) == -1)

2420 mdb_warn("failed to read 'ip_ndp’ at %",

2421 wsp->wal k_addr) ;

2422 mdb_free(nw, sizeof (ncec_walk_data_t));

2423 return (WALK_ERR);

2424 }

2426 /*

2427 * ncec_get_next_hash_tbl () starts at ++i , so initialize index to -1
2428 */

2429 nw >ncec_hash_tbl _i ndex = -1;

2430 wsp->wal k_addr = ncec_get _next_hash_t bl (NULL,

2431 & w >ncec_hash_t bl _i ndex, nw >ncec_i p_ndp);

2432 wsp- >wal k_data = nw;

2434 return (WALK_NEXT);

2435 }

2437 static int
2438 ncec_stack_wal k_step(ndb_wal k_state_t *wsp)

2439 {

2440 uintptr_t addr = wsp->wal k_addr;

2441 ncec_wal k_data_t *nw = wsp->wal k_dat a;

2443 if (addr == NULL)

2444 return (WALK_DONE) ;

2446 if (mdb_vread(&w >ncec, sizeof (ncec_t), addr) ==
2447 midb_warn("failed to read ncec_t at %", addr)
2448 return (WALK_ERR);

2449 }

2451 wsp->wal k_addr = (uintptr_t)nw >ncec. ncec_next;

2453 wsp->wal k_addr = ncec_get _next _hash_t bl (wsp->wal k_addr,
2454 &nw->ncec_hash_t bl _i ndex, nw>ncec_i p_ndp);

2456 return (wsp->wal k_cal | back(addr, nw, wsp->wal k_cbdata));
2457 }

2459 static void
2460 ncec_stack_wal k_fini (ndb_wal k_state_t *wsp)
2461 {

2462 mdb_free(wsp->wal k_data, sizeof (ncec_walk_data_t));

2463 }

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c 33 new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

2465 /* ARGSUSED */ 2531 mdb pr| ntf(" % ?s %85 Y8s %103 % ?s %'75 % lOsf’/$/u>\n
2466 static int 2532 ADDR', "NAME', "VER', "TYPE', "WQ', "IPST" " FLAGS");
2467 ncec_cb(uintptr_t addr, const ncec_wal k_data_t *iw, ncec_cbdata_t *id) 2533 nmdb_pri ntf(% ?s YdsYUds % 2s\n”
2468 { 2534 "PHYI NT", "CNT", "",k " G?CIJP");
2469 ncec_t ncec; 2535 mdb_printf(" Ycu>9BOS YU/ U>\ n", "");
2536 } else {
2471 if (mdb_ vread(&ncec si zeof (ncec_t), addr) == -1) { 2537 mdb_printf("%u>%?s %8s % 3s % 10s %s % ?s % 10s%/u>\n",
2472 mdb_warn("failed to read ncec at %", addr); 2538 "ADDR', "NAME', "VER', "TYPE', "CNT", "WQ', "FLAGS");
2473 return (WALK_NEXT) ; 2539 }
2474 } 2540 }
2475 (void) ncec_fornat(addr, &ncec, id->ncec_ipversion);
2476 return (WALK_NEXT) ; 2542 static int
2477 } 2543 ill _format(uintptr_t addr, const void *illptr, void *ill_cb_arg)
2544 {
2479 static int 2545 il _t o xill = (ill_t *)illptr;
2480 ill _wal k_init(ndb_wal k_state_t *wsp) 2546 ill _chdata t *illcb = ill_cb_arg;
2481 { 2547 bool ean_t verbose = illcbh->verbose;
2482 if (mdb_l ayered_wal k("illif", wsp) == -1) { 2548 phyi nt _t phyi ;
2483 mdb_warn("can’t walk "illif’'"); 2549 static const ndb_bi tmask_t frmasks[] = {
2484 return (WALK_ERR); 2550 "R', PHYI _RUNNI NG, PHYI _RUNNI NG)
2485 } 2551 P, PHYI _PROM SC, PHYI _PROM SC 0
2486 return (WALK_NEXT); 2552 SAVA PHYI _VI RTUAL, PHY! —VI RTUAL ,
2487 } 2553 B PHYI _| PMP, PHYI _| PMP s
2554 e PHYI _FAI LED, PHYI _FAI LED s
2489 static int 2555 "s', PHYI _STANDBY, PHYI _STANDBY 0
2490 ill_wal k_step(nmdb_wal k_state_t *wsp) 2556 iy PHYI _I NACTI VE, PHYI _I NACTI VE ,
2491 { 2557 g, PHYI _OFFLI NE, PHYI _OFFLI NE s
2492 il _if_t ill_if; 2558 T, | LLF_NOTRAI LERS, | LLF_NOTRAI LERS },
2559 "A", | LLF_NOARP, | LLF_NQCARP f
2494 if (mdb_vread(& Il _if, sizeof (ill_if_t), wsp->wal k_addr) == -1) { 2560 "M, I LLF_MULTI CAST, I LLF_MJLTI CAST },
2495 mdb_warn("can’t read ill _ f _t at %", wsp->wal k_addr); 2561 "F, | LLF_ROUTER, | LLF_ROUTER ,
2496 return (WALK_ERR); 2562 "D, I LLF_NONUD, I LLF_NONUD s
2497 } 2563 "X, I LLF_NORTEXCH, I LLF_NORTEXCH s
2498 wsp->wal k_addr = (uintptr_t)(wsp->wal k_addr + 2564 NULL, 0, 0
2499 of fsetof (ill _if_t, ilTif_avl_by ppa)); 2565 };
2500 if (mdb_pwal k(" avl , wsp- >wal k_cal | back, wsp->wal k_cbdat a, 2566 static const ndb_bitmask_t v_fnasks[] = {
2501 wsp->wal k_addr) == -1) { 2567 " RUNNI NG', PHYI _RUNNI NG, PHYI _RUNNI NG ,
2502 ndb_warn(“can’t walk "avl’'"); 2568 "PROM SC', PHYI _PROM SC, PHYI _PROM SC 0
2503 return (WALK_ERR); 2569 " VI RTUAL" PHYI _VI RTUAL, PHY! —VI RTUAL ,
2504 } 2570 "I PMP, PHYI _I PMP, PHYI _I PMP s
2571 "FAl LED", PHYI _FAI LED, PHYI _FAI LED s
2506 return (WALK_NEXT) ; 2572 " STANDBY" , PHYI _STANDBY, PHYI _STANDBY 0
2507 } 2573 "1 NACTI VE", PHYI _I NACTI VE, PHY! _I| NACTI VE s
2574 " OFFLI NE", PHYI _OFFLI NE, PHYI _OFFLI NE s
2509 /* ARGSUSED */ 2575 "NOTRAI LER", | LLF_NOTRAI LERS, | LLF_NOTRAI LERS 1},
2510 static int 2576 " NOARP" I LLF_NOARP, I LLF_NOARP 0
2511 ill _cb(uintptr_t addr, const ill_walk_data_t *iw, ill_chdata_t *id) 2577 “MULTI CAST", | LLF_MJLTI CAST, | LLF_MULTI CAST 1},
2512 { 2578 " ROUTER", | LLF_ROUTER, | LLF_ROUTER s
2513 ilr_t ill; 2579 " NONUD" , I LLF_NONUD, I LLF_NONUD s
2580 " NORTEXCH" , | LLF_NORTEXCH, | LLF_NORTEXCH 0
2515 if (mdb_vread(& I, sizeof (ill_t), (uint ptr _t)addr) == -1) { 2581 NULL, 0, 0
2516 mdb_warn("failed to read i1ll at %", addr); 2582 };
2517 return (WALK_NEXT); 2583 char ill_nane[LI FNAMVSI Z] ;
2518 } 2584 int cnt;
2585 char *typebuf;
2520 /* If ip_stack_t is specified, s ip ILLs that don’t belong to it. */ 2586 char sbuf [DEFCOLS] ;
2521 if (id->ill_ipst I'= NULL & ill.ill_ipst !=1id->ill_ipst) 2587 int ipver = illcb->ill_ipversion;
2522 return (WALK_NEXT) ;
2589 if (ipver !'=0)
2524 return (ill_format((uintptr_t)addr, & ll, id)); 2590 if ((ipver == IPVA_VERSION && ill->ill _isv6) ||
2525 } 2591 (ipver == IPV6_VERSION && !ill->iIT isv6)) {
2592 return (WALK_NEXT);
2527 static void 2593 }
2528 il | _header (bool ean_t verbose) 2594 }
2529 { 2595 if (mdb_vread(&phyi, sizeof (phyint_t),

2530 if (verbose) { 2596 (uintptr _t)ill-5ill _phyint) == -1)

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 35 new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c
2597 mdb_warn("failed to read ill_phyint at %",
2598 (uintptr_t)ill->ill_phyint); 2664 if (mib getopts(argc, argv,
2599 return (WALK_NEXT); 2665 , MDB_OPT_SETBI TS, TRUE, &verbose,
2600 } 2666 ’s’, MDB_OPT_STR, &zone_| nama
2601 (voi d) ndb_readst r(| _name, M N(LIFNAMSI Z, ill->ill_nane_| ength), 2667 "P', MDB_OPT_STR, &opt_P, NULL) 1= argc)
2602 (uintptr_t)ill->ill_nane); 2668 return (DCVD_USAGE);
2604 switch (ill->ill_type) { 2670 /* Follow the specified zone nane to find a ip_stack_t*. */
2605 case O: 2671 if (zone_name != NULL)
2606 typebuf = "LOOPBACK"; 2672 i pst = zone_to_i ps(zone_nane);
2607 br eak; 2673 if (ipst == NULL)
2608 case | FT_ETHER: 2674 return (DCVD_USAGE);
2609 typebuf = "ETHER'; 2675 }
2610 br eak;
2611 case | FT_OTHER: 2677 if (opt_P!= NULL) {
2612 typebuf = "OTHER'; 2678 if (strenp(”v4", opt P ==0) {
2613 br eak; 2679 i pversion = | PV4 VERSI ON;
2614 defaul t: 2680 } else if (strcnp("v6" opt_P) == 0) {
2615 typebuf = NULL; 2681 i pversion = I PV6 _VERSI O\
2616 br eak; 2682 } else {
2617 } 2683 ndb_warn("invalid protocol '%’'\n", opt_P);
2618 cnt = ill->ill_refent + ill->i11_ire_cnt +ill->1l_nce_cnt + 2684 return (DOMD_USAGE);
2619 ill->i11_iTmcnt +|II—>iII_ncec_cnt; 2685 }
2620 ndb_printf("%?p %8s %3s " 2686 }
2621 addr, ill_name, ill->il 1 _isve ? "v6" : "v4");
2622 if (typebuf !'= NULL) 2688 id. verbose = verbose;
2623 mdb_printf ("% 10s ", typebuf); 2689 id.ill_addr = addr;
2624 el se 2690 idoill_i pver5| on = ipversion;
2625 mdb_printf("%10x ", ill->ill_type); 2691 id.ill_ipst = ipst;
2626 if (verbose)
2627 mdb_printf("%?p % ?p %I I1b\n" 2693 ill_he ader(ver bose) ;
2628 PHE=>0 0wy, il ->i 0] |pst 2694 if (flags & DCVD_ADDRSPEC) {
2629 ill->ill_flags | phyi .phylnt _flags, v_fmasks); 2695 if (mdb_vread(& Il _data, sizeof (ill_t), addr) == -1) {
2630 mdb_printf ("% ?p %d%is % ?p\n", 2696 mdb_war n("fai | ed to read ill at %\ n", addr);
2631 111->11_phyint, cnt, "", |II—>|II_grp); 2697 return (DCVMD_ERR);
2632 mdb_snprintf (sbuf, si zeof (sbuf), "%s 98s", 2698 1
2633 si zeof (umtptr _t) * 2, " ""); 2699 (void) ill_format(addr, &Il _data, & d);
2634 mdb pr| ntf("%|\n%+--> 98d % 18s " 2700 } else {
2635 ‘references from active threads\n", 2701 if (mdb_wal k("ill", (nmdb_walk_cb_t)i cb & d) == -1) {
2636 sbuf, sbuf, ill->ill_refcnt, "ill_refcnt"); 2702 ndb_warn("failed to walk ills\n");
2637 mdb_printf("%s %d % 18s ires referencing this ill\n", 2703 return (DCVMD_ERR);
2638 strlen(sbuf) "toodll->ill_ire_ent, "ill_ire cnt") 2704 }
2639 mdb_printf("%s 9%7d % 18s nces referencmg this T11\n" 2705 }
2640 strlen(sbuf), "", ill->ill_nce_cnt, "ill_nce_cnt") 2706 return (DCVMD_CXK);
2641 mdb_printf("%s %d % 18s ncecs referencmg this ill\n" 2707 }
2642 strl en(sbuf) "", ill->1l_ncec_cnt, "ill_ncec_cnt ")
2643 mdb_printf("%s %7d % 18s ilms~ referen0|ngth|5|ll\n 2709 static void
2644 strlen(sbuf), "", ill->ill_ilment, "ill_ilment"); 2710 ill _hel p(void)
2645 } else { 2711 {
2646 mdb_printf("%d % ?p %I1b\n", 2712 ndb_printf("Prints the following fields: ill ptr, name, "
2647 cnt, ill->ill_wqg, 2713 "I P version, count, ill type and ill flags.\n"
2648 ill->11_flags | phyi.phyint_flags, fnasks); 2714 "The count field is a sumof individual refcnts and is expanded "
2649 } 2715 "with the -v option.\n\n");
2650 return (WALK_NEXT) ; 2716 ndb_printf("Options:\n");
2651 } 2717 ndb_printf("\t-P v4 | veé"
2718 "\tfilter ill structures for the specified protocol\n");
2653 static int 2719 }
2654 ill (uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
2655 { 2721 static int
2656 ill_t ill_data; 2722 ip_list_walk_init(ndb_wal k_state_t *wsp)
2657 ill _cbdata_t i d 2723 {
2658 int ipversion = 0O; 2724 const ip_list_walk_arg_t *arg = wsp->wal k_arg;
2659 const char *zone_name = NULL; 2725 ip_list_walk data_t *iw
2660 const char *opt_P = NULL; 2726 uintptr_t addr = (uintptr_t)(wsp->wal k_addr + arg->off);
2661 uint_t verbose = FALSE;
2662 ip_stack_t *ipst = NULL; 2728 if (wsp->wal k_addr == NULL) {

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 37

2729 mdb_warn("only | ocal wal ks supported\n”);

2730 return (WALK_ERR);

2731 1

2732 if (mdb_vread(&wsp->wal k_addr, sizeof (uintptr_t),
2733 addr) == -1

2734 mjb_warn(failed to read list head at %", addr);
2735 return (WALK_ERR);

2736 }

2737 iw = mdb_al | oc(sizeof (ip_list_walk_data_t), UM SLEEP);
2738 i w>nextof f = arg->nextp_off;

2739 wsp->wal k_data = iw

2741 return (WALK_NEXT) ;

2742 }

2744 static int

2745 ip_list_wal k_step(ndb_wal k_state_t *wsp)

2746 {

2747 ip_list_walk _data_t *iw = wsp->wal k_dat a;

2748 uintptr_t addr = wsp->wal k_addr;

2750 if (addr == NULL)

2751 return (WALK_DONE) ;

2752 wsp->wal k_addr = addr + iw >nextoff;

2753 i f (mdb_vread(&wsp- >wa| k_addr, sizeof (uintptr_t),
2754 wsp- >wal k addr) 1)

2755 mdb_war n(" fal I ed to read list node at %", addr);
2756 return (WALK_ERR);

2757

2758 return (wsp->wal k_cal | back(addr, iw, wsp->wal k_cbhdata));
2759 }

2761 static void

2762 ip_list_wal k_fini(ndb_wal k_state_t *wsp)

2763 {

2764 mdb_free(wsp->wal k_data, sizeof (ip_list_walk_data_t));
2765 }

2767 static int

2768 ipif_wal k_init(ndb_wal k_state_t *wsp)

2769 {

2770 if (mdb_l ayered_wal k("ill", wsp) == -1) {

2771 b_warn("can’t walk "i1lls"");

2772 return (WALK_ERR);

2773 }

2774 return (WALK_NEXT) ;

2775 }

2777 static int

2778 ipif_wal k_step(mdb_wal k_state_t *wsp)

2779 {

2780 if (mdb_pwal k("ipif_list", wsp->wal k_cal | back, wsp->wal k_cbdat a,
2781 wsp->wal k_addr) == -1)

2782 ndb_warn("can’t walk "ipif_list’");

2783 return (WALK_ERR);

2784 }

2786 return (WALK_NEXT)

2787 }

2789 /* ARGSUSED */

2790 static int

2791 ipif_cb(uintptr_t addr, const ipif_walk_data_t *iw, ipif_cbdata_t *id)
2792 {

2793 ipif_t ipif;

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806

2808
2809

if (mdb_ vread(&lplf sizeof (ipif_t), (umtptr t)addr) == -1) {
mdb_war n(" failed to read |p|f at %", addr);
return (WALK_NEXT);

}
if (mdb_vread(& d->ill, sizeof (ill_t),
(uintptr t)|p|f ipif_ill) == -1)
mdb_warn("failed to read ill at %", ipif.ipif_ill);
return (WALK_NEXT) ;

}
(void) ipif_format((uintptr_t)addr, & pif, id);
return (WALK_NEXT) ;

}

static void
i pi f_header (bool ean_t verbose)

2810 {

2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822

2824
2825
2826
2827
2828
2829
2830
2831

2833
2834

if (verbose) {
mdb prlntf(% ?s %103 %3s % ?s %85 %305\n
"ADDR', "NAME", "CNT", "ILL", "STFLAGS',
mdb_pri ntf(" %\ N\ n",
" LCLADDR", "BRCADCAST@
mdb_printf(" Y%u>9B0sY%s/ U>\ ", ")
} else {
nmdb pr|ntf(% ?s % 10s %6s % ?s %8s % 30s\n",
"NAME", "CNT", "ILL", "STFLAGS', "FLAGS');
ndb pr| ntf(%6\ NYKU>YBOSY/ us\ n” ., LCLADDR', "");

“FLAGS') ;

}

#i fdef _BI G_ENDI AN
#def i ne i p_nt ohl _32(x)
#el se

#define ip_ntohl _32(x) (ui L) << 24) |\

(uint32_t) << 8) & 0xff0000) | \
(ui) >> 8) & 0xffo0) | \
ui >> 24))

#endi f

int
mask_to_prefixlen(int af, const in6_addr_t *addr)

2835 {

2836
2837
2838

2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855

2857
2858

if (af == AF_INET6) {
for (i =0; 1 < 4; i++)
if (addr->s6_addr32[i]
len += 32;

= OxFPFFFFff) {

} else {
mask = addr->s6_addr32[i];
br eak;

} else {
mask = VA4_PART_OF_V6((*addr));

}
if (mask > 0)

len += (33 - mdb_ffs(ip_ntohl _32(mask)));
return (len);

}

static int

ipif_format(uintptr_t addr, const void *ipifptr, void *ipif_cb_arg)

2859 {

2860

const ipif_t *ipif =ipifptr;

38

2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892

2894
2895
2896
2897
2898
2899
2900
2901
2902
2903

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 39
i pi f _chdata_t *|p|fcb=|p _cb_arg;
bool ean_t verbose = ipifcbh->verbose;
char ilT_nane[LI FNAVSI Z] ;
char buf[LI FNAMSI Z] ;
int cnt;
static const rmb _bi t mask_t sfmisks[] = {
s I Pl F_CONDEMNED, | PI F_CONDEMNED}
"CH', | Pl F_CHANG NG, I Pl F_CHANG NG,
"SL", | Pl F_SET_LI NKLOCAL, | Pl F_SET_LI NKLOCAL},
NULL, 0, 0 }
s
static const ndb_bitmask_t fmasks[] = {
"UP", 1Pl F_| I Pl F_UP o
"UNN', IPIF_UNNUNBERED | PI F_UNNUVBERED} ,
" I Pl F_DHCPRUNNI NG, | PI F_DHCPRUNNI NG} ,
"PRI V', | Pl F_PRI VATE, | Pl F_PRI VATE},
" NOXMT™ I Pl F_NOXM T, I Pl F_NOXM T},
“NOLCL", | Pl F_NOLOCAL, | Pl F_NOLOCAL},
"DEPR', | Pl F_DEPRECATED, | PI F_DEPRECATED} ,
" PREF" , | Pl F_PREFERRED, | PI F_PREFERRED}
"TEMP", | Pl F_TEMPORARY, | Pl F_TEMPORARY} ,
" ACONF" , | PI F_ADDRCONF, | PI F_ADDRCONF} ,
" ANY", | PI F_ANYCAST, | Pl F_ANYCAST} ,
" NFAI L", | Pl F_NOFAI LOVER, | PI F_NOFAI LOVER},
) NULL, 0, 0
char flagsbuf[2 * A CNT(fnasks)];
char bitfields[A CNT(fnasks)];
char sflagsbuf[A CNT(sf nasks)]
char sbuf[DEFCOLS], addr str[INETG ADDRSTRLEN] ;
int ipver = ipi fche >i pi f _i pversi on;
int af;
if (ipver !'=0) {
if ((ipver == IPVA_VERSION && ipifcb->ill.ill_isv6) ||
(ipver == IPV6_VERSION && !ipifcb->ill.ilT_isv6)) {
return (WALK_NEXT);
) }
if ((mdb_readstr(ill_name, M N(LI FNAMSI Z,
ipifcb->ill.ill_name_| ength),
(uintptr_t)i plfcb—> ill.ill nama)) == -1) {
mdb_warn("failed to read ill_nane of ill 9%\n", ipifcb->ill);
return (WALK_NEXT);

2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919

2921

2923
2924
2925
2926

}
if (ipif->ipif_id!=0)
mdb_snpri ntf (buf,
ill_name, ipif->ipif_id);
} else {
mdb_snpri ntf (buf,

}

mdb_snprintf(bitfields, sizeof (bltflelds)
ipif->ipif_addr_ready ? ADR' ,
ipif->ipif_was_up 2 ", W' : ""
ipif->ipif_was_dup ? ", W'

mdb_snprintf(flagsbuf, sizeof (flagsbuf)
ipif->ipif_flags, frmasks, bitfields);

LI FNAMBI Z, " %",

mdb_snpri ntf (sfl agsbuf, si zeof (sfl agsbuf) ,

ipif->ipif_state_flags, sfmasks);
cnt = ipif->ipif_refcnt;

if (ipifcb->ill.ill_isve)

LI FNAMSI Z, " %s: %",

ill_name);

",

"% 1 b%",

"op"

mdb_snprintf(addrstr, sizeof (addrstr), "%\,

&J pi f->i pi f_v6l cl _addr);
af = AF_I| NET6;

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2927 } else {

2928 mdb_snprintf(addrstr, sizeof (addrstr), "9%"

2929 V4_PART_OF V6((i pif->ipif_v6lcl_addr))):

2930 af = AF_I NET;

2931 }

2933 if (verbose) {

2934 mdb_printf("%?p % 10s %3d % ?p %8s % 30s\n",

2935 addr, buf, cnt, ipif->ipif_ill,

2936 sfl agsbuf , fl agsbuf)

2937 mdb_snprintf(sbuf, si zeof (sbuf) %”s %2s",

2938 sizeof (uintptr_t) * "

2939 mdb prlntf("f’/s [\ n% +--> 94d % 155 "

2940 "Active consistent reader cnt\n"

2941 sbuf, sbuf, ipif->ipif_refcnt, i pif_refcnt");
2942 mdb_printf ("% s/ %\ n",

2943 addrstr, mask_to_prefixlen(af, & pif->ipif_vénet_nask));
2944 |f(|p|fcb>||| ill_isv6)

2945 mdb_printf ("% MNn", & pif->ipif_v6brd_addr);
2946 } else {

2947 ndb_printf("%I\n",

2948 VA_PART_OF_V6((i pif->ipif_vebrd_addr)));
2949

2950 } else {

2951 mdb_printf("%?p % 10s %6d % ?p %8s % 30s\n",

2952 addr, buf, cnt, ipif->ipif_ill,

2953 sfl agsbuf, fl agsbuf)

2954 mdb_printf(" % s/ %l\ n" ,

2955 addrstr, mask_to_prefixlen(af, & pif->ipif_vénet_nask));
2956 }

2958 return (WALK_NEXT) ;

2959 }

2961 static int

2962 ipif(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
2963 {

2964 ipif_tipif;

2965 ipif_chdata_t id;

2966 int ipversion = 0;

2967 const char *opt_P = NULL;

2968 uint _t verbose = FALSE;

2970 if (mib getopts(argc, argv,

2971 v', MDB_OPT_SETBITS, TRUE, &verbose,

2972 P, MDB_OPT_STR, &opt_P, NULL) != argc)

2973 return (DCVMD_USAGE) ;

2975 if (opt_P != NULL)

2976 if (st rcr'rp("v4" opt_P) == 0)

2977 i pversion = | PVA_VERSI O\,

2978 } else if (strcnp("vé" opt_P) == 0) {

2979 i pversion = IPV6 VERSICN

2980 } else {

2981 ndb_warn("invalid protocol '%’'\n", opt_P);
2982 return (DCVD_USAGE);

2983 }

2984 }

2986 id.verbose = verbose;

2987 id.ipif_ipversion = ipversion;

2989 if (flags & DCVMD_ADDRSPEC) {

2990 if (mdb_vread(& plf sizeof (ipif_t), addr) == -1) {
2991 mdb_war n(" failed to read ipif at %\n", addr);
2992 return (DCVD_ERR);

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 41

2993 }

2994 1 pi f_header (verbose);

2995 if (mdb_vread(& d.ill, sizeof (ill_t),

2996 (umtptrt)lplf.ipif_ill) == -1) {

2997 ndb_warn(“failed to read ill at %", ipif.ipif_ill);
2998 return (WALK_NEXT) ;

2999 }

3000 return (ipif_format(addr, & pif, & d));

3001 } else {

3002 i pi f _header (verbose);

3003 if (ndb_wal k("ipif", (mib_walkc t)i |f cb & d) == -1) {
3004 ndb_warn("failed to walk ipif \

3005 return (DCVMD_ERR);

3006 }

3007 }

3008 return (DCVD_OK);

3009 }

3011 static void

3012 i pi f_hel p(voi d)

3013 {

3014 mdb_printf("Prints the following fields: ipif ptr, nane,

3015 "count, ill ptr, state flags and ipif flags.\n"

3016 "The count field is a sumof individual refcnts and is expanded "
3017 "with the -v option.\n"

3018 "The flags field shows the follow ng:"

3019 "\ n\t UNN -> UNNUMBERED, DHCP -> DHCPRUNNI NG PRIV -> PRI VATE, "
3020 "\ n\t NOXMI' -> NOXM T, NOLCL -> NOLOCAL, DEPR -> DEPRECATED, "
3021 "\ n\t PREF -> PREFERRED, TEMP -> TEMPORARY, ACONF -> ADDRCONF, "
3022 "\n\tANY -> ANYCAST, NFAIL -> NOFAI LOVER, "

3023 "\n\tADR -> ipif_addr_ready, MJ -> ipif_multicast_up,

3024 "\mM\tWJ -> ipif_was_up, WD -> ipif_was _dup, "

3025 "JA -> ipif_joi ned_al | hosts.\n\n");

3026 mdb_printf("Qptions:\n");

3027 mdb_printf("\ —P v4 | ve"

3028 "\tfilter ipif structures on ills for the specified protocol\n");
3029 }

3031 static int
3032 conn_status_wal k_fanout (uintptr_t addr, mdb_wal k_state_t *wsp,
3033 const char *wal knane)

3034 {

3035 if (mdb_pwal k(wal kname, wsp->wal k_cal | back, wsp->wal k_cbdat a,
3036 addr) == -1)

3037 mdb_warn("couldn’t walk '%’ at %", wal kname, addr);
3038 return (WALK_ERR);

3039 }

3040 return (WALK_NEXT) ;

3041 }

3043 static int
3044 conn_status_wal k_step(ndb_wal k_state_t *wsp)

3045 {

3046 uintptr_t addr = wsp->wal k_addr;

3048 (voi d) conn_status_wal k_fanout (addr, wsp, "udp_hash");

3049 (voi d) conn_status_wal k_fanout (addr, wsp, "conn_hash");
3050 (voi d) conn_status_wal k_fanout (addr, wsp, "bind_hash");
3051 (void) conn_status_wal k_fanout (addr, wsp, "proto_hash");
3052 (voi d) conn_status_wal k_fanout (addr, wsp, "proto_v6_hash");
3053 return (WALK_NEXT) ;

3054 }

3056 /* ARGSUSED */
3057 static int
3058 conn_status_cb(uintptr_t addr, const void *wal k_dat a,

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

3059 void *private)

3060 {

3061 netstack_t nss;

3062 char src_addrstr[| NET6_ADDRSTRLEN] ;

3063 char rem addrstr[| NET6_ADDRSTRLEN]

3064 const ipcl_hash_wal k_data_t *iw = wal k_dat a;

3065 conn_t *conn = iw >conn;

3067 if (mdb_ vread(conn sizeof (conn_t), addr) == -1) {

3068 mdb_warn("failed to read conn_t at %", addr);

3069 return (WALK_ERR);

3070 }

3071 if (mdb_vread(&nss, sizeof (nss),

3072 (uintptr_t)conn->conn_netstack) == -1)

3073 mdb_warn("failed to read netstack_t %",

3074 conn- >conn_net st ack) ;

3075 return (WALK_ERR);

3076 }

3077 mdb_printf("%?p % ?p %d %d\n", addr, conn->conn_wqg,

3078 nss. net st ack_stacki d, conn->conn_zonei d);

3080 if (conn->conn_fam |y == AF_| NET6) {

3081 mdb_snpri ntf(src addrstr, sizeof (remaddrstr), "',
3082 &conn->conn_[addr v6)

3083 mdb_snprintf(remaddrstr, sizeof (remaddrstr), "oN',
3084 &conn- >conn_f addr v6)

3085 } else {

3086 mdb_snprintf(src_addrstr, sizeof (src_addrstr), "%",
3087 VA4_PART_OF_V6((conn->conn_| addr _v6)));

3088 mdb_snpri ntf(rem addrstr, sizeof (rem. addrstr) ",
3089 V4_PART_OF_V6((conn->conn_f addr_v6)));

3090 1

3091 nmdb_printf("%: % 5d\ n¥%: % 5d\ n",

3092 src_addrstr, conn->conn Iport rem addrstr, conn->conn_fport);
3093 return (WALK_ NEXT)

3094 }

3096 static void
3097 conn_header (voi d)

3098

3099 mdb prl ntf("%?s %?s %®s 9%s\n¥%\n%\n",

3100 "ADDR', "WQ', "STACK', "ZONE', "SRC P(RT " DEST: PORT") ;
3101 mdb_pri ntf(%u>9B0s Y%/ U\ ", ")

3102 }

3104 /* ARGSUSED*/
3105 static int

3106 conn_status(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)

3107 {

3108 conn_header ();

3109 if (flags & DOMD) ADDRSPEC) {

3110 (void) conn_status_cb(addr, NULL, NULL);

3111 } else {

3112 if (mdb_wal k("conn_status", (ndb_wal k_cb_t)conn_status_cb,
3113 NULL) == -1) {

3114 mdb_warn("failed to wal k conn_fanout");
3115 return (DCVMD_ERR);

3116 }

3117 }

3118 return (DCVD_OK);

3119 }

3121 static void
3122 conn_st at us_hel p(voi d)
3123 {

3124 ndb_printf("Prints conn_t structures fromthe follow ng hash tables:

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 43

3125 "\'n\tips_ipcl_udp_fanout\n\tips_ipcl_bind_fanout"

3126 “\n\tips_ipcl _conn_fanout\n\tips_ipcl_proto_fanout_v4"
3127 "\'n\tips_ipcl_proto_fanout_v6\n");

3128 }

3130 static int
3131 srcid_wal k_step(nmdb_wal k_state_t *wsp)

3132 {

3133 if (mdb_pwal k("srcid_list", wsp->wal k_cal | back, wsp->wal k_chdat a,
3134 wsp->wal k_addr) == -1) {

3135 mdb_warn("can’t walk "srcid_list’");

3136 return (WALK_ERR);

3137 }

3138 return (WALK_NEXT) ;

3139 }

3141 /* ARGSUSED */
3142 static int
3143 srcid_status_cb(uintptr_t addr, const void *wal k_dat a,

3144 void *private)

3145 {

3146 srcid_map_t snp;

3148 if (mdb_vread(&snp, sizeof (srcid_map_t), addr) == -1) {
3149 mdb_warn("failed to read srcid_map at %", addr);
3150 return (WALK_ERR);

3151 1

3152 nob_printf ("% ?p 98d %d %d %\ n",

3153 addr, snp.smsrcid, snp.smzoneid, snp.smrefcnt,
3154 &snp. sm addr) ;

3155 return (WALK | NEXT)

3156 }

3158 static void
3159 srci d_header (voi d)

3160

3161 ndb prl ntf("%?s %8s %s %%s ¥%s\n",

3162 "ADDR', "ID', "ZONE', "REFCNT", "|PADDR');
3163 mdb_printf (" %u>9B0s Y%/ U\ ", ")

3164 }

3166 /* ARGSUSED*/

3167 static int

3168 srcid_status(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
3169 {

3170 srci d_header();

3171 if (fTags & DOVD) ADDRSPEC) {

3172 (void) srcid_status_cb(addr, NULL, NULL);
3173 } else {

3174 if (mdb_wal k("srcid", (ndb_walk_cb_t)srcid_status_ch,
3175 NULL) == -1) {

3176 mdb_warn("failed to wal k srcid_map");
3177 return (DCVD_ERR);

