
new/exception_lists/packaging 1

**
 26867 Sat Aug 18 10:36:54 2012
new/exception_lists/packaging
dccp: finish move headers, cleanup dccp states
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 #

27 #
28 # Exception List for validate_pkg
29 #

31 #
32 # The following entries are built in the /proto area
33 # but not included in any packages - this is intentional.
34 #
35 usr/include/auth_list.h
36 usr/include/bsm/audit_door_infc.h
37 usr/include/bsm/audit_private.h
38 usr/include/bsm/devalloc.h
39 usr/include/getxby_door.h
40 usr/include/passwdutil.h
41 usr/include/priv_utils.h
42 usr/include/rpcsvc/daemon_utils.h
43 usr/include/rpcsvc/svc_dg_priv.h
44 usr/include/security/pam_impl.h
45 usr/include/sys/clock_impl.h
46 usr/include/sys/ieeefp.h
47 usr/include/sys/winlockio.h
48 usr/include/scsi/plugins/ses/vendor/sun_impl.h
49 #
50 # Private/Internal libraries of the Cryptographic Framework.
51 #
52 lib/libkcfd.so
53 lib/llib-lelfsign
54 lib/llib-lelfsign.ln
55 lib/llib-lkcfd
56 lib/llib-lkcfd.ln
57 usr/include/libelfsign.h
58 usr/lib/llib-lsoftcrypto
59 usr/lib/llib-lsoftcrypto.ln
60 usr/lib/amd64/llib-lsoftcrypto.ln i386
61 usr/lib/sparcv9/llib-lsoftcrypto.ln sparc

new/exception_lists/packaging 2

63 #
64 # The following files are used by the DHCP service, the
65 # standalone’s DHCP implementation, and the kernel (nfs_dlboot).
66 # They contain interfaces which are currently private.
67 #
68 usr/include/dhcp_svc_confkey.h
69 usr/include/dhcp_svc_confopt.h
70 usr/include/dhcp_svc_private.h
71 usr/include/dhcp_symbol.h
72 usr/include/sys/sunos_dhcp_class.h
73 usr/lib/libdhcpsvc.so
74 usr/lib/llib-ldhcpsvc
75 usr/lib/llib-ldhcpsvc.ln
76 #
77 # Private MAC driver header files
78 #
79 usr/include/inet/iptun.h
80 usr/include/sys/aggr_impl.h
81 usr/include/sys/aggr.h
82 usr/include/sys/dld_impl.h
83 usr/include/sys/dld_ioc.h
84 usr/include/sys/dls_impl.h
85 usr/include/sys/dls.h
86 usr/include/sys/mac_client_impl.h
87 usr/include/sys/mac_client.h
88 usr/include/sys/mac_flow_impl.h
89 usr/include/sys/mac_impl.h
90 usr/include/sys/mac_soft_ring.h
91 usr/include/sys/mac_stat.h
92 #
93 # Private GLDv3 userland libraries and headers
94 #
95 usr/include/libdladm_impl.h
96 usr/include/libdlaggr.h
97 usr/include/libdlether.h
98 usr/include/libdlflow_impl.h
99 usr/include/libdlflow.h
100 usr/include/libdliptun.h
101 usr/include/libdlmgmt.h
102 usr/include/libdlsim.h
103 usr/include/libdlstat.h
104 usr/include/libdlvnic.h
105 usr/include/libdlwlan_impl.h
106 usr/include/libdlwlan.h
107 #
108 # Virtual Network Interface Card (VNIC)
109 #
110 usr/include/sys/vnic.h
111 usr/include/sys/vnic_impl.h
112 #
113 # Private libipadm lint library and header files
114 #
115 usr/include/ipadm_ipmgmt.h
116 usr/include/ipadm_ndpd.h
117 usr/include/libipadm.h
118 lib/llib-lipadm
119 lib/llib-lipadm.ln
120 lib/libipadm.so
121 #
122 # Private libsocket header file
123 #
124 usr/include/libsocket_priv.h
125 #
126 # IKE and IPsec support library exceptions. The IKE support
127 # library contains exclusively private interfaces, as does

new/exception_lists/packaging 3

128 # libipsecutil. My apologies for the glut of header files here.
129 #
130 usr/include/errfp.h
131 usr/include/ikedoor.h
132 usr/include/ipsec_util.h
133 usr/lib/libike.so
134 usr/lib/amd64/libike.so i386
135 usr/lib/sparcv9/libike.so sparc
136 usr/lib/libipsecutil.so
137 usr/lib/amd64/libipsecutil.so i386
138 usr/lib/sparcv9/libipsecutil.so sparc
139 usr/lib/llib-like
140 usr/lib/llib-like.ln
141 usr/lib/amd64/llib-like.ln i386
142 usr/lib/sparcv9/llib-like.ln sparc
143 usr/lib/llib-lipsecutil
144 usr/lib/llib-lipsecutil.ln
145 usr/lib/amd64/llib-lipsecutil.ln i386
146 usr/lib/sparcv9/llib-lipsecutil.ln sparc
147 #
148 usr/include/inet/dccp_impl.h
149 #endif /* ! codereview */
150 usr/include/inet/ip_impl.h
151 usr/include/inet/ip_ndp.h
152 usr/include/inet/ip2mac_impl.h
153 usr/include/inet/ip2mac.h
154 usr/include/inet/rawip_impl.h
155 usr/include/inet/tcp_impl.h
156 usr/include/inet/udp_impl.h
157 usr/include/libmail.h
158 usr/include/libnwam_priv.h
159 usr/include/protocols/ripngd.h
160 usr/include/s_string.h
161 usr/include/sys/logindmux_impl.h
162 usr/include/sys/vgareg.h
163 #
164 # Some IPsec headers can’t be shipped lest we hit export controls...
165 #
166 usr/include/inet/ipsec_impl.h
167 usr/include/inet/ipsec_info.h
168 usr/include/inet/ipsecah.h
169 usr/include/inet/ipsecesp.h
170 usr/include/inet/keysock.h
171 usr/include/inet/sadb.h
172 usr/include/sys/sha1_consts.h
173 usr/include/sys/sha2_consts.h
174 #
175 #
176 # Filtering out directories not shipped
177 #
178 usr/4lib i386
179 #
180 # These files contain definitions shared privately between the kernel
181 # and libc. There is no reason for them to be part of a package that
182 # a customer should ever see. They are installed in the proto area by
183 # the uts build because libc and and other components, like truss, are
184 # dependent upon their contents and should not have their own copies.
185 #
186 usr/include/sys/libc_kernel.h
187 usr/include/sys/synch32.h
188 #
189 # These files are installed in the proto area by the build of libproc for
190 # the benefit of the builds of cmd/truss, cmd/gcore and cmd/ptools, which
191 # use libproc as their common process-control library. These are not
192 # interfaces for customer use, so the files are excluded from packaging.
193 #

new/exception_lists/packaging 4

194 lib/llib-lproc
195 lib/llib-lproc.ln
196 lib/amd64/llib-lproc.ln i386
197 lib/sparcv9/llib-lproc.ln sparc
198 usr/include/libproc.h
199 #
200 # Private interfaces for libdisasm
201 #
202 usr/include/libdisasm.h
203 usr/lib/llib-ldisasm
204 usr/lib/llib-ldisasm.ln
205 usr/lib/amd64/llib-ldisasm.ln i386
206 usr/lib/sparcv9/llib-ldisasm.ln sparc
207 #
208 # Private interfaces for libraidcfg
209 #
210 usr/include/raidcfg_spi.h
211 usr/include/raidcfg.h
212 usr/lib/libraidcfg.so
213 usr/lib/amd64/libraidcfg.so i386
214 usr/lib/sparcv9/libraidcfg.so sparc
215 usr/lib/llib-lraidcfg
216 usr/lib/llib-lraidcfg.ln
217 usr/lib/amd64/llib-lraidcfg.ln i386
218 usr/lib/sparcv9/llib-lraidcfg.ln sparc
219 #
220 # This file is used for private communication between mdb, drv/kmdb, and
221 # misc/kmdb. The interfaces described herein are not intended for customer
222 # use, and are thus excluded from packaging.
223 #
224 usr/include/sys/kmdb.h
225 #
226 # These files are installed in the proto area by the build of libdhcpagent
227 # and libdhcputil for the benefit of DHCP-related networking commands such
228 # as dhcpagent, dhcpinfo, ifconfig, and netstat. These are not interfaces
229 # for customer use, so the files are excluded from packaging.
230 #
231 lib/libdhcpagent.so
232 lib/libdhcputil.so
233 lib/llib-ldhcpagent
234 lib/llib-ldhcpagent.ln
235 lib/llib-ldhcputil
236 lib/llib-ldhcputil.ln
237 usr/include/dhcp_hostconf.h
238 usr/include/dhcp_impl.h
239 usr/include/dhcp_inittab.h
240 usr/include/dhcp_stable.h
241 usr/include/dhcp_symbol_common.h
242 usr/include/dhcpagent_ipc.h
243 usr/include/dhcpagent_util.h
244 usr/include/dhcpmsg.h
245 usr/lib/libdhcpagent.so
246 usr/lib/libdhcputil.so
247 usr/lib/llib-ldhcpagent
248 usr/lib/llib-ldhcpagent.ln
249 usr/lib/llib-ldhcputil
250 usr/lib/llib-ldhcputil.ln
251 #
252 # These files are installed in the proto area by the build of libinstzones
253 # and libpkg
254 #
255 usr/lib/llib-linstzones
256 usr/lib/llib-linstzones.ln
257 usr/lib/llib-lpkg
258 usr/lib/llib-lpkg.ln
259 #

new/exception_lists/packaging 5

260 # Don’t ship header files private to libipmp and in.mpathd
261 #
262 usr/include/ipmp_query_impl.h
263 #
264 # These files are installed in the proto area by the build of libinetsvc,
265 # an inetd-specific library shared by inetd, inetadm and inetconv. Only
266 # the shared object is shipped.
267 #
268 usr/include/inetsvc.h
269 usr/lib/libinetsvc.so
270 usr/lib/llib-linetsvc
271 usr/lib/llib-linetsvc.ln
272 #
273 # These files are installed in the proto area by the build of libinetutil,
274 # a general purpose library for the benefit of internet utilities. Only
275 # the shared object is shipped.
276 #
277 lib/libinetutil.so
278 lib/amd64/libinetutil.so i386
279 lib/sparcv9/libinetutil.so sparc
280 lib/llib-linetutil
281 lib/llib-linetutil.ln
282 lib/amd64/llib-linetutil.ln i386
283 lib/sparcv9/llib-linetutil.ln sparc
284 usr/include/libinetutil.h
285 usr/include/netinet/inetutil.h
286 usr/include/ofmt.h
287 usr/lib/libinetutil.so
288 usr/lib/amd64/libinetutil.so i386
289 usr/lib/sparcv9/libinetutil.so sparc
290 usr/lib/llib-linetutil
291 usr/lib/llib-linetutil.ln
292 usr/lib/amd64/llib-linetutil.ln i386
293 usr/lib/sparcv9/llib-linetutil.ln sparc
294 #
295 # Miscellaneous kernel interfaces or kernel<->user interfaces that are
296 # consolidation private and we do not want to export at this time.
297 #
298 usr/include/sys/cryptmod.h
299 usr/include/sys/dumpadm.h
300 usr/include/sys/ontrap.h
301 usr/include/sys/sysmsg_impl.h
302 usr/include/sys/vlan.h
303 #
304 # These files are installed in the proto area so lvm can use
305 # them during the build process.
306 #
307 lib/llib-lmeta
308 lib/llib-lmeta.ln
309 usr/include/sdssc.h
310 usr/lib/llib-lmeta
311 usr/lib/llib-lmeta.ln
312 #
313 # non-public pci header
314 #
315 usr/include/sys/pci_impl.h
316 usr/include/sys/pci_tools.h
317 #
318 # Exception list for RCM project, included by librcm and rcm_daemon
319 #
320 usr/include/librcm_event.h
321 usr/include/librcm_impl.h
322 #
323 # MDB deliverables that are not yet public
324 #
325 usr/lib/mdb/proc/mdb_test.so

new/exception_lists/packaging 6

326 usr/lib/mdb/proc/sparcv9/mdb_test.so sparc
327 #
328 # SNCA project exception list
329 #
330 usr/include/inet/kssl/kssl.h
331 usr/include/inet/kssl/ksslimpl.h
332 usr/include/inet/kssl/ksslproto.h
333 usr/include/inet/nca
334 #
335 # these are "removed" from the source product build because the only
336 # packages that currently deliver them are removed.
337 # they really should’t be in here.
338 #
339 etc/sfw
340 #
341 # Entries for the libmech_krb5 symlink, which has been included
342 # for build purposes only, not delivered to customers.
343 #
344 usr/lib/gss/libmech_krb5.so
345 usr/lib/amd64/gss/libmech_krb5.so i386
346 usr/lib/sparcv9/gss/libmech_krb5.so sparc
347 usr/lib/libmech_krb5.so
348 usr/lib/amd64/libmech_krb5.so i386
349 usr/lib/sparcv9/libmech_krb5.so sparc
350 #
351 # Entries for headers from efcode project which user does not need to see
352 #
353 usr/platform/sun4u/include/sys/fc_plat.h sparc
354 usr/platform/sun4u/include/sys/fcode.h sparc
355 #
356 # Private net80211 headers
357 #
358 usr/include/sys/net80211_crypto.h
359 usr/include/sys/net80211_ht.h
360 usr/include/sys/net80211_proto.h
361 usr/include/sys/net80211.h
362 #
363 usr/include/net/wpa.h
364 #
365 # PPPoE files not delivered to customers.
366 #
367 usr/include/net/pppoe.h
368 usr/include/net/sppptun.h
369 #
370 # Simnet
371 #
372 usr/include/net/simnet.h
373 #
374 # Bridging internal data structures
375 #
376 usr/include/net/bridge_impl.h
377 #
378 # User<->kernel interface used by cfgadm/USB only
379 #
380 usr/include/sys/usb/hubd/hubd_impl.h
381 #
382 # User<->kernel interface used by cfgadm/SATA only
383 #
384 usr/include/sys/sata/sata_cfgadm.h i386
385 #
386 # Private ucred kernel header
387 #
388 usr/include/sys/ucred.h
389 #
390 # Private and/or platform-specific smf(5) files
391 #

new/exception_lists/packaging 7

392 lib/librestart.so
393 lib/llib-lrestart
394 lib/llib-lrestart.ln
395 lib/amd64/llib-lrestart.ln i386
396 lib/sparcv9/llib-lrestart.ln sparc
397 usr/include/libcontract_priv.h
398 usr/include/librestart_priv.h
399 usr/include/librestart.h
400 usr/lib/librestart.so
401 usr/lib/sparcv9/librestart.so sparc
402 lib/svc/manifest/platform/sun4u i386
403 lib/svc/manifest/platform/sun4v i386
404 var/svc/manifest/platform/sun4u i386
405 var/svc/manifest/platform/sun4v i386
406 etc/svc/profile/platform_sun4v.xml i386
407 etc/svc/profile/platform_SUNW,SPARC-Enterprise.xml i386
408 etc/svc/profile/platform_SUNW,Sun-Fire-15000.xml i386
409 etc/svc/profile/platform_SUNW,Sun-Fire-880.xml i386
410 etc/svc/profile/platform_SUNW,Sun-Fire-V890.xml i386
411 etc/svc/profile/platform_SUNW,Sun-Fire.xml i386
412 etc/svc/profile/platform_SUNW,Ultra-Enterprise-10000.xml i386
413 etc/svc/profile/platform_SUNW,UltraSPARC-IIe-NetraCT-40.xml i386
414 etc/svc/profile/platform_SUNW,UltraSPARC-IIe-NetraCT-60.xml i386
415 etc/svc/profile/platform_SUNW,UltraSPARC-IIi-Netract.xml i386
416 #
417 # Private libuutil files
418 #
419 lib/libuutil.so
420 lib/llib-luutil
421 lib/llib-luutil.ln
422 lib/sparcv9/llib-luutil.ln sparc
423 usr/include/libuutil_impl.h
424 usr/lib/libuutil.so
425 usr/lib/sparcv9/libuutil.so sparc
426 #
427 # Private Multidata file.
428 #
429 usr/include/sys/multidata_impl.h
430 #
431 # The following files are used by wanboot.
432 # They contain interfaces which are currently private.
433 #
434 usr/include/sys/wanboot_impl.h
435 usr/include/wanboot
436 usr/include/wanbootutil.h
437 #
438 # Even though all the objects built under usr/src/stand are later glommed
439 # together into a couple of second-stage boot loaders, we dump the static
440 # archives and lint libraries into $(ROOT)/stand for intermediate use
441 # (e.g., for lint, linking the second-stage boot loaders, ...). Since
442 # these are merely intermediate objects, they do not need to be packaged.
443 #
444 stand sparc
445 #
446 # Private KCF header files
447 #
448 usr/include/sys/crypto/elfsign.h
449 usr/include/sys/crypto/impl.h
450 usr/include/sys/crypto/ops_impl.h
451 usr/include/sys/crypto/sched_impl.h
452 #
453 # The following files are installed in the proto area
454 # by the build of libavl (AVL Tree Interface Library).
455 # libavl contains interfaces which are all private interfaces.
456 #
457 lib/libavl.so

new/exception_lists/packaging 8

458 lib/amd64/libavl.so i386
459 lib/sparcv9/libavl.so sparc
460 lib/llib-lavl
461 lib/llib-lavl.ln
462 lib/amd64/llib-lavl.ln i386
463 lib/sparcv9/llib-lavl.ln sparc
464 usr/lib/libavl.so
465 usr/lib/amd64/libavl.so i386
466 usr/lib/sparcv9/libavl.so sparc
467 usr/lib/llib-lavl
468 usr/lib/llib-lavl.ln
469 usr/lib/amd64/llib-lavl.ln i386
470 usr/lib/sparcv9/llib-lavl.ln sparc
471 #
472 # The following files are installed in the proto area
473 # by the build of libcmdutils (Command Utilities Library).
474 # libcmdutils contains interfaces which are all private interfaces.
475 #
476 lib/libcmdutils.so
477 lib/amd64/libcmdutils.so i386
478 lib/sparcv9/libcmdutils.so sparc
479 lib/llib-lcmdutils
480 lib/llib-lcmdutils.ln
481 lib/amd64/llib-lcmdutils.ln i386
482 lib/sparcv9/llib-lcmdutils.ln sparc
483 usr/include/libcmdutils.h
484 usr/lib/libcmdutils.so
485 usr/lib/amd64/libcmdutils.so i386
486 usr/lib/sparcv9/libcmdutils.so sparc
487 usr/lib/llib-lcmdutils
488 usr/lib/llib-lcmdutils.ln
489 usr/lib/amd64/llib-lcmdutils.ln i386
490 usr/lib/sparcv9/llib-lcmdutils.ln sparc
491 #
492 # Private interfaces in libsec
493 #
494 usr/include/aclutils.h
495 #
496 # USB skeleton driver stays in sync with the rest of USB but doesn’t ship.
497 #
498 kernel/drv/usbskel i386
499 kernel/drv/amd64/usbskel i386
500 kernel/drv/sparcv9/usbskel sparc
501 kernel/drv/usbskel.conf
502 #
503 # Consolidation and Sun private libdevid interfaces
504 # Public libdevid interfaces provided by devid.h
505 #
506 usr/include/sys/libdevid.h
507 #
508 # The following files are installed in the proto area by the build of
509 # libprtdiag. libprtdiag contains interfaces which are all private.
510 # Only the shared object is shipped.
511 #
512 usr/platform/sun4u/lib/llib-lprtdiag sparc
513 usr/platform/sun4u/lib/llib-lprtdiag.ln sparc
514 usr/platform/sun4v/lib/llib-lprtdiag.ln sparc
515 #
516 # The following files are installed in the proto area by the build of
517 # mdesc driver in sun4v. These header files are used on in the build
518 # and do not need to be shipped to customers.
519 #
520 usr/include/sys/mdesc.h sparc
521 usr/include/sys/mdesc_impl.h sparc
522 usr/platform/sun4v/include/sys/mach_descrip.h sparc
523 #

new/exception_lists/packaging 9

524 # The following files are installed in the proto area by the build of
525 # libpcp. libpcp contains interfaces which are all private.
526 # Only the shared object is shipped.
527 #
528 usr/platform/sun4v/lib/llib-lpcp.ln sparc
529 usr/platform/SUNW,Netra-CP3060/lib/llib-lpcp.ln sparc
530 usr/platform/SUNW,Netra-CP3260/lib/llib-lpcp.ln sparc
531 usr/platform/SUNW,Netra-T5220/lib/llib-lpcp.ln sparc
532 usr/platform/SUNW,Netra-T5440/lib/llib-lpcp.ln sparc
533 usr/platform/SUNW,SPARC-Enterprise-T5120/lib/llib-lpcp.ln sparc
534 usr/platform/SUNW,Sun-Blade-T6300/lib/llib-lpcp.ln sparc
535 usr/platform/SUNW,Sun-Blade-T6320/lib/llib-lpcp.ln sparc
536 usr/platform/SUNW,Sun-Fire-T200/lib/llib-lpcp.ln sparc
537 usr/platform/SUNW,T5140/lib/llib-lpcp.ln sparc
538 usr/platform/SUNW,USBRDT-5240/lib/llib-lpcp.ln sparc
539 #
540 # ZFS internal tools and lint libraries
541 #
542 usr/lib/llib-lzfs_jni
543 usr/lib/llib-lzfs_jni.ln
544 usr/lib/amd64/llib-lzfs_jni.ln i386
545 usr/lib/sparcv9/llib-lzfs_jni.ln sparc
546 usr/lib/llib-lzpool
547 usr/lib/llib-lzpool.ln i386
548 usr/lib/amd64/llib-lzpool.ln i386
549 usr/lib/sparcv9/llib-lzpool.ln sparc
550 #
551 # ZFS JNI headers
552 #
553 usr/include/libzfs_jni_dataset.h
554 usr/include/libzfs_jni_disk.h
555 usr/include/libzfs_jni_diskmgt.h
556 usr/include/libzfs_jni_ipool.h
557 usr/include/libzfs_jni_main.h
558 usr/include/libzfs_jni_pool.h
559 usr/include/libzfs_jni_property.h
560 usr/include/libzfs_jni_util.h
561 #
562 # These files are installed in the proto area for Solaris scsi_vhci driver
563 # (for MPAPI support) and should not be shipped
564 #
565 usr/include/sys/scsi/adapters/mpapi_impl.h
566 usr/include/sys/scsi/adapters/mpapi_scsi_vhci.h
567 #
568 # This library is installed in the proto area by the build of libdisasm, and is
569 # only used when building the KMDB disasm module.
570 #
571 usr/lib/libstanddisasm.so
572 usr/lib/amd64/libstanddisasm.so i386
573 usr/lib/sparcv9/libstanddisasm.so sparc
574 #
575 # TSol: tsol doesn’t ship lint source, and tsnet isn’t for customers at all.
576 #
577 lib/libtsnet.so
578 usr/lib/llib-ltsnet
579 usr/lib/llib-ltsol
580 #
581 # nss interfaces shared between libnsl and other ON libraries.
582 #
583 usr/include/nss.h
584 #
585 # AT&T AST (ksh93) files which are currently needed only to build OS/Net
586 # (msgcc&co.)
587 # libast
588 usr/lib/libast.so
589 usr/lib/amd64/libast.so i386

new/exception_lists/packaging 10

590 usr/lib/sparcv9/libast.so sparc
591 usr/lib/llib-last
592 usr/lib/llib-last.ln
593 usr/lib/amd64/llib-last.ln i386
594 usr/lib/sparcv9/llib-last.ln sparc
595 # libcmd
596 usr/lib/llib-lcmd
597 usr/lib/llib-lcmd.ln
598 usr/lib/amd64/llib-lcmd.ln i386
599 usr/lib/sparcv9/llib-lcmd.ln sparc
600 # libdll
601 usr/lib/libdll.so
602 usr/lib/amd64/libdll.so i386
603 usr/lib/sparcv9/libdll.so sparc
604 usr/lib/llib-ldll
605 usr/lib/llib-ldll.ln
606 usr/lib/amd64/llib-ldll.ln i386
607 usr/lib/sparcv9/llib-ldll.ln sparc
608 # libpp (a helper library needed by AST’s msgcc)
609 usr/lib/libpp.so
610 usr/lib/llib-lpp
611 usr/lib/llib-lpp.ln
612 usr/lib/locale/C/LC_MESSAGES/libpp
613 # libshell
614 usr/lib/libshell.so
615 usr/lib/amd64/libshell.so i386
616 usr/lib/sparcv9/libshell.so sparc
617 usr/lib/llib-lshell
618 usr/lib/llib-lshell.ln
619 usr/lib/amd64/llib-lshell.ln i386
620 usr/lib/sparcv9/llib-lshell.ln sparc
621 # libsum
622 usr/lib/libsum.so
623 usr/lib/amd64/libsum.so i386
624 usr/lib/sparcv9/libsum.so sparc
625 usr/lib/llib-lsum
626 usr/lib/llib-lsum.ln
627 usr/lib/amd64/llib-lsum.ln i386
628 usr/lib/sparcv9/llib-lsum.ln sparc
629 #
630 # This file is used in ON to build DSCP clients. It is not for customers.
631 #
632 usr/include/libdscp.h sparc
633 #
634 # These files are used by the iSCSI Target and the iSCSI Initiator
635 #
636 usr/include/sys/iscsi_protocol.h
637 usr/include/sys/iscsi_authclient.h
638 usr/include/sys/iscsi_authclientglue.h
639 #
640 # These files are used by the COMSTAR iSCSI target port provider
641 #
642 usr/include/sys/idm
643 usr/include/sys/iscsit/chap.h
644 usr/include/sys/iscsit/iscsi_if.h
645 usr/include/sys/iscsit/isns_protocol.h
646 usr/include/sys/iscsit/radius_packet.h
647 usr/include/sys/iscsit/radius_protocol.h
648 #
649 # libshare is private and the 64-bit sharemgr is not delivered.
650 #
651 usr/lib/libshare.so
652 usr/lib/amd64/libshare.so i386
653 usr/lib/sparcv9/libshare.so sparc
654 usr/lib/fs/autofs/libshare_autofs.so
655 usr/lib/fs/autofs/amd64/libshare_autofs.so i386

new/exception_lists/packaging 11

656 usr/lib/fs/autofs/sparcv9/libshare_autofs.so sparc
657 usr/lib/fs/nfs/libshare_nfs.so
658 usr/lib/fs/nfs/amd64/libshare_nfs.so i386
659 usr/lib/fs/nfs/sparcv9/libshare_nfs.so sparc
660 usr/lib/fs/smb/libshare_smb.so
661 usr/lib/fs/smb/amd64/libshare_smb.so i386
662 usr/lib/fs/smb/sparcv9/libshare_smb.so sparc
663 usr/lib/fs/smbfs/libshare_smbfs.so
664 usr/lib/fs/smbfs/amd64/libshare_smbfs.so i386
665 usr/lib/fs/smbfs/sparcv9/libshare_smbfs.so sparc
666 usr/include/libshare_impl.h
667 usr/include/scfutil.h
668 #
669 # These files are installed in the proto area by the build of libpri for
670 # the benefit of the builds of FMA libldom, Zeus, picld plugins, and/or
671 # other libpri consumers. However, the libpri interfaces are private to
672 # Sun (Consolidation Private) and not intended for customer use. So these
673 # files (the symlink and the lint library) are excluded from packaging.
674 #
675 usr/lib/libpri.so sparc
676 usr/lib/llib-lpri sparc
677 usr/lib/llib-lpri.ln sparc
678 usr/lib/sparcv9/libpri.so sparc
679 usr/lib/sparcv9/llib-lpri.ln sparc
680 #
681 # These files are installed in the proto area by the build of libds for
682 # the benefit of the builds of sun4v IO FMA and/or other libds
683 # consumers. However, the libds interfaces are private to Sun
684 # (Consolidation Private) and not intended for customer use. So these
685 # files (the symlink and the lint library) are excluded from packaging.
686 #
687 usr/lib/libds.so sparc
688 usr/lib/sparcv9/libds.so sparc
689 usr/lib/llib-lds sparc
690 usr/lib/llib-lds.ln sparc
691 usr/lib/sparcv9/llib-lds.ln sparc
692 usr/lib/libdscfg.so
693 usr/lib/llib-ldscfg.ln
694 usr/platform/sun4v/include/sys/libds.h sparc
695 usr/platform/sun4v/include/sys/vlds.h sparc
696 #
697 # Private/Internal u8_textprep header file. Do not ship.
698 #
699 usr/include/sys/u8_textprep_data.h
700 #
701 # SQLite is private, used by SMF (svc.configd), idmapd and libsmb.
702 #
703 usr/include/sqlite
704 usr/lib/libsqlite-native.o
705 usr/lib/libsqlite.o
706 usr/lib/llib-lsqlite.ln
707 usr/lib/smbsrv/libsqlite.so
708 #
709 # Private/Internal kiconv header files. Do not ship.
710 #
711 usr/include/sys/kiconv_big5_utf8.h
712 usr/include/sys/kiconv_cck_common.h
713 usr/include/sys/kiconv_cp950hkscs_utf8.h
714 usr/include/sys/kiconv_emea1.h
715 usr/include/sys/kiconv_emea2.h
716 usr/include/sys/kiconv_euckr_utf8.h
717 usr/include/sys/kiconv_euctw_utf8.h
718 usr/include/sys/kiconv_gb18030_utf8.h
719 usr/include/sys/kiconv_gb2312_utf8.h
720 usr/include/sys/kiconv_hkscs_utf8.h
721 usr/include/sys/kiconv_ja_jis_to_unicode.h

new/exception_lists/packaging 12

722 usr/include/sys/kiconv_ja_unicode_to_jis.h
723 usr/include/sys/kiconv_ja.h
724 usr/include/sys/kiconv_ko.h
725 usr/include/sys/kiconv_latin1.h
726 usr/include/sys/kiconv_sc.h
727 usr/include/sys/kiconv_tc.h
728 usr/include/sys/kiconv_uhc_utf8.h
729 usr/include/sys/kiconv_utf8_big5.h
730 usr/include/sys/kiconv_utf8_cp950hkscs.h
731 usr/include/sys/kiconv_utf8_euckr.h
732 usr/include/sys/kiconv_utf8_euctw.h
733 usr/include/sys/kiconv_utf8_gb18030.h
734 usr/include/sys/kiconv_utf8_gb2312.h
735 usr/include/sys/kiconv_utf8_hkscs.h
736 usr/include/sys/kiconv_utf8_uhc.h
737 #
738 # At this time, the ttydefs.cleanup file is only useful on sun4u systems
739 #
740 etc/flash/postdeployment/ttydefs.cleanup i386
741 #
742 # This header file is shared only between the power commands and
743 # ppm/srn modules # and should not be in any package
744 #
745 usr/include/sys/srn.h
746 #
747 # Private/Internal header files of smbsrv. Do not ship.
748 #
749 usr/include/smb
750 usr/include/smbsrv
751 #
752 # Private/Internal dtrace scripts of smbsrv. Do not ship.
753 #
754 usr/lib/smbsrv/dtrace
755 #
756 # Private/Internal (lint) libraries of smbsrv. Do not ship.
757 #
758 usr/lib/reparse/llib-lreparse_smb
759 usr/lib/reparse/llib-lreparse_smb.ln
760 usr/lib/smbsrv/llib-lmlrpc
761 usr/lib/smbsrv/llib-lmlrpc.ln
762 usr/lib/smbsrv/llib-lmlsvc
763 usr/lib/smbsrv/llib-lmlsvc.ln
764 usr/lib/smbsrv/llib-lsmb
765 usr/lib/smbsrv/llib-lsmb.ln
766 usr/lib/smbsrv/llib-lsmbns
767 usr/lib/smbsrv/llib-lsmbns.ln
768 #
769 #
770 # Private/Internal 64-bit libraries of smbsrv. Do not ship.
771 #
772 usr/lib/smbsrv/amd64 i386
773 usr/lib/smbsrv/sparcv9 sparc

775 usr/lib/reparse/amd64/libreparse_smb.so i386
776 usr/lib/reparse/amd64/libreparse_smb.so.1 i386
777 usr/lib/reparse/amd64/llib-lreparse_smb.ln i386
778 usr/lib/reparse/sparcv9/libreparse_smb.so sparc
779 usr/lib/reparse/sparcv9/libreparse_smb.so.1 sparc
780 usr/lib/reparse/sparcv9/llib-lreparse_smb.ln sparc
781 #
782 # Private dirent, extended to include flags, for use by SMB server
783 #
784 usr/include/sys/extdirent.h
785 #
786 # Private header files for vscan service
787 #

new/exception_lists/packaging 13

788 usr/include/libvscan.h
789 usr/include/sys/vscan.h
790 #
791 # libvscan is private
792 #
793 usr/lib/vscan/llib-lvscan
794 usr/lib/vscan/llib-lvscan.ln
795 #
796 # i86hvm is not a full platform. It is just a home for paravirtualized
797 # drivers. There is no usr/ component to this sub-platform, but the
798 # directory is created in the proto area to keep other tools happy.
799 #
800 usr/platform/i86hvm i386
801 #
802 # Private sdcard framework headers
803 #
804 usr/include/sys/sdcard
805 #
806 # libsmbfs is private
807 #
808 usr/include/netsmb
809 usr/lib/libsmbfs.so
810 usr/lib/amd64/libsmbfs.so i386
811 usr/lib/sparcv9/libsmbfs.so sparc
812 usr/lib/llib-lsmbfs
813 usr/lib/llib-lsmbfs.ln
814 usr/lib/amd64/llib-lsmbfs.ln i386
815 usr/lib/sparcv9/llib-lsmbfs.ln sparc
816 #
817 # demo & test program for smbfs (private) ACL support
818 #
819 usr/lib/fs/smbfs/chacl
820 usr/lib/fs/smbfs/lsacl
821 usr/lib/fs/smbfs/testnp
822 #
823 # FC related files
824 kernel/kmdb/fcip i386
825 kernel/kmdb/amd64/fcip i386
826 kernel/kmdb/sparcv9/fcip sparc
827 kernel/kmdb/fcp i386
828 kernel/kmdb/amd64/fcp i386
829 kernel/kmdb/sparcv9/fcp sparc
830 kernel/kmdb/fctl i386
831 kernel/kmdb/amd64/fctl i386
832 kernel/kmdb/sparcv9/fctl sparc
833 kernel/kmdb/qlc i386
834 kernel/kmdb/amd64/qlc i386
835 kernel/kmdb/sparcv9/qlc sparc
836 lib/llib-la5k sparc
837 lib/llib-la5k.ln sparc
838 lib/sparcv9/llib-la5k.ln sparc
839 lib/llib-lg_fc sparc
840 lib/llib-lg_fc.ln sparc
841 lib/sparcv9/llib-lg_fc.ln sparc
842 usr/include/a_state.h sparc
843 usr/include/a5k.h sparc
844 usr/include/exec.h sparc
845 usr/include/g_scsi.h sparc
846 usr/include/g_state.h sparc
847 usr/include/gfc.h sparc
848 usr/include/l_common.h sparc
849 usr/include/l_error.h sparc
850 usr/include/rom.h sparc
851 usr/include/stgcom.h sparc
852 usr/include/sys/fibre-channel
853 usr/lib/llib-lHBAAPI

new/exception_lists/packaging 14

854 usr/lib/llib-lHBAAPI.ln
855 usr/lib/amd64/llib-lHBAAPI.ln i386
856 usr/lib/sparcv9/llib-lHBAAPI.ln sparc
857 #
858 usr/bin/dscfgcli
859 usr/bin/sd_diag
860 usr/bin/sd_stats
861 usr/include/nsctl.h
862 usr/include/sys/ncall
863 usr/include/sys/nsc_ddi.h
864 usr/include/sys/nsc_thread.h
865 usr/include/sys/nsctl
866 usr/include/sys/nskernd.h
867 usr/include/sys/unistat
868 usr/lib/libnsctl.so
869 usr/lib/librdc.so
870 usr/lib/libunistat.so
871 usr/lib/llib-lnsctl.ln
872 usr/lib/llib-lrdc.ln
873 usr/lib/llib-lunistat.ln
874 #
875 # These files are used by the iSCSI initiator only.
876 # No reason to ship them.
877 #
878 usr/include/sys/scsi/adapters/iscsi_door.h
879 usr/include/sys/scsi/adapters/iscsi_if.h
880 #
881 # sbd ioctl hdr
882 #
883 usr/include/sys/stmf_sbd_ioctl.h
884 #
885 # proxy port provider interface
886 #
887 usr/include/sys/pppt_ic_if.h
888 usr/include/sys/pppt_ioctl.h
889 #
890 # proxy daemon lint library
891 #
892 usr/lib/llib-lstmfproxy
893 usr/lib/llib-lstmfproxy.ln
894 usr/lib/amd64/llib-lstmfproxy.ln i386
895 usr/lib/sparcv9/llib-lstmfproxy.ln sparc
896 #
897 # portable object file and dictionary used by libfmd_msg test
898 #
899 usr/lib/fm/dict/TEST.dict
900 usr/lib/locale/C/LC_MESSAGES/TEST.mo
901 usr/lib/locale/C/LC_MESSAGES/TEST.po
902 #
903 # Private idmap RPC protocol
904 #
905 usr/include/rpcsvc/idmap_prot.h
906 usr/include/rpcsvc/idmap_prot.x
907 #
908 # Private idmap directory API
909 #
910 usr/include/directory.h
911 #
912 # librstp is private for bridging
913 #
914 usr/include/stp_bpdu.h
915 usr/include/stp_in.h
916 usr/include/stp_vectors.h
917 usr/lib/librstp.so
918 usr/lib/llib-lrstp
919 usr/lib/llib-lrstp.ln

new/exception_lists/packaging 15

920 #
921 # Private nvfru API
922 #
923 usr/include/nvfru.h
924 #
925 # vrrp
926 #
927 usr/include/libvrrpadm.h
928 usr/lib/libvrrpadm.so
929 usr/lib/amd64/libvrrpadm.so i386
930 usr/lib/sparcv9/libvrrpadm.so sparc
931 usr/lib/llib-lvrrpadm
932 usr/lib/llib-lvrrpadm.ln
933 usr/lib/amd64/llib-lvrrpadm.ln i386
934 usr/lib/sparcv9/llib-lvrrpadm.ln sparc
935 #
936 # This is only used during the -t tools build
937 #
938 opt/onbld/bin/i386/elfsign i386
939 opt/onbld/bin/sparc/elfsign sparc

941 #
942 # Private libdwarf
943 #
944 opt/onbld/lib/i386/libdwarf.so i386
945 opt/onbld/lib/sparc/libdwarf.so sparc

947 #
948 # Private socket filter API
949 #
950 usr/include/sys/sockfilter.h
951 #
952 # We don’t actually validate license action payloads, and the license
953 # staging area is provided as a separate basedir for package
954 # publication. The net result is that everything therein should be
955 # ignored for packaging validation.
956 #
957 licenses
958 # Libbe is private
959 #
960 usr/include/libbe_priv.h

new/usr/src/cmd/cmd-inet/etc/sock2path.d/system%2Fkernel 1

**
 1303 Sat Aug 18 10:36:55 2012
new/usr/src/cmd/cmd-inet/etc/sock2path.d/system%2Fkernel
dccp: lint fixes, dccp_conn_create_v6
**

1 # CDDL HEADER START
2 #
3 # The contents of this file are subject to the terms of the
4 # Common Development and Distribution License (the "License").
5 # You may not use this file except in compliance with the License.
6 #
7 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
8 # or http://www.opensolaris.org/os/licensing.
9 # See the License for the specific language governing permissions

10 # and limitations under the License.
11 #
12 # When distributing Covered Code, include this CDDL HEADER in each
13 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
14 # If applicable, add the following below this CDDL HEADER, with the
15 # fields enclosed by brackets "[]" replaced with your own identifying
16 # information: Portions Copyright [yyyy] [name of copyright owner]
17 #
18 # CDDL HEADER END
19 #
20 # Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
21 #
22 # socket configuration information
23 #
24 # Family Type Protocol Dev|Module
25 2 2 0 tcp
26 2 2 6 tcp

28 26 2 0 tcp
29 26 2 6 tcp

31 2 1 0 udp
32 2 1 17 udp

34 26 1 0 udp
35 26 1 17 udp

37 1 2 0 /dev/ticotsord
38 1 6 0 /dev/ticotsord
39 1 1 0 /dev/ticlts

41 2 4 0 icmp
42 26 4 0 icmp

44 2 2 132 socksctp
45 26 2 132 socksctp
46 2 6 132 socksctp
47 26 6 132 socksctp

49 24 4 0 rts

51 27 4 2 /dev/keysock
52 29 4 1 /dev/spdsock

54 31 1 0 trill

56 2 6 33 dccp
57 #endif /* ! codereview */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 1

**
 189148 Sat Aug 18 10:36:55 2012
new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c
dccp: complete netstack
**
______unchanged_portion_omitted_

138 static mib_item_t *mibget(int sd);
139 static void mibfree(mib_item_t *firstitem);
140 static int mibopen(void);
141 static void mib_get_constants(mib_item_t *item);
142 static mib_item_t *mib_item_dup(mib_item_t *item);
143 static mib_item_t *mib_item_diff(mib_item_t *item1,
144 mib_item_t *item2);
145 static void mib_item_destroy(mib_item_t **item);

147 static boolean_t octetstrmatch(const Octet_t *a, const Octet_t *b);
148 static char *octetstr(const Octet_t *op, int code,
149 char *dst, uint_t dstlen);
150 static char *pr_addr(uint_t addr,
151 char *dst, uint_t dstlen);
152 static char *pr_addrnz(ipaddr_t addr, char *dst, uint_t dstlen);
153 static char *pr_addr6(const in6_addr_t *addr,
154 char *dst, uint_t dstlen);
155 static char *pr_mask(uint_t addr,
156 char *dst, uint_t dstlen);
157 static char *pr_prefix6(const struct in6_addr *addr,
158 uint_t prefixlen, char *dst, uint_t dstlen);
159 static char *pr_ap(uint_t addr, uint_t port,
160 char *proto, char *dst, uint_t dstlen);
161 static char *pr_ap6(const in6_addr_t *addr, uint_t port,
162 char *proto, char *dst, uint_t dstlen);
163 static char *pr_net(uint_t addr, uint_t mask,
164 char *dst, uint_t dstlen);
165 static char *pr_netaddr(uint_t addr, uint_t mask,
166 char *dst, uint_t dstlen);
167 static char *fmodestr(uint_t fmode);
168 static char *portname(uint_t port, char *proto,
169 char *dst, uint_t dstlen);

171 static const char *mitcp_state(int code,
172 const mib2_transportMLPEntry_t *attr);
173 static const char *miudp_state(int code,
174 const mib2_transportMLPEntry_t *attr);

176 static void stat_report(mib_item_t *item);
177 static void mrt_stat_report(mib_item_t *item);
178 static void arp_report(mib_item_t *item);
179 static void ndp_report(mib_item_t *item);
180 static void mrt_report(mib_item_t *item);
181 static void if_stat_total(struct ifstat *oldstats,
182 struct ifstat *newstats, struct ifstat *sumstats);
183 static void if_report(mib_item_t *item, char *ifname,
184 int Iflag_only, boolean_t once_only);
185 static void if_report_ip4(mib2_ipAddrEntry_t *ap,
186 char ifname[], char logintname[],
187 struct ifstat *statptr, boolean_t ksp_not_null);
188 static void if_report_ip6(mib2_ipv6AddrEntry_t *ap6,
189 char ifname[], char logintname[],
190 struct ifstat *statptr, boolean_t ksp_not_null);
191 static void ire_report(const mib_item_t *item);
192 static void tcp_report(const mib_item_t *item);
193 static void udp_report(const mib_item_t *item);
194 static void group_report(mib_item_t *item);
195 static void dce_report(mib_item_t *item);
196 static void sctp_report(const mib_item_t *item);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 2

197 static void dccp_report(const mib_item_t *item);
198 #endif /* ! codereview */
199 static void print_ip_stats(mib2_ip_t *ip);
200 static void print_icmp_stats(mib2_icmp_t *icmp);
201 static void print_ip6_stats(mib2_ipv6IfStatsEntry_t *ip6);
202 static void print_icmp6_stats(mib2_ipv6IfIcmpEntry_t *icmp6);
203 static void print_sctp_stats(mib2_sctp_t *tcp);
204 static void print_tcp_stats(mib2_tcp_t *tcp);
205 static void print_udp_stats(mib2_udp_t *udp);
206 static void print_rawip_stats(mib2_rawip_t *rawip);
207 static void print_igmp_stats(struct igmpstat *igps);
208 static void print_mrt_stats(struct mrtstat *mrts);
209 static void print_dccp_stats(mib2_dccp_t *dccp);
196 static void sctp_report(const mib_item_t *item);
210 static void sum_ip6_stats(mib2_ipv6IfStatsEntry_t *ip6,
211 mib2_ipv6IfStatsEntry_t *sum6);
212 static void sum_icmp6_stats(mib2_ipv6IfIcmpEntry_t *icmp6,
213 mib2_ipv6IfIcmpEntry_t *sum6);
214 static void m_report(void);
215 static void dhcp_report(char *);

217 static uint64_t kstat_named_value(kstat_t *, char *);
218 static kid_t safe_kstat_read(kstat_ctl_t *, kstat_t *, void *);
219 static int isnum(char *);
220 static char *plural(int n);
221 static char *pluraly(int n);
222 static char *plurales(int n);
223 static void process_filter(char *arg);
224 static char *ifindex2str(uint_t, char *);
225 static boolean_t family_selected(int family);

227 static void usage(char *);
228 static void fatal(int errcode, char *str1, ...);

230 #define PLURAL(n) plural((int)n)
231 #define PLURALY(n) pluraly((int)n)
232 #define PLURALES(n) plurales((int)n)
233 #define IFLAGMOD(flg, val1, val2) if (flg == val1) flg = val2
234 #define MDIFF(diff, elem2, elem1, member) (diff)->member = \
235 (elem2)->member - (elem1)->member

238 static boolean_t Aflag = B_FALSE; /* All sockets/ifs/rtng-tbls */
239 static boolean_t Dflag = B_FALSE; /* DCE info */
240 static boolean_t Iflag = B_FALSE; /* IP Traffic Interfaces */
241 static boolean_t Mflag = B_FALSE; /* STREAMS Memory Statistics */
242 static boolean_t Nflag = B_FALSE; /* Numeric Network Addresses */
243 static boolean_t Rflag = B_FALSE; /* Routing Tables */
244 static boolean_t RSECflag = B_FALSE; /* Security attributes */
245 static boolean_t Sflag = B_FALSE; /* Per-protocol Statistics */
246 static boolean_t Vflag = B_FALSE; /* Verbose */
247 static boolean_t Pflag = B_FALSE; /* Net to Media Tables */
248 static boolean_t Gflag = B_FALSE; /* Multicast group membership */
249 static boolean_t MMflag = B_FALSE; /* Multicast routing table */
250 static boolean_t DHCPflag = B_FALSE; /* DHCP statistics */
251 static boolean_t Xflag = B_FALSE; /* Debug Info */

253 static int v4compat = 0; /* Compatible printing format for status */

255 static int proto = IPPROTO_MAX; /* all protocols */
256 kstat_ctl_t *kc = NULL;

258 /*
259 * Sizes of data structures extracted from the base mib.
260 * This allows the size of the tables entries to grow while preserving
261 * binary compatibility.

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 3

262 */
263 static int ipAddrEntrySize;
264 static int ipRouteEntrySize;
265 static int ipNetToMediaEntrySize;
266 static int ipMemberEntrySize;
267 static int ipGroupSourceEntrySize;
268 static int ipRouteAttributeSize;
269 static int vifctlSize;
270 static int mfcctlSize;

272 static int ipv6IfStatsEntrySize;
273 static int ipv6IfIcmpEntrySize;
274 static int ipv6AddrEntrySize;
275 static int ipv6RouteEntrySize;
276 static int ipv6NetToMediaEntrySize;
277 static int ipv6MemberEntrySize;
278 static int ipv6GroupSourceEntrySize;

280 static int ipDestEntrySize;

282 static int transportMLPSize;
283 static int tcpConnEntrySize;
284 static int tcp6ConnEntrySize;
285 static int udpEntrySize;
286 static int udp6EntrySize;
287 static int sctpEntrySize;
288 static int sctpLocalEntrySize;
289 static int sctpRemoteEntrySize;
290 static int dccpEntrySize;
291 static int dccp6EntrySize;
292 #endif /* ! codereview */

294 #define protocol_selected(p) (proto == IPPROTO_MAX || proto == (p))

296 /* Machinery used for -f (filter) option */
297 enum { FK_AF = 0, FK_OUTIF, FK_DST, FK_FLAGS, NFILTERKEYS };

299 static const char *filter_keys[NFILTERKEYS] = {
300 "af", "outif", "dst", "flags"
301 };

303 static m_label_t *zone_security_label = NULL;

305 /* Flags on routes */
306 #define FLF_A 0x00000001
307 #define FLF_b 0x00000002
308 #define FLF_D 0x00000004
309 #define FLF_G 0x00000008
310 #define FLF_H 0x00000010
311 #define FLF_L 0x00000020
312 #define FLF_U 0x00000040
313 #define FLF_M 0x00000080
314 #define FLF_S 0x00000100
315 #define FLF_C 0x00000200 /* IRE_IF_CLONE */
316 #define FLF_I 0x00000400 /* RTF_INDIRECT */
317 #define FLF_R 0x00000800 /* RTF_REJECT */
318 #define FLF_B 0x00001000 /* RTF_BLACKHOLE */
319 #define FLF_Z 0x00100000 /* RTF_ZONE */

321 static const char flag_list[] = "AbDGHLUMSCIRBZ";

323 typedef struct filter_rule filter_t;

325 struct filter_rule {
326 filter_t *f_next;
327 union {

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 4

328 int f_family;
329 const char *f_ifname;
330 struct {
331 struct hostent *f_address;
332 in6_addr_t f_mask;
333 } a;
334 struct {
335 uint_t f_flagset;
336 uint_t f_flagclear;
337 } f;
338 } u;
339 };

341 /*
342 * The user-specified filters are linked into lists separated by
343 * keyword (type of filter). Thus, the matching algorithm is:
344 * For each non-empty filter list
345 * If no filters in the list match
346 * then stop here; route doesn’t match
347 * If loop above completes, then route does match and will be
348 * displayed.
349 */
350 static filter_t *filters[NFILTERKEYS];

352 static uint_t timestamp_fmt = NODATE;

354 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
355 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it isn’t */
356 #endif

358 int
359 main(int argc, char **argv)
360 {
361 char *name;
362 mib_item_t *item = NULL;
363 mib_item_t *previtem = NULL;
364 int sd = -1;
365 char *ifname = NULL;
366 int interval = 0; /* Single time by default */
367 int count = -1; /* Forever */
368 int c;
369 int d;
370 /*
371 * Possible values of ’Iflag_only’:
372 * -1, no feature-flags;
373 * 0, IFlag and other feature-flags enabled
374 * 1, IFlag is the only feature-flag enabled
375 * : trinary variable, modified using IFLAGMOD()
376 */
377 int Iflag_only = -1;
378 boolean_t once_only = B_FALSE; /* ’-i’ with count > 1 */
379 extern char *optarg;
380 extern int optind;
381 char *default_ip_str = NULL;

383 name = argv[0];

385 v4compat = get_compat_flag(&default_ip_str);
386 if (v4compat == DEFAULT_PROT_BAD_VALUE)
387 fatal(2, "%s: %s: Bad value for %s in %s\n", name,
388 default_ip_str, DEFAULT_IP, INET_DEFAULT_FILE);
389 free(default_ip_str);

391 (void) setlocale(LC_ALL, "");
392 (void) textdomain(TEXT_DOMAIN);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 5

394 while ((c = getopt(argc, argv, "adimnrspMgvxf:P:I:DRT:")) != -1) {
395 switch ((char)c) {
396 case ’a’: /* all connections */
397 Aflag = B_TRUE;
398 break;

400 case ’d’: /* DCE info */
401 Dflag = B_TRUE;
402 IFLAGMOD(Iflag_only, 1, 0); /* see macro def’n */
403 break;

405 case ’i’: /* interface (ill/ipif report) */
406 Iflag = B_TRUE;
407 IFLAGMOD(Iflag_only, -1, 1); /* ’-i’ exists */
408 break;

410 case ’m’: /* streams msg report */
411 Mflag = B_TRUE;
412 IFLAGMOD(Iflag_only, 1, 0); /* see macro def’n */
413 break;

415 case ’n’: /* numeric format */
416 Nflag = B_TRUE;
417 break;

419 case ’r’: /* route tables */
420 Rflag = B_TRUE;
421 IFLAGMOD(Iflag_only, 1, 0); /* see macro def’n */
422 break;

424 case ’R’: /* security attributes */
425 RSECflag = B_TRUE;
426 IFLAGMOD(Iflag_only, 1, 0); /* see macro def’n */
427 break;

429 case ’s’: /* per-protocol statistics */
430 Sflag = B_TRUE;
431 IFLAGMOD(Iflag_only, 1, 0); /* see macro def’n */
432 break;

434 case ’p’: /* arp/ndp table */
435 Pflag = B_TRUE;
436 IFLAGMOD(Iflag_only, 1, 0); /* see macro def’n */
437 break;

439 case ’M’: /* multicast routing tables */
440 MMflag = B_TRUE;
441 IFLAGMOD(Iflag_only, 1, 0); /* see macro def’n */
442 break;

444 case ’g’: /* multicast group membership */
445 Gflag = B_TRUE;
446 IFLAGMOD(Iflag_only, 1, 0); /* see macro def’n */
447 break;

449 case ’v’: /* verbose output format */
450 Vflag = B_TRUE;
451 IFLAGMOD(Iflag_only, 1, 0); /* see macro def’n */
452 break;

454 case ’x’: /* turn on debugging */
455 Xflag = B_TRUE;
456 break;

458 case ’f’:
459 process_filter(optarg);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 6

460 break;

462 case ’P’:
463 if (strcmp(optarg, "ip") == 0) {
464 proto = IPPROTO_IP;
465 } else if (strcmp(optarg, "ipv6") == 0 ||
466 strcmp(optarg, "ip6") == 0) {
467 v4compat = 0; /* Overridden */
468 proto = IPPROTO_IPV6;
469 } else if (strcmp(optarg, "icmp") == 0) {
470 proto = IPPROTO_ICMP;
471 } else if (strcmp(optarg, "icmpv6") == 0 ||
472 strcmp(optarg, "icmp6") == 0) {
473 v4compat = 0; /* Overridden */
474 proto = IPPROTO_ICMPV6;
475 } else if (strcmp(optarg, "igmp") == 0) {
476 proto = IPPROTO_IGMP;
477 } else if (strcmp(optarg, "udp") == 0) {
478 proto = IPPROTO_UDP;
479 } else if (strcmp(optarg, "tcp") == 0) {
480 proto = IPPROTO_TCP;
481 } else if (strcmp(optarg, "sctp") == 0) {
482 proto = IPPROTO_SCTP;
483 } else if (strcmp(optarg, "raw") == 0 ||
484 strcmp(optarg, "rawip") == 0) {
485 proto = IPPROTO_RAW;
486 } else if (strcmp(optarg, "dccp") == 0) {
487 proto = IPPROTO_DCCP;
488 #endif /* ! codereview */
489 } else {
490 fatal(1, "%s: unknown protocol.\n", optarg);
491 }
492 break;

494 case ’I’:
495 ifname = optarg;
496 Iflag = B_TRUE;
497 IFLAGMOD(Iflag_only, -1, 1); /* see macro def’n */
498 break;

500 case ’D’:
501 DHCPflag = B_TRUE;
502 Iflag_only = 0;
503 break;

505 case ’T’:
506 if (optarg) {
507 if (*optarg == ’u’)
508 timestamp_fmt = UDATE;
509 else if (*optarg == ’d’)
510 timestamp_fmt = DDATE;
511 else
512 usage(name);
513 } else {
514 usage(name);
515 }
516 break;

518 case ’?’:
519 default:
520 usage(name);
521 }
522 }

524 /*
525 * Make sure -R option is set only on a labeled system.

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 7

526 */
527 if (RSECflag && !is_system_labeled()) {
528 (void) fprintf(stderr, "-R set but labeling is not enabled\n");
529 usage(name);
530 }

532 /*
533 * Handle other arguments: find interval, count; the
534 * flags that accept ’interval’ and ’count’ are OR’d
535 * in the outermost ’if’; more flags may be added as
536 * required
537 */
538 if (Iflag || Sflag || Mflag) {
539 for (d = optind; d < argc; d++) {
540 if (isnum(argv[d])) {
541 interval = atoi(argv[d]);
542 if (d + 1 < argc &&
543 isnum(argv[d + 1])) {
544 count = atoi(argv[d + 1]);
545 optind++;
546 }
547 optind++;
548 if (interval == 0 || count == 0)
549 usage(name);
550 break;
551 }
552 }
553 }
554 if (optind < argc) {
555 if (Iflag && isnum(argv[optind])) {
556 count = atoi(argv[optind]);
557 if (count == 0)
558 usage(name);
559 optind++;
560 }
561 }
562 if (optind < argc) {
563 (void) fprintf(stderr,
564 "%s: extra arguments\n", name);
565 usage(name);
566 }
567 if (interval)
568 setbuf(stdout, NULL);

570 if (DHCPflag) {
571 dhcp_report(Iflag ? ifname : NULL);
572 exit(0);
573 }

575 /*
576 * Get this process’s security label if the -R switch is set.
577 * We use this label as the current zone’s security label.
578 */
579 if (RSECflag) {
580 zone_security_label = m_label_alloc(MAC_LABEL);
581 if (zone_security_label == NULL)
582 fatal(errno, "m_label_alloc() failed");
583 if (getplabel(zone_security_label) < 0)
584 fatal(errno, "getplabel() failed");
585 }

587 /* Get data structures: priming before iteration */
588 if (family_selected(AF_INET) || family_selected(AF_INET6)) {
589 sd = mibopen();
590 if (sd == -1)
591 fatal(1, "can’t open mib stream\n");

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 8

592 if ((item = mibget(sd)) == NULL) {
593 (void) close(sd);
594 fatal(1, "mibget() failed\n");
595 }
596 /* Extract constant sizes - need do once only */
597 mib_get_constants(item);
598 }
599 if ((kc = kstat_open()) == NULL) {
600 mibfree(item);
601 (void) close(sd);
602 fail(1, "kstat_open(): can’t open /dev/kstat");
603 }

605 if (interval <= 0) {
606 count = 1;
607 once_only = B_TRUE;
608 }
609 /* ’for’ loop 1: */
610 for (;;) {
611 mib_item_t *curritem = NULL; /* only for -[M]s */

613 if (timestamp_fmt != NODATE)
614 print_timestamp(timestamp_fmt);

616 /* netstat: AF_INET[6] behaviour */
617 if (family_selected(AF_INET) || family_selected(AF_INET6)) {
618 if (Sflag) {
619 curritem = mib_item_diff(previtem, item);
620 if (curritem == NULL)
621 fatal(1, "can’t process mib data, "
622 "out of memory\n");
623 mib_item_destroy(&previtem);
624 }

626 if (!(Dflag || Iflag || Rflag || Sflag || Mflag ||
627 MMflag || Pflag || Gflag || DHCPflag)) {
628 if (protocol_selected(IPPROTO_UDP))
629 udp_report(item);
630 if (protocol_selected(IPPROTO_TCP))
631 tcp_report(item);
632 if (protocol_selected(IPPROTO_SCTP))
633 sctp_report(item);
634 if (protocol_selected(IPPROTO_DCCP))
635 dccp_report(item);
636 #endif /* ! codereview */
637 }
638 if (Iflag)
639 if_report(item, ifname, Iflag_only, once_only);
640 if (Mflag)
641 m_report();
642 if (Rflag)
643 ire_report(item);
644 if (Sflag && MMflag) {
645 mrt_stat_report(curritem);
646 } else {
647 if (Sflag)
648 stat_report(curritem);
649 if (MMflag)
650 mrt_report(item);
651 }
652 if (Gflag)
653 group_report(item);
654 if (Pflag) {
655 if (family_selected(AF_INET))
656 arp_report(item);
657 if (family_selected(AF_INET6))

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 9

658 ndp_report(item);
659 }
660 if (Dflag)
661 dce_report(item);
662 mib_item_destroy(&curritem);
663 }

665 /* netstat: AF_UNIX behaviour */
666 if (family_selected(AF_UNIX) &&
667 (!(Dflag || Iflag || Rflag || Sflag || Mflag ||
668 MMflag || Pflag || Gflag)))
669 unixpr(kc);
670 (void) kstat_close(kc);

672 /* iteration handling code */
673 if (count > 0 && --count == 0)
674 break;
675 (void) sleep(interval);

677 /* re-populating of data structures */
678 if (family_selected(AF_INET) || family_selected(AF_INET6)) {
679 if (Sflag) {
680 /* previtem is a cut-down list */
681 previtem = mib_item_dup(item);
682 if (previtem == NULL)
683 fatal(1, "can’t process mib data, "
684 "out of memory\n");
685 }
686 mibfree(item);
687 (void) close(sd);
688 if ((sd = mibopen()) == -1)
689 fatal(1, "can’t open mib stream anymore\n");
690 if ((item = mibget(sd)) == NULL) {
691 (void) close(sd);
692 fatal(1, "mibget() failed\n");
693 }
694 }
695 if ((kc = kstat_open()) == NULL)
696 fail(1, "kstat_open(): can’t open /dev/kstat");

698 } /* ’for’ loop 1 ends */
699 mibfree(item);
700 (void) close(sd);
701 if (zone_security_label != NULL)
702 m_label_free(zone_security_label);

704 return (0);
705 }

708 static int
709 isnum(char *p)
710 {
711 int len;
712 int i;

714 len = strlen(p);
715 for (i = 0; i < len; i++)
716 if (!isdigit(p[i]))
717 return (0);
718 return (1);
719 }

722 /* --------------------------------- MIBGET -------------------------------- */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 10

724 static mib_item_t *
725 mibget(int sd)
726 {
727 /*
728 * buf is an automatic for this function, so the
729 * compiler has complete control over its alignment;
730 * it is assumed this alignment is satisfactory for
731 * it to be casted to certain other struct pointers
732 * here, such as struct T_optmgmt_ack * .
733 */
734 uintptr_t buf[512 / sizeof (uintptr_t)];
735 int flags;
736 int i, j, getcode;
737 struct strbuf ctlbuf, databuf;
738 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)buf;
739 struct T_optmgmt_ack *toa = (struct T_optmgmt_ack *)buf;
740 struct T_error_ack *tea = (struct T_error_ack *)buf;
741 struct opthdr *req;
742 mib_item_t *first_item = NULL;
743 mib_item_t *last_item = NULL;
744 mib_item_t *temp;

746 tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
747 tor->OPT_offset = sizeof (struct T_optmgmt_req);
748 tor->OPT_length = sizeof (struct opthdr);
749 tor->MGMT_flags = T_CURRENT;

752 /*
753 * Note: we use the special level value below so that IP will return
754 * us information concerning IRE_MARK_TESTHIDDEN routes.
755 */
756 req = (struct opthdr *)&tor[1];
757 req->level = EXPER_IP_AND_ALL_IRES;
758 req->name = 0;
759 req->len = 1;

761 ctlbuf.buf = (char *)buf;
762 ctlbuf.len = tor->OPT_length + tor->OPT_offset;
763 flags = 0;
764 if (putmsg(sd, &ctlbuf, (struct strbuf *)0, flags) == -1) {
765 perror("mibget: putmsg(ctl) failed");
766 goto error_exit;
767 }

769 /*
770 * Each reply consists of a ctl part for one fixed structure
771 * or table, as defined in mib2.h. The format is a T_OPTMGMT_ACK,
772 * containing an opthdr structure. level/name identify the entry,
773 * len is the size of the data part of the message.
774 */
775 req = (struct opthdr *)&toa[1];
776 ctlbuf.maxlen = sizeof (buf);
777 j = 1;
778 for (;;) {
779 flags = 0;
780 getcode = getmsg(sd, &ctlbuf, (struct strbuf *)0, &flags);
781 if (getcode == -1) {
782 perror("mibget getmsg(ctl) failed");
783 if (Xflag) {
784 (void) fputs("# level name len\n",
785 stderr);
786 i = 0;
787 for (last_item = first_item; last_item;
788 last_item = last_item->next_item)
789 (void) printf("%d %4d %5d %d\n",

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 11

790 ++i,
791 last_item->group,
792 last_item->mib_id,
793 last_item->length);
794 }
795 goto error_exit;
796 }
797 if (getcode == 0 &&
798 ctlbuf.len >= sizeof (struct T_optmgmt_ack) &&
799 toa->PRIM_type == T_OPTMGMT_ACK &&
800 toa->MGMT_flags == T_SUCCESS &&
801 req->len == 0) {
802 if (Xflag)
803 (void) printf("mibget getmsg() %d returned "
804 "EOD (level %ld, name %ld)\n",
805 j, req->level, req->name);
806 return (first_item); /* this is EOD msg */
807 }

809 if (ctlbuf.len >= sizeof (struct T_error_ack) &&
810 tea->PRIM_type == T_ERROR_ACK) {
811 (void) fprintf(stderr,
812 "mibget %d gives T_ERROR_ACK: TLI_error = 0x%lx, "
813 "UNIX_error = 0x%lx\n",
814 j, tea->TLI_error, tea->UNIX_error);

816 errno = (tea->TLI_error == TSYSERR) ?
817 tea->UNIX_error : EPROTO;
818 goto error_exit;
819 }

821 if (getcode != MOREDATA ||
822 ctlbuf.len < sizeof (struct T_optmgmt_ack) ||
823 toa->PRIM_type != T_OPTMGMT_ACK ||
824 toa->MGMT_flags != T_SUCCESS) {
825 (void) printf("mibget getmsg(ctl) %d returned %d, "
826 "ctlbuf.len = %d, PRIM_type = %ld\n",
827 j, getcode, ctlbuf.len, toa->PRIM_type);

829 if (toa->PRIM_type == T_OPTMGMT_ACK)
830 (void) printf("T_OPTMGMT_ACK: "
831 "MGMT_flags = 0x%lx, req->len = %ld\n",
832 toa->MGMT_flags, req->len);
833 errno = ENOMSG;
834 goto error_exit;
835 }

837 temp = (mib_item_t *)malloc(sizeof (mib_item_t));
838 if (temp == NULL) {
839 perror("mibget malloc failed");
840 goto error_exit;
841 }
842 if (last_item != NULL)
843 last_item->next_item = temp;
844 else
845 first_item = temp;
846 last_item = temp;
847 last_item->next_item = NULL;
848 last_item->group = req->level;
849 last_item->mib_id = req->name;
850 last_item->length = req->len;
851 last_item->valp = malloc((int)req->len);
852 if (last_item->valp == NULL)
853 goto error_exit;
854 if (Xflag)
855 (void) printf("msg %d: group = %4d mib_id = %5d"

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 12

856 "length = %d\n",
857 j, last_item->group, last_item->mib_id,
858 last_item->length);

860 databuf.maxlen = last_item->length;
861 databuf.buf = (char *)last_item->valp;
862 databuf.len = 0;
863 flags = 0;
864 getcode = getmsg(sd, (struct strbuf *)0, &databuf, &flags);
865 if (getcode == -1) {
866 perror("mibget getmsg(data) failed");
867 goto error_exit;
868 } else if (getcode != 0) {
869 (void) printf("mibget getmsg(data) returned %d, "
870 "databuf.maxlen = %d, databuf.len = %d\n",
871 getcode, databuf.maxlen, databuf.len);
872 goto error_exit;
873 }
874 j++;
875 }
876 /* NOTREACHED */

878 error_exit:;
879 mibfree(first_item);
880 return (NULL);
881 }

883 /*
884 * mibfree: frees a linked list of type (mib_item_t *)
885 * returned by mibget(); this is NOT THE SAME AS
886 * mib_item_destroy(), so should be used for objects
887 * returned by mibget() only
888 */
889 static void
890 mibfree(mib_item_t *firstitem)
891 {
892 mib_item_t *lastitem;

894 while (firstitem != NULL) {
895 lastitem = firstitem;
896 firstitem = firstitem->next_item;
897 if (lastitem->valp != NULL)
898 free(lastitem->valp);
899 free(lastitem);
900 }
901 }

903 static int
904 mibopen(void)
905 {
906 int sd;

908 sd = open("/dev/arp", O_RDWR);
909 if (sd == -1) {
910 perror("arp open");
911 return (-1);
912 }
913 if (ioctl(sd, I_PUSH, "tcp") == -1) {
914 perror("tcp I_PUSH");
915 (void) close(sd);
916 return (-1);
917 }
918 if (ioctl(sd, I_PUSH, "udp") == -1) {
919 perror("udp I_PUSH");
920 (void) close(sd);
921 return (-1);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 13

922 }
923 if (ioctl(sd, I_PUSH, "icmp") == -1) {
924 perror("icmp I_PUSH");
925 (void) close(sd);
926 return (-1);
927 }
928 return (sd);
929 }

931 /*
932 * mib_item_dup: returns a clean mib_item_t * linked
933 * list, so that for every element item->mib_id is 0;
934 * to deallocate this linked list, use mib_item_destroy
935 */
936 static mib_item_t *
937 mib_item_dup(mib_item_t *item)
938 {
939 int c = 0;
940 mib_item_t *localp;
941 mib_item_t *tempp;

943 for (tempp = item; tempp; tempp = tempp->next_item)
944 if (tempp->mib_id == 0)
945 c++;
946 tempp = NULL;

948 localp = (mib_item_t *)malloc(c * sizeof (mib_item_t));
949 if (localp == NULL)
950 return (NULL);
951 c = 0;
952 for (; item; item = item->next_item) {
953 if (item->mib_id == 0) {
954 /* Replicate item in localp */
955 (localp[c]).next_item = NULL;
956 (localp[c]).group = item->group;
957 (localp[c]).mib_id = item->mib_id;
958 (localp[c]).length = item->length;
959 (localp[c]).valp = (uintptr_t *)malloc(
960 item->length);
961 if ((localp[c]).valp == NULL) {
962 mib_item_destroy(&localp);
963 return (NULL);
964 }
965 (void *) memcpy((localp[c]).valp,
966 item->valp,
967 item->length);
968 tempp = &(localp[c]);
969 if (c > 0)
970 (localp[c - 1]).next_item = tempp;
971 c++;
972 }
973 }
974 return (localp);
975 }

977 /*
978 * mib_item_diff: takes two (mib_item_t *) linked lists
979 * item1 and item2 and computes the difference between
980 * differentiable values in item2 against item1 for every
981 * given member of item2; returns an mib_item_t * linked
982 * list of diff’s, or a copy of item2 if item1 is NULL;
983 * will return NULL if system out of memory; works only
984 * for item->mib_id == 0
985 */
986 static mib_item_t *
987 mib_item_diff(mib_item_t *item1, mib_item_t *item2) {

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 14

988 int nitems = 0; /* no. of items in item2 */
989 mib_item_t *tempp2; /* walking copy of item2 */
990 mib_item_t *tempp1; /* walking copy of item1 */
991 mib_item_t *diffp;
992 mib_item_t *diffptr; /* walking copy of diffp */
993 mib_item_t *prevp = NULL;

995 if (item1 == NULL) {
996 diffp = mib_item_dup(item2);
997 return (diffp);
998 }

1000 for (tempp2 = item2;
1001 tempp2;
1002 tempp2 = tempp2->next_item) {
1003 if (tempp2->mib_id == 0)
1004 switch (tempp2->group) {
1005 /*
1006 * upon adding a case here, the same
1007 * must also be added in the next
1008 * switch statement, alongwith
1009 * appropriate code
1010 */
1011 case MIB2_IP:
1012 case MIB2_IP6:
1013 case EXPER_DVMRP:
1014 case EXPER_IGMP:
1015 case MIB2_ICMP:
1016 case MIB2_ICMP6:
1017 case MIB2_TCP:
1018 case MIB2_UDP:
1019 case MIB2_SCTP:
1020 case EXPER_RAWIP:
1021 case MIB2_DCCP:
1022 #endif /* ! codereview */
1023 nitems++;
1024 }
1025 }
1026 tempp2 = NULL;
1027 if (nitems == 0) {
1028 diffp = mib_item_dup(item2);
1029 return (diffp);
1030 }

1032 diffp = (mib_item_t *)calloc(nitems, sizeof (mib_item_t));
1033 if (diffp == NULL)
1034 return (NULL);
1035 diffptr = diffp;
1036 /* ’for’ loop 1: */
1037 for (tempp2 = item2; tempp2 != NULL; tempp2 = tempp2->next_item) {
1038 if (tempp2->mib_id != 0)
1039 continue; /* ’for’ loop 1 */
1040 /* ’for’ loop 2: */
1041 for (tempp1 = item1; tempp1 != NULL;
1042 tempp1 = tempp1->next_item) {
1043 if (!(tempp1->mib_id == 0 &&
1044 tempp1->group == tempp2->group &&
1045 tempp1->mib_id == tempp2->mib_id))
1046 continue; /* ’for’ loop 2 */
1047 /* found comparable data sets */
1048 if (prevp != NULL)
1049 prevp->next_item = diffptr;
1050 switch (tempp2->group) {
1051 /*
1052 * Indenting note: Because of long variable names
1053 * in cases MIB2_IP6 and MIB2_ICMP6, their contents

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 15

1054 * have been indented by one tab space only
1055 */
1056 case MIB2_IP: {
1057 mib2_ip_t *i2 = (mib2_ip_t *)tempp2->valp;
1058 mib2_ip_t *i1 = (mib2_ip_t *)tempp1->valp;
1059 mib2_ip_t *d;

1061 diffptr->group = tempp2->group;
1062 diffptr->mib_id = tempp2->mib_id;
1063 diffptr->length = tempp2->length;
1064 d = (mib2_ip_t *)calloc(tempp2->length, 1);
1065 if (d == NULL)
1066 goto mibdiff_out_of_memory;
1067 diffptr->valp = d;
1068 d->ipForwarding = i2->ipForwarding;
1069 d->ipDefaultTTL = i2->ipDefaultTTL;
1070 MDIFF(d, i2, i1, ipInReceives);
1071 MDIFF(d, i2, i1, ipInHdrErrors);
1072 MDIFF(d, i2, i1, ipInAddrErrors);
1073 MDIFF(d, i2, i1, ipInCksumErrs);
1074 MDIFF(d, i2, i1, ipForwDatagrams);
1075 MDIFF(d, i2, i1, ipForwProhibits);
1076 MDIFF(d, i2, i1, ipInUnknownProtos);
1077 MDIFF(d, i2, i1, ipInDiscards);
1078 MDIFF(d, i2, i1, ipInDelivers);
1079 MDIFF(d, i2, i1, ipOutRequests);
1080 MDIFF(d, i2, i1, ipOutDiscards);
1081 MDIFF(d, i2, i1, ipOutNoRoutes);
1082 MDIFF(d, i2, i1, ipReasmTimeout);
1083 MDIFF(d, i2, i1, ipReasmReqds);
1084 MDIFF(d, i2, i1, ipReasmOKs);
1085 MDIFF(d, i2, i1, ipReasmFails);
1086 MDIFF(d, i2, i1, ipReasmDuplicates);
1087 MDIFF(d, i2, i1, ipReasmPartDups);
1088 MDIFF(d, i2, i1, ipFragOKs);
1089 MDIFF(d, i2, i1, ipFragFails);
1090 MDIFF(d, i2, i1, ipFragCreates);
1091 MDIFF(d, i2, i1, ipRoutingDiscards);
1092 MDIFF(d, i2, i1, tcpInErrs);
1093 MDIFF(d, i2, i1, udpNoPorts);
1094 MDIFF(d, i2, i1, udpInCksumErrs);
1095 MDIFF(d, i2, i1, udpInOverflows);
1096 MDIFF(d, i2, i1, rawipInOverflows);
1097 MDIFF(d, i2, i1, ipsecInSucceeded);
1098 MDIFF(d, i2, i1, ipsecInFailed);
1099 MDIFF(d, i2, i1, ipInIPv6);
1100 MDIFF(d, i2, i1, ipOutIPv6);
1101 MDIFF(d, i2, i1, ipOutSwitchIPv6);
1102 prevp = diffptr++;
1103 break;
1104 }
1105 case MIB2_IP6: {
1106 mib2_ipv6IfStatsEntry_t *i2;
1107 mib2_ipv6IfStatsEntry_t *i1;
1108 mib2_ipv6IfStatsEntry_t *d;

1110 i2 = (mib2_ipv6IfStatsEntry_t *)tempp2->valp;
1111 i1 = (mib2_ipv6IfStatsEntry_t *)tempp1->valp;
1112 diffptr->group = tempp2->group;
1113 diffptr->mib_id = tempp2->mib_id;
1114 diffptr->length = tempp2->length;
1115 d = (mib2_ipv6IfStatsEntry_t *)calloc(
1116 tempp2->length, 1);
1117 if (d == NULL)
1118 goto mibdiff_out_of_memory;
1119 diffptr->valp = d;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 16

1120 d->ipv6Forwarding = i2->ipv6Forwarding;
1121 d->ipv6DefaultHopLimit =
1122 i2->ipv6DefaultHopLimit;

1124 MDIFF(d, i2, i1, ipv6InReceives);
1125 MDIFF(d, i2, i1, ipv6InHdrErrors);
1126 MDIFF(d, i2, i1, ipv6InTooBigErrors);
1127 MDIFF(d, i2, i1, ipv6InNoRoutes);
1128 MDIFF(d, i2, i1, ipv6InAddrErrors);
1129 MDIFF(d, i2, i1, ipv6InUnknownProtos);
1130 MDIFF(d, i2, i1, ipv6InTruncatedPkts);
1131 MDIFF(d, i2, i1, ipv6InDiscards);
1132 MDIFF(d, i2, i1, ipv6InDelivers);
1133 MDIFF(d, i2, i1, ipv6OutForwDatagrams);
1134 MDIFF(d, i2, i1, ipv6OutRequests);
1135 MDIFF(d, i2, i1, ipv6OutDiscards);
1136 MDIFF(d, i2, i1, ipv6OutNoRoutes);
1137 MDIFF(d, i2, i1, ipv6OutFragOKs);
1138 MDIFF(d, i2, i1, ipv6OutFragFails);
1139 MDIFF(d, i2, i1, ipv6OutFragCreates);
1140 MDIFF(d, i2, i1, ipv6ReasmReqds);
1141 MDIFF(d, i2, i1, ipv6ReasmOKs);
1142 MDIFF(d, i2, i1, ipv6ReasmFails);
1143 MDIFF(d, i2, i1, ipv6InMcastPkts);
1144 MDIFF(d, i2, i1, ipv6OutMcastPkts);
1145 MDIFF(d, i2, i1, ipv6ReasmDuplicates);
1146 MDIFF(d, i2, i1, ipv6ReasmPartDups);
1147 MDIFF(d, i2, i1, ipv6ForwProhibits);
1148 MDIFF(d, i2, i1, udpInCksumErrs);
1149 MDIFF(d, i2, i1, udpInOverflows);
1150 MDIFF(d, i2, i1, rawipInOverflows);
1151 MDIFF(d, i2, i1, ipv6InIPv4);
1152 MDIFF(d, i2, i1, ipv6OutIPv4);
1153 MDIFF(d, i2, i1, ipv6OutSwitchIPv4);
1154 prevp = diffptr++;
1155 break;
1156 }
1157 case EXPER_DVMRP: {
1158 struct mrtstat *m2;
1159 struct mrtstat *m1;
1160 struct mrtstat *d;

1162 m2 = (struct mrtstat *)tempp2->valp;
1163 m1 = (struct mrtstat *)tempp1->valp;
1164 diffptr->group = tempp2->group;
1165 diffptr->mib_id = tempp2->mib_id;
1166 diffptr->length = tempp2->length;
1167 d = (struct mrtstat *)calloc(tempp2->length, 1);
1168 if (d == NULL)
1169 goto mibdiff_out_of_memory;
1170 diffptr->valp = d;
1171 MDIFF(d, m2, m1, mrts_mfc_hits);
1172 MDIFF(d, m2, m1, mrts_mfc_misses);
1173 MDIFF(d, m2, m1, mrts_fwd_in);
1174 MDIFF(d, m2, m1, mrts_fwd_out);
1175 d->mrts_upcalls = m2->mrts_upcalls;
1176 MDIFF(d, m2, m1, mrts_fwd_drop);
1177 MDIFF(d, m2, m1, mrts_bad_tunnel);
1178 MDIFF(d, m2, m1, mrts_cant_tunnel);
1179 MDIFF(d, m2, m1, mrts_wrong_if);
1180 MDIFF(d, m2, m1, mrts_upq_ovflw);
1181 MDIFF(d, m2, m1, mrts_cache_cleanups);
1182 MDIFF(d, m2, m1, mrts_drop_sel);
1183 MDIFF(d, m2, m1, mrts_q_overflow);
1184 MDIFF(d, m2, m1, mrts_pkt2large);
1185 MDIFF(d, m2, m1, mrts_pim_badversion);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 17

1186 MDIFF(d, m2, m1, mrts_pim_rcv_badcsum);
1187 MDIFF(d, m2, m1, mrts_pim_badregisters);
1188 MDIFF(d, m2, m1, mrts_pim_regforwards);
1189 MDIFF(d, m2, m1, mrts_pim_regsend_drops);
1190 MDIFF(d, m2, m1, mrts_pim_malformed);
1191 MDIFF(d, m2, m1, mrts_pim_nomemory);
1192 prevp = diffptr++;
1193 break;
1194 }
1195 case EXPER_IGMP: {
1196 struct igmpstat *i2;
1197 struct igmpstat *i1;
1198 struct igmpstat *d;

1200 i2 = (struct igmpstat *)tempp2->valp;
1201 i1 = (struct igmpstat *)tempp1->valp;
1202 diffptr->group = tempp2->group;
1203 diffptr->mib_id = tempp2->mib_id;
1204 diffptr->length = tempp2->length;
1205 d = (struct igmpstat *)calloc(
1206 tempp2->length, 1);
1207 if (d == NULL)
1208 goto mibdiff_out_of_memory;
1209 diffptr->valp = d;
1210 MDIFF(d, i2, i1, igps_rcv_total);
1211 MDIFF(d, i2, i1, igps_rcv_tooshort);
1212 MDIFF(d, i2, i1, igps_rcv_badsum);
1213 MDIFF(d, i2, i1, igps_rcv_queries);
1214 MDIFF(d, i2, i1, igps_rcv_badqueries);
1215 MDIFF(d, i2, i1, igps_rcv_reports);
1216 MDIFF(d, i2, i1, igps_rcv_badreports);
1217 MDIFF(d, i2, i1, igps_rcv_ourreports);
1218 MDIFF(d, i2, i1, igps_snd_reports);
1219 prevp = diffptr++;
1220 break;
1221 }
1222 case MIB2_ICMP: {
1223 mib2_icmp_t *i2;
1224 mib2_icmp_t *i1;
1225 mib2_icmp_t *d;

1227 i2 = (mib2_icmp_t *)tempp2->valp;
1228 i1 = (mib2_icmp_t *)tempp1->valp;
1229 diffptr->group = tempp2->group;
1230 diffptr->mib_id = tempp2->mib_id;
1231 diffptr->length = tempp2->length;
1232 d = (mib2_icmp_t *)calloc(tempp2->length, 1);
1233 if (d == NULL)
1234 goto mibdiff_out_of_memory;
1235 diffptr->valp = d;
1236 MDIFF(d, i2, i1, icmpInMsgs);
1237 MDIFF(d, i2, i1, icmpInErrors);
1238 MDIFF(d, i2, i1, icmpInCksumErrs);
1239 MDIFF(d, i2, i1, icmpInUnknowns);
1240 MDIFF(d, i2, i1, icmpInDestUnreachs);
1241 MDIFF(d, i2, i1, icmpInTimeExcds);
1242 MDIFF(d, i2, i1, icmpInParmProbs);
1243 MDIFF(d, i2, i1, icmpInSrcQuenchs);
1244 MDIFF(d, i2, i1, icmpInRedirects);
1245 MDIFF(d, i2, i1, icmpInBadRedirects);
1246 MDIFF(d, i2, i1, icmpInEchos);
1247 MDIFF(d, i2, i1, icmpInEchoReps);
1248 MDIFF(d, i2, i1, icmpInTimestamps);
1249 MDIFF(d, i2, i1, icmpInAddrMasks);
1250 MDIFF(d, i2, i1, icmpInAddrMaskReps);
1251 MDIFF(d, i2, i1, icmpInFragNeeded);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 18

1252 MDIFF(d, i2, i1, icmpOutMsgs);
1253 MDIFF(d, i2, i1, icmpOutDrops);
1254 MDIFF(d, i2, i1, icmpOutErrors);
1255 MDIFF(d, i2, i1, icmpOutDestUnreachs);
1256 MDIFF(d, i2, i1, icmpOutTimeExcds);
1257 MDIFF(d, i2, i1, icmpOutParmProbs);
1258 MDIFF(d, i2, i1, icmpOutSrcQuenchs);
1259 MDIFF(d, i2, i1, icmpOutRedirects);
1260 MDIFF(d, i2, i1, icmpOutEchos);
1261 MDIFF(d, i2, i1, icmpOutEchoReps);
1262 MDIFF(d, i2, i1, icmpOutTimestamps);
1263 MDIFF(d, i2, i1, icmpOutTimestampReps);
1264 MDIFF(d, i2, i1, icmpOutAddrMasks);
1265 MDIFF(d, i2, i1, icmpOutAddrMaskReps);
1266 MDIFF(d, i2, i1, icmpOutFragNeeded);
1267 MDIFF(d, i2, i1, icmpInOverflows);
1268 prevp = diffptr++;
1269 break;
1270 }
1271 case MIB2_ICMP6: {
1272 mib2_ipv6IfIcmpEntry_t *i2;
1273 mib2_ipv6IfIcmpEntry_t *i1;
1274 mib2_ipv6IfIcmpEntry_t *d;

1276 i2 = (mib2_ipv6IfIcmpEntry_t *)tempp2->valp;
1277 i1 = (mib2_ipv6IfIcmpEntry_t *)tempp1->valp;
1278 diffptr->group = tempp2->group;
1279 diffptr->mib_id = tempp2->mib_id;
1280 diffptr->length = tempp2->length;
1281 d = (mib2_ipv6IfIcmpEntry_t *)calloc(tempp2->length, 1);
1282 if (d == NULL)
1283 goto mibdiff_out_of_memory;
1284 diffptr->valp = d;
1285 MDIFF(d, i2, i1, ipv6IfIcmpInMsgs);
1286 MDIFF(d, i2, i1, ipv6IfIcmpInErrors);
1287 MDIFF(d, i2, i1, ipv6IfIcmpInDestUnreachs);
1288 MDIFF(d, i2, i1, ipv6IfIcmpInAdminProhibs);
1289 MDIFF(d, i2, i1, ipv6IfIcmpInTimeExcds);
1290 MDIFF(d, i2, i1, ipv6IfIcmpInParmProblems);
1291 MDIFF(d, i2, i1, ipv6IfIcmpInPktTooBigs);
1292 MDIFF(d, i2, i1, ipv6IfIcmpInEchos);
1293 MDIFF(d, i2, i1, ipv6IfIcmpInEchoReplies);
1294 MDIFF(d, i2, i1, ipv6IfIcmpInRouterSolicits);
1295 MDIFF(d, i2, i1, ipv6IfIcmpInRouterAdvertisements);
1296 MDIFF(d, i2, i1, ipv6IfIcmpInNeighborSolicits);
1297 MDIFF(d, i2, i1, ipv6IfIcmpInNeighborAdvertisements);
1298 MDIFF(d, i2, i1, ipv6IfIcmpInRedirects);
1299 MDIFF(d, i2, i1, ipv6IfIcmpInBadRedirects);
1300 MDIFF(d, i2, i1, ipv6IfIcmpInGroupMembQueries);
1301 MDIFF(d, i2, i1, ipv6IfIcmpInGroupMembResponses);
1302 MDIFF(d, i2, i1, ipv6IfIcmpInGroupMembReductions);
1303 MDIFF(d, i2, i1, ipv6IfIcmpInOverflows);
1304 MDIFF(d, i2, i1, ipv6IfIcmpOutMsgs);
1305 MDIFF(d, i2, i1, ipv6IfIcmpOutErrors);
1306 MDIFF(d, i2, i1, ipv6IfIcmpOutDestUnreachs);
1307 MDIFF(d, i2, i1, ipv6IfIcmpOutAdminProhibs);
1308 MDIFF(d, i2, i1, ipv6IfIcmpOutTimeExcds);
1309 MDIFF(d, i2, i1, ipv6IfIcmpOutParmProblems);
1310 MDIFF(d, i2, i1, ipv6IfIcmpOutPktTooBigs);
1311 MDIFF(d, i2, i1, ipv6IfIcmpOutEchos);
1312 MDIFF(d, i2, i1, ipv6IfIcmpOutEchoReplies);
1313 MDIFF(d, i2, i1, ipv6IfIcmpOutRouterSolicits);
1314 MDIFF(d, i2, i1, ipv6IfIcmpOutRouterAdvertisements);
1315 MDIFF(d, i2, i1, ipv6IfIcmpOutNeighborSolicits);
1316 MDIFF(d, i2, i1, ipv6IfIcmpOutNeighborAdvertisements);
1317 MDIFF(d, i2, i1, ipv6IfIcmpOutRedirects);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 19

1318 MDIFF(d, i2, i1, ipv6IfIcmpOutGroupMembQueries);
1319 MDIFF(d, i2, i1, ipv6IfIcmpOutGroupMembResponses);
1320 MDIFF(d, i2, i1, ipv6IfIcmpOutGroupMembReductions);
1321 prevp = diffptr++;
1322 break;
1323 }
1324 case MIB2_TCP: {
1325 mib2_tcp_t *t2;
1326 mib2_tcp_t *t1;
1327 mib2_tcp_t *d;

1329 t2 = (mib2_tcp_t *)tempp2->valp;
1330 t1 = (mib2_tcp_t *)tempp1->valp;
1331 diffptr->group = tempp2->group;
1332 diffptr->mib_id = tempp2->mib_id;
1333 diffptr->length = tempp2->length;
1334 d = (mib2_tcp_t *)calloc(tempp2->length, 1);
1335 if (d == NULL)
1336 goto mibdiff_out_of_memory;
1337 diffptr->valp = d;
1338 d->tcpRtoMin = t2->tcpRtoMin;
1339 d->tcpRtoMax = t2->tcpRtoMax;
1340 d->tcpMaxConn = t2->tcpMaxConn;
1341 MDIFF(d, t2, t1, tcpActiveOpens);
1342 MDIFF(d, t2, t1, tcpPassiveOpens);
1343 MDIFF(d, t2, t1, tcpAttemptFails);
1344 MDIFF(d, t2, t1, tcpEstabResets);
1345 d->tcpCurrEstab = t2->tcpCurrEstab;
1346 MDIFF(d, t2, t1, tcpHCOutSegs);
1347 MDIFF(d, t2, t1, tcpOutDataSegs);
1348 MDIFF(d, t2, t1, tcpOutDataBytes);
1349 MDIFF(d, t2, t1, tcpRetransSegs);
1350 MDIFF(d, t2, t1, tcpRetransBytes);
1351 MDIFF(d, t2, t1, tcpOutAck);
1352 MDIFF(d, t2, t1, tcpOutAckDelayed);
1353 MDIFF(d, t2, t1, tcpOutUrg);
1354 MDIFF(d, t2, t1, tcpOutWinUpdate);
1355 MDIFF(d, t2, t1, tcpOutWinProbe);
1356 MDIFF(d, t2, t1, tcpOutControl);
1357 MDIFF(d, t2, t1, tcpOutRsts);
1358 MDIFF(d, t2, t1, tcpOutFastRetrans);
1359 MDIFF(d, t2, t1, tcpHCInSegs);
1360 MDIFF(d, t2, t1, tcpInAckSegs);
1361 MDIFF(d, t2, t1, tcpInAckBytes);
1362 MDIFF(d, t2, t1, tcpInDupAck);
1363 MDIFF(d, t2, t1, tcpInAckUnsent);
1364 MDIFF(d, t2, t1, tcpInDataInorderSegs);
1365 MDIFF(d, t2, t1, tcpInDataInorderBytes);
1366 MDIFF(d, t2, t1, tcpInDataUnorderSegs);
1367 MDIFF(d, t2, t1, tcpInDataUnorderBytes);
1368 MDIFF(d, t2, t1, tcpInDataDupSegs);
1369 MDIFF(d, t2, t1, tcpInDataDupBytes);
1370 MDIFF(d, t2, t1, tcpInDataPartDupSegs);
1371 MDIFF(d, t2, t1, tcpInDataPartDupBytes);
1372 MDIFF(d, t2, t1, tcpInDataPastWinSegs);
1373 MDIFF(d, t2, t1, tcpInDataPastWinBytes);
1374 MDIFF(d, t2, t1, tcpInWinProbe);
1375 MDIFF(d, t2, t1, tcpInWinUpdate);
1376 MDIFF(d, t2, t1, tcpInClosed);
1377 MDIFF(d, t2, t1, tcpRttNoUpdate);
1378 MDIFF(d, t2, t1, tcpRttUpdate);
1379 MDIFF(d, t2, t1, tcpTimRetrans);
1380 MDIFF(d, t2, t1, tcpTimRetransDrop);
1381 MDIFF(d, t2, t1, tcpTimKeepalive);
1382 MDIFF(d, t2, t1, tcpTimKeepaliveProbe);
1383 MDIFF(d, t2, t1, tcpTimKeepaliveDrop);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 20

1384 MDIFF(d, t2, t1, tcpListenDrop);
1385 MDIFF(d, t2, t1, tcpListenDropQ0);
1386 MDIFF(d, t2, t1, tcpHalfOpenDrop);
1387 MDIFF(d, t2, t1, tcpOutSackRetransSegs);
1388 prevp = diffptr++;
1389 break;
1390 }
1391 case MIB2_UDP: {
1392 mib2_udp_t *u2;
1393 mib2_udp_t *u1;
1394 mib2_udp_t *d;

1396 u2 = (mib2_udp_t *)tempp2->valp;
1397 u1 = (mib2_udp_t *)tempp1->valp;
1398 diffptr->group = tempp2->group;
1399 diffptr->mib_id = tempp2->mib_id;
1400 diffptr->length = tempp2->length;
1401 d = (mib2_udp_t *)calloc(tempp2->length, 1);
1402 if (d == NULL)
1403 goto mibdiff_out_of_memory;
1404 diffptr->valp = d;
1405 MDIFF(d, u2, u1, udpHCInDatagrams);
1406 MDIFF(d, u2, u1, udpInErrors);
1407 MDIFF(d, u2, u1, udpHCOutDatagrams);
1408 MDIFF(d, u2, u1, udpOutErrors);
1409 prevp = diffptr++;
1410 break;
1411 }
1412 case MIB2_SCTP: {
1413 mib2_sctp_t *s2;
1414 mib2_sctp_t *s1;
1415 mib2_sctp_t *d;

1417 s2 = (mib2_sctp_t *)tempp2->valp;
1418 s1 = (mib2_sctp_t *)tempp1->valp;
1419 diffptr->group = tempp2->group;
1420 diffptr->mib_id = tempp2->mib_id;
1421 diffptr->length = tempp2->length;
1422 d = (mib2_sctp_t *)calloc(tempp2->length, 1);
1423 if (d == NULL)
1424 goto mibdiff_out_of_memory;
1425 diffptr->valp = d;
1426 d->sctpRtoAlgorithm = s2->sctpRtoAlgorithm;
1427 d->sctpRtoMin = s2->sctpRtoMin;
1428 d->sctpRtoMax = s2->sctpRtoMax;
1429 d->sctpRtoInitial = s2->sctpRtoInitial;
1430 d->sctpMaxAssocs = s2->sctpMaxAssocs;
1431 d->sctpValCookieLife = s2->sctpValCookieLife;
1432 d->sctpMaxInitRetr = s2->sctpMaxInitRetr;
1433 d->sctpCurrEstab = s2->sctpCurrEstab;
1434 MDIFF(d, s2, s1, sctpActiveEstab);
1435 MDIFF(d, s2, s1, sctpPassiveEstab);
1436 MDIFF(d, s2, s1, sctpAborted);
1437 MDIFF(d, s2, s1, sctpShutdowns);
1438 MDIFF(d, s2, s1, sctpOutOfBlue);
1439 MDIFF(d, s2, s1, sctpChecksumError);
1440 MDIFF(d, s2, s1, sctpOutCtrlChunks);
1441 MDIFF(d, s2, s1, sctpOutOrderChunks);
1442 MDIFF(d, s2, s1, sctpOutUnorderChunks);
1443 MDIFF(d, s2, s1, sctpRetransChunks);
1444 MDIFF(d, s2, s1, sctpOutAck);
1445 MDIFF(d, s2, s1, sctpOutAckDelayed);
1446 MDIFF(d, s2, s1, sctpOutWinUpdate);
1447 MDIFF(d, s2, s1, sctpOutFastRetrans);
1448 MDIFF(d, s2, s1, sctpOutWinProbe);
1449 MDIFF(d, s2, s1, sctpInCtrlChunks);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 21

1450 MDIFF(d, s2, s1, sctpInOrderChunks);
1451 MDIFF(d, s2, s1, sctpInUnorderChunks);
1452 MDIFF(d, s2, s1, sctpInAck);
1453 MDIFF(d, s2, s1, sctpInDupAck);
1454 MDIFF(d, s2, s1, sctpInAckUnsent);
1455 MDIFF(d, s2, s1, sctpFragUsrMsgs);
1456 MDIFF(d, s2, s1, sctpReasmUsrMsgs);
1457 MDIFF(d, s2, s1, sctpOutSCTPPkts);
1458 MDIFF(d, s2, s1, sctpInSCTPPkts);
1459 MDIFF(d, s2, s1, sctpInInvalidCookie);
1460 MDIFF(d, s2, s1, sctpTimRetrans);
1461 MDIFF(d, s2, s1, sctpTimRetransDrop);
1462 MDIFF(d, s2, s1, sctpTimHeartBeatProbe);
1463 MDIFF(d, s2, s1, sctpTimHeartBeatDrop);
1464 MDIFF(d, s2, s1, sctpListenDrop);
1465 MDIFF(d, s2, s1, sctpInClosed);
1466 prevp = diffptr++;
1467 break;
1468 }
1469 case MIB2_DCCP: {
1470 /* XXX:DCCP */
1471 break;
1472 }
1473 #endif /* ! codereview */
1474 case EXPER_RAWIP: {
1475 mib2_rawip_t *r2;
1476 mib2_rawip_t *r1;
1477 mib2_rawip_t *d;

1479 r2 = (mib2_rawip_t *)tempp2->valp;
1480 r1 = (mib2_rawip_t *)tempp1->valp;
1481 diffptr->group = tempp2->group;
1482 diffptr->mib_id = tempp2->mib_id;
1483 diffptr->length = tempp2->length;
1484 d = (mib2_rawip_t *)calloc(tempp2->length, 1);
1485 if (d == NULL)
1486 goto mibdiff_out_of_memory;
1487 diffptr->valp = d;
1488 MDIFF(d, r2, r1, rawipInDatagrams);
1489 MDIFF(d, r2, r1, rawipInErrors);
1490 MDIFF(d, r2, r1, rawipInCksumErrs);
1491 MDIFF(d, r2, r1, rawipOutDatagrams);
1492 MDIFF(d, r2, r1, rawipOutErrors);
1493 prevp = diffptr++;
1494 break;
1495 }
1496 /*
1497 * there are more "group" types but they aren’t
1498 * required for the -s and -Ms options
1499 */
1500 }
1501 } /* ’for’ loop 2 ends */
1502 tempp1 = NULL;
1503 } /* ’for’ loop 1 ends */
1504 tempp2 = NULL;
1505 diffptr--;
1506 diffptr->next_item = NULL;
1507 return (diffp);

1509 mibdiff_out_of_memory:;
1510 mib_item_destroy(&diffp);
1511 return (NULL);
1512 }

1514 /*
1515 * mib_item_destroy: cleans up a mib_item_t *

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 22

1516 * that was created by calling mib_item_dup or
1517 * mib_item_diff
1518 */
1519 static void
1520 mib_item_destroy(mib_item_t **itemp) {
1521 int nitems = 0;
1522 int c = 0;
1523 mib_item_t *tempp;

1525 if (itemp == NULL || *itemp == NULL)
1526 return;

1528 for (tempp = *itemp; tempp != NULL; tempp = tempp->next_item)
1529 if (tempp->mib_id == 0)
1530 nitems++;
1531 else
1532 return; /* cannot destroy! */

1534 if (nitems == 0)
1535 return; /* cannot destroy! */

1537 for (c = nitems - 1; c >= 0; c--) {
1538 if ((itemp[0][c]).valp != NULL)
1539 free((itemp[0][c]).valp);
1540 }
1541 free(*itemp);

1543 *itemp = NULL;
1544 }

1546 /* Compare two Octet_ts. Return B_TRUE if they match, B_FALSE if not. */
1547 static boolean_t
1548 octetstrmatch(const Octet_t *a, const Octet_t *b)
1549 {
1550 if (a == NULL || b == NULL)
1551 return (B_FALSE);

1553 if (a->o_length != b->o_length)
1554 return (B_FALSE);

1556 return (memcmp(a->o_bytes, b->o_bytes, a->o_length) == 0);
1557 }

1559 /* If octetstr() changes make an appropriate change to STR_EXPAND */
1560 static char *
1561 octetstr(const Octet_t *op, int code, char *dst, uint_t dstlen)
1562 {
1563 int i;
1564 char *cp;

1566 cp = dst;
1567 if (op) {
1568 for (i = 0; i < op->o_length; i++) {
1569 switch (code) {
1570 case ’d’:
1571 if (cp - dst + 4 > dstlen) {
1572 *cp = ’\0’;
1573 return (dst);
1574 }
1575 (void) snprintf(cp, 5, "%d.",
1576 0xff & op->o_bytes[i]);
1577 cp = strchr(cp, ’\0’);
1578 break;
1579 case ’a’:
1580 if (cp - dst + 1 > dstlen) {
1581 *cp = ’\0’;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 23

1582 return (dst);
1583 }
1584 *cp++ = op->o_bytes[i];
1585 break;
1586 case ’h’:
1587 default:
1588 if (cp - dst + 3 > dstlen) {
1589 *cp = ’\0’;
1590 return (dst);
1591 }
1592 (void) snprintf(cp, 4, "%02x:",
1593 0xff & op->o_bytes[i]);
1594 cp += 3;
1595 break;
1596 }
1597 }
1598 }
1599 if (code != ’a’ && cp != dst)
1600 cp--;
1601 *cp = ’\0’;
1602 return (dst);
1603 }

1605 static const char *
1606 mitcp_state(int state, const mib2_transportMLPEntry_t *attr)
1607 {
1608 static char tcpsbuf[50];
1609 const char *cp;

1611 switch (state) {
1612 case TCPS_CLOSED:
1613 cp = "CLOSED";
1614 break;
1615 case TCPS_IDLE:
1616 cp = "IDLE";
1617 break;
1618 case TCPS_BOUND:
1619 cp = "BOUND";
1620 break;
1621 case TCPS_LISTEN:
1622 cp = "LISTEN";
1623 break;
1624 case TCPS_SYN_SENT:
1625 cp = "SYN_SENT";
1626 break;
1627 case TCPS_SYN_RCVD:
1628 cp = "SYN_RCVD";
1629 break;
1630 case TCPS_ESTABLISHED:
1631 cp = "ESTABLISHED";
1632 break;
1633 case TCPS_CLOSE_WAIT:
1634 cp = "CLOSE_WAIT";
1635 break;
1636 case TCPS_FIN_WAIT_1:
1637 cp = "FIN_WAIT_1";
1638 break;
1639 case TCPS_CLOSING:
1640 cp = "CLOSING";
1641 break;
1642 case TCPS_LAST_ACK:
1643 cp = "LAST_ACK";
1644 break;
1645 case TCPS_FIN_WAIT_2:
1646 cp = "FIN_WAIT_2";
1647 break;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 24

1648 case TCPS_TIME_WAIT:
1649 cp = "TIME_WAIT";
1650 break;
1651 default:
1652 (void) snprintf(tcpsbuf, sizeof (tcpsbuf),
1653 "UnknownState(%d)", state);
1654 cp = tcpsbuf;
1655 break;
1656 }

1658 if (RSECflag && attr != NULL && attr->tme_flags != 0) {
1659 if (cp != tcpsbuf) {
1660 (void) strlcpy(tcpsbuf, cp, sizeof (tcpsbuf));
1661 cp = tcpsbuf;
1662 }
1663 if (attr->tme_flags & MIB2_TMEF_PRIVATE)
1664 (void) strlcat(tcpsbuf, " P", sizeof (tcpsbuf));
1665 if (attr->tme_flags & MIB2_TMEF_SHARED)
1666 (void) strlcat(tcpsbuf, " S", sizeof (tcpsbuf));
1667 }

1669 return (cp);
1670 }

1672 static const char *
1673 miudp_state(int state, const mib2_transportMLPEntry_t *attr)
1674 {
1675 static char udpsbuf[50];
1676 const char *cp;

1678 switch (state) {
1679 case MIB2_UDP_unbound:
1680 cp = "Unbound";
1681 break;
1682 case MIB2_UDP_idle:
1683 cp = "Idle";
1684 break;
1685 case MIB2_UDP_connected:
1686 cp = "Connected";
1687 break;
1688 default:
1689 (void) snprintf(udpsbuf, sizeof (udpsbuf),
1690 "Unknown State(%d)", state);
1691 cp = udpsbuf;
1692 break;
1693 }

1695 if (RSECflag && attr != NULL && attr->tme_flags != 0) {
1696 if (cp != udpsbuf) {
1697 (void) strlcpy(udpsbuf, cp, sizeof (udpsbuf));
1698 cp = udpsbuf;
1699 }
1700 if (attr->tme_flags & MIB2_TMEF_PRIVATE)
1701 (void) strlcat(udpsbuf, " P", sizeof (udpsbuf));
1702 if (attr->tme_flags & MIB2_TMEF_SHARED)
1703 (void) strlcat(udpsbuf, " S", sizeof (udpsbuf));
1704 }

1706 return (cp);
1707 }

1709 static int odd;

1711 static void
1712 prval_init(void)
1713 {

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 25

1714 odd = 0;
1715 }

1717 static void
1718 prval(char *str, Counter val)
1719 {
1720 (void) printf("\t%-20s=%6u", str, val);
1721 if (odd++ & 1)
1722 (void) putchar(’\n’);
1723 }

1725 static void
1726 prval64(char *str, Counter64 val)
1727 {
1728 (void) printf("\t%-20s=%6llu", str, val);
1729 if (odd++ & 1)
1730 (void) putchar(’\n’);
1731 }

1733 static void
1734 pr_int_val(char *str, int val)
1735 {
1736 (void) printf("\t%-20s=%6d", str, val);
1737 if (odd++ & 1)
1738 (void) putchar(’\n’);
1739 }

1741 static void
1742 pr_sctp_rtoalgo(char *str, int val)
1743 {
1744 (void) printf("\t%-20s=", str);
1745 switch (val) {
1746 case MIB2_SCTP_RTOALGO_OTHER:
1747 (void) printf("%6.6s", "other");
1748 break;

1750 case MIB2_SCTP_RTOALGO_VANJ:
1751 (void) printf("%6.6s", "vanj");
1752 break;

1754 default:
1755 (void) printf("%6d", val);
1756 break;
1757 }
1758 if (odd++ & 1)
1759 (void) putchar(’\n’);
1760 }

1762 static void
1763 prval_end(void)
1764 {
1765 if (odd++ & 1)
1766 (void) putchar(’\n’);
1767 }

1769 /* Extract constant sizes */
1770 static void
1771 mib_get_constants(mib_item_t *item)
1772 {
1773 /* ’for’ loop 1: */
1774 for (; item; item = item->next_item) {
1775 if (item->mib_id != 0)
1776 continue; /* ’for’ loop 1 */

1778 switch (item->group) {
1779 case MIB2_IP: {

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 26

1780 mib2_ip_t *ip = (mib2_ip_t *)item->valp;

1782 ipAddrEntrySize = ip->ipAddrEntrySize;
1783 ipRouteEntrySize = ip->ipRouteEntrySize;
1784 ipNetToMediaEntrySize = ip->ipNetToMediaEntrySize;
1785 ipMemberEntrySize = ip->ipMemberEntrySize;
1786 ipGroupSourceEntrySize = ip->ipGroupSourceEntrySize;
1787 ipRouteAttributeSize = ip->ipRouteAttributeSize;
1788 transportMLPSize = ip->transportMLPSize;
1789 ipDestEntrySize = ip->ipDestEntrySize;
1790 assert(IS_P2ALIGNED(ipAddrEntrySize,
1791 sizeof (mib2_ipAddrEntry_t *)));
1792 assert(IS_P2ALIGNED(ipRouteEntrySize,
1793 sizeof (mib2_ipRouteEntry_t *)));
1794 assert(IS_P2ALIGNED(ipNetToMediaEntrySize,
1795 sizeof (mib2_ipNetToMediaEntry_t *)));
1796 assert(IS_P2ALIGNED(ipMemberEntrySize,
1797 sizeof (ip_member_t *)));
1798 assert(IS_P2ALIGNED(ipGroupSourceEntrySize,
1799 sizeof (ip_grpsrc_t *)));
1800 assert(IS_P2ALIGNED(ipRouteAttributeSize,
1801 sizeof (mib2_ipAttributeEntry_t *)));
1802 assert(IS_P2ALIGNED(transportMLPSize,
1803 sizeof (mib2_transportMLPEntry_t *)));
1804 break;
1805 }
1806 case EXPER_DVMRP: {
1807 struct mrtstat *mrts = (struct mrtstat *)item->valp;

1809 vifctlSize = mrts->mrts_vifctlSize;
1810 mfcctlSize = mrts->mrts_mfcctlSize;
1811 assert(IS_P2ALIGNED(vifctlSize,
1812 sizeof (struct vifclt *)));
1813 assert(IS_P2ALIGNED(mfcctlSize,
1814 sizeof (struct mfcctl *)));
1815 break;
1816 }
1817 case MIB2_IP6: {
1818 mib2_ipv6IfStatsEntry_t *ip6;
1819 /* Just use the first entry */

1821 ip6 = (mib2_ipv6IfStatsEntry_t *)item->valp;
1822 ipv6IfStatsEntrySize = ip6->ipv6IfStatsEntrySize;
1823 ipv6AddrEntrySize = ip6->ipv6AddrEntrySize;
1824 ipv6RouteEntrySize = ip6->ipv6RouteEntrySize;
1825 ipv6NetToMediaEntrySize = ip6->ipv6NetToMediaEntrySize;
1826 ipv6MemberEntrySize = ip6->ipv6MemberEntrySize;
1827 ipv6GroupSourceEntrySize =
1828 ip6->ipv6GroupSourceEntrySize;
1829 assert(IS_P2ALIGNED(ipv6IfStatsEntrySize,
1830 sizeof (mib2_ipv6IfStatsEntry_t *)));
1831 assert(IS_P2ALIGNED(ipv6AddrEntrySize,
1832 sizeof (mib2_ipv6AddrEntry_t *)));
1833 assert(IS_P2ALIGNED(ipv6RouteEntrySize,
1834 sizeof (mib2_ipv6RouteEntry_t *)));
1835 assert(IS_P2ALIGNED(ipv6NetToMediaEntrySize,
1836 sizeof (mib2_ipv6NetToMediaEntry_t *)));
1837 assert(IS_P2ALIGNED(ipv6MemberEntrySize,
1838 sizeof (ipv6_member_t *)));
1839 assert(IS_P2ALIGNED(ipv6GroupSourceEntrySize,
1840 sizeof (ipv6_grpsrc_t *)));
1841 break;
1842 }
1843 case MIB2_ICMP6: {
1844 mib2_ipv6IfIcmpEntry_t *icmp6;
1845 /* Just use the first entry */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 27

1847 icmp6 = (mib2_ipv6IfIcmpEntry_t *)item->valp;
1848 ipv6IfIcmpEntrySize = icmp6->ipv6IfIcmpEntrySize;
1849 assert(IS_P2ALIGNED(ipv6IfIcmpEntrySize,
1850 sizeof (mib2_ipv6IfIcmpEntry_t *)));
1851 break;
1852 }
1853 case MIB2_TCP: {
1854 mib2_tcp_t *tcp = (mib2_tcp_t *)item->valp;

1856 tcpConnEntrySize = tcp->tcpConnTableSize;
1857 tcp6ConnEntrySize = tcp->tcp6ConnTableSize;
1858 assert(IS_P2ALIGNED(tcpConnEntrySize,
1859 sizeof (mib2_tcpConnEntry_t *)));
1860 assert(IS_P2ALIGNED(tcp6ConnEntrySize,
1861 sizeof (mib2_tcp6ConnEntry_t *)));
1862 break;
1863 }
1864 case MIB2_UDP: {
1865 mib2_udp_t *udp = (mib2_udp_t *)item->valp;

1867 udpEntrySize = udp->udpEntrySize;
1868 udp6EntrySize = udp->udp6EntrySize;
1869 assert(IS_P2ALIGNED(udpEntrySize,
1870 sizeof (mib2_udpEntry_t *)));
1871 assert(IS_P2ALIGNED(udp6EntrySize,
1872 sizeof (mib2_udp6Entry_t *)));
1873 break;
1874 }
1875 case MIB2_SCTP: {
1876 mib2_sctp_t *sctp = (mib2_sctp_t *)item->valp;

1878 sctpEntrySize = sctp->sctpEntrySize;
1879 sctpLocalEntrySize = sctp->sctpLocalEntrySize;
1880 sctpRemoteEntrySize = sctp->sctpRemoteEntrySize;
1881 break;
1882 }
1883 case MIB2_DCCP: {
1884 mib2_dccp_t *dccp = (mib2_dccp_t *)item->valp;

1886 dccpEntrySize = dccp->dccpConnTableSize;
1887 dccp6EntrySize = dccp->dccp6ConnTableSize;
1888 assert(IS_P2ALIGNED(dccpEntrySize,
1889 sizeof (mib2_dccpConnEntry_t *)));
1890 assert(IS_P2ALIGNED(dccp6EntrySize,
1891 sizeof (mib2_dccp6ConnEntry_t *)));
1892 break;
1893 }
1894 #endif /* ! codereview */
1895 }
1896 } /* ’for’ loop 1 ends */

1898 if (Xflag) {
1899 (void) puts("mib_get_constants:");
1900 (void) printf("\tipv6IfStatsEntrySize %d\n",
1901 ipv6IfStatsEntrySize);
1902 (void) printf("\tipAddrEntrySize %d\n", ipAddrEntrySize);
1903 (void) printf("\tipRouteEntrySize %d\n", ipRouteEntrySize);
1904 (void) printf("\tipNetToMediaEntrySize %d\n",
1905 ipNetToMediaEntrySize);
1906 (void) printf("\tipMemberEntrySize %d\n", ipMemberEntrySize);
1907 (void) printf("\tipRouteAttributeSize %d\n",
1908 ipRouteAttributeSize);
1909 (void) printf("\tvifctlSize %d\n", vifctlSize);
1910 (void) printf("\tmfcctlSize %d\n", mfcctlSize);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 28

1912 (void) printf("\tipv6AddrEntrySize %d\n", ipv6AddrEntrySize);
1913 (void) printf("\tipv6RouteEntrySize %d\n", ipv6RouteEntrySize);
1914 (void) printf("\tipv6NetToMediaEntrySize %d\n",
1915 ipv6NetToMediaEntrySize);
1916 (void) printf("\tipv6MemberEntrySize %d\n",
1917 ipv6MemberEntrySize);
1918 (void) printf("\tipv6IfIcmpEntrySize %d\n",
1919 ipv6IfIcmpEntrySize);
1920 (void) printf("\tipDestEntrySize %d\n", ipDestEntrySize);
1921 (void) printf("\ttransportMLPSize %d\n", transportMLPSize);
1922 (void) printf("\ttcpConnEntrySize %d\n", tcpConnEntrySize);
1923 (void) printf("\ttcp6ConnEntrySize %d\n", tcp6ConnEntrySize);
1924 (void) printf("\tudpEntrySize %d\n", udpEntrySize);
1925 (void) printf("\tudp6EntrySize %d\n", udp6EntrySize);
1926 (void) printf("\tsctpEntrySize %d\n", sctpEntrySize);
1927 (void) printf("\tsctpLocalEntrySize %d\n", sctpLocalEntrySize);
1928 (void) printf("\tsctpRemoteEntrySize %d\n",
1929 sctpRemoteEntrySize);
1930 (void) printf("\tdccpEntrySize %d\n", dccpEntrySize);
1931 (void) printf("\ttcp6EntrySize %d\n", dccp6EntrySize);
1932 #endif /* ! codereview */
1933 }
1934 }

1937 /* ----------------------------- STAT_REPORT ------------------------------- */

1939 static void
1940 stat_report(mib_item_t *item)
1941 {
1942 int jtemp = 0;
1943 char ifname[LIFNAMSIZ + 1];

1945 /* ’for’ loop 1: */
1946 for (; item; item = item->next_item) {
1947 if (Xflag) {
1948 (void) printf("\n--- Entry %d ---\n", ++jtemp);
1949 (void) printf("Group = %d, mib_id = %d, "
1950 "length = %d, valp = 0x%p\n",
1951 item->group, item->mib_id,
1952 item->length, item->valp);
1953 }
1954 if (item->mib_id != 0)
1955 continue; /* ’for’ loop 1 */

1957 switch (item->group) {
1958 case MIB2_IP: {
1959 mib2_ip_t *ip = (mib2_ip_t *)item->valp;

1961 if (protocol_selected(IPPROTO_IP) &&
1962 family_selected(AF_INET)) {
1963 (void) fputs(v4compat ? "\nIP" : "\nIPv4",
1964 stdout);
1965 print_ip_stats(ip);
1966 }
1967 break;
1968 }
1969 case MIB2_ICMP: {
1970 mib2_icmp_t *icmp =
1971 (mib2_icmp_t *)item->valp;

1973 if (protocol_selected(IPPROTO_ICMP) &&
1974 family_selected(AF_INET)) {
1975 (void) fputs(v4compat ? "\nICMP" : "\nICMPv4",
1976 stdout);
1977 print_icmp_stats(icmp);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 29

1978 }
1979 break;
1980 }
1981 case MIB2_IP6: {
1982 mib2_ipv6IfStatsEntry_t *ip6;
1983 mib2_ipv6IfStatsEntry_t sum6;

1985 if (!(protocol_selected(IPPROTO_IPV6)) ||
1986 !(family_selected(AF_INET6)))
1987 break;
1988 bzero(&sum6, sizeof (sum6));
1989 /* ’for’ loop 2a: */
1990 for (ip6 = (mib2_ipv6IfStatsEntry_t *)item->valp;
1991 (char *)ip6 < (char *)item->valp + item->length;
1992 /* LINTED: (note 1) */
1993 ip6 = (mib2_ipv6IfStatsEntry_t *)((char *)ip6 +
1994 ipv6IfStatsEntrySize)) {
1995 if (ip6->ipv6IfIndex == 0) {
1996 /*
1997 * The "unknown interface" ip6
1998 * mib. Just add to the sum.
1999 */
2000 sum_ip6_stats(ip6, &sum6);
2001 continue; /* ’for’ loop 2a */
2002 }
2003 if (Aflag) {
2004 (void) printf("\nIPv6 for %s\n",
2005 ifindex2str(ip6->ipv6IfIndex,
2006 ifname));
2007 print_ip6_stats(ip6);
2008 }
2009 sum_ip6_stats(ip6, &sum6);
2010 } /* ’for’ loop 2a ends */
2011 (void) fputs("\nIPv6", stdout);
2012 print_ip6_stats(&sum6);
2013 break;
2014 }
2015 case MIB2_ICMP6: {
2016 mib2_ipv6IfIcmpEntry_t *icmp6;
2017 mib2_ipv6IfIcmpEntry_t sum6;

2019 if (!(protocol_selected(IPPROTO_ICMPV6)) ||
2020 !(family_selected(AF_INET6)))
2021 break;
2022 bzero(&sum6, sizeof (sum6));
2023 /* ’for’ loop 2b: */
2024 for (icmp6 = (mib2_ipv6IfIcmpEntry_t *)item->valp;
2025 (char *)icmp6 < (char *)item->valp + item->length;
2026 icmp6 = (void *)((char *)icmp6 +
2027 ipv6IfIcmpEntrySize)) {
2028 if (icmp6->ipv6IfIcmpIfIndex == 0) {
2029 /*
2030 * The "unknown interface" icmp6
2031 * mib. Just add to the sum.
2032 */
2033 sum_icmp6_stats(icmp6, &sum6);
2034 continue; /* ’for’ loop 2b: */
2035 }
2036 if (Aflag) {
2037 (void) printf("\nICMPv6 for %s\n",
2038 ifindex2str(
2039 icmp6->ipv6IfIcmpIfIndex, ifname));
2040 print_icmp6_stats(icmp6);
2041 }
2042 sum_icmp6_stats(icmp6, &sum6);
2043 } /* ’for’ loop 2b ends */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 30

2044 (void) fputs("\nICMPv6", stdout);
2045 print_icmp6_stats(&sum6);
2046 break;
2047 }
2048 case MIB2_TCP: {
2049 mib2_tcp_t *tcp = (mib2_tcp_t *)item->valp;

2051 if (protocol_selected(IPPROTO_TCP) &&
2052 (family_selected(AF_INET) ||
2053 family_selected(AF_INET6))) {
2054 (void) fputs("\nTCP", stdout);
2055 print_tcp_stats(tcp);
2056 }
2057 break;
2058 }
2059 case MIB2_UDP: {
2060 mib2_udp_t *udp = (mib2_udp_t *)item->valp;

2062 if (protocol_selected(IPPROTO_UDP) &&
2063 (family_selected(AF_INET) ||
2064 family_selected(AF_INET6))) {
2065 (void) fputs("\nUDP", stdout);
2066 print_udp_stats(udp);
2067 }
2068 break;
2069 }
2070 case MIB2_SCTP: {
2071 mib2_sctp_t *sctp = (mib2_sctp_t *)item->valp;

2073 if (protocol_selected(IPPROTO_SCTP) &&
2074 (family_selected(AF_INET) ||
2075 family_selected(AF_INET6))) {
2076 (void) fputs("\nSCTP", stdout);
2077 print_sctp_stats(sctp);
2078 }
2079 break;
2080 }
2081 case EXPER_RAWIP: {
2082 mib2_rawip_t *rawip =
2083 (mib2_rawip_t *)item->valp;

2085 if (protocol_selected(IPPROTO_RAW) &&
2086 (family_selected(AF_INET) ||
2087 family_selected(AF_INET6))) {
2088 (void) fputs("\nRAWIP", stdout);
2089 print_rawip_stats(rawip);
2090 }
2091 break;
2092 }
2093 case EXPER_IGMP: {
2094 struct igmpstat *igps =
2095 (struct igmpstat *)item->valp;

2097 if (protocol_selected(IPPROTO_IGMP) &&
2098 (family_selected(AF_INET))) {
2099 (void) fputs("\nIGMP:\n", stdout);
2100 print_igmp_stats(igps);
2101 }
2102 break;
2103 }
2104 }
2105 } /* ’for’ loop 1 ends */
2106 (void) putchar(’\n’);
2107 (void) fflush(stdout);
2108 }

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 31

2110 static void
2111 print_ip_stats(mib2_ip_t *ip)
2112 {
2113 prval_init();
2114 pr_int_val("ipForwarding", ip->ipForwarding);
2115 pr_int_val("ipDefaultTTL", ip->ipDefaultTTL);
2116 prval("ipInReceives", ip->ipInReceives);
2117 prval("ipInHdrErrors", ip->ipInHdrErrors);
2118 prval("ipInAddrErrors", ip->ipInAddrErrors);
2119 prval("ipInCksumErrs", ip->ipInCksumErrs);
2120 prval("ipForwDatagrams", ip->ipForwDatagrams);
2121 prval("ipForwProhibits", ip->ipForwProhibits);
2122 prval("ipInUnknownProtos", ip->ipInUnknownProtos);
2123 prval("ipInDiscards", ip->ipInDiscards);
2124 prval("ipInDelivers", ip->ipInDelivers);
2125 prval("ipOutRequests", ip->ipOutRequests);
2126 prval("ipOutDiscards", ip->ipOutDiscards);
2127 prval("ipOutNoRoutes", ip->ipOutNoRoutes);
2128 pr_int_val("ipReasmTimeout", ip->ipReasmTimeout);
2129 prval("ipReasmReqds", ip->ipReasmReqds);
2130 prval("ipReasmOKs", ip->ipReasmOKs);
2131 prval("ipReasmFails", ip->ipReasmFails);
2132 prval("ipReasmDuplicates", ip->ipReasmDuplicates);
2133 prval("ipReasmPartDups", ip->ipReasmPartDups);
2134 prval("ipFragOKs", ip->ipFragOKs);
2135 prval("ipFragFails", ip->ipFragFails);
2136 prval("ipFragCreates", ip->ipFragCreates);
2137 prval("ipRoutingDiscards", ip->ipRoutingDiscards);

2139 prval("tcpInErrs", ip->tcpInErrs);
2140 prval("udpNoPorts", ip->udpNoPorts);
2141 prval("udpInCksumErrs", ip->udpInCksumErrs);
2142 prval("udpInOverflows", ip->udpInOverflows);
2143 prval("rawipInOverflows", ip->rawipInOverflows);
2144 prval("ipsecInSucceeded", ip->ipsecInSucceeded);
2145 prval("ipsecInFailed", ip->ipsecInFailed);
2146 prval("ipInIPv6", ip->ipInIPv6);
2147 prval("ipOutIPv6", ip->ipOutIPv6);
2148 prval("ipOutSwitchIPv6", ip->ipOutSwitchIPv6);
2149 prval_end();
2150 }

2152 static void
2153 print_icmp_stats(mib2_icmp_t *icmp)
2154 {
2155 prval_init();
2156 prval("icmpInMsgs", icmp->icmpInMsgs);
2157 prval("icmpInErrors", icmp->icmpInErrors);
2158 prval("icmpInCksumErrs", icmp->icmpInCksumErrs);
2159 prval("icmpInUnknowns", icmp->icmpInUnknowns);
2160 prval("icmpInDestUnreachs", icmp->icmpInDestUnreachs);
2161 prval("icmpInTimeExcds", icmp->icmpInTimeExcds);
2162 prval("icmpInParmProbs", icmp->icmpInParmProbs);
2163 prval("icmpInSrcQuenchs", icmp->icmpInSrcQuenchs);
2164 prval("icmpInRedirects", icmp->icmpInRedirects);
2165 prval("icmpInBadRedirects", icmp->icmpInBadRedirects);
2166 prval("icmpInEchos", icmp->icmpInEchos);
2167 prval("icmpInEchoReps", icmp->icmpInEchoReps);
2168 prval("icmpInTimestamps", icmp->icmpInTimestamps);
2169 prval("icmpInTimestampReps", icmp->icmpInTimestampReps);
2170 prval("icmpInAddrMasks", icmp->icmpInAddrMasks);
2171 prval("icmpInAddrMaskReps", icmp->icmpInAddrMaskReps);
2172 prval("icmpInFragNeeded", icmp->icmpInFragNeeded);
2173 prval("icmpOutMsgs", icmp->icmpOutMsgs);
2174 prval("icmpOutDrops", icmp->icmpOutDrops);
2175 prval("icmpOutErrors", icmp->icmpOutErrors);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 32

2176 prval("icmpOutDestUnreachs", icmp->icmpOutDestUnreachs);
2177 prval("icmpOutTimeExcds", icmp->icmpOutTimeExcds);
2178 prval("icmpOutParmProbs", icmp->icmpOutParmProbs);
2179 prval("icmpOutSrcQuenchs", icmp->icmpOutSrcQuenchs);
2180 prval("icmpOutRedirects", icmp->icmpOutRedirects);
2181 prval("icmpOutEchos", icmp->icmpOutEchos);
2182 prval("icmpOutEchoReps", icmp->icmpOutEchoReps);
2183 prval("icmpOutTimestamps", icmp->icmpOutTimestamps);
2184 prval("icmpOutTimestampReps", icmp->icmpOutTimestampReps);
2185 prval("icmpOutAddrMasks", icmp->icmpOutAddrMasks);
2186 prval("icmpOutAddrMaskReps", icmp->icmpOutAddrMaskReps);
2187 prval("icmpOutFragNeeded", icmp->icmpOutFragNeeded);
2188 prval("icmpInOverflows", icmp->icmpInOverflows);
2189 prval_end();
2190 }

2192 static void
2193 print_ip6_stats(mib2_ipv6IfStatsEntry_t *ip6)
2194 {
2195 prval_init();
2196 prval("ipv6Forwarding", ip6->ipv6Forwarding);
2197 prval("ipv6DefaultHopLimit", ip6->ipv6DefaultHopLimit);

2199 prval("ipv6InReceives", ip6->ipv6InReceives);
2200 prval("ipv6InHdrErrors", ip6->ipv6InHdrErrors);
2201 prval("ipv6InTooBigErrors", ip6->ipv6InTooBigErrors);
2202 prval("ipv6InNoRoutes", ip6->ipv6InNoRoutes);
2203 prval("ipv6InAddrErrors", ip6->ipv6InAddrErrors);
2204 prval("ipv6InUnknownProtos", ip6->ipv6InUnknownProtos);
2205 prval("ipv6InTruncatedPkts", ip6->ipv6InTruncatedPkts);
2206 prval("ipv6InDiscards", ip6->ipv6InDiscards);
2207 prval("ipv6InDelivers", ip6->ipv6InDelivers);
2208 prval("ipv6OutForwDatagrams", ip6->ipv6OutForwDatagrams);
2209 prval("ipv6OutRequests", ip6->ipv6OutRequests);
2210 prval("ipv6OutDiscards", ip6->ipv6OutDiscards);
2211 prval("ipv6OutNoRoutes", ip6->ipv6OutNoRoutes);
2212 prval("ipv6OutFragOKs", ip6->ipv6OutFragOKs);
2213 prval("ipv6OutFragFails", ip6->ipv6OutFragFails);
2214 prval("ipv6OutFragCreates", ip6->ipv6OutFragCreates);
2215 prval("ipv6ReasmReqds", ip6->ipv6ReasmReqds);
2216 prval("ipv6ReasmOKs", ip6->ipv6ReasmOKs);
2217 prval("ipv6ReasmFails", ip6->ipv6ReasmFails);
2218 prval("ipv6InMcastPkts", ip6->ipv6InMcastPkts);
2219 prval("ipv6OutMcastPkts", ip6->ipv6OutMcastPkts);
2220 prval("ipv6ReasmDuplicates", ip6->ipv6ReasmDuplicates);
2221 prval("ipv6ReasmPartDups", ip6->ipv6ReasmPartDups);
2222 prval("ipv6ForwProhibits", ip6->ipv6ForwProhibits);
2223 prval("udpInCksumErrs", ip6->udpInCksumErrs);
2224 prval("udpInOverflows", ip6->udpInOverflows);
2225 prval("rawipInOverflows", ip6->rawipInOverflows);
2226 prval("ipv6InIPv4", ip6->ipv6InIPv4);
2227 prval("ipv6OutIPv4", ip6->ipv6OutIPv4);
2228 prval("ipv6OutSwitchIPv4", ip6->ipv6OutSwitchIPv4);
2229 prval_end();
2230 }

2232 static void
2233 print_icmp6_stats(mib2_ipv6IfIcmpEntry_t *icmp6)
2234 {
2235 prval_init();
2236 prval("icmp6InMsgs", icmp6->ipv6IfIcmpInMsgs);
2237 prval("icmp6InErrors", icmp6->ipv6IfIcmpInErrors);
2238 prval("icmp6InDestUnreachs", icmp6->ipv6IfIcmpInDestUnreachs);
2239 prval("icmp6InAdminProhibs", icmp6->ipv6IfIcmpInAdminProhibs);
2240 prval("icmp6InTimeExcds", icmp6->ipv6IfIcmpInTimeExcds);
2241 prval("icmp6InParmProblems", icmp6->ipv6IfIcmpInParmProblems);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 33

2242 prval("icmp6InPktTooBigs", icmp6->ipv6IfIcmpInPktTooBigs);
2243 prval("icmp6InEchos", icmp6->ipv6IfIcmpInEchos);
2244 prval("icmp6InEchoReplies", icmp6->ipv6IfIcmpInEchoReplies);
2245 prval("icmp6InRouterSols", icmp6->ipv6IfIcmpInRouterSolicits);
2246 prval("icmp6InRouterAds",
2247 icmp6->ipv6IfIcmpInRouterAdvertisements);
2248 prval("icmp6InNeighborSols", icmp6->ipv6IfIcmpInNeighborSolicits);
2249 prval("icmp6InNeighborAds",
2250 icmp6->ipv6IfIcmpInNeighborAdvertisements);
2251 prval("icmp6InRedirects", icmp6->ipv6IfIcmpInRedirects);
2252 prval("icmp6InBadRedirects", icmp6->ipv6IfIcmpInBadRedirects);
2253 prval("icmp6InGroupQueries", icmp6->ipv6IfIcmpInGroupMembQueries);
2254 prval("icmp6InGroupResps", icmp6->ipv6IfIcmpInGroupMembResponses);
2255 prval("icmp6InGroupReds", icmp6->ipv6IfIcmpInGroupMembReductions);
2256 prval("icmp6InOverflows", icmp6->ipv6IfIcmpInOverflows);
2257 prval_end();
2258 prval_init();
2259 prval("icmp6OutMsgs", icmp6->ipv6IfIcmpOutMsgs);
2260 prval("icmp6OutErrors", icmp6->ipv6IfIcmpOutErrors);
2261 prval("icmp6OutDestUnreachs", icmp6->ipv6IfIcmpOutDestUnreachs);
2262 prval("icmp6OutAdminProhibs", icmp6->ipv6IfIcmpOutAdminProhibs);
2263 prval("icmp6OutTimeExcds", icmp6->ipv6IfIcmpOutTimeExcds);
2264 prval("icmp6OutParmProblems", icmp6->ipv6IfIcmpOutParmProblems);
2265 prval("icmp6OutPktTooBigs", icmp6->ipv6IfIcmpOutPktTooBigs);
2266 prval("icmp6OutEchos", icmp6->ipv6IfIcmpOutEchos);
2267 prval("icmp6OutEchoReplies", icmp6->ipv6IfIcmpOutEchoReplies);
2268 prval("icmp6OutRouterSols", icmp6->ipv6IfIcmpOutRouterSolicits);
2269 prval("icmp6OutRouterAds",
2270 icmp6->ipv6IfIcmpOutRouterAdvertisements);
2271 prval("icmp6OutNeighborSols", icmp6->ipv6IfIcmpOutNeighborSolicits);
2272 prval("icmp6OutNeighborAds",
2273 icmp6->ipv6IfIcmpOutNeighborAdvertisements);
2274 prval("icmp6OutRedirects", icmp6->ipv6IfIcmpOutRedirects);
2275 prval("icmp6OutGroupQueries", icmp6->ipv6IfIcmpOutGroupMembQueries);
2276 prval("icmp6OutGroupResps",
2277 icmp6->ipv6IfIcmpOutGroupMembResponses);
2278 prval("icmp6OutGroupReds",
2279 icmp6->ipv6IfIcmpOutGroupMembReductions);
2280 prval_end();
2281 }

2283 static void
2284 print_sctp_stats(mib2_sctp_t *sctp)
2285 {
2286 prval_init();
2287 pr_sctp_rtoalgo("sctpRtoAlgorithm", sctp->sctpRtoAlgorithm);
2288 prval("sctpRtoMin", sctp->sctpRtoMin);
2289 prval("sctpRtoMax", sctp->sctpRtoMax);
2290 prval("sctpRtoInitial", sctp->sctpRtoInitial);
2291 pr_int_val("sctpMaxAssocs", sctp->sctpMaxAssocs);
2292 prval("sctpValCookieLife", sctp->sctpValCookieLife);
2293 prval("sctpMaxInitRetr", sctp->sctpMaxInitRetr);
2294 prval("sctpCurrEstab", sctp->sctpCurrEstab);
2295 prval("sctpActiveEstab", sctp->sctpActiveEstab);
2296 prval("sctpPassiveEstab", sctp->sctpPassiveEstab);
2297 prval("sctpAborted", sctp->sctpAborted);
2298 prval("sctpShutdowns", sctp->sctpShutdowns);
2299 prval("sctpOutOfBlue", sctp->sctpOutOfBlue);
2300 prval("sctpChecksumError", sctp->sctpChecksumError);
2301 prval64("sctpOutCtrlChunks", sctp->sctpOutCtrlChunks);
2302 prval64("sctpOutOrderChunks", sctp->sctpOutOrderChunks);
2303 prval64("sctpOutUnorderChunks", sctp->sctpOutUnorderChunks);
2304 prval64("sctpRetransChunks", sctp->sctpRetransChunks);
2305 prval("sctpOutAck", sctp->sctpOutAck);
2306 prval("sctpOutAckDelayed", sctp->sctpOutAckDelayed);
2307 prval("sctpOutWinUpdate", sctp->sctpOutWinUpdate);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 34

2308 prval("sctpOutFastRetrans", sctp->sctpOutFastRetrans);
2309 prval("sctpOutWinProbe", sctp->sctpOutWinProbe);
2310 prval64("sctpInCtrlChunks", sctp->sctpInCtrlChunks);
2311 prval64("sctpInOrderChunks", sctp->sctpInOrderChunks);
2312 prval64("sctpInUnorderChunks", sctp->sctpInUnorderChunks);
2313 prval("sctpInAck", sctp->sctpInAck);
2314 prval("sctpInDupAck", sctp->sctpInDupAck);
2315 prval("sctpInAckUnsent", sctp->sctpInAckUnsent);
2316 prval64("sctpFragUsrMsgs", sctp->sctpFragUsrMsgs);
2317 prval64("sctpReasmUsrMsgs", sctp->sctpReasmUsrMsgs);
2318 prval64("sctpOutSCTPPkts", sctp->sctpOutSCTPPkts);
2319 prval64("sctpInSCTPPkts", sctp->sctpInSCTPPkts);
2320 prval("sctpInInvalidCookie", sctp->sctpInInvalidCookie);
2321 prval("sctpTimRetrans", sctp->sctpTimRetrans);
2322 prval("sctpTimRetransDrop", sctp->sctpTimRetransDrop);
2323 prval("sctpTimHearBeatProbe", sctp->sctpTimHeartBeatProbe);
2324 prval("sctpTimHearBeatDrop", sctp->sctpTimHeartBeatDrop);
2325 prval("sctpListenDrop", sctp->sctpListenDrop);
2326 prval("sctpInClosed", sctp->sctpInClosed);
2327 prval_end();
2328 }

2330 static void
2331 print_tcp_stats(mib2_tcp_t *tcp)
2332 {
2333 prval_init();
2334 pr_int_val("tcpRtoAlgorithm", tcp->tcpRtoAlgorithm);
2335 pr_int_val("tcpRtoMin", tcp->tcpRtoMin);
2336 pr_int_val("tcpRtoMax", tcp->tcpRtoMax);
2337 pr_int_val("tcpMaxConn", tcp->tcpMaxConn);
2338 prval("tcpActiveOpens", tcp->tcpActiveOpens);
2339 prval("tcpPassiveOpens", tcp->tcpPassiveOpens);
2340 prval("tcpAttemptFails", tcp->tcpAttemptFails);
2341 prval("tcpEstabResets", tcp->tcpEstabResets);
2342 prval("tcpCurrEstab", tcp->tcpCurrEstab);
2343 prval64("tcpOutSegs", tcp->tcpHCOutSegs);
2344 prval("tcpOutDataSegs", tcp->tcpOutDataSegs);
2345 prval("tcpOutDataBytes", tcp->tcpOutDataBytes);
2346 prval("tcpRetransSegs", tcp->tcpRetransSegs);
2347 prval("tcpRetransBytes", tcp->tcpRetransBytes);
2348 prval("tcpOutAck", tcp->tcpOutAck);
2349 prval("tcpOutAckDelayed", tcp->tcpOutAckDelayed);
2350 prval("tcpOutUrg", tcp->tcpOutUrg);
2351 prval("tcpOutWinUpdate", tcp->tcpOutWinUpdate);
2352 prval("tcpOutWinProbe", tcp->tcpOutWinProbe);
2353 prval("tcpOutControl", tcp->tcpOutControl);
2354 prval("tcpOutRsts", tcp->tcpOutRsts);
2355 prval("tcpOutFastRetrans", tcp->tcpOutFastRetrans);
2356 prval64("tcpInSegs", tcp->tcpHCInSegs);
2357 prval_end();
2358 prval("tcpInAckSegs", tcp->tcpInAckSegs);
2359 prval("tcpInAckBytes", tcp->tcpInAckBytes);
2360 prval("tcpInDupAck", tcp->tcpInDupAck);
2361 prval("tcpInAckUnsent", tcp->tcpInAckUnsent);
2362 prval("tcpInInorderSegs", tcp->tcpInDataInorderSegs);
2363 prval("tcpInInorderBytes", tcp->tcpInDataInorderBytes);
2364 prval("tcpInUnorderSegs", tcp->tcpInDataUnorderSegs);
2365 prval("tcpInUnorderBytes", tcp->tcpInDataUnorderBytes);
2366 prval("tcpInDupSegs", tcp->tcpInDataDupSegs);
2367 prval("tcpInDupBytes", tcp->tcpInDataDupBytes);
2368 prval("tcpInPartDupSegs", tcp->tcpInDataPartDupSegs);
2369 prval("tcpInPartDupBytes", tcp->tcpInDataPartDupBytes);
2370 prval("tcpInPastWinSegs", tcp->tcpInDataPastWinSegs);
2371 prval("tcpInPastWinBytes", tcp->tcpInDataPastWinBytes);
2372 prval("tcpInWinProbe", tcp->tcpInWinProbe);
2373 prval("tcpInWinUpdate", tcp->tcpInWinUpdate);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 35

2374 prval("tcpInClosed", tcp->tcpInClosed);
2375 prval("tcpRttNoUpdate", tcp->tcpRttNoUpdate);
2376 prval("tcpRttUpdate", tcp->tcpRttUpdate);
2377 prval("tcpTimRetrans", tcp->tcpTimRetrans);
2378 prval("tcpTimRetransDrop", tcp->tcpTimRetransDrop);
2379 prval("tcpTimKeepalive", tcp->tcpTimKeepalive);
2380 prval("tcpTimKeepaliveProbe", tcp->tcpTimKeepaliveProbe);
2381 prval("tcpTimKeepaliveDrop", tcp->tcpTimKeepaliveDrop);
2382 prval("tcpListenDrop", tcp->tcpListenDrop);
2383 prval("tcpListenDropQ0", tcp->tcpListenDropQ0);
2384 prval("tcpHalfOpenDrop", tcp->tcpHalfOpenDrop);
2385 prval("tcpOutSackRetrans", tcp->tcpOutSackRetransSegs);
2386 prval_end();

2388 }

2390 static void
2391 print_udp_stats(mib2_udp_t *udp)
2392 {
2393 prval_init();
2394 prval64("udpInDatagrams", udp->udpHCInDatagrams);
2395 prval("udpInErrors", udp->udpInErrors);
2396 prval64("udpOutDatagrams", udp->udpHCOutDatagrams);
2397 prval("udpOutErrors", udp->udpOutErrors);
2398 prval_end();
2399 }

2401 static void
2402 print_rawip_stats(mib2_rawip_t *rawip)
2403 {
2404 prval_init();
2405 prval("rawipInDatagrams", rawip->rawipInDatagrams);
2406 prval("rawipInErrors", rawip->rawipInErrors);
2407 prval("rawipInCksumErrs", rawip->rawipInCksumErrs);
2408 prval("rawipOutDatagrams", rawip->rawipOutDatagrams);
2409 prval("rawipOutErrors", rawip->rawipOutErrors);
2410 prval_end();
2411 }

2413 void
2414 print_igmp_stats(struct igmpstat *igps)
2415 {
2416 (void) printf(" %10u message%s received\n",
2417 igps->igps_rcv_total, PLURAL(igps->igps_rcv_total));
2418 (void) printf(" %10u message%s received with too few bytes\n",
2419 igps->igps_rcv_tooshort, PLURAL(igps->igps_rcv_tooshort));
2420 (void) printf(" %10u message%s received with bad checksum\n",
2421 igps->igps_rcv_badsum, PLURAL(igps->igps_rcv_badsum));
2422 (void) printf(" %10u membership quer%s received\n",
2423 igps->igps_rcv_queries, PLURALY(igps->igps_rcv_queries));
2424 (void) printf(" %10u membership quer%s received with invalid "
2425 "field(s)\n",
2426 igps->igps_rcv_badqueries, PLURALY(igps->igps_rcv_badqueries));
2427 (void) printf(" %10u membership report%s received\n",
2428 igps->igps_rcv_reports, PLURAL(igps->igps_rcv_reports));
2429 (void) printf(" %10u membership report%s received with invalid "
2430 "field(s)\n",
2431 igps->igps_rcv_badreports, PLURAL(igps->igps_rcv_badreports));
2432 (void) printf(" %10u membership report%s received for groups to "
2433 "which we belong\n",
2434 igps->igps_rcv_ourreports, PLURAL(igps->igps_rcv_ourreports));
2435 (void) printf(" %10u membership report%s sent\n",
2436 igps->igps_snd_reports, PLURAL(igps->igps_snd_reports));
2437 }

2439 static void

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 36

2440 print_mrt_stats(struct mrtstat *mrts)
2441 {
2442 (void) puts("DVMRP multicast routing:");
2443 (void) printf(" %10u hit%s - kernel forwarding cache hits\n",
2444 mrts->mrts_mfc_hits, PLURAL(mrts->mrts_mfc_hits));
2445 (void) printf(" %10u miss%s - kernel forwarding cache misses\n",
2446 mrts->mrts_mfc_misses, PLURALES(mrts->mrts_mfc_misses));
2447 (void) printf(" %10u packet%s potentially forwarded\n",
2448 mrts->mrts_fwd_in, PLURAL(mrts->mrts_fwd_in));
2449 (void) printf(" %10u packet%s actually sent out\n",
2450 mrts->mrts_fwd_out, PLURAL(mrts->mrts_fwd_out));
2451 (void) printf(" %10u upcall%s - upcalls made to mrouted\n",
2452 mrts->mrts_upcalls, PLURAL(mrts->mrts_upcalls));
2453 (void) printf(" %10u packet%s not sent out due to lack of resources\n",
2454 mrts->mrts_fwd_drop, PLURAL(mrts->mrts_fwd_drop));
2455 (void) printf(" %10u datagram%s with malformed tunnel options\n",
2456 mrts->mrts_bad_tunnel, PLURAL(mrts->mrts_bad_tunnel));
2457 (void) printf(" %10u datagram%s with no room for tunnel options\n",
2458 mrts->mrts_cant_tunnel, PLURAL(mrts->mrts_cant_tunnel));
2459 (void) printf(" %10u datagram%s arrived on wrong interface\n",
2460 mrts->mrts_wrong_if, PLURAL(mrts->mrts_wrong_if));
2461 (void) printf(" %10u datagram%s dropped due to upcall Q overflow\n",
2462 mrts->mrts_upq_ovflw, PLURAL(mrts->mrts_upq_ovflw));
2463 (void) printf(" %10u datagram%s cleaned up by the cache\n",
2464 mrts->mrts_cache_cleanups, PLURAL(mrts->mrts_cache_cleanups));
2465 (void) printf(" %10u datagram%s dropped selectively by ratelimiter\n",
2466 mrts->mrts_drop_sel, PLURAL(mrts->mrts_drop_sel));
2467 (void) printf(" %10u datagram%s dropped - bucket Q overflow\n",
2468 mrts->mrts_q_overflow, PLURAL(mrts->mrts_q_overflow));
2469 (void) printf(" %10u datagram%s dropped - larger than bkt size\n",
2470 mrts->mrts_pkt2large, PLURAL(mrts->mrts_pkt2large));
2471 (void) printf("\nPIM multicast routing:\n");
2472 (void) printf(" %10u datagram%s dropped - bad version number\n",
2473 mrts->mrts_pim_badversion, PLURAL(mrts->mrts_pim_badversion));
2474 (void) printf(" %10u datagram%s dropped - bad checksum\n",
2475 mrts->mrts_pim_rcv_badcsum, PLURAL(mrts->mrts_pim_rcv_badcsum));
2476 (void) printf(" %10u datagram%s dropped - bad register packets\n",
2477 mrts->mrts_pim_badregisters, PLURAL(mrts->mrts_pim_badregisters));
2478 (void) printf(
2479 " %10u datagram%s potentially forwarded - register packets\n",
2480 mrts->mrts_pim_regforwards, PLURAL(mrts->mrts_pim_regforwards));
2481 (void) printf(" %10u datagram%s dropped - register send drops\n",
2482 mrts->mrts_pim_regsend_drops, PLURAL(mrts->mrts_pim_regsend_drops));
2483 (void) printf(" %10u datagram%s dropped - packet malformed\n",
2484 mrts->mrts_pim_malformed, PLURAL(mrts->mrts_pim_malformed));
2485 (void) printf(" %10u datagram%s dropped - no memory to forward\n",
2486 mrts->mrts_pim_nomemory, PLURAL(mrts->mrts_pim_nomemory));
2487 }

2489 static void
2490 sum_ip6_stats(mib2_ipv6IfStatsEntry_t *ip6, mib2_ipv6IfStatsEntry_t *sum6)
2491 {
2492 /* First few are not additive */
2493 sum6->ipv6Forwarding = ip6->ipv6Forwarding;
2494 sum6->ipv6DefaultHopLimit = ip6->ipv6DefaultHopLimit;

2496 sum6->ipv6InReceives += ip6->ipv6InReceives;
2497 sum6->ipv6InHdrErrors += ip6->ipv6InHdrErrors;
2498 sum6->ipv6InTooBigErrors += ip6->ipv6InTooBigErrors;
2499 sum6->ipv6InNoRoutes += ip6->ipv6InNoRoutes;
2500 sum6->ipv6InAddrErrors += ip6->ipv6InAddrErrors;
2501 sum6->ipv6InUnknownProtos += ip6->ipv6InUnknownProtos;
2502 sum6->ipv6InTruncatedPkts += ip6->ipv6InTruncatedPkts;
2503 sum6->ipv6InDiscards += ip6->ipv6InDiscards;
2504 sum6->ipv6InDelivers += ip6->ipv6InDelivers;
2505 sum6->ipv6OutForwDatagrams += ip6->ipv6OutForwDatagrams;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 37

2506 sum6->ipv6OutRequests += ip6->ipv6OutRequests;
2507 sum6->ipv6OutDiscards += ip6->ipv6OutDiscards;
2508 sum6->ipv6OutFragOKs += ip6->ipv6OutFragOKs;
2509 sum6->ipv6OutFragFails += ip6->ipv6OutFragFails;
2510 sum6->ipv6OutFragCreates += ip6->ipv6OutFragCreates;
2511 sum6->ipv6ReasmReqds += ip6->ipv6ReasmReqds;
2512 sum6->ipv6ReasmOKs += ip6->ipv6ReasmOKs;
2513 sum6->ipv6ReasmFails += ip6->ipv6ReasmFails;
2514 sum6->ipv6InMcastPkts += ip6->ipv6InMcastPkts;
2515 sum6->ipv6OutMcastPkts += ip6->ipv6OutMcastPkts;
2516 sum6->ipv6OutNoRoutes += ip6->ipv6OutNoRoutes;
2517 sum6->ipv6ReasmDuplicates += ip6->ipv6ReasmDuplicates;
2518 sum6->ipv6ReasmPartDups += ip6->ipv6ReasmPartDups;
2519 sum6->ipv6ForwProhibits += ip6->ipv6ForwProhibits;
2520 sum6->udpInCksumErrs += ip6->udpInCksumErrs;
2521 sum6->udpInOverflows += ip6->udpInOverflows;
2522 sum6->rawipInOverflows += ip6->rawipInOverflows;
2523 }

2525 static void
2526 sum_icmp6_stats(mib2_ipv6IfIcmpEntry_t *icmp6, mib2_ipv6IfIcmpEntry_t *sum6)
2527 {
2528 sum6->ipv6IfIcmpInMsgs += icmp6->ipv6IfIcmpInMsgs;
2529 sum6->ipv6IfIcmpInErrors += icmp6->ipv6IfIcmpInErrors;
2530 sum6->ipv6IfIcmpInDestUnreachs += icmp6->ipv6IfIcmpInDestUnreachs;
2531 sum6->ipv6IfIcmpInAdminProhibs += icmp6->ipv6IfIcmpInAdminProhibs;
2532 sum6->ipv6IfIcmpInTimeExcds += icmp6->ipv6IfIcmpInTimeExcds;
2533 sum6->ipv6IfIcmpInParmProblems += icmp6->ipv6IfIcmpInParmProblems;
2534 sum6->ipv6IfIcmpInPktTooBigs += icmp6->ipv6IfIcmpInPktTooBigs;
2535 sum6->ipv6IfIcmpInEchos += icmp6->ipv6IfIcmpInEchos;
2536 sum6->ipv6IfIcmpInEchoReplies += icmp6->ipv6IfIcmpInEchoReplies;
2537 sum6->ipv6IfIcmpInRouterSolicits += icmp6->ipv6IfIcmpInRouterSolicits;
2538 sum6->ipv6IfIcmpInRouterAdvertisements +=
2539 icmp6->ipv6IfIcmpInRouterAdvertisements;
2540 sum6->ipv6IfIcmpInNeighborSolicits +=
2541 icmp6->ipv6IfIcmpInNeighborSolicits;
2542 sum6->ipv6IfIcmpInNeighborAdvertisements +=
2543 icmp6->ipv6IfIcmpInNeighborAdvertisements;
2544 sum6->ipv6IfIcmpInRedirects += icmp6->ipv6IfIcmpInRedirects;
2545 sum6->ipv6IfIcmpInGroupMembQueries +=
2546 icmp6->ipv6IfIcmpInGroupMembQueries;
2547 sum6->ipv6IfIcmpInGroupMembResponses +=
2548 icmp6->ipv6IfIcmpInGroupMembResponses;
2549 sum6->ipv6IfIcmpInGroupMembReductions +=
2550 icmp6->ipv6IfIcmpInGroupMembReductions;
2551 sum6->ipv6IfIcmpOutMsgs += icmp6->ipv6IfIcmpOutMsgs;
2552 sum6->ipv6IfIcmpOutErrors += icmp6->ipv6IfIcmpOutErrors;
2553 sum6->ipv6IfIcmpOutDestUnreachs += icmp6->ipv6IfIcmpOutDestUnreachs;
2554 sum6->ipv6IfIcmpOutAdminProhibs += icmp6->ipv6IfIcmpOutAdminProhibs;
2555 sum6->ipv6IfIcmpOutTimeExcds += icmp6->ipv6IfIcmpOutTimeExcds;
2556 sum6->ipv6IfIcmpOutParmProblems += icmp6->ipv6IfIcmpOutParmProblems;
2557 sum6->ipv6IfIcmpOutPktTooBigs += icmp6->ipv6IfIcmpOutPktTooBigs;
2558 sum6->ipv6IfIcmpOutEchos += icmp6->ipv6IfIcmpOutEchos;
2559 sum6->ipv6IfIcmpOutEchoReplies += icmp6->ipv6IfIcmpOutEchoReplies;
2560 sum6->ipv6IfIcmpOutRouterSolicits +=
2561 icmp6->ipv6IfIcmpOutRouterSolicits;
2562 sum6->ipv6IfIcmpOutRouterAdvertisements +=
2563 icmp6->ipv6IfIcmpOutRouterAdvertisements;
2564 sum6->ipv6IfIcmpOutNeighborSolicits +=
2565 icmp6->ipv6IfIcmpOutNeighborSolicits;
2566 sum6->ipv6IfIcmpOutNeighborAdvertisements +=
2567 icmp6->ipv6IfIcmpOutNeighborAdvertisements;
2568 sum6->ipv6IfIcmpOutRedirects += icmp6->ipv6IfIcmpOutRedirects;
2569 sum6->ipv6IfIcmpOutGroupMembQueries +=
2570 icmp6->ipv6IfIcmpOutGroupMembQueries;
2571 sum6->ipv6IfIcmpOutGroupMembResponses +=

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 38

2572 icmp6->ipv6IfIcmpOutGroupMembResponses;
2573 sum6->ipv6IfIcmpOutGroupMembReductions +=
2574 icmp6->ipv6IfIcmpOutGroupMembReductions;
2575 sum6->ipv6IfIcmpInOverflows += icmp6->ipv6IfIcmpInOverflows;
2576 }

2578 /* ----------------------------- MRT_STAT_REPORT --------------------------- */

2580 static void
2581 mrt_stat_report(mib_item_t *curritem)
2582 {
2583 int jtemp = 0;
2584 mib_item_t *tempitem;

2586 if (!(family_selected(AF_INET)))
2587 return;

2589 (void) putchar(’\n’);
2590 /* ’for’ loop 1: */
2591 for (tempitem = curritem;
2592 tempitem;
2593 tempitem = tempitem->next_item) {
2594 if (Xflag) {
2595 (void) printf("\n--- Entry %d ---\n", ++jtemp);
2596 (void) printf("Group = %d, mib_id = %d, "
2597 "length = %d, valp = 0x%p\n",
2598 tempitem->group, tempitem->mib_id,
2599 tempitem->length, tempitem->valp);
2600 }

2602 if (tempitem->mib_id == 0) {
2603 switch (tempitem->group) {
2604 case EXPER_DVMRP: {
2605 struct mrtstat *mrts;
2606 mrts = (struct mrtstat *)tempitem->valp;

2608 if (!(family_selected(AF_INET)))
2609 continue; /* ’for’ loop 1 */

2611 print_mrt_stats(mrts);
2612 break;
2613 }
2614 }
2615 }
2616 } /* ’for’ loop 1 ends */
2617 (void) putchar(’\n’);
2618 (void) fflush(stdout);
2619 }

2621 /*
2622 * if_stat_total() - Computes totals for interface statistics
2623 * and returns result by updating sumstats.
2624 */
2625 static void
2626 if_stat_total(struct ifstat *oldstats, struct ifstat *newstats,
2627 struct ifstat *sumstats)
2628 {
2629 sumstats->ipackets += newstats->ipackets - oldstats->ipackets;
2630 sumstats->opackets += newstats->opackets - oldstats->opackets;
2631 sumstats->ierrors += newstats->ierrors - oldstats->ierrors;
2632 sumstats->oerrors += newstats->oerrors - oldstats->oerrors;
2633 sumstats->collisions += newstats->collisions - oldstats->collisions;
2634 }

2636 /* --------------------- IF_REPORT (netstat -i) -------------------------- */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 39

2638 static struct ifstat zerostat = {
2639 0LL, 0LL, 0LL, 0LL, 0LL
2640 };

2642 static void
2643 if_report(mib_item_t *item, char *matchname,
2644 int Iflag_only, boolean_t once_only)
2645 {
2646 static boolean_t reentry = B_FALSE;
2647 boolean_t alreadydone = B_FALSE;
2648 int jtemp = 0;
2649 uint32_t ifindex_v4 = 0;
2650 uint32_t ifindex_v6 = 0;
2651 boolean_t first_header = B_TRUE;

2653 /* ’for’ loop 1: */
2654 for (; item; item = item->next_item) {
2655 if (Xflag) {
2656 (void) printf("\n--- Entry %d ---\n", ++jtemp);
2657 (void) printf("Group = %d, mib_id = %d, "
2658 "length = %d, valp = 0x%p\n",
2659 item->group, item->mib_id, item->length,
2660 item->valp);
2661 }

2663 switch (item->group) {
2664 case MIB2_IP:
2665 if (item->mib_id != MIB2_IP_ADDR ||
2666 !family_selected(AF_INET))
2667 continue; /* ’for’ loop 1 */
2668 {
2669 static struct ifstat old = {0L, 0L, 0L, 0L, 0L};
2670 static struct ifstat new = {0L, 0L, 0L, 0L, 0L};
2671 struct ifstat sum;
2672 struct iflist *newlist = NULL;
2673 static struct iflist *oldlist = NULL;
2674 kstat_t *ksp;

2676 if (once_only) {
2677 char ifname[LIFNAMSIZ + 1];
2678 char logintname[LIFNAMSIZ + 1];
2679 mib2_ipAddrEntry_t *ap;
2680 struct ifstat stat = {0L, 0L, 0L, 0L, 0L};
2681 boolean_t first = B_TRUE;
2682 uint32_t new_ifindex;

2684 if (Xflag)
2685 (void) printf("if_report: %d items\n",
2686 (item->length)
2687 / sizeof (mib2_ipAddrEntry_t));

2689 /* ’for’ loop 2a: */
2690 for (ap = (mib2_ipAddrEntry_t *)item->valp;
2691 (char *)ap < (char *)item->valp
2692 + item->length;
2693 ap++) {
2694 (void) octetstr(&ap->ipAdEntIfIndex,
2695 ’a’, logintname,
2696 sizeof (logintname));
2697 (void) strcpy(ifname, logintname);
2698 (void) strtok(ifname, ":");
2699 if (matchname != NULL &&
2700 strcmp(matchname, ifname) != 0 &&
2701 strcmp(matchname, logintname) != 0)
2702 continue; /* ’for’ loop 2a */
2703 new_ifindex =

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 40

2704 if_nametoindex(logintname);
2705 /*
2706 * First lookup the "link" kstats in
2707 * case the link is renamed. Then
2708 * fallback to the legacy kstats for
2709 * those non-GLDv3 links.
2710 */
2711 if (new_ifindex != ifindex_v4 &&
2712 (((ksp = kstat_lookup(kc, "link", 0,
2713 ifname)) != NULL) ||
2714 ((ksp = kstat_lookup(kc, NULL, -1,
2715 ifname)) != NULL))) {
2716 (void) safe_kstat_read(kc, ksp,
2717 NULL);
2718 stat.ipackets =
2719 kstat_named_value(ksp,
2720 "ipackets");
2721 stat.ierrors =
2722 kstat_named_value(ksp,
2723 "ierrors");
2724 stat.opackets =
2725 kstat_named_value(ksp,
2726 "opackets");
2727 stat.oerrors =
2728 kstat_named_value(ksp,
2729 "oerrors");
2730 stat.collisions =
2731 kstat_named_value(ksp,
2732 "collisions");
2733 if (first) {
2734 if (!first_header)
2735 (void) putchar(’\n’);
2736 first_header = B_FALSE;
2737 (void) printf(
2738 "%-5.5s %-5.5s%-13.13s "
2739 "%-14.14s %-6.6s %-5.5s "
2740 "%-6.6s %-5.5s %-6.6s "
2741 "%-6.6s\n",
2742 "Name", "Mtu", "Net/Dest",
2743 "Address", "Ipkts",
2744 "Ierrs", "Opkts", "Oerrs",
2745 "Collis", "Queue");

2747 first = B_FALSE;
2748 }
2749 if_report_ip4(ap, ifname,
2750 logintname, &stat, B_TRUE);
2751 ifindex_v4 = new_ifindex;
2752 } else {
2753 if_report_ip4(ap, ifname,
2754 logintname, &stat, B_FALSE);
2755 }
2756 } /* ’for’ loop 2a ends */
2757 } else if (!alreadydone) {
2758 char ifname[LIFNAMSIZ + 1];
2759 char buf[LIFNAMSIZ + 1];
2760 mib2_ipAddrEntry_t *ap;
2761 struct ifstat t;
2762 struct iflist *tlp = NULL;
2763 struct iflist **nextnew = &newlist;
2764 struct iflist *walkold;
2765 struct iflist *cleanlist;
2766 boolean_t found_if = B_FALSE;

2768 alreadydone = B_TRUE; /* ignore other case */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 41

2770 /*
2771 * Check if there is anything to do.
2772 */
2773 if (item->length <
2774 sizeof (mib2_ipAddrEntry_t)) {
2775 fail(0, "No compatible interfaces");
2776 }

2778 /*
2779 * ’for’ loop 2b: find the "right" entry:
2780 * If an interface name to match has been
2781 * supplied then try and find it, otherwise
2782 * match the first non-loopback interface found.
2783 * Use lo0 if all else fails.
2784 */
2785 for (ap = (mib2_ipAddrEntry_t *)item->valp;
2786 (char *)ap < (char *)item->valp
2787 + item->length;
2788 ap++) {
2789 (void) octetstr(&ap->ipAdEntIfIndex,
2790 ’a’, ifname, sizeof (ifname));
2791 (void) strtok(ifname, ":");

2793 if (matchname) {
2794 if (strcmp(matchname,
2795 ifname) == 0) {
2796 /* ’for’ loop 2b */
2797 found_if = B_TRUE;
2798 break;
2799 }
2800 } else if (strcmp(ifname, "lo0") != 0)
2801 break; /* ’for’ loop 2b */
2802 } /* ’for’ loop 2b ends */

2804 if (matchname == NULL) {
2805 matchname = ifname;
2806 } else {
2807 if (!found_if)
2808 fail(0, "-I: %s no such "
2809 "interface.", matchname);
2810 }

2812 if (Iflag_only == 0 || !reentry) {
2813 (void) printf(" input %-6.6s "
2814 "output ",
2815 matchname);
2816 (void) printf(" input (Total) "
2817 "output\n");
2818 (void) printf("%-7.7s %-5.5s %-7.7s "
2819 "%-5.5s %-6.6s ",
2820 "packets", "errs", "packets",
2821 "errs", "colls");
2822 (void) printf("%-7.7s %-5.5s %-7.7s "
2823 "%-5.5s %-6.6s\n",
2824 "packets", "errs", "packets",
2825 "errs", "colls");
2826 }

2828 sum = zerostat;

2830 /* ’for’ loop 2c: */
2831 for (ap = (mib2_ipAddrEntry_t *)item->valp;
2832 (char *)ap < (char *)item->valp
2833 + item->length;
2834 ap++) {
2835 (void) octetstr(&ap->ipAdEntIfIndex,

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 42

2836 ’a’, buf, sizeof (buf));
2837 (void) strtok(buf, ":");

2839 /*
2840 * We have reduced the IP interface
2841 * name, which could have been a
2842 * logical, down to a name suitable
2843 * for use with kstats.
2844 * We treat this name as unique and
2845 * only collate statistics for it once
2846 * per pass. This is to avoid falsely
2847 * amplifying these statistics by the
2848 * the number of logical instances.
2849 */
2850 if ((tlp != NULL) &&
2851 ((strcmp(buf, tlp->ifname) == 0))) {
2852 continue;
2853 }

2855 /*
2856 * First lookup the "link" kstats in
2857 * case the link is renamed. Then
2858 * fallback to the legacy kstats for
2859 * those non-GLDv3 links.
2860 */
2861 if (((ksp = kstat_lookup(kc, "link",
2862 0, buf)) != NULL ||
2863 (ksp = kstat_lookup(kc, NULL, -1,
2864 buf)) != NULL) && (ksp->ks_type ==
2865 KSTAT_TYPE_NAMED)) {
2866 (void) safe_kstat_read(kc, ksp,
2867 NULL);
2868 }

2870 t.ipackets = kstat_named_value(ksp,
2871 "ipackets");
2872 t.ierrors = kstat_named_value(ksp,
2873 "ierrors");
2874 t.opackets = kstat_named_value(ksp,
2875 "opackets");
2876 t.oerrors = kstat_named_value(ksp,
2877 "oerrors");
2878 t.collisions = kstat_named_value(ksp,
2879 "collisions");

2881 if (strcmp(buf, matchname) == 0)
2882 new = t;

2884 /* Build the interface list */

2886 tlp = malloc(sizeof (struct iflist));
2887 (void) strlcpy(tlp->ifname, buf,
2888 sizeof (tlp->ifname));
2889 tlp->tot = t;
2890 *nextnew = tlp;
2891 nextnew = &tlp->next_if;

2893 /*
2894 * First time through.
2895 * Just add up the interface stats.
2896 */

2898 if (oldlist == NULL) {
2899 if_stat_total(&zerostat,
2900 &t, &sum);
2901 continue;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 43

2902 }

2904 /*
2905 * Walk old list for the interface.
2906 *
2907 * If found, add difference to total.
2908 *
2909 * If not, an interface has been plumbed
2910 * up. In this case, we will simply
2911 * ignore the new interface until the
2912 * next interval; as there’s no easy way
2913 * to acquire statistics between time
2914 * of the plumb and the next interval
2915 * boundary. This results in inaccurate
2916 * total values for current interval.
2917 *
2918 * Note the case when an interface is
2919 * unplumbed; as similar problems exist.
2920 * The unplumbed interface is not in the
2921 * current list, and there’s no easy way
2922 * to account for the statistics between
2923 * the previous interval and time of the
2924 * unplumb. Therefore, we (in a sense)
2925 * ignore the removed interface by only
2926 * involving "current" interfaces when
2927 * computing the total statistics.
2928 * Unfortunately, this also results in
2929 * inaccurate values for interval total.
2930 */

2932 for (walkold = oldlist;
2933 walkold != NULL;
2934 walkold = walkold->next_if) {
2935 if (strcmp(walkold->ifname,
2936 buf) == 0) {
2937 if_stat_total(
2938 &walkold->tot,
2939 &t, &sum);
2940 break;
2941 }
2942 }

2944 } /* ’for’ loop 2c ends */

2946 *nextnew = NULL;

2948 (void) printf("%-7llu %-5llu %-7llu "
2949 "%-5llu %-6llu ",
2950 new.ipackets - old.ipackets,
2951 new.ierrors - old.ierrors,
2952 new.opackets - old.opackets,
2953 new.oerrors - old.oerrors,
2954 new.collisions - old.collisions);

2956 (void) printf("%-7llu %-5llu %-7llu "
2957 "%-5llu %-6llu\n", sum.ipackets,
2958 sum.ierrors, sum.opackets,
2959 sum.oerrors, sum.collisions);

2961 /*
2962 * Tidy things up once finished.
2963 */

2965 old = new;
2966 cleanlist = oldlist;
2967 oldlist = newlist;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 44

2968 while (cleanlist != NULL) {
2969 tlp = cleanlist->next_if;
2970 free(cleanlist);
2971 cleanlist = tlp;
2972 }
2973 }
2974 break;
2975 }
2976 case MIB2_IP6:
2977 if (item->mib_id != MIB2_IP6_ADDR ||
2978 !family_selected(AF_INET6))
2979 continue; /* ’for’ loop 1 */
2980 {
2981 static struct ifstat old6 = {0L, 0L, 0L, 0L, 0L};
2982 static struct ifstat new6 = {0L, 0L, 0L, 0L, 0L};
2983 struct ifstat sum6;
2984 struct iflist *newlist6 = NULL;
2985 static struct iflist *oldlist6 = NULL;
2986 kstat_t *ksp;

2988 if (once_only) {
2989 char ifname[LIFNAMSIZ + 1];
2990 char logintname[LIFNAMSIZ + 1];
2991 mib2_ipv6AddrEntry_t *ap6;
2992 struct ifstat stat = {0L, 0L, 0L, 0L, 0L};
2993 boolean_t first = B_TRUE;
2994 uint32_t new_ifindex;

2996 if (Xflag)
2997 (void) printf("if_report: %d items\n",
2998 (item->length)
2999 / sizeof (mib2_ipv6AddrEntry_t));
3000 /* ’for’ loop 2d: */
3001 for (ap6 = (mib2_ipv6AddrEntry_t *)item->valp;
3002 (char *)ap6 < (char *)item->valp
3003 + item->length;
3004 ap6++) {
3005 (void) octetstr(&ap6->ipv6AddrIfIndex,
3006 ’a’, logintname,
3007 sizeof (logintname));
3008 (void) strcpy(ifname, logintname);
3009 (void) strtok(ifname, ":");
3010 if (matchname != NULL &&
3011 strcmp(matchname, ifname) != 0 &&
3012 strcmp(matchname, logintname) != 0)
3013 continue; /* ’for’ loop 2d */
3014 new_ifindex =
3015 if_nametoindex(logintname);

3017 /*
3018 * First lookup the "link" kstats in
3019 * case the link is renamed. Then
3020 * fallback to the legacy kstats for
3021 * those non-GLDv3 links.
3022 */
3023 if (new_ifindex != ifindex_v6 &&
3024 ((ksp = kstat_lookup(kc, "link", 0,
3025 ifname)) != NULL ||
3026 (ksp = kstat_lookup(kc, NULL, -1,
3027 ifname)) != NULL)) {
3028 (void) safe_kstat_read(kc, ksp,
3029 NULL);
3030 stat.ipackets =
3031 kstat_named_value(ksp,
3032 "ipackets");
3033 stat.ierrors =

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 45

3034 kstat_named_value(ksp,
3035 "ierrors");
3036 stat.opackets =
3037 kstat_named_value(ksp,
3038 "opackets");
3039 stat.oerrors =
3040 kstat_named_value(ksp,
3041 "oerrors");
3042 stat.collisions =
3043 kstat_named_value(ksp,
3044 "collisions");
3045 if (first) {
3046 if (!first_header)
3047 (void) putchar(’\n’);
3048 first_header = B_FALSE;
3049 (void) printf(
3050 "%-5.5s %-5.5s%"
3051 "-27.27s %-27.27s "
3052 "%-6.6s %-5.5s "
3053 "%-6.6s %-5.5s "
3054 "%-6.6s\n",
3055 "Name", "Mtu",
3056 "Net/Dest",
3057 "Address", "Ipkts",
3058 "Ierrs", "Opkts",
3059 "Oerrs", "Collis");
3060 first = B_FALSE;
3061 }
3062 if_report_ip6(ap6, ifname,
3063 logintname, &stat, B_TRUE);
3064 ifindex_v6 = new_ifindex;
3065 } else {
3066 if_report_ip6(ap6, ifname,
3067 logintname, &stat, B_FALSE);
3068 }
3069 } /* ’for’ loop 2d ends */
3070 } else if (!alreadydone) {
3071 char ifname[LIFNAMSIZ + 1];
3072 char buf[IFNAMSIZ + 1];
3073 mib2_ipv6AddrEntry_t *ap6;
3074 struct ifstat t;
3075 struct iflist *tlp = NULL;
3076 struct iflist **nextnew = &newlist6;
3077 struct iflist *walkold;
3078 struct iflist *cleanlist;
3079 boolean_t found_if = B_FALSE;

3081 alreadydone = B_TRUE; /* ignore other case */

3083 /*
3084 * Check if there is anything to do.
3085 */
3086 if (item->length <
3087 sizeof (mib2_ipv6AddrEntry_t)) {
3088 fail(0, "No compatible interfaces");
3089 }

3091 /*
3092 * ’for’ loop 2e: find the "right" entry:
3093 * If an interface name to match has been
3094 * supplied then try and find it, otherwise
3095 * match the first non-loopback interface found.
3096 * Use lo0 if all else fails.
3097 */
3098 for (ap6 = (mib2_ipv6AddrEntry_t *)item->valp;
3099 (char *)ap6 < (char *)item->valp

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 46

3100 + item->length;
3101 ap6++) {
3102 (void) octetstr(&ap6->ipv6AddrIfIndex,
3103 ’a’, ifname, sizeof (ifname));
3104 (void) strtok(ifname, ":");

3106 if (matchname) {
3107 if (strcmp(matchname,
3108 ifname) == 0) {
3109 /* ’for’ loop 2e */
3110 found_if = B_TRUE;
3111 break;
3112 }
3113 } else if (strcmp(ifname, "lo0") != 0)
3114 break; /* ’for’ loop 2e */
3115 } /* ’for’ loop 2e ends */

3117 if (matchname == NULL) {
3118 matchname = ifname;
3119 } else {
3120 if (!found_if)
3121 fail(0, "-I: %s no such "
3122 "interface.", matchname);
3123 }

3125 if (Iflag_only == 0 || !reentry) {
3126 (void) printf(
3127 " input %-6.6s"
3128 " output ",
3129 matchname);
3130 (void) printf(" input (Total)"
3131 " output\n");
3132 (void) printf("%-7.7s %-5.5s %-7.7s "
3133 "%-5.5s %-6.6s ",
3134 "packets", "errs", "packets",
3135 "errs", "colls");
3136 (void) printf("%-7.7s %-5.5s %-7.7s "
3137 "%-5.5s %-6.6s\n",
3138 "packets", "errs", "packets",
3139 "errs", "colls");
3140 }

3142 sum6 = zerostat;

3144 /* ’for’ loop 2f: */
3145 for (ap6 = (mib2_ipv6AddrEntry_t *)item->valp;
3146 (char *)ap6 < (char *)item->valp
3147 + item->length;
3148 ap6++) {
3149 (void) octetstr(&ap6->ipv6AddrIfIndex,
3150 ’a’, buf, sizeof (buf));
3151 (void) strtok(buf, ":");

3153 /*
3154 * We have reduced the IP interface
3155 * name, which could have been a
3156 * logical, down to a name suitable
3157 * for use with kstats.
3158 * We treat this name as unique and
3159 * only collate statistics for it once
3160 * per pass. This is to avoid falsely
3161 * amplifying these statistics by the
3162 * the number of logical instances.
3163 */

3165 if ((tlp != NULL) &&

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 47

3166 ((strcmp(buf, tlp->ifname) == 0))) {
3167 continue;
3168 }

3170 /*
3171 * First lookup the "link" kstats in
3172 * case the link is renamed. Then
3173 * fallback to the legacy kstats for
3174 * those non-GLDv3 links.
3175 */
3176 if (((ksp = kstat_lookup(kc, "link",
3177 0, buf)) != NULL ||
3178 (ksp = kstat_lookup(kc, NULL, -1,
3179 buf)) != NULL) && (ksp->ks_type ==
3180 KSTAT_TYPE_NAMED)) {
3181 (void) safe_kstat_read(kc,
3182 ksp, NULL);
3183 }

3185 t.ipackets = kstat_named_value(ksp,
3186 "ipackets");
3187 t.ierrors = kstat_named_value(ksp,
3188 "ierrors");
3189 t.opackets = kstat_named_value(ksp,
3190 "opackets");
3191 t.oerrors = kstat_named_value(ksp,
3192 "oerrors");
3193 t.collisions = kstat_named_value(ksp,
3194 "collisions");

3196 if (strcmp(buf, matchname) == 0)
3197 new6 = t;

3199 /* Build the interface list */

3201 tlp = malloc(sizeof (struct iflist));
3202 (void) strlcpy(tlp->ifname, buf,
3203 sizeof (tlp->ifname));
3204 tlp->tot = t;
3205 *nextnew = tlp;
3206 nextnew = &tlp->next_if;

3208 /*
3209 * First time through.
3210 * Just add up the interface stats.
3211 */

3213 if (oldlist6 == NULL) {
3214 if_stat_total(&zerostat,
3215 &t, &sum6);
3216 continue;
3217 }

3219 /*
3220 * Walk old list for the interface.
3221 *
3222 * If found, add difference to total.
3223 *
3224 * If not, an interface has been plumbed
3225 * up. In this case, we will simply
3226 * ignore the new interface until the
3227 * next interval; as there’s no easy way
3228 * to acquire statistics between time
3229 * of the plumb and the next interval
3230 * boundary. This results in inaccurate
3231 * total values for current interval.