3178 }

3179 }

3180 return (DCVD_OK);

3181 }

3183 static int

3184 il b_stacks_wal k_step(ndb_wal k_state_t *wsp)

3185 {

3186 return (ns_wal k_step(wsp, NS_ILB));

3187 }

3189 static int
3190 ilb_rules_wal k_init(ndb_wal k_state_t *wsp)

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 44
3191 {

3192 ilb_stack_t ilbs;

3194 if (wsp->wal k_addr == NULL)

3195 return (V\ALK ERR) ;

3197 if (mdb_ vread(&JIbs sizeof (ilbs), wsp->wal k_addr) == -1) {

3198 mdb_warn("failed to read |Ib stack_t at %", wsp->wal k_addr);
3199 return (WALK_ERR);

3200 }

3201 if ((wsp->wal k_addr = (uintptr_t)ilbs.ilbs_rule_head) != NULL)

3202 return (WALK_NEXT);

3203 el se

3204 return (WALK_DONE) ;

3205 }

3207 static int
3208 il b_rules_wal k_step(ndb_wal k_state_t *wsp)

3209 {

3210 ilb_rule_t rule;

3211 int status;

3213 if (mdb_ vread(&rule sizeof (rule), wsp->wal k_addr) == -1) {

3214 mdb_warn("failed to read |Ib rule_t at %", wsp->wal k_addr);
3215 return (WALK_ERR);

3216

3217 status = wsp->wal k_cal | back(wsp->wal k_addr, &rule, wsp->wal k_chdata);
3218 if (status != WALK_NEXT)

3219 return (stat us)

3220 if ((wsp->wal k_addr = (U| ntptr_t)rule.ir_next) == NULL)

3221 return (WALK_DONE) ;

3222 el se

3223 return (WALK_NEXT) ;

3224 }

3226 static int
3227 ilb_servers_wal k_init(ndb_wal k_state_t *wsp)

3228 {

3229 ilb_rule_t rule;

3231 if (wsp->wal k_addr == NULL)

3232 return (WALK_ERR);

3234 if (mdb_vread(&ule, sizeof (rule), wsp->wal k_addr) == -1) {
3235 mib_warn("failed to read ilb_rule_t at %", wsp->wal k_addr);
3236 return (WALK_ERR);

3237 }

3238 if ((wsp->wal k_addr (umtptr _t)rule.ir_servers) != NULL)
3239 return (V\ALK EXT) ;

3240 el se

3241 return (WALK_DONE) ;

3242 }

3244 static int
3245 il b_servers_wal k_step(nmdb_wal k_state_t *wsp)

3246 {

3247 ilb_server_t server;

3248 int status;

3250 if (mdb_vread(&server, sizeof (server), wsp->wal k_addr) ==) {

3251 mdb_warn("failed to read il b_server_t at %", wsp >vsa| k_addr);
3252 return (WALK_ERR) ;

3253

3254 status = wsp->wal k_cal | back(wsp->wal k_addr, &server, wsp->wal k_chdat a) ;
3255 if (status !|= WALK_NEXT)

3256 return (status);

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 45 new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 46

3257 if ((wsp->wal k_addr = (uintptr_t)server.iser_next) == NULL) 3323 if (entry == NULL)
3258 return (WALK_DONE) ; 3324 return (WALK_DONE) ;
3259 el se
3260 return (WALK_NEXT); 3326 wsp->wal k_addr = (uintptr_t)entry;
3261 } 3327 ns_wal k->i dx = i;
3328 return (WALK_NEXT) ;
3263 /* 3329 }
3264 * Hel per structure for ilb_nat_src walker. It stores the current index of the
3265 * nat src table. 3331 static int
3266 */ 3332 il b_nat_src_wal k_step(ndb_wal k_state_t *wsp)
3267 typedef struct { 3333 {
3268 ilb_stack_t ilbs; 3334 int status;
3269 int idx; 3335 ilb_nat_src_entry_t entry, *next_entry;
3270 } ilb_walk_t; 3336 ilb_wal k_t *ns_wal k;
3337 ilb_stack_t *ilbs;
3272 /* Copy fromlist.c */ 3338 list_t head;
3273 #define |ist_object(a, node) ((void *)(((char *)node) - (a)->list_offset)) 3339 char *khead
3340 int i;
3275 static int
3276 ilb_nat_src_wal k_i ni t (mdb_wal k_state_t *wsp) 3342 if (mdb_vread(&entry, sizeof (ilb_nat_src_entry_t),
3277 { 3343 wsp->wal k_addr) == -1
3278 int i; 3344 midb_warn("failed to read ilb_nat_src_entry_t at %",
3279 ilb_wal k_t *ns_wal k; 3345 wsp->wal k_addr) ;
3280 ilb_nat_src_entry_t *entry = NULL; 3346 return (WALK_ERR);
3347 }
3282 if (wsp->wal k_addr == NULL) 3348 status = wsp->wal k_cal | back(wsp->wal k_addr, &entry, wsp->wal k_cbdat a);
3283 return (WALK_ERR); 3349 if (status != WALK_NEXT)
3350 return (status);
3285 ns_wal k = ndb_al | oc(sizeof (ilb_walk_t), UM SLEEP);
3286 if (mdb_vread(&ns_wal k->i | bs, sizeof (ns_walk->ilbs), 3352 ns_wal k = (ilb_wal k_t *)wsp->wal k_dat a;
3287 wsp->wal k_addr) == -1) { 3353 ilbs = &is_wal k- >i | bs;
3288 mdb_warn("failed to read ilb_stack_t at %", wsp->wal k_addr); 3354 i = ns_wal k- >i dx;
3289 mdb_free(ns_wal k, sizeof (ilb_walk_t));
3290 return (WALK_ERR); 3356 /* Read in the nsh_head in the i-th elenent of the array. */
3291 } 3357 khead = (char *)ilbs->ilbs_nat_src + i * sizeof (ilb_nat_src_hash_t);
3358 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3293 if (ns_walk->ilbs.ilbs_nat_src == NULL) { 3359 mdb_warn("failed to read ilbs_nat_src at %\n", khead);
3294 mdb_free(ns_wal k, sizeof (ilb_walk_t)); 3360 return (WALK_ERR);
3295 return (WALK_DONE) ; 3361 }
3296 }
3363 /*
3298 wsp- >wal k_data = ns_wal k; 3364 * Check if there is still entry in the current |ist.
3299 for (i =0; i < ns_walk->1bs.ilbs_nat_src_hash_size; i++) { 3365 *
3300 list_t head; 3366 * Note that list_next points to a kernel address and we need to
3301 char *khead; 3367 * conpare list_next with the kernel address of the list head.
3368 * So we need to calculate the address nanually.
3303 /* Read in the nsh_head in the i-th elenent of the array. */ 3369 */
3304 khead = (char *)ns_wal k->ilbs.ilbs_nat_src + i * 3370 if ((char *)entry.nse_link.list_next != khead + offsetof (list_t,
3305 si zeof (ilb_nat_src_hash_t); 3371 list_head)) {
3306 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) { 3372 wsp->wal k_addr = (uintptr_t)!list_object(&head,
3307 ndb_warn("failed to read ilbs_nat_src at %\n", khead); 3373 entry.nse_link.list_next);
3308 return (WALK_ERR); 3374 return (WALK_NEXT);
3309 } 3375 }
3311 1= 3377 /* Start with the next bucket in the array. */
3312 * Note that list_next points to a kernel address and we need 3378 next_entry = NULL;
3313 * to conpare list_next with the kernel address of the |ist 3379 for (i++ i < ilbs->i1bs_nat_src_hash_size; i++) {
3314 * head. So we need to cal culate the address manually. 3380 khead = (char *)ilbs->ilbs_nat_src + i *
3315 =[] 3381 si zeof (ilb_nat_src_hash_t);
3316 if ((char *)head.|ist_head.list_next != khead + 3382 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3317 of fsetof (list_t, list_head)) { 3383 mdb_warn("failed to read ilbs_nat_src at %\n", khead);
3318 entry = |ist_object(&ead, head.list_head.list_next); 3384 return (WALK_ERR) ;
3319 br eak; 3385 }
3320 }
3321 } 3387 if ((char *)head.list_head.list_next != khead +

3388 of fsetof (list_t, list_head)) {

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c 47 new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

3389 next _entry = |ist_object(&head, 3455 if (head.ilb_connp == NULL)
3390 head. | i st_head. |1 st_next); 3456 return (WALK_DONE) ;
3391 br eak;
3392 } 3458 wsp- >wal k_addr = (u| ntptr_t)head.ilb_connp;
3393 } 3459 conn_wal k=>i dx =
3460 return (WALK | NEXT)
3395 if (next_entry == NULL) 3461 }
3396 return (WALK_DONE) ;
3463 static int
3398 wsp->wal k_addr = (uintptr_t)next_entry; 3464 il b_conn_wal k_step(ndb_wal k_state_t *wsp)
3399 ns_wal k->i dx = i; 3465 {
3400 return (WALK_NEXT) ; 3466 int status;
3401 } 3467 ilb_conn_t conn;
3468 il b_wal k_t *conn_wal k;
3403 static void 3469 ilb_stack_t *ilbs;
3404 il b_common_wal k_fini (mdb_wal k_state_t *wsp) 3470 i1 b_conn_hash_t head;
3405 { 3471 char *khead,;
3406 ilb_wal k_t *wal k; 3472 int i;
3408 wal k = (ilb_wal k_t *)wsp->wal k_dat a; 3474 if (mdb_vread(&conn, sizeof (ilb_conn_t), wsp->wal k_addr) == -1) {
3409 if (walk == NULL) 3475 mdb_warn("failed to read ilb_conn_t at %", wsp->wal k_addr);
3410 return; 3476 return (WALK_ERR);
3411 mdb_free(wal k, sizeof (ilb_walk_t *)); 3477 }
3412 }
3479 status = wsp->wal k_cal | back(wsp->wal k_addr, &conn, wsp->wal k_cbdat a) ;
3414 static int 3480 if (status != WALK_NEXT)
3415 il b_conn_wal k_i nit (ndb_wal k_state_t *wsp) 3481 return (status);
3416 {
3417 int i; 3483 conn_wal k = (ilb_wal k_t *)wsp->wal k_dat a;
3418 ilb_wal k_t *conn_wal k; 3484 il bs = &onn_wal k- >i | bs;
3419 i1 b_conn_hash_t head; 3485 i = conn_wal k- >i dx;
3421 if (wsp->wal k_addr == NULL) 3487 /* Check if there is still entry in the current list. */
3422 return (WALK_ERR); 3488 if (conn.conn_c2s_next != NULL) {
3489 wsp->wal k_addr = (uintptr_t)conn.conn_c2s_next;
3424 conn_wal k = ndb_al | oc(sizeof (ilb_walk_t), UM SLEEP); 3490 return (WALK_NEXT);
3425 if (nmdb_vread(&conn_ V\al k->i | bs, sizeof (conn wal k- >i | bs), 3491 }
3426 wsp- >wal k addr) == -1)
3427 mdb_warn("failed to read ilb_stack_t at %", wsp->wal k_addr); 3493 /* Start with the next bucket in the array. */
3428 mdb_free(conn_wal k, sizeof (ilb_walk_t)); 3494 for (i++ i < ilbs->i1bs_conn_hash_size; i|++) {
3429 return (WALK_ERR); 3495 khead = (char *)ilbs->ilbs_c2s_conn_hash + i *
3430 } 3496 si zeof (ilb_conn_hash_t);
3497 if (mdb_vread(&head, sizeof (ilb_conn_hash_t),
3432 if (conn_wal k->ilbs.ilbs_c2s_conn_hash == NULL) { 3498 (uintptr_t)khead) == -1) {
3433 mdb_free(conn_wal k, sizeof (ilb V\al k_t)); 3499 ndb_warn("failed to read ilbs_c2s_conn_hash at %\n",
3434 return (WALK_DONE) ; 3500 khead) ;
3435 } 3501 return (WALK_ERR);
3502 }
3437 wsp->wal k_data = conn_wal k;
3438 for (i =0; i < conn_wal k->ilbs.ilbs_conn_hash_size; i++) { 3504 if (head.ilb_connp != NULL)
3439 char *khead; 3505 br eak;
3506 }
3441 /* Read in the nsh_head in the i-th element of the array. */
3442 khead = (char *)conn_wal k->ilbs.ilbs_c2s_conn_hash + i * 3508 if (head.ilb_connp == NULL)
3443 si zeof (ilb_conn_hash_t); 3509 return (WALK_DONE) ;
3444 if (mdb_vread(&head, SI zeof (| I b_conn_hash_t),
3445 (uintptr_t)khead) == -1) { 3511 wsp->wal k_addr = (u| ntptr_t)head.il b_connp;
3446 ndb_warn("failed to read ilbs_c2s_conn_hash at %\n", 3512 conn_wal k->i dx =
3447 khead) ; 3513 return (WALK_ NEXT)
3448 return (WALK_ERR) ; 3514 }
3449 }
3516 static int
3451 if (head.ilb_connp !'= NULL) 3517 il b_sticky_wal k_init(nmdb_wal k_state_t *wsp)
3452 break; 3518 {
3453 } 3519

int i;
3520 ilb_wal k_t *sticky_walk;

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 49

3521 ilb_sticky_t *st = NULL;

3523 if (wsp->wal k_addr == NULL)

3524 return (WALK_ERR);

3526 sticky_wal k = ndb_al | oc(sizeof (ilb_walk_t), UM SLEEP);

3527 if (mdb_ vread(&su cky wal k->i | bs, sizeof (st i cky_wal k->i | bs),

3528 wsp->wal k_addr) == -1) {

3529 mdb_warn("failed to read ilb_stack_t at %", wsp->wal k_addr);
3530 mdb_free(sticky wal k, sizeof (ilb_walk_t));

3531 return (WALK_ERR);

3532 }

3534 if (sticky_walk->ilbs.ilbs_sticky_hash == NULL) ({

3535 mib_free(sticky walk, sizeof (ilb_walk_ t));

3536 return (WALK_DONE) ;

3537 }

3539 wsp->wal k_data = sticky_wal k;

3540 for (i =0; i < sticky_walk->ilbs.ilbs_sticky_hash_size; i++) {
3541 list_t head;

3542 char *khead;

3544 /* Read in the nsh_head in the i-th el enment of the array. */
3545 khead = (char *)stlcky wal k->i | bs.ilbs_sticky_hash + i *
3546 si zeof (ilb_sticky_hash_t);

3547 if (mdb_vread(&head, sizeof (| i st_t), (uintptr_t)khead) == -1) {
3548 ndb_warn("failed to read ilbs_sticky_hash at %\n",
3549 khead) ;

3550 return (WALK_ERR);

3551 }

3553 /*

3554 * Note that |ist_next points to a kernel address and we need
3555 * to conpare |list_next with the kernel address of the I|ist
3556 * head. So we need to calcul ate the address manual | y.
3557 i

3558 if ((char *)head.list_head.list_next != khead +

3559 of fsetof (list_t, list_head)) {

3560 st = |ist_object(&head, head.list_head.list_next);
3561 br eak;

3562 }

3563 }

3565 if (st == NULL)

3566 return (WALK_DONE) ;

3568 wsp->wal k_addr (UI ntptr_t)st;

3569 sticky_wal k- >|dx =f:

3570 return (WALK_NEXT) ;

3571 }

3573 static int

3574 il b_sticky_wal k_step(nmdb_wal k_state_t *wsp)

3575 {

3576 int status;

3577 ilb_sticky_t st, *st_next;

3578 il b_wal k_t *st|cky wal k;

3579 ilb_st ackit *il bs;

3580 list_t head;

3581 char *khead;

3582 int i;

3584 if (mdb_vread(&st, sizeof (ilb_sticky t), wsp->wal k_addr) == -1) {
3585 mdb_warn("failed to read ilb_sticky_t at %", wsp->wal k_addr);
3586 return (WALK_ERR);

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

3587 }

3589 status = wsp->wal k_cal | back(wsp->wal k_addr, &st, wsp->wal k_chdat a) ;
3590 if (status != WALK_NEXT)

3591 return (status);

3593 sti cky wal k = (ilb_wal k_t *)wsp->wal k_dat a;

3594 ilbs = &sti cky wal k- >i | bs;

3595 i = t| cky_wal k- >i dx;

3597 /* Read in the nsh_head in the i-th elenment of the array. */
3598 khead = (char *)ilbs->ilbs_sticky _hash + i * sizeof (ilb_sticky_hash_t);
3599 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1)
3600 mdb_warn("failed to read il bs_sticky_hash at %\n", khead);
3601 return (WALK_ERR);

3602 }

3604 /*

3605 * Check if there is still entry in the current list.

3606 *

3607 * Note that list_next points to a kernel address and we need to
3608 * conpare list_next with the kernel address of the |ist head.
3609 * So we need to cal cul ate the address manual ly.

3610 */

3611 if ((char *)st.list.list_next != khead + offsetof (list_t,

3612 list_head)) {

3613 wsp->wal k_addr = (uintptr_t)list_object(&head,

3614 st.list.list_next);

3615 return (WALK_NEXT);

3616 }

3618 /* Start with the next bucket in the array. */

3619 st_next = NULL

3620 for (i++ i < ilbs->ilbs_nat_src_hash size; i++) {

3621 khead = (char *)ilbs->ilbs_sticky_ hash + i *

3622 si zeof (ilb_sticky_hash_t);

3623 if (rmdb_vread(&head, sizeof (I i st _t), (uintptr_t)khead)
3624 ndb_warn(“"failed to read ilbs_sticky_hash at %\n",
3625 khead) ;

3626 return (WALK_ERR);

3627 }

3629 if ((char *)head.|ist_head.list_next != khead +

3630 offsetof(llst t, Tist_head)) {

3631 st_next = Iist _obj | ect (&head,

3632 head. | ist_head.list_next);

3633 br eak;

3634 }

3635 }

3637 if (st_next == NULL)

3638 return (WALK_DONE) ;

3640 wsp->wal k_addr = (uintptr_t)st_next;

3641 sticky_wal k->idx = i;

3642 return (WALK_NEXT);

3643 }

new usr/src/lib/libdtrace/ Makefile.com 1

R R R R

5931 Sat Aug 18 10:37:02 2012
new usr/src/lib/libdtrace/ Makefile.com
dccp: basic dtrace

R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al rights reserved.
23 # Copyright (c) 2011 by Del phix. Al rights reserved.

24 #

26 LIBRARY = libdtrace. a

27 VERS = .1

29 LIBSRCS =\
30 dt _aggregate.c \
31 dt_as.c \
32 dt _buf.c \
33 dt_cc.c \
34 dt_cg.c \
35 dt _consune.c \
36 dt _decl.c \
37 dt_dis.c \
38 dt _dof.c \
39 dt_error.c \
40 dt_errtags.c \
41 dt _handle.c \
42 dt _ident.c \
43 dt _inttab.c \
44 dt_link.c \
45 dt _list.c \
46 dt _open.c \
47 dt _options.c \
48 dt _programc \
49 dt_map.c \
50 dt _nodule.c \

51 dt _nanes.c \
52 dt _parser.c \
53 dt_pcb.c \
54 dt_pid.c \

55 dt _pragma.c \
56 dt_print.c \
57 dt _printf.c \
58 dt_proc.c \
59 dt _provider.c \

60 dt _regset.c \

61 dt_string.c \

new usr/src/lib/libdtrace/ Makefile.com

62 dt_strtab.c \
63 dt _subr.c \
64 dt _work.c \
65 dt_xlator.c

67 LI BI SASRCS = \
68 dt _i sadep.c

70 OBJECTS = dt _l ex.o dt_gramar.o $(MACHOBJS) $(LIBSRCS: % c=% 0) $(LI Bl SASRCS: % c=

72 DRTISRC = drti.c
73 DRTIOBJ = $(DRTI SRC: % c=% 0)

75 DLIBSRCS += \

76 dccp.d \

77 #endif /* | codereview */
78 errno.d \

79 fc.d\

80 io.d\

81 ip.d\

82 iscsit.d\
83 net.d \

84 nfs.d \

85 nfssrv.d \
86 procfs.d \
87 regs.d \

88 sched. d \

89 signal.d \
90 scsi.d \

91 srp.d \

92 sysevent.d \
93 tcp.d \

94 udp. d \

95 uni std.d

97 include ../../Makefile.lib

99 SRCS = $(LIBSRCS: % c=../compn/ % c) $(LI Bl SASRCS: % c=../$(MACH)/ % c)
100 LIBS = $(DYNLI B) $(LINTLIB)

102 SRCDIR = ../commmon

104 CLEANFI LES += dt_lex.c dt_grammar.c dt_grammar. h y. out put
105 CLEANFI LES += ../comon/procfs.sed ../comon/procfs.d

106 CLEANFILES += ../conmon/io.sed ../comon/io.d

107 CLEANFI LES += ../common/ip.sed ../conmmon/ip.d

108 CLEANFI LES += ../common/net.sed ../conmmon/net.d

109 CLEANFI LES += ../common/errno.d ../common/signal.d

110 CLEANFI LES += ../comon/dt_errtags.c ../comon/dt_nanes.c
111 CLEANFILES += ../common/sysevent.sed ../conmon/ sysevent.d
112 CLEANFILES += ../common/tcp.sed ../comon/tcp.d

113 CLEANFI LES += ../ comon/ udp. sed ../comon/udp.d

114 CLEANFI LES += ../comon/dccp. sed ../comon/dccp.d

115 #endif /* ! codereview */

117 CLOBBERFILES += drti.o

119 CPPFLAGS += -I|../common -|.

120 CFLAGS += $(CCVERBOSE) $(C_BI GPI CFLAGS)

121 CFLAGS64 += $(CCVERBGCSE) $(C Bl GPI CFLAGS)

122 YYCFLAGS =

123 LDLIBS += -lgen -lproc -Irtld_db -Insl -lsocket -lctf -lelf -lc
124 DRTILDLIBS = $(LDLIBS.1ib) -lc

126 yydebug := YYCFLAGS += - DYYDEBUG

new usr/src/lib/libdtrace/ Makefile.com 3

128

130
131

133
134

136
137
138
140
142
144

146
147

149
150

152
153
154
155

157
158

160
161

163 .

164

166 .

167

169 .

170

172 .

173

173 .

176
177

179 .

180

182 .

183

185 .

186

188 .

189

191 .

192

$(LINTLIB) := SRCS = $(SRCDI R)/ $(LI NTSRC)

LFLAGS = -t -v
YFLAGS = -d -v

ROOTDLI BDI R = $(RCDT)/usr/I ib/dtrace
ROOTDLI BDI R64 = $(ROOT)/usr/1ib/dtrace/ 64
ROOTDLI BS = $(DLI BSRCS: %$(ROOTDLI BDI R) / %
ROOTDOBJS = $(ROOTDLI BDI R) / $(DRTI OBJ)
ROOTDOBJS64 = $(ROOTDLI BDI R64) / $(DRTI OBJ)
. KEEP_STATE:

all: $(LIBS) $(DRTI OBJ)

lint: lintdrti |intcheck
lintdrti: ../comon/$(DRTI SRC)

$(LINT.c) ../comon/$(DRTI SRC) $(DRTI LDLI BS)
dt _lex.c: $(SRCDIR)/dt_lex.| dt_grammar.h

$(LEX) $(LFLAGS) $(SRCDIR)/dt_lex.| > $@
dt _gramar.c dt_gramar. h: $(SRCD R)/dt_grammar.y

$(YACO) $(YFLAGS) $(SRCDIR)/dt_grammar.y
@ y.tab.h dt_grammar.h

@ y.tab.c dt_grammar.c
o}
o

pi cs/ dt _I| ex.
pi cs/dt_| ex.

pi cs/ dt _grammar .
pi cs/ dt _grammar.

CFLAGS += $(YYCFLAGS)
CFLAGS64 += $(YYCFLAGS)

o !
o :

pi cs/ dt _| ex. o pics/dt_gramar.
pi cs/ dt _| ex. o pics/dt_grammar.

CERRWARN += - errof f =E_STATEMENT_NOT_REACHED
CCVERBGSE =

o :
® °
./ common/dt _errtags.c: ../comon/nkerrtags.sh ../comon/dt_errtags.h

sh ../comron/m(e.rrtags.sh < ../comon/dt_errtags.h > $@

./ common/ dt _nanes. c: ../conmmon/ nknanes. sh $(SRC)/ ut s/ conmon/ sys/ dtrace. h
sh ../common/ mknanes. sh < $(SRC)/uts/comon/sys/dtrace.h > $@

./ common/errno.d: ../common/nkerrno.sh $(SRC)/uts/conmon/sys/errno.h
sh ../common/ nmkerrno. sh < $(SRC)/uts/comon/ sys/errno.h > $@

./comon/signal.d: ../comon/nksignal .
sh ../comon/ nksi gnal .

sh $(SRC)/ ut s/ common/ sys/ i so/ si gnal _i so. h
sh < $(SRC)/uts/common/ sys/i sol/signal _iso.h > $@

./ common/ % sed: ../common/ % sed.in
$(COWPI LE. cpp) -D _KERNEL $< |

) | tr -d’ " | tr ' T@ |\
sed 's/\&\\\ &g |

grep '“s/’ > $@

./ common/ procfs.d: ../comon/procfs.sed ../comon/procfs.d.in
sed -f ../comon/procfs.sed < ../comon/procfs.d.in > $@

./ comon/io.sed ../common/io.d.in

./comon/io.d: .
./comon/io.sed < ../comon/io.d.in > $@

sed -f

./ comon/i p. d:
sed -f

./ comon/ip.sed ../common/ip.d.in
./common/ip.sed < ../comon/ip.d.in > $@

./common/net.d.in
./comon/net.d.in > $@

./ conmon/ net . sed .
./ common/ net. sed < .

./ common/ net . d:
sed -f

N comron/ sysevent d: ../comon/sysevent.sed .

./ common/ sysevent . d.
d-f . /corrm)n/sysevent sed < . >

in
./ common/ sysevent.d.in $@

new usr/src/lib/libdtrace/ Makefile.com

194 .

195

197 .

198

200 .

201

203
204
205
206

208
209
210

212
213
214

216
217

219
220

222
223

225
226

228
229

231
232

234
235

./comon/tcp.d: .
sed -f ../comon/tcp.sed < .

./ common/ udp. d: ../conmmon/udp. sed .
sed -f ../comon/udp.sed < .

./ common/ dccp. d:
sed -f

#endi f /* | codereview */

pics/%o: ../$(MACH)/%c
$(COWILE. c) -0 $@ $<
$(POST_PROCESS_O)

pics/%o: ../$(MACH)/% s
$(COWPILE.s) -0 $@ $<
$(POST_PROCESS_O)

% o0: ../common/%c
$(COWILE. c) -0 $@ $<
$(POST_PROCESS_O)

$(ROOTDLI BDI R) :
$(INS. dir)

$(ROOTDLI BDI R64) :
$(INS. dir)

$(ROOTDLI BDI R) / % d:
$(INS.file)

$(ROOTDLIBDIR)/ % d
$(INS.file

$(ROOTDLI BDI R)
./ common/ % d
./ $(MACH)/ % d

$(ROOTDLIBDIR) / % d: %d

$(INS.file)

$(ROOTDLI BDI R)/ % 0: % 0
$(INS. file)

$(ROOTDLI BDI R64) / % 0: % 0
$(INS.file)

$(ROOTDLI BS) : $(ROOTDLI BDI R)
$(ROOTDOBJS) : $(ROOTDLI BDI R)
$(ROOTDOBJS64) : $(ROOTDLI BDI R64)

include ../../Makefile.targ

./ /comon/tcp. sed .
./comon/tcp.d.in > $@

./ common/ dccp. sed .
./ common/ dccp. sed < ..

./common/tcp.d.in

./ common/udp.d.in
./ common/ udp. d.in > $@

./ comon/ dccp.d.in
/ common/ dccp.d.in > $@

new usr/src/lib/libdtrace/ common/dccp.d.in 1 new usr/src/lib/libdtrace/ common/dccp.d.in
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 State = m STATE TI ,\E\MIT ‘) "State‘tl n«ev\alt"
6829 Sat Aug 18 10:37:03 2012 63 " <unknown>";
new usr/src/lib/libdtrace/ comon/dccp.d.in 64 #pragma D binding "1.10" dccp_state_string
dccp: basic dtrace
LEEE R SRR EE SRR EEEEEEEEEEEEEREEEE SRR EEEEEEEEEEEEREREEEEEEEEESE] 66 /*
1/* 67 * dccpinfo is the DCCP header fields.
2 * CDDL HEADER START 68 */
3 * 69 typedef struct dccpinfo {
4 * The contents of this file are subject to the terms of the 70 uint16_t dccp_sport; /* source port */
5 * Common Devel opnent and Distribution License (the "License"). 71 uint16_t dccp_dport; /* destination port */
6 * You may not use this file except in conpliance with the License. 72 uint32_t dccp_seq; /* sequence nunber */
7 ° 73 uint8_t dccp_of fset; /* data offset, in bytes */
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 uint16_t dccp_checksum /* checksum */
9 * or http://ww.opensol aris.org/os/licensing. 75 dccph_t *dccp_hdr; /* raw DCCP header */
10 * See the License for the specific |anguage governi ng perm ssions 76 } dccpinfo_t;
11 * and limtations under the License.
12 = 78 [*
13 * When distributing Covered Code, include this CDDL HEADER i n each 79 * dccpsinfo contains stable DCCP details fromdccp_t.
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 */
15 * |f applicable, add the followi ng bel ow this CDDL HEADER, wth the 81 typedef struct dccpsinfo {
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 uintptr_t dccps_addr;
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 83 int dccps_|ocal; /* |'s delivered |ocally, boolean */
18 * 84 int dccps_acti ve; /* Active open (from here), boolean */
19 * CDDL HEADER END 85 uint16_t dccps_|l port; /* Local port */
20 */ 86 uint16_t dccps_rport; /* Renote port */
21 /= 87 string dccps_| addr; /* Local address, as a string */
22 * Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved. 88 string dccps_raddr; /* Renote address, as a string */
23 */ 89 int32_t dccps_state; /* DCCP state */
90 ui nt32_t dccps_iss; /* Initial sequence # sent */
25 #pragma D depends_on nodul e uni x 91 } dccpsinfo_t;
26 #pragma D depends_on provider dccp
93 /*
28 inline int32_t DCCP_STATE CLOSED = @CCPS_CLOSED@ 94 * dccplsinfo provides the old dccp state for state changes.
29 #pragma D binding "T1.10" DCCP_STATE CLOSED 95 =/
30 inline int32_t DCCP_STATE BOUND = @CCPS_BOUND@ 96 typedef struct dccplsinfo {
31 #pragma D bi nding "1.10" DCCP_STATE BOUND 97 int32_t dccps_state; /* Previous DCCP state */
32 inline int32_t DOCP_STATE_REQJEST = @CCPS_REQUEST@ 98 } dccplsinfo_t;
33 #pragma D bi ndi ng 10" DCCP_STATE_REQUEST
34 inline int32_t DCCP_STATE LI STEN = @CCPS_LI STEN@ 100 /*
35 #pragma D bi nding "1.10" DCCP_STATE LI STEN 101 * _ _dtrace_tcp_tcph_t is used by the tcpinfo_t * translator to take either
36 inline int32_t DCOD STATE_PARTOPEN = @CCPS_PARTOPEN@ 102 * the non-NULL tcph_t * passed in or, if it is NULL, uses arg3 (tcp_t *)
37 #pragma D bi nding . 10" DCCP_STATE_PARTOPEN 103 * fromthe tcp:::send and tcp:::recieve probes and translates the tep_t *
38 inline int32_t DCCP_STATE RESPOND = @CCPS_RESPOND@ 104 * into the tcpinfo_t. Wen no headers are available - as is the case for
39 #pragma D bi nding "71.10" DCCP_STATE RESPOND 105 * TCP fusion tcp:::send and tcp:::receive - this allows us to present the
40 inline int32_t DCCP_STATE_CPEN = @CCPS_OPEN@ 106 * consumer with header data based on tcp_t * content and hide TCP fusion
41 #pragma D bi nding 10" DCCP_STATE_OPEN 107 * inplenentation details.
42 inline int32_t DCCP_STATE CLOSI NG = @XCCPS_CLOSI NG@ 108 */
43 #pragma D bi nding "71.10" DCCP_STATE CLOSI NG 109 typedef dccph_t * _ dtrace_dccp_dccph_t;
44 inline int32_t DCCP_STATE_CLCGEREQ = @CCPS_CLOSEREQ@
45 #pragma D binding "1.10" DCCP_STATE CLOSEREQ 111 #pragma D binding "1.10" translator
46 inline int32_t DCCP STATE_TI NEWAI T = @CCPS_TI MEWAI T@ 112 translator dccpinfo_t < dccph t T > {
47 #pragma D binding "T1.10" DCCP_STATE TI NEWAI T 113 dccp_sport = ntohs(*(uint16_t *)T->dh_| port);
114 dccp_dport = ntohs((uint16_t *)T->dh_fport);
49 | * 115 dccp_seq = ntohl((uint32_t *)T->dh_seq); /* XXX */
50 * Convert a DCCP state value to a string. 116 dccp_of fset = (* (U|nt8t *) T->dh_of fset &OxfO) >> 2;
51 */ 117 dccp_checksum = nt ohs(*(uint16_t *) T->dh_sum ;
52 inline string dccp state_string[int32_t state] = 118 dccp_hdr = T;
53 state DCCP_STATE_CLOSED ? "state-closed" : 119 };
54 state DCCP_STATE_BOUND ? "state bound" :
55 state DCCP_STATE_REQUEST ? "stat e- request "o 121 #pragma D binding "1.10" transl ator
56 state DCCP_STATE LI STEN ? "state-listen" : 122 translator dccpinfo_t < _ dtrace_dccp_dccph_t *T > {
57 state == DCCP_STATE_PARTOPEN ? "stat e- partopen” : 123 dccp_sport =
58 state == DCCP_STATE | RESPO\ID ? "state- respond" : 124 T !'= NULL ? ntohs(*(uintl6_t *)((dccph t *)T)->dh_| port)
59 state DCCP_STATE_OPEN ? "st ate open" : 125 arg3 != NULL && probenane == "send" ?
60 state DCCP_STATE _CLOSI NG ? "state-cl osing" : 126 ntohs(((dccp_t *)arg3)- >dccp_connp >u_port.connu_ports. connu_| port)
61 state DCCP_STATE_CLOSEREQ ? "stat e-cl osereq" : 127 arg3 != NULL && probenane == "receive" ?

new usr/src/lib/libdtrace/ common/dccp.d.in

3

128 ntohs(((dccp_t *)arg3)->dccp_connp->u_port.connu_ports.connu_fport)
129 0;

130 dcep_ dport =

131 I'= NULL ? ntohs(*(uint16_t *)((dccph t *)T)->dh_fport)

132 arg3 I'= NULL && probenane ==

133 ntohs(((dccp_t *)arg3)- >dccp_connp >u_port connu_ports. connu_f port)
134 arg3 != NULL && probenane == "receive" ?

135 ntohs(((dccp_t *)arg3)->dccp_connp->u_port.connu_ports.connu_| port)
136 0;

137 dcep_ seq =

138 = NULL ? ntohl (*(uint32_t *)((dccph_t *)T)->dh_seq)

139 O

140 dcep_ offset = T I'= NULL ?

141 (*(ui nt8t *)((dccph_t *)T)->dh_offset & Oxf0) >> 2 :

142 @CCP_M N_HEADER_LENGTH@

143 deep_ checksum = T = NULL ? ntohs((uint16_t *)((dccph_t *)T)->dh_sum
144

145 dccp_hdr = NULL;

146 };

148 #pragma D binding "1.10" translator

149 translator dccpsinfo_t < dccp_t *T > {

150 dccps_addr = (uintptr_t)T,

151 /*

152 * The followi ng two menbers shoul d just use tcp_t->tcp_| oopback

153 * and tcp_t->tcp_active_open, however these are bit fields and

154 * can’'t be used until CR 6876830 is fixed. Meanwhile we source

155 * thema different way.

156 *

157 dccps_local = T ? T->dccp_i pha ?

158 T->dccp_| ipha > pha_src == T->dccp_i pha->ipha_dst : 1 : O;

159 dccps_active T ? 1 T->dccp_saved_|l i stener : O;

160 dccps_lport = T ?

161 nt ohs(T- >dccp_connp- >u_port. connu_ports. connu_|l port) : O;

162 dccps_rport = T ?

163 ntohs(T->dccp connp->u_port.connu_ports. connu_fport) : O;

164 dccps_laddr = T ?

165 i net _nt oa6(&T >dccp_connp- >connua_v6addr. connua_| addr) " <unknown>"
166 dccps_raddr = T ?

167 i net_nt 0a6(&T >dccp_connp- >connua_v6addr . connua_f addr) " <unknown>"
168 dccps_state = T ? T->dccp_state : DCCP_STATE CLOSED;

169 dceps_iss = T ? T->dccp_iss : O;

170 };

172 | *

173 * Note: although we specify that the old state argunment used as the

174 * input to the tcplsinfo_t translator is an int32_t, it reaches us as an

175 * int64_t (since it is a probe argunent) so explicitly cast it back to

176 */i nterpret the negatively-valued states correctly.

177 *

178 #pragma D binding "1.10" transl ator
179 transl ator dccplsinfo_t < int64_t |
180 dccps_state = (int32_t) 1;

181 };

182 #endif /* ! codereview */

>{

new usr/src/lib/libdtrace/ conmon/dccp. sed.in

R R R R

1289 Sat Aug 18 10:37: 03 2012
new usr/src/lib/libdtrace/ common/dccp. sed.in
dccp: basic dtrace

R R R R

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER i n each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.
23 *

25 #include <inet/dccp. h>
26 #include <sys/netstack. h>

28 #define SED _REPLACE(x) s/#x/x/g

31 SED_REPLACE(DCCPS_CLOSED)
32 SED_REPLACE(DCCPS_BOUND)
33 SED_REPLACE(DOCPS_REQUEST)
34 SED_REPLACE(DCCPS_LI STEN)
35 SED_REPLACE(DCCPS_PARTOPEN)
36 SED_REPLACE(DCCPS_RESPOND)
37 SED_REPLACE(DCCPS_CPEN)

38 SED_REPLACE(DOCPS_CLOSI NG)
39 SED_REPLACE(DCCPS_CLOSEREQ)
40 SED_REPLACE(DCCPS_TI MEWAI T)

42 SED _REPLACE(DCCP_M N_HEADER LENGTH)
43 #endif /* 1 codereview */

new usr/src/lib/libdtrace/ conmon/dt_open.c

R R R R

53649 Sat Aug 18 10:37:03 2012
new usr/src/lib/libdtrace/ conmon/dt_open.c
dccp: basic dtrace

R R R R

__unchanged_portion_onitted_

be changed when introducing functionality changes or major bug fixes that
do not affect backward conpatibility -- this is nmerely
easily determ ned fromthe version nunber.
93 * nodification to the version nunber.

82 /*
83 * The version nunber should be increased for every custoner visible release
84 * of Solaris. The nmjor nunber should be increnmented when a fundanental
85 * change has been nade that would affect all consumers, and would reflect
86 * sweeping changes to DIrace or the D | anguage. The minor nunber should be
87 * increnented when a change is introduced that could break scripts that had
88 * previously worked; for exanple, adding a new built-in variable could break
89 * a script which was already using that identifier. The mcro nunber should
*
*
*

to nake capabilities
M nor bugs do not require any

94 *|

95 #define DT_VERS_1_0 DT_VERSI ON_NUMBER(1, 0, 0)
96 #define DT_VERS_1_1 DT_VERSI ON_NUMBER(1, 1, 0)
97 #define DT_VERS_1_2 DT_VERSI ON_.NUMBER(1, 2. 0)
98 #define DT_VERS 1 2 1 DT_VERSI ON_NUMBER(1, 2, 1)
99 #define DT_VERS_1_2 2 DT_VERSI ON_NUMBER(1, 2, 2)
100 #define DT_VERS 1_3 DT_VERSI ON_.NUMBER(1, 3, 0)
101 #define DI_VERS 1_4 DT_VERS| ON_NUMBER(1, 4, 0)
102 #define DT_VERS 1 4 1 DT_VERSI ON_NUMBER(1, 4, 1)
103 #define DT_VERS 1.5 DT_VERSI ON_.NUMBER(1, 5, 0)
104 #define DT_VERS 1_6 DT_VERS| ON_NUMBER(1, 6, 0)
105 #define DT_VERS 1_6_1 DT_VERSI ON_.NUMBER(1, 6, 1)
106 #define DT_VERS 1 6 2 DT_VERSI ON_NUMBER(1, 6, 2)
107 #define DT_VERS 1 6_3 DT_VERSI ON_NUMBER(1, 6, 3)
108 #define DT_VERS 1_7 DT_VERS| ON_.NUMBER(1, 7, 0)
109 #define DT_VERS 1_7_1 DT_VERSI ON.NUMBER(1, 7, 1)
110 #define DT_VERS 1_8 DT_VERSI ON_.NUMBER(1, 8, 0)
111 #define DT_VERS 1 8 1 DT_VERSI ON_NUMBER(1, 8, 1)
112 #define DT_VERS 1_9 DT_VERSI ON_NUMBER(1, 9, 0)
113 #define DT_VERS_1_10 DT_VERS| ON_NUMBER(1, 10, 0)

114 #define DT_VERS_LATEST DT_VERS 1_10
115 #define DT_VERS_STRING "Sun D I.10"
113 #define DT_VERS LATEST DT VERS 1_9
114 #define DT_VERS_STRING "Sun D 1.9"

117 const dt_version_t _dtrace_versions[] = {

118 DT_VERS_1 0, * D APl 1.0.0 (PSARC 2001/ 466) Solaris 10 FCS */
119 DT VERS 1.1, /* DAPI 1.1.0 Solaris Express 6/05 */
120 DT_VERS 1 2, /* DAPI 1.2.0 Solaris 10 Update 1 */
121 DI _VERS 1 2 1, /* DAPI 1.2.1 Solaris Express 4/06 */
122 DI_VERS 1 2 2, /* DAPlI 1.2.2 Solaris Express 6/06 */
123 DT_VERS_1_3, /* D APl 1.3 Solaris Express 10/06 */
124 DT_VERS_1_4, /* D APl 1.4 Solaris Express 2/07 */
125 DI _VERS 1 4 1, /* DAPl 1.4.1 Solaris Express 4/07 */
126 DT_VERS_1_5, /* D API 1.5 Solaris Express 7/07 */
127 DT_VERS_1_6, /* DAPI 1.6 */

128 DT _VERS 1 6 1, /* DAPl 1.6.1 */

129 DT _VERS 1 6 2, /* DAPl 1.6.2 */

130 DT _VERS 1 6 3, /* DAPI 1.6.3 */

131 DT_VERS 1_7, /* DAPI 1.7 */

132 DI _VERS 1 7.1, /* DAPl 1.7.1 */

133 DT_VERS_1_8, /* D APl 1.8 */

134 DT _VERS 1 8 1, /* DAPl 1.8.1 */

135 DT_VERS 1 9, /* DAPI 1.9 */

136 DT VERS_ l 10 /* D APl 1.10 */

137 #endif /* T codereview */

138 0

new usr/src/lib/libdtrace/ conmon/dt_open.c

139

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

}s
/*

£

Tabl e of global identifiers. This is used to populate the global identifier
hash when a new dtrace client open occurs. For nore info see dt_ident.h.
The gl obal identifiers that represent functions use the dt_idops_| “func ops
and specify the private data pointer as a prototype string which is parsed
when the identifier is first encountered. These prototypes | ook |ike ANSI
C function prototypes except that the special synbol "@ can be used as a
wildcard to represent a single paranmeter of any type (i.e. any dt_node_t).
The standard " notation can al so be used to represent varargs. An enpty
paraneter list is taken to nmean void (that is, no argunents are pernitted).
A paraneter enclosed in square brackets (e.g. "[int]") denotes an optional
ar gunent .

atic const dt_ident_t _dtrace_globals[] = {

"alloca", DT_IDENT_FUNC, 0, DI F_SUBR ALLOCA, DT_ATTR STABCWN, DT_VERS 1_0,
&dt _i dops_func, "void *(size_t)" },

"arg0", DT_I DENT_SCALAR, 0, D F_VAR ARQD,
&dt _i dops_type, "int 64 t" 7},

"argl", DT_| DENT_SCALAR, 0, DI F_VAR_ARGL,
&dt _i dops_type, "i _t"),

"arg2", DT_|IDENT _SCALAR, 0, DIF VAR ARG, DT ATTR STABCMN, DT_VERS 1 0,
&dt _i dops_type, "int64_t" },

"arg3", DT_|I DENT_SCALAR, 0, DI F_VAR ARG3, DT_ATTR STABCWN, DT_VERS_ 1_0,
&dt _i dops_type, "int64_t" },

"arg4", DT_|IDENT_SCALAR, 0, DI F_VAR ARG4, DT_ATTR STABCMN, DT_VERS 1 0,
&dt _Tdops_type, "int64_t" },

"arg5", DT_|I DENT_SCALAR, 0, DI F_VAR ARG5, DT_ATTR STABCWN, DT_VERS_ 1_0,
&dt _i dops_type, "int64_t" },

"arg6", DT_|DENT_SCALAR, 0, DI F_VAR ARGS,
&dt _i dops_type, "int 64_t BE
"arg7", DT_| DENT_SCALAR 0, DIF_VAR ARGY,
&dt _i dops_type, "int64_t" },
"arg8", DT_| DENT_SCALAR, 0, DI F_VAR ARGS,
&dt _i dops_type, "int64_t" },
"arg9", DT_I DENT SCALAR, 0, DI F_VAR_ARG®9,
&dt _idops_type, "int64_t" },

"args", DT_| DENT_ARRAY, 0, DIF_VAR ARGS, DT _ATTR STABCWN, DT_VERS 1 0,
&dt i dops_args, NULL },

"avg", DT_I DENT_ A(XEFUNC 0, DTRAOEAGG 5> AVG, DT_ATTR_STABCWN, DT_VERS 1_0,
&dt i dops_func, "voi d(

"basenane”, DT_| DENT_ FUNC 0, D F SUBR_BASENAME, DT_ATTR_STABCWMN, DT_VERS_1_0,
&dt |dops func, strlng(const char *)"

"bcopy", DT_I DENT FUNC. 0, DI F_SUBR_ B(IPY DT_. ATTR STABCWN, DT_VERS_ 1 _0,
&dt _i dops_func, "void(void *, void *, size t)" },

"breakpoi nt", DT | DENT_ACTFUNC, 0, DT_ACT BREAKPOI NT,
DT_ATTR_STABCWN, DT_VERS 1_0,
&dt _i dops_func, "void()" },

SCALAR 0, DI F_VAR CALLER, DT_ATTR STABCW, DT_VERS 1_0,

DT_ATTR STABCWN, DT_VERS 1 0,
DT_ATTR_STABCMN, DT_VERS_1_0,

]

=
(o
A~
-

DT_ATTR_STABCWN, DT_VERS 1_0,
DT_ATTR STABCWN, DT _VERS 1 0,
DT_ATTR_STABCWN, DT_VERS 1_0,
DT_ATTR STABCMN, DT _VERS 1 0,

"cal ler", DT_I DENT_
&dt _idops_type, "uintptr_t" "},
"chill", DT_I DENT ACTFUNC 0, DT_ACT_CHILL, DT_ATTR STABCWN, DT_VERS 1 0,

&dt _i dops_func, "voi d(| nt)" },
"cl eanpath", DT_| | DENT FUNC, 0, DIF_ SUBR CLEANPATH, DT_ATTR_STABCW,
DT VERS 1_0, &dt_idops_ func "string(const char *)"

"clear", DT_I DENT ACTFUNC 0, DT._. ACT _CLEAR, DT_ATTR_ STABCM\I DT_VERS_1_0,
&dt _idops_func, "void(...)" },

"commit", DT_I DENT ACT FUNC 0 DT_ACT_COMM T, DT_ATTR _STABCMN, DT_VERS 1_0,
&dt _idops_func, "void(i nt)

"copyin", DT_| DENT FUNC 0, DF SUBR_COPYI N, DT_ATTR STABCWN, DT_VERS_1_0,
&dt |dopsfunc vmd*(umtptr t, S|zet) },

"copyinstr", DT_IDENT_FUNC, 0, DIF_ SUBR COPYI NSTR,
DT _ ATTR STABCWN, DT_VERS 1_0,
&dt _idops_func, "string(uintptr_t, [size t])" },

"copyi nto", DT_IDENT_FUNC, 0, DI F_ SUBR CoPYI NTO, DT_ATTR_STABCW,

DT_VERS 0, &dt |dops_func "void(uintptr_t, size t, void *)" },

new usr/src/lib/libdtrace/ conmon/dt_open.c

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

{
{

{
{

e e e e e e e e e)

"copyout”, DT_|DENT_FUNC, 0, DIF_SUBR COPYQUT, DT_ATTR STABCNN, DT_VERS 1 0,
&dt | |dops func, "voi d(v0|d T, uintptr_t, size t)"
'copyoutstr", DT_ IDENT FUNC, 0, DI F_SUBR_ (IPYGJTSTR
DT _ ATTR STABCWN, DT_VERS_1_0,
&dt _i dops_func, "void(char *, uintptr_t, size t)"
"count", DT_I DENT_. AGGFUNC 0, DTRACEAGG COJNT DT_ATTR_ STABCI\/N DT_VERS_1_0,
&dt _i dops_func, "voi d()
"curthread", DT_I DENT_SCALAR, 0, "Dl F_VAR_CURTHREAD,
DTRACE_STABI LI TY_STABLE, DTRACE_STABI LI TY_PRI VATE,
DTRACE_CLASS | COVND\I }, DT_VERS 1_0,
&dt |dops _type, "genunix‘kthread_t *" },
"ddi _pat hname", DT_I DENT_FUNC, 0, DI F_SUBR DDl _PATHNAME,
DT_ATTR | EVO_CI\/N DT_VERS_1_0,
&dt |dops func, "string(void *, int64_t)" },
"denormal i ze", DT_| | DENT ACTFUNC, 0, DT_ACT_DENORVALI ZE, DT_ATTR_STABCW\,

DT VERS 1_0, &dt_idops_func, "void(. "
"di rname™, DT_| DENT_| FUNC 0, DIF_ SUBR DI RNANE DT ATTR_STABCWN, DT_VERS 1_0,
&dt | _idops_func, "string(const char *)"

"di scard", DT_I DENT ACTFUNC 0, DT ACT_DI SC‘ARD DT_ATTR_STABCMWN, DT_VERS 1_0,
&dt i dops_func, "void(int

DT_| DENT_ SCALAR 0, DIF_ VAR EPI D, DT_ATTR _STABCWN, DT_VERS_1_0,
&t _idops_type, "uint_t"
"errno", DT_I DENT SCALAR 0, DI F VAR_ERRNO, DT_ATTR _STABCMN, DT_VERS_1_0,

&dt_l dops_type, "int" },

"execnane", DT_| DENT_SCALAR, 0, DI F_VAR_EXECNAME,
DT_. ATTR STABCWN, DT_VERS 1_0, &dt_idops_type, "string" },

DT_| DENT ACTFUNC ~o0, DT ACT EXI T, DT_ATTR STABCWN, DT_' VERS 1.0,
&dt_l dops_func, "voi d(| nt)" },
"freopen", DT_|DENT_ ACTFUNC, 0, DT_ACT_FREGPEN, DT_ATTR_STABCWN,
DT_VERS_1_1, &dt_idops_ func “voi d(@
“ftruncate", DT_I DENT_ACTFUNC, O, DT ACT FTRUNCATE DT ATTR_STABCW\,
DT VERS 1_0, &dt_idops_ func "void()" },

DT_| DENT _ ACT FUNC, 0, DT ACT SYM DT_ATTR_STABCWN,
DT VERS 1 2, &dt |dops func, " _symaddr(uintptr_t)" },
DT_TDENT_FUNC, 0, DI F_SUBR GETMAJOR,

"epi d",
"exit"

"func"

&dt |dops func, "genuni x" ngj or _t(genuni x‘'dev_t)" },
"getminor”, DT_IDENT_FUNC, 0, DI F_SUBR _GETM NOR,
DT ATTR EVOLCWN, DT_VERS 1 0,
&dt _i dops_func, "genuni x" ninor_t (genunix‘ dev_t)" },
"htonl", DT_I DENT FUNC. 0, DI F_SUBR _HTONL, DT_ATTR EVOLCWN, DT_VERS 1_3,
&dt _i dops_func, "uint32_t(uint32 t)"
“htonl|", DT_I DENT FUNC 0, DI F_SUBR _HTONLL, DT ATTR_EVOLCWN, DT_VERS 1_3,
&dt _i dops_func, "uint64_t(uint64_t)"
"htons", DT_I DENT FUNQ 0, DI F_SUBR_HTONS, DT ATTR_EVOLCWN, DT_VERS 1_3,
&dt _i dops_func, "uint16_t(uint16_t)"
"gid", DT_I DENT_SCALAR 0, DIF_VAR A D, DT._ ATTR STABCMN, DT_VERS_1_0,
&dt _i dops_type, "gid_t"
"id", DT_IDENT_SCALAR, 0, D F_ VAR I D, DT_ATTR_STABCW\, DT_VERS 1_0,
&dt _i dops_type, "uint_t"

DT_| DENT FUNC 0, DF SUBR I NDEX, DT_ATTR _STABCWN, DT_VERS 1_1,
&dt |dops func, "int(const char *, const char *, [int])" },
"inet_ntoa", DT_| | DENT FUNC, 0, DI F_ SUBR | NET_NTQA, DT_ATTR_STABCW\,

DT VERS 1-5, &dt_idops_ func "string(ipaddr_t *)"
"inet_ntoa6", DT_I DENT_FUNC, O, Di F_SUBR | NET NTOA6, DT ATTR STABCMWN,
DT VERS 1.5, &dt_idops_func, "string(in6_addr_t *)"

i

"index"

"inet_ntop", DI_IDENT_FUNC, 0, DIF_ SUBR | NET_NTOP, DT__ ATTR STABCNN
DT VERS 1_5, &dt_idops_ func "string(int, void *

"ipl", DT_IDENT_. SCALAR 0, DF VAR I PL, DT_ ATTR STABCMWN, DT VERS_1_0,
&dt _i dops_type, “"uint_t" "},

"j stack", DT_I DENT ACTFUNC "0, DT_ACT_JSTACK, DT_ATTR STABCWN, DT _VERS 1 0,
&dt _idops_func, "stack(. g

"I'ltostr", DT_IDENT_ FUNC 0, Di F SUBR LLTOSTR, DT_ATTR STABCWN, DT_VERS_1_0,
&dt | |dopsfunc "string(int64_t, [int])" },

"1l quantize", DT_I DENT_AGGFUNC, O, DTRACEAGG > LLQUANTI ZE, DT_ATTR_STABCMW\,

DT_VERS_1_7, &dt _i dops_f unc,

new usr/src/lib/libdtrace/ conmon/dt_open.c

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

£

e e e e e e e e T e T e e T e T e)

333 {

334
335
336

{

v0|d(@ int32_t, int32_t, int32_t, int32_t, ...)" }
"l quantize", DT_| DENT . AGGFUNC 0 DTRACEAGG LQJANTI ZE
DT_ATTR STABCWN, DT_VERS_1_0,
&dt _i dops_func, "void(@ int32_t, int32_t, DEEE
max", DT_I DENT_AGGFUNC, 0, DTRACEAG; MAX, DT_ ATTR STABOWN, DT_VERS_1_0,
&dt "i dops_func, "void(},
"mn", DT_I DENT_ AGGFUNC 0, DTRACEAGG M N, DT_ATTR_STABCWN, DT_VERS_1_0,

&dt _i dops_func, "voi d },
"nmod", DT_| DENT_ACT FUNC, 0, DT ACT_MOD, DT_ATTR_STABCMW\,
DT VERS 1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
"msgdsi ze", DT_ IDENT FUNC, 0, DI F_SUBR MSGDSI ZE,
DT_ATTR STABCWN, DT VERS 0,
&dt _idops_func, "size_t(mblk_t *)" },
"msgsi ze", DT_IDENT_FUNC, 0, DI F_SUBR MSGSI ZE,
DT_ATTR_. STABCWN, DT VERS_l_O,
&dt _i dops_func, "size_t(mblk SN
"mut ex_owned", DT_I DENT_FUNC 0, DI

DT_ATTR _EVOLCWN, DT_VERS 1 _
&dt idops_func, "i nt (genuni mutex_t *)" },
"nut ex_owner", DT_IDENT_FUNC, 0, DI F_SUBR_MJUTEX_OWNER,
DT_ ATTR EVOLCW, DT_VERS 1_0,
&dt i dops_func, "genuni x"kthread t *(genunix‘knutex_t *)" },
"mut ex_t ype_adaptive", DT_IDENT_FUNC, 0, DI F_SUBR MJUTEX TYPE ADAPTI VE,
DT_ATTR EVO_CNN DT_VERS 1 0,
&dt’ |dops func "int (genuni x‘ kmutex_t *)"
"mut ex_type_spin", DT_| DENT_FUNC, DI F_SUBR | MJTEX TYPE_SPI N,
DT_ATTR EVO_CNN DT_VERS_1 0,
&dt _i dops_func, "int(genunix‘kmutex_t *)" },
DT_| DENT_| FUNC 0, DI F_SUBR NTOHL, DT_ATTR EVOLCWN, DT_VERS 1_3,

_t
F_SUBR_ NUTEX OWNED,
‘k

Dl—‘
><O

"ntohl ",
&dt _i dops_func, "uint32_t(uint32 t)"

"ntohl 1", DT_I DENT FUNC 0, DI F_SUBR_NTOHLL, DT ATTR_EVOLCWN, DT_VERS 1_3,
&dt _i dops_func, "uint64_t(uint64_t)" }

"ntohs", DT_I DENT FUNC 0, DI F_SUBR_NTCHS, DT_ATTR EVOLCWN, DT_VERS 1_3,
&dt_l dops_func, "uint16_t(uint16_t)"

"normal i ze", DT_I DENT_ACTFUNC, O, DT ACT NOQMALI ZE, DT_ATTR_STABCMW\,
DT VERS 1_0, &dt_idops_ func "void(...)" },

"pani ¢", DT_| DENT ACTFUNC 0, DT ACT PANI C DT_ATTR_STABCWN, DT_VERS_ 1_0,

&dt i dops_func, "void()"
"pid", DT_|DENT SCALAR 0, DI F VAR PI D, DT_ATTR_STABCWN, DT_VERS_1_0,
&dt _i dops_type, "pi d_t Y.
DT_| DENT_SCALAR, 0, DIF_VAR PPID, DT_ATTR STABCW, DT_VERS 1_0,
adt _idops_type, "pid_t"
“print", DT_I DENT ACTFUNC o, DT ACT_PRI NT, DT_ATTR STABCWN, DT_VERS 1_9,

&dt _i dops_func, "voi d(@ T,

"printa", DT_I DENT ACTFUNC 0, DT_ACT_PRINTA, DT_ATTR STABCWN, DT_VERS 1_0,

&dt _idops_func, "voi d(@ BERY
“printf", DT_I DENT ACTFUNC 0, DT ACT_PRI NTF, DT_ATTR STABCWN, DT_VERS 1 0,

&dt |dops func, "voi d(@ DS

"probefunc", DT_ IDENT SCALAR, O, Dl F_VAR PROBEFUNC,
DT, ATTR_STABCNN DT_VERS_1_0, &dt_idops_type, }
" probenod”, DT _| DENT_SCALAR, 0, DI F_VAR_PROBEMD,

DT A‘I‘I’R STABCMN, DT _VERS 1 0, &dt_idops_type, "string" }
"probenane”, DT_| DENT_SCALAR, O, DiF - VAR_PROBENAME,
}
}

ppi d",

"string"

DT ATTR STABCWN, DT_VERS_1_0, &dt_idops_type, "string"
"“probeprov", DT_| DENT_SCALAR 0, DI F_VAR PROBEPROV,
DT A‘I‘I’R STABCW, DT_VERS 1 0, &dt_idops_type,
"progenyof", DT_IDENT_FUNC, 0, DI F_SUBR_PROGENYCF,
DT_ATTR STABCWN, DT VERS 1.0,
&dt _idops_func, "int(pid_t)" },
"quantize", DT_|I DENT_AGGFUNC, 0, DTRACEAGG QUANTI ZE,
DT_ATTR STABCWN, DT _VERS 1 _0,
&dt _i dops_func, "void(@ ...)" },
"raise", DT_IDENT_ ACTFUNC 0, DT_. ACT RAI SE, DT_ATTR_STABCM\,
&dt _idops_func, "void(int)™ },
"rand", DT_| DENT FLNC 0, DIF_SUBR RAND, DT_ATTR_STABCWN, DT_VERS_1_0,
&dt _idops_func, "i nt O"3,

"string"

DT_VERS 1 0,

new usr/src/lib/libdtrace/ conmon/dt_open.c

337 { "rindex", DT_IDENT_FUNC, 0, DIF_SUBR RINDEX, DT_ATTR STABCWN, DT_VERS 1_1,

338 &dt idops func, "int(const char *, const char *, [int])" },

339 { "rw.iswiter" DTIDENT FUNC, 0, DI F_SUBR_RW.I SWRI TER,

340 DT _ ATTR EVOLCW, DT_VERS 1_0,

341 &dt i dops func, "int(genunix‘krw ock_t *)"

342 { "rw_read_hel d", DT_IDENT_FUNC, 0, DIF_SUBR RWREAD HELD,

343 DT_ATTR EVG_CNN DT_VERS 1 0,

344 &dt _i dops_func, "int(genunix‘krw ock_t *)"

345 { "rw.wite_held", DT IDENT FUNC, 0, DI F_SUBR RWVRI TE HELD,

346 DT_ATTR EVQCI\/N DT_VERS_1 0,

347 &dt _i dops_func, "int(genunix‘'krw ock_t *)" },

348 { "self", DT_I DENT_ PTR 0 0, DT_ATTR STABCMN, DT_VERS 1 0,

349 &t _idops_type, "voi d" 1,

350 { "setopt”, DT_|I DENT_ACTFUNC, O, DT_. ACT SETOPT, DT_ATTR_STABCMW\,

351 DT VERS 1 2, &dt i dops_| func "voi d(const char *, [const char *])" },
352 { "specul ate", DT_ IDENT ACTFUNC, 0, DT_ACT_SPECULATE,

353 DT _ ATTR STABCWN, DT_VERS_1_0,

354 &dt i dops func, "void(int)™ },

355 { "specul ation", DT_ IDENT FUNC, 0, DI F_SUBR_SPECULATI ON,

356 DT_ATTR STABCWN, DT_VERS 1_0,

357 &dt _i dops_func, "int()" ¥,

358 { "stack", DT_| DENT ACTFUNC 0, DT_ACT_STACK, DT_ATTR STABCWN, DT_VERS 1_0,
359 &dt |dops func, "st ack(DEEE

360 { "stackdepth", DT_ IDENI' SCALAR, O Dl F_VAR_STACKDEPTH,

361 DT_ ATTR STABCWN, DT_VERS_ 1.0,

362 &dt _i dops_type, "uint32_t" },

363 { "stddev", DT_|I DENT_AGGFUNC, O, DTRACEAGG STDDEV, DT_ATTR_STABCMW\,

364 DT VERS 1_6, &dt i dops_| func "void(@" },

365 { "stop", DT_I DENT_ ACTFUNC, O, DT_ACT STOP, DT_ATTR_STABCW, DT_VERS 1_0,
366 &t _idops_func, "voi d() 1,

367 { "strchr", DT_I DENT FUNC 0, DI F_SUBR STRCHR, DT_ATTR STABCWN, DT_VERS 1_1,
368 &dt _i dops_func, strlng(const char *, char)" },

369 { "strlen", DT_IDENT FUNC 0, DI F_SUBR _STRLEN, DT_ATTR STABCWN, DT_VERS 1_0,
370 &dt _idops_func, "size_t(const char *)"

371 { "strjoin", DT_IDENT FUNC 0, DI F_SUBR_STRJO N, DT ATTR_STABCWN, DT_VERS 1_0,
372 &dt_l dops_func, strlng(const char *, const char *)" },

373 { "strrchr", DT_| DENT FUNC 0, DI F_SUBR_STRRCHR, DT ATTR_STABCWN, DT_VERS 1_1,
374 &dt | _i dops_func, strlng(const char *, char

375 { "strstr", DT_I DENT FUNC 0, DI F_SUBR STRSTR, DT_ ATTR STABCWN, DT_VERS_1_1,
376 &dt _i dops_func, strlng(const char *, const char *)" },

377 { "strtok", DT_I DENT FUNC 0, DI F_SUBR _STRTCK, DT_ATTR STABCWN, DT_VERS 1_1,
378 &dt _i dops_func, strlng(const char *, const char *)"

379 { "substr", DT_I DENT FUNC 0, DI F_SUBR SUBSTR, DT_ATTR STABCIVN DT_VERS 1_1,
380 &dt _idops_func, strlng(const char *, int, [int])" },

381 { "sunf, DT_I DENT_ A(I-FUNC 0, DTRAOEAGG 5> SUM DT_, ATTR STABCWN, DT_VERS_1_0,
382 &dt i dops_func, "voi d(},

383 { "syni, DT_I DENT_ACT FUNC 0, DT_ACT_SYM DT_ATTR STABCMW\,

384 DT_VERS 1 2, &dt |dops func, "_symaddr(uintptr_t)" },

385 { "systeni, DT T DENT ACTFUNC 0, DT_ ACT _SYSTEM DT_ATTR_STABCM\, DT_VERS_1_0,
386 &dt i dops_func, "void(@

387 { "this", DT_I DENT_PTR, 0 0, DT_ ATTR STABCI\/N DT_VERS_1_0,

388 &dt _idops_type, "void" },

389 { "tid", DT_IDENT_SCALAR 0, DI F_VAR TID, DT_ATTR STABCWN, DT_VERS_1_0,

390 &dt |dops type, "id_t" },

391 { “"timestanmp", DT_| DENT_SCALAR 0, DI F_VAR TI MESTAMP,

392 DT ATTR STABCW, DT_VERS_1 0,

393 &dt _idops_type, "uint64_t"

394 { "tol ower", DT_| DENT FUNC 0, DF SUBR TOLOWER, DT_ATTR STABCWN, DT_VERS 1_8,
395 &dt | _idops_func, strlng(const char *)"

396 { "toupper", DT_I DENT FUNC 0, DI F_SUBR _TOUPPER, DT ATTR_STABCWN, DT_VERS 1_8,
397 &dt | _idops_func, strlng(const char *)"

398 { "trace", DT_I DENT ACTFUNC 0, DT_ACT_TRACE, DT ATTR_STABCWN, DT_VERS_1_0,
399 &dt _idops_func, "voi d(@ T,

400 { "traceneni, DT_| DENT_ACTFUNC, 0, DT_ACT_TRACEMEM

401 DT_ATTR STABCMWN, DT _VERS 1 0,
402 &dt _i dops_func, "void(@ size_t, ...)" },

new usr/src/lib/libdtrace/ conmon/dt_open.c

403 { "trunc", DT_I DENT_ACTFUNC, 0, DT ACT TRUNC, DT ATTR_STABCWN,

404 DT VERS 1_0, &dt_idops_func, "void(. BE

405 { "uaddr", DT_| DENT_ACTFUNC, 0, DT ACT UADDR DT ATTR_ STABCNN

406 DT VERS_1_2, &dt_idops_func, "_usymaddr (uintptr_t)"

407 { "ucaller™, DI_ I DENT_SCALAR, 0, DI F VAR_UCALLER, DT_ ATTR_ STABOWN,

408 DT VERS 1 2, &dt_idops_type, "uint64_t" },

409 { "ufunc", DT_I DENT_ACTFUNC, 0, DT_ACT_USYM DT _ATTR STABCNN

410 DT VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)"

411 { "uid", DT_IDENT_. SCALAR 0, DF VAR U'D, " DT_ATTR_STABCWN, DT VERS_1_0,
412 &dt "i dops_type, “"uid_t" T,

413 { "unod", DT_| DENT_ACTFUNC, 0, DT_ACT_UMOD, DT_ATTR_STABCW,

414 DT_VERS 1 2, &dt |dops func, " _usymaddr(uintptr_t)"

415 { "uregs", DT_IDENT_ARRAY, 0, DI F_ VAR UREGS, DT_ATTR_STABCW, DT VERS_1_0,
416 &dt _idops_regs, NULL },

417 { "ustack", DT_I DENT ACTFUNC 0, DT ACT_USTACK, DT_ATTR_STABCWN, DT_VERS_1_0,
418 &dt _idops_func, "stack(.