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 48

3232 *
3233 * Note the case when an interface is
3234 * unplumbed; as similar problems exist.
3235 * The unplumbed interface is not in the
3236 * current list, and there’s no easy way
3237 * to account for the statistics between
3238 * the previous interval and time of the
3239 * unplumb. Therefore, we (in a sense)
3240 * ignore the removed interface by only
3241 * involving "current" interfaces when
3242 * computing the total statistics.
3243 * Unfortunately, this also results in
3244 * inaccurate values for interval total.
3245 */

3247 for (walkold = oldlist6;
3248 walkold != NULL;
3249 walkold = walkold->next_if) {
3250 if (strcmp(walkold->ifname,
3251 buf) == 0) {
3252 if_stat_total(
3253 &walkold->tot,
3254 &t, &sum6);
3255 break;
3256 }
3257 }

3259 } /* ’for’ loop 2f ends */

3261 *nextnew = NULL;

3263 (void) printf("%-7llu %-5llu %-7llu "
3264 "%-5llu %-6llu ",
3265 new6.ipackets - old6.ipackets,
3266 new6.ierrors - old6.ierrors,
3267 new6.opackets - old6.opackets,
3268 new6.oerrors - old6.oerrors,
3269 new6.collisions - old6.collisions);

3271 (void) printf("%-7llu %-5llu %-7llu "
3272 "%-5llu %-6llu\n", sum6.ipackets,
3273 sum6.ierrors, sum6.opackets,
3274 sum6.oerrors, sum6.collisions);

3276 /*
3277 * Tidy things up once finished.
3278 */

3280 old6 = new6;
3281 cleanlist = oldlist6;
3282 oldlist6 = newlist6;
3283 while (cleanlist != NULL) {
3284 tlp = cleanlist->next_if;
3285 free(cleanlist);
3286 cleanlist = tlp;
3287 }
3288 }
3289 break;
3290 }
3291 }
3292 (void) fflush(stdout);
3293 } /* ’for’ loop 1 ends */
3294 if ((Iflag_only == 0) && (!once_only))
3295 (void) putchar(’\n’);
3296 reentry = B_TRUE;
3297 }

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 49

3299 static void
3300 if_report_ip4(mib2_ipAddrEntry_t *ap,
3301 char ifname[], char logintname[], struct ifstat *statptr,
3302 boolean_t ksp_not_null) {

3304 char abuf[MAXHOSTNAMELEN + 1];
3305 char dstbuf[MAXHOSTNAMELEN + 1];

3307 if (ksp_not_null) {
3308 (void) printf("%-5s %-4u ",
3309 ifname, ap->ipAdEntInfo.ae_mtu);
3310 if (ap->ipAdEntInfo.ae_flags & IFF_POINTOPOINT)
3311 (void) pr_addr(ap->ipAdEntInfo.ae_pp_dst_addr,
3312 abuf, sizeof (abuf));
3313 else
3314 (void) pr_netaddr(ap->ipAdEntAddr,
3315 ap->ipAdEntNetMask, abuf, sizeof (abuf));
3316 (void) printf("%-13s %-14s %-6llu %-5llu %-6llu %-5llu "
3317 "%-6llu %-6llu\n",
3318 abuf, pr_addr(ap->ipAdEntAddr, dstbuf, sizeof (dstbuf)),
3319 statptr->ipackets, statptr->ierrors,
3320 statptr->opackets, statptr->oerrors,
3321 statptr->collisions, 0LL);
3322 }
3323 /*
3324 * Print logical interface info if Aflag set (including logical unit 0)
3325 */
3326 if (Aflag) {
3327 *statptr = zerostat;
3328 statptr->ipackets = ap->ipAdEntInfo.ae_ibcnt;
3329 statptr->opackets = ap->ipAdEntInfo.ae_obcnt;

3331 (void) printf("%-5s %-4u ", logintname, ap->ipAdEntInfo.ae_mtu);
3332 if (ap->ipAdEntInfo.ae_flags & IFF_POINTOPOINT)
3333 (void) pr_addr(ap->ipAdEntInfo.ae_pp_dst_addr, abuf,
3334 sizeof (abuf));
3335 else
3336 (void) pr_netaddr(ap->ipAdEntAddr, ap->ipAdEntNetMask,
3337 abuf, sizeof (abuf));

3339 (void) printf("%-13s %-14s %-6llu %-5s %-6s "
3340 "%-5s %-6s %-6llu\n", abuf,
3341 pr_addr(ap->ipAdEntAddr, dstbuf, sizeof (dstbuf)),
3342 statptr->ipackets, "N/A", "N/A", "N/A", "N/A",
3343 0LL);
3344 }
3345 }

3347 static void
3348 if_report_ip6(mib2_ipv6AddrEntry_t *ap6,
3349 char ifname[], char logintname[], struct ifstat *statptr,
3350 boolean_t ksp_not_null) {

3352 char abuf[MAXHOSTNAMELEN + 1];
3353 char dstbuf[MAXHOSTNAMELEN + 1];

3355 if (ksp_not_null) {
3356 (void) printf("%-5s %-4u ", ifname, ap6->ipv6AddrInfo.ae_mtu);
3357 if (ap6->ipv6AddrInfo.ae_flags &
3358 IFF_POINTOPOINT) {
3359 (void) pr_addr6(&ap6->ipv6AddrInfo.ae_pp_dst_addr,
3360 abuf, sizeof (abuf));
3361 } else {
3362 (void) pr_prefix6(&ap6->ipv6AddrAddress,
3363 ap6->ipv6AddrPfxLength, abuf,

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 50

3364 sizeof (abuf));
3365 }
3366 (void) printf("%-27s %-27s %-6llu %-5llu "
3367 "%-6llu %-5llu %-6llu\n",
3368 abuf, pr_addr6(&ap6->ipv6AddrAddress, dstbuf,
3369 sizeof (dstbuf)),
3370 statptr->ipackets, statptr->ierrors, statptr->opackets,
3371 statptr->oerrors, statptr->collisions);
3372 }
3373 /*
3374 * Print logical interface info if Aflag set (including logical unit 0)
3375 */
3376 if (Aflag) {
3377 *statptr = zerostat;
3378 statptr->ipackets = ap6->ipv6AddrInfo.ae_ibcnt;
3379 statptr->opackets = ap6->ipv6AddrInfo.ae_obcnt;

3381 (void) printf("%-5s %-4u ", logintname,
3382 ap6->ipv6AddrInfo.ae_mtu);
3383 if (ap6->ipv6AddrInfo.ae_flags & IFF_POINTOPOINT)
3384 (void) pr_addr6(&ap6->ipv6AddrInfo.ae_pp_dst_addr,
3385 abuf, sizeof (abuf));
3386 else
3387 (void) pr_prefix6(&ap6->ipv6AddrAddress,
3388 ap6->ipv6AddrPfxLength, abuf, sizeof (abuf));
3389 (void) printf("%-27s %-27s %-6llu %-5s %-6s %-5s %-6s\n",
3390 abuf, pr_addr6(&ap6->ipv6AddrAddress, dstbuf,
3391 sizeof (dstbuf)),
3392 statptr->ipackets, "N/A", "N/A", "N/A", "N/A");
3393 }
3394 }

3396 /* --------------------- DHCP_REPORT (netstat -D) ------------------------- */

3398 static boolean_t
3399 dhcp_do_ipc(dhcp_ipc_type_t type, const char *ifname, boolean_t printed_one)
3400 {
3401 dhcp_ipc_request_t *request;
3402 dhcp_ipc_reply_t *reply;
3403 int error;

3405 request = dhcp_ipc_alloc_request(type, ifname, NULL, 0, DHCP_TYPE_NONE);
3406 if (request == NULL)
3407 fail(0, "dhcp_do_ipc: out of memory");

3409 error = dhcp_ipc_make_request(request, &reply, DHCP_IPC_WAIT_DEFAULT);
3410 if (error != 0) {
3411 free(request);
3412 fail(0, "dhcp_do_ipc: %s", dhcp_ipc_strerror(error));
3413 }

3415 free(request);
3416 error = reply->return_code;
3417 if (error == DHCP_IPC_E_UNKIF) {
3418 free(reply);
3419 return (printed_one);
3420 }
3421 if (error != 0) {
3422 free(reply);
3423 fail(0, "dhcp_do_ipc: %s", dhcp_ipc_strerror(error));
3424 }

3426 if (timestamp_fmt != NODATE)
3427 print_timestamp(timestamp_fmt);

3429 if (!printed_one)

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 51

3430 (void) printf("%s", dhcp_status_hdr_string());

3432 (void) printf("%s", dhcp_status_reply_to_string(reply));
3433 free(reply);
3434 return (B_TRUE);
3435 }

3437 /*
3438 * dhcp_walk_interfaces: walk the list of interfaces for a given address
3439 * family (af). For each, print out the DHCP status using dhcp_do_ipc.
3440 */
3441 static boolean_t
3442 dhcp_walk_interfaces(int af, boolean_t printed_one)
3443 {
3444 struct lifnum lifn;
3445 struct lifconf lifc;
3446 int n_ifs, i, sock_fd;

3448 sock_fd = socket(af, SOCK_DGRAM, 0);
3449 if (sock_fd == -1)
3450 return (printed_one);

3452 /*
3453 * SIOCGLIFNUM is just an estimate. If the ioctl fails, we don’t care;
3454 * just drive on and use SIOCGLIFCONF with increasing buffer sizes, as
3455 * is traditional.
3456 */
3457 (void) memset(&lifn, 0, sizeof (lifn));
3458 lifn.lifn_family = af;
3459 lifn.lifn_flags = LIFC_ALLZONES | LIFC_NOXMIT | LIFC_UNDER_IPMP;
3460 if (ioctl(sock_fd, SIOCGLIFNUM, &lifn) == -1)
3461 n_ifs = LIFN_GUARD_VALUE;
3462 else
3463 n_ifs = lifn.lifn_count + LIFN_GUARD_VALUE;

3465 (void) memset(&lifc, 0, sizeof (lifc));
3466 lifc.lifc_family = af;
3467 lifc.lifc_flags = lifn.lifn_flags;
3468 lifc.lifc_len = n_ifs * sizeof (struct lifreq);
3469 lifc.lifc_buf = malloc(lifc.lifc_len);
3470 if (lifc.lifc_buf != NULL) {

3472 if (ioctl(sock_fd, SIOCGLIFCONF, &lifc) == -1) {
3473 (void) close(sock_fd);
3474 free(lifc.lifc_buf);
3475 return (NULL);
3476 }

3478 n_ifs = lifc.lifc_len / sizeof (struct lifreq);

3480 for (i = 0; i < n_ifs; i++) {
3481 printed_one = dhcp_do_ipc(DHCP_STATUS |
3482 (af == AF_INET6 ? DHCP_V6 : 0),
3483 lifc.lifc_req[i].lifr_name, printed_one);
3484 }
3485 }
3486 (void) close(sock_fd);
3487 free(lifc.lifc_buf);
3488 return (printed_one);
3489 }

3491 static void
3492 dhcp_report(char *ifname)
3493 {
3494 boolean_t printed_one;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 52

3496 if (!family_selected(AF_INET) && !family_selected(AF_INET6))
3497 return;

3499 printed_one = B_FALSE;
3500 if (ifname != NULL) {
3501 if (family_selected(AF_INET)) {
3502 printed_one = dhcp_do_ipc(DHCP_STATUS, ifname,
3503 printed_one);
3504 }
3505 if (family_selected(AF_INET6)) {
3506 printed_one = dhcp_do_ipc(DHCP_STATUS | DHCP_V6,
3507 ifname, printed_one);
3508 }
3509 if (!printed_one) {
3510 fail(0, "%s: %s", ifname,
3511 dhcp_ipc_strerror(DHCP_IPC_E_UNKIF));
3512 }
3513 } else {
3514 if (family_selected(AF_INET)) {
3515 printed_one = dhcp_walk_interfaces(AF_INET,
3516 printed_one);
3517 }
3518 if (family_selected(AF_INET6))
3519 (void) dhcp_walk_interfaces(AF_INET6, printed_one);
3520 }
3521 }

3523 /* --------------------- GROUP_REPORT (netstat -g) ------------------------- */

3525 static void
3526 group_report(mib_item_t *item)
3527 {
3528 mib_item_t *v4grp = NULL, *v4src = NULL;
3529 mib_item_t *v6grp = NULL, *v6src = NULL;
3530 int jtemp = 0;
3531 char ifname[LIFNAMSIZ + 1];
3532 char abuf[MAXHOSTNAMELEN + 1];
3533 ip_member_t *ipmp;
3534 ip_grpsrc_t *ips;
3535 ipv6_member_t *ipmp6;
3536 ipv6_grpsrc_t *ips6;
3537 boolean_t first, first_src;

3539 /* ’for’ loop 1: */
3540 for (; item; item = item->next_item) {
3541 if (Xflag) {
3542 (void) printf("\n--- Entry %d ---\n", ++jtemp);
3543 (void) printf("Group = %d, mib_id = %d, "
3544 "length = %d, valp = 0x%p\n",
3545 item->group, item->mib_id, item->length,
3546 item->valp);
3547 }
3548 if (item->group == MIB2_IP && family_selected(AF_INET)) {
3549 switch (item->mib_id) {
3550 case EXPER_IP_GROUP_MEMBERSHIP:
3551 v4grp = item;
3552 if (Xflag)
3553 (void) printf("item is v4grp info\n");
3554 break;
3555 case EXPER_IP_GROUP_SOURCES:
3556 v4src = item;
3557 if (Xflag)
3558 (void) printf("item is v4src info\n");
3559 break;
3560 default:
3561 continue;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 53

3562 }
3563 continue;
3564 }
3565 if (item->group == MIB2_IP6 && family_selected(AF_INET6)) {
3566 switch (item->mib_id) {
3567 case EXPER_IP6_GROUP_MEMBERSHIP:
3568 v6grp = item;
3569 if (Xflag)
3570 (void) printf("item is v6grp info\n");
3571 break;
3572 case EXPER_IP6_GROUP_SOURCES:
3573 v6src = item;
3574 if (Xflag)
3575 (void) printf("item is v6src info\n");
3576 break;
3577 default:
3578 continue;
3579 }
3580 }
3581 }

3583 if (family_selected(AF_INET) && v4grp != NULL) {
3584 if (Xflag)
3585 (void) printf("%u records for ipGroupMember:\n",
3586 v4grp->length / sizeof (ip_member_t));

3588 first = B_TRUE;
3589 for (ipmp = (ip_member_t *)v4grp->valp;
3590 (char *)ipmp < (char *)v4grp->valp + v4grp->length;
3591 /* LINTED: (note 1) */
3592 ipmp = (ip_member_t *)((char *)ipmp + ipMemberEntrySize)) {
3593 if (first) {
3594 (void) puts(v4compat ?
3595 "Group Memberships" :
3596 "Group Memberships: IPv4");
3597 (void) puts("Interface "
3598 "Group RefCnt");
3599 (void) puts("--------- "
3600 "-------------------- ------");
3601 first = B_FALSE;
3602 }

3604 (void) printf("%-9s %-20s %6u\n",
3605 octetstr(&ipmp->ipGroupMemberIfIndex, ’a’,
3606 ifname, sizeof (ifname)),
3607 pr_addr(ipmp->ipGroupMemberAddress,
3608 abuf, sizeof (abuf)),
3609 ipmp->ipGroupMemberRefCnt);

3612 if (!Vflag || v4src == NULL)
3613 continue;

3615 if (Xflag)
3616 (void) printf("scanning %u ipGroupSource "
3617 "records...\n",
3618 v4src->length/sizeof (ip_grpsrc_t));

3620 first_src = B_TRUE;
3621 for (ips = (ip_grpsrc_t *)v4src->valp;
3622 (char *)ips < (char *)v4src->valp + v4src->length;
3623 /* LINTED: (note 1) */
3624 ips = (ip_grpsrc_t *)((char *)ips +
3625 ipGroupSourceEntrySize)) {
3626 /*
3627 * We assume that all source addrs for a given

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 54

3628 * interface/group pair are contiguous, so on
3629 * the first non-match after we’ve found at
3630 * least one, we bail.
3631 */
3632 if ((ipmp->ipGroupMemberAddress !=
3633 ips->ipGroupSourceGroup) ||
3634 (!octetstrmatch(&ipmp->ipGroupMemberIfIndex,
3635 &ips->ipGroupSourceIfIndex))) {
3636 if (first_src)
3637 continue;
3638 else
3639 break;
3640 }
3641 if (first_src) {
3642 (void) printf("\t%s: %s\n",
3643 fmodestr(
3644 ipmp->ipGroupMemberFilterMode),
3645 pr_addr(ips->ipGroupSourceAddress,
3646 abuf, sizeof (abuf)));
3647 first_src = B_FALSE;
3648 continue;
3649 }

3651 (void) printf("\t %s\n",
3652 pr_addr(ips->ipGroupSourceAddress, abuf,
3653 sizeof (abuf)));
3654 }
3655 }
3656 (void) putchar(’\n’);
3657 }

3659 if (family_selected(AF_INET6) && v6grp != NULL) {
3660 if (Xflag)
3661 (void) printf("%u records for ipv6GroupMember:\n",
3662 v6grp->length / sizeof (ipv6_member_t));

3664 first = B_TRUE;
3665 for (ipmp6 = (ipv6_member_t *)v6grp->valp;
3666 (char *)ipmp6 < (char *)v6grp->valp + v6grp->length;
3667 /* LINTED: (note 1) */
3668 ipmp6 = (ipv6_member_t *)((char *)ipmp6 +
3669 ipv6MemberEntrySize)) {
3670 if (first) {
3671 (void) puts("Group Memberships: "
3672 "IPv6");
3673 (void) puts(" If "
3674 "Group RefCnt");
3675 (void) puts("----- "
3676 "--------------------------- ------");
3677 first = B_FALSE;
3678 }

3680 (void) printf("%-5s %-27s %5u\n",
3681 ifindex2str(ipmp6->ipv6GroupMemberIfIndex, ifname),
3682 pr_addr6(&ipmp6->ipv6GroupMemberAddress,
3683 abuf, sizeof (abuf)),
3684 ipmp6->ipv6GroupMemberRefCnt);

3686 if (!Vflag || v6src == NULL)
3687 continue;

3689 if (Xflag)
3690 (void) printf("scanning %u ipv6GroupSource "
3691 "records...\n",
3692 v6src->length/sizeof (ipv6_grpsrc_t));

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 55

3694 first_src = B_TRUE;
3695 for (ips6 = (ipv6_grpsrc_t *)v6src->valp;
3696 (char *)ips6 < (char *)v6src->valp + v6src->length;
3697 /* LINTED: (note 1) */
3698 ips6 = (ipv6_grpsrc_t *)((char *)ips6 +
3699 ipv6GroupSourceEntrySize)) {
3700 /* same assumption as in the v4 case above */
3701 if ((ipmp6->ipv6GroupMemberIfIndex !=
3702 ips6->ipv6GroupSourceIfIndex) ||
3703 (!IN6_ARE_ADDR_EQUAL(
3704 &ipmp6->ipv6GroupMemberAddress,
3705 &ips6->ipv6GroupSourceGroup))) {
3706 if (first_src)
3707 continue;
3708 else
3709 break;
3710 }
3711 if (first_src) {
3712 (void) printf("\t%s: %s\n",
3713 fmodestr(
3714 ipmp6->ipv6GroupMemberFilterMode),
3715 pr_addr6(
3716 &ips6->ipv6GroupSourceAddress,
3717 abuf, sizeof (abuf)));
3718 first_src = B_FALSE;
3719 continue;
3720 }

3722 (void) printf("\t %s\n",
3723 pr_addr6(&ips6->ipv6GroupSourceAddress,
3724 abuf, sizeof (abuf)));
3725 }
3726 }
3727 (void) putchar(’\n’);
3728 }

3730 (void) putchar(’\n’);
3731 (void) fflush(stdout);
3732 }

3734 /* --------------------- DCE_REPORT (netstat -d) ------------------------- */

3736 #define FLBUFSIZE 8

3738 /* Assumes flbuf is at least 5 characters; callers use FLBUFSIZE */
3739 static char *
3740 dceflags2str(uint32_t flags, char *flbuf)
3741 {
3742 char *str = flbuf;

3744 if (flags & DCEF_DEFAULT)
3745 *str++ = ’D’;
3746 if (flags & DCEF_PMTU)
3747 *str++ = ’P’;
3748 if (flags & DCEF_UINFO)
3749 *str++ = ’U’;
3750 if (flags & DCEF_TOO_SMALL_PMTU)
3751 *str++ = ’S’;
3752 *str++ = ’\0’;
3753 return (flbuf);
3754 }

3756 static void
3757 dce_report(mib_item_t *item)
3758 {
3759 mib_item_t *v4dce = NULL;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 56

3760 mib_item_t *v6dce = NULL;
3761 int jtemp = 0;
3762 char ifname[LIFNAMSIZ + 1];
3763 char abuf[MAXHOSTNAMELEN + 1];
3764 char flbuf[FLBUFSIZE];
3765 boolean_t first;
3766 dest_cache_entry_t *dce;

3768 /* ’for’ loop 1: */
3769 for (; item; item = item->next_item) {
3770 if (Xflag) {
3771 (void) printf("\n--- Entry %d ---\n", ++jtemp);
3772 (void) printf("Group = %d, mib_id = %d, "
3773 "length = %d, valp = 0x%p\n",
3774 item->group, item->mib_id, item->length,
3775 item->valp);
3776 }
3777 if (item->group == MIB2_IP && family_selected(AF_INET) &&
3778 item->mib_id == EXPER_IP_DCE) {
3779 v4dce = item;
3780 if (Xflag)
3781 (void) printf("item is v4dce info\n");
3782 }
3783 if (item->group == MIB2_IP6 && family_selected(AF_INET6) &&
3784 item->mib_id == EXPER_IP_DCE) {
3785 v6dce = item;
3786 if (Xflag)
3787 (void) printf("item is v6dce info\n");
3788 }
3789 }

3791 if (family_selected(AF_INET) && v4dce != NULL) {
3792 if (Xflag)
3793 (void) printf("%u records for DestCacheEntry:\n",
3794 v4dce->length / ipDestEntrySize);

3796 first = B_TRUE;
3797 for (dce = (dest_cache_entry_t *)v4dce->valp;
3798 (char *)dce < (char *)v4dce->valp + v4dce->length;
3799 /* LINTED: (note 1) */
3800 dce = (dest_cache_entry_t *)((char *)dce +
3801 ipDestEntrySize)) {
3802 if (first) {
3803 (void) putchar(’\n’);
3804 (void) puts("Destination Cache Entries: IPv4");
3805 (void) puts(
3806 "Address PMTU Age Flags");
3807 (void) puts(
3808 "-------------------- ------ ----- -----");
3809 first = B_FALSE;
3810 }

3812 (void) printf("%-20s %6u %5u %-5s\n",
3813 pr_addr(dce->DestIpv4Address, abuf, sizeof (abuf)),
3814 dce->DestPmtu, dce->DestAge,
3815 dceflags2str(dce->DestFlags, flbuf));
3816 }
3817 }

3819 if (family_selected(AF_INET6) && v6dce != NULL) {
3820 if (Xflag)
3821 (void) printf("%u records for DestCacheEntry:\n",
3822 v6dce->length / ipDestEntrySize);

3824 first = B_TRUE;
3825 for (dce = (dest_cache_entry_t *)v6dce->valp;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 57

3826 (char *)dce < (char *)v6dce->valp + v6dce->length;
3827 /* LINTED: (note 1) */
3828 dce = (dest_cache_entry_t *)((char *)dce +
3829 ipDestEntrySize)) {
3830 if (first) {
3831 (void) putchar(’\n’);
3832 (void) puts("Destination Cache Entries: IPv6");
3833 (void) puts(
3834 "Address PMTU "
3835 " Age Flags If ");
3836 (void) puts(
3837 "--------------------------- ------ "
3838 "----- ----- ---");
3839 first = B_FALSE;
3840 }

3842 (void) printf("%-27s %6u %5u %-5s %s\n",
3843 pr_addr6(&dce->DestIpv6Address, abuf,
3844 sizeof (abuf)),
3845 dce->DestPmtu, dce->DestAge,
3846 dceflags2str(dce->DestFlags, flbuf),
3847 dce->DestIfindex == 0 ? "" :
3848 ifindex2str(dce->DestIfindex, ifname));
3849 }
3850 }
3851 (void) fflush(stdout);
3852 }

3854 /* --------------------- ARP_REPORT (netstat -p) -------------------------- */

3856 static void
3857 arp_report(mib_item_t *item)
3858 {
3859 int jtemp = 0;
3860 char ifname[LIFNAMSIZ + 1];
3861 char abuf[MAXHOSTNAMELEN + 1];
3862 char maskbuf[STR_EXPAND * OCTET_LENGTH + 1];
3863 char flbuf[32]; /* ACE_F_ flags */
3864 char xbuf[STR_EXPAND * OCTET_LENGTH + 1];
3865 mib2_ipNetToMediaEntry_t *np;
3866 int flags;
3867 boolean_t first;

3869 if (!(family_selected(AF_INET)))
3870 return;

3872 /* ’for’ loop 1: */
3873 for (; item; item = item->next_item) {
3874 if (Xflag) {
3875 (void) printf("\n--- Entry %d ---\n", ++jtemp);
3876 (void) printf("Group = %d, mib_id = %d, "
3877 "length = %d, valp = 0x%p\n",
3878 item->group, item->mib_id, item->length,
3879 item->valp);
3880 }
3881 if (!(item->group == MIB2_IP && item->mib_id == MIB2_IP_MEDIA))
3882 continue; /* ’for’ loop 1 */

3884 if (Xflag)
3885 (void) printf("%u records for "
3886 "ipNetToMediaEntryTable:\n",
3887 item->length/sizeof (mib2_ipNetToMediaEntry_t));

3889 first = B_TRUE;
3890 /* ’for’ loop 2: */
3891 for (np = (mib2_ipNetToMediaEntry_t *)item->valp;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 58

3892 (char *)np < (char *)item->valp + item->length;
3893 /* LINTED: (note 1) */
3894 np = (mib2_ipNetToMediaEntry_t *)((char *)np +
3895 ipNetToMediaEntrySize)) {
3896 if (first) {
3897 (void) puts(v4compat ?
3898 "Net to Media Table" :
3899 "Net to Media Table: IPv4");
3900 (void) puts("Device "
3901 " IP Address Mask "
3902 "Flags Phys Addr");
3903 (void) puts("------ "
3904 "-------------------- --------------- "
3905 "-------- ---------------");
3906 first = B_FALSE;
3907 }

3909 flbuf[0] = ’\0’;
3910 flags = np->ipNetToMediaInfo.ntm_flags;
3911 /*
3912 * Note that not all flags are possible at the same
3913 * time. Patterns: SPLAy DUo
3914 */
3915 if (flags & ACE_F_PERMANENT)
3916 (void) strcat(flbuf, "S");
3917 if (flags & ACE_F_PUBLISH)
3918 (void) strcat(flbuf, "P");
3919 if (flags & ACE_F_DYING)
3920 (void) strcat(flbuf, "D");
3921 if (!(flags & ACE_F_RESOLVED))
3922 (void) strcat(flbuf, "U");
3923 if (flags & ACE_F_MAPPING)
3924 (void) strcat(flbuf, "M");
3925 if (flags & ACE_F_MYADDR)
3926 (void) strcat(flbuf, "L");
3927 if (flags & ACE_F_UNVERIFIED)
3928 (void) strcat(flbuf, "d");
3929 if (flags & ACE_F_AUTHORITY)
3930 (void) strcat(flbuf, "A");
3931 if (flags & ACE_F_OLD)
3932 (void) strcat(flbuf, "o");
3933 if (flags & ACE_F_DELAYED)
3934 (void) strcat(flbuf, "y");
3935 (void) printf("%-6s %-20s %-15s %-8s %s\n",
3936 octetstr(&np->ipNetToMediaIfIndex, ’a’,
3937 ifname, sizeof (ifname)),
3938 pr_addr(np->ipNetToMediaNetAddress,
3939 abuf, sizeof (abuf)),
3940 octetstr(&np->ipNetToMediaInfo.ntm_mask, ’d’,
3941 maskbuf, sizeof (maskbuf)),
3942 flbuf,
3943 octetstr(&np->ipNetToMediaPhysAddress, ’h’,
3944 xbuf, sizeof (xbuf)));
3945 } /* ’for’ loop 2 ends */
3946 } /* ’for’ loop 1 ends */
3947 (void) fflush(stdout);
3948 }

3950 /* --------------------- NDP_REPORT (netstat -p) -------------------------- */

3952 static void
3953 ndp_report(mib_item_t *item)
3954 {
3955 int jtemp = 0;
3956 char abuf[MAXHOSTNAMELEN + 1];
3957 char *state;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 59

3958 char *type;
3959 char xbuf[STR_EXPAND * OCTET_LENGTH + 1];
3960 mib2_ipv6NetToMediaEntry_t *np6;
3961 char ifname[LIFNAMSIZ + 1];
3962 boolean_t first;

3964 if (!(family_selected(AF_INET6)))
3965 return;

3967 /* ’for’ loop 1: */
3968 for (; item; item = item->next_item) {
3969 if (Xflag) {
3970 (void) printf("\n--- Entry %d ---\n", ++jtemp);
3971 (void) printf("Group = %d, mib_id = %d, "
3972 "length = %d, valp = 0x%p\n",
3973 item->group, item->mib_id, item->length,
3974 item->valp);
3975 }
3976 if (!(item->group == MIB2_IP6 &&
3977 item->mib_id == MIB2_IP6_MEDIA))
3978 continue; /* ’for’ loop 1 */

3980 first = B_TRUE;
3981 /* ’for’ loop 2: */
3982 for (np6 = (mib2_ipv6NetToMediaEntry_t *)item->valp;
3983 (char *)np6 < (char *)item->valp + item->length;
3984 /* LINTED: (note 1) */
3985 np6 = (mib2_ipv6NetToMediaEntry_t *)((char *)np6 +
3986 ipv6NetToMediaEntrySize)) {
3987 if (first) {
3988 (void) puts("\nNet to Media Table: IPv6");
3989 (void) puts(" If Physical Address "
3990 " Type State Destination/Mask");
3991 (void) puts("----- ----------------- "
3992 "------- ------------ "
3993 "---------------------------");
3994 first = B_FALSE;
3995 }

3997 switch (np6->ipv6NetToMediaState) {
3998 case ND_INCOMPLETE:
3999 state = "INCOMPLETE";
4000 break;
4001 case ND_REACHABLE:
4002 state = "REACHABLE";
4003 break;
4004 case ND_STALE:
4005 state = "STALE";
4006 break;
4007 case ND_DELAY:
4008 state = "DELAY";
4009 break;
4010 case ND_PROBE:
4011 state = "PROBE";
4012 break;
4013 case ND_UNREACHABLE:
4014 state = "UNREACHABLE";
4015 break;
4016 default:
4017 state = "UNKNOWN";
4018 }

4020 switch (np6->ipv6NetToMediaType) {
4021 case 1:
4022 type = "other";
4023 break;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 60

4024 case 2:
4025 type = "dynamic";
4026 break;
4027 case 3:
4028 type = "static";
4029 break;
4030 case 4:
4031 type = "local";
4032 break;
4033 }
4034 (void) printf("%-5s %-17s %-7s %-12s %-27s\n",
4035 ifindex2str(np6->ipv6NetToMediaIfIndex, ifname),
4036 octetstr(&np6->ipv6NetToMediaPhysAddress, ’h’,
4037 xbuf, sizeof (xbuf)),
4038 type,
4039 state,
4040 pr_addr6(&np6->ipv6NetToMediaNetAddress,
4041 abuf, sizeof (abuf)));
4042 } /* ’for’ loop 2 ends */
4043 } /* ’for’ loop 1 ends */
4044 (void) putchar(’\n’);
4045 (void) fflush(stdout);
4046 }

4048 /* ------------------------- ire_report (netstat -r) ------------------------ */

4050 typedef struct sec_attr_list_s {
4051 struct sec_attr_list_s *sal_next;
4052 const mib2_ipAttributeEntry_t *sal_attr;
4053 } sec_attr_list_t;

4055 static boolean_t ire_report_item_v4(const mib2_ipRouteEntry_t *, boolean_t,
4056 const sec_attr_list_t *);
4057 static boolean_t ire_report_item_v6(const mib2_ipv6RouteEntry_t *, boolean_t,
4058 const sec_attr_list_t *);
4059 static const char *pr_secattr(const sec_attr_list_t *);

4061 static void
4062 ire_report(const mib_item_t *item)
4063 {
4064 int jtemp = 0;
4065 boolean_t print_hdr_once_v4 = B_TRUE;
4066 boolean_t print_hdr_once_v6 = B_TRUE;
4067 mib2_ipRouteEntry_t *rp;
4068 mib2_ipv6RouteEntry_t *rp6;
4069 sec_attr_list_t **v4_attrs, **v4a;
4070 sec_attr_list_t **v6_attrs, **v6a;
4071 sec_attr_list_t *all_attrs, *aptr;
4072 const mib_item_t *iptr;
4073 int ipv4_route_count, ipv6_route_count;
4074 int route_attrs_count;

4076 /*
4077 * Preparation pass: the kernel returns separate entries for IP routing
4078 * table entries and security attributes. We loop through the
4079 * attributes first and link them into lists.
4080 */
4081 ipv4_route_count = ipv6_route_count = route_attrs_count = 0;
4082 for (iptr = item; iptr != NULL; iptr = iptr->next_item) {
4083 if (iptr->group == MIB2_IP6 && iptr->mib_id == MIB2_IP6_ROUTE)
4084 ipv6_route_count += iptr->length / ipv6RouteEntrySize;
4085 if (iptr->group == MIB2_IP && iptr->mib_id == MIB2_IP_ROUTE)
4086 ipv4_route_count += iptr->length / ipRouteEntrySize;
4087 if ((iptr->group == MIB2_IP || iptr->group == MIB2_IP6) &&
4088 iptr->mib_id == EXPER_IP_RTATTR)
4089 route_attrs_count += iptr->length /

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 61

4090 ipRouteAttributeSize;
4091 }
4092 v4_attrs = v6_attrs = NULL;
4093 all_attrs = NULL;
4094 if (family_selected(AF_INET) && ipv4_route_count > 0) {
4095 v4_attrs = calloc(ipv4_route_count, sizeof (*v4_attrs));
4096 if (v4_attrs == NULL) {
4097 perror("ire_report calloc v4_attrs failed");
4098 return;
4099 }
4100 }
4101 if (family_selected(AF_INET6) && ipv6_route_count > 0) {
4102 v6_attrs = calloc(ipv6_route_count, sizeof (*v6_attrs));
4103 if (v6_attrs == NULL) {
4104 perror("ire_report calloc v6_attrs failed");
4105 goto ire_report_done;
4106 }
4107 }
4108 if (route_attrs_count > 0) {
4109 all_attrs = malloc(route_attrs_count * sizeof (*all_attrs));
4110 if (all_attrs == NULL) {
4111 perror("ire_report malloc all_attrs failed");
4112 goto ire_report_done;
4113 }
4114 }
4115 aptr = all_attrs;
4116 for (iptr = item; iptr != NULL; iptr = iptr->next_item) {
4117 mib2_ipAttributeEntry_t *iae;
4118 sec_attr_list_t **alp;

4120 if (v4_attrs != NULL && iptr->group == MIB2_IP &&
4121 iptr->mib_id == EXPER_IP_RTATTR) {
4122 alp = v4_attrs;
4123 } else if (v6_attrs != NULL && iptr->group == MIB2_IP6 &&
4124 iptr->mib_id == EXPER_IP_RTATTR) {
4125 alp = v6_attrs;
4126 } else {
4127 continue;
4128 }
4129 for (iae = iptr->valp;
4130 (char *)iae < (char *)iptr->valp + iptr->length;
4131 /* LINTED: (note 1) */
4132 iae = (mib2_ipAttributeEntry_t *)((char *)iae +
4133 ipRouteAttributeSize)) {
4134 aptr->sal_next = alp[iae->iae_routeidx];
4135 aptr->sal_attr = iae;
4136 alp[iae->iae_routeidx] = aptr++;
4137 }
4138 }

4140 /* ’for’ loop 1: */
4141 v4a = v4_attrs;
4142 v6a = v6_attrs;
4143 for (; item != NULL; item = item->next_item) {
4144 if (Xflag) {
4145 (void) printf("\n--- Entry %d ---\n", ++jtemp);
4146 (void) printf("Group = %d, mib_id = %d, "
4147 "length = %d, valp = 0x%p\n",
4148 item->group, item->mib_id,
4149 item->length, item->valp);
4150 }
4151 if (!((item->group == MIB2_IP &&
4152 item->mib_id == MIB2_IP_ROUTE) ||
4153 (item->group == MIB2_IP6 &&
4154 item->mib_id == MIB2_IP6_ROUTE)))
4155 continue; /* ’for’ loop 1 */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 62

4157 if (item->group == MIB2_IP && !family_selected(AF_INET))
4158 continue; /* ’for’ loop 1 */
4159 else if (item->group == MIB2_IP6 && !family_selected(AF_INET6))
4160 continue; /* ’for’ loop 1 */

4162 if (Xflag) {
4163 if (item->group == MIB2_IP) {
4164 (void) printf("%u records for "
4165 "ipRouteEntryTable:\n",
4166 item->length/sizeof (mib2_ipRouteEntry_t));
4167 } else {
4168 (void) printf("%u records for "
4169 "ipv6RouteEntryTable:\n",
4170 item->length/
4171 sizeof (mib2_ipv6RouteEntry_t));
4172 }
4173 }

4175 if (item->group == MIB2_IP) {
4176 for (rp = (mib2_ipRouteEntry_t *)item->valp;
4177 (char *)rp < (char *)item->valp + item->length;
4178 /* LINTED: (note 1) */
4179 rp = (mib2_ipRouteEntry_t *)((char *)rp +
4180 ipRouteEntrySize)) {
4181 aptr = v4a == NULL ? NULL : *v4a++;
4182 print_hdr_once_v4 = ire_report_item_v4(rp,
4183 print_hdr_once_v4, aptr);
4184 }
4185 } else {
4186 for (rp6 = (mib2_ipv6RouteEntry_t *)item->valp;
4187 (char *)rp6 < (char *)item->valp + item->length;
4188 /* LINTED: (note 1) */
4189 rp6 = (mib2_ipv6RouteEntry_t *)((char *)rp6 +
4190 ipv6RouteEntrySize)) {
4191 aptr = v6a == NULL ? NULL : *v6a++;
4192 print_hdr_once_v6 = ire_report_item_v6(rp6,
4193 print_hdr_once_v6, aptr);
4194 }
4195 }
4196 } /* ’for’ loop 1 ends */
4197 (void) fflush(stdout);
4198 ire_report_done:
4199 if (v4_attrs != NULL)
4200 free(v4_attrs);
4201 if (v6_attrs != NULL)
4202 free(v6_attrs);
4203 if (all_attrs != NULL)
4204 free(all_attrs);
4205 }

4207 /*
4208 * Match a user-supplied device name. We do this by string because
4209 * the MIB2 interface gives us interface name strings rather than
4210 * ifIndex numbers. The "none" rule matches only routes with no
4211 * interface. The "any" rule matches routes with any non-blank
4212 * interface. A base name ("hme0") matches all aliases as well
4213 * ("hme0:1").
4214 */
4215 static boolean_t
4216 dev_name_match(const DeviceName *devnam, const char *ifname)
4217 {
4218 int iflen;

4220 if (ifname == NULL)
4221 return (devnam->o_length == 0); /* "none" */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 63

4222 if (*ifname == ’\0’)
4223 return (devnam->o_length != 0); /* "any" */
4224 iflen = strlen(ifname);
4225 /* The check for ’:’ here supports interface aliases. */
4226 if (iflen > devnam->o_length ||
4227 (iflen < devnam->o_length && devnam->o_bytes[iflen] != ’:’))
4228 return (B_FALSE);
4229 return (strncmp(ifname, devnam->o_bytes, iflen) == 0);
4230 }

4232 /*
4233 * Match a user-supplied IP address list. The "any" rule matches any
4234 * non-zero address. The "none" rule matches only the zero address.
4235 * IPv6 addresses supplied by the user are ignored. If the user
4236 * supplies a subnet mask, then match routes that are at least that
4237 * specific (use the user’s mask). If the user supplies only an
4238 * address, then select any routes that would match (use the route’s
4239 * mask).
4240 */
4241 static boolean_t
4242 v4_addr_match(IpAddress addr, IpAddress mask, const filter_t *fp)
4243 {
4244 char **app;
4245 char *aptr;
4246 in_addr_t faddr, fmask;

4248 if (fp->u.a.f_address == NULL) {
4249 if (IN6_IS_ADDR_UNSPECIFIED(&fp->u.a.f_mask))
4250 return (addr != INADDR_ANY); /* "any" */
4251 else
4252 return (addr == INADDR_ANY); /* "none" */
4253 }
4254 if (!IN6_IS_V4MASK(fp->u.a.f_mask))
4255 return (B_FALSE);
4256 IN6_V4MAPPED_TO_IPADDR(&fp->u.a.f_mask, fmask);
4257 if (fmask != IP_HOST_MASK) {
4258 if (fmask > mask)
4259 return (B_FALSE);
4260 mask = fmask;
4261 }
4262 for (app = fp->u.a.f_address->h_addr_list; (aptr = *app) != NULL; app++)
4263 /* LINTED: (note 1) */
4264 if (IN6_IS_ADDR_V4MAPPED((in6_addr_t *)aptr)) {
4265 /* LINTED: (note 1) */
4266 IN6_V4MAPPED_TO_IPADDR((in6_addr_t *)aptr, faddr);
4267 if (((faddr ^ addr) & mask) == 0)
4268 return (B_TRUE);
4269 }
4270 return (B_FALSE);
4271 }

4273 /*
4274 * Run through the filter list for an IPv4 MIB2 route entry. If all
4275 * filters of a given type fail to match, then the route is filtered
4276 * out (not displayed). If no filter is given or at least one filter
4277 * of each type matches, then display the route.
4278 */
4279 static boolean_t
4280 ire_filter_match_v4(const mib2_ipRouteEntry_t *rp, uint_t flag_b)
4281 {
4282 filter_t *fp;
4283 int idx;

4285 /* ’for’ loop 1: */
4286 for (idx = 0; idx < NFILTERKEYS; idx++)
4287 if ((fp = filters[idx]) != NULL) {

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 64

4288 /* ’for’ loop 2: */
4289 for (; fp != NULL; fp = fp->f_next) {
4290 switch (idx) {
4291 case FK_AF:
4292 if (fp->u.f_family != AF_INET)
4293 continue; /* ’for’ loop 2 */
4294 break;
4295 case FK_OUTIF:
4296 if (!dev_name_match(&rp->ipRouteIfIndex,
4297 fp->u.f_ifname))
4298 continue; /* ’for’ loop 2 */
4299 break;
4300 case FK_DST:
4301 if (!v4_addr_match(rp->ipRouteDest,
4302 rp->ipRouteMask, fp))
4303 continue; /* ’for’ loop 2 */
4304 break;
4305 case FK_FLAGS:
4306 if ((flag_b & fp->u.f.f_flagset) !=
4307 fp->u.f.f_flagset ||
4308 (flag_b & fp->u.f.f_flagclear))
4309 continue; /* ’for’ loop 2 */
4310 break;
4311 }
4312 break;
4313 } /* ’for’ loop 2 ends */
4314 if (fp == NULL)
4315 return (B_FALSE);
4316 }
4317 /* ’for’ loop 1 ends */
4318 return (B_TRUE);
4319 }

4321 /*
4322 * Given an IPv4 MIB2 route entry, form the list of flags for the
4323 * route.
4324 */
4325 static uint_t
4326 form_v4_route_flags(const mib2_ipRouteEntry_t *rp, char *flags)
4327 {
4328 uint_t flag_b;

4330 flag_b = FLF_U;
4331 (void) strcpy(flags, "U");
4332 /* RTF_INDIRECT wins over RTF_GATEWAY - don’t display both */
4333 if (rp->ipRouteInfo.re_flags & RTF_INDIRECT) {
4334 (void) strcat(flags, "I");
4335 flag_b |= FLF_I;
4336 } else if (rp->ipRouteInfo.re_ire_type & IRE_OFFLINK) {
4337 (void) strcat(flags, "G");
4338 flag_b |= FLF_G;
4339 }
4340 /* IRE_IF_CLONE wins over RTF_HOST - don’t display both */
4341 if (rp->ipRouteInfo.re_ire_type & IRE_IF_CLONE) {
4342 (void) strcat(flags, "C");
4343 flag_b |= FLF_C;
4344 } else if (rp->ipRouteMask == IP_HOST_MASK) {
4345 (void) strcat(flags, "H");
4346 flag_b |= FLF_H;
4347 }
4348 if (rp->ipRouteInfo.re_flags & RTF_DYNAMIC) {
4349 (void) strcat(flags, "D");
4350 flag_b |= FLF_D;
4351 }
4352 if (rp->ipRouteInfo.re_ire_type == IRE_BROADCAST) { /* Broadcast */
4353 (void) strcat(flags, "b");

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 65

4354 flag_b |= FLF_b;
4355 }
4356 if (rp->ipRouteInfo.re_ire_type == IRE_LOCAL) { /* Local */
4357 (void) strcat(flags, "L");
4358 flag_b |= FLF_L;
4359 }
4360 if (rp->ipRouteInfo.re_flags & RTF_MULTIRT) {
4361 (void) strcat(flags, "M"); /* Multiroute */
4362 flag_b |= FLF_M;
4363 }
4364 if (rp->ipRouteInfo.re_flags & RTF_SETSRC) {
4365 (void) strcat(flags, "S"); /* Setsrc */
4366 flag_b |= FLF_S;
4367 }
4368 if (rp->ipRouteInfo.re_flags & RTF_REJECT) {
4369 (void) strcat(flags, "R");
4370 flag_b |= FLF_R;
4371 }
4372 if (rp->ipRouteInfo.re_flags & RTF_BLACKHOLE) {
4373 (void) strcat(flags, "B");
4374 flag_b |= FLF_B;
4375 }
4376 if (rp->ipRouteInfo.re_flags & RTF_ZONE) {
4377 (void) strcat(flags, "Z");
4378 flag_b |= FLF_Z;
4379 }
4380 return (flag_b);
4381 }

4383 static const char ire_hdr_v4[] =
4384 "\n%s Table: IPv4\n";
4385 static const char ire_hdr_v4_compat[] =
4386 "\n%s Table:\n";
4387 static const char ire_hdr_v4_verbose[] =
4388 " Destination Mask Gateway Device "
4389 " MTU Ref Flg Out In/Fwd %s\n"
4390 "-------------------- --------------- -------------------- ------ "
4391 "----- --- --- ----- ------ %s\n";

4393 static const char ire_hdr_v4_normal[] =
4394 " Destination Gateway Flags Ref Use Interface"
4395 " %s\n-------------------- -------------------- ----- ----- ---------- "
4396 "--------- %s\n";

4398 static boolean_t
4399 ire_report_item_v4(const mib2_ipRouteEntry_t *rp, boolean_t first,
4400 const sec_attr_list_t *attrs)
4401 {
4402 char dstbuf[MAXHOSTNAMELEN + 1];
4403 char maskbuf[MAXHOSTNAMELEN + 1];
4404 char gwbuf[MAXHOSTNAMELEN + 1];
4405 char ifname[LIFNAMSIZ + 1];
4406 char flags[10]; /* RTF_ flags */
4407 uint_t flag_b;

4409 if (!(Aflag || (rp->ipRouteInfo.re_ire_type != IRE_IF_CLONE &&
4410 rp->ipRouteInfo.re_ire_type != IRE_BROADCAST &&
4411 rp->ipRouteInfo.re_ire_type != IRE_MULTICAST &&
4412 rp->ipRouteInfo.re_ire_type != IRE_NOROUTE &&
4413 rp->ipRouteInfo.re_ire_type != IRE_LOCAL))) {
4414 return (first);
4415 }

4417 flag_b = form_v4_route_flags(rp, flags);

4419 if (!ire_filter_match_v4(rp, flag_b))

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 66

4420 return (first);

4422 if (first) {
4423 (void) printf(v4compat ? ire_hdr_v4_compat : ire_hdr_v4,
4424 Vflag ? "IRE" : "Routing");
4425 (void) printf(Vflag ? ire_hdr_v4_verbose : ire_hdr_v4_normal,
4426 RSECflag ? " Gateway security attributes " : "",
4427 RSECflag ? "-------------------------------" : "");
4428 first = B_FALSE;
4429 }

4431 if (flag_b & FLF_H) {
4432 (void) pr_addr(rp->ipRouteDest, dstbuf, sizeof (dstbuf));
4433 } else {
4434 (void) pr_net(rp->ipRouteDest, rp->ipRouteMask,
4435 dstbuf, sizeof (dstbuf));
4436 }
4437 if (Vflag) {
4438 (void) printf("%-20s %-15s %-20s %-6s %5u %3u "
4439 "%-4s%6u %6u %s\n",
4440 dstbuf,
4441 pr_mask(rp->ipRouteMask, maskbuf, sizeof (maskbuf)),
4442 pr_addrnz(rp->ipRouteNextHop, gwbuf, sizeof (gwbuf)),
4443 octetstr(&rp->ipRouteIfIndex, ’a’, ifname, sizeof (ifname)),
4444 rp->ipRouteInfo.re_max_frag,
4445 rp->ipRouteInfo.re_ref,
4446 flags,
4447 rp->ipRouteInfo.re_obpkt,
4448 rp->ipRouteInfo.re_ibpkt,
4449 pr_secattr(attrs));
4450 } else {
4451 (void) printf("%-20s %-20s %-5s %4u %10u %-9s %s\n",
4452 dstbuf,
4453 pr_addrnz(rp->ipRouteNextHop, gwbuf, sizeof (gwbuf)),
4454 flags,
4455 rp->ipRouteInfo.re_ref,
4456 rp->ipRouteInfo.re_obpkt + rp->ipRouteInfo.re_ibpkt,
4457 octetstr(&rp->ipRouteIfIndex, ’a’,
4458 ifname, sizeof (ifname)),
4459 pr_secattr(attrs));
4460 }
4461 return (first);
4462 }

4464 /*
4465 * Match a user-supplied IP address list against an IPv6 route entry.
4466 * If the user specified "any," then any non-zero address matches. If
4467 * the user specified "none," then only the zero address matches. If
4468 * the user specified a subnet mask length, then use that in matching
4469 * routes (select routes that are at least as specific). If the user
4470 * specified only an address, then use the route’s mask (select routes
4471 * that would match that address). IPv4 addresses are ignored.
4472 */
4473 static boolean_t
4474 v6_addr_match(const Ip6Address *addr, int masklen, const filter_t *fp)
4475 {
4476 const uint8_t *ucp;
4477 int fmasklen;
4478 int i;
4479 char **app;
4480 const uint8_t *aptr;

4482 if (fp->u.a.f_address == NULL) {
4483 if (IN6_IS_ADDR_UNSPECIFIED(&fp->u.a.f_mask)) /* any */
4484 return (!IN6_IS_ADDR_UNSPECIFIED(addr));
4485 return (IN6_IS_ADDR_UNSPECIFIED(addr)); /* "none" */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 67

4486 }
4487 fmasklen = 0;
4488 /* ’for’ loop 1a: */
4489 for (ucp = fp->u.a.f_mask.s6_addr;
4490 ucp < fp->u.a.f_mask.s6_addr + sizeof (fp->u.a.f_mask.s6_addr);
4491 ucp++) {
4492 if (*ucp != 0xff) {
4493 if (*ucp != 0)
4494 fmasklen += 9 - ffs(*ucp);
4495 break; /* ’for’ loop 1a */
4496 }
4497 fmasklen += 8;
4498 } /* ’for’ loop 1a ends */
4499 if (fmasklen != IPV6_ABITS) {
4500 if (fmasklen > masklen)
4501 return (B_FALSE);
4502 masklen = fmasklen;
4503 }
4504 /* ’for’ loop 1b: */
4505 for (app = fp->u.a.f_address->h_addr_list;
4506 (aptr = (uint8_t *)*app) != NULL; app++) {
4507 /* LINTED: (note 1) */
4508 if (IN6_IS_ADDR_V4MAPPED((in6_addr_t *)aptr))
4509 continue; /* ’for’ loop 1b */
4510 ucp = addr->s6_addr;
4511 for (i = masklen; i >= 8; i -= 8)
4512 if (*ucp++ != *aptr++)
4513 break; /* ’for’ loop 1b */
4514 if (i == 0 ||
4515 (i < 8 && ((*ucp ^ *aptr) & ~(0xff >> i)) == 0))
4516 return (B_TRUE);
4517 } /* ’for’ loop 1b ends */
4518 return (B_FALSE);
4519 }

4521 /*
4522 * Run through the filter list for an IPv6 MIB2 IRE. For a given
4523 * type, if there’s at least one filter and all filters of that type
4524 * fail to match, then the route doesn’t match and isn’t displayed.
4525 * If at least one matches, or none are specified, for each of the
4526 * types, then the route is selected and displayed.
4527 */
4528 static boolean_t
4529 ire_filter_match_v6(const mib2_ipv6RouteEntry_t *rp6, uint_t flag_b)
4530 {
4531 filter_t *fp;
4532 int idx;

4534 /* ’for’ loop 1: */
4535 for (idx = 0; idx < NFILTERKEYS; idx++)
4536 if ((fp = filters[idx]) != NULL) {
4537 /* ’for’ loop 2: */
4538 for (; fp != NULL; fp = fp->f_next) {
4539 switch (idx) {
4540 case FK_AF:
4541 if (fp->u.f_family != AF_INET6)
4542 /* ’for’ loop 2 */
4543 continue;
4544 break;
4545 case FK_OUTIF:
4546 if (!dev_name_match(&rp6->
4547 ipv6RouteIfIndex, fp->u.f_ifname))
4548 /* ’for’ loop 2 */
4549 continue;
4550 break;
4551 case FK_DST:

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 68

4552 if (!v6_addr_match(&rp6->ipv6RouteDest,
4553 rp6->ipv6RoutePfxLength, fp))
4554 /* ’for’ loop 2 */
4555 continue;
4556 break;
4557 case FK_FLAGS:
4558 if ((flag_b & fp->u.f.f_flagset) !=
4559 fp->u.f.f_flagset ||
4560 (flag_b & fp->u.f.f_flagclear))
4561 /* ’for’ loop 2 */
4562 continue;
4563 break;
4564 }
4565 break;
4566 } /* ’for’ loop 2 ends */
4567 if (fp == NULL)
4568 return (B_FALSE);
4569 }
4570 /* ’for’ loop 1 ends */
4571 return (B_TRUE);
4572 }

4574 /*
4575 * Given an IPv6 MIB2 route entry, form the list of flags for the
4576 * route.
4577 */
4578 static uint_t
4579 form_v6_route_flags(const mib2_ipv6RouteEntry_t *rp6, char *flags)
4580 {
4581 uint_t flag_b;

4583 flag_b = FLF_U;
4584 (void) strcpy(flags, "U");
4585 /* RTF_INDIRECT wins over RTF_GATEWAY - don’t display both */
4586 if (rp6->ipv6RouteInfo.re_flags & RTF_INDIRECT) {
4587 (void) strcat(flags, "I");
4588 flag_b |= FLF_I;
4589 } else if (rp6->ipv6RouteInfo.re_ire_type & IRE_OFFLINK) {
4590 (void) strcat(flags, "G");
4591 flag_b |= FLF_G;
4592 }

4594 /* IRE_IF_CLONE wins over RTF_HOST - don’t display both */
4595 if (rp6->ipv6RouteInfo.re_ire_type & IRE_IF_CLONE) {
4596 (void) strcat(flags, "C");
4597 flag_b |= FLF_C;
4598 } else if (rp6->ipv6RoutePfxLength == IPV6_ABITS) {
4599 (void) strcat(flags, "H");
4600 flag_b |= FLF_H;
4601 }

4603 if (rp6->ipv6RouteInfo.re_flags & RTF_DYNAMIC) {
4604 (void) strcat(flags, "D");
4605 flag_b |= FLF_D;
4606 }
4607 if (rp6->ipv6RouteInfo.re_ire_type == IRE_LOCAL) { /* Local */
4608 (void) strcat(flags, "L");
4609 flag_b |= FLF_L;
4610 }
4611 if (rp6->ipv6RouteInfo.re_flags & RTF_MULTIRT) {
4612 (void) strcat(flags, "M"); /* Multiroute */
4613 flag_b |= FLF_M;
4614 }
4615 if (rp6->ipv6RouteInfo.re_flags & RTF_SETSRC) {
4616 (void) strcat(flags, "S"); /* Setsrc */
4617 flag_b |= FLF_S;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 69

4618 }
4619 if (rp6->ipv6RouteInfo.re_flags & RTF_REJECT) {
4620 (void) strcat(flags, "R");
4621 flag_b |= FLF_R;
4622 }
4623 if (rp6->ipv6RouteInfo.re_flags & RTF_BLACKHOLE) {
4624 (void) strcat(flags, "B");
4625 flag_b |= FLF_B;
4626 }
4627 if (rp6->ipv6RouteInfo.re_flags & RTF_ZONE) {
4628 (void) strcat(flags, "Z");
4629 flag_b |= FLF_Z;
4630 }
4631 return (flag_b);
4632 }

4634 static const char ire_hdr_v6[] =
4635 "\n%s Table: IPv6\n";
4636 static const char ire_hdr_v6_verbose[] =
4637 " Destination/Mask Gateway If MTU "
4638 "Ref Flags Out In/Fwd %s\n"
4639 "--------------------------- --------------------------- ----- ----- "
4640 "--- ----- ------ ------ %s\n";
4641 static const char ire_hdr_v6_normal[] =
4642 " Destination/Mask Gateway Flags Ref Use "
4643 " If %s\n"
4644 "--------------------------- --------------------------- ----- --- ------- "
4645 "----- %s\n";

4647 static boolean_t
4648 ire_report_item_v6(const mib2_ipv6RouteEntry_t *rp6, boolean_t first,
4649 const sec_attr_list_t *attrs)
4650 {
4651 char dstbuf[MAXHOSTNAMELEN + 1];
4652 char gwbuf[MAXHOSTNAMELEN + 1];
4653 char ifname[LIFNAMSIZ + 1];
4654 char flags[10]; /* RTF_ flags */
4655 uint_t flag_b;

4657 if (!(Aflag || (rp6->ipv6RouteInfo.re_ire_type != IRE_IF_CLONE &&
4658 rp6->ipv6RouteInfo.re_ire_type != IRE_MULTICAST &&
4659 rp6->ipv6RouteInfo.re_ire_type != IRE_NOROUTE &&
4660 rp6->ipv6RouteInfo.re_ire_type != IRE_LOCAL))) {
4661 return (first);
4662 }

4664 flag_b = form_v6_route_flags(rp6, flags);

4666 if (!ire_filter_match_v6(rp6, flag_b))
4667 return (first);

4669 if (first) {
4670 (void) printf(ire_hdr_v6, Vflag ? "IRE" : "Routing");
4671 (void) printf(Vflag ? ire_hdr_v6_verbose : ire_hdr_v6_normal,
4672 RSECflag ? " Gateway security attributes " : "",
4673 RSECflag ? "-------------------------------" : "");
4674 first = B_FALSE;
4675 }

4677 if (Vflag) {
4678 (void) printf("%-27s %-27s %-5s %5u %3u "
4679 "%-5s %6u %6u %s\n",
4680 pr_prefix6(&rp6->ipv6RouteDest,
4681 rp6->ipv6RoutePfxLength, dstbuf, sizeof (dstbuf)),
4682 IN6_IS_ADDR_UNSPECIFIED(&rp6->ipv6RouteNextHop) ?
4683 " --" :

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 70

4684 pr_addr6(&rp6->ipv6RouteNextHop, gwbuf, sizeof (gwbuf)),
4685 octetstr(&rp6->ipv6RouteIfIndex, ’a’,
4686 ifname, sizeof (ifname)),
4687 rp6->ipv6RouteInfo.re_max_frag,
4688 rp6->ipv6RouteInfo.re_ref,
4689 flags,
4690 rp6->ipv6RouteInfo.re_obpkt,
4691 rp6->ipv6RouteInfo.re_ibpkt,
4692 pr_secattr(attrs));
4693 } else {
4694 (void) printf("%-27s %-27s %-5s %3u %7u %-5s %s\n",
4695 pr_prefix6(&rp6->ipv6RouteDest,
4696 rp6->ipv6RoutePfxLength, dstbuf, sizeof (dstbuf)),
4697 IN6_IS_ADDR_UNSPECIFIED(&rp6->ipv6RouteNextHop) ?
4698 " --" :
4699 pr_addr6(&rp6->ipv6RouteNextHop, gwbuf, sizeof (gwbuf)),
4700 flags,
4701 rp6->ipv6RouteInfo.re_ref,
4702 rp6->ipv6RouteInfo.re_obpkt + rp6->ipv6RouteInfo.re_ibpkt,
4703 octetstr(&rp6->ipv6RouteIfIndex, ’a’,
4704 ifname, sizeof (ifname)),
4705 pr_secattr(attrs));
4706 }
4707 return (first);
4708 }

4710 /*
4711 * Common attribute-gathering routine for all transports.
4712 */
4713 static mib2_transportMLPEntry_t **
4714 gather_attrs(const mib_item_t *item, int group, int mib_id, int esize)
4715 {
4716 int transport_count = 0;
4717 const mib_item_t *iptr;
4718 mib2_transportMLPEntry_t **attrs, *tme;

4720 for (iptr = item; iptr != NULL; iptr = iptr->next_item) {
4721 if (iptr->group == group && iptr->mib_id == mib_id)
4722 transport_count += iptr->length / esize;
4723 }
4724 if (transport_count <= 0)
4725 return (NULL);
4726 attrs = calloc(transport_count, sizeof (*attrs));
4727 if (attrs == NULL) {
4728 perror("gather_attrs calloc failed");
4729 return (NULL);
4730 }
4731 for (iptr = item; iptr != NULL; iptr = iptr->next_item) {
4732 if (iptr->group == group && iptr->mib_id == EXPER_XPORT_MLP) {
4733 for (tme = iptr->valp;
4734 (char *)tme < (char *)iptr->valp + iptr->length;
4735 /* LINTED: (note 1) */
4736 tme = (mib2_transportMLPEntry_t *)((char *)tme +
4737 transportMLPSize)) {
4738 attrs[tme->tme_connidx] = tme;
4739 }
4740 }
4741 }
4742 return (attrs);
4743 }

4745 static void
4746 print_transport_label(const mib2_transportMLPEntry_t *attr)
4747 {
4748 if (!RSECflag || attr == NULL ||
4749 !(attr->tme_flags & MIB2_TMEF_IS_LABELED))

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 71

4750 return;

4752 if (bisinvalid(&attr->tme_label)) {
4753 (void) printf(" INVALID\n");
4754 } else if (!blequal(&attr->tme_label, zone_security_label)) {
4755 char *sl_str;

4757 sl_str = sl_to_str(&attr->tme_label);
4758 (void) printf(" %s\n", sl_str);
4759 free(sl_str);
4760 }
4761 }

4763 /* ------------------------------ TCP_REPORT------------------------------- */

4765 static const char tcp_hdr_v4[] =
4766 "\nTCP: IPv4\n";
4767 static const char tcp_hdr_v4_compat[] =
4768 "\nTCP\n";
4769 static const char tcp_hdr_v4_verbose[] =
4770 "Local/Remote Address Swind Snext Suna Rwind Rnext Rack "
4771 " Rto Mss State\n"
4772 "-------------------- ----- -------- -------- ----- -------- -------- "
4773 "----- ----- -----------\n";
4774 static const char tcp_hdr_v4_normal[] =
4775 " Local Address Remote Address Swind Send-Q Rwind Recv-Q "
4776 " State\n"
4777 "-------------------- -------------------- ----- ------ ----- ------ "
4778 "-----------\n";

4780 static const char tcp_hdr_v6[] =
4781 "\nTCP: IPv6\n";
4782 static const char tcp_hdr_v6_verbose[] =
4783 "Local/Remote Address Swind Snext Suna Rwind Rnext "
4784 " Rack Rto Mss State If\n"
4785 "--------------------------------- ----- -------- -------- ----- -------- "
4786 "-------- ----- ----- ----------- -----\n";
4787 static const char tcp_hdr_v6_normal[] =
4788 " Local Address Remote Address "
4789 "Swind Send-Q Rwind Recv-Q State If\n"
4790 "--------------------------------- --------------------------------- "
4791 "----- ------ ----- ------ ----------- -----\n";

4793 static boolean_t tcp_report_item_v4(const mib2_tcpConnEntry_t *,
4794 boolean_t first, const mib2_transportMLPEntry_t *);
4795 static boolean_t tcp_report_item_v6(const mib2_tcp6ConnEntry_t *,
4796 boolean_t first, const mib2_transportMLPEntry_t *);

4798 static void
4799 tcp_report(const mib_item_t *item)
4800 {
4801 int jtemp = 0;
4802 boolean_t print_hdr_once_v4 = B_TRUE;
4803 boolean_t print_hdr_once_v6 = B_TRUE;
4804 mib2_tcpConnEntry_t *tp;
4805 mib2_tcp6ConnEntry_t *tp6;
4806 mib2_transportMLPEntry_t **v4_attrs, **v6_attrs;
4807 mib2_transportMLPEntry_t **v4a, **v6a;
4808 mib2_transportMLPEntry_t *aptr;

4810 if (!protocol_selected(IPPROTO_TCP))
4811 return;

4813 /*
4814 * Preparation pass: the kernel returns separate entries for TCP
4815 * connection table entries and Multilevel Port attributes. We loop

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 72

4816 * through the attributes first and set up an array for each address
4817 * family.
4818 */
4819 v4_attrs = family_selected(AF_INET) && RSECflag ?
4820 gather_attrs(item, MIB2_TCP, MIB2_TCP_CONN, tcpConnEntrySize) :
4821 NULL;
4822 v6_attrs = family_selected(AF_INET6) && RSECflag ?
4823 gather_attrs(item, MIB2_TCP6, MIB2_TCP6_CONN, tcp6ConnEntrySize) :
4824 NULL;

4826 /* ’for’ loop 1: */
4827 v4a = v4_attrs;
4828 v6a = v6_attrs;
4829 for (; item != NULL; item = item->next_item) {
4830 if (Xflag) {
4831 (void) printf("\n--- Entry %d ---\n", ++jtemp);
4832 (void) printf("Group = %d, mib_id = %d, "
4833 "length = %d, valp = 0x%p\n",
4834 item->group, item->mib_id,
4835 item->length, item->valp);
4836 }

4838 if (!((item->group == MIB2_TCP &&
4839 item->mib_id == MIB2_TCP_CONN) ||
4840 (item->group == MIB2_TCP6 &&
4841 item->mib_id == MIB2_TCP6_CONN)))
4842 continue; /* ’for’ loop 1 */

4844 if (item->group == MIB2_TCP && !family_selected(AF_INET))
4845 continue; /* ’for’ loop 1 */
4846 else if (item->group == MIB2_TCP6 && !family_selected(AF_INET6))
4847 continue; /* ’for’ loop 1 */

4849 if (item->group == MIB2_TCP) {
4850 for (tp = (mib2_tcpConnEntry_t *)item->valp;
4851 (char *)tp < (char *)item->valp + item->length;
4852 /* LINTED: (note 1) */
4853 tp = (mib2_tcpConnEntry_t *)((char *)tp +
4854 tcpConnEntrySize)) {
4855 aptr = v4a == NULL ? NULL : *v4a++;
4856 print_hdr_once_v4 = tcp_report_item_v4(tp,
4857 print_hdr_once_v4, aptr);
4858 }
4859 } else {
4860 for (tp6 = (mib2_tcp6ConnEntry_t *)item->valp;
4861 (char *)tp6 < (char *)item->valp + item->length;
4862 /* LINTED: (note 1) */
4863 tp6 = (mib2_tcp6ConnEntry_t *)((char *)tp6 +
4864 tcp6ConnEntrySize)) {
4865 aptr = v6a == NULL ? NULL : *v6a++;
4866 print_hdr_once_v6 = tcp_report_item_v6(tp6,
4867 print_hdr_once_v6, aptr);
4868 }
4869 }
4870 } /* ’for’ loop 1 ends */
4871 (void) fflush(stdout);

4873 if (v4_attrs != NULL)
4874 free(v4_attrs);
4875 if (v6_attrs != NULL)
4876 free(v6_attrs);
4877 }

4879 static boolean_t
4880 tcp_report_item_v4(const mib2_tcpConnEntry_t *tp, boolean_t first,
4881 const mib2_transportMLPEntry_t *attr)

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 73

4882 {
4883 /*
4884 * lname and fname below are for the hostname as well as the portname
4885 * There is no limit on portname length so we assume MAXHOSTNAMELEN
4886 * as the limit
4887 */
4888 char lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
4889 char fname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];

4891 if (!(Aflag || tp->tcpConnEntryInfo.ce_state >= TCPS_ESTABLISHED))
4892 return (first); /* Nothing to print */

4894 if (first) {
4895 (void) printf(v4compat ? tcp_hdr_v4_compat : tcp_hdr_v4);
4896 (void) printf(Vflag ? tcp_hdr_v4_verbose : tcp_hdr_v4_normal);
4897 }

4899 if (Vflag) {
4900 (void) printf("%-20s\n%-20s %5u %08x %08x %5u %08x %08x "
4901 "%5u %5u %s\n",
4902 pr_ap(tp->tcpConnLocalAddress,
4903 tp->tcpConnLocalPort, "tcp", lname, sizeof (lname)),
4904 pr_ap(tp->tcpConnRemAddress,
4905 tp->tcpConnRemPort, "tcp", fname, sizeof (fname)),
4906 tp->tcpConnEntryInfo.ce_swnd,
4907 tp->tcpConnEntryInfo.ce_snxt,
4908 tp->tcpConnEntryInfo.ce_suna,
4909 tp->tcpConnEntryInfo.ce_rwnd,
4910 tp->tcpConnEntryInfo.ce_rnxt,
4911 tp->tcpConnEntryInfo.ce_rack,
4912 tp->tcpConnEntryInfo.ce_rto,
4913 tp->tcpConnEntryInfo.ce_mss,
4914 mitcp_state(tp->tcpConnEntryInfo.ce_state, attr));
4915 } else {
4916 int sq = (int)tp->tcpConnEntryInfo.ce_snxt -
4917 (int)tp->tcpConnEntryInfo.ce_suna - 1;
4918 int rq = (int)tp->tcpConnEntryInfo.ce_rnxt -
4919 (int)tp->tcpConnEntryInfo.ce_rack;

4921 (void) printf("%-20s %-20s %5u %6d %5u %6d %s\n",
4922 pr_ap(tp->tcpConnLocalAddress,
4923 tp->tcpConnLocalPort, "tcp", lname, sizeof (lname)),
4924 pr_ap(tp->tcpConnRemAddress,
4925 tp->tcpConnRemPort, "tcp", fname, sizeof (fname)),
4926 tp->tcpConnEntryInfo.ce_swnd,
4927 (sq >= 0) ? sq : 0,
4928 tp->tcpConnEntryInfo.ce_rwnd,
4929 (rq >= 0) ? rq : 0,
4930 mitcp_state(tp->tcpConnEntryInfo.ce_state, attr));
4931 }

4933 print_transport_label(attr);

4935 return (B_FALSE);
4936 }

4938 static boolean_t
4939 tcp_report_item_v6(const mib2_tcp6ConnEntry_t *tp6, boolean_t first,
4940 const mib2_transportMLPEntry_t *attr)
4941 {
4942 /*
4943 * lname and fname below are for the hostname as well as the portname
4944 * There is no limit on portname length so we assume MAXHOSTNAMELEN
4945 * as the limit
4946 */
4947 char lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 74

4948 char fname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
4949 char ifname[LIFNAMSIZ + 1];
4950 char *ifnamep;

4952 if (!(Aflag || tp6->tcp6ConnEntryInfo.ce_state >= TCPS_ESTABLISHED))
4953 return (first); /* Nothing to print */

4955 if (first) {
4956 (void) printf(tcp_hdr_v6);
4957 (void) printf(Vflag ? tcp_hdr_v6_verbose : tcp_hdr_v6_normal);
4958 }

4960 ifnamep = (tp6->tcp6ConnIfIndex != 0) ?
4961 if_indextoname(tp6->tcp6ConnIfIndex, ifname) : NULL;
4962 if (ifnamep == NULL)
4963 ifnamep = "";

4965 if (Vflag) {
4966 (void) printf("%-33s\n%-33s %5u %08x %08x %5u %08x %08x "
4967 "%5u %5u %-11s %s\n",
4968 pr_ap6(&tp6->tcp6ConnLocalAddress,
4969 tp6->tcp6ConnLocalPort, "tcp", lname, sizeof (lname)),
4970 pr_ap6(&tp6->tcp6ConnRemAddress,
4971 tp6->tcp6ConnRemPort, "tcp", fname, sizeof (fname)),
4972 tp6->tcp6ConnEntryInfo.ce_swnd,
4973 tp6->tcp6ConnEntryInfo.ce_snxt,
4974 tp6->tcp6ConnEntryInfo.ce_suna,
4975 tp6->tcp6ConnEntryInfo.ce_rwnd,
4976 tp6->tcp6ConnEntryInfo.ce_rnxt,
4977 tp6->tcp6ConnEntryInfo.ce_rack,
4978 tp6->tcp6ConnEntryInfo.ce_rto,
4979 tp6->tcp6ConnEntryInfo.ce_mss,
4980 mitcp_state(tp6->tcp6ConnEntryInfo.ce_state, attr),
4981 ifnamep);
4982 } else {
4983 int sq = (int)tp6->tcp6ConnEntryInfo.ce_snxt -
4984 (int)tp6->tcp6ConnEntryInfo.ce_suna - 1;
4985 int rq = (int)tp6->tcp6ConnEntryInfo.ce_rnxt -
4986 (int)tp6->tcp6ConnEntryInfo.ce_rack;

4988 (void) printf("%-33s %-33s %5u %6d %5u %6d %-11s %s\n",
4989 pr_ap6(&tp6->tcp6ConnLocalAddress,
4990 tp6->tcp6ConnLocalPort, "tcp", lname, sizeof (lname)),
4991 pr_ap6(&tp6->tcp6ConnRemAddress,
4992 tp6->tcp6ConnRemPort, "tcp", fname, sizeof (fname)),
4993 tp6->tcp6ConnEntryInfo.ce_swnd,
4994 (sq >= 0) ? sq : 0,
4995 tp6->tcp6ConnEntryInfo.ce_rwnd,
4996 (rq >= 0) ? rq : 0,
4997 mitcp_state(tp6->tcp6ConnEntryInfo.ce_state, attr),
4998 ifnamep);
4999 }

5001 print_transport_label(attr);

5003 return (B_FALSE);
5004 }

5006 /* ------------------------------- UDP_REPORT------------------------------- */

5008 static boolean_t udp_report_item_v4(const mib2_udpEntry_t *ude,
5009 boolean_t first, const mib2_transportMLPEntry_t *attr);
5010 static boolean_t udp_report_item_v6(const mib2_udp6Entry_t *ude6,
5011 boolean_t first, const mib2_transportMLPEntry_t *attr);

5013 static const char udp_hdr_v4[] =

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 75

5014 " Local Address Remote Address State\n"
5015 "-------------------- -------------------- ----------\n";

5017 static const char udp_hdr_v6[] =
5018 " Local Address Remote Address "
5019 " State If\n"
5020 "--------------------------------- --------------------------------- "
5021 "---------- -----\n";

5023 static void
5024 udp_report(const mib_item_t *item)
5025 {
5026 int jtemp = 0;
5027 boolean_t print_hdr_once_v4 = B_TRUE;
5028 boolean_t print_hdr_once_v6 = B_TRUE;
5029 mib2_udpEntry_t *ude;
5030 mib2_udp6Entry_t *ude6;
5031 mib2_transportMLPEntry_t **v4_attrs, **v6_attrs;
5032 mib2_transportMLPEntry_t **v4a, **v6a;
5033 mib2_transportMLPEntry_t *aptr;

5035 if (!protocol_selected(IPPROTO_UDP))
5036 return;

5038 /*
5039 * Preparation pass: the kernel returns separate entries for UDP
5040 * connection table entries and Multilevel Port attributes. We loop
5041 * through the attributes first and set up an array for each address
5042 * family.
5043 */
5044 v4_attrs = family_selected(AF_INET) && RSECflag ?
5045 gather_attrs(item, MIB2_UDP, MIB2_UDP_ENTRY, udpEntrySize) : NULL;
5046 v6_attrs = family_selected(AF_INET6) && RSECflag ?
5047 gather_attrs(item, MIB2_UDP6, MIB2_UDP6_ENTRY, udp6EntrySize) :
5048 NULL;

5050 v4a = v4_attrs;
5051 v6a = v6_attrs;
5052 /* ’for’ loop 1: */
5053 for (; item; item = item->next_item) {
5054 if (Xflag) {
5055 (void) printf("\n--- Entry %d ---\n", ++jtemp);
5056 (void) printf("Group = %d, mib_id = %d, "
5057 "length = %d, valp = 0x%p\n",
5058 item->group, item->mib_id,
5059 item->length, item->valp);
5060 }
5061 if (!((item->group == MIB2_UDP &&
5062 item->mib_id == MIB2_UDP_ENTRY) ||
5063 (item->group == MIB2_UDP6 &&
5064 item->mib_id == MIB2_UDP6_ENTRY)))
5065 continue; /* ’for’ loop 1 */

5067 if (item->group == MIB2_UDP && !family_selected(AF_INET))
5068 continue; /* ’for’ loop 1 */
5069 else if (item->group == MIB2_UDP6 && !family_selected(AF_INET6))
5070 continue; /* ’for’ loop 1 */

5072 /* xxx.xxx.xxx.xxx,pppp sss... */
5073 if (item->group == MIB2_UDP) {
5074 for (ude = (mib2_udpEntry_t *)item->valp;
5075 (char *)ude < (char *)item->valp + item->length;
5076 /* LINTED: (note 1) */
5077 ude = (mib2_udpEntry_t *)((char *)ude +
5078 udpEntrySize)) {
5079 aptr = v4a == NULL ? NULL : *v4a++;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 76

5080 print_hdr_once_v4 = udp_report_item_v4(ude,
5081 print_hdr_once_v4, aptr);
5082 }
5083 } else {
5084 for (ude6 = (mib2_udp6Entry_t *)item->valp;
5085 (char *)ude6 < (char *)item->valp + item->length;
5086 /* LINTED: (note 1) */
5087 ude6 = (mib2_udp6Entry_t *)((char *)ude6 +
5088 udp6EntrySize)) {
5089 aptr = v6a == NULL ? NULL : *v6a++;
5090 print_hdr_once_v6 = udp_report_item_v6(ude6,
5091 print_hdr_once_v6, aptr);
5092 }
5093 }
5094 } /* ’for’ loop 1 ends */
5095 (void) fflush(stdout);

5097 if (v4_attrs != NULL)
5098 free(v4_attrs);
5099 if (v6_attrs != NULL)
5100 free(v6_attrs);
5101 }

5103 static boolean_t
5104 udp_report_item_v4(const mib2_udpEntry_t *ude, boolean_t first,
5105 const mib2_transportMLPEntry_t *attr)
5106 {
5107 char lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
5108 /* hostname + portname */

5110 if (!(Aflag || ude->udpEntryInfo.ue_state >= MIB2_UDP_connected))
5111 return (first); /* Nothing to print */

5113 if (first) {
5114 (void) printf(v4compat ? "\nUDP\n" : "\nUDP: IPv4\n");
5115 (void) printf(udp_hdr_v4);
5116 first = B_FALSE;
5117 }

5119 (void) printf("%-20s ",
5120 pr_ap(ude->udpLocalAddress, ude->udpLocalPort, "udp",
5121 lname, sizeof (lname)));
5122 (void) printf("%-20s %s\n",
5123 ude->udpEntryInfo.ue_state == MIB2_UDP_connected ?
5124 pr_ap(ude->udpEntryInfo.ue_RemoteAddress,
5125 ude->udpEntryInfo.ue_RemotePort, "udp", lname, sizeof (lname)) :
5126 "",
5127 miudp_state(ude->udpEntryInfo.ue_state, attr));

5129 print_transport_label(attr);

5131 return (first);
5132 }

5134 static boolean_t
5135 udp_report_item_v6(const mib2_udp6Entry_t *ude6, boolean_t first,
5136 const mib2_transportMLPEntry_t *attr)
5137 {
5138 char lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
5139 /* hostname + portname */
5140 char ifname[LIFNAMSIZ + 1];
5141 const char *ifnamep;

5143 if (!(Aflag || ude6->udp6EntryInfo.ue_state >= MIB2_UDP_connected))
5144 return (first); /* Nothing to print */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 77

5146 if (first) {
5147 (void) printf("\nUDP: IPv6\n");
5148 (void) printf(udp_hdr_v6);
5149 first = B_FALSE;
5150 }

5152 ifnamep = (ude6->udp6IfIndex != 0) ?
5153 if_indextoname(ude6->udp6IfIndex, ifname) : NULL;

5155 (void) printf("%-33s ",
5156 pr_ap6(&ude6->udp6LocalAddress,
5157 ude6->udp6LocalPort, "udp", lname, sizeof (lname)));
5158 (void) printf("%-33s %-10s %s\n",
5159 ude6->udp6EntryInfo.ue_state == MIB2_UDP_connected ?
5160 pr_ap6(&ude6->udp6EntryInfo.ue_RemoteAddress,
5161 ude6->udp6EntryInfo.ue_RemotePort, "udp", lname, sizeof (lname)) :
5162 "",
5163 miudp_state(ude6->udp6EntryInfo.ue_state, attr),
5164 ifnamep == NULL ? "" : ifnamep);

5166 print_transport_label(attr);

5168 return (first);
5169 }

5171 /* ------------------------------ SCTP_REPORT------------------------------- */

5173 static const char sctp_hdr[] =
5174 "\nSCTP:";
5175 static const char sctp_hdr_normal[] =
5176 " Local Address Remote Address "
5177 "Swind Send-Q Rwind Recv-Q StrsI/O State\n"
5178 "------------------------------- ------------------------------- "
5179 "------ ------ ------ ------ ------- -----------";

5181 static const char *
5182 nssctp_state(int state, const mib2_transportMLPEntry_t *attr)
5183 {
5184 static char sctpsbuf[50];
5185 const char *cp;

5187 switch (state) {
5188 case MIB2_SCTP_closed:
5189 cp = "CLOSED";
5190 break;
5191 case MIB2_SCTP_cookieWait:
5192 cp = "COOKIE_WAIT";
5193 break;
5194 case MIB2_SCTP_cookieEchoed:
5195 cp = "COOKIE_ECHOED";
5196 break;
5197 case MIB2_SCTP_established:
5198 cp = "ESTABLISHED";
5199 break;
5200 case MIB2_SCTP_shutdownPending:
5201 cp = "SHUTDOWN_PENDING";
5202 break;
5203 case MIB2_SCTP_shutdownSent:
5204 cp = "SHUTDOWN_SENT";
5205 break;
5206 case MIB2_SCTP_shutdownReceived:
5207 cp = "SHUTDOWN_RECEIVED";
5208 break;
5209 case MIB2_SCTP_shutdownAckSent:
5210 cp = "SHUTDOWN_ACK_SENT";
5211 break;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 78

5212 case MIB2_SCTP_listen:
5213 cp = "LISTEN";
5214 break;
5215 default:
5216 (void) snprintf(sctpsbuf, sizeof (sctpsbuf),
5217 "UNKNOWN STATE(%d)", state);
5218 cp = sctpsbuf;
5219 break;
5220 }

5222 if (RSECflag && attr != NULL && attr->tme_flags != 0) {
5223 if (cp != sctpsbuf) {
5224 (void) strlcpy(sctpsbuf, cp, sizeof (sctpsbuf));
5225 cp = sctpsbuf;
5226 }
5227 if (attr->tme_flags & MIB2_TMEF_PRIVATE)
5228 (void) strlcat(sctpsbuf, " P", sizeof (sctpsbuf));
5229 if (attr->tme_flags & MIB2_TMEF_SHARED)
5230 (void) strlcat(sctpsbuf, " S", sizeof (sctpsbuf));
5231 }

5233 return (cp);
5234 }

5236 static const mib2_sctpConnRemoteEntry_t *
5237 sctp_getnext_rem(const mib_item_t **itemp,
5238 const mib2_sctpConnRemoteEntry_t *current, uint32_t associd)
5239 {
5240 const mib_item_t *item = *itemp;
5241 const mib2_sctpConnRemoteEntry_t *sre;

5243 for (; item != NULL; item = item->next_item, current = NULL) {
5244 if (!(item->group == MIB2_SCTP &&
5245 item->mib_id == MIB2_SCTP_CONN_REMOTE)) {
5246 continue;
5247 }

5249 if (current != NULL) {
5250 /* LINTED: (note 1) */
5251 sre = (const mib2_sctpConnRemoteEntry_t *)
5252 ((const char *)current + sctpRemoteEntrySize);
5253 } else {
5254 sre = item->valp;
5255 }
5256 for (; (char *)sre < (char *)item->valp + item->length;
5257 /* LINTED: (note 1) */
5258 sre = (const mib2_sctpConnRemoteEntry_t *)
5259 ((const char *)sre + sctpRemoteEntrySize)) {
5260 if (sre->sctpAssocId != associd) {
5261 continue;
5262 }
5263 *itemp = item;
5264 return (sre);
5265 }
5266 }
5267 *itemp = NULL;
5268 return (NULL);
5269 }

5271 static const mib2_sctpConnLocalEntry_t *
5272 sctp_getnext_local(const mib_item_t **itemp,
5273 const mib2_sctpConnLocalEntry_t *current, uint32_t associd)
5274 {
5275 const mib_item_t *item = *itemp;
5276 const mib2_sctpConnLocalEntry_t *sle;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 79

5278 for (; item != NULL; item = item->next_item, current = NULL) {
5279 if (!(item->group == MIB2_SCTP &&
5280 item->mib_id == MIB2_SCTP_CONN_LOCAL)) {
5281 continue;
5282 }

5284 if (current != NULL) {
5285 /* LINTED: (note 1) */
5286 sle = (const mib2_sctpConnLocalEntry_t *)
5287 ((const char *)current + sctpLocalEntrySize);
5288 } else {
5289 sle = item->valp;
5290 }
5291 for (; (char *)sle < (char *)item->valp + item->length;
5292 /* LINTED: (note 1) */
5293 sle = (const mib2_sctpConnLocalEntry_t *)
5294 ((const char *)sle + sctpLocalEntrySize)) {
5295 if (sle->sctpAssocId != associd) {
5296 continue;
5297 }
5298 *itemp = item;
5299 return (sle);
5300 }
5301 }
5302 *itemp = NULL;
5303 return (NULL);
5304 }

5306 static void
5307 sctp_pr_addr(int type, char *name, int namelen, const in6_addr_t *addr,
5308 int port)
5309 {
5310 ipaddr_t v4addr;
5311 in6_addr_t v6addr;

5313 /*
5314 * Address is either a v4 mapped or v6 addr. If
5315 * it’s a v4 mapped, convert to v4 before
5316 * displaying.
5317 */
5318 switch (type) {
5319 case MIB2_SCTP_ADDR_V4:
5320 /* v4 */
5321 v6addr = *addr;

5323 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr);
5324 if (port > 0) {
5325 (void) pr_ap(v4addr, port, "sctp", name, namelen);
5326 } else {
5327 (void) pr_addr(v4addr, name, namelen);
5328 }
5329 break;

5331 case MIB2_SCTP_ADDR_V6:
5332 /* v6 */
5333 if (port > 0) {
5334 (void) pr_ap6(addr, port, "sctp", name, namelen);
5335 } else {
5336 (void) pr_addr6(addr, name, namelen);
5337 }
5338 break;

5340 default:
5341 (void) snprintf(name, namelen, "<unknown addr type>");
5342 break;
5343 }

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 80

5344 }

5346 static void
5347 sctp_conn_report_item(const mib_item_t *head, const mib2_sctpConnEntry_t *sp,
5348 const mib2_transportMLPEntry_t *attr)
5349 {
5350 char lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
5351 char fname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
5352 const mib2_sctpConnRemoteEntry_t *sre = NULL;
5353 const mib2_sctpConnLocalEntry_t *sle = NULL;
5354 const mib_item_t *local = head;
5355 const mib_item_t *remote = head;
5356 uint32_t id = sp->sctpAssocId;
5357 boolean_t printfirst = B_TRUE;

5359 sctp_pr_addr(sp->sctpAssocRemPrimAddrType, fname, sizeof (fname),
5360 &sp->sctpAssocRemPrimAddr, sp->sctpAssocRemPort);
5361 sctp_pr_addr(sp->sctpAssocRemPrimAddrType, lname, sizeof (lname),
5362 &sp->sctpAssocLocPrimAddr, sp->sctpAssocLocalPort);

5364 (void) printf("%-31s %-31s %6u %6d %6u %6d %3d/%-3d %s\n",
5365 lname, fname,
5366 sp->sctpConnEntryInfo.ce_swnd,
5367 sp->sctpConnEntryInfo.ce_sendq,
5368 sp->sctpConnEntryInfo.ce_rwnd,
5369 sp->sctpConnEntryInfo.ce_recvq,
5370 sp->sctpAssocInStreams, sp->sctpAssocOutStreams,
5371 nssctp_state(sp->sctpAssocState, attr));

5373 print_transport_label(attr);

5375 if (!Vflag) {
5376 return;
5377 }

5379 /* Print remote addresses/local addresses on following lines */
5380 while ((sre = sctp_getnext_rem(&remote, sre, id)) != NULL) {
5381 if (!IN6_ARE_ADDR_EQUAL(&sre->sctpAssocRemAddr,
5382 &sp->sctpAssocRemPrimAddr)) {
5383 if (printfirst == B_TRUE) {
5384 (void) fputs("\t<Remote: ", stdout);
5385 printfirst = B_FALSE;
5386 } else {
5387 (void) fputs(", ", stdout);
5388 }
5389 sctp_pr_addr(sre->sctpAssocRemAddrType, fname,
5390 sizeof (fname), &sre->sctpAssocRemAddr, -1);
5391 if (sre->sctpAssocRemAddrActive == MIB2_SCTP_ACTIVE) {
5392 (void) fputs(fname, stdout);
5393 } else {
5394 (void) printf("(%s)", fname);
5395 }
5396 }
5397 }
5398 if (printfirst == B_FALSE) {
5399 (void) puts(">");
5400 printfirst = B_TRUE;
5401 }
5402 while ((sle = sctp_getnext_local(&local, sle, id)) != NULL) {
5403 if (!IN6_ARE_ADDR_EQUAL(&sle->sctpAssocLocalAddr,
5404 &sp->sctpAssocLocPrimAddr)) {
5405 if (printfirst == B_TRUE) {
5406 (void) fputs("\t<Local: ", stdout);
5407 printfirst = B_FALSE;
5408 } else {
5409 (void) fputs(", ", stdout);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 81

5410 }
5411 sctp_pr_addr(sle->sctpAssocLocalAddrType, lname,
5412 sizeof (lname), &sle->sctpAssocLocalAddr, -1);
5413 (void) fputs(lname, stdout);
5414 }
5415 }
5416 if (printfirst == B_FALSE) {
5417 (void) puts(">");
5418 }
5419 }

5421 static void
5422 sctp_report(const mib_item_t *item)
5423 {
5424 const mib_item_t *head;
5425 const mib2_sctpConnEntry_t *sp;
5426 boolean_t first = B_TRUE;
5427 mib2_transportMLPEntry_t **attrs, **aptr;
5428 mib2_transportMLPEntry_t *attr;

5430 /*
5431 * Preparation pass: the kernel returns separate entries for SCTP
5432 * connection table entries and Multilevel Port attributes. We loop
5433 * through the attributes first and set up an array for each address
5434 * family.
5435 */
5436 attrs = RSECflag ?
5437 gather_attrs(item, MIB2_SCTP, MIB2_SCTP_CONN, sctpEntrySize) :
5438 NULL;

5440 aptr = attrs;
5441 head = item;
5442 for (; item != NULL; item = item->next_item) {

5444 if (!(item->group == MIB2_SCTP &&
5445 item->mib_id == MIB2_SCTP_CONN))
5446 continue;

5448 for (sp = item->valp;
5449 (char *)sp < (char *)item->valp + item->length;
5450 /* LINTED: (note 1) */
5451 sp = (mib2_sctpConnEntry_t *)((char *)sp + sctpEntrySize)) {
5452 attr = aptr == NULL ? NULL : *aptr++;
5453 if (Aflag ||
5454 sp->sctpAssocState >= MIB2_SCTP_established) {
5455 if (first == B_TRUE) {
5456 (void) puts(sctp_hdr);
5457 (void) puts(sctp_hdr_normal);
5458 first = B_FALSE;
5459 }
5460 sctp_conn_report_item(head, sp, attr);
5461 }
5462 }
5463 }
5464 if (attrs != NULL)
5465 free(attrs);
5466 }

5468 /* ------------------------------ DCCP_REPORT------------------------------- */

5470 static const char dccp_hdr_v4[] =
5471 "\nDCCP: IPv4\n";
5472 static const char dccp_hdr_v4_compat[] =
5473 "\nDCCP\n";
5474 static const char dccp_hdr_v4_verbose[] =
5475 "Local/Remote Address Swind Snext Suna Rwind Rnext Rack "

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 82

5476 " Rto Mss State\n"
5477 "-------------------- ----- -------- -------- ----- -------- -------- "
5478 "----- ----- -----------\n";
5479 static const char dccp_hdr_v4_normal[] =
5480 " Local Address Remote Address Swind Send-Q Rwind Recv-Q "
5481 " State\n"
5482 "-------------------- -------------------- ----- ------ ----- ------ "
5483 "-----------\n";

5485 static const char dccp_hdr_v6[] =
5486 "\nDCCP: IPv6\n";
5487 static const char dccp_hdr_v6_verbose[] =
5488 "Local/Remote Address Swind Snext Suna Rwind Rnext "
5489 " Rack Rto Mss State If\n"
5490 "--------------------------------- ----- -------- -------- ----- -------- "
5491 "-------- ----- ----- ----------- -----\n";
5492 static const char dccp_hdr_v6_normal[] =
5493 " Local Address Remote Address "
5494 "Swind Send-Q Rwind Recv-Q State If\n"
5495 "--------------------------------- --------------------------------- "
5496 "----- ------ ----- ------ ----------- -----\n";

5498 static boolean_t dccp_report_item_v4(const mib2_dccpConnEntry_t *,
5499 boolean_t, const mib2_transportMLPEntry_t *);
5500 static boolean_t dccp_report_item_v6(const mib2_dccp6ConnEntry_t *,
5501 boolean_t, const mib2_transportMLPEntry_t *);

5503 static void
5504 dccp_report(const mib_item_t *item)
5505 {
5506 mib2_dccpConnEntry_t *dp;
5507 mib2_transportMLPEntry_t **v4_attrs;
5508 mib2_transportMLPEntry_t **v6_attrs;
5509 mib2_transportMLPEntry_t **v4a;
5510 mib2_transportMLPEntry_t **v6a;
5511 mib2_transportMLPEntry_t *aptr;
5512 boolean_t print_hdr_once_v4 = B_TRUE;
5513 boolean_t print_hdr_once_v6 = B_TRUE;
5514 int jtemp = 0;

5516 if (!protocol_selected(IPPROTO_DCCP)) {
5517 return;
5518 }

5520 v4_attrs = family_selected(AF_INET) && RSECflag ?
5521 gather_attrs(item, MIB2_DCCP, MIB2_DCCP_CONN, dccpEntrySize) :
5522 NULL;
5523 v6_attrs = family_selected(AF_INET6) && RSECflag ?
5524 gather_attrs(item, MIB2_DCCP6, MIB2_DCCP6_CONN, dccp6EntrySize) :
5525 NULL;

5527 v4a = v4_attrs;
5528 v6a = v6_attrs;
5529 for (; item != NULL; item = item->next_item) {
5530 if (Xflag) {
5531 (void) printf("\n--- Entry %d ---\n", ++jtemp);
5532 (void) printf("Group = %d, mib_id = %d, "
5533 "length = %d, valp = 0x%p\n",
5534 item->group, item->mib_id,
5535 item->length, item->valp);
5536 }

5538 if (item->group == MIB2_DCCP) {
5539 for (dp = (mib2_dccpConnEntry_t *)item->valp;
5540 (char *)dp < (char *)item->valp + item->length;
5541 dp = (mib2_dccpConnEntry_t *)((char *)dp +

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 83

5542 dccpEntrySize)) {
5543 aptr = v4a == NULL ? NULL : *v4a++;
5544 print_hdr_once_v4 = dccp_report_item_v4(dp,
5545 print_hdr_once_v4, aptr);
5546 }
5547 }
5548 }

5550 (void) fflush(stdout);

5552 if (v4_attrs != NULL) {
5553 free(v4_attrs);
5554 }
5555 if (v6_attrs != NULL) {
5556 free(v6_attrs);
5557 }
5558 }

5560 static boolean_t
5561 dccp_report_item_v4(const mib2_dccpConnEntry_t *dp, boolean_t first,
5562 const mib2_transportMLPEntry_t *attr)
5563 {
5564 char lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
5565 char fname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];

5567 if (first) {
5568 (void) printf(v4compat ? dccp_hdr_v4_compat : dccp_hdr_v4);
5569 (void) printf(Vflag ? dccp_hdr_v4_verbose : dccp_hdr_v4_normal);
5570 }

5572 (void) printf("%-20s %-20s %5u %6d %5u %6d %s\n",
5573 pr_ap(dp->dccpConnLocalAddress,
5574 dp->dccpConnLocalPort, "dccp", lname, sizeof (lname)),
5575 pr_ap(dp->dccpConnRemAddress,
5576 dp->dccpConnRemPort, "dccp", fname, sizeof (fname)),
5577 0,
5578 0,
5579 0,
5580 0,
5581 0);

5583 print_transport_label(attr);

5585 return (B_FALSE);
5586 }

5588 static boolean_t
5589 dccp_report_item_v6(const mib2_dccp6ConnEntry_t *dp, boolean_t first,
5590 const mib2_transportMLPEntry_t *attr)
5591 {
5592 return (B_FALSE);
5593 }

5595 #endif /* ! codereview */
5596 static char *
5597 plural(int n)
5598 {
5599 return (n != 1 ? "s" : "");
5600 }

5602 static char *
5603 pluraly(int n)
5604 {
5605 return (n != 1 ? "ies" : "y");
5606 }

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 84

5608 static char *
5609 plurales(int n)
5610 {
5611 return (n != 1 ? "es" : "");
5612 }

5614 static char *
5615 pktscale(n)
5616 int n;
5617 {
5618 static char buf[6];
5619 char t;

5621 if (n < 1024) {
5622 t = ’ ’;
5623 } else if (n < 1024 * 1024) {
5624 t = ’k’;
5625 n /= 1024;
5626 } else if (n < 1024 * 1024 * 1024) {
5627 t = ’m’;
5628 n /= 1024 * 1024;
5629 } else {
5630 t = ’g’;
5631 n /= 1024 * 1024 * 1024;
5632 }

5634 (void) snprintf(buf, sizeof (buf), "%4u%c", n, t);
5635 return (buf);
5636 }

5638 /* --------------------- mrt_report (netstat -m) -------------------------- */

5640 static void
5641 mrt_report(mib_item_t *item)
5642 {
5643 int jtemp = 0;
5644 struct vifctl *vip;
5645 vifi_t vifi;
5646 struct mfcctl *mfccp;
5647 int numvifs = 0;
5648 int nmfc = 0;
5649 char abuf[MAXHOSTNAMELEN + 1];

5651 if (!(family_selected(AF_INET)))
5652 return;

5654 /* ’for’ loop 1: */
5655 for (; item; item = item->next_item) {
5656 if (Xflag) {
5657 (void) printf("\n--- Entry %d ---\n", ++jtemp);
5658 (void) printf("Group = %d, mib_id = %d, "
5659 "length = %d, valp = 0x%p\n",
5660 item->group, item->mib_id, item->length,
5661 item->valp);
5662 }
5663 if (item->group != EXPER_DVMRP)
5664 continue; /* ’for’ loop 1 */

5666 switch (item->mib_id) {

5668 case EXPER_DVMRP_VIF:
5669 if (Xflag)
5670 (void) printf("%u records for ipVifTable:\n",
5671 item->length/sizeof (struct vifctl));
5672 if (item->length/sizeof (struct vifctl) == 0) {
5673 (void) puts("\nVirtual Interface Table is "

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 85

5674 "empty");
5675 break;
5676 }

5678 (void) puts("\nVirtual Interface Table\n"
5679 " Vif Threshold Rate_Limit Local-Address"
5680 " Remote-Address Pkt_in Pkt_out");

5682 /* ’for’ loop 2: */
5683 for (vip = (struct vifctl *)item->valp;
5684 (char *)vip < (char *)item->valp + item->length;
5685 /* LINTED: (note 1) */
5686 vip = (struct vifctl *)((char *)vip +
5687 vifctlSize)) {
5688 if (vip->vifc_lcl_addr.s_addr == 0)
5689 continue; /* ’for’ loop 2 */
5690 /* numvifs = vip->vifc_vifi; */

5692 numvifs++;
5693 (void) printf(" %2u %3u "
5694 "%4u %-15.15s",
5695 vip->vifc_vifi,
5696 vip->vifc_threshold,
5697 vip->vifc_rate_limit,
5698 pr_addr(vip->vifc_lcl_addr.s_addr,
5699 abuf, sizeof (abuf)));
5700 (void) printf(" %-15.15s %8u %8u\n",
5701 (vip->vifc_flags & VIFF_TUNNEL) ?
5702 pr_addr(vip->vifc_rmt_addr.s_addr,
5703 abuf, sizeof (abuf)) : "",
5704 vip->vifc_pkt_in,
5705 vip->vifc_pkt_out);
5706 } /* ’for’ loop 2 ends */

5708 (void) printf("Numvifs: %d\n", numvifs);
5709 break;

5711 case EXPER_DVMRP_MRT:
5712 if (Xflag)
5713 (void) printf("%u records for ipMfcTable:\n",
5714 item->length/sizeof (struct vifctl));
5715 if (item->length/sizeof (struct vifctl) == 0) {
5716 (void) puts("\nMulticast Forwarding Cache is "
5717 "empty");
5718 break;
5719 }

5721 (void) puts("\nMulticast Forwarding Cache\n"
5722 " Origin-Subnet Mcastgroup "
5723 "# Pkts In-Vif Out-vifs/Forw-ttl");

5725 for (mfccp = (struct mfcctl *)item->valp;
5726 (char *)mfccp < (char *)item->valp + item->length;
5727 /* LINTED: (note 1) */
5728 mfccp = (struct mfcctl *)((char *)mfccp +
5729 mfcctlSize)) {

5731 nmfc++;
5732 (void) printf(" %-30.15s",
5733 pr_addr(mfccp->mfcc_origin.s_addr,
5734 abuf, sizeof (abuf)));
5735 (void) printf("%-15.15s %6s %3u ",
5736 pr_net(mfccp->mfcc_mcastgrp.s_addr,
5737 mfccp->mfcc_mcastgrp.s_addr,
5738 abuf, sizeof (abuf)),
5739 pktscale((int)mfccp->mfcc_pkt_cnt),

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 86

5740 mfccp->mfcc_parent);

5742 for (vifi = 0; vifi < MAXVIFS; ++vifi) {
5743 if (mfccp->mfcc_ttls[vifi]) {
5744 (void) printf(" %u (%u)",
5745 vifi,
5746 mfccp->mfcc_ttls[vifi]);
5747 }

5749 }
5750 (void) putchar(’\n’);
5751 }
5752 (void) printf("\nTotal no. of entries in cache: %d\n",
5753 nmfc);
5754 break;
5755 }
5756 } /* ’for’ loop 1 ends */
5757 (void) putchar(’\n’);
5758 (void) fflush(stdout);
5759 }

5761 /*
5762 * Get the stats for the cache named ’name’. If prefix != 0, then
5763 * interpret the name as a prefix, and sum up stats for all caches
5764 * named ’name*’.
5765 */
5766 static void
5767 kmem_cache_stats(char *title, char *name, int prefix, int64_t *total_bytes)
5768 {
5769 int len;
5770 int alloc;
5771 int64_t total_alloc = 0;
5772 int alloc_fail, total_alloc_fail = 0;
5773 int buf_size = 0;
5774 int buf_avail;
5775 int buf_total;
5776 int buf_max, total_buf_max = 0;
5777 int buf_inuse, total_buf_inuse = 0;
5778 kstat_t *ksp;
5779 char buf[256];

5781 len = prefix ? strlen(name) : 256;

5783 /* ’for’ loop 1: */
5784 for (ksp = kc->kc_chain; ksp != NULL; ksp = ksp->ks_next) {

5786 if (strcmp(ksp->ks_class, "kmem_cache") != 0)
5787 continue; /* ’for’ loop 1 */

5789 /*
5790 * Hack alert: because of the way streams messages are
5791 * allocated, every constructed free dblk has an associated
5792 * mblk. From the allocator’s viewpoint those mblks are
5793 * allocated (because they haven’t been freed), but from
5794 * our viewpoint they’re actually free (because they’re
5795 * not currently in use). To account for this caching
5796 * effect we subtract the total constructed free dblks
5797 * from the total allocated mblks to derive mblks in use.
5798 */
5799 if (strcmp(name, "streams_mblk") == 0 &&
5800 strncmp(ksp->ks_name, "streams_dblk", 12) == 0) {
5801 (void) safe_kstat_read(kc, ksp, NULL);
5802 total_buf_inuse -=
5803 kstat_named_value(ksp, "buf_constructed");
5804 continue; /* ’for’ loop 1 */
5805 }

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 87

5807 if (strncmp(ksp->ks_name, name, len) != 0)
5808 continue; /* ’for’ loop 1 */

5810 (void) safe_kstat_read(kc, ksp, NULL);

5812 alloc = kstat_named_value(ksp, "alloc");
5813 alloc_fail = kstat_named_value(ksp, "alloc_fail");
5814 buf_size = kstat_named_value(ksp, "buf_size");
5815 buf_avail = kstat_named_value(ksp, "buf_avail");
5816 buf_total = kstat_named_value(ksp, "buf_total");
5817 buf_max = kstat_named_value(ksp, "buf_max");
5818 buf_inuse = buf_total - buf_avail;

5820 if (Vflag && prefix) {
5821 (void) snprintf(buf, sizeof (buf), "%s%s", title,
5822 ksp->ks_name + len);
5823 (void) printf(" %-18s %6u %9u %11u %11u\n",
5824 buf, buf_inuse, buf_max, alloc, alloc_fail);
5825 }

5827 total_alloc += alloc;
5828 total_alloc_fail += alloc_fail;
5829 total_buf_max += buf_max;
5830 total_buf_inuse += buf_inuse;
5831 *total_bytes += (int64_t)buf_inuse * buf_size;
5832 } /* ’for’ loop 1 ends */

5834 if (buf_size == 0) {
5835 (void) printf("%-22s [couldn’t find statistics for %s]\n",
5836 title, name);
5837 return;
5838 }

5840 if (Vflag && prefix)
5841 (void) snprintf(buf, sizeof (buf), "%s_total", title);
5842 else
5843 (void) snprintf(buf, sizeof (buf), "%s", title);

5845 (void) printf("%-22s %6d %9d %11lld %11d\n", buf,
5846 total_buf_inuse, total_buf_max, total_alloc, total_alloc_fail);
5847 }

5849 static void
5850 m_report(void)
5851 {
5852 int64_t total_bytes = 0;

5854 (void) puts("streams allocation:");
5855 (void) printf("%63s\n", "cumulative allocation");
5856 (void) printf("%63s\n",
5857 "current maximum total failures");

5859 kmem_cache_stats("streams",
5860 "stream_head_cache", 0, &total_bytes);
5861 kmem_cache_stats("queues", "queue_cache", 0, &total_bytes);
5862 kmem_cache_stats("mblk", "streams_mblk", 0, &total_bytes);
5863 kmem_cache_stats("dblk", "streams_dblk", 1, &total_bytes);
5864 kmem_cache_stats("linkblk", "linkinfo_cache", 0, &total_bytes);
5865 kmem_cache_stats("syncq", "syncq_cache", 0, &total_bytes);
5866 kmem_cache_stats("qband", "qband_cache", 0, &total_bytes);

5868 (void) printf("\n%lld Kbytes allocated for streams data\n",
5869 total_bytes / 1024);

5871 (void) putchar(’\n’);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 88

5872 (void) fflush(stdout);
5873 }

5875 /* --------------------------------- */

5877 /*
5878 * Print an IPv4 address. Remove the matching part of the domain name
5879 * from the returned name.
5880 */
5881 static char *
5882 pr_addr(uint_t addr, char *dst, uint_t dstlen)
5883 {
5884 char *cp;
5885 struct hostent *hp = NULL;
5886 static char domain[MAXHOSTNAMELEN + 1];
5887 static boolean_t first = B_TRUE;
5888 int error_num;

5890 if (first) {
5891 first = B_FALSE;
5892 if (sysinfo(SI_HOSTNAME, domain, MAXHOSTNAMELEN) != -1 &&
5893 (cp = strchr(domain, ’.’))) {
5894 (void) strncpy(domain, cp + 1, sizeof (domain));
5895 } else
5896 domain[0] = 0;
5897 }
5898 cp = NULL;
5899 if (!Nflag) {
5900 hp = getipnodebyaddr((char *)&addr, sizeof (uint_t), AF_INET,
5901 &error_num);
5902 if (hp) {
5903 if ((cp = strchr(hp->h_name, ’.’)) != NULL &&
5904 strcasecmp(cp + 1, domain) == 0)
5905 *cp = 0;
5906 cp = hp->h_name;
5907 }
5908 }
5909 if (cp != NULL) {
5910 (void) strncpy(dst, cp, dstlen);
5911 dst[dstlen - 1] = 0;
5912 } else {
5913 (void) inet_ntop(AF_INET, (char *)&addr, dst, dstlen);
5914 }
5915 if (hp != NULL)
5916 freehostent(hp);
5917 return (dst);
5918 }

5920 /*
5921 * Print a non-zero IPv4 address. Print " --" if the address is zero.
5922 */
5923 static char *
5924 pr_addrnz(ipaddr_t addr, char *dst, uint_t dstlen)
5925 {
5926 if (addr == INADDR_ANY) {
5927 (void) strlcpy(dst, " --", dstlen);
5928 return (dst);
5929 }
5930 return (pr_addr(addr, dst, dstlen));
5931 }

5933 /*
5934 * Print an IPv6 address. Remove the matching part of the domain name
5935 * from the returned name.
5936 */
5937 static char *

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 89

5938 pr_addr6(const struct in6_addr *addr, char *dst, uint_t dstlen)
5939 {
5940 char *cp;
5941 struct hostent *hp = NULL;
5942 static char domain[MAXHOSTNAMELEN + 1];
5943 static boolean_t first = B_TRUE;
5944 int error_num;

5946 if (first) {
5947 first = B_FALSE;
5948 if (sysinfo(SI_HOSTNAME, domain, MAXHOSTNAMELEN) != -1 &&
5949 (cp = strchr(domain, ’.’))) {
5950 (void) strncpy(domain, cp + 1, sizeof (domain));
5951 } else
5952 domain[0] = 0;
5953 }
5954 cp = NULL;
5955 if (!Nflag) {
5956 hp = getipnodebyaddr((char *)addr,
5957 sizeof (struct in6_addr), AF_INET6, &error_num);
5958 if (hp) {
5959 if ((cp = strchr(hp->h_name, ’.’)) != NULL &&
5960 strcasecmp(cp + 1, domain) == 0)
5961 *cp = 0;
5962 cp = hp->h_name;
5963 }
5964 }
5965 if (cp != NULL) {
5966 (void) strncpy(dst, cp, dstlen);
5967 dst[dstlen - 1] = 0;
5968 } else {
5969 (void) inet_ntop(AF_INET6, (void *)addr, dst, dstlen);
5970 }
5971 if (hp != NULL)
5972 freehostent(hp);
5973 return (dst);
5974 }

5976 /* For IPv4 masks */
5977 static char *
5978 pr_mask(uint_t addr, char *dst, uint_t dstlen)
5979 {
5980 uint8_t *ip_addr = (uint8_t *)&addr;

5982 (void) snprintf(dst, dstlen, "%d.%d.%d.%d",
5983 ip_addr[0], ip_addr[1], ip_addr[2], ip_addr[3]);
5984 return (dst);
5985 }

5987 /*
5988 * For ipv6 masks format is : dest/mask
5989 * Does not print /128 to save space in printout. H flag carries this notion.
5990 */
5991 static char *
5992 pr_prefix6(const struct in6_addr *addr, uint_t prefixlen, char *dst,
5993 uint_t dstlen)
5994 {
5995 char *cp;

5997 if (IN6_IS_ADDR_UNSPECIFIED(addr) && prefixlen == 0) {
5998 (void) strncpy(dst, "default", dstlen);
5999 dst[dstlen - 1] = 0;
6000 return (dst);
6001 }

6003 (void) pr_addr6(addr, dst, dstlen);

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 90

6004 if (prefixlen != IPV6_ABITS) {
6005 /* How much room is left? */
6006 cp = strchr(dst, ’\0’);
6007 if (dst + dstlen > cp) {
6008 dstlen -= (cp - dst);
6009 (void) snprintf(cp, dstlen, "/%d", prefixlen);
6010 }
6011 }
6012 return (dst);
6013 }

6015 /* Print IPv4 address and port */
6016 static char *
6017 pr_ap(uint_t addr, uint_t port, char *proto,
6018 char *dst, uint_t dstlen)
6019 {
6020 char *cp;

6022 if (addr == INADDR_ANY) {
6023 (void) strncpy(dst, " *", dstlen);
6024 dst[dstlen - 1] = 0;
6025 } else {
6026 (void) pr_addr(addr, dst, dstlen);
6027 }
6028 /* How much room is left? */
6029 cp = strchr(dst, ’\0’);
6030 if (dst + dstlen > cp + 1) {
6031 *cp++ = ’.’;
6032 dstlen -= (cp - dst);
6033 dstlen--;
6034 (void) portname(port, proto, cp, dstlen);
6035 }
6036 return (dst);
6037 }

6039 /* Print IPv6 address and port */
6040 static char *
6041 pr_ap6(const in6_addr_t *addr, uint_t port, char *proto,
6042 char *dst, uint_t dstlen)
6043 {
6044 char *cp;

6046 if (IN6_IS_ADDR_UNSPECIFIED(addr)) {
6047 (void) strncpy(dst, " *", dstlen);
6048 dst[dstlen - 1] = 0;
6049 } else {
6050 (void) pr_addr6(addr, dst, dstlen);
6051 }
6052 /* How much room is left? */
6053 cp = strchr(dst, ’\0’);
6054 if (dst + dstlen + 1 > cp) {
6055 *cp++ = ’.’;
6056 dstlen -= (cp - dst);
6057 dstlen--;
6058 (void) portname(port, proto, cp, dstlen);
6059 }
6060 return (dst);
6061 }

6063 /*
6064 * Return the name of the network whose address is given. The address is
6065 * assumed to be that of a net or subnet, not a host.
6066 */
6067 static char *
6068 pr_net(uint_t addr, uint_t mask, char *dst, uint_t dstlen)
6069 {

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 91

6070 char *cp = NULL;
6071 struct netent *np = NULL;
6072 struct hostent *hp = NULL;
6073 uint_t net;
6074 int subnetshift;
6075 int error_num;

6077 if (addr == INADDR_ANY && mask == INADDR_ANY) {
6078 (void) strncpy(dst, "default", dstlen);
6079 dst[dstlen - 1] = 0;
6080 return (dst);
6081 }

6083 if (!Nflag && addr) {
6084 if (mask == 0) {
6085 if (IN_CLASSA(addr)) {
6086 mask = (uint_t)IN_CLASSA_NET;
6087 subnetshift = 8;
6088 } else if (IN_CLASSB(addr)) {
6089 mask = (uint_t)IN_CLASSB_NET;
6090 subnetshift = 8;
6091 } else {
6092 mask = (uint_t)IN_CLASSC_NET;
6093 subnetshift = 4;
6094 }
6095 /*
6096 * If there are more bits than the standard mask
6097 * would suggest, subnets must be in use. Guess at
6098 * the subnet mask, assuming reasonable width subnet
6099 * fields.
6100 */
6101 while (addr & ~mask)
6102 /* compiler doesn’t sign extend! */
6103 mask = (mask | ((int)mask >> subnetshift));
6104 }
6105 net = addr & mask;
6106 while ((mask & 1) == 0)
6107 mask >>= 1, net >>= 1;
6108 np = getnetbyaddr(net, AF_INET);
6109 if (np && np->n_net == net)
6110 cp = np->n_name;
6111 else {
6112 /*
6113 * Look for subnets in hosts map.
6114 */
6115 hp = getipnodebyaddr((char *)&addr, sizeof (uint_t),
6116 AF_INET, &error_num);
6117 if (hp)
6118 cp = hp->h_name;
6119 }
6120 }
6121 if (cp != NULL) {
6122 (void) strncpy(dst, cp, dstlen);
6123 dst[dstlen - 1] = 0;
6124 } else {
6125 (void) inet_ntop(AF_INET, (char *)&addr, dst, dstlen);
6126 }
6127 if (hp != NULL)
6128 freehostent(hp);
6129 return (dst);
6130 }

6132 /*
6133 * Return the name of the network whose address is given.
6134 * The address is assumed to be a host address.
6135 */

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 92

6136 static char *
6137 pr_netaddr(uint_t addr, uint_t mask, char *dst, uint_t dstlen)
6138 {
6139 char *cp = NULL;
6140 struct netent *np = NULL;
6141 struct hostent *hp = NULL;
6142 uint_t net;
6143 uint_t netshifted;
6144 int subnetshift;
6145 struct in_addr in;
6146 int error_num;
6147 uint_t nbo_addr = addr; /* network byte order */

6149 addr = ntohl(addr);
6150 mask = ntohl(mask);
6151 if (addr == INADDR_ANY && mask == INADDR_ANY) {
6152 (void) strncpy(dst, "default", dstlen);
6153 dst[dstlen - 1] = 0;
6154 return (dst);
6155 }

6157 /* Figure out network portion of address (with host portion = 0) */
6158 if (addr) {
6159 /* Try figuring out mask if unknown (all 0s). */
6160 if (mask == 0) {
6161 if (IN_CLASSA(addr)) {
6162 mask = (uint_t)IN_CLASSA_NET;
6163 subnetshift = 8;
6164 } else if (IN_CLASSB(addr)) {
6165 mask = (uint_t)IN_CLASSB_NET;
6166 subnetshift = 8;
6167 } else {
6168 mask = (uint_t)IN_CLASSC_NET;
6169 subnetshift = 4;
6170 }
6171 /*
6172 * If there are more bits than the standard mask
6173 * would suggest, subnets must be in use. Guess at
6174 * the subnet mask, assuming reasonable width subnet
6175 * fields.
6176 */
6177 while (addr & ~mask)
6178 /* compiler doesn’t sign extend! */
6179 mask = (mask | ((int)mask >> subnetshift));
6180 }
6181 net = netshifted = addr & mask;
6182 while ((mask & 1) == 0)
6183 mask >>= 1, netshifted >>= 1;
6184 }
6185 else
6186 net = netshifted = 0;

6188 /* Try looking up name unless -n was specified. */
6189 if (!Nflag) {
6190 np = getnetbyaddr(netshifted, AF_INET);
6191 if (np && np->n_net == netshifted)
6192 cp = np->n_name;
6193 else {
6194 /*
6195 * Look for subnets in hosts map.
6196 */
6197 hp = getipnodebyaddr((char *)&nbo_addr, sizeof (uint_t),
6198 AF_INET, &error_num);
6199 if (hp)
6200 cp = hp->h_name;
6201 }

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 93

6203 if (cp != NULL) {
6204 (void) strncpy(dst, cp, dstlen);
6205 dst[dstlen - 1] = 0;
6206 if (hp != NULL)
6207 freehostent(hp);
6208 return (dst);
6209 }
6210 /*
6211 * No name found for net: fallthru and return in decimal
6212 * dot notation.
6213 */
6214 }

6216 in.s_addr = htonl(net);
6217 (void) inet_ntop(AF_INET, (char *)&in, dst, dstlen);
6218 if (hp != NULL)
6219 freehostent(hp);
6220 return (dst);
6221 }

6223 /*
6224 * Return the filter mode as a string:
6225 * 1 => "INCLUDE"
6226 * 2 => "EXCLUDE"
6227 * otherwise "<unknown>"
6228 */
6229 static char *
6230 fmodestr(uint_t fmode)
6231 {
6232 switch (fmode) {
6233 case 1:
6234 return ("INCLUDE");
6235 case 2:
6236 return ("EXCLUDE");
6237 default:
6238 return ("<unknown>");
6239 }
6240 }

6242 #define MAX_STRING_SIZE 256

6244 static const char *
6245 pr_secattr(const sec_attr_list_t *attrs)
6246 {
6247 int i;
6248 char buf[MAX_STRING_SIZE + 1], *cp;
6249 static char *sbuf;
6250 static size_t sbuf_len;
6251 struct rtsa_s rtsa;
6252 const sec_attr_list_t *aptr;

6254 if (!RSECflag || attrs == NULL)
6255 return ("");

6257 for (aptr = attrs, i = 1; aptr != NULL; aptr = aptr->sal_next)
6258 i += MAX_STRING_SIZE;
6259 if (i > sbuf_len) {
6260 cp = realloc(sbuf, i);
6261 if (cp == NULL) {
6262 perror("realloc security attribute buffer");
6263 return ("");
6264 }
6265 sbuf_len = i;
6266 sbuf = cp;
6267 }

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 94

6269 cp = sbuf;
6270 while (attrs != NULL) {
6271 const mib2_ipAttributeEntry_t *iae = attrs->sal_attr;

6273 /* note: effectively hard-coded in rtsa_keyword */
6274 rtsa.rtsa_mask = RTSA_CIPSO | RTSA_SLRANGE | RTSA_DOI;
6275 rtsa.rtsa_slrange = iae->iae_slrange;
6276 rtsa.rtsa_doi = iae->iae_doi;

6278 (void) snprintf(cp, MAX_STRING_SIZE,
6279 "<%s>%s ", rtsa_to_str(&rtsa, buf, sizeof (buf)),
6280 attrs->sal_next == NULL ? "" : ",");
6281 cp += strlen(cp);
6282 attrs = attrs->sal_next;
6283 }
6284 *cp = ’\0’;

6286 return (sbuf);
6287 }

6289 /*
6290 * Pretty print a port number. If the Nflag was
6291 * specified, use numbers instead of names.
6292 */
6293 static char *
6294 portname(uint_t port, char *proto, char *dst, uint_t dstlen)
6295 {
6296 struct servent *sp = NULL;

6298 if (!Nflag && port)
6299 sp = getservbyport(htons(port), proto);
6300 if (sp || port == 0)
6301 (void) snprintf(dst, dstlen, "%.*s", MAXHOSTNAMELEN,
6302 sp ? sp->s_name : "*");
6303 else
6304 (void) snprintf(dst, dstlen, "%d", port);
6305 dst[dstlen - 1] = 0;
6306 return (dst);
6307 }

6309 /*PRINTFLIKE2*/
6310 void
6311 fail(int do_perror, char *message, ...)
6312 {
6313 va_list args;

6315 va_start(args, message);
6316 (void) fputs("netstat: ", stderr);
6317 (void) vfprintf(stderr, message, args);
6318 va_end(args);
6319 if (do_perror)
6320 (void) fprintf(stderr, ": %s", strerror(errno));
6321 (void) fputc(’\n’, stderr);
6322 exit(2);
6323 }

6325 /*
6326 * Return value of named statistic for given kstat_named kstat;
6327 * return 0LL if named statistic is not in list (use "ll" as a
6328 * type qualifier when printing 64-bit int’s with printf())
6329 */
6330 static uint64_t
6331 kstat_named_value(kstat_t *ksp, char *name)
6332 {
6333 kstat_named_t *knp;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 95

6334 uint64_t value;

6336 if (ksp == NULL)
6337 return (0LL);

6339 knp = kstat_data_lookup(ksp, name);
6340 if (knp == NULL)
6341 return (0LL);

6343 switch (knp->data_type) {
6344 case KSTAT_DATA_INT32:
6345 case KSTAT_DATA_UINT32:
6346 value = (uint64_t)(knp->value.ui32);
6347 break;
6348 case KSTAT_DATA_INT64:
6349 case KSTAT_DATA_UINT64:
6350 value = knp->value.ui64;
6351 break;
6352 default:
6353 value = 0LL;
6354 break;
6355 }

6357 return (value);
6358 }

6360 kid_t
6361 safe_kstat_read(kstat_ctl_t *kc, kstat_t *ksp, void *data)
6362 {
6363 kid_t kstat_chain_id = kstat_read(kc, ksp, data);

6365 if (kstat_chain_id == -1)
6366 fail(1, "kstat_read(%p, ’%s’) failed", (void *)kc,
6367 ksp->ks_name);
6368 return (kstat_chain_id);
6369 }

6371 /*
6372 * Parse a list of IRE flag characters into a bit field.
6373 */
6374 static uint_t
6375 flag_bits(const char *arg)
6376 {
6377 const char *cp;
6378 uint_t val;

6380 if (*arg == ’\0’)
6381 fatal(1, "missing flag list\n");

6383 val = 0;
6384 while (*arg != ’\0’) {
6385 if ((cp = strchr(flag_list, *arg)) == NULL)
6386 fatal(1, "%c: illegal flag\n", *arg);
6387 val |= 1 << (cp - flag_list);
6388 arg++;
6389 }
6390 return (val);
6391 }

6393 /*
6394 * Handle -f argument. Validate input format, sort by keyword, and
6395 * save off digested results.
6396 */
6397 static void
6398 process_filter(char *arg)
6399 {

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 96

6400 int idx;
6401 int klen = 0;
6402 char *cp, *cp2;
6403 int val;
6404 filter_t *newf;
6405 struct hostent *hp;
6406 int error_num;
6407 uint8_t *ucp;
6408 int maxv;

6410 /* Look up the keyword first */
6411 if (strchr(arg, ’:’) == NULL) {
6412 idx = FK_AF;
6413 } else {
6414 for (idx = 0; idx < NFILTERKEYS; idx++) {
6415 klen = strlen(filter_keys[idx]);
6416 if (strncmp(filter_keys[idx], arg, klen) == 0 &&
6417 arg[klen] == ’:’)
6418 break;
6419 }
6420 if (idx >= NFILTERKEYS)
6421 fatal(1, "%s: unknown filter keyword\n", arg);

6423 /* Advance past keyword and separator. */
6424 arg += klen + 1;
6425 }

6427 if ((newf = malloc(sizeof (*newf))) == NULL) {
6428 perror("filter");
6429 exit(1);
6430 }
6431 switch (idx) {
6432 case FK_AF:
6433 if (strcmp(arg, "inet") == 0) {
6434 newf->u.f_family = AF_INET;
6435 } else if (strcmp(arg, "inet6") == 0) {
6436 newf->u.f_family = AF_INET6;
6437 } else if (strcmp(arg, "unix") == 0) {
6438 newf->u.f_family = AF_UNIX;
6439 } else {
6440 newf->u.f_family = strtol(arg, &cp, 0);
6441 if (arg == cp || *cp != ’\0’)
6442 fatal(1, "%s: unknown address family.\n", arg);
6443 }
6444 break;

6446 case FK_OUTIF:
6447 if (strcmp(arg, "none") == 0) {
6448 newf->u.f_ifname = NULL;
6449 break;
6450 }
6451 if (strcmp(arg, "any") == 0) {
6452 newf->u.f_ifname = "";
6453 break;
6454 }
6455 val = strtol(arg, &cp, 0);
6456 if (val <= 0 || arg == cp || cp[0] != ’\0’) {
6457 if ((val = if_nametoindex(arg)) == 0) {
6458 perror(arg);
6459 exit(1);
6460 }
6461 }
6462 newf->u.f_ifname = arg;
6463 break;

6465 case FK_DST:

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 97

6466 V4MASK_TO_V6(IP_HOST_MASK, newf->u.a.f_mask);
6467 if (strcmp(arg, "any") == 0) {
6468 /* Special semantics; any address *but* zero */
6469 newf->u.a.f_address = NULL;
6470 (void) memset(&newf->u.a.f_mask, 0,
6471 sizeof (newf->u.a.f_mask));
6472 break;
6473 }
6474 if (strcmp(arg, "none") == 0) {
6475 newf->u.a.f_address = NULL;
6476 break;
6477 }
6478 if ((cp = strrchr(arg, ’/’)) != NULL)
6479 *cp++ = ’\0’;
6480 hp = getipnodebyname(arg, AF_INET6, AI_V4MAPPED|AI_ALL,
6481 &error_num);
6482 if (hp == NULL)
6483 fatal(1, "%s: invalid or unknown host address\n", arg);
6484 newf->u.a.f_address = hp;
6485 if (cp == NULL) {
6486 V4MASK_TO_V6(IP_HOST_MASK, newf->u.a.f_mask);
6487 } else {
6488 val = strtol(cp, &cp2, 0);
6489 if (cp != cp2 && cp2[0] == ’\0’) {
6490 /*
6491 * If decode as "/n" works, then translate
6492 * into a mask.
6493 */
6494 if (hp->h_addr_list[0] != NULL &&
6495 /* LINTED: (note 1) */
6496 IN6_IS_ADDR_V4MAPPED((in6_addr_t *)
6497 hp->h_addr_list[0])) {
6498 maxv = IP_ABITS;
6499 } else {
6500 maxv = IPV6_ABITS;
6501 }
6502 if (val < 0 || val >= maxv)
6503 fatal(1, "%d: not in range 0 to %d\n",
6504 val, maxv - 1);
6505 if (maxv == IP_ABITS)
6506 val += IPV6_ABITS - IP_ABITS;
6507 ucp = newf->u.a.f_mask.s6_addr;
6508 while (val >= 8)
6509 *ucp++ = 0xff, val -= 8;
6510 *ucp++ = (0xff << (8 - val)) & 0xff;
6511 while (ucp < newf->u.a.f_mask.s6_addr +
6512 sizeof (newf->u.a.f_mask.s6_addr))
6513 *ucp++ = 0;
6514 /* Otherwise, try as numeric address */
6515 } else if (inet_pton(AF_INET6,
6516 cp, &newf->u.a.f_mask) <= 0) {
6517 fatal(1, "%s: illegal mask format\n", cp);
6518 }
6519 }
6520 break;

6522 case FK_FLAGS:
6523 if (*arg == ’+’) {
6524 newf->u.f.f_flagset = flag_bits(arg + 1);
6525 newf->u.f.f_flagclear = 0;
6526 } else if (*arg == ’-’) {
6527 newf->u.f.f_flagset = 0;
6528 newf->u.f.f_flagclear = flag_bits(arg + 1);
6529 } else {
6530 newf->u.f.f_flagset = flag_bits(arg);
6531 newf->u.f.f_flagclear = ~newf->u.f.f_flagset;

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 98

6532 }
6533 break;

6535 default:
6536 assert(0);
6537 }
6538 newf->f_next = filters[idx];
6539 filters[idx] = newf;
6540 }

6542 /* Determine if user wants this address family printed. */
6543 static boolean_t
6544 family_selected(int family)
6545 {
6546 const filter_t *fp;

6548 if (v4compat && family == AF_INET6)
6549 return (B_FALSE);
6550 if ((fp = filters[FK_AF]) == NULL)
6551 return (B_TRUE);
6552 while (fp != NULL) {
6553 if (fp->u.f_family == family)
6554 return (B_TRUE);
6555 fp = fp->f_next;
6556 }
6557 return (B_FALSE);
6558 }

6560 /*
6561 * Convert the interface index to a string using the buffer ‘ifname’, which
6562 * must be at least LIFNAMSIZ bytes. We first try to map it to name. If that
6563 * fails (e.g., because we’re inside a zone and it does not have access to
6564 * interface for the index in question), just return "if#<num>".
6565 */
6566 static char *
6567 ifindex2str(uint_t ifindex, char *ifname)
6568 {
6569 if (if_indextoname(ifindex, ifname) == NULL)
6570 (void) snprintf(ifname, LIFNAMSIZ, "if#%d", ifindex);

6572 return (ifname);
6573 }

6575 /*
6576 * print the usage line
6577 */
6578 static void
6579 usage(char *cmdname)
6580 {
6581 (void) fprintf(stderr, "usage: %s [-anv] [-f address_family] "
6582 "[-T d|u]\n", cmdname);
6583 (void) fprintf(stderr, " %s [-n] [-f address_family] "
6584 "[-P protocol] [-T d|u] [-g | -p | -s [interval [count]]]\n",
6585 cmdname);
6586 (void) fprintf(stderr, " %s -m [-v] [-T d|u] "
6587 "[interval [count]]\n", cmdname);
6588 (void) fprintf(stderr, " %s -i [-I interface] [-an] "
6589 "[-f address_family] [-T d|u] [interval [count]]\n", cmdname);
6590 (void) fprintf(stderr, " %s -r [-anv] "
6591 "[-f address_family|filter] [-T d|u]\n", cmdname);
6592 (void) fprintf(stderr, " %s -M [-ns] [-f address_family] "
6593 "[-T d|u]\n", cmdname);
6594 (void) fprintf(stderr, " %s -D [-I interface] "
6595 "[-f address_family] [-T d|u]\n", cmdname);
6596 exit(EXIT_FAILURE);
6597 }

new/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c 99

6599 /*
6600 * fatal: print error message to stderr and
6601 * call exit(errcode)
6602 */
6603 /*PRINTFLIKE2*/
6604 static void
6605 fatal(int errcode, char *format, ...)
6606 {
6607 va_list argp;

6609 if (format == NULL)
6610 return;

6612 va_start(argp, format);
6613 (void) vfprintf(stderr, format, argp);
6614 va_end(argp);

6616 exit(errcode);
6617 }

new/usr/src/cmd/cmd-inet/usr.sbin/ipadm/ipadm.c 1

**
 57122 Sat Aug 18 10:36:56 2012
new/usr/src/cmd/cmd-inet/usr.sbin/ipadm/ipadm.c
dccp: properties
**
______unchanged_portion_omitted_

634 /*
635 * Properties to be displayed is in ‘statep->sps_proplist’. If it is NULL,
636 * for all the properties for the specified object, relevant information, will
636 * for all the properties for the specified object, relavant information, will
637 * be displayed. Otherwise, for the selected property set, display relevant
638 * information
639 */
640 static void
641 show_properties(void *arg, int prop_class)
642 {
643 show_prop_state_t *statep = arg;
644 nvlist_t *nvl = statep->sps_proplist;
645 uint_t proto = statep->sps_proto;
646 nvpair_t *curr_nvp;
647 char *buf, *name;
648 ipadm_status_t status;

650 /* allocate sufficient buffer to hold a property value */
651 if ((buf = malloc(MAXPROPVALLEN)) == NULL)
652 die("insufficient memory");
653 statep->sps_propval = buf;

655 /* if no properties were specified, display all the properties */
656 if (nvl == NULL) {
657 (void) ipadm_walk_proptbl(proto, prop_class, show_property,
658 statep);
659 } else {
660 for (curr_nvp = nvlist_next_nvpair(nvl, NULL); curr_nvp;
661 curr_nvp = nvlist_next_nvpair(nvl, curr_nvp)) {
662 name = nvpair_name(curr_nvp);
663 status = ipadm_walk_prop(name, proto, prop_class,
664 show_property, statep);
665 if (status == IPADM_PROP_UNKNOWN)
666 (void) show_property(statep, name, proto);
667 }
668 }

670 free(buf);
671 }

______unchanged_portion_omitted_

856 /*
857 * Display information for all or specific protocol properties, either for a
858 * given protocol or for supported protocols (IP/IPv4/IPv6/TCP/UDP/SCTP/DCCP)
858 * given protocol or for supported protocols (IP/IPv4/IPv6/TCP/UDP/SCTP)
859 */
860 static void
861 do_show_prop(int argc, char **argv, const char *use)
862 {
863 char option;
864 nvlist_t *proplist = NULL;
865 char *fields_str = NULL;
866 char *protostr;
867 show_prop_state_t state;
868 ofmt_handle_t ofmt;
869 ofmt_status_t oferr;
870 uint_t ofmtflags = 0;
871 uint_t proto;
872 boolean_t p_arg = _B_FALSE;

new/usr/src/cmd/cmd-inet/usr.sbin/ipadm/ipadm.c 2

874 opterr = 0;
875 bzero(&state, sizeof (state));
876 state.sps_propval = NULL;
877 state.sps_parsable = _B_FALSE;
878 state.sps_modprop = _B_TRUE;
879 state.sps_status = state.sps_retstatus = IPADM_SUCCESS;
880 while ((option = getopt_long(argc, argv, ":p:co:", show_prop_longopts,
881 NULL)) != -1) {
882 switch (option) {
883 case ’p’:
884 if (p_arg)
885 die("-p must be specified once only");
886 p_arg = _B_TRUE;
887 if (ipadm_str2nvlist(optarg, &proplist,
888 IPADM_NORVAL) != 0)
889 die("invalid protocol properties specified");
890 break;
891 case ’c’:
892 state.sps_parsable = _B_TRUE;
893 break;
894 case ’o’:
895 fields_str = optarg;
896 break;
897 default:
898 die_opterr(optopt, option, use);
899 break;
900 }
901 }
902 if (optind == argc - 1) {
903 protostr = argv[optind];
904 if ((proto = ipadm_str2proto(protostr)) == MOD_PROTO_NONE)
905 die("invalid protocol ’%s’ specified", protostr);
906 state.sps_proto = proto;
907 } else if (optind != argc) {
908 die("Usage: %s", use);
909 } else {
910 if (p_arg)
911 die("protocol must be specified when "
912 "property name is used");
913 state.sps_proto = MOD_PROTO_NONE;
914 }

916 state.sps_proplist = proplist;

918 if (state.sps_parsable)
919 ofmtflags |= OFMT_PARSABLE;
920 else
921 ofmtflags |= OFMT_WRAP;
922 oferr = ofmt_open(fields_str, modprop_fields, ofmtflags, 0, &ofmt);
923 ipadm_ofmt_check(oferr, state.sps_parsable, ofmt);
924 state.sps_ofmt = ofmt;

926 /* handles all the errors */
927 show_properties(&state, IPADMPROP_CLASS_MODULE);

929 nvlist_free(proplist);
930 ofmt_close(ofmt);

932 if (state.sps_retstatus != IPADM_SUCCESS) {
933 ipadm_close(iph);
934 exit(EXIT_FAILURE);
935 }
936 }