419 { "ustackdepth", DT_ IDENT SCALAR, 0, Di F_VAR_USTACKDEPTH,

420 DT_ATTR_STABCWN, DT_VERS 1_2,

421 &dt _i dops_type, "uint32_t" },

422 { "usyni, DT_| DENT_ACTFUNC, 0, DT_ACT_USYM DT_ATTR STABCW,

423 DT_VERS 1_2, &dt |dops func, "_usymaddr(uintptr_t)"

424 { "vnregs", DT IDENT ARRAY, 0, DI F_VAR VMREGS, DT_ATTR ! STABCM\I DT_VERS 1_7,
425 &dt |dops regs, NULL },

426 { "vtinestanp", DT_| DENT_SCALAR, 0, DI F_VAR VTI MESTAMP,

427 DT _ ATTR STABCWN, DT_VERS_1_0,

428 &dt’ |dops type, "uint64_t" },

429 { "walltimestanp", DTI_| DENT_SCALAR, 0, DI F_VAR WALLTI MESTAWP,

430 DT_ATTR STABCNN DT_VERS 1 0,

431 &dt |dops type "inte4_t" ¥,

432 "zonenanme", DT_| DE CALAR, 0, DI F_VAR ZONENAME,

433 DT_. ATTR STABCNN DT_VERS 1_0, &dt_idops_type, "string" },

{
434 { NULL, 0, 0, O, { O, O, O7F, 0, NULL, NULL }
435 };

437 |

438 * Tables of ILP32 intrinsic integer and floating-point type tenplates to use
439 * to populate the dynamic "C' CTF type container.

440 */

441 static const dt_intrinsic_t _dtrace_intrinsics_32[] = {

442 { "void", { CTF_INT_SIGNED, O, 0 }, CTF_K_INTEGER },

443 { "signed", { CTF_INT_SIGNED, 0, 32 }, CIF_K |INTEGER },

444 { "unsigned", { 0, 0, 32 }, CTF_K INTEGER },

445 { "char™, { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_ | NTEGER },
_SIGNED, 0, 16 }, CTF_K_ I NTEGER },

446 "short", { CTF_INT
447 "int", { CTF_INT_S |
448 { "long", { CTF_INT_SIGNED, O, 32}, CTF_K_INTEGER },
449 { "long long", { CTF_INT_SI

450 "si gned char",

451 "si gned short", {

452 "signed int", { CT

o]

| GNED, 0, 32 }, CTF_K INTEGER },

INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF K INTEGER },

CTF_INT_SIGNED, 0, 16 }, CTF_K_ I NTEGER },

F_INT_SIG\NED, 0, 32}, CTFKINTEGER}

453 { "signed | ong", - ED, 0, 32 }, CTF_K_ | NTEGER }

454 "signed |l ong | { © | SIGNED, 0, 64 }, CTF_K_INTEGER },

455 "unsi gned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
0

59

456 { "unsigned short", { 0, 0, 16 }, CTF_K INTEGER },

457 "unsi gned int", { 0, 0, 32}, CTF_K INTEGER },

458 "unsi gned long", { O, 0, 32}, CTF_K_INTEGER },

459 "unsi gned | ong Iong , {0 O 4 }, CTF_K_ I NTEGER },

, 6
460 { "_Bool", { CTF_INT_BOO., 0, 8 }
461 "float", { CTF_FP_SINGLE, 0, 32}
462 { "double", { CTF_FP_DOUBLE, 0, 64 }, ,
463 "l ong double", { CTF_FP_ LD(JJBLE 0, 1287}, CTF_K FLOAT },
464 { "float immginary", { CTF_FP_IMAGRY., 0, 32}, CTF_K _FLOAT },
465 { "doubl e i magi nary" { CTF_FP_DI MAGRY, 0, 64 }, CTF_K FLOAT },
466 "l ong doubl e imaginary", { CTF_FP_LDI MAGRY, 0, 128}, CTF_K FLOAT },
467 { "float conplex", { CTF_FP_CPLX, 0, 64 }, CTF_K FLOAT },
468 "doubl e conpl ex", { CTF_FP_DCPLX, 0, 128 }, CTF_K FLOAT },

9‘%
‘X
g

new usr/src/lib/libdtrace/ conmon/dt_open.c

469 { "long doubl e conpl ex" { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
470 { NULL, { 0, O, O},
471 ¥;

473 [*
474 * Tables of LP64 intrinsic integer and floating-point type tenplates to use
475 * to popul ate the dynamc "C' CTF type container.

*/

476

477 st atl c const dt_intrinsic_t _dtrace_intrinsics_64[] = {

478 { "void" CTF_INT_SIGNED, 0, 0 }, CTF_K_ I NTEGER },

479 { "signed”, { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },

480 { "unsigned", { 0, 0, 32}, CTF_K INTEGER },

481 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR 0 CTF_K_| NTEGER }

482 { "short", { CTF_INT
F S

483 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },

484 "long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },

485 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_ | NTEGER }

486 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_|NTEGER }
487 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K INTEGER },
488 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF K INTEGER },

489 { "signed long", { CTF_INT_SIGNED, O, 64 }, CTF_K_INTECER },

490 "signed | ong Iong , { CTF_INT_SIGNED, 0, 64 }, CTF_K_|NTECER },
491 "unsi gned char" , { CTF_INT_CHAR, 0, 8 }, CTF_K |INTEGER },

492 "unsi gned short", { 0 6 }, CTF_K_INTEGER },

493 "unsigned int", { 0, 0, 32}, CTF_K_INTEGER },

494 "unsi gned long", { O, 0, 64 }, CTF_K_ INTEGER },

495 un5|gned | ong Iong , { 0, 0, 64}, CIF_K_INTEGER },

496 { " _Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K INTEGER },

497 { "Tloat", { CTF_-FP_SINGLE, 0, 32 }, CTF_K FLOAT },

498 { "double", { CTF FP_DOUBLE, 0, 64 }, CTF_K FLQAT },

499 { "l ong doubl e” { CTF_FP_LDOUBLE, 0, 128}, CTF_K_FLQAT },

500 { “float imagi nary {TCTF_FP_IMAGRY, 0, 32 }, CTF_K FLOAT

501 { "doubl e i nagi nary { CTF FP_DI MAGRY, 0, 64 }, CTF_K FL }

QAT },
502 "I ong doubl e |nag| nary { CTF_FP_LDI MAGRY, 0, 128}, CTF_K FLOAT },
503 "float conplex", { CTF_ FP CPLX, 0, 64 }, CTF_K FLOAT },

504 { "doubl e conpl ex", { CTF_FP_DCPLX, 0, 128 }, CIF K FLOAT },

505 "l ong doubl e conpl ex", { CTF_FP_ LDODLX 0, 256 }, CTF_K FLOAT },
506 NULL, { O, O, O }, 0}

507 };

509 /*

510 * Tables of ILP32 typedefs to use to populate the dynanmic "D' CTF container.

512

513 statlc const dt _typedef _t _dtrace_typedefs_32[] = {
514 { "char" int8 " }

515 short "int 16 t" 3},

516 { "int", "int32_t" },

517 "long long", "int64_t" },

518 { "int", "intptr_t" },

519 { "int", "ssize_t" }

520 "unsi gned char", "uint8_t" },

521 "unsi gned short", "uintl6_t" },
522 "unsi gned", "ui nt 32_t" },

523 { "unsigned long long", "uint64_t" }
524 "unsi gned char", "uchar_t" },

525 "unsi gned short", "ushort_t" },

526 "unsi gned", "uint_t" },

527 "unsi gned | ong", "ul ong_ t" 3},

528 "unsi gned | ong Iong , "u_longlong_t" },
529 "int" ptrdlff t" o},

530 "unsi gned" ‘uintptr_t" },

531 { "unsi gned' SI ze_t" },

532 " ong , tid_t” },
533 { "long", "pid_t" },
534 NULL, NU_L }

511 * These aliases ensure that D definitions can use typical <sys/types.h> nanes.
*/

new usr/src/lib/libdtrace/ conmon/dt_open.c
535 };

537 [*

538 * Tables of LP64 typedefs to use to popul ate the dynanmic "D' CTF container.
539 * These aliases ensure that D definitions can use typical <sys/types.h> nanes.
540 */

541 static const dt_typedef_t _dtrace_typedefs_64[] = {

542 { "char", "int8_t" },

543 { "short", "int16_t" },

544 { "int", "int32_t" },

545 { "I ong", "int64_t" },

546 { "I ong "intptr_t" },

547 "I ong", "ssize_t" },

548 "unsi gned char", "uint8_t" },
549 "unsi gned short™, "uint 16_t" },

550 "unsi gned", "ui nt 32 ottt}

551 { "unsigned |ong", "UI nté4_t" },

552 "unsi gned char", uchar_t 1,

553 "unsi gned short", "ushort_t" },

554 "unsi gned", "ui nt _t" 3,

555 { "unsigned long", "ul ong_ t"),

556 "unsi gned | ong Iong "u_longlong_t" },
557 "Iong", "ptrdiff_t" },

558 "unsi gned | ong "uintptr_t" },

559 { "unsi gned | ong "size_t" },

560 "int" "| d_t" },
561 “int", "pid_t" },
562 NULL, NULL }

563 };

565 /*

566 * Tables of ILP32 integer type tenplates used to populate the dtp->dt_ints[]
567 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
568 */

576

569 statl c const dt_intdesc_t _dtrace_ints_32[] = {

570 { "int", NULL, CTF_ERR ~Ox7fffffffULL },

571 { ' un5|gned |nt" NULL, CTF_ERR, OxffffffffULL },

572 { "Iong NULL, CTF ERR, Ox7fffffffULL },

573 { ' unsigned long", NULL, CTF_ERR, OxffffffffULL },

574 { "long | ong", NULL, CTF_ERR, Ox7ffFffffffffffffuULL },

575 { "unsigned long long", NULL, CTF_ERR, OxffffffffffffffffULL }
}
/*

578
579 * Tables of LP64 integer type tenplates used to populate the dtp->dt_ints[]
580 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
581 */

582 stati c const dt_intdesc_t _dtrace_ints_64[] = {

583 { "int", NULL, CTF ERR, Ox7fffffffuULL T,

584 { ' unS|gned int", NULL, CTF_ERR, OxffffffffULL },

585 { "long", NULL, CTF ERR, OX7fffffffffffffffuULL },

586 { ' un5|gned Iong NULL, CTF_ERR, OxffffffffffffffffULL },
587 { "long | ong", NULL CTF ERR, Ox7fffffffffffffffULL },

588 { "unsigned Iong Iong NULL, CTF_ERR, OxffffffffffffffffULL }
589 };

591 /*

592 * Table of nacro variable tenplates used to populate the nacro identifier hash
593 * when a new dtrace client open occurs. Values are set by dtrace_update().
594 =/

595 static const dt_ident_t _dtrace_nmacros[] = {

596 { "egid", DT_IDENT_SCALAR 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },
597 { "euid", DT_| DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT _VERS 1 0 },
598 { “"gid", DT_IDENT_SCALAR 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },
599 { "pid", DT_IDENT_SCALAR, 0, 0, DT_ATTR STABCWMN, DT_VERS 1 0 },
600 { "pgid", DT_| DENT_SCALAR O, 0, DT_ATTR _STABCWN, DT_VERS 1 0 },

new usr/src/lib/libdtrace/ conmon/dt_open.c

601 { "ppid", DT_|DENT SCALAR 0, 0, DT_ATTR STABCWN, DT VERS 1 0 },

602 { "proji d" DT_I DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },

603 { "sid" DT | DENT_SCALAR, 0, O, DT ATTR_STABCWN, DT _VERS 1 0 },

604 { "taskl d" DT_| DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },

605 { "tar get” DT_| DENT_SCALAR, 0, 0, DT_ATTR STABCW, DT_VERS 1 0 },

606 { "uid" DT | DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },

607 { ULLO0,0{OOO} 0}

608 };

610 /*

611 * Hard-wired definition string to be conpiled and cached every tinme a new
612 * DTrace library handle is initialized. This string should only be used to
613 * contain definitions that shoul d be present regardl ess of DTRACE_O NOLIBS.
614 */

615 static const char _dtrace_hardwire[] = "\

616 inline long NULL = 0; \n\

617 #pragma D binding \"1.0\" NULL\n\

618 ";

620 /*

621 * Default DTrace configuration to use when opening |ibdtrace DTRACE O NCDEV.
622 * |f DTRACE_O NODEV is not set, we |oad the configuration fromthe kernel.
623 * The use of CTF_MODEL_NATI VE is more subtle than it m ght appear: we are
624 * relying on the fact that when running dtrace(1M, isaexec w |l invoke the
625 * binary with the same bitness as the kernel, whi ch is what we want by defaul t
626 * when generating our DIF. The user can override the choice usi ng of | ags.
627 */

628 static const dtrace_conf_t _dtrace_conf =

629 DI F_VERSI ON, /* dtc_difversion */

630 Dl F_DI R_NREGS, /* dtc_difintregs */

631 DI F_DTR_NREGS, /* dtc_diftupregs */

632 CTF_MODEL_NATI VE /* dtc_ctfrodel */

633 };

635 const dtrace_attribute_t _dtrace_nmaxattr = {

636 DTRACE_STABI LI TY_MAX,

637 DTRACE_STABI LI TY_MAX,

638 DTRACE_CLASS_MAX

639 };

641 const dtrace_attribute_t _dtrace_defattr = {

642 DTRACE_STABI LI TY_STABLE,

643 DTRACE_STABI LI TY_STABLE,

644 DTRACE_CLASS_COMVON

645 };

647 const dtrace_attribute_t _dtrace_symattr = {

648 DTRACE_STABI LI TY_PRI VATE,

649 DTRACE_STABI LI TY_PRI VATE,

650 DTRACE_CLASS_UNKNOWN

651 };

653 const dtrace_attribute_t _dtrace_typattr = {

654 DTRACE_STABI LI TY_PRI VATE,

655 DTRACE_STABI LI TY_PRI VATE,

656 DTRACE_CLASS_UNKNOWN

657 };

659 const dtrace_attribute_t _dtrace_prvattr = {

660 DTRACE_STABI LI TY_PRI VATE,

661 DTRACE_STABI LI TY_PRI VATE,

662) DTRACE_CLASS_UNKNOWN

663 };

665 const dtrace_pattr_t _dtrace_prvdesc = {
666 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS COWMN },

new usr/src/lib/libdtrace/ conmon/dt_open.c

10

667 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE CLASS COWMMON },
668 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE CLASS_COWMON },
669 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE CLASS_COVMON },
670 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS_COWMN },
671 };

673 const char *_dtrace_defcpp = "/usr/ccs/lib/cpp"; /* default cpp(1l) to invoke */
674 const char *_dtrace_defld = "/usr/ccs/bin/ld"; /* default 1d(1) to invoke */
676 const char *_dtrace_libdir = "/usr/lib/dtrace"; /* default library directory */
677 const char *_dtrace_provdir = "/dev/dtrace/provider"; /* provider directory */
679 int _dtrace_strbuckets = 211; /* default nunber of hash buckets (prine) */
680 int _dtrace_intbuckets = 256; /* default nunmber of integer buckets (Pof2) */
681 uint_t _dtrace_strsize = 256; /* default size of string intrinsic type */
682 uint_t _dtrace_stkindent = 14; /* default whitespace indent for stack/ustack */
683 uint_t _dtrace_pi dbuckets = 64; /* default number of pid hash buckets */

684 uint_t _dtrace pidirulim= 8 /* default nunmber of pid handles to cache */
685 size t _dtrace_bufsize = 512; /* default dt_buf_create() size */

686 int _dtrace_argmax = 32 /* default maxi mum nunber of probe argunents */
688 int _dtrace_debug = O; /* debug nessages enabled (off) */

689 const char *const _dtrace_version = DI_VERS STRING /* APl version string */
690 int _dtrace_rdvers = RD_ VERSION, /* rtld_db feature version */

692 typedef struct dt_fdlist {

693 int *df _fds; /* array of provider driver file descriptors */
694 uint_t df_ents; /* nunber of valid elements in df_fds[]

695 uint_t df_size; /* size of df_fds[] */

696 } dt_fdlist_t;

698 #pragma init(_dtrace_init)

699 void

700 _dtrace_init(void)

701 {

702 _dtrace_debug = getenv("DTRACE DEBUG') != NULL;

704 for (; _dtrace_rdvers > 0; _dtrace_rdvers--) {

705 if (rd_init(_dtrace_rdvers) == RD_CK)

706 break;

707 }

708 }

710 static dtrace_hdl _t *

711 set_open_errno(dtrace_hdl _t *dtp, int *errp, int err)

712

713 if (dtp !'= NULL)

714 dtrace_cl ose(dtp);

715 if (errp !'= NULL)

716 *errp = err;

717 return (NULL);

718 }

720 static void

721 dt_provnod_open(dt_provnod_t **provnod, dt_fdlist_t *dfp)

722 {

723 dt _provnod_t *prov;

724 char pat h[PATH MAX] ;

725 struct dirent *dp, *ep;

726 DIR *dirp;

727 int fd;

729 if ((dirp = opendir(_dtrace_provdir)) == NULL)

730 return; /* failed to open directory; just skip it */

732 ep = alloca(sizeof (struct dirent) + PATH MAX + 1);

new usr/src/lib/libdtrace/ conmon/dt_open.c 11 new usr/src/lib/libdtrace/ conmon/dt_open.c
733 bzero(ep, sizeof (struct dirent) + PATH MAX + 1);
800 return (buf);
735 while (readdir_r(dirp, ep, &dp) == 0 &% dp != NULL) { 801
736 if (dp->d_nanme[0] ==
737 continue; /* Sklp “."and ".." */ 803 static dtrace_hdl _t *
804 dt_vopen(int version, int flags, int *errp,
739 if (dfp->df_ents == dfp >df _si ze) { 805 const dtrace vector_t *vector, void *arg)
740 uint_t size = dfp->df_size ? dfp->df_size * 2 : 16; 806 {
741 int *fds = reall oc(df p->df _fds, size * sizeof (|nt)); 807 dtrace_hdl _t *dtp = NULL;
808 int dtfd = -1, ftfd = -1, fterr = 0;
743 if (fds == NULL) 809 dtrace_prog_t *pgp,
744 break; /* skip the rest of this directory */ 810 dt _nodul e_t *d
811 dt provrmd t provrmd = NULL;
746 df p->df _fds = fds; 812 int i, err;
747 df p- >df _si ze = si ze; 813 struct rI|mt rl;
748 }
815 const dt_intrinsic_t *dinp;
750 (void) snprintf(path, sizeof (path), "%/%", 816 const dt_typedef _t *dtyp;
751 _dtrace_provdi r, dp->d_nane); 817 const dt_ident_t *idp;
753 if ((fd = open(path, O RDONLY)) == -1) 819 dtrace_typeinfo_t dtt;
754 continue; /* failed to open driver; just skip it */ 820 ctf_funcinfo_t ctc;
821 ctf_arinfo_t ctr;
756 if (((prov = malloc(sizeof (dt_provnod_t))) == NULL) ||
757 (prov->dp_nanme = malloc(strlen(dp->d_nanme) + 1)) == NULL) { 823 dt_fdlist_t df = { NULL, O, O };
758 free(prov);
759 (void) close(fd); 825 char isadef[32], utsdef[32];
760 br eak; 826 char s1[64], s2[64];
761 }
828 if (version <= 0)
763 (void) strcpy(prov->dp_nane, dp->d_nane); 829 return (set_open_errno(dtp, errp, EINVAL));
764 prov->dp_next = *provnod;
765 *provnod = prov; 831 if (version > DTRACE_VERSI
832 return (set_open_errno(dtp, errp, EDT_VERSION));
767 dt _dprintf("opened provider D/s\ n", dp->d_nane);
768 df p- >df _fds[df p->df _ents++] = fd; 834 if (version < DTRACE_VERSI ON) {
769 } 835 *
836 * Currently, increasing the library version nunber is used to
771 (void) closedir(dirp); 837 * denote a binary inconpatible change. That is, a consumer
772 } 838 * of the library cannot run on a version of the library with
839 * a hi gher DTRACE_VERSI ON nunber than the consumer conpiled
774 static void 840 * against. Once the library APl has been committed to,
775 dt _provnod_destroy(dt_provnod_t **provnod) 841 * backwards binary conpatibility will be required; at that
776 { 842 * time, this check should change to return EDT_OVERSI ON only
777 dt _provnod_t *next, *current; 843 * if the specified version nunber is less than the version
844 * nunber at the time of interface comm tnent.
779 (current = *provnod; current != NULL; current = next) { 845 */
780 next = current->dp_next; 846 return (set_open_errno(dtp, errp, EDI_OVERSIQN));
781 free(current->dp_nane); 847 }
782 free(current);
783 } 849 if (flags & ~DTRACE_O_MASK)
850 return (set_open_errno(dtp, errp, EINVAL));
785 *provmod = NULL;
786 } 852 if ((flags & DTRACE_O LP64) && (flags & DTRACE_O | LP32))
853 return (set_open_errno(dtp, errp, EINVAL));
788 static const char *
789 dt_get_sysinfo(int cnd, char *buf, size_t |en) 855 if (vector == NULL &% arg != NULL)
790 { 856 return (set_open_errno(dtp, errp, EINVAL));
791 ssi ze_t rv = sysinfo(cnd, buf, len);
792 char *p = buf; 858 if (elf_version(EV_CURRENT) == EV_NONE)
859 return (set_open_errno(dtp, errp, EDT_ELFVERSION));
794 if (rv<O0]|]|] rv>len)
795 (void) snprintf(buf, len, "%", "Unknown"); 861 if (vector !'= NULL || (flags & DTRACE_O_)
862 goto alloc; /* do not attenpt to open dtrace device */
797 while ((p = strchr(p, '.")) !'= NULL)
798 *pr+ =77 864 /*

12

new usr/src/lib/libdtrace/ common/dt_open.c 13

865
866
867
868
869
870
871
872
873
874
875

877
878
879
880
881
882
883
884

886
887

889
890

892
893

895

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

918
919

921
922
923

925
926
927
928
929
930

al |l oc:

Bef ore we get going,
hard limt. This is to allow for the fact that

* crank our limt on file descriptors up to the
* I'i bproc keeps file
* descriptors to objects open for the lifetinme of the proc handle;

* without raising our hard limt, we would have an acceptably snall
* bound on the nunber of processes that we could concurrently

* instrunent with the pid provider.

*

f

(getrlimt(RLIMT_NOFILE, &rl) == 0) {
rl.rlimecur =rl.rlimmx;
(v0|d) setrllmt(RLIMT_NCFILE, &rl);

Get the device path of each of the providers. W hold them open

in the df.df _fds list until we open the DTrace driver itself,
allowing us to see all of the probes provided on this system Once
we have the DTrace driver open, we can safely close all the providers
now that they have registered with the franmework

* ok kb F %

&/
dt _provnod_open(&pr ovnod, &df);

dtfd = open("/dev/dtrace/dtrace”, O RDWR);
err = errno; /* save errno from openl ng dtfd */

ftfd = open(/ dev/ dtrace/ provider/fasttrap", O RDWR);
fterr = ftfd == -1 ? errno : 0; /* save errno fromopen ftfd */

while (df.df_ents-- = 0)
(void) close(df.df_fds[df.df_ents]);

free(df.df_fds);

/
If we failed to open the dtrace device, fail dtrace_open().
We convert sone kernel errnos to customlibdtrace errnos to
i mprove the resulting message fromthe usual strerror().

if (dtfd == -1) {
dt _provnod_dest r oy(&pr ovnod) ;
switch (err) {

* ok ok ok ¥

case ENCENT:
err = EDT_NCENT;
break;
case EBUSY:
err = EDT_BUSY;
br eak;
case EACCES:
err = EDT_ACCESS;
br eak;
return (set_open_errno(dtp, errp, err));
}
(void) fecntl(dtfd, F_SETFD, FD_CLCEXEC);
(void) fentl (ftfd, F_SETFD, FD_CLOEXEC);

if ((dtp = malloc(sizeof (dtrace_hdl
return (set_open_errno(dtp,

_t))) == NULL)
errp, EDT_NOVEM);

bzero(dtp, sizeof (dtrace_hdl_t));

dt p->dt _ofl ags = flags;

dt p->dt _prcnode = DT_PROC_STOP_PREI NI T;
dt p->dt _| i nknode = DT_LI NK_KERNEL;

dt p->dt _| i nktype = DT_LTYP_ELF;

dt p- >dt _x| at enode = DT_XL_STATI C,

new usr/src/lib/libdtrace/ conmon/dt_open.c

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

956
957
958
959

961
962

964

966
967

969
970
971

973
974
975
976
977
978
979

981
982
983
984

986
987
988
989

991
992
993
994
995
996

#i f def

st dcrmde = DT_STDC_XA;

version = version;

fd —dtfd,

ftfd = ftfd;
fte

dt p- >dt
dt p- >dt
dt p- >dt
dt p- >dt
dt p- >dt
dt p- >dt
dt p- >dt
dt p- >dt
dt p- >dt _|

fterr =
cdefs_fd
ddefs_fd
stdout _fd =
modbuckets = _dtrace_strbuckets;
dt p->dt _nods = cal | oc(dt p->dt _npdbucket s,
dt p- >dt _provbuckets = _dtrace_strbuckets;
dt p->dt _provs = call oc(dt p- >dt _provbucket s,
dt _proc_hash_create(dtp

dt p->dt _vnax = DT VERS LATEST

r;
St
1

si zeof (dt_nodule_t *));

si zeof (dt_provider_t

*))s

dt p- >dt _cpp_| path = strdup(dtrace_defcpp);
dt p->dt _cpp_argv = nal |l oc(sizeof (char *));
dt p->dt _cpp_argc = 1;

dt p->dt _cpp_args = 1;

dt p->dt _I d_path strdup(dtrace_defld);

dt p- >dt _provrod = provnod;
dt p->dt _vector = vector;
dtp->dt _varg = arg;

dt _dof _init(dtp);
(voi d) unane(&dtp->dt_uts);
if (dtp->dt_nmpds == NULL || dtp->dt_provs == NULL ||
dt p->dt _procs == NULL || dtp->dt_Ild_path == NULL ||
dt p- >dt _cpp_path == NULL || dtp->dt_cpp_argv == NULL)
return (set_open_errno(dtp, errp, EDT NC]\/EM)
for (i = 0; i < DTRACECPT_MAX; i ++)
dt p- >dt _options[i] = DTRACEOPT_UNSET;
dt p->dt _cpp_argv[0] = (char *)strbasenane(dtp->dt_cpp_path);

(void) snprintf(isadef, sizeof (isadef),
(uint_t)(sizeof (v0|d *) * NBBY));

"-D__SUNWD_ %",

(void) snprintf(utsdef, sizeof (utsdef), "-D_%_%",
dt _get _sysi nf o(SI _SYSNAME, s1, sizeof (sl))
dt _get _sysi nf o(SI _RELEASE, s2, si zeof (32)));

if (dt_cpp_add_arg(dtp, "-D__sun") == NULL ||
dt _cpp_add_arg(dtp, "-D__unix") == NULL ||

"-D__SVR4") == NULL

dt _cpp_add_ar g(dt p, |l
= -D_SUNWD=1") == NULL ||

dt _cpp_add_ar g(dtp,

dt _cpp_add_arg(dtp, isadef) == NULL ||
dt _cpp_add_arg(dtp, utsdef) == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);

if (flags & DTRACE_O

bcopy(& dtrace_conf, &dtp->dt_conf, sizeof (_dtrace_conf));
else if (dt_ioctl(dtp, ~DTRACEI OC_CONF, &dtp->dt_conf) != 0)

return (set_open_errno(dtp, errp, errno));

if (flags & DTRACE_O LP64)

dt p- >dt _conf. dtc_ctfnodel = CTF_MODEL_LP64;
else if (flags & DTRACE_O | LP32)

dt p- >dt _conf.dtc_ctfnmdel = CTF_MODEL_I LP32;

__sparc
/*

* On SPARC systens, __sparc is always defined for <sys/isa_defs.h>
* and __sparcv9 is defined if we are doing a 64-bit conpile.
*
/
if (dt_cpp_add_arg(dtp,

"-D __sparc") == NULL)

14

new usr/src/lib/libdtrace/ common/dt_open.c 15

997

999
1000
1001
1002

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

1019
1020

1022
1023
1024
1025

1027
1028
1029

1031
1032

1034
1035

1037
1038
1039

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052

1054
1055
1056
1057
1058

1060
1061
1062

#endi f
#i f def

#endi f

return (set_open_errno(dtp, errp, EDT_NOVEM);

if (dtp->dt_conf.dtc ctfmodel == CTF_MODEL_LP64 &&
dt _cpp_add_arg(dtp, "-D__sparcv9™) == NULL)
return (set_open_errno(dtp, errp, EDI_NOVEM);

x86
*

* On x86 systens, 1386 is defined for <sys/isa_defs.h> for 32-bit
* conpil es and and64 is defined for 64-bit conpiles. Unlike SPARC,
* they are defined exclusive of one another (see PSARC 2004/ 619).
*
if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_LP64) {
if (dt_cpp_add_arg(dtp, "-D _and64™) == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);
} else {
if (dt_cpp_add_arg(dtp, "-D__i386") == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);

if (dtp->dt_conf.dtc_difversion < DI F_VERSI ON)
return (set_open_errno(dtp, errp, EDT_DI FVERS));

if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_I LP32)
bcopy(_dtrace_ints_32, dtp->dt_ints, sizeof (_dtrace_ints_32));
el se
bcopy(_dtrace_ints_64, dtp->dt_ints, sizeof (_dtrace_ints_64));

dt p- >dt_nacros dt _i dhash create(macr 0" NULL, 0, Ul NT_MAX);
dt p- >dt _aggs = dt_i dhash create(aggregatl on", NULL,
DTRACE_AGGVARI DNONE + 1, Ul NT_MAX) ;

dt p- >dt _gl obal s = dt _i dhash_create("gl obal "
DI F_VAR_OT HER UBASE, DI F_VAR OTHER NAX)

_dtrace_gl obal s,

dtp->dt_tls = dt_idhash_create("thread | ocal", NULL,
D F_VAR OTHER UBASE, DI F_VAR OTHER MAX);

if (dtp->dt_macros == NULL || dtp->dt_aggs == NULL ||
dt p->dt _globals == NULL || dtp->dt_tls == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);

/*
* Popul ate the dt_nacros identifier hash table by hand: we can't use
* the dt_idhash_popul ate() mechani sm because we’re not yet conpiling
* and dtrace_update() needs to imediately reference these idents.
for (idp = _dtrace_nmcros; idp->di_name != NULL; idp++) {
if (dt_idhash |nsert(dtp >dt _macros, idp->di _nane,

i dp->di _kind, idp->di_flags, |dp >di _id, idp->di_attr,

i dp->di _vers, idp->di _ops ? idp->di_ops : &dt_idops_thaw,

idp->di _iarg, 0) == NULL)

return (set_open_errno(dtp, errp, EDT_NOMEM));

*

* Update the nodule |ist using /systenlobject and |oad the val ues for
* the nmacro variable definitions according to the current process.
*/
t

dtrace_updat e(dtp);
/*

* Select the intrinsics and typedefs we want based on the data nodel.
* The intrinsics are under "C'. The typedefs are added under "D'.

new usr/src/lib/libdtrace/ common/dt_open.c 16
1063 *

1064 if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_I LP32) {

1065 dinp = _dtrace_intrinsics_32;

1066 dtyp = _dtrace_typedefs_32;

1067 } else {

1068 dinp = _dtrace_intrinsics_64;

1069 dtyp = _dtrace_t ypedefs_64;

1070 }

1072 /*

1073 * Create a dynamic CTF container under the "C' scope for intrinsic
1074 * types and types defined in ANSI-C header files that are included.
1075 */

1076 if ((dnmp = dtp->dt_cdefs = dt_nodul e_create(dtp, "C')) == NULL)
1077 return (set_open_ errno(dtp errp, EDT_NOVEM));

1079 if ((dnmp->dmctfp = ctf_create(&Jtp->dt_ctferr)) == NULL)

1080 return (set_open_errno(dtp, errp, EDT_CTF));

1082 dt _dprintf("created CTF container for % (%)\n",

1083 dnmp->dm nane, (void *)dnp->dmctfp);

1085 (void) ctf_setnodel (dnmp->dm ctfp, dtp->dt_conf.dtc_ctfnodel);

1086 ctf_setspecific(dnp->dmctfp, dnp);

1088 dnmp->dm fl ags = DT_DM LOADED; /* fake up |oaded bit */

1089 dnmp->dm nodid = -1; /* no nodule ID */

1091 *

1092 * Fill the dynamic "C' CTF container with all of the intrinsic
1093 * integer and floating-point types appropriate for this data nodel.
1094 *

1095 for (; dinp->din_nanme != NULL; dinp++) {

1096 if (dinp->din_kind == CTF_K_I NTEGER) {

1097 err = ctf_add_i nteger (dnp->dm ctfp, CTF_ADD_ ROOT,
1098 di np->di n_nane, &di np->din_data);

1099 } else {

1100 err = ctf_add_float(dnp->dmctfp, CTF_ADD ROCT,
1101 di np->di n_nane, &di np->di n_dat a) ;

1102 }

1104 if (err == CTF_ERR)

1105 dt _dprintf("failed to add % to C container: %\n",
1106 di np->di n_nane, ctf_errnmsg(

1107 ctf_errno(dnp->dmctfp)));

1108 return (set_open_errno(dtp, errp, EDT_CTF));

1109 }

1110 1

1112 if (ctf_update(dnp- >dm_ctfp) 1= 0) {

1113 dt _dprintf("failed to update C container: %\n",

1114 ctf_errmsg(ctf_errno(dnp->dmctfp)));

1115 return (set_open_errno(dtp, errp, EDT CTF));

1116 }

1118 /*

1119 * Add intrinsic pointer types that are needed to initialize printf
1120 * format dictionary types (see table in dt_printf.c).