______unchanged_portion_omitted_

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/Makefile 1

**
 2254 Sat Aug 18 10:36:57 2012
new/usr/src/cmd/cmd-inet/usr.sbin/snoop/Makefile
dccp: snoop, build system fixes
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 PROG= snoop
28 OBJS= nfs4_xdr.o snoop.o snoop_aarp.o snoop_adsp.o snoop_aecho.o \
29 snoop_apple.o snoop_arp.o snoop_atp.o snoop_bparam.o \
30 snoop_bpdu.o \
31 snoop_capture.o snoop_dccp.o snoop_dhcp.o snoop_dhcpv6.o \
32 snoop_display.o snoop_dns.o snoop_ether.o \
31 snoop_capture.o snoop_dhcp.o snoop_dhcpv6.o snoop_display.o \
32 snoop_dns.o snoop_ether.o \
33 snoop_filter.o snoop_http.o snoop_icmp.o snoop_igmp.o snoop_ip.o \
34 snoop_ipaddr.o snoop_ipsec.o snoop_isis.o \
35 snoop_ldap.o snoop_mip.o snoop_mount.o \
36 snoop_nbp.o snoop_netbios.o snoop_nfs.o snoop_nfs3.o snoop_nfs4.o \
37 snoop_nfs_acl.o snoop_nis.o snoop_nlm.o snoop_ntp.o \
38 snoop_pf.o snoop_ospf.o snoop_ospf6.o snoop_pmap.o snoop_ppp.o \
39 snoop_pppoe.o snoop_rip.o snoop_rip6.o snoop_rpc.o snoop_rpcprint.o \
40 snoop_rpcsec.o snoop_rport.o snoop_rquota.o snoop_rstat.o snoop_rtmp.o \
41 snoop_sctp.o snoop_slp.o snoop_smb.o snoop_socks.o snoop_solarnet.o \
42 snoop_tcp.o snoop_tftp.o snoop_trill.o snoop_udp.o snoop_zip.o

44 SRCS= $(OBJS:.o=.c)
45 HDRS= snoop.h snoop_mip.h at.h snoop_ospf.h snoop_ospf6.h

47 include ../../../Makefile.cmd

49 CPPFLAGS += -I. -I$(SRC)/common/net/dhcp
50 LDLIBS += -ldhcputil -ldlpi -lsocket -lnsl -ltsol
51 LDFLAGS += $(MAPFILE.NGB:%=-M%)

53 .KEEP_STATE:

55 .PARALLEL: $(OBJS)

57 all: $(PROG)

59 $(PROG): $(OBJS) $(MAPFILE.NGB)

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/Makefile 2

60 $(LINK.c) -o $@ $(OBJS) $(LDLIBS)
61 $(POST_PROCESS)

63 install: all $(ROOTUSRSBINPROG)

65 clean:
66 $(RM) $(OBJS)

68 lint: lint_SRCS

70 include ../../../Makefile.targ

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop.h 1

**
 12779 Sat Aug 18 10:36:57 2012
new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop.h
dccp: snoop, build system fixes
**
______unchanged_portion_omitted_

121 /*
122 * Used to print nested protocol layers. For example, an ip datagram included
123 * in an icmp error, or a PPP packet included in an LCP protocol reject..
124 */
125 extern char *prot_nest_prefix;

127 extern char *get_sum_line(void);
128 extern char *get_detail_line(int, int);
129 extern int want_packet(uchar_t *, int, int);
130 extern void set_vlan_id(int);
131 extern struct timeval prev_time;
132 extern void process_pkt(struct sb_hdr *, char *, int, int);
133 extern char *getflag(int, int, char *, char *);
134 extern void show_header(char *, char *, int);
135 extern void show_count(void);
136 extern void xdr_init(char *, int);
137 extern char *get_line(int, int);
138 extern int get_line_remain(void);
139 extern char getxdr_char(void);
140 extern char showxdr_char(char *);
141 extern uchar_t getxdr_u_char(void);
142 extern uchar_t showxdr_u_char(char *);
143 extern short getxdr_short(void);
144 extern short showxdr_short(char *);
145 extern ushort_t getxdr_u_short(void);
146 extern ushort_t showxdr_u_short(char *);
147 extern long getxdr_long(void);
148 extern long showxdr_long(char *);
149 extern ulong_t getxdr_u_long(void);
150 extern ulong_t showxdr_u_long(char *);
151 extern longlong_t getxdr_longlong(void);
152 extern longlong_t showxdr_longlong(char *);
153 extern u_longlong_t getxdr_u_longlong(void);
154 extern u_longlong_t showxdr_u_longlong(char *);
155 extern char *getxdr_opaque(char *, int);
156 extern char *getxdr_string(char *, int);
157 extern char *showxdr_string(int, char *);
158 extern char *getxdr_bytes(uint_t *);
159 extern void xdr_skip(int);
160 extern int getxdr_pos(void);
161 extern void setxdr_pos(int);
162 extern char *getxdr_context(char *, int);
163 extern char *showxdr_context(char *);
164 extern enum_t getxdr_enum(void);
165 extern void show_space(void);
166 extern void show_trailer(void);
167 extern char *getxdr_date(void);
168 extern char *showxdr_date(char *);
169 extern char *getxdr_date_ns(void);
170 char *format_time(int64_t sec, uint32_t nsec);
171 extern char *showxdr_date_ns(char *);
172 extern char *getxdr_hex(int);
173 extern char *showxdr_hex(int, char *);
174 extern bool_t getxdr_bool(void);
175 extern bool_t showxdr_bool(char *);
176 extern char *concat_args(char **, int);
177 extern int pf_compile(char *, int);
178 extern void compile(char *, int);
179 extern void load_names(char *);

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop.h 2

180 extern void cap_write(struct sb_hdr *, char *, int, int);
181 extern void cap_open_read(const char *);
182 extern void cap_open_write(const char *);
183 extern void cap_read(int, int, int, void (*)(), int);
184 extern void cap_close(void);
185 extern boolean_t open_datalink(dlpi_handle_t *, const char *);
186 extern void init_datalink(dlpi_handle_t, ulong_t, ulong_t, struct timeval *,
187 struct Pf_ext_packetfilt *);
188 extern void net_read(dlpi_handle_t, size_t, int, void (*)(), int);
189 extern void click(int);
190 extern void show_pktinfo(int, int, char *, char *, struct timeval *,
191 struct timeval *, int, int);
192 extern void show_line(char *);
193 /*PRINTFLIKE1*/
194 extern void show_printf(char *fmt, ...)
195 __PRINTFLIKE(1);
196 extern char *getxdr_time(void);
197 extern char *showxdr_time(char *);
198 extern char *addrtoname(int, const void *);
199 extern char *show_string(const char *, int, int);
200 extern void pr_err(const char *, ...);
201 extern void pr_errdlpi(dlpi_handle_t, const char *, int);
202 extern void check_retransmit(char *, ulong_t);
203 extern char *nameof_prog(int);
204 extern char *getproto(int);
205 extern uint8_t print_ipv6_extensions(int, uint8_t **, uint8_t *, int *, int *);
206 extern void protoprint(int, int, ulong_t, int, int, int, char *, int);
207 extern char *getportname(int, in_port_t);

209 extern void interpret_arp(int, struct arphdr *, int);
210 extern void interpret_bparam(int, int, int, int, int, char *, int);
211 extern void interpret_dns(int, int, const uchar_t *, int, int);
212 extern void interpret_mount(int, int, int, int, int, char *, int);
213 extern void interpret_nfs(int, int, int, int, int, char *, int);
214 extern void interpret_nfs3(int, int, int, int, int, char *, int);
215 extern void interpret_nfs4(int, int, int, int, int, char *, int);
216 extern void interpret_nfs4_cb(int, int, int, int, int, char *, int);
217 extern void interpret_nfs_acl(int, int, int, int, int, char *, int);
218 extern void interpret_nis(int, int, int, int, int, char *, int);
219 extern void interpret_nisbind(int, int, int, int, int, char *, int);
220 extern void interpret_nlm(int, int, int, int, int, char *, int);
221 extern void interpret_pmap(int, int, int, int, int, char *, int);
222 extern int interpret_reserved(int, int, in_port_t, in_port_t, char *, int);
223 extern void interpret_rquota(int, int, int, int, int, char *, int);
224 extern void interpret_rstat(int, int, int, int, int, char *, int);
225 extern void interpret_solarnet_fw(int, int, int, int, int, char *, int);
226 extern void interpret_ldap(int, char *, int, int, int);
227 extern void interpret_icmp(int, struct icmp *, int, int);
228 extern void interpret_icmpv6(int, icmp6_t *, int, int);
229 extern int interpret_ip(int, const struct ip *, int);
230 extern int interpret_ipv6(int, const ip6_t *, int);
231 extern int interpret_ppp(int, uchar_t *, int);
232 extern int interpret_pppoe(int, poep_t *, int);
233 struct tcphdr;
234 extern int interpret_tcp(int, struct tcphdr *, int, int);
235 struct udphdr;
236 extern int interpret_udp(int, struct udphdr *, int, int);
237 extern int interpret_esp(int, uint8_t *, int, int);
238 extern int interpret_ah(int, uint8_t *, int, int);
239 struct sctp_hdr;
240 extern void interpret_sctp(int, struct sctp_hdr *, int, int);
241 struct dccphdr;
242 extern int interpret_dccp(int, struct dccphdr *, int, int);
243 #endif /* ! codereview */
244 extern void interpret_mip_cntrlmsg(int, uchar_t *, int);
245 struct dhcp;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop.h 3

246 extern int interpret_dhcp(int, struct dhcp *, int);
247 extern int interpret_dhcpv6(int, const uint8_t *, int);
248 struct tftphdr;
249 extern int interpret_tftp(int, struct tftphdr *, int);
250 extern int interpret_http(int, char *, int);
251 struct ntpdata;
252 extern int interpret_ntp(int, struct ntpdata *, int);
253 extern void interpret_netbios_ns(int, uchar_t *, int);
254 extern void interpret_netbios_datagram(int, uchar_t *, int);
255 extern void interpret_netbios_ses(int, uchar_t *, int);
256 extern void interpret_slp(int, char *, int);
257 struct rip;
258 extern int interpret_rip(int, struct rip *, int);
259 struct rip6;
260 extern int interpret_rip6(int, struct rip6 *, int);
261 extern int interpret_socks_call(int, char *, int);
262 extern int interpret_socks_reply(int, char *, int);
263 extern int interpret_trill(int, struct ether_header **, char *, int *);
264 extern int interpret_isis(int, char *, int, boolean_t);
265 extern int interpret_bpdu(int, char *, int);
266 extern void init_ldap(void);
267 extern boolean_t arp_for_ether(char *, struct ether_addr *);
268 extern char *ether_ouiname(uint32_t);
269 extern char *tohex(char *p, int len);
270 extern char *printether(struct ether_addr *);
271 extern char *print_ethertype(int);
272 extern const char *arp_htype(int);
273 extern int valid_rpc(char *, int);

275 /*
276 * Describes characteristics of the Media Access Layer.
277 * The mac_type is one of the supported DLPI media
278 * types (see <sys/dlpi.h>).
279 * The mtu_size is the size of the largest frame.
280 * network_type_offset is where the network type
281 * is located in the link layer header.
282 * The header length is returned by a function to
283 * allow for variable header size - for ethernet it’s
284 * just a constant 14 octets.
285 * The interpreter is the function that "knows" how
286 * to interpret the frame.
287 * try_kernel_filter tells snoop to first try a kernel
288 * filter (because the header size is fixed, or if it could
289 * be of variable size where the variable size is easy for a kernel
290 * filter to handle, for example, Ethernet and VLAN tags)
291 * and only use a user space filter if the filter expression
292 * cannot be expressed in kernel space.
293 */
294 typedef uint_t (interpreter_fn_t)(int, char *, int, int);
295 typedef uint_t (headerlen_fn_t)(char *, size_t);
296 typedef struct interface {
297 uint_t mac_type;
298 uint_t mtu_size;
299 uint_t network_type_offset;
300 size_t network_type_len;
301 uint_t network_type_ip;
302 uint_t network_type_ipv6;
303 headerlen_fn_t *header_len;
304 interpreter_fn_t *interpreter;
305 boolean_t try_kernel_filter;
306 } interface_t;

308 extern interface_t INTERFACES[], *interface;
309 extern char *dlc_header;
310 extern char *src_name, *dst_name;
311 extern char *prot_prefix;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop.h 4

312 extern char *prot_nest_prefix;
313 extern char *prot_title;

315 /* Keep track of how many nested IP headers we have. */
316 extern unsigned int encap_levels, total_encap_levels;

318 extern int quitting;
319 extern boolean_t Iflg, Pflg, rflg;

321 /*
322 * Global error recovery routine: used to reset snoop variables after
323 * catastrophic failure.
324 */
325 void snoop_recover(void);

327 /*
328 * Global alarm handler structure for managing multiple alarms within
329 * snoop.
330 */
331 typedef struct snoop_handler {
332 struct snoop_handler *s_next; /* next alarm handler */
333 time_t s_time; /* time to fire */
334 void (*s_handler)(); /* alarm handler */
335 } snoop_handler_t;

337 #define SNOOP_MAXRECOVER 20 /* maxium number of recoveries */
338 #define SNOOP_ALARM_GRAN 3 /* alarm() timeout multiplier */

340 /*
341 * Global alarm handler management routine.
342 */
343 extern int snoop_alarm(int s_sec, void (*s_handler)());

345 /*
346 * The next two definitions do not take into account the length
347 * of the underlying link header. In order to use them, you must
348 * add link_header_len to them. The reason it is not done here is
349 * that later these macros are used to initialize a table.
350 */
351 #define IPV4_TYPE_HEADER_OFFSET 9
352 #define IPV6_TYPE_HEADER_OFFSET 6

354 #ifdef __cplusplus
355 }
356 #endif

358 #endif /* _SNOOP_H */

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_dccp.c 1

**
 10243 Sat Aug 18 10:36:57 2012
new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_dccp.c
dccp: snoop, build system fixes
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Copyright 2012 David Hoeppner. All rights reserved.
25 */

27 #include <stdio.h>
28 #include <ctype.h>
29 #include <string.h>
30 #include <fcntl.h>
31 #include <string.h>
32 #include <sys/types.h>
33 #include <sys/time.h>

35 #include <sys/socket.h>
36 #include <sys/sockio.h>
37 #include <net/if.h>
38 #include <netinet/in_systm.h>
39 #include <netinet/in.h>
40 #include <netinet/ip.h>
41 #include <netinet/if_ether.h>
42 #include <netinet/dccp.h>
43 #include "snoop.h"

45 /*
46 * Snoop interpreter for DCCP (RFC4340)
47 *
48 */

50 extern char *dlc_header;

52 static char *get_type(uint8_t);
53 static void print_dccpoptions_summary(uchar_t *, uchar_t *);
54 static void print_dccpoptions(uchar_t *, uchar_t *);

56 static char *
57 get_type(uint8_t type)
58 {
59 switch (type) {
60 case 0:
61 return ("DCCP-Request");

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_dccp.c 2

62 case 1:
63 return ("DCCP-Response");
64 case 2:
65 return ("DCCP-Data");
66 case 3:
67 return ("DCCP-Ack");
68 case 4:
69 return ("DCCP-DataAck");
70 case 5:
71 return ("DCCP-CloseReq");
72 case 6:
73 return ("DCCP-Close");
74 case 7:
75 return ("DCCP-Reset");
76 case 8:
77 return ("DCCP-Sync");
78 case 9:
79 return ("DCCP-SyncAck");
80 case 10 ... 15:
81 return ("Reserved");

83 default:
84 return ("Unknown");
85 }
86 }

88 int
89 interpret_dccp(int flags, struct dccphdr *dccp, int iplen, int fraglen)
90 {
91 char *data;
92 char *line;
93 char *endline;
94 uint64_t seq;
95 uint64_t ack;
96 int hdrlen;
97 int dccplen;
98 int option_offset;
99 int i;

101 hdrlen = dccp->dh_offset * 4;
102 data = (char *)dccp + hdrlen;
103 dccplen = iplen - hdrlen;
104 fraglen -= hdrlen;

106 if (fraglen < 0) {
107 return (fraglen + hdrlen); /* Incomplete header */
108 }

110 if (fraglen > dccplen) {
111 fraglen = dccplen;
112 }

114 if (dccp->dh_x == 1) {
115 switch (dccp->dh_type) {
116 case 0: /* DCCP-Request */
117 option_offset = 20;
118 break;
119 case 1: /* DCCP-Response */
120 option_offset = 28;
121 break;
122 case 7: /* DCCP-Reset */
123 option_offset = 28;
124 break;
125 case 8: /* DCCP-Sync */
126 case 9: /* DCCP-SyncAck */
127 option_offset = 24;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_dccp.c 3

128 break;

130 default:
131 option_offset = 20;
132 break;
133 }

135 /* Sequence number */
136 seq = ntohs(dccp->dh_seq);
137 seq <<= 32;
138 seq += (uint32_t)dccp + sizeof (struct dccphdr);

140 ack = (uint32_t)(dccp + 16) & 0xffff;
141 } else {
142 switch (dccp->dh_type) {
143 case 0: /* DCCP-Request */
144 case 1: /* DCCP-Response */
145 case 7: /* DCCP-Reset */
146 case 8: /* DCCP-Sync */
147 case 9: /* DCCP-SyncAck */
148 break;

150 default:
151 option_offset = 20;
152 break;
153 }

155 /* Sequence number */
156 seq = dccp->dh_res_seq << 16;
157 seq |= ntohs(dccp->dh_seq);
158 }

160 if (flags & F_SUM) {
161 line = get_sum_line();
162 endline = line + MAXLINE;

164 (void) snprintf(line, endline - line, "DCCP D=%d S=%d",
165 ntohs(dccp->dh_dport), ntohs(dccp->dh_sport));
166 line += strlen(line);

168 (void) snprintf(line, endline - line, "CCval=%d CsCov=%d",
169 dccp->dh_ccval, dccp->dh_cscov);

171 (void) snprintf(line, endline - line, " Seq=%u Len=%d",
172 seq, dccplen);
173 line += strlen(line);

175 /*
176 * All packets except DCCP-Request and DCCP-Data carry
177 * an acknowledgement number.
178 */
179 if (dccp->dh_type != 0 && dccp->dh_type != 2) {
180 (void) snprintf(line, endline - line, " Ack=%u",
181 seq, dccplen);
182 }
183 line += strlen(line);

185 print_dccpoptions_summary((uchar_t *)dccp + option_offset,
186 (uchar_t *)dccp + dccp->dh_offset * 4);
187 }

190 if (flags & F_DTAIL) {
191 show_header("DCCP: ", "DCCP Header", dccplen);
192 show_space();

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_dccp.c 4

194 (void) sprintf(get_line((char *)(uintptr_t)dccp->dh_sport -
195 dlc_header, 2), "Source port = %d",
196 ntohs(dccp->dh_sport));

198 (void) sprintf(get_line((char *)(uintptr_t)dccp->dh_dport -
199 dlc_header, 2), "Destination port = %d",
200 ntohs(dccp->dh_dport));

202 (void) sprintf(get_line(((char *)(uintptr_t)dccp->dh_offset -
203 dlc_header) + 4, 1), "Data offset = %d bytes",
204 dccp->dh_offset * 4);

206 (void) sprintf(get_line(((char *)(uintptr_t)dccp->dh_ccval -
207 dlc_header) + 4, 1), "CCVal = %d",
208 dccp->dh_ccval);

210 (void) sprintf(get_line(((char *)(uintptr_t)dccp->dh_cscov -
211 dlc_header) + 4, 1), "Checksum coverage (CsCov) = %d",
212 dccp->dh_cscov);

214 (void) sprintf(get_line(((char *)(uintptr_t)dccp->dh_sum -
215 dlc_header) + 4, 1), "Checksum = 0x%04x",
216 ntohs(dccp->dh_sum));

218 (void) sprintf(get_line(((char *)(uintptr_t)dccp->dh_type -
219 dlc_header) + 4, 1), "Type = %d (%s)",
220 dccp->dh_type, get_type(dccp->dh_type));

222 (void) sprintf(get_line(((char *)(uintptr_t)dccp->dh_x -
223 dlc_header) + 4, 1), "Extended sequence numbers = %d",
224 dccp->dh_x);

226 (void) sprintf(get_line(((char *)(uintptr_t)dccp->dh_seq -
227 dlc_header) + 4, 1), "Sequence number = %d",
228 seq);

230 /*
231 * All packets except DCCP-Request and DCCP-Data carry
232 * an acknowledgement number.
233 */
234 if (dccp->dh_type != 0 && dccp->dh_type != 2) {
235 (void) sprintf(get_line(((char *)(uintptr_t)dccp->dh_seq -
236 dlc_header) + 4, 1), "Acknowledgement number = %d",
237 seq);
238 }

240 print_dccpoptions((uchar_t *)dccp + option_offset,
241 (uchar_t *)dccp + dccp->dh_offset * 4);

243 show_space();
244 }

246 return (dccplen);
247 }

249 static void
250 print_dccpoptions_summary(uchar_t *up, uchar_t *end)
251 {
252 uchar_t *value;
253 uint8_t option_type;
254 uint8_t option_length;
255 int len;
256 boolean_t mandatory = B_FALSE;

258 while (up != end) {
259 option_length = 0;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_dccp.c 5

260 option_type = *up++;

262 /*
263 * Is this a variable length option?
264 */
265 if (option_type > 31) {
266 option_length = *up++;
267 option_length -= 2;
268 value = up;

270 up += option_length;
271 }
272 switch (option_type) {
273 case 0: /* Padding */
274 break;
275 case 1: /* Mandatory */
276 mandatory = B_TRUE;
277 break;
278 case 2: /* Slow receiver */
279 break;
280 case 3 ... 31: /* Reserved */
281 break;
282 case 32: /* Change L */
283 break;
284 case 33: /* Confirm L */
285 break;
286 case 34: /* Change R */
287 break;
288 case 35: /* Confirm R */
289 break;
290 case 36: /* Init cookie */
291 break;
292 case 37: /* NDP count */
293 break;
294 case 38: /* Ack Vector 0 */
295 break;
296 case 39: /* Ack vector 1 */
297 break;
298 case 40: /* Data dropped */
299 break;
300 case 41: /* Timestamp */
301 break;
302 case 42: /* Timestamp echo */
303 break;
304 case 43: /* Elapsed time */
305 break;
306 case 44: /* Data checksum */
307 break;

309 default:
310 break;
311 }

313 if (option_type != 1) {
314 mandatory = B_FALSE;
315 }
316 }
317 }

319 static void
320 print_dccpoptions(uchar_t *up, uchar_t *end)
321 {
322 uchar_t *value;
323 uint8_t option_type;
324 uint8_t option_length;
325 int len;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_dccp.c 6

326 boolean_t mandatory = B_FALSE;

328 if (up == end) {
329 (void) sprintf(get_line((char *)&up - dlc_header, 1),
330 "No options");
331 return;
332 }

334 (void) sprintf(get_line((char *)&up - dlc_header, 1),
335 "Options: (%d bytes)", (int)(end - up));

337 while (up != end) {
338 option_length = 0;
339 option_type = *up++;

341 /*
342 * Is this a variable length option?
343 */
344 if (option_type > 31) {
345 option_length = *up++;
346 option_length -= 2;
347 value = up;

349 up += option_length;
350 }

352 switch (option_type) {
353 case 0: /* Padding */
354 (void) sprintf(get_line(((char *)(uintptr_t)up -
355 dlc_header) + 4, 1), "Padding");
356 break;
357 case 1: /* Mandatory */
358 (void) sprintf(get_line(((char *)(uintptr_t)up -
359 dlc_header) + 4, 1), "Mandatory");
360 mandatory = B_TRUE;
361 break;
362 case 2: /* Slow receiver */
363 (void) sprintf(get_line(((char *)(uintptr_t)up -
364 dlc_header) + 4, 1), "Slow receiver");
365 break;
366 case 3 ... 31: /* Reserved */
367 (void) sprintf(get_line(((char *)(uintptr_t)up -
368 dlc_header) + 4, 1), "Reserved");
369 break;
370 case 32: /* Change L */
371 (void) sprintf(get_line(((char *)(uintptr_t)up -
372 dlc_header) + 4, 1), "Change L");
373 break;
374 case 33: /* Confirm L */
375 (void) sprintf(get_line(((char *)(uintptr_t)up -
376 dlc_header) + 4, 1), "Confirm L");
377 break;
378 case 34: /* Change R */
379 (void) sprintf(get_line(((char *)(uintptr_t)up -
380 dlc_header) + 4, 1), "Change R");
381 break;
382 case 35: /* Confirm R */
383 (void) sprintf(get_line(((char *)(uintptr_t)up -
384 dlc_header) + 4, 1), "Confirm R");
385 break;
386 case 36: /* Init cookie */
387 (void) sprintf(get_line(((char *)(uintptr_t)up -
388 dlc_header) + 4, 1), "Init cookie");
389 break;
390 case 37: /* NDP count */
391 (void) sprintf(get_line(((char *)(uintptr_t)up -

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_dccp.c 7

392 dlc_header) + 4, 1), "NDP count");
393 break;
394 case 38: /* Ack vector 0 */
395 (void) sprintf(get_line(((char *)(uintptr_t)up -
396 dlc_header) + 4, 1), "Ack vector 0");
397 break;
398 case 39: /* Ack vector 1 */
399 (void) sprintf(get_line(((char *)(uintptr_t)up -
400 dlc_header) + 4, 1), "Ack vector 1");
401 break;
402 case 40: /* Data dropped */
403 (void) sprintf(get_line(((char *)(uintptr_t)up -
404 dlc_header) + 4, 1), "Data dropped");
405 break;
406 case 41: /* Timestamp */
407 (void) sprintf(get_line(((char *)(uintptr_t)up -
408 dlc_header) + 4, 1), "Timestamp");
409 break;
410 case 42: /* Timestamp echo */
411 (void) sprintf(get_line(((char *)(uintptr_t)up -
412 dlc_header) + 4, 1), "TImestamp echo");
413 break;
414 case 43: /* Elapsed time */
415 (void) sprintf(get_line(((char *)(uintptr_t)up -
416 dlc_header) + 4, 1), "Elapsed time");
417 break;
418 case 44: /* Data checksum */
419 (void) sprintf(get_line(((char *)(uintptr_t)up -
420 dlc_header) + 4, 1), "Data checksum");
421 break;

423 default:
424 (void) sprintf(get_line(((char *)(uintptr_t)up -
425 dlc_header) + 4, 1), "Unknown");
426 break;
427 }

429 if (option_type != 1) {
430 mandatory = B_FALSE;
431 }
432 }
433 }
434 #endif /* ! codereview */

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 1

**
 63156 Sat Aug 18 10:36:58 2012
new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c
dccp: options and features
**
______unchanged_portion_omitted_

1322 static match_type_t ether_match_types[] = {
1323 /*
1324 * Table initialized assuming Ethernet data link headers.
1325 * m_offset is an offset beyond the offset op, which is why
1326 * the offset is zero for when snoop needs to check an ethertype.
1327 */
1328 "ip", 0, 2, ETHERTYPE_IP, -1, OP_OFFSET_ETHERTYPE,
1329 "ip6", 0, 2, ETHERTYPE_IPV6, -1, OP_OFFSET_ETHERTYPE,
1330 "arp", 0, 2, ETHERTYPE_ARP, -1, OP_OFFSET_ETHERTYPE,
1331 "rarp", 0, 2, ETHERTYPE_REVARP, -1, OP_OFFSET_ETHERTYPE,
1332 "pppoed", 0, 2, ETHERTYPE_PPPOED, -1, OP_OFFSET_ETHERTYPE,
1333 "pppoes", 0, 2, ETHERTYPE_PPPOES, -1, OP_OFFSET_ETHERTYPE,
1334 "tcp", 9, 1, IPPROTO_TCP, 0, OP_OFFSET_LINK,
1335 "tcp", 6, 1, IPPROTO_TCP, 1, OP_OFFSET_LINK,
1336 "udp", 9, 1, IPPROTO_UDP, 0, OP_OFFSET_LINK,
1337 "udp", 6, 1, IPPROTO_UDP, 1, OP_OFFSET_LINK,
1338 "icmp", 9, 1, IPPROTO_ICMP, 0, OP_OFFSET_LINK,
1339 "icmp6", 6, 1, IPPROTO_ICMPV6, 1, OP_OFFSET_LINK,
1340 "ospf", 9, 1, IPPROTO_OSPF, 0, OP_OFFSET_LINK,
1341 "ospf", 6, 1, IPPROTO_OSPF, 1, OP_OFFSET_LINK,
1342 "ip-in-ip", 9, 1, IPPROTO_ENCAP, 0, OP_OFFSET_LINK,
1343 "esp", 9, 1, IPPROTO_ESP, 0, OP_OFFSET_LINK,
1344 "esp", 6, 1, IPPROTO_ESP, 1, OP_OFFSET_LINK,
1345 "ah", 9, 1, IPPROTO_AH, 0, OP_OFFSET_LINK,
1346 "ah", 6, 1, IPPROTO_AH, 1, OP_OFFSET_LINK,
1347 "sctp", 9, 1, IPPROTO_SCTP, 0, OP_OFFSET_LINK,
1348 "sctp", 6, 1, IPPROTO_SCTP, 1, OP_OFFSET_LINK,
1349 "dccp", 9, 1, IPPROTO_DCCP, 0, OP_OFFSET_LINK,
1350 "dccp", 6, 1, IPPROTO_DCCP, 1, OP_OFFSET_LINK,
1351 #endif /* ! codereview */
1352 0, 0, 0, 0, 0, 0
1353 };

1355 static match_type_t ipnet_match_types[] = {
1356 /*
1357 * Table initialized assuming Ethernet data link headers.
1358 * m_offset is an offset beyond the offset op, which is why
1359 * the offset is zero for when snoop needs to check an ethertype.
1360 */
1361 "ip", 0, 1, IPV4_VERSION, -1, OP_OFFSET_ETHERTYPE,
1362 "ip6", 0, 1, IPV6_VERSION, -1, OP_OFFSET_ETHERTYPE,
1363 "tcp", 9, 1, IPPROTO_TCP, 0, OP_OFFSET_LINK,
1364 "tcp", 6, 1, IPPROTO_TCP, 1, OP_OFFSET_LINK,
1365 "udp", 9, 1, IPPROTO_UDP, 0, OP_OFFSET_LINK,
1366 "udp", 6, 1, IPPROTO_UDP, 1, OP_OFFSET_LINK,
1367 "icmp", 9, 1, IPPROTO_ICMP, 0, OP_OFFSET_LINK,
1368 "icmp6", 6, 1, IPPROTO_ICMPV6, 1, OP_OFFSET_LINK,
1369 "ospf", 9, 1, IPPROTO_OSPF, 0, OP_OFFSET_LINK,
1370 "ospf", 6, 1, IPPROTO_OSPF, 1, OP_OFFSET_LINK,
1371 "ip-in-ip", 9, 1, IPPROTO_ENCAP, 0, OP_OFFSET_LINK,
1372 "esp", 9, 1, IPPROTO_ESP, 0, OP_OFFSET_LINK,
1373 "esp", 6, 1, IPPROTO_ESP, 1, OP_OFFSET_LINK,
1374 "ah", 9, 1, IPPROTO_AH, 0, OP_OFFSET_LINK,
1375 "ah", 6, 1, IPPROTO_AH, 1, OP_OFFSET_LINK,
1376 "sctp", 9, 1, IPPROTO_SCTP, 0, OP_OFFSET_LINK,
1377 "sctp", 6, 1, IPPROTO_SCTP, 1, OP_OFFSET_LINK,
1378 "dccp", 9, 1, IPPROTO_DCCP, 0, OP_OFFSET_LINK,
1379 "dccp", 6, 1, IPPROTO_DCCP, 1, OP_OFFSET_LINK,
1380 #endif /* ! codereview */

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 2

1381 0, 0, 0, 0, 0, 0
1382 };

1384 static match_type_t iptun_match_types[] = {
1385 "ip", 0, 1, IPPROTO_ENCAP, -1, OP_OFFSET_ETHERTYPE,
1386 "ip6", 0, 1, IPPROTO_IPV6, -1, OP_OFFSET_ETHERTYPE,
1387 "tcp", 9, 1, IPPROTO_TCP, 0, OP_OFFSET_LINK,
1388 "tcp", 6, 1, IPPROTO_TCP, 1, OP_OFFSET_LINK,
1389 "udp", 9, 1, IPPROTO_UDP, 0, OP_OFFSET_LINK,
1390 "udp", 6, 1, IPPROTO_UDP, 1, OP_OFFSET_LINK,
1391 "icmp", 9, 1, IPPROTO_ICMP, 0, OP_OFFSET_LINK,
1392 "icmp6", 6, 1, IPPROTO_ICMPV6, 1, OP_OFFSET_LINK,
1393 "ospf", 9, 1, IPPROTO_OSPF, 0, OP_OFFSET_LINK,
1394 "ospf", 6, 1, IPPROTO_OSPF, 1, OP_OFFSET_LINK,
1395 "ip-in-ip", 9, 1, IPPROTO_ENCAP, 0, OP_OFFSET_LINK,
1396 "esp", 9, 1, IPPROTO_ESP, 0, OP_OFFSET_LINK,
1397 "esp", 6, 1, IPPROTO_ESP, 1, OP_OFFSET_LINK,
1398 "ah", 9, 1, IPPROTO_AH, 0, OP_OFFSET_LINK,
1399 "ah", 6, 1, IPPROTO_AH, 1, OP_OFFSET_LINK,
1400 "sctp", 9, 1, IPPROTO_SCTP, 0, OP_OFFSET_LINK,
1401 "sctp", 6, 1, IPPROTO_SCTP, 1, OP_OFFSET_LINK,
1402 "dccp", 9, 1, IPPROTO_DCCP, 0, OP_OFFSET_LINK,
1403 "dccp", 6, 1, IPPROTO_DCCP, 1, OP_OFFSET_LINK,
1404 #endif /* ! codereview */
1405 0, 0, 0, 0, 0, 0
1406 };

1408 static void
1409 generate_check(match_type_t match_types[], int index, int type)
1410 {
1411 match_type_t *mtp = &match_types[index];
1412 /*
1413 * Note: this code assumes the above dependencies are
1414 * not cyclic. This *should* always be true.
1415 */
1416 if (mtp->m_depend != -1)
1417 generate_check(match_types, mtp->m_depend, type);

1419 emitop(mtp->m_optype);
1420 load_value(mtp->m_offset, mtp->m_size);
1421 load_const(mtp->m_value);
1422 emitop(OP_OFFSET_POP);

1424 emitop(OP_EQ);

1426 if (mtp->m_depend != -1)
1427 emitop(OP_AND);
1428 }

1430 /*
1431 * Generate code based on the keyword argument.
1432 * This word is looked up in the match_types table
1433 * and checks a field within the packet for a given
1434 * value e.g. ether or ip type field. The match
1435 * can also have a dependency on another entry e.g.
1436 * "tcp" requires that the packet also be "ip".
1437 */
1438 static int
1439 comparison(char *s)
1440 {
1441 unsigned int i, n_checks = 0;
1442 match_type_t *match_types;

1444 switch (interface->mac_type) {
1445 case DL_ETHER:
1446 match_types = ether_match_types;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 3

1447 break;
1448 case DL_IPNET:
1449 match_types = ipnet_match_types;
1450 break;
1451 case DL_IPV4:
1452 case DL_IPV6:
1453 case DL_6TO4:
1454 match_types = iptun_match_types;
1455 break;
1456 default:
1457 return (0);
1458 }

1460 for (i = 0; match_types[i].m_name != NULL; i++) {
1461 if (strcmp(s, match_types[i].m_name) != 0)
1462 continue;

1464 n_checks++;
1465 generate_check(match_types, i, interface->mac_type);
1466 if (n_checks > 1)
1467 emitop(OP_OR);
1468 }

1470 return (n_checks > 0);
1471 }

1473 enum direction { ANY, TO, FROM };
1474 enum direction dir;

1476 /*
1477 * Generate code to match an IP address. The address
1478 * may be supplied either as a hostname or in dotted format.
1479 * For source packets both the IP source address and ARP
1480 * src are checked.
1481 * Note: we don’t check packet type here - whether IP or ARP.
1482 * It’s possible that we’ll do an improper match.
1483 */
1484 static void
1485 ipaddr_match(enum direction which, char *hostname, int inet_type)
1486 {
1487 bool_t found_host;
1488 int m = 0, n = 0;
1489 uint_t *addr4ptr;
1490 uint_t addr4;
1491 struct in6_addr *addr6ptr;
1492 int h_addr_index;
1493 struct hostent *hp = NULL;
1494 int error_num = 0;
1495 boolean_t freehp = B_FALSE;
1496 boolean_t first = B_TRUE;

1498 /*
1499 * The addr4offset and addr6offset variables simplify the code which
1500 * generates the address comparison filter. With these two variables,
1501 * duplicate code need not exist for the TO and FROM case.
1502 * A value of -1 describes the ANY case (TO and FROM).
1503 */
1504 int addr4offset;
1505 int addr6offset;

1507 found_host = 0;

1509 if (tokentype == ADDR_IP) {
1510 hp = lgetipnodebyname(hostname, AF_INET, 0, &error_num);
1511 if (hp == NULL) {
1512 hp = getipnodebyname(hostname, AF_INET, 0, &error_num);

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 4

1513 freehp = 1;
1514 }
1515 if (hp == NULL) {
1516 if (error_num == TRY_AGAIN) {
1517 pr_err("couldn’t resolve %s (try again later)",
1518 hostname);
1519 } else {
1520 pr_err("couldn’t resolve %s", hostname);
1521 }
1522 }
1523 inet_type = IPV4_ONLY;
1524 } else if (tokentype == ADDR_IP6) {
1525 hp = lgetipnodebyname(hostname, AF_INET6, 0, &error_num);
1526 if (hp == NULL) {
1527 hp = getipnodebyname(hostname, AF_INET6, 0, &error_num);
1528 freehp = 1;
1529 }
1530 if (hp == NULL) {
1531 if (error_num == TRY_AGAIN) {
1532 pr_err("couldn’t resolve %s (try again later)",
1533 hostname);
1534 } else {
1535 pr_err("couldn’t resolve %s", hostname);
1536 }
1537 }
1538 inet_type = IPV6_ONLY;
1539 } else {
1540 /* Some hostname i.e. tokentype is ALPHA */
1541 switch (inet_type) {
1542 case IPV4_ONLY:
1543 /* Only IPv4 address is needed */
1544 hp = lgetipnodebyname(hostname, AF_INET, 0, &error_num);
1545 if (hp == NULL) {
1546 hp = getipnodebyname(hostname, AF_INET, 0,
1547 &error_num);
1548 freehp = 1;
1549 }
1550 if (hp != NULL) {
1551 found_host = 1;
1552 }
1553 break;
1554 case IPV6_ONLY:
1555 /* Only IPv6 address is needed */
1556 hp = lgetipnodebyname(hostname, AF_INET6, 0,
1557 &error_num);
1558 if (hp == NULL) {
1559 hp = getipnodebyname(hostname, AF_INET6, 0,
1560 &error_num);
1561 freehp = 1;
1562 }
1563 if (hp != NULL) {
1564 found_host = 1;
1565 }
1566 break;
1567 case IPV4_AND_IPV6:
1568 /* Both IPv4 and IPv6 are needed */
1569 hp = lgetipnodebyname(hostname, AF_INET6,
1570 AI_ALL | AI_V4MAPPED, &error_num);
1571 if (hp == NULL) {
1572 hp = getipnodebyname(hostname, AF_INET6,
1573 AI_ALL | AI_V4MAPPED, &error_num);
1574 freehp = 1;
1575 }
1576 if (hp != NULL) {
1577 found_host = 1;
1578 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 5

1579 break;
1580 default:
1581 found_host = 0;
1582 }

1584 if (!found_host) {
1585 if (error_num == TRY_AGAIN) {
1586 pr_err("could not resolve %s (try again later)",
1587 hostname);
1588 } else {
1589 pr_err("could not resolve %s", hostname);
1590 }
1591 }
1592 }

1594 switch (which) {
1595 case TO:
1596 addr4offset = IPV4_DSTADDR_OFFSET;
1597 addr6offset = IPV6_DSTADDR_OFFSET;
1598 break;
1599 case FROM:
1600 addr4offset = IPV4_SRCADDR_OFFSET;
1601 addr6offset = IPV6_SRCADDR_OFFSET;
1602 break;
1603 case ANY:
1604 addr4offset = -1;
1605 addr6offset = -1;
1606 break;
1607 }

1609 /*
1610 * The code below generates the filter.
1611 */
1612 if (hp != NULL && hp->h_addrtype == AF_INET) {
1613 ethertype_match(interface->network_type_ip);
1614 emitop(OP_BRFL);
1615 n = chain(n);
1616 emitop(OP_OFFSET_LINK);
1617 h_addr_index = 0;
1618 addr4ptr = (uint_t *)hp->h_addr_list[h_addr_index];
1619 while (addr4ptr != NULL) {
1620 if (addr4offset == -1) {
1621 compare_addr_v4(IPV4_SRCADDR_OFFSET, 4,
1622 *addr4ptr);
1623 emitop(OP_BRTR);
1624 m = chain(m);
1625 compare_addr_v4(IPV4_DSTADDR_OFFSET, 4,
1626 *addr4ptr);
1627 } else {
1628 compare_addr_v4(addr4offset, 4, *addr4ptr);
1629 }
1630 addr4ptr = (uint_t *)hp->h_addr_list[++h_addr_index];
1631 if (addr4ptr != NULL) {
1632 emitop(OP_BRTR);
1633 m = chain(m);
1634 }
1635 }
1636 if (m != 0) {
1637 resolve_chain(m);
1638 }
1639 emitop(OP_OFFSET_POP);
1640 resolve_chain(n);
1641 } else {
1642 /* first pass: IPv4 addresses */
1643 h_addr_index = 0;
1644 addr6ptr = (struct in6_addr *)hp->h_addr_list[h_addr_index];

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 6

1645 first = B_TRUE;
1646 while (addr6ptr != NULL) {
1647 if (IN6_IS_ADDR_V4MAPPED(addr6ptr)) {
1648 if (first) {
1649 ethertype_match(
1650 interface->network_type_ip);
1651 emitop(OP_BRFL);
1652 n = chain(n);
1653 emitop(OP_OFFSET_LINK);
1654 first = B_FALSE;
1655 } else {
1656 emitop(OP_BRTR);
1657 m = chain(m);
1658 }
1659 IN6_V4MAPPED_TO_INADDR(addr6ptr,
1660 (struct in_addr *)&addr4);
1661 if (addr4offset == -1) {
1662 compare_addr_v4(IPV4_SRCADDR_OFFSET, 4,
1663 addr4);
1664 emitop(OP_BRTR);
1665 m = chain(m);
1666 compare_addr_v4(IPV4_DSTADDR_OFFSET, 4,
1667 addr4);
1668 } else {
1669 compare_addr_v4(addr4offset, 4, addr4);
1670 }
1671 }
1672 addr6ptr = (struct in6_addr *)
1673 hp->h_addr_list[++h_addr_index];
1674 }
1675 /* second pass: IPv6 addresses */
1676 h_addr_index = 0;
1677 addr6ptr = (struct in6_addr *)hp->h_addr_list[h_addr_index];
1678 first = B_TRUE;
1679 while (addr6ptr != NULL) {
1680 if (!IN6_IS_ADDR_V4MAPPED(addr6ptr)) {
1681 if (first) {
1682 /*
1683 * bypass check for IPv6 addresses
1684 * when we have an IPv4 packet
1685 */
1686 if (n != 0) {
1687 emitop(OP_BRTR);
1688 m = chain(m);
1689 emitop(OP_BRFL);
1690 m = chain(m);
1691 resolve_chain(n);
1692 n = 0;
1693 }
1694 ethertype_match(
1695 interface->network_type_ipv6);
1696 emitop(OP_BRFL);
1697 n = chain(n);
1698 emitop(OP_OFFSET_LINK);
1699 first = B_FALSE;
1700 } else {
1701 emitop(OP_BRTR);
1702 m = chain(m);
1703 }
1704 if (addr6offset == -1) {
1705 compare_addr_v6(IPV6_SRCADDR_OFFSET,
1706 16, *addr6ptr);
1707 emitop(OP_BRTR);
1708 m = chain(m);
1709 compare_addr_v6(IPV6_DSTADDR_OFFSET,
1710 16, *addr6ptr);

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 7

1711 } else {
1712 compare_addr_v6(addr6offset, 16,
1713 *addr6ptr);
1714 }
1715 }
1716 addr6ptr = (struct in6_addr *)
1717 hp->h_addr_list[++h_addr_index];
1718 }
1719 if (m != 0) {
1720 resolve_chain(m);
1721 }
1722 emitop(OP_OFFSET_POP);
1723 resolve_chain(n);
1724 }

1726 /* only free struct hostent returned by getipnodebyname() */
1727 if (freehp) {
1728 freehostent(hp);
1729 }
1730 }

1732 /*
1733 * Match on zoneid. The arg zone passed in is in network byte order.
1734 */
1735 static void
1736 zone_match(enum direction which, uint32_t zone)
1737 {

1739 switch (which) {
1740 case TO:
1741 compare_value_zone(IPNET_DSTZONE_OFFSET, zone);
1742 break;
1743 case FROM:
1744 compare_value_zone(IPNET_SRCZONE_OFFSET, zone);
1745 break;
1746 case ANY:
1747 compare_value_zone(IPNET_SRCZONE_OFFSET, zone);
1748 compare_value_zone(IPNET_DSTZONE_OFFSET, zone);
1749 emitop(OP_OR);
1750 }
1751 }

1753 /*
1754 * Generate code to match an AppleTalk address. The address
1755 * must be given as two numbers with a dot between
1756 *
1757 */
1758 static void
1759 ataddr_match(enum direction which, char *hostname)
1760 {
1761 uint_t net;
1762 uint_t node;
1763 uint_t m, n;

1765 sscanf(hostname, "%u.%u", &net, &node);

1767 emitop(OP_OFFSET_LINK);
1768 switch (which) {
1769 case TO:
1770 compare_value(AT_DST_NET_OFFSET, 2, net);
1771 emitop(OP_BRFL);
1772 m = chain(0);
1773 compare_value(AT_DST_NODE_OFFSET, 1, node);
1774 resolve_chain(m);
1775 break;
1776 case FROM:

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 8

1777 compare_value(AT_SRC_NET_OFFSET, 2, net);
1778 emitop(OP_BRFL);
1779 m = chain(0);
1780 compare_value(AT_SRC_NODE_OFFSET, 1, node);
1781 resolve_chain(m);
1782 break;
1783 case ANY:
1784 compare_value(AT_DST_NET_OFFSET, 2, net);
1785 emitop(OP_BRFL);
1786 m = chain(0);
1787 compare_value(AT_DST_NODE_OFFSET, 1, node);
1788 resolve_chain(m);
1789 emitop(OP_BRTR);
1790 n = chain(0);
1791 compare_value(AT_SRC_NET_OFFSET, 2, net);
1792 emitop(OP_BRFL);
1793 m = chain(0);
1794 compare_value(AT_SRC_NODE_OFFSET, 1, node);
1795 resolve_chain(m);
1796 resolve_chain(n);
1797 break;
1798 }
1799 emitop(OP_OFFSET_POP);
1800 }

1802 /*
1803 * Compare ethernet addresses. The address may
1804 * be provided either as a hostname or as a
1805 * 6 octet colon-separated address.
1806 */
1807 static void
1808 etheraddr_match(enum direction which, char *hostname)
1809 {
1810 uint_t addr;
1811 ushort_t *addrp;
1812 int to_offset, from_offset;
1813 struct ether_addr e, *ep = NULL;
1814 int m;

1816 /*
1817 * First, check the interface type for whether src/dest address
1818 * is determinable; if not, retreat early.
1819 */
1820 switch (interface->mac_type) {
1821 case DL_ETHER:
1822 from_offset = ETHERADDRL;
1823 to_offset = 0;
1824 break;

1826 case DL_IB:
1827 /*
1828 * If an ethernet address is attempted to be used
1829 * on an IPoIB interface, flag error. Link address
1830 * based filtering is unsupported on IPoIB, so there
1831 * is no ipibaddr_match() or parsing support for IPoIB
1832 * 20 byte link addresses.
1833 */
1834 pr_err("filter option unsupported on media");
1835 break;

1837 case DL_FDDI:
1838 from_offset = 7;
1839 to_offset = 1;
1840 break;

1842 default:

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 9

1843 /*
1844 * Where do we find "ether" address for FDDI & TR?
1845 * XXX can improve? ~sparker
1846 */
1847 load_const(1);
1848 return;
1849 }

1851 if (isxdigit(*hostname))
1852 ep = ether_aton(hostname);
1853 if (ep == NULL) {
1854 if (ether_hostton(hostname, &e))
1855 if (!arp_for_ether(hostname, &e))
1856 pr_err("cannot obtain ether addr for %s",
1857 hostname);
1858 ep = &e;
1859 }
1860 memcpy(&addr, (ushort_t *)ep, 4);
1861 addrp = (ushort_t *)ep + 2;

1863 emitop(OP_OFFSET_ZERO);
1864 switch (which) {
1865 case TO:
1866 compare_value(to_offset, 4, ntohl(addr));
1867 emitop(OP_BRFL);
1868 m = chain(0);
1869 compare_value(to_offset + 4, 2, ntohs(*addrp));
1870 resolve_chain(m);
1871 break;
1872 case FROM:
1873 compare_value(from_offset, 4, ntohl(addr));
1874 emitop(OP_BRFL);
1875 m = chain(0);
1876 compare_value(from_offset + 4, 2, ntohs(*addrp));
1877 resolve_chain(m);
1878 break;
1879 case ANY:
1880 compare_value(to_offset, 4, ntohl(addr));
1881 compare_value(to_offset + 4, 2, ntohs(*addrp));
1882 emitop(OP_AND);
1883 emitop(OP_BRTR);
1884 m = chain(0);

1886 compare_value(from_offset, 4, ntohl(addr));
1887 compare_value(from_offset + 4, 2, ntohs(*addrp));
1888 emitop(OP_AND);
1889 resolve_chain(m);
1890 break;
1891 }
1892 emitop(OP_OFFSET_POP);
1893 }

1895 static void
1896 ethertype_match(int val)
1897 {
1898 int ether_offset = interface->network_type_offset;

1900 /*
1901 * If the user is interested in ethertype VLAN,
1902 * then we need to set the offset to the beginning of the packet.
1903 * But if the user is interested in another ethertype,
1904 * such as IPv4, then we need to take into consideration
1905 * the fact that the packet might be VLAN tagged.
1906 */
1907 if (interface->mac_type == DL_ETHER ||
1908 interface->mac_type == DL_CSMACD) {

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 10

1909 if (val != ETHERTYPE_VLAN) {
1910 /*
1911 * OP_OFFSET_ETHERTYPE puts us at the ethertype
1912 * field whether or not there is a VLAN tag,
1913 * so ether_offset goes to zero if we get here.
1914 */
1915 emitop(OP_OFFSET_ETHERTYPE);
1916 ether_offset = 0;
1917 } else {
1918 emitop(OP_OFFSET_ZERO);
1919 }
1920 }
1921 compare_value(ether_offset, interface->network_type_len, val);
1922 if (interface->mac_type == DL_ETHER ||
1923 interface->mac_type == DL_CSMACD) {
1924 emitop(OP_OFFSET_POP);
1925 }
1926 }

1928 /*
1929 * Match a network address. The host part
1930 * is masked out. The network address may
1931 * be supplied either as a netname or in
1932 * IP dotted format. The mask to be used
1933 * for the comparison is assumed from the
1934 * address format (see comment below).
1935 */
1936 static void
1937 netaddr_match(enum direction which, char *netname)
1938 {
1939 uint_t addr;
1940 uint_t mask = 0xff000000;
1941 uint_t m;
1942 struct netent *np;

1944 if (isdigit(*netname)) {
1945 addr = inet_network(netname);
1946 } else {
1947 np = getnetbyname(netname);
1948 if (np == NULL)
1949 pr_err("net %s not known", netname);
1950 addr = np->n_net;
1951 }

1953 /*
1954 * Left justify the address and figure
1955 * out a mask based on the supplied address.
1956 * Set the mask according to the number of zero
1957 * low-order bytes.
1958 * Note: this works only for whole octet masks.
1959 */
1960 if (addr) {
1961 while ((addr & ~mask) != 0) {
1962 mask |= (mask >> 8);
1963 }
1964 }

1966 emitop(OP_OFFSET_LINK);
1967 switch (which) {
1968 case TO:
1969 compare_value_mask(16, 4, addr, mask);
1970 break;
1971 case FROM:
1972 compare_value_mask(12, 4, addr, mask);
1973 break;
1974 case ANY:

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 11

1975 compare_value_mask(12, 4, addr, mask);
1976 emitop(OP_BRTR);
1977 m = chain(0);
1978 compare_value_mask(16, 4, addr, mask);
1979 resolve_chain(m);
1980 break;
1981 }
1982 emitop(OP_OFFSET_POP);
1983 }

1985 /*
1986 * Match either a UDP or TCP port number.
1987 * The port number may be provided either as
1988 * port name as listed in /etc/services ("nntp") or as
1989 * the port number itself (2049).
1990 */
1991 static void
1992 port_match(enum direction which, char *portname)
1993 {
1994 struct servent *sp;
1995 uint_t m, port;

1997 if (isdigit(*portname)) {
1998 port = atoi(portname);
1999 } else {
2000 sp = getservbyname(portname, NULL);
2001 if (sp == NULL)
2002 pr_err("invalid port number or name: %s", portname);
2003 port = ntohs(sp->s_port);
2004 }

2006 emitop(OP_OFFSET_IP);

2008 switch (which) {
2009 case TO:
2010 compare_value(2, 2, port);
2011 break;
2012 case FROM:
2013 compare_value(0, 2, port);
2014 break;
2015 case ANY:
2016 compare_value(2, 2, port);
2017 emitop(OP_BRTR);
2018 m = chain(0);
2019 compare_value(0, 2, port);
2020 resolve_chain(m);
2021 break;
2022 }
2023 emitop(OP_OFFSET_POP);
2024 }

2026 /*
2027 * Generate code to match packets with a specific
2028 * RPC program number. If the progname is a name
2029 * it is converted to a number via /etc/rpc.
2030 * The program version and/or procedure may be provided
2031 * as extra qualifiers.
2032 */
2033 static void
2034 rpc_match_prog(enum direction which, char *progname, int vers, int proc)
2035 {
2036 struct rpcent *rpc;
2037 uint_t prog;
2038 uint_t m, n;

2040 if (isdigit(*progname)) {

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 12

2041 prog = atoi(progname);
2042 } else {
2043 rpc = (struct rpcent *)getrpcbyname(progname);
2044 if (rpc == NULL)
2045 pr_err("invalid program name: %s", progname);
2046 prog = rpc->r_number;
2047 }

2049 emitop(OP_OFFSET_RPC);
2050 emitop(OP_BRFL);
2051 n = chain(0);

2053 compare_value(12, 4, prog);
2054 emitop(OP_BRFL);
2055 m = chain(0);
2056 if (vers >= 0) {
2057 compare_value(16, 4, vers);
2058 emitop(OP_BRFL);
2059 m = chain(m);
2060 }
2061 if (proc >= 0) {
2062 compare_value(20, 4, proc);
2063 emitop(OP_BRFL);
2064 m = chain(m);
2065 }

2067 switch (which) {
2068 case TO:
2069 compare_value(4, 4, CALL);
2070 emitop(OP_BRFL);
2071 m = chain(m);
2072 break;
2073 case FROM:
2074 compare_value(4, 4, REPLY);
2075 emitop(OP_BRFL);
2076 m = chain(m);
2077 break;
2078 }
2079 resolve_chain(m);
2080 resolve_chain(n);
2081 emitop(OP_OFFSET_POP);
2082 }

2084 /*
2085 * Generate code to parse a field specification
2086 * and load the value of the field from the packet
2087 * onto the operand stack.
2088 * The field offset may be specified relative to the
2089 * beginning of the ether header, IP header, UDP header,
2090 * or TCP header. An optional size specification may
2091 * be provided following a colon. If no size is given
2092 * one byte is assumed e.g.
2093 *
2094 * ether[0] The first byte of the ether header
2095 * ip[2:2] The second 16 bit field of the IP header
2096 */
2097 static void
2098 load_field()
2099 {
2100 int size = 1;
2101 int s;

2104 if (EQ("ether"))
2105 emitop(OP_OFFSET_ZERO);
2106 else if (EQ("ip") || EQ("ip6") || EQ("pppoed") || EQ("pppoes"))

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 13

2107 emitop(OP_OFFSET_LINK);
2108 else if (EQ("udp") || EQ("tcp") || EQ("icmp") || EQ("ip-in-ip") ||
2109 EQ("ah") || EQ("esp"))
2110 emitop(OP_OFFSET_IP);
2111 else
2112 pr_err("invalid field type");
2113 next();
2114 s = opstack;
2115 expression();
2116 if (opstack != s + 1)
2117 pr_err("invalid field offset");
2118 opstack--;
2119 if (*token == ’:’) {
2120 next();
2121 if (tokentype != NUMBER)
2122 pr_err("field size expected");
2123 size = tokenval;
2124 if (size != 1 && size != 2 && size != 4)
2125 pr_err("field size invalid");
2126 next();
2127 }
2128 if (*token != ’]’)
2129 pr_err("right bracket expected");

2131 load_value(-1, size);
2132 emitop(OP_OFFSET_POP);
2133 }

2135 /*
2136 * Check that the operand stack
2137 * contains n arguments
2138 */
2139 static void
2140 checkstack(int numargs)
2141 {
2142 if (opstack != numargs)
2143 pr_err("invalid expression at \"%s\".", token);
2144 }

2146 static void
2147 primary()
2148 {
2149 int m, m2, s;

2151 for (;;) {
2152 if (tokentype == FIELD) {
2153 load_field();
2154 opstack++;
2155 next();
2156 break;
2157 }

2159 if (comparison(token)) {
2160 opstack++;
2161 next();
2162 break;
2163 }

2165 if (EQ("not") || EQ("!")) {
2166 next();
2167 s = opstack;
2168 primary();
2169 checkstack(s + 1);
2170 emitop(OP_NOT);
2171 break;
2172 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 14

2174 if (EQ("(")) {
2175 next();
2176 s = opstack;
2177 expression();
2178 checkstack(s + 1);
2179 if (!EQ(")"))
2180 pr_err("right paren expected");
2181 next();
2182 }

2184 if (EQ("to") || EQ("dst")) {
2185 dir = TO;
2186 next();
2187 continue;
2188 }

2190 if (EQ("from") || EQ("src")) {
2191 dir = FROM;
2192 next();
2193 continue;
2194 }

2196 if (EQ("ether")) {
2197 eaddr = 1;
2198 next();
2199 continue;
2200 }

2202 if (EQ("proto")) {
2203 next();
2204 if (tokentype != NUMBER)
2205 pr_err("IP proto type expected");
2206 emitop(OP_OFFSET_LINK);
2207 compare_value(IPV4_TYPE_HEADER_OFFSET, 1, tokenval);
2208 emitop(OP_OFFSET_POP);
2209 opstack++;
2210 next();
2211 continue;
2212 }

2214 if (EQ("broadcast")) {
2215 /*
2216 * Be tricky: FDDI ether dst address begins at
2217 * byte one. Since the address is really six
2218 * bytes long, this works for FDDI & ethernet.
2219 * XXX - Token ring?
2220 */
2221 emitop(OP_OFFSET_ZERO);
2222 if (interface->mac_type == DL_IB)
2223 pr_err("filter option unsupported on media");
2224 compare_value(1, 4, 0xffffffff);
2225 emitop(OP_OFFSET_POP);
2226 opstack++;
2227 next();
2228 break;
2229 }

2231 if (EQ("multicast")) {
2232 /* XXX Token ring? */
2233 emitop(OP_OFFSET_ZERO);
2234 if (interface->mac_type == DL_FDDI) {
2235 compare_value_mask(1, 1, 0x01, 0x01);
2236 } else if (interface->mac_type == DL_IB) {
2237 pr_err("filter option unsupported on media");
2238 } else {

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 15

2239 compare_value_mask(0, 1, 0x01, 0x01);
2240 }
2241 emitop(OP_OFFSET_POP);
2242 opstack++;
2243 next();
2244 break;
2245 }

2247 if (EQ("decnet")) {
2248 /* XXX Token ring? */
2249 if (interface->mac_type == DL_FDDI) {
2250 load_value(19, 2); /* ether type */
2251 load_const(0x6000);
2252 emitop(OP_GE);
2253 emitop(OP_BRFL);
2254 m = chain(0);
2255 load_value(19, 2); /* ether type */
2256 load_const(0x6009);
2257 emitop(OP_LE);
2258 resolve_chain(m);
2259 } else {
2260 emitop(OP_OFFSET_ETHERTYPE);
2261 load_value(0, 2); /* ether type */
2262 load_const(0x6000);
2263 emitop(OP_GE);
2264 emitop(OP_BRFL);
2265 m = chain(0);
2266 load_value(0, 2); /* ether type */
2267 load_const(0x6009);
2268 emitop(OP_LE);
2269 resolve_chain(m);
2270 emitop(OP_OFFSET_POP);
2271 }
2272 opstack++;
2273 next();
2274 break;
2275 }

2277 if (EQ("vlan-id")) {
2278 next();
2279 if (tokentype != NUMBER)
2280 pr_err("vlan id expected");
2281 emitop(OP_OFFSET_ZERO);
2282 ethertype_match(ETHERTYPE_VLAN);
2283 emitop(OP_BRFL);
2284 m = chain(0);
2285 compare_value_mask(VLAN_ID_OFFSET, 2, tokenval,
2286 VLAN_ID_MASK);
2287 resolve_chain(m);
2288 emitop(OP_OFFSET_POP);
2289 opstack++;
2290 next();
2291 break;
2292 }

2294 if (EQ("apple")) {
2295 /*
2296 * Appletalk also appears in 802.2
2297 * packets, so check for the ethertypes
2298 * at offset 12 and 20 in the MAC header.
2299 */
2300 ethertype_match(ETHERTYPE_AT);
2301 emitop(OP_BRTR);
2302 m = chain(0);
2303 ethertype_match(ETHERTYPE_AARP);
2304 emitop(OP_BRTR);

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 16

2305 m = chain(m);
2306 compare_value(20, 2, ETHERTYPE_AT); /* 802.2 */
2307 emitop(OP_BRTR);
2308 m = chain(m);
2309 compare_value(20, 2, ETHERTYPE_AARP); /* 802.2 */
2310 resolve_chain(m);
2311 opstack++;
2312 next();
2313 break;
2314 }

2316 if (EQ("vlan")) {
2317 ethertype_match(ETHERTYPE_VLAN);
2318 compare_value_mask(VLAN_ID_OFFSET, 2, 0, VLAN_ID_MASK);
2319 emitop(OP_NOT);
2320 emitop(OP_AND);
2321 opstack++;
2322 next();
2323 break;
2324 }

2326 if (EQ("bootp") || EQ("dhcp")) {
2327 ethertype_match(interface->network_type_ip);
2328 emitop(OP_BRFL);
2329 m = chain(0);
2330 emitop(OP_OFFSET_LINK);
2331 compare_value(9, 1, IPPROTO_UDP);
2332 emitop(OP_OFFSET_POP);
2333 emitop(OP_BRFL);
2334 m = chain(m);
2335 emitop(OP_OFFSET_IP);
2336 compare_value(0, 4,
2337 (IPPORT_BOOTPS << 16) | IPPORT_BOOTPC);
2338 emitop(OP_BRTR);
2339 m2 = chain(0);
2340 compare_value(0, 4,
2341 (IPPORT_BOOTPC << 16) | IPPORT_BOOTPS);
2342 resolve_chain(m2);
2343 emitop(OP_OFFSET_POP);
2344 resolve_chain(m);
2345 opstack++;
2346 dir = ANY;
2347 next();
2348 break;
2349 }

2351 if (EQ("dhcp6")) {
2352 ethertype_match(interface->network_type_ipv6);
2353 emitop(OP_BRFL);
2354 m = chain(0);
2355 emitop(OP_OFFSET_LINK);
2356 compare_value(6, 1, IPPROTO_UDP);
2357 emitop(OP_OFFSET_POP);
2358 emitop(OP_BRFL);
2359 m = chain(m);
2360 emitop(OP_OFFSET_IP);
2361 compare_value(2, 2, IPPORT_DHCPV6S);
2362 emitop(OP_BRTR);
2363 m2 = chain(0);
2364 compare_value(2, 2, IPPORT_DHCPV6C);
2365 resolve_chain(m2);
2366 emitop(OP_OFFSET_POP);
2367 resolve_chain(m);
2368 opstack++;
2369 dir = ANY;
2370 next();

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 17

2371 break;
2372 }

2374 if (EQ("ethertype")) {
2375 next();
2376 if (tokentype != NUMBER)
2377 pr_err("ether type expected");
2378 ethertype_match(tokenval);
2379 opstack++;
2380 next();
2381 break;
2382 }

2384 if (EQ("pppoe")) {
2385 ethertype_match(ETHERTYPE_PPPOED);
2386 ethertype_match(ETHERTYPE_PPPOES);
2387 emitop(OP_OR);
2388 opstack++;
2389 next();
2390 break;
2391 }

2393 if (EQ("inet")) {
2394 next();
2395 if (EQ("host"))
2396 next();
2397 if (tokentype != ALPHA && tokentype != ADDR_IP)
2398 pr_err("host/IPv4 addr expected after inet");
2399 ipaddr_match(dir, token, IPV4_ONLY);
2400 opstack++;
2401 next();
2402 break;
2403 }

2405 if (EQ("inet6")) {
2406 next();
2407 if (EQ("host"))
2408 next();
2409 if (tokentype != ALPHA && tokentype != ADDR_IP6)
2410 pr_err("host/IPv6 addr expected after inet6");
2411 ipaddr_match(dir, token, IPV6_ONLY);
2412 opstack++;
2413 next();
2414 break;
2415 }

2417 if (EQ("length")) {
2418 emitop(OP_LOAD_LENGTH);
2419 opstack++;
2420 next();
2421 break;
2422 }

2424 if (EQ("less")) {
2425 next();
2426 if (tokentype != NUMBER)
2427 pr_err("packet length expected");
2428 emitop(OP_LOAD_LENGTH);
2429 load_const(tokenval);
2430 emitop(OP_LT);
2431 opstack++;
2432 next();
2433 break;
2434 }

2436 if (EQ("greater")) {

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 18

2437 next();
2438 if (tokentype != NUMBER)
2439 pr_err("packet length expected");
2440 emitop(OP_LOAD_LENGTH);
2441 load_const(tokenval);
2442 emitop(OP_GT);
2443 opstack++;
2444 next();
2445 break;
2446 }

2448 if (EQ("nofrag")) {
2449 emitop(OP_OFFSET_LINK);
2450 compare_value_mask(6, 2, 0, 0x1fff);
2451 emitop(OP_OFFSET_POP);
2452 emitop(OP_BRFL);
2453 m = chain(0);
2454 ethertype_match(interface->network_type_ip);
2455 resolve_chain(m);
2456 opstack++;
2457 next();
2458 break;
2459 }

2461 if (EQ("net") || EQ("dstnet") || EQ("srcnet")) {
2462 if (EQ("dstnet"))
2463 dir = TO;
2464 else if (EQ("srcnet"))
2465 dir = FROM;
2466 next();
2467 netaddr_match(dir, token);
2468 dir = ANY;
2469 opstack++;
2470 next();
2471 break;
2472 }

2474 if (EQ("port") || EQ("srcport") || EQ("dstport")) {
2475 if (EQ("dstport"))
2476 dir = TO;
2477 else if (EQ("srcport"))
2478 dir = FROM;
2479 next();
2480 port_match(dir, token);
2481 dir = ANY;
2482 opstack++;
2483 next();
2484 break;
2485 }

2487 if (EQ("rpc")) {
2488 uint_t vers, proc;
2489 char savetoken[32];

2491 vers = proc = -1;
2492 next();
2493 (void) strlcpy(savetoken, token, sizeof (savetoken));
2494 next();
2495 if (*token == ’,’) {
2496 next();
2497 if (tokentype != NUMBER)
2498 pr_err("version number expected");
2499 vers = tokenval;
2500 next();
2501 }
2502 if (*token == ’,’) {

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 19

2503 next();
2504 if (tokentype != NUMBER)
2505 pr_err("proc number expected");
2506 proc = tokenval;
2507 next();
2508 }
2509 rpc_match_prog(dir, savetoken, vers, proc);
2510 dir = ANY;
2511 opstack++;
2512 break;
2513 }

2515 if (EQ("slp")) {
2516 /* filter out TCP handshakes */
2517 emitop(OP_OFFSET_LINK);
2518 compare_value(9, 1, IPPROTO_TCP);
2519 emitop(OP_LOAD_CONST);
2520 emitval(52);
2521 emitop(OP_LOAD_CONST);
2522 emitval(2);
2523 emitop(OP_LOAD_SHORT);
2524 emitop(OP_GE);
2525 emitop(OP_AND); /* proto == TCP && len < 52 */
2526 emitop(OP_NOT);
2527 emitop(OP_BRFL); /* pkt too short to be a SLP call */
2528 m = chain(0);

2530 emitop(OP_OFFSET_POP);
2531 emitop(OP_OFFSET_SLP);
2532 resolve_chain(m);
2533 opstack++;
2534 next();
2535 break;
2536 }

2538 if (EQ("ldap")) {
2539 dir = ANY;
2540 port_match(dir, "ldap");
2541 opstack++;
2542 next();
2543 break;
2544 }

2546 if (EQ("and") || EQ("or")) {
2547 break;
2548 }

2550 if (EQ("zone")) {
2551 next();
2552 if (tokentype != NUMBER)
2553 pr_err("zoneid expected");
2554 zone_match(dir, BE_32((uint32_t)(tokenval)));
2555 opstack++;
2556 next();
2557 break;
2558 }

2560 if (EQ("gateway")) {
2561 next();
2562 if (eaddr || tokentype != ALPHA)
2563 pr_err("hostname required: %s", token);
2564 etheraddr_match(dir, token);
2565 dir = ANY;
2566 emitop(OP_BRFL);
2567 m = chain(0);
2568 ipaddr_match(dir, token, IPV4_AND_IPV6);

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 20

2569 emitop(OP_NOT);
2570 resolve_chain(m);
2571 opstack++;
2572 next();
2573 }

2575 if (EQ("host") || EQ("between") ||
2576 tokentype == ALPHA || /* assume its a hostname */
2577 tokentype == ADDR_IP ||
2578 tokentype == ADDR_IP6 ||
2579 tokentype == ADDR_AT ||
2580 tokentype == ADDR_ETHER) {
2581 if (EQ("host") || EQ("between"))
2582 next();
2583 if (eaddr || tokentype == ADDR_ETHER) {
2584 etheraddr_match(dir, token);
2585 } else if (tokentype == ALPHA) {
2586 ipaddr_match(dir, token, IPV4_AND_IPV6);
2587 } else if (tokentype == ADDR_AT) {
2588 ataddr_match(dir, token);
2589 } else if (tokentype == ADDR_IP) {
2590 ipaddr_match(dir, token, IPV4_ONLY);
2591 } else {
2592 ipaddr_match(dir, token, IPV6_ONLY);
2593 }
2594 dir = ANY;
2595 eaddr = 0;
2596 opstack++;
2597 next();
2598 break;
2599 }

2601 if (tokentype == NUMBER) {
2602 load_const(tokenval);
2603 opstack++;
2604 next();
2605 break;
2606 }

2608 break; /* unknown token */
2609 }
2610 }

2612 struct optable {
2613 char *op_tok;
2614 enum optype op_type;
2615 };

2617 static struct optable
2618 mulops[] = {
2619 "*", OP_MUL,
2620 "/", OP_DIV,
2621 "%", OP_REM,
2622 "&", OP_AND,
2623 "", OP_STOP,
2624 };

2626 static struct optable
2627 addops[] = {
2628 "+", OP_ADD,
2629 "-", OP_SUB,
2630 "|", OP_OR,
2631 "^", OP_XOR,
2632 "", OP_STOP,
2633 };

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 21

2635 static struct optable
2636 compareops[] = {
2637 "==", OP_EQ,
2638 "=", OP_EQ,
2639 "!=", OP_NE,
2640 ">", OP_GT,
2641 ">=", OP_GE,
2642 "<", OP_LT,
2643 "<=", OP_LE,
2644 "", OP_STOP,
2645 };

2647 /*
2648 * Using the table, find the operator
2649 * that corresponds to the token.
2650 * Return 0 if not found.
2651 */
2652 static int
2653 find_op(char *tok, struct optable *table)
2654 {
2655 struct optable *op;

2657 for (op = table; *op->op_tok; op++) {
2658 if (strcmp(tok, op->op_tok) == 0)
2659 return (op->op_type);
2660 }

2662 return (0);
2663 }

2665 static void
2666 expr_mul()
2667 {
2668 int op;
2669 int s = opstack;

2671 primary();
2672 while (op = find_op(token, mulops)) {
2673 next();
2674 primary();
2675 checkstack(s + 2);
2676 emitop(op);
2677 opstack--;
2678 }
2679 }

2681 static void
2682 expr_add()
2683 {
2684 int op, s = opstack;

2686 expr_mul();
2687 while (op = find_op(token, addops)) {
2688 next();
2689 expr_mul();
2690 checkstack(s + 2);
2691 emitop(op);
2692 opstack--;
2693 }
2694 }

2696 static void
2697 expr_compare()
2698 {
2699 int op, s = opstack;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 22

2701 expr_add();
2702 while (op = find_op(token, compareops)) {
2703 next();
2704 expr_add();
2705 checkstack(s + 2);
2706 emitop(op);
2707 opstack--;
2708 }
2709 }

2711 /*
2712 * Alternation ("and") is difficult because
2713 * an implied "and" is acknowledge between
2714 * two adjacent primaries. Just keep calling
2715 * the lower-level expression routine until
2716 * no value is added to the opstack.
2717 */
2718 static void
2719 alternation()
2720 {
2721 int m = 0;
2722 int s = opstack;

2724 expr_compare();
2725 checkstack(s + 1);
2726 for (;;) {
2727 if (EQ("and"))
2728 next();
2729 emitop(OP_BRFL);
2730 m = chain(m);
2731 expr_compare();
2732 if (opstack != s + 2)
2733 break;
2734 opstack--;
2735 }
2736 unemit(2);
2737 resolve_chain(m);
2738 }

2740 static void
2741 expression()
2742 {
2743 int m = 0;
2744 int s = opstack;

2746 alternation();
2747 while (EQ("or") || EQ(",")) {
2748 emitop(OP_BRTR);
2749 m = chain(m);
2750 next();
2751 alternation();
2752 checkstack(s + 2);
2753 opstack--;
2754 }
2755 resolve_chain(m);
2756 }

2758 /*
2759 * Take n args from the argv list
2760 * and concatenate them into a single string.
2761 */
2762 char *
2763 concat_args(char **argv, int argc)
2764 {
2765 int i, len;
2766 char *str, *p;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 23

2768 /* First add the lengths of all the strings */
2769 len = 0;
2770 for (i = 0; i < argc; i++)
2771 len += strlen(argv[i]) + 1;

2773 /* allocate the big string */
2774 str = (char *)malloc(len);
2775 if (str == NULL)
2776 pr_err("no mem");

2778 p = str;

2780 /*
2781 * Concat the strings into the big
2782 * string using a space as separator
2783 */
2784 for (i = 0; i < argc; i++) {
2785 strcpy(p, argv[i]);
2786 p += strlen(p);
2787 *p++ = ’ ’;
2788 }
2789 *--p = ’\0’;

2791 return (str);
2792 }

2794 /*
2795 * Take the expression in the string "expr"
2796 * and compile it into the code array.
2797 * Print the generated code if the print
2798 * arg is set.
2799 */
2800 void
2801 compile(char *expr, int print)
2802 {
2803 expr = strdup(expr);
2804 if (expr == NULL)
2805 pr_err("no mem");
2806 curr_op = oplist;
2807 tkp = expr;
2808 dir = ANY;

2810 next();
2811 if (tokentype != EOL)
2812 expression();
2813 emitop(OP_STOP);
2814 if (tokentype != EOL)
2815 pr_err("invalid expression");
2816 optimize(oplist);
2817 if (print)
2818 codeprint();
2819 }

2821 /*
2822 * Lookup hostname in the arp cache.
2823 */
2824 boolean_t
2825 arp_for_ether(char *hostname, struct ether_addr *ep)
2826 {
2827 struct arpreq ar;
2828 struct hostent *hp;
2829 struct sockaddr_in *sin;
2830 int error_num;
2831 int s;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_filter.c 24

2833 memset(&ar, 0, sizeof (ar));
2834 sin = (struct sockaddr_in *)&ar.arp_pa;
2835 sin->sin_family = AF_INET;
2836 hp = getipnodebyname(hostname, AF_INET, 0, &error_num);
2837 if (hp == NULL) {
2838 return (B_FALSE);
2839 }
2840 memcpy(&sin->sin_addr, hp->h_addr, sizeof (sin->sin_addr));
2841 s = socket(AF_INET, SOCK_DGRAM, 0);
2842 if (s < 0) {
2843 return (B_FALSE);
2844 }
2845 if (ioctl(s, SIOCGARP, &ar) < 0) {
2846 close(s);
2847 return (B_FALSE);
2848 }
2849 close(s);
2850 memcpy(ep->ether_addr_octet, ar.arp_ha.sa_data, sizeof (*ep));
2851 return (B_TRUE);
2852 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 1

**
 39402 Sat Aug 18 10:36:58 2012
new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c
dccp: snoop, build system fixes
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <stdio.h>
27 #include <string.h>
28 #include <fcntl.h>
29 #include <string.h>
30 #include <sys/types.h>
31 #include <sys/time.h>

33 #include <sys/stropts.h>
34 #include <sys/socket.h>
35 #include <net/if.h>
36 #include <netinet/in_systm.h>
37 #include <netinet/in.h>
38 #include <netinet/ip.h>
39 #include <netinet/ip6.h>
40 #include <netinet/ip_icmp.h>
41 #include <netinet/icmp6.h>
42 #include <netinet/if_ether.h>
43 #include <inet/ip.h>
44 #include <inet/ip6.h>
45 #include <arpa/inet.h>
46 #include <netdb.h>
47 #include <tsol/label.h>
48 #include <sys/tsol/tndb.h>
49 #include <sys/tsol/label_macro.h>

51 #include "snoop.h"

54 /*
55 * IPv6 extension header masks. These are used by the print_ipv6_extensions()
56 * function to return information to the caller about which extension headers
57 * were processed. This can be useful if the caller wants to know if the
58 * packet is an IPv6 fragment, for example.
59 */
60 #define SNOOP_HOPOPTS 0x01U
61 #define SNOOP_ROUTING 0x02U

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 2

62 #define SNOOP_DSTOPTS 0x04U
63 #define SNOOP_FRAGMENT 0x08U
64 #define SNOOP_AH 0x10U
65 #define SNOOP_ESP 0x20U
66 #define SNOOP_IPV6 0x40U

68 static void prt_routing_hdr(int, const struct ip6_rthdr *);
69 static void prt_fragment_hdr(int, const struct ip6_frag *);
70 static void prt_hbh_options(int, const struct ip6_hbh *);
71 static void prt_dest_options(int, const struct ip6_dest *);
72 static void print_route(const uchar_t *);
73 static void print_ipoptions(const uchar_t *, int);
74 static void print_ripso(const uchar_t *);
75 static void print_cipso(const uchar_t *);

77 /* Keep track of how many nested IP headers we have. */
78 unsigned int encap_levels;
79 unsigned int total_encap_levels = 1;

81 int
82 interpret_ip(int flags, const struct ip *ip, int fraglen)
83 {
84 uchar_t *data;
85 char buff[24];
86 boolean_t isfrag = B_FALSE;
87 boolean_t morefrag;
88 uint16_t fragoffset;
89 int hdrlen;
90 uint16_t iplen, uitmp;

92 if (ip->ip_v == IPV6_VERSION) {
93 iplen = interpret_ipv6(flags, (ip6_t *)ip, fraglen);
94 return (iplen);
95 }

97 if (encap_levels == 0)
98 total_encap_levels = 0;
99 encap_levels++;
100 total_encap_levels++;

102 hdrlen = ip->ip_hl * 4;
103 data = ((uchar_t *)ip) + hdrlen;
104 iplen = ntohs(ip->ip_len) - hdrlen;
105 fraglen -= hdrlen;
106 if (fraglen > iplen)
107 fraglen = iplen;
108 if (fraglen < 0) {
109 (void) snprintf(get_sum_line(), MAXLINE,
110 "IP truncated: header missing %d bytes", -fraglen);
111 encap_levels--;
112 return (fraglen + iplen);
113 }
114 /*
115 * We flag this as a fragment if the more fragments bit is set, or
116 * if the fragment offset is non-zero.
117 */
118 morefrag = (ntohs(ip->ip_off) & IP_MF) == 0 ? B_FALSE : B_TRUE;
119 fragoffset = (ntohs(ip->ip_off) & 0x1FFF) * 8;
120 if (morefrag || fragoffset != 0)
121 isfrag = B_TRUE;

123 src_name = addrtoname(AF_INET, &ip->ip_src);
124 dst_name = addrtoname(AF_INET, &ip->ip_dst);

126 if (flags & F_SUM) {
127 if (isfrag) {

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 3

128 (void) snprintf(get_sum_line(), MAXLINE,
129 "%s IP fragment ID=%d Offset=%-4d MF=%d TOS=0x%x "
130 "TTL=%d",
131 getproto(ip->ip_p),
132 ntohs(ip->ip_id),
133 fragoffset,
134 morefrag,
135 ip->ip_tos,
136 ip->ip_ttl);
137 } else {
138 (void) strlcpy(buff, inet_ntoa(ip->ip_dst),
139 sizeof (buff));
140 uitmp = ntohs(ip->ip_len);
141 (void) snprintf(get_sum_line(), MAXLINE,
142 "IP D=%s S=%s LEN=%u%s, ID=%d, TOS=0x%x, TTL=%d",
143 buff,
144 inet_ntoa(ip->ip_src),
145 uitmp,
146 iplen > fraglen ? "?" : "",
147 ntohs(ip->ip_id),
148 ip->ip_tos,
149 ip->ip_ttl);
150 }
151 }

153 if (flags & F_DTAIL) {
154 show_header("IP: ", "IP Header", iplen);
155 show_space();
156 (void) snprintf(get_line(0, 0), get_line_remain(),
157 "Version = %d", ip->ip_v);
158 (void) snprintf(get_line(0, 0), get_line_remain(),
159 "Header length = %d bytes", hdrlen);
160 (void) snprintf(get_line(0, 0), get_line_remain(),
161 "Type of service = 0x%02x", ip->ip_tos);
162 (void) snprintf(get_line(0, 0), get_line_remain(),
163 " xxx. = %d (precedence)",
164 ip->ip_tos >> 5);
165 (void) snprintf(get_line(0, 0), get_line_remain(),
166 " %s", getflag(ip->ip_tos, IPTOS_LOWDELAY,
167 "low delay", "normal delay"));
168 (void) snprintf(get_line(0, 0), get_line_remain(), " %s",
169 getflag(ip->ip_tos, IPTOS_THROUGHPUT,
170 "high throughput", "normal throughput"));
171 (void) snprintf(get_line(0, 0), get_line_remain(), " %s",
172 getflag(ip->ip_tos, IPTOS_RELIABILITY,
173 "high reliability", "normal reliability"));
174 (void) snprintf(get_line(0, 0), get_line_remain(), " %s",
175 getflag(ip->ip_tos, IPTOS_ECT,
176 "ECN capable transport", "not ECN capable transport"));
177 (void) snprintf(get_line(0, 0), get_line_remain(), " %s",
178 getflag(ip->ip_tos, IPTOS_CE,
179 "ECN congestion experienced",
180 "no ECN congestion experienced"));
181 /* warning: ip_len is signed in netinet/ip.h */
182 uitmp = ntohs(ip->ip_len);
183 (void) snprintf(get_line(0, 0), get_line_remain(),
184 "Total length = %u bytes%s", uitmp,
185 iplen > fraglen ? " -- truncated" : "");
186 (void) snprintf(get_line(0, 0), get_line_remain(),
187 "Identification = %d", ntohs(ip->ip_id));
188 /* warning: ip_off is signed in netinet/ip.h */
189 uitmp = ntohs(ip->ip_off);
190 (void) snprintf(get_line(0, 0), get_line_remain(),
191 "Flags = 0x%x", uitmp >> 12);
192 (void) snprintf(get_line(0, 0), get_line_remain(), " %s",
193 getflag(uitmp >> 8, IP_DF >> 8,

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 4

194 "do not fragment", "may fragment"));
195 (void) snprintf(get_line(0, 0), get_line_remain(), " %s",
196 getflag(uitmp >> 8, IP_MF >> 8,
197 "more fragments", "last fragment"));
198 (void) snprintf(get_line(0, 0), get_line_remain(),
199 "Fragment offset = %u bytes",
200 fragoffset);
201 (void) snprintf(get_line(0, 0), get_line_remain(),
202 "Time to live = %d seconds/hops",
203 ip->ip_ttl);
204 (void) snprintf(get_line(0, 0), get_line_remain(),
205 "Protocol = %d (%s)", ip->ip_p,
206 getproto(ip->ip_p));
207 /*
208 * XXX need to compute checksum and print whether it’s correct
209 */
210 (void) snprintf(get_line(0, 0), get_line_remain(),
211 "Header checksum = %04x",
212 ntohs(ip->ip_sum));
213 (void) snprintf(get_line(0, 0), get_line_remain(),
214 "Source address = %s, %s",
215 inet_ntoa(ip->ip_src), addrtoname(AF_INET, &ip->ip_src));
216 (void) snprintf(get_line(0, 0), get_line_remain(),
217 "Destination address = %s, %s",
218 inet_ntoa(ip->ip_dst), addrtoname(AF_INET, &ip->ip_dst));

220 /* Print IP options - if any */

222 print_ipoptions((const uchar_t *)(ip + 1),
223 hdrlen - sizeof (struct ip));
224 show_space();
225 }

227 /*
228 * If we are in detail mode, and this is not the first fragment of
229 * a fragmented packet, print out a little line stating this.
230 * Otherwise, go to the next protocol layer only if this is not a
231 * fragment, or we are in detail mode and this is the first fragment
232 * of a fragmented packet.
233 */
234 if (flags & F_DTAIL && fragoffset != 0) {
235 (void) snprintf(get_detail_line(0, 0), MAXLINE,
236 "%s: [%d byte(s) of data, continuation of IP ident=%d]",
237 getproto(ip->ip_p),
238 iplen,
239 ntohs(ip->ip_id));
240 } else if (!isfrag || (flags & F_DTAIL) && isfrag && fragoffset == 0) {
241 /* go to the next protocol layer */

243 if (fraglen > 0) {
244 switch (ip->ip_p) {
245 case IPPROTO_IP:
246 break;
247 case IPPROTO_ENCAP:
248 (void) interpret_ip(flags,
249 /* LINTED: alignment */
250 (const struct ip *)data, fraglen);
251 break;
252 case IPPROTO_ICMP:
253 (void) interpret_icmp(flags,
254 /* LINTED: alignment */
255 (struct icmp *)data, iplen, fraglen);
256 break;
257 case IPPROTO_IGMP:
258 interpret_igmp(flags, data, iplen, fraglen);
259 break;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 5

260 case IPPROTO_GGP:
261 break;
262 case IPPROTO_TCP:
263 (void) interpret_tcp(flags,
264 (struct tcphdr *)data, iplen, fraglen);
265 break;

267 case IPPROTO_ESP:
268 (void) interpret_esp(flags, data, iplen,
269 fraglen);
270 break;
271 case IPPROTO_AH:
272 (void) interpret_ah(flags, data, iplen,
273 fraglen);
274 break;

276 case IPPROTO_OSPF:
277 interpret_ospf(flags, data, iplen, fraglen);
278 break;

280 case IPPROTO_EGP:
281 case IPPROTO_PUP:
282 break;
283 case IPPROTO_UDP:
284 (void) interpret_udp(flags,
285 (struct udphdr *)data, iplen, fraglen);
286 break;

288 case IPPROTO_IDP:
289 case IPPROTO_HELLO:
290 case IPPROTO_ND:
291 case IPPROTO_RAW:
292 break;
293 case IPPROTO_IPV6: /* IPV6 encap */
294 /* LINTED: alignment */
295 (void) interpret_ipv6(flags, (ip6_t *)data,
296 iplen);
297 break;
298 case IPPROTO_SCTP:
299 (void) interpret_sctp(flags,
300 (struct sctp_hdr *)data, iplen, fraglen);
301 break;
302 case IPPROTO_DCCP:
303 (void) interpret_dccp(flags,
304 (struct dccphdr *)data, iplen, fraglen);
305 break;
306 #endif /* ! codereview */
307 }
308 }
309 }

311 encap_levels--;
312 return (iplen);
313 }

315 int
316 interpret_ipv6(int flags, const ip6_t *ip6h, int fraglen)
317 {
318 uint8_t *data;
319 int hdrlen, iplen;
320 int version, flow, class;
321 uchar_t proto;
322 boolean_t isfrag = B_FALSE;
323 uint8_t extmask;
324 /*
325 * The print_srcname and print_dstname strings are the hostname

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 6

326 * parts of the verbose IPv6 header output, including the comma
327 * and the space after the litteral address strings.
328 */
329 char print_srcname[MAXHOSTNAMELEN + 2];
330 char print_dstname[MAXHOSTNAMELEN + 2];
331 char src_addrstr[INET6_ADDRSTRLEN];
332 char dst_addrstr[INET6_ADDRSTRLEN];

334 iplen = ntohs(ip6h->ip6_plen);
335 hdrlen = IPV6_HDR_LEN;
336 fraglen -= hdrlen;
337 if (fraglen < 0)
338 return (fraglen + hdrlen);
339 data = ((uint8_t *)ip6h) + hdrlen;

341 proto = ip6h->ip6_nxt;

343 src_name = addrtoname(AF_INET6, &ip6h->ip6_src);
344 dst_name = addrtoname(AF_INET6, &ip6h->ip6_dst);

346 /*
347 * Use endian-aware masks to extract traffic class and
348 * flowinfo. Also, flowinfo is now 20 bits and class 8
349 * rather than 24 and 4.
350 */
351 class = ntohl((ip6h->ip6_vcf & IPV6_FLOWINFO_TCLASS) >> 20);
352 flow = ntohl(ip6h->ip6_vcf & IPV6_FLOWINFO_FLOWLABEL);

354 /*
355 * NOTE: the F_SUM and F_DTAIL flags are mutually exclusive,
356 * so the code within the first part of the following if statement
357 * will not affect the detailed printing of the packet.
358 */
359 if (flags & F_SUM) {
360 (void) snprintf(get_sum_line(), MAXLINE,
361 "IPv6 S=%s D=%s LEN=%d HOPS=%d CLASS=0x%x FLOW=0x%x",
362 src_name, dst_name, iplen, ip6h->ip6_hops, class, flow);
363 } else if (flags & F_DTAIL) {

365 (void) inet_ntop(AF_INET6, &ip6h->ip6_src, src_addrstr,
366 INET6_ADDRSTRLEN);
367 (void) inet_ntop(AF_INET6, &ip6h->ip6_dst, dst_addrstr,
368 INET6_ADDRSTRLEN);

370 version = ntohl(ip6h->ip6_vcf) >> 28;

372 if (strcmp(src_name, src_addrstr) == 0) {
373 print_srcname[0] = ’\0’;
374 } else {
375 snprintf(print_srcname, sizeof (print_srcname),
376 ", %s", src_name);
377 }

379 if (strcmp(dst_name, dst_addrstr) == 0) {
380 print_dstname[0] = ’\0’;
381 } else {
382 snprintf(print_dstname, sizeof (print_dstname),
383 ", %s", dst_name);
384 }

386 show_header("IPv6: ", "IPv6 Header", iplen);
387 show_space();

389 (void) snprintf(get_line(0, 0), get_line_remain(),
390 "Version = %d", version);
391 (void) snprintf(get_line(0, 0), get_line_remain(),

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 7

392 "Traffic Class = %d", class);
393 (void) snprintf(get_line(0, 0), get_line_remain(),
394 "Flow label = 0x%x", flow);
395 (void) snprintf(get_line(0, 0), get_line_remain(),
396 "Payload length = %d", iplen);
397 (void) snprintf(get_line(0, 0), get_line_remain(),
398 "Next Header = %d (%s)", proto,
399 getproto(proto));
400 (void) snprintf(get_line(0, 0), get_line_remain(),
401 "Hop Limit = %d", ip6h->ip6_hops);
402 (void) snprintf(get_line(0, 0), get_line_remain(),
403 "Source address = %s%s", src_addrstr, print_srcname);
404 (void) snprintf(get_line(0, 0), get_line_remain(),
405 "Destination address = %s%s", dst_addrstr, print_dstname);

407 show_space();
408 }

410 /*
411 * Print IPv6 Extension Headers, or skip them in the summary case.
412 * Set isfrag to true if one of the extension headers encounterred
413 * was a fragment header.
414 */
415 if (proto == IPPROTO_HOPOPTS || proto == IPPROTO_DSTOPTS ||
416 proto == IPPROTO_ROUTING || proto == IPPROTO_FRAGMENT) {
417 extmask = print_ipv6_extensions(flags, &data, &proto, &iplen,
418 &fraglen);
419 if ((extmask & SNOOP_FRAGMENT) != 0) {
420 isfrag = B_TRUE;
421 }
422 }

424 /*
425 * We only want to print upper layer information if this is not
426 * a fragment, or if we’re printing in detail. Note that the
427 * proto variable will be set to IPPROTO_NONE if this is a fragment
428 * with a non-zero fragment offset.
429 */
430 if (!isfrag || flags & F_DTAIL) {
431 /* go to the next protocol layer */

433 switch (proto) {
434 case IPPROTO_IP:
435 break;
436 case IPPROTO_ENCAP:
437 /* LINTED: alignment */
438 (void) interpret_ip(flags, (const struct ip *)data,
439 fraglen);
440 break;
441 case IPPROTO_ICMPV6:
442 /* LINTED: alignment */
443 (void) interpret_icmpv6(flags, (icmp6_t *)data, iplen,
444 fraglen);
445 break;
446 case IPPROTO_IGMP:
447 interpret_igmp(flags, data, iplen, fraglen);
448 break;
449 case IPPROTO_GGP:
450 break;
451 case IPPROTO_TCP:
452 (void) interpret_tcp(flags, (struct tcphdr *)data,
453 iplen, fraglen);
454 break;
455 case IPPROTO_ESP:
456 (void) interpret_esp(flags, data, iplen, fraglen);
457 break;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 8

458 case IPPROTO_AH:
459 (void) interpret_ah(flags, data, iplen, fraglen);
460 break;
461 case IPPROTO_EGP:
462 case IPPROTO_PUP:
463 break;
464 case IPPROTO_UDP:
465 (void) interpret_udp(flags, (struct udphdr *)data,
466 iplen, fraglen);
467 break;
468 case IPPROTO_IDP:
469 case IPPROTO_HELLO:
470 case IPPROTO_ND:
471 case IPPROTO_RAW:
472 break;
473 case IPPROTO_IPV6:
474 /* LINTED: alignment */
475 (void) interpret_ipv6(flags, (const ip6_t *)data,
476 iplen);
477 break;
478 case IPPROTO_SCTP:
479 (void) interpret_sctp(flags, (struct sctp_hdr *)data,
480 iplen, fraglen);
481 break;
482 case IPPROTO_OSPF:
483 interpret_ospf6(flags, data, iplen, fraglen);
484 break;
485 case IPPROTO_DCCP:
486 (void) interpret_dccp(flags, (struct dccphdr *)data,
487 iplen, fraglen);
488 break;
489 #endif /* ! codereview */
490 }
491 }

493 return (iplen);
494 }

496 /*
497 * ip_ext: data including the extension header.
498 * iplen: length of the data remaining in the packet.
499 * Returns a mask of IPv6 extension headers it processed.
500 */
501 uint8_t
502 print_ipv6_extensions(int flags, uint8_t **hdr, uint8_t *next, int *iplen,
503 int *fraglen)
504 {
505 uint8_t *data_ptr;
506 uchar_t proto = *next;
507 boolean_t is_extension_header;
508 struct ip6_hbh *ipv6ext_hbh;
509 struct ip6_dest *ipv6ext_dest;
510 struct ip6_rthdr *ipv6ext_rthdr;
511 struct ip6_frag *ipv6ext_frag;
512 uint32_t exthdrlen;
513 uint8_t extmask = 0;

515 if ((hdr == NULL) || (*hdr == NULL) || (next == NULL) || (iplen == 0))
516 return (0);

518 data_ptr = *hdr;
519 is_extension_header = B_TRUE;
520 while (is_extension_header) {

522 /*
523 * There must be at least enough data left to read the

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 9

524 * next header and header length fields from the next
525 * header.
526 */
527 if (*fraglen < 2) {
528 return (extmask);
529 }

531 switch (proto) {
532 case IPPROTO_HOPOPTS:
533 ipv6ext_hbh = (struct ip6_hbh *)data_ptr;
534 exthdrlen = 8 + ipv6ext_hbh->ip6h_len * 8;
535 if (*fraglen <= exthdrlen) {
536 return (extmask);
537 }
538 prt_hbh_options(flags, ipv6ext_hbh);
539 extmask |= SNOOP_HOPOPTS;
540 proto = ipv6ext_hbh->ip6h_nxt;
541 break;
542 case IPPROTO_DSTOPTS:
543 ipv6ext_dest = (struct ip6_dest *)data_ptr;
544 exthdrlen = 8 + ipv6ext_dest->ip6d_len * 8;
545 if (*fraglen <= exthdrlen) {
546 return (extmask);
547 }
548 prt_dest_options(flags, ipv6ext_dest);
549 extmask |= SNOOP_DSTOPTS;
550 proto = ipv6ext_dest->ip6d_nxt;
551 break;
552 case IPPROTO_ROUTING:
553 ipv6ext_rthdr = (struct ip6_rthdr *)data_ptr;
554 exthdrlen = 8 + ipv6ext_rthdr->ip6r_len * 8;
555 if (*fraglen <= exthdrlen) {
556 return (extmask);
557 }
558 prt_routing_hdr(flags, ipv6ext_rthdr);
559 extmask |= SNOOP_ROUTING;
560 proto = ipv6ext_rthdr->ip6r_nxt;
561 break;
562 case IPPROTO_FRAGMENT:
563 /* LINTED: alignment */
564 ipv6ext_frag = (struct ip6_frag *)data_ptr;
565 exthdrlen = sizeof (struct ip6_frag);
566 if (*fraglen <= exthdrlen) {
567 return (extmask);
568 }
569 prt_fragment_hdr(flags, ipv6ext_frag);
570 extmask |= SNOOP_FRAGMENT;
571 /*
572 * If this is not the first fragment, forget about
573 * the rest of the packet, snoop decoding is
574 * stateless.
575 */
576 if ((ipv6ext_frag->ip6f_offlg & IP6F_OFF_MASK) != 0)
577 proto = IPPROTO_NONE;
578 else
579 proto = ipv6ext_frag->ip6f_nxt;
580 break;
581 default:
582 is_extension_header = B_FALSE;
583 break;
584 }

586 if (is_extension_header) {
587 *iplen -= exthdrlen;
588 *fraglen -= exthdrlen;
589 data_ptr += exthdrlen;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 10

590 }
591 }

593 *next = proto;
594 *hdr = data_ptr;
595 return (extmask);
596 }

598 static void
599 print_ipoptions(const uchar_t *opt, int optlen)
600 {
601 int len;
602 int remain;
603 char *line;
604 const char *truncstr;

606 if (optlen <= 0) {
607 (void) snprintf(get_line(0, 0), get_line_remain(),
608 "No options");
609 return;
610 }

612 (void) snprintf(get_line(0, 0), get_line_remain(),
613 "Options: (%d bytes)", optlen);

615 while (optlen > 0) {
616 line = get_line(0, 0);
617 remain = get_line_remain();
618 len = opt[1];
619 truncstr = len > optlen ? "?" : "";
620 switch (opt[0]) {
621 case IPOPT_EOL:
622 (void) strlcpy(line, " - End of option list", remain);
623 return;
624 case IPOPT_NOP:
625 (void) strlcpy(line, " - No op", remain);
626 len = 1;
627 break;
628 case IPOPT_RR:
629 (void) snprintf(line, remain,
630 " - Record route (%d bytes%s)", len, truncstr);
631 print_route(opt);
632 break;
633 case IPOPT_TS:
634 (void) snprintf(line, remain,
635 " - Time stamp (%d bytes%s)", len, truncstr);
636 break;
637 case IPOPT_SECURITY:
638 (void) snprintf(line, remain, " - RIPSO (%d bytes%s)",
639 len, truncstr);
640 print_ripso(opt);
641 break;
642 case IPOPT_COMSEC:
643 (void) snprintf(line, remain, " - CIPSO (%d bytes%s)",
644 len, truncstr);
645 print_cipso(opt);
646 break;
647 case IPOPT_LSRR:
648 (void) snprintf(line, remain,
649 " - Loose source route (%d bytes%s)", len,
650 truncstr);
651 print_route(opt);
652 break;
653 case IPOPT_SATID:
654 (void) snprintf(line, remain,
655 " - SATNET Stream id (%d bytes%s)",

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 11

656 len, truncstr);
657 break;
658 case IPOPT_SSRR:
659 (void) snprintf(line, remain,
660 " - Strict source route, (%d bytes%s)", len,
661 truncstr);
662 print_route(opt);
663 break;
664 default:
665 (void) snprintf(line, remain,
666 " - Option %d (unknown - %d bytes%s) %s",
667 opt[0], len, truncstr,
668 tohex((char *)&opt[2], len - 2));
669 break;
670 }
671 if (len <= 0) {
672 (void) snprintf(line, remain,
673 " - Incomplete option len %d", len);
674 break;
675 }
676 opt += len;
677 optlen -= len;
678 }
679 }

681 static void
682 print_route(const uchar_t *opt)
683 {
684 int len, pointer, remain;
685 struct in_addr addr;
686 char *line;

688 len = opt[1];
689 pointer = opt[2];

691 (void) snprintf(get_line(0, 0), get_line_remain(),
692 " Pointer = %d", pointer);

694 pointer -= IPOPT_MINOFF;
695 opt += (IPOPT_OFFSET + 1);
696 len -= (IPOPT_OFFSET + 1);

698 while (len > 0) {
699 line = get_line(0, 0);
700 remain = get_line_remain();
701 memcpy((char *)&addr, opt, sizeof (addr));
702 if (addr.s_addr == INADDR_ANY)
703 (void) strlcpy(line, " -", remain);
704 else
705 (void) snprintf(line, remain, " %s",
706 addrtoname(AF_INET, &addr));
707 if (pointer == 0)
708 (void) strlcat(line, " <-- (current)", remain);

710 opt += sizeof (addr);
711 len -= sizeof (addr);
712 pointer -= sizeof (addr);
713 }
714 }

716 char *
717 getproto(int p)
718 {
719 switch (p) {
720 case IPPROTO_HOPOPTS: return ("IPv6-HopOpts");
721 case IPPROTO_IPV6: return ("IPv6");

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 12

722 case IPPROTO_ROUTING: return ("IPv6-Route");
723 case IPPROTO_FRAGMENT: return ("IPv6-Frag");
724 case IPPROTO_RSVP: return ("RSVP");
725 case IPPROTO_ENCAP: return ("IP-in-IP");
726 case IPPROTO_AH: return ("AH");
727 case IPPROTO_ESP: return ("ESP");
728 case IPPROTO_ICMP: return ("ICMP");
729 case IPPROTO_ICMPV6: return ("ICMPv6");
730 case IPPROTO_DSTOPTS: return ("IPv6-DstOpts");
731 case IPPROTO_IGMP: return ("IGMP");
732 case IPPROTO_GGP: return ("GGP");
733 case IPPROTO_TCP: return ("TCP");
734 case IPPROTO_EGP: return ("EGP");
735 case IPPROTO_PUP: return ("PUP");
736 case IPPROTO_UDP: return ("UDP");
737 case IPPROTO_IDP: return ("IDP");
738 case IPPROTO_HELLO: return ("HELLO");
739 case IPPROTO_ND: return ("ND");
740 case IPPROTO_EON: return ("EON");
741 case IPPROTO_RAW: return ("RAW");
742 case IPPROTO_OSPF: return ("OSPF");
743 case IPPROTO_DCCP: return ("DCCP");
744 #endif /* ! codereview */
745 default: return ("");
746 }
747 }

749 static void
750 prt_routing_hdr(int flags, const struct ip6_rthdr *ipv6ext_rthdr)
751 {
752 uint8_t nxt_hdr;
753 uint8_t type;
754 uint32_t len;
755 uint8_t segleft;
756 uint32_t numaddrs;
757 int i;
758 struct ip6_rthdr0 *ipv6ext_rthdr0;
759 struct in6_addr *addrs;
760 char addr[INET6_ADDRSTRLEN];

762 /* in summary mode, we don’t do anything. */
763 if (flags & F_SUM) {
764 return;
765 }

767 nxt_hdr = ipv6ext_rthdr->ip6r_nxt;
768 type = ipv6ext_rthdr->ip6r_type;
769 len = 8 * (ipv6ext_rthdr->ip6r_len + 1);
770 segleft = ipv6ext_rthdr->ip6r_segleft;

772 show_header("IPv6-Route: ", "IPv6 Routing Header", 0);
773 show_space();

775 (void) snprintf(get_line(0, 0), get_line_remain(),
776 "Next header = %d (%s)", nxt_hdr, getproto(nxt_hdr));
777 (void) snprintf(get_line(0, 0), get_line_remain(),
778 "Header length = %d", len);
779 (void) snprintf(get_line(0, 0), get_line_remain(),
780 "Routing type = %d", type);
781 (void) snprintf(get_line(0, 0), get_line_remain(),
782 "Segments left = %d", segleft);

784 if (type == IPV6_RTHDR_TYPE_0) {
785 /*
786 * XXX This loop will print all addresses in the routing header,
787 * XXX not just the segments left.

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 13

788 * XXX (The header length field is twice the number of
789 * XXX addresses)
790 * XXX At some future time, we may want to change this
791 * XXX to differentiate between the hops yet to do
792 * XXX and the hops already taken.
793 */
794 /* LINTED: alignment */
795 ipv6ext_rthdr0 = (struct ip6_rthdr0 *)ipv6ext_rthdr;
796 numaddrs = ipv6ext_rthdr0->ip6r0_len / 2;
797 addrs = (struct in6_addr *)(ipv6ext_rthdr0 + 1);
798 for (i = 0; i < numaddrs; i++) {
799 (void) inet_ntop(AF_INET6, &addrs[i], addr,
800 INET6_ADDRSTRLEN);
801 (void) snprintf(get_line(0, 0), get_line_remain(),
802 "address[%d]=%s", i, addr);
803 }
804 }

806 show_space();
807 }

809 static void
810 prt_fragment_hdr(int flags, const struct ip6_frag *ipv6ext_frag)
811 {
812 boolean_t morefrag;
813 uint16_t fragoffset;
814 uint8_t nxt_hdr;
815 uint32_t fragident;

817 /* extract the various fields from the fragment header */
818 nxt_hdr = ipv6ext_frag->ip6f_nxt;
819 morefrag = (ipv6ext_frag->ip6f_offlg & IP6F_MORE_FRAG) == 0
820 ? B_FALSE : B_TRUE;
821 fragoffset = ntohs(ipv6ext_frag->ip6f_offlg & IP6F_OFF_MASK);
822 fragident = ntohl(ipv6ext_frag->ip6f_ident);

824 if (flags & F_SUM) {
825 (void) snprintf(get_sum_line(), MAXLINE,
826 "IPv6 fragment ID=%u Offset=%-4d MF=%d",
827 fragident,
828 fragoffset,
829 morefrag);
830 } else { /* F_DTAIL */
831 show_header("IPv6-Frag: ", "IPv6 Fragment Header", 0);
832 show_space();

834 (void) snprintf(get_line(0, 0), get_line_remain(),
835 "Next Header = %d (%s)", nxt_hdr, getproto(nxt_hdr));
836 (void) snprintf(get_line(0, 0), get_line_remain(),
837 "Fragment Offset = %d", fragoffset);
838 (void) snprintf(get_line(0, 0), get_line_remain(),
839 "More Fragments Flag = %s", morefrag ? "true" : "false");
840 (void) snprintf(get_line(0, 0), get_line_remain(),
841 "Identification = %u", fragident);

843 show_space();
844 }
845 }

847 static void
848 print_ip6opt_ls(const uchar_t *data, unsigned int op_len)
849 {
850 uint32_t doi;
851 uint8_t sotype, solen;
852 uint16_t value, value2;
853 char *cp;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 14

854 int remlen;
855 boolean_t printed;

857 (void) snprintf(get_line(0, 0), get_line_remain(),
858 "Labeled Security Option len = %u bytes%s", op_len,
859 op_len < sizeof (uint32_t) || (op_len & 1) != 0 ? "?" : "");
860 if (op_len < sizeof (uint32_t))
861 return;
862 GETINT32(doi, data);
863 (void) snprintf(get_line(0, 0), get_line_remain(),
864 " DOI = %d (%s)", doi, doi == IP6LS_DOI_V4 ? "IPv4" : "???");
865 op_len -= sizeof (uint32_t);
866 while (op_len > 0) {
867 GETINT8(sotype, data);
868 if (op_len < 2) {
869 (void) snprintf(get_line(0, 0), get_line_remain(),
870 " truncated %u suboption (no len)", sotype);
871 break;
872 }
873 GETINT8(solen, data);
874 if (solen < 2 || solen > op_len) {
875 (void) snprintf(get_line(0, 0), get_line_remain(),
876 " bad %u suboption (len 2 <= %u <= %u)",
877 sotype, solen, op_len);
878 if (solen < 2)
879 solen = 2;
880 if (solen > op_len)
881 solen = op_len;
882 }
883 op_len -= solen;
884 solen -= 2;
885 cp = get_line(0, 0);
886 remlen = get_line_remain();
887 (void) strlcpy(cp, " ", remlen);
888 cp += 4;
889 remlen -= 4;
890 printed = B_TRUE;
891 switch (sotype) {
892 case IP6LS_TT_LEVEL:
893 if (solen != 2) {
894 printed = B_FALSE;
895 break;
896 }
897 GETINT16(value, data);
898 (void) snprintf(cp, remlen, "Level %u", value);
899 solen = 0;
900 break;
901 case IP6LS_TT_VECTOR:
902 (void) strlcpy(cp, "Bit-Vector: ", remlen);
903 remlen -= strlen(cp);
904 cp += strlen(cp);
905 while (solen > 1) {
906 GETINT16(value, data);
907 solen -= 2;
908 (void) snprintf(cp, remlen, "%04x", value);
909 remlen -= strlen(cp);
910 cp += strlen(cp);
911 }
912 break;
913 case IP6LS_TT_ENUM:
914 (void) strlcpy(cp, "Enumeration:", remlen);
915 remlen -= strlen(cp);
916 cp += strlen(cp);
917 while (solen > 1) {
918 GETINT16(value, data);
919 solen -= 2;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 15

920 (void) snprintf(cp, remlen, " %u", value);
921 remlen -= strlen(cp);
922 cp += strlen(cp);
923 }
924 break;
925 case IP6LS_TT_RANGES:
926 (void) strlcpy(cp, "Ranges:", remlen);
927 remlen -= strlen(cp);
928 cp += strlen(cp);
929 while (solen > 3) {
930 GETINT16(value, data);
931 GETINT16(value2, data);
932 solen -= 4;
933 (void) snprintf(cp, remlen, " %u-%u", value,
934 value2);
935 remlen -= strlen(cp);
936 cp += strlen(cp);
937 }
938 break;
939 case IP6LS_TT_V4:
940 (void) strlcpy(cp, "IPv4 Option", remlen);
941 print_ipoptions(data, solen);
942 solen = 0;
943 break;
944 case IP6LS_TT_DEST:
945 (void) snprintf(cp, remlen,
946 "Destination-Only Data length %u", solen);
947 solen = 0;
948 break;
949 default:
950 (void) snprintf(cp, remlen,
951 " unknown %u suboption (len %u)", sotype, solen);
952 solen = 0;
953 break;
954 }
955 if (solen != 0) {
956 if (printed) {
957 cp = get_line(0, 0);
958 remlen = get_line_remain();
959 }
960 (void) snprintf(cp, remlen,
961 " malformed %u suboption (remaining %u)",
962 sotype, solen);
963 data += solen;
964 }
965 }
966 }

968 static void
969 prt_hbh_options(int flags, const struct ip6_hbh *ipv6ext_hbh)
970 {
971 const uint8_t *data, *ndata;
972 uint32_t len;
973 uint8_t op_type;
974 uint8_t op_len;
975 uint8_t nxt_hdr;

977 /* in summary mode, we don’t do anything. */
978 if (flags & F_SUM) {
979 return;
980 }

982 show_header("IPv6-HopOpts: ", "IPv6 Hop-by-Hop Options Header", 0);
983 show_space();

985 /*

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 16

986 * Store the lengh of this ext hdr in bytes. The caller has
987 * ensured that there is at least len bytes of data left.
988 */
989 len = ipv6ext_hbh->ip6h_len * 8 + 8;

991 ndata = (const uint8_t *)ipv6ext_hbh + 2;
992 len -= 2;

994 nxt_hdr = ipv6ext_hbh->ip6h_nxt;
995 (void) snprintf(get_line(0, 0), get_line_remain(),
996 "Next Header = %u (%s)", nxt_hdr, getproto(nxt_hdr));

998 while (len > 0) {
999 data = ndata;

1000 GETINT8(op_type, data);
1001 /* This is the only one-octet IPv6 option */
1002 if (op_type == IP6OPT_PAD1) {
1003 (void) snprintf(get_line(0, 0), get_line_remain(),
1004 "pad1 option ");
1005 len--;
1006 ndata = data;
1007 continue;
1008 }
1009 GETINT8(op_len, data);
1010 if (len < 2 || op_len + 2 > len) {
1011 (void) snprintf(get_line(0, 0), get_line_remain(),
1012 "Error: option %u truncated (%u + 2 > %u)",
1013 op_type, op_len, len);
1014 op_len = len - 2;
1015 /*
1016 * Continue processing the malformed option so that we
1017 * can display as much as possible.
1018 */
1019 }

1021 /* advance pointers to the next option */
1022 len -= op_len + 2;
1023 ndata = data + op_len;

1025 /* process this option */
1026 switch (op_type) {
1027 case IP6OPT_PADN:
1028 (void) snprintf(get_line(0, 0), get_line_remain(),
1029 "padN option len = %u", op_len);
1030 break;
1031 case IP6OPT_JUMBO: {
1032 uint32_t payload_len;

1034 (void) snprintf(get_line(0, 0), get_line_remain(),
1035 "Jumbo Payload Option len = %u bytes%s", op_len,
1036 op_len == sizeof (uint32_t) ? "" : "?");
1037 if (op_len == sizeof (uint32_t)) {
1038 GETINT32(payload_len, data);
1039 (void) snprintf(get_line(0, 0),
1040 get_line_remain(),
1041 "Jumbo Payload Length = %u bytes",
1042 payload_len);
1043 }
1044 break;
1045 }
1046 case IP6OPT_ROUTER_ALERT: {
1047 uint16_t value;
1048 const char *label[] = {"MLD", "RSVP", "AN"};

1050 (void) snprintf(get_line(0, 0), get_line_remain(),
1051 "Router Alert Option len = %u bytes%s", op_len,

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 17

1052 op_len == sizeof (uint16_t) ? "" : "?");
1053 if (op_len == sizeof (uint16_t)) {
1054 GETINT16(value, data);
1055 (void) snprintf(get_line(0, 0),
1056 get_line_remain(),
1057 "Alert Type = %d (%s)", value,
1058 value < sizeof (label) / sizeof (label[0]) ?
1059 label[value] : "???");
1060 }
1061 break;
1062 }
1063 case IP6OPT_LS:
1064 print_ip6opt_ls(data, op_len);
1065 break;
1066 default:
1067 (void) snprintf(get_line(0, 0), get_line_remain(),
1068 "Option type = %u, len = %u", op_type, op_len);
1069 break;
1070 }
1071 }

1073 show_space();
1074 }

1076 static void
1077 prt_dest_options(int flags, const struct ip6_dest *ipv6ext_dest)
1078 {
1079 const uint8_t *data, *ndata;
1080 uint32_t len;
1081 uint8_t op_type;
1082 uint32_t op_len;
1083 uint8_t nxt_hdr;
1084 uint8_t value;

1086 /* in summary mode, we don’t do anything. */
1087 if (flags & F_SUM) {
1088 return;
1089 }

1091 show_header("IPv6-DstOpts: ", "IPv6 Destination Options Header", 0);
1092 show_space();

1094 /*
1095 * Store the length of this ext hdr in bytes. The caller has
1096 * ensured that there is at least len bytes of data left.
1097 */
1098 len = ipv6ext_dest->ip6d_len * 8 + 8;

1100 ndata = (const uint8_t *)ipv6ext_dest + 2; /* skip hdr/len */
1101 len -= 2;

1103 nxt_hdr = ipv6ext_dest->ip6d_nxt;
1104 (void) snprintf(get_line(0, 0), get_line_remain(),
1105 "Next Header = %u (%s)", nxt_hdr, getproto(nxt_hdr));

1107 while (len > 0) {
1108 data = ndata;
1109 GETINT8(op_type, data);
1110 if (op_type == IP6OPT_PAD1) {
1111 (void) snprintf(get_line(0, 0), get_line_remain(),
1112 "pad1 option ");
1113 len--;
1114 ndata = data;
1115 continue;
1116 }
1117 GETINT8(op_len, data);

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 18

1118 if (len < 2 || op_len + 2 > len) {
1119 (void) snprintf(get_line(0, 0), get_line_remain(),
1120 "Error: option %u truncated (%u + 2 > %u)",
1121 op_type, op_len, len);
1122 op_len = len - 2;
1123 /*
1124 * Continue processing the malformed option so that we
1125 * can display as much as possible.
1126 */
1127 }

1129 /* advance pointers to the next option */
1130 len -= op_len + 2;
1131 ndata = data + op_len;

1133 /* process this option */
1134 switch (op_type) {
1135 case IP6OPT_PADN:
1136 (void) snprintf(get_line(0, 0), get_line_remain(),
1137 "padN option len = %u", op_len);
1138 break;
1139 case IP6OPT_TUNNEL_LIMIT:
1140 GETINT8(value, data);
1141 (void) snprintf(get_line(0, 0), get_line_remain(),
1142 "tunnel encapsulation limit len = %d, value = %d",
1143 op_len, value);
1144 break;
1145 case IP6OPT_LS:
1146 print_ip6opt_ls(data, op_len);
1147 break;
1148 default:
1149 (void) snprintf(get_line(0, 0), get_line_remain(),
1150 "Option type = %u, len = %u", op_type, op_len);
1151 break;
1152 }
1153 }

1155 show_space();
1156 }

1158 #define ALABEL_MAXLEN 256

1160 static char ascii_label[ALABEL_MAXLEN];
1161 static char *plabel = ascii_label;

1163 struct snoop_pair {
1164 int val;
1165 const char *name;
1166 };

1168 static struct snoop_pair ripso_class_tbl[] = {
1169 TSOL_CL_TOP_SECRET, "TOP SECRET",
1170 TSOL_CL_SECRET, "SECRET",
1171 TSOL_CL_CONFIDENTIAL, "CONFIDENTIAL",
1172 TSOL_CL_UNCLASSIFIED, "UNCLASSIFIED",
1173 -1, NULL
1174 };

1176 static struct snoop_pair ripso_prot_tbl[] = {
1177 TSOL_PA_GENSER, "GENSER",
1178 TSOL_PA_SIOP_ESI, "SIOP-ESI",
1179 TSOL_PA_SCI, "SCI",
1180 TSOL_PA_NSA, "NSA",
1181 TSOL_PA_DOE, "DOE",
1182 0x04, "UNASSIGNED",
1183 0x02, "UNASSIGNED",

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 19

1184 -1, NULL
1185 };

1187 static struct snoop_pair *
1188 get_pair_byval(struct snoop_pair pairlist[], int val)
1189 {
1190 int i;

1192 for (i = 0; pairlist[i].name != NULL; i++)
1193 if (pairlist[i].val == val)
1194 return (&pairlist[i]);
1195 return (NULL);
1196 }

1198 static void
1199 print_ripso(const uchar_t *opt)
1200 {
1201 struct snoop_pair *ripso_class;
1202 int i, index, prot_len;
1203 boolean_t first_prot;
1204 char line[100], *ptr;

1206 prot_len = opt[1] - 3;
1207 if (prot_len < 0)
1208 return;

1210 show_header("RIPSO: ", "Revised IP Security Option", 0);
1211 show_space();

1213 (void) snprintf(get_line(0, 0), get_line_remain(),
1214 "Type = Basic Security Option (%d), Length = %d", opt[0], opt[1]);

1216 /*
1217 * Display Classification Level
1218 */
1219 ripso_class = get_pair_byval(ripso_class_tbl, (int)opt[2]);
1220 if (ripso_class != NULL)
1221 (void) snprintf(get_line(0, 0), get_line_remain(),
1222 "Classification = Unknown (0x%02x)", opt[2]);
1223 else
1224 (void) snprintf(get_line(0, 0), get_line_remain(),
1225 "Classification = %s (0x%02x)",
1226 ripso_class->name, ripso_class->val);

1228 /*
1229 * Display Protection Authority Flags
1230 */
1231 (void) snprintf(line, sizeof (line), "Protection Authority = ");
1232 ptr = line;
1233 first_prot = B_TRUE;
1234 for (i = 0; i < prot_len; i++) {
1235 index = 0;
1236 while (ripso_prot_tbl[index].name != NULL) {
1237 if (opt[3 + i] & ripso_prot_tbl[index].val) {
1238 ptr = strchr(ptr, 0);
1239 if (!first_prot) {
1240 (void) strlcpy(ptr, ", ",
1241 sizeof (line) - (ptr - line));
1242 ptr = strchr(ptr, 0);
1243 }
1244 (void) snprintf(ptr,
1245 sizeof (line) - (ptr - line),
1246 "%s (0x%02x)",
1247 ripso_prot_tbl[index].name,
1248 ripso_prot_tbl[index].val);
1249 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 20

1250 index++;
1251 }
1252 if ((opt[3 + i] & 1) == 0)
1253 break;
1254 }
1255 if (!first_prot)
1256 (void) snprintf(get_line(0, 0), get_line_remain(), "%s", line);
1257 else
1258 (void) snprintf(get_line(0, 0), get_line_remain(), "%sNone",
1259 line);
1260 }

1262 #define CIPSO_GENERIC_ARRAY_LEN 200

1264 /*
1265 * Return 1 if CIPSO SL and Categories are all 1’s; 0 otherwise.
1266 *
1267 * Note: opt starts with "Tag Type":
1268 *
1269 * |tag_type(1)|tag_length(1)|align(1)|sl(1)|categories(variable)|
1270 *
1271 */
1272 static boolean_t
1273 cipso_high(const uchar_t *opt)
1274 {
1275 int i;

1277 if (((int)opt[1] + 6) < IP_MAX_OPT_LENGTH)
1278 return (B_FALSE);
1279 for (i = 0; i < ((int)opt[1] - 3); i++)
1280 if (opt[3 + i] != 0xff)
1281 return (B_FALSE);
1282 return (B_TRUE);
1283 }

1285 /*
1286 * Converts CIPSO label to SL.
1287 *
1288 * Note: opt starts with "Tag Type":
1289 *
1290 * |tag_type(1)|tag_length(1)|align(1)|sl(1)|categories(variable)|
1291 *
1292 */
1293 static void
1294 cipso2sl(const uchar_t *opt, bslabel_t *sl, int *high)
1295 {
1296 int i, taglen;
1297 uchar_t *q = (uchar_t *)&((_bslabel_impl_t *)sl)->compartments;

1299 *high = 0;
1300 taglen = opt[1];
1301 memset((caddr_t)sl, 0, sizeof (bslabel_t));

1303 if (cipso_high(opt)) {
1304 BSLHIGH(sl);
1305 *high = 1;
1306 } else {
1307 LCLASS_SET((_bslabel_impl_t *)sl, opt[3]);
1308 for (i = 0; i < taglen - TSOL_TT1_MIN_LENGTH; i++)
1309 q[i] = opt[TSOL_TT1_MIN_LENGTH + i];
1310 }
1311 SETBLTYPE(sl, SUN_SL_ID);
1312 }

1314 static int
1315 interpret_cipso_tagtype1(const uchar_t *opt)

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 21

1316 {
1317 int i, taglen, ishigh;
1318 bslabel_t sl;
1319 char line[CIPSO_GENERIC_ARRAY_LEN], *ptr;

1321 taglen = opt[1];
1322 if (taglen < TSOL_TT1_MIN_LENGTH ||
1323 taglen > TSOL_TT1_MAX_LENGTH)
1324 return (taglen);

1326 (void) snprintf(get_line(0, 0), get_line_remain(),
1327 "Tag Type = %d, Tag Length = %d", opt[0], opt[1]);
1328 (void) snprintf(get_line(0, 0), get_line_remain(),
1329 "Sensitivity Level = 0x%02x", opt[3]);
1330 ptr = line;
1331 for (i = 0; i < taglen - TSOL_TT1_MIN_LENGTH; i++) {
1332 (void) snprintf(ptr, sizeof (line) - (ptr - line), "%02x",
1333 opt[TSOL_TT1_MIN_LENGTH + i]);
1334 ptr = strchr(ptr, 0);
1335 }
1336 if (i != 0) {
1337 (void) snprintf(get_line(0, 0), get_line_remain(),
1338 "Categories = ");
1339 (void) snprintf(get_line(0, 0), get_line_remain(), "\t%s",
1340 line);
1341 } else {
1342 (void) snprintf(get_line(0, 0), get_line_remain(),
1343 "Categories = None");
1344 }
1345 cipso2sl(opt, &sl, &ishigh);
1346 if (is_system_labeled()) {
1347 if (bsltos(&sl, &plabel, ALABEL_MAXLEN,
1348 LONG_CLASSIFICATION|LONG_WORDS|VIEW_INTERNAL) < 0) {
1349 (void) snprintf(get_line(0, 0), get_line_remain(),
1350 "The Sensitivity Level and Categories can’t be "
1351 "mapped to a valid SL");
1352 } else {
1353 (void) snprintf(get_line(0, 0), get_line_remain(),
1354 "The Sensitivity Level and Categories are mapped "
1355 "to the SL:");
1356 (void) snprintf(get_line(0, 0), get_line_remain(),
1357 "\t%s", ascii_label);
1358 }
1359 }
1360 return (taglen);
1361 }

1363 /*
1364 * The following struct definition #define’s are copied from TS1.x. They are
1365 * not used here (except TTYPE_3_MAX_TOKENS), but included as a reference for
1366 * the tag type 3 packet format.
1367 */
1368 #define TTYPE_3_MAX_TOKENS 7

1370 /*
1371 * Display CIPSO tag type 3 which is defined by MAXSIX.
1372 */
1373 static int
1374 interpret_cipso_tagtype3(const uchar_t *opt)
1375 {
1376 uchar_t tagtype;
1377 int index, numtokens, taglen;
1378 uint16_t mask;
1379 uint32_t token;
1380 static const char *name[] = {
1381 "SL",

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 22

1382 "NCAV",
1383 "INTEG",
1384 "SID",
1385 "undefined",
1386 "undefined",
1387 "IL",
1388 "PRIVS",
1389 "LUID",
1390 "PID",
1391 "IDS",
1392 "ACL"
1393 };

1395 tagtype = *opt++;
1396 (void) memcpy(&mask, opt + 3, sizeof (mask));
1397 (void) snprintf(get_line(0, 0), get_line_remain(),
1398 "Tag Type = %d (MAXSIX)", tagtype);
1399 (void) snprintf(get_line(0, 0), get_line_remain(),
1400 "Generation = 0x%02x%02x%02x, Mask = 0x%04x", opt[0], opt[1],
1401 opt[2], mask);
1402 opt += 3 + sizeof (mask);

1404 /*
1405 * Display tokens
1406 */
1407 numtokens = 0;
1408 index = 0;
1409 while (mask != 0 && numtokens < TTYPE_3_MAX_TOKENS) {
1410 if (mask & 0x0001) {
1411 (void) memcpy(&token, opt, sizeof (token));
1412 opt += sizeof (token);
1413 (void) snprintf(get_line(0, 0), get_line_remain(),
1414 "Attribute = %s, Token = 0x%08x",
1415 index < sizeof (name) / sizeof (*name) ?
1416 name[index] : "unknown", token);
1417 numtokens++;
1418 }
1419 mask = mask >> 1;
1420 index++;
1421 }

1423 taglen = 6 + numtokens * 4;
1424 return (taglen);
1425 }

1427 static void
1428 print_cipso(const uchar_t *opt)
1429 {
1430 int optlen, taglen, tagnum;
1431 uint32_t doi;
1432 char line[CIPSO_GENERIC_ARRAY_LEN];
1433 char *oldnest;

1435 optlen = opt[1];
1436 if (optlen < TSOL_CIPSO_MIN_LENGTH || optlen > TSOL_CIPSO_MAX_LENGTH)
1437 return;

1439 oldnest = prot_nest_prefix;
1440 prot_nest_prefix = prot_prefix;
1441 show_header("CIPSO: ", "Common IP Security Option", 0);
1442 show_space();

1444 /*
1445 * Display CIPSO Header
1446 */
1447 (void) snprintf(get_line(0, 0), get_line_remain(),

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ip.c 23

1448 "Type = CIPSO (%d), Length = %d", opt[0], opt[1]);
1449 (void) memcpy(&doi, opt + 2, sizeof (doi));
1450 (void) snprintf(get_line(0, 0), get_line_remain(),
1451 "Domain of Interpretation = %u", (unsigned)ntohl(doi));

1453 if (opt[1] == TSOL_CIPSO_MIN_LENGTH) { /* no tags */
1454 show_space();
1455 prot_prefix = prot_nest_prefix;
1456 prot_nest_prefix = oldnest;
1457 return;
1458 }
1459 optlen -= TSOL_CIPSO_MIN_LENGTH;
1460 opt += TSOL_CIPSO_MIN_LENGTH;

1462 /*
1463 * Display Each Tag
1464 */
1465 tagnum = 1;
1466 while (optlen >= TSOL_TT1_MIN_LENGTH) {
1467 (void) snprintf(line, sizeof (line), "Tag# %d", tagnum);
1468 show_header("CIPSO: ", line, 0);
1469 /*
1470 * We handle tag type 1 and 3 only. Note, tag type 3
1471 * is MAXSIX defined.
1472 */
1473 switch (opt[0]) {
1474 case 1:
1475 taglen = interpret_cipso_tagtype1(opt);
1476 break;
1477 case 3:
1478 taglen = interpret_cipso_tagtype3(opt);
1479 break;
1480 default:
1481 (void) snprintf(get_line(0, 0), get_line_remain(),
1482 "Unknown Tag Type %d", opt[0]);
1483 show_space();
1484 prot_prefix = prot_nest_prefix;
1485 prot_nest_prefix = oldnest;
1486 return;
1487 }

1489 /*
1490 * Move to the next tag
1491 */
1492 if (taglen <= 0)
1493 break;
1494 optlen -= taglen;
1495 opt += taglen;
1496 tagnum++;
1497 }
1498 show_space();
1499 prot_prefix = prot_nest_prefix;
1500 prot_nest_prefix = oldnest;
1501 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ipsec.c 1

**
 6896 Sat Aug 18 10:36:58 2012
new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ipsec.c
dccp: snoop, build system fixes
**
______unchanged_portion_omitted_

102 int
103 interpret_ah(int flags, uint8_t *hdr, int iplen, int fraglen)
104 {
105 /* LINTED: alignment */
106 ah_t *ah = (ah_t *)hdr;
107 ah_t *aligned_ah;
108 ah_t storage; /* In case hdr isn’t aligned. */
109 char *line, *buff;
110 uint_t ahlen, auth_data_len;
111 uint8_t *auth_data, *data;
112 int new_iplen;
113 uint8_t proto;

115 if (fraglen < sizeof (ah_t))
116 return (fraglen); /* incomplete header */

118 if (!IS_P2ALIGNED(hdr, 4)) {
119 aligned_ah = (ah_t *)&storage;
120 bcopy(hdr, &storage, sizeof (ah_t));
121 } else {
122 aligned_ah = ah;
123 }

125 /*
126 * "+ 8" is for the "constant" part that’s not included in the AH
127 * length.
128 *
129 * The AH RFC specifies the length field in "length in 4-byte units,
130 * not counting the first 8 bytes". So if an AH is 24 bytes long,
131 * the length field will contain "4". (4 * 4 + 8 == 24).
132 */
133 ahlen = (aligned_ah->ah_length << 2) + 8;
134 fraglen -= ahlen;
135 if (fraglen < 0)
136 return (fraglen + ahlen); /* incomplete header */

138 auth_data_len = ahlen - sizeof (ah_t);
139 auth_data = (uint8_t *)(ah + 1);
140 data = auth_data + auth_data_len;

142 if (flags & F_SUM) {
143 line = (char *)get_sum_line();
144 (void) sprintf(line, "AH SPI=0x%x Replay=%u",
145 ntohl(aligned_ah->ah_spi), ntohl(aligned_ah->ah_replay));
146 line += strlen(line);
147 }

149 if (flags & F_DTAIL) {
150 show_header("AH: ", "Authentication Header", ahlen);
151 show_space();
152 (void) sprintf(get_line((char *)&ah->ah_nexthdr - dlc_header,
153 1), "Next header = %d (%s)", aligned_ah->ah_nexthdr,
154 getproto(aligned_ah->ah_nexthdr));
155 (void) sprintf(get_line((char *)&ah->ah_length - dlc_header, 1),
156 "AH length = %d (%d bytes)", aligned_ah->ah_length, ahlen);
157 (void) sprintf(get_line((char *)&ah->ah_reserved - dlc_header,
158 2), "<Reserved field = 0x%x>",
159 ntohs(aligned_ah->ah_reserved));
160 (void) sprintf(get_line((char *)&ah->ah_spi - dlc_header, 4),

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ipsec.c 2

161 "SPI = 0x%x", ntohl(aligned_ah->ah_spi));
162 (void) sprintf(get_line((char *)&ah->ah_replay - dlc_header, 4),
163 "Replay = %u", ntohl(aligned_ah->ah_replay));

165 /*
166 * 2 for two hex digits per auth_data byte
167 * plus one byte for trailing null byte.
168 */
169 buff = malloc(auth_data_len * 2 + 1);
170 if (buff != NULL) {
171 int i;

173 for (i = 0; i < auth_data_len; i++)
174 sprintf(buff + i * 2, "%02x", auth_data[i]);
175 }

177 (void) sprintf(get_line((char *)auth_data - dlc_header,
178 auth_data_len), "ICV = %s",
179 (buff == NULL) ? "<out of memory>" : buff);

181 /* malloc(3c) says I can call free even if buff == NULL */
182 free(buff);

184 show_space();
185 }

187 new_iplen = iplen - ahlen;
188 proto = aligned_ah->ah_nexthdr;

190 /*
191 * Print IPv6 Extension Headers, or skip them in the summary case.
192 */
193 if (proto == IPPROTO_HOPOPTS || proto == IPPROTO_DSTOPTS ||
194 proto == IPPROTO_ROUTING || proto == IPPROTO_FRAGMENT) {
195 (void) print_ipv6_extensions(flags, &data, &proto, &iplen,
196 &fraglen);
197 }

199 if (fraglen > 0)
200 switch (proto) {
201 case IPPROTO_ENCAP:
202 /* LINTED: alignment */
203 (void) interpret_ip(flags, (struct ip *)data,
204 new_iplen);
205 break;
206 case IPPROTO_IPV6:
207 (void) interpret_ipv6(flags, (ip6_t *)data,
208 new_iplen);
209 break;
210 case IPPROTO_ICMP:
211 (void) interpret_icmp(flags,
212 /* LINTED: alignment */
213 (struct icmp *)data, new_iplen, fraglen);
214 break;
215 case IPPROTO_ICMPV6:
216 /* LINTED: alignment */
217 (void) interpret_icmpv6(flags, (icmp6_t *)data,
218 new_iplen, fraglen);
219 break;
220 case IPPROTO_TCP:
221 (void) interpret_tcp(flags,
222 (struct tcphdr *)data, new_iplen, fraglen);
223 break;

225 case IPPROTO_ESP:
226 (void) interpret_esp(flags, data, new_iplen,

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_ipsec.c 3

227 fraglen);
228 break;

230 case IPPROTO_AH:
231 (void) interpret_ah(flags, data, new_iplen,
232 fraglen);
233 break;

235 case IPPROTO_UDP:
236 (void) interpret_udp(flags,
237 (struct udphdr *)data, new_iplen, fraglen);
238 break;
239 case IPPROTO_DCCP:
240 (void) interpret_dccp(flags,
241 (struct dccphdr *)data, new_iplen, fraglen);
242 break;
243 #endif /* ! codereview */
244 /* default case is to not print anything else */
245 }

247 return (ahlen);
248 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 1

**
 39796 Sat Aug 18 10:36:59 2012
new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c
dccp: options and features
**
______unchanged_portion_omitted_

140 static transport_table_t ether_transport_mapping_table[] = {
141 {IPPROTO_TCP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
142 {IPPROTO_TCP, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
143 {IPPROTO_UDP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
144 {IPPROTO_UDP, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
145 {IPPROTO_OSPF, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
146 {IPPROTO_OSPF, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
147 {IPPROTO_SCTP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
148 {IPPROTO_SCTP, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
149 {IPPROTO_ICMP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
150 {IPPROTO_ICMPV6, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
151 {IPPROTO_ENCAP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
152 {IPPROTO_ESP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
153 {IPPROTO_ESP, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
154 {IPPROTO_AH, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
155 {IPPROTO_AH, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
156 {IPPROTO_DCCP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
157 {IPPROTO_DCCP, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
158 #endif /* ! codereview */
159 {-1, 0, 0} /* must be the final entry */
160 };

162 static transport_table_t ipnet_transport_mapping_table[] = {
163 {IPPROTO_TCP, (DL_IPNETINFO_VERSION << 8 | AF_INET),
164 IPV4_TYPE_HEADER_OFFSET},
165 {IPPROTO_TCP, (DL_IPNETINFO_VERSION << 8 | AF_INET6),
166 IPV6_TYPE_HEADER_OFFSET},
167 {IPPROTO_UDP, (DL_IPNETINFO_VERSION << 8 | AF_INET),
168 IPV4_TYPE_HEADER_OFFSET},
169 {IPPROTO_UDP, (DL_IPNETINFO_VERSION << 8 | AF_INET6),
170 IPV6_TYPE_HEADER_OFFSET},
171 {IPPROTO_OSPF, (DL_IPNETINFO_VERSION << 8 | AF_INET),
172 IPV4_TYPE_HEADER_OFFSET},
173 {IPPROTO_OSPF, (DL_IPNETINFO_VERSION << 8 | AF_INET6),
174 IPV6_TYPE_HEADER_OFFSET},
175 {IPPROTO_SCTP, (DL_IPNETINFO_VERSION << 8 | AF_INET),
176 IPV4_TYPE_HEADER_OFFSET},
177 {IPPROTO_SCTP, (DL_IPNETINFO_VERSION << 8 | AF_INET6),
178 IPV6_TYPE_HEADER_OFFSET},
179 {IPPROTO_ICMP, (DL_IPNETINFO_VERSION << 8 | AF_INET),
180 IPV4_TYPE_HEADER_OFFSET},
181 {IPPROTO_ICMPV6, (DL_IPNETINFO_VERSION << 8 | AF_INET6),
182 IPV6_TYPE_HEADER_OFFSET},
183 {IPPROTO_ENCAP, (DL_IPNETINFO_VERSION << 8 | AF_INET),
184 IPV4_TYPE_HEADER_OFFSET},
185 {IPPROTO_ESP, (DL_IPNETINFO_VERSION << 8 | AF_INET),
186 IPV4_TYPE_HEADER_OFFSET},
187 {IPPROTO_ESP, (DL_IPNETINFO_VERSION << 8 | AF_INET6),
188 IPV6_TYPE_HEADER_OFFSET},
189 {IPPROTO_AH, (DL_IPNETINFO_VERSION << 8 | AF_INET),
190 IPV4_TYPE_HEADER_OFFSET},
191 {IPPROTO_AH, (DL_IPNETINFO_VERSION << 8 | AF_INET6),
192 IPV6_TYPE_HEADER_OFFSET},
193 {IPPROTO_DCCP, (DL_IPNETINFO_VERSION << 8 | AF_INET),
194 IPV4_TYPE_HEADER_OFFSET},
195 {IPPROTO_DCCP, (DL_IPNETINFO_VERSION << 8 | AF_INET6),
196 IPV6_TYPE_HEADER_OFFSET},
197 #endif /* ! codereview */
198 {-1, 0, 0} /* must be the final entry */

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 2

199 };

201 static transport_table_t ib_transport_mapping_table[] = {
202 {IPPROTO_TCP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
203 {IPPROTO_TCP, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
204 {IPPROTO_UDP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
205 {IPPROTO_UDP, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
206 {IPPROTO_OSPF, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
207 {IPPROTO_OSPF, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
208 {IPPROTO_SCTP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
209 {IPPROTO_SCTP, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
210 {IPPROTO_ICMP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
211 {IPPROTO_ICMPV6, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
212 {IPPROTO_ENCAP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
213 {IPPROTO_ESP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
214 {IPPROTO_ESP, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
215 {IPPROTO_AH, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
216 {IPPROTO_AH, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
217 {IPPROTO_DCCP, ETHERTYPE_IP, IPV4_TYPE_HEADER_OFFSET},
218 {IPPROTO_DCCP, ETHERTYPE_IPV6, IPV6_TYPE_HEADER_OFFSET},
219 #endif /* ! codereview */
220 {-1, 0, 0} /* must be the final entry */
221 };

223 typedef struct datalink {
224 uint_t dl_type;
225 void (*dl_match_fn)(uint_t datatype);
226 transport_table_t *dl_trans_map_tbl;
227 network_table_t *dl_net_map_tbl;
228 int dl_link_header_len;
229 int dl_link_type_offset;
230 int dl_link_dest_offset;
231 int dl_link_src_offset;
232 int dl_link_addr_len;
233 } datalink_t;

235 datalink_t dl;

237 #define IPV4_SRCADDR_OFFSET (dl.dl_link_header_len + 12)
238 #define IPV4_DSTADDR_OFFSET (dl.dl_link_header_len + 16)
239 #define IPV6_SRCADDR_OFFSET (dl.dl_link_header_len + 8)
240 #define IPV6_DSTADDR_OFFSET (dl.dl_link_header_len + 24)

242 #define IPNET_SRCZONE_OFFSET 16
243 #define IPNET_DSTZONE_OFFSET 20

245 static int inBrace = 0, inBraceOR = 0;
246 static int foundOR = 0;
247 char *tkp, *sav_tkp;
248 char *token;
249 enum { EOL, ALPHA, NUMBER, FIELD, ADDR_IP, ADDR_ETHER, SPECIAL,
250 ADDR_IP6 } tokentype;
251 uint_t tokenval;

253 enum direction { ANY, TO, FROM };
254 enum direction dir;

256 extern void next();

258 static void pf_expression();
259 static void pf_check_vlan_tag(uint_t offset);
260 static void pf_clear_offset_register();
261 static void pf_emit_load_offset(uint_t offset);
262 static void pf_match_ethertype(uint_t ethertype);
263 static void pf_match_ipnettype(uint_t type);
264 static void pf_match_ibtype(uint_t type);

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 3

265 static void pf_check_transport_protocol(uint_t transport_protocol);
266 static void pf_compare_value_mask_generic(int offset, uint_t len,
267 uint_t val, int mask, uint_t op);
268 static void pf_matchfn(const char *name);

270 /*
271 * This pointer points to the function that last generated
272 * instructions to change the offset register. It’s used
273 * for comparisons to see if we need to issue more instructions
274 * to change the register.
275 *
276 * It’s initialized to pf_clear_offset_register because the offset
277 * register in pfmod is initialized to zero, similar to the state
278 * it would be in after executing the instructions issued by
279 * pf_clear_offset_register.
280 */
281 static void *last_offset_operation = (void*)pf_clear_offset_register;

283 static void
284 pf_emit(x)
285 ushort_t x;
286 {
287 if (pfp > &pf.Pf_Filter[PF_MAXFILTERS - 1])
288 longjmp(env, 1);
289 *pfp++ = x;
290 }

292 static void
293 pf_codeprint(code, len)
294 ushort_t *code;
295 int len;
296 {
297 ushort_t *pc;
298 ushort_t *plast = code + len;
299 int op, action;

301 if (len > 0) {
302 printf("Kernel Filter:\n");
303 }

305 for (pc = code; pc < plast; pc++) {
306 printf("\t%3d: ", pc - code);

308 op = *pc & 0xfc00; /* high 10 bits */
309 action = *pc & 0x3ff; /* low 6 bits */

311 switch (action) {
312 case ENF_PUSHLIT:
313 printf("PUSHLIT ");
314 break;
315 case ENF_PUSHZERO:
316 printf("PUSHZERO ");
317 break;
318 #ifdef ENF_PUSHONE
319 case ENF_PUSHONE:
320 printf("PUSHONE ");
321 break;
322 #endif
323 #ifdef ENF_PUSHFFFF
324 case ENF_PUSHFFFF:
325 printf("PUSHFFFF ");
326 break;
327 #endif
328 #ifdef ENF_PUSHFF00
329 case ENF_PUSHFF00:
330 printf("PUSHFF00 ");

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 4

331 break;
332 #endif
333 #ifdef ENF_PUSH00FF
334 case ENF_PUSH00FF:
335 printf("PUSH00FF ");
336 break;
337 #endif
338 case ENF_LOAD_OFFSET:
339 printf("LOAD_OFFSET ");
340 break;
341 case ENF_BRTR:
342 printf("BRTR ");
343 break;
344 case ENF_BRFL:
345 printf("BRFL ");
346 break;
347 case ENF_POP:
348 printf("POP ");
349 break;
350 }

352 if (action >= ENF_PUSHWORD)
353 printf("PUSHWORD %d ", action - ENF_PUSHWORD);

355 switch (op) {
356 case ENF_EQ:
357 printf("EQ ");
358 break;
359 case ENF_LT:
360 printf("LT ");
361 break;
362 case ENF_LE:
363 printf("LE ");
364 break;
365 case ENF_GT:
366 printf("GT ");
367 break;
368 case ENF_GE:
369 printf("GE ");
370 break;
371 case ENF_AND:
372 printf("AND ");
373 break;
374 case ENF_OR:
375 printf("OR ");
376 break;
377 case ENF_XOR:
378 printf("XOR ");
379 break;
380 case ENF_COR:
381 printf("COR ");
382 break;
383 case ENF_CAND:
384 printf("CAND ");
385 break;
386 case ENF_CNOR:
387 printf("CNOR ");
388 break;
389 case ENF_CNAND:
390 printf("CNAND ");
391 break;
392 case ENF_NEQ:
393 printf("NEQ ");
394 break;
395 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 5

397 if (action == ENF_PUSHLIT ||
398 action == ENF_LOAD_OFFSET ||
399 action == ENF_BRTR ||
400 action == ENF_BRFL) {
401 pc++;
402 printf("\n\t%3d: %d (0x%04x)", pc - code, *pc, *pc);
403 }

405 printf("\n");
406 }
407 }

409 /*
410 * Emit packet filter code to check a
411 * field in the packet for a particular value.
412 * Need different code for each field size.
413 * Since the pf can only compare 16 bit quantities
414 * we have to use masking to compare byte values.
415 * Long word (32 bit) quantities have to be done
416 * as two 16 bit comparisons.
417 */
418 static void
419 pf_compare_value(int offset, uint_t len, uint_t val)
420 {
421 /*
422 * If the property being filtered on is absent in the media
423 * packet, error out.
424 */
425 if (offset == -1)
426 pr_err("filter option unsupported on media");

428 switch (len) {
429 case 1:
430 pf_emit(ENF_PUSHWORD + offset / 2);
431 #if defined(_BIG_ENDIAN)
432 if (offset % 2)
433 #else
434 if (!(offset % 2))
435 #endif
436 {
437 #ifdef ENF_PUSH00FF
438 pf_emit(ENF_PUSH00FF | ENF_AND);
439 #else
440 pf_emit(ENF_PUSHLIT | ENF_AND);
441 pf_emit(0x00FF);
442 #endif
443 pf_emit(ENF_PUSHLIT | ENF_EQ);
444 pf_emit(val);
445 } else {
446 #ifdef ENF_PUSHFF00
447 pf_emit(ENF_PUSHFF00 | ENF_AND);
448 #else
449 pf_emit(ENF_PUSHLIT | ENF_AND);
450 pf_emit(0xFF00);
451 #endif
452 pf_emit(ENF_PUSHLIT | ENF_EQ);
453 pf_emit(val << 8);
454 }
455 break;

457 case 2:
458 pf_emit(ENF_PUSHWORD + offset / 2);
459 pf_emit(ENF_PUSHLIT | ENF_EQ);
460 pf_emit((ushort_t)val);
461 break;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 6

463 case 4:
464 pf_emit(ENF_PUSHWORD + offset / 2);
465 pf_emit(ENF_PUSHLIT | ENF_EQ);
466 #if defined(_BIG_ENDIAN)
467 pf_emit(val >> 16);
468 #elif defined(_LITTLE_ENDIAN)
469 pf_emit(val & 0xffff);
470 #else
471 #error One of _BIG_ENDIAN and _LITTLE_ENDIAN must be defined
472 #endif
473 pf_emit(ENF_PUSHWORD + (offset / 2) + 1);
474 pf_emit(ENF_PUSHLIT | ENF_EQ);
475 #if defined(_BIG_ENDIAN)
476 pf_emit(val & 0xffff);
477 #else
478 pf_emit(val >> 16);
479 #endif
480 pf_emit(ENF_AND);
481 break;
482 }
483 }

485 /*
486 * same as pf_compare_value, but only for emiting code to
487 * compare ipv6 addresses.
488 */
489 static void
490 pf_compare_value_v6(int offset, uint_t len, struct in6_addr val)
491 {
492 int i;

494 for (i = 0; i < len; i += 2) {
495 pf_emit(ENF_PUSHWORD + offset / 2 + i / 2);
496 pf_emit(ENF_PUSHLIT | ENF_EQ);
497 pf_emit(*(uint16_t *)&val.s6_addr[i]);
498 if (i != 0)
499 pf_emit(ENF_AND);
500 }
501 }

504 /*
505 * Same as above except mask the field value
506 * before doing the comparison. The comparison checks
507 * to make sure the values are equal.
508 */
509 static void
510 pf_compare_value_mask(int offset, uint_t len, uint_t val, int mask)
511 {
512 pf_compare_value_mask_generic(offset, len, val, mask, ENF_EQ);
513 }

515 /*
516 * Same as above except the values are compared to see if they are not
517 * equal.
518 */
519 static void
520 pf_compare_value_mask_neq(int offset, uint_t len, uint_t val, int mask)
521 {
522 pf_compare_value_mask_generic(offset, len, val, mask, ENF_NEQ);
523 }

525 /*
526 * Similar to pf_compare_value.
527 *
528 * This is the utility function that does the actual work to compare

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 7

529 * two values using a mask. The comparison operation is passed into
530 * the function.
531 */
532 static void
533 pf_compare_value_mask_generic(int offset, uint_t len, uint_t val, int mask,
534 uint_t op)
535 {
536 /*
537 * If the property being filtered on is absent in the media
538 * packet, error out.
539 */
540 if (offset == -1)
541 pr_err("filter option unsupported on media");

543 switch (len) {
544 case 1:
545 pf_emit(ENF_PUSHWORD + offset / 2);
546 #if defined(_BIG_ENDIAN)
547 if (offset % 2)
548 #else
549 if (!offset % 2)
550 #endif
551 {
552 pf_emit(ENF_PUSHLIT | ENF_AND);
553 pf_emit(mask & 0x00ff);
554 pf_emit(ENF_PUSHLIT | op);
555 pf_emit(val);
556 } else {
557 pf_emit(ENF_PUSHLIT | ENF_AND);
558 pf_emit((mask << 8) & 0xff00);
559 pf_emit(ENF_PUSHLIT | op);
560 pf_emit(val << 8);
561 }
562 break;

564 case 2:
565 pf_emit(ENF_PUSHWORD + offset / 2);
566 pf_emit(ENF_PUSHLIT | ENF_AND);
567 pf_emit(htons((ushort_t)mask));
568 pf_emit(ENF_PUSHLIT | op);
569 pf_emit(htons((ushort_t)val));
570 break;

572 case 4:
573 pf_emit(ENF_PUSHWORD + offset / 2);
574 pf_emit(ENF_PUSHLIT | ENF_AND);
575 pf_emit(htons((ushort_t)((mask >> 16) & 0xffff)));
576 pf_emit(ENF_PUSHLIT | op);
577 pf_emit(htons((ushort_t)((val >> 16) & 0xffff)));

579 pf_emit(ENF_PUSHWORD + (offset / 2) + 1);
580 pf_emit(ENF_PUSHLIT | ENF_AND);
581 pf_emit(htons((ushort_t)(mask & 0xffff)));
582 pf_emit(ENF_PUSHLIT | op);
583 pf_emit(htons((ushort_t)(val & 0xffff)));

585 pf_emit(ENF_AND);
586 break;
587 }
588 }

590 /*
591 * Like pf_compare_value() but compare on a 32-bit zoneid value.
592 * The argument val passed in is in network byte order.
593 */
594 static void

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 8

595 pf_compare_zoneid(int offset, uint32_t val)
596 {
597 int i;

599 for (i = 0; i < sizeof (uint32_t) / 2; i ++) {
600 pf_emit(ENF_PUSHWORD + offset / 2 + i);
601 pf_emit(ENF_PUSHLIT | ENF_EQ);
602 pf_emit(((uint16_t *)&val)[i]);
603 if (i != 0)
604 pf_emit(ENF_AND);
605 }
606 }

608 /*
609 * Generate pf code to match an IPv4 or IPv6 address.
610 */
611 static void
612 pf_ipaddr_match(which, hostname, inet_type)
613 enum direction which;
614 char *hostname;
615 int inet_type;
616 {
617 bool_t found_host;
618 uint_t *addr4ptr;
619 uint_t addr4;
620 struct in6_addr *addr6ptr;
621 int h_addr_index;
622 struct hostent *hp = NULL;
623 int error_num = 0;
624 boolean_t first = B_TRUE;
625 int pass = 0;
626 int i;

628 /*
629 * The addr4offset and addr6offset variables simplify the code which
630 * generates the address comparison filter. With these two variables,
631 * duplicate code need not exist for the TO and FROM case.
632 * A value of -1 describes the ANY case (TO and FROM).
633 */
634 int addr4offset;
635 int addr6offset;

637 found_host = 0;

639 if (tokentype == ADDR_IP) {
640 hp = getipnodebyname(hostname, AF_INET, 0, &error_num);
641 if (hp == NULL) {
642 if (error_num == TRY_AGAIN) {
643 pr_err("could not resolve %s (try again later)",
644 hostname);
645 } else {
646 pr_err("could not resolve %s", hostname);
647 }
648 }
649 inet_type = IPV4_ONLY;
650 } else if (tokentype == ADDR_IP6) {
651 hp = getipnodebyname(hostname, AF_INET6, 0, &error_num);
652 if (hp == NULL) {
653 if (error_num == TRY_AGAIN) {
654 pr_err("could not resolve %s (try again later)",
655 hostname);
656 } else {
657 pr_err("could not resolve %s", hostname);
658 }
659 }
660 inet_type = IPV6_ONLY;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 9

661 } else if (tokentype == ALPHA) {
662 /* Some hostname i.e. tokentype is ALPHA */
663 switch (inet_type) {
664 case IPV4_ONLY:
665 /* Only IPv4 address is needed */
666 hp = getipnodebyname(hostname, AF_INET, 0, &error_num);
667 if (hp != NULL) {
668 found_host = 1;
669 }
670 break;
671 case IPV6_ONLY:
672 /* Only IPv6 address is needed */
673 hp = getipnodebyname(hostname, AF_INET6, 0, &error_num);
674 if (hp != NULL) {
675 found_host = 1;
676 }
677 break;
678 case IPV4_AND_IPV6:
679 /* Both IPv4 and IPv6 are needed */
680 hp = getipnodebyname(hostname, AF_INET6,
681 AI_ALL | AI_V4MAPPED, &error_num);
682 if (hp != NULL) {
683 found_host = 1;
684 }
685 break;
686 default:
687 found_host = 0;
688 }

690 if (!found_host) {
691 if (error_num == TRY_AGAIN) {
692 pr_err("could not resolve %s (try again later)",
693 hostname);
694 } else {
695 pr_err("could not resolve %s", hostname);
696 }
697 }
698 } else {
699 pr_err("unknown token type: %s", hostname);
700 }

702 switch (which) {
703 case TO:
704 addr4offset = IPV4_DSTADDR_OFFSET;
705 addr6offset = IPV6_DSTADDR_OFFSET;
706 break;
707 case FROM:
708 addr4offset = IPV4_SRCADDR_OFFSET;
709 addr6offset = IPV6_SRCADDR_OFFSET;
710 break;
711 case ANY:
712 addr4offset = -1;
713 addr6offset = -1;
714 break;
715 }

717 if (hp != NULL && hp->h_addrtype == AF_INET) {
718 pf_matchfn("ip");
719 if (dl.dl_type == DL_ETHER)
720 pf_check_vlan_tag(ENCAP_ETHERTYPE_OFF/2);
721 h_addr_index = 0;
722 addr4ptr = (uint_t *)hp->h_addr_list[h_addr_index];
723 while (addr4ptr != NULL) {
724 if (addr4offset == -1) {
725 pf_compare_value(IPV4_SRCADDR_OFFSET, 4,
726 *addr4ptr);

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 10

727 if (h_addr_index != 0)
728 pf_emit(ENF_OR);
729 pf_compare_value(IPV4_DSTADDR_OFFSET, 4,
730 *addr4ptr);
731 pf_emit(ENF_OR);
732 } else {
733 pf_compare_value(addr4offset, 4,
734 *addr4ptr);
735 if (h_addr_index != 0)
736 pf_emit(ENF_OR);
737 }
738 addr4ptr = (uint_t *)hp->h_addr_list[++h_addr_index];
739 }
740 pf_emit(ENF_AND);
741 } else {
742 /* first pass: IPv4 addresses */
743 h_addr_index = 0;
744 addr6ptr = (struct in6_addr *)hp->h_addr_list[h_addr_index];
745 first = B_TRUE;
746 while (addr6ptr != NULL) {
747 if (IN6_IS_ADDR_V4MAPPED(addr6ptr)) {
748 if (first) {
749 pf_matchfn("ip");
750 if (dl.dl_type == DL_ETHER) {
751 pf_check_vlan_tag(
752 ENCAP_ETHERTYPE_OFF/2);
753 }
754 pass++;
755 }
756 IN6_V4MAPPED_TO_INADDR(addr6ptr,
757 (struct in_addr *)&addr4);
758 if (addr4offset == -1) {
759 pf_compare_value(IPV4_SRCADDR_OFFSET, 4,
760 addr4);
761 if (!first)
762 pf_emit(ENF_OR);
763 pf_compare_value(IPV4_DSTADDR_OFFSET, 4,
764 addr4);
765 pf_emit(ENF_OR);
766 } else {
767 pf_compare_value(addr4offset, 4,
768 addr4);
769 if (!first)
770 pf_emit(ENF_OR);
771 }
772 if (first)
773 first = B_FALSE;
774 }
775 addr6ptr = (struct in6_addr *)
776 hp->h_addr_list[++h_addr_index];
777 }
778 if (!first) {
779 pf_emit(ENF_AND);
780 }
781 /* second pass: IPv6 addresses */
782 h_addr_index = 0;
783 addr6ptr = (struct in6_addr *)hp->h_addr_list[h_addr_index];
784 first = B_TRUE;
785 while (addr6ptr != NULL) {
786 if (!IN6_IS_ADDR_V4MAPPED(addr6ptr)) {
787 if (first) {
788 pf_matchfn("ip6");
789 if (dl.dl_type == DL_ETHER) {
790 pf_check_vlan_tag(
791 ENCAP_ETHERTYPE_OFF/2);
792 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 11

793 pass++;
794 }
795 if (addr6offset == -1) {
796 pf_compare_value_v6(IPV6_SRCADDR_OFFSET,
797 16, *addr6ptr);
798 if (!first)
799 pf_emit(ENF_OR);
800 pf_compare_value_v6(IPV6_DSTADDR_OFFSET,
801 16, *addr6ptr);
802 pf_emit(ENF_OR);
803 } else {
804 pf_compare_value_v6(addr6offset, 16,
805 *addr6ptr);
806 if (!first)
807 pf_emit(ENF_OR);
808 }
809 if (first)
810 first = B_FALSE;
811 }
812 addr6ptr = (struct in6_addr *)
813 hp->h_addr_list[++h_addr_index];
814 }
815 if (!first) {
816 pf_emit(ENF_AND);
817 }
818 if (pass == 2) {
819 pf_emit(ENF_OR);
820 }
821 }

823 if (hp != NULL) {
824 freehostent(hp);
825 }
826 }

829 static void
830 pf_compare_address(int offset, uint_t len, uchar_t *addr)
831 {
832 uint32_t val;
833 uint16_t sval;
834 boolean_t didone = B_FALSE;

836 /*
837 * If the property being filtered on is absent in the media
838 * packet, error out.
839 */
840 if (offset == -1)
841 pr_err("filter option unsupported on media");

843 while (len > 0) {
844 if (len >= 4) {
845 (void) memcpy(&val, addr, 4);
846 pf_compare_value(offset, 4, val);
847 addr += 4;
848 offset += 4;
849 len -= 4;
850 } else if (len >= 2) {
851 (void) memcpy(&sval, addr, 2);
852 pf_compare_value(offset, 2, sval);
853 addr += 2;
854 offset += 2;
855 len -= 2;
856 } else {
857 pf_compare_value(offset++, 1, *addr++);
858 len--;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 12

859 }
860 if (didone)
861 pf_emit(ENF_AND);
862 didone = B_TRUE;
863 }
864 }

866 /*
867 * Compare ethernet addresses.
868 */
869 static void
870 pf_etheraddr_match(which, hostname)
871 enum direction which;
872 char *hostname;
873 {
874 struct ether_addr e, *ep = NULL;

876 if (isxdigit(*hostname))
877 ep = ether_aton(hostname);
878 if (ep == NULL) {
879 if (ether_hostton(hostname, &e))
880 if (!arp_for_ether(hostname, &e))
881 pr_err("cannot obtain ether addr for %s",
882 hostname);
883 ep = &e;
884 }

886 pf_clear_offset_register();

888 switch (which) {
889 case TO:
890 pf_compare_address(dl.dl_link_dest_offset, dl.dl_link_addr_len,
891 (uchar_t *)ep);
892 break;
893 case FROM:
894 pf_compare_address(dl.dl_link_src_offset, dl.dl_link_addr_len,
895 (uchar_t *)ep);
896 break;
897 case ANY:
898 pf_compare_address(dl.dl_link_dest_offset, dl.dl_link_addr_len,
899 (uchar_t *)ep);
900 pf_compare_address(dl.dl_link_src_offset, dl.dl_link_addr_len,
901 (uchar_t *)ep);
902 pf_emit(ENF_OR);
903 break;
904 }
905 }

907 /*
908 * Emit code to compare the network part of
909 * an IP address.
910 */
911 static void
912 pf_netaddr_match(which, netname)
913 enum direction which;
914 char *netname;
915 {
916 uint_t addr;
917 uint_t mask = 0xff000000;
918 struct netent *np;

920 if (isdigit(*netname)) {
921 addr = inet_network(netname);
922 } else {
923 np = getnetbyname(netname);
924 if (np == NULL)

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 13

925 pr_err("net %s not known", netname);
926 addr = np->n_net;
927 }

929 /*
930 * Left justify the address and figure
931 * out a mask based on the supplied address.
932 * Set the mask according to the number of zero
933 * low-order bytes.
934 * Note: this works only for whole octet masks.
935 */
936 if (addr) {
937 while ((addr & ~mask) != 0) {
938 mask |= (mask >> 8);
939 }
940 }

942 pf_check_vlan_tag(ENCAP_ETHERTYPE_OFF/2);

944 switch (which) {
945 case TO:
946 pf_compare_value_mask(IPV4_DSTADDR_OFFSET, 4, addr, mask);
947 break;
948 case FROM:
949 pf_compare_value_mask(IPV4_SRCADDR_OFFSET, 4, addr, mask);
950 break;
951 case ANY:
952 pf_compare_value_mask(IPV4_SRCADDR_OFFSET, 4, addr, mask);
953 pf_compare_value_mask(IPV4_DSTADDR_OFFSET, 4, addr, mask);
954 pf_emit(ENF_OR);
955 break;
956 }
957 }

959 /*
960 * Emit code to match on src or destination zoneid.
961 * The zoneid passed in is in network byte order.
962 */
963 static void
964 pf_match_zone(enum direction which, uint32_t zoneid)
965 {
966 if (dl.dl_type != DL_IPNET)
967 pr_err("zone filter option unsupported on media");

969 switch (which) {
970 case TO:
971 pf_compare_zoneid(IPNET_DSTZONE_OFFSET, zoneid);
972 break;
973 case FROM:
974 pf_compare_zoneid(IPNET_SRCZONE_OFFSET, zoneid);
975 break;
976 case ANY:
977 pf_compare_zoneid(IPNET_SRCZONE_OFFSET, zoneid);
978 pf_compare_zoneid(IPNET_DSTZONE_OFFSET, zoneid);
979 pf_emit(ENF_OR);
980 break;
981 }
982 }

984 /*
985 * A helper function to keep the code to emit instructions
986 * to change the offset register in one place.
987 *
988 * INPUTS: offset - An value representing an offset in 16-bit
989 * words.
990 * OUTPUTS: If there is enough room in the storage for the

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 14

991 * packet filtering program, instructions to load
992 * a constant to the offset register. Otherwise,
993 * nothing.
994 */
995 static void
996 pf_emit_load_offset(uint_t offset)
997 {
998 pf_emit(ENF_LOAD_OFFSET | ENF_NOP);
999 pf_emit(offset);

1000 }

1002 /*
1003 * Clear pfmod’s offset register.
1004 *
1005 * INPUTS: none
1006 * OUTPUTS: Instructions to clear the offset register if
1007 * there is enough space remaining in the packet
1008 * filtering program structure’s storage, and
1009 * the last thing done to the offset register was
1010 * not clearing the offset register. Otherwise,
1011 * nothing.
1012 */
1013 static void
1014 pf_clear_offset_register()
1015 {
1016 if (last_offset_operation != (void*)pf_clear_offset_register) {
1017 pf_emit_load_offset(0);
1018 last_offset_operation = (void*)pf_clear_offset_register;
1019 }
1020 }

1022 /*
1023 * This function will issue opcodes to check if a packet
1024 * is VLAN tagged, and if so, update the offset register
1025 * with the appropriate offset.
1026 *
1027 * Note that if the packet is not VLAN tagged, then the offset
1028 * register will be cleared.
1029 *
1030 * If the interface type is not an ethernet type, then this
1031 * function returns without doing anything.
1032 *
1033 * If the last attempt to change the offset register occured because
1034 * of a call to this function that was called with the same offset,
1035 * then we don’t issue packet filtering instructions.
1036 *
1037 * INPUTS: offset - an offset in 16 bit words. The function
1038 * will set the offset register to this
1039 * value if the packet is VLAN tagged.
1040 * OUTPUTS: If the conditions are met, packet filtering instructions.
1041 */
1042 static void
1043 pf_check_vlan_tag(uint_t offset)
1044 {
1045 static uint_t last_offset = 0;

1047 if ((interface->mac_type == DL_ETHER ||
1048 interface->mac_type == DL_CSMACD) &&
1049 (last_offset_operation != (void*)pf_check_vlan_tag ||
1050 last_offset != offset)) {
1051 /*
1052 * First thing is to clear the offset register.
1053 * We don’t know what state it is in, and if it
1054 * is not zero, then we have no idea what we load
1055 * when we execute ENF_PUSHWORD.
1056 */

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 15

1057 pf_clear_offset_register();

1059 /*
1060 * Check the ethertype.
1061 */
1062 pf_compare_value(dl.dl_link_type_offset, 2,
1063 htons(ETHERTYPE_VLAN));

1065 /*
1066 * And if it’s not VLAN, don’t load offset to the offset
1067 * register.
1068 */
1069 pf_emit(ENF_BRFL | ENF_NOP);
1070 pf_emit(3);

1072 /*
1073 * Otherwise, load offset to the offset register.
1074 */
1075 pf_emit_load_offset(offset);

1077 /*
1078 * Now get rid of the results of the comparison,
1079 * we don’t want the results of the comparison to affect
1080 * other logic in the packet filtering program.
1081 */
1082 pf_emit(ENF_POP | ENF_NOP);

1084 /*
1085 * Set the last operation at the end, or any time
1086 * after the call to pf_clear_offset because
1087 * pf_clear_offset uses it.
1088 */
1089 last_offset_operation = (void*)pf_check_vlan_tag;
1090 last_offset = offset;
1091 }
1092 }

1094 /*
1095 * Utility function used to emit packet filtering code
1096 * to match an ethertype.
1097 *
1098 * INPUTS: ethertype - The ethertype we want to check for.
1099 * Don’t call htons on the ethertype before
1100 * calling this function.
1101 * OUTPUTS: If there is sufficient storage available, packet
1102 * filtering code to check an ethertype. Otherwise,
1103 * nothing.
1104 */
1105 static void
1106 pf_match_ethertype(uint_t ethertype)
1107 {
1108 /*
1109 * If the user wants to filter on ethertype VLAN,
1110 * then clear the offset register so that the offset
1111 * for ENF_PUSHWORD points to the right place in the
1112 * packet.
1113 *
1114 * Otherwise, call pf_check_vlan_tag to set the offset
1115 * register such that the contents of the offset register
1116 * plus the argument for ENF_PUSHWORD point to the right
1117 * part of the packet, whether or not the packet is VLAN
1118 * tagged. We call pf_check_vlan_tag with an offset of
1119 * two words because if the packet is VLAN tagged, we have
1120 * to move past the ethertype in the ethernet header, and
1121 * past the lower two octets of the VLAN header to get to
1122 * the ethertype in the VLAN header.

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 16

1123 */
1124 if (ethertype == ETHERTYPE_VLAN)
1125 pf_clear_offset_register();
1126 else
1127 pf_check_vlan_tag(2);

1129 pf_compare_value(dl.dl_link_type_offset, 2, htons(ethertype));
1130 }

1132 static void
1133 pf_match_ipnettype(uint_t type)
1134 {
1135 pf_compare_value(dl.dl_link_type_offset, 2, htons(type));
1136 }

1138 static void
1139 pf_match_ibtype(uint_t type)
1140 {
1141 pf_compare_value(dl.dl_link_type_offset, 2, htons(type));
1142 }

1144 /*
1145 * This function uses the table above to generate a
1146 * piece of a packet filtering program to check a transport
1147 * protocol type.
1148 *
1149 * INPUTS: tranport_protocol - the transport protocol we’re
1150 * interested in.
1151 * OUTPUTS: If there is sufficient storage, then packet filtering
1152 * code to check a transport protocol type. Otherwise,
1153 * nothing.
1154 */
1155 static void
1156 pf_check_transport_protocol(uint_t transport_protocol)
1157 {
1158 int i;
1159 uint_t number_of_matches = 0;

1161 for (i = 0; dl.dl_trans_map_tbl[i].transport_protocol != -1; i++) {
1162 if (transport_protocol ==
1163 (uint_t)dl.dl_trans_map_tbl[i].transport_protocol) {
1164 number_of_matches++;
1165 dl.dl_match_fn(dl.dl_trans_map_tbl[i].network_protocol);
1166 pf_check_vlan_tag(ENCAP_ETHERTYPE_OFF/2);
1167 pf_compare_value(dl.dl_trans_map_tbl[i].offset +
1168 dl.dl_link_header_len, 1,
1169 transport_protocol);
1170 pf_emit(ENF_AND);
1171 if (number_of_matches > 1) {
1172 /*
1173 * Since we have two or more matches, in
1174 * order to have a correct and complete
1175 * program we need to OR the result of
1176 * each block of comparisons together.
1177 */
1178 pf_emit(ENF_OR);
1179 }
1180 }
1181 }
1182 }

1184 static void
1185 pf_matchfn(const char *proto)
1186 {
1187 int i;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 17

1189 for (i = 0; dl.dl_net_map_tbl[i].nmt_val != -1; i++) {
1190 if (strcmp(proto, dl.dl_net_map_tbl[i].nmt_name) == 0) {
1191 dl.dl_match_fn(dl.dl_net_map_tbl[i].nmt_val);
1192 break;
1193 }
1194 }
1195 }

1197 static void
1198 pf_primary()
1199 {
1200 for (;;) {
1201 if (tokentype == FIELD)
1202 break;

1204 if (EQ("ip")) {
1205 pf_matchfn("ip");
1206 opstack++;
1207 next();
1208 break;
1209 }

1211 if (EQ("ip6")) {
1212 pf_matchfn("ip6");
1213 opstack++;
1214 next();
1215 break;
1216 }

1218 if (EQ("pppoe")) {
1219 pf_matchfn("pppoe");
1220 pf_match_ethertype(ETHERTYPE_PPPOES);
1221 pf_emit(ENF_OR);
1222 opstack++;
1223 next();
1224 break;
1225 }

1227 if (EQ("pppoed")) {
1228 pf_matchfn("pppoed");
1229 opstack++;
1230 next();
1231 break;
1232 }

1234 if (EQ("pppoes")) {
1235 pf_matchfn("pppoes");
1236 opstack++;
1237 next();
1238 break;
1239 }

1241 if (EQ("arp")) {
1242 pf_matchfn("arp");
1243 opstack++;
1244 next();
1245 break;
1246 }

1248 if (EQ("vlan")) {
1249 pf_matchfn("vlan");
1250 pf_compare_value_mask_neq(VLAN_ID_OFFSET, 2,
1251 0, VLAN_ID_MASK);
1252 pf_emit(ENF_AND);
1253 opstack++;
1254 next();

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 18

1255 break;
1256 }

1258 if (EQ("vlan-id")) {
1259 next();
1260 if (tokentype != NUMBER)
1261 pr_err("VLAN ID expected");
1262 pf_matchfn("vlan-id");
1263 pf_compare_value_mask(VLAN_ID_OFFSET, 2, tokenval,
1264 VLAN_ID_MASK);
1265 pf_emit(ENF_AND);
1266 opstack++;
1267 next();
1268 break;
1269 }

1271 if (EQ("rarp")) {
1272 pf_matchfn("rarp");
1273 opstack++;
1274 next();
1275 break;
1276 }

1278 if (EQ("tcp")) {
1279 pf_check_transport_protocol(IPPROTO_TCP);
1280 opstack++;
1281 next();
1282 break;
1283 }

1285 if (EQ("udp")) {
1286 pf_check_transport_protocol(IPPROTO_UDP);
1287 opstack++;
1288 next();
1289 break;
1290 }

1292 if (EQ("ospf")) {
1293 pf_check_transport_protocol(IPPROTO_OSPF);
1294 opstack++;
1295 next();
1296 break;
1297 }

1300 if (EQ("sctp")) {
1301 pf_check_transport_protocol(IPPROTO_SCTP);
1302 opstack++;
1303 next();
1304 break;
1305 }

1307 if (EQ("icmp")) {
1308 pf_check_transport_protocol(IPPROTO_ICMP);
1309 opstack++;
1310 next();
1311 break;
1312 }

1314 if (EQ("icmp6")) {
1315 pf_check_transport_protocol(IPPROTO_ICMPV6);
1316 opstack++;
1317 next();
1318 break;
1319 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 19

1321 if (EQ("ip-in-ip")) {
1322 pf_check_transport_protocol(IPPROTO_ENCAP);
1323 opstack++;
1324 next();
1325 break;
1326 }

1328 if (EQ("esp")) {
1329 pf_check_transport_protocol(IPPROTO_ESP);
1330 opstack++;
1331 next();
1332 break;
1333 }

1335 if (EQ("ah")) {
1336 pf_check_transport_protocol(IPPROTO_AH);
1337 opstack++;
1338 next();
1339 break;
1340 }

1342 if (EQ("dccp")) {
1343 pf_check_transport_protocol(IPPROTO_DCCP);
1344 opstack++;
1345 next();
1346 break;
1347 }

1349 #endif /* ! codereview */
1350 if (EQ("(")) {
1351 inBrace++;
1352 next();
1353 pf_expression();
1354 if (EQ(")")) {
1355 if (inBrace)
1356 inBraceOR--;
1357 inBrace--;
1358 next();
1359 }
1360 break;
1361 }

1363 if (EQ("to") || EQ("dst")) {
1364 dir = TO;
1365 next();
1366 continue;
1367 }

1369 if (EQ("from") || EQ("src")) {
1370 dir = FROM;
1371 next();
1372 continue;
1373 }

1375 if (EQ("ether")) {
1376 eaddr = 1;
1377 next();
1378 continue;
1379 }

1381 if (EQ("inet")) {
1382 next();
1383 if (EQ("host"))
1384 next();
1385 if (tokentype != ALPHA && tokentype != ADDR_IP)
1386 pr_err("host/IPv4 addr expected after inet");

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 20

1387 pf_ipaddr_match(dir, token, IPV4_ONLY);
1388 opstack++;
1389 next();
1390 break;
1391 }

1393 if (EQ("inet6")) {
1394 next();
1395 if (EQ("host"))
1396 next();
1397 if (tokentype != ALPHA && tokentype != ADDR_IP6)
1398 pr_err("host/IPv6 addr expected after inet6");
1399 pf_ipaddr_match(dir, token, IPV6_ONLY);
1400 opstack++;
1401 next();
1402 break;
1403 }

1405 if (EQ("proto")) {
1406 next();
1407 if (tokentype != NUMBER)
1408 pr_err("IP proto type expected");
1409 pf_check_vlan_tag(ENCAP_ETHERTYPE_OFF/2);
1410 pf_compare_value(
1411 IPV4_TYPE_HEADER_OFFSET + dl.dl_link_header_len, 1,
1412 tokenval);
1413 opstack++;
1414 next();
1415 break;
1416 }

1418 if (EQ("broadcast")) {
1419 pf_clear_offset_register();
1420 pf_compare_value(dl.dl_link_dest_offset, 4, 0xffffffff);
1421 opstack++;
1422 next();
1423 break;
1424 }

1426 if (EQ("multicast")) {
1427 pf_clear_offset_register();
1428 pf_compare_value_mask(
1429 dl.dl_link_dest_offset, 1, 0x01, 0x01);
1430 opstack++;
1431 next();
1432 break;
1433 }

1435 if (EQ("ethertype")) {
1436 next();
1437 if (tokentype != NUMBER)
1438 pr_err("ether type expected");
1439 pf_match_ethertype(tokenval);
1440 opstack++;
1441 next();
1442 break;
1443 }

1445 if (EQ("net") || EQ("dstnet") || EQ("srcnet")) {
1446 if (EQ("dstnet"))
1447 dir = TO;
1448 else if (EQ("srcnet"))
1449 dir = FROM;
1450 next();
1451 pf_netaddr_match(dir, token);
1452 dir = ANY;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 21

1453 opstack++;
1454 next();
1455 break;
1456 }

1458 if (EQ("zone")) {
1459 next();
1460 if (tokentype != NUMBER)
1461 pr_err("zoneid expected after inet");
1462 pf_match_zone(dir, BE_32((uint32_t)(tokenval)));
1463 opstack++;
1464 next();
1465 break;
1466 }

1468 /*
1469 * Give up on anything that’s obviously
1470 * not a primary.
1471 */
1472 if (EQ("and") || EQ("or") ||
1473 EQ("not") || EQ("decnet") || EQ("apple") ||
1474 EQ("length") || EQ("less") || EQ("greater") ||
1475 EQ("port") || EQ("srcport") || EQ("dstport") ||
1476 EQ("rpc") || EQ("gateway") || EQ("nofrag") ||
1477 EQ("bootp") || EQ("dhcp") || EQ("dhcp6") ||
1478 EQ("slp") || EQ("ldap")) {
1479 break;
1480 }

1482 if (EQ("host") || EQ("between") ||
1483 tokentype == ALPHA || /* assume its a hostname */
1484 tokentype == ADDR_IP ||
1485 tokentype == ADDR_IP6 ||
1486 tokentype == ADDR_ETHER) {
1487 if (EQ("host") || EQ("between"))
1488 next();
1489 if (eaddr || tokentype == ADDR_ETHER) {
1490 pf_etheraddr_match(dir, token);
1491 } else if (tokentype == ALPHA) {
1492 pf_ipaddr_match(dir, token, IPV4_AND_IPV6);
1493 } else if (tokentype == ADDR_IP) {
1494 pf_ipaddr_match(dir, token, IPV4_ONLY);
1495 } else {
1496 pf_ipaddr_match(dir, token, IPV6_ONLY);
1497 }
1498 dir = ANY;
1499 eaddr = 0;
1500 opstack++;
1501 next();
1502 break;
1503 }

1505 break; /* unknown token */
1506 }
1507 }

1509 static void
1510 pf_alternation()
1511 {
1512 int s = opstack;

1514 pf_primary();
1515 for (;;) {
1516 if (EQ("and"))
1517 next();
1518 pf_primary();

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 22

1519 if (opstack != s + 2)
1520 break;
1521 pf_emit(ENF_AND);
1522 opstack--;
1523 }
1524 }

1526 static void
1527 pf_expression()
1528 {
1529 pf_alternation();
1530 while (EQ("or") || EQ(",")) {
1531 if (inBrace)
1532 inBraceOR++;
1533 else
1534 foundOR++;
1535 next();
1536 pf_alternation();
1537 pf_emit(ENF_OR);
1538 opstack--;
1539 }
1540 }

1542 /*
1543 * Attempt to compile the expression
1544 * in the string "e". If we can generate
1545 * pf code for it then return 1 - otherwise
1546 * return 0 and leave it up to the user-level
1547 * filter.
1548 */
1549 int
1550 pf_compile(e, print)
1551 char *e;
1552 int print;
1553 {
1554 char *argstr;
1555 char *sav_str, *ptr, *sav_ptr;
1556 int inBr = 0, aheadOR = 0;

1558 argstr = strdup(e);
1559 sav_str = e;
1560 tkp = argstr;
1561 dir = ANY;

1563 pfp = &pf.Pf_Filter[0];
1564 if (setjmp(env)) {
1565 return (0);
1566 }

1568 /*
1569 * Set media specific packet offsets that this code uses.
1570 */
1571 if (interface->mac_type == DL_ETHER) {
1572 dl.dl_type = DL_ETHER;
1573 dl.dl_match_fn = pf_match_ethertype;
1574 dl.dl_trans_map_tbl = ether_transport_mapping_table;
1575 dl.dl_net_map_tbl = ether_network_mapping_table;
1576 dl.dl_link_header_len = 14;
1577 dl.dl_link_type_offset = 12;
1578 dl.dl_link_dest_offset = 0;
1579 dl.dl_link_src_offset = 6;
1580 dl.dl_link_addr_len = 6;
1581 }

1583 if (interface->mac_type == DL_IB) {
1584 dl.dl_type = DL_IB;

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 23

1585 dl.dl_link_header_len = 4;
1586 dl.dl_link_type_offset = 0;
1587 dl.dl_link_dest_offset = dl.dl_link_src_offset = -1;
1588 dl.dl_link_addr_len = 20;
1589 dl.dl_match_fn = pf_match_ibtype;
1590 dl.dl_trans_map_tbl = ib_transport_mapping_table;
1591 dl.dl_net_map_tbl = ib_network_mapping_table;
1592 }

1594 if (interface->mac_type == DL_IPNET) {
1595 dl.dl_type = DL_IPNET;
1596 dl.dl_link_header_len = 24;
1597 dl.dl_link_type_offset = 0;
1598 dl.dl_link_dest_offset = dl.dl_link_src_offset = -1;
1599 dl.dl_link_addr_len = -1;
1600 dl.dl_match_fn = pf_match_ipnettype;
1601 dl.dl_trans_map_tbl = ipnet_transport_mapping_table;
1602 dl.dl_net_map_tbl = ipnet_network_mapping_table;
1603 }

1605 next();
1606 pf_expression();

1608 if (tokentype != EOL) {
1609 /*
1610 * The idea here is to do as much filtering as possible in
1611 * the kernel. So even if we find a token we don’t understand,
1612 * we try to see if we can still set up a portion of the filter
1613 * in the kernel and use the userland filter to filter the
1614 * remaining stuff. Obviously, if our filter expression is of
1615 * type A AND B, we can filter A in kernel and then apply B
1616 * to the packets that got through. The same is not true for
1617 * a filter of type A OR B. We can’t apply A first and then B
1618 * on the packets filtered through A.
1619 *
1620 * (We need to keep track of the fact when we find an OR,
1621 * and the fact that we are inside brackets when we find OR.
1622 * The variable ’foundOR’ tells us if there was an OR behind,
1623 * ’inBraceOR’ tells us if we found an OR before we could find
1624 * the end brace i.e. ’)’, and variable ’aheadOR’ checks if
1625 * there is an OR in the expression ahead. if either of these
1626 * cases become true, we can’t split the filtering)
1627 */

1629 if (foundOR || inBraceOR) {
1630 /* FORGET IN KERNEL FILTERING */
1631 return (0);
1632 } else {

1634 /* CHECK IF NO OR AHEAD */
1635 sav_ptr = (char *)((uintptr_t)sav_str +
1636 (uintptr_t)sav_tkp -
1637 (uintptr_t)argstr);
1638 ptr = sav_ptr;
1639 while (*ptr != ’\0’) {
1640 switch (*ptr) {
1641 case ’(’:
1642 inBr++;
1643 break;
1644 case ’)’:
1645 inBr--;
1646 break;
1647 case ’o’:
1648 case ’O’:
1649 if ((*(ptr + 1) == ’R’ ||
1650 *(ptr + 1) == ’r’) && !inBr)

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_pf.c 24

1651 aheadOR = 1;
1652 break;
1653 case ’,’:
1654 if (!inBr)
1655 aheadOR = 1;
1656 break;
1657 }
1658 ptr++;
1659 }
1660 if (!aheadOR) {
1661 /* NO OR AHEAD, SPLIT UP THE FILTERING */
1662 pf.Pf_FilterLen = pfp - &pf.Pf_Filter[0];
1663 pf.Pf_Priority = 5;
1664 if (print) {
1665 pf_codeprint(&pf.Pf_Filter[0],
1666 pf.Pf_FilterLen);
1667 }
1668 compile(sav_ptr, print);
1669 return (2);
1670 } else
1671 return (0);
1672 }
1673 }

1675 pf.Pf_FilterLen = pfp - &pf.Pf_Filter[0];
1676 pf.Pf_Priority = 5; /* unimportant, so long as > 2 */
1677 if (print) {
1678 pf_codeprint(&pf.Pf_Filter[0], pf.Pf_FilterLen);
1679 }
1680 return (1);
1681 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_rport.c 1

**
 10831 Sat Aug 18 10:36:59 2012
new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_rport.c
dccp: options and features
**
______unchanged_portion_omitted_

140 char *
141 getportname(int proto, in_port_t port)
142 {
143 const struct porttable *p, *pt;

145 switch (proto) {
146 case IPPROTO_DCCP: /* fallthru */
147 case IPPROTO_SCTP:
146 case IPPROTO_SCTP: /* fallthru */
148 case IPPROTO_TCP: pt = pt_tcp; break;
149 case IPPROTO_UDP: pt = pt_udp; break;
150 default: return (NULL);
151 }

153 for (p = pt; p->pt_num; p++) {
154 if (port == p->pt_num)
155 return (p->pt_short);
156 }
157 return (NULL);
158 }

______unchanged_portion_omitted_

new/usr/src/cmd/devfsadm/misc_link.c 1

**
 18154 Sat Aug 18 10:37:00 2012
new/usr/src/cmd/devfsadm/misc_link.c
dccp: fix setsockopt bug
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */

26 #include <regex.h>
27 #include <devfsadm.h>
28 #include <stdio.h>
29 #include <strings.h>
30 #include <stdlib.h>
31 #include <limits.h>
32 #include <sys/zone.h>
33 #include <sys/zcons.h>
34 #include <sys/cpuid_drv.h>

36 static int display(di_minor_t minor, di_node_t node);
37 static int parallel(di_minor_t minor, di_node_t node);
38 static int node_slash_minor(di_minor_t minor, di_node_t node);
39 static int driver_minor(di_minor_t minor, di_node_t node);
40 static int node_name(di_minor_t minor, di_node_t node);
41 static int minor_name(di_minor_t minor, di_node_t node);
42 static int wifi_minor_name(di_minor_t minor, di_node_t node);
43 static int conskbd(di_minor_t minor, di_node_t node);
44 static int consms(di_minor_t minor, di_node_t node);
45 static int power_button(di_minor_t minor, di_node_t node);
46 static int fc_port(di_minor_t minor, di_node_t node);
47 static int printer_create(di_minor_t minor, di_node_t node);
48 static int se_hdlc_create(di_minor_t minor, di_node_t node);
49 static int ppm(di_minor_t minor, di_node_t node);
50 static int gpio(di_minor_t minor, di_node_t node);
51 static int av_create(di_minor_t minor, di_node_t node);
52 static int tsalarm_create(di_minor_t minor, di_node_t node);
53 static int ntwdt_create(di_minor_t minor, di_node_t node);
54 static int zcons_create(di_minor_t minor, di_node_t node);
55 static int cpuid(di_minor_t minor, di_node_t node);
56 static int glvc(di_minor_t minor, di_node_t node);
57 static int ses_callback(di_minor_t minor, di_node_t node);
58 static int kmdrv_create(di_minor_t minor, di_node_t node);

60 static devfsadm_create_t misc_cbt[] = {
61 { "pseudo", "ddi_pseudo", "(^sad$)",

new/usr/src/cmd/devfsadm/misc_link.c 2

62 TYPE_EXACT | DRV_RE, ILEVEL_0, node_slash_minor
63 },
64 { "pseudo", "ddi_pseudo", "zsh",
65 TYPE_EXACT | DRV_EXACT, ILEVEL_0, driver_minor
66 },
67 { "network", "ddi_network", NULL,
68 TYPE_EXACT, ILEVEL_0, minor_name
69 },
70 { "wifi", "ddi_network:wifi", NULL,
71 TYPE_EXACT, ILEVEL_0, wifi_minor_name
72 },
73 { "display", "ddi_display", NULL,
74 TYPE_EXACT, ILEVEL_0, display
75 },
76 { "parallel", "ddi_parallel", NULL,
77 TYPE_EXACT, ILEVEL_0, parallel
78 },
79 { "enclosure", DDI_NT_SCSI_ENCLOSURE, NULL,
80 TYPE_EXACT, ILEVEL_0, ses_callback
81 },
82 { "pseudo", "ddi_pseudo", "(^winlock$)|(^pm$)",
83 TYPE_EXACT | DRV_RE, ILEVEL_0, node_name
84 },
85 { "pseudo", "ddi_pseudo", "conskbd",
86 TYPE_EXACT | DRV_EXACT, ILEVEL_0, conskbd
87 },
88 { "pseudo", "ddi_pseudo", "consms",
89 TYPE_EXACT | DRV_EXACT, ILEVEL_0, consms
90 },
91 { "pseudo", "ddi_pseudo", "rsm",
92 TYPE_EXACT | DRV_EXACT, ILEVEL_0, minor_name
93 },
94 { "pseudo", "ddi_pseudo",
95 "(^lockstat$)|(^SUNW,rtvc$)|(^vol$)|(^log$)|(^sy$)|"
96 "(^ksyms$)|(^clone$)|(^tl$)|(^tnf$)|(^kstat$)|(^mdesc$)|(^eeprom$)|"
97 "(^ptsl$)|(^mm$)|(^wc$)|(^dump$)|(^cn$)|(^svvslo$)|(^ptm$)|"
98 "(^ptc$)|(^openeepr$)|(^poll$)|(^sysmsg$)|(^random$)|(^trapstat$)|"
99 "(^cryptoadm$)|(^crypto$)|(^pool$)|(^poolctl$)|(^bl$)|(^kmdb$)|"
100 "(^sysevent$)|(^kssl$)|(^physmem$)",
101 TYPE_EXACT | DRV_RE, ILEVEL_1, minor_name
102 },
103 { "pseudo", "ddi_pseudo",
104 "(^ip$)|(^tcp$)|(^udp$)|(^icmp$)|(^dccp$)|"
105 "(^ip6$)|(^tcp6$)|(^udp6$)|(^icmp6$)|(^dccp6$)|"
104 "(^ip$)|(^tcp$)|(^udp$)|(^icmp$)|"
105 "(^ip6$)|(^tcp6$)|(^udp6$)|(^icmp6$)|"
106 "(^rts$)|(^arp$)|(^ipsecah$)|(^ipsecesp$)|(^keysock$)|(^spdsock$)|"
107 "(^nca$)|(^rds$)|(^sdp$)|(^ipnet$)|(^dlpistub$)|(^bpf$)",
108 TYPE_EXACT | DRV_RE, ILEVEL_1, minor_name
109 },
110 { "pseudo", "ddi_pseudo",
111 "(^ipf$)|(^ipnat$)|(^ipstate$)|(^ipauth$)|"
112 "(^ipsync$)|(^ipscan$)|(^iplookup$)",
113 TYPE_EXACT | DRV_RE, ILEVEL_0, minor_name,
114 },
115 { "pseudo", "ddi_pseudo", "dld",
116 TYPE_EXACT | DRV_EXACT, ILEVEL_0, node_name
117 },
118 { "pseudo", "ddi_pseudo",
119 "(^kdmouse$)|(^rootprop$)",
120 TYPE_EXACT | DRV_RE, ILEVEL_0, node_name
121 },
122 { "pseudo", "ddi_pseudo", "tod",
123 TYPE_EXACT | DRV_EXACT, ILEVEL_0, node_name
124 },
125 { "pseudo", "ddi_pseudo", "envctrl(two)?",

new/usr/src/cmd/devfsadm/misc_link.c 3

126 TYPE_EXACT | DRV_RE, ILEVEL_1, minor_name,
127 },
128 { "pseudo", "ddi_pseudo", "fcode",
129 TYPE_EXACT | DRV_RE, ILEVEL_0, minor_name,
130 },
131 { "power_button", "ddi_power_button", NULL,
132 TYPE_EXACT, ILEVEL_0, power_button,
133 },
134 { "FC port", "ddi_ctl:devctl", "fp",
135 TYPE_EXACT | DRV_EXACT, ILEVEL_0, fc_port
136 },
137 { "printer", "ddi_printer", NULL,
138 TYPE_EXACT, ILEVEL_0, printer_create
139 },
140 { "pseudo", "ddi_pseudo", "se",
141 TYPE_EXACT | DRV_EXACT, ILEVEL_0, se_hdlc_create
142 },
143 { "ppm", "ddi_ppm", NULL,
144 TYPE_EXACT, ILEVEL_0, ppm
145 },
146 { "pseudo", "ddi_pseudo", "gpio_87317",
147 TYPE_EXACT | DRV_EXACT, ILEVEL_0, gpio
148 },
149 { "pseudo", "ddi_pseudo", "sckmdrv",
150 TYPE_EXACT | DRV_RE, ILEVEL_0, kmdrv_create,
151 },
152 { "pseudo", "ddi_pseudo", "oplkmdrv",
153 TYPE_EXACT | DRV_RE, ILEVEL_0, kmdrv_create,
154 },
155 { "av", "^ddi_av:(isoch|async)$", NULL,
156 TYPE_RE, ILEVEL_0, av_create,
157 },
158 { "pseudo", "ddi_pseudo", "tsalarm",
159 TYPE_EXACT | DRV_RE, ILEVEL_0, tsalarm_create,
160 },
161 { "pseudo", "ddi_pseudo", "ntwdt",
162 TYPE_EXACT | DRV_RE, ILEVEL_0, ntwdt_create,
163 },
164 { "pseudo", "ddi_pseudo", "daplt",
165 TYPE_EXACT | DRV_EXACT, ILEVEL_0, minor_name
166 },
167 { "pseudo", "ddi_pseudo", "zcons",
168 TYPE_EXACT | DRV_EXACT, ILEVEL_0, zcons_create,
169 },
170 { "pseudo", "ddi_pseudo", CPUID_DRIVER_NAME,
171 TYPE_EXACT | DRV_EXACT, ILEVEL_0, cpuid,
172 },
173 { "pseudo", "ddi_pseudo", "glvc",
174 TYPE_EXACT | DRV_EXACT, ILEVEL_0, glvc,
175 },
176 { "pseudo", "ddi_pseudo", "dm2s",
177 TYPE_EXACT | DRV_EXACT, ILEVEL_0, minor_name,
178 },
179 { "pseudo", "ddi_pseudo", "nsmb",
180 TYPE_EXACT | DRV_EXACT, ILEVEL_1, minor_name,
181 },
182 { "pseudo", "ddi_pseudo", "mem_cache",
183 TYPE_EXACT | DRV_RE, ILEVEL_1, minor_name,
184 },
185 { "pseudo", "ddi_pseudo", "fm",
186 TYPE_EXACT | DRV_RE, ILEVEL_1, minor_name,
187 },
188 { "pseudo", "ddi_pseudo", "smbsrv",
189 TYPE_EXACT | DRV_EXACT, ILEVEL_1, minor_name,
190 },
191 { "pseudo", "ddi_pseudo", "tpm",

new/usr/src/cmd/devfsadm/misc_link.c 4

192 TYPE_EXACT | DRV_EXACT, ILEVEL_0, minor_name
193 },
194 };

______unchanged_portion_omitted_

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 1

**
 128972 Sat Aug 18 10:37:00 2012
new/usr/src/cmd/mdb/common/modules/genunix/genunix.c
dccp: build fixes, mdb (vfs sonode missing)
**
______unchanged_portion_omitted_

3841 static const mdb_dcmd_t dcmds[] = {

3843 /* from genunix.c */
3844 { "as2proc", ":", "convert as to proc_t address", as2proc },
3845 { "binding_hash_entry", ":", "print driver names hash table entry",
3846 binding_hash_entry },
3847 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
3848 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
3849 " [-FivVA]",
3850 "display callouts", callout, callout_help },
3851 { "calloutid", "[-d|v] xid", "print callout by extended id",
3852 calloutid, calloutid_help },
3853 { "class", NULL, "print process scheduler classes", class },
3854 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
3855 { "did2thread", "? kt_did", "find kernel thread for this id",
3856 did2thread },
3857 { "errorq", "?[-v]", "display kernel error queues", errorq },
3858 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
3859 { "flipone", ":", "the vik_rev_level 2 special", flipone },
3860 { "lminfo", NULL, "print lock manager information", lminfo },
3861 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
3862 { "panicinfo", NULL, "print panic information", panicinfo },
3863 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
3864 { "project", NULL, "display kernel project(s)", project },
3865 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
3866 { "pgrep", "[-x] [-n | -o] pattern",
3867 "pattern match against all processes", pgrep },
3868 { "ptree", NULL, "print process tree", ptree },
3869 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
3870 sysevent},
3871 { "sysevent_channel", "?", "print sysevent channel database",
3872 sysevent_channel},
3873 { "sysevent_class_list", ":", "print sysevent class list",
3874 sysevent_class_list},
3875 { "sysevent_subclass_list", ":",
3876 "print sysevent subclass list", sysevent_subclass_list},
3877 { "system", NULL, "print contents of /etc/system file", sysfile },
3878 { "task", NULL, "display kernel task(s)", task },
3879 { "time", "[-dlx]", "display system time", time, time_help },
3880 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
3881 { "whereopen", ":", "given a vnode, dumps procs which have it open",
3882 whereopen },

3884 /* from bio.c */
3885 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },

3887 /* from bitset.c */
3888 { "bitset", ":", "display a bitset", bitset, bitset_help },

3890 /* from contract.c */
3891 { "contract", "?", "display a contract", cmd_contract },
3892 { "ctevent", ":", "display a contract event", cmd_ctevent },
3893 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },

3895 /* from cpupart.c */
3896 { "cpupart", "?[-v]", "print cpu partition info", cpupart },

3898 /* from cred.c */
3899 { "cred", ":[-v]", "display a credential", cmd_cred },

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 2

3900 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
3901 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
3902 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },

3904 /* from cyclic.c */
3905 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
3906 { "cycid", "?", "dump a cyclic id", cycid },
3907 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
3908 { "cyclic", ":", "developer information", cyclic },
3909 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },

3911 /* from damap.c */
3912 { "damap", ":", "display a damap_t", damap, damap_help },

3914 /* from devinfo.c */
3915 { "devbindings", "?[-qs] [device-name | major-num]",
3916 "print devinfo nodes bound to device-name or major-num",
3917 devbindings, devinfo_help },
3918 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
3919 devinfo_help },
3920 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
3921 devinfo_audit },
3922 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
3923 devinfo_audit_log },
3924 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
3925 devinfo_audit_node },
3926 { "devinfo2driver", ":", "find driver name for this devinfo node",
3927 devinfo2driver },
3928 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
3929 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
3930 dev2major },
3931 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
3932 dev2minor },
3933 { "devt", "?<dev_t>", "display a dev_t’s major and minor numbers",
3934 devt },
3935 { "major2name", "?<major-num>", "convert major number to dev name",
3936 major2name },
3937 { "minornodes", ":", "given a devinfo node, print its minor nodes",
3938 minornodes },
3939 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
3940 modctl2devinfo },
3941 { "name2major", "<dev-name>", "convert dev name to major number",
3942 name2major },
3943 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
3944 { "softstate", ":<instance>", "retrieve soft-state pointer",
3945 softstate },
3946 { "devinfo_fm", ":", "devinfo fault managment configuration",
3947 devinfo_fm },
3948 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
3949 devinfo_fmce},

3951 /* from findstack.c */
3952 { "findstack", ":[-v]", "find kernel thread stack", findstack },
3953 { "findstack_debug", NULL, "toggle findstack debugging",
3954 findstack_debug },
3955 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
3956 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
3957 "print unique kernel thread stacks",
3958 stacks, stacks_help },

3960 /* from fm.c */
3961 { "ereport", "[-v]", "print ereports logged in dump",
3962 ereport },

3964 /* from group.c */
3965 { "group", "?[-q]", "display a group", group},

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 3

3967 /* from hotplug.c */
3968 { "hotplug", "?[-p]", "display a registered hotplug attachment",
3969 hotplug, hotplug_help },

3971 /* from irm.c */
3972 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
3973 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
3974 irmreqs_dcmd },
3975 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },

3977 /* from kgrep.c + genunix.c */
3978 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
3979 kgrep_help },

3981 /* from kmem.c */
3982 { "allocdby", ":", "given a thread, print its allocated buffers",
3983 allocdby },
3984 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
3985 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
3986 { "freedby", ":", "given a thread, print its freed buffers", freedby },
3987 { "kmalog", "?[fail | slab]",
3988 "display kmem transaction log and stack traces", kmalog },
3989 { "kmastat", "[-kmg]", "kernel memory allocator stats",
3990 kmastat },
3991 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
3992 "of the kmem allocator", kmausers, kmausers_help },
3993 { "kmem_cache", "?[-n name]",
3994 "print kernel memory caches", kmem_cache, kmem_cache_help},
3995 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
3996 "[-B minbinsize]", "display slab usage per kmem cache",
3997 kmem_slabs, kmem_slabs_help },
3998 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
3999 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4000 { "kmem_verify", "?", "check integrity of kmem-managed memory",
4001 kmem_verify },
4002 { "vmem", "?", "print a vmem_t", vmem },
4003 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4004 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
4005 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4006 { "whatthread", ":[-v]", "print threads whose stack contains the "
4007 "given address", whatthread },

4009 /* from ldi.c */
4010 { "ldi_handle", "?[-i]", "display a layered driver handle",
4011 ldi_handle, ldi_handle_help },
4012 { "ldi_ident", NULL, "display a layered driver identifier",
4013 ldi_ident, ldi_ident_help },

4015 /* from leaky.c + leaky_subr.c */
4016 { "findleaks", FINDLEAKS_USAGE,
4017 "search for potential kernel memory leaks", findleaks,
4018 findleaks_help },

4020 /* from lgrp.c */
4021 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4022 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},

4024 /* from log.c */
4025 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf },

4027 /* from mdi.c */
4028 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
4029 "and detailed pi_prop list", mdipi },
4030 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4031 mdiprops },

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 4

4032 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4033 "list all paths", mdiphci },
4034 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4035 "all phcis", mdivhci },
4036 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4037 "client links", mdiclient_paths },
4038 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4039 "phci links", mdiphci_paths },
4040 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4041 mdiphcis },

4043 /* from memory.c */
4044 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4045 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4046 { "memstat", NULL, "display memory usage summary", memstat },
4047 { "page", "?", "display a summarized page_t", page },
4048 { "pagelookup", "?[-v vp] [-o offset]",
4049 "find the page_t with the name {vp, offset}",
4050 pagelookup, pagelookup_help },
4051 { "page_num2pp", ":", "find the page_t for a given page frame number",
4052 page_num2pp },
4053 { "pmap", ":[-q]", "print process memory map", pmap },
4054 { "seg", ":", "print address space segment", seg },
4055 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4056 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },

4058 /* from mmd.c */
4059 { "multidata", ":[-sv]", "display a summarized multidata_t",
4060 multidata },
4061 { "pattbl", ":", "display a summarized multidata attribute table",
4062 pattbl },
4063 { "pattr2multidata", ":", "print multidata pointer from pattr_t",
4064 pattr2multidata },
4065 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4066 pdesc2slab },
4067 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4068 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4069 slab2multidata },

4071 /* from modhash.c */
4072 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4073 "display information about one or all mod_hash structures",
4074 modhash, modhash_help },
4075 { "modent", ":[-k | -v | -t type]",
4076 "display information about a mod_hash_entry", modent,
4077 modent_help },

4079 /* from net.c */
4080 { "dladm", "?<sub-command> [flags]", "show data link information",
4081 dladm, dladm_help },
4082 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4083 mi },
4084 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp | dcc
4084 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4085 "show network statistics", netstat },
4086 { "sonode", "?[-f inet | inet6 | unix | #] "
4087 "[-t stream | dgram | raw | #] [-p #]",
4088 "filter and display sonode", sonode },

4090 /* from netstack.c */
4091 { "netstack", "", "show stack instances", netstack },

4093 /* from nvpair.c */
4094 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4095 nvpair_print },
4096 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 5

4097 print_nvlist },

4099 /* from pg.c */
4100 { "pg", "?[-q]", "display a pg", pg},

4102 /* from rctl.c */
4103 { "rctl_dict", "?", "print systemwide default rctl definitions",
4104 rctl_dict },
4105 { "rctl_list", ":[handle]", "print rctls for the given proc",
4106 rctl_list },
4107 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4108 rctl },
4109 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4110 "sequence", rctl_validate },

4112 /* from sobj.c */
4113 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4114 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4115 mutex_help },
4116 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4117 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4118 { "turnstile", "?", "display a turnstile", turnstile },

4120 /* from stream.c */
4121 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4122 "print an mblk", mblk_prt, mblk_help },
4123 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4124 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4125 mblk2dblk },
4126 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4127 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4128 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4129 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4130 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4131 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4132 "filter and display STREAM queue", queue, queue_help },
4133 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4134 "filter and display STREAM head", stdata, stdata_help },
4135 { "str2mate", ":", "print mate of this stream", str2mate },
4136 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4137 { "stream", ":", "display STREAM", stream },
4138 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4139 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4140 "filter and display STREAM sync queue", syncq, syncq_help },
4141 { "syncq2q", ":", "print queue for a given syncq", syncq2q },

4143 /* from taskq.c */
4144 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4145 "display a taskq", taskq, taskq_help },
4146 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },

4148 /* from thread.c */
4149 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4150 thread_help },
4151 { "threadlist", "?[-t] [-v [count]]",
4152 "display threads and associated C stack traces", threadlist,
4153 threadlist_help },
4154 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4155 stackinfo_help },

4157 /* from tsd.c */
4158 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4159 { "tsdtot", ":", "find thread with this tsd", tsdtot },

4161 /*
4162 * typegraph does not work under kmdb, as it requires too much memory

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 6

4163 * for its internal data structures.
4164 */
4165 #ifndef _KMDB
4166 /* from typegraph.c */
4167 { "findlocks", ":", "find locks held by specified thread", findlocks },
4168 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4169 findfalse },
4170 { "typegraph", NULL, "build type graph", typegraph },
4171 { "istype", ":type", "manually set object type", istype },
4172 { "notype", ":", "manually clear object type", notype },
4173 { "whattype", ":", "determine object type", whattype },
4174 #endif

4176 /* from vfs.c */
4177 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4178 { "pfiles", ":[-fp]", "print process file information", pfiles,
4179 pfiles_help },

4181 /* from zone.c */
4182 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4183 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4184 "selected zones", zsd },

4186 { NULL }
4187 };

4189 static const mdb_walker_t walkers[] = {

4191 /* from genunix.c */
4192 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4193 callout_walk_init, callout_walk_step, callout_walk_fini,
4194 (void *)CALLOUT_WALK_BYLIST },
4195 { "callouts_byid", "walk callouts by id hash chain",
4196 callout_walk_init, callout_walk_step, callout_walk_fini,
4197 (void *)CALLOUT_WALK_BYID },
4198 { "callout_list", "walk a callout list", callout_list_walk_init,
4199 callout_list_walk_step, callout_list_walk_fini },
4200 { "callout_table", "walk callout table array", callout_table_walk_init,
4201 callout_table_walk_step, callout_table_walk_fini },
4202 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4203 { "ereportq_dump", "walk list of ereports in dump error queue",
4204 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4205 { "ereportq_pend", "walk list of ereports in pending error queue",
4206 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4207 { "errorq", "walk list of system error queues",
4208 errorq_walk_init, errorq_walk_step, NULL },
4209 { "errorq_data", "walk pending error queue data buffers",
4210 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4211 { "allfile", "given a proc pointer, list all file pointers",
4212 file_walk_init, allfile_walk_step, file_walk_fini },
4213 { "file", "given a proc pointer, list of open file pointers",
4214 file_walk_init, file_walk_step, file_walk_fini },
4215 { "lock_descriptor", "walk lock_descriptor_t structures",
4216 ld_walk_init, ld_walk_step, NULL },
4217 { "lock_graph", "walk lock graph",
4218 lg_walk_init, lg_walk_step, NULL },
4219 { "port", "given a proc pointer, list of created event ports",
4220 port_walk_init, port_walk_step, NULL },
4221 { "portev", "given a port pointer, list of events in the queue",
4222 portev_walk_init, portev_walk_step, portev_walk_fini },
4223 { "proc", "list of active proc_t structures",
4224 proc_walk_init, proc_walk_step, proc_walk_fini },
4225 { "projects", "walk a list of kernel projects",
4226 project_walk_init, project_walk_step, NULL },
4227 { "sysevent_pend", "walk sysevent pending queue",
4228 sysevent_pend_walk_init, sysevent_walk_step,

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 7

4229 sysevent_walk_fini},
4230 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4231 sysevent_walk_step, sysevent_walk_fini},
4232 { "sysevent_channel", "walk sysevent channel subscriptions",
4233 sysevent_channel_walk_init, sysevent_channel_walk_step,
4234 sysevent_channel_walk_fini},
4235 { "sysevent_class_list", "walk sysevent subscription’s class list",
4236 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4237 sysevent_class_list_walk_fini},
4238 { "sysevent_subclass_list",
4239 "walk sysevent subscription’s subclass list",
4240 sysevent_subclass_list_walk_init,
4241 sysevent_subclass_list_walk_step,
4242 sysevent_subclass_list_walk_fini},
4243 { "task", "given a task pointer, walk its processes",
4244 task_walk_init, task_walk_step, NULL },

4246 /* from avl.c */
4247 { AVL_WALK_NAME, AVL_WALK_DESC,
4248 avl_walk_init, avl_walk_step, avl_walk_fini },

4250 /* from bio.c */
4251 { "buf", "walk the bio buf hash",
4252 buf_walk_init, buf_walk_step, buf_walk_fini },

4254 /* from contract.c */
4255 { "contract", "walk all contracts, or those of the specified type",
4256 ct_walk_init, generic_walk_step, NULL },
4257 { "ct_event", "walk events on a contract event queue",
4258 ct_event_walk_init, generic_walk_step, NULL },
4259 { "ct_listener", "walk contract event queue listeners",
4260 ct_listener_walk_init, generic_walk_step, NULL },

4262 /* from cpupart.c */
4263 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4264 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4265 NULL },
4266 { "cpupart_walk", "walk the set of cpu partitions",
4267 cpupart_walk_init, cpupart_walk_step, NULL },

4269 /* from ctxop.c */
4270 { "ctxop", "walk list of context ops on a thread",
4271 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },

4273 /* from cyclic.c */
4274 { "cyccpu", "walk per-CPU cyc_cpu structures",
4275 cyccpu_walk_init, cyccpu_walk_step, NULL },
4276 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4277 cycomni_walk_init, cycomni_walk_step, NULL },
4278 { "cyctrace", "walk cyclic trace buffer",
4279 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },

4281 /* from devinfo.c */
4282 { "binding_hash", "walk all entries in binding hash table",
4283 binding_hash_walk_init, binding_hash_walk_step, NULL },
4284 { "devinfo", "walk devinfo tree or subtree",
4285 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4286 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4287 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4288 devinfo_audit_log_walk_fini},
4289 { "devinfo_audit_node", "walk per-devinfo audit history",
4290 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4291 devinfo_audit_node_walk_fini},
4292 { "devinfo_children", "walk children of devinfo node",
4293 devinfo_children_walk_init, devinfo_children_walk_step,
4294 devinfo_children_walk_fini },

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 8

4295 { "devinfo_parents", "walk ancestors of devinfo node",
4296 devinfo_parents_walk_init, devinfo_parents_walk_step,
4297 devinfo_parents_walk_fini },
4298 { "devinfo_siblings", "walk siblings of devinfo node",
4299 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4300 { "devi_next", "walk devinfo list",
4301 NULL, devi_next_walk_step, NULL },
4302 { "devnames", "walk devnames array",
4303 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4304 { "minornode", "given a devinfo node, walk minor nodes",
4305 minornode_walk_init, minornode_walk_step, NULL },
4306 { "softstate",
4307 "given an i_ddi_soft_state*, list all in-use driver stateps",
4308 soft_state_walk_init, soft_state_walk_step,
4309 NULL, NULL },
4310 { "softstate_all",
4311 "given an i_ddi_soft_state*, list all driver stateps",
4312 soft_state_walk_init, soft_state_all_walk_step,
4313 NULL, NULL },
4314 { "devinfo_fmc",
4315 "walk a fault management handle cache active list",
4316 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },

4318 /* from group.c */
4319 { "group", "walk all elements of a group",
4320 group_walk_init, group_walk_step, NULL },

4322 /* from irm.c */
4323 { "irmpools", "walk global list of interrupt pools",
4324 irmpools_walk_init, list_walk_step, list_walk_fini },
4325 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4326 irmreqs_walk_init, list_walk_step, list_walk_fini },

4328 /* from kmem.c */
4329 { "allocdby", "given a thread, walk its allocated bufctls",
4330 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4331 { "bufctl", "walk a kmem cache’s bufctls",
4332 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4333 { "bufctl_history", "walk the available history of a bufctl",
4334 bufctl_history_walk_init, bufctl_history_walk_step,
4335 bufctl_history_walk_fini },
4336 { "freedby", "given a thread, walk its freed bufctls",
4337 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4338 { "freectl", "walk a kmem cache’s free bufctls",
4339 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4340 { "freectl_constructed", "walk a kmem cache’s constructed free bufctls",
4341 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4342 { "freemem", "walk a kmem cache’s free memory",
4343 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4344 { "freemem_constructed", "walk a kmem cache’s constructed free memory",
4345 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4346 { "kmem", "walk a kmem cache",
4347 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4348 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4349 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4350 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4351 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4352 { "kmem_log", "walk the kmem transaction log",
4353 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4354 { "kmem_slab", "given a kmem cache, walk its slabs",
4355 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4356 { "kmem_slab_partial",
4357 "given a kmem cache, walk its partially allocated slabs (min 1)",
4358 kmem_slab_walk_partial_init, combined_walk_step,
4359 combined_walk_fini },
4360 { "vmem", "walk vmem structures in pre-fix, depth-first order",

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 9

4361 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4362 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4363 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4364 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4365 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4366 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4367 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4368 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4369 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4370 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4371 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },

4373 /* from ldi.c */
4374 { "ldi_handle", "walk the layered driver handle hash",
4375 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4376 { "ldi_ident", "walk the layered driver identifier hash",
4377 ldi_ident_walk_init, ldi_ident_walk_step, NULL },

4379 /* from leaky.c + leaky_subr.c */
4380 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4381 "stack trace",
4382 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4383 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4384 "leaks w/ same stack trace",
4385 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },

4387 /* from lgrp.c */
4388 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4389 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4390 { "lgrptbl", "walk lgroup table",
4391 lgrp_walk_init, lgrp_walk_step, NULL },
4392 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4393 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4394 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4395 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4396 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4397 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },

4399 /* from list.c */
4400 { LIST_WALK_NAME, LIST_WALK_DESC,
4401 list_walk_init, list_walk_step, list_walk_fini },

4403 /* from mdi.c */
4404 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4405 mdi_pi_client_link_walk_init,
4406 mdi_pi_client_link_walk_step,
4407 mdi_pi_client_link_walk_fini },
4408 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4409 mdi_pi_phci_link_walk_init,
4410 mdi_pi_phci_link_walk_step,
4411 mdi_pi_phci_link_walk_fini },
4412 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4413 mdi_phci_ph_next_walk_init,
4414 mdi_phci_ph_next_walk_step,
4415 mdi_phci_ph_next_walk_fini },

4417 /* from memory.c */
4418 { "allpages", "walk all pages, including free pages",
4419 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4420 { "anon", "given an amp, list allocated anon structures",
4421 anon_walk_init, anon_walk_step, anon_walk_fini,
4422 ANON_WALK_ALLOC },
4423 { "anon_all", "given an amp, list contents of all anon slots",
4424 anon_walk_init, anon_walk_step, anon_walk_fini,
4425 ANON_WALK_ALL },
4426 { "memlist", "walk specified memlist",

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 10

4427 NULL, memlist_walk_step, NULL },
4428 { "page", "walk all pages, or those from the specified vnode",
4429 page_walk_init, page_walk_step, page_walk_fini },
4430 { "seg", "given an as, list of segments",
4431 seg_walk_init, avl_walk_step, avl_walk_fini },
4432 { "segvn_anon",
4433 "given a struct segvn_data, list allocated anon structures",
4434 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4435 ANON_WALK_ALLOC },
4436 { "segvn_anon_all",
4437 "given a struct segvn_data, list contents of all anon slots",
4438 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4439 ANON_WALK_ALL },
4440 { "segvn_pages",
4441 "given a struct segvn_data, list resident pages in "
4442 "offset order",
4443 segvn_pages_walk_init, segvn_pages_walk_step,
4444 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4445 { "segvn_pages_all",
4446 "for each offset in a struct segvn_data, give page_t pointer "
4447 "(if resident), or NULL.",
4448 segvn_pages_walk_init, segvn_pages_walk_step,
4449 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4450 { "swapinfo", "walk swapinfo structures",
4451 swap_walk_init, swap_walk_step, NULL },

4453 /* from mmd.c */
4454 { "pattr", "walk pattr_t structures", pattr_walk_init,
4455 mmdq_walk_step, mmdq_walk_fini },
4456 { "pdesc", "walk pdesc_t structures",
4457 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4458 { "pdesc_slab", "walk pdesc_slab_t structures",
4459 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },

4461 /* from modhash.c */
4462 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4463 modhash_walk_step, NULL },
4464 { "modent", "walk list of entries in a given mod_hash",
4465 modent_walk_init, modent_walk_step, modent_walk_fini },
4466 { "modchain", "walk list of entries in a given mod_hash_entry",
4467 NULL, modchain_walk_step, NULL },

4469 /* from net.c */
4470 { "icmp", "walk ICMP control structures using MI for all stacks",
4471 mi_payload_walk_init, mi_payload_walk_step, NULL,
4472 &mi_icmp_arg },
4473 { "mi", "given a MI_O, walk the MI",
4474 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4475 { "sonode", "given a sonode, walk its children",
4476 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4477 { "icmp_stacks", "walk all the icmp_stack_t",
4478 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4479 { "tcp_stacks", "walk all the tcp_stack_t",
4480 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4481 { "udp_stacks", "walk all the udp_stack_t",
4482 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4483 { "dccp_stacks", "walk all the dccp_stack_t",
4484 dccp_stacks_walk_init, dccp_stacks_walk_step, NULL },
4485 #endif /* ! codereview */

4487 /* from netstack.c */
4488 { "netstack", "walk a list of kernel netstacks",
4489 netstack_walk_init, netstack_walk_step, NULL },

4491 /* from nvpair.c */
4492 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 11

4493 nvpair_walk_init, nvpair_walk_step, NULL },

4495 /* from rctl.c */
4496 { "rctl_dict_list", "walk all rctl_dict_entry_t’s from rctl_lists",
4497 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4498 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4499 rctl_set_walk_step, NULL },
4500 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4501 rctl_val_walk_init, rctl_val_walk_step },

4503 /* from sobj.c */
4504 { "blocked", "walk threads blocked on a given sobj",
4505 blocked_walk_init, blocked_walk_step, NULL },
4506 { "wchan", "given a wchan, list of blocked threads",
4507 wchan_walk_init, wchan_walk_step, wchan_walk_fini },

4509 /* from stream.c */
4510 { "b_cont", "walk mblk_t list using b_cont",
4511 mblk_walk_init, b_cont_step, mblk_walk_fini },
4512 { "b_next", "walk mblk_t list using b_next",
4513 mblk_walk_init, b_next_step, mblk_walk_fini },
4514 { "qlink", "walk queue_t list using q_link",
4515 queue_walk_init, queue_link_step, queue_walk_fini },
4516 { "qnext", "walk queue_t list using q_next",
4517 queue_walk_init, queue_next_step, queue_walk_fini },
4518 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4519 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4520 { "readq", "walk read queue side of stdata",
4521 str_walk_init, strr_walk_step, str_walk_fini },
4522 { "writeq", "walk write queue side of stdata",
4523 str_walk_init, strw_walk_step, str_walk_fini },

4525 /* from taskq.c */
4526 { "taskq_thread", "given a taskq_t, list all of its threads",
4527 taskq_thread_walk_init,
4528 taskq_thread_walk_step,
4529 taskq_thread_walk_fini },
4530 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4531 taskq_ent_walk_init, taskq_ent_walk_step, NULL },

4533 /* from thread.c */
4534 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4535 deathrow_walk_init, deathrow_walk_step, NULL },
4536 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4537 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4538 { "cpupart_dispq",
4539 "given a cpupart_t, walk threads in dispatcher queues",
4540 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4541 { "lwp_deathrow", "walk lwp_deathrow",
4542 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4543 { "thread", "global or per-process kthread_t structures",
4544 thread_walk_init, thread_walk_step, thread_walk_fini },
4545 { "thread_deathrow", "walk threads on thread_deathrow",
4546 thread_deathrow_walk_init, deathrow_walk_step, NULL },

4548 /* from tsd.c */
4549 { "tsd", "walk list of thread-specific data",
4550 tsd_walk_init, tsd_walk_step, tsd_walk_fini },

4552 /* from tsol.c */
4553 { "tnrh", "walk remote host cache structures",
4554 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4555 { "tnrhtp", "walk remote host template structures",
4556 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },

4558 /*

new/usr/src/cmd/mdb/common/modules/genunix/genunix.c 12

4559 * typegraph does not work under kmdb, as it requires too much memory
4560 * for its internal data structures.
4561 */
4562 #ifndef _KMDB
4563 /* from typegraph.c */
4564 { "typeconflict", "walk buffers with conflicting type inferences",
4565 typegraph_walk_init, typeconflict_walk_step },
4566 { "typeunknown", "walk buffers with unknown types",
4567 typegraph_walk_init, typeunknown_walk_step },
4568 #endif

4570 /* from vfs.c */
4571 { "vfs", "walk file system list",
4572 vfs_walk_init, vfs_walk_step },

4574 /* from zone.c */
4575 { "zone", "walk a list of kernel zones",
4576 zone_walk_init, zone_walk_step, NULL },
4577 { "zsd", "walk list of zsd entries for a zone",
4578 zsd_walk_init, zsd_walk_step, NULL },

4580 { NULL }
4581 };

4583 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };

4585 /*ARGSUSED*/
4586 static void
4587 genunix_statechange_cb(void *ignored)
4588 {
4589 /*
4590 * Force ::findleaks and ::stacks to let go any cached state.
4591 */
4592 leaky_cleanup(1);
4593 stacks_cleanup(1);

4595 kmem_statechange(); /* notify kmem */
4596 }

4598 const mdb_modinfo_t *
4599 _mdb_init(void)
4600 {
4601 kmem_init();

4603 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4604 genunix_statechange_cb, NULL);

4606 return (&modinfo);
4607 }

4609 void
4610 _mdb_fini(void)
4611 {
4612 leaky_cleanup(1);
4613 stacks_cleanup(1);
4614 }

new/usr/src/cmd/mdb/common/modules/genunix/net.c 1

**
 43063 Sat Aug 18 10:37:01 2012
new/usr/src/cmd/mdb/common/modules/genunix/net.c
dccp: build fixes, mdb (vfs sonode missing)
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <mdb/mdb_modapi.h>
27 #include <mdb/mdb_ks.h>
28 #include <mdb/mdb_ctf.h>
29 #include <sys/types.h>
30 #include <sys/tihdr.h>
31 #include <inet/led.h>
32 #include <inet/common.h>
33 #include <netinet/in.h>
34 #include <netinet/ip6.h>
35 #include <netinet/icmp6.h>
36 #include <inet/ip.h>
37 #include <inet/ip6.h>
38 #include <inet/ipclassifier.h>
39 #include <inet/tcp.h>
40 #include <sys/stream.h>
41 #include <sys/vfs.h>
42 #include <sys/stropts.h>
43 #include <sys/tpicommon.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/cred_impl.h>
47 #include <inet/udp_impl.h>
48 #include <inet/rawip_impl.h>
49 #include <inet/mi.h>
50 #include <inet/dccp_impl.h>
51 #endif /* ! codereview */
52 #include <fs/sockfs/socktpi_impl.h>
53 #include <net/bridge_impl.h>
54 #include <io/trill_impl.h>
55 #include <sys/mac_impl.h>

57 #define ADDR_V6_WIDTH 23
58 #define ADDR_V4_WIDTH 15

60 #define NETSTAT_ALL 0x01
61 #define NETSTAT_VERBOSE 0x02

new/usr/src/cmd/mdb/common/modules/genunix/net.c 2

62 #define NETSTAT_ROUTE 0x04
63 #define NETSTAT_V4 0x08
64 #define NETSTAT_V6 0x10
65 #define NETSTAT_UNIX 0x20

67 #define NETSTAT_FIRST 0x80000000u

69 typedef struct netstat_cb_data_s {
70 uint_t opts;
71 conn_t conn;
72 int af;
73 } netstat_cb_data_t;

75 int
76 icmp_stacks_walk_init(mdb_walk_state_t *wsp)
77 {
78 if (mdb_layered_walk("netstack", wsp) == -1) {
79 mdb_warn("can’t walk ’netstack’");
80 return (WALK_ERR);
81 }
82 return (WALK_NEXT);
83 }

85 int
86 icmp_stacks_walk_step(mdb_walk_state_t *wsp)
87 {
88 uintptr_t kaddr;
89 netstack_t nss;

91 if (mdb_vread(&nss, sizeof (nss), wsp->walk_addr) == -1) {
92 mdb_warn("can’t read netstack at %p", wsp->walk_addr);
93 return (WALK_ERR);
94 }
95 kaddr = (uintptr_t)nss.netstack_modules[NS_ICMP];
96 return (wsp->walk_callback(kaddr, wsp->walk_layer, wsp->walk_cbdata));
97 }

99 int
100 tcp_stacks_walk_init(mdb_walk_state_t *wsp)
101 {
102 if (mdb_layered_walk("netstack", wsp) == -1) {
103 mdb_warn("can’t walk ’netstack’");
104 return (WALK_ERR);
105 }
106 return (WALK_NEXT);
107 }

109 int
110 tcp_stacks_walk_step(mdb_walk_state_t *wsp)
111 {
112 uintptr_t kaddr;
113 netstack_t nss;

115 if (mdb_vread(&nss, sizeof (nss), wsp->walk_addr) == -1) {
116 mdb_warn("can’t read netstack at %p", wsp->walk_addr);
117 return (WALK_ERR);
118 }
119 kaddr = (uintptr_t)nss.netstack_modules[NS_TCP];
120 return (wsp->walk_callback(kaddr, wsp->walk_layer, wsp->walk_cbdata));
121 }

123 int
124 udp_stacks_walk_init(mdb_walk_state_t *wsp)
125 {
126 if (mdb_layered_walk("netstack", wsp) == -1) {
127 mdb_warn("can’t walk ’netstack’");

new/usr/src/cmd/mdb/common/modules/genunix/net.c 3

128 return (WALK_ERR);
129 }
130 return (WALK_NEXT);
131 }

133 int
134 udp_stacks_walk_step(mdb_walk_state_t *wsp)
135 {
136 uintptr_t kaddr;
137 netstack_t nss;

139 if (mdb_vread(&nss, sizeof (nss), wsp->walk_addr) == -1) {
140 mdb_warn("can’t read netstack at %p", wsp->walk_addr);
141 return (WALK_ERR);
142 }
143 kaddr = (uintptr_t)nss.netstack_modules[NS_UDP];
144 return (wsp->walk_callback(kaddr, wsp->walk_layer, wsp->walk_cbdata));
145 }

147 int
148 dccp_stacks_walk_init(mdb_walk_state_t *wsp)
149 {
150 if (mdb_layered_walk("netstack", wsp) == -1) {
151 mdb_warn("can’t walk ’netstack’");
152 return (WALK_ERR);
153 }
154 return (WALK_NEXT);
155 }

157 int
158 dccp_stacks_walk_step(mdb_walk_state_t *wsp)
159 {
160 uintptr_t kaddr;
161 netstack_t nss;

163 if (mdb_vread(&nss, sizeof (nss), wsp->walk_addr) == -1) {
164 mdb_warn("can’t read netstack at %p", wsp->walk_addr);
165 return (WALK_ERR);
166 }
167 kaddr = (uintptr_t)nss.netstack_modules[NS_DCCP];
168 return (wsp->walk_callback(kaddr, wsp->walk_layer, wsp->walk_cbdata));
169 }

171 #endif /* ! codereview */
172 /*
173 * Print an IPv4 address and port number in a compact and easy to read format
174 * The arguments are in network byte order
175 */
176 static void
177 net_ipv4addrport_pr(const in6_addr_t *nipv6addr, in_port_t nport)
178 {
179 uint32_t naddr = V4_PART_OF_V6((*nipv6addr));

181 mdb_nhconvert(&nport, &nport, sizeof (nport));
182 mdb_printf("%*I.%-5hu", ADDR_V4_WIDTH, naddr, nport);
183 }

185 /*
186 * Print an IPv6 address and port number in a compact and easy to read format
187 * The arguments are in network byte order
188 */
189 static void
190 net_ipv6addrport_pr(const in6_addr_t *naddr, in_port_t nport)
191 {
192 mdb_nhconvert(&nport, &nport, sizeof (nport));
193 mdb_printf("%*N.%-5hu", ADDR_V6_WIDTH, naddr, nport);

new/usr/src/cmd/mdb/common/modules/genunix/net.c 4

194 }

196 static int
197 net_tcp_active(const tcp_t *tcp)
198 {
199 return (tcp->tcp_state >= TCPS_ESTABLISHED);
200 }

202 static int
203 net_tcp_ipv4(const tcp_t *tcp)
204 {
205 return ((tcp->tcp_connp->conn_ipversion == IPV4_VERSION) ||
206 (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_connp->conn_laddr_v6) &&
207 (tcp->tcp_state <= TCPS_LISTEN)));
208 }

210 static int
211 net_tcp_ipv6(const tcp_t *tcp)
212 {
213 return (tcp->tcp_connp->conn_ipversion == IPV6_VERSION);
214 }

216 static int
217 net_udp_active(const udp_t *udp)
218 {
219 return ((udp->udp_state == TS_IDLE) ||
220 (udp->udp_state == TS_DATA_XFER));
221 }

223 static int
224 net_udp_ipv4(const udp_t *udp)
225 {
226 return ((udp->udp_connp->conn_ipversion == IPV4_VERSION) ||
227 (IN6_IS_ADDR_UNSPECIFIED(&udp->udp_connp->conn_laddr_v6) &&
228 (udp->udp_state <= TS_IDLE)));
229 }

231 static int
232 net_udp_ipv6(const udp_t *udp)
233 {
234 return (udp->udp_connp->conn_ipversion == IPV6_VERSION);
235 }

237 static int
238 net_dccp_active(const dccp_t *dccp)
239 {
240 return ((dccp->dccp_state == TS_IDLE) ||
241 (dccp->dccp_state == TS_DATA_XFER));
242 }

244 static int
245 net_dccp_ipv4(const dccp_t *dccp)
246 {
247 return ((dccp->dccp_connp->conn_ipversion == IPV4_VERSION) ||
248 (IN6_IS_ADDR_UNSPECIFIED(&dccp->dccp_connp->conn_laddr_v6) &&
249 (dccp->dccp_state <= DCCPS_LISTEN)));
250 }

252 static int
253 net_dccp_ipv6(const dccp_t *dccp)
254 {
255 return (dccp->dccp_connp->conn_ipversion == IPV6_VERSION);
256 }

258 #endif /* ! codereview */
259 int

new/usr/src/cmd/mdb/common/modules/genunix/net.c 5

260 sonode_walk_init(mdb_walk_state_t *wsp)
261 {
262 if (wsp->walk_addr == NULL) {
263 GElf_Sym sym;
264 struct socklist *slp;

266 if (mdb_lookup_by_obj("sockfs", "socklist", &sym) == -1) {
267 mdb_warn("failed to lookup sockfs‘socklist");
268 return (WALK_ERR);
269 }

271 slp = (struct socklist *)(uintptr_t)sym.st_value;

273 if (mdb_vread(&wsp->walk_addr, sizeof (wsp->walk_addr),
274 (uintptr_t)&slp->sl_list) == -1) {
275 mdb_warn("failed to read address of initial sonode "
276 "at %p", &slp->sl_list);
277 return (WALK_ERR);
278 }
279 }

281 wsp->walk_data = mdb_alloc(sizeof (struct sotpi_sonode), UM_SLEEP);
282 return (WALK_NEXT);
283 }

285 int
286 sonode_walk_step(mdb_walk_state_t *wsp)
287 {
288 int status;
289 struct sotpi_sonode *stp;

291 if (wsp->walk_addr == NULL)
292 return (WALK_DONE);

294 if (mdb_vread(wsp->walk_data, sizeof (struct sotpi_sonode),
295 wsp->walk_addr) == -1) {
296 mdb_warn("failed to read sonode at %p", wsp->walk_addr);
297 return (WALK_ERR);
298 }

300 status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
301 wsp->walk_cbdata);

303 stp = wsp->walk_data;

305 wsp->walk_addr = (uintptr_t)stp->st_info.sti_next_so;
306 return (status);
307 }

309 void
310 sonode_walk_fini(mdb_walk_state_t *wsp)
311 {
312 mdb_free(wsp->walk_data, sizeof (struct sotpi_sonode));
313 }

315 struct mi_walk_data {
316 uintptr_t mi_wd_miofirst;
317 MI_O mi_wd_miodata;
318 };

320 int
321 mi_walk_init(mdb_walk_state_t *wsp)
322 {
323 struct mi_walk_data *wdp;

325 if (wsp->walk_addr == NULL) {

new/usr/src/cmd/mdb/common/modules/genunix/net.c 6

326 mdb_warn("mi doesn’t support global walks\n");
327 return (WALK_ERR);
328 }

330 wdp = mdb_alloc(sizeof (struct mi_walk_data), UM_SLEEP);

332 /* So that we do not immediately return WALK_DONE below */
333 wdp->mi_wd_miofirst = NULL;

335 wsp->walk_data = wdp;
336 return (WALK_NEXT);
337 }

339 int
340 mi_walk_step(mdb_walk_state_t *wsp)
341 {
342 struct mi_walk_data *wdp = wsp->walk_data;
343 MI_OP miop = &wdp->mi_wd_miodata;
344 int status;

346 /* Always false in the first iteration */
347 if ((wsp->walk_addr == (uintptr_t)NULL) ||
348 (wsp->walk_addr == wdp->mi_wd_miofirst)) {
349 return (WALK_DONE);
350 }

352 if (mdb_vread(miop, sizeof (MI_O), wsp->walk_addr) == -1) {
353 mdb_warn("failed to read MI object at %p", wsp->walk_addr);
354 return (WALK_ERR);
355 }

357 /* Only true in the first iteration */
358 if (wdp->mi_wd_miofirst == NULL) {
359 wdp->mi_wd_miofirst = wsp->walk_addr;
360 status = WALK_NEXT;
361 } else {
362 status = wsp->walk_callback(wsp->walk_addr + sizeof (MI_O),
363 &miop[1], wsp->walk_cbdata);
364 }

366 wsp->walk_addr = (uintptr_t)miop->mi_o_next;
367 return (status);
368 }

370 void
371 mi_walk_fini(mdb_walk_state_t *wsp)
372 {
373 mdb_free(wsp->walk_data, sizeof (struct mi_walk_data));
374 }

376 typedef struct mi_payload_walk_arg_s {
377 const char *mi_pwa_walker; /* Underlying walker */
378 const off_t mi_pwa_head_off; /* Offset for mi_o_head_t * in stack */
379 const size_t mi_pwa_size; /* size of mi payload */
380 const uint_t mi_pwa_flags; /* device and/or module */
381 } mi_payload_walk_arg_t;

383 #define MI_PAYLOAD_DEVICE 0x1
384 #define MI_PAYLOAD_MODULE 0x2

386 int
387 mi_payload_walk_init(mdb_walk_state_t *wsp)
388 {
389 const mi_payload_walk_arg_t *arg = wsp->walk_arg;

391 if (mdb_layered_walk(arg->mi_pwa_walker, wsp) == -1) {

new/usr/src/cmd/mdb/common/modules/genunix/net.c 7

392 mdb_warn("can’t walk ’%s’", arg->mi_pwa_walker);
393 return (WALK_ERR);
394 }
395 return (WALK_NEXT);
396 }

398 int
399 mi_payload_walk_step(mdb_walk_state_t *wsp)
400 {
401 const mi_payload_walk_arg_t *arg = wsp->walk_arg;
402 uintptr_t kaddr;

404 kaddr = wsp->walk_addr + arg->mi_pwa_head_off;

406 if (mdb_vread(&kaddr, sizeof (kaddr), kaddr) == -1) {
407 mdb_warn("can’t read address of mi head at %p for %s",
408 kaddr, arg->mi_pwa_walker);
409 return (WALK_ERR);
410 }

412 if (kaddr == 0) {
413 /* Empty list */
414 return (WALK_DONE);
415 }

417 if (mdb_pwalk("genunix‘mi", wsp->walk_callback,
418 wsp->walk_cbdata, kaddr) == -1) {
419 mdb_warn("failed to walk genunix‘mi");
420 return (WALK_ERR);
421 }
422 return (WALK_NEXT);
423 }

425 const mi_payload_walk_arg_t mi_icmp_arg = {
426 "icmp_stacks", OFFSETOF(icmp_stack_t, is_head), sizeof (icmp_t),
427 MI_PAYLOAD_DEVICE | MI_PAYLOAD_MODULE
428 };

430 int
431 sonode(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
432 {
433 const char *optf = NULL;
434 const char *optt = NULL;
435 const char *optp = NULL;
436 int family, type, proto;
437 int filter = 0;
438 struct sonode so;

440 if (!(flags & DCMD_ADDRSPEC)) {
441 if (mdb_walk_dcmd("genunix‘sonode", "genunix‘sonode", argc,
442 argv) == -1) {
443 mdb_warn("failed to walk sonode");
444 return (DCMD_ERR);
445 }

447 return (DCMD_OK);
448 }

450 if (mdb_getopts(argc, argv,
451 ’f’, MDB_OPT_STR, &optf,
452 ’t’, MDB_OPT_STR, &optt,
453 ’p’, MDB_OPT_STR, &optp,
454 NULL) != argc)
455 return (DCMD_USAGE);

457 if (optf != NULL) {

new/usr/src/cmd/mdb/common/modules/genunix/net.c 8

458 if (strcmp("inet", optf) == 0)
459 family = AF_INET;
460 else if (strcmp("inet6", optf) == 0)
461 family = AF_INET6;
462 else if (strcmp("unix", optf) == 0)
463 family = AF_UNIX;
464 else
465 family = mdb_strtoull(optf);
466 filter = 1;
467 }

469 if (optt != NULL) {
470 if (strcmp("stream", optt) == 0)
471 type = SOCK_STREAM;
472 else if (strcmp("dgram", optt) == 0)
473 type = SOCK_DGRAM;
474 else if (strcmp("raw", optt) == 0)
475 type = SOCK_RAW;
476 else
477 type = mdb_strtoull(optt);
478 filter = 1;
479 }

481 if (optp != NULL) {
482 proto = mdb_strtoull(optp);
483 filter = 1;
484 }

486 if (DCMD_HDRSPEC(flags) && !filter) {
487 mdb_printf("%<u>%-?s Family Type Proto State Mode Flag "
488 "AccessVP%</u>\n", "Sonode:");
489 }

491 if (mdb_vread(&so, sizeof (so), addr) == -1) {
492 mdb_warn("failed to read sonode at %p", addr);
493 return (DCMD_ERR);
494 }

496 if ((optf != NULL) && (so.so_family != family))
497 return (DCMD_OK);

499 if ((optt != NULL) && (so.so_type != type))
500 return (DCMD_OK);

502 if ((optp != NULL) && (so.so_protocol != proto))
503 return (DCMD_OK);

505 if (filter) {
506 mdb_printf("%0?p\n", addr);
507 return (DCMD_OK);
508 }

510 mdb_printf("%0?p ", addr);

512 switch (so.so_family) {
513 case AF_UNIX:
514 mdb_printf("unix ");
515 break;
516 case AF_INET:
517 mdb_printf("inet ");
518 break;
519 case AF_INET6:
520 mdb_printf("inet6 ");
521 break;
522 default:
523 mdb_printf("%6hi", so.so_family);

new/usr/src/cmd/mdb/common/modules/genunix/net.c 9

524 }

526 switch (so.so_type) {
527 case SOCK_STREAM:
528 mdb_printf(" strm");
529 break;
530 case SOCK_DGRAM:
531 mdb_printf(" dgrm");
532 break;
533 case SOCK_RAW:
534 mdb_printf(" raw ");
535 break;
536 default:
537 mdb_printf(" %4hi", so.so_type);
538 }

540 mdb_printf(" %5hi %05x %04x %04hx\n",
541 so.so_protocol, so.so_state, so.so_mode,
542 so.so_flag);

544 return (DCMD_OK);
545 }

547 #define MI_PAYLOAD 0x1
548 #define MI_DEVICE 0x2
549 #define MI_MODULE 0x4

551 int
552 mi(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
553 {
554 uint_t opts = 0;
555 MI_O mio;

557 if (!(flags & DCMD_ADDRSPEC))
558 return (DCMD_USAGE);

560 if (mdb_getopts(argc, argv,
561 ’p’, MDB_OPT_SETBITS, MI_PAYLOAD, &opts,
562 ’d’, MDB_OPT_SETBITS, MI_DEVICE, &opts,
563 ’m’, MDB_OPT_SETBITS, MI_MODULE, &opts,
564 NULL) != argc)
565 return (DCMD_USAGE);

567 if ((opts & (MI_DEVICE | MI_MODULE)) == (MI_DEVICE | MI_MODULE)) {
568 mdb_warn("at most one filter, d for devices or m "
569 "for modules, may be specified\n");
570 return (DCMD_USAGE);
571 }

573 if ((opts == 0) && (DCMD_HDRSPEC(flags))) {
574 mdb_printf("%<u>%-?s %-?s %-?s IsDev Dev%</u>\n",
575 "MI_O", "Next", "Prev");
576 }

578 if (mdb_vread(&mio, sizeof (mio), addr) == -1) {
579 mdb_warn("failed to read mi object MI_O at %p", addr);
580 return (DCMD_ERR);
581 }

583 if (opts != 0) {
584 if (mio.mi_o_isdev == B_FALSE) {
585 /* mio is a module */
586 if (!(opts & MI_MODULE) && (opts & MI_DEVICE))
587 return (DCMD_OK);
588 } else {
589 /* mio is a device */

new/usr/src/cmd/mdb/common/modules/genunix/net.c 10

590 if (!(opts & MI_DEVICE) && (opts & MI_MODULE))
591 return (DCMD_OK);
592 }

594 if (opts & MI_PAYLOAD)
595 mdb_printf("%p\n", addr + sizeof (MI_O));
596 else
597 mdb_printf("%p\n", addr);
598 return (DCMD_OK);
599 }

601 mdb_printf("%0?p %0?p %0?p ", addr, mio.mi_o_next, mio.mi_o_prev);

603 if (mio.mi_o_isdev == B_FALSE)
604 mdb_printf("FALSE");
605 else
606 mdb_printf("TRUE ");

608 mdb_printf(" %0?p\n", mio.mi_o_dev);

610 return (DCMD_OK);
611 }

613 static int
614 ns_to_stackid(uintptr_t kaddr)
615 {
616 netstack_t nss;

618 if (mdb_vread(&nss, sizeof (nss), kaddr) == -1) {
619 mdb_warn("failed to read netstack_t %p", kaddr);
620 return (0);
621 }
622 return (nss.netstack_stackid);
623 }

627 static void
628 netstat_tcp_verbose_pr(const tcp_t *tcp)
629 {
630 mdb_printf(" %5i %08x %08x %5i %08x %08x %5li %5i\n",
631 tcp->tcp_swnd, tcp->tcp_snxt, tcp->tcp_suna, tcp->tcp_rwnd,
632 tcp->tcp_rack, tcp->tcp_rnxt, tcp->tcp_rto, tcp->tcp_mss);
633 }

635 /*ARGSUSED*/
636 static int
637 netstat_tcp_cb(uintptr_t kaddr, const void *walk_data, void *cb_data)
638 {
639 netstat_cb_data_t *ncb = cb_data;
640 uint_t opts = ncb->opts;
641 int af = ncb->af;
642 uintptr_t tcp_kaddr;
643 conn_t *connp = &ncb->conn;
644 tcp_t tcps, *tcp;

646 if (mdb_vread(connp, sizeof (conn_t), kaddr) == -1) {
647 mdb_warn("failed to read conn_t at %p", kaddr);
648 return (WALK_ERR);
649 }

651 tcp_kaddr = (uintptr_t)connp->conn_tcp;
652 if (mdb_vread(&tcps, sizeof (tcp_t), tcp_kaddr) == -1) {
653 mdb_warn("failed to read tcp_t at %p", tcp_kaddr);
654 return (WALK_ERR);
655 }

new/usr/src/cmd/mdb/common/modules/genunix/net.c 11

657 tcp = &tcps;
658 connp->conn_tcp = tcp;
659 tcp->tcp_connp = connp;

661 if (!((opts & NETSTAT_ALL) || net_tcp_active(tcp)) ||
662 (af == AF_INET && !net_tcp_ipv4(tcp)) ||
663 (af == AF_INET6 && !net_tcp_ipv6(tcp))) {
664 return (WALK_NEXT);
665 }

667 mdb_printf("%0?p %2i ", tcp_kaddr, tcp->tcp_state);
668 if (af == AF_INET) {
669 net_ipv4addrport_pr(&connp->conn_laddr_v6, connp->conn_lport);
670 mdb_printf(" ");
671 net_ipv4addrport_pr(&connp->conn_faddr_v6, connp->conn_fport);
672 } else if (af == AF_INET6) {
673 net_ipv6addrport_pr(&connp->conn_laddr_v6, connp->conn_lport);
674 mdb_printf(" ");
675 net_ipv6addrport_pr(&connp->conn_faddr_v6, connp->conn_fport);
676 }
677 mdb_printf(" %5i", ns_to_stackid((uintptr_t)connp->conn_netstack));
678 mdb_printf(" %4i\n", connp->conn_zoneid);
679 if (opts & NETSTAT_VERBOSE)
680 netstat_tcp_verbose_pr(tcp);

682 return (WALK_NEXT);
683 }

685 /*ARGSUSED*/
686 static int
687 netstat_udp_cb(uintptr_t kaddr, const void *walk_data, void *cb_data)
688 {
689 netstat_cb_data_t *ncb = cb_data;
690 uint_t opts = ncb->opts;
691 int af = ncb->af;
692 udp_t udp;
693 conn_t *connp = &ncb->conn;
694 char *state;

696 if (mdb_vread(connp, sizeof (conn_t), kaddr) == -1) {
697 mdb_warn("failed to read conn_t at %p", kaddr);
698 return (WALK_ERR);
699 }

701 if (mdb_vread(&udp, sizeof (udp_t),
702 (uintptr_t)connp->conn_udp) == -1) {
703 mdb_warn("failed to read conn_udp at %p",
704 (uintptr_t)connp->conn_udp);
705 return (WALK_ERR);
706 }

708 connp->conn_udp = &udp;
709 udp.udp_connp = connp;

711 if (!((opts & NETSTAT_ALL) || net_udp_active(&udp)) ||
712 (af == AF_INET && !net_udp_ipv4(&udp)) ||
713 (af == AF_INET6 && !net_udp_ipv6(&udp))) {
714 return (WALK_NEXT);
715 }

717 if (udp.udp_state == TS_UNBND)
718 state = "UNBOUND";
719 else if (udp.udp_state == TS_IDLE)
720 state = "IDLE";
721 else if (udp.udp_state == TS_DATA_XFER)

new/usr/src/cmd/mdb/common/modules/genunix/net.c 12

722 state = "CONNECTED";
723 else
724 state = "UNKNOWN";

726 mdb_printf("%0?p %10s ", (uintptr_t)connp->conn_udp, state);
727 if (af == AF_INET) {
728 net_ipv4addrport_pr(&connp->conn_laddr_v6, connp->conn_lport);
729 mdb_printf(" ");
730 net_ipv4addrport_pr(&connp->conn_faddr_v6, connp->conn_fport);
731 } else if (af == AF_INET6) {
732 net_ipv6addrport_pr(&connp->conn_laddr_v6, connp->conn_lport);
733 mdb_printf(" ");
734 net_ipv6addrport_pr(&connp->conn_faddr_v6, connp->conn_fport);
735 }
736 mdb_printf(" %5i", ns_to_stackid((uintptr_t)connp->conn_netstack));
737 mdb_printf(" %4i\n", connp->conn_zoneid);

739 return (WALK_NEXT);
740 }

742 /*ARGSUSED*/
743 static int
744 netstat_icmp_cb(uintptr_t kaddr, const void *walk_data, void *cb_data)
745 {
746 netstat_cb_data_t *ncb = cb_data;
747 int af = ncb->af;
748 icmp_t icmp;
749 conn_t *connp = &ncb->conn;
750 char *state;

752 if (mdb_vread(connp, sizeof (conn_t), kaddr) == -1) {
753 mdb_warn("failed to read conn_t at %p", kaddr);
754 return (WALK_ERR);
755 }

757 if (mdb_vread(&icmp, sizeof (icmp_t),
758 (uintptr_t)connp->conn_icmp) == -1) {
759 mdb_warn("failed to read conn_icmp at %p",
760 (uintptr_t)connp->conn_icmp);
761 return (WALK_ERR);
762 }

764 connp->conn_icmp = &icmp;
765 icmp.icmp_connp = connp;

767 if ((af == AF_INET && connp->conn_ipversion != IPV4_VERSION) ||
768 (af == AF_INET6 && connp->conn_ipversion != IPV6_VERSION)) {
769 return (WALK_NEXT);
770 }

772 if (icmp.icmp_state == TS_UNBND)
773 state = "UNBOUND";
774 else if (icmp.icmp_state == TS_IDLE)
775 state = "IDLE";
776 else if (icmp.icmp_state == TS_DATA_XFER)
777 state = "CONNECTED";
778 else
779 state = "UNKNOWN";

781 mdb_printf("%0?p %10s ", (uintptr_t)connp->conn_icmp, state);
782 if (af == AF_INET) {
783 net_ipv4addrport_pr(&connp->conn_laddr_v6, connp->conn_lport);
784 mdb_printf(" ");
785 net_ipv4addrport_pr(&connp->conn_faddr_v6, connp->conn_fport);
786 } else if (af == AF_INET6) {
787 net_ipv6addrport_pr(&connp->conn_laddr_v6, connp->conn_lport);

new/usr/src/cmd/mdb/common/modules/genunix/net.c 13

788 mdb_printf(" ");
789 net_ipv6addrport_pr(&connp->conn_faddr_v6, connp->conn_fport);
790 }
791 mdb_printf(" %5i", ns_to_stackid((uintptr_t)connp->conn_netstack));
792 mdb_printf(" %4i\n", connp->conn_zoneid);

794 return (WALK_NEXT);
795 }

797 static void
798 netstat_dccp_verbose_pr(const dccp_t *dccp)
799 {
800 /* XXX:DCCP
801 mdb_printf(" %5i %08x %08x %5i %08x %08x %5li %5i\n",
802 tcp->tcp_swnd, tcp->tcp_snxt, tcp->tcp_suna, tcp->tcp_rwnd,
803 tcp->tcp_rack, tcp->tcp_rnxt, tcp->tcp_rto, tcp->tcp_mss);
804 */
805 }

807 /*ARGSUSED*/
808 static int
809 netstat_dccp_cb(uintptr_t kaddr, const void *walk_data, void *cb_data)
810 {
811 netstat_cb_data_t *ncb = cb_data;
812 uint_t opts = ncb->opts;
813 int af = ncb->af;
814 uintptr_t dccp_kaddr;
815 conn_t *connp = &ncb->conn;
816 dccp_t dccps, *dccp;

818 if (mdb_vread(connp, sizeof (conn_t), kaddr) == -1) {
819 mdb_warn("failed to read conn_t at %p", kaddr);
820 return (WALK_ERR);
821 }

823 dccp_kaddr = (uintptr_t)connp->conn_dccp;
824 if (mdb_vread(&dccps, sizeof (dccp_t), dccp_kaddr) == -1) {
825 mdb_warn("failed to read tcp_t at %p", dccp_kaddr);
826 return (WALK_ERR);
827 }

829 dccp = &dccps;
830 connp->conn_dccp = dccp;
831 dccp->dccp_connp = connp;

833 if (!((opts & NETSTAT_ALL) || net_dccp_active(dccp)) ||
834 (af == AF_INET && !net_dccp_ipv4(dccp)) ||
835 (af == AF_INET6 && !net_dccp_ipv6(dccp))) {
836 return (WALK_NEXT);
837 }

839 mdb_printf("%0?p %2i ", dccp_kaddr, dccp->dccp_state);
840 if (af == AF_INET) {
841 net_ipv4addrport_pr(&connp->conn_laddr_v6, connp->conn_lport);
842 mdb_printf(" ");
843 net_ipv4addrport_pr(&connp->conn_faddr_v6, connp->conn_fport);
844 } else if (af == AF_INET6) {
845 net_ipv6addrport_pr(&connp->conn_laddr_v6, connp->conn_lport);
846 mdb_printf(" ");
847 net_ipv6addrport_pr(&connp->conn_faddr_v6, connp->conn_fport);
848 }
849 mdb_printf(" %5i", ns_to_stackid((uintptr_t)connp->conn_netstack));
850 mdb_printf(" %4i\n", connp->conn_zoneid);
851 if (opts & NETSTAT_VERBOSE)
852 netstat_dccp_verbose_pr(dccp);

new/usr/src/cmd/mdb/common/modules/genunix/net.c 14

854 return (WALK_NEXT);
855 }

857 #endif /* ! codereview */
858 /*
859 * print the address of a unix domain socket
860 *
861 * so is the address of a AF_UNIX struct sonode in mdb’s address space
862 * soa is the address of the struct soaddr to print
863 *
864 * returns 0 on success, -1 otherwise
865 */
866 static int
867 netstat_unix_name_pr(const struct sotpi_sonode *st, const struct soaddr *soa)
868 {
869 const struct sonode *so = &st->st_sonode;
870 const char none[] = " (none)";

872 if ((so->so_state & SS_ISBOUND) && (soa->soa_len != 0)) {
873 if (st->st_info.sti_faddr_noxlate) {
874 mdb_printf("%-14s ", " (socketpair)");
875 } else {
876 if (soa->soa_len > sizeof (sa_family_t)) {
877 char addr[MAXPATHLEN + 1];

879 if (mdb_readstr(addr, sizeof (addr),
880 (uintptr_t)&soa->soa_sa->sa_data) == -1) {
881 mdb_warn("failed to read unix address "
882 "at %p", &soa->soa_sa->sa_data);
883 return (-1);
884 }

886 mdb_printf("%-14s ", addr);
887 } else {
888 mdb_printf("%-14s ", none);
889 }
890 }
891 } else {
892 mdb_printf("%-14s ", none);
893 }

895 return (0);
896 }

898 /* based on sockfs_snapshot */
899 /*ARGSUSED*/
900 static int
901 netstat_unix_cb(uintptr_t kaddr, const void *walk_data, void *cb_data)
902 {
903 const struct sotpi_sonode *st = walk_data;
904 const struct sonode *so = &st->st_sonode;
905 const struct sotpi_info *sti = &st->st_info;

907 if (so->so_count == 0)
908 return (WALK_NEXT);

910 if (so->so_family != AF_UNIX) {
911 mdb_warn("sonode of family %hi at %p\n", so->so_family, kaddr);
912 return (WALK_ERR);
913 }

915 mdb_printf("%-?p ", kaddr);

917 switch (sti->sti_serv_type) {
918 case T_CLTS:
919 mdb_printf("%-10s ", "dgram");

new/usr/src/cmd/mdb/common/modules/genunix/net.c 15

920 break;
921 case T_COTS:
922 mdb_printf("%-10s ", "stream");
923 break;
924 case T_COTS_ORD:
925 mdb_printf("%-10s ", "stream-ord");
926 break;
927 default:
928 mdb_printf("%-10i ", sti->sti_serv_type);
929 }

931 if ((so->so_state & SS_ISBOUND) &&
932 (sti->sti_ux_laddr.soua_magic == SOU_MAGIC_EXPLICIT)) {
933 mdb_printf("%0?p ", sti->sti_ux_laddr.soua_vp);
934 } else {
935 mdb_printf("%0?p ", NULL);
936 }

938 if ((so->so_state & SS_ISCONNECTED) &&
939 (sti->sti_ux_faddr.soua_magic == SOU_MAGIC_EXPLICIT)) {
940 mdb_printf("%0?p ", sti->sti_ux_faddr.soua_vp);
941 } else {
942 mdb_printf("%0?p ", NULL);
943 }

945 if (netstat_unix_name_pr(st, &sti->sti_laddr) == -1)
946 return (WALK_ERR);

948 if (netstat_unix_name_pr(st, &sti->sti_faddr) == -1)
949 return (WALK_ERR);

951 mdb_printf("%4i\n", so->so_zoneid);

953 return (WALK_NEXT);
954 }

956 static void
957 netstat_tcp_verbose_header_pr(void)
958 {
959 mdb_printf(" %<u>%-5s %-8s %-8s %-5s %-8s %-8s %5s %5s%</u>\n",
960 "Swind", "Snext", "Suna", "Rwind", "Rack", "Rnext", "Rto", "Mss");
961 }

963 static void
964 get_ifname(const ire_t *ire, char *intf)
965 {
966 ill_t ill;

968 *intf = ’\0’;
969 if (ire->ire_ill != NULL) {
970 if (mdb_vread(&ill, sizeof (ill),
971 (uintptr_t)ire->ire_ill) == -1)
972 return;
973 (void) mdb_readstr(intf, MIN(LIFNAMSIZ, ill.ill_name_length),
974 (uintptr_t)ill.ill_name);
975 }
976 }

978 const in6_addr_t ipv6_all_ones =
979 { 0xffffffffU, 0xffffffffU, 0xffffffffU, 0xffffffffU };

981 static void
982 get_ireflags(const ire_t *ire, char *flags)
983 {
984 (void) strcpy(flags, "U");
985 /* RTF_INDIRECT wins over RTF_GATEWAY - don’t display both */

new/usr/src/cmd/mdb/common/modules/genunix/net.c 16

986 if (ire->ire_flags & RTF_INDIRECT)
987 (void) strcat(flags, "I");
988 else if (ire->ire_type & IRE_OFFLINK)
989 (void) strcat(flags, "G");

991 /* IRE_IF_CLONE wins over RTF_HOST - don’t display both */
992 if (ire->ire_type & IRE_IF_CLONE)
993 (void) strcat(flags, "C");
994 else if (ire->ire_ipversion == IPV4_VERSION) {
995 if (ire->ire_mask == IP_HOST_MASK)
996 (void) strcat(flags, "H");
997 } else {
998 if (IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, &ipv6_all_ones))
999 (void) strcat(flags, "H");

1000 }

1002 if (ire->ire_flags & RTF_DYNAMIC)
1003 (void) strcat(flags, "D");
1004 if (ire->ire_type == IRE_BROADCAST)
1005 (void) strcat(flags, "b");
1006 if (ire->ire_type == IRE_MULTICAST)
1007 (void) strcat(flags, "m");
1008 if (ire->ire_type == IRE_LOCAL)
1009 (void) strcat(flags, "L");
1010 if (ire->ire_type == IRE_NOROUTE)
1011 (void) strcat(flags, "N");
1012 if (ire->ire_flags & RTF_MULTIRT)
1013 (void) strcat(flags, "M");
1014 if (ire->ire_flags & RTF_SETSRC)
1015 (void) strcat(flags, "S");
1016 if (ire->ire_flags & RTF_REJECT)
1017 (void) strcat(flags, "R");
1018 if (ire->ire_flags & RTF_BLACKHOLE)
1019 (void) strcat(flags, "B");
1020 }

1022 static int
1023 netstat_irev4_cb(uintptr_t kaddr, const void *walk_data, void *cb_data)
1024 {
1025 const ire_t *ire = walk_data;
1026 uint_t *opts = cb_data;
1027 ipaddr_t gate;
1028 char flags[10], intf[LIFNAMSIZ + 1];

1030 if (ire->ire_ipversion != IPV4_VERSION)
1031 return (WALK_NEXT);

1033 /* Skip certain IREs by default */
1034 if (!(*opts & NETSTAT_ALL) &&
1035 (ire->ire_type &
1036 (IRE_BROADCAST|IRE_LOCAL|IRE_MULTICAST|IRE_NOROUTE|IRE_IF_CLONE)))
1037 return (WALK_NEXT);

1039 if (*opts & NETSTAT_FIRST) {
1040 *opts &= ~NETSTAT_FIRST;
1041 mdb_printf("%<u>%s Table: IPv4%</u>\n",
1042 (*opts & NETSTAT_VERBOSE) ? "IRE" : "Routing");
1043 if (*opts & NETSTAT_VERBOSE) {
1044 mdb_printf("%<u>%-?s %-*s %-*s %-*s Device Mxfrg Rtt "
1045 " Ref Flg Out In/Fwd%</u>\n",
1046 "Address", ADDR_V4_WIDTH, "Destination",
1047 ADDR_V4_WIDTH, "Mask", ADDR_V4_WIDTH, "Gateway");
1048 } else {
1049 mdb_printf("%<u>%-?s %-*s %-*s Flags Ref Use "
1050 "Interface%</u>\n",
1051 "Address", ADDR_V4_WIDTH, "Destination",

new/usr/src/cmd/mdb/common/modules/genunix/net.c 17

1052 ADDR_V4_WIDTH, "Gateway");
1053 }
1054 }

1056 gate = ire->ire_gateway_addr;

1058 get_ireflags(ire, flags);

1060 get_ifname(ire, intf);

1062 if (*opts & NETSTAT_VERBOSE) {
1063 mdb_printf("%?p %-*I %-*I %-*I %-6s %5u%c %4u %3u %-3s %5u "
1064 "%u\n", kaddr, ADDR_V4_WIDTH, ire->ire_addr, ADDR_V4_WIDTH,
1065 ire->ire_mask, ADDR_V4_WIDTH, gate, intf,
1066 0, ’ ’,
1067 ire->ire_metrics.iulp_rtt, ire->ire_refcnt, flags,
1068 ire->ire_ob_pkt_count, ire->ire_ib_pkt_count);
1069 } else {
1070 mdb_printf("%?p %-*I %-*I %-5s %4u %5u %s\n", kaddr,
1071 ADDR_V4_WIDTH, ire->ire_addr, ADDR_V4_WIDTH, gate, flags,
1072 ire->ire_refcnt,
1073 ire->ire_ob_pkt_count + ire->ire_ib_pkt_count, intf);
1074 }

1076 return (WALK_NEXT);
1077 }

1079 int
1080 ip_mask_to_plen_v6(const in6_addr_t *v6mask)
1081 {
1082 int plen;
1083 int i;
1084 uint32_t val;

1086 for (i = 3; i >= 0; i--)
1087 if (v6mask->s6_addr32[i] != 0)
1088 break;
1089 if (i < 0)
1090 return (0);
1091 plen = 32 + 32 * i;
1092 val = v6mask->s6_addr32[i];
1093 while (!(val & 1)) {
1094 val >>= 1;
1095 plen--;
1096 }

1098 return (plen);
1099 }

1101 static int
1102 netstat_irev6_cb(uintptr_t kaddr, const void *walk_data, void *cb_data)
1103 {
1104 const ire_t *ire = walk_data;
1105 uint_t *opts = cb_data;
1106 const in6_addr_t *gatep;
1107 char deststr[ADDR_V6_WIDTH + 5];
1108 char flags[10], intf[LIFNAMSIZ + 1];
1109 int masklen;

1111 if (ire->ire_ipversion != IPV6_VERSION)
1112 return (WALK_NEXT);

1114 /* Skip certain IREs by default */
1115 if (!(*opts & NETSTAT_ALL) &&
1116 (ire->ire_type &
1117 (IRE_BROADCAST|IRE_LOCAL|IRE_MULTICAST|IRE_NOROUTE|IRE_IF_CLONE)))

new/usr/src/cmd/mdb/common/modules/genunix/net.c 18

1118 return (WALK_NEXT);

1120 if (*opts & NETSTAT_FIRST) {
1121 *opts &= ~NETSTAT_FIRST;
1122 mdb_printf("\n%<u>%s Table: IPv6%</u>\n",
1123 (*opts & NETSTAT_VERBOSE) ? "IRE" : "Routing");
1124 if (*opts & NETSTAT_VERBOSE) {
1125 mdb_printf("%<u>%-?s %-*s %-*s If PMTU Rtt Ref "
1126 "Flags Out In/Fwd%</u>\n",
1127 "Address", ADDR_V6_WIDTH+4, "Destination/Mask",
1128 ADDR_V6_WIDTH, "Gateway");
1129 } else {
1130 mdb_printf("%<u>%-?s %-*s %-*s Flags Ref Use If"
1131 "%</u>\n",
1132 "Address", ADDR_V6_WIDTH+4, "Destination/Mask",
1133 ADDR_V6_WIDTH, "Gateway");
1134 }
1135 }

1137 gatep = &ire->ire_gateway_addr_v6;

1139 masklen = ip_mask_to_plen_v6(&ire->ire_mask_v6);
1140 (void) mdb_snprintf(deststr, sizeof (deststr), "%N/%d",
1141 &ire->ire_addr_v6, masklen);

1143 get_ireflags(ire, flags);

1145 get_ifname(ire, intf);

1147 if (*opts & NETSTAT_VERBOSE) {
1148 mdb_printf("%?p %-*s %-*N %-5s %5u%c %5u %3u %-5s %6u %u\n",
1149 kaddr, ADDR_V6_WIDTH+4, deststr, ADDR_V6_WIDTH, gatep,
1150 intf, 0, ’ ’,
1151 ire->ire_metrics.iulp_rtt, ire->ire_refcnt,
1152 flags, ire->ire_ob_pkt_count, ire->ire_ib_pkt_count);
1153 } else {
1154 mdb_printf("%?p %-*s %-*N %-5s %3u %6u %s\n", kaddr,
1155 ADDR_V6_WIDTH+4, deststr, ADDR_V6_WIDTH, gatep, flags,
1156 ire->ire_refcnt,
1157 ire->ire_ob_pkt_count + ire->ire_ib_pkt_count, intf);
1158 }

1160 return (WALK_NEXT);
1161 }

1163 static void
1164 netstat_header_v4(int proto)
1165 {
1166 if (proto == IPPROTO_TCP)
1167 mdb_printf("%<u>%-?s ", "TCPv4");
1168 else if (proto == IPPROTO_UDP)
1169 mdb_printf("%<u>%-?s ", "UDPv4");
1170 else if (proto == IPPROTO_ICMP)
1171 mdb_printf("%<u>%-?s ", "ICMPv4");
1172 mdb_printf("State %6s%*s %6s%*s %-5s %-4s%</u>\n",
1173 "", ADDR_V4_WIDTH, "Local Address",
1174 "", ADDR_V4_WIDTH, "Remote Address", "Stack", "Zone");
1175 }

1177 static void
1178 netstat_header_v6(int proto)
1179 {
1180 if (proto == IPPROTO_TCP)
1181 mdb_printf("%<u>%-?s ", "TCPv6");
1182 else if (proto == IPPROTO_UDP)
1183 mdb_printf("%<u>%-?s ", "UDPv6");

new/usr/src/cmd/mdb/common/modules/genunix/net.c 19

1184 else if (proto == IPPROTO_ICMP)
1185 mdb_printf("%<u>%-?s ", "ICMPv6");
1186 mdb_printf("State %6s%*s %6s%*s %-5s %-4s%</u>\n",
1187 "", ADDR_V6_WIDTH, "Local Address",
1188 "", ADDR_V6_WIDTH, "Remote Address", "Stack", "Zone");
1189 }

1191 static int
1192 netstat_print_conn(const char *cache, int proto, mdb_walk_cb_t cbfunc,
1193 void *cbdata)
1194 {
1195 netstat_cb_data_t *ncb = cbdata;

1197 if ((ncb->opts & NETSTAT_VERBOSE) && proto == IPPROTO_TCP)
1198 netstat_tcp_verbose_header_pr();
1199 if (mdb_walk(cache, cbfunc, cbdata) == -1) {
1200 mdb_warn("failed to walk %s", cache);
1201 return (DCMD_ERR);
1202 }
1203 return (DCMD_OK);
1204 }

1206 static int
1207 netstat_print_common(const char *cache, int proto, mdb_walk_cb_t cbfunc,
1208 void *cbdata)
1209 {
1210 netstat_cb_data_t *ncb = cbdata;
1211 int af = ncb->af;
1212 int status = DCMD_OK;

1214 if (af != AF_INET6) {
1215 ncb->af = AF_INET;
1216 netstat_header_v4(proto);
1217 status = netstat_print_conn(cache, proto, cbfunc, cbdata);
1218 }
1219 if (status == DCMD_OK && af != AF_INET) {
1220 ncb->af = AF_INET6;
1221 netstat_header_v6(proto);
1222 status = netstat_print_conn(cache, proto, cbfunc, cbdata);
1223 }
1224 ncb->af = af;
1225 return (status);
1226 }

1228 /*ARGSUSED*/
1229 int
1230 netstat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1231 {
1232 uint_t opts = 0;
1233 const char *optf = NULL;
1234 const char *optP = NULL;
1235 netstat_cb_data_t *cbdata;
1236 int status;
1237 int af = 0;

1239 if (mdb_getopts(argc, argv,
1240 ’a’, MDB_OPT_SETBITS, NETSTAT_ALL, &opts,
1241 ’f’, MDB_OPT_STR, &optf,
1242 ’P’, MDB_OPT_STR, &optP,
1243 ’r’, MDB_OPT_SETBITS, NETSTAT_ROUTE, &opts,
1244 ’v’, MDB_OPT_SETBITS, NETSTAT_VERBOSE, &opts,
1245 NULL) != argc)
1246 return (DCMD_USAGE);

1248 if (optP != NULL) {
1249 if ((strcmp("tcp", optP) != 0) && (strcmp("udp", optP) != 0) &&

new/usr/src/cmd/mdb/common/modules/genunix/net.c 20

1250 (strcmp("icmp", optP) != 0))
1251 return (DCMD_USAGE);
1252 if (opts & NETSTAT_ROUTE)
1253 return (DCMD_USAGE);
1254 }

1256 if (optf == NULL)
1257 opts |= NETSTAT_V4 | NETSTAT_V6 | NETSTAT_UNIX;
1258 else if (strcmp("inet", optf) == 0)
1259 opts |= NETSTAT_V4;
1260 else if (strcmp("inet6", optf) == 0)
1261 opts |= NETSTAT_V6;
1262 else if (strcmp("unix", optf) == 0)
1263 opts |= NETSTAT_UNIX;
1264 else
1265 return (DCMD_USAGE);

1267 if (opts & NETSTAT_ROUTE) {
1268 if (!(opts & (NETSTAT_V4|NETSTAT_V6)))
1269 return (DCMD_USAGE);
1270 if (opts & NETSTAT_V4) {
1271 opts |= NETSTAT_FIRST;
1272 if (mdb_walk("ip‘ire", netstat_irev4_cb, &opts) == -1) {
1273 mdb_warn("failed to walk ip‘ire");
1274 return (DCMD_ERR);
1275 }
1276 }
1277 if (opts & NETSTAT_V6) {
1278 opts |= NETSTAT_FIRST;
1279 if (mdb_walk("ip‘ire", netstat_irev6_cb, &opts) == -1) {
1280 mdb_warn("failed to walk ip‘ire");
1281 return (DCMD_ERR);
1282 }
1283 }
1284 return (DCMD_OK);
1285 }

1287 if ((opts & NETSTAT_UNIX) && (optP == NULL)) {
1288 /* Print Unix Domain Sockets */
1289 mdb_printf("%<u>%-?s %-10s %-?s %-?s %-14s %-14s %s%</u>\n",
1290 "AF_UNIX", "Type", "Vnode", "Conn", "Local Addr",
1291 "Remote Addr", "Zone");

1293 if (mdb_walk("genunix‘sonode", netstat_unix_cb, NULL) == -1) {
1294 mdb_warn("failed to walk genunix‘sonode");
1295 return (DCMD_ERR);
1296 }
1297 if (!(opts & (NETSTAT_V4 | NETSTAT_V6)))
1298 return (DCMD_OK);
1299 }

1301 cbdata = mdb_alloc(sizeof (netstat_cb_data_t), UM_SLEEP);
1302 cbdata->opts = opts;
1303 if ((optf != NULL) && (opts & NETSTAT_V4))
1304 af = AF_INET;
1305 else if ((optf != NULL) && (opts & NETSTAT_V6))
1306 af = AF_INET6;

1308 cbdata->af = af;
1309 if ((optP == NULL) || (strcmp("tcp", optP) == 0)) {
1310 status = netstat_print_common("tcp_conn_cache", IPPROTO_TCP,
1311 netstat_tcp_cb, cbdata);
1312 if (status != DCMD_OK)
1313 goto out;
1314 }

new/usr/src/cmd/mdb/common/modules/genunix/net.c 21

1316 if ((optP == NULL) || (strcmp("udp", optP) == 0)) {
1317 status = netstat_print_common("udp_conn_cache", IPPROTO_UDP,
1318 netstat_udp_cb, cbdata);
1319 if (status != DCMD_OK)
1320 goto out;
1321 }

1323 if ((optP == NULL) || (strcmp("icmp", optP) == 0)) {
1324 status = netstat_print_common("rawip_conn_cache", IPPROTO_ICMP,
1325 netstat_icmp_cb, cbdata);
1326 if (status != DCMD_OK)
1327 goto out;
1328 }

1330 if ((optP == NULL) || (strcmp("dccp", optP) == 0)) {
1331 status = netstat_print_common("dccp_conn_cache", IPPROTO_DCCP,
1332 netstat_dccp_cb, cbdata);
1333 if (status != DCMD_OK)
1334 goto out;
1335 }
1336 #endif /* ! codereview */
1337 out:
1338 mdb_free(cbdata, sizeof (netstat_cb_data_t));
1339 return (status);
1340 }

1342 /*
1343 * "::dladm show-bridge" support
1344 */
1345 typedef struct {
1346 uint_t opt_l;
1347 uint_t opt_f;
1348 uint_t opt_t;
1349 const char *name;
1350 clock_t lbolt;
1351 boolean_t found;
1352 uint_t nlinks;
1353 uint_t nfwd;

1355 /*
1356 * These structures are kept inside the ’args’ for allocation reasons.
1357 * They’re all large data structures (over 1K), and may cause the stack
1358 * to explode. mdb and kmdb will fail in these cases, and thus we
1359 * allocate them from the heap.
1360 */
1361 trill_inst_t ti;
1362 bridge_link_t bl;
1363 mac_impl_t mi;
1364 } show_bridge_args_t;

1366 static void
1367 show_vlans(const uint8_t *vlans)
1368 {
1369 int i, bit;
1370 uint8_t val;
1371 int rstart = -1, rnext = -1;

1373 for (i = 0; i < BRIDGE_VLAN_ARR_SIZE; i++) {
1374 val = vlans[i];
1375 if (i == 0)
1376 val &= ~1;
1377 while ((bit = mdb_ffs(val)) != 0) {
1378 bit--;
1379 val &= ~(1 << bit);
1380 bit += i * sizeof (*vlans) * NBBY;
1381 if (bit != rnext) {

new/usr/src/cmd/mdb/common/modules/genunix/net.c 22

1382 if (rnext != -1 && rstart + 1 != rnext)
1383 mdb_printf("-%d", rnext - 1);
1384 if (rstart != -1)
1385 mdb_printf(",");
1386 mdb_printf("%d", bit);
1387 rstart = bit;
1388 }
1389 rnext = bit + 1;
1390 }
1391 }
1392 if (rnext != -1 && rstart + 1 != rnext)
1393 mdb_printf("-%d", rnext - 1);
1394 mdb_printf("\n");
1395 }

1397 /*
1398 * This callback is invoked by a walk of the links attached to a bridge. If
1399 * we’re showing link details, then they’re printed here. If not, then we just
1400 * count up the links for the bridge summary.
1401 */
1402 static int
1403 do_bridge_links(uintptr_t addr, const void *data, void *ptr)
1404 {
1405 show_bridge_args_t *args = ptr;
1406 const bridge_link_t *blp = data;
1407 char macaddr[ETHERADDRL * 3];
1408 const char *name;

1410 args->nlinks++;

1412 if (!args->opt_l)
1413 return (WALK_NEXT);

1415 if (mdb_vread(&args->mi, sizeof (args->mi),
1416 (uintptr_t)blp->bl_mh) == -1) {
1417 mdb_warn("cannot read mac data at %p", blp->bl_mh);
1418 name = "?";
1419 } else {
1420 name = args->mi.mi_name;
1421 }

1423 mdb_mac_addr(blp->bl_local_mac, ETHERADDRL, macaddr,
1424 sizeof (macaddr));

1426 mdb_printf("%-?p %-16s %-17s %03X %-4d ", addr, name, macaddr,
1427 blp->bl_flags, blp->bl_pvid);

1429 if (blp->bl_trilldata == NULL) {
1430 switch (blp->bl_state) {
1431 case BLS_BLOCKLISTEN:
1432 name = "BLOCK";
1433 break;
1434 case BLS_LEARNING:
1435 name = "LEARN";
1436 break;
1437 case BLS_FORWARDING:
1438 name = "FWD";
1439 break;
1440 default:
1441 name = "?";
1442 }
1443 mdb_printf("%-5s ", name);
1444 show_vlans(blp->bl_vlans);
1445 } else {
1446 show_vlans(blp->bl_afs);
1447 }

new/usr/src/cmd/mdb/common/modules/genunix/net.c 23

1449 return (WALK_NEXT);
1450 }

1452 /*
1453 * It seems a shame to duplicate this code, but merging it with the link
1454 * printing code above is more trouble than it would be worth.
1455 */
1456 static void
1457 print_link_name(show_bridge_args_t *args, uintptr_t addr, char sep)
1458 {
1459 const char *name;

1461 if (mdb_vread(&args->bl, sizeof (args->bl), addr) == -1) {
1462 mdb_warn("cannot read bridge link at %p", addr);
1463 return;
1464 }

1466 if (mdb_vread(&args->mi, sizeof (args->mi),
1467 (uintptr_t)args->bl.bl_mh) == -1) {
1468 name = "?";
1469 } else {
1470 name = args->mi.mi_name;
1471 }

1473 mdb_printf("%s%c", name, sep);
1474 }

1476 static int
1477 do_bridge_fwd(uintptr_t addr, const void *data, void *ptr)
1478 {
1479 show_bridge_args_t *args = ptr;
1480 const bridge_fwd_t *bfp = data;
1481 char macaddr[ETHERADDRL * 3];
1482 int i;
1483 #define MAX_FWD_LINKS 16
1484 bridge_link_t *links[MAX_FWD_LINKS];
1485 uint_t nlinks;

1487 args->nfwd++;

1489 if (!args->opt_f)
1490 return (WALK_NEXT);

1492 if ((nlinks = bfp->bf_nlinks) > MAX_FWD_LINKS)
1493 nlinks = MAX_FWD_LINKS;

1495 if (mdb_vread(links, sizeof (links[0]) * nlinks,
1496 (uintptr_t)bfp->bf_links) == -1) {
1497 mdb_warn("cannot read bridge forwarding links at %p",
1498 bfp->bf_links);
1499 return (WALK_ERR);
1500 }

1502 mdb_mac_addr(bfp->bf_dest, ETHERADDRL, macaddr, sizeof (macaddr));

1504 mdb_printf("%-?p %-17s ", addr, macaddr);
1505 if (bfp->bf_flags & BFF_LOCALADDR)
1506 mdb_printf("%-7s", "[self]");
1507 else
1508 mdb_printf("t-%-5d", args->lbolt - bfp->bf_lastheard);
1509 mdb_printf(" %-7u ", bfp->bf_refs);

1511 if (bfp->bf_trill_nick != 0) {
1512 mdb_printf("%d\n", bfp->bf_trill_nick);
1513 } else {

new/usr/src/cmd/mdb/common/modules/genunix/net.c 24

1514 for (i = 0; i < bfp->bf_nlinks; i++) {
1515 print_link_name(args, (uintptr_t)links[i],
1516 i == bfp->bf_nlinks - 1 ? ’\n’ : ’ ’);
1517 }
1518 }

1520 return (WALK_NEXT);
1521 }

1523 static int
1524 do_show_bridge(uintptr_t addr, const void *data, void *ptr)
1525 {
1526 show_bridge_args_t *args = ptr;
1527 bridge_inst_t bi;
1528 const bridge_inst_t *bip;
1529 trill_node_t tn;
1530 trill_sock_t tsp;
1531 trill_nickinfo_t tni;
1532 char bname[MAXLINKNAMELEN];
1533 char macaddr[ETHERADDRL * 3];
1534 char *cp;
1535 uint_t nnicks;
1536 int i;

1538 if (data != NULL) {
1539 bip = data;
1540 } else {
1541 if (mdb_vread(&bi, sizeof (bi), addr) == -1) {
1542 mdb_warn("cannot read bridge instance at %p", addr);
1543 return (WALK_ERR);
1544 }
1545 bip = &bi;
1546 }

1548 (void) strncpy(bname, bip->bi_name, sizeof (bname) - 1);
1549 bname[MAXLINKNAMELEN - 1] = ’\0’;
1550 cp = bname + strlen(bname);
1551 if (cp > bname && cp[-1] == ’0’)
1552 cp[-1] = ’\0’;

1554 if (args->name != NULL && strcmp(args->name, bname) != 0)
1555 return (WALK_NEXT);

1557 args->found = B_TRUE;
1558 args->nlinks = args->nfwd = 0;

1560 if (args->opt_l) {
1561 mdb_printf("%-?s %-16s %-17s %3s %-4s ", "ADDR", "LINK",
1562 "MAC-ADDR", "FLG", "PVID");
1563 if (bip->bi_trilldata == NULL)
1564 mdb_printf("%-5s %s\n", "STATE", "VLANS");
1565 else
1566 mdb_printf("%s\n", "FWD-VLANS");
1567 }

1569 if (!args->opt_f && !args->opt_t &&
1570 mdb_pwalk("list", do_bridge_links, args,
1571 addr + offsetof(bridge_inst_t, bi_links)) != DCMD_OK)
1572 return (WALK_ERR);

1574 if (args->opt_f)
1575 mdb_printf("%-?s %-17s %-7s %-7s %s\n", "ADDR", "DEST", "TIME",
1576 "REFS", "OUTPUT");

1578 if (!args->opt_l && !args->opt_t &&
1579 mdb_pwalk("avl", do_bridge_fwd, args,

new/usr/src/cmd/mdb/common/modules/genunix/net.c 25

1580 addr + offsetof(bridge_inst_t, bi_fwd)) != DCMD_OK)
1581 return (WALK_ERR);

1583 nnicks = 0;
1584 if (bip->bi_trilldata != NULL && !args->opt_l && !args->opt_f) {
1585 if (mdb_vread(&args->ti, sizeof (args->ti),
1586 (uintptr_t)bip->bi_trilldata) == -1) {
1587 mdb_warn("cannot read trill instance at %p",
1588 bip->bi_trilldata);
1589 return (WALK_ERR);
1590 }
1591 if (args->opt_t)
1592 mdb_printf("%-?s %-5s %-17s %s\n", "ADDR",
1593 "NICK", "NEXT-HOP", "LINK");
1594 for (i = 0; i < RBRIDGE_NICKNAME_MAX; i++) {
1595 if (args->ti.ti_nodes[i] == NULL)
1596 continue;
1597 if (args->opt_t) {
1598 if (mdb_vread(&tn, sizeof (tn),
1599 (uintptr_t)args->ti.ti_nodes[i]) == -1) {
1600 mdb_warn("cannot read trill node %d at "
1601 "%p", i, args->ti.ti_nodes[i]);
1602 return (WALK_ERR);
1603 }
1604 if (mdb_vread(&tni, sizeof (tni),
1605 (uintptr_t)tn.tn_ni) == -1) {
1606 mdb_warn("cannot read trill node info "
1607 "%d at %p", i, tn.tn_ni);
1608 return (WALK_ERR);
1609 }
1610 mdb_mac_addr(tni.tni_adjsnpa, ETHERADDRL,
1611 macaddr, sizeof (macaddr));
1612 if (tni.tni_nick == args->ti.ti_nick) {
1613 (void) strcpy(macaddr, "[self]");
1614 }
1615 mdb_printf("%-?p %-5u %-17s ",
1616 args->ti.ti_nodes[i], tni.tni_nick,
1617 macaddr);
1618 if (tn.tn_tsp != NULL) {
1619 if (mdb_vread(&tsp, sizeof (tsp),
1620 (uintptr_t)tn.tn_tsp) == -1) {
1621 mdb_warn("cannot read trill "
1622 "socket info at %p",
1623 tn.tn_tsp);
1624 return (WALK_ERR);
1625 }
1626 if (tsp.ts_link != NULL) {
1627 print_link_name(args,
1628 (uintptr_t)tsp.ts_link,
1629 ’\n’);
1630 continue;
1631 }
1632 }
1633 mdb_printf("--\n");
1634 } else {
1635 nnicks++;
1636 }
1637 }
1638 } else {
1639 if (args->opt_t)
1640 mdb_printf("bridge is not running TRILL\n");
1641 }

1643 if (!args->opt_l && !args->opt_f && !args->opt_t) {
1644 mdb_printf("%-?p %-7s %-16s %-7u %-7u", addr,
1645 bip->bi_trilldata == NULL ? "stp" : "trill", bname,

new/usr/src/cmd/mdb/common/modules/genunix/net.c 26

1646 args->nlinks, args->nfwd);
1647 if (bip->bi_trilldata != NULL)
1648 mdb_printf(" %-7u %u\n", nnicks, args->ti.ti_nick);
1649 else
1650 mdb_printf(" %-7s %s\n", "--", "--");
1651 }
1652 return (WALK_NEXT);
1653 }

1655 static int
1656 dladm_show_bridge(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1657 {
1658 show_bridge_args_t *args;
1659 GElf_Sym sym;
1660 int i;

1662 args = mdb_zalloc(sizeof (*args), UM_SLEEP);

1664 i = mdb_getopts(argc, argv,
1665 ’l’, MDB_OPT_SETBITS, 1, &args->opt_l,
1666 ’f’, MDB_OPT_SETBITS, 1, &args->opt_f,
1667 ’t’, MDB_OPT_SETBITS, 1, &args->opt_t,
1668 NULL);

1670 argc -= i;
1671 argv += i;

1673 if (argc > 1 || (argc == 1 && argv[0].a_type != MDB_TYPE_STRING)) {
1674 mdb_free(args, sizeof (*args));
1675 return (DCMD_USAGE);
1676 }
1677 if (argc == 1)
1678 args->name = argv[0].a_un.a_str;

1680 if ((args->lbolt = mdb_get_lbolt()) == -1) {
1681 mdb_warn("failed to read lbolt");
1682 goto err;
1683 }

1685 if (flags & DCMD_ADDRSPEC) {
1686 if (args->name != NULL) {
1687 mdb_printf("bridge name and address are mutually "
1688 "exclusive\n");
1689 goto err;
1690 }
1691 if (!args->opt_l && !args->opt_f && !args->opt_t)
1692 mdb_printf("%-?s %-7s %-16s %-7s %-7s\n", "ADDR",
1693 "PROTECT", "NAME", "NLINKS", "NFWD");
1694 if (do_show_bridge(addr, NULL, args) != WALK_NEXT)
1695 goto err;
1696 mdb_free(args, sizeof (*args));
1697 return (DCMD_OK);
1698 } else {
1699 if ((args->opt_l || args->opt_f || args->opt_t) &&
1700 args->name == NULL) {
1701 mdb_printf("need bridge name or address with -[lft]\n");
1702 goto err;
1703 }
1704 if (mdb_lookup_by_obj("bridge", "inst_list", &sym) == -1) {
1705 mdb_warn("failed to find ’bridge‘inst_list’");
1706 goto err;
1707 }
1708 if (!args->opt_l && !args->opt_f && !args->opt_t)
1709 mdb_printf("%-?s %-7s %-16s %-7s %-7s %-7s %s\n",
1710 "ADDR", "PROTECT", "NAME", "NLINKS", "NFWD",
1711 "NNICKS", "NICK");

new/usr/src/cmd/mdb/common/modules/genunix/net.c 27

1712 if (mdb_pwalk("list", do_show_bridge, args,
1713 (uintptr_t)sym.st_value) != DCMD_OK)
1714 goto err;
1715 if (!args->found && args->name != NULL) {
1716 mdb_printf("bridge instance %s not found\n",
1717 args->name);
1718 goto err;
1719 }
1720 mdb_free(args, sizeof (*args));
1721 return (DCMD_OK);
1722 }

1724 err:
1725 mdb_free(args, sizeof (*args));
1726 return (DCMD_ERR);
1727 }

1729 /*
1730 * Support for the "::dladm" dcmd
1731 */
1732 int
1733 dladm(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1734 {
1735 if (argc < 1 || argv[0].a_type != MDB_TYPE_STRING)
1736 return (DCMD_USAGE);

1738 /*
1739 * This could be a bit more elaborate, once we support more of the
1740 * dladm show-* subcommands.
1741 */
1742 argc--;
1743 argv++;
1744 if (strcmp(argv[-1].a_un.a_str, "show-bridge") == 0)
1745 return (dladm_show_bridge(addr, flags, argc, argv));

1747 return (DCMD_USAGE);
1748 }

1750 void
1751 dladm_help(void)
1752 {
1753 mdb_printf("Subcommands:\n"
1754 " show-bridge [-flt] [<name>]\n"
1755 "\t Show bridge information; -l for links and -f for "
1756 "forwarding\n"
1757 "\t entries, and -t for TRILL nicknames. Address is required "
1758 "if name\n"
1759 "\t is not specified.\n");
1760 }

new/usr/src/cmd/mdb/common/modules/genunix/net.h 1

**
 2239 Sat Aug 18 10:37:01 2012
new/usr/src/cmd/mdb/common/modules/genunix/net.h
dccp: build fixes, mdb (vfs sonode missing)
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _NET_H
27 #define _NET_H

29 #ifdef __cplusplus
30 extern "C" {
31 #endif

33 extern struct mi_payload_walk_arg_s mi_icmp_arg;
34 extern struct mi_payload_walk_arg_s mi_ill_arg;

36 extern int sonode_walk_init(mdb_walk_state_t *);
37 extern int sonode_walk_step(mdb_walk_state_t *);
38 extern void sonode_walk_fini(mdb_walk_state_t *);
39 extern int mi_walk_init(mdb_walk_state_t *);
40 extern int mi_walk_step(mdb_walk_state_t *);
41 extern void mi_walk_fini(mdb_walk_state_t *);
42 extern int mi_payload_walk_init(mdb_walk_state_t *);
43 extern int mi_payload_walk_step(mdb_walk_state_t *);
44 extern int icmp_stacks_walk_init(mdb_walk_state_t *);
45 extern int icmp_stacks_walk_step(mdb_walk_state_t *);
46 extern int tcp_stacks_walk_init(mdb_walk_state_t *);
47 extern int tcp_stacks_walk_step(mdb_walk_state_t *);
48 extern int udp_stacks_walk_init(mdb_walk_state_t *);
49 extern int udp_stacks_walk_step(mdb_walk_state_t *);
50 extern int dccp_stacks_walk_init(mdb_walk_state_t *);
51 extern int dccp_stacks_walk_step(mdb_walk_state_t *);
52 #endif /* ! codereview */

54 extern int sonode(uintptr_t, uint_t, int, const mdb_arg_t *);
55 extern int mi(uintptr_t, uint_t, int, const mdb_arg_t *);
56 extern int netstat(uintptr_t, uint_t, int, const mdb_arg_t *);
57 extern int dladm(uintptr_t, uint_t, int, const mdb_arg_t *);
58 extern void dladm_help(void);

60 #ifdef __cplusplus
61 }

new/usr/src/cmd/mdb/common/modules/genunix/net.h 2

62 #endif

64 #endif /* _NET_H */

new/usr/src/cmd/mdb/common/modules/ip/ip.c 1

**
 93952 Sat Aug 18 10:37:02 2012
new/usr/src/cmd/mdb/common/modules/ip/ip.c
dccp: conn_t
**
______unchanged_portion_omitted_

342 /*
343 * Generic network stack walker initialization function. It is used by all
344 * other network stack walkers.
344 * other netwrok stack walkers.
345 */
346 int
347 ns_walk_init(mdb_walk_state_t *wsp)
348 {
349 if (mdb_layered_walk("netstack", wsp) == -1) {
350 mdb_warn("can’t walk ’netstack’");
351 return (WALK_ERR);
352 }
353 return (WALK_NEXT);
354 }

______unchanged_portion_omitted_

376 /*
377 * DCCP network stack walker stepping function.
378 */
379 int
380 dccp_stacks_walk_step(mdb_walk_state_t *wsp)
381 {
382 return (ns_walk_step(wsp, NS_DCCP));
383 }

385 /*
386 #endif /* ! codereview */
387 * IP network stack walker stepping function.
388 */
389 int
390 ip_stacks_walk_step(mdb_walk_state_t *wsp)
391 {
392 return (ns_walk_step(wsp, NS_IP));
393 }

395 /*
396 * TCP network stack walker stepping function.
397 */
398 int
399 tcp_stacks_walk_step(mdb_walk_state_t *wsp)
400 {
401 return (ns_walk_step(wsp, NS_TCP));
402 }

404 /*
405 * SCTP network stack walker stepping function.
406 */
407 int
408 sctp_stacks_walk_step(mdb_walk_state_t *wsp)
409 {
410 return (ns_walk_step(wsp, NS_SCTP));
411 }

413 /*
414 * UDP network stack walker stepping function.
415 */
416 int
417 udp_stacks_walk_step(mdb_walk_state_t *wsp)
418 {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 2

419 return (ns_walk_step(wsp, NS_UDP));
420 }

422 /*
423 * Initialization function for the per CPU TCP stats counter walker of a given
424 * TCP stack.
425 */
426 int
427 tcps_sc_walk_init(mdb_walk_state_t *wsp)
428 {
429 tcp_stack_t tcps;

431 if (wsp->walk_addr == NULL)
432 return (WALK_ERR);

434 if (mdb_vread(&tcps, sizeof (tcps), wsp->walk_addr) == -1) {
435 mdb_warn("failed to read tcp_stack_t at %p", wsp->walk_addr);
436 return (WALK_ERR);
437 }
438 if (tcps.tcps_sc_cnt == 0)
439 return (WALK_DONE);

441 /*
442 * Store the tcp_stack_t pointer in walk_data. The stepping function
443 * used it to calculate if the end of the counter has reached.
444 */
445 wsp->walk_data = (void *)wsp->walk_addr;
446 wsp->walk_addr = (uintptr_t)tcps.tcps_sc;
447 return (WALK_NEXT);
448 }

450 /*
451 * Stepping function for the per CPU TCP stats counterwalker.
452 */
453 int
454 tcps_sc_walk_step(mdb_walk_state_t *wsp)
455 {
456 int status;
457 tcp_stack_t tcps;
458 tcp_stats_cpu_t *stats;
459 char *next, *end;

461 if (mdb_vread(&tcps, sizeof (tcps), (uintptr_t)wsp->walk_data) == -1) {
462 mdb_warn("failed to read tcp_stack_t at %p", wsp->walk_addr);
463 return (WALK_ERR);
464 }
465 if (mdb_vread(&stats, sizeof (stats), wsp->walk_addr) == -1) {
466 mdb_warn("failed ot read tcp_stats_cpu_t at %p",
467 wsp->walk_addr);
468 return (WALK_ERR);
469 }
470 status = wsp->walk_callback((uintptr_t)stats, &stats, wsp->walk_cbdata);
471 if (status != WALK_NEXT)
472 return (status);

474 next = (char *)wsp->walk_addr + sizeof (tcp_stats_cpu_t *);
475 end = (char *)tcps.tcps_sc + tcps.tcps_sc_cnt *
476 sizeof (tcp_stats_cpu_t *);
477 if (next >= end)
478 return (WALK_DONE);
479 wsp->walk_addr = (uintptr_t)next;
480 return (WALK_NEXT);
481 }

483 int
484 th_hash_walk_init(mdb_walk_state_t *wsp)

new/usr/src/cmd/mdb/common/modules/ip/ip.c 3

485 {
486 GElf_Sym sym;
487 list_node_t *next;

489 if (wsp->walk_addr == NULL) {
490 if (mdb_lookup_by_obj("ip", "ip_thread_list", &sym) == 0) {
491 wsp->walk_addr = sym.st_value;
492 } else {
493 mdb_warn("unable to locate ip_thread_list\n");
494 return (WALK_ERR);
495 }
496 }

498 if (mdb_vread(&next, sizeof (next),
499 wsp->walk_addr + offsetof(list_t, list_head) +
500 offsetof(list_node_t, list_next)) == -1 ||
501 next == NULL) {
502 mdb_warn("non-DEBUG image; cannot walk th_hash list\n");
503 return (WALK_ERR);
504 }

506 if (mdb_layered_walk("list", wsp) == -1) {
507 mdb_warn("can’t walk ’list’");
508 return (WALK_ERR);
509 } else {
510 return (WALK_NEXT);
511 }
512 }

514 int
515 th_hash_walk_step(mdb_walk_state_t *wsp)
516 {
517 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
518 wsp->walk_cbdata));
519 }

521 /*
522 * Called with walk_addr being the address of ips_ill_g_heads
523 */
524 int
525 illif_stack_walk_init(mdb_walk_state_t *wsp)
526 {
527 illif_walk_data_t *iw;

529 if (wsp->walk_addr == NULL) {
530 mdb_warn("illif_stack supports only local walks\n");
531 return (WALK_ERR);
532 }

534 iw = mdb_alloc(sizeof (illif_walk_data_t), UM_SLEEP);

536 if (mdb_vread(iw->ill_g_heads, MAX_G_HEADS * sizeof (ill_g_head_t),
537 wsp->walk_addr) == -1) {
538 mdb_warn("failed to read ’ips_ill_g_heads’ at %p",
539 wsp->walk_addr);
540 mdb_free(iw, sizeof (illif_walk_data_t));
541 return (WALK_ERR);
542 }

544 iw->ill_list = 0;
545 wsp->walk_addr = (uintptr_t)iw->ill_g_heads[0].ill_g_list_head;
546 wsp->walk_data = iw;

548 return (WALK_NEXT);
549 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 4

551 int
552 illif_stack_walk_step(mdb_walk_state_t *wsp)
553 {
554 uintptr_t addr = wsp->walk_addr;
555 illif_walk_data_t *iw = wsp->walk_data;
556 int list = iw->ill_list;

558 if (mdb_vread(&iw->ill_if, sizeof (ill_if_t), addr) == -1) {
559 mdb_warn("failed to read ill_if_t at %p", addr);
560 return (WALK_ERR);
561 }

563 wsp->walk_addr = (uintptr_t)iw->ill_if.illif_next;

565 if (wsp->walk_addr ==
566 (uintptr_t)iw->ill_g_heads[list].ill_g_list_head) {

568 if (++list >= MAX_G_HEADS)
569 return (WALK_DONE);

571 iw->ill_list = list;
572 wsp->walk_addr =
573 (uintptr_t)iw->ill_g_heads[list].ill_g_list_head;
574 return (WALK_NEXT);
575 }

577 return (wsp->walk_callback(addr, iw, wsp->walk_cbdata));
578 }

580 void
581 illif_stack_walk_fini(mdb_walk_state_t *wsp)
582 {
583 mdb_free(wsp->walk_data, sizeof (illif_walk_data_t));
584 }

586 typedef struct illif_cbdata {
587 uint_t ill_flags;
588 uintptr_t ill_addr;
589 int ill_printlist; /* list to be printed (MAX_G_HEADS for all) */
590 boolean_t ill_printed;
591 } illif_cbdata_t;

593 static int
594 illif_cb(uintptr_t addr, const illif_walk_data_t *iw, illif_cbdata_t *id)
595 {
596 const char *version;

598 if (id->ill_printlist < MAX_G_HEADS &&
599 id->ill_printlist != iw->ill_list)
600 return (WALK_NEXT);

602 if (id->ill_flags & DCMD_ADDRSPEC && id->ill_addr != addr)
603 return (WALK_NEXT);

605 if (id->ill_flags & DCMD_PIPE_OUT) {
606 mdb_printf("%p\n", addr);
607 return (WALK_NEXT);
608 }

610 switch (iw->ill_list) {
611 case IP_V4_G_HEAD: version = "v4"; break;
612 case IP_V6_G_HEAD: version = "v6"; break;
613 default: version = "??"; break;
614 }

616 mdb_printf("%?p %2s %?p %10d %?p %s\n",

new/usr/src/cmd/mdb/common/modules/ip/ip.c 5

617 addr, version, addr + offsetof(ill_if_t, illif_avl_by_ppa),
618 iw->ill_if.illif_avl_by_ppa.avl_numnodes,
619 iw->ill_if.illif_ppa_arena, iw->ill_if.illif_name);

621 id->ill_printed = TRUE;

623 return (WALK_NEXT);
624 }

626 int
627 ip_stacks_common_walk_init(mdb_walk_state_t *wsp)
628 {
629 if (mdb_layered_walk("ip_stacks", wsp) == -1) {
630 mdb_warn("can’t walk ’ip_stacks’");
631 return (WALK_ERR);
632 }

634 return (WALK_NEXT);
635 }

637 int
638 illif_walk_step(mdb_walk_state_t *wsp)
639 {
640 uintptr_t kaddr;

642 kaddr = wsp->walk_addr + OFFSETOF(ip_stack_t, ips_ill_g_heads);

644 if (mdb_vread(&kaddr, sizeof (kaddr), kaddr) == -1) {
645 mdb_warn("can’t read ips_ip_cache_table at %p", kaddr);
646 return (WALK_ERR);
647 }

649 if (mdb_pwalk("illif_stack", wsp->walk_callback,
650 wsp->walk_cbdata, kaddr) == -1) {
651 mdb_warn("couldn’t walk ’illif_stack’ for ips_ill_g_heads %p",
652 kaddr);
653 return (WALK_ERR);
654 }
655 return (WALK_NEXT);
656 }

658 int
659 illif(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
660 {
661 illif_cbdata_t id;
662 ill_if_t ill_if;
663 const char *opt_P = NULL;
664 int printlist = MAX_G_HEADS;

666 if (mdb_getopts(argc, argv,
667 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
668 return (DCMD_USAGE);

670 if (opt_P != NULL) {
671 if (strcmp("v4", opt_P) == 0) {
672 printlist = IP_V4_G_HEAD;
673 } else if (strcmp("v6", opt_P) == 0) {
674 printlist = IP_V6_G_HEAD;
675 } else {
676 mdb_warn("invalid protocol ’%s’\n", opt_P);
677 return (DCMD_USAGE);
678 }
679 }

681 if (DCMD_HDRSPEC(flags) && (flags & DCMD_PIPE_OUT) == 0) {
682 mdb_printf("%<u>%?s %2s %?s %10s %?s %-10s%</u>\n",

new/usr/src/cmd/mdb/common/modules/ip/ip.c 6

683 "ADDR", "IP", "AVLADDR", "NUMNODES", "ARENA", "NAME");
684 }

686 id.ill_flags = flags;
687 id.ill_addr = addr;
688 id.ill_printlist = printlist;
689 id.ill_printed = FALSE;

691 if (mdb_walk("illif", (mdb_walk_cb_t)illif_cb, &id) == -1) {
692 mdb_warn("can’t walk ill_if_t structures");
693 return (DCMD_ERR);
694 }

696 if (!(flags & DCMD_ADDRSPEC) || opt_P != NULL || id.ill_printed)
697 return (DCMD_OK);

699 /*
700 * If an address is specified and the walk doesn’t find it,
701 * print it anyway.
702 */
703 if (mdb_vread(&ill_if, sizeof (ill_if_t), addr) == -1) {
704 mdb_warn("failed to read ill_if_t at %p", addr);
705 return (DCMD_ERR);
706 }

708 mdb_printf("%?p %2s %?p %10d %?p %s\n",
709 addr, "??", addr + offsetof(ill_if_t, illif_avl_by_ppa),
710 ill_if.illif_avl_by_ppa.avl_numnodes,
711 ill_if.illif_ppa_arena, ill_if.illif_name);

713 return (DCMD_OK);
714 }

716 static void
717 illif_help(void)
718 {
719 mdb_printf("Options:\n");
720 mdb_printf("\t-P v4 | v6"
721 "\tfilter interface structures for the specified protocol\n");
722 }

724 int
725 nce_walk_init(mdb_walk_state_t *wsp)
726 {
727 if (mdb_layered_walk("nce_cache", wsp) == -1) {
728 mdb_warn("can’t walk ’nce_cache’");
729 return (WALK_ERR);
730 }

732 return (WALK_NEXT);
733 }

735 int
736 nce_walk_step(mdb_walk_state_t *wsp)
737 {
738 nce_t nce;

740 if (mdb_vread(&nce, sizeof (nce), wsp->walk_addr) == -1) {
741 mdb_warn("can’t read nce at %p", wsp->walk_addr);
742 return (WALK_ERR);
743 }

745 return (wsp->walk_callback(wsp->walk_addr, &nce, wsp->walk_cbdata));
746 }

748 static int

new/usr/src/cmd/mdb/common/modules/ip/ip.c 7

749 nce_format(uintptr_t addr, const nce_t *ncep, void *nce_cb_arg)
750 {
751 nce_cbdata_t *nce_cb = nce_cb_arg;
752 ill_t ill;
753 char ill_name[LIFNAMSIZ];
754 ncec_t ncec;

756 if (mdb_vread(&ncec, sizeof (ncec),
757 (uintptr_t)ncep->nce_common) == -1) {
758 mdb_warn("can’t read ncec at %p", ncep->nce_common);
759 return (WALK_NEXT);
760 }
761 if (nce_cb->nce_ipversion != 0 &&
762 ncec.ncec_ipversion != nce_cb->nce_ipversion)
763 return (WALK_NEXT);

765 if (mdb_vread(&ill, sizeof (ill), (uintptr_t)ncep->nce_ill) == -1) {
766 mdb_snprintf(ill_name, sizeof (ill_name), "--");
767 } else {
768 (void) mdb_readstr(ill_name,
769 MIN(LIFNAMSIZ, ill.ill_name_length),
770 (uintptr_t)ill.ill_name);
771 }

773 if (nce_cb->nce_ill_name[0] != ’\0’ &&
774 strncmp(nce_cb->nce_ill_name, ill_name, LIFNAMSIZ) != 0)
775 return (WALK_NEXT);

777 if (ncec.ncec_ipversion == IPV6_VERSION) {

779 mdb_printf("%?p %5s %-18s %?p %6d %N\n",
780 addr, ill_name,
781 nce_l2_addr(ncep, &ill),
782 ncep->nce_fp_mp,
783 ncep->nce_refcnt,
784 &ncep->nce_addr);

786 } else {
787 struct in_addr nceaddr;

789 IN6_V4MAPPED_TO_INADDR(&ncep->nce_addr, &nceaddr);
790 mdb_printf("%?p %5s %-18s %?p %6d %I\n",
791 addr, ill_name,
792 nce_l2_addr(ncep, &ill),
793 ncep->nce_fp_mp,
794 ncep->nce_refcnt,
795 nceaddr.s_addr);
796 }

798 return (WALK_NEXT);
799 }

801 int
802 dce_walk_init(mdb_walk_state_t *wsp)
803 {
804 wsp->walk_data = (void *)wsp->walk_addr;

806 if (mdb_layered_walk("dce_cache", wsp) == -1) {
807 mdb_warn("can’t walk ’dce_cache’");
808 return (WALK_ERR);
809 }

811 return (WALK_NEXT);
812 }

814 int

new/usr/src/cmd/mdb/common/modules/ip/ip.c 8

815 dce_walk_step(mdb_walk_state_t *wsp)
816 {
817 dce_t dce;

819 if (mdb_vread(&dce, sizeof (dce), wsp->walk_addr) == -1) {
820 mdb_warn("can’t read dce at %p", wsp->walk_addr);
821 return (WALK_ERR);
822 }

824 /* If ip_stack_t is specified, skip DCEs that don’t belong to it. */
825 if ((wsp->walk_data != NULL) && (wsp->walk_data != dce.dce_ipst))
826 return (WALK_NEXT);

828 return (wsp->walk_callback(wsp->walk_addr, &dce, wsp->walk_cbdata));
829 }

831 int
832 ire_walk_init(mdb_walk_state_t *wsp)
833 {
834 wsp->walk_data = (void *)wsp->walk_addr;

836 if (mdb_layered_walk("ire_cache", wsp) == -1) {
837 mdb_warn("can’t walk ’ire_cache’");
838 return (WALK_ERR);
839 }

841 return (WALK_NEXT);
842 }

844 int
845 ire_walk_step(mdb_walk_state_t *wsp)
846 {
847 ire_t ire;

849 if (mdb_vread(&ire, sizeof (ire), wsp->walk_addr) == -1) {
850 mdb_warn("can’t read ire at %p", wsp->walk_addr);
851 return (WALK_ERR);
852 }

854 /* If ip_stack_t is specified, skip IREs that don’t belong to it. */
855 if ((wsp->walk_data != NULL) && (wsp->walk_data != ire.ire_ipst))
856 return (WALK_NEXT);

858 return (wsp->walk_callback(wsp->walk_addr, &ire, wsp->walk_cbdata));
859 }

861 /* ARGSUSED */
862 int
863 ire_next_walk_init(mdb_walk_state_t *wsp)
864 {
865 return (WALK_NEXT);
866 }

868 int
869 ire_next_walk_step(mdb_walk_state_t *wsp)
870 {
871 ire_t ire;
872 int status;

875 if (wsp->walk_addr == NULL)
876 return (WALK_DONE);

878 if (mdb_vread(&ire, sizeof (ire), wsp->walk_addr) == -1) {
879 mdb_warn("can’t read ire at %p", wsp->walk_addr);
880 return (WALK_ERR);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 9

881 }
882 status = wsp->walk_callback(wsp->walk_addr, &ire,
883 wsp->walk_cbdata);

885 if (status != WALK_NEXT)
886 return (status);

888 wsp->walk_addr = (uintptr_t)ire.ire_next;
889 return (status);
890 }

892 static int
893 ire_format(uintptr_t addr, const void *ire_arg, void *ire_cb_arg)
894 {
895 const ire_t *irep = ire_arg;
896 ire_cbdata_t *ire_cb = ire_cb_arg;
897 boolean_t verbose = ire_cb->verbose;
898 ill_t ill;
899 char ill_name[LIFNAMSIZ];
900 boolean_t condemned = irep->ire_generation == IRE_GENERATION_CONDEMNED;

902 static const mdb_bitmask_t tmasks[] = {
903 { "BROADCAST", IRE_BROADCAST, IRE_BROADCAST },
904 { "DEFAULT", IRE_DEFAULT, IRE_DEFAULT },
905 { "LOCAL", IRE_LOCAL, IRE_LOCAL },
906 { "LOOPBACK", IRE_LOOPBACK, IRE_LOOPBACK },
907 { "PREFIX", IRE_PREFIX, IRE_PREFIX },
908 { "MULTICAST", IRE_MULTICAST, IRE_MULTICAST },
909 { "NOROUTE", IRE_NOROUTE, IRE_NOROUTE },
910 { "IF_NORESOLVER", IRE_IF_NORESOLVER, IRE_IF_NORESOLVER },
911 { "IF_RESOLVER", IRE_IF_RESOLVER, IRE_IF_RESOLVER },
912 { "IF_CLONE", IRE_IF_CLONE, IRE_IF_CLONE },
913 { "HOST", IRE_HOST, IRE_HOST },
914 { NULL, 0, 0 }
915 };

917 static const mdb_bitmask_t fmasks[] = {
918 { "UP", RTF_UP, RTF_UP },
919 { "GATEWAY", RTF_GATEWAY, RTF_GATEWAY },
920 { "HOST", RTF_HOST, RTF_HOST },
921 { "REJECT", RTF_REJECT, RTF_REJECT },
922 { "DYNAMIC", RTF_DYNAMIC, RTF_DYNAMIC },
923 { "MODIFIED", RTF_MODIFIED, RTF_MODIFIED },
924 { "DONE", RTF_DONE, RTF_DONE },
925 { "MASK", RTF_MASK, RTF_MASK },
926 { "CLONING", RTF_CLONING, RTF_CLONING },
927 { "XRESOLVE", RTF_XRESOLVE, RTF_XRESOLVE },
928 { "LLINFO", RTF_LLINFO, RTF_LLINFO },
929 { "STATIC", RTF_STATIC, RTF_STATIC },
930 { "BLACKHOLE", RTF_BLACKHOLE, RTF_BLACKHOLE },
931 { "PRIVATE", RTF_PRIVATE, RTF_PRIVATE },
932 { "PROTO2", RTF_PROTO2, RTF_PROTO2 },
933 { "PROTO1", RTF_PROTO1, RTF_PROTO1 },
934 { "MULTIRT", RTF_MULTIRT, RTF_MULTIRT },
935 { "SETSRC", RTF_SETSRC, RTF_SETSRC },
936 { "INDIRECT", RTF_INDIRECT, RTF_INDIRECT },
937 { NULL, 0, 0 }
938 };

940 if (ire_cb->ire_ipversion != 0 &&
941 irep->ire_ipversion != ire_cb->ire_ipversion)
942 return (WALK_NEXT);

944 if (mdb_vread(&ill, sizeof (ill), (uintptr_t)irep->ire_ill) == -1) {
945 mdb_snprintf(ill_name, sizeof (ill_name), "--");
946 } else {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 10

947 (void) mdb_readstr(ill_name,
948 MIN(LIFNAMSIZ, ill.ill_name_length),
949 (uintptr_t)ill.ill_name);
950 }

952 if (irep->ire_ipversion == IPV6_VERSION && verbose) {

954 mdb_printf("%%?p%%3s %40N <%hb%s>\n"
955 "%?s %40N\n"
956 "%?s %40d %4d <%hb> %s\n",
957 addr, condemned ? "(C)" : "", &irep->ire_setsrc_addr_v6,
958 irep->ire_type, tmasks,
959 (irep->ire_testhidden ? ", HIDDEN" : ""),
960 "", &irep->ire_addr_v6,
961 "", ips_to_stackid((uintptr_t)irep->ire_ipst),
962 irep->ire_zoneid,
963 irep->ire_flags, fmasks, ill_name);

965 } else if (irep->ire_ipversion == IPV6_VERSION) {

967 mdb_printf("%?p%3s %30N %30N %5d %4d %s\n",
968 addr, condemned ? "(C)" : "", &irep->ire_setsrc_addr_v6,
969 &irep->ire_addr_v6,
970 ips_to_stackid((uintptr_t)irep->ire_ipst),
971 irep->ire_zoneid, ill_name);

973 } else if (verbose) {

975 mdb_printf("%%?p%%3s %40I <%hb%s>\n"
976 "%?s %40I\n"
977 "%?s %40d %4d <%hb> %s\n",
978 addr, condemned ? "(C)" : "", irep->ire_setsrc_addr,
979 irep->ire_type, tmasks,
980 (irep->ire_testhidden ? ", HIDDEN" : ""),
981 "", irep->ire_addr,
982 "", ips_to_stackid((uintptr_t)irep->ire_ipst),
983 irep->ire_zoneid, irep->ire_flags, fmasks, ill_name);

985 } else {

987 mdb_printf("%?p%3s %30I %30I %5d %4d %s\n", addr,
988 condemned ? "(C)" : "", irep->ire_setsrc_addr,
989 irep->ire_addr, ips_to_stackid((uintptr_t)irep->ire_ipst),
990 irep->ire_zoneid, ill_name);
991 }

993 return (WALK_NEXT);
994 }

996 /*
997 * There are faster ways to do this. Given the interactive nature of this
998 * use I don’t think its worth much effort.
999 */

1000 static unsigned short
1001 ipcksum(void *p, int len)
1002 {
1003 int32_t sum = 0;

1005 while (len > 1) {
1006 /* alignment */
1007 sum += *(uint16_t *)p;
1008 p = (char *)p + sizeof (uint16_t);
1009 if (sum & 0x80000000)
1010 sum = (sum & 0xFFFF) + (sum >> 16);
1011 len -= 2;
1012 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 11