1121 */

1122 (void) ctf_add_pointer(dnp->dmctfp, CTF_ADD ROOT,

1123 ctf_Il ookup_by_nane(dnp->dmctfp, "void"));

1125 (void) ctf_add_pointer(dnmp->dmctfp, CTF_ADD_ROOT,

1126 ctf_I ookup_by_nane(dnp->dmctfp, "char"));

1128 (void) ctf_add_pointer(dnp->dmctfp, CTF_ADD ROOT,

new usr/src/lib/libdtrace/ common/dt_open.c 17

1129

1131
1132
1133
1134
1135

1137
1138
1139
1140
1141
1142
1143

1145
1146

1148
1149

1151
1152

1154
1155

1157
1158
1159
1160
1161

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177

1179
1180
1181
1182
1183
1184
1185
1186

1188
1189

1191
1192

1194

ctf_|l ookup_by_nane(dnmp->dmctfp, "int"));

if (ctf_update(dn'p->dm_ctfp) 1= 0)
dt _dprintf("failed to update C container: %\n",
ctf_errmsg(ctf_errno(dnp->dmctfp)));
return (set_open_errno(dtp, errp, EDT_ F));

* Create a dynami c CTF container under the "D' scope for types that
* are defined by the D programitself or on-the-fly by the D conpiler.
* The "D' CTF container is a child of the "C' CTF container.
*
if ((dnmp = dtp->dt_ddefs = dt_nodul e_create(dtp, "D')) == NULL)
return (set_open_ errno(dtp errp, EDT_NOVEM);

if ((dnmp->dmctfp = ctf_create(&Jtp->dt_ctferr)) == NULL)
return (set_open_errno(dtp, errp, EDT_CTF));

dt _dprintf("created CTF container for % (%)\n",
dmp->dm nane, (void *)dnp->dmctfp);

(void) ctf_setnodel (dnmp->dm ctfp, dtp->dt_conf.dtc_ctfnodel);
ctf_setspecific(dnp->dmctfp, dnp);

dnmp->dm fl ags = DT_DM LOADED; /* fake up |oaded bit */
dnmp->dm nodid = -1; /* no nodule ID */

if (ctf_inport(dnp->dmctfp, dtp->dt_cdefs->dmctfp) == CTF_ERR) {
dt _dprintf("failed to inport D parent container: %\n",
ctf_errmsg(ctf_errno(dnp->dmctfp)));
return (set_open_errno(dtp, errp, EDT CTF))

}

/*
* Fill the dynamic "D' CTF container with all of the built-in typedefs
* that we need to use for our D variable and function definitions.
* This ensures that basic inttypes.h nanes are al ways available to us.
*
/
for (; dtyp->dty_src != NULL; dtyp++) {
if (ctf_add typedef(dnp >dm ctfp, CTF_ADD_ROOCT,
dtyp->dty_dst, ctf_l ookup_by_name(dnp->dm ctfp,
dtyp->dty_: src)) == CTF_ERR) {
dt dprlntf(failed to add typedef % % to D"
"container: %", dtyp->dty_src, dtyp->dty_dst,
ctf_errrrsg(ctf_errno(drrp— >dmctfp)));
return (set_open_errno(dtp, errp, EDI_CTF));

* ok ¥

Insert a CTF I D corresponding to a pointer to a type of kind
CTF_K_FUNCTI ON we can use in the conpiler for function pointers.
/CTFt reats all function pointers as "int ()()" so we only need one.
*

ctc.ctc_return = ctf_I ookup_by_nane(dnp->dmctfp, "int");
ctc.ctc_argc = 0;

ctc.ctc_flags = 0;

dt p- >dt type func = ctf_add_function(dnmp->dmctfp,
ADD_ROOT, &ctc, NULL);

dt p- >dt _type_fptr = ctf_add_pointer(dnmp->dmctfp,
F_ADD ROOT, dtp->dt_type_func);

| *

new usr/src/lib/libdtrace/ common/dt_open.c 18
1195 * W& also insert CTF definitions for the special Dintrinsic types
1196 * string and <DYN> into the D container. The string type is added
1197 * as a typedef of char[n]. The <DYN> type is an alias for void.
1198 * We conpare types to these special CTF ids throughout the conpiler.
1199 */

1200 ctr.ctr_contents = ctf_| ookup_by_name(dnp->dmctfp, "char");

1201 ctr.ctr_index = ctf_l ookup_by_name(dnp->dmctfp, "long");

1202 ctr.ctr_nelens = _dtrace_strsize;

1204 dt p->dt _type_str = ctf_add_typedef (dnp->dm ctfp, CTF_ADD ROOT,

1205 "string", ctf_add_array(dnp->dmctfp, CTF_ADD ROOT, &ctr));

1207 dt p- >dt _type_dyn = ctf_add_typedef (dnp->dm ctfp, CTF_ADD_ROOCT,

1208 <DYN>", “ctf_l ookup_by name(dnp->dm ctfp, "void"));

1210 dt p- >dt _type_stack = ctf_add_t ypedef (dnp->dm ctfp, CTF_ADD ROOT,

1211 "stack", ctf_| ookup_by_name(dnmp->dmctfp, "void"));

1213 dt p->dt _type_symaddr = ctf_add_typedef (dnmp->dm ctfp, CTF_ADD_ROOT,
1214 " _symaddr", ctf_I ookup_by_nane(dnp->dmctfp, "void"));

1216 dt p->dt _type_usynaddr = ctf_add_t ypedef (dnp->dm ctfp, CTF_ADD ROOT,
1217 " _usymaddr", ctf_I ookup_by_nane(dnp->dmctfp, "void"));

1219 if (dtp->dt_type_func == CTF_ERR || dtp->dt_type_fptr == CTF_ERR ||
1220 dt p->dt _type_str == CTF_ERR || dtp->dt_type_dyn == CTF_ERR ||
1221 dt p->dt _type_stack == CTF_ERR || dtp->dt_type_symaddr == CTF_ERR | |
1222 dt p->dt _t ype_usymaddr == CTF_ERR) {

1223 dt _dprintf("failed to add intrinsic to D container: %\n",
1224 ctf_errmsg(ctf_errno(dnp->dmctfp)));

1225 return (set_open_errno(dtp, errp, EDT_CTF));

1226 1

1228 if (ctf_update(dnp- >dm_ctfp) 1= 0) {

1229 dt_dprintf("failed update D container: %\n",

1230 ctf_errmsg(ctf_errno(dnp->dmctfp)));

1231 return (set_open_errno(dtp, errp, EDT CTF));

1232 }

1234 /*

1235 * Initialize the integer description table used to convert integer
1236 * constants to the appropriate types. Refer to the coments above
1237 * dt _node_int() for a conplete description of howthis table is used.
1238 */

1239 for (i =0; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i++) {
1240 if (dtrace_| ookup_by_type(dtp, DTRACE_OBJ_EVERY,

1241 dtp->dt_ints[i].did_nane, &Jtt) != 0)

1242 dt _dprintf("failed to | ookup integer type %: %\n",
1243 dtp->dt_ints[i].did_nange,

1244 dtrace_errnsg(dtp, dtrace_errno(dtp)));

1245 return (set_open_errno(dtp, errp, dtp->dt_errno));
1246 }

1247 dtp->dt_ints[i].did_ctfp = dtt.dtt_ctfp;

1248 dtp->dt_ints[i].did_type = dtt.dtt_type;

1249 }

1251 I*

1252 * Now that we’ve created the "C' and "D' containers, nove themto the
1253 * start of the nodule list so that these types and synbols are found
1254 * first (for stability) when iterating through the nodule |ist.

1255 */

1256 dt _list_del et e(&t p->dt _nodl i st, dt p->dt_ddefs);

1257 dt _|i st_prepend(&dtp->dt_nodlist, dtp->dt_ddefs);

1259 dt _list_del et e(&dt p->dt _nodl i st, dt p->dt_cdefs);

1260 dt _li st _prepend(&dt p->dt _nodl i st dt p- >dt _cdef s)

new usr/src/lib/libdtrace/ common/dt_open.c 19

1262 if (dt_pfdict_create(dtp) == -1)

1263 return (set_open_errno(dtp, errp, dtp->dt_errno));

1265 /*

1266 * |f we are opening |ibdtrace DTRACE_O NODEV enabl e C_ZDEFS by defaul t
1267 * because without /dev/dtrace open, we will not be able to | oad the
1268 * nanes and attributes of any providers or probes fromthe kernel.
1269 *

1270 if (flags & DTRACE_O NCDEV)

1271 dtp->dt _cflags | = DTRACE C ZDEFS;

1273 /*

1274 * Load hard-wired inlines into the definition cache by calling the
1275 * conpiler on the raw definition string defined above.

1276 *

1277 if ((pgp = dtrace_program strconpil e(dtp, _dtrace_hardwi re,

1278 DTRACE_PROBESPEC NONE, DTRACE C EMPTY, 0, NULL)) == NULL) {
1279 dt dprintf(" Tailed to | oad hard-wired definitions: %\n" ,
1280 dtrace_errnmsg(dtp, dtrace_errno(dtp)));

1281 return (set_open_errno(dtp, errp, EDT_HARDWRE));

1282 }

1284 dt _program destroy(dtp, pgp);

1286 /*

1287 * Set up the default DTrace |library path. Once set, the next call to
1288 * dt _conpile() will conpile all the libraries. W intentionally defer
1289 * library processing to inprove overhead for clients that don’t ever
1290 * conpile, and to provide better error reporting (because the full
1291 * reporting of conpiler errors requires dtrace_open() to succeed).
1292 *

1293 if (dtrace_setopt(dtp, "libdir", _dtrace_libdir) !=0)

1294 return (set_open_errno(dtp, errp, dtp->dt_errno));

1296 return (dtp);

1297 }

1299 dtrace_hdl _t *

1300 dtrace_open(int version, int flags, int *errp)

1301 {

1302 return (dt_vopen(version, flags, errp, NULL, NULL));

1303 }

1305 dtrace_hdl _t *

1306 dtrace_vopen(int version, int flags, int *errp,

1307 const dtrace_vector_t *vector, void *arg)

1308 {

1309 return (dt_vopen(version, flags, errp, vector, arg));

1310 }

1312 void

1313 dtrace_cl ose(dtrace_hdl _t *dtp)

1314 {

1315 dt_ident_t *idp, *ndp;

1316 dt _nodul e_t *dnp;

1317 dt _provider_t *pvp;

1318 dtrace_prog_t *pgp;

1319 dt _xlator_t *dxp;

1320 dt _dirpath_t *dirp;

1321 int i

1323 if (dtp->dt_procs != NULL)

1324 dt _proc_hash_destroy(dtp);

1326 while ((pgp = dt_list_next(&dtp->dt_prograns)) != NULL)

new usr/src/lib/libdtrace/ conmon/dt_open.c

1327 dt _program destroy(dtp, pgp);

1329 while ((dxp = dt_list_next(&dtp->dt_xlators)) != NULL)
1330 dt _xl ator _destroy(dtp, dxp);

1332 dt _free(dtp, dtp->dt_xl atornmap);

1334 r (idp = dtp >dt _externs; idp != NULL; idp = ndp) {
1335 ndp = idp->di _next;

1336 dt _i dent _destroy(i dp)

1337 1

1339 if (dtp->dt_macros != NULL)

1340 dt _Tdhash_destroy(dt p->dt_macros);

1341 if (dtp->dt_aggs T= NULL)

1342 dt _i dhash_dest r oy(dt p- >dt _aggs) ;

1343 if (dtp->dt_global's !'= NULL)

1344 dt _i dhash_dest roy(dtp->dt_gl obal s);

1345 if (dtp->dt_tls !I'= NULL)

1346 dt _idhash_destroy(dtp->dt_tls);

1348 while ((dnp = dt_list_next(&dtp->dt_nodlist)) != NULL)
1349 dt _nodul e_destroy(dtp, dnp);

1351 while ((pvp = dt_list_next(&dtp->dt_provlist)) !'= NULL)
1352 dt _provi der_destroy(dtp, pvp);

1354 if (dtp->dt_fd !'= -1)

1355 (void) cl ose(dtp >dt _fd);

1356 if (dtp->dt_ftfd !=

1357 (void) cl ose(dt p->dt _ftfd);

1358 if (dtp->dt_cdefs_fd I= -1

1359 (void) close(dtp- >dt _cdefs_fd);

1360 if (dtp->dt_ddefs_fd != -

1361 (void) close(dtp- >dt _ddefs_fd);

1362 if (dtp->dt_stdout_fd != -1)

1363 (void) close(dtp->dt_stdout _fd);

1365 dt _epi d_destroy(dtp);

1366 dt _aggi d_destroy(dtp);

1367 dt _format _destroy(dtp);

1368 dt _strdata_destroy(dtp);

1369 dt _buf f ered_destroy(dtp);

1370 dt _aggr egat e_destroy(dtp);

1371 free(dt p->dt_buf.dtbd_data);

1372 dt _pfdict_destroy(dtp);

1373 dt _provnod_dest r oy(&t p- >dt _provnod) ;

1374 dt _dof _fini (dtp);

1376 for (i =1; i < dtp->dt_cpp_argc; i++)

1377 free(dtp->dt_cpp_argv[i]);

1379 while ((dirp = dt_list_next(&Jtp->dt_lib_path)) !'= NULL)
1380 dt_list_del et e(&dt p- >dt Ilbp th, dirp);
1381 free(di rp->dir_path);

1382 free(dirp);

1383 1

1385 free(dtp->dt_cpp_argv);

1386 free(dtp->dt_cpp_path);

1387 free(dtp->dt_|d_path);

1389 free(dtp->dt_nods);

1390 free(dtp->dt_provs);

1391 free(dtp);

1392 }

new usr/src/lib/libdtrace/ common/dt_open.c 21

1394 int
1395 dtrace_provi der_nmodul es(dtrace_hdl _t *dtp, const char **npds, int nnods)
1396 {

1397 dt _provnod_t *prov

1398 int i =0;

1400 for (prov = dtp->dt_provnod; prov != NULL; prov = prov->dp_next, i++) {
1401 if (i < nnods)

1402 nods[1] = prov->dp_nane
1403 }

1405 return (i);

1406 }

1408 int

1409 dtrace_ctlfd(dtrace_hdl _t *dtp)

1410 {

1411 return (dtp->dt_fd)

1412 }

new usr/src/lib/libdtrace/ comon/ip.d.in

R R R R

14572 Sat Aug 18 10:37:03 2012
new usr/src/lib/libdtrace/ comon/ip.d.in
dccp: sock upcalls

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. Al rights reserved.
23 *

25 #pragma D depends_on nodule ip
26 #pragma D depends_on provider ip

28 inline int |PH DF = @PH DF@
29 #pragma D binding "1.5" TPH DF
30 inline int IPHM = @PH M@
31 #pragnma D binding "1.5" | PH M

33 #pragma D binding "1.5" | PPROTO | P

34 inline int |PPROTOIP = @ PPROTO | P@

35 #pragma D binding "1.5" | PPROTO HOPOPTS

36 inline int | PPROTO HOPOPTS = @ PPROTO HOPOPTS@
37 #pragma D binding "1.5" | PPROTO | C\MP

38 inline int | PPROTO | CVP = @ PPROTO_| CMP@

39 #pragma D binding "1.5" | PPROTO | GW

40 inline int 1PPROTO | GW = @ PPROTO | GW@

41 #pragma D binding "1.5" | PPROTO GGP

42 inline int | PPROTO GGP = @ PPROTO_GGP@

43 #pragma D binding "1.5" | PPROTO_ENCAP

44 inline int |PPROTO ENCAP = @ PPROTO ENCAP@

45 #pragma D binding "1.5" | PPROTO_TCP

46 inline int | PPROTO TCP = @ PPROTO TCP@

47 #pragma D binding "1.5" | PPROTO EGP

48 inline int | PPROTO EGP = @ PPROTO EGP@

49 #pragma D binding "1.5" | PPROTO_PUP

50 inline int | PPROTO_PUP = @ PPRCOTO_PUP@

51 #pragma D binding "1.5" | PPROTO UDP

52 inline int | PPROTO UDP = @ PPROTO UDP@

53 #pragma D binding "1.5" | PPROTO | DP

54 inline int I PPROTO | DP = @ PPROTO_| DP@

55 #pragma D binding "1.5" I PPROTO | PV6

56 inline int |PPROTO | PV6 = @ PPROTO | PV6@

57 #pragma D binding "1.5" | PPROTO ROUTI NG

58 inline int | PPROTO_RCUTI NG = @ PPROTO_ROUTI NG@
59 #pragma D binding "1.5" | PPROTO_FRAGVENT

60 inline int | PPROTO FRAGVENT = @ PPROTO FRAGVENT@
61 #pragma D binding "1.5" | PPROTO _RSVP

new usr/src/lib/libdtrace/ comon/ip.d.in

62 inline int | PPROTO RSVP = @ PPROTO RSVP@
63 #pragma D binding "1.5" | PPROTO _ESP

64 inline int | PPROTO_ESP = @ PPROTO_ESP@

65 #pragma D binding "1.5" | PPROTO AH

66 inline int | PPROTO AH = @ PPROTO_AH@

67 #pragma D binding "1.5" | PPROTO | CWPV6

68 inline int | PPROTO | CMPV6 = @ PPROTO | CMPV6@
69 #pragnma D binding "1.5" | PPROTO NONE

70 inline int | PPROTO NONE = @ PPROTO_NONE@
71 #pragma D binding "1.5" | PPROTO DSTOPTS

72 inline int | PPROTO DSTOPTS = @ PPROTO_DSTOPTS@
73 #pragma D binding "1.5" | PPROTO HELLO

74 inline int | PPROTO HELLO = @ PPROTO HELLO@
75 #pragma D binding "1.5" | PPROTO_ND

76 inline int IPPROTO ND = @ PPROTO_ND@

77 #pragma D binding "1.5" | PPROTO EON

78 inline int | PPROTO EON = @ PPROTO_EON@

79 #pragma D binding "1.5" | PPROTO _OSPF

80 inline int | PPROTO OSPF = @ PPROTO_CSPF@
81 #pragma D binding "1.5" | PPROTO PI M

82 inline int IPPROTO PIM = @ PPRCTO_PI M@

83 #pragnma D binding "1.5" | PPROTO_SCTP

84 inline int IPPROTOSCTP—@PPROTOSCTP@
85 #pragma D binding "1.5" | PPROTO RAW

86 inline int | PPROTO RAW = @ PPROTO_RAV@

87 #pragma D binding "1.5" | PPROTO_MAX

88 inline int | PPROTO MAX = @ PPROTO MAX@

89 #pragma D binding "1.10" | PPROTO _DCCP

90 inline int | PPROTO DCCP = @ PPROTO_DCCP@
91 #endif /* ! codereview */

93 /*

94 * pktinfo is where packet IDinfo can be made available for deeper

95 * analysis if packet |IDs beconme supported by the kernel in the future.
96 * The pkt_addr nenber is currently always NULL.

97 */
98 typedef struct pktinfo {
99 uintptr_t pkt_addr;

100 } pktinfo_t;

102 /*
103 * csinfo is where connection state info is nmade avail abl e.
S

105 typedef struct csinfo {

106 uintptr_t cs_addr;
107 uint64_t cs_cid;
108 pid_t cs_pid;

109 zonei d_t cs_zoneid;

110 } csinfo_t;

112 /*
113 * ipinfo contains common IP info for both IPv4 and | Pv6.
*/

115 typedef struct ipinfo {

116 uint8_t Ip_ver; /* IP version (4, 6) */
117 uint32_t 1p_plength; /* payl oad | ength */

118 string ip_saddr; /* source address */

119 string ip_daddr; /* destination address */
120 } ipinfo_t;

122 /*

123 * ifinfo contains network interface info.

124 */

125 typedef struct ifinfo {

126 string if_naneg; /* interface nane */

127 int8_t if_local; /* is delivered locally */

new usr/src/lib/libdtrace/ comon/ip.d.in

128
129
130

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

174
175
176
177
178

180
181
182
183
184
185

187
188
189
190
191
192
193

netstackid_t if_ipstack; /*
uintptr_t if_addr; /*
} ifinfo_t;

ipstack 1D */
pointer to rawill_t */

/*

* ipvdinfo is a translated version of the | Pv4 header (with raw pointer).
* These values are NULL if the packet is not |Pv4.

*

typedef struct ipvdinfo {

uint8_t 1pvé4_ver; /* I P version (4) */

uint8_t ipv4_ihl; /* header |ength, bytes */
uint8_t ipvéd_tos; /* type of service field */
uint16_t i pv4_|ength; /* length (header + payload) *
uint16_t ipv4_ident; /* identification */

uint8_t ipv4d_flags; /* 1P flags */

uint16_t i pv4_offset; [* fragment of fset */

uint8_t ipvd_ttl; /* time to live */

uint8_t ipv4_protocol; /* next |evel protocol */

str|ng i pv4_protostr; /* next level protocol, as a string */
uint16_t i pv4_checksum /* header checksum */

i paddr _t ipv4_src; /* source address */

i paddr _t ipv4_dst; /* destination address */

string ipv4_saddr; /* source address, string */

str| ng i pv4_daddr; /* destination address, string */
i pha_t *ipv4_hdr; /* pointer to raw header */

} ipvdinfo_t;

/*

* ipveinfo is a translated version of the | Pv6 header (with raw pointer).
* These values are NULL if the packet is not |Pv6.

&/

typedef struct ipv6info {
uint8_t ipv6_ver;
uint8_t ipvé_tclass;
uint32_t 1pv6_flow,
uint16_t ipv6_plen;
uint8_t ipv6_nexthdr;
string i pv6_nextstr;
uint8_t 1pv6e_hlim
in6_addr_t *ipv6_src;
in6_addr_t *ipv6_dst;
string i pv6_saddr;
string ipv6_daddr;
ip6_t *ipv6_hdr;

} ipv6info_t;

I P version (6) */
traffic class */

flow | abel */

payl oad | ength */

next header protocol */
next header protocol,
hop limt */

source address */
destination address */
source address, string */
destination address, string */
pointer to raw header */

—— e —
I

/*

* void_ip_t is a void pointer to either an |Pv4 or |Pv6 header. It has
* its own type nane so that a translator can be determ ned.

*/

typedef uintptr_t void_ip_t;

/*

* _dtrace_ipsr_ill_t is used by the translator to take an ill_t plus an

* additional arg6 fromthe ip:::send and ip:::recieve probes, and translate
* themto an ifinfo_t.

*/

typedef ill_t __dtrace_ipsr_ill_t;

/*

* __dtrace_tcp_void_ip_t is used by the translator to take either the

* non-NULL void_ip_t * passed in or, if it is NULL, uses arg3 (tcp_t *)

* fromthe tcp:::send and tcp:::recieve probes to translate to an ipinfo_t.
* When no headers are available in the TCP fusion case for tcp:::send

* and tcp:::receive case, this allows us to present the consumer w th header
*

data based on the tcp_t * content in order to hide the inplenentation

as a string */

new usr/src/lib/libdtrace/ comon/ip.d.in

194 * details of TCP fusion.

195 *

196 typedef void * _ dtrace_tcp_void_ip_t;
198 #pragma D binding "1.5" translator
199 translator pktinfo_t < mblk_t *M> {
200 pkt _addr = NULL;

201 };

203 #pragma D binding "1.5" transl ator

204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220
221

223
224
225
226
227
228
229
230

232
233
234
235
236
237
238

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

256
257
258
259

translator csinfo_t < conn_t *C > {
cs_addr = NULL;
}

#pragma D binding "1.6.3" translator
translator csinfo_t < ip_xmt_attr_t *C > {

cs_addr = (uintptr_t)C
cs_cid = C? CG>ixa_conn_id : NULL;
cs_pid =C? C—>|xa “cpid: -1;
cs_zoneid =
(G >i xa |pst == NULL || C >ixa_ipst->ips_netstack == NULL ||
C->i xa_I pst - >i ps_net st ack- >net st ack_st ackid ==
@3 OBAL _NETSTACKI D@ | |
C->ixa_cred == NULL ||
C->i xa_cred->cr_zone == NULL |l
C >ixa_cred->cr_uid == -1 ?
C->i xa_zoneid : C >ixa_cred->cr_zone->zone_id) : -1;
}
#pragma D binding "1.5" translator

translator ipinfo_t < ipha_t *I > {
ip_ver = I->| pha_version_and_hdr_|l ength >> 4;

i p_pl ength = ntohs(I->ipha_l ength) -
((1->i pha_version_and_hdr_length & Oxf) << 2);
i p_saddr = inet_ntoa(& ->ipha_src);
i p_daddr = inet_ntoa(& ->i pha_dst);
e
#pragma D binding "1.5" translator

transl at or ipinfot < ip6_t *I >{

ip_ver = *(U| nt8_t *)I >> 4;
ip_pl engt h = ntohs(I->ip6_ctlun.ip6_unl.ip6_unl_plen);
i p_saddr = inet_ntoa6(& ->ip6_src);
i p_daddr = inet_ntoa6(& ->i p6_dst);
e
#pragma D binding "1.5" translator

translator ipinfo_t < void_ip_t *I > {

ip_ver =1 !'= NULL ? *(U|nt8t I >> 4 : 0
ip_plength =1 '= NULL ? (*(uint8_t *)I >> 4 == 4 7?
ntohs(((ipha_t *)I)->ipha_length) -
((((ipha_t)I) >j pha ver3|0n _and_hdr _I ength & 0xf) << 2)
*(uint8_t *)I >> 4 == 6
nt ohs(((i p6_t *)I) >i p6_| ctlun i p6_unl.ip6_| unl _plen) : 0) : O;
ip_saddr =1 !'= NULL ? (*(uint8_t *)I >> 4 == 4 ?
inet_ntoa(&((ipha_t *)1)->ipha_src) : *(ui nt 8_t *)I >> 4 == 6 ?
inet_ntoa6(& (ip6_t *)1)->ip6_src) : "<unknown>") : "<unknown>";
ip_daddr =1 !'= NULL ? (*(uint8_t *)I >> 4 == 4 ?
inet_ntoa(& (ipha_t *)I)->i pha_dst) *(uint8_t *)I >> 4 ==6 7
inet_ntoa6(& (1p6_t *)I)->i p6_dst) " <unknown>") " <unknown>";
be
#pragma D binding "1.5" translator

translator ifinfo_t < dtrace_ipsr_ill_t *I > {
if_name = | !="NULL ? stringof(T->ill_name) "<nul | >";
if_ipstack =1 !'= NULL ? I->ill_ipst->i ps_netstack->netstack_stackid

new usr/src/lib/libdtrace/ comon/ip.d.in

260
261
262
263

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

i f _addr

#pragma D binding "1.6.3"

. 0;
| ocal = arg6;
= (uintptr_t)I;

/* probe dependent */

* Translate to an ipinfo_t * fromeither the non-NULL void_ip_t * passed in,
* or use arg3 (tcp_t
/

*) to fabricate ip header info.

transl at or

ipinfo_t < _dtrace_tcp_void_ip_t *I > {

ip_ver =1 != NULL ? *(uint8_t *)I >> 4 :

arg3 !'= NULL ? ((tcp_t *)arg3)->tcp_connp->conn_ipversion : 0;

ip_plength =

| 1= NULL & *(uint8_t *)I >> 4 == 4 ?

ntohs(((lphat *)1)->i pha_l ength) -

((((lpha *)1)->i pha_versi on_and hdr Iength & Oxf) << 2)

= NULL && *(uint8_t *)I >> 4 ==

ntohs(((|p6 t *)I) > p6_ctlun.ip6_ unl i p6_unl_pl en)

| 1= ?

arg3 !— NULL && probenane == "send" ?

((tcp_t *)arg3)->tcp_| ast_sent len + @'CP M N_HEADER LENGTH@ :
arg3 !'= NULL && probenane == "receive" ?

((tcp t *)arg3)->tcp_last_recv_len + @CP_M N_HEADER LENGTH@ :

i p_saddr =

| 1= NULL && *(uint8_t *)I >> 4 == 4 ?
inet_ntoa(& (ipha_t *)I)->ipha_src)

| 1= NULL & *(uint8_t *)I >> 4 == 6 ?
i net ntoaG(&((lth *)I) >i p6_src)

= NULL && *(uint8_t *)I >> 4 == 4 ?
|net _ntoa(&((ipha_t *)I)- >|pha dst)
I I="NULL & *(uint8_t *)I >> ==
inet_ntoa6(& (ip6_t *)I) >i p6_ dst)
I = NULL ? "<unknown>" :
arg3 != NULL && probenane == "send" ?