1014 if (len)
1015 sum += (uint16_t)*(unsigned char *)p;

1017 while (sum >> 16)
1018 sum = (sum & 0xFFFF) + (sum >> 16);

1020 return (~sum);
1021 }

1023 static const mdb_bitmask_t tcp_flags[] = {
1024 { "SYN", TH_SYN, TH_SYN },
1025 { "ACK", TH_ACK, TH_ACK },
1026 { "FIN", TH_FIN, TH_FIN },
1027 { "RST", TH_RST, TH_RST },
1028 { "PSH", TH_PUSH, TH_PUSH },
1029 { "ECE", TH_ECE, TH_ECE },
1030 { "CWR", TH_CWR, TH_CWR },
1031 { NULL, 0, 0 }
1032 };

1034 /* TCP option length */
1035 #define TCPOPT_HEADER_LEN 2
1036 #define TCPOPT_MAXSEG_LEN 4
1037 #define TCPOPT_WS_LEN 3
1038 #define TCPOPT_TSTAMP_LEN 10
1039 #define TCPOPT_SACK_OK_LEN 2

1041 static void
1042 tcphdr_print_options(uint8_t *opts, uint32_t opts_len)
1043 {
1044 uint8_t *endp;
1045 uint32_t len, val;

1047 mdb_printf("%Options:%");
1048 endp = opts + opts_len;
1049 while (opts < endp) {
1050 len = endp - opts;
1051 switch (*opts) {
1052 case TCPOPT_EOL:
1053 mdb_printf(" EOL");
1054 opts++;
1055 break;

1057 case TCPOPT_NOP:
1058 mdb_printf(" NOP");
1059 opts++;
1060 break;

1062 case TCPOPT_MAXSEG: {
1063 uint16_t mss;

1065 if (len < TCPOPT_MAXSEG_LEN ||
1066 opts[1] != TCPOPT_MAXSEG_LEN) {
1067 mdb_printf(" <Truncated MSS>\n");
1068 return;
1069 }
1070 mdb_nhconvert(&mss, opts + TCPOPT_HEADER_LEN,
1071 sizeof (mss));
1072 mdb_printf(" MSS=%u", mss);
1073 opts += TCPOPT_MAXSEG_LEN;
1074 break;
1075 }

1077 case TCPOPT_WSCALE:
1078 if (len < TCPOPT_WS_LEN || opts[1] != TCPOPT_WS_LEN) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 12

1079 mdb_printf(" <Truncated WS>\n");
1080 return;
1081 }
1082 mdb_printf(" WS=%u", opts[2]);
1083 opts += TCPOPT_WS_LEN;
1084 break;

1086 case TCPOPT_TSTAMP: {
1087 if (len < TCPOPT_TSTAMP_LEN ||
1088 opts[1] != TCPOPT_TSTAMP_LEN) {
1089 mdb_printf(" <Truncated TS>\n");
1090 return;
1091 }

1093 opts += TCPOPT_HEADER_LEN;
1094 mdb_nhconvert(&val, opts, sizeof (val));
1095 mdb_printf(" TS_VAL=%u,", val);

1097 opts += sizeof (val);
1098 mdb_nhconvert(&val, opts, sizeof (val));
1099 mdb_printf("TS_ECHO=%u", val);

1101 opts += sizeof (val);
1102 break;
1103 }

1105 case TCPOPT_SACK_PERMITTED:
1106 if (len < TCPOPT_SACK_OK_LEN ||
1107 opts[1] != TCPOPT_SACK_OK_LEN) {
1108 mdb_printf(" <Truncated SACK_OK>\n");
1109 return;
1110 }
1111 mdb_printf(" SACK_OK");
1112 opts += TCPOPT_SACK_OK_LEN;
1113 break;

1115 case TCPOPT_SACK: {
1116 uint32_t sack_len;

1118 if (len <= TCPOPT_HEADER_LEN || len < opts[1] ||
1119 opts[1] <= TCPOPT_HEADER_LEN) {
1120 mdb_printf(" <Truncated SACK>\n");
1121 return;
1122 }
1123 sack_len = opts[1] - TCPOPT_HEADER_LEN;
1124 opts += TCPOPT_HEADER_LEN;

1126 mdb_printf(" SACK=");
1127 while (sack_len > 0) {
1128 if (opts + 2 * sizeof (val) > endp) {
1129 mdb_printf("<Truncated SACK>\n");
1130 opts = endp;
1131 break;
1132 }

1134 mdb_nhconvert(&val, opts, sizeof (val));
1135 mdb_printf("<%u,", val);
1136 opts += sizeof (val);
1137 mdb_nhconvert(&val, opts, sizeof (val));
1138 mdb_printf("%u>", val);
1139 opts += sizeof (val);

1141 sack_len -= 2 * sizeof (val);
1142 }
1143 break;
1144 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 13

1146 default:
1147 mdb_printf(" Opts=<val=%u,len=%u>", *opts,
1148 opts[1]);
1149 opts += opts[1];
1150 break;
1151 }
1152 }
1153 mdb_printf("\n");
1154 }

1156 static void
1157 tcphdr_print(struct tcphdr *tcph)
1158 {
1159 in_port_t sport, dport;
1160 tcp_seq seq, ack;
1161 uint16_t win, urp;

1163 mdb_printf("%TCP header%\n");

1165 mdb_nhconvert(&sport, &tcph->th_sport, sizeof (sport));
1166 mdb_nhconvert(&dport, &tcph->th_dport, sizeof (dport));
1167 mdb_nhconvert(&seq, &tcph->th_seq, sizeof (seq));
1168 mdb_nhconvert(&ack, &tcph->th_ack, sizeof (ack));
1169 mdb_nhconvert(&win, &tcph->th_win, sizeof (win));
1170 mdb_nhconvert(&urp, &tcph->th_urp, sizeof (urp));

1172 mdb_printf("%<u>%6s %6s %10s %10s %4s %5s %5s %5s %-15s%</u>\n",
1173 "SPORT", "DPORT", "SEQ", "ACK", "HLEN", "WIN", "CSUM", "URP",
1174 "FLAGS");
1175 mdb_printf("%6hu %6hu %10u %10u %4d %5hu %5hu %5hu <%b>\n",
1176 sport, dport, seq, ack, tcph->th_off << 2, win,
1177 tcph->th_sum, urp, tcph->th_flags, tcp_flags);
1178 mdb_printf("0x%04x 0x%04x 0x%08x 0x%08x\n\n",
1179 sport, dport, seq, ack);
1180 }

1182 /* ARGSUSED */
1183 static int
1184 tcphdr(uintptr_t addr, uint_t flags, int ac, const mdb_arg_t *av)
1185 {
1186 struct tcphdr tcph;
1187 uint32_t opt_len;

1189 if (!(flags & DCMD_ADDRSPEC))
1190 return (DCMD_USAGE);

1192 if (mdb_vread(&tcph, sizeof (tcph), addr) == -1) {
1193 mdb_warn("failed to read TCP header at %p", addr);
1194 return (DCMD_ERR);
1195 }
1196 tcphdr_print(&tcph);

1198 /* If there are options, print them out also. */
1199 opt_len = (tcph.th_off << 2) - TCP_MIN_HEADER_LENGTH;
1200 if (opt_len > 0) {
1201 uint8_t *opts, *opt_buf;

1203 opt_buf = mdb_alloc(opt_len, UM_SLEEP);
1204 opts = (uint8_t *)addr + sizeof (tcph);
1205 if (mdb_vread(opt_buf, opt_len, (uintptr_t)opts) == -1) {
1206 mdb_warn("failed to read TCP options at %p", opts);
1207 return (DCMD_ERR);
1208 }
1209 tcphdr_print_options(opt_buf, opt_len);
1210 mdb_free(opt_buf, opt_len);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 14

1211 }

1213 return (DCMD_OK);
1214 }

1216 static void
1217 udphdr_print(struct udphdr *udph)
1218 {
1219 in_port_t sport, dport;
1220 uint16_t hlen;

1222 mdb_printf("%UDP header%\n");

1224 mdb_nhconvert(&sport, &udph->uh_sport, sizeof (sport));
1225 mdb_nhconvert(&dport, &udph->uh_dport, sizeof (dport));
1226 mdb_nhconvert(&hlen, &udph->uh_ulen, sizeof (hlen));

1228 mdb_printf("%<u>%14s %14s %5s %6s%</u>\n",
1229 "SPORT", "DPORT", "LEN", "CSUM");
1230 mdb_printf("%5hu (0x%04x) %5hu (0x%04x) %5hu 0x%04hx\n\n", sport, sport,
1231 dport, dport, hlen, udph->uh_sum);
1232 }

1234 /* ARGSUSED */
1235 static int
1236 udphdr(uintptr_t addr, uint_t flags, int ac, const mdb_arg_t *av)
1237 {
1238 struct udphdr udph;

1240 if (!(flags & DCMD_ADDRSPEC))
1241 return (DCMD_USAGE);

1243 if (mdb_vread(&udph, sizeof (udph), addr) == -1) {
1244 mdb_warn("failed to read UDP header at %p", addr);
1245 return (DCMD_ERR);
1246 }
1247 udphdr_print(&udph);
1248 return (DCMD_OK);
1249 }

1251 static void
1252 sctphdr_print(sctp_hdr_t *sctph)
1253 {
1254 in_port_t sport, dport;

1256 mdb_printf("%SCTP header%\n");
1257 mdb_nhconvert(&sport, &sctph->sh_sport, sizeof (sport));
1258 mdb_nhconvert(&dport, &sctph->sh_dport, sizeof (dport));

1260 mdb_printf("%<u>%14s %14s %10s %10s%</u>\n",
1261 "SPORT", "DPORT", "VTAG", "CHKSUM");
1262 mdb_printf("%5hu (0x%04x) %5hu (0x%04x) %10u 0x%08x\n\n", sport, sport,
1263 dport, dport, sctph->sh_verf, sctph->sh_chksum);
1264 }

1266 /* ARGSUSED */
1267 static int
1268 sctphdr(uintptr_t addr, uint_t flags, int ac, const mdb_arg_t *av)
1269 {
1270 sctp_hdr_t sctph;

1272 if (!(flags & DCMD_ADDRSPEC))
1273 return (DCMD_USAGE);

1275 if (mdb_vread(&sctph, sizeof (sctph), addr) == -1) {
1276 mdb_warn("failed to read SCTP header at %p", addr);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 15

1277 return (DCMD_ERR);
1278 }

1280 sctphdr_print(&sctph);
1281 return (DCMD_OK);
1282 }

1284 static int
1285 transport_hdr(int proto, uintptr_t addr)
1286 {
1287 mdb_printf("\n");
1288 switch (proto) {
1289 case IPPROTO_TCP: {
1290 struct tcphdr tcph;

1292 if (mdb_vread(&tcph, sizeof (tcph), addr) == -1) {
1293 mdb_warn("failed to read TCP header at %p", addr);
1294 return (DCMD_ERR);
1295 }
1296 tcphdr_print(&tcph);
1297 break;
1298 }
1299 case IPPROTO_UDP: {
1300 struct udphdr udph;

1302 if (mdb_vread(&udph, sizeof (udph), addr) == -1) {
1303 mdb_warn("failed to read UDP header at %p", addr);
1304 return (DCMD_ERR);
1305 }
1306 udphdr_print(&udph);
1307 break;
1308 }
1309 case IPPROTO_SCTP: {
1310 sctp_hdr_t sctph;

1312 if (mdb_vread(&sctph, sizeof (sctph), addr) == -1) {
1313 mdb_warn("failed to read SCTP header at %p", addr);
1314 return (DCMD_ERR);
1315 }
1316 sctphdr_print(&sctph);
1317 break;
1318 }
1319 default:
1320 break;
1321 }

1323 return (DCMD_OK);
1324 }

1326 static const mdb_bitmask_t ip_flags[] = {
1327 { "DF", IPH_DF, IPH_DF },
1328 { "MF", IPH_MF, IPH_MF },
1329 { NULL, 0, 0 }
1330 };

1332 /* ARGSUSED */
1333 static int
1334 iphdr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1335 {
1336 uint_t verbose = FALSE, force = FALSE;
1337 ipha_t iph[1];
1338 uint16_t ver, totlen, hdrlen, ipid, off, csum;
1339 uintptr_t nxt_proto;
1340 char exp_csum[8];

1342 if (mdb_getopts(argc, argv,

new/usr/src/cmd/mdb/common/modules/ip/ip.c 16

1343 ’v’, MDB_OPT_SETBITS, TRUE, &verbose,
1344 ’f’, MDB_OPT_SETBITS, TRUE, &force, NULL) != argc)
1345 return (DCMD_USAGE);

1347 if (mdb_vread(iph, sizeof (*iph), addr) == -1) {
1348 mdb_warn("failed to read IPv4 header at %p", addr);
1349 return (DCMD_ERR);
1350 }

1352 ver = (iph->ipha_version_and_hdr_length & 0xf0) >> 4;
1353 if (ver != IPV4_VERSION) {
1354 if (ver == IPV6_VERSION) {
1355 return (ip6hdr(addr, flags, argc, argv));
1356 } else if (!force) {
1357 mdb_warn("unknown IP version: %d\n", ver);
1358 return (DCMD_ERR);
1359 }
1360 }

1362 mdb_printf("%IPv4 header%\n");
1363 mdb_printf("%-34s %-34s\n"
1364 "%<u>%-4s %-4s %-5s %-5s %-6s %-5s %-5s %-6s %-8s %-6s%</u>\n",
1365 "SRC", "DST",
1366 "HLEN", "TOS", "LEN", "ID", "OFFSET", "TTL", "PROTO", "CHKSUM",
1367 "EXP-CSUM", "FLGS");

1369 hdrlen = (iph->ipha_version_and_hdr_length & 0x0f) << 2;
1370 mdb_nhconvert(&totlen, &iph->ipha_length, sizeof (totlen));
1371 mdb_nhconvert(&ipid, &iph->ipha_ident, sizeof (ipid));
1372 mdb_nhconvert(&off, &iph->ipha_fragment_offset_and_flags, sizeof (off));
1373 if (hdrlen == IP_SIMPLE_HDR_LENGTH) {
1374 if ((csum = ipcksum(iph, sizeof (*iph))) != 0)
1375 csum = ~(~csum + ~iph->ipha_hdr_checksum);
1376 else
1377 csum = iph->ipha_hdr_checksum;
1378 mdb_snprintf(exp_csum, 8, "%u", csum);
1379 } else {
1380 mdb_snprintf(exp_csum, 8, "<n/a>");
1381 }

1383 mdb_printf("%-34I %-34I%\n"
1384 "%-4d %-4d %-5hu %-5hu %-6hu %-5hu %-5hu %-6u %-8s <%5hb>\n",
1385 iph->ipha_src, iph->ipha_dst,
1386 hdrlen, iph->ipha_type_of_service, totlen, ipid,
1387 (off << 3) & 0xffff, iph->ipha_ttl, iph->ipha_protocol,
1388 iph->ipha_hdr_checksum, exp_csum, off, ip_flags);

1390 if (verbose) {
1391 nxt_proto = addr + hdrlen;
1392 return (transport_hdr(iph->ipha_protocol, nxt_proto));
1393 } else {
1394 return (DCMD_OK);
1395 }
1396 }

1398 /* ARGSUSED */
1399 static int
1400 ip6hdr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1401 {
1402 uint_t verbose = FALSE, force = FALSE;
1403 ip6_t iph[1];
1404 int ver, class, flow;
1405 uint16_t plen;
1406 uintptr_t nxt_proto;

1408 if (mdb_getopts(argc, argv,

new/usr/src/cmd/mdb/common/modules/ip/ip.c 17

1409 ’v’, MDB_OPT_SETBITS, TRUE, &verbose,
1410 ’f’, MDB_OPT_SETBITS, TRUE, &force, NULL) != argc)
1411 return (DCMD_USAGE);

1413 if (mdb_vread(iph, sizeof (*iph), addr) == -1) {
1414 mdb_warn("failed to read IPv6 header at %p", addr);
1415 return (DCMD_ERR);
1416 }

1418 ver = (iph->ip6_vfc & 0xf0) >> 4;
1419 if (ver != IPV6_VERSION) {
1420 if (ver == IPV4_VERSION) {
1421 return (iphdr(addr, flags, argc, argv));
1422 } else if (!force) {
1423 mdb_warn("unknown IP version: %d\n", ver);
1424 return (DCMD_ERR);
1425 }
1426 }

1428 mdb_printf("%IPv6 header%\n");
1429 mdb_printf("%<u>%-26s %-26s %4s %7s %5s %3s %3s%</u>\n",
1430 "SRC", "DST", "TCLS", "FLOW-ID", "PLEN", "NXT", "HOP");

1432 class = (iph->ip6_vcf & IPV6_FLOWINFO_TCLASS) >> 20;
1433 mdb_nhconvert(&class, &class, sizeof (class));
1434 flow = iph->ip6_vcf & IPV6_FLOWINFO_FLOWLABEL;
1435 mdb_nhconvert(&flow, &flow, sizeof (flow));
1436 mdb_nhconvert(&plen, &iph->ip6_plen, sizeof (plen));

1438 mdb_printf("%-26N %-26N %4d %7d %5hu %3d %3d\n",
1439 &iph->ip6_src, &iph->ip6_dst,
1440 class, flow, plen, iph->ip6_nxt, iph->ip6_hlim);

1442 if (verbose) {
1443 nxt_proto = addr + sizeof (ip6_t);
1444 return (transport_hdr(iph->ip6_nxt, nxt_proto));
1445 } else {
1446 return (DCMD_OK);
1447 }
1448 }

1450 int
1451 nce(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1452 {
1453 nce_t nce;
1454 nce_cbdata_t nce_cb;
1455 int ipversion = 0;
1456 const char *opt_P = NULL, *opt_ill;

1458 if (mdb_getopts(argc, argv,
1459 ’i’, MDB_OPT_STR, &opt_ill,
1460 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
1461 return (DCMD_USAGE);

1463 if (opt_P != NULL) {
1464 if (strcmp("v4", opt_P) == 0) {
1465 ipversion = IPV4_VERSION;
1466 } else if (strcmp("v6", opt_P) == 0) {
1467 ipversion = IPV6_VERSION;
1468 } else {
1469 mdb_warn("invalid protocol ’%s’\n", opt_P);
1470 return (DCMD_USAGE);
1471 }
1472 }

1474 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 18

1475 mdb_printf("%<u>%?s %5s %18s %?s %s %s %</u>\n",
1476 "ADDR", "INTF", "LLADDR", "FP_MP", "REFCNT",
1477 "NCE_ADDR");
1478 }

1480 bzero(&nce_cb, sizeof (nce_cb));
1481 if (opt_ill != NULL) {
1482 strcpy(nce_cb.nce_ill_name, opt_ill);
1483 }
1484 nce_cb.nce_ipversion = ipversion;

1486 if (flags & DCMD_ADDRSPEC) {
1487 (void) mdb_vread(&nce, sizeof (nce_t), addr);
1488 (void) nce_format(addr, &nce, &nce_cb);
1489 } else if (mdb_walk("nce", (mdb_walk_cb_t)nce_format, &nce_cb) == -1) {
1490 mdb_warn("failed to walk ire table");
1491 return (DCMD_ERR);
1492 }

1494 return (DCMD_OK);
1495 }

1497 /* ARGSUSED */
1498 static int
1499 dce_format(uintptr_t addr, const dce_t *dcep, void *dce_cb_arg)
1500 {
1501 static const mdb_bitmask_t dmasks[] = {
1502 { "D", DCEF_DEFAULT, DCEF_DEFAULT },
1503 { "P", DCEF_PMTU, DCEF_PMTU },
1504 { "U", DCEF_UINFO, DCEF_UINFO },
1505 { "S", DCEF_TOO_SMALL_PMTU, DCEF_TOO_SMALL_PMTU },
1506 { NULL, 0, 0 }
1507 };
1508 char flagsbuf[2 * A_CNT(dmasks)];
1509 int ipversion = *(int *)dce_cb_arg;
1510 boolean_t condemned = dcep->dce_generation == DCE_GENERATION_CONDEMNED;

1512 if (ipversion != 0 && ipversion != dcep->dce_ipversion)
1513 return (WALK_NEXT);

1515 mdb_snprintf(flagsbuf, sizeof (flagsbuf), "%b", dcep->dce_flags,
1516 dmasks);

1518 switch (dcep->dce_ipversion) {
1519 case IPV4_VERSION:
1520 mdb_printf("%<u>%?p%3s %8s %8d %30I %</u>\n", addr, condemned ?
1521 "(C)" : "", flagsbuf, dcep->dce_pmtu, &dcep->dce_v4addr);
1522 break;
1523 case IPV6_VERSION:
1524 mdb_printf("%<u>%?p%3s %8s %8d %30N %</u>\n", addr, condemned ?
1525 "(C)" : "", flagsbuf, dcep->dce_pmtu, &dcep->dce_v6addr);
1526 break;
1527 default:
1528 mdb_printf("%<u>%?p%3s %8s %8d %30s %</u>\n", addr, condemned ?
1529 "(C)" : "", flagsbuf, dcep->dce_pmtu, "");
1530 }

1532 return (WALK_NEXT);
1533 }

1535 int
1536 dce(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1537 {
1538 dce_t dce;
1539 const char *opt_P = NULL;
1540 const char *zone_name = NULL;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 19

1541 ip_stack_t *ipst = NULL;
1542 int ipversion = 0;

1544 if (mdb_getopts(argc, argv,
1545 ’s’, MDB_OPT_STR, &zone_name,
1546 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
1547 return (DCMD_USAGE);

1549 /* Follow the specified zone name to find a ip_stack_t*. */
1550 if (zone_name != NULL) {
1551 ipst = zone_to_ips(zone_name);
1552 if (ipst == NULL)
1553 return (DCMD_USAGE);
1554 }

1556 if (opt_P != NULL) {
1557 if (strcmp("v4", opt_P) == 0) {
1558 ipversion = IPV4_VERSION;
1559 } else if (strcmp("v6", opt_P) == 0) {
1560 ipversion = IPV6_VERSION;
1561 } else {
1562 mdb_warn("invalid protocol ’%s’\n", opt_P);
1563 return (DCMD_USAGE);
1564 }
1565 }

1567 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
1568 mdb_printf("%<u>%?s%3s %8s %8s %30s %</u>\n",
1569 "ADDR", "", "FLAGS", "PMTU", "DST_ADDR");
1570 }

1572 if (flags & DCMD_ADDRSPEC) {
1573 (void) mdb_vread(&dce, sizeof (dce_t), addr);
1574 (void) dce_format(addr, &dce, &ipversion);
1575 } else if (mdb_pwalk("dce", (mdb_walk_cb_t)dce_format, &ipversion,
1576 (uintptr_t)ipst) == -1) {
1577 mdb_warn("failed to walk dce cache");
1578 return (DCMD_ERR);
1579 }

1581 return (DCMD_OK);
1582 }

1584 int
1585 ire(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1586 {
1587 uint_t verbose = FALSE;
1588 ire_t ire;
1589 ire_cbdata_t ire_cb;
1590 int ipversion = 0;
1591 const char *opt_P = NULL;
1592 const char *zone_name = NULL;
1593 ip_stack_t *ipst = NULL;

1595 if (mdb_getopts(argc, argv,
1596 ’v’, MDB_OPT_SETBITS, TRUE, &verbose,
1597 ’s’, MDB_OPT_STR, &zone_name,
1598 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
1599 return (DCMD_USAGE);

1601 /* Follow the specified zone name to find a ip_stack_t*. */
1602 if (zone_name != NULL) {
1603 ipst = zone_to_ips(zone_name);
1604 if (ipst == NULL)
1605 return (DCMD_USAGE);
1606 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 20

1608 if (opt_P != NULL) {
1609 if (strcmp("v4", opt_P) == 0) {
1610 ipversion = IPV4_VERSION;
1611 } else if (strcmp("v6", opt_P) == 0) {
1612 ipversion = IPV6_VERSION;
1613 } else {
1614 mdb_warn("invalid protocol ’%s’\n", opt_P);
1615 return (DCMD_USAGE);
1616 }
1617 }

1619 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {

1621 if (verbose) {
1622 mdb_printf("%?s %40s %-20s%\n"
1623 "%?s %40s %-20s%\n"
1624 "%<u>%?s %40s %4s %-20s %s%</u>\n",
1625 "ADDR", "SRC", "TYPE",
1626 "", "DST", "MARKS",
1627 "", "STACK", "ZONE", "FLAGS", "INTF");
1628 } else {
1629 mdb_printf("%<u>%?s %30s %30s %5s %4s %s%</u>\n",
1630 "ADDR", "SRC", "DST", "STACK", "ZONE", "INTF");
1631 }
1632 }

1634 ire_cb.verbose = (verbose == TRUE);
1635 ire_cb.ire_ipversion = ipversion;

1637 if (flags & DCMD_ADDRSPEC) {
1638 (void) mdb_vread(&ire, sizeof (ire_t), addr);
1639 (void) ire_format(addr, &ire, &ire_cb);
1640 } else if (mdb_pwalk("ire", (mdb_walk_cb_t)ire_format, &ire_cb,
1641 (uintptr_t)ipst) == -1) {
1642 mdb_warn("failed to walk ire table");
1643 return (DCMD_ERR);
1644 }

1646 return (DCMD_OK);
1647 }

1649 static size_t
1650 mi_osize(const queue_t *q)
1651 {
1652 /*
1653 * The code in common/inet/mi.c allocates an extra word to store the
1654 * size of the allocation. An mi_o_s is thus a size_t plus an mi_o_s.
1655 */
1656 struct mi_block {
1657 size_t mi_nbytes;
1658 struct mi_o_s mi_o;
1659 } m;

1661 if (mdb_vread(&m, sizeof (m), (uintptr_t)q->q_ptr -
1662 sizeof (m)) == sizeof (m))
1663 return (m.mi_nbytes - sizeof (m));

1665 return (0);
1666 }

1668 static void
1669 ip_ill_qinfo(const queue_t *q, char *buf, size_t nbytes)
1670 {
1671 char name[32];
1672 ill_t ill;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 21

1674 if (mdb_vread(&ill, sizeof (ill),
1675 (uintptr_t)q->q_ptr) == sizeof (ill) &&
1676 mdb_readstr(name, sizeof (name), (uintptr_t)ill.ill_name) > 0)
1677 (void) mdb_snprintf(buf, nbytes, "if: %s", name);
1678 }

1680 void
1681 ip_qinfo(const queue_t *q, char *buf, size_t nbytes)
1682 {
1683 size_t size = mi_osize(q);

1685 if (size == sizeof (ill_t))
1686 ip_ill_qinfo(q, buf, nbytes);
1687 }

1689 uintptr_t
1690 ip_rnext(const queue_t *q)
1691 {
1692 size_t size = mi_osize(q);
1693 ill_t ill;

1695 if (size == sizeof (ill_t) && mdb_vread(&ill, sizeof (ill),
1696 (uintptr_t)q->q_ptr) == sizeof (ill))
1697 return ((uintptr_t)ill.ill_rq);

1699 return (NULL);
1700 }

1702 uintptr_t
1703 ip_wnext(const queue_t *q)
1704 {
1705 size_t size = mi_osize(q);
1706 ill_t ill;

1708 if (size == sizeof (ill_t) && mdb_vread(&ill, sizeof (ill),
1709 (uintptr_t)q->q_ptr) == sizeof (ill))
1710 return ((uintptr_t)ill.ill_wq);

1712 return (NULL);
1713 }

1715 /*
1716 * Print the core fields in an squeue_t. With the "-v" argument,
1717 * provide more verbose output.
1718 */
1719 static int
1720 squeue(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1721 {
1722 unsigned int i;
1723 unsigned int verbose = FALSE;
1724 const int SQUEUE_STATEDELT = (int)(sizeof (uintptr_t) + 9);
1725 boolean_t arm;
1726 squeue_t squeue;

1728 if (!(flags & DCMD_ADDRSPEC)) {
1729 if (mdb_walk_dcmd("genunix‘squeue_cache", "ip‘squeue",
1730 argc, argv) == -1) {
1731 mdb_warn("failed to walk squeue cache");
1732 return (DCMD_ERR);
1733 }
1734 return (DCMD_OK);
1735 }

1737 if (mdb_getopts(argc, argv, ’v’, MDB_OPT_SETBITS, TRUE, &verbose, NULL)
1738 != argc)

new/usr/src/cmd/mdb/common/modules/ip/ip.c 22

1739 return (DCMD_USAGE);

1741 if (!DCMD_HDRSPEC(flags) && verbose)
1742 mdb_printf("\n\n");

1744 if (DCMD_HDRSPEC(flags) || verbose) {
1745 mdb_printf("%?s %-5s %-3s %?s %?s %?s\n",
1746 "ADDR", "STATE", "CPU",
1747 "FIRST", "LAST", "WORKER");
1748 }

1750 if (mdb_vread(&squeue, sizeof (squeue_t), addr) == -1) {
1751 mdb_warn("cannot read squeue_t at %p", addr);
1752 return (DCMD_ERR);
1753 }

1755 mdb_printf("%0?p %05x %3d %0?p %0?p %0?p\n",
1756 addr, squeue.sq_state, squeue.sq_bind,
1757 squeue.sq_first, squeue.sq_last, squeue.sq_worker);

1759 if (!verbose)
1760 return (DCMD_OK);

1762 arm = B_TRUE;
1763 for (i = 0; squeue_states[i].bit_name != NULL; i++) {
1764 if (((squeue.sq_state) & (1 << i)) == 0)
1765 continue;

1767 if (arm) {
1768 mdb_printf("%*s|\n", SQUEUE_STATEDELT, "");
1769 mdb_printf("%*s+--> ", SQUEUE_STATEDELT, "");
1770 arm = B_FALSE;
1771 } else
1772 mdb_printf("%*s ", SQUEUE_STATEDELT, "");

1774 mdb_printf("%-12s %s\n", squeue_states[i].bit_name,
1775 squeue_states[i].bit_descr);
1776 }

1778 return (DCMD_OK);
1779 }

1781 static void
1782 ip_squeue_help(void)
1783 {
1784 mdb_printf("Print the core information for a given NCA squeue_t.\n\n");
1785 mdb_printf("Options:\n");
1786 mdb_printf("\t-v\tbe verbose (more descriptive)\n");
1787 }

1789 /*
1790 * This is called by ::th_trace (via a callback) when walking the th_hash
1791 * list. It calls modent to find the entries.
1792 */
1793 /* ARGSUSED */
1794 static int
1795 modent_summary(uintptr_t addr, const void *data, void *private)
1796 {
1797 th_walk_data_t *thw = private;
1798 const struct mod_hash_entry *mhe = data;
1799 th_trace_t th;

1801 if (mdb_vread(&th, sizeof (th), (uintptr_t)mhe->mhe_val) == -1) {
1802 mdb_warn("failed to read th_trace_t %p", mhe->mhe_val);
1803 return (WALK_ERR);
1804 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 23

1806 if (th.th_refcnt == 0 && thw->thw_non_zero_only)
1807 return (WALK_NEXT);

1809 if (!thw->thw_match) {
1810 mdb_printf("%?p %?p %?p %8d %?p\n", thw->thw_ipst, mhe->mhe_key,
1811 mhe->mhe_val, th.th_refcnt, th.th_id);
1812 } else if (thw->thw_matchkey == (uintptr_t)mhe->mhe_key) {
1813 int i, j, k;
1814 tr_buf_t *tr;

1816 mdb_printf("Object %p in IP stack %p:\n", mhe->mhe_key,
1817 thw->thw_ipst);
1818 i = th.th_trace_lastref;
1819 mdb_printf("\tThread %p refcnt %d:\n", th.th_id,
1820 th.th_refcnt);
1821 for (j = TR_BUF_MAX; j > 0; j--) {
1822 tr = th.th_trbuf + i;
1823 if (tr->tr_depth == 0 || tr->tr_depth > TR_STACK_DEPTH)
1824 break;
1825 mdb_printf("\t T%+ld:\n", tr->tr_time -
1826 thw->thw_lbolt);
1827 for (k = 0; k < tr->tr_depth; k++)
1828 mdb_printf("\t\t%a\n", tr->tr_stack[k]);
1829 if (--i < 0)
1830 i = TR_BUF_MAX - 1;
1831 }
1832 }
1833 return (WALK_NEXT);
1834 }

1836 /*
1837 * This is called by ::th_trace (via a callback) when walking the th_hash
1838 * list. It calls modent to find the entries.
1839 */
1840 /* ARGSUSED */
1841 static int
1842 th_hash_summary(uintptr_t addr, const void *data, void *private)
1843 {
1844 const th_hash_t *thh = data;
1845 th_walk_data_t *thw = private;

1847 thw->thw_ipst = (uintptr_t)thh->thh_ipst;
1848 return (mdb_pwalk("modent", modent_summary, private,
1849 (uintptr_t)thh->thh_hash));
1850 }

1852 /*
1853 * Print or summarize the th_trace_t structures.
1854 */
1855 static int
1856 th_trace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1857 {
1858 th_walk_data_t thw;

1860 (void) memset(&thw, 0, sizeof (thw));

1862 if (mdb_getopts(argc, argv,
1863 ’n’, MDB_OPT_SETBITS, TRUE, &thw.thw_non_zero_only,
1864 NULL) != argc)
1865 return (DCMD_USAGE);

1867 if (!(flags & DCMD_ADDRSPEC)) {
1868 /*
1869 * No address specified. Walk all of the th_hash_t in the
1870 * system, and summarize the th_trace_t entries in each.

new/usr/src/cmd/mdb/common/modules/ip/ip.c 24

1871 */
1872 mdb_printf("%?s %?s %?s %8s %?s\n",
1873 "IPSTACK", "OBJECT", "TRACE", "REFCNT", "THREAD");
1874 thw.thw_match = B_FALSE;
1875 } else {
1876 thw.thw_match = B_TRUE;
1877 thw.thw_matchkey = addr;

1879 if ((thw.thw_lbolt = (clock_t)mdb_get_lbolt()) == -1) {
1880 mdb_warn("failed to read lbolt");
1881 return (DCMD_ERR);
1882 }
1883 }
1884 if (mdb_pwalk("th_hash", th_hash_summary, &thw, NULL) == -1) {
1885 mdb_warn("can’t walk th_hash entries");
1886 return (DCMD_ERR);
1887 }
1888 return (DCMD_OK);
1889 }

1891 static void
1892 th_trace_help(void)
1893 {
1894 mdb_printf("If given an address of an ill_t, ipif_t, ire_t, or ncec_t, "
1895 "print the\n"
1896 "corresponding th_trace_t structure in detail. Otherwise, if no "
1897 "address is\n"
1898 "given, then summarize all th_trace_t structures.\n\n");
1899 mdb_printf("Options:\n"
1900 "\t-n\tdisplay only entries with non-zero th_refcnt\n");
1901 }

1903 static const mdb_dcmd_t dcmds[] = {
1904 { "conn_status", ":",
1905 "display connection structures from ipcl hash tables",
1906 conn_status, conn_status_help },
1907 { "srcid_status", ":",
1908 "display connection structures from ipcl hash tables",
1909 srcid_status },
1910 { "ill", "?[-v] [-P v4 | v6] [-s exclusive-ip-zone-name]",
1911 "display ill_t structures", ill, ill_help },
1912 { "illif", "?[-P v4 | v6]",
1913 "display or filter IP Lower Level InterFace structures", illif,
1914 illif_help },
1915 { "iphdr", ":[-vf]", "display an IPv4 header", iphdr },
1916 { "ip6hdr", ":[-vf]", "display an IPv6 header", ip6hdr },
1917 { "ipif", "?[-v] [-P v4 | v6]", "display ipif structures",
1918 ipif, ipif_help },
1919 { "ire", "?[-v] [-P v4|v6] [-s exclusive-ip-zone-name]",
1920 "display Internet Route Entry structures", ire },
1921 { "nce", "?[-P v4|v6] [-i <interface>]",
1922 "display interface-specific Neighbor Cache structures", nce },
1923 { "ncec", "?[-P v4 | v6]", "display Neighbor Cache Entry structures",
1924 ncec },
1925 { "dce", "?[-P v4|v6] [-s exclusive-ip-zone-name]",
1926 "display Destination Cache Entry structures", dce },
1927 { "squeue", ":[-v]", "print core squeue_t info", squeue,
1928 ip_squeue_help },
1929 { "tcphdr", ":", "display a TCP header", tcphdr },
1930 { "udphdr", ":", "display an UDP header", udphdr },
1931 { "sctphdr", ":", "display an SCTP header", sctphdr },
1932 { "th_trace", "?[-n]", "display th_trace_t structures", th_trace,
1933 th_trace_help },
1934 { NULL }
1935 };

new/usr/src/cmd/mdb/common/modules/ip/ip.c 25

1937 static const mdb_walker_t walkers[] = {
1938 { "conn_status", "walk list of conn_t structures",
1939 ip_stacks_common_walk_init, conn_status_walk_step, NULL },
1940 { "illif", "walk list of ill interface types for all stacks",
1941 ip_stacks_common_walk_init, illif_walk_step, NULL },
1942 { "illif_stack", "walk list of ill interface types",
1943 illif_stack_walk_init, illif_stack_walk_step,
1944 illif_stack_walk_fini },
1945 { "ill", "walk active ill_t structures for all stacks",
1946 ill_walk_init, ill_walk_step, NULL },
1947 { "ipif", "walk list of ipif structures for all stacks",
1948 ipif_walk_init, ipif_walk_step, NULL },
1949 { "ipif_list", "walk the linked list of ipif structures "
1950 "for a given ill",
1951 ip_list_walk_init, ip_list_walk_step,
1952 ip_list_walk_fini, &ipif_walk_arg },
1953 { "srcid", "walk list of srcid_map structures for all stacks",
1954 ip_stacks_common_walk_init, srcid_walk_step, NULL },
1955 { "srcid_list", "walk list of srcid_map structures for a stack",
1956 ip_list_walk_init, ip_list_walk_step, ip_list_walk_fini,
1957 &srcid_walk_arg },
1958 { "ire", "walk active ire_t structures",
1959 ire_walk_init, ire_walk_step, NULL },
1960 { "ire_next", "walk ire_t structures in the ctable",
1961 ire_next_walk_init, ire_next_walk_step, NULL },
1962 { "nce", "walk active nce_t structures",
1963 nce_walk_init, nce_walk_step, NULL },
1964 { "dce", "walk active dce_t structures",
1965 dce_walk_init, dce_walk_step, NULL },
1966 { "dccp_stacks", "walk all the dccp_stack_t",
1967 ns_walk_init, dccp_stacks_walk_step, NULL },
1968 #endif /* ! codereview */
1969 { "ip_stacks", "walk all the ip_stack_t",
1970 ns_walk_init, ip_stacks_walk_step, NULL },
1971 { "tcp_stacks", "walk all the tcp_stack_t",
1972 ns_walk_init, tcp_stacks_walk_step, NULL },
1973 { "sctp_stacks", "walk all the sctp_stack_t",
1974 ns_walk_init, sctp_stacks_walk_step, NULL },
1975 { "udp_stacks", "walk all the udp_stack_t",
1976 ns_walk_init, udp_stacks_walk_step, NULL },
1977 { "th_hash", "walk all the th_hash_t entries",
1978 th_hash_walk_init, th_hash_walk_step, NULL },
1979 { "ncec", "walk list of ncec structures for all stacks",
1980 ip_stacks_common_walk_init, ncec_walk_step, NULL },
1981 { "ncec_stack", "walk list of ncec structures",
1982 ncec_stack_walk_init, ncec_stack_walk_step,
1983 ncec_stack_walk_fini},
1984 { "udp_hash", "walk list of conn_t structures in ips_ipcl_udp_fanout",
1985 ipcl_hash_walk_init, ipcl_hash_walk_step,
1986 ipcl_hash_walk_fini, &udp_hash_arg},
1987 { "conn_hash", "walk list of conn_t structures in ips_ipcl_conn_fanout",
1988 ipcl_hash_walk_init, ipcl_hash_walk_step,
1989 ipcl_hash_walk_fini, &conn_hash_arg},
1990 { "bind_hash", "walk list of conn_t structures in ips_ipcl_bind_fanout",
1991 ipcl_hash_walk_init, ipcl_hash_walk_step,
1992 ipcl_hash_walk_fini, &bind_hash_arg},
1993 { "proto_hash", "walk list of conn_t structures in "
1994 "ips_ipcl_proto_fanout",
1995 ipcl_hash_walk_init, ipcl_hash_walk_step,
1996 ipcl_hash_walk_fini, &proto_hash_arg},
1997 { "proto_v6_hash", "walk list of conn_t structures in "
1998 "ips_ipcl_proto_fanout_v6",
1999 ipcl_hash_walk_init, ipcl_hash_walk_step,
2000 ipcl_hash_walk_fini, &proto_v6_hash_arg},
2001 { "ilb_stacks", "walk all ilb_stack_t",
2002 ns_walk_init, ilb_stacks_walk_step, NULL },

new/usr/src/cmd/mdb/common/modules/ip/ip.c 26

2003 { "ilb_rules", "walk ilb rules in a given ilb_stack_t",
2004 ilb_rules_walk_init, ilb_rules_walk_step, NULL },
2005 { "ilb_servers", "walk server in a given ilb_rule_t",
2006 ilb_servers_walk_init, ilb_servers_walk_step, NULL },
2007 { "ilb_nat_src", "walk NAT source table of a given ilb_stack_t",
2008 ilb_nat_src_walk_init, ilb_nat_src_walk_step,
2009 ilb_common_walk_fini },
2010 { "ilb_conns", "walk NAT table of a given ilb_stack_t",
2011 ilb_conn_walk_init, ilb_conn_walk_step, ilb_common_walk_fini },
2012 { "ilb_stickys", "walk sticky table of a given ilb_stack_t",
2013 ilb_sticky_walk_init, ilb_sticky_walk_step,
2014 ilb_common_walk_fini },
2015 { "tcps_sc", "walk all the per CPU stats counters of a tcp_stack_t",
2016 tcps_sc_walk_init, tcps_sc_walk_step, NULL },
2017 { NULL }
2018 };

2020 static const mdb_qops_t ip_qops = { ip_qinfo, ip_rnext, ip_wnext };
2021 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };

2023 const mdb_modinfo_t *
2024 _mdb_init(void)
2025 {
2026 GElf_Sym sym;

2028 if (mdb_lookup_by_obj("ip", "ipwinit", &sym) == 0)
2029 mdb_qops_install(&ip_qops, (uintptr_t)sym.st_value);

2031 return (&modinfo);
2032 }

2034 void
2035 _mdb_fini(void)
2036 {
2037 GElf_Sym sym;

2039 if (mdb_lookup_by_obj("ip", "ipwinit", &sym) == 0)
2040 mdb_qops_remove(&ip_qops, (uintptr_t)sym.st_value);
2041 }

2043 static char *
2044 ncec_state(int ncec_state)
2045 {
2046 switch (ncec_state) {
2047 case ND_UNCHANGED:
2048 return ("unchanged");
2049 case ND_INCOMPLETE:
2050 return ("incomplete");
2051 case ND_REACHABLE:
2052 return ("reachable");
2053 case ND_STALE:
2054 return ("stale");
2055 case ND_DELAY:
2056 return ("delay");
2057 case ND_PROBE:
2058 return ("probe");
2059 case ND_UNREACHABLE:
2060 return ("unreach");
2061 case ND_INITIAL:
2062 return ("initial");
2063 default:
2064 return ("??");
2065 }
2066 }

2068 static char *

new/usr/src/cmd/mdb/common/modules/ip/ip.c 27

2069 ncec_l2_addr(const ncec_t *ncec, const ill_t *ill)
2070 {
2071 uchar_t *h;
2072 static char addr_buf[L2MAXADDRSTRLEN];

2074 if (ncec->ncec_lladdr == NULL) {
2075 return ("None");
2076 }

2078 if (ill->ill_net_type == IRE_IF_RESOLVER) {

2080 if (ill->ill_phys_addr_length == 0)
2081 return ("None");
2082 h = mdb_zalloc(ill->ill_phys_addr_length, UM_SLEEP);
2083 if (mdb_vread(h, ill->ill_phys_addr_length,
2084 (uintptr_t)ncec->ncec_lladdr) == -1) {
2085 mdb_warn("failed to read hwaddr at %p",
2086 ncec->ncec_lladdr);
2087 return ("Unknown");
2088 }
2089 mdb_mac_addr(h, ill->ill_phys_addr_length,
2090 addr_buf, sizeof (addr_buf));
2091 } else {
2092 return ("None");
2093 }
2094 mdb_free(h, ill->ill_phys_addr_length);
2095 return (addr_buf);
2096 }

2098 static char *
2099 nce_l2_addr(const nce_t *nce, const ill_t *ill)
2100 {
2101 uchar_t *h;
2102 static char addr_buf[L2MAXADDRSTRLEN];
2103 mblk_t mp;
2104 size_t mblen;

2106 if (nce->nce_dlur_mp == NULL)
2107 return ("None");

2109 if (ill->ill_net_type == IRE_IF_RESOLVER) {
2110 if (mdb_vread(&mp, sizeof (mblk_t),
2111 (uintptr_t)nce->nce_dlur_mp) == -1) {
2112 mdb_warn("failed to read nce_dlur_mp at %p",
2113 nce->nce_dlur_mp);
2114 return ("None");
2115 }
2116 if (ill->ill_phys_addr_length == 0)
2117 return ("None");
2118 mblen = mp.b_wptr - mp.b_rptr;
2119 if (mblen > (sizeof (dl_unitdata_req_t) + MAX_SAP_LEN) ||
2120 ill->ill_phys_addr_length > MAX_SAP_LEN ||
2121 (NCE_LL_ADDR_OFFSET(ill) +
2122 ill->ill_phys_addr_length) > mblen) {
2123 return ("Unknown");
2124 }
2125 h = mdb_zalloc(mblen, UM_SLEEP);
2126 if (mdb_vread(h, mblen, (uintptr_t)(mp.b_rptr)) == -1) {
2127 mdb_warn("failed to read hwaddr at %p",
2128 mp.b_rptr + NCE_LL_ADDR_OFFSET(ill));
2129 return ("Unknown");
2130 }
2131 mdb_mac_addr(h + NCE_LL_ADDR_OFFSET(ill),
2132 ill->ill_phys_addr_length, addr_buf, sizeof (addr_buf));
2133 } else {
2134 return ("None");

new/usr/src/cmd/mdb/common/modules/ip/ip.c 28

2135 }
2136 mdb_free(h, mblen);
2137 return (addr_buf);
2138 }

2140 static void
2141 ncec_header(uint_t flags)
2142 {
2143 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {

2145 mdb_printf("%<u>%?s %-20s %-10s %-8s %-5s %s%</u>\n",
2146 "ADDR", "HW_ADDR", "STATE", "FLAGS", "ILL", "IP ADDR");
2147 }
2148 }

2150 int
2151 ncec(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2152 {
2153 ncec_t ncec;
2154 ncec_cbdata_t id;
2155 int ipversion = 0;
2156 const char *opt_P = NULL;

2158 if (mdb_getopts(argc, argv,
2159 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
2160 return (DCMD_USAGE);

2162 if (opt_P != NULL) {
2163 if (strcmp("v4", opt_P) == 0) {
2164 ipversion = IPV4_VERSION;
2165 } else if (strcmp("v6", opt_P) == 0) {
2166 ipversion = IPV6_VERSION;
2167 } else {
2168 mdb_warn("invalid protocol ’%s’\n", opt_P);
2169 return (DCMD_USAGE);
2170 }
2171 }

2173 if (flags & DCMD_ADDRSPEC) {

2175 if (mdb_vread(&ncec, sizeof (ncec_t), addr) == -1) {
2176 mdb_warn("failed to read ncec at %p\n", addr);
2177 return (DCMD_ERR);
2178 }
2179 if (ipversion != 0 && ncec.ncec_ipversion != ipversion) {
2180 mdb_printf("IP Version mismatch\n");
2181 return (DCMD_ERR);
2182 }
2183 ncec_header(flags);
2184 return (ncec_format(addr, &ncec, ipversion));

2186 } else {
2187 id.ncec_addr = addr;
2188 id.ncec_ipversion = ipversion;
2189 ncec_header(flags);
2190 if (mdb_walk("ncec", (mdb_walk_cb_t)ncec_cb, &id) == -1) {
2191 mdb_warn("failed to walk ncec table\n");
2192 return (DCMD_ERR);
2193 }
2194 }
2195 return (DCMD_OK);
2196 }

2198 static int
2199 ncec_format(uintptr_t addr, const ncec_t *ncec, int ipversion)
2200 {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 29

2201 static const mdb_bitmask_t ncec_flags[] = {
2202 { "P", NCE_F_NONUD, NCE_F_NONUD },
2203 { "R", NCE_F_ISROUTER, NCE_F_ISROUTER },
2204 { "N", NCE_F_NONUD, NCE_F_NONUD },
2205 { "A", NCE_F_ANYCAST, NCE_F_ANYCAST },
2206 { "C", NCE_F_CONDEMNED, NCE_F_CONDEMNED },
2207 { "U", NCE_F_UNSOL_ADV, NCE_F_UNSOL_ADV },
2208 { "B", NCE_F_BCAST, NCE_F_BCAST },
2209 { NULL, 0, 0 }
2210 };
2211 #define NCE_MAX_FLAGS (sizeof (ncec_flags) / sizeof (mdb_bitmask_t))
2212 struct in_addr nceaddr;
2213 ill_t ill;
2214 char ill_name[LIFNAMSIZ];
2215 char flagsbuf[NCE_MAX_FLAGS];

2217 if (mdb_vread(&ill, sizeof (ill), (uintptr_t)ncec->ncec_ill) == -1) {
2218 mdb_warn("failed to read ncec_ill at %p",
2219 ncec->ncec_ill);
2220 return (DCMD_ERR);
2221 }

2223 (void) mdb_readstr(ill_name, MIN(LIFNAMSIZ, ill.ill_name_length),
2224 (uintptr_t)ill.ill_name);

2226 mdb_snprintf(flagsbuf, sizeof (flagsbuf), "%hb",
2227 ncec->ncec_flags, ncec_flags);

2229 if (ipversion != 0 && ncec->ncec_ipversion != ipversion)
2230 return (DCMD_OK);

2232 if (ncec->ncec_ipversion == IPV4_VERSION) {
2233 IN6_V4MAPPED_TO_INADDR(&ncec->ncec_addr, &nceaddr);
2234 mdb_printf("%?p %-20s %-10s "
2235 "%-8s "
2236 "%-5s %I\n",
2237 addr, ncec_l2_addr(ncec, &ill),
2238 ncec_state(ncec->ncec_state),
2239 flagsbuf,
2240 ill_name, nceaddr.s_addr);
2241 } else {
2242 mdb_printf("%?p %-20s %-10s %-8s %-5s %N\n",
2243 addr, ncec_l2_addr(ncec, &ill),
2244 ncec_state(ncec->ncec_state),
2245 flagsbuf,
2246 ill_name, &ncec->ncec_addr);
2247 }

2249 return (DCMD_OK);
2250 }

2252 static uintptr_t
2253 ncec_get_next_hash_tbl(uintptr_t start, int *index, struct ndp_g_s ndp)
2254 {
2255 uintptr_t addr = start;
2256 int i = *index;

2258 while (addr == NULL) {

2260 if (++i >= NCE_TABLE_SIZE)
2261 break;
2262 addr = (uintptr_t)ndp.nce_hash_tbl[i];
2263 }
2264 *index = i;
2265 return (addr);
2266 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 30

2268 static int
2269 ncec_walk_step(mdb_walk_state_t *wsp)
2270 {
2271 uintptr_t kaddr4, kaddr6;

2273 kaddr4 = wsp->walk_addr + OFFSETOF(ip_stack_t, ips_ndp4);
2274 kaddr6 = wsp->walk_addr + OFFSETOF(ip_stack_t, ips_ndp6);

2276 if (mdb_vread(&kaddr4, sizeof (kaddr4), kaddr4) == -1) {
2277 mdb_warn("can’t read ips_ip_cache_table at %p", kaddr4);
2278 return (WALK_ERR);
2279 }
2280 if (mdb_vread(&kaddr6, sizeof (kaddr6), kaddr6) == -1) {
2281 mdb_warn("can’t read ips_ip_cache_table at %p", kaddr6);
2282 return (WALK_ERR);
2283 }
2284 if (mdb_pwalk("ncec_stack", wsp->walk_callback, wsp->walk_cbdata,
2285 kaddr4) == -1) {
2286 mdb_warn("couldn’t walk ’ncec_stack’ for ips_ndp4 %p",
2287 kaddr4);
2288 return (WALK_ERR);
2289 }
2290 if (mdb_pwalk("ncec_stack", wsp->walk_callback,
2291 wsp->walk_cbdata, kaddr6) == -1) {
2292 mdb_warn("couldn’t walk ’ncec_stack’ for ips_ndp6 %p",
2293 kaddr6);
2294 return (WALK_ERR);
2295 }
2296 return (WALK_NEXT);
2297 }

2299 static uintptr_t
2300 ipcl_hash_get_next_connf_tbl(ipcl_hash_walk_data_t *iw)
2301 {
2302 struct connf_s connf;
2303 uintptr_t addr = NULL, next;
2304 int index = iw->connf_tbl_index;

2306 do {
2307 next = iw->hash_tbl + index * sizeof (struct connf_s);
2308 if (++index >= iw->hash_tbl_size) {
2309 addr = NULL;
2310 break;
2311 }
2312 if (mdb_vread(&connf, sizeof (struct connf_s), next) == -1) {
2313 mdb_warn("failed to read conn_t at %p", next);
2314 return (NULL);
2315 }
2316 addr = (uintptr_t)connf.connf_head;
2317 } while (addr == NULL);
2318 iw->connf_tbl_index = index;
2319 return (addr);
2320 }

2322 static int
2323 ipcl_hash_walk_init(mdb_walk_state_t *wsp)
2324 {
2325 const hash_walk_arg_t *arg = wsp->walk_arg;
2326 ipcl_hash_walk_data_t *iw;
2327 uintptr_t tbladdr;
2328 uintptr_t sizeaddr;

2330 iw = mdb_alloc(sizeof (ipcl_hash_walk_data_t), UM_SLEEP);
2331 iw->conn = mdb_alloc(sizeof (conn_t), UM_SLEEP);
2332 tbladdr = wsp->walk_addr + arg->tbl_off;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 31

2333 sizeaddr = wsp->walk_addr + arg->size_off;

2335 if (mdb_vread(&iw->hash_tbl, sizeof (uintptr_t), tbladdr) == -1) {
2336 mdb_warn("can’t read fanout table addr at %p", tbladdr);
2337 mdb_free(iw->conn, sizeof (conn_t));
2338 mdb_free(iw, sizeof (ipcl_hash_walk_data_t));
2339 return (WALK_ERR);
2340 }
2341 if (arg->tbl_off == OFFSETOF(ip_stack_t, ips_ipcl_proto_fanout_v4) ||
2342 arg->tbl_off == OFFSETOF(ip_stack_t, ips_ipcl_proto_fanout_v6)) {
2343 iw->hash_tbl_size = IPPROTO_MAX;
2344 } else {
2345 if (mdb_vread(&iw->hash_tbl_size, sizeof (int),
2346 sizeaddr) == -1) {
2347 mdb_warn("can’t read fanout table size addr at %p",
2348 sizeaddr);
2349 mdb_free(iw->conn, sizeof (conn_t));
2350 mdb_free(iw, sizeof (ipcl_hash_walk_data_t));
2351 return (WALK_ERR);
2352 }
2353 }
2354 iw->connf_tbl_index = 0;
2355 wsp->walk_addr = ipcl_hash_get_next_connf_tbl(iw);
2356 wsp->walk_data = iw;

2358 if (wsp->walk_addr != NULL)
2359 return (WALK_NEXT);
2360 else
2361 return (WALK_DONE);
2362 }

2364 static int
2365 ipcl_hash_walk_step(mdb_walk_state_t *wsp)
2366 {
2367 uintptr_t addr = wsp->walk_addr;
2368 ipcl_hash_walk_data_t *iw = wsp->walk_data;
2369 conn_t *conn = iw->conn;
2370 int ret = WALK_DONE;

2372 while (addr != NULL) {
2373 if (mdb_vread(conn, sizeof (conn_t), addr) == -1) {
2374 mdb_warn("failed to read conn_t at %p", addr);
2375 return (WALK_ERR);
2376 }
2377 ret = wsp->walk_callback(addr, iw, wsp->walk_cbdata);
2378 if (ret != WALK_NEXT)
2379 break;
2380 addr = (uintptr_t)conn->conn_next;
2381 }
2382 if (ret == WALK_NEXT) {
2383 wsp->walk_addr = ipcl_hash_get_next_connf_tbl(iw);

2385 if (wsp->walk_addr != NULL)
2386 return (WALK_NEXT);
2387 else
2388 return (WALK_DONE);
2389 }

2391 return (ret);
2392 }

2394 static void
2395 ipcl_hash_walk_fini(mdb_walk_state_t *wsp)
2396 {
2397 ipcl_hash_walk_data_t *iw = wsp->walk_data;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 32

2399 mdb_free(iw->conn, sizeof (conn_t));
2400 mdb_free(iw, sizeof (ipcl_hash_walk_data_t));
2401 }

2403 /*
2404 * Called with walk_addr being the address of ips_ndp{4,6}
2405 */
2406 static int
2407 ncec_stack_walk_init(mdb_walk_state_t *wsp)
2408 {
2409 ncec_walk_data_t *nw;

2411 if (wsp->walk_addr == NULL) {
2412 mdb_warn("ncec_stack requires ndp_g_s address\n");
2413 return (WALK_ERR);
2414 }

2416 nw = mdb_alloc(sizeof (ncec_walk_data_t), UM_SLEEP);

2418 if (mdb_vread(&nw->ncec_ip_ndp, sizeof (struct ndp_g_s),
2419 wsp->walk_addr) == -1) {
2420 mdb_warn("failed to read ’ip_ndp’ at %p",
2421 wsp->walk_addr);
2422 mdb_free(nw, sizeof (ncec_walk_data_t));
2423 return (WALK_ERR);
2424 }

2426 /*
2427 * ncec_get_next_hash_tbl() starts at ++i , so initialize index to -1
2428 */
2429 nw->ncec_hash_tbl_index = -1;
2430 wsp->walk_addr = ncec_get_next_hash_tbl(NULL,
2431 &nw->ncec_hash_tbl_index, nw->ncec_ip_ndp);
2432 wsp->walk_data = nw;

2434 return (WALK_NEXT);
2435 }

2437 static int
2438 ncec_stack_walk_step(mdb_walk_state_t *wsp)
2439 {
2440 uintptr_t addr = wsp->walk_addr;
2441 ncec_walk_data_t *nw = wsp->walk_data;

2443 if (addr == NULL)
2444 return (WALK_DONE);

2446 if (mdb_vread(&nw->ncec, sizeof (ncec_t), addr) == -1) {
2447 mdb_warn("failed to read ncec_t at %p", addr);
2448 return (WALK_ERR);
2449 }

2451 wsp->walk_addr = (uintptr_t)nw->ncec.ncec_next;

2453 wsp->walk_addr = ncec_get_next_hash_tbl(wsp->walk_addr,
2454 &nw->ncec_hash_tbl_index, nw->ncec_ip_ndp);

2456 return (wsp->walk_callback(addr, nw, wsp->walk_cbdata));
2457 }

2459 static void
2460 ncec_stack_walk_fini(mdb_walk_state_t *wsp)
2461 {
2462 mdb_free(wsp->walk_data, sizeof (ncec_walk_data_t));
2463 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 33

2465 /* ARGSUSED */
2466 static int
2467 ncec_cb(uintptr_t addr, const ncec_walk_data_t *iw, ncec_cbdata_t *id)
2468 {
2469 ncec_t ncec;

2471 if (mdb_vread(&ncec, sizeof (ncec_t), addr) == -1) {
2472 mdb_warn("failed to read ncec at %p", addr);
2473 return (WALK_NEXT);
2474 }
2475 (void) ncec_format(addr, &ncec, id->ncec_ipversion);
2476 return (WALK_NEXT);
2477 }

2479 static int
2480 ill_walk_init(mdb_walk_state_t *wsp)
2481 {
2482 if (mdb_layered_walk("illif", wsp) == -1) {
2483 mdb_warn("can’t walk ’illif’");
2484 return (WALK_ERR);
2485 }
2486 return (WALK_NEXT);
2487 }

2489 static int
2490 ill_walk_step(mdb_walk_state_t *wsp)
2491 {
2492 ill_if_t ill_if;

2494 if (mdb_vread(&ill_if, sizeof (ill_if_t), wsp->walk_addr) == -1) {
2495 mdb_warn("can’t read ill_if_t at %p", wsp->walk_addr);
2496 return (WALK_ERR);
2497 }
2498 wsp->walk_addr = (uintptr_t)(wsp->walk_addr +
2499 offsetof(ill_if_t, illif_avl_by_ppa));
2500 if (mdb_pwalk("avl", wsp->walk_callback, wsp->walk_cbdata,
2501 wsp->walk_addr) == -1) {
2502 mdb_warn("can’t walk ’avl’");
2503 return (WALK_ERR);
2504 }

2506 return (WALK_NEXT);
2507 }

2509 /* ARGSUSED */
2510 static int
2511 ill_cb(uintptr_t addr, const ill_walk_data_t *iw, ill_cbdata_t *id)
2512 {
2513 ill_t ill;

2515 if (mdb_vread(&ill, sizeof (ill_t), (uintptr_t)addr) == -1) {
2516 mdb_warn("failed to read ill at %p", addr);
2517 return (WALK_NEXT);
2518 }

2520 /* If ip_stack_t is specified, skip ILLs that don’t belong to it. */
2521 if (id->ill_ipst != NULL && ill.ill_ipst != id->ill_ipst)
2522 return (WALK_NEXT);

2524 return (ill_format((uintptr_t)addr, &ill, id));
2525 }

2527 static void
2528 ill_header(boolean_t verbose)
2529 {
2530 if (verbose) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 34

2531 mdb_printf("%-?s %-8s %3s %-10s %-?s %-?s %-10s%</u>\n",
2532 "ADDR", "NAME", "VER", "TYPE", "WQ", "IPST", "FLAGS");
2533 mdb_printf("%-?s %4s%4s %-?s\n",
2534 "PHYINT", "CNT", "", "GROUP");
2535 mdb_printf("%<u>%80s%</u>\n", "");
2536 } else {
2537 mdb_printf("%<u>%-?s %-8s %-3s %-10s %4s %-?s %-10s%</u>\n",
2538 "ADDR", "NAME", "VER", "TYPE", "CNT", "WQ", "FLAGS");
2539 }
2540 }

2542 static int
2543 ill_format(uintptr_t addr, const void *illptr, void *ill_cb_arg)
2544 {
2545 ill_t *ill = (ill_t *)illptr;
2546 ill_cbdata_t *illcb = ill_cb_arg;
2547 boolean_t verbose = illcb->verbose;
2548 phyint_t phyi;
2549 static const mdb_bitmask_t fmasks[] = {
2550 { "R", PHYI_RUNNING, PHYI_RUNNING },
2551 { "P", PHYI_PROMISC, PHYI_PROMISC },
2552 { "V", PHYI_VIRTUAL, PHYI_VIRTUAL },
2553 { "I", PHYI_IPMP, PHYI_IPMP },
2554 { "f", PHYI_FAILED, PHYI_FAILED },
2555 { "S", PHYI_STANDBY, PHYI_STANDBY },
2556 { "i", PHYI_INACTIVE, PHYI_INACTIVE },
2557 { "O", PHYI_OFFLINE, PHYI_OFFLINE },
2558 { "T", ILLF_NOTRAILERS, ILLF_NOTRAILERS },
2559 { "A", ILLF_NOARP, ILLF_NOARP },
2560 { "M", ILLF_MULTICAST, ILLF_MULTICAST },
2561 { "F", ILLF_ROUTER, ILLF_ROUTER },
2562 { "D", ILLF_NONUD, ILLF_NONUD },
2563 { "X", ILLF_NORTEXCH, ILLF_NORTEXCH },
2564 { NULL, 0, 0 }
2565 };
2566 static const mdb_bitmask_t v_fmasks[] = {
2567 { "RUNNING", PHYI_RUNNING, PHYI_RUNNING },
2568 { "PROMISC", PHYI_PROMISC, PHYI_PROMISC },
2569 { "VIRTUAL", PHYI_VIRTUAL, PHYI_VIRTUAL },
2570 { "IPMP", PHYI_IPMP, PHYI_IPMP },
2571 { "FAILED", PHYI_FAILED, PHYI_FAILED },
2572 { "STANDBY", PHYI_STANDBY, PHYI_STANDBY },
2573 { "INACTIVE", PHYI_INACTIVE, PHYI_INACTIVE },
2574 { "OFFLINE", PHYI_OFFLINE, PHYI_OFFLINE },
2575 { "NOTRAILER", ILLF_NOTRAILERS, ILLF_NOTRAILERS },
2576 { "NOARP", ILLF_NOARP, ILLF_NOARP },
2577 { "MULTICAST", ILLF_MULTICAST, ILLF_MULTICAST },
2578 { "ROUTER", ILLF_ROUTER, ILLF_ROUTER },
2579 { "NONUD", ILLF_NONUD, ILLF_NONUD },
2580 { "NORTEXCH", ILLF_NORTEXCH, ILLF_NORTEXCH },
2581 { NULL, 0, 0 }
2582 };
2583 char ill_name[LIFNAMSIZ];
2584 int cnt;
2585 char *typebuf;
2586 char sbuf[DEFCOLS];
2587 int ipver = illcb->ill_ipversion;

2589 if (ipver != 0) {
2590 if ((ipver == IPV4_VERSION && ill->ill_isv6) ||
2591 (ipver == IPV6_VERSION && !ill->ill_isv6)) {
2592 return (WALK_NEXT);
2593 }
2594 }
2595 if (mdb_vread(&phyi, sizeof (phyint_t),
2596 (uintptr_t)ill->ill_phyint) == -1) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 35

2597 mdb_warn("failed to read ill_phyint at %p",
2598 (uintptr_t)ill->ill_phyint);
2599 return (WALK_NEXT);
2600 }
2601 (void) mdb_readstr(ill_name, MIN(LIFNAMSIZ, ill->ill_name_length),
2602 (uintptr_t)ill->ill_name);

2604 switch (ill->ill_type) {
2605 case 0:
2606 typebuf = "LOOPBACK";
2607 break;
2608 case IFT_ETHER:
2609 typebuf = "ETHER";
2610 break;
2611 case IFT_OTHER:
2612 typebuf = "OTHER";
2613 break;
2614 default:
2615 typebuf = NULL;
2616 break;
2617 }
2618 cnt = ill->ill_refcnt + ill->ill_ire_cnt + ill->ill_nce_cnt +
2619 ill->ill_ilm_cnt + ill->ill_ncec_cnt;
2620 mdb_printf("%-?p %-8s %-3s ",
2621 addr, ill_name, ill->ill_isv6 ? "v6" : "v4");
2622 if (typebuf != NULL)
2623 mdb_printf("%-10s ", typebuf);
2624 else
2625 mdb_printf("%-10x ", ill->ill_type);
2626 if (verbose) {
2627 mdb_printf("%-?p %-?p %-llb\n",
2628 ill->ill_wq, ill->ill_ipst,
2629 ill->ill_flags | phyi.phyint_flags, v_fmasks);
2630 mdb_printf("%-?p %4d%4s %-?p\n",
2631 ill->ill_phyint, cnt, "", ill->ill_grp);
2632 mdb_snprintf(sbuf, sizeof (sbuf), "%*s %3s",
2633 sizeof (uintptr_t) * 2, "", "");
2634 mdb_printf("%s|\n%s+--> %3d %-18s "
2635 "references from active threads\n",
2636 sbuf, sbuf, ill->ill_refcnt, "ill_refcnt");
2637 mdb_printf("%*s %7d %-18s ires referencing this ill\n",
2638 strlen(sbuf), "", ill->ill_ire_cnt, "ill_ire_cnt");
2639 mdb_printf("%*s %7d %-18s nces referencing this ill\n",
2640 strlen(sbuf), "", ill->ill_nce_cnt, "ill_nce_cnt");
2641 mdb_printf("%*s %7d %-18s ncecs referencing this ill\n",
2642 strlen(sbuf), "", ill->ill_ncec_cnt, "ill_ncec_cnt");
2643 mdb_printf("%*s %7d %-18s ilms referencing this ill\n",
2644 strlen(sbuf), "", ill->ill_ilm_cnt, "ill_ilm_cnt");
2645 } else {
2646 mdb_printf("%4d %-?p %-llb\n",
2647 cnt, ill->ill_wq,
2648 ill->ill_flags | phyi.phyint_flags, fmasks);
2649 }
2650 return (WALK_NEXT);
2651 }

2653 static int
2654 ill(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2655 {
2656 ill_t ill_data;
2657 ill_cbdata_t id;
2658 int ipversion = 0;
2659 const char *zone_name = NULL;
2660 const char *opt_P = NULL;
2661 uint_t verbose = FALSE;
2662 ip_stack_t *ipst = NULL;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 36

2664 if (mdb_getopts(argc, argv,
2665 ’v’, MDB_OPT_SETBITS, TRUE, &verbose,
2666 ’s’, MDB_OPT_STR, &zone_name,
2667 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
2668 return (DCMD_USAGE);

2670 /* Follow the specified zone name to find a ip_stack_t*. */
2671 if (zone_name != NULL) {
2672 ipst = zone_to_ips(zone_name);
2673 if (ipst == NULL)
2674 return (DCMD_USAGE);
2675 }

2677 if (opt_P != NULL) {
2678 if (strcmp("v4", opt_P) == 0) {
2679 ipversion = IPV4_VERSION;
2680 } else if (strcmp("v6", opt_P) == 0) {
2681 ipversion = IPV6_VERSION;
2682 } else {
2683 mdb_warn("invalid protocol ’%s’\n", opt_P);
2684 return (DCMD_USAGE);
2685 }
2686 }

2688 id.verbose = verbose;
2689 id.ill_addr = addr;
2690 id.ill_ipversion = ipversion;
2691 id.ill_ipst = ipst;

2693 ill_header(verbose);
2694 if (flags & DCMD_ADDRSPEC) {
2695 if (mdb_vread(&ill_data, sizeof (ill_t), addr) == -1) {
2696 mdb_warn("failed to read ill at %p\n", addr);
2697 return (DCMD_ERR);
2698 }
2699 (void) ill_format(addr, &ill_data, &id);
2700 } else {
2701 if (mdb_walk("ill", (mdb_walk_cb_t)ill_cb, &id) == -1) {
2702 mdb_warn("failed to walk ills\n");
2703 return (DCMD_ERR);
2704 }
2705 }
2706 return (DCMD_OK);
2707 }

2709 static void
2710 ill_help(void)
2711 {
2712 mdb_printf("Prints the following fields: ill ptr, name, "
2713 "IP version, count, ill type and ill flags.\n"
2714 "The count field is a sum of individual refcnts and is expanded "
2715 "with the -v option.\n\n");
2716 mdb_printf("Options:\n");
2717 mdb_printf("\t-P v4 | v6"
2718 "\tfilter ill structures for the specified protocol\n");
2719 }

2721 static int
2722 ip_list_walk_init(mdb_walk_state_t *wsp)
2723 {
2724 const ip_list_walk_arg_t *arg = wsp->walk_arg;
2725 ip_list_walk_data_t *iw;
2726 uintptr_t addr = (uintptr_t)(wsp->walk_addr + arg->off);

2728 if (wsp->walk_addr == NULL) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 37

2729 mdb_warn("only local walks supported\n");
2730 return (WALK_ERR);
2731 }
2732 if (mdb_vread(&wsp->walk_addr, sizeof (uintptr_t),
2733 addr) == -1) {
2734 mdb_warn("failed to read list head at %p", addr);
2735 return (WALK_ERR);
2736 }
2737 iw = mdb_alloc(sizeof (ip_list_walk_data_t), UM_SLEEP);
2738 iw->nextoff = arg->nextp_off;
2739 wsp->walk_data = iw;

2741 return (WALK_NEXT);
2742 }

2744 static int
2745 ip_list_walk_step(mdb_walk_state_t *wsp)
2746 {
2747 ip_list_walk_data_t *iw = wsp->walk_data;
2748 uintptr_t addr = wsp->walk_addr;

2750 if (addr == NULL)
2751 return (WALK_DONE);
2752 wsp->walk_addr = addr + iw->nextoff;
2753 if (mdb_vread(&wsp->walk_addr, sizeof (uintptr_t),
2754 wsp->walk_addr) == -1) {
2755 mdb_warn("failed to read list node at %p", addr);
2756 return (WALK_ERR);
2757 }
2758 return (wsp->walk_callback(addr, iw, wsp->walk_cbdata));
2759 }

2761 static void
2762 ip_list_walk_fini(mdb_walk_state_t *wsp)
2763 {
2764 mdb_free(wsp->walk_data, sizeof (ip_list_walk_data_t));
2765 }

2767 static int
2768 ipif_walk_init(mdb_walk_state_t *wsp)
2769 {
2770 if (mdb_layered_walk("ill", wsp) == -1) {
2771 mdb_warn("can’t walk ’ills’");
2772 return (WALK_ERR);
2773 }
2774 return (WALK_NEXT);
2775 }

2777 static int
2778 ipif_walk_step(mdb_walk_state_t *wsp)
2779 {
2780 if (mdb_pwalk("ipif_list", wsp->walk_callback, wsp->walk_cbdata,
2781 wsp->walk_addr) == -1) {
2782 mdb_warn("can’t walk ’ipif_list’");
2783 return (WALK_ERR);
2784 }

2786 return (WALK_NEXT);
2787 }

2789 /* ARGSUSED */
2790 static int
2791 ipif_cb(uintptr_t addr, const ipif_walk_data_t *iw, ipif_cbdata_t *id)
2792 {
2793 ipif_t ipif;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 38

2795 if (mdb_vread(&ipif, sizeof (ipif_t), (uintptr_t)addr) == -1) {
2796 mdb_warn("failed to read ipif at %p", addr);
2797 return (WALK_NEXT);
2798 }
2799 if (mdb_vread(&id->ill, sizeof (ill_t),
2800 (uintptr_t)ipif.ipif_ill) == -1) {
2801 mdb_warn("failed to read ill at %p", ipif.ipif_ill);
2802 return (WALK_NEXT);
2803 }
2804 (void) ipif_format((uintptr_t)addr, &ipif, id);
2805 return (WALK_NEXT);
2806 }

2808 static void
2809 ipif_header(boolean_t verbose)
2810 {
2811 if (verbose) {
2812 mdb_printf("%-?s %-10s %-3s %-?s %-8s %-30s\n",
2813 "ADDR", "NAME", "CNT", "ILL", "STFLAGS", "FLAGS");
2814 mdb_printf("%s\n%s\n",
2815 "LCLADDR", "BROADCAST");
2816 mdb_printf("%<u>%80s%</u>\n", "");
2817 } else {
2818 mdb_printf("%-?s %-10s %6s %-?s %-8s %-30s\n",
2819 "ADDR", "NAME", "CNT", "ILL", "STFLAGS", "FLAGS");
2820 mdb_printf("%s\n%<u>%80s%</u>\n", "LCLADDR", "");
2821 }
2822 }

2824 #ifdef _BIG_ENDIAN
2825 #define ip_ntohl_32(x) ((x) & 0xffffffff)
2826 #else
2827 #define ip_ntohl_32(x) (((uint32_t)(x) << 24) | \
2828 (((uint32_t)(x) << 8) & 0xff0000) | \
2829 (((uint32_t)(x) >> 8) & 0xff00) | \
2830 ((uint32_t)(x) >> 24))
2831 #endif

2833 int
2834 mask_to_prefixlen(int af, const in6_addr_t *addr)
2835 {
2836 int len = 0;
2837 int i;
2838 uint_t mask = 0;

2840 if (af == AF_INET6) {
2841 for (i = 0; i < 4; i++) {
2842 if (addr->s6_addr32[i] == 0xffffffff) {
2843 len += 32;
2844 } else {
2845 mask = addr->s6_addr32[i];
2846 break;
2847 }
2848 }
2849 } else {
2850 mask = V4_PART_OF_V6((*addr));
2851 }
2852 if (mask > 0)
2853 len += (33 - mdb_ffs(ip_ntohl_32(mask)));
2854 return (len);
2855 }

2857 static int
2858 ipif_format(uintptr_t addr, const void *ipifptr, void *ipif_cb_arg)
2859 {
2860 const ipif_t *ipif = ipifptr;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 39

2861 ipif_cbdata_t *ipifcb = ipif_cb_arg;
2862 boolean_t verbose = ipifcb->verbose;
2863 char ill_name[LIFNAMSIZ];
2864 char buf[LIFNAMSIZ];
2865 int cnt;
2866 static const mdb_bitmask_t sfmasks[] = {
2867 { "CO", IPIF_CONDEMNED, IPIF_CONDEMNED},
2868 { "CH", IPIF_CHANGING, IPIF_CHANGING},
2869 { "SL", IPIF_SET_LINKLOCAL, IPIF_SET_LINKLOCAL},
2870 { NULL, 0, 0 }
2871 };
2872 static const mdb_bitmask_t fmasks[] = {
2873 { "UP", IPIF_UP, IPIF_UP },
2874 { "UNN", IPIF_UNNUMBERED, IPIF_UNNUMBERED},
2875 { "DHCP", IPIF_DHCPRUNNING, IPIF_DHCPRUNNING},
2876 { "PRIV", IPIF_PRIVATE, IPIF_PRIVATE},
2877 { "NOXMT", IPIF_NOXMIT, IPIF_NOXMIT},
2878 { "NOLCL", IPIF_NOLOCAL, IPIF_NOLOCAL},
2879 { "DEPR", IPIF_DEPRECATED, IPIF_DEPRECATED},
2880 { "PREF", IPIF_PREFERRED, IPIF_PREFERRED},
2881 { "TEMP", IPIF_TEMPORARY, IPIF_TEMPORARY},
2882 { "ACONF", IPIF_ADDRCONF, IPIF_ADDRCONF},
2883 { "ANY", IPIF_ANYCAST, IPIF_ANYCAST},
2884 { "NFAIL", IPIF_NOFAILOVER, IPIF_NOFAILOVER},
2885 { NULL, 0, 0 }
2886 };
2887 char flagsbuf[2 * A_CNT(fmasks)];
2888 char bitfields[A_CNT(fmasks)];
2889 char sflagsbuf[A_CNT(sfmasks)];
2890 char sbuf[DEFCOLS], addrstr[INET6_ADDRSTRLEN];
2891 int ipver = ipifcb->ipif_ipversion;
2892 int af;

2894 if (ipver != 0) {
2895 if ((ipver == IPV4_VERSION && ipifcb->ill.ill_isv6) ||
2896 (ipver == IPV6_VERSION && !ipifcb->ill.ill_isv6)) {
2897 return (WALK_NEXT);
2898 }
2899 }
2900 if ((mdb_readstr(ill_name, MIN(LIFNAMSIZ,
2901 ipifcb->ill.ill_name_length),
2902 (uintptr_t)ipifcb->ill.ill_name)) == -1) {
2903 mdb_warn("failed to read ill_name of ill %p\n", ipifcb->ill);
2904 return (WALK_NEXT);
2905 }
2906 if (ipif->ipif_id != 0) {
2907 mdb_snprintf(buf, LIFNAMSIZ, "%s:%d",
2908 ill_name, ipif->ipif_id);
2909 } else {
2910 mdb_snprintf(buf, LIFNAMSIZ, "%s", ill_name);
2911 }
2912 mdb_snprintf(bitfields, sizeof (bitfields), "%s",
2913 ipif->ipif_addr_ready ? ",ADR" : "",
2914 ipif->ipif_was_up ? ",WU" : "",
2915 ipif->ipif_was_dup ? ",WD" : "");
2916 mdb_snprintf(flagsbuf, sizeof (flagsbuf), "%llb%s",
2917 ipif->ipif_flags, fmasks, bitfields);
2918 mdb_snprintf(sflagsbuf, sizeof (sflagsbuf), "%b",
2919 ipif->ipif_state_flags, sfmasks);

2921 cnt = ipif->ipif_refcnt;

2923 if (ipifcb->ill.ill_isv6) {
2924 mdb_snprintf(addrstr, sizeof (addrstr), "%N",
2925 &ipif->ipif_v6lcl_addr);
2926 af = AF_INET6;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 40

2927 } else {
2928 mdb_snprintf(addrstr, sizeof (addrstr), "%I",
2929 V4_PART_OF_V6((ipif->ipif_v6lcl_addr)));
2930 af = AF_INET;
2931 }

2933 if (verbose) {
2934 mdb_printf("%-?p %-10s %3d %-?p %-8s %-30s\n",
2935 addr, buf, cnt, ipif->ipif_ill,
2936 sflagsbuf, flagsbuf);
2937 mdb_snprintf(sbuf, sizeof (sbuf), "%*s %12s",
2938 sizeof (uintptr_t) * 2, "", "");
2939 mdb_printf("%s |\n%s +---> %4d %-15s "
2940 "Active consistent reader cnt\n",
2941 sbuf, sbuf, ipif->ipif_refcnt, "ipif_refcnt");
2942 mdb_printf("%-s/%d\n",
2943 addrstr, mask_to_prefixlen(af, &ipif->ipif_v6net_mask));
2944 if (ipifcb->ill.ill_isv6) {
2945 mdb_printf("%-N\n", &ipif->ipif_v6brd_addr);
2946 } else {
2947 mdb_printf("%-I\n",
2948 V4_PART_OF_V6((ipif->ipif_v6brd_addr)));
2949 }
2950 } else {
2951 mdb_printf("%-?p %-10s %6d %-?p %-8s %-30s\n",
2952 addr, buf, cnt, ipif->ipif_ill,
2953 sflagsbuf, flagsbuf);
2954 mdb_printf("%-s/%d\n",
2955 addrstr, mask_to_prefixlen(af, &ipif->ipif_v6net_mask));
2956 }

2958 return (WALK_NEXT);
2959 }

2961 static int
2962 ipif(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2963 {
2964 ipif_t ipif;
2965 ipif_cbdata_t id;
2966 int ipversion = 0;
2967 const char *opt_P = NULL;
2968 uint_t verbose = FALSE;

2970 if (mdb_getopts(argc, argv,
2971 ’v’, MDB_OPT_SETBITS, TRUE, &verbose,
2972 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
2973 return (DCMD_USAGE);

2975 if (opt_P != NULL) {
2976 if (strcmp("v4", opt_P) == 0) {
2977 ipversion = IPV4_VERSION;
2978 } else if (strcmp("v6", opt_P) == 0) {
2979 ipversion = IPV6_VERSION;
2980 } else {
2981 mdb_warn("invalid protocol ’%s’\n", opt_P);
2982 return (DCMD_USAGE);
2983 }
2984 }

2986 id.verbose = verbose;
2987 id.ipif_ipversion = ipversion;

2989 if (flags & DCMD_ADDRSPEC) {
2990 if (mdb_vread(&ipif, sizeof (ipif_t), addr) == -1) {
2991 mdb_warn("failed to read ipif at %p\n", addr);
2992 return (DCMD_ERR);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 41

2993 }
2994 ipif_header(verbose);
2995 if (mdb_vread(&id.ill, sizeof (ill_t),
2996 (uintptr_t)ipif.ipif_ill) == -1) {
2997 mdb_warn("failed to read ill at %p", ipif.ipif_ill);
2998 return (WALK_NEXT);
2999 }
3000 return (ipif_format(addr, &ipif, &id));
3001 } else {
3002 ipif_header(verbose);
3003 if (mdb_walk("ipif", (mdb_walk_cb_t)ipif_cb, &id) == -1) {
3004 mdb_warn("failed to walk ipifs\n");
3005 return (DCMD_ERR);
3006 }
3007 }
3008 return (DCMD_OK);
3009 }

3011 static void
3012 ipif_help(void)
3013 {
3014 mdb_printf("Prints the following fields: ipif ptr, name, "
3015 "count, ill ptr, state flags and ipif flags.\n"
3016 "The count field is a sum of individual refcnts and is expanded "
3017 "with the -v option.\n"
3018 "The flags field shows the following:"
3019 "\n\tUNN -> UNNUMBERED, DHCP -> DHCPRUNNING, PRIV -> PRIVATE, "
3020 "\n\tNOXMT -> NOXMIT, NOLCL -> NOLOCAL, DEPR -> DEPRECATED, "
3021 "\n\tPREF -> PREFERRED, TEMP -> TEMPORARY, ACONF -> ADDRCONF, "
3022 "\n\tANY -> ANYCAST, NFAIL -> NOFAILOVER, "
3023 "\n\tADR -> ipif_addr_ready, MU -> ipif_multicast_up, "
3024 "\n\tWU -> ipif_was_up, WD -> ipif_was_dup, "
3025 "JA -> ipif_joined_allhosts.\n\n");
3026 mdb_printf("Options:\n");
3027 mdb_printf("\t-P v4 | v6"
3028 "\tfilter ipif structures on ills for the specified protocol\n");
3029 }

3031 static int
3032 conn_status_walk_fanout(uintptr_t addr, mdb_walk_state_t *wsp,
3033 const char *walkname)
3034 {
3035 if (mdb_pwalk(walkname, wsp->walk_callback, wsp->walk_cbdata,
3036 addr) == -1) {
3037 mdb_warn("couldn’t walk ’%s’ at %p", walkname, addr);
3038 return (WALK_ERR);
3039 }
3040 return (WALK_NEXT);
3041 }

3043 static int
3044 conn_status_walk_step(mdb_walk_state_t *wsp)
3045 {
3046 uintptr_t addr = wsp->walk_addr;

3048 (void) conn_status_walk_fanout(addr, wsp, "udp_hash");
3049 (void) conn_status_walk_fanout(addr, wsp, "conn_hash");
3050 (void) conn_status_walk_fanout(addr, wsp, "bind_hash");
3051 (void) conn_status_walk_fanout(addr, wsp, "proto_hash");
3052 (void) conn_status_walk_fanout(addr, wsp, "proto_v6_hash");
3053 return (WALK_NEXT);
3054 }

3056 /* ARGSUSED */
3057 static int
3058 conn_status_cb(uintptr_t addr, const void *walk_data,

new/usr/src/cmd/mdb/common/modules/ip/ip.c 42

3059 void *private)
3060 {
3061 netstack_t nss;
3062 char src_addrstr[INET6_ADDRSTRLEN];
3063 char rem_addrstr[INET6_ADDRSTRLEN];
3064 const ipcl_hash_walk_data_t *iw = walk_data;
3065 conn_t *conn = iw->conn;

3067 if (mdb_vread(conn, sizeof (conn_t), addr) == -1) {
3068 mdb_warn("failed to read conn_t at %p", addr);
3069 return (WALK_ERR);
3070 }
3071 if (mdb_vread(&nss, sizeof (nss),
3072 (uintptr_t)conn->conn_netstack) == -1) {
3073 mdb_warn("failed to read netstack_t %p",
3074 conn->conn_netstack);
3075 return (WALK_ERR);
3076 }
3077 mdb_printf("%-?p %-?p %?d %?d\n", addr, conn->conn_wq,
3078 nss.netstack_stackid, conn->conn_zoneid);

3080 if (conn->conn_family == AF_INET6) {
3081 mdb_snprintf(src_addrstr, sizeof (rem_addrstr), "%N",
3082 &conn->conn_laddr_v6);
3083 mdb_snprintf(rem_addrstr, sizeof (rem_addrstr), "%N",
3084 &conn->conn_faddr_v6);
3085 } else {
3086 mdb_snprintf(src_addrstr, sizeof (src_addrstr), "%I",
3087 V4_PART_OF_V6((conn->conn_laddr_v6)));
3088 mdb_snprintf(rem_addrstr, sizeof (rem_addrstr), "%I",
3089 V4_PART_OF_V6((conn->conn_faddr_v6)));
3090 }
3091 mdb_printf("%s:%-5d\n%s:%-5d\n",
3092 src_addrstr, conn->conn_lport, rem_addrstr, conn->conn_fport);
3093 return (WALK_NEXT);
3094 }

3096 static void
3097 conn_header(void)
3098 {
3099 mdb_printf("%-?s %-?s %?s %?s\n%s\n%s\n",
3100 "ADDR", "WQ", "STACK", "ZONE", "SRC:PORT", "DEST:PORT");
3101 mdb_printf("%<u>%80s%</u>\n", "");
3102 }

3104 /*ARGSUSED*/
3105 static int
3106 conn_status(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3107 {
3108 conn_header();
3109 if (flags & DCMD_ADDRSPEC) {
3110 (void) conn_status_cb(addr, NULL, NULL);
3111 } else {
3112 if (mdb_walk("conn_status", (mdb_walk_cb_t)conn_status_cb,
3113 NULL) == -1) {
3114 mdb_warn("failed to walk conn_fanout");
3115 return (DCMD_ERR);
3116 }
3117 }
3118 return (DCMD_OK);
3119 }

3121 static void
3122 conn_status_help(void)
3123 {
3124 mdb_printf("Prints conn_t structures from the following hash tables: "

new/usr/src/cmd/mdb/common/modules/ip/ip.c 43

3125 "\n\tips_ipcl_udp_fanout\n\tips_ipcl_bind_fanout"
3126 "\n\tips_ipcl_conn_fanout\n\tips_ipcl_proto_fanout_v4"
3127 "\n\tips_ipcl_proto_fanout_v6\n");
3128 }

3130 static int
3131 srcid_walk_step(mdb_walk_state_t *wsp)
3132 {
3133 if (mdb_pwalk("srcid_list", wsp->walk_callback, wsp->walk_cbdata,
3134 wsp->walk_addr) == -1) {
3135 mdb_warn("can’t walk ’srcid_list’");
3136 return (WALK_ERR);
3137 }
3138 return (WALK_NEXT);
3139 }

3141 /* ARGSUSED */
3142 static int
3143 srcid_status_cb(uintptr_t addr, const void *walk_data,
3144 void *private)
3145 {
3146 srcid_map_t smp;

3148 if (mdb_vread(&smp, sizeof (srcid_map_t), addr) == -1) {
3149 mdb_warn("failed to read srcid_map at %p", addr);
3150 return (WALK_ERR);
3151 }
3152 mdb_printf("%-?p %3d %4d %6d %N\n",
3153 addr, smp.sm_srcid, smp.sm_zoneid, smp.sm_refcnt,
3154 &smp.sm_addr);
3155 return (WALK_NEXT);
3156 }

3158 static void
3159 srcid_header(void)
3160 {
3161 mdb_printf("%-?s %3s %4s %6s %s\n",
3162 "ADDR", "ID", "ZONE", "REFCNT", "IPADDR");
3163 mdb_printf("%<u>%80s%</u>\n", "");
3164 }

3166 /*ARGSUSED*/
3167 static int
3168 srcid_status(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3169 {
3170 srcid_header();
3171 if (flags & DCMD_ADDRSPEC) {
3172 (void) srcid_status_cb(addr, NULL, NULL);
3173 } else {
3174 if (mdb_walk("srcid", (mdb_walk_cb_t)srcid_status_cb,
3175 NULL) == -1) {
3176 mdb_warn("failed to walk srcid_map");
3177 return (DCMD_ERR);
3178 }
3179 }
3180 return (DCMD_OK);
3181 }

3183 static int
3184 ilb_stacks_walk_step(mdb_walk_state_t *wsp)
3185 {
3186 return (ns_walk_step(wsp, NS_ILB));
3187 }

3189 static int
3190 ilb_rules_walk_init(mdb_walk_state_t *wsp)

new/usr/src/cmd/mdb/common/modules/ip/ip.c 44

3191 {
3192 ilb_stack_t ilbs;

3194 if (wsp->walk_addr == NULL)
3195 return (WALK_ERR);

3197 if (mdb_vread(&ilbs, sizeof (ilbs), wsp->walk_addr) == -1) {
3198 mdb_warn("failed to read ilb_stack_t at %p", wsp->walk_addr);
3199 return (WALK_ERR);
3200 }
3201 if ((wsp->walk_addr = (uintptr_t)ilbs.ilbs_rule_head) != NULL)
3202 return (WALK_NEXT);
3203 else
3204 return (WALK_DONE);
3205 }

3207 static int
3208 ilb_rules_walk_step(mdb_walk_state_t *wsp)
3209 {
3210 ilb_rule_t rule;
3211 int status;

3213 if (mdb_vread(&rule, sizeof (rule), wsp->walk_addr) == -1) {
3214 mdb_warn("failed to read ilb_rule_t at %p", wsp->walk_addr);
3215 return (WALK_ERR);
3216 }
3217 status = wsp->walk_callback(wsp->walk_addr, &rule, wsp->walk_cbdata);
3218 if (status != WALK_NEXT)
3219 return (status);
3220 if ((wsp->walk_addr = (uintptr_t)rule.ir_next) == NULL)
3221 return (WALK_DONE);
3222 else
3223 return (WALK_NEXT);
3224 }

3226 static int
3227 ilb_servers_walk_init(mdb_walk_state_t *wsp)
3228 {
3229 ilb_rule_t rule;

3231 if (wsp->walk_addr == NULL)
3232 return (WALK_ERR);

3234 if (mdb_vread(&rule, sizeof (rule), wsp->walk_addr) == -1) {
3235 mdb_warn("failed to read ilb_rule_t at %p", wsp->walk_addr);
3236 return (WALK_ERR);
3237 }
3238 if ((wsp->walk_addr = (uintptr_t)rule.ir_servers) != NULL)
3239 return (WALK_NEXT);
3240 else
3241 return (WALK_DONE);
3242 }

3244 static int
3245 ilb_servers_walk_step(mdb_walk_state_t *wsp)
3246 {
3247 ilb_server_t server;
3248 int status;

3250 if (mdb_vread(&server, sizeof (server), wsp->walk_addr) == -1) {
3251 mdb_warn("failed to read ilb_server_t at %p", wsp->walk_addr);
3252 return (WALK_ERR);
3253 }
3254 status = wsp->walk_callback(wsp->walk_addr, &server, wsp->walk_cbdata);
3255 if (status != WALK_NEXT)
3256 return (status);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 45

3257 if ((wsp->walk_addr = (uintptr_t)server.iser_next) == NULL)
3258 return (WALK_DONE);
3259 else
3260 return (WALK_NEXT);
3261 }

3263 /*
3264 * Helper structure for ilb_nat_src walker. It stores the current index of the
3265 * nat src table.
3266 */
3267 typedef struct {
3268 ilb_stack_t ilbs;
3269 int idx;
3270 } ilb_walk_t;

3272 /* Copy from list.c */
3273 #define list_object(a, node) ((void *)(((char *)node) - (a)->list_offset))

3275 static int
3276 ilb_nat_src_walk_init(mdb_walk_state_t *wsp)
3277 {
3278 int i;
3279 ilb_walk_t *ns_walk;
3280 ilb_nat_src_entry_t *entry = NULL;

3282 if (wsp->walk_addr == NULL)
3283 return (WALK_ERR);

3285 ns_walk = mdb_alloc(sizeof (ilb_walk_t), UM_SLEEP);
3286 if (mdb_vread(&ns_walk->ilbs, sizeof (ns_walk->ilbs),
3287 wsp->walk_addr) == -1) {
3288 mdb_warn("failed to read ilb_stack_t at %p", wsp->walk_addr);
3289 mdb_free(ns_walk, sizeof (ilb_walk_t));
3290 return (WALK_ERR);
3291 }

3293 if (ns_walk->ilbs.ilbs_nat_src == NULL) {
3294 mdb_free(ns_walk, sizeof (ilb_walk_t));
3295 return (WALK_DONE);
3296 }

3298 wsp->walk_data = ns_walk;
3299 for (i = 0; i < ns_walk->ilbs.ilbs_nat_src_hash_size; i++) {
3300 list_t head;
3301 char *khead;

3303 /* Read in the nsh_head in the i-th element of the array. */
3304 khead = (char *)ns_walk->ilbs.ilbs_nat_src + i *
3305 sizeof (ilb_nat_src_hash_t);
3306 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3307 mdb_warn("failed to read ilbs_nat_src at %p\n", khead);
3308 return (WALK_ERR);
3309 }

3311 /*
3312 * Note that list_next points to a kernel address and we need
3313 * to compare list_next with the kernel address of the list
3314 * head. So we need to calculate the address manually.
3315 */
3316 if ((char *)head.list_head.list_next != khead +
3317 offsetof(list_t, list_head)) {
3318 entry = list_object(&head, head.list_head.list_next);
3319 break;
3320 }
3321 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 46

3323 if (entry == NULL)
3324 return (WALK_DONE);

3326 wsp->walk_addr = (uintptr_t)entry;
3327 ns_walk->idx = i;
3328 return (WALK_NEXT);
3329 }

3331 static int
3332 ilb_nat_src_walk_step(mdb_walk_state_t *wsp)
3333 {
3334 int status;
3335 ilb_nat_src_entry_t entry, *next_entry;
3336 ilb_walk_t *ns_walk;
3337 ilb_stack_t *ilbs;
3338 list_t head;
3339 char *khead;
3340 int i;

3342 if (mdb_vread(&entry, sizeof (ilb_nat_src_entry_t),
3343 wsp->walk_addr) == -1) {
3344 mdb_warn("failed to read ilb_nat_src_entry_t at %p",
3345 wsp->walk_addr);
3346 return (WALK_ERR);
3347 }
3348 status = wsp->walk_callback(wsp->walk_addr, &entry, wsp->walk_cbdata);
3349 if (status != WALK_NEXT)
3350 return (status);

3352 ns_walk = (ilb_walk_t *)wsp->walk_data;
3353 ilbs = &ns_walk->ilbs;
3354 i = ns_walk->idx;

3356 /* Read in the nsh_head in the i-th element of the array. */
3357 khead = (char *)ilbs->ilbs_nat_src + i * sizeof (ilb_nat_src_hash_t);
3358 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3359 mdb_warn("failed to read ilbs_nat_src at %p\n", khead);
3360 return (WALK_ERR);
3361 }

3363 /*
3364 * Check if there is still entry in the current list.
3365 *
3366 * Note that list_next points to a kernel address and we need to
3367 * compare list_next with the kernel address of the list head.
3368 * So we need to calculate the address manually.
3369 */
3370 if ((char *)entry.nse_link.list_next != khead + offsetof(list_t,
3371 list_head)) {
3372 wsp->walk_addr = (uintptr_t)list_object(&head,
3373 entry.nse_link.list_next);
3374 return (WALK_NEXT);
3375 }

3377 /* Start with the next bucket in the array. */
3378 next_entry = NULL;
3379 for (i++; i < ilbs->ilbs_nat_src_hash_size; i++) {
3380 khead = (char *)ilbs->ilbs_nat_src + i *
3381 sizeof (ilb_nat_src_hash_t);
3382 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3383 mdb_warn("failed to read ilbs_nat_src at %p\n", khead);
3384 return (WALK_ERR);
3385 }

3387 if ((char *)head.list_head.list_next != khead +
3388 offsetof(list_t, list_head)) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 47

3389 next_entry = list_object(&head,
3390 head.list_head.list_next);
3391 break;
3392 }
3393 }

3395 if (next_entry == NULL)
3396 return (WALK_DONE);

3398 wsp->walk_addr = (uintptr_t)next_entry;
3399 ns_walk->idx = i;
3400 return (WALK_NEXT);
3401 }

3403 static void
3404 ilb_common_walk_fini(mdb_walk_state_t *wsp)
3405 {
3406 ilb_walk_t *walk;

3408 walk = (ilb_walk_t *)wsp->walk_data;
3409 if (walk == NULL)
3410 return;
3411 mdb_free(walk, sizeof (ilb_walk_t *));
3412 }

3414 static int
3415 ilb_conn_walk_init(mdb_walk_state_t *wsp)
3416 {
3417 int i;
3418 ilb_walk_t *conn_walk;
3419 ilb_conn_hash_t head;

3421 if (wsp->walk_addr == NULL)
3422 return (WALK_ERR);

3424 conn_walk = mdb_alloc(sizeof (ilb_walk_t), UM_SLEEP);
3425 if (mdb_vread(&conn_walk->ilbs, sizeof (conn_walk->ilbs),
3426 wsp->walk_addr) == -1) {
3427 mdb_warn("failed to read ilb_stack_t at %p", wsp->walk_addr);
3428 mdb_free(conn_walk, sizeof (ilb_walk_t));
3429 return (WALK_ERR);
3430 }

3432 if (conn_walk->ilbs.ilbs_c2s_conn_hash == NULL) {
3433 mdb_free(conn_walk, sizeof (ilb_walk_t));
3434 return (WALK_DONE);
3435 }

3437 wsp->walk_data = conn_walk;
3438 for (i = 0; i < conn_walk->ilbs.ilbs_conn_hash_size; i++) {
3439 char *khead;

3441 /* Read in the nsh_head in the i-th element of the array. */
3442 khead = (char *)conn_walk->ilbs.ilbs_c2s_conn_hash + i *
3443 sizeof (ilb_conn_hash_t);
3444 if (mdb_vread(&head, sizeof (ilb_conn_hash_t),
3445 (uintptr_t)khead) == -1) {
3446 mdb_warn("failed to read ilbs_c2s_conn_hash at %p\n",
3447 khead);
3448 return (WALK_ERR);
3449 }

3451 if (head.ilb_connp != NULL)
3452 break;
3453 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 48

3455 if (head.ilb_connp == NULL)
3456 return (WALK_DONE);

3458 wsp->walk_addr = (uintptr_t)head.ilb_connp;
3459 conn_walk->idx = i;
3460 return (WALK_NEXT);
3461 }

3463 static int
3464 ilb_conn_walk_step(mdb_walk_state_t *wsp)
3465 {
3466 int status;
3467 ilb_conn_t conn;
3468 ilb_walk_t *conn_walk;
3469 ilb_stack_t *ilbs;
3470 ilb_conn_hash_t head;
3471 char *khead;
3472 int i;

3474 if (mdb_vread(&conn, sizeof (ilb_conn_t), wsp->walk_addr) == -1) {
3475 mdb_warn("failed to read ilb_conn_t at %p", wsp->walk_addr);
3476 return (WALK_ERR);
3477 }

3479 status = wsp->walk_callback(wsp->walk_addr, &conn, wsp->walk_cbdata);
3480 if (status != WALK_NEXT)
3481 return (status);

3483 conn_walk = (ilb_walk_t *)wsp->walk_data;
3484 ilbs = &conn_walk->ilbs;
3485 i = conn_walk->idx;

3487 /* Check if there is still entry in the current list. */
3488 if (conn.conn_c2s_next != NULL) {
3489 wsp->walk_addr = (uintptr_t)conn.conn_c2s_next;
3490 return (WALK_NEXT);
3491 }

3493 /* Start with the next bucket in the array. */
3494 for (i++; i < ilbs->ilbs_conn_hash_size; i++) {
3495 khead = (char *)ilbs->ilbs_c2s_conn_hash + i *
3496 sizeof (ilb_conn_hash_t);
3497 if (mdb_vread(&head, sizeof (ilb_conn_hash_t),
3498 (uintptr_t)khead) == -1) {
3499 mdb_warn("failed to read ilbs_c2s_conn_hash at %p\n",
3500 khead);
3501 return (WALK_ERR);
3502 }

3504 if (head.ilb_connp != NULL)
3505 break;
3506 }

3508 if (head.ilb_connp == NULL)
3509 return (WALK_DONE);

3511 wsp->walk_addr = (uintptr_t)head.ilb_connp;
3512 conn_walk->idx = i;
3513 return (WALK_NEXT);
3514 }

3516 static int
3517 ilb_sticky_walk_init(mdb_walk_state_t *wsp)
3518 {
3519 int i;
3520 ilb_walk_t *sticky_walk;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 49

3521 ilb_sticky_t *st = NULL;

3523 if (wsp->walk_addr == NULL)
3524 return (WALK_ERR);

3526 sticky_walk = mdb_alloc(sizeof (ilb_walk_t), UM_SLEEP);
3527 if (mdb_vread(&sticky_walk->ilbs, sizeof (sticky_walk->ilbs),
3528 wsp->walk_addr) == -1) {
3529 mdb_warn("failed to read ilb_stack_t at %p", wsp->walk_addr);
3530 mdb_free(sticky_walk, sizeof (ilb_walk_t));
3531 return (WALK_ERR);
3532 }

3534 if (sticky_walk->ilbs.ilbs_sticky_hash == NULL) {
3535 mdb_free(sticky_walk, sizeof (ilb_walk_t));
3536 return (WALK_DONE);
3537 }

3539 wsp->walk_data = sticky_walk;
3540 for (i = 0; i < sticky_walk->ilbs.ilbs_sticky_hash_size; i++) {
3541 list_t head;
3542 char *khead;

3544 /* Read in the nsh_head in the i-th element of the array. */
3545 khead = (char *)sticky_walk->ilbs.ilbs_sticky_hash + i *
3546 sizeof (ilb_sticky_hash_t);
3547 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3548 mdb_warn("failed to read ilbs_sticky_hash at %p\n",
3549 khead);
3550 return (WALK_ERR);
3551 }

3553 /*
3554 * Note that list_next points to a kernel address and we need
3555 * to compare list_next with the kernel address of the list
3556 * head. So we need to calculate the address manually.
3557 */
3558 if ((char *)head.list_head.list_next != khead +
3559 offsetof(list_t, list_head)) {
3560 st = list_object(&head, head.list_head.list_next);
3561 break;
3562 }
3563 }

3565 if (st == NULL)
3566 return (WALK_DONE);

3568 wsp->walk_addr = (uintptr_t)st;
3569 sticky_walk->idx = i;
3570 return (WALK_NEXT);
3571 }

3573 static int
3574 ilb_sticky_walk_step(mdb_walk_state_t *wsp)
3575 {
3576 int status;
3577 ilb_sticky_t st, *st_next;
3578 ilb_walk_t *sticky_walk;
3579 ilb_stack_t *ilbs;
3580 list_t head;
3581 char *khead;
3582 int i;

3584 if (mdb_vread(&st, sizeof (ilb_sticky_t), wsp->walk_addr) == -1) {
3585 mdb_warn("failed to read ilb_sticky_t at %p", wsp->walk_addr);
3586 return (WALK_ERR);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 50

3587 }

3589 status = wsp->walk_callback(wsp->walk_addr, &st, wsp->walk_cbdata);
3590 if (status != WALK_NEXT)
3591 return (status);

3593 sticky_walk = (ilb_walk_t *)wsp->walk_data;
3594 ilbs = &sticky_walk->ilbs;
3595 i = sticky_walk->idx;

3597 /* Read in the nsh_head in the i-th element of the array. */
3598 khead = (char *)ilbs->ilbs_sticky_hash + i * sizeof (ilb_sticky_hash_t);
3599 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3600 mdb_warn("failed to read ilbs_sticky_hash at %p\n", khead);
3601 return (WALK_ERR);
3602 }

3604 /*
3605 * Check if there is still entry in the current list.
3606 *
3607 * Note that list_next points to a kernel address and we need to
3608 * compare list_next with the kernel address of the list head.
3609 * So we need to calculate the address manually.
3610 */
3611 if ((char *)st.list.list_next != khead + offsetof(list_t,
3612 list_head)) {
3613 wsp->walk_addr = (uintptr_t)list_object(&head,
3614 st.list.list_next);
3615 return (WALK_NEXT);
3616 }

3618 /* Start with the next bucket in the array. */
3619 st_next = NULL;
3620 for (i++; i < ilbs->ilbs_nat_src_hash_size; i++) {
3621 khead = (char *)ilbs->ilbs_sticky_hash + i *
3622 sizeof (ilb_sticky_hash_t);
3623 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3624 mdb_warn("failed to read ilbs_sticky_hash at %p\n",
3625 khead);
3626 return (WALK_ERR);
3627 }

3629 if ((char *)head.list_head.list_next != khead +
3630 offsetof(list_t, list_head)) {
3631 st_next = list_object(&head,
3632 head.list_head.list_next);
3633 break;
3634 }
3635 }

3637 if (st_next == NULL)
3638 return (WALK_DONE);

3640 wsp->walk_addr = (uintptr_t)st_next;
3641 sticky_walk->idx = i;
3642 return (WALK_NEXT);
3643 }

new/usr/src/lib/libdtrace/Makefile.com 1

**
 5931 Sat Aug 18 10:37:02 2012
new/usr/src/lib/libdtrace/Makefile.com
dccp: basic dtrace
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright (c) 2011 by Delphix. All rights reserved.
24 #

26 LIBRARY = libdtrace.a
27 VERS = .1

29 LIBSRCS = \
30 dt_aggregate.c \
31 dt_as.c \
32 dt_buf.c \
33 dt_cc.c \
34 dt_cg.c \
35 dt_consume.c \
36 dt_decl.c \
37 dt_dis.c \
38 dt_dof.c \
39 dt_error.c \
40 dt_errtags.c \
41 dt_handle.c \
42 dt_ident.c \
43 dt_inttab.c \
44 dt_link.c \
45 dt_list.c \
46 dt_open.c \
47 dt_options.c \
48 dt_program.c \
49 dt_map.c \
50 dt_module.c \
51 dt_names.c \
52 dt_parser.c \
53 dt_pcb.c \
54 dt_pid.c \
55 dt_pragma.c \
56 dt_print.c \
57 dt_printf.c \
58 dt_proc.c \
59 dt_provider.c \
60 dt_regset.c \
61 dt_string.c \

new/usr/src/lib/libdtrace/Makefile.com 2

62 dt_strtab.c \
63 dt_subr.c \
64 dt_work.c \
65 dt_xlator.c

67 LIBISASRCS = \
68 dt_isadep.c

70 OBJECTS = dt_lex.o dt_grammar.o $(MACHOBJS) $(LIBSRCS:%.c=%.o) $(LIBISASRCS:%.c=

72 DRTISRC = drti.c
73 DRTIOBJ = $(DRTISRC:%.c=%.o)

75 DLIBSRCS += \
76 dccp.d \
77 #endif /* ! codereview */
78 errno.d \
79 fc.d \
80 io.d \
81 ip.d \
82 iscsit.d \
83 net.d \
84 nfs.d \
85 nfssrv.d \
86 procfs.d \
87 regs.d \
88 sched.d \
89 signal.d \
90 scsi.d \
91 srp.d \
92 sysevent.d \
93 tcp.d \
94 udp.d \
95 unistd.d

97 include ../../Makefile.lib

99 SRCS = $(LIBSRCS:%.c=../common/%.c) $(LIBISASRCS:%.c=../$(MACH)/%.c)
100 LIBS = $(DYNLIB) $(LINTLIB)

102 SRCDIR = ../common

104 CLEANFILES += dt_lex.c dt_grammar.c dt_grammar.h y.output
105 CLEANFILES += ../common/procfs.sed ../common/procfs.d
106 CLEANFILES += ../common/io.sed ../common/io.d
107 CLEANFILES += ../common/ip.sed ../common/ip.d
108 CLEANFILES += ../common/net.sed ../common/net.d
109 CLEANFILES += ../common/errno.d ../common/signal.d
110 CLEANFILES += ../common/dt_errtags.c ../common/dt_names.c
111 CLEANFILES += ../common/sysevent.sed ../common/sysevent.d
112 CLEANFILES += ../common/tcp.sed ../common/tcp.d
113 CLEANFILES += ../common/udp.sed ../common/udp.d
114 CLEANFILES += ../common/dccp.sed ../common/dccp.d
115 #endif /* ! codereview */

117 CLOBBERFILES += drti.o

119 CPPFLAGS += -I../common -I.
120 CFLAGS += $(CCVERBOSE) $(C_BIGPICFLAGS)
121 CFLAGS64 += $(CCVERBOSE) $(C_BIGPICFLAGS)
122 YYCFLAGS =
123 LDLIBS += -lgen -lproc -lrtld_db -lnsl -lsocket -lctf -lelf -lc
124 DRTILDLIBS = $(LDLIBS.lib) -lc

126 yydebug := YYCFLAGS += -DYYDEBUG

new/usr/src/lib/libdtrace/Makefile.com 3

128 $(LINTLIB) := SRCS = $(SRCDIR)/$(LINTSRC)

130 LFLAGS = -t -v
131 YFLAGS = -d -v

133 ROOTDLIBDIR = $(ROOT)/usr/lib/dtrace
134 ROOTDLIBDIR64 = $(ROOT)/usr/lib/dtrace/64

136 ROOTDLIBS = $(DLIBSRCS:%=$(ROOTDLIBDIR)/%)
137 ROOTDOBJS = $(ROOTDLIBDIR)/$(DRTIOBJ)
138 ROOTDOBJS64 = $(ROOTDLIBDIR64)/$(DRTIOBJ)

140 .KEEP_STATE:

142 all: $(LIBS) $(DRTIOBJ)

144 lint: lintdrti lintcheck

146 lintdrti: ../common/$(DRTISRC)
147 $(LINT.c) ../common/$(DRTISRC) $(DRTILDLIBS)

149 dt_lex.c: $(SRCDIR)/dt_lex.l dt_grammar.h
150 $(LEX) $(LFLAGS) $(SRCDIR)/dt_lex.l > $@

152 dt_grammar.c dt_grammar.h: $(SRCDIR)/dt_grammar.y
153 $(YACC) $(YFLAGS) $(SRCDIR)/dt_grammar.y
154 @mv y.tab.h dt_grammar.h
155 @mv y.tab.c dt_grammar.c

157 pics/dt_lex.o pics/dt_grammar.o := CFLAGS += $(YYCFLAGS)
158 pics/dt_lex.o pics/dt_grammar.o := CFLAGS64 += $(YYCFLAGS)

160 pics/dt_lex.o pics/dt_grammar.o := CERRWARN += -erroff=E_STATEMENT_NOT_REACHED
161 pics/dt_lex.o pics/dt_grammar.o := CCVERBOSE =

163 ../common/dt_errtags.c: ../common/mkerrtags.sh ../common/dt_errtags.h
164 sh ../common/mkerrtags.sh < ../common/dt_errtags.h > $@

166 ../common/dt_names.c: ../common/mknames.sh $(SRC)/uts/common/sys/dtrace.h
167 sh ../common/mknames.sh < $(SRC)/uts/common/sys/dtrace.h > $@

169 ../common/errno.d: ../common/mkerrno.sh $(SRC)/uts/common/sys/errno.h
170 sh ../common/mkerrno.sh < $(SRC)/uts/common/sys/errno.h > $@

172 ../common/signal.d: ../common/mksignal.sh $(SRC)/uts/common/sys/iso/signal_iso.h
173 sh ../common/mksignal.sh < $(SRC)/uts/common/sys/iso/signal_iso.h > $@

175 ../common/%.sed: ../common/%.sed.in
176 $(COMPILE.cpp) -D_KERNEL $< | tr -d ’ ’ | tr ’"’ ’@’ | \
177 sed ’s/\&/\\\&/g’ | grep ’^s/’ > $@

179 ../common/procfs.d: ../common/procfs.sed ../common/procfs.d.in
180 sed -f ../common/procfs.sed < ../common/procfs.d.in > $@

182 ../common/io.d: ../common/io.sed ../common/io.d.in
183 sed -f ../common/io.sed < ../common/io.d.in > $@

185 ../common/ip.d: ../common/ip.sed ../common/ip.d.in
186 sed -f ../common/ip.sed < ../common/ip.d.in > $@

188 ../common/net.d: ../common/net.sed ../common/net.d.in
189 sed -f ../common/net.sed < ../common/net.d.in > $@

191 ../common/sysevent.d: ../common/sysevent.sed ../common/sysevent.d.in
192 sed -f ../common/sysevent.sed < ../common/sysevent.d.in > $@

new/usr/src/lib/libdtrace/Makefile.com 4

194 ../common/tcp.d: ..//common/tcp.sed ../common/tcp.d.in
195 sed -f ../common/tcp.sed < ../common/tcp.d.in > $@

197 ../common/udp.d: ../common/udp.sed ../common/udp.d.in
198 sed -f ../common/udp.sed < ../common/udp.d.in > $@

200 ../common/dccp.d: ../common/dccp.sed ../common/dccp.d.in
201 sed -f ../common/dccp.sed < ../common/dccp.d.in > $@

203 #endif /* ! codereview */
204 pics/%.o: ../$(MACH)/%.c
205 $(COMPILE.c) -o $@ $<
206 $(POST_PROCESS_O)

208 pics/%.o: ../$(MACH)/%.s
209 $(COMPILE.s) -o $@ $<
210 $(POST_PROCESS_O)

212 %.o: ../common/%.c
213 $(COMPILE.c) -o $@ $<
214 $(POST_PROCESS_O)

216 $(ROOTDLIBDIR):
217 $(INS.dir)

219 $(ROOTDLIBDIR64): $(ROOTDLIBDIR)
220 $(INS.dir)

222 $(ROOTDLIBDIR)/%.d: ../common/%.d
223 $(INS.file)

225 $(ROOTDLIBDIR)/%.d: ../$(MACH)/%.d
226 $(INS.file)

228 $(ROOTDLIBDIR)/%.d: %.d
229 $(INS.file)

231 $(ROOTDLIBDIR)/%.o: %.o
232 $(INS.file)

234 $(ROOTDLIBDIR64)/%.o: %.o
235 $(INS.file)

237 $(ROOTDLIBS): $(ROOTDLIBDIR)

239 $(ROOTDOBJS): $(ROOTDLIBDIR)

241 $(ROOTDOBJS64): $(ROOTDLIBDIR64)

243 include ../../Makefile.targ

new/usr/src/lib/libdtrace/common/dccp.d.in 1

**
 6829 Sat Aug 18 10:37:03 2012
new/usr/src/lib/libdtrace/common/dccp.d.in
dccp: basic dtrace
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #pragma D depends_on module unix
26 #pragma D depends_on provider dccp

28 inline int32_t DCCP_STATE_CLOSED = @DCCPS_CLOSED@;
29 #pragma D binding "1.10" DCCP_STATE_CLOSED
30 inline int32_t DCCP_STATE_BOUND = @DCCPS_BOUND@;
31 #pragma D binding "1.10" DCCP_STATE_BOUND
32 inline int32_t DCCP_STATE_REQUEST = @DCCPS_REQUEST@;
33 #pragma D binding "1.10" DCCP_STATE_REQUEST
34 inline int32_t DCCP_STATE_LISTEN = @DCCPS_LISTEN@;
35 #pragma D binding "1.10" DCCP_STATE_LISTEN
36 inline int32_t DCCP_STATE_PARTOPEN = @DCCPS_PARTOPEN@;
37 #pragma D binding "1.10" DCCP_STATE_PARTOPEN
38 inline int32_t DCCP_STATE_RESPOND = @DCCPS_RESPOND@;
39 #pragma D binding "1.10" DCCP_STATE_RESPOND
40 inline int32_t DCCP_STATE_OPEN = @DCCPS_OPEN@;
41 #pragma D binding "1.10" DCCP_STATE_OPEN
42 inline int32_t DCCP_STATE_CLOSING = @DCCPS_CLOSING@;
43 #pragma D binding "1.10" DCCP_STATE_CLOSING
44 inline int32_t DCCP_STATE_CLOSEREQ = @DCCPS_CLOSEREQ@;
45 #pragma D binding "1.10" DCCP_STATE_CLOSEREQ
46 inline int32_t DCCP_STATE_TIMEWAIT = @DCCPS_TIMEWAIT@;
47 #pragma D binding "1.10" DCCP_STATE_TIMEWAIT

49 /*
50 * Convert a DCCP state value to a string.
51 */
52 inline string dccp_state_string[int32_t state] =
53 state == DCCP_STATE_CLOSED ? "state-closed" :
54 state == DCCP_STATE_BOUND ? "state-bound" :
55 state == DCCP_STATE_REQUEST ? "state-request" :
56 state == DCCP_STATE_LISTEN ? "state-listen" :
57 state == DCCP_STATE_PARTOPEN ? "state-partopen" :
58 state == DCCP_STATE_RESPOND ? "state-respond" :
59 state == DCCP_STATE_OPEN ? "state-open" :
60 state == DCCP_STATE_CLOSING ? "state-closing" :
61 state == DCCP_STATE_CLOSEREQ ? "state-closereq" :

new/usr/src/lib/libdtrace/common/dccp.d.in 2

62 state == DCCP_STATE_TIMEWAIT ? "state-timewait" :
63 "<unknown>";
64 #pragma D binding "1.10" dccp_state_string

66 /*
67 * dccpinfo is the DCCP header fields.
68 */
69 typedef struct dccpinfo {
70 uint16_t dccp_sport; /* source port */
71 uint16_t dccp_dport; /* destination port */
72 uint32_t dccp_seq; /* sequence number */
73 uint8_t dccp_offset; /* data offset, in bytes */
74 uint16_t dccp_checksum; /* checksum */
75 dccph_t *dccp_hdr; /* raw DCCP header */
76 } dccpinfo_t;

78 /*
79 * dccpsinfo contains stable DCCP details from dccp_t.
80 */
81 typedef struct dccpsinfo {
82 uintptr_t dccps_addr;
83 int dccps_local; /* Is delivered locally, boolean */
84 int dccps_active; /* Active open (from here), boolean */
85 uint16_t dccps_lport; /* Local port */
86 uint16_t dccps_rport; /* Remote port */
87 string dccps_laddr; /* Local address, as a string */
88 string dccps_raddr; /* Remote address, as a string */
89 int32_t dccps_state; /* DCCP state */
90 uint32_t dccps_iss; /* Initial sequence # sent */
91 } dccpsinfo_t;

93 /*
94 * dccplsinfo provides the old dccp state for state changes.
95 */
96 typedef struct dccplsinfo {
97 int32_t dccps_state; /* Previous DCCP state */
98 } dccplsinfo_t;

100 /*
101 * __dtrace_tcp_tcph_t is used by the tcpinfo_t * translator to take either
102 * the non-NULL tcph_t * passed in or, if it is NULL, uses arg3 (tcp_t *)
103 * from the tcp:::send and tcp:::recieve probes and translates the tcp_t *
104 * into the tcpinfo_t. When no headers are available - as is the case for
105 * TCP fusion tcp:::send and tcp:::receive - this allows us to present the
106 * consumer with header data based on tcp_t * content and hide TCP fusion
107 * implementation details.
108 */
109 typedef dccph_t * __dtrace_dccp_dccph_t;

111 #pragma D binding "1.10" translator
112 translator dccpinfo_t < dccph_t *T > {
113 dccp_sport = ntohs(*(uint16_t *)T->dh_lport);
114 dccp_dport = ntohs(*(uint16_t *)T->dh_fport);
115 dccp_seq = ntohl(*(uint32_t *)T->dh_seq); /* XXX */
116 dccp_offset = (*(uint8_t *)T->dh_offset & 0xf0) >> 2;
117 dccp_checksum = ntohs(*(uint16_t *)T->dh_sum);
118 dccp_hdr = T;
119 };

121 #pragma D binding "1.10" translator
122 translator dccpinfo_t < __dtrace_dccp_dccph_t *T > {
123 dccp_sport =
124 T != NULL ? ntohs(*(uint16_t *)((dccph_t *)T)->dh_lport) :
125 arg3 != NULL && probename == "send" ?
126 ntohs(((dccp_t *)arg3)->dccp_connp->u_port.connu_ports.connu_lport)
127 arg3 != NULL && probename == "receive" ?

new/usr/src/lib/libdtrace/common/dccp.d.in 3

128 ntohs(((dccp_t *)arg3)->dccp_connp->u_port.connu_ports.connu_fport)
129 0;
130 dccp_dport =
131 T != NULL ? ntohs(*(uint16_t *)((dccph_t *)T)->dh_fport) :
132 arg3 != NULL && probename == "send" ?
133 ntohs(((dccp_t *)arg3)->dccp_connp->u_port.connu_ports.connu_fport)
134 arg3 != NULL && probename == "receive" ?
135 ntohs(((dccp_t *)arg3)->dccp_connp->u_port.connu_ports.connu_lport)
136 0;
137 dccp_seq =
138 T != NULL ? ntohl(*(uint32_t *)((dccph_t *)T)->dh_seq) :
139 0;
140 dccp_offset = T != NULL ?
141 (*(uint8_t *)((dccph_t *)T)->dh_offset & 0xf0) >> 2 :
142 @DCCP_MIN_HEADER_LENGTH@;
143 dccp_checksum = T != NULL ? ntohs(*(uint16_t *)((dccph_t *)T)->dh_sum) :
144 0;
145 dccp_hdr = NULL;
146 };

148 #pragma D binding "1.10" translator
149 translator dccpsinfo_t < dccp_t *T > {
150 dccps_addr = (uintptr_t)T;
151 /*
152 * The following two members should just use tcp_t->tcp_loopback
153 * and tcp_t->tcp_active_open, however these are bit fields and
154 * can’t be used until CR 6876830 is fixed. Meanwhile we source
155 * them a different way.
156 */
157 dccps_local = T ? T->dccp_ipha ?
158 T->dccp_ipha->ipha_src == T->dccp_ipha->ipha_dst : 1 : 0;
159 dccps_active = T ? !T->dccp_saved_listener : 0;
160 dccps_lport = T ?
161 ntohs(T->dccp_connp->u_port.connu_ports.connu_lport) : 0;
162 dccps_rport = T ?
163 ntohs(T->dccp_connp->u_port.connu_ports.connu_fport) : 0;
164 dccps_laddr = T ?
165 inet_ntoa6(&T->dccp_connp->connua_v6addr.connua_laddr) : "<unknown>"
166 dccps_raddr = T ?
167 inet_ntoa6(&T->dccp_connp->connua_v6addr.connua_faddr) : "<unknown>"
168 dccps_state = T ? T->dccp_state : DCCP_STATE_CLOSED;
169 dccps_iss = T ? T->dccp_iss : 0;
170 };

172 /*
173 * Note: although we specify that the old state argument used as the
174 * input to the tcplsinfo_t translator is an int32_t, it reaches us as an
175 * int64_t (since it is a probe argument) so explicitly cast it back to
176 * interpret the negatively-valued states correctly.
177 */
178 #pragma D binding "1.10" translator
179 translator dccplsinfo_t < int64_t I > {
180 dccps_state = (int32_t) I;
181 };
182 #endif /* ! codereview */

new/usr/src/lib/libdtrace/common/dccp.sed.in 1

**
 1289 Sat Aug 18 10:37:03 2012
new/usr/src/lib/libdtrace/common/dccp.sed.in
dccp: basic dtrace
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #include <inet/dccp.h>
26 #include <sys/netstack.h>

28 #define SED_REPLACE(x) s/#x/x/g

31 SED_REPLACE(DCCPS_CLOSED)
32 SED_REPLACE(DCCPS_BOUND)
33 SED_REPLACE(DCCPS_REQUEST)
34 SED_REPLACE(DCCPS_LISTEN)
35 SED_REPLACE(DCCPS_PARTOPEN)
36 SED_REPLACE(DCCPS_RESPOND)
37 SED_REPLACE(DCCPS_OPEN)
38 SED_REPLACE(DCCPS_CLOSING)
39 SED_REPLACE(DCCPS_CLOSEREQ)
40 SED_REPLACE(DCCPS_TIMEWAIT)

42 SED_REPLACE(DCCP_MIN_HEADER_LENGTH)
43 #endif /* ! codereview */

new/usr/src/lib/libdtrace/common/dt_open.c 1

**
 53649 Sat Aug 18 10:37:03 2012
new/usr/src/lib/libdtrace/common/dt_open.c
dccp: basic dtrace
**
______unchanged_portion_omitted_

82 /*
83 * The version number should be increased for every customer visible release
84 * of Solaris. The major number should be incremented when a fundamental
85 * change has been made that would affect all consumers, and would reflect
86 * sweeping changes to DTrace or the D language. The minor number should be
87 * incremented when a change is introduced that could break scripts that had
88 * previously worked; for example, adding a new built-in variable could break
89 * a script which was already using that identifier. The micro number should
90 * be changed when introducing functionality changes or major bug fixes that
91 * do not affect backward compatibility -- this is merely to make capabilities
92 * easily determined from the version number. Minor bugs do not require any
93 * modification to the version number.
94 */
95 #define DT_VERS_1_0 DT_VERSION_NUMBER(1, 0, 0)
96 #define DT_VERS_1_1 DT_VERSION_NUMBER(1, 1, 0)
97 #define DT_VERS_1_2 DT_VERSION_NUMBER(1, 2, 0)
98 #define DT_VERS_1_2_1 DT_VERSION_NUMBER(1, 2, 1)
99 #define DT_VERS_1_2_2 DT_VERSION_NUMBER(1, 2, 2)
100 #define DT_VERS_1_3 DT_VERSION_NUMBER(1, 3, 0)
101 #define DT_VERS_1_4 DT_VERSION_NUMBER(1, 4, 0)
102 #define DT_VERS_1_4_1 DT_VERSION_NUMBER(1, 4, 1)
103 #define DT_VERS_1_5 DT_VERSION_NUMBER(1, 5, 0)
104 #define DT_VERS_1_6 DT_VERSION_NUMBER(1, 6, 0)
105 #define DT_VERS_1_6_1 DT_VERSION_NUMBER(1, 6, 1)
106 #define DT_VERS_1_6_2 DT_VERSION_NUMBER(1, 6, 2)
107 #define DT_VERS_1_6_3 DT_VERSION_NUMBER(1, 6, 3)
108 #define DT_VERS_1_7 DT_VERSION_NUMBER(1, 7, 0)
109 #define DT_VERS_1_7_1 DT_VERSION_NUMBER(1, 7, 1)
110 #define DT_VERS_1_8 DT_VERSION_NUMBER(1, 8, 0)
111 #define DT_VERS_1_8_1 DT_VERSION_NUMBER(1, 8, 1)
112 #define DT_VERS_1_9 DT_VERSION_NUMBER(1, 9, 0)
113 #define DT_VERS_1_10 DT_VERSION_NUMBER(1, 10, 0)
114 #define DT_VERS_LATEST DT_VERS_1_10
115 #define DT_VERS_STRING "Sun D 1.10"
113 #define DT_VERS_LATEST DT_VERS_1_9
114 #define DT_VERS_STRING "Sun D 1.9"

117 const dt_version_t _dtrace_versions[] = {
118 DT_VERS_1_0, /* D API 1.0.0 (PSARC 2001/466) Solaris 10 FCS */
119 DT_VERS_1_1, /* D API 1.1.0 Solaris Express 6/05 */
120 DT_VERS_1_2, /* D API 1.2.0 Solaris 10 Update 1 */
121 DT_VERS_1_2_1, /* D API 1.2.1 Solaris Express 4/06 */
122 DT_VERS_1_2_2, /* D API 1.2.2 Solaris Express 6/06 */
123 DT_VERS_1_3, /* D API 1.3 Solaris Express 10/06 */
124 DT_VERS_1_4, /* D API 1.4 Solaris Express 2/07 */
125 DT_VERS_1_4_1, /* D API 1.4.1 Solaris Express 4/07 */
126 DT_VERS_1_5, /* D API 1.5 Solaris Express 7/07 */
127 DT_VERS_1_6, /* D API 1.6 */
128 DT_VERS_1_6_1, /* D API 1.6.1 */
129 DT_VERS_1_6_2, /* D API 1.6.2 */
130 DT_VERS_1_6_3, /* D API 1.6.3 */
131 DT_VERS_1_7, /* D API 1.7 */
132 DT_VERS_1_7_1, /* D API 1.7.1 */
133 DT_VERS_1_8, /* D API 1.8 */
134 DT_VERS_1_8_1, /* D API 1.8.1 */
135 DT_VERS_1_9, /* D API 1.9 */
136 DT_VERS_1_10, /* D API 1.10 */
137 #endif /* ! codereview */
138 0

new/usr/src/lib/libdtrace/common/dt_open.c 2

139 };

141 /*
142 * Table of global identifiers. This is used to populate the global identifier
143 * hash when a new dtrace client open occurs. For more info see dt_ident.h.
144 * The global identifiers that represent functions use the dt_idops_func ops
145 * and specify the private data pointer as a prototype string which is parsed
146 * when the identifier is first encountered. These prototypes look like ANSI
147 * C function prototypes except that the special symbol "@" can be used as a
148 * wildcard to represent a single parameter of any type (i.e. any dt_node_t).
149 * The standard "..." notation can also be used to represent varargs. An empty
150 * parameter list is taken to mean void (that is, no arguments are permitted).
151 * A parameter enclosed in square brackets (e.g. "[int]") denotes an optional
152 * argument.
153 */
154 static const dt_ident_t _dtrace_globals[] = {
155 { "alloca", DT_IDENT_FUNC, 0, DIF_SUBR_ALLOCA, DT_ATTR_STABCMN, DT_VERS_1_0,
156 &dt_idops_func, "void *(size_t)" },
157 { "arg0", DT_IDENT_SCALAR, 0, DIF_VAR_ARG0, DT_ATTR_STABCMN, DT_VERS_1_0,
158 &dt_idops_type, "int64_t" },
159 { "arg1", DT_IDENT_SCALAR, 0, DIF_VAR_ARG1, DT_ATTR_STABCMN, DT_VERS_1_0,
160 &dt_idops_type, "int64_t" },
161 { "arg2", DT_IDENT_SCALAR, 0, DIF_VAR_ARG2, DT_ATTR_STABCMN, DT_VERS_1_0,
162 &dt_idops_type, "int64_t" },
163 { "arg3", DT_IDENT_SCALAR, 0, DIF_VAR_ARG3, DT_ATTR_STABCMN, DT_VERS_1_0,
164 &dt_idops_type, "int64_t" },
165 { "arg4", DT_IDENT_SCALAR, 0, DIF_VAR_ARG4, DT_ATTR_STABCMN, DT_VERS_1_0,
166 &dt_idops_type, "int64_t" },
167 { "arg5", DT_IDENT_SCALAR, 0, DIF_VAR_ARG5, DT_ATTR_STABCMN, DT_VERS_1_0,
168 &dt_idops_type, "int64_t" },
169 { "arg6", DT_IDENT_SCALAR, 0, DIF_VAR_ARG6, DT_ATTR_STABCMN, DT_VERS_1_0,
170 &dt_idops_type, "int64_t" },
171 { "arg7", DT_IDENT_SCALAR, 0, DIF_VAR_ARG7, DT_ATTR_STABCMN, DT_VERS_1_0,
172 &dt_idops_type, "int64_t" },
173 { "arg8", DT_IDENT_SCALAR, 0, DIF_VAR_ARG8, DT_ATTR_STABCMN, DT_VERS_1_0,
174 &dt_idops_type, "int64_t" },
175 { "arg9", DT_IDENT_SCALAR, 0, DIF_VAR_ARG9, DT_ATTR_STABCMN, DT_VERS_1_0,
176 &dt_idops_type, "int64_t" },
177 { "args", DT_IDENT_ARRAY, 0, DIF_VAR_ARGS, DT_ATTR_STABCMN, DT_VERS_1_0,
178 &dt_idops_args, NULL },
179 { "avg", DT_IDENT_AGGFUNC, 0, DTRACEAGG_AVG, DT_ATTR_STABCMN, DT_VERS_1_0,
180 &dt_idops_func, "void(@)" },
181 { "basename", DT_IDENT_FUNC, 0, DIF_SUBR_BASENAME, DT_ATTR_STABCMN, DT_VERS_1_0,
182 &dt_idops_func, "string(const char *)" },
183 { "bcopy", DT_IDENT_FUNC, 0, DIF_SUBR_BCOPY, DT_ATTR_STABCMN, DT_VERS_1_0,
184 &dt_idops_func, "void(void *, void *, size_t)" },
185 { "breakpoint", DT_IDENT_ACTFUNC, 0, DT_ACT_BREAKPOINT,
186 DT_ATTR_STABCMN, DT_VERS_1_0,
187 &dt_idops_func, "void()" },
188 { "caller", DT_IDENT_SCALAR, 0, DIF_VAR_CALLER, DT_ATTR_STABCMN, DT_VERS_1_0,
189 &dt_idops_type, "uintptr_t" },
190 { "chill", DT_IDENT_ACTFUNC, 0, DT_ACT_CHILL, DT_ATTR_STABCMN, DT_VERS_1_0,
191 &dt_idops_func, "void(int)" },
192 { "cleanpath", DT_IDENT_FUNC, 0, DIF_SUBR_CLEANPATH, DT_ATTR_STABCMN,
193 DT_VERS_1_0, &dt_idops_func, "string(const char *)" },
194 { "clear", DT_IDENT_ACTFUNC, 0, DT_ACT_CLEAR, DT_ATTR_STABCMN, DT_VERS_1_0,
195 &dt_idops_func, "void(...)" },
196 { "commit", DT_IDENT_ACTFUNC, 0, DT_ACT_COMMIT, DT_ATTR_STABCMN, DT_VERS_1_0,
197 &dt_idops_func, "void(int)" },
198 { "copyin", DT_IDENT_FUNC, 0, DIF_SUBR_COPYIN, DT_ATTR_STABCMN, DT_VERS_1_0,
199 &dt_idops_func, "void *(uintptr_t, size_t)" },
200 { "copyinstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINSTR,
201 DT_ATTR_STABCMN, DT_VERS_1_0,
202 &dt_idops_func, "string(uintptr_t, [size_t])" },
203 { "copyinto", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINTO, DT_ATTR_STABCMN,
204 DT_VERS_1_0, &dt_idops_func, "void(uintptr_t, size_t, void *)" },

new/usr/src/lib/libdtrace/common/dt_open.c 3

205 { "copyout", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUT, DT_ATTR_STABCMN, DT_VERS_1_0,
206 &dt_idops_func, "void(void *, uintptr_t, size_t)" },
207 { "copyoutstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUTSTR,
208 DT_ATTR_STABCMN, DT_VERS_1_0,
209 &dt_idops_func, "void(char *, uintptr_t, size_t)" },
210 { "count", DT_IDENT_AGGFUNC, 0, DTRACEAGG_COUNT, DT_ATTR_STABCMN, DT_VERS_1_0,
211 &dt_idops_func, "void()" },
212 { "curthread", DT_IDENT_SCALAR, 0, DIF_VAR_CURTHREAD,
213 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_PRIVATE,
214 DTRACE_CLASS_COMMON }, DT_VERS_1_0,
215 &dt_idops_type, "genunix‘kthread_t *" },
216 { "ddi_pathname", DT_IDENT_FUNC, 0, DIF_SUBR_DDI_PATHNAME,
217 DT_ATTR_EVOLCMN, DT_VERS_1_0,
218 &dt_idops_func, "string(void *, int64_t)" },
219 { "denormalize", DT_IDENT_ACTFUNC, 0, DT_ACT_DENORMALIZE, DT_ATTR_STABCMN,
220 DT_VERS_1_0, &dt_idops_func, "void(...)" },
221 { "dirname", DT_IDENT_FUNC, 0, DIF_SUBR_DIRNAME, DT_ATTR_STABCMN, DT_VERS_1_0,
222 &dt_idops_func, "string(const char *)" },
223 { "discard", DT_IDENT_ACTFUNC, 0, DT_ACT_DISCARD, DT_ATTR_STABCMN, DT_VERS_1_0,
224 &dt_idops_func, "void(int)" },
225 { "epid", DT_IDENT_SCALAR, 0, DIF_VAR_EPID, DT_ATTR_STABCMN, DT_VERS_1_0,
226 &dt_idops_type, "uint_t" },
227 { "errno", DT_IDENT_SCALAR, 0, DIF_VAR_ERRNO, DT_ATTR_STABCMN, DT_VERS_1_0,
228 &dt_idops_type, "int" },
229 { "execname", DT_IDENT_SCALAR, 0, DIF_VAR_EXECNAME,
230 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
231 { "exit", DT_IDENT_ACTFUNC, 0, DT_ACT_EXIT, DT_ATTR_STABCMN, DT_VERS_1_0,
232 &dt_idops_func, "void(int)" },
233 { "freopen", DT_IDENT_ACTFUNC, 0, DT_ACT_FREOPEN, DT_ATTR_STABCMN,
234 DT_VERS_1_1, &dt_idops_func, "void(@, ...)" },
235 { "ftruncate", DT_IDENT_ACTFUNC, 0, DT_ACT_FTRUNCATE, DT_ATTR_STABCMN,
236 DT_VERS_1_0, &dt_idops_func, "void()" },
237 { "func", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN,
238 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
239 { "getmajor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMAJOR,
240 DT_ATTR_EVOLCMN, DT_VERS_1_0,
241 &dt_idops_func, "genunix‘major_t(genunix‘dev_t)" },
242 { "getminor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMINOR,
243 DT_ATTR_EVOLCMN, DT_VERS_1_0,
244 &dt_idops_func, "genunix‘minor_t(genunix‘dev_t)" },
245 { "htonl", DT_IDENT_FUNC, 0, DIF_SUBR_HTONL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
246 &dt_idops_func, "uint32_t(uint32_t)" },
247 { "htonll", DT_IDENT_FUNC, 0, DIF_SUBR_HTONLL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
248 &dt_idops_func, "uint64_t(uint64_t)" },
249 { "htons", DT_IDENT_FUNC, 0, DIF_SUBR_HTONS, DT_ATTR_EVOLCMN, DT_VERS_1_3,
250 &dt_idops_func, "uint16_t(uint16_t)" },
251 { "gid", DT_IDENT_SCALAR, 0, DIF_VAR_GID, DT_ATTR_STABCMN, DT_VERS_1_0,
252 &dt_idops_type, "gid_t" },
253 { "id", DT_IDENT_SCALAR, 0, DIF_VAR_ID, DT_ATTR_STABCMN, DT_VERS_1_0,
254 &dt_idops_type, "uint_t" },
255 { "index", DT_IDENT_FUNC, 0, DIF_SUBR_INDEX, DT_ATTR_STABCMN, DT_VERS_1_1,
256 &dt_idops_func, "int(const char *, const char *, [int])" },
257 { "inet_ntoa", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA, DT_ATTR_STABCMN,
258 DT_VERS_1_5, &dt_idops_func, "string(ipaddr_t *)" },
259 { "inet_ntoa6", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA6, DT_ATTR_STABCMN,
260 DT_VERS_1_5, &dt_idops_func, "string(in6_addr_t *)" },
261 { "inet_ntop", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOP, DT_ATTR_STABCMN,
262 DT_VERS_1_5, &dt_idops_func, "string(int, void *)" },
263 { "ipl", DT_IDENT_SCALAR, 0, DIF_VAR_IPL, DT_ATTR_STABCMN, DT_VERS_1_0,
264 &dt_idops_type, "uint_t" },
265 { "jstack", DT_IDENT_ACTFUNC, 0, DT_ACT_JSTACK, DT_ATTR_STABCMN, DT_VERS_1_0,
266 &dt_idops_func, "stack(...)" },
267 { "lltostr", DT_IDENT_FUNC, 0, DIF_SUBR_LLTOSTR, DT_ATTR_STABCMN, DT_VERS_1_0,
268 &dt_idops_func, "string(int64_t, [int])" },
269 { "llquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LLQUANTIZE, DT_ATTR_STABCMN,
270 DT_VERS_1_7, &dt_idops_func,

new/usr/src/lib/libdtrace/common/dt_open.c 4

271 "void(@, int32_t, int32_t, int32_t, int32_t, ...)" },
272 { "lquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LQUANTIZE,
273 DT_ATTR_STABCMN, DT_VERS_1_0,
274 &dt_idops_func, "void(@, int32_t, int32_t, ...)" },
275 { "max", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MAX, DT_ATTR_STABCMN, DT_VERS_1_0,
276 &dt_idops_func, "void(@)" },
277 { "min", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MIN, DT_ATTR_STABCMN, DT_VERS_1_0,
278 &dt_idops_func, "void(@)" },
279 { "mod", DT_IDENT_ACTFUNC, 0, DT_ACT_MOD, DT_ATTR_STABCMN,
280 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
281 { "msgdsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGDSIZE,
282 DT_ATTR_STABCMN, DT_VERS_1_0,
283 &dt_idops_func, "size_t(mblk_t *)" },
284 { "msgsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGSIZE,
285 DT_ATTR_STABCMN, DT_VERS_1_0,
286 &dt_idops_func, "size_t(mblk_t *)" },
287 { "mutex_owned", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNED,
288 DT_ATTR_EVOLCMN, DT_VERS_1_0,
289 &dt_idops_func, "int(genunix‘kmutex_t *)" },
290 { "mutex_owner", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNER,
291 DT_ATTR_EVOLCMN, DT_VERS_1_0,
292 &dt_idops_func, "genunix‘kthread_t *(genunix‘kmutex_t *)" },
293 { "mutex_type_adaptive", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_ADAPTIVE,
294 DT_ATTR_EVOLCMN, DT_VERS_1_0,
295 &dt_idops_func, "int(genunix‘kmutex_t *)" },
296 { "mutex_type_spin", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_SPIN,
297 DT_ATTR_EVOLCMN, DT_VERS_1_0,
298 &dt_idops_func, "int(genunix‘kmutex_t *)" },
299 { "ntohl", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
300 &dt_idops_func, "uint32_t(uint32_t)" },
301 { "ntohll", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHLL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
302 &dt_idops_func, "uint64_t(uint64_t)" },
303 { "ntohs", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHS, DT_ATTR_EVOLCMN, DT_VERS_1_3,
304 &dt_idops_func, "uint16_t(uint16_t)" },
305 { "normalize", DT_IDENT_ACTFUNC, 0, DT_ACT_NORMALIZE, DT_ATTR_STABCMN,
306 DT_VERS_1_0, &dt_idops_func, "void(...)" },
307 { "panic", DT_IDENT_ACTFUNC, 0, DT_ACT_PANIC, DT_ATTR_STABCMN, DT_VERS_1_0,
308 &dt_idops_func, "void()" },
309 { "pid", DT_IDENT_SCALAR, 0, DIF_VAR_PID, DT_ATTR_STABCMN, DT_VERS_1_0,
310 &dt_idops_type, "pid_t" },
311 { "ppid", DT_IDENT_SCALAR, 0, DIF_VAR_PPID, DT_ATTR_STABCMN, DT_VERS_1_0,
312 &dt_idops_type, "pid_t" },
313 { "print", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINT, DT_ATTR_STABCMN, DT_VERS_1_9,
314 &dt_idops_func, "void(@)" },
315 { "printa", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTA, DT_ATTR_STABCMN, DT_VERS_1_0,
316 &dt_idops_func, "void(@, ...)" },
317 { "printf", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTF, DT_ATTR_STABCMN, DT_VERS_1_0,
318 &dt_idops_func, "void(@, ...)" },
319 { "probefunc", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEFUNC,
320 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
321 { "probemod", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEMOD,
322 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
323 { "probename", DT_IDENT_SCALAR, 0, DIF_VAR_PROBENAME,
324 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
325 { "probeprov", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEPROV,
326 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
327 { "progenyof", DT_IDENT_FUNC, 0, DIF_SUBR_PROGENYOF,
328 DT_ATTR_STABCMN, DT_VERS_1_0,
329 &dt_idops_func, "int(pid_t)" },
330 { "quantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_QUANTIZE,
331 DT_ATTR_STABCMN, DT_VERS_1_0,
332 &dt_idops_func, "void(@, ...)" },
333 { "raise", DT_IDENT_ACTFUNC, 0, DT_ACT_RAISE, DT_ATTR_STABCMN, DT_VERS_1_0,
334 &dt_idops_func, "void(int)" },
335 { "rand", DT_IDENT_FUNC, 0, DIF_SUBR_RAND, DT_ATTR_STABCMN, DT_VERS_1_0,
336 &dt_idops_func, "int()" },

new/usr/src/lib/libdtrace/common/dt_open.c 5

337 { "rindex", DT_IDENT_FUNC, 0, DIF_SUBR_RINDEX, DT_ATTR_STABCMN, DT_VERS_1_1,
338 &dt_idops_func, "int(const char *, const char *, [int])" },
339 { "rw_iswriter", DT_IDENT_FUNC, 0, DIF_SUBR_RW_ISWRITER,
340 DT_ATTR_EVOLCMN, DT_VERS_1_0,
341 &dt_idops_func, "int(genunix‘krwlock_t *)" },
342 { "rw_read_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_READ_HELD,
343 DT_ATTR_EVOLCMN, DT_VERS_1_0,
344 &dt_idops_func, "int(genunix‘krwlock_t *)" },
345 { "rw_write_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_WRITE_HELD,
346 DT_ATTR_EVOLCMN, DT_VERS_1_0,
347 &dt_idops_func, "int(genunix‘krwlock_t *)" },
348 { "self", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0,
349 &dt_idops_type, "void" },
350 { "setopt", DT_IDENT_ACTFUNC, 0, DT_ACT_SETOPT, DT_ATTR_STABCMN,
351 DT_VERS_1_2, &dt_idops_func, "void(const char *, [const char *])" },
352 { "speculate", DT_IDENT_ACTFUNC, 0, DT_ACT_SPECULATE,
353 DT_ATTR_STABCMN, DT_VERS_1_0,
354 &dt_idops_func, "void(int)" },
355 { "speculation", DT_IDENT_FUNC, 0, DIF_SUBR_SPECULATION,
356 DT_ATTR_STABCMN, DT_VERS_1_0,
357 &dt_idops_func, "int()" },
358 { "stack", DT_IDENT_ACTFUNC, 0, DT_ACT_STACK, DT_ATTR_STABCMN, DT_VERS_1_0,
359 &dt_idops_func, "stack(...)" },
360 { "stackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_STACKDEPTH,
361 DT_ATTR_STABCMN, DT_VERS_1_0,
362 &dt_idops_type, "uint32_t" },
363 { "stddev", DT_IDENT_AGGFUNC, 0, DTRACEAGG_STDDEV, DT_ATTR_STABCMN,
364 DT_VERS_1_6, &dt_idops_func, "void(@)" },
365 { "stop", DT_IDENT_ACTFUNC, 0, DT_ACT_STOP, DT_ATTR_STABCMN, DT_VERS_1_0,
366 &dt_idops_func, "void()" },
367 { "strchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRCHR, DT_ATTR_STABCMN, DT_VERS_1_1,
368 &dt_idops_func, "string(const char *, char)" },
369 { "strlen", DT_IDENT_FUNC, 0, DIF_SUBR_STRLEN, DT_ATTR_STABCMN, DT_VERS_1_0,
370 &dt_idops_func, "size_t(const char *)" },
371 { "strjoin", DT_IDENT_FUNC, 0, DIF_SUBR_STRJOIN, DT_ATTR_STABCMN, DT_VERS_1_0,
372 &dt_idops_func, "string(const char *, const char *)" },
373 { "strrchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRRCHR, DT_ATTR_STABCMN, DT_VERS_1_1,
374 &dt_idops_func, "string(const char *, char)" },
375 { "strstr", DT_IDENT_FUNC, 0, DIF_SUBR_STRSTR, DT_ATTR_STABCMN, DT_VERS_1_1,
376 &dt_idops_func, "string(const char *, const char *)" },
377 { "strtok", DT_IDENT_FUNC, 0, DIF_SUBR_STRTOK, DT_ATTR_STABCMN, DT_VERS_1_1,
378 &dt_idops_func, "string(const char *, const char *)" },
379 { "substr", DT_IDENT_FUNC, 0, DIF_SUBR_SUBSTR, DT_ATTR_STABCMN, DT_VERS_1_1,
380 &dt_idops_func, "string(const char *, int, [int])" },
381 { "sum", DT_IDENT_AGGFUNC, 0, DTRACEAGG_SUM, DT_ATTR_STABCMN, DT_VERS_1_0,
382 &dt_idops_func, "void(@)" },
383 { "sym", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN,
384 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
385 { "system", DT_IDENT_ACTFUNC, 0, DT_ACT_SYSTEM, DT_ATTR_STABCMN, DT_VERS_1_0,
386 &dt_idops_func, "void(@, ...)" },
387 { "this", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0,
388 &dt_idops_type, "void" },
389 { "tid", DT_IDENT_SCALAR, 0, DIF_VAR_TID, DT_ATTR_STABCMN, DT_VERS_1_0,
390 &dt_idops_type, "id_t" },
391 { "timestamp", DT_IDENT_SCALAR, 0, DIF_VAR_TIMESTAMP,
392 DT_ATTR_STABCMN, DT_VERS_1_0,
393 &dt_idops_type, "uint64_t" },
394 { "tolower", DT_IDENT_FUNC, 0, DIF_SUBR_TOLOWER, DT_ATTR_STABCMN, DT_VERS_1_8,
395 &dt_idops_func, "string(const char *)" },
396 { "toupper", DT_IDENT_FUNC, 0, DIF_SUBR_TOUPPER, DT_ATTR_STABCMN, DT_VERS_1_8,
397 &dt_idops_func, "string(const char *)" },
398 { "trace", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACE, DT_ATTR_STABCMN, DT_VERS_1_0,
399 &dt_idops_func, "void(@)" },
400 { "tracemem", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACEMEM,
401 DT_ATTR_STABCMN, DT_VERS_1_0,
402 &dt_idops_func, "void(@, size_t, ...)" },

new/usr/src/lib/libdtrace/common/dt_open.c 6

403 { "trunc", DT_IDENT_ACTFUNC, 0, DT_ACT_TRUNC, DT_ATTR_STABCMN,
404 DT_VERS_1_0, &dt_idops_func, "void(...)" },
405 { "uaddr", DT_IDENT_ACTFUNC, 0, DT_ACT_UADDR, DT_ATTR_STABCMN,
406 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
407 { "ucaller", DT_IDENT_SCALAR, 0, DIF_VAR_UCALLER, DT_ATTR_STABCMN,
408 DT_VERS_1_2, &dt_idops_type, "uint64_t" },
409 { "ufunc", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN,
410 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
411 { "uid", DT_IDENT_SCALAR, 0, DIF_VAR_UID, DT_ATTR_STABCMN, DT_VERS_1_0,
412 &dt_idops_type, "uid_t" },
413 { "umod", DT_IDENT_ACTFUNC, 0, DT_ACT_UMOD, DT_ATTR_STABCMN,
414 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
415 { "uregs", DT_IDENT_ARRAY, 0, DIF_VAR_UREGS, DT_ATTR_STABCMN, DT_VERS_1_0,
416 &dt_idops_regs, NULL },
417 { "ustack", DT_IDENT_ACTFUNC, 0, DT_ACT_USTACK, DT_ATTR_STABCMN, DT_VERS_1_0,
418 &dt_idops_func, "stack(...)" },
419 { "ustackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_USTACKDEPTH,
420 DT_ATTR_STABCMN, DT_VERS_1_2,
421 &dt_idops_type, "uint32_t" },
422 { "usym", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN,
423 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
424 { "vmregs", DT_IDENT_ARRAY, 0, DIF_VAR_VMREGS, DT_ATTR_STABCMN, DT_VERS_1_7,
425 &dt_idops_regs, NULL },
426 { "vtimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_VTIMESTAMP,
427 DT_ATTR_STABCMN, DT_VERS_1_0,
428 &dt_idops_type, "uint64_t" },
429 { "walltimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_WALLTIMESTAMP,
430 DT_ATTR_STABCMN, DT_VERS_1_0,
431 &dt_idops_type, "int64_t" },
432 { "zonename", DT_IDENT_SCALAR, 0, DIF_VAR_ZONENAME,
433 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
434 { NULL, 0, 0, 0, { 0, 0, 0 }, 0, NULL, NULL }
435 };

437 /*
438 * Tables of ILP32 intrinsic integer and floating-point type templates to use
439 * to populate the dynamic "C" CTF type container.
440 */
441 static const dt_intrinsic_t _dtrace_intrinsics_32[] = {
442 { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
443 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
444 { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
445 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
446 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
447 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
448 { "long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
449 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
450 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
451 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
452 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
453 { "signed long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
454 { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
455 { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
456 { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
457 { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
458 { "unsigned long", { 0, 0, 32 }, CTF_K_INTEGER },
459 { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
460 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
461 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
462 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
463 { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
464 { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
465 { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
466 { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
467 { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
468 { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },

new/usr/src/lib/libdtrace/common/dt_open.c 7

469 { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
470 { NULL, { 0, 0, 0 }, 0 }
471 };

473 /*
474 * Tables of LP64 intrinsic integer and floating-point type templates to use
475 * to populate the dynamic "C" CTF type container.
476 */
477 static const dt_intrinsic_t _dtrace_intrinsics_64[] = {
478 { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
479 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
480 { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
481 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
482 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
483 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
484 { "long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
485 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
486 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
487 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
488 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
489 { "signed long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
490 { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
491 { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
492 { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
493 { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
494 { "unsigned long", { 0, 0, 64 }, CTF_K_INTEGER },
495 { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
496 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
497 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
498 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
499 { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
500 { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
501 { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
502 { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
503 { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
504 { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
505 { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
506 { NULL, { 0, 0, 0 }, 0 }
507 };

509 /*
510 * Tables of ILP32 typedefs to use to populate the dynamic "D" CTF container.
511 * These aliases ensure that D definitions can use typical <sys/types.h> names.
512 */
513 static const dt_typedef_t _dtrace_typedefs_32[] = {
514 { "char", "int8_t" },
515 { "short", "int16_t" },
516 { "int", "int32_t" },
517 { "long long", "int64_t" },
518 { "int", "intptr_t" },
519 { "int", "ssize_t" },
520 { "unsigned char", "uint8_t" },
521 { "unsigned short", "uint16_t" },
522 { "unsigned", "uint32_t" },
523 { "unsigned long long", "uint64_t" },
524 { "unsigned char", "uchar_t" },
525 { "unsigned short", "ushort_t" },
526 { "unsigned", "uint_t" },
527 { "unsigned long", "ulong_t" },
528 { "unsigned long long", "u_longlong_t" },
529 { "int", "ptrdiff_t" },
530 { "unsigned", "uintptr_t" },
531 { "unsigned", "size_t" },
532 { "long", "id_t" },
533 { "long", "pid_t" },
534 { NULL, NULL }

new/usr/src/lib/libdtrace/common/dt_open.c 8

535 };

537 /*
538 * Tables of LP64 typedefs to use to populate the dynamic "D" CTF container.
539 * These aliases ensure that D definitions can use typical <sys/types.h> names.
540 */
541 static const dt_typedef_t _dtrace_typedefs_64[] = {
542 { "char", "int8_t" },
543 { "short", "int16_t" },
544 { "int", "int32_t" },
545 { "long", "int64_t" },
546 { "long", "intptr_t" },
547 { "long", "ssize_t" },
548 { "unsigned char", "uint8_t" },
549 { "unsigned short", "uint16_t" },
550 { "unsigned", "uint32_t" },
551 { "unsigned long", "uint64_t" },
552 { "unsigned char", "uchar_t" },
553 { "unsigned short", "ushort_t" },
554 { "unsigned", "uint_t" },
555 { "unsigned long", "ulong_t" },
556 { "unsigned long long", "u_longlong_t" },
557 { "long", "ptrdiff_t" },
558 { "unsigned long", "uintptr_t" },
559 { "unsigned long", "size_t" },
560 { "int", "id_t" },
561 { "int", "pid_t" },
562 { NULL, NULL }
563 };

565 /*
566 * Tables of ILP32 integer type templates used to populate the dtp->dt_ints[]
567 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
568 */
569 static const dt_intdesc_t _dtrace_ints_32[] = {
570 { "int", NULL, CTF_ERR, 0x7fffffffULL },
571 { "unsigned int", NULL, CTF_ERR, 0xffffffffULL },
572 { "long", NULL, CTF_ERR, 0x7fffffffULL },
573 { "unsigned long", NULL, CTF_ERR, 0xffffffffULL },
574 { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
575 { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL }
576 };

578 /*
579 * Tables of LP64 integer type templates used to populate the dtp->dt_ints[]
580 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
581 */
582 static const dt_intdesc_t _dtrace_ints_64[] = {
583 { "int", NULL, CTF_ERR, 0x7fffffffULL },
584 { "unsigned int", NULL, CTF_ERR, 0xffffffffULL },
585 { "long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
586 { "unsigned long", NULL, CTF_ERR, 0xffffffffffffffffULL },
587 { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
588 { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL }
589 };

591 /*
592 * Table of macro variable templates used to populate the macro identifier hash
593 * when a new dtrace client open occurs. Values are set by dtrace_update().
594 */
595 static const dt_ident_t _dtrace_macros[] = {
596 { "egid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
597 { "euid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
598 { "gid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
599 { "pid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
600 { "pgid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },

new/usr/src/lib/libdtrace/common/dt_open.c 9

601 { "ppid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
602 { "projid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
603 { "sid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
604 { "taskid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
605 { "target", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
606 { "uid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
607 { NULL, 0, 0, 0, { 0, 0, 0 }, 0 }
608 };

610 /*
611 * Hard-wired definition string to be compiled and cached every time a new
612 * DTrace library handle is initialized. This string should only be used to
613 * contain definitions that should be present regardless of DTRACE_O_NOLIBS.
614 */
615 static const char _dtrace_hardwire[] = "\
616 inline long NULL = 0; \n\
617 #pragma D binding \"1.0\" NULL\n\
618 ";

620 /*
621 * Default DTrace configuration to use when opening libdtrace DTRACE_O_NODEV.
622 * If DTRACE_O_NODEV is not set, we load the configuration from the kernel.
623 * The use of CTF_MODEL_NATIVE is more subtle than it might appear: we are
624 * relying on the fact that when running dtrace(1M), isaexec will invoke the
625 * binary with the same bitness as the kernel, which is what we want by default
626 * when generating our DIF. The user can override the choice using oflags.
627 */
628 static const dtrace_conf_t _dtrace_conf = {
629 DIF_VERSION, /* dtc_difversion */
630 DIF_DIR_NREGS, /* dtc_difintregs */
631 DIF_DTR_NREGS, /* dtc_diftupregs */
632 CTF_MODEL_NATIVE /* dtc_ctfmodel */
633 };

635 const dtrace_attribute_t _dtrace_maxattr = {
636 DTRACE_STABILITY_MAX,
637 DTRACE_STABILITY_MAX,
638 DTRACE_CLASS_MAX
639 };

641 const dtrace_attribute_t _dtrace_defattr = {
642 DTRACE_STABILITY_STABLE,
643 DTRACE_STABILITY_STABLE,
644 DTRACE_CLASS_COMMON
645 };

647 const dtrace_attribute_t _dtrace_symattr = {
648 DTRACE_STABILITY_PRIVATE,
649 DTRACE_STABILITY_PRIVATE,
650 DTRACE_CLASS_UNKNOWN
651 };

653 const dtrace_attribute_t _dtrace_typattr = {
654 DTRACE_STABILITY_PRIVATE,
655 DTRACE_STABILITY_PRIVATE,
656 DTRACE_CLASS_UNKNOWN
657 };

659 const dtrace_attribute_t _dtrace_prvattr = {
660 DTRACE_STABILITY_PRIVATE,
661 DTRACE_STABILITY_PRIVATE,
662 DTRACE_CLASS_UNKNOWN
663 };

665 const dtrace_pattr_t _dtrace_prvdesc = {
666 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },

new/usr/src/lib/libdtrace/common/dt_open.c 10

667 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
668 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
669 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
670 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
671 };

673 const char *_dtrace_defcpp = "/usr/ccs/lib/cpp"; /* default cpp(1) to invoke */
674 const char *_dtrace_defld = "/usr/ccs/bin/ld"; /* default ld(1) to invoke */

676 const char *_dtrace_libdir = "/usr/lib/dtrace"; /* default library directory */
677 const char *_dtrace_provdir = "/dev/dtrace/provider"; /* provider directory */

679 int _dtrace_strbuckets = 211; /* default number of hash buckets (prime) */
680 int _dtrace_intbuckets = 256; /* default number of integer buckets (Pof2) */
681 uint_t _dtrace_strsize = 256; /* default size of string intrinsic type */
682 uint_t _dtrace_stkindent = 14; /* default whitespace indent for stack/ustack */
683 uint_t _dtrace_pidbuckets = 64; /* default number of pid hash buckets */
684 uint_t _dtrace_pidlrulim = 8; /* default number of pid handles to cache */
685 size_t _dtrace_bufsize = 512; /* default dt_buf_create() size */
686 int _dtrace_argmax = 32; /* default maximum number of probe arguments */

688 int _dtrace_debug = 0; /* debug messages enabled (off) */
689 const char *const _dtrace_version = DT_VERS_STRING; /* API version string */
690 int _dtrace_rdvers = RD_VERSION; /* rtld_db feature version */

692 typedef struct dt_fdlist {
693 int *df_fds; /* array of provider driver file descriptors */
694 uint_t df_ents; /* number of valid elements in df_fds[] */
695 uint_t df_size; /* size of df_fds[] */
696 } dt_fdlist_t;

698 #pragma init(_dtrace_init)
699 void
700 _dtrace_init(void)
701 {
702 _dtrace_debug = getenv("DTRACE_DEBUG") != NULL;

704 for (; _dtrace_rdvers > 0; _dtrace_rdvers--) {
705 if (rd_init(_dtrace_rdvers) == RD_OK)
706 break;
707 }
708 }

710 static dtrace_hdl_t *
711 set_open_errno(dtrace_hdl_t *dtp, int *errp, int err)
712 {
713 if (dtp != NULL)
714 dtrace_close(dtp);
715 if (errp != NULL)
716 *errp = err;
717 return (NULL);
718 }

720 static void
721 dt_provmod_open(dt_provmod_t **provmod, dt_fdlist_t *dfp)
722 {
723 dt_provmod_t *prov;
724 char path[PATH_MAX];
725 struct dirent *dp, *ep;
726 DIR *dirp;
727 int fd;

729 if ((dirp = opendir(_dtrace_provdir)) == NULL)
730 return; /* failed to open directory; just skip it */

732 ep = alloca(sizeof (struct dirent) + PATH_MAX + 1);

new/usr/src/lib/libdtrace/common/dt_open.c 11

733 bzero(ep, sizeof (struct dirent) + PATH_MAX + 1);

735 while (readdir_r(dirp, ep, &dp) == 0 && dp != NULL) {
736 if (dp->d_name[0] == ’.’)
737 continue; /* skip "." and ".." */

739 if (dfp->df_ents == dfp->df_size) {
740 uint_t size = dfp->df_size ? dfp->df_size * 2 : 16;
741 int *fds = realloc(dfp->df_fds, size * sizeof (int));

743 if (fds == NULL)
744 break; /* skip the rest of this directory */

746 dfp->df_fds = fds;
747 dfp->df_size = size;
748 }

750 (void) snprintf(path, sizeof (path), "%s/%s",
751 _dtrace_provdir, dp->d_name);

753 if ((fd = open(path, O_RDONLY)) == -1)
754 continue; /* failed to open driver; just skip it */

756 if (((prov = malloc(sizeof (dt_provmod_t))) == NULL) ||
757 (prov->dp_name = malloc(strlen(dp->d_name) + 1)) == NULL) {
758 free(prov);
759 (void) close(fd);
760 break;
761 }

763 (void) strcpy(prov->dp_name, dp->d_name);
764 prov->dp_next = *provmod;
765 *provmod = prov;

767 dt_dprintf("opened provider %s\n", dp->d_name);
768 dfp->df_fds[dfp->df_ents++] = fd;
769 }

771 (void) closedir(dirp);
772 }

774 static void
775 dt_provmod_destroy(dt_provmod_t **provmod)
776 {
777 dt_provmod_t *next, *current;

779 for (current = *provmod; current != NULL; current = next) {
780 next = current->dp_next;
781 free(current->dp_name);
782 free(current);
783 }

785 *provmod = NULL;
786 }

788 static const char *
789 dt_get_sysinfo(int cmd, char *buf, size_t len)
790 {
791 ssize_t rv = sysinfo(cmd, buf, len);
792 char *p = buf;

794 if (rv < 0 || rv > len)
795 (void) snprintf(buf, len, "%s", "Unknown");

797 while ((p = strchr(p, ’.’)) != NULL)
798 *p++ = ’_’;

new/usr/src/lib/libdtrace/common/dt_open.c 12

800 return (buf);
801 }

803 static dtrace_hdl_t *
804 dt_vopen(int version, int flags, int *errp,
805 const dtrace_vector_t *vector, void *arg)
806 {
807 dtrace_hdl_t *dtp = NULL;
808 int dtfd = -1, ftfd = -1, fterr = 0;
809 dtrace_prog_t *pgp;
810 dt_module_t *dmp;
811 dt_provmod_t *provmod = NULL;
812 int i, err;
813 struct rlimit rl;

815 const dt_intrinsic_t *dinp;
816 const dt_typedef_t *dtyp;
817 const dt_ident_t *idp;

819 dtrace_typeinfo_t dtt;
820 ctf_funcinfo_t ctc;
821 ctf_arinfo_t ctr;

823 dt_fdlist_t df = { NULL, 0, 0 };

825 char isadef[32], utsdef[32];
826 char s1[64], s2[64];

828 if (version <= 0)
829 return (set_open_errno(dtp, errp, EINVAL));

831 if (version > DTRACE_VERSION)
832 return (set_open_errno(dtp, errp, EDT_VERSION));

834 if (version < DTRACE_VERSION) {
835 /*
836 * Currently, increasing the library version number is used to
837 * denote a binary incompatible change. That is, a consumer
838 * of the library cannot run on a version of the library with
839 * a higher DTRACE_VERSION number than the consumer compiled
840 * against. Once the library API has been committed to,
841 * backwards binary compatibility will be required; at that
842 * time, this check should change to return EDT_OVERSION only
843 * if the specified version number is less than the version
844 * number at the time of interface commitment.
845 */
846 return (set_open_errno(dtp, errp, EDT_OVERSION));
847 }

849 if (flags & ~DTRACE_O_MASK)
850 return (set_open_errno(dtp, errp, EINVAL));

852 if ((flags & DTRACE_O_LP64) && (flags & DTRACE_O_ILP32))
853 return (set_open_errno(dtp, errp, EINVAL));

855 if (vector == NULL && arg != NULL)
856 return (set_open_errno(dtp, errp, EINVAL));

858 if (elf_version(EV_CURRENT) == EV_NONE)
859 return (set_open_errno(dtp, errp, EDT_ELFVERSION));

861 if (vector != NULL || (flags & DTRACE_O_NODEV))
862 goto alloc; /* do not attempt to open dtrace device */

864 /*

new/usr/src/lib/libdtrace/common/dt_open.c 13

865 * Before we get going, crank our limit on file descriptors up to the
866 * hard limit. This is to allow for the fact that libproc keeps file
867 * descriptors to objects open for the lifetime of the proc handle;
868 * without raising our hard limit, we would have an acceptably small
869 * bound on the number of processes that we could concurrently
870 * instrument with the pid provider.
871 */
872 if (getrlimit(RLIMIT_NOFILE, &rl) == 0) {
873 rl.rlim_cur = rl.rlim_max;
874 (void) setrlimit(RLIMIT_NOFILE, &rl);
875 }

877 /*
878 * Get the device path of each of the providers. We hold them open
879 * in the df.df_fds list until we open the DTrace driver itself,
880 * allowing us to see all of the probes provided on this system. Once
881 * we have the DTrace driver open, we can safely close all the providers
882 * now that they have registered with the framework.
883 */
884 dt_provmod_open(&provmod, &df);

886 dtfd = open("/dev/dtrace/dtrace", O_RDWR);
887 err = errno; /* save errno from opening dtfd */

889 ftfd = open("/dev/dtrace/provider/fasttrap", O_RDWR);
890 fterr = ftfd == -1 ? errno : 0; /* save errno from open ftfd */

892 while (df.df_ents-- != 0)
893 (void) close(df.df_fds[df.df_ents]);

895 free(df.df_fds);

897 /*
898 * If we failed to open the dtrace device, fail dtrace_open().
899 * We convert some kernel errnos to custom libdtrace errnos to
900 * improve the resulting message from the usual strerror().
901 */
902 if (dtfd == -1) {
903 dt_provmod_destroy(&provmod);
904 switch (err) {
905 case ENOENT:
906 err = EDT_NOENT;
907 break;
908 case EBUSY:
909 err = EDT_BUSY;
910 break;
911 case EACCES:
912 err = EDT_ACCESS;
913 break;
914 }
915 return (set_open_errno(dtp, errp, err));
916 }

918 (void) fcntl(dtfd, F_SETFD, FD_CLOEXEC);
919 (void) fcntl(ftfd, F_SETFD, FD_CLOEXEC);

921 alloc:
922 if ((dtp = malloc(sizeof (dtrace_hdl_t))) == NULL)
923 return (set_open_errno(dtp, errp, EDT_NOMEM));

925 bzero(dtp, sizeof (dtrace_hdl_t));
926 dtp->dt_oflags = flags;
927 dtp->dt_prcmode = DT_PROC_STOP_PREINIT;
928 dtp->dt_linkmode = DT_LINK_KERNEL;
929 dtp->dt_linktype = DT_LTYP_ELF;
930 dtp->dt_xlatemode = DT_XL_STATIC;

new/usr/src/lib/libdtrace/common/dt_open.c 14

931 dtp->dt_stdcmode = DT_STDC_XA;
932 dtp->dt_version = version;
933 dtp->dt_fd = dtfd;
934 dtp->dt_ftfd = ftfd;
935 dtp->dt_fterr = fterr;
936 dtp->dt_cdefs_fd = -1;
937 dtp->dt_ddefs_fd = -1;
938 dtp->dt_stdout_fd = -1;
939 dtp->dt_modbuckets = _dtrace_strbuckets;
940 dtp->dt_mods = calloc(dtp->dt_modbuckets, sizeof (dt_module_t *));
941 dtp->dt_provbuckets = _dtrace_strbuckets;
942 dtp->dt_provs = calloc(dtp->dt_provbuckets, sizeof (dt_provider_t *));
943 dt_proc_hash_create(dtp);
944 dtp->dt_vmax = DT_VERS_LATEST;
945 dtp->dt_cpp_path = strdup(_dtrace_defcpp);
946 dtp->dt_cpp_argv = malloc(sizeof (char *));
947 dtp->dt_cpp_argc = 1;
948 dtp->dt_cpp_args = 1;
949 dtp->dt_ld_path = strdup(_dtrace_defld);
950 dtp->dt_provmod = provmod;
951 dtp->dt_vector = vector;
952 dtp->dt_varg = arg;
953 dt_dof_init(dtp);
954 (void) uname(&dtp->dt_uts);

956 if (dtp->dt_mods == NULL || dtp->dt_provs == NULL ||
957 dtp->dt_procs == NULL || dtp->dt_ld_path == NULL ||
958 dtp->dt_cpp_path == NULL || dtp->dt_cpp_argv == NULL)
959 return (set_open_errno(dtp, errp, EDT_NOMEM));

961 for (i = 0; i < DTRACEOPT_MAX; i++)
962 dtp->dt_options[i] = DTRACEOPT_UNSET;

964 dtp->dt_cpp_argv[0] = (char *)strbasename(dtp->dt_cpp_path);

966 (void) snprintf(isadef, sizeof (isadef), "-D__SUNW_D_%u",
967 (uint_t)(sizeof (void *) * NBBY));

969 (void) snprintf(utsdef, sizeof (utsdef), "-D__%s_%s",
970 dt_get_sysinfo(SI_SYSNAME, s1, sizeof (s1)),
971 dt_get_sysinfo(SI_RELEASE, s2, sizeof (s2)));

973 if (dt_cpp_add_arg(dtp, "-D__sun") == NULL ||
974 dt_cpp_add_arg(dtp, "-D__unix") == NULL ||
975 dt_cpp_add_arg(dtp, "-D__SVR4") == NULL ||
976 dt_cpp_add_arg(dtp, "-D__SUNW_D=1") == NULL ||
977 dt_cpp_add_arg(dtp, isadef) == NULL ||
978 dt_cpp_add_arg(dtp, utsdef) == NULL)
979 return (set_open_errno(dtp, errp, EDT_NOMEM));

981 if (flags & DTRACE_O_NODEV)
982 bcopy(&_dtrace_conf, &dtp->dt_conf, sizeof (_dtrace_conf));
983 else if (dt_ioctl(dtp, DTRACEIOC_CONF, &dtp->dt_conf) != 0)
984 return (set_open_errno(dtp, errp, errno));

986 if (flags & DTRACE_O_LP64)
987 dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_LP64;
988 else if (flags & DTRACE_O_ILP32)
989 dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_ILP32;

991 #ifdef __sparc
992 /*
993 * On SPARC systems, __sparc is always defined for <sys/isa_defs.h>
994 * and __sparcv9 is defined if we are doing a 64-bit compile.
995 */
996 if (dt_cpp_add_arg(dtp, "-D__sparc") == NULL)

new/usr/src/lib/libdtrace/common/dt_open.c 15

997 return (set_open_errno(dtp, errp, EDT_NOMEM));

999 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64 &&
1000 dt_cpp_add_arg(dtp, "-D__sparcv9") == NULL)
1001 return (set_open_errno(dtp, errp, EDT_NOMEM));
1002 #endif

1004 #ifdef __x86
1005 /*
1006 * On x86 systems, __i386 is defined for <sys/isa_defs.h> for 32-bit
1007 * compiles and __amd64 is defined for 64-bit compiles. Unlike SPARC,
1008 * they are defined exclusive of one another (see PSARC 2004/619).
1009 */
1010 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64) {
1011 if (dt_cpp_add_arg(dtp, "-D__amd64") == NULL)
1012 return (set_open_errno(dtp, errp, EDT_NOMEM));
1013 } else {
1014 if (dt_cpp_add_arg(dtp, "-D__i386") == NULL)
1015 return (set_open_errno(dtp, errp, EDT_NOMEM));
1016 }
1017 #endif

1019 if (dtp->dt_conf.dtc_difversion < DIF_VERSION)
1020 return (set_open_errno(dtp, errp, EDT_DIFVERS));

1022 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32)
1023 bcopy(_dtrace_ints_32, dtp->dt_ints, sizeof (_dtrace_ints_32));
1024 else
1025 bcopy(_dtrace_ints_64, dtp->dt_ints, sizeof (_dtrace_ints_64));

1027 dtp->dt_macros = dt_idhash_create("macro", NULL, 0, UINT_MAX);
1028 dtp->dt_aggs = dt_idhash_create("aggregation", NULL,
1029 DTRACE_AGGVARIDNONE + 1, UINT_MAX);

1031 dtp->dt_globals = dt_idhash_create("global", _dtrace_globals,
1032 DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);

1034 dtp->dt_tls = dt_idhash_create("thread local", NULL,
1035 DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);

1037 if (dtp->dt_macros == NULL || dtp->dt_aggs == NULL ||
1038 dtp->dt_globals == NULL || dtp->dt_tls == NULL)
1039 return (set_open_errno(dtp, errp, EDT_NOMEM));

1041 /*
1042 * Populate the dt_macros identifier hash table by hand: we can’t use
1043 * the dt_idhash_populate() mechanism because we’re not yet compiling
1044 * and dtrace_update() needs to immediately reference these idents.
1045 */
1046 for (idp = _dtrace_macros; idp->di_name != NULL; idp++) {
1047 if (dt_idhash_insert(dtp->dt_macros, idp->di_name,
1048 idp->di_kind, idp->di_flags, idp->di_id, idp->di_attr,
1049 idp->di_vers, idp->di_ops ? idp->di_ops : &dt_idops_thaw,
1050 idp->di_iarg, 0) == NULL)
1051 return (set_open_errno(dtp, errp, EDT_NOMEM));
1052 }

1054 /*
1055 * Update the module list using /system/object and load the values for
1056 * the macro variable definitions according to the current process.
1057 */
1058 dtrace_update(dtp);

1060 /*
1061 * Select the intrinsics and typedefs we want based on the data model.
1062 * The intrinsics are under "C". The typedefs are added under "D".

new/usr/src/lib/libdtrace/common/dt_open.c 16

1063 */
1064 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32) {
1065 dinp = _dtrace_intrinsics_32;
1066 dtyp = _dtrace_typedefs_32;
1067 } else {
1068 dinp = _dtrace_intrinsics_64;
1069 dtyp = _dtrace_typedefs_64;
1070 }

1072 /*
1073 * Create a dynamic CTF container under the "C" scope for intrinsic
1074 * types and types defined in ANSI-C header files that are included.
1075 */
1076 if ((dmp = dtp->dt_cdefs = dt_module_create(dtp, "C")) == NULL)
1077 return (set_open_errno(dtp, errp, EDT_NOMEM));

1079 if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL)
1080 return (set_open_errno(dtp, errp, EDT_CTF));

1082 dt_dprintf("created CTF container for %s (%p)\n",
1083 dmp->dm_name, (void *)dmp->dm_ctfp);

1085 (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel);
1086 ctf_setspecific(dmp->dm_ctfp, dmp);

1088 dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */
1089 dmp->dm_modid = -1; /* no module ID */

1091 /*
1092 * Fill the dynamic "C" CTF container with all of the intrinsic
1093 * integer and floating-point types appropriate for this data model.
1094 */
1095 for (; dinp->din_name != NULL; dinp++) {
1096 if (dinp->din_kind == CTF_K_INTEGER) {
1097 err = ctf_add_integer(dmp->dm_ctfp, CTF_ADD_ROOT,
1098 dinp->din_name, &dinp->din_data);
1099 } else {
1100 err = ctf_add_float(dmp->dm_ctfp, CTF_ADD_ROOT,
1101 dinp->din_name, &dinp->din_data);
1102 }

1104 if (err == CTF_ERR) {
1105 dt_dprintf("failed to add %s to C container: %s\n",
1106 dinp->din_name, ctf_errmsg(
1107 ctf_errno(dmp->dm_ctfp)));
1108 return (set_open_errno(dtp, errp, EDT_CTF));
1109 }
1110 }

1112 if (ctf_update(dmp->dm_ctfp) != 0) {
1113 dt_dprintf("failed to update C container: %s\n",
1114 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1115 return (set_open_errno(dtp, errp, EDT_CTF));
1116 }

1118 /*
1119 * Add intrinsic pointer types that are needed to initialize printf
1120 * format dictionary types (see table in dt_printf.c).
1121 */
1122 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1123 ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1125 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1126 ctf_lookup_by_name(dmp->dm_ctfp, "char"));

1128 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,

new/usr/src/lib/libdtrace/common/dt_open.c 17

1129 ctf_lookup_by_name(dmp->dm_ctfp, "int"));

1131 if (ctf_update(dmp->dm_ctfp) != 0) {
1132 dt_dprintf("failed to update C container: %s\n",
1133 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1134 return (set_open_errno(dtp, errp, EDT_CTF));
1135 }

1137 /*
1138 * Create a dynamic CTF container under the "D" scope for types that
1139 * are defined by the D program itself or on-the-fly by the D compiler.
1140 * The "D" CTF container is a child of the "C" CTF container.
1141 */
1142 if ((dmp = dtp->dt_ddefs = dt_module_create(dtp, "D")) == NULL)
1143 return (set_open_errno(dtp, errp, EDT_NOMEM));

1145 if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL)
1146 return (set_open_errno(dtp, errp, EDT_CTF));

1148 dt_dprintf("created CTF container for %s (%p)\n",
1149 dmp->dm_name, (void *)dmp->dm_ctfp);

1151 (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel);
1152 ctf_setspecific(dmp->dm_ctfp, dmp);

1154 dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */
1155 dmp->dm_modid = -1; /* no module ID */

1157 if (ctf_import(dmp->dm_ctfp, dtp->dt_cdefs->dm_ctfp) == CTF_ERR) {
1158 dt_dprintf("failed to import D parent container: %s\n",
1159 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1160 return (set_open_errno(dtp, errp, EDT_CTF));
1161 }

1163 /*
1164 * Fill the dynamic "D" CTF container with all of the built-in typedefs
1165 * that we need to use for our D variable and function definitions.
1166 * This ensures that basic inttypes.h names are always available to us.
1167 */
1168 for (; dtyp->dty_src != NULL; dtyp++) {
1169 if (ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1170 dtyp->dty_dst, ctf_lookup_by_name(dmp->dm_ctfp,
1171 dtyp->dty_src)) == CTF_ERR) {
1172 dt_dprintf("failed to add typedef %s %s to D "
1173 "container: %s", dtyp->dty_src, dtyp->dty_dst,
1174 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1175 return (set_open_errno(dtp, errp, EDT_CTF));
1176 }
1177 }

1179 /*
1180 * Insert a CTF ID corresponding to a pointer to a type of kind
1181 * CTF_K_FUNCTION we can use in the compiler for function pointers.
1182 * CTF treats all function pointers as "int (*)()" so we only need one.
1183 */
1184 ctc.ctc_return = ctf_lookup_by_name(dmp->dm_ctfp, "int");
1185 ctc.ctc_argc = 0;
1186 ctc.ctc_flags = 0;

1188 dtp->dt_type_func = ctf_add_function(dmp->dm_ctfp,
1189 CTF_ADD_ROOT, &ctc, NULL);

1191 dtp->dt_type_fptr = ctf_add_pointer(dmp->dm_ctfp,
1192 CTF_ADD_ROOT, dtp->dt_type_func);

1194 /*

new/usr/src/lib/libdtrace/common/dt_open.c 18

1195 * We also insert CTF definitions for the special D intrinsic types
1196 * string and <DYN> into the D container. The string type is added
1197 * as a typedef of char[n]. The <DYN> type is an alias for void.
1198 * We compare types to these special CTF ids throughout the compiler.
1199 */
1200 ctr.ctr_contents = ctf_lookup_by_name(dmp->dm_ctfp, "char");
1201 ctr.ctr_index = ctf_lookup_by_name(dmp->dm_ctfp, "long");
1202 ctr.ctr_nelems = _dtrace_strsize;

1204 dtp->dt_type_str = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1205 "string", ctf_add_array(dmp->dm_ctfp, CTF_ADD_ROOT, &ctr));

1207 dtp->dt_type_dyn = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1208 "<DYN>", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1210 dtp->dt_type_stack = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1211 "stack", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1213 dtp->dt_type_symaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1214 "_symaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1216 dtp->dt_type_usymaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1217 "_usymaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1219 if (dtp->dt_type_func == CTF_ERR || dtp->dt_type_fptr == CTF_ERR ||
1220 dtp->dt_type_str == CTF_ERR || dtp->dt_type_dyn == CTF_ERR ||
1221 dtp->dt_type_stack == CTF_ERR || dtp->dt_type_symaddr == CTF_ERR ||
1222 dtp->dt_type_usymaddr == CTF_ERR) {
1223 dt_dprintf("failed to add intrinsic to D container: %s\n",
1224 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1225 return (set_open_errno(dtp, errp, EDT_CTF));
1226 }

1228 if (ctf_update(dmp->dm_ctfp) != 0) {
1229 dt_dprintf("failed update D container: %s\n",
1230 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1231 return (set_open_errno(dtp, errp, EDT_CTF));
1232 }

1234 /*
1235 * Initialize the integer description table used to convert integer
1236 * constants to the appropriate types. Refer to the comments above
1237 * dt_node_int() for a complete description of how this table is used.
1238 */
1239 for (i = 0; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i++) {
1240 if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_EVERY,
1241 dtp->dt_ints[i].did_name, &dtt) != 0) {
1242 dt_dprintf("failed to lookup integer type %s: %s\n",
1243 dtp->dt_ints[i].did_name,
1244 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1245 return (set_open_errno(dtp, errp, dtp->dt_errno));
1246 }
1247 dtp->dt_ints[i].did_ctfp = dtt.dtt_ctfp;
1248 dtp->dt_ints[i].did_type = dtt.dtt_type;
1249 }

1251 /*
1252 * Now that we’ve created the "C" and "D" containers, move them to the
1253 * start of the module list so that these types and symbols are found
1254 * first (for stability) when iterating through the module list.
1255 */
1256 dt_list_delete(&dtp->dt_modlist, dtp->dt_ddefs);
1257 dt_list_prepend(&dtp->dt_modlist, dtp->dt_ddefs);

1259 dt_list_delete(&dtp->dt_modlist, dtp->dt_cdefs);
1260 dt_list_prepend(&dtp->dt_modlist, dtp->dt_cdefs);

new/usr/src/lib/libdtrace/common/dt_open.c 19

1262 if (dt_pfdict_create(dtp) == -1)
1263 return (set_open_errno(dtp, errp, dtp->dt_errno));

1265 /*
1266 * If we are opening libdtrace DTRACE_O_NODEV enable C_ZDEFS by default
1267 * because without /dev/dtrace open, we will not be able to load the
1268 * names and attributes of any providers or probes from the kernel.
1269 */
1270 if (flags & DTRACE_O_NODEV)
1271 dtp->dt_cflags |= DTRACE_C_ZDEFS;

1273 /*
1274 * Load hard-wired inlines into the definition cache by calling the
1275 * compiler on the raw definition string defined above.
1276 */
1277 if ((pgp = dtrace_program_strcompile(dtp, _dtrace_hardwire,
1278 DTRACE_PROBESPEC_NONE, DTRACE_C_EMPTY, 0, NULL)) == NULL) {
1279 dt_dprintf("failed to load hard-wired definitions: %s\n",
1280 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1281 return (set_open_errno(dtp, errp, EDT_HARDWIRE));
1282 }

1284 dt_program_destroy(dtp, pgp);

1286 /*
1287 * Set up the default DTrace library path. Once set, the next call to
1288 * dt_compile() will compile all the libraries. We intentionally defer
1289 * library processing to improve overhead for clients that don’t ever
1290 * compile, and to provide better error reporting (because the full
1291 * reporting of compiler errors requires dtrace_open() to succeed).
1292 */
1293 if (dtrace_setopt(dtp, "libdir", _dtrace_libdir) != 0)
1294 return (set_open_errno(dtp, errp, dtp->dt_errno));

1296 return (dtp);
1297 }

1299 dtrace_hdl_t *
1300 dtrace_open(int version, int flags, int *errp)
1301 {
1302 return (dt_vopen(version, flags, errp, NULL, NULL));
1303 }

1305 dtrace_hdl_t *
1306 dtrace_vopen(int version, int flags, int *errp,
1307 const dtrace_vector_t *vector, void *arg)
1308 {
1309 return (dt_vopen(version, flags, errp, vector, arg));
1310 }

1312 void
1313 dtrace_close(dtrace_hdl_t *dtp)
1314 {
1315 dt_ident_t *idp, *ndp;
1316 dt_module_t *dmp;
1317 dt_provider_t *pvp;
1318 dtrace_prog_t *pgp;
1319 dt_xlator_t *dxp;
1320 dt_dirpath_t *dirp;
1321 int i;

1323 if (dtp->dt_procs != NULL)
1324 dt_proc_hash_destroy(dtp);

1326 while ((pgp = dt_list_next(&dtp->dt_programs)) != NULL)

new/usr/src/lib/libdtrace/common/dt_open.c 20

1327 dt_program_destroy(dtp, pgp);

1329 while ((dxp = dt_list_next(&dtp->dt_xlators)) != NULL)
1330 dt_xlator_destroy(dtp, dxp);

1332 dt_free(dtp, dtp->dt_xlatormap);

1334 for (idp = dtp->dt_externs; idp != NULL; idp = ndp) {
1335 ndp = idp->di_next;
1336 dt_ident_destroy(idp);
1337 }

1339 if (dtp->dt_macros != NULL)
1340 dt_idhash_destroy(dtp->dt_macros);
1341 if (dtp->dt_aggs != NULL)
1342 dt_idhash_destroy(dtp->dt_aggs);
1343 if (dtp->dt_globals != NULL)
1344 dt_idhash_destroy(dtp->dt_globals);
1345 if (dtp->dt_tls != NULL)
1346 dt_idhash_destroy(dtp->dt_tls);

1348 while ((dmp = dt_list_next(&dtp->dt_modlist)) != NULL)
1349 dt_module_destroy(dtp, dmp);

1351 while ((pvp = dt_list_next(&dtp->dt_provlist)) != NULL)
1352 dt_provider_destroy(dtp, pvp);

1354 if (dtp->dt_fd != -1)
1355 (void) close(dtp->dt_fd);
1356 if (dtp->dt_ftfd != -1)
1357 (void) close(dtp->dt_ftfd);
1358 if (dtp->dt_cdefs_fd != -1)
1359 (void) close(dtp->dt_cdefs_fd);
1360 if (dtp->dt_ddefs_fd != -1)
1361 (void) close(dtp->dt_ddefs_fd);
1362 if (dtp->dt_stdout_fd != -1)
1363 (void) close(dtp->dt_stdout_fd);

1365 dt_epid_destroy(dtp);
1366 dt_aggid_destroy(dtp);
1367 dt_format_destroy(dtp);
1368 dt_strdata_destroy(dtp);
1369 dt_buffered_destroy(dtp);
1370 dt_aggregate_destroy(dtp);
1371 free(dtp->dt_buf.dtbd_data);
1372 dt_pfdict_destroy(dtp);
1373 dt_provmod_destroy(&dtp->dt_provmod);
1374 dt_dof_fini(dtp);

1376 for (i = 1; i < dtp->dt_cpp_argc; i++)
1377 free(dtp->dt_cpp_argv[i]);

1379 while ((dirp = dt_list_next(&dtp->dt_lib_path)) != NULL) {
1380 dt_list_delete(&dtp->dt_lib_path, dirp);
1381 free(dirp->dir_path);
1382 free(dirp);
1383 }

1385 free(dtp->dt_cpp_argv);
1386 free(dtp->dt_cpp_path);
1387 free(dtp->dt_ld_path);

1389 free(dtp->dt_mods);
1390 free(dtp->dt_provs);
1391 free(dtp);
1392 }

new/usr/src/lib/libdtrace/common/dt_open.c 21

1394 int
1395 dtrace_provider_modules(dtrace_hdl_t *dtp, const char **mods, int nmods)
1396 {
1397 dt_provmod_t *prov;
1398 int i = 0;

1400 for (prov = dtp->dt_provmod; prov != NULL; prov = prov->dp_next, i++) {
1401 if (i < nmods)
1402 mods[i] = prov->dp_name;
1403 }

1405 return (i);
1406 }

1408 int
1409 dtrace_ctlfd(dtrace_hdl_t *dtp)
1410 {
1411 return (dtp->dt_fd);
1412 }

new/usr/src/lib/libdtrace/common/ip.d.in 1

**
 14572 Sat Aug 18 10:37:03 2012
new/usr/src/lib/libdtrace/common/ip.d.in
dccp: sock upcalls
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #pragma D depends_on module ip
26 #pragma D depends_on provider ip

28 inline int IPH_DF = @IPH_DF@;
29 #pragma D binding "1.5" IPH_DF
30 inline int IPH_MF = @IPH_MF@;
31 #pragma D binding "1.5" IPH_MF

33 #pragma D binding "1.5" IPPROTO_IP
34 inline int IPPROTO_IP = @IPPROTO_IP@;
35 #pragma D binding "1.5" IPPROTO_HOPOPTS
36 inline int IPPROTO_HOPOPTS = @IPPROTO_HOPOPTS@;
37 #pragma D binding "1.5" IPPROTO_ICMP
38 inline int IPPROTO_ICMP = @IPPROTO_ICMP@;
39 #pragma D binding "1.5" IPPROTO_IGMP
40 inline int IPPROTO_IGMP = @IPPROTO_IGMP@;
41 #pragma D binding "1.5" IPPROTO_GGP
42 inline int IPPROTO_GGP = @IPPROTO_GGP@;
43 #pragma D binding "1.5" IPPROTO_ENCAP
44 inline int IPPROTO_ENCAP = @IPPROTO_ENCAP@;
45 #pragma D binding "1.5" IPPROTO_TCP
46 inline int IPPROTO_TCP = @IPPROTO_TCP@;
47 #pragma D binding "1.5" IPPROTO_EGP
48 inline int IPPROTO_EGP = @IPPROTO_EGP@;
49 #pragma D binding "1.5" IPPROTO_PUP
50 inline int IPPROTO_PUP = @IPPROTO_PUP@;
51 #pragma D binding "1.5" IPPROTO_UDP
52 inline int IPPROTO_UDP = @IPPROTO_UDP@;
53 #pragma D binding "1.5" IPPROTO_IDP
54 inline int IPPROTO_IDP = @IPPROTO_IDP@;
55 #pragma D binding "1.5" IPPROTO_IPV6
56 inline int IPPROTO_IPV6 = @IPPROTO_IPV6@;
57 #pragma D binding "1.5" IPPROTO_ROUTING
58 inline int IPPROTO_ROUTING = @IPPROTO_ROUTING@;
59 #pragma D binding "1.5" IPPROTO_FRAGMENT
60 inline int IPPROTO_FRAGMENT = @IPPROTO_FRAGMENT@;
61 #pragma D binding "1.5" IPPROTO_RSVP

new/usr/src/lib/libdtrace/common/ip.d.in 2

62 inline int IPPROTO_RSVP = @IPPROTO_RSVP@;
63 #pragma D binding "1.5" IPPROTO_ESP
64 inline int IPPROTO_ESP = @IPPROTO_ESP@;
65 #pragma D binding "1.5" IPPROTO_AH
66 inline int IPPROTO_AH = @IPPROTO_AH@;
67 #pragma D binding "1.5" IPPROTO_ICMPV6
68 inline int IPPROTO_ICMPV6 = @IPPROTO_ICMPV6@;
69 #pragma D binding "1.5" IPPROTO_NONE
70 inline int IPPROTO_NONE = @IPPROTO_NONE@;
71 #pragma D binding "1.5" IPPROTO_DSTOPTS
72 inline int IPPROTO_DSTOPTS = @IPPROTO_DSTOPTS@;
73 #pragma D binding "1.5" IPPROTO_HELLO
74 inline int IPPROTO_HELLO = @IPPROTO_HELLO@;
75 #pragma D binding "1.5" IPPROTO_ND
76 inline int IPPROTO_ND = @IPPROTO_ND@;
77 #pragma D binding "1.5" IPPROTO_EON
78 inline int IPPROTO_EON = @IPPROTO_EON@;
79 #pragma D binding "1.5" IPPROTO_OSPF
80 inline int IPPROTO_OSPF = @IPPROTO_OSPF@;
81 #pragma D binding "1.5" IPPROTO_PIM
82 inline int IPPROTO_PIM = @IPPROTO_PIM@;
83 #pragma D binding "1.5" IPPROTO_SCTP
84 inline int IPPROTO_SCTP = @IPPROTO_SCTP@;
85 #pragma D binding "1.5" IPPROTO_RAW
86 inline int IPPROTO_RAW = @IPPROTO_RAW@;
87 #pragma D binding "1.5" IPPROTO_MAX
88 inline int IPPROTO_MAX = @IPPROTO_MAX@;
89 #pragma D binding "1.10" IPPROTO_DCCP
90 inline int IPPROTO_DCCP = @IPPROTO_DCCP@;
91 #endif /* ! codereview */

93 /*
94 * pktinfo is where packet ID info can be made available for deeper
95 * analysis if packet IDs become supported by the kernel in the future.
96 * The pkt_addr member is currently always NULL.
97 */
98 typedef struct pktinfo {
99 uintptr_t pkt_addr;
100 } pktinfo_t;

102 /*
103 * csinfo is where connection state info is made available.
104 */
105 typedef struct csinfo {
106 uintptr_t cs_addr;
107 uint64_t cs_cid;
108 pid_t cs_pid;
109 zoneid_t cs_zoneid;
110 } csinfo_t;

112 /*
113 * ipinfo contains common IP info for both IPv4 and IPv6.
114 */
115 typedef struct ipinfo {
116 uint8_t ip_ver; /* IP version (4, 6) */
117 uint32_t ip_plength; /* payload length */
118 string ip_saddr; /* source address */
119 string ip_daddr; /* destination address */
120 } ipinfo_t;

122 /*
123 * ifinfo contains network interface info.
124 */
125 typedef struct ifinfo {
126 string if_name; /* interface name */
127 int8_t if_local; /* is delivered locally */

new/usr/src/lib/libdtrace/common/ip.d.in 3

128 netstackid_t if_ipstack; /* ipstack ID */
129 uintptr_t if_addr; /* pointer to raw ill_t */
130 } ifinfo_t;

132 /*
133 * ipv4info is a translated version of the IPv4 header (with raw pointer).
134 * These values are NULL if the packet is not IPv4.
135 */
136 typedef struct ipv4info {
137 uint8_t ipv4_ver; /* IP version (4) */
138 uint8_t ipv4_ihl; /* header length, bytes */
139 uint8_t ipv4_tos; /* type of service field */
140 uint16_t ipv4_length; /* length (header + payload) */
141 uint16_t ipv4_ident; /* identification */
142 uint8_t ipv4_flags; /* IP flags */
143 uint16_t ipv4_offset; /* fragment offset */
144 uint8_t ipv4_ttl; /* time to live */
145 uint8_t ipv4_protocol; /* next level protocol */
146 string ipv4_protostr; /* next level protocol, as a string */
147 uint16_t ipv4_checksum; /* header checksum */
148 ipaddr_t ipv4_src; /* source address */
149 ipaddr_t ipv4_dst; /* destination address */
150 string ipv4_saddr; /* source address, string */
151 string ipv4_daddr; /* destination address, string */
152 ipha_t *ipv4_hdr; /* pointer to raw header */
153 } ipv4info_t;

155 /*
156 * ipv6info is a translated version of the IPv6 header (with raw pointer).
157 * These values are NULL if the packet is not IPv6.
158 */
159 typedef struct ipv6info {
160 uint8_t ipv6_ver; /* IP version (6) */
161 uint8_t ipv6_tclass; /* traffic class */
162 uint32_t ipv6_flow; /* flow label */
163 uint16_t ipv6_plen; /* payload length */
164 uint8_t ipv6_nexthdr; /* next header protocol */
165 string ipv6_nextstr; /* next header protocol, as a string */
166 uint8_t ipv6_hlim; /* hop limit */
167 in6_addr_t *ipv6_src; /* source address */
168 in6_addr_t *ipv6_dst; /* destination address */
169 string ipv6_saddr; /* source address, string */
170 string ipv6_daddr; /* destination address, string */
171 ip6_t *ipv6_hdr; /* pointer to raw header */
172 } ipv6info_t;

174 /*
175 * void_ip_t is a void pointer to either an IPv4 or IPv6 header. It has
176 * its own type name so that a translator can be determined.
177 */
178 typedef uintptr_t void_ip_t;

180 /*
181 * __dtrace_ipsr_ill_t is used by the translator to take an ill_t plus an
182 * additional arg6 from the ip:::send and ip:::recieve probes, and translate
183 * them to an ifinfo_t.
184 */
185 typedef ill_t __dtrace_ipsr_ill_t;

187 /*
188 * __dtrace_tcp_void_ip_t is used by the translator to take either the
189 * non-NULL void_ip_t * passed in or, if it is NULL, uses arg3 (tcp_t *)
190 * from the tcp:::send and tcp:::recieve probes to translate to an ipinfo_t.
191 * When no headers are available in the TCP fusion case for tcp:::send
192 * and tcp:::receive case, this allows us to present the consumer with header
193 * data based on the tcp_t * content in order to hide the implementation

new/usr/src/lib/libdtrace/common/ip.d.in 4

194 * details of TCP fusion.
195 */
196 typedef void * __dtrace_tcp_void_ip_t;

198 #pragma D binding "1.5" translator
199 translator pktinfo_t < mblk_t *M > {
200 pkt_addr = NULL;
201 };

203 #pragma D binding "1.5" translator
204 translator csinfo_t < conn_t *C > {
205 cs_addr = NULL;
206 };

208 #pragma D binding "1.6.3" translator
209 translator csinfo_t < ip_xmit_attr_t *C > {
210 cs_addr = (uintptr_t)C;
211 cs_cid = C ? C->ixa_conn_id : NULL;
212 cs_pid = C ? C->ixa_cpid : -1;
213 cs_zoneid = C ?
214 (C->ixa_ipst == NULL || C->ixa_ipst->ips_netstack == NULL ||
215 C->ixa_ipst->ips_netstack->netstack_stackid ==
216 @GLOBAL_NETSTACKID@ ||
217 C->ixa_cred == NULL ||
218 C->ixa_cred->cr_zone == NULL ||
219 C->ixa_cred->cr_uid == -1 ?
220 C->ixa_zoneid : C->ixa_cred->cr_zone->zone_id) : -1;
221 };

223 #pragma D binding "1.5" translator
224 translator ipinfo_t < ipha_t *I > {
225 ip_ver = I->ipha_version_and_hdr_length >> 4;
226 ip_plength = ntohs(I->ipha_length) -
227 ((I->ipha_version_and_hdr_length & 0xf) << 2);
228 ip_saddr = inet_ntoa(&I->ipha_src);
229 ip_daddr = inet_ntoa(&I->ipha_dst);
230 };

232 #pragma D binding "1.5" translator
233 translator ipinfo_t < ip6_t *I > {
234 ip_ver = *(uint8_t *)I >> 4;
235 ip_plength = ntohs(I->ip6_ctlun.ip6_un1.ip6_un1_plen);
236 ip_saddr = inet_ntoa6(&I->ip6_src);
237 ip_daddr = inet_ntoa6(&I->ip6_dst);
238 };

240 #pragma D binding "1.5" translator
241 translator ipinfo_t < void_ip_t *I > {
242 ip_ver = I != NULL ? *(uint8_t *)I >> 4 : 0;
243 ip_plength = I != NULL ? (*(uint8_t *)I >> 4 == 4 ?
244 ntohs(((ipha_t *)I)->ipha_length) -
245 ((((ipha_t *)I)->ipha_version_and_hdr_length & 0xf) << 2) :
246 *(uint8_t *)I >> 4 == 6 ?
247 ntohs(((ip6_t *)I)->ip6_ctlun.ip6_un1.ip6_un1_plen) : 0) : 0;
248 ip_saddr = I != NULL ? (*(uint8_t *)I >> 4 == 4 ?
249 inet_ntoa(&((ipha_t *)I)->ipha_src) : *(uint8_t *)I >> 4 == 6 ?
250 inet_ntoa6(&((ip6_t *)I)->ip6_src) : "<unknown>") : "<unknown>";
251 ip_daddr = I != NULL ? (*(uint8_t *)I >> 4 == 4 ?
252 inet_ntoa(&((ipha_t *)I)->ipha_dst) : *(uint8_t *)I >> 4 == 6 ?
253 inet_ntoa6(&((ip6_t *)I)->ip6_dst) : "<unknown>") : "<unknown>";
254 };

256 #pragma D binding "1.5" translator
257 translator ifinfo_t < __dtrace_ipsr_ill_t *I > {
258 if_name = I != NULL ? stringof(I->ill_name) : "<null>";
259 if_ipstack = I != NULL ? I->ill_ipst->ips_netstack->netstack_stackid

new/usr/src/lib/libdtrace/common/ip.d.in 5

260 : 0;
261 if_local = arg6; /* probe dependent */
262 if_addr = (uintptr_t)I;
263 };

265 /*
266 * Translate to an ipinfo_t * from either the non-NULL void_ip_t * passed in,
267 * or use arg3 (tcp_t *) to fabricate ip header info.
268 */
269 #pragma D binding "1.6.3" translator
270 translator ipinfo_t < __dtrace_tcp_void_ip_t *I > {
271 ip_ver = I != NULL ? *(uint8_t *)I >> 4 :
272 arg3 != NULL ? ((tcp_t *)arg3)->tcp_connp->conn_ipversion : 0;
273 ip_plength =
274 I != NULL && *(uint8_t *)I >> 4 == 4 ?
275 ntohs(((ipha_t *)I)->ipha_length) -
276 ((((ipha_t *)I)->ipha_version_and_hdr_length & 0xf) << 2) :
277 I != NULL && *(uint8_t *)I >> 4 == 6 ?
278 ntohs(((ip6_t *)I)->ip6_ctlun.ip6_un1.ip6_un1_plen) :
279 I != NULL ? 0 :
280 arg3 != NULL && probename == "send" ?
281 ((tcp_t *)arg3)->tcp_last_sent_len + @TCP_MIN_HEADER_LENGTH@ :
282 arg3 != NULL && probename == "receive" ?
283 ((tcp_t *)arg3)->tcp_last_recv_len + @TCP_MIN_HEADER_LENGTH@ :
284 0;
285 ip_saddr =
286 I != NULL && *(uint8_t *)I >> 4 == 4 ?
287 inet_ntoa(&((ipha_t *)I)->ipha_src) :
288 I != NULL && *(uint8_t *)I >> 4 == 6 ?
289 inet_ntoa6(&((ip6_t *)I)->ip6_src) :
290 I != NULL ? "<unknown>" :
291 arg3 != NULL && probename == "send" ?
292 inet_ntoa6(&((tcp_t *)arg3)->tcp_connp->connua_v6addr.connua_laddr):
293 arg3 != NULL && probename == "receive" ?
294 inet_ntoa6(&((tcp_t *)arg3)->tcp_connp->connua_v6addr.connua_faddr):
295 "<unknown>";
296 ip_daddr =
297 I != NULL && *(uint8_t *)I >> 4 == 4 ?
298 inet_ntoa(&((ipha_t *)I)->ipha_dst) :
299 I != NULL && *(uint8_t *)I >> 4 == 6 ?
300 inet_ntoa6(&((ip6_t *)I)->ip6_dst) :
301 I != NULL ? "<unknown>" :
302 arg3 != NULL && probename == "send" ?
303 inet_ntoa6(&((tcp_t *)arg3)->tcp_connp->connua_v6addr.connua_faddr):
304 arg3 != NULL && probename == "receive" ?
305 inet_ntoa6(&((tcp_t *)arg3)->tcp_connp->connua_v6addr.connua_laddr):
306 "<unknown>";
307 };

309 #pragma D binding "1.5" translator
310 translator ipv4info_t < ipha_t *I > {
311 ipv4_ver = I != NULL ? I->ipha_version_and_hdr_length >> 4 : 0;
312 ipv4_ihl = I != NULL ? (I->ipha_version_and_hdr_length & 0xf) << 2 : 0;
313 ipv4_tos = I != NULL ? I->ipha_type_of_service : 0;
314 ipv4_length = I != NULL ? ntohs(I->ipha_length) : 0;
315 ipv4_ident = I != NULL ? ntohs(I->ipha_ident) : 0;
316 ipv4_flags = I != NULL ? ntohs(I->ipha_fragment_offset_and_flags) >>
317 12 : 0;
318 ipv4_offset = I != NULL ? ntohs(I->ipha_fragment_offset_and_flags) &
319 0x0fff : 0;
320 ipv4_ttl = I != NULL ? I->ipha_ttl : 0;
321 ipv4_protocol = I != NULL ? I->ipha_protocol : 0;
322 ipv4_protostr = I == NULL ? "<null>" :
323 I->ipha_protocol == IPPROTO_TCP ? "TCP" :
324 I->ipha_protocol == IPPROTO_UDP ? "UDP" :
325 I->ipha_protocol == IPPROTO_IP ? "IP" :

new/usr/src/lib/libdtrace/common/ip.d.in 6

326 I->ipha_protocol == IPPROTO_ICMP ? "ICMP" :
327 I->ipha_protocol == IPPROTO_IGMP ? "IGMP" :
328 I->ipha_protocol == IPPROTO_EGP ? "EGP" :
329 I->ipha_protocol == IPPROTO_IPV6 ? "IPv6" :
330 I->ipha_protocol == IPPROTO_ROUTING ? "ROUTE" :
331 I->ipha_protocol == IPPROTO_ESP ? "ESP" :
332 I->ipha_protocol == IPPROTO_AH ? "AH" :
333 I->ipha_protocol == IPPROTO_ICMPV6 ? "ICMPv6" :
334 I->ipha_protocol == IPPROTO_OSPF ? "OSPF" :
335 I->ipha_protocol == IPPROTO_SCTP ? "SCTP" :
336 I->ipha_protocol == IPPROTO_RAW ? "RAW" :
337 lltostr((uint64_t)I->ipha_protocol);
338 ipv4_checksum = I != NULL ? ntohs(I->ipha_hdr_checksum) : 0;
339 ipv4_src = I != NULL ? I->ipha_src : 0;
340 ipv4_dst = I != NULL ? I->ipha_dst : 0;
341 ipv4_saddr = I != NULL ? inet_ntoa(&I->ipha_src) : "<null>";
342 ipv4_daddr = I != NULL ? inet_ntoa(&I->ipha_dst) : "<null>";
343 ipv4_hdr = I;
344 };

346 #pragma D binding "1.5" translator
347 translator ipv6info_t < ip6_t *I > {
348 ipv6_ver = I != NULL ? I->ip6_ctlun.ip6_un2_vfc >> 4 : 0;
349 ipv6_tclass = I != NULL ? ((I->ip6_ctlun.ip6_un1.ip6_un1_flow &&
350 0x0fffffff) >> 20) : 0;
351 ipv6_flow = I != NULL ? I->ip6_ctlun.ip6_un1.ip6_un1_flow &&
352 0x000fffff : 0;
353 ipv6_plen = I != NULL ? ntohs(I->ip6_ctlun.ip6_un1.ip6_un1_plen) : 0;
354 ipv6_nexthdr = I != NULL ? I->ip6_ctlun.ip6_un1.ip6_un1_nxt : 0;
355 ipv6_nextstr = I == NULL ? "<null>" :
356 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_TCP ? "TCP" :
357 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_UDP ? "UDP" :
358 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_IP ? "IP" :
359 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_ICMP ? "ICMP" :
360 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_IGMP ? "IGMP" :
361 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_EGP ? "EGP" :
362 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_IPV6 ? "IPv6" :
363 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_ROUTING ? "ROUTE" :
364 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_ESP ? "ESP" :
365 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_AH ? "AH" :
366 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_ICMPV6 ? "ICMPv6" :
367 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_OSPF ? "OSPF" :
368 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_SCTP ? "SCTP" :
369 I->ip6_ctlun.ip6_un1.ip6_un1_nxt == IPPROTO_RAW ? "RAW" :
370 lltostr((uint64_t)I->ip6_ctlun.ip6_un1.ip6_un1_nxt);
371 ipv6_hlim = I != NULL ? I->ip6_ctlun.ip6_un1.ip6_un1_hlim : 0;
372 ipv6_src = I != NULL ? &I->ip6_src : 0;
373 ipv6_dst = I != NULL ? &I->ip6_dst : 0;
374 ipv6_saddr = I != NULL ? inet_ntoa6(&I->ip6_src) : "<null>";
375 ipv6_daddr = I != NULL ? inet_ntoa6(&I->ip6_dst) : "<null>";
376 ipv6_hdr = I;
377 };

new/usr/src/lib/libdtrace/common/ip.sed.in 1

**
 2337 Sat Aug 18 10:37:04 2012
new/usr/src/lib/libdtrace/common/ip.sed.in
dccp: sock upcalls
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 /*
26 * This file is a sed script which is first preprocessed by cpp or cc -E to
27 * define a set of sed directives which replace #define tokens with their
28 * values. After preprocessing, the sed script is run over ip.d.in to
29 * replace the #define tokens listed below to create the finished ip.d.
30 * Refer to the rules in libdtrace/Makefile.com for more information.
31 */

33 #include <sys/netstack.h>
34 #include <sys/socket.h>
35 #include <netinet/in.h>
36 #include <inet/ip.h>
37 #include <inet/tcp.h>

39 #define SED_REPLACE(x) s/#x/x/g

41 SED_REPLACE(AF_INET)
42 SED_REPLACE(AF_INET6)

44 SED_REPLACE(IPH_DF)
45 SED_REPLACE(IPH_MF)

47 SED_REPLACE(IPPROTO_IP)
48 SED_REPLACE(IPPROTO_HOPOPTS)
49 SED_REPLACE(IPPROTO_ICMP)
50 SED_REPLACE(IPPROTO_IGMP)
51 SED_REPLACE(IPPROTO_GGP)
52 SED_REPLACE(IPPROTO_ENCAP)
53 SED_REPLACE(IPPROTO_TCP)
54 SED_REPLACE(IPPROTO_EGP)
55 SED_REPLACE(IPPROTO_PUP)
56 SED_REPLACE(IPPROTO_UDP)
57 SED_REPLACE(IPPROTO_IDP)
58 SED_REPLACE(IPPROTO_IPV6)
59 SED_REPLACE(IPPROTO_ROUTING)
60 SED_REPLACE(IPPROTO_FRAGMENT)
61 SED_REPLACE(IPPROTO_RSVP)

new/usr/src/lib/libdtrace/common/ip.sed.in 2

62 SED_REPLACE(IPPROTO_ESP)
63 SED_REPLACE(IPPROTO_AH)
64 SED_REPLACE(IPPROTO_ICMPV6)
65 SED_REPLACE(IPPROTO_NONE)
66 SED_REPLACE(IPPROTO_DSTOPTS)
67 SED_REPLACE(IPPROTO_HELLO)
68 SED_REPLACE(IPPROTO_ND)
69 SED_REPLACE(IPPROTO_EON)
70 SED_REPLACE(IPPROTO_OSPF)
71 SED_REPLACE(IPPROTO_PIM)
72 SED_REPLACE(IPPROTO_SCTP)
73 SED_REPLACE(IPPROTO_RAW)
74 SED_REPLACE(IPPROTO_DCCP)
75 #endif /* ! codereview */
76 SED_REPLACE(IPPROTO_MAX)

78 SED_REPLACE(TCP_MIN_HEADER_LENGTH)

80 SED_REPLACE(GLOBAL_NETSTACKID)

new/usr/src/lib/libipadm/common/ipadm_prop.c 1

**
 55005 Sat Aug 18 10:37:04 2012
new/usr/src/lib/libipadm/common/ipadm_prop.c
dccp: properties
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 /*
26 * This file contains routines that are used to modify/retrieve protocol or
27 * interface property values. It also holds all the supported properties for
28 * both IP interface and protocols in ‘ipadm_prop_desc_t’. Following protocols
29 * are supported: IP, IPv4, IPv6, TCP, SCTP, UDP, ICMP and DCCP.
29 * are supported: IP, IPv4, IPv6, TCP, SCTP, UDP and ICMP.
30 *
31 * This file also contains walkers, which walks through the property table and
32 * calls the callback function, of the form ‘ipadm_prop_wfunc_t’ , for every
33 * property in the table.
34 */

36 #include <unistd.h>
37 #include <errno.h>
38 #include <ctype.h>
39 #include <fcntl.h>
40 #include <strings.h>
41 #include <stdlib.h>
42 #include <netinet/in.h>
43 #include <arpa/inet.h>
44 #include <sys/sockio.h>
45 #include <assert.h>
46 #include <libdllink.h>
47 #include <zone.h>
48 #include "libipadm_impl.h"
49 #include <inet/tunables.h>

51 #define IPADM_NONESTR "none"
52 #define DEF_METRIC_VAL 0 /* default metric value */

54 #define A_CNT(arr) (sizeof (arr) / sizeof (arr[0]))

56 static ipadm_status_t i_ipadm_validate_if(ipadm_handle_t, const char *,
57 uint_t, uint_t);

59 /*
60 * Callback functions to retrieve property values from the kernel. These

new/usr/src/lib/libipadm/common/ipadm_prop.c 2

61 * functions, when required, translate the values from the kernel to a format
62 * suitable for printing. For example: boolean values will be translated
63 * to on/off. They also retrieve DEFAULT, PERM and POSSIBLE values for
64 * a given property.
65 */
66 static ipadm_pd_getf_t i_ipadm_get_prop, i_ipadm_get_ifprop_flags,
67 i_ipadm_get_mtu, i_ipadm_get_metric,
68 i_ipadm_get_usesrc, i_ipadm_get_forwarding,
69 i_ipadm_get_ecnsack, i_ipadm_get_hostmodel;

71 /*
72 * Callback function to set property values. These functions translate the
73 * values to a format suitable for kernel consumption, allocates the necessary
74 * ioctl buffers and then invokes ioctl().
75 */
76 static ipadm_pd_setf_t i_ipadm_set_prop, i_ipadm_set_mtu,
77 i_ipadm_set_ifprop_flags,
78 i_ipadm_set_metric, i_ipadm_set_usesrc,
79 i_ipadm_set_forwarding, i_ipadm_set_eprivport,
80 i_ipadm_set_ecnsack, i_ipadm_set_hostmodel;

82 /* array of protocols we support */
83 static int protocols[] = { MOD_PROTO_IP, MOD_PROTO_RAWIP,
84 MOD_PROTO_TCP, MOD_PROTO_UDP,
85 MOD_PROTO_SCTP, MOD_PROTO_DCCP };
85 MOD_PROTO_SCTP };

87 /*
88 * Supported IP protocol properties.
89 */
90 static ipadm_prop_desc_t ipadm_ip_prop_table[] = {
91 { "arp", IPADMPROP_CLASS_IF, MOD_PROTO_IPV4, 0,
92 i_ipadm_set_ifprop_flags, i_ipadm_get_onoff,
93 i_ipadm_get_ifprop_flags },

95 { "forwarding", IPADMPROP_CLASS_MODIF, MOD_PROTO_IPV4, 0,
96 i_ipadm_set_forwarding, i_ipadm_get_onoff,
97 i_ipadm_get_forwarding },

99 { "metric", IPADMPROP_CLASS_IF, MOD_PROTO_IPV4, 0,
100 i_ipadm_set_metric, NULL, i_ipadm_get_metric },

102 { "mtu", IPADMPROP_CLASS_IF, MOD_PROTO_IPV4, 0,
103 i_ipadm_set_mtu, i_ipadm_get_mtu, i_ipadm_get_mtu },

105 { "exchange_routes", IPADMPROP_CLASS_IF, MOD_PROTO_IPV4, 0,
106 i_ipadm_set_ifprop_flags, i_ipadm_get_onoff,
107 i_ipadm_get_ifprop_flags },

109 { "usesrc", IPADMPROP_CLASS_IF, MOD_PROTO_IPV4, 0,
110 i_ipadm_set_usesrc, NULL, i_ipadm_get_usesrc },

112 { "ttl", IPADMPROP_CLASS_MODULE, MOD_PROTO_IPV4, 0,
113 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

115 { "forwarding", IPADMPROP_CLASS_MODIF, MOD_PROTO_IPV6, 0,
116 i_ipadm_set_forwarding, i_ipadm_get_onoff,
117 i_ipadm_get_forwarding },

119 { "hoplimit", IPADMPROP_CLASS_MODULE, MOD_PROTO_IPV6, 0,
120 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

122 { "metric", IPADMPROP_CLASS_IF, MOD_PROTO_IPV6, 0,
123 i_ipadm_set_metric, NULL, i_ipadm_get_metric },

125 { "mtu", IPADMPROP_CLASS_IF, MOD_PROTO_IPV6, 0,

new/usr/src/lib/libipadm/common/ipadm_prop.c 3

126 i_ipadm_set_mtu, i_ipadm_get_mtu, i_ipadm_get_mtu },

128 { "nud", IPADMPROP_CLASS_IF, MOD_PROTO_IPV6, 0,
129 i_ipadm_set_ifprop_flags, i_ipadm_get_onoff,
130 i_ipadm_get_ifprop_flags },

132 { "exchange_routes", IPADMPROP_CLASS_IF, MOD_PROTO_IPV6, 0,
133 i_ipadm_set_ifprop_flags, i_ipadm_get_onoff,
134 i_ipadm_get_ifprop_flags },

136 { "usesrc", IPADMPROP_CLASS_IF, MOD_PROTO_IPV6, 0,
137 i_ipadm_set_usesrc, NULL, i_ipadm_get_usesrc },

139 { "hostmodel", IPADMPROP_CLASS_MODULE, MOD_PROTO_IPV6, 0,
140 i_ipadm_set_hostmodel, i_ipadm_get_hostmodel,
141 i_ipadm_get_hostmodel },

143 { "hostmodel", IPADMPROP_CLASS_MODULE, MOD_PROTO_IPV4, 0,
144 i_ipadm_set_hostmodel, i_ipadm_get_hostmodel,
145 i_ipadm_get_hostmodel },

147 { NULL, 0, 0, 0, NULL, NULL, NULL }
148 };

______unchanged_portion_omitted_

242 /* Supported DCCP protocol properties */
243 static ipadm_prop_desc_t ipadm_dccp_prop_table[] = {
244 { "extra_priv_ports", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP,
245 IPADMPROP_MULVAL, i_ipadm_set_eprivport, i_ipadm_get_prop,
246 i_ipadm_get_prop },

248 { "largest_anon_port", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP, 0,
249 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

251 { "recv_maxbuf", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP, 0,
252 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

254 { "send_maxbuf", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP, 0,
255 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

257 { "smallest_anon_port", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP, 0,
258 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

260 { "smallest_nonpriv_port", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP, 0,
261 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

263 { NULL, 0, 0, 0, NULL, NULL, NULL }
264 };

266 #endif /* ! codereview */
267 /*
268 * A dummy private property structure, used while handling private
269 * protocol properties (properties not yet supported by libipadm).
270 */
271 static ipadm_prop_desc_t ipadm_privprop =\
272 { NULL, IPADMPROP_CLASS_MODULE, MOD_PROTO_NONE, 0,
273 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop };

275 /*
276 * Returns the property description table, for the given protocol
277 */
278 static ipadm_prop_desc_t *
279 i_ipadm_get_propdesc_table(uint_t proto)
280 {
281 switch (proto) {
282 case MOD_PROTO_IP:

new/usr/src/lib/libipadm/common/ipadm_prop.c 4

283 case MOD_PROTO_IPV4:
284 case MOD_PROTO_IPV6:
285 return (ipadm_ip_prop_table);
286 case MOD_PROTO_RAWIP:
287 return (ipadm_icmp_prop_table);
288 case MOD_PROTO_TCP:
289 return (ipadm_tcp_prop_table);
290 case MOD_PROTO_UDP:
291 return (ipadm_udp_prop_table);
292 case MOD_PROTO_SCTP:
293 return (ipadm_sctp_prop_table);
294 case MOD_PROTO_DCCP:
295 return (ipadm_dccp_prop_table);
296 #endif /* ! codereview */
297 }

299 return (NULL);
300 }

302 static ipadm_prop_desc_t *
303 i_ipadm_get_prop_desc(const char *pname, uint_t proto, int *errp)
304 {
305 int err = 0;
306 boolean_t matched_name = B_FALSE;
307 ipadm_prop_desc_t *ipdp = NULL, *ipdtbl;

309 if ((ipdtbl = i_ipadm_get_propdesc_table(proto)) == NULL) {
310 err = EINVAL;
311 goto ret;
312 }
313 for (ipdp = ipdtbl; ipdp->ipd_name != NULL; ipdp++) {
314 if (strcmp(pname, ipdp->ipd_name) == 0) {
315 matched_name = B_TRUE;
316 if (ipdp->ipd_proto == proto)
317 break;
318 }
319 }
320 if (ipdp->ipd_name == NULL) {
321 err = ENOENT;
322 /* if we matched name, but failed protocol check */
323 if (matched_name)
324 err = EPROTO;
325 ipdp = NULL;
326 }
327 ret:
328 if (errp != NULL)
329 *errp = err;
330 return (ipdp);
331 }

333 char *
334 ipadm_proto2str(uint_t proto)
335 {
336 switch (proto) {
337 case MOD_PROTO_IP:
338 return ("ip");
339 case MOD_PROTO_IPV4:
340 return ("ipv4");
341 case MOD_PROTO_IPV6:
342 return ("ipv6");
343 case MOD_PROTO_RAWIP:
344 return ("icmp");
345 case MOD_PROTO_TCP:
346 return ("tcp");
347 case MOD_PROTO_UDP:
348 return ("udp");

new/usr/src/lib/libipadm/common/ipadm_prop.c 5

349 case MOD_PROTO_SCTP:
350 return ("sctp");
351 case MOD_PROTO_DCCP:
352 return ("dccp");
353 #endif /* ! codereview */
354 }

356 return (NULL);
357 }

359 uint_t
360 ipadm_str2proto(const char *protostr)
361 {
362 if (protostr == NULL)
363 return (MOD_PROTO_NONE);
364 if (strcmp(protostr, "tcp") == 0)
365 return (MOD_PROTO_TCP);
366 else if (strcmp(protostr, "udp") == 0)
367 return (MOD_PROTO_UDP);
368 else if (strcmp(protostr, "ip") == 0)
369 return (MOD_PROTO_IP);
370 else if (strcmp(protostr, "ipv4") == 0)
371 return (MOD_PROTO_IPV4);
372 else if (strcmp(protostr, "ipv6") == 0)
373 return (MOD_PROTO_IPV6);
374 else if (strcmp(protostr, "icmp") == 0)
375 return (MOD_PROTO_RAWIP);
376 else if (strcmp(protostr, "sctp") == 0)
377 return (MOD_PROTO_SCTP);
378 else if (strcmp(protostr, "arp") == 0)
379 return (MOD_PROTO_IP);
380 else if (strcmp(protostr, "dccp") == 0)
381 return (MOD_PROTO_DCCP);
382 #endif /* ! codereview */

384 return (MOD_PROTO_NONE);
385 }

387 /* ARGSUSED */
388 static ipadm_status_t
389 i_ipadm_set_mtu(ipadm_handle_t iph, const void *arg,
390 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
391 {
392 struct lifreq lifr;
393 char *endp;
394 uint_t mtu;
395 int s;
396 const char *ifname = arg;
397 char val[MAXPROPVALLEN];

399 /* to reset MTU first retrieve the default MTU and then set it */
400 if (flags & IPADM_OPT_DEFAULT) {
401 ipadm_status_t status;
402 uint_t size = MAXPROPVALLEN;

404 status = i_ipadm_get_prop(iph, arg, pdp, val, &size,
405 proto, MOD_PROP_DEFAULT);
406 if (status != IPADM_SUCCESS)
407 return (status);
408 pval = val;
409 }

411 errno = 0;
412 mtu = (uint_t)strtol(pval, &endp, 10);
413 if (errno != 0 || *endp != ’\0’)
414 return (IPADM_INVALID_ARG);

new/usr/src/lib/libipadm/common/ipadm_prop.c 6

416 bzero(&lifr, sizeof (lifr));
417 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
418 lifr.lifr_mtu = mtu;

420 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);
421 if (ioctl(s, SIOCSLIFMTU, (caddr_t)&lifr) < 0)
422 return (ipadm_errno2status(errno));

424 return (IPADM_SUCCESS);
425 }

427 /* ARGSUSED */
428 static ipadm_status_t
429 i_ipadm_set_metric(ipadm_handle_t iph, const void *arg,
430 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
431 {
432 struct lifreq lifr;
433 char *endp;
434 int metric;
435 const char *ifname = arg;
436 int s;

438 /* if we are resetting, set the value to its default value */
439 if (flags & IPADM_OPT_DEFAULT) {
440 metric = DEF_METRIC_VAL;
441 } else {
442 errno = 0;
443 metric = (uint_t)strtol(pval, &endp, 10);
444 if (errno != 0 || *endp != ’\0’)
445 return (IPADM_INVALID_ARG);
446 }

448 bzero(&lifr, sizeof (lifr));
449 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
450 lifr.lifr_metric = metric;

452 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);

454 if (ioctl(s, SIOCSLIFMETRIC, (caddr_t)&lifr) < 0)
455 return (ipadm_errno2status(errno));

457 return (IPADM_SUCCESS);
458 }

460 /* ARGSUSED */
461 static ipadm_status_t
462 i_ipadm_set_usesrc(ipadm_handle_t iph, const void *arg,
463 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
464 {
465 struct lifreq lifr;
466 const char *ifname = arg;
467 int s;
468 uint_t ifindex = 0;

470 /* if we are resetting, set the value to its default value */
471 if (flags & IPADM_OPT_DEFAULT)
472 pval = IPADM_NONESTR;

474 /*
475 * cannot specify logical interface name. We can also filter out other
476 * bogus interface names here itself through i_ipadm_validate_ifname().
477 */
478 if (strcmp(pval, IPADM_NONESTR) != 0 &&
479 !i_ipadm_validate_ifname(iph, pval))
480 return (IPADM_INVALID_ARG);

new/usr/src/lib/libipadm/common/ipadm_prop.c 7

482 bzero(&lifr, sizeof (lifr));
483 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));

485 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);

487 if (strcmp(pval, IPADM_NONESTR) != 0) {
488 if ((ifindex = if_nametoindex(pval)) == 0)
489 return (ipadm_errno2status(errno));
490 lifr.lifr_index = ifindex;
491 } else {
492 if (ioctl(s, SIOCGLIFUSESRC, (caddr_t)&lifr) < 0)
493 return (ipadm_errno2status(errno));
494 lifr.lifr_index = 0;
495 }
496 if (ioctl(s, SIOCSLIFUSESRC, (caddr_t)&lifr) < 0)
497 return (ipadm_errno2status(errno));

499 return (IPADM_SUCCESS);
500 }

502 static struct hostmodel_strval {
503 char *esm_str;
504 ip_hostmodel_t esm_val;
505 } esm_arr[] = {
506 {"weak", IP_WEAK_ES},
507 {"src-priority", IP_SRC_PRI_ES},
508 {"strong", IP_STRONG_ES},
509 {"custom", IP_MAXVAL_ES}
510 };

512 static ip_hostmodel_t
513 i_ipadm_hostmodel_str2val(const char *pval)
514 {
515 int i;

517 for (i = 0; i < A_CNT(esm_arr); i++) {
518 if (esm_arr[i].esm_str != NULL &&
519 strcmp(pval, esm_arr[i].esm_str) == 0) {
520 return (esm_arr[i].esm_val);
521 }
522 }
523 return (IP_MAXVAL_ES);
524 }

526 static char *
527 i_ipadm_hostmodel_val2str(ip_hostmodel_t pval)
528 {
529 int i;

531 for (i = 0; i < A_CNT(esm_arr); i++) {
532 if (esm_arr[i].esm_val == pval)
533 return (esm_arr[i].esm_str);
534 }
535 return (NULL);
536 }

538 /* ARGSUSED */
539 static ipadm_status_t
540 i_ipadm_set_hostmodel(ipadm_handle_t iph, const void *arg,
541 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
542 {
543 ip_hostmodel_t hostmodel;
544 char val[11]; /* covers uint32_max as a string */

546 if ((flags & IPADM_OPT_DEFAULT) == 0) {

new/usr/src/lib/libipadm/common/ipadm_prop.c 8

547 hostmodel = i_ipadm_hostmodel_str2val(pval);
548 if (hostmodel == IP_MAXVAL_ES)
549 return (IPADM_INVALID_ARG);
550 (void) snprintf(val, sizeof (val), "%d", hostmodel);
551 pval = val;
552 }
553 return (i_ipadm_set_prop(iph, NULL, pdp, pval, proto, flags));
554 }

556 /* ARGSUSED */
557 static ipadm_status_t
558 i_ipadm_get_hostmodel(ipadm_handle_t iph, const void *arg,
559 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
560 uint_t valtype)
561 {
562 ip_hostmodel_t hostmodel;
563 char *cp;
564 size_t nbytes;
565 ipadm_status_t status;

567 switch (valtype) {
568 case MOD_PROP_PERM:
569 nbytes = snprintf(buf, *bufsize, "%d", MOD_PROP_PERM_RW);
570 break;
571 case MOD_PROP_DEFAULT:
572 nbytes = snprintf(buf, *bufsize, "weak");
573 break;
574 case MOD_PROP_ACTIVE:
575 status = i_ipadm_get_prop(iph, arg, pdp, buf, bufsize, proto,
576 valtype);
577 if (status != IPADM_SUCCESS)
578 return (status);
579 bcopy(buf, &hostmodel, sizeof (hostmodel));
580 cp = i_ipadm_hostmodel_val2str(hostmodel);
581 nbytes = snprintf(buf, *bufsize, "%s",
582 (cp != NULL ? cp : "?"));
583 break;
584 case MOD_PROP_POSSIBLE:
585 nbytes = snprintf(buf, *bufsize, "strong,src-priority,weak");
586 break;
587 default:
588 return (IPADM_INVALID_ARG);
589 }
590 if (nbytes >= *bufsize) {
591 /* insufficient buffer space */
592 *bufsize = nbytes + 1;
593 return (IPADM_NO_BUFS);
594 }
595 return (IPADM_SUCCESS);
596 }

598 /* ARGSUSED */
599 static ipadm_status_t
600 i_ipadm_set_ifprop_flags(ipadm_handle_t iph, const void *arg,
601 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
602 {
603 ipadm_status_t status = IPADM_SUCCESS;
604 const char *ifname = arg;
605 uint64_t on_flags = 0, off_flags = 0;
606 boolean_t on = B_FALSE;
607 sa_family_t af = (proto == MOD_PROTO_IPV6 ? AF_INET6 : AF_INET);

609 /* if we are resetting, set the value to its default value */
610 if (flags & IPADM_OPT_DEFAULT) {
611 if (strcmp(pdp->ipd_name, "exchange_routes") == 0 ||
612 strcmp(pdp->ipd_name, "arp") == 0 ||

new/usr/src/lib/libipadm/common/ipadm_prop.c 9

613 strcmp(pdp->ipd_name, "nud") == 0) {
614 pval = IPADM_ONSTR;
615 } else if (strcmp(pdp->ipd_name, "forwarding") == 0) {
616 pval = IPADM_OFFSTR;
617 } else {
618 return (IPADM_PROP_UNKNOWN);
619 }
620 }

622 if (strcmp(pval, IPADM_ONSTR) == 0)
623 on = B_TRUE;
624 else if (strcmp(pval, IPADM_OFFSTR) == 0)
625 on = B_FALSE;
626 else
627 return (IPADM_INVALID_ARG);

629 if (strcmp(pdp->ipd_name, "exchange_routes") == 0) {
630 if (on)
631 off_flags = IFF_NORTEXCH;
632 else
633 on_flags = IFF_NORTEXCH;
634 } else if (strcmp(pdp->ipd_name, "arp") == 0) {
635 if (on)
636 off_flags = IFF_NOARP;
637 else
638 on_flags = IFF_NOARP;
639 } else if (strcmp(pdp->ipd_name, "nud") == 0) {
640 if (on)
641 off_flags = IFF_NONUD;
642 else
643 on_flags = IFF_NONUD;
644 } else if (strcmp(pdp->ipd_name, "forwarding") == 0) {
645 if (on)
646 on_flags = IFF_ROUTER;
647 else
648 off_flags = IFF_ROUTER;
649 }

651 if (on_flags || off_flags) {
652 status = i_ipadm_set_flags(iph, ifname, af, on_flags,
653 off_flags);
654 }
655 return (status);
656 }

658 /* ARGSUSED */
659 static ipadm_status_t
660 i_ipadm_set_eprivport(ipadm_handle_t iph, const void *arg,
661 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
662 {
663 nvlist_t *portsnvl = NULL;
664 nvpair_t *nvp;
665 ipadm_status_t status = IPADM_SUCCESS;
666 int err;
667 uint_t count = 0;

669 if (flags & IPADM_OPT_DEFAULT) {
670 assert(pval == NULL);
671 return (i_ipadm_set_prop(iph, arg, pdp, pval, proto, flags));
672 }

674 if ((err = ipadm_str2nvlist(pval, &portsnvl, IPADM_NORVAL)) != 0)
675 return (ipadm_errno2status(err));

677 /* count the number of ports */
678 for (nvp = nvlist_next_nvpair(portsnvl, NULL); nvp != NULL;

new/usr/src/lib/libipadm/common/ipadm_prop.c 10

679 nvp = nvlist_next_nvpair(portsnvl, nvp)) {
680 ++count;
681 }

683 if (iph->iph_flags & IPH_INIT) {
684 flags |= IPADM_OPT_APPEND;
685 } else if (count > 1) {
686 /*
687 * We allow only one port to be added, removed or
688 * assigned at a time.
689 *
690 * However on reboot, while initializing protocol
691 * properties, extra_priv_ports might have multiple
692 * values. Only in that case we allow setting multiple
693 * values.
694 */
695 nvlist_free(portsnvl);
696 return (IPADM_INVALID_ARG);
697 }

699 for (nvp = nvlist_next_nvpair(portsnvl, NULL); nvp != NULL;
700 nvp = nvlist_next_nvpair(portsnvl, nvp)) {
701 status = i_ipadm_set_prop(iph, arg, pdp, nvpair_name(nvp),
702 proto, flags);
703 if (status != IPADM_SUCCESS)
704 break;
705 }
706 nvlist_free(portsnvl);
707 return (status);
708 }

710 /* ARGSUSED */
711 static ipadm_status_t
712 i_ipadm_set_forwarding(ipadm_handle_t iph, const void *arg,
713 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
714 {
715 const char *ifname = arg;
716 ipadm_status_t status;

718 /*
719 * if interface name is provided, then set forwarding using the
720 * IFF_ROUTER flag
721 */
722 if (ifname != NULL) {
723 status = i_ipadm_set_ifprop_flags(iph, ifname, pdp, pval,
724 proto, flags);
725 } else {
726 char *val = NULL;

728 /*
729 * if the caller is IPH_LEGACY, ‘pval’ already contains
730 * numeric values.
731 */
732 if (!(flags & IPADM_OPT_DEFAULT) &&
733 !(iph->iph_flags & IPH_LEGACY)) {

735 if (strcmp(pval, IPADM_ONSTR) == 0)
736 val = "1";
737 else if (strcmp(pval, IPADM_OFFSTR) == 0)
738 val = "0";
739 else
740 return (IPADM_INVALID_ARG);
741 pval = val;
742 }

744 status = i_ipadm_set_prop(iph, ifname, pdp, pval, proto, flags);

new/usr/src/lib/libipadm/common/ipadm_prop.c 11

745 }

747 return (status);
748 }

750 /* ARGSUSED */
751 static ipadm_status_t
752 i_ipadm_set_ecnsack(ipadm_handle_t iph, const void *arg,
753 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
754 {
755 uint_t i;
756 char val[MAXPROPVALLEN];

758 /* if IPH_LEGACY is set, ‘pval’ already contains numeric values */
759 if (!(flags & IPADM_OPT_DEFAULT) && !(iph->iph_flags & IPH_LEGACY)) {
760 for (i = 0; ecn_sack_vals[i] != NULL; i++) {
761 if (strcmp(pval, ecn_sack_vals[i]) == 0)
762 break;
763 }
764 if (ecn_sack_vals[i] == NULL)
765 return (IPADM_INVALID_ARG);
766 (void) snprintf(val, MAXPROPVALLEN, "%d", i);
767 pval = val;
768 }

770 return (i_ipadm_set_prop(iph, arg, pdp, pval, proto, flags));
771 }

773 /* ARGSUSED */
774 ipadm_status_t
775 i_ipadm_get_ecnsack(ipadm_handle_t iph, const void *arg,
776 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
777 uint_t valtype)
778 {
779 ipadm_status_t status = IPADM_SUCCESS;
780 uint_t i, nbytes = 0;

782 switch (valtype) {
783 case MOD_PROP_POSSIBLE:
784 for (i = 0; ecn_sack_vals[i] != NULL; i++) {
785 if (i == 0)
786 nbytes += snprintf(buf + nbytes,
787 *bufsize - nbytes, "%s", ecn_sack_vals[i]);
788 else
789 nbytes += snprintf(buf + nbytes,
790 *bufsize - nbytes, ",%s", ecn_sack_vals[i]);
791 if (nbytes >= *bufsize)
792 break;
793 }
794 break;
795 case MOD_PROP_PERM:
796 case MOD_PROP_DEFAULT:
797 case MOD_PROP_ACTIVE:
798 status = i_ipadm_get_prop(iph, arg, pdp, buf, bufsize, proto,
799 valtype);

801 /*
802 * If IPH_LEGACY is set, do not convert the value returned
803 * from kernel,
804 */
805 if (iph->iph_flags & IPH_LEGACY)
806 break;

808 /*
809 * For current and default value, convert the value returned
810 * from kernel to more discrete representation.

new/usr/src/lib/libipadm/common/ipadm_prop.c 12

811 */
812 if (status == IPADM_SUCCESS && (valtype == MOD_PROP_ACTIVE ||
813 valtype == MOD_PROP_DEFAULT)) {
814 i = atoi(buf);
815 assert(i < 3);
816 nbytes = snprintf(buf, *bufsize, "%s",
817 ecn_sack_vals[i]);
818 }
819 break;
820 default:
821 return (IPADM_INVALID_ARG);
822 }
823 if (nbytes >= *bufsize) {
824 /* insufficient buffer space */
825 *bufsize = nbytes + 1;
826 return (IPADM_NO_BUFS);
827 }

829 return (status);
830 }

832 /* ARGSUSED */
833 static ipadm_status_t
834 i_ipadm_get_forwarding(ipadm_handle_t iph, const void *arg,
835 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
836 uint_t valtype)
837 {
838 const char *ifname = arg;
839 ipadm_status_t status = IPADM_SUCCESS;

841 /*
842 * if interface name is provided, then get forwarding status using
843 * SIOCGLIFFLAGS
844 */
845 if (ifname != NULL) {
846 status = i_ipadm_get_ifprop_flags(iph, ifname, pdp,
847 buf, bufsize, pdp->ipd_proto, valtype);
848 } else {
849 status = i_ipadm_get_prop(iph, ifname, pdp, buf,
850 bufsize, proto, valtype);
851 /*
852 * If IPH_LEGACY is set, do not convert the value returned
853 * from kernel,
854 */
855 if (iph->iph_flags & IPH_LEGACY)
856 goto ret;
857 if (status == IPADM_SUCCESS && (valtype == MOD_PROP_ACTIVE ||
858 valtype == MOD_PROP_DEFAULT)) {
859 uint_t val = atoi(buf);

861 (void) snprintf(buf, *bufsize,
862 (val == 1 ? IPADM_ONSTR : IPADM_OFFSTR));
863 }
864 }

866 ret:
867 return (status);
868 }

870 /* ARGSUSED */
871 static ipadm_status_t
872 i_ipadm_get_mtu(ipadm_handle_t iph, const void *arg,
873 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
874 uint_t valtype)
875 {
876 struct lifreq lifr;

new/usr/src/lib/libipadm/common/ipadm_prop.c 13

877 const char *ifname = arg;
878 size_t nbytes;
879 int s;

881 switch (valtype) {
882 case MOD_PROP_PERM:
883 nbytes = snprintf(buf, *bufsize, "%d", MOD_PROP_PERM_RW);
884 break;
885 case MOD_PROP_DEFAULT:
886 case MOD_PROP_POSSIBLE:
887 return (i_ipadm_get_prop(iph, arg, pdp, buf, bufsize,
888 proto, valtype));
889 case MOD_PROP_ACTIVE:
890 bzero(&lifr, sizeof (lifr));
891 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
892 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);

894 if (ioctl(s, SIOCGLIFMTU, (caddr_t)&lifr) < 0)
895 return (ipadm_errno2status(errno));
896 nbytes = snprintf(buf, *bufsize, "%u", lifr.lifr_mtu);
897 break;
898 default:
899 return (IPADM_INVALID_ARG);
900 }
901 if (nbytes >= *bufsize) {
902 /* insufficient buffer space */
903 *bufsize = nbytes + 1;
904 return (IPADM_NO_BUFS);
905 }
906 return (IPADM_SUCCESS);
907 }

909 /* ARGSUSED */
910 static ipadm_status_t
911 i_ipadm_get_metric(ipadm_handle_t iph, const void *arg,
912 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
913 uint_t valtype)
914 {
915 struct lifreq lifr;
916 const char *ifname = arg;
917 size_t nbytes;
918 int s, val;

920 switch (valtype) {
921 case MOD_PROP_PERM:
922 val = MOD_PROP_PERM_RW;
923 break;
924 case MOD_PROP_DEFAULT:
925 val = DEF_METRIC_VAL;
926 break;
927 case MOD_PROP_ACTIVE:
928 bzero(&lifr, sizeof (lifr));
929 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));

931 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);
932 if (ioctl(s, SIOCGLIFMETRIC, (caddr_t)&lifr) < 0)
933 return (ipadm_errno2status(errno));
934 val = lifr.lifr_metric;
935 break;
936 default:
937 return (IPADM_INVALID_ARG);
938 }
939 nbytes = snprintf(buf, *bufsize, "%d", val);
940 if (nbytes >= *bufsize) {
941 /* insufficient buffer space */
942 *bufsize = nbytes + 1;

new/usr/src/lib/libipadm/common/ipadm_prop.c 14

943 return (IPADM_NO_BUFS);
944 }

946 return (IPADM_SUCCESS);
947 }

949 /* ARGSUSED */
950 static ipadm_status_t
951 i_ipadm_get_usesrc(ipadm_handle_t iph, const void *arg,
952 ipadm_prop_desc_t *ipd, char *buf, uint_t *bufsize, uint_t proto,
953 uint_t valtype)
954 {
955 struct lifreq lifr;
956 const char *ifname = arg;
957 int s;
958 char if_name[IF_NAMESIZE];
959 size_t nbytes;

961 switch (valtype) {
962 case MOD_PROP_PERM:
963 nbytes = snprintf(buf, *bufsize, "%d", MOD_PROP_PERM_RW);
964 break;
965 case MOD_PROP_DEFAULT:
966 nbytes = snprintf(buf, *bufsize, "%s", IPADM_NONESTR);
967 break;
968 case MOD_PROP_ACTIVE:
969 bzero(&lifr, sizeof (lifr));
970 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));

972 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);
973 if (ioctl(s, SIOCGLIFUSESRC, (caddr_t)&lifr) < 0)
974 return (ipadm_errno2status(errno));
975 if (lifr.lifr_index == 0) {
976 /* no src address was set, so print ’none’ */
977 (void) strlcpy(if_name, IPADM_NONESTR,
978 sizeof (if_name));
979 } else if (if_indextoname(lifr.lifr_index, if_name) == NULL) {
980 return (ipadm_errno2status(errno));
981 }
982 nbytes = snprintf(buf, *bufsize, "%s", if_name);
983 break;
984 default:
985 return (IPADM_INVALID_ARG);
986 }
987 if (nbytes >= *bufsize) {
988 /* insufficient buffer space */
989 *bufsize = nbytes + 1;
990 return (IPADM_NO_BUFS);
991 }
992 return (IPADM_SUCCESS);
993 }

995 /* ARGSUSED */
996 static ipadm_status_t
997 i_ipadm_get_ifprop_flags(ipadm_handle_t iph, const void *arg,
998 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
999 uint_t valtype)

1000 {
1001 uint64_t intf_flags;
1002 char *val;
1003 size_t nbytes;
1004 const char *ifname = arg;
1005 sa_family_t af;
1006 ipadm_status_t status = IPADM_SUCCESS;

1008 switch (valtype) {

new/usr/src/lib/libipadm/common/ipadm_prop.c 15

1009 case MOD_PROP_PERM:
1010 nbytes = snprintf(buf, *bufsize, "%d", MOD_PROP_PERM_RW);
1011 break;
1012 case MOD_PROP_DEFAULT:
1013 if (strcmp(pdp->ipd_name, "exchange_routes") == 0 ||
1014 strcmp(pdp->ipd_name, "arp") == 0 ||
1015 strcmp(pdp->ipd_name, "nud") == 0) {
1016 val = IPADM_ONSTR;
1017 } else if (strcmp(pdp->ipd_name, "forwarding") == 0) {
1018 val = IPADM_OFFSTR;
1019 } else {
1020 return (IPADM_PROP_UNKNOWN);
1021 }
1022 nbytes = snprintf(buf, *bufsize, "%s", val);
1023 break;
1024 case MOD_PROP_ACTIVE:
1025 af = (proto == MOD_PROTO_IPV6 ? AF_INET6 : AF_INET);
1026 status = i_ipadm_get_flags(iph, ifname, af, &intf_flags);
1027 if (status != IPADM_SUCCESS)
1028 return (status);

1030 val = IPADM_OFFSTR;
1031 if (strcmp(pdp->ipd_name, "exchange_routes") == 0) {
1032 if (!(intf_flags & IFF_NORTEXCH))
1033 val = IPADM_ONSTR;
1034 } else if (strcmp(pdp->ipd_name, "forwarding") == 0) {
1035 if (intf_flags & IFF_ROUTER)
1036 val = IPADM_ONSTR;
1037 } else if (strcmp(pdp->ipd_name, "arp") == 0) {
1038 if (!(intf_flags & IFF_NOARP))
1039 val = IPADM_ONSTR;
1040 } else if (strcmp(pdp->ipd_name, "nud") == 0) {
1041 if (!(intf_flags & IFF_NONUD))
1042 val = IPADM_ONSTR;
1043 }
1044 nbytes = snprintf(buf, *bufsize, "%s", val);
1045 break;
1046 default:
1047 return (IPADM_INVALID_ARG);
1048 }
1049 if (nbytes >= *bufsize) {
1050 /* insufficient buffer space */
1051 *bufsize = nbytes + 1;
1052 status = IPADM_NO_BUFS;
1053 }

1055 return (status);
1056 }

1058 static void
1059 i_ipadm_perm2str(char *buf, uint_t *bufsize)
1060 {
1061 uint_t perm = atoi(buf);

1063 (void) snprintf(buf, *bufsize, "%c%c",
1064 ((perm & MOD_PROP_PERM_READ) != 0) ? ’r’ : ’-’,
1065 ((perm & MOD_PROP_PERM_WRITE) != 0) ? ’w’ : ’-’);
1066 }

1068 /* ARGSUSED */
1069 static ipadm_status_t
1070 i_ipadm_get_prop(ipadm_handle_t iph, const void *arg,
1071 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
1072 uint_t valtype)
1073 {
1074 ipadm_status_t status = IPADM_SUCCESS;

new/usr/src/lib/libipadm/common/ipadm_prop.c 16

1075 const char *ifname = arg;
1076 mod_ioc_prop_t *mip;
1077 char *pname = pdp->ipd_name;
1078 uint_t iocsize;

1080 /* allocate sufficient ioctl buffer to retrieve value */
1081 iocsize = sizeof (mod_ioc_prop_t) + *bufsize - 1;
1082 if ((mip = calloc(1, iocsize)) == NULL)
1083 return (IPADM_NO_BUFS);

1085 mip->mpr_version = MOD_PROP_VERSION;
1086 mip->mpr_flags = valtype;
1087 mip->mpr_proto = proto;
1088 if (ifname != NULL) {
1089 (void) strlcpy(mip->mpr_ifname, ifname,
1090 sizeof (mip->mpr_ifname));
1091 }
1092 (void) strlcpy(mip->mpr_name, pname, sizeof (mip->mpr_name));
1093 mip->mpr_valsize = *bufsize;

1095 if (i_ipadm_strioctl(iph->iph_sock, SIOCGETPROP, (char *)mip,
1096 iocsize) < 0) {
1097 if (errno == ENOENT)
1098 status = IPADM_PROP_UNKNOWN;
1099 else
1100 status = ipadm_errno2status(errno);
1101 } else {
1102 bcopy(mip->mpr_val, buf, *bufsize);
1103 }

1105 free(mip);
1106 return (status);
1107 }

1109 /*
1110 * Populates the ipmgmt_prop_arg_t based on the class of property.
1111 *
1112 * For private protocol properties, while persisting information in ipadm
1113 * data store, to ensure there is no collision of namespace between ipadm
1114 * private nvpair names (which also starts with ’_’, see ipadm_ipmgmt.h)
1115 * and private protocol property names, we will prepend IPADM_PRIV_PROP_PREFIX
1116 * to property names.
1117 */
1118 static void
1119 i_ipadm_populate_proparg(ipmgmt_prop_arg_t *pargp, ipadm_prop_desc_t *pdp,
1120 const char *pval, const void *object)
1121 {
1122 const struct ipadm_addrobj_s *ipaddr;
1123 uint_t class = pdp->ipd_class;
1124 uint_t proto = pdp->ipd_proto;

1126 (void) strlcpy(pargp->ia_pname, pdp->ipd_name,
1127 sizeof (pargp->ia_pname));
1128 if (pval != NULL)
1129 (void) strlcpy(pargp->ia_pval, pval, sizeof (pargp->ia_pval));

1131 switch (class) {
1132 case IPADMPROP_CLASS_MODULE:
1133 /* if it’s a private property then add the prefix. */
1134 if (pdp->ipd_name[0] == ’_’) {
1135 (void) snprintf(pargp->ia_pname,
1136 sizeof (pargp->ia_pname), "_%s", pdp->ipd_name);
1137 }
1138 (void) strlcpy(pargp->ia_module, object,
1139 sizeof (pargp->ia_module));
1140 break;

new/usr/src/lib/libipadm/common/ipadm_prop.c 17

1141 case IPADMPROP_CLASS_MODIF:
1142 /* check if object is protostr or an ifname */
1143 if (ipadm_str2proto(object) != MOD_PROTO_NONE) {
1144 (void) strlcpy(pargp->ia_module, object,
1145 sizeof (pargp->ia_module));
1146 break;
1147 }
1148 /* it’s an interface property, fall through */
1149 /* FALLTHRU */
1150 case IPADMPROP_CLASS_IF:
1151 (void) strlcpy(pargp->ia_ifname, object,
1152 sizeof (pargp->ia_ifname));
1153 (void) strlcpy(pargp->ia_module, ipadm_proto2str(proto),
1154 sizeof (pargp->ia_module));
1155 break;
1156 case IPADMPROP_CLASS_ADDR:
1157 ipaddr = object;
1158 (void) strlcpy(pargp->ia_ifname, ipaddr->ipadm_ifname,
1159 sizeof (pargp->ia_ifname));
1160 (void) strlcpy(pargp->ia_aobjname, ipaddr->ipadm_aobjname,
1161 sizeof (pargp->ia_aobjname));
1162 break;
1163 }
1164 }

1166 /*
1167 * Common function to retrieve property value for a given interface ‘ifname’ or
1168 * for a given protocol ‘proto’. The property name is in ‘pname’.
1169 *
1170 * ‘valtype’ determines the type of value that will be retrieved.
1171 * IPADM_OPT_ACTIVE - current value of the property (active config)
1172 * IPADM_OPT_PERSIST - value of the property from persistent store
1173 * IPADM_OPT_DEFAULT - default hard coded value (boot-time value)
1174 * IPADM_OPT_PERM - read/write permissions for the value
1175 * IPADM_OPT_POSSIBLE - range of values
1176 */
1177 static ipadm_status_t
1178 i_ipadm_getprop_common(ipadm_handle_t iph, const char *ifname,
1179 const char *pname, char *buf, uint_t *bufsize, uint_t proto,
1180 uint_t valtype)
1181 {
1182 ipadm_status_t status = IPADM_SUCCESS;
1183 ipadm_prop_desc_t *pdp;
1184 char priv_propname[MAXPROPNAMELEN];
1185 boolean_t is_if = (ifname != NULL);
1186 int err = 0;

1188 pdp = i_ipadm_get_prop_desc(pname, proto, &err);
1189 if (err == EPROTO)
1190 return (IPADM_BAD_PROTOCOL);
1191 /* there are no private interface properties */
1192 if (is_if && err == ENOENT)
1193 return (IPADM_PROP_UNKNOWN);

1195 if (pdp != NULL) {
1196 /*
1197 * check whether the property can be
1198 * applied on an interface
1199 */
1200 if (is_if && !(pdp->ipd_class & IPADMPROP_CLASS_IF))
1201 return (IPADM_INVALID_ARG);
1202 /*
1203 * check whether the property can be
1204 * applied on a module
1205 */
1206 if (!is_if && !(pdp->ipd_class & IPADMPROP_CLASS_MODULE))

new/usr/src/lib/libipadm/common/ipadm_prop.c 18

1207 return (IPADM_INVALID_ARG);

1209 } else {
1210 /* private protocol properties, pass it to kernel directly */
1211 pdp = &ipadm_privprop;
1212 (void) strlcpy(priv_propname, pname, sizeof (priv_propname));
1213 pdp->ipd_name = priv_propname;
1214 }

1216 switch (valtype) {
1217 case IPADM_OPT_PERM:
1218 status = pdp->ipd_get(iph, ifname, pdp, buf, bufsize, proto,
1219 MOD_PROP_PERM);
1220 if (status == IPADM_SUCCESS)
1221 i_ipadm_perm2str(buf, bufsize);
1222 break;
1223 case IPADM_OPT_ACTIVE:
1224 status = pdp->ipd_get(iph, ifname, pdp, buf, bufsize, proto,
1225 MOD_PROP_ACTIVE);
1226 break;
1227 case IPADM_OPT_DEFAULT:
1228 status = pdp->ipd_get(iph, ifname, pdp, buf, bufsize, proto,
1229 MOD_PROP_DEFAULT);
1230 break;
1231 case IPADM_OPT_POSSIBLE:
1232 if (pdp->ipd_get_range != NULL) {
1233 status = pdp->ipd_get_range(iph, ifname, pdp, buf,
1234 bufsize, proto, MOD_PROP_POSSIBLE);
1235 break;
1236 }
1237 buf[0] = ’\0’;
1238 break;
1239 case IPADM_OPT_PERSIST:
1240 /* retrieve from database */
1241 if (is_if)
1242 status = i_ipadm_get_persist_propval(iph, pdp, buf,
1243 bufsize, ifname);
1244 else
1245 status = i_ipadm_get_persist_propval(iph, pdp, buf,
1246 bufsize, ipadm_proto2str(proto));
1247 break;
1248 default:
1249 status = IPADM_INVALID_ARG;
1250 break;
1251 }
1252 return (status);
1253 }

1255 /*
1256 * Get protocol property of the specified protocol.
1257 */
1258 ipadm_status_t
1259 ipadm_get_prop(ipadm_handle_t iph, const char *pname, char *buf,
1260 uint_t *bufsize, uint_t proto, uint_t valtype)
1261 {
1262 /*
1263 * validate the arguments of the function.
1264 */
1265 if (iph == NULL || pname == NULL || buf == NULL ||
1266 bufsize == NULL || *bufsize == 0) {
1267 return (IPADM_INVALID_ARG);
1268 }
1269 /*
1270 * Do we support this proto, if not return error.
1271 */
1272 if (ipadm_proto2str(proto) == NULL)

new/usr/src/lib/libipadm/common/ipadm_prop.c 19

1273 return (IPADM_NOTSUP);

1275 return (i_ipadm_getprop_common(iph, NULL, pname, buf, bufsize,
1276 proto, valtype));
1277 }

1279 /*
1280 * Get interface property of the specified interface.
1281 */
1282 ipadm_status_t
1283 ipadm_get_ifprop(ipadm_handle_t iph, const char *ifname, const char *pname,
1284 char *buf, uint_t *bufsize, uint_t proto, uint_t valtype)
1285 {
1286 /* validate the arguments of the function. */
1287 if (iph == NULL || pname == NULL || buf == NULL ||
1288 bufsize == NULL || *bufsize == 0) {
1289 return (IPADM_INVALID_ARG);
1290 }

1292 /* Do we support this proto, if not return error. */
1293 if (ipadm_proto2str(proto) == NULL)
1294 return (IPADM_NOTSUP);

1296 /*
1297 * check if interface name is provided for interface property and
1298 * is valid.
1299 */
1300 if (!i_ipadm_validate_ifname(iph, ifname))
1301 return (IPADM_INVALID_ARG);

1303 return (i_ipadm_getprop_common(iph, ifname, pname, buf, bufsize,
1304 proto, valtype));
1305 }

1307 /*
1308 * Allocates sufficient ioctl buffers and copies property name and the
1309 * value, among other things. If the flag IPADM_OPT_DEFAULT is set, then
1310 * ‘pval’ will be NULL and it instructs the kernel to reset the current
1311 * value to property’s default value.
1312 */
1313 static ipadm_status_t
1314 i_ipadm_set_prop(ipadm_handle_t iph, const void *arg,
1315 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
1316 {
1317 ipadm_status_t status = IPADM_SUCCESS;
1318 const char *ifname = arg;
1319 mod_ioc_prop_t *mip;
1320 char *pname = pdp->ipd_name;
1321 uint_t valsize, iocsize;
1322 uint_t iocflags = 0;

1324 if (flags & IPADM_OPT_DEFAULT) {
1325 iocflags |= MOD_PROP_DEFAULT;
1326 } else if (flags & IPADM_OPT_ACTIVE) {
1327 iocflags |= MOD_PROP_ACTIVE;
1328 if (flags & IPADM_OPT_APPEND)
1329 iocflags |= MOD_PROP_APPEND;
1330 else if (flags & IPADM_OPT_REMOVE)
1331 iocflags |= MOD_PROP_REMOVE;
1332 }

1334 if (pval != NULL) {
1335 valsize = strlen(pval);
1336 iocsize = sizeof (mod_ioc_prop_t) + valsize - 1;
1337 } else {
1338 valsize = 0;

new/usr/src/lib/libipadm/common/ipadm_prop.c 20

1339 iocsize = sizeof (mod_ioc_prop_t);
1340 }

1342 if ((mip = calloc(1, iocsize)) == NULL)
1343 return (IPADM_NO_BUFS);

1345 mip->mpr_version = MOD_PROP_VERSION;
1346 mip->mpr_flags = iocflags;
1347 mip->mpr_proto = proto;
1348 if (ifname != NULL) {
1349 (void) strlcpy(mip->mpr_ifname, ifname,
1350 sizeof (mip->mpr_ifname));
1351 }

1353 (void) strlcpy(mip->mpr_name, pname, sizeof (mip->mpr_name));
1354 mip->mpr_valsize = valsize;
1355 if (pval != NULL)
1356 bcopy(pval, mip->mpr_val, valsize);

1358 if (i_ipadm_strioctl(iph->iph_sock, SIOCSETPROP, (char *)mip,
1359 iocsize) < 0) {
1360 if (errno == ENOENT)
1361 status = IPADM_PROP_UNKNOWN;
1362 else
1363 status = ipadm_errno2status(errno);
1364 }
1365 free(mip);
1366 return (status);
1367 }

1369 /*
1370 * Common function for modifying both protocol/interface property.
1371 *
1372 * If:
1373 * IPADM_OPT_PERSIST is set then the value is persisted.
1374 * IPADM_OPT_DEFAULT is set then the default value for the property will
1375 * be applied.
1376 */
1377 static ipadm_status_t
1378 i_ipadm_setprop_common(ipadm_handle_t iph, const char *ifname,
1379 const char *pname, const char *buf, uint_t proto, uint_t pflags)
1380 {
1381 ipadm_status_t status = IPADM_SUCCESS;
1382 boolean_t persist = (pflags & IPADM_OPT_PERSIST);
1383 boolean_t reset = (pflags & IPADM_OPT_DEFAULT);
1384 ipadm_prop_desc_t *pdp;
1385 boolean_t is_if = (ifname != NULL);
1386 char priv_propname[MAXPROPNAMELEN];
1387 int err = 0;

1389 /* Check that property value is within the allowed size */
1390 if (!reset && strnlen(buf, MAXPROPVALLEN) >= MAXPROPVALLEN)
1391 return (IPADM_INVALID_ARG);

1393 pdp = i_ipadm_get_prop_desc(pname, proto, &err);
1394 if (err == EPROTO)
1395 return (IPADM_BAD_PROTOCOL);
1396 /* there are no private interface properties */
1397 if (is_if && err == ENOENT)
1398 return (IPADM_PROP_UNKNOWN);

1400 if (pdp != NULL) {
1401 /* do some sanity checks */
1402 if (is_if) {
1403 if (!(pdp->ipd_class & IPADMPROP_CLASS_IF))
1404 return (IPADM_INVALID_ARG);

new/usr/src/lib/libipadm/common/ipadm_prop.c 21

1405 } else {
1406 if (!(pdp->ipd_class & IPADMPROP_CLASS_MODULE))
1407 return (IPADM_INVALID_ARG);
1408 }
1409 /*
1410 * if the property is not multi-valued and IPADM_OPT_APPEND or
1411 * IPADM_OPT_REMOVE is specified, return IPADM_INVALID_ARG.
1412 */
1413 if (!(pdp->ipd_flags & IPADMPROP_MULVAL) && (pflags &
1414 (IPADM_OPT_APPEND|IPADM_OPT_REMOVE))) {
1415 return (IPADM_INVALID_ARG);
1416 }
1417 } else {
1418 /* private protocol property, pass it to kernel directly */
1419 pdp = &ipadm_privprop;
1420 (void) strlcpy(priv_propname, pname, sizeof (priv_propname));
1421 pdp->ipd_name = priv_propname;
1422 }

1424 status = pdp->ipd_set(iph, ifname, pdp, buf, proto, pflags);
1425 if (status != IPADM_SUCCESS)
1426 return (status);

1428 if (persist) {
1429 if (is_if)
1430 status = i_ipadm_persist_propval(iph, pdp, buf, ifname,
1431 pflags);
1432 else
1433 status = i_ipadm_persist_propval(iph, pdp, buf,
1434 ipadm_proto2str(proto), pflags);
1435 }
1436 return (status);
1437 }

1439 /*
1440 * Sets the property value of the specified interface
1441 */
1442 ipadm_status_t
1443 ipadm_set_ifprop(ipadm_handle_t iph, const char *ifname, const char *pname,
1444 const char *buf, uint_t proto, uint_t pflags)
1445 {
1446 boolean_t reset = (pflags & IPADM_OPT_DEFAULT);
1447 ipadm_status_t status;

1449 /* check for solaris.network.interface.config authorization */
1450 if (!ipadm_check_auth())
1451 return (IPADM_EAUTH);
1452 /*
1453 * validate the arguments of the function.
1454 */
1455 if (iph == NULL || pname == NULL || (!reset && buf == NULL) ||
1456 pflags == 0 || pflags == IPADM_OPT_PERSIST ||
1457 (pflags & ~(IPADM_COMMON_OPT_MASK|IPADM_OPT_DEFAULT))) {
1458 return (IPADM_INVALID_ARG);
1459 }

1461 /*
1462 * Do we support this protocol, if not return error.
1463 */
1464 if (ipadm_proto2str(proto) == NULL)
1465 return (IPADM_NOTSUP);

1467 /*
1468 * Validate the interface and check if a persistent
1469 * operation is performed on a temporary object.
1470 */

new/usr/src/lib/libipadm/common/ipadm_prop.c 22

1471 status = i_ipadm_validate_if(iph, ifname, proto, pflags);
1472 if (status != IPADM_SUCCESS)
1473 return (status);

1475 return (i_ipadm_setprop_common(iph, ifname, pname, buf, proto,
1476 pflags));
1477 }

1479 /*
1480 * Sets the property value of the specified protocol.
1481 */
1482 ipadm_status_t
1483 ipadm_set_prop(ipadm_handle_t iph, const char *pname, const char *buf,
1484 uint_t proto, uint_t pflags)
1485 {
1486 boolean_t reset = (pflags & IPADM_OPT_DEFAULT);

1488 /* check for solaris.network.interface.config authorization */
1489 if (!ipadm_check_auth())
1490 return (IPADM_EAUTH);
1491 /*
1492 * validate the arguments of the function.
1493 */
1494 if (iph == NULL || pname == NULL ||(!reset && buf == NULL) ||
1495 pflags == 0 || pflags == IPADM_OPT_PERSIST ||
1496 (pflags & ~(IPADM_COMMON_OPT_MASK|IPADM_OPT_DEFAULT|
1497 IPADM_OPT_APPEND|IPADM_OPT_REMOVE))) {
1498 return (IPADM_INVALID_ARG);
1499 }

1501 /*
1502 * Do we support this proto, if not return error.
1503 */
1504 if (ipadm_proto2str(proto) == NULL)
1505 return (IPADM_NOTSUP);

1507 return (i_ipadm_setprop_common(iph, NULL, pname, buf, proto,
1508 pflags));
1509 }

1511 /* helper function for ipadm_walk_proptbl */
1512 static void
1513 i_ipadm_walk_proptbl(ipadm_prop_desc_t *pdtbl, uint_t proto, uint_t class,
1514 ipadm_prop_wfunc_t *func, void *arg)
1515 {
1516 ipadm_prop_desc_t *pdp;

1518 for (pdp = pdtbl; pdp->ipd_name != NULL; pdp++) {
1519 if (!(pdp->ipd_class & class))
1520 continue;

1522 if (proto != MOD_PROTO_NONE && !(pdp->ipd_proto & proto))
1523 continue;

1525 /*
1526 * we found a class specific match, call the
1527 * user callback function.
1528 */
1529 if (func(arg, pdp->ipd_name, pdp->ipd_proto) == B_FALSE)
1530 break;
1531 }
1532 }

1534 /*
1535 * Walks through all the properties, for a given protocol and property class
1536 * (protocol or interface).

new/usr/src/lib/libipadm/common/ipadm_prop.c 23

1537 *
1538 * Further if proto == MOD_PROTO_NONE, then it walks through all the supported
1539 * protocol property tables.
1540 */
1541 ipadm_status_t
1542 ipadm_walk_proptbl(uint_t proto, uint_t class, ipadm_prop_wfunc_t *func,
1543 void *arg)
1544 {
1545 ipadm_prop_desc_t *pdtbl;
1546 ipadm_status_t status = IPADM_SUCCESS;
1547 int i;
1548 int count = A_CNT(protocols);

1550 if (func == NULL)
1551 return (IPADM_INVALID_ARG);

1553 switch (class) {
1554 case IPADMPROP_CLASS_ADDR:
1555 pdtbl = ipadm_addrprop_table;
1556 break;
1557 case IPADMPROP_CLASS_IF:
1558 case IPADMPROP_CLASS_MODULE:
1559 pdtbl = i_ipadm_get_propdesc_table(proto);
1560 if (pdtbl == NULL && proto != MOD_PROTO_NONE)
1561 return (IPADM_INVALID_ARG);
1562 break;
1563 default:
1564 return (IPADM_INVALID_ARG);
1565 }

1567 if (pdtbl != NULL) {
1568 /*
1569 * proto will be MOD_PROTO_NONE in the case of
1570 * IPADMPROP_CLASS_ADDR.
1571 */
1572 i_ipadm_walk_proptbl(pdtbl, proto, class, func, arg);
1573 } else {
1574 /* Walk thru all the protocol tables, we support */
1575 for (i = 0; i < count; i++) {
1576 pdtbl = i_ipadm_get_propdesc_table(protocols[i]);
1577 i_ipadm_walk_proptbl(pdtbl, protocols[i], class, func,
1578 arg);
1579 }
1580 }
1581 return (status);
1582 }

1584 /*
1585 * Given a property name, walks through all the instances of a property name.
1586 * Some properties have two instances one for v4 interfaces and another for v6
1587 * interfaces. For example: MTU. MTU can have different values for v4 and v6.
1588 * Therefore there are two properties for ’MTU’.
1589 *
1590 * This function invokes ‘func’ for every instance of property ‘pname’
1591 */
1592 ipadm_status_t
1593 ipadm_walk_prop(const char *pname, uint_t proto, uint_t class,
1594 ipadm_prop_wfunc_t *func, void *arg)
1595 {
1596 ipadm_prop_desc_t *pdtbl, *pdp;
1597 ipadm_status_t status = IPADM_SUCCESS;
1598 boolean_t matched = B_FALSE;

1600 if (pname == NULL || func == NULL)
1601 return (IPADM_INVALID_ARG);

new/usr/src/lib/libipadm/common/ipadm_prop.c 24

1603 switch (class) {
1604 case IPADMPROP_CLASS_ADDR:
1605 pdtbl = ipadm_addrprop_table;
1606 break;
1607 case IPADMPROP_CLASS_IF:
1608 case IPADMPROP_CLASS_MODULE:
1609 pdtbl = i_ipadm_get_propdesc_table(proto);
1610 break;
1611 default:
1612 return (IPADM_INVALID_ARG);
1613 }

1615 if (pdtbl == NULL)
1616 return (IPADM_INVALID_ARG);

1618 for (pdp = pdtbl; pdp->ipd_name != NULL; pdp++) {
1619 if (strcmp(pname, pdp->ipd_name) != 0)
1620 continue;
1621 if (!(pdp->ipd_proto & proto))
1622 continue;
1623 matched = B_TRUE;
1624 /* we found a match, call the callback function */
1625 if (func(arg, pdp->ipd_name, pdp->ipd_proto) == B_FALSE)
1626 break;
1627 }
1628 if (!matched)
1629 status = IPADM_PROP_UNKNOWN;
1630 return (status);
1631 }

1633 /* ARGSUSED */
1634 ipadm_status_t
1635 i_ipadm_get_onoff(ipadm_handle_t iph, const void *arg, ipadm_prop_desc_t *dp,
1636 char *buf, uint_t *bufsize, uint_t proto, uint_t valtype)
1637 {
1638 (void) snprintf(buf, *bufsize, "%s,%s", IPADM_ONSTR, IPADM_OFFSTR);
1639 return (IPADM_SUCCESS);
1640 }

1642 /*
1643 * Makes a door call to ipmgmtd to retrieve the persisted property value
1644 */
1645 ipadm_status_t
1646 i_ipadm_get_persist_propval(ipadm_handle_t iph, ipadm_prop_desc_t *pdp,
1647 char *gbuf, uint_t *gbufsize, const void *object)
1648 {
1649 ipmgmt_prop_arg_t parg;
1650 ipmgmt_getprop_rval_t rval, *rvalp;
1651 size_t nbytes;
1652 int err = 0;

1654 bzero(&parg, sizeof (parg));
1655 parg.ia_cmd = IPMGMT_CMD_GETPROP;
1656 i_ipadm_populate_proparg(&parg, pdp, NULL, object);

1658 rvalp = &rval;
1659 err = ipadm_door_call(iph, &parg, sizeof (parg), (void **)&rvalp,
1660 sizeof (rval), B_FALSE);
1661 if (err == 0) {
1662 /* assert that rvalp was not reallocated */
1663 assert(rvalp == &rval);

1665 /* ‘ir_pval’ contains the property value */
1666 nbytes = snprintf(gbuf, *gbufsize, "%s", rvalp->ir_pval);
1667 if (nbytes >= *gbufsize) {
1668 /* insufficient buffer space */

new/usr/src/lib/libipadm/common/ipadm_prop.c 25

1669 *gbufsize = nbytes + 1;
1670 err = ENOBUFS;
1671 }
1672 }
1673 return (ipadm_errno2status(err));
1674 }

1676 /*
1677 * Persists the property value for a given property in the data store
1678 */
1679 ipadm_status_t
1680 i_ipadm_persist_propval(ipadm_handle_t iph, ipadm_prop_desc_t *pdp,
1681 const char *pval, const void *object, uint_t flags)
1682 {
1683 ipmgmt_prop_arg_t parg;
1684 int err = 0;

1686 bzero(&parg, sizeof (parg));
1687 i_ipadm_populate_proparg(&parg, pdp, pval, object);
1688 /*
1689 * Check if value to be persisted need to be appended or removed. This
1690 * is required for multi-valued property.
1691 */
1692 if (flags & IPADM_OPT_APPEND)
1693 parg.ia_flags |= IPMGMT_APPEND;
1694 if (flags & IPADM_OPT_REMOVE)
1695 parg.ia_flags |= IPMGMT_REMOVE;

1697 if (flags & (IPADM_OPT_DEFAULT|IPADM_OPT_REMOVE))
1698 parg.ia_cmd = IPMGMT_CMD_RESETPROP;
1699 else
1700 parg.ia_cmd = IPMGMT_CMD_SETPROP;

1702 err = ipadm_door_call(iph, &parg, sizeof (parg), NULL, 0, B_FALSE);

1704 /*
1705 * its fine if there were no entry in the DB to delete. The user
1706 * might be changing property value, which was not changed
1707 * persistently.
1708 */
1709 if (err == ENOENT)
1710 err = 0;
1711 return (ipadm_errno2status(err));
1712 }

1714 /*
1715 * This is called from ipadm_set_ifprop() to validate the set operation.
1716 * It does the following steps:
1717 * 1. Validates the interface name.
1718 * 2. Fails if it is an IPMP meta-interface or an underlying interface.
1719 * 3. In case of a persistent operation, verifies that the
1720 * interface is persistent.
1721 */
1722 static ipadm_status_t
1723 i_ipadm_validate_if(ipadm_handle_t iph, const char *ifname,
1724 uint_t proto, uint_t flags)
1725 {
1726 sa_family_t af, other_af;
1727 ipadm_status_t status;
1728 boolean_t p_exists;
1729 boolean_t af_exists, other_af_exists, a_exists;

1731 /* Check if the interface name is valid. */
1732 if (!i_ipadm_validate_ifname(iph, ifname))
1733 return (IPADM_INVALID_ARG);

new/usr/src/lib/libipadm/common/ipadm_prop.c 26

1735 af = (proto == MOD_PROTO_IPV6 ? AF_INET6 : AF_INET);
1736 /*
1737 * Setting properties on an IPMP meta-interface or underlying
1738 * interface is not supported.
1739 */
1740 if (i_ipadm_is_ipmp(iph, ifname) || i_ipadm_is_under_ipmp(iph, ifname))
1741 return (IPADM_NOTSUP);

1743 /* Check if interface exists in the persistent configuration. */
1744 status = i_ipadm_if_pexists(iph, ifname, af, &p_exists);
1745 if (status != IPADM_SUCCESS)
1746 return (status);

1748 /* Check if interface exists in the active configuration. */
1749 af_exists = ipadm_if_enabled(iph, ifname, af);
1750 other_af = (af == AF_INET ? AF_INET6 : AF_INET);
1751 other_af_exists = ipadm_if_enabled(iph, ifname, other_af);
1752 a_exists = (af_exists || other_af_exists);
1753 if (!a_exists && p_exists)
1754 return (IPADM_OP_DISABLE_OBJ);
1755 if (!af_exists)
1756 return (IPADM_ENXIO);

1758 /*
1759 * If a persistent operation is requested, check if the underlying
1760 * IP interface is persistent.
1761 */
1762 if ((flags & IPADM_OPT_PERSIST) && !p_exists)
1763 return (IPADM_TEMPORARY_OBJ);
1764 return (IPADM_SUCCESS);
1765 }

1767 /*
1768 * Private protocol properties namespace scheme:
1769 *
1770 * PSARC 2010/080 identified the private protocol property names to be the
1771 * leading protocol names. For e.g. tcp_strong_iss, ip_strict_src_multihoming,
1772 * et al,. However to be consistent with private data-link property names,
1773 * which starts with ’_’, private protocol property names will start with ’_’.
1774 * For e.g. _strong_iss, _strict_src_multihoming, et al,.
1775 */

1777 /* maps new private protocol property name to the old private property name */
1778 typedef struct ipadm_oname2nname_map {
1779 char *iom_oname;
1780 char *iom_nname;
1781 uint_t iom_proto;
1782 } ipadm_oname2nname_map_t;

1784 /*
1785 * IP is a special case. It isn’t straight forward to derive the legacy name
1786 * from the new name and vice versa. No set standard was followed in naming
1787 * the properties and hence we need a table to capture the mapping.
1788 */
1789 static ipadm_oname2nname_map_t name_map[] = {
1790 { "arp_probe_delay", "_arp_probe_delay",
1791 MOD_PROTO_IP },
1792 { "arp_fastprobe_delay", "_arp_fastprobe_delay",
1793 MOD_PROTO_IP },
1794 { "arp_probe_interval", "_arp_probe_interval",
1795 MOD_PROTO_IP },
1796 { "arp_fastprobe_interval", "_arp_fastprobe_interval",
1797 MOD_PROTO_IP },
1798 { "arp_probe_count", "_arp_probe_count",
1799 MOD_PROTO_IP },
1800 { "arp_fastprobe_count", "_arp_fastprobe_count",

new/usr/src/lib/libipadm/common/ipadm_prop.c 27

1801 MOD_PROTO_IP },
1802 { "arp_defend_interval", "_arp_defend_interval",
1803 MOD_PROTO_IP },
1804 { "arp_defend_rate", "_arp_defend_rate",
1805 MOD_PROTO_IP },
1806 { "arp_defend_period", "_arp_defend_period",
1807 MOD_PROTO_IP },
1808 { "ndp_defend_interval", "_ndp_defend_interval",
1809 MOD_PROTO_IP },
1810 { "ndp_defend_rate", "_ndp_defend_rate",
1811 MOD_PROTO_IP },
1812 { "ndp_defend_period", "_ndp_defend_period",
1813 MOD_PROTO_IP },
1814 { "igmp_max_version", "_igmp_max_version",
1815 MOD_PROTO_IP },
1816 { "mld_max_version", "_mld_max_version",
1817 MOD_PROTO_IP },
1818 { "ipsec_override_persocket_policy", "_ipsec_override_persocket_policy",
1819 MOD_PROTO_IP },
1820 { "ipsec_policy_log_interval", "_ipsec_policy_log_interval",
1821 MOD_PROTO_IP },
1822 { "icmp_accept_clear_messages", "_icmp_accept_clear_messages",
1823 MOD_PROTO_IP },
1824 { "igmp_accept_clear_messages", "_igmp_accept_clear_messages",
1825 MOD_PROTO_IP },
1826 { "pim_accept_clear_messages", "_pim_accept_clear_messages",
1827 MOD_PROTO_IP },
1828 { "ip_respond_to_echo_multicast", "_respond_to_echo_multicast",
1829 MOD_PROTO_IPV4 },
1830 { "ip_send_redirects", "_send_redirects",
1831 MOD_PROTO_IPV4 },
1832 { "ip_forward_src_routed", "_forward_src_routed",
1833 MOD_PROTO_IPV4 },
1834 { "ip_icmp_return_data_bytes", "_icmp_return_data_bytes",
1835 MOD_PROTO_IPV4 },
1836 { "ip_ignore_redirect", "_ignore_redirect",
1837 MOD_PROTO_IPV4 },
1838 { "ip_strict_dst_multihoming", "_strict_dst_multihoming",
1839 MOD_PROTO_IPV4 },
1840 { "ip_reasm_timeout", "_reasm_timeout",
1841 MOD_PROTO_IPV4 },
1842 { "ip_strict_src_multihoming", "_strict_src_multihoming",
1843 MOD_PROTO_IPV4 },
1844 { "ipv4_dad_announce_interval", "_dad_announce_interval",
1845 MOD_PROTO_IPV4 },
1846 { "ipv4_icmp_return_pmtu", "_icmp_return_pmtu",
1847 MOD_PROTO_IPV4 },
1848 { "ipv6_dad_announce_interval", "_dad_announce_interval",
1849 MOD_PROTO_IPV6 },
1850 { "ipv6_icmp_return_pmtu", "_icmp_return_pmtu",
1851 MOD_PROTO_IPV6 },
1852 { NULL, NULL, MOD_PROTO_NONE }
1853 };

1855 /*
1856 * Following API returns a new property name in ‘nname’ for the given legacy
1857 * property name in ‘oname’.
1858 */
1859 int
1860 ipadm_legacy2new_propname(const char *oname, char *nname, uint_t nnamelen,
1861 uint_t *proto)
1862 {
1863 const char *str;
1864 ipadm_oname2nname_map_t *ionmp;

1866 /* if it’s a public property, there is nothing to return */

new/usr/src/lib/libipadm/common/ipadm_prop.c 28

1867 if (i_ipadm_get_prop_desc(oname, *proto, NULL) != NULL)
1868 return (-1);

1870 /*
1871 * we didn’t find the ‘oname’ in the table, check if the property
1872 * name begins with a leading protocol.
1873 */
1874 str = oname;
1875 switch (*proto) {
1876 case MOD_PROTO_TCP:
1877 if (strstr(oname, "tcp_") == oname)
1878 str += strlen("tcp");
1879 break;
1880 case MOD_PROTO_SCTP:
1881 if (strstr(oname, "sctp_") == oname)
1882 str += strlen("sctp");
1883 break;
1884 case MOD_PROTO_UDP:
1885 if (strstr(oname, "udp_") == oname)
1886 str += strlen("udp");
1887 break;
1888 case MOD_PROTO_RAWIP:
1889 if (strstr(oname, "icmp_") == oname)
1890 str += strlen("icmp");
1891 break;
1892 case MOD_PROTO_IP:
1893 case MOD_PROTO_IPV4:
1894 case MOD_PROTO_IPV6:
1895 if (strstr(oname, "ip6_") == oname) {
1896 *proto = MOD_PROTO_IPV6;
1897 str += strlen("ip6");
1898 } else {
1899 for (ionmp = name_map; ionmp->iom_oname != NULL;
1900 ionmp++) {
1901 if (strcmp(oname, ionmp->iom_oname) == 0) {
1902 str = ionmp->iom_nname;
1903 *proto = ionmp->iom_proto;
1904 break;
1905 }
1906 }
1907 if (ionmp->iom_oname != NULL)
1908 break;

1910 if (strstr(oname, "ip_") == oname) {
1911 *proto = MOD_PROTO_IP;
1912 str += strlen("ip");
1913 }
1914 }
1915 break;
1916 default:
1917 return (-1);
1918 }
1919 (void) snprintf(nname, nnamelen, "%s", str);
1920 return (0);
1921 }

1923 /*
1924 * Following API is required for ndd.c alone. To maintain backward
1925 * compatibility with ndd output, we need to print the legacy name
1926 * for the new name.
1927 */
1928 int
1929 ipadm_new2legacy_propname(const char *oname, char *nname,
1930 uint_t nnamelen, uint_t proto)
1931 {
1932 char *prefix;

new/usr/src/lib/libipadm/common/ipadm_prop.c 29

1933 ipadm_oname2nname_map_t *ionmp;

1935 /* if it’s a public property, there is nothing to prepend */
1936 if (i_ipadm_get_prop_desc(oname, proto, NULL) != NULL)
1937 return (-1);

1939 switch (proto) {
1940 case MOD_PROTO_TCP:
1941 prefix = "tcp";
1942 break;
1943 case MOD_PROTO_SCTP:
1944 prefix = "sctp";
1945 break;
1946 case MOD_PROTO_UDP:
1947 prefix = "udp";
1948 break;
1949 case MOD_PROTO_RAWIP:
1950 prefix = "icmp";
1951 break;
1952 case MOD_PROTO_IP:
1953 case MOD_PROTO_IPV4:
1954 case MOD_PROTO_IPV6:
1955 /* handle special case for IP */
1956 for (ionmp = name_map; ionmp->iom_oname != NULL; ionmp++) {
1957 if (strcmp(oname, ionmp->iom_nname) == 0 &&
1958 ionmp->iom_proto == proto) {
1959 (void) strlcpy(nname, ionmp->iom_oname,
1960 nnamelen);
1961 return (0);
1962 }
1963 }
1964 if (proto == MOD_PROTO_IPV6)
1965 prefix = "ip6";
1966 else
1967 prefix = "ip";
1968 break;
1969 default:
1970 return (-1);
1971 }
1972 (void) snprintf(nname, nnamelen, "%s%s", prefix, oname);
1973 return (0);
1974 }

new/usr/src/pkg/manifests/developer-dtrace.mf 1

**
 26689 Sat Aug 18 10:37:05 2012
new/usr/src/pkg/manifests/developer-dtrace.mf
dccp: basic dtrace
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 set name=pkg.fmri value=pkg:/developer/dtrace@$(PKGVERS)
27 set name=pkg.description value="Dynamic Tracing (DTrace) Clients"
28 set name=pkg.summary value="DTrace Clients"
29 set name=info.classification \
30 value=org.opensolaris.category.2008:Development/System
31 set name=variant.arch value=$(ARCH)
32 dir path=usr group=sys
33 dir path=usr/demo
34 dir path=usr/demo/dtrace
35 dir path=usr/include
36 dir path=usr/include/sys
37 dir path=usr/lib
38 dir path=usr/lib/$(ARCH64)
39 dir path=usr/lib/devfsadm group=sys
40 dir path=usr/lib/devfsadm/linkmod group=sys
41 dir path=usr/lib/dtrace
42 dir path=usr/lib/dtrace/64
43 dir path=usr/lib/mdb group=sys
44 dir path=usr/lib/mdb/kvm group=sys
45 dir path=usr/lib/mdb/kvm/$(ARCH64) group=sys
46 dir path=usr/lib/mdb/raw group=sys
47 dir path=usr/lib/mdb/raw/$(ARCH64) group=sys
48 dir path=usr/sbin
49 dir path=usr/sbin/$(ARCH32)
50 dir path=usr/sbin/$(ARCH64)
51 dir path=usr/share
52 dir path=usr/share/lib
53 dir path=usr/share/lib/java group=sys
54 dir path=usr/share/lib/java/javadoc group=other
55 dir path=usr/share/lib/java/javadoc/dtrace group=other
56 dir path=usr/share/lib/java/javadoc/dtrace/api group=other
57 dir path=usr/share/lib/java/javadoc/dtrace/api/org group=other
58 dir path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris group=other
59 dir path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os group=other
60 dir path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace \
61 group=other

new/usr/src/pkg/manifests/developer-dtrace.mf 2

62 dir \
63 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
64 group=other
65 dir path=usr/share/lib/java/javadoc/dtrace/api/resources group=other
66 dir path=usr/share/lib/java/javadoc/dtrace/examples group=other
67 dir path=usr/share/lib/java/javadoc/dtrace/html group=other
68 dir path=usr/share/lib/java/javadoc/dtrace/images group=other
69 dir path=usr/share/man/man1m
70 dir path=usr/share/man/man3lib
71 file path=usr/demo/dtrace/applicat.d
72 file path=usr/demo/dtrace/badopen.d
73 file path=usr/demo/dtrace/begin.d
74 file path=usr/demo/dtrace/callout.d
75 file path=usr/demo/dtrace/clause.d
76 file path=usr/demo/dtrace/clear.d
77 file path=usr/demo/dtrace/countdown.d
78 file path=usr/demo/dtrace/counter.d
79 file path=usr/demo/dtrace/dateprof.d
80 file path=usr/demo/dtrace/delay.d
81 file path=usr/demo/dtrace/denorm.d
82 file path=usr/demo/dtrace/end.d
83 file path=usr/demo/dtrace/error.d
84 file path=usr/demo/dtrace/errorpath.d
85 file path=usr/demo/dtrace/find.d
86 file path=usr/demo/dtrace/firebird.d
87 file path=usr/demo/dtrace/hello.d
88 file path=usr/demo/dtrace/howlong.d
89 file path=usr/demo/dtrace/index.html
90 file path=usr/demo/dtrace/interp.d
91 file path=usr/demo/dtrace/interval.d
92 file path=usr/demo/dtrace/intr.d
93 file path=usr/demo/dtrace/iocpu.d
94 file path=usr/demo/dtrace/iosnoop.d
95 file path=usr/demo/dtrace/iothrough.d
96 file path=usr/demo/dtrace/iotime.d
97 file path=usr/demo/dtrace/ipio.d
98 file path=usr/demo/dtrace/ipproto.d
99 $(i386_ONLY)file path=usr/demo/dtrace/iprb.d
100 file path=usr/demo/dtrace/kstat.d
101 file path=usr/demo/dtrace/ksyms.d
102 file path=usr/demo/dtrace/libc.d
103 file path=usr/demo/dtrace/lquantize.d
104 file path=usr/demo/dtrace/lwptime.d
105 file path=usr/demo/dtrace/normalize.d
106 file path=usr/demo/dtrace/nscd.d
107 file path=usr/demo/dtrace/pri.d
108 file path=usr/demo/dtrace/printa.d
109 file path=usr/demo/dtrace/pritime.d
110 file path=usr/demo/dtrace/prof.d
111 file path=usr/demo/dtrace/profpri.d
112 file path=usr/demo/dtrace/progtime.d
113 file path=usr/demo/dtrace/putnext.d
114 file path=usr/demo/dtrace/qlen.d
115 file path=usr/demo/dtrace/qtime.d
116 file path=usr/demo/dtrace/renormalize.d
117 file path=usr/demo/dtrace/restest.d
118 file path=usr/demo/dtrace/ring.d
119 file path=usr/demo/dtrace/rtime.d
120 file path=usr/demo/dtrace/rwinfo.d
121 file path=usr/demo/dtrace/rwtime.d
122 file path=usr/demo/dtrace/sig.d
123 file path=usr/demo/dtrace/soffice.d
124 file path=usr/demo/dtrace/spec.d
125 file path=usr/demo/dtrace/specopen.d
126 file path=usr/demo/dtrace/ssd.d
127 file path=usr/demo/dtrace/syscall.d

new/usr/src/pkg/manifests/developer-dtrace.mf 3

128 file path=usr/demo/dtrace/tcp1stbyte.d
129 file path=usr/demo/dtrace/tcpbytes.d
130 file path=usr/demo/dtrace/tcpbytesstat.d
131 file path=usr/demo/dtrace/tcpconnlat.d
132 file path=usr/demo/dtrace/tcpio.d
133 file path=usr/demo/dtrace/tcpioflags.d
134 file path=usr/demo/dtrace/tcprst.d
135 file path=usr/demo/dtrace/tcpsnoop.d
136 file path=usr/demo/dtrace/tcpstate.d
137 file path=usr/demo/dtrace/tcptop.d
138 file path=usr/demo/dtrace/tick.d
139 file path=usr/demo/dtrace/ticktime.d
140 file path=usr/demo/dtrace/time.d
141 file path=usr/demo/dtrace/tracewrite.d
142 file path=usr/demo/dtrace/trunc.d
143 file path=usr/demo/dtrace/trussrw.d
144 file path=usr/demo/dtrace/udpbytes.d
145 file path=usr/demo/dtrace/udpbytesstat.d
146 file path=usr/demo/dtrace/udpio.d
147 file path=usr/demo/dtrace/udpsnoop.d
148 file path=usr/demo/dtrace/udptop.d
149 file path=usr/demo/dtrace/userfunc.d
150 file path=usr/demo/dtrace/whatfor.d
151 file path=usr/demo/dtrace/whatlock.d
152 file path=usr/demo/dtrace/where.d
153 file path=usr/demo/dtrace/whererun.d
154 file path=usr/demo/dtrace/whoexec.d
155 file path=usr/demo/dtrace/whofor.d
156 file path=usr/demo/dtrace/whoio.d
157 file path=usr/demo/dtrace/whopreempt.d
158 file path=usr/demo/dtrace/whoqueue.d
159 file path=usr/demo/dtrace/whosteal.d
160 file path=usr/demo/dtrace/whowrite.d
161 file path=usr/demo/dtrace/writes.d
162 file path=usr/demo/dtrace/writesbycmd.d
163 file path=usr/demo/dtrace/writesbycmdfd.d
164 file path=usr/demo/dtrace/writetime.d
165 file path=usr/demo/dtrace/writetimeq.d
166 file path=usr/demo/dtrace/xioctl.d
167 file path=usr/demo/dtrace/xterm.d
168 file path=usr/demo/dtrace/xwork.d
169 file path=usr/include/dtrace.h
170 file path=usr/include/sys/dtrace.h
171 file path=usr/include/sys/dtrace_impl.h
172 file path=usr/include/sys/fasttrap.h
173 file path=usr/include/sys/fasttrap_impl.h
174 file path=usr/include/sys/fasttrap_isa.h
175 file path=usr/include/sys/lockstat.h
176 file path=usr/include/sys/sdt.h
177 file path=usr/lib/$(ARCH64)/libdtrace.so.1
178 file path=usr/lib/$(ARCH64)/libdtrace_jni.so.1
179 file path=usr/lib/$(ARCH64)/llib-ldtrace.ln
180 file path=usr/lib/devfsadm/linkmod/SUNW_dtrace_link.so group=sys
181 file path=usr/lib/dtrace/64/drti.o
182 file path=usr/lib/dtrace/dccp.d
183 #endif /* ! codereview */
184 file path=usr/lib/dtrace/drti.o
185 file path=usr/lib/dtrace/errno.d
186 file path=usr/lib/dtrace/fc.d
187 file path=usr/lib/dtrace/io.d
188 file path=usr/lib/dtrace/ip.d
189 file path=usr/lib/dtrace/iscsit.d
190 file path=usr/lib/dtrace/net.d
191 file path=usr/lib/dtrace/nfs.d
192 file path=usr/lib/dtrace/nfssrv.d
193 file path=usr/lib/dtrace/procfs.d

new/usr/src/pkg/manifests/developer-dtrace.mf 4

194 file path=usr/lib/dtrace/regs.d
195 file path=usr/lib/dtrace/sched.d
196 file path=usr/lib/dtrace/scsi.d
197 file path=usr/lib/dtrace/signal.d
198 file path=usr/lib/dtrace/srp.d
199 file path=usr/lib/dtrace/sysevent.d
200 file path=usr/lib/dtrace/tcp.d
201 file path=usr/lib/dtrace/udp.d
202 file path=usr/lib/dtrace/unistd.d
203 file path=usr/lib/libdtrace.so.1
204 file path=usr/lib/libdtrace_jni.so.1
205 file path=usr/lib/llib-ldtrace
206 file path=usr/lib/llib-ldtrace.ln
207 file path=usr/lib/mdb/kvm/$(ARCH64)/dtrace.so group=sys mode=0555
208 $(i386_ONLY)file path=usr/lib/mdb/kvm/dtrace.so group=sys mode=0555
209 file path=usr/lib/mdb/raw/$(ARCH64)/dof.so group=sys mode=0555
210 file path=usr/lib/mdb/raw/dof.so group=sys mode=0555
211 file path=usr/sbin/$(ARCH32)/dtrace mode=0555
212 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/intrstat mode=0555
213 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/lockstat mode=0555
214 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/plockstat mode=0555
215 file path=usr/sbin/$(ARCH64)/dtrace mode=0555
216 file path=usr/sbin/$(ARCH64)/intrstat mode=0555
217 file path=usr/sbin/$(ARCH64)/lockstat mode=0555
218 file path=usr/sbin/$(ARCH64)/plockstat mode=0555
219 file path=usr/share/lib/java/dtrace.jar group=sys
220 file path=usr/share/lib/java/javadoc/dtrace/api/allclasses-frame.html \
221 group=other
222 file path=usr/share/lib/java/javadoc/dtrace/api/allclasses-noframe.html \
223 group=other
224 file path=usr/share/lib/java/javadoc/dtrace/api/constant-values.html \
225 group=other
226 file path=usr/share/lib/java/javadoc/dtrace/api/deprecated-list.html \
227 group=other
228 file path=usr/share/lib/java/javadoc/dtrace/api/help-doc.html group=other
229 file path=usr/share/lib/java/javadoc/dtrace/api/index-all.html group=other
230 file path=usr/share/lib/java/javadoc/dtrace/api/index.html group=other
231 file \
232 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Aggrega
233 group=other
234 file \
235 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Aggrega
236 group=other
237 file \
238 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Aggrega
239 group=other
240 file \
241 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Aggrega
242 group=other
243 file \
244 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/AvgValu
245 group=other
246 file \
247 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume
248 group=other
249 file \
250 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume
251 group=other
252 file \
253 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume
254 group=other
255 file \
256 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume
257 group=other
258 file \
259 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume

new/usr/src/pkg/manifests/developer-dtrace.mf 5

260 group=other
261 file \
262 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Consume
263 group=other
264 file \
265 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/CountVa
266 group=other
267 file \
268 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/DTraceE
269 group=other
270 file \
271 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/DataEve
272 group=other
273 file \
274 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Distrib
275 group=other
276 file \
277 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Distrib
278 group=other
279 file \
280 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Drop.Ki
281 group=other
282 file \
283 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Drop.ht
284 group=other
285 file \
286 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/DropEve
287 group=other
288 file \
289 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Error.h
290 group=other
291 file \
292 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ErrorEv
293 group=other
294 file \
295 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Excepti
296 group=other
297 file \
298 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ExitRec
299 group=other
300 file \
301 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Flow.Ki
302 group=other
303 file \
304 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Flow.ht
305 group=other
306 file \
307 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Interfa
308 group=other
309 file \
310 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Interfa
311 group=other
312 file \
313 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Interfa
314 group=other
315 file \
316 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/KernelS
317 group=other
318 file \
319 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/KernelS
320 group=other
321 file \
322 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/LinearD
323 group=other
324 file \
325 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/LocalCo

new/usr/src/pkg/manifests/developer-dtrace.mf 6

326 group=other
327 file \
328 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/LogDist
329 group=other
330 file \
331 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/LogLine
332 group=other
333 file \
334 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/MaxValu
335 group=other
336 file \
337 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/MinValu
338 group=other
339 file \
340 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Option.
341 group=other
342 file \
343 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/PrintaR
344 group=other
345 file \
346 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/PrintfR
347 group=other
348 file \
349 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Probe.h
350 group=other
351 file \
352 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ProbeDa
353 group=other
354 file \
355 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ProbeDa
356 group=other
357 file \
358 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ProbeDe
359 group=other
360 file \
361 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ProbeDe
362 group=other
363 file \
364 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ProbeIn
365 group=other
366 file \
367 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Process
368 group=other
369 file \
370 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Process
371 group=other
372 file \
373 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Process
374 group=other
375 file \
376 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Program
377 group=other
378 file \
379 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Program
380 group=other
381 file \
382 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Program
383 group=other
384 file \
385 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Record.
386 group=other
387 file \
388 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ScalarR
389 group=other
390 file \
391 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/StackFr

new/usr/src/pkg/manifests/developer-dtrace.mf 7

392 group=other
393 file \
394 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/StackVa
395 group=other
396 file \
397 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/StddevV
398 group=other
399 file \
400 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/SumValu
401 group=other
402 file \
403 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/SymbolV
404 group=other
405 file \
406 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/Tuple.h
407 group=other
408 file \
409 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/UserSta
410 group=other
411 file \
412 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/UserSym
413 group=other
414 file \
415 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/UserSym
416 group=other
417 file \
418 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/ValueRe
419 group=other
420 file \
421 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
422 group=other
423 file \
424 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
425 group=other
426 file \
427 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
428 group=other
429 file \
430 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
431 group=other
432 file \
433 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
434 group=other
435 file \
436 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
437 group=other
438 file \
439 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
440 group=other
441 file \
442 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
443 group=other
444 file \
445 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
446 group=other
447 file \
448 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
449 group=other
450 file \
451 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
452 group=other
453 file \
454 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
455 group=other
456 file \
457 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u

new/usr/src/pkg/manifests/developer-dtrace.mf 8

458 group=other
459 file \
460 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
461 group=other
462 file \
463 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
464 group=other
465 file \
466 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
467 group=other
468 file \
469 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
470 group=other
471 file \
472 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
473 group=other
474 file \
475 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
476 group=other
477 file \
478 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
479 group=other
480 file \
481 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
482 group=other
483 file \
484 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
485 group=other
486 file \
487 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
488 group=other
489 file \
490 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
491 group=other
492 file \
493 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
494 group=other
495 file \
496 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
497 group=other
498 file \
499 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
500 group=other
501 file \
502 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
503 group=other
504 file \
505 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
506 group=other
507 file \
508 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
509 group=other
510 file \
511 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
512 group=other
513 file \
514 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
515 group=other
516 file \
517 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
518 group=other
519 file \
520 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
521 group=other
522 file \
523 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u

new/usr/src/pkg/manifests/developer-dtrace.mf 9

524 group=other
525 file \
526 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
527 group=other
528 file \
529 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
530 group=other
531 file \
532 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
533 group=other
534 file \
535 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
536 group=other
537 file \
538 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
539 group=other
540 file \
541 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
542 group=other
543 file \
544 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
545 group=other
546 file \
547 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
548 group=other
549 file \
550 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
551 group=other
552 file \
553 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
554 group=other
555 file \
556 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
557 group=other
558 file \
559 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
560 group=other
561 file \
562 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
563 group=other
564 file \
565 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
566 group=other
567 file \
568 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
569 group=other
570 file \
571 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
572 group=other
573 file \
574 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
575 group=other
576 file \
577 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
578 group=other
579 file \
580 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
581 group=other
582 file \
583 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
584 group=other
585 file \
586 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
587 group=other
588 file \
589 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u

new/usr/src/pkg/manifests/developer-dtrace.mf 10

590 group=other
591 file \
592 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
593 group=other
594 file \
595 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
596 group=other
597 file \
598 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
599 group=other
600 file \
601 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
602 group=other
603 file \
604 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
605 group=other
606 file \
607 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/class-u
608 group=other
609 file \
610 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/package
611 group=other
612 file \
613 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/package
614 group=other
615 file \
616 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/package
617 group=other
618 file \
619 path=usr/share/lib/java/javadoc/dtrace/api/org/opensolaris/os/dtrace/package
620 group=other
621 file path=usr/share/lib/java/javadoc/dtrace/api/overview-tree.html group=other
622 file path=usr/share/lib/java/javadoc/dtrace/api/package-list group=other
623 file path=usr/share/lib/java/javadoc/dtrace/api/resources/inherit.gif \
624 group=other
625 file path=usr/share/lib/java/javadoc/dtrace/api/serialized-form.html \
626 group=other
627 file path=usr/share/lib/java/javadoc/dtrace/api/stylesheet.css group=other
628 file path=usr/share/lib/java/javadoc/dtrace/examples/TestAPI.java group=other
629 file path=usr/share/lib/java/javadoc/dtrace/examples/TestAPI2.java group=other
630 file path=usr/share/lib/java/javadoc/dtrace/examples/TestTarget.java \
631 group=other
632 file path=usr/share/lib/java/javadoc/dtrace/examples/hello.d group=other
633 file path=usr/share/lib/java/javadoc/dtrace/examples/intrstat.d group=other
634 file path=usr/share/lib/java/javadoc/dtrace/examples/syscall.d group=other
635 file path=usr/share/lib/java/javadoc/dtrace/examples/target.d group=other
636 file path=usr/share/lib/java/javadoc/dtrace/html/JavaDTraceAPI.html \
637 group=other
638 file path=usr/share/lib/java/javadoc/dtrace/html/fast.html group=other
639 file path=usr/share/lib/java/javadoc/dtrace/images/JavaDTraceAPI.gif \
640 group=other
641 file path=usr/share/man/man1m/dtrace.1m
642 file path=usr/share/man/man1m/intrstat.1m
643 file path=usr/share/man/man1m/lockstat.1m
644 file path=usr/share/man/man1m/plockstat.1m
645 file path=usr/share/man/man3lib/libdtrace.3lib
646 hardlink path=usr/sbin/dtrace target=../../usr/lib/isaexec
647 hardlink path=usr/sbin/intrstat target=../../usr/lib/isaexec
648 hardlink path=usr/sbin/lockstat target=../../usr/lib/isaexec
649 hardlink path=usr/sbin/plockstat target=../../usr/lib/isaexec
650 legacy pkg=SUNWdtrc desc="Dynamic Tracing (DTrace) Clients" \
651 name="DTrace Clients"
652 license cr_Sun license=cr_Sun
653 license lic_CDDL license=lic_CDDL
654 link path=usr/lib/$(ARCH64)/libdtrace.so target=libdtrace.so.1
655 link path=usr/lib/$(ARCH64)/libdtrace_jni.so target=libdtrace_jni.so.1

new/usr/src/pkg/manifests/developer-dtrace.mf 11

656 link path=usr/lib/libdtrace.so target=libdtrace.so.1
657 link path=usr/lib/libdtrace_jni.so target=libdtrace_jni.so.1

new/usr/src/pkg/manifests/system-header.mf 1

**
 88501 Sat Aug 18 10:37:05 2012
new/usr/src/pkg/manifests/system-header.mf
dccp: small build fix
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
25 #