I I'= NULL ? "<unknown>" :
arg3 != NULL && probenane == "send" ?
inet_ntoa6(& (tcp_t *)arg3)- >tcp connp- >connua _v6addr. connua_| addr):
arg3 != NULL && probenane == "receive" ?
|net _ntoa6(&((tcp_t *)arg3)->tcp_connp->connua_v6addr. connua_faddr):
" <unknown>" ;

ip_t daddr =

new usr/src/lib/libdtrace/ comon/ip.d.in

inet_ntoa6(& (tcp_t *)arg3)->tcp_ connp->connua _v6addr. connua_faddr):

args = NULL && probenane == "receive" ?

inet_ntoa6(& (tcp_t *)arg3)->tcp_connp->connua_v6addr.connua_| addr):

" <unknown>";

#pragma D binding "1.5"
translator ipvdinfo_t <

transl ator
ipha_t *I > {

ipvd_ver =1 !'= NULL ? |->ipha_version_and_hdr_length >> 4 : 0;

ipvd_ihl =1 !'= NULL ? (I->ipha_version_and_hdr_length & Oxf) << 2 : 0;

ipv4_tos =1 !'= NULL ? |->ipha_type_of _service : O;

ipv4_length =1 !'= NULL ? ntohs(l->ipha_length) : O;

i pvd_ident = I'= NULL ? ntohs(l->ipha_ident) : O;

ipvd_flags = | !'= NULL ? ntohs(Il->i pha_fragnent_of fset_and_fl ags) >>
12 : ;

ipvd_offset = | !'= NULL ? ntohs(I->ipha_fragnment_offset_and_flags) &
oxofff : O

ipvd_ttl =1 !'= NULL ? |->ipha_ttl : O;

i pv4_pr ot ocol
i pv4_protostr

| = NULL ? I->ipha_protocol : O;
I == NULL ? "<null>" :

I - >i pha_protocol == | PPROTO TCP © o2 vTeP

| - >i pha_pr ot ocol) |
| ->i pha_protocol == |PPROTO | P

| PPROTO_UDP ? " UDP"
2 v p

326 | - >i pha_protocol == | PPROTO | CMP ? "1 WP

327 | - >i pha_protocol == | PPROTO | GW ?2 "1 GWP"

328 | ->i pha_protocol == | PPROTO EGP ? "EGP"

329 | - >i pha_protocol == | PPROTO | PV6 ? "l Pv6"

330 | - >i pha_protocol == | PPROTO ROUTI NG ? " ROUTE"

331 | - >i pha_protocol == | PPROTO _ESP ? "ESP"

332 | ->i pha_protocol == | PPROTO_AH ?2 "AH

333 | - >i pha_protocol == | PPROTO | CWV6 ? "I CWPv6"

334 | - >i pha_protocol == | PPROTO_CSPF ? " OSPF"

335 | - >i pha_protocol == | PPROTO_SCTP ? "SCTP"

336 | - >i pha_prot ocol == | PPROTO_RAW ? "RAW

337 IItostr((U|nt64t)|->|pha protocol)

338 i pv4d_checksum =1 !'= NULL ? ntohs(I->i pha_hdr_checksun') 0;

339 ipvd_src = | '-NULL'7I—>|pha src : O;

340 ipvd_dst =1 !'= NULL ? |->ipha_dst : O;

341 ipvd_saddr =1 != NULL ? inet_ntoa(& ->i pha_src) "<nul | >";

342 ipvd_daddr =1 != NULL ? inet_ntoa(& ->i pha_dst) "<nul | >";

343 ipvd_hdr = 1;

344 };

346 #pragma D binding "1.5" translator

347 translator ipveinfo_t <ip6_t *I > {

348 ipv6_ver =1 !'= NULL ? I->ip6_ctlun.ip6_un2_vfc >> 4 : 0;

349 ipv6_tclass =1 !'= NULL ? ((I->ip6_ctlun.ip6_unl.ip6_unl_flow &%
350 OxOfffffff) >> 20) : 0;

351 ipve_flow =1 != NULL ? |->ip6_ctlun.ip6_unl.ip6_unl_flow &&
352 OxOOOfffff 1 0

353 ipve_plen =1 != NULL ? ntohs(1->i p6_ctlun.ip6_unl.ip6_unl_plen)
354 ipv6_nexthdr =1 !'= NULL ? |->ip6_ctlun.ip6_unl.ip6_unl_nxt : O;
355 i pv6_nextstr =1 == NULL ? "<nul|>" :

356 1->i p6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO TCP ? "TCP"
357 I ->i p6_ctlun.ip6_uni.ip6_unl_nxt == | PPROTO_UDP ? " UDP"
358 I->i p6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO | P 2P
359 | ->i p6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO | CVP ? "o
360 | ->i p6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO | GWP ? "G
361 I-> p6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO_EGP ? "EG"
362 I->i p6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO | PV6 ? "1 Pv6"
363 I->ip6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO ROUTI NG ? " ROUTE"
364 I->i p6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO_ESP ? "ESP"
365 1->ip6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO_AH ? " AH'
366 I->i p6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO | CVPV6 ? "I CMPv6"
367 I->i p6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO CSPF ? " OSPF"
368 I ->i p6_ctlun. |p6 unl. |p6 unl_nxt == | PPROTO_SCTP ? "SCTP"
369 | ->i p6_ctlun.ip6_unl.ip6_unl_nxt == | PPROTO_RAW ? "RAW
370 IItostr((w nt64_t)Il->i p6_ ctlun. i p6_unl.ip6_ unl_nxt);

371 i pv6_hlim= 1= NULL ? I->ip6_ctlun.ip6_unl.ip6_unl_hlim: O0;
372 i pv6_src = I I'= NULL ? & ->ip6_src : O;

373 ipv6_dst =1 !'= NULL ? & ->ip6_dst : O;

374 ipv6_saddr =1 != NULL ? inet_ntoa6(& ->i p6_src) "<nul | >";

375 i pv6_daddr =1 != NULL ? inet_ntoa6(&l->i p6_dst) "<nul | >";

376 ipv6_hdr =1

377 };

new usr/src/lib/libdtrace/ common/ip.sed.in

R R R R

2337 Sat Aug 18 10:37:04 2012
new usr/src/lib/libdtrace/ comon/ip.sed.in
dccp: sock upcalls

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

15 * |f applicable, add the follow ng below this CODL HEADER, wth the

16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. Al rights reserved.
23 */

25 /*

26 * This file is a sed script which is first preprocessed by cpp or cc -E to
27 * define a set of sed directives which replace #define tokens with their
28 * values. After preprocessing, the sed script is run over ip.d.in to
29 * replace the #define tokens |isted below to create the finished ip.d.
30 * Refer to the rules in |ibdtrace/ Makefile.comfor nore information.

31 */

33 #include <sys/netstack. h>
34 #include <sys/socket. h>
35 #include <netinet/in.h>
36 #include <inet/ip.h>

37 #include <inet/tcp.h>

39 #define SED REPLACE(Xx) s/#x/x/g

41 SED_REPLACE(AF_| NET)
42 SED_REPLACE(AF_I| NET6)

44 SED_REPLACE(| PH_DF)
45 SED_REPLACE(| PH_MF)

47 SED_REPLACE(| PPROTO | P)

48 SED REPLACE(| PPROTO_HOPOPTS)
49 SED_REPLACE(| PPROTO_| CMP)

50 SED_REPLACE(| PPROTO | GWP)

51 SED_REPLACE(| PPROTO_GGP)

52 SED_REPLACE(| PPROTO_ENCAP)
53 SED_REPLACE(| PPROTO_TCP)

54 SED_REPLACE(| PPROTO_EGP)

55 SED REPLACE(| PPROTO_PUP)

56 SED_REPLACE(| PPROTO_UDP)

57 SED_REPLACE(| PPROTO | DP)

58 SED REPLACE(| PPROTO | PV6)

59 SED REPLACE(| PPROTO_ROUTI NG
60 SED_REPLACE(| PPROTO_FRAGVENT)
61 SED_REPLACE(| PPROTO_RSVP)

new usr/src/lib/libdtrace/ common/ip.sed.in

62 SED REPLACE(| PPROTO_ESP)

63 SED REPLACE(| PPROTO_AH)

64 SED REPLACE(| PPROTO_| CMPVE)
65 SED_REPLACE(| PPROTO_NONE)
66 SED REPLACE(| PPROTO DSTOPTS)
67 SED_REPLACE(| PPROTO_HELLO)
68 SED REPLACE(| PPROTO_ND)

69 SED REPLACE(| PPROTO_EQN)

70 SED_REPLACE(| PPROTO_OSPF)
71 SED_REPLACE(| PPROTO_PI M

72 SED_REPLACE(| PPROTO_SCTP)
73 SED_REPLACE(| PPROTO_RAW

74 SED_REPLACE(| PPROTO_DCCP)
75 #endif /* | codereview */
76 SED_REPLACE(| PPROTO_MAX)

78 SED_REPLACE(TCP_M N_HEADER LENGTH)
80 SED_REPLACE(GLOBAL_NETSTACKI D)

new usr/src/lib/libipadm common/i padm prop. c

R R R R

55005 Sat Aug 18 10:37:04 2012
new usr/src/lib/libi padm common/i padm prop. c
dccp: properties

R R R T

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.
23 */
25 /*
26 * This file contains routines that are used to nodify/retrieve protocol or
27 * interface property values. It also holds all the supported properties for
28 * both IP interface and protocols in ‘ipadmprop_desc_t’. Follow ng protocols
29 * are supported: |P, IPv4, IPv6, TCP, SCTP, UDP, |CMP and DCCP
29 * are supported: IP, I1Pv4, |IPv6, TCP, SCTP, UDP and | CVP.
30 *
31 * This file also contains wal kers, which wal ks through the property table and
32 * calls the callback function, of the form‘ipadmprop_wunc_t’ , for every
33 * property in the table.
*

/

36 #include <unistd. h>

37 #include <errno. h>

38 #include <ctype. h>

39 #include <fcntl. h>

40 #include <strings. h>

41 #include <stdlib. h>

42 #include <netinet/in.h>
43 #incl ude <arpalinet.h>

44 #incl ude <sys/sockio. h>
45 #incl ude <assert.h>

46 #include <libdllink.h>

47 #incl ude <zone. h>

48 #include "libipadm.inpl.h"
49 #include <inet/tunabl es. h>

51 #define | PADM NONESTR "none"
52 #define DEF_METRI C_VAL 0 /* default netric value */

54 #define A _CNT(arr) (sizeof (arr) / sizeof (arr[0]))

56 static ipadmstatus_t i _ipadmvalidate_if(ipadmhandl e_t, const char *,
57 uint_t, uint_t);
59 /*

60 * Callback functions to retrieve property values fromthe kernel. These

new usr/src/lib/libi padm common/i padm prop. c

61 * functions, when required, translate the values fromthe kernel to a format
62 * suitable for printing. For exanple: boolean values will be translated

63 * to on/off. They also retrieve DEFAULT, PERM and PGCSSI BLE val ues for

64 * a given property.

65 */

66 static ipadmpd_getf_t i _ipadmget_prop, i_ipadmget_ifprop_flags,

67 i _ipadmaget_ntu, i padm_get _netric,

68 i _i padm get _usesrc, i_i padm get_forwardi ng,

69 i _i padm get _ ecnsack i_i padm get _host nodel ;

71 /*

72 * Callback function to set property values. These functions translate the
73 * values to a format suitable for kernel consunption, allocates the necessary
74 * ioctl buffers and then invokes ioctl ()

*/

75
76 static ipadmpd_setf_t i_ipadmset_prop, i_ipadmset_ntu,
77 i |padm set _ifprop_ flags
78 i _ipadmset _metric, i_ipadmset_usesrc,
79 i _i padm set “forvar di ng, i _i padm set _eprivport,
80 i _i padm set _ecnsack, 1 _i padm set_host nodel ;
82 /* array of protocols we support */
83 static int protocols[] = { MOD_PROTO | P, MOD PROTO RAW P,
84 MOD_PROTO_TCP, MOD_PROTO_UDP,
85 MOD_PROTO_SCTP, MOD_PROTO_DCCP };
85 MOD_PROTO_SCTP };
87 /*
88 * Supported | P protocol properties.
89 */
90 static ipadmprop_desc_t ipadm.ip_prop_table[] = {
91 { "arp", TPADMPROP_CLASS TF, MOD PROTO | PV4, 0,
92 i _ipadm set _ifprop_fTags, i_ipadm get_onoff,
93 i _ipadmget_ifprop_flags },
95 { "forwarding", | PADMPROP_CLASS MODIF, MOD_PROTO | PV4, O,
96 i _i padm set_forwarding, i_ipadm get_onoff,
97 i _i padm get _forwarding },
99 { "netric", | PADMPROP_CLASS |F, MOD_PROTO | PV4, O,
100 i |padm set_metric, NULL, i _ipadm get _netric },
102 { "mtu", | PADVPROP_CLASS_| F, MOD_PROTO | PV4, O,
103 i padm set_mtu, i_ipadmaget_ntu, i_ipadmget_ntu },
105 { "exchange_routes", |PADMPROP_CLASS_| F, MOD_PROTO | PV4, 0,
106 i _ipadmset _ifprop_flags, i_ipadmget_onoff,
107 i_ipadmget _ifprop_flags },
109 { "usesrc", |PADMPROP_CLASS |F, MOD_PROTO_I PV4, O,
110 i _ipadm set _usesrc, NULL, i_ipadmget_usesrc },
112 { "ttl", | PADMPROP_CLASS MODULE, MOD PROTO | PV4, 0,
113 i _i padm set_prop, i_ipadmget_prop, i_ipadmget_prop },
115 { "forwarding", |PADMPROP_CLASS MODI F, MOD_PROTO | PV6, O,
116 i _i padm set _forwarding, i_i padm get_onoff,
117 i _i padm_ get _forwarding },
119 { "hoplimt", |PADVMPROP_CLASS MODULE, MOD_PROTO I PV6, O,
120 i _i padm set _prop, i_ipadmget _prop, i_ipadmget_prop },
122 {" matrl c", | PADMPROP_CLASS_| F, MOD_PROTO_I PV6, O,
123 |padm set_netric, NULL, i_ipadmget _netric },
125 { "ntu", | PADMPROP_CLASS |F, MOD_PROTO | PV6, O,

new usr/src/lib/libipadm common/i padm prop. c

126 i_ipadmset_ntu, i_ipadmget_ntu, i_ipadmaget_ntu },
128 { "nud", | PADMPROP_CLASS |F, MOD _PROTO | PV6, O,

129 i _ipadmset_ifprop_flags, i_ipadmget_onoff,

130 i _ipadmaget _ifprop_flags },

132 { "exchange_routes", | PADVPROP_CLASS | F, MOD_PROTO | PV6, O,
133 i _ipadm set_ifprop_flags, i_ipadmget_onoff,

134 i _ipadmaget i fprop_flags },

136 { "usesrc”, | PADMPROP_CLASS |F, MOD PROTO | PV6, O,

137 i _ipadm set_usesrc, NULL, i_ipadmget_usesrc },

139 { "hostnodel ", | PADMPROP_CLASS MODULE, MOD_PROTO | PV6, O,
140 i _i padm set _hostnodel, i_i padm get_host nodel ,

141 i _i padm get _host nodel },

143 { "hostnodel ", | PADMPROP_CLASS_MODULE, MOD PROTO | PV4, O,
144 i _i padm set _hostnodel, i_i padm get_host nodel ,

145 i _i padm get _host nodel },

147 { NULL, O, O, O, NULL, NULL, NULL }

148 };

_hnchanged_port ion_omtted_

242 | * Supported DCCP protocol properties */
243 static ipadmprop_desc_t ipadmdccp_prop_table[] = {

244 { "extra_priv_ports", | PADMPROP_CLASS MODULE, MOD_PROTO_DCCP,

245 | PADVPROP_MULVAL, i _i padm set _eprivport, i_i padm get_prop,

246 i _i padm get _prop },

248 { "largest_anon_port", | PADMPROP_CLASS MODULE, MOD_PROTO DCCP, O,
249 i _I padm set _prop, i_i padm get _prop, i_i padmget_prop },

251 { "recv_maxbuf", | PADMPROP_CLASS MODULE, MOD_PROTO _DCCP, O,

252 i i padm set _prop, i_ipadmget _prop, i_ipadmget prop },

254 { "send_maxbuf", | PADMPROP_CLASS_MODULE, MOD_PROTO DCCP, O,

255 i _i padm set_prop, i_ipadmget_prop, i_ipadmget_prop },

257 {" smal | est _anon_port", | PADMPROP_CLASS_MODULE, MOD_PROTO _DCCP, O,
258 _i padm set _prop, i _ipadm get _prop, i_ipadmget_prop },

260 { "smallest_nonpriv_port", |PADVMPROP_CLASS_MODULE, MOD_PROTO_DCCP, O,
261 i _ipadmset_prop, i_i padm get_prop, i_i padmget _prop },

263 { NULL, O, 0, O, NULL, NULL, NULL }

264 };

266 #endif /* ! codereview */

267 | *

268 * A dummy private property structure, used while handling private
269 */prot ocol properties (properties not yet supported by Iibipadn).
270 *

271 static ipadm prop_desc_t i padm privprop =\

272 { NULL, |PADVPROP_CLASS_MODULE, MOD_PROTO NONE, O,
273 i_ipadmset_prop, i_ipadmget_prop, i_ipadmget_prop };
275 [*

276 * Returns the property description table, for the given protocol
277 *|

278 static ipadmprop_desc_t *

279 i _i padm get _propdesc_t abl e(uint_t proto)

280 {
281 switch (proto) {
282 case MOD_PROTO I P:

new usr/src/lib/libipadm common/i padm prop. c

283 case MOD_PROTO | PV4:

284 case MOD_PROTO | PV6:

285 return (|padm|p prop_table);
286 case MOD_PROTO_RAW

287 return (|padm|crrp prop_table);
288 case MOD_PROTO T

289 return (| padmtcp prop_table);
290 case MOD_PROTO_Ul

291 return (| padm udp_prop_tabl e);
292 case MOD_PROTO_ S

293 return (| padm sctp_prop_table);
294 case MOD_PROTO_DCCP:

295 return (i padmdccp_prop_table);
296 #endif /* | codereview */

297

299 return (NULL);

300 }

302 statl c ipadm prop_desc_t *

304

305 int err = 0;

306 bool ean_t mat ched_name = B_FALSE;

307 i padm prop_desc_t *ipdp = NULL *i pdtbl ;

309 if ((ipdtbl = i_ipadmget_propdesc_table(proto)) ==
310 err = EI'NVAL;

311 goto ret;

312

313 for (ipdp = ipdtbl; ipdp->ipd_name != NULL; ipdp++)
314 1 f (strcrrp(pnarre |pdp >ji pd_nanme) == 0) {
315 mat ched_name = B_TRUE;

316 if (ipdp->ipd_proto == proto)
317 br eak;

318 }

319 }

320 if (ipdp->ipd_name == NULL) {

321 err = EN@NT

322 /* |f we mat ched nane, but failed protocol
323 if (matched_nane)

324 err = EPROTO

325 i pdp = NULL;

326 1

327 ret:

328 if (errp !'= NULL)

329 *errp = err;

330 return (ipdp);

331}

333 char *

334 ipadm proto2str(uint_t proto)

335 {

336 switch (proto) {

337 case MOD_PROTO | P:

338 return ("ip");

339 case MOD_PROTO | Pv4:

340 return ("ipva");

341 case MOD_PROTO | PV6:

342 return ("ipve");

343 case MOD_PROTO_RAW P:

344 return ("icnp");

345 case MOD_PROTO_TCP:

346 return ("tcp");

347 case MOD_PROTO_UDP:

348 return ("udp");

303 i _i padm get _prop_desc(const char *pnane, uint_t proto, int *errp)
{

NULL) {

{

check

*/

new usr/src/lib/libipadm common/i padm prop. c

349 case MJD_PROTO_SCTP:

350 return ("sctp");

351 case MOD_PROTO _DCCP:

352 return ("dccp");

353 #endif /* ! codereview */

354

356 return (NULL);

357 }

359 uint t

360 i{padm_sterroto(const char *protostr)

361

362 if (protostr == NULL)

363 return (MOD_PROTO NONE) ;

364 if (strcnp(protostr, "tcp") == 0)

365 return (MOD_PROTO TCP);

366 else if (strcnp(protostr, "udp") == 0)
367 return (MOD_PROTO UDP);

368 else if (strcnp(protostr, "ip") == 0)
369 return (MOD_PROTO I P);

370 else if (strcnp(protostr, "ipv4") == 0)
371 return (MOD_PROTO I PV4);

372 else if (strcnp(protostr, "ipvée") == 0)
373 return (MOD_PROTO I PV6);

374 else if (strcnp(protostr, "icnp") == 0)
375 return (MOD_PROTO RAW P) ;

376 else if (strcnp(protostr, "sctp") == 0)
377 return (MOD_PROTO_SCTP);

378 else if (strcnp(protostr, "arp") == 0)
379 return (MOD_PROTO I P);

380 else if (strcnp(protostr, "dccp") == 0)
381 return (MOD_PROTO_DCCP);

382 #endif /* ! codereview */

384 return (MOD_PROTO NONE) ;

385 }

387 /* ARGSUSED */
388 static ipadmstatus_t

389 i _i padm set _nt u(i padm | handl e_t iph, const void *arg,

390 i padm prop_desc_t *pdp, const void *pval, uint_t proto,
391 {

392 struct lifreq lifr;

393 char *endp;

394 uint_t nt u;

395 int S;

396 const char *i f name = arg;

397 char val [MAXPROPVALLEN] ;

399 /* to reset MIU first retrieve the default MIU and then set
400 if (flags & | PADM OPT_DEFAULT) {

401 i padm status_t status;

402 uint_t si ze = MAXPROPVALLEN;

404 status = i_i padm get _prop(i ph, arg, pdp, val, &size,
405 pr oto MOD_PROP_DEFAULT) ;

406 if (status != TPADM SUCCESS)

407 return (status);

408 pval = val;

409 1

411 errno = O;

412 mu = (uint_t)strtol (pval, &endp, 10);

413 if (errno!=0 || *endp !="\0")

414 return (1 PADM | NVALI D_ARG) ;

it

uint_t flags)

*/

new usr/src/lib/libi padm common/i padm prop. c

416 bzero(& ifr, sizeof (lifr));

417 (void) strlicpy(lifr.lifr_nane, ifnane,

418 lifr.lifr_mu = nu;

420 = (proto == MOD_PROTO_ | PV6 ? iph->i ph_sock6 :
421 |f (|octl(s SIOCSLIFMTU (caddr_t)&ifr) < 0)
422 return (i padmerrno2status(errno));

424 return (| PADM SUCCESS) ;

425 }

427 | * ARGSUSED */
428 static ipadmstatus_t

sizeof (lifr.lifr_nane));

i ph->i ph_sock) ;

uint_t flags)

sizeof (lifr.lifr_nane));

i ph->i ph_sock);

429 i _i padm set _netric(i padm handl e_t iph, const void *arg,
430 i padm prop_desc_t *pdp, const void *pval, uint_t proto,
431 {

432 struct lifreq lifr;

433 char *endp;

434 int netric;

435 const char *ifnane = arg;

436 int S5

438 /* if we are resetting, set the value to its default value */
439 if (flags & | PADM OPT_DEFAULT)

440 metric = DEF_METRI C_VAL;

441 } else {

442 errno = 0;

443 metric = (uint t)strtol(pval &endp, 10);
444 if (errno!=0]| *endp !=)

445 return (1 PADM | NVALI D_ARG) ;

446 }

448 bzero(&ifr, sizeof (lifr));

449 (void) strlcpy(lifr.lifr_name, ifnane,

450 lifr.lifr_metric = nmetric;

452 s = (proto == MOD_PROTO_| PV6 ? iph->i ph_sock6 :
454 if (ioctl(s, SIOCSLIFMETRIC, (caddr_t)&ifr) < 0)
455 return (i padm errno2status(errno));

457 return (| PADM SUCCESS) ;

458 }

460 /* ARGSUSED */

461 statl c i padm status_t
462 i _i padm set _usesrc(i padm handl e_t iph, const void *arg,
463{ i padm prop_desc_t *pdp, const void *pval,

464

uint_t proto,

uint_t flags)

_ipadmyvalidate_ifnane().

465 struct lifreq lifr;

466 const char *ifnane = arg;

467 int S;

468 uint_t ifindex = 0;

470 /* if we are resetting, set the value to its default value */
471 if (flags & | PADM OPT_DEFAULT)

472 pval = | PADM NONESTR;

474 /*

475 * cannot specify logical interface nane. We can also filter out other
476 * bogus interface names here itself through i

477 */

478 if (strcnp(pval, |PADM NONESTR) != 0 &&

479 li _i padm_ val i date_i fnane(i ph, pval))

480 return (1 PADM | NVALI D_ARG) ;

new usr/src/lib/libipadm common/i padm prop. c

482 bzero(& ifr, sizeof (lifr));

483 (void) stricpy(lifr.lifr_nane, ifnane, sizeof (lifr.lifr_name));
485 = (proto == MOD_PROTO_|I PV6 ? iph->i ph_sock6 : iph->i ph_sock);
487 if (strcnp(pval, | PADM NONESTR) != 0) {

488 if ((ifindex = if_nanetoindex(pval)) ==
489 return (i padm errno2st at us(errno))
490 lifr.lifr_index = ifindex;

491 } else {

492 if (ioctl(s, SIOCGLI FUSESRC, (caddr_t)&ifr) < 0)
493 return (ipadmerrno2status(errno));
494 lifr.lifr_index = O;

495 1

496 if (ioctl(s, SIOCSLIFUSESRC, (caddr_t)&ifr) < 0)
497 return (i padmerrno2status(errno));

499 return (1 PADM SUCCESS);

500 }

502 static struct hostnodel _strval {

503 char *esmstr;

504 i p_hostnodel _t esmval;

505 } esmarr[] = {

506 "weak", | P_WEAK ES},

507 {"src-priority", IPSRC PRI _ES},

508 {"strong", IP_ STRONG 5 ES},

509 {"custont, |P_MAXVAL_ES}

510 };

512 static ip_hostnodel _t

513 i _i padm host nodel _str2val (const char *pval)

514 {

515 int i;

517 for (i =0; i < ACNT(esmarr); i++) {

518 if (esmarr[i].esmstr !'= NULL &&

519 strcnp(pval, esmarr[i].esmstr) == 0) {
520 return (esmarr[i].esmuval);

521 }

522 }

523 return (| P_MAXVAL_ES);

524 }

526 static char *

527 i _i padm host nodel _val 2str (i p_host nodel _t pval)

528 {

529 int i;

531 (i =0; i <ACNT(esmarr); i++) {

532 if (esmarr[i].esmval == pval)

533 return (esmarr[i].esmstr);

534 }

535 return (NULL);

536 }

538 /* ARGSUSED */

539 statl c i padmstatus_t

540 i _i padm set _host nodel (i padm handl e_t iph, const void *arg,
541 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
542 {

543 i p_host nodel _t host nodel ;

544 char val[11]; /* covers uint32_nax as a string */
546 if ((flags & | PADM OPT_DEFAULT) == 0) {

new usr/src/lib/libipadm common/i padm prop. c

547 host model =i _i padm host nodel _str2val (pval);

548 if (hostm)del == | P_MAXVAL_ES)

549 return (1 PADM | NVALI D_ARG) ;

550 (void) snprintf(val, sizeof (val), "%l", hostnodel);
551 pval = val;

552 }

553 return (i_ipadmset_prop(iph, NULL, pdp, pval, proto, flags));
554 }

556 /* ARGSUSED */
557 static ipadmstatus_t
558 i _i padm get host nodel (i padm handl e_t iph, const void *arg

559 i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
560 uint_t valtype)

561 {

562 i p_host nodel _t host nodel ;

563 char *cp;

564 size_t nbytes;

565 i padm status_t status;

567 switch (valtype) {

568 case MOD_PROP_PERM

569 nbytes = snprintf(buf, *bufsize, "%", MOD_PROP_PERM RW ;
570 br eak;

571 case N[D_PROD_DEFAULT:

572 nbytes = snprintf(buf, *bufsize, "weak");

573 br eak;

574 case MOD_PROP_ACTI VE:

575 status = i_i padm get_prop(iph, arg, pdp, buf, bufsize, proto,
576 val type);

577 if (status != | PADM SUCCESS)

578 return (status);

579 bcopy(buf &host nodel , sizeof (hostnodel));

580 cp = i_i padm host model _val 2str (host nodel);

581 nbytes = snprintf(buf, *bufS| ze, "U%",

582 (cp I'= NULL ? cp : "?"));

583 bre

584 case MOD PR(P PCSSI BLE:

585 nbytes = snprintf(buf, *bufsize, "strong,src-priority,weak");
586 br eak;

587 defaul t:

588 return (1 PADM | NVALI D_ARG);

589 }

590 if (nbytes >= *bufsize) {

591 /* insufficient buffer space */

592 *bufsize = nbytes + 1;

593 return (1 PADM NO BUFS);

594 }

595 return (I PADM SUCCESS);

596 }

598 /* ARGSUSED */
599 static ipadmstatus_t
600 i _i padm set _ifprop_flags(i padm handl e_t iph, const void *arg,

601 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
602 {

603 i padm status_t status = | PADM SUCCESS;

604 const char *ifname = arg;

605 ui nt64_t on_flags = 0, off_flags = 0;

606 bool ean_t on = B_FALSE;

607 sa fam Ty _t af = (proto == MOD_PROTO | PV6 ? AF_INET6 : AF | NET);
609 /* if we are resetting, set the value to its default value */
610 if (flags & | PADM OPT_DEFAULT) {

611 if (strcnp(pdp->i pd_nane, "exchange_routes") == 0 ||

612 strcnp(pdp->i pd_narme, "arp") == 0 ||

new usr/src/lib/libipadm common/i padm prop. c 9 new usr/src/lib/libipadm common/i padm prop. c 10
613 strcnp(pdp->i pd_nanme, "nud") == 0) { 679 nvp = nvlist_next_nvpair(portsnvl, nvp)) {
614 pval = | PADM ONSTR; 680 ++count ;
615 } else if (strcnp(pdp->ipd_nanme, "forwarding") == 0) { 681 }
616 pval = | PADM OFFSTR,
617 } else { 683 if (iph- >|phf|ags&IPHINIT){
618 return (1 PADM PROP_UNKNOVW) ; 684 | ags | = | PADM OPT_APPEND;
619 } 685 } else i f (count > 1) {
620 } 686 /*
687 * W allow only one port to be added, renoved or
622 if (strcnp(pval, | PADM ONSTR) == 0) 688 * assigned at a tine.
623 on = B TRUE 689 *
624 else if (strcrrp(pval | PADM OFFSTR) == 0) 690 * However on reboot, while initializing protocol
625 on = B_FALSE 691 * properties, extra_priv_ports mght have nultiple
626 el se 692 * val ues. Oﬁly in that case we allow setting nultiple
627 return (1 PADM | NVALI D ARG ; 693 * val ues.
694 */
629 if (strcnp(pdp->i pd_nane, "exchange_routes") == 0) { 695 nvlist_free(portsnvl);
630 if (on) 696 return (| PADM | NVALI D_ARG);
631 off_flags = | FF_NORTEXCH; 697 1
632 el se
633 on_flags = | FF_NORTEXCH, 699 for (nvp = nvlist_next_nvpair(portsnvl, NULL) nvp !'= NULL;
634 } else |f (strcnp(pdp- >i pd name, “arp") == 0) { 700 nvp = nvlist_next_nvpair(portsnvl, nvp))
635 (on) 701 status = i _i padm set _prop(iph, arg, pdp, nvpai r _nanme(nvp),
636 of f _flags = | FF_NOARP; 702 proto, flags);
637 el se 703 if (status != | PADM SUCCESS)
638 on_flags = | FF_NOARP; 704 br eak;
639 } else if (strcnp(pdp->i pd_nanme, "nud") == 0) { 705 }
640 if (on) 706 nvlist_free(portsnvl);
641 of f _flags = | FF_NONUD; 707 return (status);
642 el se 708 }
643 on_flags = | FF_NONUD,
644 } else |f (strcrrp(pdp->i pd_nane, "forwarding") == 0) { 710 /* ARGSUSED */
645 (on) 711 static ipadmstatus_t
646 on_flags = | FF_ROUTER, 712 i _i padm set _forwardi ng(i padm handl e_t iph, const void *arg,
647 el se 713 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
648 off_flags = | FF_ROUTER 714 {
649 } 715 const char *ifname = arg;
716 i padm status_t status;
651 if (on_flags || off _flags) {
652 status = i _i padm set _flags(iph, ifnanme, af, on_flags, 718 /*
653 of f_flags); 719 * if interface nane is provided, then set forwarding using the
654 } 720 * | FF_ROUTER f | ag
655 return (status); 721 */
656 } 722 if (ifname !'= NULL) {
723 status = i _i padmset_ifprop_flags(iph, ifnane, pdp, pval,
658 /* ARGSUSED */ 724 proto, flags);
659 st atic ipadmstatus_t 725 } else {
660 i _i padm set _eprivport (i padm handl e_t i ph const void *arg, 726 char *val = NULL;
661 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
662 { 728 /*
663 nvlist_t *portsnvl = NULL; 729 * if the caller is IPH LEGACY, ‘pval’ already contains
664 nvpair_t *nvp; 730 * numeric val ues.
665 i padmstatus_t status = | PADM SUCCESS; 731 */
666 i nt err; 732 if (!(flags & | PADM OPT_DEFAULT) &&
667 ui nt _t count = 0; 733 ! (i ph->i ph_flags & | PH_LEGACY)) {
669 if (flags & | PADM OPT_DEFAULT) { 735 if (strcnp(pval, |PADM ONSTR) == 0)
670 assert(pval == NULL); 736 val = "1
671 return (i_ipadm set_prop(iph, arg, pdp, pval, proto, flags)); 737 else if (st rcrrp(pval | PADM OFFSTR) == 0)
672 } 738 al = "0";
739 el se
674 if ((err = ipadmstr2nvlist(pval, &portsnvl, | PADM NORVAL)) != 0) 740 return (1 PADM | NVALI D_ARG) ;
675 return (i padmerrno2status(err)); 741 pval = val;
742 }
677 /* count the nunber of ports */
678 for (nvp = nvlist_next_nvpair(portsnvl, NULL); nvp != NULL; 744 status = i _i padm set _prop(i ph, ifname, pdp, pval, proto, flags);

new usr/src/lib/libipadm common/i padm prop. c

745 }

747 return (status);

748 }

750 /* ARGSUSED */

751 static ipadmstatus_t

752 i _i padm set _ecnsack(i padm handl e_t iph, const void *arg,

753 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
754 {

755 uint_t i;

756 char val [MAXPROPVALLEN] ;

758 /* if |PH LEGACY is set, ‘pval’ already contains nuneric values */
759 if (1(flags & | PADM OPT DEFAULT) && ! (i ph->iph_flags & | PH LEGACY)) {
760 for (i = 0; ecn_sack_vals[i] != NULL; i++)

761 if (str crrp(pvaI ecn_sack_vals[i]) == 0)

762 br eal

763 }

764 1f (ecn_sack_val s[i] == NULL)

765 return (1 PADM | NVALI D_ARG) ;

766 (void) snprintf(val, MAXPROPVALLEN, "%", i);

767 pval = val;

768 }

770 return (i_ipadmset_prop(iph, arg, pdp, pval, proto, flags));

771 }

773 [* ARGSUSED */

774 ipadm status_t

775 i _i padm get _ecnsack(i padm handl e_t iph, const void *arg

776 i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,

777 uint _t val type)

778 {

779 i padm status_t status = | PADM SUCCESS;

780 uint _t i, nbytes = 0;

782 switch (valtype) {

783 case MOD_PROP_PCSSI BLE:

784 for (i = 0; ecn_sack_vals[i] != NULL; i++) {

785 if (i ==0)

786 nbytes += snprintf(buf + nbytes,

787 *puf size - nbytes, "%", ecn_sack_vals[i]);
788 el se

789 nbytes += snprintf(buf + nbytes,

790 *bufsize - nbytes, ",%", ecn_sack_vals[i]);
791 if (nbytes >= *bufsize)

792 r ;

793 }

794 br eak;

795 case MOD_PROP_PERM

796 case MOD_PROP_DEFAULT:

797 case MOD_PROP_ACTI VE:

798 status = i_i padm get_prop(iph, arg, pdp, buf, bufsize, proto,
799 val type);

801 /*

802 * |f IPH_LEGACY is set, do not convert the val ue returned
803 * from kernel ,

804 */

805 if (iph->iph_flags & | PH_LEGACY)

806 br eak;

808 /*

809 * For current and default value, convert the val ue returned
810 * fromkernel to nore discrete representation.