27 set name=pkg.fmri value=pkg:/system/header@$(PKGVERS)
28 set name=pkg.description \
29 value="SunOS C/C++ header files for general development of software"
30 set name=pkg.summary value="SunOS Header Files"
31 set name=info.classification value=org.opensolaris.category.2008:System/Core
32 set name=variant.arch value=$(ARCH)
33 dir path=usr group=sys
34 dir path=usr/include
35 $(i386_ONLY)dir path=usr/include/$(ARCH64)
36 $(i386_ONLY)dir path=usr/include/$(ARCH64)/sys
37 dir path=usr/include/arpa
38 dir path=usr/include/asm
39 dir path=usr/include/ast
40 dir path=usr/include/bsm
41 dir path=usr/include/dat
42 dir path=usr/include/des
43 dir path=usr/include/gssapi
44 dir path=usr/include/hal
45 $(i386_ONLY)dir path=usr/include/ia32
46 $(i386_ONLY)dir path=usr/include/ia32/sys
47 dir path=usr/include/inet
48 dir path=usr/include/inet/kssl
49 dir path=usr/include/ipp
50 dir path=usr/include/ipp/ipgpc
51 dir path=usr/include/iso
52 dir path=usr/include/kerberosv5
53 dir path=usr/include/libpolkit
54 dir path=usr/include/net
55 dir path=usr/include/netinet
56 dir path=usr/include/nfs
57 dir path=usr/include/protocols
58 dir path=usr/include/rpc
59 dir path=usr/include/rpcsvc
60 dir path=usr/include/sasl
61 dir path=usr/include/scsi

new/usr/src/pkg/manifests/system-header.mf 2

62 dir path=usr/include/scsi/plugins
63 dir path=usr/include/scsi/plugins/ses
64 dir path=usr/include/scsi/plugins/ses/framework
65 dir path=usr/include/scsi/plugins/ses/vendor
66 dir path=usr/include/scsi/plugins/smp
67 dir path=usr/include/scsi/plugins/smp/engine
68 dir path=usr/include/scsi/plugins/smp/framework
69 dir path=usr/include/security
70 dir path=usr/include/sharefs
71 dir path=usr/include/sys
72 dir path=usr/include/sys/av
73 dir path=usr/include/sys/contract
74 dir path=usr/include/sys/crypto
75 dir path=usr/include/sys/dktp
76 dir path=usr/include/sys/fc4
77 dir path=usr/include/sys/fm
78 dir path=usr/include/sys/fm/cpu
79 dir path=usr/include/sys/fm/fs
80 dir path=usr/include/sys/fm/io
81 $(sparc_ONLY)dir path=usr/include/sys/fpu
82 dir path=usr/include/sys/fs
83 dir path=usr/include/sys/hotplug
84 dir path=usr/include/sys/hotplug/pci
85 dir path=usr/include/sys/ib
86 dir path=usr/include/sys/ib/adapters
87 dir path=usr/include/sys/ib/adapters/hermon
88 dir path=usr/include/sys/ib/adapters/tavor
89 dir path=usr/include/sys/ib/clients
90 dir path=usr/include/sys/ib/clients/ibd
91 dir path=usr/include/sys/ib/clients/of
92 dir path=usr/include/sys/ib/clients/of/rdma
93 dir path=usr/include/sys/ib/clients/of/sol_ofs
94 dir path=usr/include/sys/ib/clients/of/sol_ucma
95 dir path=usr/include/sys/ib/clients/of/sol_umad
96 dir path=usr/include/sys/ib/clients/of/sol_uverbs
97 dir path=usr/include/sys/ib/ibnex
98 dir path=usr/include/sys/ib/ibtl
99 dir path=usr/include/sys/ib/ibtl/impl
100 dir path=usr/include/sys/ib/mgt
101 dir path=usr/include/sys/ib/mgt/ibmf
102 dir path=usr/include/sys/iso
103 dir path=usr/include/sys/lvm
104 dir path=usr/include/sys/pcmcia
105 dir path=usr/include/sys/proc
106 dir path=usr/include/sys/rsm
107 $(i386_ONLY)dir path=usr/include/sys/sata group=sys
108 dir path=usr/include/sys/scsi
109 dir path=usr/include/sys/scsi/adapters
110 dir path=usr/include/sys/scsi/conf
111 dir path=usr/include/sys/scsi/generic
112 dir path=usr/include/sys/scsi/impl
113 dir path=usr/include/sys/scsi/targets
114 dir path=usr/include/sys/sysevent
115 dir path=usr/include/sys/tsol
116 dir path=usr/include/tsol
117 dir path=usr/include/uuid
118 $(sparc_ONLY)dir path=usr/include/v7
119 $(sparc_ONLY)dir path=usr/include/v7/sys
120 $(sparc_ONLY)dir path=usr/include/v9
121 $(sparc_ONLY)dir path=usr/include/v9/sys
122 dir path=usr/include/vm
123 dir path=usr/platform group=sys
124 $(sparc_ONLY)dir path=usr/platform/SUNW,A70 group=sys
125 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-CP2300 group=sys
126 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-CP2300/include
127 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-CP3010 group=sys

new/usr/src/pkg/manifests/system-header.mf 3

128 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-CP3010/include
129 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-T12 group=sys
130 $(sparc_ONLY)dir path=usr/platform/SUNW,Netra-T4 group=sys
131 $(sparc_ONLY)dir path=usr/platform/SUNW,SPARC-Enterprise group=sys
132 $(sparc_ONLY)dir path=usr/platform/SUNW,Serverblade1 group=sys
133 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Blade-100 group=sys
134 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Blade-1000 group=sys
135 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Blade-1500 group=sys
136 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Blade-2500 group=sys
137 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire group=sys
138 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-15000 group=sys
139 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-280R group=sys
140 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-480R group=sys
141 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-880 group=sys
142 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V215 group=sys
143 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V240 group=sys
144 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V250 group=sys
145 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V440 group=sys
146 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V445 group=sys
147 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V490 group=sys
148 $(sparc_ONLY)dir path=usr/platform/SUNW,Sun-Fire-V890 group=sys
149 $(sparc_ONLY)dir path=usr/platform/SUNW,Ultra-2 group=sys
150 $(sparc_ONLY)dir path=usr/platform/SUNW,Ultra-250 group=sys
151 $(sparc_ONLY)dir path=usr/platform/SUNW,Ultra-4 group=sys
152 $(sparc_ONLY)dir path=usr/platform/SUNW,Ultra-Enterprise group=sys
153 $(sparc_ONLY)dir path=usr/platform/SUNW,Ultra-Enterprise-10000 group=sys
154 $(sparc_ONLY)dir path=usr/platform/SUNW,UltraSPARC-IIe-NetraCT-40 group=sys
155 $(sparc_ONLY)dir path=usr/platform/SUNW,UltraSPARC-IIe-NetraCT-60 group=sys
156 $(sparc_ONLY)dir path=usr/platform/SUNW,UltraSPARC-IIi-Netract group=sys
157 $(i386_ONLY)dir path=usr/platform/i86pc group=sys
158 $(i386_ONLY)dir path=usr/platform/i86pc/include
159 $(i386_ONLY)dir path=usr/platform/i86pc/include/sys
160 $(i386_ONLY)dir path=usr/platform/i86pc/include/vm
161 $(i386_ONLY)dir path=usr/platform/i86xpv group=sys
162 $(i386_ONLY)dir path=usr/platform/i86xpv/include
163 $(i386_ONLY)dir path=usr/platform/i86xpv/include/sys
164 $(i386_ONLY)dir path=usr/platform/i86xpv/include/vm
165 $(sparc_ONLY)dir path=usr/platform/sun4u group=sys
166 $(sparc_ONLY)dir path=usr/platform/sun4u/include
167 $(sparc_ONLY)dir path=usr/platform/sun4u/include/sys
168 $(sparc_ONLY)dir path=usr/platform/sun4u/include/sys/i2c
169 $(sparc_ONLY)dir path=usr/platform/sun4u/include/sys/i2c/clients
170 $(sparc_ONLY)dir path=usr/platform/sun4u/include/sys/i2c/misc
171 $(sparc_ONLY)dir path=usr/platform/sun4u/include/vm
172 $(sparc_ONLY)dir path=usr/platform/sun4v group=sys
173 $(sparc_ONLY)dir path=usr/platform/sun4v/include
174 $(sparc_ONLY)dir path=usr/platform/sun4v/include/sys
175 $(sparc_ONLY)dir path=usr/platform/sun4v/include/vm
176 dir path=usr/share
177 dir path=usr/share/man
178 dir path=usr/share/man/man3head
179 dir path=usr/share/man/man4
180 dir path=usr/share/man/man5
181 dir path=usr/share/man/man7i
182 dir path=usr/share/src group=sys
183 dir path=usr/share/src/uts
184 $(i386_ONLY)dir path=usr/share/src/uts/i86pc
185 $(i386_ONLY)dir path=usr/share/src/uts/i86xpv
186 $(sparc_ONLY)dir path=usr/share/src/uts/sun4u
187 $(sparc_ONLY)dir path=usr/share/src/uts/sun4v
188 dir path=usr/xpg4
189 dir path=usr/xpg4/include
190 $(i386_ONLY)file path=usr/include/$(ARCH64)/sys/kdi_regs.h
191 $(i386_ONLY)file path=usr/include/$(ARCH64)/sys/privmregs.h
192 $(i386_ONLY)file path=usr/include/$(ARCH64)/sys/privregs.h
193 file path=usr/include/aio.h

new/usr/src/pkg/manifests/system-header.mf 4

194 file path=usr/include/alloca.h
195 file path=usr/include/apptrace.h
196 file path=usr/include/apptrace_impl.h
197 file path=usr/include/ar.h
198 file path=usr/include/archives.h
199 file path=usr/include/arpa/ftp.h
200 file path=usr/include/arpa/inet.h
201 file path=usr/include/arpa/nameser.h
202 file path=usr/include/arpa/nameser_compat.h
203 file path=usr/include/arpa/telnet.h
204 file path=usr/include/arpa/tftp.h
205 $(i386_ONLY)file path=usr/include/asm/atomic.h
206 $(i386_ONLY)file path=usr/include/asm/bitmap.h
207 $(i386_ONLY)file path=usr/include/asm/byteorder.h
208 $(i386_ONLY)file path=usr/include/asm/clock.h
209 $(i386_ONLY)file path=usr/include/asm/cpu.h
210 $(i386_ONLY)file path=usr/include/asm/cpuvar.h
211 $(sparc_ONLY)file path=usr/include/asm/flush.h
212 $(i386_ONLY)file path=usr/include/asm/htable.h
213 $(i386_ONLY)file path=usr/include/asm/mmu.h
214 file path=usr/include/asm/sunddi.h
215 file path=usr/include/asm/thread.h
216 file path=usr/include/assert.h
217 file path=usr/include/ast/align.h
218 file path=usr/include/ast/ast.h
219 file path=usr/include/ast/ast_botch.h
220 file path=usr/include/ast/ast_ccode.h
221 file path=usr/include/ast/ast_common.h
222 file path=usr/include/ast/ast_dir.h
223 file path=usr/include/ast/ast_dirent.h
224 file path=usr/include/ast/ast_fcntl.h
225 file path=usr/include/ast/ast_float.h
226 file path=usr/include/ast/ast_fs.h
227 file path=usr/include/ast/ast_getopt.h
228 file path=usr/include/ast/ast_iconv.h
229 file path=usr/include/ast/ast_lib.h
230 file path=usr/include/ast/ast_limits.h
231 file path=usr/include/ast/ast_map.h
232 file path=usr/include/ast/ast_mmap.h
233 file path=usr/include/ast/ast_mode.h
234 file path=usr/include/ast/ast_namval.h
235 file path=usr/include/ast/ast_ndbm.h
236 file path=usr/include/ast/ast_nl_types.h
237 file path=usr/include/ast/ast_param.h
238 file path=usr/include/ast/ast_standards.h
239 file path=usr/include/ast/ast_std.h
240 file path=usr/include/ast/ast_stdio.h
241 file path=usr/include/ast/ast_sys.h
242 file path=usr/include/ast/ast_time.h
243 file path=usr/include/ast/ast_tty.h
244 file path=usr/include/ast/ast_version.h
245 file path=usr/include/ast/ast_vfork.h
246 file path=usr/include/ast/ast_wait.h
247 file path=usr/include/ast/ast_wchar.h
248 file path=usr/include/ast/ast_windows.h
249 file path=usr/include/ast/bytesex.h
250 file path=usr/include/ast/ccode.h
251 file path=usr/include/ast/cdt.h
252 file path=usr/include/ast/cmd.h
253 file path=usr/include/ast/cmdext.h
254 file path=usr/include/ast/debug.h
255 file path=usr/include/ast/dirent.h
256 file path=usr/include/ast/dlldefs.h
257 file path=usr/include/ast/dt.h
258 file path=usr/include/ast/endian.h
259 file path=usr/include/ast/error.h

new/usr/src/pkg/manifests/system-header.mf 5

260 file path=usr/include/ast/find.h
261 file path=usr/include/ast/fnmatch.h
262 file path=usr/include/ast/fnv.h
263 file path=usr/include/ast/fs3d.h
264 file path=usr/include/ast/fts.h
265 file path=usr/include/ast/ftw.h
266 file path=usr/include/ast/ftwalk.h
267 file path=usr/include/ast/getopt.h
268 file path=usr/include/ast/glob.h
269 file path=usr/include/ast/hash.h
270 file path=usr/include/ast/hashkey.h
271 file path=usr/include/ast/hashpart.h
272 file path=usr/include/ast/history.h
273 file path=usr/include/ast/iconv.h
274 file path=usr/include/ast/ip6.h
275 file path=usr/include/ast/lc.h
276 file path=usr/include/ast/ls.h
277 file path=usr/include/ast/magic.h
278 file path=usr/include/ast/magicid.h
279 file path=usr/include/ast/mc.h
280 file path=usr/include/ast/mime.h
281 file path=usr/include/ast/mnt.h
282 file path=usr/include/ast/modecanon.h
283 file path=usr/include/ast/modex.h
284 file path=usr/include/ast/namval.h
285 file path=usr/include/ast/nl_types.h
286 file path=usr/include/ast/nval.h
287 file path=usr/include/ast/option.h
288 file path=usr/include/ast/preroot.h
289 file path=usr/include/ast/proc.h
290 file path=usr/include/ast/prototyped.h
291 file path=usr/include/ast/re_comp.h
292 file path=usr/include/ast/recfmt.h
293 file path=usr/include/ast/regex.h
294 file path=usr/include/ast/regexp.h
295 file path=usr/include/ast/sfdisc.h
296 file path=usr/include/ast/sfio.h
297 file path=usr/include/ast/sfio_s.h
298 file path=usr/include/ast/sfio_t.h
299 file path=usr/include/ast/shcmd.h
300 file path=usr/include/ast/shell.h
301 file path=usr/include/ast/sig.h
302 file path=usr/include/ast/stack.h
303 file path=usr/include/ast/stak.h
304 file path=usr/include/ast/stdio.h
305 file path=usr/include/ast/stk.h
306 file path=usr/include/ast/sum.h
307 file path=usr/include/ast/swap.h
308 file path=usr/include/ast/tar.h
309 file path=usr/include/ast/times.h
310 file path=usr/include/ast/tm.h
311 file path=usr/include/ast/tmx.h
312 file path=usr/include/ast/tok.h
313 file path=usr/include/ast/tv.h
314 file path=usr/include/ast/usage.h
315 file path=usr/include/ast/vdb.h
316 file path=usr/include/ast/vecargs.h
317 file path=usr/include/ast/vmalloc.h
318 file path=usr/include/ast/wait.h
319 file path=usr/include/ast/wchar.h
320 file path=usr/include/ast/wordexp.h
321 file path=usr/include/atomic.h
322 file path=usr/include/attr.h
323 file path=usr/include/auth_attr.h
324 file path=usr/include/bsm/adt.h
325 file path=usr/include/bsm/adt_event.h

new/usr/src/pkg/manifests/system-header.mf 6

326 file path=usr/include/bsm/audit.h
327 file path=usr/include/bsm/audit_kernel.h
328 file path=usr/include/bsm/audit_kevents.h
329 file path=usr/include/bsm/audit_record.h
330 file path=usr/include/bsm/audit_uevents.h
331 file path=usr/include/bsm/devices.h
332 file path=usr/include/bsm/libbsm.h
333 file path=usr/include/config_admin.h
334 file path=usr/include/cpio.h
335 file path=usr/include/crypt.h
336 file path=usr/include/cryptoutil.h
337 file path=usr/include/ctype.h
338 file path=usr/include/curses.h
339 file path=usr/include/dat/dat.h
340 file path=usr/include/dat/dat_error.h
341 file path=usr/include/dat/dat_platform_specific.h
342 file path=usr/include/dat/dat_redirection.h
343 file path=usr/include/dat/dat_registry.h
344 file path=usr/include/dat/dat_vendor_specific.h
345 file path=usr/include/dat/udat.h
346 file path=usr/include/dat/udat_config.h
347 file path=usr/include/dat/udat_redirection.h
348 file path=usr/include/dat/udat_vendor_specific.h
349 file path=usr/include/deflt.h
350 file path=usr/include/des/des.h
351 file path=usr/include/des/desdata.h
352 file path=usr/include/des/softdes.h
353 file path=usr/include/device_info.h
354 file path=usr/include/devid.h
355 file path=usr/include/devmgmt.h
356 file path=usr/include/devpoll.h
357 file path=usr/include/dial.h
358 file path=usr/include/dirent.h
359 file path=usr/include/dlfcn.h
360 file path=usr/include/door.h
361 file path=usr/include/elf.h
362 file path=usr/include/err.h
363 file path=usr/include/errno.h
364 file path=usr/include/eti.h
365 file path=usr/include/euc.h
366 file path=usr/include/exacct.h
367 file path=usr/include/exacct_impl.h
368 file path=usr/include/exec_attr.h
369 file path=usr/include/execinfo.h
370 file path=usr/include/fatal.h
371 file path=usr/include/fcntl.h
372 file path=usr/include/float.h
373 file path=usr/include/fmtmsg.h
374 file path=usr/include/fnmatch.h
375 file path=usr/include/form.h
376 file path=usr/include/ftw.h
377 file path=usr/include/gelf.h
378 file path=usr/include/getopt.h
379 file path=usr/include/getwidth.h
380 file path=usr/include/glob.h
381 file path=usr/include/grp.h
382 file path=usr/include/gssapi/gssapi.h
383 file path=usr/include/gssapi/gssapi_ext.h
384 file path=usr/include/hal/libhal-storage.h
385 file path=usr/include/hal/libhal.h
386 $(i386_ONLY)file path=usr/include/ia32/sys/asm_linkage.h
387 $(i386_ONLY)file path=usr/include/ia32/sys/kdi_regs.h
388 $(i386_ONLY)file path=usr/include/ia32/sys/machtypes.h
389 $(i386_ONLY)file path=usr/include/ia32/sys/privmregs.h
390 $(i386_ONLY)file path=usr/include/ia32/sys/privregs.h
391 $(i386_ONLY)file path=usr/include/ia32/sys/psw.h

new/usr/src/pkg/manifests/system-header.mf 7

392 $(i386_ONLY)file path=usr/include/ia32/sys/pte.h
393 $(i386_ONLY)file path=usr/include/ia32/sys/reg.h
394 $(i386_ONLY)file path=usr/include/ia32/sys/stack.h
395 $(i386_ONLY)file path=usr/include/ia32/sys/trap.h
396 $(i386_ONLY)file path=usr/include/ia32/sys/traptrace.h
397 file path=usr/include/iconv.h
398 file path=usr/include/idmap.h
399 file path=usr/include/ieeefp.h
400 file path=usr/include/ifaddrs.h
401 file path=usr/include/inet/arp.h
402 file path=usr/include/inet/common.h
403 file path=usr/include/inet/dccp.h
404 file path=usr/include/inet/dccp_ip.h
405 file path=usr/include/inet/dccp_stack.h
406 file path=usr/include/inet/dccp_stats.h
407 #endif /* ! codereview */
408 file path=usr/include/inet/ip.h
409 file path=usr/include/inet/ip6.h
410 file path=usr/include/inet/ip6_asp.h
411 file path=usr/include/inet/ip_arp.h
412 file path=usr/include/inet/ip_ftable.h
413 file path=usr/include/inet/ip_if.h
414 file path=usr/include/inet/ip_ire.h
415 file path=usr/include/inet/ip_multi.h
416 file path=usr/include/inet/ip_netinfo.h
417 file path=usr/include/inet/ip_rts.h
418 file path=usr/include/inet/ip_stack.h
419 file path=usr/include/inet/ipclassifier.h
420 file path=usr/include/inet/ipdrop.h
421 file path=usr/include/inet/ipnet.h
422 file path=usr/include/inet/ipp_common.h
423 file path=usr/include/inet/kssl/ksslapi.h
424 file path=usr/include/inet/led.h
425 file path=usr/include/inet/mi.h
426 file path=usr/include/inet/mib2.h
427 file path=usr/include/inet/nd.h
428 file path=usr/include/inet/optcom.h
429 file path=usr/include/inet/sctp_itf.h
430 file path=usr/include/inet/snmpcom.h
431 file path=usr/include/inet/tcp.h
432 file path=usr/include/inet/tcp_sack.h
433 file path=usr/include/inet/tcp_stack.h
434 file path=usr/include/inet/tcp_stats.h
435 file path=usr/include/inet/tunables.h
436 file path=usr/include/inet/wifi_ioctl.h
437 file path=usr/include/inttypes.h
438 file path=usr/include/ipmp.h
439 file path=usr/include/ipmp_admin.h
440 file path=usr/include/ipmp_mpathd.h
441 file path=usr/include/ipmp_query.h
442 file path=usr/include/ipp/ipgpc/ipgpc.h
443 file path=usr/include/ipp/ipp.h
444 file path=usr/include/ipp/ipp_config.h
445 file path=usr/include/ipp/ipp_impl.h
446 file path=usr/include/ipp/ippctl.h
447 file path=usr/include/iso/ctype_c99.h
448 file path=usr/include/iso/ctype_iso.h
449 file path=usr/include/iso/limits_iso.h
450 file path=usr/include/iso/locale_iso.h
451 file path=usr/include/iso/setjmp_iso.h
452 file path=usr/include/iso/signal_iso.h
453 file path=usr/include/iso/stdarg_c99.h
454 file path=usr/include/iso/stdarg_iso.h
455 file path=usr/include/iso/stddef_iso.h
456 file path=usr/include/iso/stdio_c99.h
457 file path=usr/include/iso/stdio_iso.h

new/usr/src/pkg/manifests/system-header.mf 8

458 file path=usr/include/iso/stdlib_c99.h
459 file path=usr/include/iso/stdlib_iso.h
460 file path=usr/include/iso/string_iso.h
461 file path=usr/include/iso/time_iso.h
462 file path=usr/include/iso/wchar_c99.h
463 file path=usr/include/iso/wchar_iso.h
464 file path=usr/include/iso/wctype_c99.h
465 file path=usr/include/iso/wctype_iso.h
466 file path=usr/include/iso646.h
467 file path=usr/include/kerberosv5/com_err.h
468 file path=usr/include/kerberosv5/krb5.h
469 file path=usr/include/kerberosv5/mit-sipb-copyright.h
470 file path=usr/include/kerberosv5/mit_copyright.h
471 file path=usr/include/klpd.h
472 file path=usr/include/kmfapi.h
473 file path=usr/include/kmftypes.h
474 file path=usr/include/kstat.h
475 file path=usr/include/kvm.h
476 file path=usr/include/langinfo.h
477 file path=usr/include/lastlog.h
478 file path=usr/include/lber.h
479 file path=usr/include/ldap.h
480 file path=usr/include/libcontract.h
481 file path=usr/include/libctf.h
482 file path=usr/include/libdevice.h
483 file path=usr/include/libdevinfo.h
484 file path=usr/include/libdladm.h
485 file path=usr/include/libdlbridge.h
486 file path=usr/include/libdlib.h
487 file path=usr/include/libdllink.h
488 file path=usr/include/libdlpi.h
489 file path=usr/include/libdlvlan.h
490 file path=usr/include/libelf.h
491 $(i386_ONLY)file path=usr/include/libfdisk.h
492 file path=usr/include/libfstyp.h
493 file path=usr/include/libfstyp_module.h
494 file path=usr/include/libgen.h
495 file path=usr/include/libgrubmgmt.h
496 file path=usr/include/libintl.h
497 file path=usr/include/libipmi.h
498 file path=usr/include/libipp.h
499 file path=usr/include/libnvpair.h
500 file path=usr/include/libnwam.h
501 file path=usr/include/libpolkit/libpolkit.h
502 file path=usr/include/librcm.h
503 file path=usr/include/libscf.h
504 file path=usr/include/libscf_priv.h
505 file path=usr/include/libshare.h
506 file path=usr/include/libsvm.h
507 file path=usr/include/libsysevent.h
508 file path=usr/include/libsysevent_impl.h
509 file path=usr/include/libtsnet.h
510 $(sparc_ONLY)file path=usr/include/libv12n.h
511 file path=usr/include/libw.h
512 file path=usr/include/libzfs.h
513 file path=usr/include/libzoneinfo.h
514 file path=usr/include/limits.h
515 file path=usr/include/linenum.h
516 file path=usr/include/link.h
517 file path=usr/include/listen.h
518 file path=usr/include/locale.h
519 file path=usr/include/macros.h
520 file path=usr/include/maillock.h
521 file path=usr/include/malloc.h
522 file path=usr/include/md4.h
523 file path=usr/include/md5.h

new/usr/src/pkg/manifests/system-header.mf 9

524 file path=usr/include/mdiox.h
525 file path=usr/include/mdmn_changelog.h
526 file path=usr/include/memory.h
527 file path=usr/include/menu.h
528 file path=usr/include/meta.h
529 file path=usr/include/meta_basic.h
530 file path=usr/include/meta_runtime.h
531 file path=usr/include/metacl.h
532 file path=usr/include/metad.h
533 file path=usr/include/metadyn.h
534 file path=usr/include/metamed.h
535 file path=usr/include/metamhd.h
536 file path=usr/include/mhdx.h
537 file path=usr/include/mon.h
538 file path=usr/include/monetary.h
539 file path=usr/include/mp.h
540 file path=usr/include/mqueue.h
541 file path=usr/include/mtmalloc.h
542 file path=usr/include/nan.h
543 file path=usr/include/ndbm.h
544 file path=usr/include/ndpd.h
545 file path=usr/include/net/af.h
546 file path=usr/include/net/bridge.h
547 file path=usr/include/net/if.h
548 file path=usr/include/net/if_arp.h
549 file path=usr/include/net/if_dl.h
550 file path=usr/include/net/if_types.h
551 file path=usr/include/net/pfkeyv2.h
552 file path=usr/include/net/pfpolicy.h
553 file path=usr/include/net/ppp-comp.h
554 file path=usr/include/net/ppp_defs.h
555 file path=usr/include/net/pppio.h
556 file path=usr/include/net/radix.h
557 file path=usr/include/net/route.h
558 file path=usr/include/net/trill.h
559 file path=usr/include/net/vjcompress.h
560 file path=usr/include/netconfig.h
561 file path=usr/include/netdb.h
562 file path=usr/include/netdir.h
563 file path=usr/include/netinet/arp.h
564 file path=usr/include/netinet/dccp.h
565 #endif /* ! codereview */
566 file path=usr/include/netinet/dhcp.h
567 file path=usr/include/netinet/dhcp6.h
568 file path=usr/include/netinet/icmp6.h
569 file path=usr/include/netinet/icmp_var.h
570 file path=usr/include/netinet/if_ether.h
571 file path=usr/include/netinet/igmp.h
572 file path=usr/include/netinet/igmp_var.h
573 file path=usr/include/netinet/in.h
574 file path=usr/include/netinet/in_pcb.h
575 file path=usr/include/netinet/in_systm.h
576 file path=usr/include/netinet/in_var.h
577 file path=usr/include/netinet/ip.h
578 file path=usr/include/netinet/ip6.h
579 file path=usr/include/netinet/ip_icmp.h
580 file path=usr/include/netinet/ip_mroute.h
581 file path=usr/include/netinet/ip_var.h
582 file path=usr/include/netinet/pim.h
583 file path=usr/include/netinet/sctp.h
584 file path=usr/include/netinet/tcp.h
585 file path=usr/include/netinet/tcp_debug.h
586 file path=usr/include/netinet/tcp_fsm.h
587 file path=usr/include/netinet/tcp_seq.h
588 file path=usr/include/netinet/tcp_timer.h
589 file path=usr/include/netinet/tcp_var.h

new/usr/src/pkg/manifests/system-header.mf 10

590 file path=usr/include/netinet/tcpip.h
591 file path=usr/include/netinet/udp.h
592 file path=usr/include/netinet/udp_var.h
593 file path=usr/include/netinet/vrrp.h
594 file path=usr/include/nfs/auth.h
595 file path=usr/include/nfs/export.h
596 file path=usr/include/nfs/lm.h
597 file path=usr/include/nfs/mapid.h
598 file path=usr/include/nfs/mount.h
599 file path=usr/include/nfs/nfs.h
600 file path=usr/include/nfs/nfs4.h
601 file path=usr/include/nfs/nfs4_attr.h
602 file path=usr/include/nfs/nfs4_clnt.h
603 file path=usr/include/nfs/nfs4_db_impl.h
604 file path=usr/include/nfs/nfs4_idmap_impl.h
605 file path=usr/include/nfs/nfs4_kprot.h
606 file path=usr/include/nfs/nfs_acl.h
607 file path=usr/include/nfs/nfs_clnt.h
608 file path=usr/include/nfs/nfs_cmd.h
609 file path=usr/include/nfs/nfs_log.h
610 file path=usr/include/nfs/nfs_sec.h
611 file path=usr/include/nfs/nfsid_map.h
612 file path=usr/include/nfs/nfssys.h
613 file path=usr/include/nfs/rnode.h
614 file path=usr/include/nfs/rnode4.h
615 file path=usr/include/nl_types.h
616 file path=usr/include/nlist.h
617 file path=usr/include/note.h
618 file path=usr/include/nss_common.h
619 file path=usr/include/nss_dbdefs.h
620 file path=usr/include/nss_netdir.h
621 file path=usr/include/nsswitch.h
622 file path=usr/include/panel.h
623 file path=usr/include/paths.h
624 file path=usr/include/pcsample.h
625 file path=usr/include/pfmt.h
626 file path=usr/include/pkgdev.h
627 file path=usr/include/pkginfo.h
628 file path=usr/include/pkglocs.h
629 file path=usr/include/pkgstrct.h
630 file path=usr/include/pkgtrans.h
631 file path=usr/include/poll.h
632 file path=usr/include/port.h
633 file path=usr/include/priv.h
634 file path=usr/include/proc_service.h
635 file path=usr/include/procfs.h
636 file path=usr/include/prof.h
637 file path=usr/include/prof_attr.h
638 file path=usr/include/project.h
639 file path=usr/include/protocols/dumprestore.h
640 file path=usr/include/protocols/routed.h
641 file path=usr/include/protocols/rwhod.h
642 file path=usr/include/protocols/timed.h
643 file path=usr/include/pthread.h
644 file path=usr/include/pw.h
645 file path=usr/include/pwd.h
646 file path=usr/include/rcm_module.h
647 file path=usr/include/rctl.h
648 file path=usr/include/re_comp.h
649 file path=usr/include/regex.h
650 file path=usr/include/regexp.h
651 file path=usr/include/regexpr.h
652 file path=usr/include/resolv.h
653 file path=usr/include/rje.h
654 file path=usr/include/rp_plugin.h
655 file path=usr/include/rpc/auth.h

new/usr/src/pkg/manifests/system-header.mf 11

656 file path=usr/include/rpc/auth_des.h
657 file path=usr/include/rpc/auth_sys.h
658 file path=usr/include/rpc/auth_unix.h
659 file path=usr/include/rpc/bootparam.h
660 file path=usr/include/rpc/clnt.h
661 file path=usr/include/rpc/clnt_soc.h
662 file path=usr/include/rpc/clnt_stat.h
663 file path=usr/include/rpc/des_crypt.h
664 $(sparc_ONLY)file path=usr/include/rpc/ib.h
665 file path=usr/include/rpc/key_prot.h
666 file path=usr/include/rpc/nettype.h
667 file path=usr/include/rpc/pmap_clnt.h
668 file path=usr/include/rpc/pmap_prot.h
669 file path=usr/include/rpc/pmap_prot.x
670 file path=usr/include/rpc/pmap_rmt.h
671 file path=usr/include/rpc/raw.h
672 file path=usr/include/rpc/rpc.h
673 file path=usr/include/rpc/rpc_com.h
674 file path=usr/include/rpc/rpc_msg.h
675 file path=usr/include/rpc/rpc_rdma.h
676 file path=usr/include/rpc/rpc_sztypes.h
677 file path=usr/include/rpc/rpcb_clnt.h
678 file path=usr/include/rpc/rpcb_prot.h
679 file path=usr/include/rpc/rpcb_prot.x
680 file path=usr/include/rpc/rpcent.h
681 file path=usr/include/rpc/rpcsec_gss.h
682 file path=usr/include/rpc/rpcsys.h
683 file path=usr/include/rpc/svc.h
684 file path=usr/include/rpc/svc_auth.h
685 file path=usr/include/rpc/svc_mt.h
686 file path=usr/include/rpc/svc_soc.h
687 file path=usr/include/rpc/types.h
688 file path=usr/include/rpc/xdr.h
689 file path=usr/include/rpcsvc/autofs_prot.h
690 file path=usr/include/rpcsvc/autofs_prot.x
691 file path=usr/include/rpcsvc/bootparam.h
692 file path=usr/include/rpcsvc/bootparam_prot.h
693 file path=usr/include/rpcsvc/bootparam_prot.x
694 file path=usr/include/rpcsvc/dbm.h
695 file path=usr/include/rpcsvc/key_prot.x
696 file path=usr/include/rpcsvc/mount.h
697 file path=usr/include/rpcsvc/mount.x
698 file path=usr/include/rpcsvc/nfs4_prot.h
699 file path=usr/include/rpcsvc/nfs4_prot.x
700 file path=usr/include/rpcsvc/nfs_acl.h
701 file path=usr/include/rpcsvc/nfs_acl.x
702 file path=usr/include/rpcsvc/nfs_prot.h
703 file path=usr/include/rpcsvc/nfs_prot.x
704 file path=usr/include/rpcsvc/nis.h
705 file path=usr/include/rpcsvc/nis.x
706 file path=usr/include/rpcsvc/nis_db.h
707 file path=usr/include/rpcsvc/nis_object.x
708 file path=usr/include/rpcsvc/nislib.h
709 file path=usr/include/rpcsvc/nlm_prot.h
710 file path=usr/include/rpcsvc/nlm_prot.x
711 file path=usr/include/rpcsvc/nsm_addr.h
712 file path=usr/include/rpcsvc/nsm_addr.x
713 file path=usr/include/rpcsvc/rex.h
714 file path=usr/include/rpcsvc/rex.x
715 file path=usr/include/rpcsvc/rpc_sztypes.h
716 file path=usr/include/rpcsvc/rpc_sztypes.x
717 file path=usr/include/rpcsvc/rquota.h
718 file path=usr/include/rpcsvc/rquota.x
719 file path=usr/include/rpcsvc/rstat.h
720 file path=usr/include/rpcsvc/rstat.x
721 file path=usr/include/rpcsvc/rusers.h

new/usr/src/pkg/manifests/system-header.mf 12

722 file path=usr/include/rpcsvc/rusers.x
723 file path=usr/include/rpcsvc/rwall.h
724 file path=usr/include/rpcsvc/rwall.x
725 file path=usr/include/rpcsvc/sm_inter.h
726 file path=usr/include/rpcsvc/sm_inter.x
727 file path=usr/include/rpcsvc/spray.h
728 file path=usr/include/rpcsvc/spray.x
729 file path=usr/include/rpcsvc/ufs_prot.h
730 file path=usr/include/rpcsvc/ufs_prot.x
731 file path=usr/include/rpcsvc/yp.x
732 file path=usr/include/rpcsvc/yp_prot.h
733 file path=usr/include/rpcsvc/ypclnt.h
734 file path=usr/include/rpcsvc/yppasswd.h
735 file path=usr/include/rpcsvc/ypupd.h
736 file path=usr/include/rsmapi.h
737 file path=usr/include/rtld_db.h
738 file path=usr/include/sac.h
739 file path=usr/include/sasl/prop.h
740 file path=usr/include/sasl/sasl.h
741 file path=usr/include/sasl/saslplug.h
742 file path=usr/include/sasl/saslutil.h
743 file path=usr/include/sched.h
744 file path=usr/include/schedctl.h
745 file path=usr/include/scsi/libscsi.h
746 file path=usr/include/scsi/libses.h
747 file path=usr/include/scsi/libses_plugin.h
748 file path=usr/include/scsi/libsmp.h
749 file path=usr/include/scsi/libsmp_plugin.h
750 file path=usr/include/scsi/plugins/ses/framework/libses.h
751 file path=usr/include/scsi/plugins/ses/framework/ses2.h
752 file path=usr/include/scsi/plugins/ses/framework/ses2_impl.h
753 file path=usr/include/scsi/plugins/ses/vendor/sun.h
754 file path=usr/include/sdp.h
755 file path=usr/include/search.h
756 file path=usr/include/secdb.h
757 file path=usr/include/security/auditd.h
758 file path=usr/include/security/cryptoki.h
759 file path=usr/include/security/pam_appl.h
760 file path=usr/include/security/pam_modules.h
761 file path=usr/include/security/pkcs11.h
762 file path=usr/include/security/pkcs11f.h
763 file path=usr/include/security/pkcs11t.h
764 file path=usr/include/semaphore.h
765 file path=usr/include/setjmp.h
766 file path=usr/include/sgtty.h
767 file path=usr/include/sha1.h
768 file path=usr/include/sha2.h
769 file path=usr/include/shadow.h
770 file path=usr/include/sharefs/share.h
771 file path=usr/include/sharefs/sharefs.h
772 file path=usr/include/sharefs/sharetab.h
773 file path=usr/include/siginfo.h
774 file path=usr/include/signal.h
775 file path=usr/include/sip.h
776 file path=usr/include/smbios.h
777 file path=usr/include/spawn.h
778 $(i386_ONLY)file path=usr/include/stack_unwind.h
779 file path=usr/include/stdarg.h
780 file path=usr/include/stdbool.h
781 file path=usr/include/stddef.h
782 file path=usr/include/stdint.h
783 file path=usr/include/stdio.h
784 file path=usr/include/stdio_ext.h
785 file path=usr/include/stdio_impl.h
786 file path=usr/include/stdio_tag.h
787 file path=usr/include/stdlib.h

new/usr/src/pkg/manifests/system-header.mf 13

788 file path=usr/include/storclass.h
789 file path=usr/include/string.h
790 file path=usr/include/strings.h
791 file path=usr/include/stropts.h
792 file path=usr/include/syms.h
793 file path=usr/include/synch.h
794 file path=usr/include/sys/acct.h
795 file path=usr/include/sys/acctctl.h
796 file path=usr/include/sys/acl.h
797 file path=usr/include/sys/acl_impl.h
798 file path=usr/include/sys/acpi_drv.h
799 file path=usr/include/sys/aio.h
800 file path=usr/include/sys/aio_impl.h
801 file path=usr/include/sys/aio_req.h
802 file path=usr/include/sys/aiocb.h
803 file path=usr/include/sys/archsystm.h
804 file path=usr/include/sys/ascii.h
805 file path=usr/include/sys/asm_linkage.h
806 file path=usr/include/sys/asynch.h
807 file path=usr/include/sys/atomic.h
808 file path=usr/include/sys/attr.h
809 file path=usr/include/sys/autoconf.h
810 file path=usr/include/sys/auxv.h
811 file path=usr/include/sys/auxv_386.h
812 file path=usr/include/sys/auxv_SPARC.h
813 file path=usr/include/sys/av/iec61883.h
814 file path=usr/include/sys/avintr.h
815 file path=usr/include/sys/avl.h
816 file path=usr/include/sys/avl_impl.h
817 file path=usr/include/sys/bitmap.h
818 file path=usr/include/sys/bitset.h
819 file path=usr/include/sys/bl.h
820 file path=usr/include/sys/blkdev.h
821 file path=usr/include/sys/bmc_intf.h
822 file path=usr/include/sys/bofi.h
823 file path=usr/include/sys/bofi_impl.h
824 file path=usr/include/sys/bootconf.h
825 $(i386_ONLY)file path=usr/include/sys/bootregs.h
826 file path=usr/include/sys/bootstat.h
827 $(i386_ONLY)file path=usr/include/sys/bootsvcs.h
828 file path=usr/include/sys/bpp_io.h
829 file path=usr/include/sys/brand.h
830 file path=usr/include/sys/buf.h
831 file path=usr/include/sys/bufmod.h
832 file path=usr/include/sys/bustypes.h
833 file path=usr/include/sys/byteorder.h
834 file path=usr/include/sys/callb.h
835 file path=usr/include/sys/callo.h
836 file path=usr/include/sys/cap_util.h
837 file path=usr/include/sys/ccompile.h
838 file path=usr/include/sys/cdio.h
839 file path=usr/include/sys/cis.h
840 file path=usr/include/sys/cis_handlers.h
841 file path=usr/include/sys/cis_protos.h
842 file path=usr/include/sys/cladm.h
843 file path=usr/include/sys/class.h
844 file path=usr/include/sys/clconf.h
845 file path=usr/include/sys/cmlb.h
846 file path=usr/include/sys/cmn_err.h
847 $(sparc_ONLY)file path=usr/include/sys/cmpregs.h
848 file path=usr/include/sys/compress.h
849 file path=usr/include/sys/condvar.h
850 file path=usr/include/sys/condvar_impl.h
851 file path=usr/include/sys/conf.h
852 file path=usr/include/sys/consdev.h
853 file path=usr/include/sys/console.h

new/usr/src/pkg/manifests/system-header.mf 14

854 file path=usr/include/sys/consplat.h
855 file path=usr/include/sys/contract.h
856 file path=usr/include/sys/contract/device.h
857 file path=usr/include/sys/contract/device_impl.h
858 file path=usr/include/sys/contract/process.h
859 file path=usr/include/sys/contract/process_impl.h
860 file path=usr/include/sys/contract_impl.h
861 $(i386_ONLY)file path=usr/include/sys/controlregs.h
862 file path=usr/include/sys/copyops.h
863 file path=usr/include/sys/core.h
864 file path=usr/include/sys/corectl.h
865 file path=usr/include/sys/cpc_impl.h
866 file path=usr/include/sys/cpc_pcbe.h
867 file path=usr/include/sys/cpr.h
868 file path=usr/include/sys/cpu.h
869 file path=usr/include/sys/cpucaps.h
870 file path=usr/include/sys/cpucaps_impl.h
871 file path=usr/include/sys/cpupart.h
872 file path=usr/include/sys/cpuvar.h
873 file path=usr/include/sys/crc32.h
874 file path=usr/include/sys/cred.h
875 file path=usr/include/sys/cred_impl.h
876 file path=usr/include/sys/crtctl.h
877 file path=usr/include/sys/crypto/api.h
878 file path=usr/include/sys/crypto/common.h
879 file path=usr/include/sys/crypto/ioctl.h
880 file path=usr/include/sys/crypto/ioctladmin.h
881 file path=usr/include/sys/crypto/spi.h
882 file path=usr/include/sys/cs.h
883 file path=usr/include/sys/cs_priv.h
884 file path=usr/include/sys/cs_strings.h
885 file path=usr/include/sys/cs_stubs.h
886 file path=usr/include/sys/cs_types.h
887 file path=usr/include/sys/csiioctl.h
888 file path=usr/include/sys/ctf.h
889 file path=usr/include/sys/ctf_api.h
890 file path=usr/include/sys/ctfs.h
891 file path=usr/include/sys/ctfs_impl.h
892 file path=usr/include/sys/ctype.h
893 file path=usr/include/sys/cyclic.h
894 file path=usr/include/sys/cyclic_impl.h
895 file path=usr/include/sys/dacf.h
896 file path=usr/include/sys/dacf_impl.h
897 file path=usr/include/sys/damap.h
898 file path=usr/include/sys/damap_impl.h
899 file path=usr/include/sys/dc_ki.h
900 file path=usr/include/sys/ddi.h
901 file path=usr/include/sys/ddi_hp.h
902 file path=usr/include/sys/ddi_hp_impl.h
903 file path=usr/include/sys/ddi_impldefs.h
904 file path=usr/include/sys/ddi_implfuncs.h
905 file path=usr/include/sys/ddi_intr.h
906 file path=usr/include/sys/ddi_intr_impl.h
907 file path=usr/include/sys/ddi_isa.h
908 file path=usr/include/sys/ddi_obsolete.h
909 file path=usr/include/sys/ddi_timer.h
910 file path=usr/include/sys/ddidevmap.h
911 file path=usr/include/sys/ddidmareq.h
912 file path=usr/include/sys/ddifm.h
913 file path=usr/include/sys/ddifm_impl.h
914 file path=usr/include/sys/ddimapreq.h
915 file path=usr/include/sys/ddipropdefs.h
916 file path=usr/include/sys/dditypes.h
917 file path=usr/include/sys/debug.h
918 $(i386_ONLY)file path=usr/include/sys/debugreg.h
919 file path=usr/include/sys/des.h

new/usr/src/pkg/manifests/system-header.mf 15

920 file path=usr/include/sys/devcache.h
921 file path=usr/include/sys/devcache_impl.h
922 file path=usr/include/sys/devctl.h
923 file path=usr/include/sys/devfm.h
924 file path=usr/include/sys/devid_cache.h
925 file path=usr/include/sys/devinfo_impl.h
926 file path=usr/include/sys/devops.h
927 file path=usr/include/sys/devpolicy.h
928 file path=usr/include/sys/devpoll.h
929 file path=usr/include/sys/dirent.h
930 file path=usr/include/sys/disp.h
931 file path=usr/include/sys/dkbad.h
932 file path=usr/include/sys/dkio.h
933 file path=usr/include/sys/dklabel.h
934 $(sparc_ONLY)file path=usr/include/sys/dkmpio.h
935 $(i386_ONLY)file path=usr/include/sys/dktp/altsctr.h
936 $(i386_ONLY)file path=usr/include/sys/dktp/cmpkt.h
937 file path=usr/include/sys/dktp/dadkio.h
938 file path=usr/include/sys/dktp/fdisk.h
939 file path=usr/include/sys/dl.h
940 file path=usr/include/sys/dld.h
941 file path=usr/include/sys/dlpi.h
942 file path=usr/include/sys/dls_mgmt.h
943 $(i386_ONLY)file path=usr/include/sys/dma_engine.h
944 file path=usr/include/sys/dma_i8237A.h
945 file path=usr/include/sys/dnlc.h
946 file path=usr/include/sys/door.h
947 file path=usr/include/sys/door_data.h
948 file path=usr/include/sys/door_impl.h
949 file path=usr/include/sys/dumphdr.h
950 file path=usr/include/sys/ecppio.h
951 file path=usr/include/sys/ecppreg.h
952 file path=usr/include/sys/ecppsys.h
953 file path=usr/include/sys/ecppvar.h
954 file path=usr/include/sys/efi_partition.h
955 file path=usr/include/sys/elf.h
956 file path=usr/include/sys/elf_386.h
957 file path=usr/include/sys/elf_SPARC.h
958 file path=usr/include/sys/elf_amd64.h
959 file path=usr/include/sys/elf_notes.h
960 file path=usr/include/sys/elftypes.h
961 file path=usr/include/sys/epm.h
962 file path=usr/include/sys/errno.h
963 file path=usr/include/sys/errorq.h
964 file path=usr/include/sys/errorq_impl.h
965 file path=usr/include/sys/esunddi.h
966 file path=usr/include/sys/ethernet.h
967 file path=usr/include/sys/euc.h
968 file path=usr/include/sys/eucioctl.h
969 file path=usr/include/sys/exacct.h
970 file path=usr/include/sys/exacct_catalog.h
971 file path=usr/include/sys/exacct_impl.h
972 file path=usr/include/sys/exec.h
973 file path=usr/include/sys/exechdr.h
974 file path=usr/include/sys/fault.h
975 file path=usr/include/sys/fbio.h
976 file path=usr/include/sys/fbuf.h
977 file path=usr/include/sys/fc4/fc.h
978 file path=usr/include/sys/fc4/fc_transport.h
979 file path=usr/include/sys/fc4/fcal.h
980 file path=usr/include/sys/fc4/fcal_linkapp.h
981 file path=usr/include/sys/fc4/fcal_transport.h
982 file path=usr/include/sys/fc4/fcio.h
983 file path=usr/include/sys/fc4/fcp.h
984 file path=usr/include/sys/fc4/linkapp.h
985 file path=usr/include/sys/fcntl.h

new/usr/src/pkg/manifests/system-header.mf 16

986 file path=usr/include/sys/fdbuffer.h
987 file path=usr/include/sys/fdio.h
988 $(sparc_ONLY)file path=usr/include/sys/fdreg.h
989 $(sparc_ONLY)file path=usr/include/sys/fdvar.h
990 file path=usr/include/sys/feature_tests.h
991 file path=usr/include/sys/fem.h
992 file path=usr/include/sys/file.h
993 file path=usr/include/sys/filio.h
994 file path=usr/include/sys/flock.h
995 file path=usr/include/sys/flock_impl.h
996 $(sparc_ONLY)file path=usr/include/sys/fm/cpu/SPARC64-VI.h
997 $(sparc_ONLY)file path=usr/include/sys/fm/cpu/UltraSPARC-II.h
998 $(sparc_ONLY)file path=usr/include/sys/fm/cpu/UltraSPARC-III.h
999 $(sparc_ONLY)file path=usr/include/sys/fm/cpu/UltraSPARC-T1.h

1000 file path=usr/include/sys/fm/fs/zfs.h
1001 file path=usr/include/sys/fm/io/ddi.h
1002 file path=usr/include/sys/fm/io/disk.h
1003 file path=usr/include/sys/fm/io/opl_mc_fm.h
1004 file path=usr/include/sys/fm/io/pci.h
1005 file path=usr/include/sys/fm/io/scsi.h
1006 file path=usr/include/sys/fm/io/sun4upci.h
1007 file path=usr/include/sys/fm/protocol.h
1008 file path=usr/include/sys/fm/util.h
1009 file path=usr/include/sys/fork.h
1010 $(i386_ONLY)file path=usr/include/sys/fp.h
1011 $(sparc_ONLY)file path=usr/include/sys/fpu/fpu_simulator.h
1012 $(sparc_ONLY)file path=usr/include/sys/fpu/fpusystm.h
1013 $(sparc_ONLY)file path=usr/include/sys/fpu/globals.h
1014 $(sparc_ONLY)file path=usr/include/sys/fpu/ieee.h
1015 file path=usr/include/sys/frame.h
1016 file path=usr/include/sys/fs/autofs.h
1017 file path=usr/include/sys/fs/cachefs_dir.h
1018 file path=usr/include/sys/fs/cachefs_dlog.h
1019 file path=usr/include/sys/fs/cachefs_filegrp.h
1020 file path=usr/include/sys/fs/cachefs_fs.h
1021 file path=usr/include/sys/fs/cachefs_fscache.h
1022 file path=usr/include/sys/fs/cachefs_ioctl.h
1023 file path=usr/include/sys/fs/cachefs_log.h
1024 file path=usr/include/sys/fs/decomp.h
1025 file path=usr/include/sys/fs/dv_node.h
1026 file path=usr/include/sys/fs/fifonode.h
1027 file path=usr/include/sys/fs/hsfs_isospec.h
1028 file path=usr/include/sys/fs/hsfs_node.h
1029 file path=usr/include/sys/fs/hsfs_rrip.h
1030 file path=usr/include/sys/fs/hsfs_spec.h
1031 file path=usr/include/sys/fs/hsfs_susp.h
1032 file path=usr/include/sys/fs/lofs_info.h
1033 file path=usr/include/sys/fs/lofs_node.h
1034 file path=usr/include/sys/fs/mntdata.h
1035 file path=usr/include/sys/fs/namenode.h
1036 file path=usr/include/sys/fs/pc_dir.h
1037 file path=usr/include/sys/fs/pc_fs.h
1038 file path=usr/include/sys/fs/pc_label.h
1039 file path=usr/include/sys/fs/pc_node.h
1040 file path=usr/include/sys/fs/pxfs_ki.h
1041 file path=usr/include/sys/fs/sdev_impl.h
1042 file path=usr/include/sys/fs/snode.h
1043 file path=usr/include/sys/fs/swapnode.h
1044 file path=usr/include/sys/fs/tmp.h
1045 file path=usr/include/sys/fs/tmpnode.h
1046 file path=usr/include/sys/fs/udf_inode.h
1047 file path=usr/include/sys/fs/udf_volume.h
1048 file path=usr/include/sys/fs/ufs_acl.h
1049 file path=usr/include/sys/fs/ufs_bio.h
1050 file path=usr/include/sys/fs/ufs_filio.h
1051 file path=usr/include/sys/fs/ufs_fs.h

new/usr/src/pkg/manifests/system-header.mf 17

1052 file path=usr/include/sys/fs/ufs_fsdir.h
1053 file path=usr/include/sys/fs/ufs_inode.h
1054 file path=usr/include/sys/fs/ufs_lockfs.h
1055 file path=usr/include/sys/fs/ufs_log.h
1056 file path=usr/include/sys/fs/ufs_mount.h
1057 file path=usr/include/sys/fs/ufs_panic.h
1058 file path=usr/include/sys/fs/ufs_prot.h
1059 file path=usr/include/sys/fs/ufs_quota.h
1060 file path=usr/include/sys/fs/ufs_snap.h
1061 file path=usr/include/sys/fs/ufs_trans.h
1062 file path=usr/include/sys/fs/zfs.h
1063 file path=usr/include/sys/fs_reparse.h
1064 file path=usr/include/sys/fs_subr.h
1065 file path=usr/include/sys/fsid.h
1066 $(sparc_ONLY)file path=usr/include/sys/fsr.h
1067 file path=usr/include/sys/fss.h
1068 file path=usr/include/sys/fssnap.h
1069 file path=usr/include/sys/fssnap_if.h
1070 file path=usr/include/sys/fsspriocntl.h
1071 file path=usr/include/sys/fstyp.h
1072 file path=usr/include/sys/ftrace.h
1073 file path=usr/include/sys/fx.h
1074 file path=usr/include/sys/fxpriocntl.h
1075 file path=usr/include/sys/gfs.h
1076 file path=usr/include/sys/gld.h
1077 file path=usr/include/sys/gldpriv.h
1078 file path=usr/include/sys/group.h
1079 file path=usr/include/sys/hdio.h
1080 file path=usr/include/sys/hook.h
1081 file path=usr/include/sys/hook_event.h
1082 file path=usr/include/sys/hook_impl.h
1083 file path=usr/include/sys/hotplug/hpcsvc.h
1084 file path=usr/include/sys/hotplug/hpctrl.h
1085 file path=usr/include/sys/hotplug/pci/pcicfg.h
1086 file path=usr/include/sys/hotplug/pci/pcihp.h
1087 file path=usr/include/sys/hwconf.h
1088 $(i386_ONLY)file path=usr/include/sys/hypervisor.h
1089 $(i386_ONLY)file path=usr/include/sys/i8272A.h
1090 file path=usr/include/sys/ia.h
1091 file path=usr/include/sys/iapriocntl.h
1092 file path=usr/include/sys/ib/adapters/hermon/hermon_ioctl.h
1093 file path=usr/include/sys/ib/adapters/mlnx_umap.h
1094 file path=usr/include/sys/ib/adapters/tavor/tavor_ioctl.h
1095 file path=usr/include/sys/ib/clients/ibd/ibd.h
1096 file path=usr/include/sys/ib/clients/of/ofa_solaris.h
1097 file path=usr/include/sys/ib/clients/of/ofed_kernel.h
1098 file path=usr/include/sys/ib/clients/of/rdma/ib_addr.h
1099 file path=usr/include/sys/ib/clients/of/rdma/ib_user_mad.h
1100 file path=usr/include/sys/ib/clients/of/rdma/ib_user_sa.h
1101 file path=usr/include/sys/ib/clients/of/rdma/ib_user_verbs.h
1102 file path=usr/include/sys/ib/clients/of/rdma/ib_verbs.h
1103 file path=usr/include/sys/ib/clients/of/rdma/rdma_cm.h
1104 file path=usr/include/sys/ib/clients/of/rdma/rdma_user_cm.h
1105 file path=usr/include/sys/ib/clients/of/sol_ofs/sol_cma.h
1106 file path=usr/include/sys/ib/clients/of/sol_ofs/sol_ib_cma.h
1107 file path=usr/include/sys/ib/clients/of/sol_ofs/sol_kverb_impl.h
1108 file path=usr/include/sys/ib/clients/of/sol_ofs/sol_ofs_common.h
1109 file path=usr/include/sys/ib/clients/of/sol_ucma/sol_rdma_user_cm.h
1110 file path=usr/include/sys/ib/clients/of/sol_ucma/sol_ucma.h
1111 file path=usr/include/sys/ib/clients/of/sol_umad/sol_umad.h
1112 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs.h
1113 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs2ucma.h
1114 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs_comp.h
1115 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs_event.h
1116 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs_hca.h
1117 file path=usr/include/sys/ib/clients/of/sol_uverbs/sol_uverbs_qp.h

new/usr/src/pkg/manifests/system-header.mf 18

1118 file path=usr/include/sys/ib/ib_pkt_hdrs.h
1119 file path=usr/include/sys/ib/ib_types.h
1120 file path=usr/include/sys/ib/ibnex/ibnex_devctl.h
1121 file path=usr/include/sys/ib/ibtl/ibci.h
1122 file path=usr/include/sys/ib/ibtl/ibti.h
1123 file path=usr/include/sys/ib/ibtl/ibti_cm.h
1124 file path=usr/include/sys/ib/ibtl/ibti_common.h
1125 file path=usr/include/sys/ib/ibtl/ibtl_ci_types.h
1126 file path=usr/include/sys/ib/ibtl/ibtl_status.h
1127 file path=usr/include/sys/ib/ibtl/ibtl_types.h
1128 file path=usr/include/sys/ib/ibtl/ibvti.h
1129 file path=usr/include/sys/ib/ibtl/impl/ibtl_util.h
1130 file path=usr/include/sys/ib/mgt/ib_dm_attr.h
1131 file path=usr/include/sys/ib/mgt/ib_mad.h
1132 file path=usr/include/sys/ib/mgt/ibmf/ibmf.h
1133 file path=usr/include/sys/ib/mgt/ibmf/ibmf_msg.h
1134 file path=usr/include/sys/ib/mgt/ibmf/ibmf_saa.h
1135 file path=usr/include/sys/ib/mgt/ibmf/ibmf_utils.h
1136 file path=usr/include/sys/ib/mgt/sa_recs.h
1137 file path=usr/include/sys/ib/mgt/sm_attr.h
1138 file path=usr/include/sys/ibpart.h
1139 file path=usr/include/sys/id32.h
1140 file path=usr/include/sys/id_space.h
1141 file path=usr/include/sys/idmap.h
1142 file path=usr/include/sys/inline.h
1143 file path=usr/include/sys/instance.h
1144 file path=usr/include/sys/int_const.h
1145 file path=usr/include/sys/int_fmtio.h
1146 file path=usr/include/sys/int_limits.h
1147 file path=usr/include/sys/int_types.h
1148 file path=usr/include/sys/inttypes.h
1149 file path=usr/include/sys/ioccom.h
1150 file path=usr/include/sys/ioctl.h
1151 $(i386_ONLY)file path=usr/include/sys/iommulib.h
1152 file path=usr/include/sys/ipc.h
1153 file path=usr/include/sys/ipc_impl.h
1154 file path=usr/include/sys/ipc_rctl.h
1155 file path=usr/include/sys/isa_defs.h
1156 file path=usr/include/sys/iso/signal_iso.h
1157 file path=usr/include/sys/jioctl.h
1158 file path=usr/include/sys/kbd.h
1159 file path=usr/include/sys/kbdreg.h
1160 file path=usr/include/sys/kbio.h
1161 file path=usr/include/sys/kcpc.h
1162 file path=usr/include/sys/kd.h
1163 file path=usr/include/sys/kdi.h
1164 file path=usr/include/sys/kdi_impl.h
1165 file path=usr/include/sys/kdi_machimpl.h
1166 $(i386_ONLY)file path=usr/include/sys/kdi_regs.h
1167 file path=usr/include/sys/kiconv.h
1168 file path=usr/include/sys/kidmap.h
1169 file path=usr/include/sys/klpd.h
1170 file path=usr/include/sys/klwp.h
1171 file path=usr/include/sys/kmem.h
1172 file path=usr/include/sys/kmem_impl.h
1173 file path=usr/include/sys/kobj.h
1174 file path=usr/include/sys/kobj_impl.h
1175 file path=usr/include/sys/ksocket.h
1176 file path=usr/include/sys/kstat.h
1177 file path=usr/include/sys/kstr.h
1178 file path=usr/include/sys/ksyms.h
1179 file path=usr/include/sys/ksynch.h
1180 file path=usr/include/sys/lc_core.h
1181 file path=usr/include/sys/ldterm.h
1182 file path=usr/include/sys/lgrp.h
1183 file path=usr/include/sys/lgrp_user.h

new/usr/src/pkg/manifests/system-header.mf 19

1184 file path=usr/include/sys/link.h
1185 file path=usr/include/sys/list.h
1186 file path=usr/include/sys/list_impl.h
1187 file path=usr/include/sys/llc1.h
1188 file path=usr/include/sys/loadavg.h
1189 file path=usr/include/sys/localedef.h
1190 file path=usr/include/sys/lock.h
1191 file path=usr/include/sys/lockfs.h
1192 file path=usr/include/sys/lofi.h
1193 file path=usr/include/sys/log.h
1194 file path=usr/include/sys/logindmux.h
1195 file path=usr/include/sys/lvm/md_basic.h
1196 file path=usr/include/sys/lvm/md_convert.h
1197 file path=usr/include/sys/lvm/md_crc.h
1198 file path=usr/include/sys/lvm/md_hotspares.h
1199 file path=usr/include/sys/lvm/md_mddb.h
1200 file path=usr/include/sys/lvm/md_mdiox.h
1201 file path=usr/include/sys/lvm/md_mhdx.h
1202 file path=usr/include/sys/lvm/md_mirror.h
1203 file path=usr/include/sys/lvm/md_mirror_shared.h
1204 file path=usr/include/sys/lvm/md_names.h
1205 file path=usr/include/sys/lvm/md_notify.h
1206 file path=usr/include/sys/lvm/md_raid.h
1207 file path=usr/include/sys/lvm/md_rename.h
1208 file path=usr/include/sys/lvm/md_sp.h
1209 file path=usr/include/sys/lvm/md_stripe.h
1210 file path=usr/include/sys/lvm/md_trans.h
1211 file path=usr/include/sys/lvm/mdio.h
1212 file path=usr/include/sys/lvm/mdmed.h
1213 file path=usr/include/sys/lvm/mdmn_commd.h
1214 file path=usr/include/sys/lvm/mdvar.h
1215 file path=usr/include/sys/lwp.h
1216 file path=usr/include/sys/lwp_timer_impl.h
1217 file path=usr/include/sys/lwp_upimutex_impl.h
1218 file path=usr/include/sys/mac.h
1219 file path=usr/include/sys/mac_ether.h
1220 file path=usr/include/sys/mac_flow.h
1221 file path=usr/include/sys/mac_provider.h
1222 file path=usr/include/sys/machelf.h
1223 file path=usr/include/sys/machlock.h
1224 file path=usr/include/sys/machsig.h
1225 file path=usr/include/sys/machtypes.h
1226 file path=usr/include/sys/map.h
1227 $(i386_ONLY)file path=usr/include/sys/mc.h
1228 $(i386_ONLY)file path=usr/include/sys/mc_amd.h
1229 $(i386_ONLY)file path=usr/include/sys/mc_intel.h
1230 $(i386_ONLY)file path=usr/include/sys/mca_amd.h
1231 $(i386_ONLY)file path=usr/include/sys/mca_x86.h
1232 file path=usr/include/sys/md4.h
1233 file path=usr/include/sys/md5.h
1234 file path=usr/include/sys/md5_consts.h
1235 file path=usr/include/sys/mdi_impldefs.h
1236 file path=usr/include/sys/mem.h
1237 file path=usr/include/sys/mem_config.h
1238 file path=usr/include/sys/memlist.h
1239 file path=usr/include/sys/mhd.h
1240 file path=usr/include/sys/mii.h
1241 file path=usr/include/sys/miiregs.h
1242 file path=usr/include/sys/mkdev.h
1243 file path=usr/include/sys/mman.h
1244 file path=usr/include/sys/mmapobj.h
1245 file path=usr/include/sys/mntent.h
1246 file path=usr/include/sys/mntio.h
1247 file path=usr/include/sys/mnttab.h
1248 file path=usr/include/sys/modctl.h
1249 file path=usr/include/sys/mode.h

new/usr/src/pkg/manifests/system-header.mf 20

1250 file path=usr/include/sys/model.h
1251 file path=usr/include/sys/modhash.h
1252 file path=usr/include/sys/modhash_impl.h
1253 file path=usr/include/sys/mount.h
1254 file path=usr/include/sys/mouse.h
1255 file path=usr/include/sys/msacct.h
1256 file path=usr/include/sys/msg.h
1257 file path=usr/include/sys/msg_impl.h
1258 file path=usr/include/sys/msio.h
1259 file path=usr/include/sys/msreg.h
1260 file path=usr/include/sys/mtio.h
1261 file path=usr/include/sys/multidata.h
1262 file path=usr/include/sys/mutex.h
1263 $(i386_ONLY)file path=usr/include/sys/mutex_impl.h
1264 file path=usr/include/sys/nbmlock.h
1265 file path=usr/include/sys/ndi_impldefs.h
1266 file path=usr/include/sys/ndifm.h
1267 file path=usr/include/sys/netconfig.h
1268 file path=usr/include/sys/neti.h
1269 file path=usr/include/sys/netstack.h
1270 file path=usr/include/sys/nexusdefs.h
1271 file path=usr/include/sys/note.h
1272 file path=usr/include/sys/nvpair.h
1273 file path=usr/include/sys/nvpair_impl.h
1274 file path=usr/include/sys/objfs.h
1275 file path=usr/include/sys/objfs_impl.h
1276 file path=usr/include/sys/obpdefs.h
1277 file path=usr/include/sys/old_procfs.h
1278 file path=usr/include/sys/open.h
1279 file path=usr/include/sys/openpromio.h
1280 file path=usr/include/sys/panic.h
1281 file path=usr/include/sys/param.h
1282 file path=usr/include/sys/pathconf.h
1283 file path=usr/include/sys/pathname.h
1284 file path=usr/include/sys/pattr.h
1285 file path=usr/include/sys/pbio.h
1286 file path=usr/include/sys/pcb.h
1287 file path=usr/include/sys/pccard.h
1288 file path=usr/include/sys/pci.h
1289 $(i386_ONLY)file path=usr/include/sys/pcic_reg.h
1290 $(i386_ONLY)file path=usr/include/sys/pcic_var.h
1291 file path=usr/include/sys/pcie.h
1292 file path=usr/include/sys/pcmcia.h
1293 file path=usr/include/sys/pcmcia/pcata.h
1294 file path=usr/include/sys/pcmcia/pcser_conf.h
1295 file path=usr/include/sys/pcmcia/pcser_io.h
1296 file path=usr/include/sys/pcmcia/pcser_manuspec.h
1297 file path=usr/include/sys/pcmcia/pcser_reg.h
1298 file path=usr/include/sys/pcmcia/pcser_var.h
1299 file path=usr/include/sys/pctypes.h
1300 file path=usr/include/sys/pfmod.h
1301 file path=usr/include/sys/pg.h
1302 file path=usr/include/sys/pghw.h
1303 file path=usr/include/sys/physmem.h
1304 $(i386_ONLY)file path=usr/include/sys/pic.h
1305 $(i386_ONLY)file path=usr/include/sys/pit.h
1306 file path=usr/include/sys/pkp_hash.h
1307 file path=usr/include/sys/pm.h
1308 $(i386_ONLY)file path=usr/include/sys/pmem.h
1309 file path=usr/include/sys/policy.h
1310 file path=usr/include/sys/poll.h
1311 file path=usr/include/sys/poll_impl.h
1312 file path=usr/include/sys/pool.h
1313 file path=usr/include/sys/pool_impl.h
1314 file path=usr/include/sys/pool_pset.h
1315 file path=usr/include/sys/port.h

new/usr/src/pkg/manifests/system-header.mf 21

1316 file path=usr/include/sys/port_impl.h
1317 file path=usr/include/sys/port_kernel.h
1318 file path=usr/include/sys/ppmio.h
1319 file path=usr/include/sys/priocntl.h
1320 file path=usr/include/sys/priv.h
1321 file path=usr/include/sys/priv_const.h
1322 file path=usr/include/sys/priv_impl.h
1323 file path=usr/include/sys/priv_names.h
1324 $(i386_ONLY)file path=usr/include/sys/privmregs.h
1325 $(i386_ONLY)file path=usr/include/sys/privregs.h
1326 file path=usr/include/sys/prnio.h
1327 file path=usr/include/sys/proc.h
1328 file path=usr/include/sys/proc/prdata.h
1329 file path=usr/include/sys/processor.h
1330 file path=usr/include/sys/procfs.h
1331 file path=usr/include/sys/procfs_isa.h
1332 file path=usr/include/sys/procset.h
1333 file path=usr/include/sys/project.h
1334 $(i386_ONLY)file path=usr/include/sys/prom_emul.h
1335 $(i386_ONLY)file path=usr/include/sys/prom_isa.h
1336 $(i386_ONLY)file path=usr/include/sys/prom_plat.h
1337 file path=usr/include/sys/promif.h
1338 file path=usr/include/sys/promimpl.h
1339 file path=usr/include/sys/protosw.h
1340 file path=usr/include/sys/prsystm.h
1341 file path=usr/include/sys/pset.h
1342 file path=usr/include/sys/psw.h
1343 $(i386_ONLY)file path=usr/include/sys/pte.h
1344 file path=usr/include/sys/ptem.h
1345 file path=usr/include/sys/ptms.h
1346 file path=usr/include/sys/ptyvar.h
1347 file path=usr/include/sys/queue.h
1348 file path=usr/include/sys/raidioctl.h
1349 file path=usr/include/sys/ramdisk.h
1350 file path=usr/include/sys/random.h
1351 file path=usr/include/sys/rctl.h
1352 file path=usr/include/sys/rctl_impl.h
1353 file path=usr/include/sys/rds.h
1354 file path=usr/include/sys/reboot.h
1355 file path=usr/include/sys/refstr.h
1356 file path=usr/include/sys/refstr_impl.h
1357 file path=usr/include/sys/reg.h
1358 file path=usr/include/sys/regset.h
1359 file path=usr/include/sys/resource.h
1360 file path=usr/include/sys/rlioctl.h
1361 file path=usr/include/sys/rsm/rsm.h
1362 file path=usr/include/sys/rsm/rsm_common.h
1363 file path=usr/include/sys/rsm/rsmapi_common.h
1364 file path=usr/include/sys/rsm/rsmka_path_int.h
1365 file path=usr/include/sys/rsm/rsmndi.h
1366 file path=usr/include/sys/rsm/rsmpi.h
1367 file path=usr/include/sys/rsm/rsmpi_driver.h
1368 file path=usr/include/sys/rt.h
1369 $(i386_ONLY)file path=usr/include/sys/rtc.h
1370 file path=usr/include/sys/rtpriocntl.h
1371 file path=usr/include/sys/rwlock.h
1372 file path=usr/include/sys/rwlock_impl.h
1373 file path=usr/include/sys/rwstlock.h
1374 file path=usr/include/sys/sad.h
1375 $(i386_ONLY)file path=usr/include/sys/sata/sata_defs.h
1376 $(i386_ONLY)file path=usr/include/sys/sata/sata_hba.h
1377 file path=usr/include/sys/schedctl.h
1378 $(sparc_ONLY)file path=usr/include/sys/scsi/adapters/ifpio.h
1379 file path=usr/include/sys/scsi/adapters/scsi_vhci.h
1380 $(sparc_ONLY)file path=usr/include/sys/scsi/adapters/sfvar.h
1381 file path=usr/include/sys/scsi/conf/autoconf.h

new/usr/src/pkg/manifests/system-header.mf 22

1382 file path=usr/include/sys/scsi/conf/device.h
1383 file path=usr/include/sys/scsi/generic/commands.h
1384 file path=usr/include/sys/scsi/generic/dad_mode.h
1385 file path=usr/include/sys/scsi/generic/inquiry.h
1386 file path=usr/include/sys/scsi/generic/message.h
1387 file path=usr/include/sys/scsi/generic/mode.h
1388 file path=usr/include/sys/scsi/generic/persist.h
1389 file path=usr/include/sys/scsi/generic/sense.h
1390 file path=usr/include/sys/scsi/generic/sff_frames.h
1391 file path=usr/include/sys/scsi/generic/smp_frames.h
1392 file path=usr/include/sys/scsi/generic/status.h
1393 file path=usr/include/sys/scsi/impl/commands.h
1394 file path=usr/include/sys/scsi/impl/inquiry.h
1395 file path=usr/include/sys/scsi/impl/mode.h
1396 file path=usr/include/sys/scsi/impl/scsi_reset_notify.h
1397 file path=usr/include/sys/scsi/impl/scsi_sas.h
1398 file path=usr/include/sys/scsi/impl/sense.h
1399 file path=usr/include/sys/scsi/impl/services.h
1400 file path=usr/include/sys/scsi/impl/smp_transport.h
1401 file path=usr/include/sys/scsi/impl/spc3_types.h
1402 file path=usr/include/sys/scsi/impl/status.h
1403 file path=usr/include/sys/scsi/impl/transport.h
1404 file path=usr/include/sys/scsi/impl/types.h
1405 file path=usr/include/sys/scsi/impl/uscsi.h
1406 file path=usr/include/sys/scsi/impl/usmp.h
1407 file path=usr/include/sys/scsi/scsi.h
1408 file path=usr/include/sys/scsi/scsi_address.h
1409 file path=usr/include/sys/scsi/scsi_ctl.h
1410 file path=usr/include/sys/scsi/scsi_fm.h
1411 file path=usr/include/sys/scsi/scsi_params.h
1412 file path=usr/include/sys/scsi/scsi_pkt.h
1413 file path=usr/include/sys/scsi/scsi_resource.h
1414 file path=usr/include/sys/scsi/scsi_types.h
1415 file path=usr/include/sys/scsi/scsi_watch.h
1416 file path=usr/include/sys/scsi/targets/sddef.h
1417 file path=usr/include/sys/scsi/targets/ses.h
1418 file path=usr/include/sys/scsi/targets/sesio.h
1419 file path=usr/include/sys/scsi/targets/sgendef.h
1420 file path=usr/include/sys/scsi/targets/smp.h
1421 $(sparc_ONLY)file path=usr/include/sys/scsi/targets/ssddef.h
1422 file path=usr/include/sys/scsi/targets/stdef.h
1423 $(i386_ONLY)file path=usr/include/sys/segment.h
1424 $(i386_ONLY)file path=usr/include/sys/segments.h
1425 file path=usr/include/sys/select.h
1426 file path=usr/include/sys/sem.h
1427 file path=usr/include/sys/sem_impl.h
1428 file path=usr/include/sys/sema_impl.h
1429 file path=usr/include/sys/semaphore.h
1430 file path=usr/include/sys/sendfile.h
1431 $(sparc_ONLY)file path=usr/include/sys/ser_async.h
1432 file path=usr/include/sys/ser_sync.h
1433 $(sparc_ONLY)file path=usr/include/sys/ser_zscc.h
1434 file path=usr/include/sys/serializer.h
1435 file path=usr/include/sys/session.h
1436 file path=usr/include/sys/sha1.h
1437 file path=usr/include/sys/sha2.h
1438 file path=usr/include/sys/share.h
1439 file path=usr/include/sys/shm.h
1440 file path=usr/include/sys/shm_impl.h
1441 file path=usr/include/sys/sid.h
1442 file path=usr/include/sys/siginfo.h
1443 file path=usr/include/sys/signal.h
1444 file path=usr/include/sys/sleepq.h
1445 file path=usr/include/sys/smbios.h
1446 file path=usr/include/sys/smbios_impl.h
1447 file path=usr/include/sys/smedia.h

new/usr/src/pkg/manifests/system-header.mf 23

1448 file path=usr/include/sys/sobject.h
1449 $(sparc_ONLY)file path=usr/include/sys/socal_cq_defs.h
1450 $(sparc_ONLY)file path=usr/include/sys/socalio.h
1451 $(sparc_ONLY)file path=usr/include/sys/socalmap.h
1452 $(sparc_ONLY)file path=usr/include/sys/socalreg.h
1453 $(sparc_ONLY)file path=usr/include/sys/socalvar.h
1454 file path=usr/include/sys/socket.h
1455 file path=usr/include/sys/socket_impl.h
1456 file path=usr/include/sys/socket_proto.h
1457 file path=usr/include/sys/socketvar.h
1458 file path=usr/include/sys/sockio.h
1459 file path=usr/include/sys/spl.h
1460 file path=usr/include/sys/squeue.h
1461 file path=usr/include/sys/squeue_impl.h
1462 file path=usr/include/sys/sservice.h
1463 file path=usr/include/sys/stack.h
1464 file path=usr/include/sys/stat.h
1465 file path=usr/include/sys/stat_impl.h
1466 file path=usr/include/sys/statfs.h
1467 file path=usr/include/sys/statvfs.h
1468 file path=usr/include/sys/stdbool.h
1469 file path=usr/include/sys/stdint.h
1470 file path=usr/include/sys/stermio.h
1471 file path=usr/include/sys/stream.h
1472 file path=usr/include/sys/strft.h
1473 file path=usr/include/sys/strlog.h
1474 file path=usr/include/sys/strmdep.h
1475 file path=usr/include/sys/stropts.h
1476 file path=usr/include/sys/strredir.h
1477 file path=usr/include/sys/strstat.h
1478 file path=usr/include/sys/strsubr.h
1479 file path=usr/include/sys/strsun.h
1480 file path=usr/include/sys/strtty.h
1481 file path=usr/include/sys/sunddi.h
1482 file path=usr/include/sys/sunldi.h
1483 file path=usr/include/sys/sunldi_impl.h
1484 file path=usr/include/sys/sunmdi.h
1485 file path=usr/include/sys/sunndi.h
1486 file path=usr/include/sys/sunpm.h
1487 file path=usr/include/sys/suntpi.h
1488 file path=usr/include/sys/suntty.h
1489 file path=usr/include/sys/swap.h
1490 file path=usr/include/sys/synch.h
1491 file path=usr/include/sys/syscall.h
1492 file path=usr/include/sys/sysconf.h
1493 file path=usr/include/sys/sysconfig.h
1494 file path=usr/include/sys/sysconfig_impl.h
1495 file path=usr/include/sys/sysdc.h
1496 file path=usr/include/sys/sysdc_impl.h
1497 file path=usr/include/sys/sysevent.h
1498 file path=usr/include/sys/sysevent/ap_driver.h
1499 file path=usr/include/sys/sysevent/dev.h
1500 file path=usr/include/sys/sysevent/domain.h
1501 file path=usr/include/sys/sysevent/dr.h
1502 file path=usr/include/sys/sysevent/env.h
1503 file path=usr/include/sys/sysevent/eventdefs.h
1504 file path=usr/include/sys/sysevent/ipmp.h
1505 file path=usr/include/sys/sysevent/pwrctl.h
1506 file path=usr/include/sys/sysevent/svm.h
1507 file path=usr/include/sys/sysevent/vrrp.h
1508 file path=usr/include/sys/sysevent_impl.h
1509 $(i386_ONLY)file path=usr/include/sys/sysi86.h
1510 file path=usr/include/sys/sysinfo.h
1511 file path=usr/include/sys/syslog.h
1512 file path=usr/include/sys/sysmacros.h
1513 file path=usr/include/sys/systeminfo.h

new/usr/src/pkg/manifests/system-header.mf 24

1514 file path=usr/include/sys/systm.h
1515 file path=usr/include/sys/t_kuser.h
1516 file path=usr/include/sys/t_lock.h
1517 file path=usr/include/sys/task.h
1518 file path=usr/include/sys/taskq.h
1519 file path=usr/include/sys/taskq_impl.h
1520 file path=usr/include/sys/telioctl.h
1521 file path=usr/include/sys/termio.h
1522 file path=usr/include/sys/termios.h
1523 file path=usr/include/sys/termiox.h
1524 file path=usr/include/sys/thread.h
1525 file path=usr/include/sys/ticlts.h
1526 file path=usr/include/sys/ticots.h
1527 file path=usr/include/sys/ticotsord.h
1528 file path=usr/include/sys/tihdr.h
1529 file path=usr/include/sys/time.h
1530 file path=usr/include/sys/time_impl.h
1531 file path=usr/include/sys/time_std_impl.h
1532 file path=usr/include/sys/timeb.h
1533 file path=usr/include/sys/timer.h
1534 file path=usr/include/sys/times.h
1535 file path=usr/include/sys/timex.h
1536 file path=usr/include/sys/timod.h
1537 file path=usr/include/sys/tirdwr.h
1538 file path=usr/include/sys/tiuser.h
1539 file path=usr/include/sys/tl.h
1540 file path=usr/include/sys/tnf.h
1541 file path=usr/include/sys/tnf_com.h
1542 file path=usr/include/sys/tnf_probe.h
1543 file path=usr/include/sys/tnf_writer.h
1544 file path=usr/include/sys/todio.h
1545 file path=usr/include/sys/tpicommon.h
1546 file path=usr/include/sys/trap.h
1547 $(i386_ONLY)file path=usr/include/sys/traptrace.h
1548 file path=usr/include/sys/ts.h
1549 file path=usr/include/sys/tsol/label.h
1550 file path=usr/include/sys/tsol/label_macro.h
1551 file path=usr/include/sys/tsol/priv.h
1552 file path=usr/include/sys/tsol/tndb.h
1553 file path=usr/include/sys/tsol/tsyscall.h
1554 file path=usr/include/sys/tspriocntl.h
1555 $(i386_ONLY)file path=usr/include/sys/tss.h
1556 file path=usr/include/sys/ttcompat.h
1557 file path=usr/include/sys/ttold.h
1558 file path=usr/include/sys/tty.h
1559 file path=usr/include/sys/ttychars.h
1560 file path=usr/include/sys/ttydev.h
1561 $(sparc_ONLY)file path=usr/include/sys/ttymux.h
1562 $(sparc_ONLY)file path=usr/include/sys/ttymuxuser.h
1563 file path=usr/include/sys/tuneable.h
1564 file path=usr/include/sys/turnstile.h
1565 file path=usr/include/sys/types.h
1566 file path=usr/include/sys/types32.h
1567 file path=usr/include/sys/tzfile.h
1568 file path=usr/include/sys/u8_textprep.h
1569 file path=usr/include/sys/uadmin.h
1570 $(i386_ONLY)file path=usr/include/sys/ucode.h
1571 file path=usr/include/sys/ucontext.h
1572 file path=usr/include/sys/uio.h
1573 file path=usr/include/sys/ulimit.h
1574 file path=usr/include/sys/un.h
1575 file path=usr/include/sys/unistd.h
1576 file path=usr/include/sys/user.h
1577 file path=usr/include/sys/ustat.h
1578 file path=usr/include/sys/utime.h
1579 file path=usr/include/sys/utrap.h

new/usr/src/pkg/manifests/system-header.mf 25

1580 file path=usr/include/sys/utsname.h
1581 file path=usr/include/sys/utssys.h
1582 file path=usr/include/sys/uuid.h
1583 file path=usr/include/sys/va_impl.h
1584 file path=usr/include/sys/va_list.h
1585 file path=usr/include/sys/var.h
1586 file path=usr/include/sys/varargs.h
1587 file path=usr/include/sys/vfs.h
1588 file path=usr/include/sys/vfs_opreg.h
1589 file path=usr/include/sys/vfstab.h
1590 file path=usr/include/sys/videodev2.h
1591 file path=usr/include/sys/visual_io.h
1592 file path=usr/include/sys/vm.h
1593 file path=usr/include/sys/vm_usage.h
1594 file path=usr/include/sys/vmem.h
1595 file path=usr/include/sys/vmem_impl.h
1596 file path=usr/include/sys/vmem_impl_user.h
1597 file path=usr/include/sys/vmparam.h
1598 file path=usr/include/sys/vmsystm.h
1599 file path=usr/include/sys/vnode.h
1600 file path=usr/include/sys/vt.h
1601 file path=usr/include/sys/vtdaemon.h
1602 file path=usr/include/sys/vtoc.h
1603 file path=usr/include/sys/vtrace.h
1604 file path=usr/include/sys/vuid_event.h
1605 file path=usr/include/sys/vuid_queue.h
1606 file path=usr/include/sys/vuid_state.h
1607 file path=usr/include/sys/vuid_store.h
1608 file path=usr/include/sys/vuid_wheel.h
1609 file path=usr/include/sys/wait.h
1610 file path=usr/include/sys/waitq.h
1611 file path=usr/include/sys/watchpoint.h
1612 $(i386_ONLY)file path=usr/include/sys/x86_archext.h
1613 $(i386_ONLY)file path=usr/include/sys/xen_errno.h
1614 file path=usr/include/sys/xti_inet.h
1615 file path=usr/include/sys/xti_osi.h
1616 file path=usr/include/sys/xti_xtiopt.h
1617 file path=usr/include/sys/zcons.h
1618 file path=usr/include/sys/zmod.h
1619 file path=usr/include/sys/zone.h
1620 $(sparc_ONLY)file path=usr/include/sys/zsdev.h
1621 file path=usr/include/sysexits.h
1622 file path=usr/include/syslog.h
1623 file path=usr/include/tar.h
1624 file path=usr/include/tcpd.h
1625 file path=usr/include/term.h
1626 file path=usr/include/termcap.h
1627 file path=usr/include/termio.h
1628 file path=usr/include/termios.h
1629 file path=usr/include/thread.h
1630 file path=usr/include/thread_db.h
1631 file path=usr/include/time.h
1632 file path=usr/include/tiuser.h
1633 file path=usr/include/tsol/label.h
1634 file path=usr/include/tzfile.h
1635 file path=usr/include/ucontext.h
1636 file path=usr/include/ucred.h
1637 file path=usr/include/uid_stp.h
1638 file path=usr/include/ulimit.h
1639 file path=usr/include/umem.h
1640 file path=usr/include/umem_impl.h
1641 file path=usr/include/unctrl.h
1642 file path=usr/include/unistd.h
1643 file path=usr/include/user_attr.h
1644 file path=usr/include/userdefs.h
1645 file path=usr/include/ustat.h

new/usr/src/pkg/manifests/system-header.mf 26

1646 file path=usr/include/utility.h
1647 file path=usr/include/utime.h
1648 file path=usr/include/utmp.h
1649 file path=usr/include/utmpx.h
1650 file path=usr/include/uuid/uuid.h
1651 $(sparc_ONLY)file path=usr/include/v7/sys/machpcb.h
1652 $(sparc_ONLY)file path=usr/include/v7/sys/machtrap.h
1653 $(sparc_ONLY)file path=usr/include/v7/sys/mutex_impl.h
1654 $(sparc_ONLY)file path=usr/include/v7/sys/privregs.h
1655 $(sparc_ONLY)file path=usr/include/v7/sys/prom_isa.h
1656 $(sparc_ONLY)file path=usr/include/v7/sys/psr.h
1657 $(sparc_ONLY)file path=usr/include/v7/sys/traptrace.h
1658 $(sparc_ONLY)file path=usr/include/v9/sys/asi.h
1659 $(sparc_ONLY)file path=usr/include/v9/sys/machpcb.h
1660 $(sparc_ONLY)file path=usr/include/v9/sys/machtrap.h
1661 $(sparc_ONLY)file path=usr/include/v9/sys/membar.h
1662 $(sparc_ONLY)file path=usr/include/v9/sys/mutex_impl.h
1663 $(sparc_ONLY)file path=usr/include/v9/sys/privregs.h
1664 $(sparc_ONLY)file path=usr/include/v9/sys/prom_isa.h
1665 $(sparc_ONLY)file path=usr/include/v9/sys/psr_compat.h
1666 $(sparc_ONLY)file path=usr/include/v9/sys/vis_simulator.h
1667 file path=usr/include/valtools.h
1668 file path=usr/include/values.h
1669 file path=usr/include/varargs.h
1670 file path=usr/include/vm/anon.h
1671 file path=usr/include/vm/as.h
1672 file path=usr/include/vm/faultcode.h
1673 file path=usr/include/vm/hat.h
1674 file path=usr/include/vm/kpm.h
1675 file path=usr/include/vm/page.h
1676 file path=usr/include/vm/pvn.h
1677 file path=usr/include/vm/rm.h
1678 file path=usr/include/vm/seg.h
1679 file path=usr/include/vm/seg_dev.h
1680 file path=usr/include/vm/seg_enum.h
1681 file path=usr/include/vm/seg_kmem.h
1682 file path=usr/include/vm/seg_kp.h
1683 file path=usr/include/vm/seg_kpm.h
1684 file path=usr/include/vm/seg_map.h
1685 file path=usr/include/vm/seg_spt.h
1686 file path=usr/include/vm/seg_vn.h
1687 file path=usr/include/vm/vpage.h
1688 file path=usr/include/vm/vpm.h
1689 file path=usr/include/volmgt.h
1690 file path=usr/include/wait.h
1691 file path=usr/include/wchar.h
1692 file path=usr/include/wchar_impl.h
1693 file path=usr/include/wctype.h
1694 file path=usr/include/widec.h
1695 file path=usr/include/wordexp.h
1696 file path=usr/include/xti.h
1697 file path=usr/include/xti_inet.h
1698 file path=usr/include/zone.h
1699 file path=usr/include/zonestat.h
1700 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/acpidev.h
1701 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/amd_iommu.h
1702 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/asm_misc.h
1703 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/clock.h
1704 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/cram.h
1705 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/ddi_subrdefs.h
1706 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/debug_info.h
1707 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/fastboot.h
1708 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/mach_mmu.h
1709 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machclock.h
1710 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machcpuvar.h
1711 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machparam.h

new/usr/src/pkg/manifests/system-header.mf 27

1712 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machprivregs.h
1713 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machsystm.h
1714 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/machthread.h
1715 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/memnode.h
1716 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/pc_mmu.h
1717 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/psm.h
1718 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/psm_defs.h
1719 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/psm_modctl.h
1720 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/psm_types.h
1721 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/rm_platter.h
1722 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/sbd_ioctl.h
1723 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/smp_impldefs.h
1724 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/vm_machparam.h
1725 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/x_call.h
1726 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/xc_levels.h
1727 $(i386_ONLY)file path=usr/platform/i86pc/include/sys/xsvc.h
1728 $(i386_ONLY)file path=usr/platform/i86pc/include/vm/hat_i86.h
1729 $(i386_ONLY)file path=usr/platform/i86pc/include/vm/hat_pte.h
1730 $(i386_ONLY)file path=usr/platform/i86pc/include/vm/hment.h
1731 $(i386_ONLY)file path=usr/platform/i86pc/include/vm/htable.h
1732 $(i386_ONLY)file path=usr/platform/i86pc/include/vm/kboot_mmu.h
1733 $(i386_ONLY)file path=usr/platform/i86xpv/include/sys/balloon.h
1734 $(i386_ONLY)file path=usr/platform/i86xpv/include/sys/machprivregs.h
1735 $(i386_ONLY)file path=usr/platform/i86xpv/include/sys/xen_mmu.h
1736 $(i386_ONLY)file path=usr/platform/i86xpv/include/sys/xpv_impl.h
1737 $(i386_ONLY)file path=usr/platform/i86xpv/include/vm/seg_mf.h
1738 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/ac.h
1739 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/async.h
1740 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cheetahregs.h
1741 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cherrystone.h
1742 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/clock.h
1743 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cmp.h
1744 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cpc_ultra.h
1745 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cpr_impl.h
1746 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cpu_impl.h
1747 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cpu_sgnblk_defs.h
1748 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/cvc.h
1749 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/daktari.h
1750 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/ddi_subrdefs.h
1751 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/dvma.h
1752 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/ecc_kstat.h
1753 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/eeprom.h
1754 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/envctrl.h
1755 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/envctrl_gen.h
1756 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/envctrl_ue250.h
1757 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/envctrl_ue450.h
1758 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/environ.h
1759 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/errclassify.h
1760 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/fhc.h
1761 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/gpio_87317.h
1762 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/hpc3130_events.h
1763 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/hpc3130.h
1764 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/i2c_client.h
1765 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/lm75.h
1766 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/max1617.h
1767 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/pcf8591.h
1768 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/clients/ssc050.h
1769 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/i2c/misc/i2c_svc.h
1770 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/idprom.h
1771 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/intr.h
1772 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/intreg.h
1773 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/iocache.h
1774 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/iommu.h
1775 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/ivintr.h
1776 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/lom_io.h
1777 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machasi.h

new/usr/src/pkg/manifests/system-header.mf 28

1778 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machclock.h
1779 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machcpuvar.h
1780 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machparam.h
1781 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machsystm.h
1782 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/machthread.h
1783 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/mem_cache.h
1784 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/memlist_plat.h
1785 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/memnode.h
1786 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/mmu.h
1787 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/nexusdebug.h
1788 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/opl_hwdesc.h
1789 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/opl_module.h
1790 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/prom_debug.h
1791 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/prom_plat.h
1792 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/pte.h
1793 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sbd_ioctl.h
1794 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/scb.h
1795 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/scsb_led.h
1796 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/simmstat.h
1797 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/spitregs.h
1798 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sram.h
1799 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/starfire.h
1800 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sun4asi.h
1801 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sysctrl.h
1802 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sysioerr.h
1803 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/sysiosbus.h
1804 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/tod.h
1805 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/todmostek.h
1806 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/trapstat.h
1807 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/traptrace.h
1808 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/vis.h
1809 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/vm_machparam.h
1810 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/x_call.h
1811 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/xc_impl.h
1812 $(sparc_ONLY)file path=usr/platform/sun4u/include/sys/zsmach.h
1813 $(sparc_ONLY)file path=usr/platform/sun4u/include/vm/hat_sfmmu.h
1814 $(sparc_ONLY)file path=usr/platform/sun4u/include/vm/mach_sfmmu.h
1815 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/clock.h
1816 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/cmp.h
1817 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/cpc_ultra.h
1818 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/cpu_sgnblk_defs.h
1819 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ddi_subrdefs.h
1820 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ds_pri.h
1821 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ds_snmp.h
1822 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/dvma.h
1823 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/eeprom.h
1824 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/fcode.h
1825 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/hsvc.h
1826 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/hypervisor_api.h
1827 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/idprom.h
1828 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/intr.h
1829 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/intreg.h
1830 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ivintr.h
1831 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machasi.h
1832 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machclock.h
1833 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machcpuvar.h
1834 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machintreg.h
1835 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machparam.h
1836 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machsystm.h
1837 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/machthread.h
1838 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/memlist_plat.h
1839 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/memnode.h
1840 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/mmu.h
1841 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/nexusdebug.h
1842 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/niagaraasi.h
1843 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/niagararegs.h

new/usr/src/pkg/manifests/system-header.mf 29

1844 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/ntwdt.h
1845 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/pri.h
1846 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/prom_debug.h
1847 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/prom_plat.h
1848 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/pte.h
1849 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/qcn.h
1850 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/scb.h
1851 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/soft_state.h
1852 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/sun4asi.h
1853 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/tod.h
1854 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/trapstat.h
1855 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/traptrace.h
1856 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/vis.h
1857 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/vm_machparam.h
1858 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/x_call.h
1859 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/xc_impl.h
1860 $(sparc_ONLY)file path=usr/platform/sun4v/include/sys/zsmach.h
1861 $(sparc_ONLY)file path=usr/platform/sun4v/include/vm/hat_sfmmu.h
1862 $(sparc_ONLY)file path=usr/platform/sun4v/include/vm/mach_sfmmu.h
1863 file path=usr/share/man/man3head/acct.3head
1864 file path=usr/share/man/man3head/acct.h.3head
1865 file path=usr/share/man/man3head/aio.3head
1866 file path=usr/share/man/man3head/aio.h.3head
1867 file path=usr/share/man/man3head/ar.3head
1868 file path=usr/share/man/man3head/ar.h.3head
1869 file path=usr/share/man/man3head/archives.3head
1870 file path=usr/share/man/man3head/archives.h.3head
1871 file path=usr/share/man/man3head/assert.3head
1872 file path=usr/share/man/man3head/assert.h.3head
1873 file path=usr/share/man/man3head/complex.3head
1874 file path=usr/share/man/man3head/complex.h.3head
1875 file path=usr/share/man/man3head/cpio.3head
1876 file path=usr/share/man/man3head/cpio.h.3head
1877 file path=usr/share/man/man3head/dirent.3head
1878 file path=usr/share/man/man3head/dirent.h.3head
1879 file path=usr/share/man/man3head/errno.3head
1880 file path=usr/share/man/man3head/errno.h.3head
1881 file path=usr/share/man/man3head/fcntl.3head
1882 file path=usr/share/man/man3head/fcntl.h.3head
1883 file path=usr/share/man/man3head/fenv.3head
1884 file path=usr/share/man/man3head/fenv.h.3head
1885 file path=usr/share/man/man3head/float.3head
1886 file path=usr/share/man/man3head/float.h.3head
1887 file path=usr/share/man/man3head/floatingpoint.3head
1888 file path=usr/share/man/man3head/floatingpoint.h.3head
1889 file path=usr/share/man/man3head/fmtmsg.3head
1890 file path=usr/share/man/man3head/fmtmsg.h.3head
1891 file path=usr/share/man/man3head/fnmatch.3head
1892 file path=usr/share/man/man3head/fnmatch.h.3head
1893 file path=usr/share/man/man3head/ftw.3head
1894 file path=usr/share/man/man3head/ftw.h.3head
1895 file path=usr/share/man/man3head/glob.3head
1896 file path=usr/share/man/man3head/glob.h.3head
1897 file path=usr/share/man/man3head/grp.3head
1898 file path=usr/share/man/man3head/grp.h.3head
1899 file path=usr/share/man/man3head/iconv.3head
1900 file path=usr/share/man/man3head/iconv.h.3head
1901 file path=usr/share/man/man3head/if.3head
1902 file path=usr/share/man/man3head/if.h.3head
1903 file path=usr/share/man/man3head/in.3head
1904 file path=usr/share/man/man3head/in.h.3head
1905 file path=usr/share/man/man3head/inet.3head
1906 file path=usr/share/man/man3head/inet.h.3head
1907 file path=usr/share/man/man3head/inttypes.3head
1908 file path=usr/share/man/man3head/inttypes.h.3head
1909 file path=usr/share/man/man3head/ipc.3head

new/usr/src/pkg/manifests/system-header.mf 30

1910 file path=usr/share/man/man3head/ipc.h.3head
1911 file path=usr/share/man/man3head/iso646.3head
1912 file path=usr/share/man/man3head/iso646.h.3head
1913 file path=usr/share/man/man3head/langinfo.3head
1914 file path=usr/share/man/man3head/langinfo.h.3head
1915 file path=usr/share/man/man3head/libgen.3head
1916 file path=usr/share/man/man3head/libgen.h.3head
1917 file path=usr/share/man/man3head/libintl.3head
1918 file path=usr/share/man/man3head/libintl.h.3head
1919 file path=usr/share/man/man3head/limits.3head
1920 file path=usr/share/man/man3head/limits.h.3head
1921 file path=usr/share/man/man3head/locale.3head
1922 file path=usr/share/man/man3head/locale.h.3head
1923 file path=usr/share/man/man3head/math.3head
1924 file path=usr/share/man/man3head/math.h.3head
1925 file path=usr/share/man/man3head/mman.3head
1926 file path=usr/share/man/man3head/mman.h.3head
1927 file path=usr/share/man/man3head/monetary.3head
1928 file path=usr/share/man/man3head/monetary.h.3head
1929 file path=usr/share/man/man3head/mqueue.3head
1930 file path=usr/share/man/man3head/mqueue.h.3head
1931 file path=usr/share/man/man3head/msg.3head
1932 file path=usr/share/man/man3head/msg.h.3head
1933 file path=usr/share/man/man3head/ndbm.3head
1934 file path=usr/share/man/man3head/ndbm.h.3head
1935 file path=usr/share/man/man3head/netdb.3head
1936 file path=usr/share/man/man3head/netdb.h.3head
1937 file path=usr/share/man/man3head/nl_types.3head
1938 file path=usr/share/man/man3head/nl_types.h.3head
1939 file path=usr/share/man/man3head/poll.3head
1940 file path=usr/share/man/man3head/poll.h.3head
1941 file path=usr/share/man/man3head/pthread.3head
1942 file path=usr/share/man/man3head/pthread.h.3head
1943 file path=usr/share/man/man3head/pwd.3head
1944 file path=usr/share/man/man3head/pwd.h.3head
1945 file path=usr/share/man/man3head/regex.3head
1946 file path=usr/share/man/man3head/regex.h.3head
1947 file path=usr/share/man/man3head/resource.3head
1948 file path=usr/share/man/man3head/resource.h.3head
1949 file path=usr/share/man/man3head/sched.3head
1950 file path=usr/share/man/man3head/sched.h.3head
1951 file path=usr/share/man/man3head/search.3head
1952 file path=usr/share/man/man3head/search.h.3head
1953 file path=usr/share/man/man3head/select.3head
1954 file path=usr/share/man/man3head/select.h.3head
1955 file path=usr/share/man/man3head/sem.3head
1956 file path=usr/share/man/man3head/sem.h.3head
1957 file path=usr/share/man/man3head/semaphore.3head
1958 file path=usr/share/man/man3head/semaphore.h.3head
1959 file path=usr/share/man/man3head/setjmp.3head
1960 file path=usr/share/man/man3head/setjmp.h.3head
1961 file path=usr/share/man/man3head/shm.3head
1962 file path=usr/share/man/man3head/shm.h.3head
1963 file path=usr/share/man/man3head/siginfo.3head
1964 file path=usr/share/man/man3head/siginfo.h.3head
1965 file path=usr/share/man/man3head/signal.3head
1966 file path=usr/share/man/man3head/signal.h.3head
1967 file path=usr/share/man/man3head/socket.3head
1968 file path=usr/share/man/man3head/socket.h.3head
1969 file path=usr/share/man/man3head/spawn.3head
1970 file path=usr/share/man/man3head/spawn.h.3head
1971 file path=usr/share/man/man3head/stat.3head
1972 file path=usr/share/man/man3head/stat.h.3head
1973 file path=usr/share/man/man3head/statvfs.3head
1974 file path=usr/share/man/man3head/statvfs.h.3head
1975 file path=usr/share/man/man3head/stdbool.3head

new/usr/src/pkg/manifests/system-header.mf 31

1976 file path=usr/share/man/man3head/stdbool.h.3head
1977 file path=usr/share/man/man3head/stddef.3head
1978 file path=usr/share/man/man3head/stddef.h.3head
1979 file path=usr/share/man/man3head/stdint.3head
1980 file path=usr/share/man/man3head/stdint.h.3head
1981 file path=usr/share/man/man3head/stdio.3head
1982 file path=usr/share/man/man3head/stdio.h.3head
1983 file path=usr/share/man/man3head/stdlib.3head
1984 file path=usr/share/man/man3head/stdlib.h.3head
1985 file path=usr/share/man/man3head/string.3head
1986 file path=usr/share/man/man3head/string.h.3head
1987 file path=usr/share/man/man3head/strings.3head
1988 file path=usr/share/man/man3head/strings.h.3head
1989 file path=usr/share/man/man3head/stropts.3head
1990 file path=usr/share/man/man3head/stropts.h.3head
1991 file path=usr/share/man/man3head/syslog.3head
1992 file path=usr/share/man/man3head/syslog.h.3head
1993 file path=usr/share/man/man3head/tar.3head
1994 file path=usr/share/man/man3head/tar.h.3head
1995 file path=usr/share/man/man3head/tcp.3head
1996 file path=usr/share/man/man3head/tcp.h.3head
1997 file path=usr/share/man/man3head/termios.3head
1998 file path=usr/share/man/man3head/termios.h.3head
1999 file path=usr/share/man/man3head/tgmath.3head
2000 file path=usr/share/man/man3head/tgmath.h.3head
2001 file path=usr/share/man/man3head/time.3head
2002 file path=usr/share/man/man3head/time.h.3head
2003 file path=usr/share/man/man3head/timeb.3head
2004 file path=usr/share/man/man3head/timeb.h.3head
2005 file path=usr/share/man/man3head/times.3head
2006 file path=usr/share/man/man3head/times.h.3head
2007 file path=usr/share/man/man3head/types.3head
2008 file path=usr/share/man/man3head/types.h.3head
2009 file path=usr/share/man/man3head/types32.3head
2010 file path=usr/share/man/man3head/types32.h.3head
2011 file path=usr/share/man/man3head/ucontext.3head
2012 file path=usr/share/man/man3head/ucontext.h.3head
2013 file path=usr/share/man/man3head/uio.3head
2014 file path=usr/share/man/man3head/uio.h.3head
2015 file path=usr/share/man/man3head/ulimit.3head
2016 file path=usr/share/man/man3head/ulimit.h.3head
2017 file path=usr/share/man/man3head/un.3head
2018 file path=usr/share/man/man3head/un.h.3head
2019 file path=usr/share/man/man3head/unistd.3head
2020 file path=usr/share/man/man3head/unistd.h.3head
2021 file path=usr/share/man/man3head/utime.3head
2022 file path=usr/share/man/man3head/utime.h.3head
2023 file path=usr/share/man/man3head/utmpx.3head
2024 file path=usr/share/man/man3head/utmpx.h.3head
2025 file path=usr/share/man/man3head/utsname.3head
2026 file path=usr/share/man/man3head/utsname.h.3head
2027 file path=usr/share/man/man3head/values.3head
2028 file path=usr/share/man/man3head/values.h.3head
2029 file path=usr/share/man/man3head/wait.3head
2030 file path=usr/share/man/man3head/wait.h.3head
2031 file path=usr/share/man/man3head/wchar.3head
2032 file path=usr/share/man/man3head/wchar.h.3head
2033 file path=usr/share/man/man3head/wctype.3head
2034 file path=usr/share/man/man3head/wctype.h.3head
2035 file path=usr/share/man/man3head/wordexp.3head
2036 file path=usr/share/man/man3head/wordexp.h.3head
2037 file path=usr/share/man/man4/note.4
2038 file path=usr/share/man/man5/prof.5
2039 file path=usr/share/man/man7i/cdio.7i
2040 file path=usr/share/man/man7i/dkio.7i
2041 file path=usr/share/man/man7i/fbio.7i

new/usr/src/pkg/manifests/system-header.mf 32

2042 file path=usr/share/man/man7i/fdio.7i
2043 file path=usr/share/man/man7i/hdio.7i
2044 file path=usr/share/man/man7i/iec61883.7i
2045 file path=usr/share/man/man7i/mhd.7i
2046 file path=usr/share/man/man7i/mtio.7i
2047 file path=usr/share/man/man7i/prnio.7i
2048 file path=usr/share/man/man7i/quotactl.7i
2049 file path=usr/share/man/man7i/sesio.7i
2050 file path=usr/share/man/man7i/sockio.7i
2051 file path=usr/share/man/man7i/streamio.7i
2052 file path=usr/share/man/man7i/termio.7i
2053 file path=usr/share/man/man7i/termiox.7i
2054 file path=usr/share/man/man7i/uscsi.7i
2055 file path=usr/share/man/man7i/visual_io.7i
2056 file path=usr/share/man/man7i/vt.7i
2057 file path=usr/xpg4/include/curses.h
2058 file path=usr/xpg4/include/term.h
2059 file path=usr/xpg4/include/unctrl.h
2060 legacy pkg=SUNWhea \
2061 desc="SunOS C/C++ header files for general development of software" \
2062 name="SunOS Header Files"
2063 license cr_Sun license=cr_Sun
2064 license lic_CDDL license=lic_CDDL
2065 license license_in_headers license=license_in_headers
2066 license usr/src/lib/pkcs11/include/THIRDPARTYLICENSE \
2067 license=usr/src/lib/pkcs11/include/THIRDPARTYLICENSE
2068 link path=usr/include/iso/assert_iso.h target=../assert.h
2069 link path=usr/include/iso/errno_iso.h target=../errno.h
2070 link path=usr/include/iso/float_iso.h target=../float.h
2071 link path=usr/include/iso/iso646_iso.h target=../iso646.h
2072 $(sparc_ONLY)link path=usr/platform/SUNW,A70/include target=../sun4u/include
2073 $(sparc_ONLY)link path=usr/platform/SUNW,Netra-T12/include \
2074 target=../sun4u/include
2075 $(sparc_ONLY)link path=usr/platform/SUNW,Netra-T4/include \
2076 target=../sun4u/include
2077 $(sparc_ONLY)link path=usr/platform/SUNW,SPARC-Enterprise/include \
2078 target=../sun4u/include
2079 $(sparc_ONLY)link path=usr/platform/SUNW,Serverblade1/include \
2080 target=../sun4u/include
2081 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Blade-100/include \
2082 target=../sun4u/include
2083 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Blade-1000/include \
2084 target=../sun4u/include
2085 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Blade-1500/include \
2086 target=../sun4u/include
2087 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Blade-2500/include \
2088 target=../sun4u/include
2089 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-15000/include \
2090 target=../sun4u/include
2091 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-280R/include \
2092 target=../sun4u/include
2093 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-480R/include \
2094 target=../sun4u/include
2095 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-880/include \
2096 target=../sun4u/include
2097 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V215/include \
2098 target=../sun4u/include
2099 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V240/include \
2100 target=../sun4u/include
2101 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V250/include \
2102 target=../sun4u/include
2103 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V440/include \
2104 target=../sun4u/include
2105 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V445/include \
2106 target=../sun4u/include
2107 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V490/include \

new/usr/src/pkg/manifests/system-header.mf 33

2108 target=../sun4u/include
2109 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire-V890/include \
2110 target=../sun4u/include
2111 $(sparc_ONLY)link path=usr/platform/SUNW,Sun-Fire/include \
2112 target=../sun4u/include
2113 $(sparc_ONLY)link path=usr/platform/SUNW,Ultra-2/include \
2114 target=../sun4u/include
2115 $(sparc_ONLY)link path=usr/platform/SUNW,Ultra-250/include \
2116 target=../sun4u/include
2117 $(sparc_ONLY)link path=usr/platform/SUNW,Ultra-4/include \
2118 target=../sun4u/include
2119 $(sparc_ONLY)link path=usr/platform/SUNW,Ultra-Enterprise-10000/include \
2120 target=../sun4u/include
2121 $(sparc_ONLY)link path=usr/platform/SUNW,Ultra-Enterprise/include \
2122 target=../sun4u/include
2123 $(sparc_ONLY)link path=usr/platform/SUNW,UltraSPARC-IIe-NetraCT-40/include \
2124 target=../sun4u/include
2125 $(sparc_ONLY)link path=usr/platform/SUNW,UltraSPARC-IIe-NetraCT-60/include \
2126 target=../sun4u/include
2127 $(sparc_ONLY)link path=usr/platform/SUNW,UltraSPARC-IIi-Netract/include \
2128 target=../sun4u/include
2129 $(i386_ONLY)link path=usr/share/src/uts/i86pc/sys \
2130 target=../../../../platform/i86pc/include/sys
2131 $(i386_ONLY)link path=usr/share/src/uts/i86pc/vm \
2132 target=../../../../platform/i86pc/include/vm
2133 $(i386_ONLY)link path=usr/share/src/uts/i86xpv/sys \
2134 target=../../../../platform/i86xpv/include/sys
2135 $(i386_ONLY)link path=usr/share/src/uts/i86xpv/vm \
2136 target=../../../../platform/i86xpv/include/vm
2137 $(sparc_ONLY)link path=usr/share/src/uts/sun4u/sys \
2138 target=../../../../platform/sun4u/include/sys
2139 $(sparc_ONLY)link path=usr/share/src/uts/sun4u/vm \
2140 target=../../../../platform/sun4u/include/vm
2141 $(sparc_ONLY)link path=usr/share/src/uts/sun4v/sys \
2142 target=../../../../platform/sun4v/include/sys
2143 $(sparc_ONLY)link path=usr/share/src/uts/sun4v/vm \
2144 target=../../../../platform/sun4v/include/vm

new/usr/src/pkg/manifests/system-kernel.mf 1

**
 45632 Sat Aug 18 10:37:06 2012
new/usr/src/pkg/manifests/system-kernel.mf
dccp: manifest
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # The default for payload-bearing actions in this package is to appear in the
28 # global zone only. See the include file for greater detail, as well as
29 # information about overriding the defaults.
30 #
31 <include global_zone_only_component>
32 <include system-kernel.man1m.inc>
33 <include system-kernel.man2.inc>
34 <include system-kernel.man4.inc>
35 <include system-kernel.man5.inc>
36 <include system-kernel.man7.inc>
37 <include system-kernel.man7d.inc>
38 <include system-kernel.man7fs.inc>
39 <include system-kernel.man7m.inc>
40 <include system-kernel.man7p.inc>
41 <include system-kernel.man9.inc>
42 <include system-kernel.man9e.inc>
43 <include system-kernel.man9f.inc>
44 <include system-kernel.man9p.inc>
45 <include system-kernel.man9s.inc>
46 set name=pkg.fmri value=pkg:/system/kernel@$(PKGVERS)
47 set name=pkg.description \
48 value="core kernel software for a specific instruction-set architecture"
49 set name=pkg.summary value="Core Solaris Kernel"
50 set name=info.classification value=org.opensolaris.category.2008:System/Core
51 set name=variant.arch value=$(ARCH)
52 dir path=boot group=sys
53 $(i386_ONLY)dir path=boot/acpi group=sys
54 $(i386_ONLY)dir path=boot/acpi/tables group=sys
55 dir path=boot/solaris group=sys
56 dir path=boot/solaris/bin group=sys
57 dir path=etc group=sys
58 dir path=etc/crypto group=sys
59 dir path=etc/sock2path.d group=sys
60 dir path=kernel group=sys
61 $(i386_ONLY)dir path=kernel/$(ARCH64) group=sys

new/usr/src/pkg/manifests/system-kernel.mf 2

62 dir path=kernel/crypto group=sys
63 dir path=kernel/crypto/$(ARCH64) group=sys
64 dir path=kernel/dacf group=sys
65 dir path=kernel/dacf/$(ARCH64) group=sys
66 dir path=kernel/drv group=sys
67 dir path=kernel/drv/$(ARCH64) group=sys
68 dir path=kernel/exec group=sys
69 dir path=kernel/exec/$(ARCH64) group=sys
70 dir path=kernel/fs group=sys
71 dir path=kernel/fs/$(ARCH64) group=sys
72 dir path=kernel/ipp group=sys
73 dir path=kernel/ipp/$(ARCH64) group=sys
74 dir path=kernel/kiconv group=sys
75 dir path=kernel/kiconv/$(ARCH64) group=sys
76 dir path=kernel/mac group=sys
77 dir path=kernel/mac/$(ARCH64) group=sys
78 dir path=kernel/misc group=sys
79 dir path=kernel/misc/$(ARCH64) group=sys
80 dir path=kernel/misc/scsi_vhci group=sys
81 dir path=kernel/misc/scsi_vhci/$(ARCH64) group=sys
82 dir path=kernel/sched group=sys
83 dir path=kernel/sched/$(ARCH64) group=sys
84 dir path=kernel/socketmod group=sys
85 dir path=kernel/socketmod/$(ARCH64) group=sys
86 dir path=kernel/strmod group=sys
87 dir path=kernel/strmod/$(ARCH64) group=sys
88 dir path=kernel/sys group=sys
89 dir path=kernel/sys/$(ARCH64) group=sys
90 dir path=lib
91 dir path=lib/svc
92 dir path=lib/svc/manifest group=sys
93 dir path=lib/svc/manifest/system group=sys
94 dir path=lib/svc/method
95 dir path=usr/share/man
96 dir path=usr/share/man/man1m
97 dir path=usr/share/man/man2
98 dir path=usr/share/man/man3
99 dir path=usr/share/man/man4
100 dir path=usr/share/man/man5
101 dir path=usr/share/man/man7d
102 dir path=usr/share/man/man7fs
103 dir path=usr/share/man/man7m
104 dir path=usr/share/man/man7p
105 dir path=usr/share/man/man9
106 dir path=usr/share/man/man9e
107 dir path=usr/share/man/man9f
108 dir path=usr/share/man/man9p
109 dir path=usr/share/man/man9s
110 $(i386_ONLY)driver name=acpi_drv perms="* 0666 root sys"
111 driver name=aggr perms="* 0666 root sys"
112 driver name=arp perms="arp 0666 root sys"
113 driver name=bl perms="* 0666 root sys"
114 driver name=bridge clone_perms="bridge 0666 root sys" \
115 policy="read_priv_set=net_rawaccess write_priv_set=net_rawaccess"
116 $(sparc_ONLY)driver name=bscbus alias=SUNW,bscbus
117 $(i386_ONLY)driver name=bscbus alias=SVI0101
118 $(sparc_ONLY)driver name=bscv alias=SUNW,bscv perms="* 0644 root sys"
119 $(i386_ONLY)driver name=bscv
120 driver name=clone
121 driver name=cn perms="* 0620 root tty"
122 driver name=conskbd perms="kbd 0666 root sys"
123 driver name=consms perms="mouse 0666 root sys"
124 driver name=cpuid perms="self 0644 root sys"
125 $(i386_ONLY)driver name=cpunex alias=cpus
126 driver name=crypto perms="crypto 0666 root sys"
127 driver name=cryptoadm perms="cryptoadm 0644 root sys"

new/usr/src/pkg/manifests/system-kernel.mf 3

128 $(sparc_ONLY)driver name=dad alias=ide-disk perms="* 0640 root sys"
129 driver name=dccp perms="dccp 0666 root sys"
130 driver name=dccp6 perms="dccp6 0666 root sys"
131 #endif /* ! codereview */
132 driver name=devinfo perms="devinfo 0640 root sys" \
133 perms="devinfo,ro 0444 root sys"
134 driver name=dld perms="* 0666 root sys"
135 driver name=dlpistub perms="* 0666 root sys"
136 $(sparc_ONLY)driver name=i8042 alias=8042
137 $(i386_ONLY)driver name=i8042
138 driver name=icmp perms="icmp 0666 root sys" \
139 policy="read_priv_set=net_icmpaccess write_priv_set=net_icmpaccess"
140 driver name=icmp6 perms="icmp6 0666 root sys" \
141 policy="read_priv_set=net_icmpaccess write_priv_set=net_icmpaccess"
142 $(i386_ONLY)driver name=intel_nb5000 \
143 alias=pci8086,25c0 \
144 alias=pci8086,25d0 \
145 alias=pci8086,25d4 \
146 alias=pci8086,25d8 \
147 alias=pci8086,3600 \
148 alias=pci8086,4000 \
149 alias=pci8086,4001 \
150 alias=pci8086,4003 \
151 alias=pci8086,65c0
152 $(i386_ONLY)driver name=intel_nhm \
153 alias=pci8086,3423 \
154 alias=pci8086,372a
155 $(i386_ONLY)driver name=intel_nhmex alias=pci8086,3438
156 driver name=ip perms="ip 0666 root sys" \
157 policy="read_priv_set=net_rawaccess write_priv_set=net_rawaccess"
158 driver name=ip6 perms="ip6 0666 root sys" \
159 policy="read_priv_set=net_rawaccess write_priv_set=net_rawaccess"
160 driver name=ipnet perms="lo0 0666 root sys" \
161 policy="read_priv_set=net_observability write_priv_set=net_observability"
162 driver name=ippctl
163 driver name=ipsecah perms="ipsecah 0666 root sys" \
164 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
165 driver name=ipsecesp perms="ipsecesp 0666 root sys" \
166 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
167 driver name=iptun
168 driver name=iwscn
169 driver name=kb8042 alias=pnpPNP,303
170 driver name=keysock perms="keysock 0666 root sys" \
171 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
172 driver name=kmdb
173 driver name=kssl perms="* 0666 root sys"
174 driver name=llc1 clone_perms="llc1 0666 root sys"
175 driver name=lofi perms="* 0600 root sys" perms="ctl 0644 root sys"
176 driver name=log perms="conslog 0666 root sys" perms="log 0640 root sys"
177 $(i386_ONLY)driver name=mc-amd \
178 alias=pci1022,1100 \
179 alias=pci1022,1101 \
180 alias=pci1022,1102
181 driver name=mm perms="allkmem 0600 root sys" perms="kmem 0640 root sys" \
182 perms="mem 0640 root sys" perms="null 0666 root sys" \
183 perms="zero 0666 root sys" \
184 policy="allkmem read_priv_set=all write_priv_set=all" \
185 policy="kmem read_priv_set=none write_priv_set=all" \
186 policy="mem read_priv_set=none write_priv_set=all"
187 driver name=mouse8042 alias=pnpPNP,f03
188 $(i386_ONLY)driver name=mpt class=scsi \
189 alias=pci1000,30 \
190 alias=pci1000,50 \
191 alias=pci1000,54 \
192 alias=pci1000,56 \
193 alias=pci1000,58 \

new/usr/src/pkg/manifests/system-kernel.mf 4

194 alias=pci1000,62 \
195 alias=pciex1000,56 \
196 alias=pciex1000,58 \
197 alias=pciex1000,62
198 driver name=nulldriver \
199 alias=scsa,nodev \
200 alias=scsa,probe
201 driver name=openeepr perms="openprom 0640 root sys" policy=write_priv_set=all
202 driver name=options
203 $(sparc_ONLY)driver name=pci_pci class=pci \
204 alias=pci1011,1 \
205 alias=pci1011,21 \
206 alias=pci1011,24 \
207 alias=pci1011,25 \
208 alias=pci1011,26 \
209 alias=pci1014,22 \
210 alias=pciclass,060400
211 $(i386_ONLY)driver name=pci_pci class=pci \
212 alias=pci1011,1 \
213 alias=pci1011,21 \
214 alias=pci1014,22 \
215 alias=pciclass,060400 \
216 alias=pciclass,060401
217 $(sparc_ONLY)driver name=pcieb \
218 alias=pciex108e,9010 \
219 alias=pciex108e,9020 \
220 alias=pciex10b5,8114 \
221 alias=pciex10b5,8516 \
222 alias=pciex10b5,8517 \
223 alias=pciex10b5,8518 \
224 alias=pciex10b5,8532 \
225 alias=pciex10b5,8533 \
226 alias=pciex10b5,8548 \
227 alias=pciexclass,060400
228 $(i386_ONLY)driver name=pcieb \
229 alias=pciexclass,060400 \
230 alias=pciexclass,060401
231 $(sparc_ONLY)driver name=pcieb_bcm alias=pciex1166,103
232 driver name=physmem perms="* 0600 root sys"
233 driver name=poll perms="* 0666 root sys"
234 $(sparc_ONLY)driver name=power alias=ali1535d+-power
235 $(i386_ONLY)driver name=power
236 driver name=pseudo alias=zconsnex
237 driver name=ptc perms="* 0666 root sys"
238 driver name=ptsl perms="* 0666 root sys"
239 $(sparc_ONLY)driver name=ramdisk alias=SUNW,ramdisk perms="* 0600 root sys" \
240 perms="ctl 0644 root sys"
241 $(i386_ONLY)driver name=ramdisk perms="* 0600 root sys" \
242 perms="ctl 0644 root sys"
243 driver name=random perms="* 0644 root sys" policy=write_priv_set=sys_devices
244 driver name=rts perms="rts 0666 root sys"
245 driver name=sad perms="admin 0666 root sys" perms="user 0666 root sys"
246 driver name=scsi_vhci class=scsi-self-identifying perms="* 0666 root sys" \
247 policy="devctl write_priv_set=sys_devices"
248 $(sparc_ONLY)driver name=sd perms="* 0640 root sys" \
249 alias=ide-cdrom \
250 alias=scsiclass,00 \
251 alias=scsiclass,05
252 $(i386_ONLY)driver name=sd perms="* 0640 root sys" \
253 alias=scsiclass,00 \
254 alias=scsiclass,05
255 driver name=sgen perms="* 0600 root sys" \
256 alias=scsa,08.bfcp \
257 alias=scsa,08.bvhci
258 driver name=simnet clone_perms="simnet 0666 root sys" perms="* 0666 root sys"
259 $(i386_ONLY)driver name=smbios perms="smbios 0444 root sys"

new/usr/src/pkg/manifests/system-kernel.mf 5

260 driver name=softmac
261 driver name=spdsock perms="spdsock 0666 root sys" \
262 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
263 driver name=st alias=scsiclass,01 perms="* 0666 root sys"
264 driver name=sy perms="tty 0666 root tty"
265 driver name=sysevent perms="* 0600 root sys"
266 driver name=sysmsg perms="msglog 0600 root sys" perms="sysmsg 0600 root sys"
267 driver name=tcp perms="tcp 0666 root sys"
268 driver name=tcp6 perms="tcp6 0666 root sys"
269 driver name=tl perms="* 0666 root sys" clone_perms="ticlts 0666 root sys" \
270 clone_perms="ticots 0666 root sys" clone_perms="ticotsord 0666 root sys"
271 $(sparc_ONLY)driver name=ttymux alias=multiplexer
272 $(i386_ONLY)driver name=tzmon
273 $(sparc_ONLY)driver name=uata \
274 alias=pci1095,646 \
275 alias=pci1095,649 \
276 alias=pci1095,680 \
277 alias=pci10b9,5229 \
278 alias=pci10b9,5288 class=dada class=scsi
279 $(i386_ONLY)driver name=ucode perms="* 0644 root sys"
280 driver name=udp perms="udp 0666 root sys"
281 driver name=udp6 perms="udp6 0666 root sys"
282 $(i386_ONLY)driver name=vgatext \
283 alias=pciclass,000100 \
284 alias=pciclass,030000 \
285 alias=pciclass,030001 \
286 alias=pnpPNP,900
287 driver name=vnic clone_perms="vnic 0666 root sys" perms="* 0666 root sys"
288 driver name=wc perms="* 0600 root sys"
289 $(i386_ONLY)file path=boot/solaris/bin/create_diskmap group=sys mode=0555
290 file path=boot/solaris/bin/create_ramdisk group=sys mode=0555
291 file path=boot/solaris/bin/extract_boot_filelist group=sys mode=0555
292 $(i386_ONLY)file path=boot/solaris/bin/mbr group=sys mode=0555
293 $(i386_ONLY)file path=boot/solaris/bin/symdef group=sys mode=0555
294 $(i386_ONLY)file path=boot/solaris/bin/update_grub group=sys mode=0555
295 file path=boot/solaris/filelist.ramdisk group=sys
296 file path=boot/solaris/filelist.safe group=sys
297 file path=etc/crypto/kcf.conf group=sys \
298 original_name=SUNWckr:etc/crypto/kcf.conf preserve=true
299 file path=etc/name_to_sysnum group=sys \
300 original_name=SUNWckr:etc/name_to_sysnum preserve=renameold
301 file path=etc/sock2path.d/system%2Fkernel group=sys
302 file path=etc/system group=sys original_name=SUNWckr:etc/system preserve=true
303 $(i386_ONLY)file path=kernel/$(ARCH64)/genunix group=sys mode=0755
304 file path=kernel/crypto/$(ARCH64)/aes group=sys mode=0755
305 file path=kernel/crypto/$(ARCH64)/arcfour group=sys mode=0755
306 file path=kernel/crypto/$(ARCH64)/blowfish group=sys mode=0755
307 file path=kernel/crypto/$(ARCH64)/des group=sys mode=0755
308 file path=kernel/crypto/$(ARCH64)/ecc group=sys mode=0755
309 file path=kernel/crypto/$(ARCH64)/md4 group=sys mode=0755
310 file path=kernel/crypto/$(ARCH64)/md5 group=sys mode=0755
311 file path=kernel/crypto/$(ARCH64)/rsa group=sys mode=0755
312 file path=kernel/crypto/$(ARCH64)/sha1 group=sys mode=0755
313 file path=kernel/crypto/$(ARCH64)/sha2 group=sys mode=0755
314 file path=kernel/crypto/$(ARCH64)/swrand group=sys mode=0755
315 $(i386_ONLY)file path=kernel/crypto/aes group=sys mode=0755
316 $(i386_ONLY)file path=kernel/crypto/arcfour group=sys mode=0755
317 $(i386_ONLY)file path=kernel/crypto/blowfish group=sys mode=0755
318 $(i386_ONLY)file path=kernel/crypto/des group=sys mode=0755
319 $(i386_ONLY)file path=kernel/crypto/ecc group=sys mode=0755
320 $(i386_ONLY)file path=kernel/crypto/md4 group=sys mode=0755
321 $(i386_ONLY)file path=kernel/crypto/md5 group=sys mode=0755
322 $(i386_ONLY)file path=kernel/crypto/rsa group=sys mode=0755
323 $(i386_ONLY)file path=kernel/crypto/sha1 group=sys mode=0755
324 $(i386_ONLY)file path=kernel/crypto/sha2 group=sys mode=0755
325 $(i386_ONLY)file path=kernel/crypto/swrand group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 6

326 $(sparc_ONLY)file path=kernel/dacf/$(ARCH64)/consconfig_dacf group=sys \
327 mode=0755
328 file path=kernel/dacf/$(ARCH64)/net_dacf group=sys mode=0755
329 $(i386_ONLY)file path=kernel/dacf/net_dacf group=sys mode=0755
330 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/acpi_drv group=sys
331 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/acpi_toshiba group=sys
332 file path=kernel/drv/$(ARCH64)/aggr group=sys
333 file path=kernel/drv/$(ARCH64)/arp group=sys
334 file path=kernel/drv/$(ARCH64)/bl group=sys
335 file path=kernel/drv/$(ARCH64)/bridge group=sys
336 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/bscbus group=sys
337 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/bscv group=sys
338 file path=kernel/drv/$(ARCH64)/clone group=sys
339 file path=kernel/drv/$(ARCH64)/cn group=sys
340 file path=kernel/drv/$(ARCH64)/conskbd group=sys
341 file path=kernel/drv/$(ARCH64)/consms group=sys
342 file path=kernel/drv/$(ARCH64)/cpuid group=sys
343 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/cpunex group=sys
344 file path=kernel/drv/$(ARCH64)/crypto group=sys
345 file path=kernel/drv/$(ARCH64)/cryptoadm group=sys
346 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/dad group=sys
347 file path=kernel/drv/$(ARCH64)/dccp group=sys
348 file path=kernel/drv/$(ARCH64)/dccp6 group=sys
349 #endif /* ! codereview */
350 file path=kernel/drv/$(ARCH64)/devinfo group=sys
351 file path=kernel/drv/$(ARCH64)/dld group=sys
352 file path=kernel/drv/$(ARCH64)/dlpistub group=sys
353 file path=kernel/drv/$(ARCH64)/i8042 group=sys
354 file path=kernel/drv/$(ARCH64)/icmp group=sys
355 file path=kernel/drv/$(ARCH64)/icmp6 group=sys
356 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/intel_nb5000 group=sys
357 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/intel_nhm group=sys
358 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/intel_nhmex group=sys
359 file path=kernel/drv/$(ARCH64)/ip group=sys
360 file path=kernel/drv/$(ARCH64)/ip6 group=sys
361 file path=kernel/drv/$(ARCH64)/ipnet group=sys
362 file path=kernel/drv/$(ARCH64)/ippctl group=sys
363 file path=kernel/drv/$(ARCH64)/ipsecah group=sys
364 file path=kernel/drv/$(ARCH64)/ipsecesp group=sys
365 file path=kernel/drv/$(ARCH64)/iptun group=sys
366 file path=kernel/drv/$(ARCH64)/iwscn group=sys
367 file path=kernel/drv/$(ARCH64)/kb8042 group=sys
368 file path=kernel/drv/$(ARCH64)/keysock group=sys
369 file path=kernel/drv/$(ARCH64)/kmdb group=sys
370 file path=kernel/drv/$(ARCH64)/kssl group=sys
371 file path=kernel/drv/$(ARCH64)/llc1 group=sys
372 file path=kernel/drv/$(ARCH64)/lofi group=sys
373 file path=kernel/drv/$(ARCH64)/log group=sys
374 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/mc-amd group=sys
375 file path=kernel/drv/$(ARCH64)/mm group=sys
376 file path=kernel/drv/$(ARCH64)/mouse8042 group=sys
377 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/mpt group=sys
378 file path=kernel/drv/$(ARCH64)/nulldriver group=sys
379 file path=kernel/drv/$(ARCH64)/openeepr group=sys
380 file path=kernel/drv/$(ARCH64)/options group=sys
381 file path=kernel/drv/$(ARCH64)/pci_pci group=sys
382 file path=kernel/drv/$(ARCH64)/pcieb group=sys
383 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/pcieb_bcm group=sys
384 file path=kernel/drv/$(ARCH64)/physmem group=sys
385 file path=kernel/drv/$(ARCH64)/poll group=sys
386 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/power group=sys
387 file path=kernel/drv/$(ARCH64)/pseudo group=sys
388 file path=kernel/drv/$(ARCH64)/ptc group=sys
389 file path=kernel/drv/$(ARCH64)/ptsl group=sys
390 file path=kernel/drv/$(ARCH64)/ramdisk group=sys
391 file path=kernel/drv/$(ARCH64)/random group=sys

new/usr/src/pkg/manifests/system-kernel.mf 7

392 file path=kernel/drv/$(ARCH64)/rts group=sys
393 file path=kernel/drv/$(ARCH64)/sad group=sys
394 file path=kernel/drv/$(ARCH64)/scsi_vhci group=sys
395 file path=kernel/drv/$(ARCH64)/sd group=sys
396 file path=kernel/drv/$(ARCH64)/sgen group=sys
397 file path=kernel/drv/$(ARCH64)/simnet group=sys
398 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/smbios group=sys
399 file path=kernel/drv/$(ARCH64)/softmac group=sys
400 file path=kernel/drv/$(ARCH64)/spdsock group=sys
401 file path=kernel/drv/$(ARCH64)/st group=sys
402 file path=kernel/drv/$(ARCH64)/sy group=sys
403 file path=kernel/drv/$(ARCH64)/sysevent group=sys
404 file path=kernel/drv/$(ARCH64)/sysmsg group=sys
405 file path=kernel/drv/$(ARCH64)/tcp group=sys
406 file path=kernel/drv/$(ARCH64)/tcp6 group=sys
407 file path=kernel/drv/$(ARCH64)/tl group=sys
408 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/ttymux group=sys
409 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/tzmon group=sys
410 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/uata group=sys
411 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/ucode group=sys
412 file path=kernel/drv/$(ARCH64)/udp group=sys
413 file path=kernel/drv/$(ARCH64)/udp6 group=sys
414 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/vgatext group=sys
415 file path=kernel/drv/$(ARCH64)/vnic group=sys
416 file path=kernel/drv/$(ARCH64)/wc group=sys
417 $(i386_ONLY)file path=kernel/drv/acpi_drv group=sys
418 $(i386_ONLY)file path=kernel/drv/acpi_drv.conf group=sys
419 $(i386_ONLY)file path=kernel/drv/acpi_toshiba group=sys
420 $(i386_ONLY)file path=kernel/drv/aggr group=sys
421 file path=kernel/drv/aggr.conf group=sys
422 $(i386_ONLY)file path=kernel/drv/arp group=sys
423 file path=kernel/drv/arp.conf group=sys
424 $(i386_ONLY)file path=kernel/drv/bl group=sys
425 file path=kernel/drv/bl.conf group=sys
426 $(i386_ONLY)file path=kernel/drv/bridge group=sys
427 file path=kernel/drv/bridge.conf group=sys
428 $(i386_ONLY)file path=kernel/drv/bscbus group=sys
429 $(i386_ONLY)file path=kernel/drv/bscbus.conf group=sys
430 $(i386_ONLY)file path=kernel/drv/bscv group=sys
431 $(i386_ONLY)file path=kernel/drv/bscv.conf group=sys
432 $(i386_ONLY)file path=kernel/drv/clone group=sys
433 file path=kernel/drv/clone.conf group=sys
434 $(i386_ONLY)file path=kernel/drv/cn group=sys
435 file path=kernel/drv/cn.conf group=sys
436 $(i386_ONLY)file path=kernel/drv/conskbd group=sys
437 file path=kernel/drv/conskbd.conf group=sys
438 $(i386_ONLY)file path=kernel/drv/consms group=sys
439 file path=kernel/drv/consms.conf group=sys
440 $(i386_ONLY)file path=kernel/drv/cpuid group=sys
441 file path=kernel/drv/cpuid.conf group=sys
442 $(i386_ONLY)file path=kernel/drv/cpunex group=sys
443 $(i386_ONLY)file path=kernel/drv/crypto group=sys
444 file path=kernel/drv/crypto.conf group=sys
445 $(i386_ONLY)file path=kernel/drv/cryptoadm group=sys
446 file path=kernel/drv/cryptoadm.conf group=sys
447 $(sparc_ONLY)file path=kernel/drv/dad.conf group=sys
448 $(i386_ONLY)file path=kernel/drv/dccp group=sys
449 file path=kernel/drv/dccp.conf group=sys
450 $(i386_ONLY)file path=kernel/drv/dccp6 group=sys
451 file path=kernel/drv/dccp6.conf group=sys
452 #endif /* ! codereview */
453 $(i386_ONLY)file path=kernel/drv/devinfo group=sys
454 file path=kernel/drv/devinfo.conf group=sys
455 $(i386_ONLY)file path=kernel/drv/dld group=sys
456 file path=kernel/drv/dld.conf group=sys
457 $(i386_ONLY)file path=kernel/drv/dlpistub group=sys

new/usr/src/pkg/manifests/system-kernel.mf 8

458 file path=kernel/drv/dlpistub.conf group=sys
459 $(i386_ONLY)file path=kernel/drv/i8042 group=sys
460 $(i386_ONLY)file path=kernel/drv/icmp group=sys
461 file path=kernel/drv/icmp.conf group=sys
462 $(i386_ONLY)file path=kernel/drv/icmp6 group=sys
463 file path=kernel/drv/icmp6.conf group=sys
464 $(i386_ONLY)file path=kernel/drv/intel_nb5000 group=sys
465 $(i386_ONLY)file path=kernel/drv/intel_nb5000.conf group=sys
466 $(i386_ONLY)file path=kernel/drv/intel_nhm group=sys
467 $(i386_ONLY)file path=kernel/drv/intel_nhm.conf group=sys
468 $(i386_ONLY)file path=kernel/drv/intel_nhmex group=sys
469 $(i386_ONLY)file path=kernel/drv/intel_nhmex.conf group=sys
470 $(i386_ONLY)file path=kernel/drv/ip group=sys
471 file path=kernel/drv/ip.conf group=sys
472 $(i386_ONLY)file path=kernel/drv/ip6 group=sys
473 file path=kernel/drv/ip6.conf group=sys
474 $(i386_ONLY)file path=kernel/drv/ipnet group=sys
475 file path=kernel/drv/ipnet.conf group=sys
476 $(i386_ONLY)file path=kernel/drv/ippctl group=sys
477 file path=kernel/drv/ippctl.conf group=sys
478 $(i386_ONLY)file path=kernel/drv/ipsecah group=sys
479 file path=kernel/drv/ipsecah.conf group=sys
480 $(i386_ONLY)file path=kernel/drv/ipsecesp group=sys
481 file path=kernel/drv/ipsecesp.conf group=sys
482 $(i386_ONLY)file path=kernel/drv/iptun group=sys
483 file path=kernel/drv/iptun.conf group=sys
484 $(i386_ONLY)file path=kernel/drv/iwscn group=sys
485 file path=kernel/drv/iwscn.conf group=sys
486 $(i386_ONLY)file path=kernel/drv/kb8042 group=sys
487 $(i386_ONLY)file path=kernel/drv/keysock group=sys
488 file path=kernel/drv/keysock.conf group=sys
489 $(i386_ONLY)file path=kernel/drv/kmdb group=sys
490 file path=kernel/drv/kmdb.conf group=sys
491 $(i386_ONLY)file path=kernel/drv/kssl group=sys
492 file path=kernel/drv/kssl.conf group=sys
493 $(i386_ONLY)file path=kernel/drv/llc1 group=sys
494 file path=kernel/drv/llc1.conf group=sys
495 $(i386_ONLY)file path=kernel/drv/lofi group=sys
496 file path=kernel/drv/lofi.conf group=sys
497 $(i386_ONLY)file path=kernel/drv/log group=sys
498 file path=kernel/drv/log.conf group=sys \
499 original_name=SUNWckr:kernel/drv/log.conf preserve=true
500 $(i386_ONLY)file path=kernel/drv/mc-amd group=sys
501 $(i386_ONLY)file path=kernel/drv/mc-amd.conf group=sys
502 $(i386_ONLY)file path=kernel/drv/mm group=sys
503 file path=kernel/drv/mm.conf group=sys
504 $(i386_ONLY)file path=kernel/drv/mouse8042 group=sys
505 $(i386_ONLY)file path=kernel/drv/mpt group=sys
506 $(i386_ONLY)file path=kernel/drv/mpt.conf group=sys \
507 original_name=SUNWckr:kernel/drv/mpt.conf preserve=true
508 $(i386_ONLY)file path=kernel/drv/nulldriver group=sys
509 $(i386_ONLY)file path=kernel/drv/openeepr group=sys
510 file path=kernel/drv/openeepr.conf group=sys
511 $(i386_ONLY)file path=kernel/drv/options group=sys
512 file path=kernel/drv/options.conf group=sys
513 $(i386_ONLY)file path=kernel/drv/pci_pci group=sys
514 $(i386_ONLY)file path=kernel/drv/pcieb group=sys
515 file path=kernel/drv/pcieb.conf group=sys
516 $(i386_ONLY)file path=kernel/drv/physmem group=sys
517 file path=kernel/drv/physmem.conf group=sys
518 $(i386_ONLY)file path=kernel/drv/poll group=sys
519 file path=kernel/drv/poll.conf group=sys
520 $(i386_ONLY)file path=kernel/drv/power group=sys
521 $(i386_ONLY)file path=kernel/drv/power.conf group=sys
522 $(i386_ONLY)file path=kernel/drv/pseudo group=sys
523 file path=kernel/drv/pseudo.conf group=sys

new/usr/src/pkg/manifests/system-kernel.mf 9

524 $(i386_ONLY)file path=kernel/drv/ptc group=sys
525 file path=kernel/drv/ptc.conf group=sys
526 $(i386_ONLY)file path=kernel/drv/ptsl group=sys
527 file path=kernel/drv/ptsl.conf group=sys
528 $(i386_ONLY)file path=kernel/drv/ramdisk group=sys
529 file path=kernel/drv/ramdisk.conf group=sys
530 $(i386_ONLY)file path=kernel/drv/random group=sys
531 file path=kernel/drv/random.conf group=sys
532 $(i386_ONLY)file path=kernel/drv/rts group=sys
533 file path=kernel/drv/rts.conf group=sys
534 $(i386_ONLY)file path=kernel/drv/sad group=sys
535 file path=kernel/drv/sad.conf group=sys
536 $(i386_ONLY)file path=kernel/drv/scsi_vhci group=sys
537 file path=kernel/drv/scsi_vhci.conf group=sys \
538 original_name=SUNWckr:kernel/drv/scsi_vhci.conf preserve=true
539 $(sparc_ONLY)file path=kernel/drv/sd.conf group=sys \
540 original_name=SUNWckr:kernel/drv/sd.conf preserve=true
541 $(i386_ONLY)file path=kernel/drv/sgen group=sys
542 file path=kernel/drv/sgen.conf group=sys \
543 original_name=SUNWckr:kernel/drv/sgen.conf preserve=true
544 $(i386_ONLY)file path=kernel/drv/simnet group=sys
545 file path=kernel/drv/simnet.conf group=sys
546 $(i386_ONLY)file path=kernel/drv/smbios group=sys
547 $(i386_ONLY)file path=kernel/drv/smbios.conf group=sys
548 $(i386_ONLY)file path=kernel/drv/softmac group=sys
549 file path=kernel/drv/softmac.conf group=sys
550 $(i386_ONLY)file path=kernel/drv/spdsock group=sys
551 file path=kernel/drv/spdsock.conf group=sys
552 $(i386_ONLY)file path=kernel/drv/st group=sys
553 file path=kernel/drv/st.conf group=sys \
554 original_name=SUNWckr:kernel/drv/st.conf preserve=true
555 $(i386_ONLY)file path=kernel/drv/sy group=sys
556 file path=kernel/drv/sy.conf group=sys
557 $(i386_ONLY)file path=kernel/drv/sysevent group=sys
558 file path=kernel/drv/sysevent.conf group=sys
559 $(i386_ONLY)file path=kernel/drv/sysmsg group=sys
560 file path=kernel/drv/sysmsg.conf group=sys
561 $(i386_ONLY)file path=kernel/drv/tcp group=sys
562 file path=kernel/drv/tcp.conf group=sys
563 $(i386_ONLY)file path=kernel/drv/tcp6 group=sys
564 file path=kernel/drv/tcp6.conf group=sys
565 $(i386_ONLY)file path=kernel/drv/tl group=sys
566 file path=kernel/drv/tl.conf group=sys
567 $(i386_ONLY)file path=kernel/drv/tzmon group=sys
568 $(i386_ONLY)file path=kernel/drv/tzmon.conf group=sys
569 $(sparc_ONLY)file path=kernel/drv/uata.conf group=sys \
570 original_name=SUNWckr:kernel/drv/uata.conf preserve=true
571 $(i386_ONLY)file path=kernel/drv/ucode group=sys
572 $(i386_ONLY)file path=kernel/drv/ucode.conf group=sys
573 $(i386_ONLY)file path=kernel/drv/udp group=sys
574 file path=kernel/drv/udp.conf group=sys
575 $(i386_ONLY)file path=kernel/drv/udp6 group=sys
576 file path=kernel/drv/udp6.conf group=sys
577 $(i386_ONLY)file path=kernel/drv/vgatext group=sys
578 $(i386_ONLY)file path=kernel/drv/vnic group=sys
579 file path=kernel/drv/vnic.conf group=sys
580 $(i386_ONLY)file path=kernel/drv/wc group=sys
581 file path=kernel/drv/wc.conf group=sys
582 $(sparc_ONLY)file path=kernel/exec/$(ARCH64)/aoutexec group=sys mode=0755
583 file path=kernel/exec/$(ARCH64)/elfexec group=sys mode=0755
584 file path=kernel/exec/$(ARCH64)/intpexec group=sys mode=0755
585 $(i386_ONLY)file path=kernel/exec/elfexec group=sys mode=0755
586 $(i386_ONLY)file path=kernel/exec/intpexec group=sys mode=0755
587 file path=kernel/fs/$(ARCH64)/autofs group=sys mode=0755
588 file path=kernel/fs/$(ARCH64)/cachefs group=sys mode=0755
589 file path=kernel/fs/$(ARCH64)/ctfs group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 10

590 file path=kernel/fs/$(ARCH64)/dcfs group=sys mode=0755
591 file path=kernel/fs/$(ARCH64)/dev group=sys mode=0755
592 file path=kernel/fs/$(ARCH64)/devfs group=sys mode=0755
593 file path=kernel/fs/$(ARCH64)/fifofs group=sys mode=0755
594 file path=kernel/fs/$(ARCH64)/hsfs group=sys mode=0755
595 file path=kernel/fs/$(ARCH64)/lofs group=sys mode=0755
596 file path=kernel/fs/$(ARCH64)/mntfs group=sys mode=0755
597 file path=kernel/fs/$(ARCH64)/namefs group=sys mode=0755
598 file path=kernel/fs/$(ARCH64)/objfs group=sys mode=0755
599 file path=kernel/fs/$(ARCH64)/procfs group=sys mode=0755
600 file path=kernel/fs/$(ARCH64)/sharefs group=sys mode=0755
601 file path=kernel/fs/$(ARCH64)/sockfs group=sys mode=0755
602 file path=kernel/fs/$(ARCH64)/specfs group=sys mode=0755
603 file path=kernel/fs/$(ARCH64)/tmpfs group=sys mode=0755
604 file path=kernel/fs/$(ARCH64)/ufs group=sys mode=0755
605 $(i386_ONLY)file path=kernel/fs/autofs group=sys mode=0755
606 $(i386_ONLY)file path=kernel/fs/cachefs group=sys mode=0755
607 $(i386_ONLY)file path=kernel/fs/ctfs group=sys mode=0755
608 $(i386_ONLY)file path=kernel/fs/dcfs group=sys mode=0755
609 $(i386_ONLY)file path=kernel/fs/dev group=sys mode=0755
610 $(i386_ONLY)file path=kernel/fs/devfs group=sys mode=0755
611 $(i386_ONLY)file path=kernel/fs/fifofs group=sys mode=0755
612 $(i386_ONLY)file path=kernel/fs/hsfs group=sys mode=0755
613 $(i386_ONLY)file path=kernel/fs/lofs group=sys mode=0755
614 $(i386_ONLY)file path=kernel/fs/mntfs group=sys mode=0755
615 $(i386_ONLY)file path=kernel/fs/namefs group=sys mode=0755
616 $(i386_ONLY)file path=kernel/fs/objfs group=sys mode=0755
617 $(i386_ONLY)file path=kernel/fs/procfs group=sys mode=0755
618 $(i386_ONLY)file path=kernel/fs/sharefs group=sys mode=0755
619 $(i386_ONLY)file path=kernel/fs/sockfs group=sys mode=0755
620 $(i386_ONLY)file path=kernel/fs/specfs group=sys mode=0755
621 $(i386_ONLY)file path=kernel/fs/tmpfs group=sys mode=0755
622 $(i386_ONLY)file path=kernel/fs/ufs group=sys mode=0755
623 $(i386_ONLY)file path=kernel/genunix group=sys mode=0755
624 file path=kernel/ipp/$(ARCH64)/ipgpc group=sys mode=0755
625 $(i386_ONLY)file path=kernel/ipp/ipgpc group=sys mode=0755
626 file path=kernel/kiconv/$(ARCH64)/kiconv_emea group=sys mode=0755
627 file path=kernel/kiconv/$(ARCH64)/kiconv_ja group=sys mode=0755
628 file path=kernel/kiconv/$(ARCH64)/kiconv_ko group=sys mode=0755
629 file path=kernel/kiconv/$(ARCH64)/kiconv_sc group=sys mode=0755
630 file path=kernel/kiconv/$(ARCH64)/kiconv_tc group=sys mode=0755
631 $(i386_ONLY)file path=kernel/kiconv/kiconv_emea group=sys mode=0755
632 $(i386_ONLY)file path=kernel/kiconv/kiconv_ja group=sys mode=0755
633 $(i386_ONLY)file path=kernel/kiconv/kiconv_ko group=sys mode=0755
634 $(i386_ONLY)file path=kernel/kiconv/kiconv_sc group=sys mode=0755
635 $(i386_ONLY)file path=kernel/kiconv/kiconv_tc group=sys mode=0755
636 file path=kernel/mac/$(ARCH64)/mac_6to4 group=sys mode=0755
637 file path=kernel/mac/$(ARCH64)/mac_ether group=sys mode=0755
638 file path=kernel/mac/$(ARCH64)/mac_ib group=sys mode=0755
639 file path=kernel/mac/$(ARCH64)/mac_ipv4 group=sys mode=0755
640 file path=kernel/mac/$(ARCH64)/mac_ipv6 group=sys mode=0755
641 file path=kernel/mac/$(ARCH64)/mac_wifi group=sys mode=0755
642 $(i386_ONLY)file path=kernel/mac/mac_6to4 group=sys mode=0755
643 $(i386_ONLY)file path=kernel/mac/mac_ether group=sys mode=0755
644 $(i386_ONLY)file path=kernel/mac/mac_ib group=sys mode=0755
645 $(i386_ONLY)file path=kernel/mac/mac_ipv4 group=sys mode=0755
646 $(i386_ONLY)file path=kernel/mac/mac_ipv6 group=sys mode=0755
647 $(i386_ONLY)file path=kernel/mac/mac_wifi group=sys mode=0755
648 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/acpica group=sys mode=0755
649 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/agpmaster group=sys mode=0755
650 file path=kernel/misc/$(ARCH64)/bignum group=sys mode=0755
651 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/bootdev group=sys mode=0755
652 file path=kernel/misc/$(ARCH64)/busra group=sys mode=0755
653 file path=kernel/misc/$(ARCH64)/cardbus group=sys mode=0755
654 file path=kernel/misc/$(ARCH64)/cmlb group=sys mode=0755
655 file path=kernel/misc/$(ARCH64)/consconfig group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 11

656 file path=kernel/misc/$(ARCH64)/ctf group=sys mode=0755
657 $(sparc_ONLY)file path=kernel/misc/$(ARCH64)/dada group=sys mode=0755
658 file path=kernel/misc/$(ARCH64)/dls group=sys mode=0755
659 file path=kernel/misc/$(ARCH64)/fssnap_if group=sys mode=0755
660 file path=kernel/misc/$(ARCH64)/gld group=sys mode=0755
661 file path=kernel/misc/$(ARCH64)/hook group=sys mode=0755
662 file path=kernel/misc/$(ARCH64)/hpcsvc group=sys mode=0755
663 file path=kernel/misc/$(ARCH64)/idmap group=sys mode=0755
664 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/iommulib group=sys mode=0755
665 file path=kernel/misc/$(ARCH64)/ipc group=sys mode=0755
666 file path=kernel/misc/$(ARCH64)/kbtrans group=sys mode=0755
667 file path=kernel/misc/$(ARCH64)/kcf group=sys mode=0755
668 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/kmdbmod group=sys mode=0755
669 file path=kernel/misc/$(ARCH64)/ksocket group=sys mode=0755
670 file path=kernel/misc/$(ARCH64)/mac group=sys mode=0755
671 file path=kernel/misc/$(ARCH64)/mii group=sys mode=0755
672 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/net80211 group=sys mode=0755
673 file path=kernel/misc/$(ARCH64)/neti group=sys mode=0755
674 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/pci_autoconfig group=sys mode=0755
675 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/pcicfg group=sys mode=0755
676 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/pcie group=sys mode=0755
677 file path=kernel/misc/$(ARCH64)/pcihp group=sys mode=0755
678 file path=kernel/misc/$(ARCH64)/pcmcia group=sys mode=0755
679 file path=kernel/misc/$(ARCH64)/rpcsec group=sys mode=0755
680 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/sata group=sys mode=0755
681 file path=kernel/misc/$(ARCH64)/scsi group=sys mode=0755
682 file path=kernel/misc/$(ARCH64)/strplumb group=sys mode=0755
683 $(sparc_ONLY)file path=kernel/misc/$(ARCH64)/swapgeneric group=sys mode=0755
684 file path=kernel/misc/$(ARCH64)/tem group=sys mode=0755
685 file path=kernel/misc/$(ARCH64)/tlimod group=sys mode=0755
686 $(i386_ONLY)file path=kernel/misc/acpica group=sys mode=0755
687 $(i386_ONLY)file path=kernel/misc/agpmaster group=sys mode=0755
688 $(i386_ONLY)file path=kernel/misc/bignum group=sys mode=0755
689 $(i386_ONLY)file path=kernel/misc/bootdev group=sys mode=0755
690 $(i386_ONLY)file path=kernel/misc/busra group=sys mode=0755
691 $(i386_ONLY)file path=kernel/misc/cardbus group=sys mode=0755
692 $(i386_ONLY)file path=kernel/misc/cmlb group=sys mode=0755
693 $(i386_ONLY)file path=kernel/misc/consconfig group=sys mode=0755
694 $(i386_ONLY)file path=kernel/misc/ctf group=sys mode=0755
695 $(i386_ONLY)file path=kernel/misc/dls group=sys mode=0755
696 $(i386_ONLY)file path=kernel/misc/fssnap_if group=sys mode=0755
697 $(i386_ONLY)file path=kernel/misc/gld group=sys mode=0755
698 $(i386_ONLY)file path=kernel/misc/hook group=sys mode=0755
699 $(i386_ONLY)file path=kernel/misc/hpcsvc group=sys mode=0755
700 $(i386_ONLY)file path=kernel/misc/idmap group=sys mode=0755
701 $(i386_ONLY)file path=kernel/misc/iommulib group=sys mode=0755
702 $(i386_ONLY)file path=kernel/misc/ipc group=sys mode=0755
703 $(i386_ONLY)file path=kernel/misc/kbtrans group=sys mode=0755
704 $(i386_ONLY)file path=kernel/misc/kcf group=sys mode=0755
705 $(i386_ONLY)file path=kernel/misc/kmdbmod group=sys mode=0755
706 $(i386_ONLY)file path=kernel/misc/ksocket group=sys mode=0755
707 $(i386_ONLY)file path=kernel/misc/mac group=sys mode=0755
708 $(i386_ONLY)file path=kernel/misc/mii group=sys mode=0755
709 $(i386_ONLY)file path=kernel/misc/net80211 group=sys mode=0755
710 $(i386_ONLY)file path=kernel/misc/neti group=sys mode=0755
711 $(i386_ONLY)file path=kernel/misc/pci_autoconfig group=sys mode=0755
712 $(i386_ONLY)file path=kernel/misc/pcicfg group=sys mode=0755
713 $(i386_ONLY)file path=kernel/misc/pcie group=sys mode=0755
714 $(i386_ONLY)file path=kernel/misc/pcihp group=sys mode=0755
715 $(i386_ONLY)file path=kernel/misc/pcmcia group=sys mode=0755
716 $(i386_ONLY)file path=kernel/misc/rpcsec group=sys mode=0755
717 $(i386_ONLY)file path=kernel/misc/sata group=sys mode=0755
718 $(i386_ONLY)file path=kernel/misc/scsi group=sys mode=0755
719 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_asym_emc group=sys \
720 mode=0755
721 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_asym_lsi group=sys \

new/usr/src/pkg/manifests/system-kernel.mf 12

722 mode=0755
723 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_asym_sun group=sys \
724 mode=0755
725 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_sym group=sys mode=0755
726 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_sym_emc group=sys \
727 mode=0755
728 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_sym_hds group=sys \
729 mode=0755
730 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_tape group=sys mode=0755
731 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_tpgs group=sys mode=0755
732 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_tpgs_tape group=sys \
733 mode=0755
734 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_asym_emc group=sys \
735 mode=0755
736 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_asym_lsi group=sys \
737 mode=0755
738 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_asym_sun group=sys \
739 mode=0755
740 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_sym group=sys \
741 mode=0755
742 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_sym_emc group=sys \
743 mode=0755
744 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_sym_hds group=sys \
745 mode=0755
746 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_tape group=sys \
747 mode=0755
748 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_tpgs group=sys \
749 mode=0755
750 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_tpgs_tape group=sys \
751 mode=0755
752 $(i386_ONLY)file path=kernel/misc/strplumb group=sys mode=0755
753 $(i386_ONLY)file path=kernel/misc/tem group=sys mode=0755
754 $(i386_ONLY)file path=kernel/misc/tlimod group=sys mode=0755
755 file path=kernel/sched/$(ARCH64)/SDC group=sys mode=0755
756 file path=kernel/sched/$(ARCH64)/TS group=sys mode=0755
757 file path=kernel/sched/$(ARCH64)/TS_DPTBL group=sys mode=0755
758 $(i386_ONLY)file path=kernel/sched/SDC group=sys mode=0755
759 $(i386_ONLY)file path=kernel/sched/TS group=sys mode=0755
760 $(i386_ONLY)file path=kernel/sched/TS_DPTBL group=sys mode=0755
761 file path=kernel/socketmod/$(ARCH64)/ksslf group=sys mode=0755
762 file path=kernel/socketmod/$(ARCH64)/socksctp group=sys mode=0755
763 file path=kernel/socketmod/$(ARCH64)/trill group=sys mode=0755
764 $(i386_ONLY)file path=kernel/socketmod/ksslf group=sys mode=0755
765 $(i386_ONLY)file path=kernel/socketmod/socksctp group=sys mode=0755
766 $(i386_ONLY)file path=kernel/socketmod/trill group=sys mode=0755
767 file path=kernel/strmod/$(ARCH64)/bufmod group=sys mode=0755
768 file path=kernel/strmod/$(ARCH64)/connld group=sys mode=0755
769 file path=kernel/strmod/$(ARCH64)/dedump group=sys mode=0755
770 file path=kernel/strmod/$(ARCH64)/drcompat group=sys mode=0755
771 file path=kernel/strmod/$(ARCH64)/ldterm group=sys mode=0755
772 $(sparc_ONLY)file path=kernel/strmod/$(ARCH64)/ms group=sys mode=0755
773 file path=kernel/strmod/$(ARCH64)/pckt group=sys mode=0755
774 file path=kernel/strmod/$(ARCH64)/pfmod group=sys mode=0755
775 file path=kernel/strmod/$(ARCH64)/pipemod group=sys mode=0755
776 file path=kernel/strmod/$(ARCH64)/ptem group=sys mode=0755
777 file path=kernel/strmod/$(ARCH64)/redirmod group=sys mode=0755
778 file path=kernel/strmod/$(ARCH64)/rpcmod group=sys mode=0755
779 file path=kernel/strmod/$(ARCH64)/timod group=sys mode=0755
780 file path=kernel/strmod/$(ARCH64)/tirdwr group=sys mode=0755
781 file path=kernel/strmod/$(ARCH64)/ttcompat group=sys mode=0755
782 $(sparc_ONLY)file path=kernel/strmod/$(ARCH64)/vuid3ps2 group=sys mode=0755
783 $(i386_ONLY)file path=kernel/strmod/bufmod group=sys mode=0755
784 $(i386_ONLY)file path=kernel/strmod/connld group=sys mode=0755
785 $(i386_ONLY)file path=kernel/strmod/dedump group=sys mode=0755
786 $(i386_ONLY)file path=kernel/strmod/drcompat group=sys mode=0755
787 $(i386_ONLY)file path=kernel/strmod/ldterm group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 13

788 $(i386_ONLY)file path=kernel/strmod/pckt group=sys mode=0755
789 $(i386_ONLY)file path=kernel/strmod/pfmod group=sys mode=0755
790 $(i386_ONLY)file path=kernel/strmod/pipemod group=sys mode=0755
791 $(i386_ONLY)file path=kernel/strmod/ptem group=sys mode=0755
792 $(i386_ONLY)file path=kernel/strmod/redirmod group=sys mode=0755
793 $(i386_ONLY)file path=kernel/strmod/rpcmod group=sys mode=0755
794 $(i386_ONLY)file path=kernel/strmod/timod group=sys mode=0755
795 $(i386_ONLY)file path=kernel/strmod/tirdwr group=sys mode=0755
796 $(i386_ONLY)file path=kernel/strmod/ttcompat group=sys mode=0755
797 file path=kernel/sys/$(ARCH64)/c2audit group=sys mode=0755
798 file path=kernel/sys/$(ARCH64)/doorfs group=sys mode=0755
799 file path=kernel/sys/$(ARCH64)/inst_sync group=sys mode=0755
800 file path=kernel/sys/$(ARCH64)/kaio group=sys mode=0755
801 file path=kernel/sys/$(ARCH64)/msgsys group=sys mode=0755
802 file path=kernel/sys/$(ARCH64)/pipe group=sys mode=0755
803 file path=kernel/sys/$(ARCH64)/portfs group=sys mode=0755
804 file path=kernel/sys/$(ARCH64)/pset group=sys mode=0755
805 file path=kernel/sys/$(ARCH64)/semsys group=sys mode=0755
806 file path=kernel/sys/$(ARCH64)/shmsys group=sys mode=0755
807 $(i386_ONLY)file path=kernel/sys/c2audit group=sys mode=0755
808 $(i386_ONLY)file path=kernel/sys/doorfs group=sys mode=0755
809 $(i386_ONLY)file path=kernel/sys/inst_sync group=sys mode=0755
810 $(i386_ONLY)file path=kernel/sys/kaio group=sys mode=0755
811 $(i386_ONLY)file path=kernel/sys/msgsys group=sys mode=0755
812 $(i386_ONLY)file path=kernel/sys/pipe group=sys mode=0755
813 $(i386_ONLY)file path=kernel/sys/portfs group=sys mode=0755
814 $(i386_ONLY)file path=kernel/sys/pset group=sys mode=0755
815 $(i386_ONLY)file path=kernel/sys/semsys group=sys mode=0755
816 $(i386_ONLY)file path=kernel/sys/shmsys group=sys mode=0755
817 file path=lib/svc/manifest/system/dumpadm.xml group=sys mode=0444
818 file path=lib/svc/manifest/system/intrd.xml group=sys mode=0444
819 file path=lib/svc/manifest/system/scheduler.xml group=sys mode=0444
820 file path=lib/svc/method/svc-dumpadm mode=0555
821 file path=lib/svc/method/svc-intrd mode=0555
822 file path=lib/svc/method/svc-scheduler mode=0555
823 $(sparc_ONLY)file path=usr/share/man/man1m/monitor.1m
824 $(sparc_ONLY)file path=usr/share/man/man1m/obpsym.1m
825 # On SPARC driver/bscv is Serverblade1 specific, and in system/kernel/platform
826 # We keep the manual page generic
827 $(sparc_ONLY)file path=usr/share/man/man7d/dad.7d
828 $(i386_ONLY)file path=usr/share/man/man7d/smbios.7d
829 # Sadly vuid mouse support is in different packages on different platforms
830 # While kstat(7D) is in SUNWcs, the structures are general
831 hardlink path=kernel/misc/$(ARCH64)/md5 \
832 target=../../../kernel/crypto/$(ARCH64)/md5
833 hardlink path=kernel/misc/$(ARCH64)/sha1 \
834 target=../../../kernel/crypto/$(ARCH64)/sha1
835 hardlink path=kernel/misc/$(ARCH64)/sha2 \
836 target=../../../kernel/crypto/$(ARCH64)/sha2
837 $(i386_ONLY)hardlink path=kernel/misc/md5 target=../../kernel/crypto/md5
838 $(i386_ONLY)hardlink path=kernel/misc/sha1 target=../../kernel/crypto/sha1
839 $(i386_ONLY)hardlink path=kernel/misc/sha2 target=../../kernel/crypto/sha2
840 hardlink path=kernel/socketmod/$(ARCH64)/dccp \
841 target=../../../kernel/drv/$(ARCH64)/dccp
842 #endif /* ! codereview */
843 hardlink path=kernel/socketmod/$(ARCH64)/icmp \
844 target=../../../kernel/drv/$(ARCH64)/icmp
845 hardlink path=kernel/socketmod/$(ARCH64)/rts \
846 target=../../../kernel/drv/$(ARCH64)/rts
847 hardlink path=kernel/socketmod/$(ARCH64)/tcp \
848 target=../../../kernel/drv/$(ARCH64)/tcp
849 hardlink path=kernel/socketmod/$(ARCH64)/udp \
850 target=../../../kernel/drv/$(ARCH64)/udp
851 $(i386_ONLY)hardlink path=kernel/socketmod/dccp target=../../kernel/drv/dccp
852 #endif /* ! codereview */
853 $(i386_ONLY)hardlink path=kernel/socketmod/icmp target=../../kernel/drv/icmp

new/usr/src/pkg/manifests/system-kernel.mf 14

854 $(i386_ONLY)hardlink path=kernel/socketmod/rts target=../../kernel/drv/rts
855 $(i386_ONLY)hardlink path=kernel/socketmod/tcp target=../../kernel/drv/tcp
856 $(i386_ONLY)hardlink path=kernel/socketmod/udp target=../../kernel/drv/udp
857 hardlink path=kernel/strmod/$(ARCH64)/arp \
858 target=../../../kernel/drv/$(ARCH64)/arp
859 hardlink path=kernel/strmod/$(ARCH64)/dccp \
860 target=../../../kernel/drv/$(ARCH64)/dccp
861 #endif /* ! codereview */
862 hardlink path=kernel/strmod/$(ARCH64)/icmp \
863 target=../../../kernel/drv/$(ARCH64)/icmp
864 hardlink path=kernel/strmod/$(ARCH64)/ip \
865 target=../../../kernel/drv/$(ARCH64)/ip
866 hardlink path=kernel/strmod/$(ARCH64)/ipsecah \
867 target=../../../kernel/drv/$(ARCH64)/ipsecah
868 hardlink path=kernel/strmod/$(ARCH64)/ipsecesp \
869 target=../../../kernel/drv/$(ARCH64)/ipsecesp
870 hardlink path=kernel/strmod/$(ARCH64)/keysock \
871 target=../../../kernel/drv/$(ARCH64)/keysock
872 hardlink path=kernel/strmod/$(ARCH64)/tcp \
873 target=../../../kernel/drv/$(ARCH64)/tcp
874 hardlink path=kernel/strmod/$(ARCH64)/udp \
875 target=../../../kernel/drv/$(ARCH64)/udp
876 $(i386_ONLY)hardlink path=kernel/strmod/arp target=../../kernel/drv/arp
877 $(i386_ONLY)hardlink path=kernel/strmod/dccp target=../../kernel/drv/dccp
878 #endif /* ! codereview */
879 $(i386_ONLY)hardlink path=kernel/strmod/icmp target=../../kernel/drv/icmp
880 $(i386_ONLY)hardlink path=kernel/strmod/ip target=../../kernel/drv/ip
881 $(i386_ONLY)hardlink path=kernel/strmod/ipsecah \
882 target=../../kernel/drv/ipsecah
883 $(i386_ONLY)hardlink path=kernel/strmod/ipsecesp \
884 target=../../kernel/drv/ipsecesp
885 $(i386_ONLY)hardlink path=kernel/strmod/keysock \
886 target=../../kernel/drv/keysock
887 $(i386_ONLY)hardlink path=kernel/strmod/tcp target=../../kernel/drv/tcp
888 $(i386_ONLY)hardlink path=kernel/strmod/udp target=../../kernel/drv/udp
889 hardlink path=kernel/sys/$(ARCH64)/autofs \
890 target=../../../kernel/fs/$(ARCH64)/autofs
891 hardlink path=kernel/sys/$(ARCH64)/rpcmod \
892 target=../../../kernel/strmod/$(ARCH64)/rpcmod
893 $(i386_ONLY)hardlink path=kernel/sys/autofs target=../../kernel/fs/autofs
894 $(i386_ONLY)hardlink path=kernel/sys/rpcmod target=../../kernel/strmod/rpcmod
895 legacy pkg=SUNWckr \
896 desc="core kernel software for a specific instruction-set architecture" \
897 name="Core Solaris Kernel (Root)"
898 license cr_Sun license=cr_Sun
899 license lic_CDDL license=lic_CDDL
900 license usr/src/cmd/mdb/common/libstand/THIRDPARTYLICENSE \
901 license=usr/src/cmd/mdb/common/libstand/THIRDPARTYLICENSE
902 license usr/src/common/bzip2/LICENSE license=usr/src/common/bzip2/LICENSE
903 license usr/src/common/crypto/THIRDPARTYLICENSE.cryptogams \
904 license=usr/src/common/crypto/THIRDPARTYLICENSE.cryptogams
905 $(i386_ONLY)license usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.gladman \
906 license=usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.gladman
907 $(i386_ONLY)license usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.openssl \
908 license=usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.openssl
909 license usr/src/common/crypto/ecc/THIRDPARTYLICENSE \
910 license=usr/src/common/crypto/ecc/THIRDPARTYLICENSE
911 $(i386_ONLY)license usr/src/common/crypto/md5/amd64/THIRDPARTYLICENSE \
912 license=usr/src/common/crypto/md5/amd64/THIRDPARTYLICENSE
913 license usr/src/common/mpi/THIRDPARTYLICENSE \
914 license=usr/src/common/mpi/THIRDPARTYLICENSE
915 license usr/src/uts/common/inet/ip/THIRDPARTYLICENSE.rts \
916 license=usr/src/uts/common/inet/ip/THIRDPARTYLICENSE.rts
917 license usr/src/uts/common/inet/tcp/THIRDPARTYLICENSE \
918 license=usr/src/uts/common/inet/tcp/THIRDPARTYLICENSE
919 license usr/src/uts/common/io/THIRDPARTYLICENSE.etheraddr \

new/usr/src/pkg/manifests/system-kernel.mf 15

920 license=usr/src/uts/common/io/THIRDPARTYLICENSE.etheraddr
921 license usr/src/uts/common/sys/THIRDPARTYLICENSE.icu \
922 license=usr/src/uts/common/sys/THIRDPARTYLICENSE.icu
923 license usr/src/uts/common/sys/THIRDPARTYLICENSE.unicode \
924 license=usr/src/uts/common/sys/THIRDPARTYLICENSE.unicode
925 $(i386_ONLY)license usr/src/uts/intel/io/acpica/THIRDPARTYLICENSE \
926 license=usr/src/uts/intel/io/acpica/THIRDPARTYLICENSE
927 $(i386_ONLY)link path=boot/solaris/bin/root_archive \
928 target=../../../usr/sbin/root_archive
929 link path=dev/dld target=../devices/pseudo/dld@0:ctl
930 link path=kernel/misc/$(ARCH64)/des \
931 target=../../../kernel/crypto/$(ARCH64)/des
932 $(i386_ONLY)link path=kernel/misc/des target=../../kernel/crypto/des

new/usr/src/uts/common/Makefile.files 1

**
 43092 Sat Aug 18 10:37:06 2012
new/usr/src/uts/common/Makefile.files
dccp: starting module template
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 #

28 #
29 # This Makefile defines all file modules for the directory uts/common
30 # and its children. These are the source files which may be considered
31 # common to all SunOS systems.