11

new usr/src/lib/libi padm common/i padm prop. c

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

829
830

832
833
834
835
836
837
838
839

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859

861
862
863
864

866
867
868

870
871
872

*
/
if (status == | PADM SUCCESS && (val type == MOD_PROP_ACTI VE | |
val type == MOD_PROP_DEFAULT)) {
i = atoi(buf);
assert(i < 3);
nbytes = snprintf(buf, *bufsize, "%",
ecn_sack_vals[i]);
}
br eak;
defaul t:
return (1 PADM | NVALI D _ARG);
}
if (nbytes >= *bufsize) {
/* insufficient buffer space */
*buf size = nbytes + 1;
return (| PADM NO BUFS);
}
return (status);
}
/* ARGSUSED */

static i padmstatus_t

i _i padm get _f orwardi ng(| padm handl e_t iph, const void *arg

i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, ui ht_t proto,
uint_t valtype)
{
const char *ifnane = arg;
i padm status_t status = | PADM SUCCESS;
/*
* if interface nane is provided, then get forwardi ng status using
* Sl OCGLI FFLAGS
*/
if (ifname !'= NULL) {
status = i_i padmget _ifprop_flags(iph, ifnane, pdp,
buf, bufsize, pdp->i pd_proto, valtype);
} else {
status = i _i padm get _prop(iph, ifname, pdp, buf,
buf si ze, proto, valtype);
*
* |f IPH_LEGACY is set, do not convert the val ue returned
* from ker nel ,
*/
if (iph->iph_flags & | PH LEGACY)
goto ret;
if (status == | PADM SUCCESS && (val type == MOD_PROP_ACTI VE | |
val type == MOD_PROP_DEFAULT)) {
uint_t val = atoi (buf);
(void) snprintf(buf, *bufsize,
(val == 1 ? | PADM ONSTR : | PADM OFFSTR)) ;
}
}
ret:
return (status);
}
/* ARGSUSED */

static i padmstatus_t

i _ipadm get _ntu(i padmhandle_t iph, const void *arg,

873 i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
874 uint_t valtype)

875 {

876 struct lifreq lifr;

12

new usr/src/lib/libipadm common/i padm prop. c

877
878
879

881
882
883
884
885
886
887
888
889
890
891
892

894
895
896
897
898
899
900
901
902
903
904
905
906
907

909
910
911
912
913

914 {

915
916
917
918

920
921
922
923
924
925
926
927
928
929

931
932
933
934
935
936
937
938
939
940
941
942

const char *ifname = arg;
size_t nbyt es;
int S;

switch (valtype) {
case MOD_PROP_PERM
nbytes = snprintf(buf, *bufsize, "%l", MOD_PROP_PERM RW;
br eak;
case MOD_PROP_DEFAULT:
case MOD_PROP_POSSI BLE:
return (i_ipadmget_prop(iph, arg, pdp, buf, bufsize,
proto, valtype));
case MOD_PROP_ACTI VE:
bzero(& ifr, sizeof (lifr));
(void) stricpy(lifr.lifr_nane, ifnane, sizeof (lifr.lifr_name));
s = (proto == MOD PROTO I PV6 ? iph->i ph_sock6 : iph->i ph_sock);

if (ioctl(s, SIOCGLIFMIU, (caddr_t)&ifr) < 0)
return (i padm errno2status(errno));
nbytes = snprintf(buf, *bufsize, "%", lifr.lifr_ntu);
br eak;
defaul t:
return (| PADM | NVALI D_ARG);

}

if (nbytes >= *bufsize) {
/* insufficient buffer space */
*buf size = nbytes + 1,
return (1 PADM NO _BUFS);

}
return (1 PADM SUCCESS);

ARGSUSED */

static ipadmstatus_t

i _ipadmget_nmnetric(ipadmhandl e_t iph, const void *arg,

i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
uint_t valtype)

struct lifreq lifr;

const char *ifnane = arg;
size_t nbyt es;

int s, val;

switch (valtype) {
case MOD_PROP_PERM
val = MOD_PROP_PERM RW
br eak;
case MOD_PROP_DEFAULT:
val = DEF_METRI C_VAL;
br eak;
case MOD_PROP_ACTI VE:
bzero(& ifr, sizeof (lifr));
(void) stricpy(lifr.lifr_name, ifnane, sizeof (lifr.lifr_name));

s = (proto == MOD_PROTO_ | PV6 ? iph->i ph_sock6 : iph->i ph_sock);
if (ioctl(s, SIOCGLI FMETRIC, (caddr_t)&ifr) < 0)
return (i padmerrno2status(errno));
val = lifr.lifr_nmetric;
br eak;
defaul t:
return (1 PADM | NVALI D ARG ;

}
nbytes = snprintf(buf, *bufsize, "%", val);
if (nbytes >= *bufsize)

/* insufficient buffer space */

*buf size = nbytes + 1;

13

new usr/src/lib/libi padm common/i padm prop. c

943
944

946
947

949
950
951
952
953
954
955
956
957
958
959

961
962
963
964
965
966
967
968
969
970

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

1008

return (1 PADM NO BUFS);
}

return (1 PADM SUCCESS) ;
}

/* ARGSUSED */

static i padmstatus_t

i _i padm get _usesrc(i padm handl e_t iph, const void *arg,
i padm prop_desc_t *ipd, char *buf, uint_t *bufsize, uint_t proto,
uint_t valtype)

14

{
struct lifreq lifr;
const char *ifnanme = arg;
int S;
char i f _name[| F_NAMESI ZE] ;
size_t nbyt es;
switch (valtype) {
case MOD_PROP_PERM
nbytes = snprintf(buf, *bufsize, "9%", MOD_PROP_PERM RW;
br eak;
case MOD_PROP_DEFAULT:
nbytes = snprintf(buf, *bufsize, "%", |PADM NONESTR);
br eak;
case MOD_PROP_ACTI VE:
bzero(& ifr, sizeof (lifr));
(void) stricpy(lifr.lifr_name, ifnane, sizeof (lifr.lifr_name));
s = (proto == MOD_PROTO_| PV6 ? iph->i ph_sock6 : iph->i ph_sock);
if (ioctl(s, SIOCGLI FUSESRC, (caddr_t)&ifr) < 0)
return (i padmerrno2status(errno));
if (lifr.lifr_index == 0
/* no src address was set, so print 'none’ */
(void) strlcpy(if_name, |PADM NONESTR,
si zeof (1f_nane));
} else if (if_indextonane(lifr.lifr_index, if_name) == NULL) {
return (ipadmerrno2status(errno));
nbytes = snprintf(buf, *bufsize, "%", if_nane);
br eak;
defaul t:
return (1 PADM | NVALI D_ARG) ;
}
if (nbytes >= *bufsize) {
/* insufficient buffer space */
*bufsize = nbytes + 1;
return (| PADM NO BUFS);
}
) return (| PADM _SUCCESS) ;

/* ARGSUSED */

static ipadmstatus_t

i _ipadmget_ifprop_flags(i padmhandle_t iph, const void *arg,
i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
uint_t valtype)

{
uint64_t intf_flags;
char *val ;
size_t nbyt es;
const char *ifname = arg;
sa_famly_t af ;

i padm status_t status = | PADM SUCCESS;

switch (valtype) {

new usr/src/lib/libipadm comron/i padm prop.c 15

1009 case MOD_PROP_PERM

1010 nbytes = snprintf(buf, *bufsize, "%", MOD_PROP_PERM RW;
1011 br eak;

1012 case MOD_PROP_DEFAULT:

1013 if (strcnp(pdp->i pd_nane, exchange routes") == 0 ||
1014 strcnp(pdp->i pd_nane, "arp") == 0 ||

1015 strcnp(pdp->i pd_nane, "nud") == 0) {

1016 val = | PADM ONSTR;

1017 } else if (strcnmp(pdp->i pd_nanme, "forwarding") == 0) {
1018 val = | PADM OFFSTR;

1019 } else {

1020 return (1 PADM PROP_UNKNOWW) ;

1021 }

1022 nbytes = snprintf(buf, *bufsize, "%", val);

1023 br eak;

1024 case MOD_PROP_ACTI VE:

1025 af = (proto == MOD_PROTO_| PV6 ? AF_I NET6 : AF_I NET);
1026 status = i_i padm get _flags(iph, ifname, af, & ntf flags)
1027 if (status != | PADM SUCCESS)

1028 return (status);

1030 val = | PADM OFFSTR;

1031 if (strcnp(pdp->i pd_nane, "exchange_routes") == 0) {
1032 if (1(intf_flags & I FF_NORTEXCH))

1033 val = | PADM_ CNSTR

1034 } else if (strcmp(pdp->i pd_nanme, "forwarding") == 0) {
1035 |f(|ntff|ags&IFFR(1JT R)

1036 val = | PADM_ O\ISTR

1037 } else if (strcnp(pdp->i pd_nane, "arp") == 0) {
1038 if (!(intf_flags & | FF_ NOC\RP))

1039 val = | PADM_ O\ISTR

1040 } else if (strcnp(pdp->i pd_name, "nud") == 0) {
1041 if (!(intf fIags&IFF NO\IUD))

1042 val = | PADM ONSTR;

1043 }

1044 nbytes = snprintf(buf, *bufsize, "%", val);

1045 br eak;

1046 defaul t:

1047 return (| PADM | NVALI D_ARG);

1048 1

1049 if (nbytes >= *bufsize) {

1050 /* insufficient buffer space */

1051 *buf size = nbytes + 1;

1052 status = | PADM_NO_BUFS;

1053 }

1055 return (status);

1056 }

1058 static void
1059 i _i padm pern®2str(char *buf, uint_t *bufsize)

1060 {

1061 uint_t perm= atoi (buf);

1063 (void) snprintf(buf, *bufsize, "%%",

1064 ((perm & MOD_PROP_PERM READ) !=0) 2?2 'r’ : '-",
1065 ((perm & MOD_PROP_PERMWRITE) 1= 0) ? 'wW : '-');
1066 }

1068 /* ARGSUSED */
1069 static ipadmstatus_t

1070 i _i padm get _prop(i padm handl e_t iph, const void *arg,

1071 i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
1072 uint_t valtype)

1073 {

1074 i padm status_t status = | PADM SUCCESS;

new usr/src/lib/libipadm common/i padm prop. c

1075 const char *ifname = arg;

1076 nmod_i oc_prop_t *m p;

1077 char *pnane = pdp->i pd_nane;

1078 uint_t i ocsi ze;

1080 /* allocate sufficient ioctl buffer to retrieve value */

1081 iocsize = sizeof (nod_ioc_prop_t) + *bufsize - 1;

1082 if ((mp = calloc(1, iocsize)) == NULL)

1083 return (1 PADM NO BUFS);

1085 ni p- >npr _versi on = MOD_PROP_VERSI ON;

1086 m p->npr_flags = val type;

1087 m p->nmpr_proto = proto;

1088 if (ifname !'= NULL) {

1089 (void) strlcpy(m p->npr_ifnane, ifnane,

1090 si zeof (m p->npr_ifnane));

1091

1092 (void) strlcpy(m p->npr_name, pnane, sizeof (m p->npr_nane));

1093 m p- >npr _val si ze = *bufsi ze;

1095 if (i_ipadmstrioctl (iph->i ph_sock, SIOCGETPROP, (char *)nmip,

1096 iocsize) < 0) {

1097 if (errno == ENCENT)

1098 status = | PADM_PROP_UNKNOMN;

1099 el se

1100 status = i padm errno2status(errno);

1101 } else {

1102 bcopy(m p->npr_val, buf, *bufsize);

1103 }

1105 free(mp);

1106 return (status);

1107 }

1109 /*

1110 * Popul ates the ipnmgnmt _prop_arg_t based on the class of property.

1111 *

1112 * For private protocol properties, while persisting information in ipadm
1113 * data store, to ensure there is no collision of nanespace between i padm
1114 * private nvpair nanes (which also starts with '_', see ipadm.ipngnt.h)
1115 * and private protocol property names, we will prepend | PADM PRI V_PROP_PREFI X
1116 * to property names.

1117 */

1118 static void

1119 i _i padm popul at e_proparg(i pmgnt _prop_arg_t *pargp, ipadm prop_desc_t *pdp,
1120 const char *pval, const void *object)

1121 {

1122 const struct ipadm addrobj_s *ipaddr;

1123 uint_t cl ass = pdp->i pd_cl ass;

1124 uint _t proto = pdp->i pd_proto;

1126 (void) strlcpy(pargp->i a_pnane, pdp->ipd_nane,

1127 si zeof (pargp->i a_pnane));

1128 if (pval != NULL)

1129 (void) strlcpy(pargp->ia_pval, pval, sizeof (pargp->ia_pval));
1131 switch (class) {

1132 case | PADMPROP_CLASS_MODULE:

1133 /* if it’s a private property then add the prefix. */
1134 if (pdp->i pd_nane[0] ==

1135 (void) snpri ntf(par gp->i a_pnarne,

1136) si zeof (pargp->i a_pnanme), "_ %", pdp->i pd_nane);
1137

1138 (void) strlcpy(pargp->ia_nodul e, object,

1139 si zeof (pargp->i a_nodul e));

1140 br eak;

new usr/src/lib/libipadm common/i padm prop. c 17 new usr/src/lib/libi padm common/i padm prop. c 18
1141 case | PADMPROP_CLASS_MODI F: 1207 return (1 PADM | NVALI D_ARG) ;
1142 /* check if object is protostr or an ifname */
1143 if (ipadmstr2proto(object) != MOD PROTO NONE) { 1209 } else {
1144 (void) strlcpy(pargp->ia_| modul e, obj ect, 1210 /* private protocol properties, pass it to kernel directly */
1145 si zeof (pargp->i a_nodule)); 1211 pdp = & padm pri vprop;
1146 br eak; 1212 (void) strlcpy(priv_propnanme, pnane, sizeof (priv_propnane));
1147 } 1213 pdp->I pd_name = priv_propnang;
1148 /* it’s an interface property, fall through */ 1214
1149 /* FALLTHRU */
1150 case | PADMPROP_CLASS | F: 1216 switch (valtype) {
1151 (void) strlcpy(pargp->ia_ifnanme, object, 1217 case | PADM OPT_ PERM
1152 si zeof (pargp->ia_ifname)); 1218 st atus pdp- >i pd_get (i ph, ifname, pdp, buf, bufsize, proto,
1153 (void) strlcpy(pargp->i a_nodul e, ipadm proto2str(proto), 1219 I\/(D PROP_PERM ;
1154 si zeof (pargp->i a_nodule)); 1220 if (status == | PADM SUCCESS)
1155 br eak; 1221 i _i padm pern2str(buf, bufsize);
1156 case | PADNPRCP CLASS_ADDR: 1222 br eak;
1157 i paddr = obj ect; 1223 case | PADM OPT_ACTI VE:
1158 (void) strl cpy(pargp— > a_i f name, i paddr->i padm i f nane, 1224 status = pdp->i pd_get (i ph, ifname, pdp, buf, bufsize, proto,
1159 si zeof (pargp->ia_ifname)); 1225 I\/ED PROP_ACTI VE) ;
1160 (void) strlcpy(pargp->i a_aobj nanme, ipaddr->i padm aobj nane, 1226 br eak;
1161 si zeof (pargp->i a_aobjnane)); 1227 case | PADM_(PT_DEFAULT:
1162 br eak; 1228 status = pdp->i pd_get (i ph, ifname, pdp, buf, bufsize, proto,
1163 1 1229 MOD_PROP_DEFAULT) ;
1164 } 1230 br eak;
1231 case | PADM OPT_PGSSI BLE:
1166 /* 1232 if (pdp->i pd_get_range != NULL) {
1167 * Common function to retrieve property value for a given interface ‘ifname’ or 1233 status = pdp->i pd_get _range(i ph, ifnane, pdp, buf,
1168 * for a given protocol ‘proto’. The property nane is in ‘pnanme’ . 1234 buf si ze, proto, MOD_PROP_PGCSSI BLE) ;
1169 * 1235 br eak;
1170 * ‘valtype’ determnes the type of value that will be retrieved. 1236 }
1171 * | PADM _OPT_ACTI VE - current value of the property (active config) 1237 buf[0] ="'\0";
1172 * | PADM _OPT_PERSI ST - val ue of the property from persistent store 1238 br eak;
1173 * | PADM_OPT_DEFAULT - default hard coded val ue (boot-tinme val ue) 1239 case | PADM. CPT PERSI ST:
1174 * | PADM_OPT_PERM - read/write permissions for the value 1240 /* retrieve from database */
1175 * | PADM_OPT_PGCSSI BLE - range of val ues 1241 if (is_if)
1176 */ 1242 status = i _i padm get _persist_propval (i ph, pdp, buf,
1177 static ipadmstatus_t 1243 buf si ze, ifnane);
1178 i _i padm get prop_common(i padm handl e_t iph, const char *ifnane, 1244 el se
1179 const char *pnane, char *buf, uint_t *bufsize, uint_t proto, 1245 status = i _i padm get _persist_propval (i ph, pdp, buf,
1180 uint_t valtype) 1246 buf si ze, ipadm proto2str(proto));
1181 { 1247 br eak;
1182 i padm st at us_t status = | PADM SUCCESS; 1248 defaul t:
1183 i padm prop_desc_t *pdp; 1249 status = | PADM | NVALI D_ARG
1184 char pr| v _pr opnane[MAXPROPNAMELEN] ; 1250 br eak;
1185 bool ean_t = (ifname !'= NULL); 1251 }
1186 int err = 0; 1252 return (status);
1253 }
1188 pdp = i_i padm get _prop_desc(pnane, proto, &err);
1189 if (err == EPROTO 1255 /*
1190 return (1 PADM BAD_PROTOCQOL) ; 1256 * Get protocol property of the specified protocol.
1191 /* there are no private interface properties */ 1257 */
1192 if (is_if & & err == ENOCENT) 1258 i padm stat us_t
1193 return (1 PADM _PROP_UNKNOW) ; 1259 i padm get _prop(i padm handl e_t iph, const char *pnane, char *buf,
1260 uint_t *bufsize, uint_t proto, uint_t valtype)
1195 if (pdp !'= NULL) { 1261 {
1196 /* 1262 /*
1197 * check whether the property can be 1263 * validate the argunents of the function.
1198 * applied on an interface 1264 */
1199 */ 1265 if (iph == NULL || pnanme == NULL || buf == NULL ||
1200 if (is_if && !(pdp->ipd_class & | PADVPROP_CLASS | F)) 1266 bufsize == NULL || *bufsize == 0) {
1201 return (1 PADM | NVALI D _ARG) ; 1267 return (1 PADM | NVALI D ARG ;
1202 /* 1268 }
1203 * check whether the property can be 1269 /*
1204 * applied on a nodul e 1270 * Do we support this proto, if not return error.
1205 */ 1271 */
1206 if (lis_if & ! (pdp->ipd_class & | PADMPROP_CLASS_MCODULE)) 1272 if (ipadmproto2str(proto) == NULL)

new usr/src/lib/libipadm common/i padm prop. c

1273 return (1 PADM NOTSUP);

1275 return (i_ipadm getprop_common(iph, NULL, pnane, buf, bufsize,
1276 proto, valtype));

1277 }

1279 /*

1280 * Cet interface property of the specified interface.

1281 */

1282 i padm stat us_t

1283 i padm get _i f prop(i padm handl e_t iph, const char *ifnane, const char *pnane,
1284 (char *buf, uint_t *bufsize, uint_t proto, uint_t valtype)

1285

1286 /* validate the arguments of the function. */

1287 if (iph == NULL || pname == NULL || buf == NULL |

1288 bufsize == NULL || *bufsize == 0) {

1289 return (I PADM_| NVALI D_ARG) ;

1290 }

1292 /* Do we support this proto, if not return error. */

1293 if (ipadm.proto2str(proto) == NULL)

1294 return (| PADM NOTSUP) ;

1296 *

1297 * check if interface nane is provided for interface property and
1298 * is valid.

1299 */

1300 if (!i_ipadmvalidate_ifnanme(iph, ifname))

1301 return (I PADM | NVALI D_ARG) ;

1303 return (i_ipadm getprop_common(iph, ifnane, pnane, buf, bufsize,
1304 proto, valtype));

1305 }

1307 /*

1308 * Allocates sufficient ioctl buffers and copies property name and the
1309 * value, anong other things. If the flag | PADM OPT_DEFAULT is set, then
1310 * ‘pval’ will be NULL and it instructs the kernel to reset the current
1311 * value to property’s default val ue.

1312 */

1313 st atic i padmstatus_t

1314 i _i padm set _prop(i padm handl e_t iph, const void *arg,

1315 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
1316 {

1317 i padm status_t status = | PADM SUCCESS;

1318 const char *ifnane = arg;

1319 nod_i oc_prop_t *m p;

1320 char *pname = pdp->i pd_nane;

1321 ui nt _t val si ze, 10csize;

1322 ui nt _t iocflags = 0;

1324 if (flags & | PADM OPT_DEFAULT) {

1325 i ocflags [= MOD_PROP_DEFAULT;

1326 } else if (flags & | PADM OPT_ACTI VE) {

1327 iocflags | = MOD_PROP_ACTI VE;

1328 if (flags & | PADM OPT_APPEND)

1329 i ocfl ags [= MOD_PROP_APPEND,

1330 else if (flags & | PADM OPT_REMOVE)

1331 i ocfiags | = MOD_PROP_REMOVE;

1332 }

1334 if (pval != NULL) {

1335 val size = strlen(pval)

1336 iocsize = sizeof (nod_ioc_prop_t) + valsize - 1;

1337 } else {

1338 val size = 0;

19

new usr/src/lib/libi padm common/i padm prop. c

1339
1340

1342
1343

1345
1346
1347
1348
1349
1350
1351

1353
1354
1355
1356

1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379

* Ok kR %k F

*/

iocsize = sizeof (nod_ioc_prop_t);

}

if ((m'p=ca||o(iocsize)) == NULL)
return (I PAl DM_NO_BUFS);

m p- >npr_versi on = MOD_PROP_VERSI ON,
m p->npr _flags = iocflags;
m p- >npr_proto = proto;
if (ifname !'= NULL) {
(void) strlcpy(m p->npr_ifnane,
si zeof (m p->npr_ifnane));

i f nane,

}

(void) strlcpy(m p->npr_nane, pnane,

m p- >npr_val si ze = val si ze;

if (pval !'= NULL)
bcopy(pval ,

si zeof (m p->npr_nane));

m p->nmpr_val , val size);
if (i_ipadmstrioctl(iph->iph_sock,
iocsize) <0
if (errno == ENCENT)
status = | PADM_PROP_UNKNOW\;

SI OCSETPROP, (char *)m p,

el se
status = i padm errno2status(errno);

free(mp);
return (status);

Common function for nodifying both protocol/interface property.

'PADM_CPT_PERSI ST is set then the value is persisted.

PADM OPT_DEFAULT is set then the default value for the property wll
be appli ed.

static ipadmstatus_t

1380 {

1381
1382
1383
1384
1385
1386
1387

1389
1390
1391

1393
1394
1395
1396
1397
1398

1400
1401
1402
1403
1404

_i padm set prop_common(i padm handl e_t i ph,
const char *pnaneg,

const char *ifnane,
const char *buf, uint_t proto, uint_t pflags)

i padm st at us_t status = I PADM_SUCCESS;

bool ean_t persi st = (pflags & | PADM OPT_PERSI ST) ;
bool ean_t reset = (pflags & | PADM OPT_DEFAULT);

i padm prop_desc_t *pdp;

bool ean_t is_if = (ifname !'= NULL);

char priv _pr opname[MAXPRCPNANELEN]

int err = 0;

/* Check that property value is within the allowed size */
if (!reset & strnlen(buf, MAXPROPVALLEN) >= MAXPROPVALLEN)
return (1 PADM I NVALI D_ARG) ;
pdp = i_i padm_get_prop_desc(pnane, proto, &err);
1f (err == EPROT
return (1 PADM BAD_PROTOCOL) ;
/* there are no private interface properties */
if (is_if & & err == ENCENT)
return (| PADM PROP_UNKNOW) ;

if (pdp !'= NULL) {
/* do some sanity checks */
if (is_if) {
if (!(pdp->ipd_class & | PADMPROP_CLASS | F))
return (1 PADM | NVALI D_ARG ;

20

new usr/src/lib/libipadm comron/i padm prop.c 21

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

1424
1425
1426

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

1439
1440
1441
1442
1443
1444

}
/*

} else {
if (!(pdp->ipd _class & | PADMPROP_CLASS MODULE))
return (1 PADM | NVALI D_ARG ;

*

* if the property is not nulti-valued and | PADM OPT_APPEND or
* I PADM OPT_REMOVE i s specified, return | PADM I NVALTD ARG
*
if

('(pdp >i pd_fl ags & | PADVPROP_MJLVAL) && (pflags &
| PADM_OPT_APPEND| | PADM OPT_REMOVE)))
return (1 PADM | N\VALT D_ARG) ;

} else {
/* private protocol property, pass it to kernel directly */
pdp = & padm pri vprop;
(voi d) strlcpy(pr|v propnanme, pnane, sizeof (priv_propnane))
pdp->i pd_name = priv_propnang;

}

status = pdp->i pd_set (i ph, ifnane, pdp, buf, proto, pflags);

if (status != | PADM SUCCESS)
return (status);

if (per5|fst) {

(is_if)
status = i _i padm persist_propval (i ph, pdp, buf, ifnane,
pflags);
el se
status = i _i padm persist_propval (i ph, pdp, buf,
i padm proto2str(proto), pflags);

}
return (status);

* Sets the property value of the specified interface
*/

i padm st at us_t
i padm set _i f prop(i padm handl e_t iph, const char *ifnane, const char *pnane,

1445 {

1446
1447

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459

1461
1462
1463
1464
1465

1467
1468
1469
1470

const char *buf,

uint_t proto, uint_t pflags)

bool ean_t reset = (pflags & | PADM OPT_DEFAULT);
i padm status_t status;

/* check for solaris.network.interface.config authorization */
if (!ipadmcheck_auth())
return (1 PADM EAUTH);
/*
* validate the argunents of the function.
*/

if (iph == NULL || pname == NULL || (!reset && buf == NULL) ||
pflags == || pflags == | PADM OPT_PERSI ST | |
(pflags & ~(1 PADM COVMON OPT_MASK| TPADM OPT_DEFAULT))) {
return (1 PADM | NVALI D_ARG) ;

}

/*
* Do we support this protocol, if not return error.
*/
if (ipadm proto2str(proto) == NULL)
return (| PADM NOTSUP) ;

/*

* Validate the interface and check if a persistent
* operation is perforned on a tenporary object.

*/

new usr/src/lib/libipadm common/i padm prop. c

1471 status = i _ipadmvalidate_if(iph, ifname, proto, pflags);
1472 if (Status | = | PADM_SUCCESS)

1473 return (status);

1475 return (i_i padm setprop_comon(iph, ifnane, pnane, buf, proto,
1476 pfl ags));

1477 }

1479 /*

1480 * Sets the property value of the specified protocol.

1481 */

1482 i padm status_t

1483 i padm set _prop(i padm | handle _t iph, const char *pnanme, const char *buf,
1484 uint_t proto, uint_t I ags)

1485 {

1486 bool ean_t reset = (pflags & | PADM OPT_DEFAULT);

1488 /* check for solaris.network.interface.config authorization */
1489 if (!ipadmcheck_auth())

1490 return (1 PADM EAUTH);

1491 I

1492 * validate the argunents of the function.

1493 */

1494 if (iph == NULL || pname == NULL || (Yreset && buf == NULL) ||
1495 pflags == 0 || pflags == | PADM OPT_PERSI ST | |

1496 (pflags & ~(| PADM | CCNWCN OPT_MASK| T PADM_OPT_DEFAULT

1497 | PADM_OPT_APPEND| T PADM OPT_REMOVE))) {

1498 return (1 PADM I NVALI D_ARG) ;

1499 }

1501 /*

1502 * Do we support this proto, if not return error.

1503 *

1504 if (ipadm.proto2str(proto) == NULL)

1505 return (| PADM NOTSUP) ;

1507 return (i_ipadm setprop_comon(iph, NULL, pnane, buf, proto,
1508 pflags))

1509 }

1511 /* hel per function for ipadmwal k_propthbl */

1512 st atic void

1513 i _i padm wal k_pr opt bl (i padm prop_desc_t *pdtbl, uint_t proto, uint_t class,
1514 i padm prop_wfunc_t *func, void *arg)

1515 {

1516 i padm prop_desc_t *pdp;

1518 for (pdp = pdtbl; pdp->i pd_nanme != NULL; pdp++) {

1519 if (!(pdp->ipd_class & class))

1520 cont i nue;

1522 if (proto !'= MOD_PROTO NONE && ! (pdp->ipd_proto & proto))
1523 conti nue;

1525 /*

1526 * we found a class specific match, call the

1527 * user callback function.

1528 */

1529 if (func(arg, pdp->ipd_nanme, pdp->i pd_proto) == B_FALSE)
1530 br eal

1531 }

1532 }

1534 /*

1535 * Wal ks through all the properties, for a given protocol and property class
1536 * (protocol or interface)

22

new usr/src/lib/libipadm comron/i padm prop.c 23

1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548

1550
1551

1553
1554
555]
1556
1657
1558
1559
1560
1561
1562
1563
1564
1565

1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

*
*
*
*

Further if proto == MOD_PROTO NONE, then it wal ks through all the supported

protocol property tables.
/

i padm st at us_t
i padm wal k_propt bl (uint_t proto, uint_t class, ipadmprop_wfunc_t *func,

{

* Ok ok k% ok *

*/

voi d *arg)
i padm prop_desc_t *pdt bl ;
i padm st atus_t status = | PADM _SUCCESS;
int i;
int count = A CNT(protocols);

if (func == NULL)
return (I PADM | NVALI D_ARG) ;

switch (class) {

case | PADMPROP_CLASS_ADDR
pdtbl = i padm addr prop_t abl e;
br eak;

case IPADNPRCP CLASS | F:

case | PADMPROP_ CLASS MODULE:

pdtbl =i |padm get _propdesc_t abl e(proto);
1 f (pdtbl == NULL && proto != MOD_PROTO NG\IE)
return (1 PADM | NVALI D_ARG);
br eak;
defaul t:
return (I PADM | NVALI D_ARG) ;
}

if (pdtbl != NULL) {
/ *

* proto will be MOD_PROTO NONE in the case of

* | PADMPROP_CLASS_ADDR.

*

/
i _i padm wal k_proptbl (pdtbl, proto, class, func, arg);
} else {

/* Walk thru all the protocol tables, we support */

for (i =0; i < count; i++)
pdtbl =i _i padm get _propdesc_t abl e(protocol s[i]);
i padm)vxal k_proptbl (pdthbl, protocols[i], class, func,

arg

}

}
return (status);

G ven a property name, wal ks through all the instances of a property nane.
Sone properties have two instances one for v4 interfaces and another for v6
interfaces. For exanple: MIU. MIU can have different values for v4 and v6.
Therefore there are two properties for 'MIU .

This function invokes ‘func’ for every instance of property ‘pnange’

i padm st at us_t
i padm wal k_prop(const char *pnane, uint_t proto, uint_t class,

1595 {

1596
1597
1598

1600
1601

i padm prop_wfunc_t *func, void *arg)

i padm prop_desc_t *pdtbl, *pdp;
i padm st at us_t status = | PADM SUCCESS;
bool ean_t mat ched = B_FALSE;

if (pname == NULL || func == NULL)
return (I PADM | NVALI D_ARG) ;

new usr/src/lib/libipadm comron/i padm prop.c 24
1603 switch (class) {

1604 case | PADMPROP_CLASS_ADDR:

1605 pdtbl = i padm addr prop_t abl e;

1606 br eak;

1607 case | PADVPROP_CLASS | F:

1608 case IPADNPRCP_CLASS MODULE:

1609 pdtbl = i _i padm get_propdesc_tabl e(proto);

1610 br eak;

1611 defaul t:

1612 return (| PADM | NVALI D_ARG);

1613 1

1615 if (pdtbl == NULL)

1616 return (| PADM | NVALI D_ARG) ;

1618 for (pdp = pdtbl; pdp->ipd_nanme != NULL; pdp++) {

1619 if (strcr’rp(pnama pdp- >i pd_ nanE) 1= 0)

1620 conti nue;

1621 if (!(pdp->i pd_pr oto & proto))

1622 conti nue;

1623 mat ched = B_TRUE;

1624 /* we found a match, call the call back function */

1625 if (func(arg, pdp->ipd_name, pdp->ipd_proto) == B_FALSE)
1626 br eak;

1627 }

1628 if (!matched)

1629 status = | PADM_PROP_UNKNOWN;

1630 return (status);

1631

1633 ARGSUSED */

1634 i padm status_t

1635 i _i padm get onoff(l padm handl e_t iph, const void *arg, ipadmprop_desc_t *dp,
1636 char *buf, uint_t *bufsize, uint_t proto, uint_t valtype)

1637

1638 (void) snprintf(buf, *bufsize, "%, %", |PADM ONSTR | PADM OFFSTR);
1639 return (| PADM SUCCESS);

1640

1642

1643 /Makes a door call to ipngntd to retrieve the persisted property val ue
1644 *

1645 i padm status_t

1646 i _i padm get _persi st_propval (i padm handl e_t iph, ipadm prop_desc_t *pdp,
1647 char *gbuf, uint_t *gbufsize, const void *object)

1648 {

1649 i pmgnt _prop_arg_t parg;

1650 |pngm _getprop_rval _t rval, *rvalp;

1651 size_| nbyt es;

1652 int err = 0;

1654 bzero(&parg, sizeof (parg));

1655 parg.ia_cnd = | PMGMI_CMVD_GET! ;

1656 I _i padm popul at e_proparg(&parg, pdp, NULL, object);

1658 rval P = &rval ;

1659 err = i padm_ door _cal | (i ph, &parg, sizeof (parg), (void **)&rvalp,
1660 si zeof (rval), B_FALSE);

1661 if (err ==

1662 /* assert that rvalp was not reallocated */

1663 assert(rvalp == &val);

1665 /* “ir_pval’ contains the property value */

1666 nbytes = snprintf(gbuf, *gbufsize, "%", rvalp->ir_pval);
1667 if (nbyt es >= gbufS|ze)

1668 /* insufficient buffer space */

new usr/src/lib/libipadm common/i padm prop. c

1669 *gbufsi ze = nbytes + 1;

1670 err = ENOBUFS;

1671 }

1672 }

1673 return (ipadmerrno2status(err));

1674 }

1676 /*

1677 * Persists the property value for a given property in the data store
1678 */

1679 i padm status_t

1680 i _i padm persi st_propval (i padm handl e_t iph, ipadm prop_desc_t *pdp,
1681 const char *pval, const void *object, uint_t flags)

1682 {

1683 i pmgnt _prop_arg_t parg;

1684 int err = 0;

1686 bzero(&parg, sizeof (parg));

1687 i _i padm popul at e_proparg(&arg, pdp, pval, object);

1688 /*

1689 * Check if value to be persisted need to be appended or renopved. This
1690 * is required for nulti-val ued property.

1691 */

1692 if (flags & | PADM OPT_APPEND)

1693 parg.ia_flags | = | PMGMI_APPEND,

1694 if (flags & | PADM OPT_REMOVE)

1695 parg.ia_flags | = | PMGMI_REMOVE;

1697 if (flags & (| PADM. (PT __DEFAULT]| | PADM_OPT_REMOVE))

1698 parg.ia_cnd = TPMGMI_CVD_RESETPROP,

1699 el se

1700 parg.ia_cnd = | PMGMI_CVD_SETPROP,

1702 err = ipadmdoor_call (i ph, &parg, sizeof (parg), NULL, 0, B_FALSE);
1704 I*

1705 * its fine if there were no entry in the DB to del ete. The user
1706 * mght be changing property val ue, which was not changed
1707 * persistently.

1708

1709 if (err == ENCENT)

1710 err = 0;

1711 return (ipadmerrno2status(err));

1712 }

1714 /*

1715 * This is called fromipadmset_ifprop() to validate the set operation.
1716 * It does the foll ow ng steps:

1717 * 1. Validates the interface nanme.

1718 * 2. Fails if it is an IPMP neta-interface or an underlying interface.
1719 * 3. In case of a persistent operation, verifies that the

1720 * interface is persistent.

1721 *

1722 static ipadmstatus_t

1723 i_i padmvalidate_if (i padm handl e_t iph, const char *ifnane,

1724 uint_t proto, uint_t flags)

1725 {

1726 sa_famly_t af, other_af;

1727 i padm status_t status;

1728 bool ean_t p_exi sts;

1729 bool ean_t af _exi sts, other_af_exists, a_exists;

1731 /* Check if the interface nane is valid. */

1732 if (!i_ipadmyvalidate_ifname(iph, ifnane))

1733 return (| PADM | NVALI D_ARG);

25

new usr/src/lib/libipadm comron/i padm prop.c 26
1735 af = (proto == MOD_PROTO_ | PV6 ? AF_I NET6 : AF_I NET);

1736 /*

1737 * Se ting properties on an | PVP neta-interface or underlying

1738 * interface is not supported.

1739 */

1740 if (i_ipadm.is_ipnp(iph, ifname) || i_ipadm.is_under_ipnp(iph, ifnane))
1741 return (1 PADM NOTSUP);

1743 /* Check if interface exists in the persistent configuration. */
1744 status = i_ipadm.if_pexists(iph, ifname, af, &p_exists);

1745 if (status != | PADM SUCCESS)

1746 return (status);

1748 /* Check if interface exists in the active configuration. */

1749 af _exi st s = i padm i f_enabl ed(i ph, ifnanme, af);

1750 ot her _af = (af == AF_I NET ? AF_I NET6 : AF INEI')

1751 ot her _af eX|sts = i padm.if_enabl ed(i ph, i fname, other_af);

1752 a_exists = (af _exists || other_af_exists);

1753 if (la_exists & p_exists)

1754 return (1 PADM OP_DI SABLE_OBJ)

1755 if (!af_exists)

1756 return (| PADM ENXI O ;

1758 /*

1759 * |If a persistent operation is requested, check if the underlying
1760 * |Pinterface is persistent.

1761 */

1762 if ((flags & | PADM OPT_PERSI ST) && !p_exists)

1763 return (1 PADM TEMPORARY_OBJ) ;

1764 return (1 PADM SUCCESS);

1765 }

1767 /*

1768 * Private protocol properties namespace schene:

1769 *

1770 * PSARC 2010/080 identified the private protocol property nanes to be the
1771 * |eading protocol names. For e.g. tcp_strong_iss, ip_strict_src_nultihoning,
1772 * et al,. However to be consistent with private data-1i nk property nanes,
1773 * which starts with ' _’, private protocol property names wll start with '_
1774 * For e.g. _strong_iss, _strict_src_nultihom ng, et al,

1775 */

1777 /* maps new private protocol property nane to the old private property name */
1778 typedef struct ipadm oname2nnanme_map {

1779 char *i om onane;

1780 char *i om _nnane;

1781 uint_t iomproto;

1782 } i padm onane2nname_map_t ;

1784 /*

1785 * IPis a special case. It isn't straight forward to derive the | egacy nane
1786 * fromthe new name and vice versa. No set standard was followed in nam ng
1787 * the properties and hence we need a table to capture the mapping.

1788

1789 static ipadm_onaneZnnarTe_nap_t name_map[] = {

1790 { "arp_probe_del ay" ' _arp_probe_del ay",

1791 MOD_PROTO | P },

1792 { "arp_fast probe del ay" "_arp_fastprobe_del ay",

1793 MOD_PROTO | P},

1794 { "arp_probe_interval ", _arp_probe_interval ",

1795 MOD_PROTO | P Je

1796 { "arp_fastprobe_interval" "_arp_fastprobe_interval",

1797 MOD_PROTO | P }

1798 { "arp_probe_count" _arp_probe_count",

1799 MOD_PROTO | P },

1800 { "arp_fastprobe_count" " _arp_fastprobe_count",

new usr/src/lib/libipadm common/i padm prop. c

27

1801 MOD_PROTO | P },

1802 { "arp_defend_int erval " _arp_defend_interval ",

1803 MOD_PROTO | P },

1804 { "arp_defend_rate" "_arp_defend_rate",

1805 MOD_PROTO _| P },

1806 { "arp_defend_period", _arp_def end_peri od",

1807 MOD_PROTO | P },

1808 { "ndp_defend_interval ", "_ndp_defend_interval ",

1809 MOD_PROTO | P }

1810 { "ndp_defend_rate" _ndp_defend_rate",

1811 MOD_PROTO | P },

1812 { "ndp_def end_peri od", "_ndp_def end_period",

1813 MOD_PROTO | P },

1814 { "ignp_max_version" _ignp_max_version",

1815 MOD_PRCTO | P },

1816 { "nl d_max_version" "_m d_max_version",

1817 MOD_PROTO _| P },

1818 { "ipsec_override_persocket_policy", "_ipsec_override_persocket_policy",
1819 MOD _PROTO | P |

1820 { "ipsec_policy_log_interval", "_ipsec_policy_log_interval",
1821 MOD_PROTO_| P

1822 { "icnp_accept_cl ear_messages", "_icnp_accept_cl ear_nessages",
1823 MOD_PROTO TP },

1824 { "ignp_accept_cl ear_nessages", "_ignp_accept_cl ear_nessages",
1825 MOD_PROTO | P },

1826 { "pi maccept_cl ear _nessages”, _pi m accept _cl ear _nessages"”,
1827 MOD_PROTO | P },

1828 { "ip_respond_to_echo_multicast", "_respond_to_echo_multicast",
1829 MOD_PROTO | PV4 },

1830 { "ip_send_redirects", "_send_redirects",

1831 MOD_PROTO | PV4 },

1832 { "ip_forward_src_routed", ' _forward_src_routed",

1833 MOD_PROTO | PV4 1},

1834 { "ip_icnp_return_data_bytes", "_icnp_return_data_bytes",
1835 MOD_PROTO | PV4 1},

1836 { "ip_ignore_redirect", _ignore_redirect",

1837 MOD_PROTO | PV4 1},

1838 { "ip_strict_dst_multihom ng", "_strict_dst_nultihom ng",
1839 MOD_PROTO_| PV4 },

1840 { "ip_reasmtineout", _reasmtineout"”,

1841 MOD_PROTO | PV4 1},

1842 { "ip_strict_src_nultihom ng", "_strict_src_multihom ng",
1843 MOD_PROTO | PV4 }

1844 { "ipv4_dad_announce_interval", "_dad_announce_interval",
1845 MOD_PROTO | PV4 1}

1846 { "ipv4_icnp_return_pntu", "_icnp_return_pntu",

1847 MOD_PROTO | PV4 }

1848 { "ipv6_dad_announce_interval", "_dad_announce_interval",
1849 MOD_PROTO | PV6 1},

1850 { "ipv6_icnp_return_pntu", "_icnp_return_pntu",

1851 MOD_PROTO | PV6 },

1852 { NULL, NULL, MOD_PROTO NONE }

1853 };

1855 /*

1856 * Following APl returns a new property nane in ‘nnanme’ for the given | egacy
1857 * property nanme in ‘onane’.

1858 */

1859 int

1860 i padm | egacy2new propnane(const char *oname, char *nnane, uint_t nnanel en,
1861 uint_t *proto)

1862 {

1863 const char *str;

1864 i padm onanme2nnane_map_t *i onnp;

1866 /* if it’s a public property, there is nothing to return */

new usr/src/lib/libipadm common/i padm prop. c

1867
1868

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908

1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921 }

/

if (i_

/*
* we di

i padm get _prop_desc(onane,

*pro
return (-1);

dn't find the ‘oname’ in the

to, NULL) != NULL)

tabl e, check if the property

nane begins with a | eading protocol.

*/

str =

onane;

switch (* proto) {
PROTO

case

case MOD_PROTO_SCTP:
if (strstr(onane, "sctp_ ") ==
str += strlen("sctp");
br eak;
case MOD_PROTO_UDP:
if (strstr(onanme, "udp_") ==
str += strl en("udp")
br eak;
case MOD_PROTO RAW P:
if (strstr(onane, "icnp ") ==
str += strlen("icnp")
br eak;
case MOD_PROTO | P:
case MOD_PROTO | PV4:
case MOD_PROTO | PV6:
if (strstr(onane "ip6_") ==

defaul t:

}
(void) snprintf(nnane,

MOD

if (strstr(onarm "tep_")
str += strlen(tcp");

br eak;

onane)

onane)

onane)

onane)

onane) {

*proto = MOD_PROTO | PV6;

; ionnp->i omonanme != NULL;

ame, ionnp->i omoname) == 0) {
i onnp- >j om nnane;

0 = i onnp->i om proto;

= NULL)

") == onarre) {
PROTO I P,

("ip");

str += strlen("ip6™);
} else {
for (ionmp = name_nap
ionmp++) {
I1f (strcrmp(on
str =
*prot
br eak;
}
oo .
if (ionnmp->i omonane
br eak;
if (strstr(oname "ip_
*proto = MOD_
str += strlen
}
}
br eak;

return (-1);

nnanel en, " %"

return (0);

Fol | owi ng API

conpatibility with ndd output,

is required for ndd.c al one.
we need to

for the new nane.

dm new2| egacy_pr opnane(const char *onane,

uint _t nnanel en,

char

uint_t proto)

*prefix;

, str);

To mai ntai n backward
print the | egacy nanme

char *nnane,

new usr/src/lib/libipadm comron/i padm prop.c 29

1933 i padm onane2nnanme_map_t *i onnp;

1935 /* if it’s a public property, there is nothing to prepend */
1936 if (i_ipadmget_prop_desc(onane, proto, NULL) != NULL)

1937 return (-1);

1939 switch (proto) {

1940 case MOD_PROTO _TCP:

1941 prefix = "tcp";

1942 br eak;

1943 case MOD_PROTO_SCTP:

1944 prefix = "sctp";

1945 br eak;

1946 case MOD_PROTO_UDP:

1947 prefix = "udp";

1948 br eak;

1949 case MOD_PROTO_RAW P:

1950 prefix = "icnp";

1951 br eak;

1952 case MOD_PROTO | P:

1953 case MOD_PROTO | PV4:

1954 case MOD_PROTO | PV6:

1955 /* handl e special case for IP */

1956 for (ionnp = nane_nmap; ionnp->i omonane != NULL; ionnp++) {
1957 if (strcnp(onane, ionnp->iomnnane) == 0 &&
1958 i onmp->i om proto == proto) {

1959 (void) strlcpy(nnanme, ionnp->i omonane,
1960 nnanel en) ;

1961 return (0);

1962 }

1963 }

1964 if (proto == MOD_PROTO | PV6)

1965 prefix = "ip6";

1966 el se

1967 prefix = "ip";

1968 br eak;

1969 defaul t:

1970 return (-1);

1971

1972 (void) snprintf(nname, nnanelen, "%%", prefix, onane);
1973 return (0);

1974 }

new usr/ src/ pkg/ mani f est s/ devel oper-dtrace. nf 1 new usr/ src/ pkg/ mani f est s/ devel oper-dtrace. nf 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 dlr \
26689 Sat Aug 18 10: 37: 05 2012 63 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari s/ os/ dtrace/ cl ass-u
new usr/ src/ pkg/ mani f est s/ devel oper -dtrace. nf 64 gr oup=ot her
dccp: basic dtrace 65 dir path=usr/share/lib/javaljavadoc/dtrace/ api/resources group=other
LEEE R SRR EE SRR EEEEEEEEEEEEEREEEE SRR EEEEEEEEEEEEREREEEEEEEEESE] 66 d|r path:usrlshare/lib/java/javadocldtrace/exan-pl es grOUp=O'[her
1 # 67 dir path=usr/share/lib/]aval]avadoc/dtrace/ htm group=other
2 # CDDL HEADER START 68 dir path=usr/share/lib/]javaljavadoc/dtrace/inages group=other
3 # 69 dir path=usr/share/ man/ manlm
4 # The contents of this file are subject to the terns of the 70 dir path=usr/share/ man/ man3lib
5 # Common Devel opnent and Distribution License (the "License"). 71 file path=usr/deno/dtrace/ applicat.d
6 # You may not use this file except in conpliance with the License. 72 file path=usr/deno/ dtrace/ badopen.d
7 # 73 file path=usr/deno/dtrace/ begin.d
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 file path=usr/deno/dtrace/callout.d
9 # or http://ww. opensol aris.org/os/licensing. 75 file path=usr/deno/dtrace/cl ause.d
10 # See the License for the specific |anguage governing perni ssions 76 file path=usr/deno/dtrace/clear.d
11 # and limtations under the License. 77 file path=usr/deno/dtrace/ countdown.d
12 # 78 file path=usr/deno/dtrace/counter.d
13 # Wen distributing Covered Code, include this CDDL HEADER in each 79 file path=usr/deno/dtrace/ dateprof.d
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 file path=usr/deno/dtrace/del ay.d
15 # |f applicable, add the follow ng below this CDDL HEADER, with the 81 file path=usr/deno/dtrace/ denormd
16 # fields enclosed by brackets "[]" replaced with your own identifying 82 file path=usr/deno/dtrace/ end.d
17 # information: Portions Copyright [yyyy]l [nane of copyright owner] 83 file path=usr/deno/dtrace/error.d
18 # 84 file path=usr/deno/dtrace/errorpath.d
19 # CDDL HEADER END 85 file path=usr/deno/dtrace/find.d
20 # 86 file path=usr/deno/dtrace/firebird.d
87 file path=usr/deno/dtrace/hello.d
22 # 88 file path=usr/deno/dtrace/ how ong.d
23 # Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved. 89 file path=usr/deno/dtrace/index. htni
24 # 90 file path=usr/deno/dtrace/interp.d
91 file path=usr/deno/dtrace/interval.d
26 set nane=pkg.fnri val ue=pkg:/devel oper/dtrace@(PKGVERS) 92 file path=usr/deno/dtrace/intr.d
27 set nane=pkg. description val ue="Dynam ¢ Tracing (DTrace) Cients" 93 file path=usr/deno/dtrace/iocpu.d
28 set nane=pkg.summary val ue="DTrace dients" 94 file path=usr/deno/dtrace/iosnoop.d
29 set nane=info.classification \ 95 file path=usr/deno/dtrace/iothrough.d
30 val ue=or g. opensol ari s. cat egory. 2008: Devel opnment / Syst em 96 file path=usr/deno/dtrace/iotinme.d
31 set nane=variant.arch val ue=$(ARCH) 97 file path=usr/deno/dtrace/ipio.d
32 dir path=usr group=sys 98 file path=usr/deno/dtrace/ipproto.d
33 dir path=usr/denmo 99 $(i386_ONLY)file path=usr/deno/dtrace/iprb.d
34 dir path=usr/deno/dtrace 100 file path=usr/deno/dtrace/kstat.d
35 dir path=usr/incl ude 101 file path=usr/deno/dtrace/ ksyns.d
36 dir path=usr/include/sys 102 file path=usr/deno/dtrace/libc.d
37 dir path=usr/lib 103 fil e path=usr/deno/dtrace/l quantize.d
38 dir path=usr/lib/ $(ARCH64) 104 file path=usr/deno/dtrace/lwptinme.d
39 dir path=usr/lib/devfsadm group=sys 105 file path=usr/deno/dtrace/ normalize.d
40 dir path=usr/lib/devfsadn |inknod group=sys 106 file path=usr/deno/dtrace/ nscd.d
41 dir path=usr/lib/dtrace 107 file path=usr/deno/dtrace/pri.d
42 dir path=usr/lib/dtracel/ 64 108 file path=usr/deno/dtrace/printa.d
43 dir path=usr/li b/ ndb group=sys 109 file path=usr/deno/dtrace/pritine.d
44 dir path=usr/Ili b/ ndb/ kvm group=sys 110 file path=usr/deno/dtrace/prof.d
45 dir path=usr/lib/ ndb/ kvm $(ARCH64) group=sys 111 file path=usr/deno/dtrace/profpri.d
46 dir path=usr/lib/ mb/raw group=sys 112 file path=usr/deno/dtrace/progtine.d
47 dir path=usr/lib/ ndb/raw $(ARCH64) group=sys 113 fil e path=usr/deno/dtrace/ putnext.d
48 dir path=usr/sbin 114 file path=usr/deno/dtrace/glen.d
49 dir path=usr/sbi n/ $(ARCH32) 115 fil e path=usr/deno/dtrace/qtine.d
50 dir path=usr/sbin/ $(ARCH64) 116 file path=usr/deno/dtrace/renornalize.d
51 dir path=usr/share 117 file path=usr/deno/dtrace/restest.d
52 dir path=usr/share/lib 118 fil e path=usr/deno/dtrace/ring.d
53 dir path=usr/share/lib/java group=sys 119 file path=usr/deno/dtrace/rtine.d
54 dir path=usr/share/lib/]aval]avadoc group=other 120 file path=usr/deno/dtrace/rw nfo.d
55 dir path=usr/share/lib/javaljavadoc/dtrace group=other 121 file path=usr/deno/dtrace/rwinme.d
56 dir path=usr/share/lib/javaljavadoc/dtrace/ api group=other 122 file path=usr/deno/dtrace/sig.d
57 dir path=usr/share/lib/javaljavadoc/dtrace/ api/org group=other 123 file path=usr/deno/dtrace/soffice.d
58 dir path=usr/share/lib/]aval|avadoc/dtrace/ api/org/ opensol aris group=ot her 124 file path=usr/deno/dtrace/spec.d
59 dir path=usr/share/lib/javaljavadoc/dtrace/ api/org/ opensol ari s/ os group=ot her 125 file path=usr/deno/dtrace/ specopen.d
60 dir path=usr/share/lib/]aval]avadoc/dtrace/ api/org/opensol aris/os/dtrace \ 126 file path=usr/deno/dtrace/ssd.d
61 gr oup=ot her 127 file path=usr/deno/dtrace/syscall.d

new usr/ src/ pkg/ mani f est s/ devel oper-dtrace. nf

128 file path=usr/deno/dtrace/tcplstbyte.d
129 file path=usr/deno/dtrace/tcpbytes.d

130 file path=usr/deno/dtrace/tcpbytesstat.d
131 file path=usr/deno/dtrace/tcpconnlat.d
132 file path=usr/deno/dtrace/tcpio.d

133 file path=usr/deno/dtrace/tcpioflags.d
134 file path=usr/deno/dtrace/tcprst.d

135 fil e path=usr/deno/dtrace/tcpsnoop.d

136 file path=usr/deno/dtrace/tcpstate.d

137 file path=usr/deno/dtrace/tcptop.d

138 file path=usr/deno/dtrace/tick.d

139 file path=usr/deno/dtrace/ticktine.d

140 file path=usr/deno/dtrace/tine.d

141 file path=usr/deno/dtrace/tracewite.d
142 file path=usr/deno/dtrace/trunc.d

143 file path=usr/deno/dtrace/trussrw d

144 file path=usr/deno/ dtrace/ udpbytes.d

145 file path=usr/deno/dtrace/ udpbytesstat.d
146 file path=usr/deno/dtrace/ udpio.d

147 file path=usr/deno/dtrace/ udpsnoop.d

148 fil e path=usr/deno/ dtrace/ udptop.d

149 file path=usr/deno/dtrace/userfunc.d

150 file path=usr/deno/dtrace/whatfor.d

151 file path=usr/deno/dtrace/ whatl ock.d

152 file path=usr/deno/ dtrace/ where.d

153 fil e path=usr/deno/dtrace/ whererun.d

154 file path=usr/deno/ dtrace/ whoexec.d

155 file path=usr/deno/ dtrace/ whofor.d

156 fil e path=usr/deno/ dtrace/ whoi o. d

157 file path=usr/deno/ dtrace/ whopreenpt.d
158 file path=usr/deno/dtrace/ whoqueue. d

159 file path=usr/deno/dtrace/ whosteal .d

160 file path=usr/deno/dtrace/ whowite.d

161 file path=usr/deno/dtrace/wites.d

162 file path=usr/deno/dtrace/witesbycnd.d
163 file path=usr/deno/dtrace/witesbycndfd.d
164 file path=usr/deno/dtrace/witetine.d
165 file path=usr/deno/dtrace/witetinmeq.d
166 file path=usr/deno/dtrace/xioctl.d

167 file path=usr/deno/dtrace/xtermd

168 file path=usr/deno/dtrace/ xwork.d

169 file path=usr/include/dtrace.h

170 file path=usr/include/sys/dtrace.h

171 file path=usr/include/sys/dtrace_inpl.h
172 file path=usr/include/sys/fasttrap.h

173 file path=usr/include/sys/fasttrap_inpl.h
174 file path=usr/include/sys/fasttrap_isa.h
175 file path=usr/include/sys/lockstat.h

176 file path=usr/include/sys/sdt.h

177 file path=usr/lib/$(ARCH64)/!1ibdtrace.so.1
178 file path=usr/lib/$(ARCH64)/|ibdtrace_jni.so.1
179 file path=usr/|ib/$(ARCH64)/I|ib-ldtrace.In
180 file path=usr/lib/devfsadnm |inkmod/ SUNWdtrace_link.so group=sys
181 file path=usr/lib/dtrace/64/drti.o

182 file path= usr/llb/dtrace/dccp.d

183 #endif /* ! codereview */

184 file path= usr/l|b/dtrace/drti.o

185 file path=usr/lib/dtrace/errno.d

186 file path=usr/lib/dtrace/fc.d

187 file path=usr/lib/dtrace/io.d

188 file path=usr/lib/dtrace/ip.d

189 file path=usr/lib/dtrace/iscsit.d

190 file path=usr/lib/dtrace/net.d

191 file path=usr/lib/dtrace/nfs.d

192 file path=usr/lib/dtrace/nfssrv.d

193 file path=usr/lib/dtrace/procfs.d

new usr/ src/ pkg/ mani f est s/ devel oper - dtrace. nf

194 file path=usr/lib/dtrace/regs.d

195 file path=usr/lib/dtrace/sched.d

196 file path=usr/lib/dtrace/scsi.d

197 file path=usr/lib/dtrace/signal.d

198 file path=usr/lib/dtrace/srp.d

199 file path=usr/lib/dtrace/sysevent.d

200 file path=usr/lib/dtrace/tcp.d

201 file path=usr/lib/dtrace/udp.d

202 file path=usr/lib/dtrace/unistd.d

203 file path=usr/lib/libdtrace.so.1

204 file path=usr/lib/libdtrace_jni.so.1

205 file path=usr/lib/llib-ldtrace

206 file path=usr/lib/Ilib-ldtrace.In

207 file path=usr/lib/ mb/kvm $(ARCH64)/dtrace.so group=sys npde=0555
208 $(i386_ONLY)file path=usr/lib/mdb/kvnfdtrace.so group=sys npde=0555
209 file path=usr/lib/nmdb/raw $(ARCH64)/ dof . so group=sys nbde=0555
210 file path=usr/lib/ndb/raw dof.so group=sys npde=0555

211 file path=usr/sbin/$(ARCH32)/dtrace npde=0555

212 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/intrstat node=0555

213 $(i386_ONLY)fil e path=usr/sbin/$(ARCH32) /1 ockstat npde=0555

214 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/ pl ockstat npde=0555

215 file path=usr/sbin/$(ARCH64)/dtrace npde=0555

216 file path=usr/sbin/$(ARCH64)/intrstat npde=0555

217 file path=usr/sbhin/ $(ARCH64) /| ockst at npbde=0555

218 file path=usr/sbin/ $(ARCH64)/ pl ockstat npde=0555

219 file path=usr/share/lib/javaldtrace.jar group=sys

220 file path=usr/share/lib/javaljavadoc/dtrace/api/allclasses-frame.htm \

221 gr oup=ot her

222 file path=usr/share/lib/javaljavadoc/dtrace/ api/allclasses-nofrane.htm \
223 group=ot her

224 file path=usr/share/lib/javaljavadoc/dtrace/ api/constant-val ues. htm \
225 gr oup=ot her

226 file path=usr/share/lib/javaljavadoc/dtrace/ api/deprecated-list.htm \
227 group=ot her

228 file path=usr/share/lib/javaljavadoc/dtrace/ api/hel p-doc. htm group=other
229 file path=usr/share/lib/|avaljavadoc/dtrace/ api/index-all.htm group=other
230 ;i:e Path=usr/sharel|ib/java/javadoc/dtrace/api/index.htn1 gr oup=ot her
231 file

232 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari s/ os/ dtrace/ Aggr ega
233 gr oup=ot her

234 file \

235 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ org/ opensol ari s/ os/ dtrace/ Aggr ega
236 gr oup=ot her

237 file \

238 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari s/ os/ dtrace/ Aggr ega
239 gr oup=ot her

240 file \

241 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari s/ os/ dtrace/ Aggr ega
242 gr oup=ot her

243 file \

244 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ org/ opensol ari s/ os/ dtrace/ AvgVal u
245 gr oup=ot her

246 file \

247 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari s/ os/ dtrace/ Consune
248 gr oup=ot her

249 file \

250 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari s/ os/ dtrace/ Consune
251 gr oup=ot her

252 file \

253 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/org/ opensol ari s/ os/ dtrace/ Consunme
254 gr oup=ot her

255 file \

256 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ org/ opensol ari s/ os/ dtrace/ Consune
257 gr oup=ot her

258 file \

259 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari s/ os/ dt race/ Consune

new usr/ src/ pkg/ mani f est s/ devel oper-dtrace. nf

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

file

group=ot her
\

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

file\

file

file

file

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

file\

file

file

file

pat h=usr/share/lib/javaljavadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

file\

file

file

pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

file\

file

file

file

file

file

file

file

file

file

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her
\

pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\

pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari

s/ os/ dtrace/ Consune

s/ os/ dtrace/ Count Va

s/ os/ dtrace/ DTraceE

s/ os/ dtrace/ Dat aEve

s/os/dtrace/Distrib

s/os/dtrace/Distrib

s/ os/ dtrace/ Drop. Ki

s/ os/ dtrace/ Drop. ht

s/ os/ dtrace/ Dr opEve

s/ os/dtrace/Error.h

s/ os/ dtrace/ Error Ev

s/ os/ dtrace/ Excepti

s/ os/ dtrace/ Exi t Rec

s/ os/ dtrace/ Fl ow. Ki

s/ os/ dtrace/ Fl ow. ht

s/os/dtrace/lnterfa

s/ os/dtrace/Interfa

s/os/dtrace/Interfa

s/ os/ dtrace/ Kernel S

s/ os/ dtrace/ Kernel S

s/ os/ dtrace/ Li near D

s/ os/ dtrace/ Local Co

new usr/ src/ pkg/ mani f est s/ devel oper - dtrace. nf

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

file

group=ot her
\

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

file\

file

file

file

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

file\

file

file

file

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

file\

file

file

pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

file\

file

file

file

file

file

file

file

file

file

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her
\

pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\

pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/org/ opensol ari
gr oup=ot her

\
pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
gr oup=ot her

\

pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari

s/ os/ dtrace/ LogDi st

s/ os/ dtrace/ LogLi ne

s/ os/ dtrace/ MaxVal u

s/ os/ dtrace/ M nVal u

s/ os/ dtrace/ Opti on.

s/ os/dtrace/ PrintaR

s/ os/dtrace/PrintfR

s/ os/ dtrace/ Probe. h

s/ os/ dtrace/ ProbeDa

s/ os/ dtrace/ ProbeDa

s/ os/ dtrace/ ProbeDe

s/ os/ dtrace/ ProbeDe

s/ os/ dtrace/ Probel n

s/ os/ dtrace/ Process

s/ os/ dtrace/ Process

s/ os/ dtrace/ Process

s/ os/ dtrace/ Program

s/ os/ dtrace/ Program

s/ os/ dtrace/ Program

s/ os/ dtrace/ Record.

s/ os/ dtrace/ Scal arR

s/ os/ dtrace/ St ackFr

new usr/ src/ pkg/ mani f est s/ devel oper-dtrace. nf

392 group=ot her

393 file \

394 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
395 gr oup=ot her

396 file \

397 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
398 gr oup=ot her

399 file \

400 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
401 gr oup=ot her

402 file \

403 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
404 gr oup=ot her

405 file \

406 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
407 gr oup=ot her

408 file \

409 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/org/ opensol ari
410 gr oup=ot her

411 file \

412 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ org/ opensol ari
413 gr oup=ot her

414 file \

415 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
416 gr oup=ot her

417 file \

418 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
419 gr oup=ot her

420 file \

421 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
422 gr oup=ot her

423 file \

424 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ org/ opensol ari
425 gr oup=ot her

426 file \

427 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
428 gr oup=ot her

429 file \

430 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
431 gr oup=ot her

432 file \

433 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
434 gr oup=ot her

435 file \

436 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
437 gr oup=ot her

438 file \

439 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
440 gr oup=ot her

441 file \

442 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
443 gr oup=ot her

444 file \

445 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ org/ opensol ari
446 gr oup=ot her

447 file \

448 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
449 gr oup=ot her

450 file \

451 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/org/ opensol ari
452 gr oup=ot her

453 file \

454 pat h=usr/share/lib/javaljavadoc/ dtrace/ api/ or g/ opensol ari
455 gr oup=ot her

456 file \

457 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari

s/ os/ dtrace/ St ackVa

s/ os/ dtrace/ St ddevV

s/ os/ dtrace/ Sunval u

s/ os/ dtrace/ Synbol V

s/ os/dtrace/ Tupl e. h

s/ os/ dtrace/ User St a

s/ os/ dtrace/ User Sym

s/ os/ dtrace/ User Sym

s/ os/ dtrace/ Val ueRe

s/ os/ dtrace/ cl ass-u

s/ os/ dtrace/ cl ass-u

s/ os/dtrace/cl ass-u

s/ os/dtrace/cl ass-u

s/ os/ dtrace/ cl ass-u

s/ os/ dtrace/ cl ass-u

s/ os/dtrace/cl ass-u

s/ os/ dtrace/ cl ass-u

s/ os/ dtrace/cl ass-u

s/ os/dtrace/cl ass-u

s/ os/dtrace/cl ass-u

s/ os/ dtrace/ cl ass-u

s/ os/ dtrace/cl ass-u

new usr/ src/ pkg/ mani f est s/ devel oper - dtrace. nf

458 group=ot her

459 file \

460 pat h=usr/share/lib/javal/javadoc/ dtrace/ api/org/ opensol ari
461 gr oup=ot he