33 i386_CORE_OBJS += \
34 atomic.o \
35 avintr.o \
36 pic.o

38 sparc_CORE_OBJS +=

40 COMMON_CORE_OBJS += \
41 beep.o \
42 bitset.o \
43 bp_map.o \
44 brand.o \
45 cpucaps.o \
46 cmt.o \
47 cmt_policy.o \
48 cpu.o \
49 cpu_event.o \
50 cpu_intr.o \
51 cpu_pm.o \
52 cpupart.o \
53 cap_util.o \
54 disp.o \
55 group.o \
56 kstat_fr.o \
57 iscsiboot_prop.o \
58 lgrp.o \
59 lgrp_topo.o \
60 mmapobj.o \
61 mutex.o \

new/usr/src/uts/common/Makefile.files 2

62 page_lock.o \
63 page_retire.o \
64 panic.o \
65 param.o \
66 pg.o \
67 pghw.o \
68 putnext.o \
69 rctl_proc.o \
70 rwlock.o \
71 seg_kmem.o \
72 softint.o \
73 string.o \
74 strtol.o \
75 strtoul.o \
76 strtoll.o \
77 strtoull.o \
78 thread_intr.o \
79 vm_page.o \
80 vm_pagelist.o \
81 zlib_obj.o \
82 clock_tick.o

84 CORE_OBJS += $(COMMON_CORE_OBJS) $($(MACH)_CORE_OBJS)

86 ZLIB_OBJS = zutil.o zmod.o zmod_subr.o \
87 adler32.o crc32.o deflate.o inffast.o \
88 inflate.o inftrees.o trees.o

90 GENUNIX_OBJS += \
91 access.o \
92 acl.o \
93 acl_common.o \
94 adjtime.o \
95 alarm.o \
96 aio_subr.o \
97 auditsys.o \
98 audit_core.o \
99 audit_zone.o \
100 audit_memory.o \
101 autoconf.o \
102 avl.o \
103 bdev_dsort.o \
104 bio.o \
105 bitmap.o \
106 blabel.o \
107 brandsys.o \
108 bz2blocksort.o \
109 bz2compress.o \
110 bz2decompress.o \
111 bz2randtable.o \
112 bz2bzlib.o \
113 bz2crctable.o \
114 bz2huffman.o \
115 callb.o \
116 callout.o \
117 chdir.o \
118 chmod.o \
119 chown.o \
120 cladm.o \
121 class.o \
122 clock.o \
123 clock_highres.o \
124 clock_realtime.o\
125 close.o \
126 compress.o \
127 condvar.o \

new/usr/src/uts/common/Makefile.files 3

128 conf.o \
129 console.o \
130 contract.o \
131 copyops.o \
132 core.o \
133 corectl.o \
134 cred.o \
135 cs_stubs.o \
136 dacf.o \
137 dacf_clnt.o \
138 damap.o \
139 cyclic.o \
140 ddi.o \
141 ddifm.o \
142 ddi_hp_impl.o \
143 ddi_hp_ndi.o \
144 ddi_intr.o \
145 ddi_intr_impl.o \
146 ddi_intr_irm.o \
147 ddi_nodeid.o \
148 ddi_timer.o \
149 devcfg.o \
150 devcache.o \
151 device.o \
152 devid.o \
153 devid_cache.o \
154 devid_scsi.o \
155 devid_smp.o \
156 devpolicy.o \
157 disp_lock.o \
158 dnlc.o \
159 driver.o \
160 dumpsubr.o \
161 driver_lyr.o \
162 dtrace_subr.o \
163 errorq.o \
164 etheraddr.o \
165 evchannels.o \
166 exacct.o \
167 exacct_core.o \
168 exec.o \
169 exit.o \
170 fbio.o \
171 fcntl.o \
172 fdbuffer.o \
173 fdsync.o \
174 fem.o \
175 ffs.o \
176 fio.o \
177 flock.o \
178 fm.o \
179 fork.o \
180 vpm.o \
181 fs_reparse.o \
182 fs_subr.o \
183 fsflush.o \
184 ftrace.o \
185 getcwd.o \
186 getdents.o \
187 getloadavg.o \
188 getpagesizes.o \
189 getpid.o \
190 gfs.o \
191 rusagesys.o \
192 gid.o \
193 groups.o \

new/usr/src/uts/common/Makefile.files 4

194 grow.o \
195 hat_refmod.o \
196 id32.o \
197 id_space.o \
198 inet_ntop.o \
199 instance.o \
200 ioctl.o \
201 ip_cksum.o \
202 issetugid.o \
203 ippconf.o \
204 kcpc.o \
205 kdi.o \
206 kiconv.o \
207 klpd.o \
208 kmem.o \
209 ksyms_snapshot.o \
210 l_strplumb.o \
211 labelsys.o \
212 link.o \
213 list.o \
214 lockstat_subr.o \
215 log_sysevent.o \
216 logsubr.o \
217 lookup.o \
218 lseek.o \
219 ltos.o \
220 lwp.o \
221 lwp_create.o \
222 lwp_info.o \
223 lwp_self.o \
224 lwp_sobj.o \
225 lwp_timer.o \
226 lwpsys.o \
227 main.o \
228 mmapobjsys.o \
229 memcntl.o \
230 memstr.o \
231 lgrpsys.o \
232 mkdir.o \
233 mknod.o \
234 mount.o \
235 move.o \
236 msacct.o \
237 multidata.o \
238 nbmlock.o \
239 ndifm.o \
240 nice.o \
241 netstack.o \
242 ntptime.o \
243 nvpair.o \
244 nvpair_alloc_system.o \
245 nvpair_alloc_fixed.o \
246 fnvpair.o \
247 octet.o \
248 open.o \
249 p_online.o \
250 pathconf.o \
251 pathname.o \
252 pause.o \
253 serializer.o \
254 pci_intr_lib.o \
255 pci_cap.o \
256 pcifm.o \
257 pgrp.o \
258 pgrpsys.o \
259 pid.o \

new/usr/src/uts/common/Makefile.files 5

260 pkp_hash.o \
261 policy.o \
262 poll.o \
263 pool.o \
264 pool_pset.o \
265 port_subr.o \
266 ppriv.o \
267 printf.o \
268 priocntl.o \
269 priv.o \
270 priv_const.o \
271 proc.o \
272 procset.o \
273 processor_bind.o \
274 processor_info.o \
275 profil.o \
276 project.o \
277 qsort.o \
278 rctl.o \
279 rctlsys.o \
280 readlink.o \
281 refstr.o \
282 rename.o \
283 resolvepath.o \
284 retire_store.o \
285 process.o \
286 rlimit.o \
287 rmap.o \
288 rw.o \
289 rwstlock.o \
290 sad_conf.o \
291 sid.o \
292 sidsys.o \
293 sched.o \
294 schedctl.o \
295 sctp_crc32.o \
296 seg_dev.o \
297 seg_kp.o \
298 seg_kpm.o \
299 seg_map.o \
300 seg_vn.o \
301 seg_spt.o \
302 semaphore.o \
303 sendfile.o \
304 session.o \
305 share.o \
306 shuttle.o \
307 sig.o \
308 sigaction.o \
309 sigaltstack.o \
310 signotify.o \
311 sigpending.o \
312 sigprocmask.o \
313 sigqueue.o \
314 sigsendset.o \
315 sigsuspend.o \
316 sigtimedwait.o \
317 sleepq.o \
318 sock_conf.o \
319 space.o \
320 sscanf.o \
321 stat.o \
322 statfs.o \
323 statvfs.o \
324 stol.o \
325 str_conf.o \

new/usr/src/uts/common/Makefile.files 6

326 strcalls.o \
327 stream.o \
328 streamio.o \
329 strext.o \
330 strsubr.o \
331 strsun.o \
332 subr.o \
333 sunddi.o \
334 sunmdi.o \
335 sunndi.o \
336 sunpci.o \
337 sunpm.o \
338 sundlpi.o \
339 suntpi.o \
340 swap_subr.o \
341 swap_vnops.o \
342 symlink.o \
343 sync.o \
344 sysclass.o \
345 sysconfig.o \
346 sysent.o \
347 sysfs.o \
348 systeminfo.o \
349 task.o \
350 taskq.o \
351 tasksys.o \
352 time.o \
353 timer.o \
354 times.o \
355 timers.o \
356 thread.o \
357 tlabel.o \
358 tnf_res.o \
359 turnstile.o \
360 tty_common.o \
361 u8_textprep.o \
362 uadmin.o \
363 uconv.o \
364 ucredsys.o \
365 uid.o \
366 umask.o \
367 umount.o \
368 uname.o \
369 unix_bb.o \
370 unlink.o \
371 urw.o \
372 utime.o \
373 utssys.o \
374 uucopy.o \
375 vfs.o \
376 vfs_conf.o \
377 vmem.o \
378 vm_anon.o \
379 vm_as.o \
380 vm_meter.o \
381 vm_pageout.o \
382 vm_pvn.o \
383 vm_rm.o \
384 vm_seg.o \
385 vm_subr.o \
386 vm_swap.o \
387 vm_usage.o \
388 vnode.o \
389 vuid_queue.o \
390 vuid_store.o \
391 waitq.o \

new/usr/src/uts/common/Makefile.files 7

392 watchpoint.o \
393 yield.o \
394 scsi_confdata.o \
395 xattr.o \
396 xattr_common.o \
397 xdr_mblk.o \
398 xdr_mem.o \
399 xdr.o \
400 xdr_array.o \
401 xdr_refer.o \
402 xhat.o \
403 zone.o

405 #
406 # Stubs for the stand-alone linker/loader
407 #
408 sparc_GENSTUBS_OBJS = \
409 kobj_stubs.o

411 i386_GENSTUBS_OBJS =

413 COMMON_GENSTUBS_OBJS =

415 GENSTUBS_OBJS += $(COMMON_GENSTUBS_OBJS) $($(MACH)_GENSTUBS_OBJS)

417 #
418 # DTrace and DTrace Providers
419 #
420 DTRACE_OBJS += dtrace.o dtrace_isa.o dtrace_asm.o

422 SDT_OBJS += sdt_subr.o

424 PROFILE_OBJS += profile.o

426 SYSTRACE_OBJS += systrace.o

428 LOCKSTAT_OBJS += lockstat.o

430 FASTTRAP_OBJS += fasttrap.o fasttrap_isa.o

432 DCPC_OBJS += dcpc.o

434 #
435 # Driver (pseudo-driver) Modules
436 #
437 IPP_OBJS += ippctl.o

439 AUDIO_OBJS += audio_client.o audio_ddi.o audio_engine.o \
440 audio_fltdata.o audio_format.o audio_ctrl.o \
441 audio_grc3.o audio_output.o audio_input.o \
442 audio_oss.o audio_sun.o

444 AUDIOEMU10K_OBJS += audioemu10k.o

446 AUDIOENS_OBJS += audioens.o

448 AUDIOVIA823X_OBJS += audiovia823x.o

450 AUDIOVIA97_OBJS += audiovia97.o

452 AUDIO1575_OBJS += audio1575.o

454 AUDIO810_OBJS += audio810.o

456 AUDIOCMI_OBJS += audiocmi.o

new/usr/src/uts/common/Makefile.files 8

458 AUDIOCMIHD_OBJS += audiocmihd.o

460 AUDIOHD_OBJS += audiohd.o

462 AUDIOIXP_OBJS += audioixp.o

464 AUDIOLS_OBJS += audiols.o

466 AUDIOP16X_OBJS += audiop16x.o

468 AUDIOPCI_OBJS += audiopci.o

470 AUDIOSOLO_OBJS += audiosolo.o

472 AUDIOTS_OBJS += audiots.o

474 AC97_OBJS += ac97.o ac97_ad.o ac97_alc.o ac97_cmi.o

476 BLKDEV_OBJS += blkdev.o

478 CARDBUS_OBJS += cardbus.o cardbus_hp.o cardbus_cfg.o

480 CONSKBD_OBJS += conskbd.o

482 CONSMS_OBJS += consms.o

484 OLDPTY_OBJS += tty_ptyconf.o

486 PTC_OBJS += tty_pty.o

488 PTSL_OBJS += tty_pts.o

490 PTM_OBJS += ptm.o

492 MII_OBJS += mii.o mii_cicada.o mii_natsemi.o mii_intel.o mii_qualsemi.o \
493 mii_marvell.o mii_realtek.o mii_other.o

495 PTS_OBJS += pts.o

497 PTY_OBJS += ptms_conf.o

499 SAD_OBJS += sad.o

501 MD4_OBJS += md4.o md4_mod.o

503 MD5_OBJS += md5.o md5_mod.o

505 SHA1_OBJS += sha1.o sha1_mod.o

507 SHA2_OBJS += sha2.o sha2_mod.o

509 IPGPC_OBJS += classifierddi.o classifier.o filters.o trie.o table.o \
510 ba_table.o

512 DSCPMK_OBJS += dscpmk.o dscpmkddi.o

514 DLCOSMK_OBJS += dlcosmk.o dlcosmkddi.o

516 FLOWACCT_OBJS += flowacctddi.o flowacct.o

518 TOKENMT_OBJS += tokenmt.o tokenmtddi.o

520 TSWTCL_OBJS += tswtcl.o tswtclddi.o

522 ARP_OBJS += arpddi.o

new/usr/src/uts/common/Makefile.files 9

524 ICMP_OBJS += icmpddi.o

526 ICMP6_OBJS += icmp6ddi.o

528 RTS_OBJS += rtsddi.o

530 IP_ICMP_OBJS = icmp.o icmp_opt_data.o
531 IP_RTS_OBJS = rts.o rts_opt_data.o
532 IP_TCP_OBJS = tcp.o tcp_fusion.o tcp_opt_data.o tcp_sack.o tcp_stats.o \
533 tcp_misc.o tcp_timers.o tcp_time_wait.o tcp_tpi.o tcp_output.o \
534 tcp_input.o tcp_socket.o tcp_bind.o tcp_cluster.o tcp_tunables.o
535 IP_UDP_OBJS = udp.o udp_opt_data.o udp_tunables.o udp_stats.o
536 IP_SCTP_OBJS = sctp.o sctp_opt_data.o sctp_output.o \
537 sctp_init.o sctp_input.o sctp_cookie.o \
538 sctp_conn.o sctp_error.o sctp_snmp.o \
539 sctp_tunables.o sctp_shutdown.o sctp_common.o \
540 sctp_timer.o sctp_heartbeat.o sctp_hash.o \
541 sctp_bind.o sctp_notify.o sctp_asconf.o \
542 sctp_addr.o tn_ipopt.o tnet.o ip_netinfo.o \
543 sctp_misc.o
544 IP_ILB_OBJS = ilb.o ilb_nat.o ilb_conn.o ilb_alg_hash.o ilb_alg_rr.o
545 IP_DCCP_OBJS = dccp.o dccp_bind.o dccp_features.o dccp_input.o dccp_misc.o \
546 dccp_opt_data.o dccp_options.o dccp_output.o dccp_stats.o \
547 dccp_socket.o dccp_timers.o dccp_tpi.o dccp_tunables.o
548 #endif /* ! codereview */

550 IP_OBJS += igmp.o ipmp.o ip.o ip6.o ip6_asp.o ip6_if.o ip6_ire.o \
551 ip6_rts.o ip_if.o ip_ire.o ip_listutils.o ip_mroute.o \
552 ip_multi.o ip2mac.o ip_ndp.o ip_rts.o ip_srcid.o \
553 ipddi.o ipdrop.o mi.o nd.o tunables.o optcom.o snmpcom.o \
554 ipsec_loader.o spd.o ipclassifier.o inet_common.o ip_squeue.o \
555 squeue.o ip_sadb.o ip_ftable.o proto_set.o radix.o ip_dummy.o \
556 ip_helper_stream.o ip_tunables.o \
557 ip_output.o ip_input.o ip6_input.o ip6_output.o ip_arp.o \
558 conn_opt.o ip_attr.o ip_dce.o \
559 $(IP_ICMP_OBJS) \
560 $(IP_RTS_OBJS) \
561 $(IP_TCP_OBJS) \
562 $(IP_UDP_OBJS) \
563 $(IP_SCTP_OBJS) \
564 $(IP_ILB_OBJS) \
565 $(IP_DCCP_OBJS)
545 $(IP_ILB_OBJS)

567 IP6_OBJS += ip6ddi.o

569 HOOK_OBJS += hook.o

571 NETI_OBJS += neti_impl.o neti_mod.o neti_stack.o

573 KEYSOCK_OBJS += keysockddi.o keysock.o keysock_opt_data.o

575 IPNET_OBJS += ipnet.o ipnet_bpf.o

577 SPDSOCK_OBJS += spdsockddi.o spdsock.o spdsock_opt_data.o

579 IPSECESP_OBJS += ipsecespddi.o ipsecesp.o

581 IPSECAH_OBJS += ipsecahddi.o ipsecah.o sadb.o

583 SPPP_OBJS += sppp.o sppp_dlpi.o sppp_mod.o s_common.o

585 SPPPTUN_OBJS += sppptun.o sppptun_mod.o

587 SPPPASYN_OBJS += spppasyn.o spppasyn_mod.o

new/usr/src/uts/common/Makefile.files 10

589 SPPPCOMP_OBJS += spppcomp.o spppcomp_mod.o deflate.o bsd-comp.o vjcompress.o \
590 zlib.o

592 TCP_OBJS += tcpddi.o

594 TCP6_OBJS += tcp6ddi.o

596 NCA_OBJS += ncaddi.o

598 SDP_SOCK_MOD_OBJS += sockmod_sdp.o socksdp.o socksdpsubr.o

600 SCTP_SOCK_MOD_OBJS += sockmod_sctp.o socksctp.o socksctpsubr.o

602 PFP_SOCK_MOD_OBJS += sockmod_pfp.o

604 RDS_SOCK_MOD_OBJS += sockmod_rds.o

606 RDS_OBJS += rdsddi.o rdssubr.o rds_opt.o rds_ioctl.o

608 RDSIB_OBJS += rdsib.o rdsib_ib.o rdsib_cm.o rdsib_ep.o rdsib_buf.o \
609 rdsib_debug.o rdsib_sc.o

611 RDSV3_OBJS += af_rds.o rdsv3_ddi.o bind.o loop.o threads.o connection.o \
612 transport.o cong.o sysctl.o message.o rds_recv.o send.o \
613 stats.o info.o page.o rdma_transport.o ib_ring.o ib_rdma.o \
614 ib_recv.o ib.o ib_send.o ib_sysctl.o ib_stats.o ib_cm.o \
615 rdsv3_sc.o rdsv3_debug.o rdsv3_impl.o rdma.o rdsv3_af_thr.o

617 ISER_OBJS += iser.o iser_cm.o iser_cq.o iser_ib.o iser_idm.o \
618 iser_resource.o iser_xfer.o

620 UDP_OBJS += udpddi.o

622 UDP6_OBJS += udp6ddi.o

624 DCCP_OBJS += dccpddi.o

626 DCCP6_OBJS += dccp6ddi.o

628 #endif /* ! codereview */
629 SY_OBJS += gentty.o

631 TCO_OBJS += ticots.o

633 TCOO_OBJS += ticotsord.o

635 TCL_OBJS += ticlts.o

637 TL_OBJS += tl.o

639 DUMP_OBJS += dump.o

641 BPF_OBJS += bpf.o bpf_filter.o bpf_mod.o bpf_dlt.o bpf_mac.o

643 CLONE_OBJS += clone.o

645 CN_OBJS += cons.o

647 DLD_OBJS += dld_drv.o dld_proto.o dld_str.o dld_flow.o

649 DLS_OBJS += dls.o dls_link.o dls_mod.o dls_stat.o dls_mgmt.o

651 GLD_OBJS += gld.o gldutil.o

653 MAC_OBJS += mac.o mac_bcast.o mac_client.o mac_datapath_setup.o mac_flow.o
654 mac_hio.o mac_mod.o mac_ndd.o mac_provider.o mac_sched.o \

new/usr/src/uts/common/Makefile.files 11

655 mac_protect.o mac_soft_ring.o mac_stat.o mac_util.o

657 MAC_6TO4_OBJS += mac_6to4.o

659 MAC_ETHER_OBJS += mac_ether.o

661 MAC_IPV4_OBJS += mac_ipv4.o

663 MAC_IPV6_OBJS += mac_ipv6.o

665 MAC_WIFI_OBJS += mac_wifi.o

667 MAC_IB_OBJS += mac_ib.o

669 IPTUN_OBJS += iptun_dev.o iptun_ctl.o iptun.o

671 AGGR_OBJS += aggr_dev.o aggr_ctl.o aggr_grp.o aggr_port.o \
672 aggr_send.o aggr_recv.o aggr_lacp.o

674 SOFTMAC_OBJS += softmac_main.o softmac_ctl.o softmac_capab.o \
675 softmac_dev.o softmac_stat.o softmac_pkt.o softmac_fp.o

677 NET80211_OBJS += net80211.o net80211_proto.o net80211_input.o \
678 net80211_output.o net80211_node.o net80211_crypto.o \
679 net80211_crypto_none.o net80211_crypto_wep.o net80211_ioctl.o \
680 net80211_crypto_tkip.o net80211_crypto_ccmp.o \
681 net80211_ht.o

683 VNIC_OBJS += vnic_ctl.o vnic_dev.o

685 SIMNET_OBJS += simnet.o

687 IB_OBJS += ibnex.o ibnex_ioctl.o ibnex_hca.o

689 IBCM_OBJS += ibcm_impl.o ibcm_sm.o ibcm_ti.o ibcm_utils.o ibcm_path.o \
690 ibcm_arp.o ibcm_arp_link.o

692 IBDM_OBJS += ibdm.o

694 IBDMA_OBJS += ibdma.o

696 IBMF_OBJS += ibmf.o ibmf_impl.o ibmf_dr.o ibmf_wqe.o ibmf_ud_dest.o ibmf_mod.
697 ibmf_send.o ibmf_recv.o ibmf_handlers.o ibmf_trans.o \
698 ibmf_timers.o ibmf_msg.o ibmf_utils.o ibmf_rmpp.o \
699 ibmf_saa.o ibmf_saa_impl.o ibmf_saa_utils.o ibmf_saa_events.o

701 IBTL_OBJS += ibtl_impl.o ibtl_util.o ibtl_mem.o ibtl_handlers.o ibtl_qp.o \
702 ibtl_cq.o ibtl_wr.o ibtl_hca.o ibtl_chan.o ibtl_cm.o \
703 ibtl_mcg.o ibtl_ibnex.o ibtl_srq.o ibtl_part.o

705 TAVOR_OBJS += tavor.o tavor_agents.o tavor_cfg.o tavor_ci.o tavor_cmd.o \
706 tavor_cq.o tavor_event.o tavor_ioctl.o tavor_misc.o \
707 tavor_mr.o tavor_qp.o tavor_qpmod.o tavor_rsrc.o \
708 tavor_srq.o tavor_stats.o tavor_umap.o tavor_wr.o

710 HERMON_OBJS += hermon.o hermon_agents.o hermon_cfg.o hermon_ci.o hermon_cmd.o \
711 hermon_cq.o hermon_event.o hermon_ioctl.o hermon_misc.o \
712 hermon_mr.o hermon_qp.o hermon_qpmod.o hermon_rsrc.o \
713 hermon_srq.o hermon_stats.o hermon_umap.o hermon_wr.o \
714 hermon_fcoib.o hermon_fm.o

716 DAPLT_OBJS += daplt.o

718 SOL_OFS_OBJS += sol_cma.o sol_ib_cma.o sol_uobj.o \
719 sol_ofs_debug_util.o sol_ofs_gen_util.o \
720 sol_kverbs.o

new/usr/src/uts/common/Makefile.files 12

722 SOL_UCMA_OBJS += sol_ucma.o

724 SOL_UVERBS_OBJS += sol_uverbs.o sol_uverbs_comp.o sol_uverbs_event.o \
725 sol_uverbs_hca.o sol_uverbs_qp.o

727 SOL_UMAD_OBJS += sol_umad.o

729 KSTAT_OBJS += kstat.o

731 KSYMS_OBJS += ksyms.o

733 INSTANCE_OBJS += inst_sync.o

735 IWSCN_OBJS += iwscons.o

737 LOFI_OBJS += lofi.o LzmaDec.o

739 FSSNAP_OBJS += fssnap.o

741 FSSNAPIF_OBJS += fssnap_if.o

743 MM_OBJS += mem.o

745 PHYSMEM_OBJS += physmem.o

747 OPTIONS_OBJS += options.o

749 WINLOCK_OBJS += winlockio.o

751 PM_OBJS += pm.o
752 SRN_OBJS += srn.o

754 PSEUDO_OBJS += pseudonex.o

756 RAMDISK_OBJS += ramdisk.o

758 LLC1_OBJS += llc1.o

760 USBKBM_OBJS += usbkbm.o

762 USBWCM_OBJS += usbwcm.o

764 BOFI_OBJS += bofi.o

766 HID_OBJS += hid.o

768 HWA_RC_OBJS += hwarc.o

770 USBSKEL_OBJS += usbskel.o

772 USBVC_OBJS += usbvc.o usbvc_v4l2.o

774 HIDPARSER_OBJS += hidparser.o

776 USB_AC_OBJS += usb_ac.o

778 USB_AS_OBJS += usb_as.o

780 USB_AH_OBJS += usb_ah.o

782 USBMS_OBJS += usbms.o

784 USBPRN_OBJS += usbprn.o

786 UGEN_OBJS += ugen.o

new/usr/src/uts/common/Makefile.files 13

788 USBSER_OBJS += usbser.o usbser_rseq.o

790 USBSACM_OBJS += usbsacm.o

792 USBSER_KEYSPAN_OBJS += usbser_keyspan.o keyspan_dsd.o keyspan_pipe.o

794 USBS49_FW_OBJS += keyspan_49fw.o

796 USBSPRL_OBJS += usbser_pl2303.o pl2303_dsd.o

798 WUSB_CA_OBJS += wusb_ca.o

800 USBFTDI_OBJS += usbser_uftdi.o uftdi_dsd.o

802 USBECM_OBJS += usbecm.o

804 WC_OBJS += wscons.o vcons.o

806 VCONS_CONF_OBJS += vcons_conf.o

808 SCSI_OBJS += scsi_capabilities.o scsi_confsubr.o scsi_control.o \
809 scsi_data.o scsi_fm.o scsi_hba.o scsi_reset_notify.o \
810 scsi_resource.o scsi_subr.o scsi_transport.o scsi_watch.o \
811 smp_transport.o

813 SCSI_VHCI_OBJS += scsi_vhci.o mpapi_impl.o scsi_vhci_tpgs.o

815 SCSI_VHCI_F_SYM_OBJS += sym.o

817 SCSI_VHCI_F_TPGS_OBJS += tpgs.o

819 SCSI_VHCI_F_ASYM_SUN_OBJS += asym_sun.o

821 SCSI_VHCI_F_SYM_HDS_OBJS += sym_hds.o

823 SCSI_VHCI_F_TAPE_OBJS += tape.o

825 SCSI_VHCI_F_TPGS_TAPE_OBJS += tpgs_tape.o

827 SGEN_OBJS += sgen.o

829 SMP_OBJS += smp.o

831 SATA_OBJS += sata.o

833 USBA_OBJS += hcdi.o usba.o usbai.o hubdi.o parser.o genconsole.o \
834 usbai_pipe_mgmt.o usbai_req.o usbai_util.o usbai_register.o \
835 usba_devdb.o usba10_calls.o usba_ugen.o whcdi.o wa.o
836 USBA_WITHOUT_WUSB_OBJS += hcdi.o usba.o usbai.o hubdi.o parser.o gencons
837 usbai_pipe_mgmt.o usbai_req.o usbai_util.o usbai_register.o \
838 usba_devdb.o usba10_calls.o usba_ugen.o

840 USBA10_OBJS += usba10.o

842 RSM_OBJS += rsm.o rsmka_pathmanager.o rsmka_util.o

844 RSMOPS_OBJS += rsmops.o

846 S1394_OBJS += t1394.o t1394_errmsg.o s1394.o s1394_addr.o s1394_asynch.o \
847 s1394_bus_reset.o s1394_cmp.o s1394_csr.o s1394_dev_disc.o \
848 s1394_fa.o s1394_fcp.o \
849 s1394_hotplug.o s1394_isoch.o s1394_misc.o h1394.o nx1394.o

851 HCI1394_OBJS += hci1394.o hci1394_async.o hci1394_attach.o hci1394_buf.o \
852 hci1394_csr.o hci1394_detach.o hci1394_extern.o \

new/usr/src/uts/common/Makefile.files 14

853 hci1394_ioctl.o hci1394_isoch.o hci1394_isr.o \
854 hci1394_ixl_comp.o hci1394_ixl_isr.o hci1394_ixl_misc.o \
855 hci1394_ixl_update.o hci1394_misc.o hci1394_ohci.o \
856 hci1394_q.o hci1394_s1394if.o hci1394_tlabel.o \
857 hci1394_tlist.o hci1394_vendor.o

859 AV1394_OBJS += av1394.o av1394_as.o av1394_async.o av1394_cfgrom.o \
860 av1394_cmp.o av1394_fcp.o av1394_isoch.o av1394_isoch_chan.o \
861 av1394_isoch_recv.o av1394_isoch_xmit.o av1394_list.o \
862 av1394_queue.o

864 DCAM1394_OBJS += dcam.o dcam_frame.o dcam_param.o dcam_reg.o \
865 dcam_ring_buff.o

867 SCSA1394_OBJS += hba.o sbp2_driver.o sbp2_bus.o

869 SBP2_OBJS += cfgrom.o sbp2.o

871 PMODEM_OBJS += pmodem.o pmodem_cis.o cis.o cis_callout.o cis_handlers.o cis_para

873 DSW_OBJS += dsw.o dsw_dev.o ii_tree.o

875 NCALL_OBJS += ncall.o \
876 ncall_stub.o

878 RDC_OBJS += rdc.o \
879 rdc_dev.o \
880 rdc_io.o \
881 rdc_clnt.o \
882 rdc_prot_xdr.o \
883 rdc_svc.o \
884 rdc_bitmap.o \
885 rdc_health.o \
886 rdc_subr.o \
887 rdc_diskq.o

889 RDCSRV_OBJS += rdcsrv.o

891 RDCSTUB_OBJS += rdc_stub.o

893 SDBC_OBJS += sd_bcache.o \
894 sd_bio.o \
895 sd_conf.o \
896 sd_ft.o \
897 sd_hash.o \
898 sd_io.o \
899 sd_misc.o \
900 sd_pcu.o \
901 sd_tdaemon.o \
902 sd_trace.o \
903 sd_iob_impl0.o \
904 sd_iob_impl1.o \
905 sd_iob_impl2.o \
906 sd_iob_impl3.o \
907 sd_iob_impl4.o \
908 sd_iob_impl5.o \
909 sd_iob_impl6.o \
910 sd_iob_impl7.o \
911 safestore.o \
912 safestore_ram.o

914 NSCTL_OBJS += nsctl.o \
915 nsc_cache.o \
916 nsc_disk.o \
917 nsc_dev.o \
918 nsc_freeze.o \

new/usr/src/uts/common/Makefile.files 15

919 nsc_gen.o \
920 nsc_mem.o \
921 nsc_ncallio.o \
922 nsc_power.o \
923 nsc_resv.o \
924 nsc_rmspin.o \
925 nsc_solaris.o \
926 nsc_trap.o \
927 nsc_list.o
928 UNISTAT_OBJS += spuni.o \
929 spcs_s_k.o

931 NSKERN_OBJS += nsc_ddi.o \
932 nsc_proc.o \
933 nsc_raw.o \
934 nsc_thread.o \
935 nskernd.o

937 SV_OBJS += sv.o

939 PMCS_OBJS += pmcs_attach.o pmcs_ds.o pmcs_intr.o pmcs_nvram.o pmcs_sata.o \
940 pmcs_scsa.o pmcs_smhba.o pmcs_subr.o pmcs_fwlog.o

942 PMCS8001FW_C_OBJS += pmcs_fw_hdr.o
943 PMCS8001FW_OBJS += $(PMCS8001FW_C_OBJS) SPCBoot.o ila.o firmware.o

945 #
946 # Build up defines and paths.

948 ST_OBJS += st.o st_conf.o

950 EMLXS_OBJS += emlxs_clock.o emlxs_dfc.o emlxs_dhchap.o emlxs_diag.o \
951 emlxs_download.o emlxs_dump.o emlxs_els.o emlxs_event.o \
952 emlxs_fcf.o emlxs_fcp.o emlxs_fct.o emlxs_hba.o emlxs_ip.o \
953 emlxs_mbox.o emlxs_mem.o emlxs_msg.o emlxs_node.o \
954 emlxs_pkt.o emlxs_sli3.o emlxs_sli4.o emlxs_solaris.o \
955 emlxs_thread.o

957 EMLXS_FW_OBJS += emlxs_fw.o

959 OCE_OBJS += oce_buf.o oce_fm.o oce_gld.o oce_hw.o oce_intr.o oce_main.o \
960 oce_mbx.o oce_mq.o oce_queue.o oce_rx.o oce_stat.o oce_tx.o \
961 oce_utils.o

963 FCT_OBJS += discovery.o fct.o

965 QLT_OBJS += 2400.o 2500.o 8100.o qlt.o qlt_dma.o

967 SRPT_OBJS += srpt_mod.o srpt_ch.o srpt_cm.o srpt_ioc.o srpt_stp.o

969 FCOE_OBJS += fcoe.o fcoe_eth.o fcoe_fc.o

971 FCOET_OBJS += fcoet.o fcoet_eth.o fcoet_fc.o

973 FCOEI_OBJS += fcoei.o fcoei_eth.o fcoei_lv.o

975 ISCSIT_SHARED_OBJS += \
976 iscsit_common.o

978 ISCSIT_OBJS += $(ISCSIT_SHARED_OBJS) \
979 iscsit.o iscsit_tgt.o iscsit_sess.o iscsit_login.o \
980 iscsit_text.o iscsit_isns.o iscsit_radiusauth.o \
981 iscsit_radiuspacket.o iscsit_auth.o iscsit_authclient.o

983 PPPT_OBJS += alua_ic_if.o pppt.o pppt_msg.o pppt_tgt.o

new/usr/src/uts/common/Makefile.files 16

985 STMF_OBJS += lun_map.o stmf.o

987 STMF_SBD_OBJS += sbd.o sbd_scsi.o sbd_pgr.o sbd_zvol.o

989 SYSMSG_OBJS += sysmsg.o

991 SES_OBJS += ses.o ses_sen.o ses_safte.o ses_ses.o

993 TNF_OBJS += tnf_buf.o tnf_trace.o tnf_writer.o trace_init.o \
994 trace_funcs.o tnf_probe.o tnf.o

996 LOGINDMUX_OBJS += logindmux.o

998 DEVINFO_OBJS += devinfo.o

1000 DEVPOLL_OBJS += devpoll.o

1002 DEVPOOL_OBJS += devpool.o

1004 I8042_OBJS += i8042.o

1006 KB8042_OBJS += \
1007 at_keyprocess.o \
1008 kb8042.o \
1009 kb8042_keytables.o

1011 MOUSE8042_OBJS += mouse8042.o

1013 FDC_OBJS += fdc.o

1015 ASY_OBJS += asy.o

1017 ECPP_OBJS += ecpp.o

1019 VUIDM3P_OBJS += vuidmice.o vuidm3p.o

1021 VUIDM4P_OBJS += vuidmice.o vuidm4p.o

1023 VUIDM5P_OBJS += vuidmice.o vuidm5p.o

1025 VUIDPS2_OBJS += vuidmice.o vuidps2.o

1027 HPCSVC_OBJS += hpcsvc.o

1029 PCIE_MISC_OBJS += pcie.o pcie_fault.o pcie_hp.o pciehpc.o pcishpc.o pcie_pwr.o p

1031 PCIHPNEXUS_OBJS += pcihp.o

1033 OPENEEPR_OBJS += openprom.o

1035 RANDOM_OBJS += random.o

1037 PSHOT_OBJS += pshot.o

1039 GEN_DRV_OBJS += gen_drv.o

1041 TCLIENT_OBJS += tclient.o

1043 TPHCI_OBJS += tphci.o

1045 TVHCI_OBJS += tvhci.o

1047 EMUL64_OBJS += emul64.o emul64_bsd.o

1049 FCP_OBJS += fcp.o

new/usr/src/uts/common/Makefile.files 17

1051 FCIP_OBJS += fcip.o

1053 FCSM_OBJS += fcsm.o

1055 FCTL_OBJS += fctl.o

1057 FP_OBJS += fp.o

1059 QLC_OBJS += ql_api.o ql_debug.o ql_hba_fru.o ql_init.o ql_iocb.o ql_ioctl.o \
1060 ql_isr.o ql_mbx.o ql_nx.o ql_xioctl.o ql_fw_table.o

1062 QLC_FW_2200_OBJS += ql_fw_2200.o

1064 QLC_FW_2300_OBJS += ql_fw_2300.o

1066 QLC_FW_2400_OBJS += ql_fw_2400.o

1068 QLC_FW_2500_OBJS += ql_fw_2500.o

1070 QLC_FW_6322_OBJS += ql_fw_6322.o

1072 QLC_FW_8100_OBJS += ql_fw_8100.o

1074 QLGE_OBJS += qlge.o qlge_dbg.o qlge_flash.o qlge_fm.o qlge_gld.o qlge_mpi.o

1076 ZCONS_OBJS += zcons.o

1078 NV_SATA_OBJS += nv_sata.o

1080 SI3124_OBJS += si3124.o

1082 AHCI_OBJS += ahci.o

1084 PCIIDE_OBJS += pci-ide.o

1086 PCEPP_OBJS += pcepp.o

1088 CPC_OBJS += cpc.o

1090 CPUID_OBJS += cpuid_drv.o

1092 SYSEVENT_OBJS += sysevent.o

1094 BL_OBJS += bl.o

1096 DRM_OBJS += drm_sunmod.o drm_kstat.o drm_agpsupport.o \
1097 drm_auth.o drm_bufs.o drm_context.o drm_dma.o \
1098 drm_drawable.o drm_drv.o drm_fops.o drm_ioctl.o drm_irq.o \
1099 drm_lock.o drm_memory.o drm_msg.o drm_pci.o drm_scatter.o \
1100 drm_cache.o drm_gem.o drm_mm.o ati_pcigart.o

1102 FM_OBJS += devfm.o devfm_machdep.o

1104 RTLS_OBJS += rtls.o

1106 #
1107 # exec modules
1108 #
1109 AOUTEXEC_OBJS +=aout.o

1111 ELFEXEC_OBJS += elf.o elf_notes.o old_notes.o

1113 INTPEXEC_OBJS +=intp.o

1115 SHBINEXEC_OBJS +=shbin.o

new/usr/src/uts/common/Makefile.files 18

1117 JAVAEXEC_OBJS +=java.o

1119 #
1120 # file system modules
1121 #
1122 AUTOFS_OBJS += auto_vfsops.o auto_vnops.o auto_subr.o auto_xdr.o auto_sys.o

1124 CACHEFS_OBJS += cachefs_cnode.o cachefs_cod.o \
1125 cachefs_dir.o cachefs_dlog.o cachefs_filegrp.o \
1126 cachefs_fscache.o cachefs_ioctl.o cachefs_log.o \
1127 cachefs_module.o \
1128 cachefs_noopc.o cachefs_resource.o \
1129 cachefs_strict.o \
1130 cachefs_subr.o cachefs_vfsops.o \
1131 cachefs_vnops.o

1133 DCFS_OBJS += dc_vnops.o

1135 DEVFS_OBJS += devfs_subr.o devfs_vfsops.o devfs_vnops.o

1137 DEV_OBJS += sdev_subr.o sdev_vfsops.o sdev_vnops.o \
1138 sdev_ptsops.o sdev_zvolops.o sdev_comm.o \
1139 sdev_profile.o sdev_ncache.o sdev_netops.o \
1140 sdev_ipnetops.o \
1141 sdev_vtops.o

1143 CTFS_OBJS += ctfs_all.o ctfs_cdir.o ctfs_ctl.o ctfs_event.o \
1144 ctfs_latest.o ctfs_root.o ctfs_sym.o ctfs_tdir.o ctfs_tmpl.o

1146 OBJFS_OBJS += objfs_vfs.o objfs_root.o objfs_common.o \
1147 objfs_odir.o objfs_data.o

1149 FDFS_OBJS += fdops.o

1151 FIFO_OBJS += fifosubr.o fifovnops.o

1153 PIPE_OBJS += pipe.o

1155 HSFS_OBJS += hsfs_node.o hsfs_subr.o hsfs_vfsops.o hsfs_vnops.o \
1156 hsfs_susp.o hsfs_rrip.o hsfs_susp_subr.o

1158 LOFS_OBJS += lofs_subr.o lofs_vfsops.o lofs_vnops.o

1160 NAMEFS_OBJS += namevfs.o namevno.o

1162 NFS_OBJS += nfs_client.o nfs_common.o nfs_dump.o \
1163 nfs_subr.o nfs_vfsops.o nfs_vnops.o \
1164 nfs_xdr.o nfs_sys.o nfs_strerror.o \
1165 nfs3_vfsops.o nfs3_vnops.o nfs3_xdr.o \
1166 nfs_acl_vnops.o nfs_acl_xdr.o nfs4_vfsops.o \
1167 nfs4_vnops.o nfs4_xdr.o nfs4_idmap.o \
1168 nfs4_shadow.o nfs4_subr.o \
1169 nfs4_attr.o nfs4_rnode.o nfs4_client.o \
1170 nfs4_acache.o nfs4_common.o nfs4_client_state.o \
1171 nfs4_callback.o nfs4_recovery.o nfs4_client_secinfo.o \
1172 nfs4_client_debug.o nfs_stats.o \
1173 nfs4_acl.o nfs4_stub_vnops.o nfs_cmd.o

1175 NFSSRV_OBJS += nfs_server.o nfs_srv.o nfs3_srv.o \
1176 nfs_acl_srv.o nfs_auth.o nfs_auth_xdr.o \
1177 nfs_export.o nfs_log.o nfs_log_xdr.o \
1178 nfs4_srv.o nfs4_state.o nfs4_srv_attr.o \
1179 nfs4_srv_ns.o nfs4_db.o nfs4_srv_deleg.o \
1180 nfs4_deleg_ops.o nfs4_srv_readdir.o nfs4_dispatch.o

1182 SMBSRV_SHARED_OBJS += \

new/usr/src/uts/common/Makefile.files 19

1183 smb_inet.o \
1184 smb_match.o \
1185 smb_msgbuf.o \
1186 smb_oem.o \
1187 smb_string.o \
1188 smb_utf8.o \
1189 smb_door_legacy.o \
1190 smb_xdr.o \
1191 smb_token.o \
1192 smb_token_xdr.o \
1193 smb_sid.o \
1194 smb_native.o \
1195 smb_netbios_util.o

1197 SMBSRV_OBJS += $(SMBSRV_SHARED_OBJS) \
1198 smb_acl.o \
1199 smb_alloc.o \
1200 smb_close.o \
1201 smb_common_open.o \
1202 smb_common_transact.o \
1203 smb_create.o \
1204 smb_delete.o \
1205 smb_directory.o \
1206 smb_dispatch.o \
1207 smb_echo.o \
1208 smb_fem.o \
1209 smb_find.o \
1210 smb_flush.o \
1211 smb_fsinfo.o \
1212 smb_fsops.o \
1213 smb_init.o \
1214 smb_kdoor.o \
1215 smb_kshare.o \
1216 smb_kutil.o \
1217 smb_lock.o \
1218 smb_lock_byte_range.o \
1219 smb_locking_andx.o \
1220 smb_logoff_andx.o \
1221 smb_mangle_name.o \
1222 smb_mbuf_marshaling.o \
1223 smb_mbuf_util.o \
1224 smb_negotiate.o \
1225 smb_net.o \
1226 smb_node.o \
1227 smb_nt_cancel.o \
1228 smb_nt_create_andx.o \
1229 smb_nt_transact_create.o \
1230 smb_nt_transact_ioctl.o \
1231 smb_nt_transact_notify_change.o \
1232 smb_nt_transact_quota.o \
1233 smb_nt_transact_security.o \
1234 smb_odir.o \
1235 smb_ofile.o \
1236 smb_open_andx.o \
1237 smb_opipe.o \
1238 smb_oplock.o \
1239 smb_pathname.o \
1240 smb_print.o \
1241 smb_process_exit.o \
1242 smb_query_fileinfo.o \
1243 smb_read.o \
1244 smb_rename.o \
1245 smb_sd.o \
1246 smb_seek.o \
1247 smb_server.o \
1248 smb_session.o \

new/usr/src/uts/common/Makefile.files 20

1249 smb_session_setup_andx.o \
1250 smb_set_fileinfo.o \
1251 smb_signing.o \
1252 smb_tree.o \
1253 smb_trans2_create_directory.o \
1254 smb_trans2_dfs.o \
1255 smb_trans2_find.o \
1256 smb_tree_connect.o \
1257 smb_unlock_byte_range.o \
1258 smb_user.o \
1259 smb_vfs.o \
1260 smb_vops.o \
1261 smb_vss.o \
1262 smb_write.o \
1263 smb_write_raw.o

1265 PCFS_OBJS += pc_alloc.o pc_dir.o pc_node.o pc_subr.o \
1266 pc_vfsops.o pc_vnops.o

1268 PROC_OBJS += prcontrol.o prioctl.o prsubr.o prusrio.o \
1269 prvfsops.o prvnops.o

1271 MNTFS_OBJS += mntvfsops.o mntvnops.o

1273 SHAREFS_OBJS += sharetab.o sharefs_vfsops.o sharefs_vnops.o

1275 SPEC_OBJS += specsubr.o specvfsops.o specvnops.o

1277 SOCK_OBJS += socksubr.o sockvfsops.o sockparams.o \
1278 socksyscalls.o socktpi.o sockstr.o \
1279 sockcommon_vnops.o sockcommon_subr.o \
1280 sockcommon_sops.o sockcommon.o \
1281 sock_notsupp.o socknotify.o \
1282 nl7c.o nl7curi.o nl7chttp.o nl7clogd.o \
1283 nl7cnca.o sodirect.o sockfilter.o

1285 TMPFS_OBJS += tmp_dir.o tmp_subr.o tmp_tnode.o tmp_vfsops.o \
1286 tmp_vnops.o

1288 UDFS_OBJS += udf_alloc.o udf_bmap.o udf_dir.o \
1289 udf_inode.o udf_subr.o udf_vfsops.o \
1290 udf_vnops.o

1292 UFS_OBJS += ufs_alloc.o ufs_bmap.o ufs_dir.o ufs_xattr.o \
1293 ufs_inode.o ufs_subr.o ufs_tables.o ufs_vfsops.o \
1294 ufs_vnops.o quota.o quotacalls.o quota_ufs.o \
1295 ufs_filio.o ufs_lockfs.o ufs_thread.o ufs_trans.o \
1296 ufs_acl.o ufs_panic.o ufs_directio.o ufs_log.o \
1297 ufs_extvnops.o ufs_snap.o lufs.o lufs_thread.o \
1298 lufs_log.o lufs_map.o lufs_top.o lufs_debug.o
1299 VSCAN_OBJS += vscan_drv.o vscan_svc.o vscan_door.o

1301 NSMB_OBJS += smb_conn.o smb_dev.o smb_iod.o smb_pass.o \
1302 smb_rq.o smb_sign.o smb_smb.o smb_subrs.o \
1303 smb_time.o smb_tran.o smb_trantcp.o smb_usr.o \
1304 subr_mchain.o

1306 SMBFS_COMMON_OBJS += smbfs_ntacl.o
1307 SMBFS_OBJS += smbfs_vfsops.o smbfs_vnops.o smbfs_node.o \
1308 smbfs_acl.o smbfs_client.o smbfs_smb.o \
1309 smbfs_subr.o smbfs_subr2.o \
1310 smbfs_rwlock.o smbfs_xattr.o \
1311 $(SMBFS_COMMON_OBJS)

1314 #

new/usr/src/uts/common/Makefile.files 21

1315 # LVM modules
1316 #
1317 MD_OBJS += md.o md_error.o md_ioctl.o md_mddb.o md_names.o \
1318 md_med.o md_rename.o md_subr.o

1320 MD_COMMON_OBJS = md_convert.o md_crc.o md_revchk.o

1322 MD_DERIVED_OBJS = metamed_xdr.o meta_basic_xdr.o

1324 SOFTPART_OBJS += sp.o sp_ioctl.o

1326 STRIPE_OBJS += stripe.o stripe_ioctl.o

1328 HOTSPARES_OBJS += hotspares.o

1330 RAID_OBJS += raid.o raid_ioctl.o raid_replay.o raid_resync.o raid_hotspare.o

1332 MIRROR_OBJS += mirror.o mirror_ioctl.o mirror_resync.o

1334 NOTIFY_OBJS += md_notify.o

1336 TRANS_OBJS += mdtrans.o trans_ioctl.o trans_log.o

1338 ZFS_COMMON_OBJS += \
1339 arc.o \
1340 bplist.o \
1341 bpobj.o \
1342 bptree.o \
1343 dbuf.o \
1344 ddt.o \
1345 ddt_zap.o \
1346 dmu.o \
1347 dmu_diff.o \
1348 dmu_send.o \
1349 dmu_object.o \
1350 dmu_objset.o \
1351 dmu_traverse.o \
1352 dmu_tx.o \
1353 dnode.o \
1354 dnode_sync.o \
1355 dsl_dir.o \
1356 dsl_dataset.o \
1357 dsl_deadlist.o \
1358 dsl_pool.o \
1359 dsl_synctask.o \
1360 dmu_zfetch.o \
1361 dsl_deleg.o \
1362 dsl_prop.o \
1363 dsl_scan.o \
1364 zfeature.o \
1365 gzip.o \
1366 lzjb.o \
1367 metaslab.o \
1368 refcount.o \
1369 sa.o \
1370 sha256.o \
1371 spa.o \
1372 spa_config.o \
1373 spa_errlog.o \
1374 spa_history.o \
1375 spa_misc.o \
1376 space_map.o \
1377 txg.o \
1378 uberblock.o \
1379 unique.o \
1380 vdev.o \

new/usr/src/uts/common/Makefile.files 22

1381 vdev_cache.o \
1382 vdev_file.o \
1383 vdev_label.o \
1384 vdev_mirror.o \
1385 vdev_missing.o \
1386 vdev_queue.o \
1387 vdev_raidz.o \
1388 vdev_root.o \
1389 zap.o \
1390 zap_leaf.o \
1391 zap_micro.o \
1392 zfs_byteswap.o \
1393 zfs_debug.o \
1394 zfs_fm.o \
1395 zfs_fuid.o \
1396 zfs_sa.o \
1397 zfs_znode.o \
1398 zil.o \
1399 zio.o \
1400 zio_checksum.o \
1401 zio_compress.o \
1402 zio_inject.o \
1403 zle.o \
1404 zrlock.o

1406 ZFS_SHARED_OBJS += \
1407 zfeature_common.o \
1408 zfs_comutil.o \
1409 zfs_deleg.o \
1410 zfs_fletcher.o \
1411 zfs_namecheck.o \
1412 zfs_prop.o \
1413 zpool_prop.o \
1414 zprop_common.o

1416 ZFS_OBJS += \
1417 $(ZFS_COMMON_OBJS) \
1418 $(ZFS_SHARED_OBJS) \
1419 vdev_disk.o \
1420 zfs_acl.o \
1421 zfs_ctldir.o \
1422 zfs_dir.o \
1423 zfs_ioctl.o \
1424 zfs_log.o \
1425 zfs_onexit.o \
1426 zfs_replay.o \
1427 zfs_rlock.o \
1428 rrwlock.o \
1429 zfs_vfsops.o \
1430 zfs_vnops.o \
1431 zvol.o

1433 ZUT_OBJS += \
1434 zut.o

1436 #
1437 # streams modules
1438 #
1439 BUFMOD_OBJS += bufmod.o

1441 CONNLD_OBJS += connld.o

1443 DEDUMP_OBJS += dedump.o

1445 DRCOMPAT_OBJS += drcompat.o

new/usr/src/uts/common/Makefile.files 23

1447 LDLINUX_OBJS += ldlinux.o

1449 LDTERM_OBJS += ldterm.o uwidth.o

1451 PCKT_OBJS += pckt.o

1453 PFMOD_OBJS += pfmod.o

1455 PTEM_OBJS += ptem.o

1457 REDIRMOD_OBJS += strredirm.o

1459 TIMOD_OBJS += timod.o

1461 TIRDWR_OBJS += tirdwr.o

1463 TTCOMPAT_OBJS +=ttcompat.o

1465 LOG_OBJS += log.o

1467 PIPEMOD_OBJS += pipemod.o

1469 RPCMOD_OBJS += rpcmod.o clnt_cots.o clnt_clts.o \
1470 clnt_gen.o clnt_perr.o mt_rpcinit.o rpc_calmsg.o \
1471 rpc_prot.o rpc_sztypes.o rpc_subr.o rpcb_prot.o \
1472 svc.o svc_clts.o svc_gen.o svc_cots.o \
1473 rpcsys.o xdr_sizeof.o clnt_rdma.o svc_rdma.o \
1474 xdr_rdma.o rdma_subr.o xdrrdma_sizeof.o

1476 TLIMOD_OBJS += tlimod.o t_kalloc.o t_kbind.o t_kclose.o \
1477 t_kconnect.o t_kfree.o t_kgtstate.o t_kopen.o \
1478 t_krcvudat.o t_ksndudat.o t_kspoll.o t_kunbind.o \
1479 t_kutil.o

1481 RLMOD_OBJS += rlmod.o

1483 TELMOD_OBJS += telmod.o

1485 CRYPTMOD_OBJS += cryptmod.o

1487 KB_OBJS += kbd.o keytables.o

1489 #
1490 # ID mapping module
1491 #
1492 IDMAP_OBJS += idmap_mod.o idmap_kapi.o idmap_xdr.o idmap_cache.o

1494 #
1495 # scheduling class modules
1496 #
1497 SDC_OBJS += sysdc.o

1499 RT_OBJS += rt.o
1500 RT_DPTBL_OBJS += rt_dptbl.o

1502 TS_OBJS += ts.o
1503 TS_DPTBL_OBJS += ts_dptbl.o

1505 IA_OBJS += ia.o

1507 FSS_OBJS += fss.o

1509 FX_OBJS += fx.o
1510 FX_DPTBL_OBJS += fx_dptbl.o

1512 #

new/usr/src/uts/common/Makefile.files 24

1513 # Inter-Process Communication (IPC) modules
1514 #
1515 IPC_OBJS += ipc.o

1517 IPCMSG_OBJS += msg.o

1519 IPCSEM_OBJS += sem.o

1521 IPCSHM_OBJS += shm.o

1523 #
1524 # bignum module
1525 #
1526 COMMON_BIGNUM_OBJS += bignum_mod.o bignumimpl.o

1528 BIGNUM_OBJS += $(COMMON_BIGNUM_OBJS) $(BIGNUM_PSR_OBJS)

1530 #
1531 # kernel cryptographic framework
1532 #
1533 KCF_OBJS += kcf.o kcf_callprov.o kcf_cbufcall.o kcf_cipher.o kcf_crypto.o \
1534 kcf_cryptoadm.o kcf_ctxops.o kcf_digest.o kcf_dual.o \
1535 kcf_keys.o kcf_mac.o kcf_mech_tabs.o kcf_miscapi.o \
1536 kcf_object.o kcf_policy.o kcf_prov_lib.o kcf_prov_tabs.o \
1537 kcf_sched.o kcf_session.o kcf_sign.o kcf_spi.o kcf_verify.o \
1538 kcf_random.o modes.o ecb.o cbc.o ctr.o ccm.o gcm.o \
1539 fips_random.o

1541 CRYPTOADM_OBJS += cryptoadm.o

1543 CRYPTO_OBJS += crypto.o

1545 DPROV_OBJS += dprov.o

1547 DCA_OBJS += dca.o dca_3des.o dca_debug.o dca_dsa.o dca_kstat.o dca_rng.o \
1548 dca_rsa.o

1550 AESPROV_OBJS += aes.o aes_impl.o aes_modes.o

1552 ARCFOURPROV_OBJS += arcfour.o arcfour_crypt.o

1554 BLOWFISHPROV_OBJS += blowfish.o blowfish_impl.o

1556 ECCPROV_OBJS += ecc.o ec.o ec2_163.o ec2_mont.o ecdecode.o ecl_mult.o \
1557 ecp_384.o ecp_jac.o ec2_193.o ecl.o ecp_192.o ecp_521.o \
1558 ecp_jm.o ec2_233.o ecl_curve.o ecp_224.o ecp_aff.o \
1559 ecp_mont.o ec2_aff.o ec_naf.o ecl_gf.o ecp_256.o mp_gf2m.o \
1560 mpi.o mplogic.o mpmontg.o mpprime.o oid.o \
1561 secitem.o ec2_test.o ecp_test.o

1563 RSAPROV_OBJS += rsa.o rsa_impl.o pkcs1.o

1565 SWRANDPROV_OBJS += swrand.o

1567 #
1568 # kernel SSL
1569 #
1570 KSSL_OBJS += kssl.o ksslioctl.o

1572 KSSL_SOCKFIL_MOD_OBJS += ksslfilter.o ksslapi.o ksslrec.o

1574 #
1575 # misc. modules
1576 #

1578 C2AUDIT_OBJS += adr.o audit.o audit_event.o audit_io.o \

new/usr/src/uts/common/Makefile.files 25

1579 audit_path.o audit_start.o audit_syscalls.o audit_token.o \
1580 audit_mem.o

1582 PCIC_OBJS += pcic.o

1584 RPCSEC_OBJS += secmod.o sec_clnt.o sec_svc.o sec_gen.o \
1585 auth_des.o auth_kern.o auth_none.o auth_loopb.o\
1586 authdesprt.o authdesubr.o authu_prot.o \
1587 key_call.o key_prot.o svc_authu.o svcauthdes.o

1589 RPCSEC_GSS_OBJS += rpcsec_gssmod.o rpcsec_gss.o rpcsec_gss_misc.o \
1590 rpcsec_gss_utils.o svc_rpcsec_gss.o

1592 CONSCONFIG_OBJS += consconfig.o

1594 CONSCONFIG_DACF_OBJS += consconfig_dacf.o consplat.o

1596 TEM_OBJS += tem.o tem_safe.o 6x10.o 7x14.o 12x22.o

1598 KBTRANS_OBJS += \
1599 kbtrans.o \
1600 kbtrans_keytables.o \
1601 kbtrans_polled.o \
1602 kbtrans_streams.o \
1603 usb_keytables.o

1605 KGSSD_OBJS += gssd_clnt_stubs.o gssd_handle.o gssd_prot.o \
1606 gss_display_name.o gss_release_name.o gss_import_name.o \
1607 gss_release_buffer.o gss_release_oid_set.o gen_oids.o gssdmod.o

1609 KGSSD_DERIVED_OBJS = gssd_xdr.o

1611 KGSS_DUMMY_OBJS += dmech.o

1613 KSOCKET_OBJS += ksocket.o ksocket_mod.o

1615 CRYPTO= cksumtypes.o decrypt.o encrypt.o encrypt_length.o etypes.o \
1616 nfold.o verify_checksum.o prng.o block_size.o make_checksum.o\
1617 checksum_length.o hmac.o default_state.o mandatory_sumtype.o

1619 # crypto/des
1620 CRYPTO_DES= f_cbc.o f_cksum.o f_parity.o weak_key.o d3_cbc.o ef_crypto.o

1622 CRYPTO_DK= checksum.o derive.o dk_decrypt.o dk_encrypt.o

1624 CRYPTO_ARCFOUR= k5_arcfour.o

1626 # crypto/enc_provider
1627 CRYPTO_ENC= des.o des3.o arcfour_provider.o aes_provider.o

1629 # crypto/hash_provider
1630 CRYPTO_HASH= hash_kef_generic.o hash_kmd5.o hash_crc32.o hash_ksha1.o

1632 # crypto/keyhash_provider
1633 CRYPTO_KEYHASH= descbc.o k5_kmd5des.o k_hmac_md5.o

1635 # crypto/crc32
1636 CRYPTO_CRC32= crc32.o

1638 # crypto/old
1639 CRYPTO_OLD= old_decrypt.o old_encrypt.o

1641 # crypto/raw
1642 CRYPTO_RAW= raw_decrypt.o raw_encrypt.o

1644 K5_KRB= kfree.o copy_key.o \

new/usr/src/uts/common/Makefile.files 26

1645 parse.o init_ctx.o \
1646 ser_adata.o ser_addr.o \
1647 ser_auth.o ser_cksum.o \
1648 ser_key.o ser_princ.o \
1649 serialize.o unparse.o \
1650 ser_actx.o

1652 K5_OS= timeofday.o toffset.o \
1653 init_os_ctx.o c_ustime.o

1655 SEAL=
1656 # EXPORT DELETE START
1657 SEAL= seal.o unseal.o
1658 # EXPORT DELETE END

1660 MECH= delete_sec_context.o \
1661 import_sec_context.o \
1662 gssapi_krb5.o \
1663 k5seal.o k5unseal.o k5sealv3.o \
1664 ser_sctx.o \
1665 sign.o \
1666 util_crypt.o \
1667 util_validate.o util_ordering.o \
1668 util_seqnum.o util_set.o util_seed.o \
1669 wrap_size_limit.o verify.o

1673 MECH_GEN= util_token.o

1676 KGSS_KRB5_OBJS += krb5mech.o \
1677 $(MECH) $(SEAL) $(MECH_GEN) \
1678 $(CRYPTO) $(CRYPTO_DES) $(CRYPTO_DK) $(CRYPTO_ARCFOUR) \
1679 $(CRYPTO_ENC) $(CRYPTO_HASH) \
1680 $(CRYPTO_KEYHASH) $(CRYPTO_CRC32) \
1681 $(CRYPTO_OLD) \
1682 $(CRYPTO_RAW) $(K5_KRB) $(K5_OS)

1684 DES_OBJS += des_crypt.o des_impl.o des_ks.o des_soft.o

1686 DLBOOT_OBJS += bootparam_xdr.o nfs_dlinet.o scan.o

1688 KRTLD_OBJS += kobj_bootflags.o getoptstr.o \
1689 kobj.o kobj_kdi.o kobj_lm.o kobj_subr.o

1691 MOD_OBJS += modctl.o modsubr.o modsysfile.o modconf.o modhash.o

1693 STRPLUMB_OBJS += strplumb.o

1695 CPR_OBJS += cpr_driver.o cpr_dump.o \
1696 cpr_main.o cpr_misc.o cpr_mod.o cpr_stat.o \
1697 cpr_uthread.o

1699 PROF_OBJS += prf.o

1701 SE_OBJS += se_driver.o

1703 SYSACCT_OBJS += acct.o

1705 ACCTCTL_OBJS += acctctl.o

1707 EXACCTSYS_OBJS += exacctsys.o

1709 KAIO_OBJS += aio.o

new/usr/src/uts/common/Makefile.files 27

1711 PCMCIA_OBJS += pcmcia.o cs.o cis.o cis_callout.o cis_handlers.o cis_params.o

1713 BUSRA_OBJS += busra.o

1715 PCS_OBJS += pcs.o

1717 PCAN_OBJS += pcan.o

1719 PCATA_OBJS += pcide.o pcdisk.o pclabel.o pcata.o

1721 PCSER_OBJS += pcser.o pcser_cis.o

1723 PCWL_OBJS += pcwl.o

1725 PSET_OBJS += pset.o

1727 OHCI_OBJS += ohci.o ohci_hub.o ohci_polled.o

1729 UHCI_OBJS += uhci.o uhciutil.o uhcitgt.o uhcihub.o uhcipolled.o

1731 EHCI_OBJS += ehci.o ehci_hub.o ehci_xfer.o ehci_intr.o ehci_util.o ehci_polled.o

1733 HUBD_OBJS += hubd.o

1735 USB_MID_OBJS += usb_mid.o

1737 USB_IA_OBJS += usb_ia.o

1739 UWBA_OBJS += uwba.o uwbai.o

1741 SCSA2USB_OBJS += scsa2usb.o usb_ms_bulkonly.o usb_ms_cbi.o

1743 HWAHC_OBJS += hwahc.o hwahc_util.o

1745 WUSB_DF_OBJS += wusb_df.o
1746 WUSB_FWMOD_OBJS += wusb_fwmod.o

1748 IPF_OBJS += ip_fil_solaris.o fil.o solaris.o ip_state.o ip_frag.o ip_nat.o \
1749 ip_proxy.o ip_auth.o ip_pool.o ip_htable.o ip_lookup.o \
1750 ip_log.o misc.o ip_compat.o ip_nat6.o drand48.o

1752 IBD_OBJS += ibd.o ibd_cm.o

1754 EIBNX_OBJS += enx_main.o enx_hdlrs.o enx_ibt.o enx_log.o enx_fip.o \
1755 enx_misc.o enx_q.o enx_ctl.o

1757 EOIB_OBJS += eib_adm.o eib_chan.o eib_cmn.o eib_ctl.o eib_data.o \
1758 eib_fip.o eib_ibt.o eib_log.o eib_mac.o eib_main.o \
1759 eib_rsrc.o eib_svc.o eib_vnic.o

1761 DLPISTUB_OBJS += dlpistub.o

1763 SDP_OBJS += sdpddi.o

1765 TRILL_OBJS += trill.o

1767 CTF_OBJS += ctf_create.o ctf_decl.o ctf_error.o ctf_hash.o ctf_labels.o \
1768 ctf_lookup.o ctf_open.o ctf_types.o ctf_util.o ctf_subr.o ctf_mod.o

1770 SMBIOS_OBJS += smb_error.o smb_info.o smb_open.o smb_subr.o smb_dev.o

1772 RPCIB_OBJS += rpcib.o

1774 KMDB_OBJS += kdrv.o

1776 AFE_OBJS += afe.o

new/usr/src/uts/common/Makefile.files 28

1778 BGE_OBJS += bge_main2.o bge_chip2.o bge_kstats.o bge_log.o bge_ndd.o \
1779 bge_atomic.o bge_mii.o bge_send.o bge_recv2.o bge_mii_5906.o

1781 DMFE_OBJS += dmfe_log.o dmfe_main.o dmfe_mii.o

1783 EFE_OBJS += efe.o

1785 ELXL_OBJS += elxl.o

1787 HME_OBJS += hme.o

1789 IXGB_OBJS += ixgb.o ixgb_atomic.o ixgb_chip.o ixgb_gld.o ixgb_kstats.o \
1790 ixgb_log.o ixgb_ndd.o ixgb_rx.o ixgb_tx.o ixgb_xmii.o

1792 NGE_OBJS += nge_main.o nge_atomic.o nge_chip.o nge_ndd.o nge_kstats.o \
1793 nge_log.o nge_rx.o nge_tx.o nge_xmii.o

1795 PCN_OBJS += pcn.o

1797 RGE_OBJS += rge_main.o rge_chip.o rge_ndd.o rge_kstats.o rge_log.o rge_rxtx.o

1799 URTW_OBJS += urtw.o

1801 ARN_OBJS += arn_hw.o arn_eeprom.o arn_mac.o arn_calib.o arn_ani.o arn_phy.o arn_
1802 arn_main.o arn_recv.o arn_xmit.o arn_rc.o

1804 ATH_OBJS += ath_aux.o ath_main.o ath_osdep.o ath_rate.o

1806 ATU_OBJS += atu.o

1808 IPW_OBJS += ipw2100_hw.o ipw2100.o

1810 IWI_OBJS += ipw2200_hw.o ipw2200.o

1812 IWH_OBJS += iwh.o

1814 IWK_OBJS += iwk2.o

1816 IWP_OBJS += iwp.o

1818 MWL_OBJS += mwl.o

1820 MWLFW_OBJS += mwlfw_mode.o

1822 WPI_OBJS += wpi.o

1824 RAL_OBJS += rt2560.o ral_rate.o

1826 RUM_OBJS += rum.o

1828 RWD_OBJS += rt2661.o

1830 RWN_OBJS += rt2860.o

1832 UATH_OBJS += uath.o

1834 UATHFW_OBJS += uathfw_mod.o

1836 URAL_OBJS += ural.o

1838 RTW_OBJS += rtw.o smc93cx6.o rtwphy.o rtwphyio.o

1840 ZYD_OBJS += zyd.o zyd_usb.o zyd_hw.o zyd_fw.o

1842 MXFE_OBJS += mxfe.o

new/usr/src/uts/common/Makefile.files 29

1844 MPTSAS_OBJS += mptsas.o mptsas_impl.o mptsas_init.o mptsas_raid.o mptsas_smhba.o

1846 SFE_OBJS += sfe.o sfe_util.o

1848 BFE_OBJS += bfe.o

1850 BRIDGE_OBJS += bridge.o

1852 IDM_SHARED_OBJS += base64.o

1854 IDM_OBJS += $(IDM_SHARED_OBJS) \
1855 idm.o idm_impl.o idm_text.o idm_conn_sm.o idm_so.o

1857 VR_OBJS += vr.o

1859 ATGE_OBJS += atge_main.o atge_l1e.o atge_mii.o atge_l1.o

1861 YGE_OBJS = yge.o

1863 #
1864 # Build up defines and paths.
1865 #
1866 LINT_DEFS += -Dunix

1868 #
1869 # This duality can be removed when the native and target compilers
1870 # are the same (or at least recognize the same command line syntax!)
1871 # It is a bug in the current compilation system that the assember
1872 # can’t process the -Y I, flag.
1873 #
1874 NATIVE_INC_PATH += $(INC_PATH) $(CCYFLAG)$(UTSBASE)/common
1875 AS_INC_PATH += $(INC_PATH) -I$(UTSBASE)/common
1876 INCLUDE_PATH += $(INC_PATH) $(CCYFLAG)$(UTSBASE)/common

1878 PCIEB_OBJS += pcieb.o

1880 # Chelsio N110 10G NIC driver module
1881 #
1882 CH_OBJS = ch.o glue.o pe.o sge.o

1884 CH_COM_OBJS = ch_mac.o ch_subr.o cspi.o espi.o ixf1010.o mc3.o mc4.o mc5.o \
1885 mv88e1xxx.o mv88x201x.o my3126.o pm3393.o tp.o ulp.o \
1886 vsc7321.o vsc7326.o xpak.o

1888 #
1889 # PCI strings file
1890 #
1891 PCI_STRING_OBJS = pci_strings.o

1893 NET_DACF_OBJS += net_dacf.o

1895 #
1896 # Xframe 10G NIC driver module
1897 #
1898 XGE_OBJS = xge.o xgell.o

1900 XGE_HAL_OBJS = xgehal-channel.o xgehal-fifo.o xgehal-ring.o xgehal-config.o \
1901 xgehal-driver.o xgehal-mm.o xgehal-stats.o xgehal-device.o \
1902 xge-queue.o xgehal-mgmt.o xgehal-mgmtaux.o

1904 #
1905 # e1000g module
1906 #
1907 E1000G_OBJS += e1000_80003es2lan.o e1000_82540.o e1000_82541.o e1000_82542.o \
1908 e1000_82543.o e1000_82571.o e1000_api.o e1000_ich8lan.o \

new/usr/src/uts/common/Makefile.files 30

1909 e1000_mac.o e1000_manage.o e1000_nvm.o e1000_osdep.o \
1910 e1000_phy.o e1000g_debug.o e1000g_main.o e1000g_alloc.o \
1911 e1000g_tx.o e1000g_rx.o e1000g_stat.o

1913 #
1914 # Intel 82575 1G NIC driver module
1915 #
1916 IGB_OBJS = igb_82575.o igb_api.o igb_mac.o igb_manage.o \
1917 igb_nvm.o igb_osdep.o igb_phy.o igb_buf.o \
1918 igb_debug.o igb_gld.o igb_log.o igb_main.o \
1919 igb_rx.o igb_stat.o igb_tx.o

1921 #
1922 # Intel Pro/100 NIC driver module
1923 #
1924 IPRB_OBJS = iprb.o

1926 #
1927 # Intel 10GbE PCIE NIC driver module
1928 #
1929 IXGBE_OBJS = ixgbe_82598.o ixgbe_82599.o ixgbe_api.o \
1930 ixgbe_common.o ixgbe_phy.o \
1931 ixgbe_buf.o ixgbe_debug.o ixgbe_gld.o \
1932 ixgbe_log.o ixgbe_main.o \
1933 ixgbe_osdep.o ixgbe_rx.o ixgbe_stat.o \
1934 ixgbe_tx.o

1936 #
1937 # NIU 10G/1G driver module
1938 #
1939 NXGE_OBJS = nxge_mac.o nxge_ipp.o nxge_rxdma.o \
1940 nxge_txdma.o nxge_txc.o nxge_main.o \
1941 nxge_hw.o nxge_fzc.o nxge_virtual.o \
1942 nxge_send.o nxge_classify.o nxge_fflp.o \
1943 nxge_fflp_hash.o nxge_ndd.o nxge_kstats.o \
1944 nxge_zcp.o nxge_fm.o nxge_espc.o nxge_hv.o \
1945 nxge_hio.o nxge_hio_guest.o nxge_intr.o

1947 NXGE_NPI_OBJS = \
1948 npi.o npi_mac.o npi_ipp.o \
1949 npi_txdma.o npi_rxdma.o npi_txc.o \
1950 npi_zcp.o npi_espc.o npi_fflp.o \
1951 npi_vir.o

1953 NXGE_HCALL_OBJS = \
1954 nxge_hcall.o

1956 #
1957 # kiconv modules
1958 #
1959 KICONV_EMEA_OBJS += kiconv_emea.o

1961 KICONV_JA_OBJS += kiconv_ja.o

1963 KICONV_KO_OBJS += kiconv_cck_common.o kiconv_ko.o

1965 KICONV_SC_OBJS += kiconv_cck_common.o kiconv_sc.o

1967 KICONV_TC_OBJS += kiconv_cck_common.o kiconv_tc.o

1969 #
1970 # AAC module
1971 #
1972 AAC_OBJS = aac.o aac_ioctl.o

1974 #

new/usr/src/uts/common/Makefile.files 31

1975 # sdcard modules
1976 #
1977 SDA_OBJS = sda_cmd.o sda_host.o sda_init.o sda_mem.o sda_mod.o sda_slot.o
1978 SDHOST_OBJS = sdhost.o

1980 #
1981 # hxge 10G driver module
1982 #
1983 HXGE_OBJS = hxge_main.o hxge_vmac.o hxge_send.o \
1984 hxge_txdma.o hxge_rxdma.o hxge_virtual.o \
1985 hxge_fm.o hxge_fzc.o hxge_hw.o hxge_kstats.o \
1986 hxge_ndd.o hxge_pfc.o \
1987 hpi.o hpi_vmac.o hpi_rxdma.o hpi_txdma.o \
1988 hpi_vir.o hpi_pfc.o

1990 #
1991 # MEGARAID_SAS module
1992 #
1993 MEGA_SAS_OBJS = megaraid_sas.o

1995 #
1996 # MR_SAS module
1997 #
1998 MR_SAS_OBJS = mr_sas.o

2000 #
2001 # ISCSI_INITIATOR module
2002 #
2003 ISCSI_INITIATOR_OBJS = chap.o iscsi_io.o iscsi_thread.o \
2004 iscsi_ioctl.o iscsid.o iscsi.o \
2005 iscsi_login.o isns_client.o iscsiAuthClient.o \
2006 iscsi_lun.o iscsiAuthClientGlue.o \
2007 iscsi_net.o nvfile.o iscsi_cmd.o \
2008 iscsi_queue.o persistent.o iscsi_conn.o \
2009 iscsi_sess.o radius_auth.o iscsi_crc.o \
2010 iscsi_stats.o radius_packet.o iscsi_doorclt.o \
2011 iscsi_targetparam.o utils.o kifconf.o

2013 #
2014 # ntxn 10Gb/1Gb NIC driver module
2015 #
2016 NTXN_OBJS = unm_nic_init.o unm_gem.o unm_nic_hw.o unm_ndd.o \
2017 unm_nic_main.o unm_nic_isr.o unm_nic_ctx.o niu.o

2019 #
2020 # Myricom 10Gb NIC driver module
2021 #
2022 MYRI10GE_OBJS = myri10ge.o myri10ge_lro.o

2024 # nulldriver module
2025 #
2026 NULLDRIVER_OBJS = nulldriver.o

2028 TPM_OBJS = tpm.o tpm_hcall.o

new/usr/src/uts/common/Makefile.rules 1

**
 72399 Sat Aug 18 10:37:07 2012
new/usr/src/uts/common/Makefile.rules
dccp: starting module template
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
28 #

30 #
31 # uts/common/Makefile.rules
32 #
33 # This Makefile defines all the file build rules for the directory
34 # uts/common and its children. These are the source files which may
35 # be considered common to all SunOS systems.
36 #
37 # The following two-level ordering must be maintained in this file.
38 # Lines are sorted first in order of decreasing specificity based on
39 # the first directory component. That is, sun4u rules come before
40 # sparc rules come before common rules.
41 #
42 # Lines whose initial directory components are equal are sorted
43 # alphabetically by the remaining components.

45 #
46 # Section 1a: C objects build rules
47 #
48 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/aes/%.c
49 $(COMPILE.c) -o $@ $<
50 $(CTFCONVERT_O)

52 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/arcfour/%.c
53 $(COMPILE.c) -o $@ $<
54 $(CTFCONVERT_O)

56 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/blowfish/%.c
57 $(COMPILE.c) -o $@ $<
58 $(CTFCONVERT_O)

60 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/ecc/%.c
61 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 2

62 $(CTFCONVERT_O)

64 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/modes/%.c
65 $(COMPILE.c) -o $@ $<
66 $(CTFCONVERT_O)

68 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/padding/%.c
69 $(COMPILE.c) -o $@ $<
70 $(CTFCONVERT_O)

72 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/rng/%.c
73 $(COMPILE.c) -o $@ $<
74 $(CTFCONVERT_O)

76 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/rsa/%.c
77 $(COMPILE.c) -o $@ $<
78 $(CTFCONVERT_O)

80 $(OBJS_DIR)/%.o: $(COMMONBASE)/bignum/%.c
81 $(COMPILE.c) -o $@ $<
82 $(CTFCONVERT_O)

84 $(OBJS_DIR)/%.o: $(UTSBASE)/common/bignum/%.c
85 $(COMPILE.c) -o $@ $<
86 $(CTFCONVERT_O)

88 $(OBJS_DIR)/%.o: $(COMMONBASE)/mpi/%.c
89 $(COMPILE.c) -o $@ $<
90 $(CTFCONVERT_O)

92 $(OBJS_DIR)/%.o: $(COMMONBASE)/acl/%.c
93 $(COMPILE.c) -o $@ $<
94 $(CTFCONVERT_O)

96 $(OBJS_DIR)/%.o: $(COMMONBASE)/avl/%.c
97 $(COMPILE.c) -o $@ $<
98 $(CTFCONVERT_O)

100 $(OBJS_DIR)/%.o: $(COMMONBASE)/ucode/%.c
101 $(COMPILE.c) -o $@ $<
102 $(CTFCONVERT_O)

104 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/sn1/%.c
105 $(COMPILE.c) -o $@ $<
106 $(CTFCONVERT_O)

108 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/solaris10/%.c
109 $(COMPILE.c) -o $@ $<
110 $(CTFCONVERT_O)

112 $(OBJS_DIR)/%.o: $(UTSBASE)/common/c2/%.c
113 $(COMPILE.c) -o $@ $<
114 $(CTFCONVERT_O)

116 $(OBJS_DIR)/%.o: $(UTSBASE)/common/conf/%.c
117 $(COMPILE.c) -o $@ $<
118 $(CTFCONVERT_O)

120 $(OBJS_DIR)/%.o: $(UTSBASE)/common/contract/%.c
121 $(COMPILE.c) -o $@ $<
122 $(CTFCONVERT_O)

124 $(OBJS_DIR)/%.o: $(UTSBASE)/common/cpr/%.c
125 $(COMPILE.c) -o $@ $<
126 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 3

128 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ctf/%.c
129 $(COMPILE.c) -o $@ $<
130 $(CTFCONVERT_O)

132 $(OBJS_DIR)/%.o: $(COMMONBASE)/ctf/%.c
133 $(COMPILE.c) -o $@ $<
134 $(CTFCONVERT_O)

136 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/des/%.c
137 $(COMPILE.c) -o $@ $<
138 $(CTFCONVERT_O)

140 $(OBJS_DIR)/%.o: $(COMMONBASE)/smbios/%.c
141 $(COMPILE.c) -o $@ $<
142 $(CTFCONVERT_O)

144 $(OBJS_DIR)/%.o: $(UTSBASE)/common/des/%.c
145 $(COMPILE.c) -o $@ $<
146 $(CTFCONVERT_O)

148 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/api/%.c
149 $(COMPILE.c) -o $@ $<
150 $(CTFCONVERT_O)

152 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/core/%.c
153 $(COMPILE.c) -o $@ $<
154 $(CTFCONVERT_O)

156 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/io/%.c
157 $(COMPILE.c) -o $@ $<
158 $(CTFCONVERT_O)

160 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/spi/%.c
161 $(COMPILE.c) -o $@ $<
162 $(CTFCONVERT_O)

164 $(OBJS_DIR)/%.o: $(COMMONBASE)/pci/%.c
165 $(COMPILE.c) -o $@ $<
166 $(CTFCONVERT_O)

168 $(OBJS_DIR)/%.o: $(COMMONBASE)/devid/%.c
169 $(COMPILE.c) -o $@ $<
170 $(CTFCONVERT_O)

172 $(OBJS_DIR)/%.o: $(UTSBASE)/common/disp/%.c
173 $(COMPILE.c) -o $@ $<
174 $(CTFCONVERT_O)

176 $(OBJS_DIR)/%.o: $(UTSBASE)/common/dtrace/%.c
177 $(COMPILE.c) -o $@ $<
178 $(CTFCONVERT_O)

180 $(OBJS_DIR)/%.o: $(COMMONBASE)/exacct/%.c
181 $(COMPILE.c) -o $@ $<
182 $(CTFCONVERT_O)

184 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/aout/%.c
185 $(COMPILE.c) -o $@ $<
186 $(CTFCONVERT_O)

188 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/elf/%.c
189 $(COMPILE.c) -o $@ $<
190 $(CTFCONVERT_O)

192 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/intp/%.c
193 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 4

194 $(CTFCONVERT_O)

196 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/shbin/%.c
197 $(COMPILE.c) -o $@ $<
198 $(CTFCONVERT_O)

200 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/java/%.c
201 $(COMPILE.c) -o $@ $<
202 $(CTFCONVERT_O)

204 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/%.c
205 $(COMPILE.c) -o $@ $<
206 $(CTFCONVERT_O)

208 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/autofs/%.c
209 $(COMPILE.c) -o $@ $<
210 $(CTFCONVERT_O)

212 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/cachefs/%.c
213 $(COMPILE.c) -o $@ $<
214 $(CTFCONVERT_O)

216 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/dcfs/%.c
217 $(COMPILE.c) -o $@ $<
218 $(CTFCONVERT_O)

220 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/devfs/%.c
221 $(COMPILE.c) -o $@ $<
222 $(CTFCONVERT_O)

224 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/ctfs/%.c
225 $(COMPILE.c) -o $@ $<
226 $(CTFCONVERT_O)

228 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/doorfs/%.c
229 $(COMPILE.c) -o $@ $<
230 $(CTFCONVERT_O)

232 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/dev/%.c
233 $(COMPILE.c) -o $@ $<
234 $(CTFCONVERT_O)

236 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/fd/%.c
237 $(COMPILE.c) -o $@ $<
238 $(CTFCONVERT_O)

240 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/fifofs/%.c
241 $(COMPILE.c) -o $@ $<
242 $(CTFCONVERT_O)

244 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/hsfs/%.c
245 $(COMPILE.c) -o $@ $<
246 $(CTFCONVERT_O)

248 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/lofs/%.c
249 $(COMPILE.c) -o $@ $<
250 $(CTFCONVERT_O)

252 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/mntfs/%.c
253 $(COMPILE.c) -o $@ $<
254 $(CTFCONVERT_O)

256 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/namefs/%.c
257 $(COMPILE.c) -o $@ $<
258 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 5

260 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/nfs/%.c
261 $(COMPILE.c) -o $@ $<
262 $(CTFCONVERT_O)

264 $(OBJS_DIR)/%.o: $(COMMONBASE)/smbsrv/%.c
265 $(COMPILE.c) -o $@ $<
266 $(CTFCONVERT_O)

268 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/smbsrv/%.c
269 $(COMPILE.c) -o $@ $<
270 $(CTFCONVERT_O)

272 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/objfs/%.c
273 $(COMPILE.c) -o $@ $<
274 $(CTFCONVERT_O)

276 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/pcfs/%.c
277 $(COMPILE.c) -o $@ $<
278 $(CTFCONVERT_O)

280 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/portfs/%.c
281 $(COMPILE.c) -o $@ $<
282 $(CTFCONVERT_O)

284 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/proc/%.c
285 $(COMPILE.c) -o $@ $<
286 $(CTFCONVERT_O)

288 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/sharefs/%.c
289 $(COMPILE.c) -o $@ $<
290 $(CTFCONVERT_O)

292 $(OBJS_DIR)/%.o: $(COMMONBASE)/smbclnt/%.c
293 $(COMPILE.c) -o $@ $<
294 $(CTFCONVERT_O)

296 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/smbclnt/netsmb/%.c
297 $(COMPILE.c) -o $@ $<
298 $(CTFCONVERT_O)

300 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/smbclnt/smbfs/%.c
301 $(COMPILE.c) -o $@ $<
302 $(CTFCONVERT_O)

304 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/sockfs/%.c
305 $(COMPILE.c) -o $@ $<
306 $(CTFCONVERT_O)

308 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/specfs/%.c
309 $(COMPILE.c) -o $@ $<
310 $(CTFCONVERT_O)

312 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/swapfs/%.c
313 $(COMPILE.c) -o $@ $<
314 $(CTFCONVERT_O)

316 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/tmpfs/%.c
317 $(COMPILE.c) -o $@ $<
318 $(CTFCONVERT_O)

320 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/udfs/%.c
321 $(COMPILE.c) -o $@ $<
322 $(CTFCONVERT_O)

324 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/ufs/%.c
325 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 6

326 $(CTFCONVERT_O)

328 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vscan/%.c
329 $(COMPILE.c) -o $@ $<
330 $(CTFCONVERT_O)

332 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/zfs/%.c
333 $(COMPILE.c) -o $@ $<
334 $(CTFCONVERT_O)

336 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/zut/%.c
337 $(COMPILE.c) -o $@ $<
338 $(CTFCONVERT_O)

340 $(OBJS_DIR)/%.o: $(COMMONBASE)/xattr/%.c
341 $(COMPILE.c) -o $@ $<
342 $(CTFCONVERT_O)

344 $(OBJS_DIR)/%.o: $(COMMONBASE)/zfs/%.c
345 $(COMPILE.c) -o $@ $<
346 $(CTFCONVERT_O)

348 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/pmcs/%.c
349 $(COMPILE.c) -o $@ $<
350 $(CTFCONVERT_O)

352 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/pmcs/%.bin
353 $(COMPILE.b) -o $@ $<
354 $(CTFCONVERT_O)

356 $(OBJS_DIR)/%.o: $(COMMONBASE)/fsreparse/%.c
357 $(COMPILE.c) -o $@ $<
358 $(CTFCONVERT_O)

360 KMECHKRB5_BASE=$(UTSBASE)/common/gssapi/mechs/krb5

362 KGSSDFLAGS=-I $(UTSBASE)/common/gssapi/include

364 # Note, KRB5_DEFS can be assigned various preprocessor flags,
365 # typically -D defines on the make invocation. The standard compiler
366 # flags will not be overwritten.
367 KGSSDFLAGS += $(KRB5_DEFS)

369 $(OBJS_DIR)/%.o: $(UTSBASE)/common/gssapi/%.c
370 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
371 $(CTFCONVERT_O)

373 $(OBJS_DIR)/%.o: $(UTSBASE)/common/gssapi/mechs/dummy/%.c
374 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
375 $(CTFCONVERT_O)

377 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/%.c
378 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
379 $(CTFCONVERT_O)

381 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/%.c
382 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
383 $(CTFCONVERT_O)

385 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/des/%.c
386 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
387 $(CTFCONVERT_O)

389 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/arcfour/%.c
390 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
391 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 7

393 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/dk/%.c
394 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
395 $(CTFCONVERT_O)

397 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/enc_provider/%.c
398 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
399 $(CTFCONVERT_O)

401 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/hash_provider/%.c
402 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
403 $(CTFCONVERT_O)

405 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/keyhash_provider/%.c
406 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
407 $(CTFCONVERT_O)

409 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/raw/%.c
410 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
411 $(CTFCONVERT_O)

413 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/old/%.c
414 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
415 $(CTFCONVERT_O)

417 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/krb5/krb/%.c
418 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
419 $(CTFCONVERT_O)

421 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/krb5/os/%.c
422 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
423 $(CTFCONVERT_O)

425 $(OBJS_DIR)/ser_sctx.o := CPPFLAGS += -DPROVIDE_KERNEL_IMPORT=1

427 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/mech/%.c
428 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
429 $(CTFCONVERT_O)

431 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/profile/%.c
432 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
433 $(CTFCONVERT_O)

435 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ncall/%.c
436 $(COMPILE.c) -o $@ $<
437 $(CTFCONVERT_O)

439 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/dsw/%.c
440 $(COMPILE.c) -o $@ $<
441 $(CTFCONVERT_O)

443 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/nsctl/%.c
444 $(COMPILE.c) -o $@ $<
445 $(CTFCONVERT_O)

447 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/rdc/%.c
448 $(COMPILE.c) -o $@ $<
449 $(CTFCONVERT_O)

451 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/sdbc/%.c
452 $(COMPILE.c) -o $@ $<
453 $(CTFCONVERT_O)

455 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/solaris/%.c
456 $(COMPILE.c) -o $@ $<
457 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 8

459 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/sv/%.c
460 $(COMPILE.c) -o $@ $<
461 $(CTFCONVERT_O)

463 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/unistat/%.c
464 $(COMPILE.c) -o $@ $<
465 $(CTFCONVERT_O)

467 $(OBJS_DIR)/%.o: $(UTSBASE)/common/idmap/%.c
468 $(COMPILE.c) -o $@ $<
469 $(CTFCONVERT_O)

471 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/%.c
472 $(COMPILE.c) -o $@ $<
473 $(CTFCONVERT_O)

475 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/arp/%.c
476 $(COMPILE.c) -o $@ $<
477 $(CTFCONVERT_O)

479 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/dccp/%.c
480 $(COMPILE.c) -o $@ $<
481 $(CTFCONVERT_O)

483 #endif /* ! codereview */
484 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ip/%.c
485 $(COMPILE.c) -o $@ $<
486 $(CTFCONVERT_O)

488 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ipnet/%.c
489 $(COMPILE.c) -o $@ $<
490 $(CTFCONVERT_O)

492 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/iptun/%.c
493 $(COMPILE.c) -o $@ $<
494 $(CTFCONVERT_O)

496 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/kssl/%.c
497 $(COMPILE.c) -o $@ $<
498 $(CTFCONVERT_O)

500 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/sctp/%.c
501 $(COMPILE.c) -o $@ $<
502 $(CTFCONVERT_O)

504 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/tcp/%.c
505 $(COMPILE.c) -o $@ $<
506 $(CTFCONVERT_O)

508 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ilb/%.c
509 $(COMPILE.c) -o $@ $<
510 $(CTFCONVERT_O)

512 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ipf/%.c
513 $(COMPILE.c) -o $@ $<
514 $(CTFCONVERT_O)

516 $(OBJS_DIR)/%.o: $(COMMONBASE)/net/patricia/%.c
517 $(COMPILE.c) -o $@ $<
518 $(CTFCONVERT_O)

520 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/udp/%.c
521 $(COMPILE.c) -o $@ $<
522 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 9

524 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/nca/%.c
525 $(COMPILE.c) -o $@ $<
526 $(CTFCONVERT_O)

528 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/sockmods/%.c
529 $(COMPILE.c) -o $@ $<
530 $(CTFCONVERT_O)

532 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/dlpistub/%.c
533 $(COMPILE.c) -o $@ $<
534 $(CTFCONVERT_O)

536 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/%.c
537 $(COMPILE.c) -o $@ $<
538 $(CTFCONVERT_O)

540 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/%.c
541 $(COMPILE.c) -o $@ $<
542 $(CTFCONVERT_O)

544 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/adapters/%.c
545 $(COMPILE.c) -o $@ $<
546 $(CTFCONVERT_O)

548 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/targets/av1394/%.c
549 $(COMPILE.c) -o $@ $<
550 $(CTFCONVERT_O)

552 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/targets/dcam1394/%.c
553 $(COMPILE.c) -o $@ $<
554 $(CTFCONVERT_O)

556 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/targets/scsa1394/%.c
557 $(COMPILE.c) -o $@ $<
558 $(CTFCONVERT_O)

560 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sbp2/%.c
561 $(COMPILE.c) -o $@ $<
562 $(CTFCONVERT_O)

564 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/aac/%.c
565 $(COMPILE.c) -o $@ $<
566 $(CTFCONVERT_O)

568 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/afe/%.c
569 $(COMPILE.c) -o $@ $<
570 $(CTFCONVERT_O)

572 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/atge/%.c
573 $(COMPILE.c) -o $@ $<
574 $(CTFCONVERT_O)

576 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/arn/%.c
577 $(COMPILE.c) -o $@ $<
578 $(CTFCONVERT_O)

580 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ath/%.c
581 $(COMPILE.c) -o $@ $<
582 $(CTFCONVERT_O)

584 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/atu/%.c
585 $(COMPILE.c) -o $@ $<
586 $(CTFCONVERT_O)

588 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/impl/%.c
589 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 10

590 $(CTFCONVERT_O)

592 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/ac97/%.c
593 $(COMPILE.c) -o $@ $<
594 $(CTFCONVERT_O)

596 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audioens/%.c
597 $(COMPILE.c) -o $@ $<
598 $(CTFCONVERT_O)

600 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audioemu10k/%.c
601 $(COMPILE.c) -o $@ $<
602 $(CTFCONVERT_O)

604 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audio1575/%.c
605 $(COMPILE.c) -o $@ $<
606 $(CTFCONVERT_O)

608 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audio810/%.c
609 $(COMPILE.c) -o $@ $<
610 $(CTFCONVERT_O)

612 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiocmi/%.c
613 $(COMPILE.c) -o $@ $<
614 $(CTFCONVERT_O)

616 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiocmihd/%.c
617 $(COMPILE.c) -o $@ $<
618 $(CTFCONVERT_O)

620 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiohd/%.c
621 $(COMPILE.c) -o $@ $<
622 $(CTFCONVERT_O)

624 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audioixp/%.c
625 $(COMPILE.c) -o $@ $<
626 $(CTFCONVERT_O)

628 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiols/%.c
629 $(COMPILE.c) -o $@ $<
630 $(CTFCONVERT_O)

632 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiopci/%.c
633 $(COMPILE.c) -o $@ $<
634 $(CTFCONVERT_O)

636 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiop16x/%.c
637 $(COMPILE.c) -o $@ $<
638 $(CTFCONVERT_O)

640 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiosolo/%.c
641 $(COMPILE.c) -o $@ $<
642 $(CTFCONVERT_O)

644 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiots/%.c
645 $(COMPILE.c) -o $@ $<
646 $(CTFCONVERT_O)

648 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiovia823x/%.c
649 $(COMPILE.c) -o $@ $<
650 $(CTFCONVERT_O)

652 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiovia97/%.c
653 $(COMPILE.c) -o $@ $<
654 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 11

656 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/bfe/%.c
657 $(COMPILE.c) -o $@ $<
658 $(CTFCONVERT_O)

660 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/bge/%.c
661 $(COMPILE.c) -o $@ $<
662 $(CTFCONVERT_O)

664 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/blkdev/%.c
665 $(COMPILE.c) -o $@ $<
666 $(CTFCONVERT_O)

668 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/bpf/%.c
669 $(COMPILE.c) -o $@ $<
670 $(CTFCONVERT_O)

672 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/cardbus/%.c
673 $(COMPILE.c) -o $@ $<
674 $(CTFCONVERT_O)

676 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/stmf/%.c
677 $(COMPILE.c) -o $@ $<
678 $(CTFCONVERT_O)

680 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/fct/%.c
681 $(COMPILE.c) -o $@ $<
682 $(CTFCONVERT_O)

684 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/qlt/%.c
685 $(COMPILE.c) -o $@ $<
686 $(CTFCONVERT_O)

688 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/srpt/%.c
689 $(COMPILE.c) -o $@ $<
690 $(CTFCONVERT_O)

692 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/fcoet/%.c
693 $(COMPILE.c) -o $@ $<
694 $(CTFCONVERT_O)

696 $(OBJS_DIR)/%.o: $(COMMONBASE)/iscsit/%.c
697 $(COMPILE.c) -o $@ $<
698 $(CTFCONVERT_O)

700 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/iscsit/%.c
701 $(COMPILE.c) -o $@ $<
702 $(CTFCONVERT_O)

704 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/pppt/%.c
705 $(COMPILE.c) -o $@ $<
706 $(CTFCONVERT_O)

708 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/lu/stmf_sbd/%.c
709 $(COMPILE.c) -o $@ $<
710 $(CTFCONVERT_O)

712 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/dld/%.c
713 $(COMPILE.c) -o $@ $<
714 $(CTFCONVERT_O)

716 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/dls/%.c
717 $(COMPILE.c) -o $@ $<
718 $(CTFCONVERT_O)

720 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/dmfe/%.c
721 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 12

722 $(CTFCONVERT_O)

724 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/drm/%.c
725 $(COMPILE.c) -o $@ $<
726 $(CTFCONVERT_O)

728 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/efe/%.c
729 $(COMPILE.c) -o $@ $<
730 $(CTFCONVERT_O)

732 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/elxl/%.c
733 $(COMPILE.c) -o $@ $<
734 $(CTFCONVERT_O)

736 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fcoe/%.c
737 $(COMPILE.c) -o $@ $<
738 $(CTFCONVERT_O)

740 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hme/%.c
741 $(COMPILE.c) -o $@ $<
742 $(CTFCONVERT_O)

744 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pciex/%.c
745 $(COMPILE.c) -o $@ $<
746 $(CTFCONVERT_O)

748 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hotplug/hpcsvc/%.c
749 $(COMPILE.c) -o $@ $<
750 $(CTFCONVERT_O)

752 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pciex/hotplug/%.c
753 $(COMPILE.c) -o $@ $<
754 $(CTFCONVERT_O)

756 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hotplug/pcihp/%.c
757 $(COMPILE.c) -o $@ $<
758 $(CTFCONVERT_O)

760 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/rds/%.c
761 $(COMPILE.c) -o $@ $<
762 $(CTFCONVERT_O)

764 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/rdsv3/%.c
765 $(COMPILE.c) -o $@ $<
766 $(CTFCONVERT_O)

768 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/iser/%.c
769 $(COMPILE.c) -o $@ $<
770 $(CTFCONVERT_O)

772 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/ibd/%.c
773 $(COMPILE.c) -o $@ $<
774 $(CTFCONVERT_O)

776 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/eoib/%.c
777 $(COMPILE.c) -o $@ $<
778 $(CTFCONVERT_O)

780 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_ofs/%.c
781 $(COMPILE.c) -o $@ $<
782 $(CTFCONVERT_O)

784 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_ucma/%.c
785 $(COMPILE.c) -o $@ $<
786 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 13

788 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_umad/%.c
789 $(COMPILE.c) -o $@ $<
790 $(CTFCONVERT_O)

792 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_uverbs/%.
793 $(COMPILE.c) -o $@ $<
794 $(CTFCONVERT_O)

796 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/sdp/%.c
797 $(COMPILE.c) -o $@ $<
798 $(CTFCONVERT_O)

800 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibcm/%.c
801 $(COMPILE.c) -o $@ $<
802 $(CTFCONVERT_O)

804 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibdm/%.c
805 $(COMPILE.c) -o $@ $<
806 $(CTFCONVERT_O)

808 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibdma/%.c
809 $(COMPILE.c) -o $@ $<
810 $(CTFCONVERT_O)

812 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibmf/%.c
813 $(COMPILE.c) -o $@ $<
814 $(CTFCONVERT_O)

816 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/ibnex/%.c
817 $(COMPILE.c) -o $@ $<
818 $(CTFCONVERT_O)

820 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/ibtl/%.c
821 $(COMPILE.c) -o $@ $<
822 $(CTFCONVERT_O)

824 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/adapters/tavor/%.c
825 $(COMPILE.c) -o $@ $<
826 $(CTFCONVERT_O)

828 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/adapters/hermon/%.c
829 $(COMPILE.c) -o $@ $<
830 $(CTFCONVERT_O)

832 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/daplt/%.c
833 $(COMPILE.c) -o $@ $<
834 $(CTFCONVERT_O)

836 $(OBJS_DIR)/%.o: $(COMMONBASE)/iscsi/%.c
837 $(COMPILE.c) -o $@ $<
838 $(CTFCONVERT_O)

840 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/idm/%.c
841 $(COMPILE.c) -o $@ $<
842 $(CTFCONVERT_O)

844 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ipw/%.c
845 $(COMPILE.c) -o $@ $<
846 $(CTFCONVERT_O)

848 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwh/%.c
849 $(COMPILE.c) -o $@ $<
850 $(CTFCONVERT_O)

852 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwi/%.c
853 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 14

854 $(CTFCONVERT_O)

856 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwk/%.c
857 $(COMPILE.c) -o $@ $<
858 $(CTFCONVERT_O)

860 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwp/%.c
861 $(COMPILE.c) -o $@ $<
862 $(CTFCONVERT_O)

864 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/kb8042/%.c
865 $(COMPILE.c) -o $@ $<
866 $(CTFCONVERT_O)

868 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/kbtrans/%.c
869 $(COMPILE.c) -o $@ $<
870 $(CTFCONVERT_O)

872 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ksocket/%.c
873 $(COMPILE.c) -o $@ $<
874 $(CTFCONVERT_O)

876 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/aggr/%.c
877 $(COMPILE.c) -o $@ $<
878 $(CTFCONVERT_O)

880 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lp/%.c
881 $(COMPILE.c) -o $@ $<
882 $(CTFCONVERT_O)

884 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/hotspares/%.c
885 $(COMPILE.c) -o $@ $<
886 $(CTFCONVERT_O)

888 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/md/%.c
889 $(COMPILE.c) -o $@ $<
890 $(CTFCONVERT_O)

892 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/mirror/%.c
893 $(COMPILE.c) -o $@ $<
894 $(CTFCONVERT_O)

896 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/notify/%.c
897 $(COMPILE.c) -o $@ $<
898 $(CTFCONVERT_O)

900 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/raid/%.c
901 $(COMPILE.c) -o $@ $<
902 $(CTFCONVERT_O)

904 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/softpart/%.c
905 $(COMPILE.c) -o $@ $<
906 $(CTFCONVERT_O)

908 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/stripe/%.c
909 $(COMPILE.c) -o $@ $<
910 $(CTFCONVERT_O)

912 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/trans/%.c
913 $(COMPILE.c) -o $@ $<
914 $(CTFCONVERT_O)

916 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mac/%.c
917 $(COMPILE.c) -o $@ $<
918 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 15

920 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mac/plugins/%.c
921 $(COMPILE.c) -o $@ $<
922 $(CTFCONVERT_O)

924 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mega_sas/%.c
925 $(COMPILE.c) -o $@ $<
926 $(CTFCONVERT_O)

928 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mii/%.c
929 $(COMPILE.c) -o $@ $<
930 $(CTFCONVERT_O)

932 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mr_sas/%.c
933 $(COMPILE.c) -o $@ $<
934 $(CTFCONVERT_O)

936 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/mpt_sas/%.c
937 $(COMPILE.c) -o $@ $<
938 $(CTFCONVERT_O)

940 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mxfe/%.c
941 $(COMPILE.c) -o $@ $<
942 $(CTFCONVERT_O)

944 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mwl/%.c
945 $(COMPILE.c) -o $@ $<
946 $(CTFCONVERT_O)

948 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mwl/mwl_fw/%.c
949 $(COMPILE.c) -o $@ $<
950 $(CTFCONVERT_O)

952 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/net80211/%.c
953 $(COMPILE.c) -o $@ $<
954 $(CTFCONVERT_O)

956 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nge/%.c
957 $(COMPILE.c) -o $@ $<
958 $(CTFCONVERT_O)

960 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nxge/%.c
961 $(COMPILE.c) -o $@ $<
962 $(CTFCONVERT_O)

964 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nxge/npi/%.c
965 $(COMPILE.c) -o $@ $<
966 $(CTFCONVERT_O)

968 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nxge/%.s
969 $(COMPILE.s) -o $@ $<

971 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pci-ide/%.c
972 $(COMPILE.c) -o $@ $<
973 $(CTFCONVERT_O)

975 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcmcia/%.c
976 $(COMPILE.c) -o $@ $<
977 $(CTFCONVERT_O)

979 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcan/%.c
980 $(COMPILE.c) -o $@ $<
981 $(CTFCONVERT_O)

983 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcn/%.c
984 $(COMPILE.c) -o $@ $<
985 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 16

987 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcwl/%.c
988 $(COMPILE.c) -o $@ $<
989 $(CTFCONVERT_O)

991 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ppp/sppp/%.c
992 $(COMPILE.c) -o $@ $<
993 $(CTFCONVERT_O)

995 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ppp/spppasyn/%.c
996 $(COMPILE.c) -o $@ $<
997 $(CTFCONVERT_O)

999 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ppp/sppptun/%.c
1000 $(COMPILE.c) -o $@ $<
1001 $(CTFCONVERT_O)

1003 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ral/%.c
1004 $(COMPILE.c) -o $@ $<
1005 $(CTFCONVERT_O)

1007 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rge/%.c
1008 $(COMPILE.c) -o $@ $<
1009 $(CTFCONVERT_O)

1011 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rtls/%.c
1012 $(COMPILE.c) -o $@ $<
1013 $(CTFCONVERT_O)

1015 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rsm/%.c
1016 $(COMPILE.c) -o $@ $<
1017 $(CTFCONVERT_O)

1019 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rtw/%.c
1020 $(COMPILE.c) -o $@ $<
1021 $(CTFCONVERT_O)

1023 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rum/%.c
1024 $(COMPILE.c) -o $@ $<
1025 $(CTFCONVERT_O)

1027 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rwd/%.c
1028 $(COMPILE.c) -o $@ $<
1029 $(CTFCONVERT_O)

1031 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rwn/%.c
1032 $(COMPILE.c) -o $@ $<
1033 $(CTFCONVERT_O)

1035 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/adapters/ahci/%.c
1036 $(COMPILE.c) -o $@ $<
1037 $(CTFCONVERT_O)

1039 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/adapters/nv_sata/%.c
1040 $(COMPILE.c) -o $@ $<
1041 $(CTFCONVERT_O)

1043 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/adapters/si3124/%.c
1044 $(COMPILE.c) -o $@ $<
1045 $(CTFCONVERT_O)

1047 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/impl/%.c
1048 $(COMPILE.c) -o $@ $<
1049 $(CTFCONVERT_O)

1051 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/conf/%.c

new/usr/src/uts/common/Makefile.rules 17

1052 $(COMPILE.c) -o $@ $<
1053 $(CTFCONVERT_O)

1055 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/impl/%.c
1056 $(COMPILE.c) -o $@ $<
1057 $(CTFCONVERT_O)

1059 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/targets/%.c
1060 $(COMPILE.c) -o $@ $<
1061 $(CTFCONVERT_O)

1063 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/%.c
1064 $(COMPILE.c) -o $@ $<
1065 $(CTFCONVERT_O)

1067 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/blk2scsa/%.c
1068 $(COMPILE.c) -o $@ $<
1069 $(CTFCONVERT_O)

1071 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/%.c
1072 $(COMPILE.c) -o $@ $<
1073 $(CTFCONVERT_O)

1075 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/fop
1076 $(COMPILE.c) -o $@ $<
1077 $(CTFCONVERT_O)

1079 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/ulp/%.c
1080 $(COMPILE.c) -o $@ $<
1081 $(CTFCONVERT_O)

1083 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/impl/%.c
1084 $(COMPILE.c) -o $@ $<
1085 $(CTFCONVERT_O)

1087 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/qlc/%.c
1088 $(COMPILE.c) -o $@ $<
1089 $(CTFCONVERT_O)

1091 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/qlge/%.c
1092 $(COMPILE.c) -o $@ $<
1093 $(CTFCONVERT_O)

1095 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/emlxs/%.c
1096 $(COMPILE.c) -o $@ $<
1097 $(CTFCONVERT_O)

1099 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/oce/%.c
1100 $(COMPILE.c) -o $@ $<
1101 $(CTFCONVERT_O)

1103 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/fcoei/%.c
1104 $(COMPILE.c) -o $@ $<
1105 $(CTFCONVERT_O)

1107 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sdcard/adapters/sdhost/%.c
1108 $(COMPILE.c) -o $@ $<
1109 $(CTFCONVERT_O)

1111 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sdcard/impl/%.c
1112 $(COMPILE.c) -o $@ $<
1113 $(CTFCONVERT_O)

1115 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sdcard/targets/sdcard/%.c
1116 $(COMPILE.c) -o $@ $<
1117 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 18

1119 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sfe/%.c
1120 $(COMPILE.c) -o $@ $<
1121 $(CTFCONVERT_O)

1123 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/simnet/%.c
1124 $(COMPILE.c) -o $@ $<
1125 $(CTFCONVERT_O)

1127 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/softmac/%.c
1128 $(COMPILE.c) -o $@ $<
1129 $(CTFCONVERT_O)

1131 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/uath/%.c
1132 $(COMPILE.c) -o $@ $<
1133 $(CTFCONVERT_O)

1135 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/uath/uath_fw/%.c
1136 $(COMPILE.c) -o $@ $<
1137 $(CTFCONVERT_O)

1139 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ural/%.c
1140 $(COMPILE.c) -o $@ $<
1141 $(CTFCONVERT_O)

1143 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/urtw/%.c
1144 $(COMPILE.c) -o $@ $<
1145 $(CTFCONVERT_O)

1147 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/audio/usb_ac/%.
1148 $(COMPILE.c) -o $@ $<
1149 $(CTFCONVERT_O)

1151 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/audio/usb_as/%.
1152 $(COMPILE.c) -o $@ $<
1153 $(CTFCONVERT_O)

1155 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/audio/usb_ah/%.
1156 $(COMPILE.c) -o $@ $<
1157 $(CTFCONVERT_O)

1159 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbskel/%.c
1160 $(COMPILE.c) -o $@ $<
1161 $(CTFCONVERT_O)

1163 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/video/usbvc/%.c
1164 $(COMPILE.c) -o $@ $<
1165 $(CTFCONVERT_O)

1167 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hwarc/%.c
1168 $(COMPILE.c) -o $@ $<
1169 $(CTFCONVERT_O)

1171 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hid/%.c
1172 $(COMPILE.c) -o $@ $<
1173 $(CTFCONVERT_O)

1175 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hidparser/%.c
1176 $(COMPILE.c) -o $@ $<
1177 $(CTFCONVERT_O)

1179 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/printer/%.c
1180 $(COMPILE.c) -o $@ $<
1181 $(CTFCONVERT_O)

1183 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbkbm/%.c

new/usr/src/uts/common/Makefile.rules 19

1184 $(COMPILE.c) -o $@ $<
1185 $(CTFCONVERT_O)

1187 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbms/%.c
1188 $(COMPILE.c) -o $@ $<
1189 $(CTFCONVERT_O)

1191 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbinput/usbwcm
1192 $(COMPILE.c) -o $@ $<
1193 $(CTFCONVERT_O)

1195 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/ugen/%.c
1196 $(COMPILE.c) -o $@ $<
1197 $(CTFCONVERT_O)

1199 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/%.c
1200 $(COMPILE.c) -o $@ $<
1201 $(CTFCONVERT_O)

1203 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbsacm/
1204 $(COMPILE.c) -o $@ $<
1205 $(CTFCONVERT_O)

1207 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbftdi/
1208 $(COMPILE.c) -o $@ $<
1209 $(CTFCONVERT_O)

1211 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbser_k
1212 $(COMPILE.c) -o $@ $<
1213 $(CTFCONVERT_O)

1215 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbsprl/
1216 $(COMPILE.c) -o $@ $<
1217 $(CTFCONVERT_O)

1219 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/wusb_df/%.c
1220 $(COMPILE.c) -o $@ $<
1221 $(CTFCONVERT_O)

1223 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hwa1480_fw/%.c
1224 $(COMPILE.c) -o $@ $<
1225 $(CTFCONVERT_O)

1227 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/wusb_ca/%.c
1228 $(COMPILE.c) -o $@ $<
1229 $(CTFCONVERT_O)

1231 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbecm/%.c
1232 $(COMPILE.c) -o $@ $<
1233 $(CTFCONVERT_O)

1235 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hcd/openhci/%.c
1236 $(COMPILE.c) -o $@ $<
1237 $(CTFCONVERT_O)

1239 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hcd/ehci/%.c
1240 $(COMPILE.c) -o $@ $<
1241 $(CTFCONVERT_O)

1243 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hcd/uhci/%.c
1244 $(COMPILE.c) -I../../common -o $@ $<
1245 $(CTFCONVERT_O)

1247 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hubd/%.c
1248 $(COMPILE.c) -o $@ $<
1249 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 20

1251 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/scsa2usb/%.c
1252 $(COMPILE.c) -o $@ $<
1253 $(CTFCONVERT_O)

1255 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usb_mid/%.c
1256 $(COMPILE.c) -o $@ $<
1257 $(CTFCONVERT_O)

1259 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usb_ia/%.c
1260 $(COMPILE.c) -o $@ $<
1261 $(CTFCONVERT_O)

1263 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usba/%.c
1264 $(COMPILE.c) -o $@ $<
1265 $(CTFCONVERT_O)

1267 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usba10/%.c
1268 $(COMPILE.c) -o $@ $<
1269 $(CTFCONVERT_O)

1271 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hwa/hwahc/%.c
1272 $(COMPILE.c) -o $@ $<
1273 $(CTFCONVERT_O)

1275 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/uwb/uwba/%.c
1276 $(COMPILE.c) -o $@ $<
1277 $(CTFCONVERT_O)

1279 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vuidmice/%.c
1280 $(COMPILE.c) -o $@ $<
1281 $(CTFCONVERT_O)

1283 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vnic/%.c
1284 $(COMPILE.c) -o $@ $<
1285 $(CTFCONVERT_O)

1287 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/wpi/%.c
1288 $(COMPILE.c) -o $@ $<
1289 $(CTFCONVERT_O)

1291 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/zyd/%.c
1292 $(COMPILE.c) -o $@ $<
1293 $(CTFCONVERT_O)

1295 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/chxge/com/%.c
1296 $(COMPILE.c) -o $@ $<
1297 $(CTFCONVERT_O)

1299 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/chxge/%.c
1300 $(COMPILE.c) -o $@ $<
1301 $(CTFCONVERT_O)

1303 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ixgb/%.c
1304 $(COMPILE.c) -o $@ $<
1305 $(CTFCONVERT_O)

1307 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/xge/drv/%.c
1308 $(COMPILE.c) -o $@ $<
1309 $(CTFCONVERT_O)

1311 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/xge/hal/xgehal/%.c
1312 $(COMPILE.c) -o $@ $<
1313 $(CTFCONVERT_O)

1315 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/e1000g/%.c

new/usr/src/uts/common/Makefile.rules 21

1316 $(COMPILE.c) -o $@ $<
1317 $(CTFCONVERT_O)

1319 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/igb/%.c
1320 $(COMPILE.c) -o $@ $<
1321 $(CTFCONVERT_O)

1323 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iprb/%.c
1324 $(COMPILE.c) -o $@ $<
1325 $(CTFCONVERT_O)

1327 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ixgbe/%.c
1328 $(COMPILE.c) -o $@ $<
1329 $(CTFCONVERT_O)

1331 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ntxn/%.c
1332 $(COMPILE.c) -o $@ $<
1333 $(CTFCONVERT_O)

1335 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/myri10ge/drv/%.c
1336 $(COMPILE.c) -o $@ $<
1337 $(CTFCONVERT_O)

1339 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/%.c
1340 $(COMPILE.c) -o $@ $<
1341 $(CTFCONVERT_O)

1343 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/ipgpc/%.c
1344 $(COMPILE.c) -o $@ $<
1345 $(CTFCONVERT_O)

1347 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/dlcosmk/%.c
1348 $(COMPILE.c) -o $@ $<
1349 $(CTFCONVERT_O)

1351 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/flowacct/%.c
1352 $(COMPILE.c) -o $@ $<
1353 $(CTFCONVERT_O)

1355 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/dscpmk/%.c
1356 $(COMPILE.c) -o $@ $<
1357 $(CTFCONVERT_O)

1359 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/meters/%.c
1360 $(COMPILE.c) -o $@ $<
1361 $(CTFCONVERT_O)

1363 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_emea/%.c
1364 $(COMPILE.c) -o $@ $<
1365 $(CTFCONVERT_O)

1367 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_ja/%.c
1368 $(COMPILE.c) -o $@ $<
1369 $(CTFCONVERT_O)

1371 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_ko/%.c
1372 $(COMPILE.c) -o $@ $<
1373 $(CTFCONVERT_O)

1375 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_sc/%.c
1376 $(COMPILE.c) -o $@ $<
1377 $(CTFCONVERT_O)

1379 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_tc/%.c
1380 $(COMPILE.c) -o $@ $<
1381 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 22

1383 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kmdb/%.c
1384 $(COMPILE.c) -o $@ $<
1385 $(CTFCONVERT_O)

1387 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ktli/%.c
1388 $(COMPILE.c) -o $@ $<
1389 $(CTFCONVERT_O)

1391 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/iscsi/%.c
1392 $(COMPILE.c) -o $@ $<
1393 $(CTFCONVERT_O)

1395 $(OBJS_DIR)/%.o: $(COMMONBASE)/iscsi/%.c
1396 $(COMPILE.c) -o $@ $<
1397 $(CTFCONVERT_O)

1399 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/kifconf/%.c
1400 $(COMPILE.c) -o $@ $<
1401 $(CTFCONVERT_O)

1403 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vr/%.c
1404 $(COMPILE.c) -o $@ $<
1405 $(CTFCONVERT_O)

1407 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/yge/%.c
1408 $(COMPILE.c) -o $@ $<
1409 $(CTFCONVERT_O)

1411 #
1412 # krtld must refer to its own bzero/bcopy until the kernel is fully linked
1413 #
1414 $(OBJS_DIR)/bootrd.o := CPPFLAGS += -DKOBJ_OVERRIDES
1415 $(OBJS_DIR)/doreloc.o := CPPFLAGS += -DKOBJ_OVERRIDES
1416 $(OBJS_DIR)/kobj.o := CPPFLAGS += -DKOBJ_OVERRIDES
1417 $(OBJS_DIR)/kobj_boot.o := CPPFLAGS += -DKOBJ_OVERRIDES
1418 $(OBJS_DIR)/kobj_bootflags.o := CPPFLAGS += -DKOBJ_OVERRIDES
1419 $(OBJS_DIR)/kobj_convrelstr.o := CPPFLAGS += -DKOBJ_OVERRIDES
1420 $(OBJS_DIR)/kobj_isa.o := CPPFLAGS += -DKOBJ_OVERRIDES
1421 $(OBJS_DIR)/kobj_kdi.o := CPPFLAGS += -DKOBJ_OVERRIDES
1422 $(OBJS_DIR)/kobj_lm.o := CPPFLAGS += -DKOBJ_OVERRIDES
1423 $(OBJS_DIR)/kobj_reloc.o := CPPFLAGS += -DKOBJ_OVERRIDES
1424 $(OBJS_DIR)/kobj_stubs.o := CPPFLAGS += -DKOBJ_OVERRIDES
1425 $(OBJS_DIR)/kobj_subr.o := CPPFLAGS += -DKOBJ_OVERRIDES

1427 $(OBJS_DIR)/%.o: $(UTSBASE)/common/krtld/%.c
1428 $(COMPILE.c) -o $@ $<
1429 $(CTFCONVERT_O)

1431 $(OBJS_DIR)/%.o: $(COMMONBASE)/list/%.c
1432 $(COMPILE.c) -o $@ $<
1433 $(CTFCONVERT_O)

1435 $(OBJS_DIR)/%.o: $(COMMONBASE)/lvm/%.c
1436 $(COMPILE.c) -o $@ $<
1437 $(CTFCONVERT_O)

1439 $(OBJS_DIR)/%.o: $(COMMONBASE)/lzma/%.c
1440 $(COMPILE.c) -o $@ $<
1441 $(CTFCONVERT_O)

1443 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/md4/%.c
1444 $(COMPILE.c) -o $@ $<
1445 $(CTFCONVERT_O)

1447 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/md5/%.c

new/usr/src/uts/common/Makefile.rules 23

1448 $(COMPILE.c) -o $@ $<
1449 $(CTFCONVERT_O)

1451 $(OBJS_DIR)/%.o: $(COMMONBASE)/net/dhcp/%.c
1452 $(COMPILE.c) -o $@ $<
1453 $(CTFCONVERT_O)

1455 $(OBJS_DIR)/%.o: $(COMMONBASE)/nvpair/%.c
1456 $(COMPILE.c) -o $@ $<
1457 $(CTFCONVERT_O)

1459 $(OBJS_DIR)/%.o: $(UTSBASE)/common/os/%.c
1460 $(COMPILE.c) -o $@ $<
1461 $(CTFCONVERT_O)

1463 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/cis/%.c
1464 $(COMPILE.c) -o $@ $<
1465 $(CTFCONVERT_O)

1467 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/cs/%.c
1468 $(COMPILE.c) -o $@ $<
1469 $(CTFCONVERT_O)

1471 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/nexus/%.c
1472 $(COMPILE.c) -o $@ $<
1473 $(CTFCONVERT_O)

1475 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/pcs/%.c
1476 $(COMPILE.c) -o $@ $<
1477 $(CTFCONVERT_O)

1479 $(OBJS_DIR)/%.o: $(UTSBASE)/common/rpc/%.c
1480 $(COMPILE.c) -o $@ $<
1481 $(CTFCONVERT_O)

1483 $(OBJS_DIR)/%.o: $(UTSBASE)/common/rpc/sec/%.c
1484 $(COMPILE.c) -o $@ $<
1485 $(CTFCONVERT_O)

1487 $(OBJS_DIR)/%.o: $(UTSBASE)/common/rpc/sec_gss/%.c
1488 $(COMPILE.c) -o $@ $<
1489 $(CTFCONVERT_O)

1491 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/sha1/%.c
1492 $(COMPILE.c) -o $@ $<
1493 $(CTFCONVERT_O)

1495 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/sha2/%.c
1496 $(COMPILE.c) -o $@ $<
1497 $(CTFCONVERT_O)

1499 $(OBJS_DIR)/%.o: $(UTSBASE)/common/syscall/%.c
1500 $(COMPILE.c) -o $@ $<
1501 $(CTFCONVERT_O)

1503 $(OBJS_DIR)/%.o: $(UTSBASE)/common/tnf/%.c
1504 $(COMPILE.c) -o $@ $<
1505 $(CTFCONVERT_O)

1507 $(OBJS_DIR)/%.o: $(COMMONBASE)/tsol/%.c
1508 $(COMPILE.c) -o $@ $<
1509 $(CTFCONVERT_O)

1511 $(OBJS_DIR)/%.o: $(COMMONBASE)/util/%.c
1512 $(COMPILE.c) -o $@ $<
1513 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 24

1515 $(OBJS_DIR)/%.o: $(COMMONBASE)/unicode/%.c
1516 $(COMPILE.c) -o $@ $<
1517 $(CTFCONVERT_O)

1519 $(OBJS_DIR)/%.o: $(UTSBASE)/common/vm/%.c
1520 $(COMPILE.c) -o $@ $<
1521 $(CTFCONVERT_O)

1523 $(OBJS_DIR)/%.o: $(UTSBASE)/common/zmod/%.c
1524 $(COMPILE.c) -o $@ $<
1525 $(CTFCONVERT_O)

1527 $(OBJS_DIR)/zlib_obj.o: $(ZLIB_OBJS:%=$(OBJS_DIR)/%)
1528 $(LD) -r -Breduce -M$(UTSBASE)/common/zmod/mapfile -o $@ \
1529 $(ZLIB_OBJS:%=$(OBJS_DIR)/%)
1530 $(CTFMERGE) -t -f -L VERSION -o $@ $(ZLIB_OBJS:%=$(OBJS_DIR)/%)

1532 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hxge/%.c
1533 $(COMPILE.c) -o $@ $<
1534 $(CTFCONVERT_O)

1536 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/tpm/%.c
1537 $(COMPILE.c) -o $@ $<
1538 $(CTFCONVERT_O)

1540 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/tpm/%.s
1541 $(COMPILE.s) -o $@ $<

1543 $(OBJS_DIR)/bz2%.o: $(COMMONBASE)/bzip2/%.c
1544 $(COMPILE.c) -o $@ -I$(COMMONBASE)/bzip2 $<
1545 $(CTFCONVERT_O)

1547 BZ2LINT = -erroff=%all -I$(UTSBASE)/common/bzip2

1549 $(LINTS_DIR)/bz2%.ln: $(COMMONBASE)/bzip2/%.c
1550 @($(LHEAD) $(LINT.c) -C $(LINTS_DIR)/‘basename $@ .ln‘ $(BZ2LINT) $< $(

1552 #
1553 # SVM
1554 #

1556 MD_XDR_CSRC = $(UTSBASE)/common/io/lvm/md
1557 MD_XDR_XSRC = $(UTSBASE)/common/sys/lvm
1558 RPCGENFLAGS += -C -M -D_KERNEL -DSYSV

1560 $(MD_XDR_CSRC)/meta_basic_xdr.c: $(MD_XDR_XSRC)/meta_basic.x
1561 $(RPCGEN) $(RPCGENFLAGS) -c -i 100 $(MD_XDR_XSRC)/meta_basic.x | \
1562 nawk ’{sub(/^#include "(\.\.\/\.\.\/)/,"#include \"\.\.\/\.\.\/\.\.\/\.\
1563 nawk ’{sub(/meta_basic.h/, "md_basic.h"); print $$0}’ >$@

1565 $(MD_XDR_CSRC)/metamed_xdr.c: $(MD_XDR_XSRC)/metamed.x
1566 $(RPCGEN) $(RPCGENFLAGS) -c -i 100 $(MD_XDR_XSRC)/metamed.x | \
1567 nawk ’{sub(/^#include "(\.\.\/\.\.\/)/,"#include \"\.\.\/\.\.\/\.\.\/\.\
1568 nawk ’{sub(/metamed.h/, "mdmed.h"); print $$0}’ >$@

1570 #
1571 # Section 1b: Lint ‘objects’
1572 #
1573 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/aes/%.c
1574 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1576 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/arcfour/%.c
1577 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1579 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/blowfish/%.c

new/usr/src/uts/common/Makefile.rules 25

1580 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1582 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/ecc/%.c
1583 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1585 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/modes/%.c
1586 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1588 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/padding/%.c
1589 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1591 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/rng/%.c
1592 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1594 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/rsa/%.c
1595 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1597 $(LINTS_DIR)/%.ln: $(COMMONBASE)/bignum/%.c
1598 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1600 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/bignum/%.c
1601 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1603 $(LINTS_DIR)/%.ln: $(COMMONBASE)/mpi/%.c
1604 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1606 $(LINTS_DIR)/%.ln: $(COMMONBASE)/acl/%.c
1607 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1609 $(LINTS_DIR)/%.ln: $(COMMONBASE)/avl/%.c
1610 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1612 $(LINTS_DIR)/%.ln: $(COMMONBASE)/ucode/%.c
1613 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1615 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/sn1/%.c
1616 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1618 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/solaris10/%.c
1619 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1621 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/c2/%.c
1622 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1624 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/conf/%.c
1625 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1627 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/contract/%.c
1628 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1630 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/cpr/%.c
1631 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1633 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ctf/%.c
1634 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1636 $(LINTS_DIR)/%.ln: $(COMMONBASE)/ctf/%.c
1637 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1639 $(LINTS_DIR)/%.ln: $(COMMONBASE)/pci/%.c
1640 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1642 $(LINTS_DIR)/%.ln: $(COMMONBASE)/devid/%.c
1643 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1645 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/des/%.c

new/usr/src/uts/common/Makefile.rules 26

1646 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1648 $(LINTS_DIR)/%.ln: $(COMMONBASE)/smbios/%.c
1649 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1651 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ncall/%.c
1652 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1654 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/dsw/%.c
1655 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1657 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/nsctl/%.c
1658 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1660 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/rdc/%.c
1661 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1663 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/sdbc/%.c
1664 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1666 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/solaris/%.c
1667 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1669 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/sv/%.c
1670 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1672 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/unistat/%.c
1673 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1675 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/des/%.c
1676 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1678 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/api/%.c
1679 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1681 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/core/%.c
1682 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1684 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/io/%.c
1685 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1687 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/spi/%.c
1688 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1690 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/disp/%.c
1691 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1693 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/dtrace/%.c
1694 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1696 $(LINTS_DIR)/%.ln: $(COMMONBASE)/exacct/%.c
1697 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1699 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/aout/%.c
1700 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1702 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/elf/%.c
1703 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1705 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/intp/%.c
1706 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1708 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/shbin/%.c
1709 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1711 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/java/%.c

new/usr/src/uts/common/Makefile.rules 27

1712 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1714 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/%.c
1715 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1717 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/autofs/%.c
1718 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1720 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/cachefs/%.c
1721 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1723 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/ctfs/%.c
1724 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1726 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/doorfs/%.c
1727 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1729 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/dcfs/%.c
1730 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1732 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/devfs/%.c
1733 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1735 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/dev/%.c
1736 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1738 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/fd/%.c
1739 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1741 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/fifofs/%.c
1742 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1744 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/hsfs/%.c
1745 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1747 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/lofs/%.c
1748 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1750 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/mntfs/%.c
1751 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1753 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/namefs/%.c
1754 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1756 $(LINTS_DIR)/%.ln: $(COMMONBASE)/smbsrv/%.c
1757 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1759 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/smbsrv/%.c
1760 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1762 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/nfs/%.c
1763 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1765 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/objfs/%.c
1766 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1768 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/pcfs/%.c
1769 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1771 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/portfs/%.c
1772 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1774 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/proc/%.c
1775 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1777 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/sharefs/%.c

new/usr/src/uts/common/Makefile.rules 28

1778 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1780 $(LINTS_DIR)/%.ln: $(COMMONBASE)/smbclnt/%.c
1781 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1783 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/smbclnt/netsmb/%.c
1784 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1786 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/smbclnt/smbfs/%.c
1787 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1789 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/sockfs/%.c
1790 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1792 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/specfs/%.c
1793 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1795 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/swapfs/%.c
1796 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1798 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/tmpfs/%.c
1799 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1801 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/udfs/%.c
1802 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1804 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/ufs/%.c
1805 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1807 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/ufs_log/%.c
1808 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1810 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vscan/%.c
1811 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1813 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/zfs/%.c
1814 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1816 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/zut/%.c
1817 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1819 $(LINTS_DIR)/%.ln: $(COMMONBASE)/xattr/%.c
1820 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1822 $(LINTS_DIR)/%.ln: $(COMMONBASE)/zfs/%.c
1823 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1825 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/gssapi/%.c
1826 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1828 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/gssapi/mechs/dummy/%.c
1829 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1831 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/%.c
1832 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1834 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/%.c
1835 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1837 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/des/%.c
1838 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1840 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/dk/%.c
1841 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1843 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/os/%.c

new/usr/src/uts/common/Makefile.rules 29

1844 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1846 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/arcfour/%.c
1847 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1849 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/enc_provider/%.c
1850 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1852 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/hash_provider/%.c
1853 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1855 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/keyhash_provider/%.c
1856 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1858 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/raw/%.c
1859 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1861 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/old/%.c
1862 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1864 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/krb5/krb/%.c
1865 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1867 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/krb5/os/%.c
1868 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1870 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/mech/%.c
1871 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1873 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/idmap/%.c
1874 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1876 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/%.c
1877 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1879 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/sockmods/%.c
1880 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1882 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/arp/%.c
1883 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1885 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/dccp/%.c
1886 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1888 #endif /* ! codereview */
1889 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ip/%.c
1890 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1892 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ipnet/%.c
1893 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1895 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/iptun/%.c
1896 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1898 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ipf/%.c
1899 @($(LHEAD) $(LINT.c) $(IPFFLAGS) $< $(LTAIL))

1901 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/kssl/%.c
1902 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1904 $(LINTS_DIR)/%.ln: $(COMMONBASE)/net/patricia/%.c
1905 @($(LHEAD) $(LINT.c) $(IPFFLAGS) $< $(LTAIL))

1907 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/udp/%.c
1908 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 30

1910 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/sctp/%.c
1911 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1913 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/tcp/%.c
1914 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1916 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ilb/%.c
1917 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1919 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/nca/%.c
1920 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1922 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/dlpistub/%.c
1923 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1925 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/%.c
1926 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1928 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/%.c
1929 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1931 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/adapters/%.c
1932 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1934 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/targets/av1394/%.c
1935 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1937 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/targets/dcam1394/%.c
1938 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1940 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/targets/scsa1394/%.c
1941 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1943 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sbp2/%.c
1944 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1946 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/aac/%.c
1947 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1949 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/afe/%.c
1950 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1952 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/atge/%.c
1953 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1955 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/arn/%.c
1956 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1958 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ath/%.c
1959 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1961 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/atu/%.c
1962 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1964 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/impl/%.c
1965 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1967 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/ac97/%.c
1968 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1970 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audio1575/%.c
1971 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1973 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audio810/%.c
1974 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 31

1976 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiocmi/%.c
1977 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1979 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiocmihd/%.c
1980 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1982 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audioens/%.c
1983 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1985 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audioemu10k/%.c
1986 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1988 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiohd/%.c
1989 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1991 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audioixp/%.c
1992 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1994 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiols/%.c
1995 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1997 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiopci/%.c
1998 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2000 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiop16x/%.c
2001 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2003 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiosolo/%.c
2004 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2006 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiots/%.c
2007 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2009 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiovia823x/%.c
2010 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2012 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiovia97/%.c
2013 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2015 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/bfe/%.c
2016 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2018 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/bpf/%.c
2019 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2021 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/bge/%.c
2022 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2024 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/blkdev/%.c
2025 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2027 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/cardbus/%.c
2028 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2030 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/lu/stmf_sbd/%.c
2031 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2033 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/fct/%.c
2034 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2036 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/qlt/%.c
2037 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2039 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/srpt/%.c
2040 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 32

2042 $(LINTS_DIR)/%.ln: $(COMMONBASE)/iscsit/%.c
2043 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2045 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/fcoet/%.c
2046 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2048 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/iscsit/%.c
2049 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2051 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/pppt/%.c
2052 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2054 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/stmf/%.c
2055 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2057 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/dld/%.c
2058 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2060 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/dls/%.c
2061 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2063 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/dmfe/%.c
2064 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2066 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/drm/%.c
2067 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2069 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/efe/%.c
2070 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2072 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/elxl/%.c
2073 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2075 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fcoe/%.c
2076 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2078 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hme/%.c
2079 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2081 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pciex/%.c
2082 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2084 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hotplug/hpcsvc/%.c
2085 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2087 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pciex/hotplug/%.c
2088 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2090 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hotplug/pcihp/%.c
2091 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2093 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/rds/%.c
2094 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2096 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/rdsv3/%.c
2097 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2099 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/iser/%.c
2100 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2102 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/ibd/%.c
2103 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2105 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/eoib/%.c
2106 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 33

2108 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_ofs/%.c
2109 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2111 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_ucma/%.c
2112 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2114 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_umad/%.c
2115 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2117 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_uverbs/%.
2118 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2120 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/sdp/%.c
2121 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2123 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibcm/%.c
2124 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2126 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibdm/%.c
2127 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2129 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibdma/%.c
2130 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2132 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibmf/%.c
2133 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2135 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/ibnex/%.c
2136 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2138 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/ibtl/%.c
2139 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2141 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/adapters/tavor/%.c
2142 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2144 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/adapters/hermon/%.c
2145 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2147 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/daplt/%.c
2148 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2150 $(LINTS_DIR)/%.ln: $(COMMONBASE)/iscsi/%.c
2151 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2153 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/idm/%.c
2154 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2156 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ipw/%.c
2157 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2159 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwh/%.c
2160 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2162 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwi/%.c
2163 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2165 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwk/%.c
2166 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2168 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwp/%.c
2169 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2171 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/kb8042/%.c
2172 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 34

2174 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/kbtrans/%.c
2175 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2177 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ksocket/%.c
2178 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2180 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/aggr/%.c
2181 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2183 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lp/%.c
2184 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2186 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/hotspares/%.c
2187 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2189 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/md/%.c
2190 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2192 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/mirror/%.c
2193 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2195 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/raid/%.c
2196 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2198 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/softpart/%.c
2199 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2201 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/stripe/%.c
2202 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2204 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/notify/%.c
2205 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2207 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/trans/%.c
2208 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2210 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mac/%.c
2211 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2213 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mac/plugins/%.c
2214 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2216 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mega_sas/%.c
2217 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2219 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mii/%.c
2220 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2222 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mr_sas/%.c
2223 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2225 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/mpt_sas/%.c
2226 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2228 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mxfe/%.c
2229 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2231 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mwl/%.c
2232 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2234 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mwl/mwl_fw/%.c
2235 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2237 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/net80211/%.c
2238 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 35

2240 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nge/%.c
2241 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2243 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nxge/%.c
2244 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2246 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nxge/%.s
2247 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2249 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nxge/npi/%.c
2250 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2252 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pci-ide/%.c
2253 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2255 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcmcia/%.c
2256 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2258 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcan/%.c
2259 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2261 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcn/%.c
2262 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2264 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcwl/%.c
2265 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2267 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ppp/sppp/%.c
2268 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2270 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ppp/spppasyn/%.c
2271 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2273 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ppp/sppptun/%.c
2274 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2276 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ral/%.c
2277 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2279 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rge/%.c
2280 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2282 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rtls/%.c
2283 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2285 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rsm/%.c
2286 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2288 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rtw/%.c
2289 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2291 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rum/%.c
2292 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2294 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rwd/%.c
2295 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2297 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rwn/%.c
2298 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2300 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/adapters/ahci/%.c
2301 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2303 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/adapters/nv_sata/%.c
2304 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 36

2306 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/adapters/si3124/%.c
2307 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2309 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/impl/%.c
2310 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2312 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/%.c
2313 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2315 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/blk2scsa/%.c
2316 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2318 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/pmcs/%.c
2319 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2321 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/%.c
2322 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2324 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/fop
2325 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2327 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/ulp/%.c
2328 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2330 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/impl/%.c
2331 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2333 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/qlc/%.c
2334 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2336 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/qlge/%.c
2337 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2339 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/emlxs/%.c
2340 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2342 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/oce/%.c
2343 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2345 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/fcoei/%.c
2346 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2348 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/conf/%.c
2349 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2351 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/impl/%.c
2352 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2354 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/targets/%.c
2355 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2357 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sdcard/adapters/sdhost/%.c
2358 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2360 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sdcard/impl/%.c
2361 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2363 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sdcard/targets/sdcard/%.c
2364 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2366 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sfe/%.c
2367 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2369 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/simnet/%.c
2370 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 37

2372 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/softmac/%.c
2373 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2375 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/uath/%.c
2376 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2378 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/uath/uath_fw/%.c
2379 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2381 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ural/%.c
2382 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2384 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/urtw/%.c
2385 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2387 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/audio/usb_ac/%.
2388 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2390 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/audio/usb_as/%.
2391 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2393 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/audio/usb_ah/%.
2394 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2396 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbskel/%.c
2397 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2399 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/video/usbvc/%.c
2400 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2402 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hwarc/%.c
2403 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2405 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hid/%.c
2406 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2408 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hidparser/%.c
2409 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2411 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbkbm/%.c
2412 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2414 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbms/%.c
2415 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2417 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbinput/usbwcm
2418 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2420 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/ugen/%.c
2421 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2423 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/printer/%.c
2424 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2426 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/%.c
2427 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2429 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbsacm/
2430 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2432 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbftdi/
2433 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2435 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbser_k
2436 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 38

2438 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbsprl/
2439 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2441 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/wusb_df/%.c
2442 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2444 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hwa1480_fw/%.c
2445 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2447 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/wusb_ca/%.c
2448 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2450 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbecm/%.c
2451 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2453 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hcd/openhci/%.c
2454 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2456 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hcd/ehci/%.c
2457 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2459 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hcd/uhci/%.c
2460 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2462 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hubd/%.c
2463 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2465 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/scsa2usb/%.c
2466 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2468 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usb_mid/%.c
2469 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2471 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usb_ia/%.c
2472 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2474 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usba/%.c
2475 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2477 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usba10/%.c
2478 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2480 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/uwb/uwba/%.c
2481 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2483 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hwa/hwahc/%.c
2484 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2486 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vuidmice/%.c
2487 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2489 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vnic/%.c
2490 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2492 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/wpi/%.c
2493 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2495 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/zyd/%.c
2496 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2498 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/chxge/com/%.c
2499 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2501 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/chxge/%.c
2502 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 39

2504 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ixgb/%.c
2505 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2507 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/xge/drv/%.c
2508 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2510 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/xge/hal/xgehal/%.c
2511 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2513 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/e1000g/%.c
2514 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2516 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/igb/%.c
2517 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2519 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iprb/%.c
2520 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2522 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ixgbe/%.c
2523 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2525 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ntxn/%.c
2526 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2528 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/myri10ge/drv/%.c
2529 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2531 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/%.c
2532 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2534 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/ipgpc/%.c
2535 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2537 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/dlcosmk/%.c
2538 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2540 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/flowacct/%.c
2541 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2543 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/dscpmk/%.c
2544 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2546 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/meters/%.c
2547 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2549 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_emea/%.c
2550 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2552 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_ja/%.c
2553 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2555 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_ko/%.c
2556 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2558 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_sc/%.c
2559 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2561 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_tc/%.c
2562 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2564 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kmdb/%.c
2565 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2567 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/krtld/%.c
2568 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 40

2570 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ktli/%.c
2571 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2573 $(LINTS_DIR)/%.ln: $(COMMONBASE)/list/%.c
2574 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2576 $(LINTS_DIR)/%.ln: $(COMMONBASE)/lvm/%.c
2577 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2579 $(LINTS_DIR)/%.ln: $(COMMONBASE)/lzma/%.c
2580 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2582 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/md4/%.c
2583 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2585 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/md5/%.c
2586 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2588 $(LINTS_DIR)/%.ln: $(COMMONBASE)/net/dhcp/%.c
2589 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2591 $(LINTS_DIR)/%.ln: $(COMMONBASE)/nvpair/%.c
2592 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2594 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/os/%.c
2595 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2597 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/%.c
2598 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2600 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/cs/%.c
2601 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2603 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/cis/%.c
2604 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2606 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/nexus/%.c
2607 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2609 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/pcs/%.c
2610 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2612 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/%.c
2613 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2615 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/sec/%.c
2616 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2618 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/sec_gss/%.c
2619 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2621 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/sha1/%.c
2622 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2624 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/sha2/%.c
2625 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2627 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/syscall/%.c
2628 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2630 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/tnf/%.c
2631 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2633 $(LINTS_DIR)/%.ln: $(COMMONBASE)/tsol/%.c
2634 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 41

2636 $(LINTS_DIR)/%.ln: $(COMMONBASE)/util/%.c
2637 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2639 $(LINTS_DIR)/%.ln: $(COMMONBASE)/unicode/%.c
2640 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2642 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/vm/%.c
2643 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2645 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/iscsi/%.c
2646 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2648 $(LINTS_DIR)/%.ln: $(COMMONBASE)/iscsi/%.c
2649 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2651 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/kifconf/%.c
2652 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2654 ZMODLINTFLAGS = -erroff=E_CONSTANT_CONDITION

2656 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/zmod/%.c
2657 @($(LHEAD) $(LINT.c) $(ZMODLINTFLAGS) $< $(LTAIL))

2659 $(LINTS_DIR)/zlib_obj.ln: $(ZLIB_OBJS:%.o=$(LINTS_DIR)/%.ln) \
2660 $(UTSBASE)/common/zmod/zlib_lint.c
2661 @($(LHEAD) $(LINT.c) -C $(LINTS_DIR)/zlib_obj \
2662 $(UTSBASE)/common/zmod/zlib_lint.c $(LTAIL))

2664 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hxge/%.c
2665 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2667 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/tpm/%.c
2668 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2670 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/tpm/%.s
2671 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2673 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vr/%.c
2674 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2676 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/yge/%.c
2677 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2679 $(LINTS_DIR)/%.ln: $(COMMONBASE)/fsreparse/%.c
2680 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/dtrace/sdt_subr.c 1

**
 57591 Sat Aug 18 10:37:07 2012
new/usr/src/uts/common/dtrace/sdt_subr.c
dccp: basic dtrace
**
______unchanged_portion_omitted_

99 sdt_provider_t sdt_providers[] = {
100 { "vtrace", "__vtrace_", &vtrace_attr, 0 },
101 { "sysinfo", "__cpu_sysinfo_", &info_attr, 0 },
102 { "vminfo", "__cpu_vminfo_", &info_attr, 0 },
103 { "fpuinfo", "__fpuinfo_", &fpu_attr, 0 },
104 { "sched", "__sched_", &stab_attr, 0 },
105 { "proc", "__proc_", &stab_attr, 0 },
106 { "io", "__io_", &stab_attr, 0 },
107 { "ip", "__ip_", &stab_attr, 0 },
108 { "tcp", "__tcp_", &stab_attr, 0 },
109 { "udp", "__udp_", &stab_attr, 0 },
110 { "dccp", "__dccp_", &stab_attr, 0 },
111 #endif /* ! codereview */
112 { "mib", "__mib_", &stab_attr, 0 },
113 { "fsinfo", "__fsinfo_", &fsinfo_attr, 0 },
114 { "iscsi", "__iscsi_", &iscsi_attr, 0 },
115 { "nfsv3", "__nfsv3_", &stab_attr, 0 },
116 { "nfsv4", "__nfsv4_", &stab_attr, 0 },
117 { "xpv", "__xpv_", &xpv_attr, 0 },
118 { "fc", "__fc_", &fc_attr, 0 },
119 { "srp", "__srp_", &fc_attr, 0 },
120 { "sysevent", "__sysevent_", &stab_attr, 0 },
121 { "sdt", NULL, &sdt_attr, 0 },
122 { NULL }
123 };

125 sdt_argdesc_t sdt_args[] = {
126 { "sched", "wakeup", 0, 0, "kthread_t *", "lwpsinfo_t *" },
127 { "sched", "wakeup", 1, 0, "kthread_t *", "psinfo_t *" },
128 { "sched", "dequeue", 0, 0, "kthread_t *", "lwpsinfo_t *" },
129 { "sched", "dequeue", 1, 0, "kthread_t *", "psinfo_t *" },
130 { "sched", "dequeue", 2, 1, "disp_t *", "cpuinfo_t *" },
131 { "sched", "enqueue", 0, 0, "kthread_t *", "lwpsinfo_t *" },
132 { "sched", "enqueue", 1, 0, "kthread_t *", "psinfo_t *" },
133 { "sched", "enqueue", 2, 1, "disp_t *", "cpuinfo_t *" },
134 { "sched", "enqueue", 3, 2, "int" },
135 { "sched", "off-cpu", 0, 0, "kthread_t *", "lwpsinfo_t *" },
136 { "sched", "off-cpu", 1, 0, "kthread_t *", "psinfo_t *" },
137 { "sched", "tick", 0, 0, "kthread_t *", "lwpsinfo_t *" },
138 { "sched", "tick", 1, 0, "kthread_t *", "psinfo_t *" },
139 { "sched", "change-pri", 0, 0, "kthread_t *", "lwpsinfo_t *" },
140 { "sched", "change-pri", 1, 0, "kthread_t *", "psinfo_t *" },
141 { "sched", "change-pri", 2, 1, "pri_t" },
142 { "sched", "schedctl-nopreempt", 0, 0, "kthread_t *", "lwpsinfo_t *" },
143 { "sched", "schedctl-nopreempt", 1, 0, "kthread_t *", "psinfo_t *" },
144 { "sched", "schedctl-nopreempt", 2, 1, "int" },
145 { "sched", "schedctl-preempt", 0, 0, "kthread_t *", "lwpsinfo_t *" },
146 { "sched", "schedctl-preempt", 1, 0, "kthread_t *", "psinfo_t *" },
147 { "sched", "schedctl-yield", 0, 0, "int" },
148 { "sched", "surrender", 0, 0, "kthread_t *", "lwpsinfo_t *" },
149 { "sched", "surrender", 1, 0, "kthread_t *", "psinfo_t *" },
150 { "sched", "cpucaps-sleep", 0, 0, "kthread_t *", "lwpsinfo_t *" },
151 { "sched", "cpucaps-sleep", 1, 0, "kthread_t *", "psinfo_t *" },
152 { "sched", "cpucaps-wakeup", 0, 0, "kthread_t *", "lwpsinfo_t *" },
153 { "sched", "cpucaps-wakeup", 1, 0, "kthread_t *", "psinfo_t *" },

155 { "proc", "create", 0, 0, "proc_t *", "psinfo_t *" },
156 { "proc", "exec", 0, 0, "string" },
157 { "proc", "exec-failure", 0, 0, "int" },

new/usr/src/uts/common/dtrace/sdt_subr.c 2

158 { "proc", "exit", 0, 0, "int" },
159 { "proc", "fault", 0, 0, "int" },
160 { "proc", "fault", 1, 1, "siginfo_t *" },
161 { "proc", "lwp-create", 0, 0, "kthread_t *", "lwpsinfo_t *" },
162 { "proc", "lwp-create", 1, 0, "kthread_t *", "psinfo_t *" },
163 { "proc", "signal-clear", 0, 0, "int" },
164 { "proc", "signal-clear", 1, 1, "siginfo_t *" },
165 { "proc", "signal-discard", 0, 0, "kthread_t *", "lwpsinfo_t *" },
166 { "proc", "signal-discard", 1, 1, "proc_t *", "psinfo_t *" },
167 { "proc", "signal-discard", 2, 2, "int" },
168 { "proc", "signal-handle", 0, 0, "int" },
169 { "proc", "signal-handle", 1, 1, "siginfo_t *" },
170 { "proc", "signal-handle", 2, 2, "void (*)(void)" },
171 { "proc", "signal-send", 0, 0, "kthread_t *", "lwpsinfo_t *" },
172 { "proc", "signal-send", 1, 0, "kthread_t *", "psinfo_t *" },
173 { "proc", "signal-send", 2, 1, "int" },

175 { "io", "start", 0, 0, "buf_t *", "bufinfo_t *" },
176 { "io", "start", 1, 0, "buf_t *", "devinfo_t *" },
177 { "io", "start", 2, 0, "buf_t *", "fileinfo_t *" },
178 { "io", "done", 0, 0, "buf_t *", "bufinfo_t *" },
179 { "io", "done", 1, 0, "buf_t *", "devinfo_t *" },
180 { "io", "done", 2, 0, "buf_t *", "fileinfo_t *" },
181 { "io", "wait-start", 0, 0, "buf_t *", "bufinfo_t *" },
182 { "io", "wait-start", 1, 0, "buf_t *", "devinfo_t *" },
183 { "io", "wait-start", 2, 0, "buf_t *", "fileinfo_t *" },
184 { "io", "wait-done", 0, 0, "buf_t *", "bufinfo_t *" },
185 { "io", "wait-done", 1, 0, "buf_t *", "devinfo_t *" },
186 { "io", "wait-done", 2, 0, "buf_t *", "fileinfo_t *" },

188 { "mib", NULL, 0, 0, "int" },

190 { "fsinfo", NULL, 0, 0, "vnode_t *", "fileinfo_t *" },
191 { "fsinfo", NULL, 1, 1, "int", "int" },

193 { "iscsi", "async-send", 0, 0, "idm_conn_t *", "conninfo_t *" },
194 { "iscsi", "async-send", 1, 1, "iscsi_async_evt_hdr_t *",
195 "iscsiinfo_t *" },
196 { "iscsi", "login-command", 0, 0, "idm_conn_t *", "conninfo_t *" },
197 { "iscsi", "login-command", 1, 1, "iscsi_login_hdr_t *",
198 "iscsiinfo_t *" },
199 { "iscsi", "login-response", 0, 0, "idm_conn_t *", "conninfo_t *" },
200 { "iscsi", "login-response", 1, 1, "iscsi_login_rsp_hdr_t *",
201 "iscsiinfo_t *" },
202 { "iscsi", "logout-command", 0, 0, "idm_conn_t *", "conninfo_t *" },
203 { "iscsi", "logout-command", 1, 1, "iscsi_logout_hdr_t *",
204 "iscsiinfo_t *" },
205 { "iscsi", "logout-response", 0, 0, "idm_conn_t *", "conninfo_t *" },
206 { "iscsi", "logout-response", 1, 1, "iscsi_logout_rsp_hdr_t *",
207 "iscsiinfo_t *" },
208 { "iscsi", "data-request", 0, 0, "idm_conn_t *", "conninfo_t *" },
209 { "iscsi", "data-request", 1, 1, "iscsi_rtt_hdr_t *",
210 "iscsiinfo_t *" },
211 { "iscsi", "data-send", 0, 0, "idm_conn_t *", "conninfo_t *" },
212 { "iscsi", "data-send", 1, 1, "iscsi_data_rsp_hdr_t *",
213 "iscsiinfo_t *" },
214 { "iscsi", "data-receive", 0, 0, "idm_conn_t *", "conninfo_t *" },
215 { "iscsi", "data-receive", 1, 1, "iscsi_data_hdr_t *",
216 "iscsiinfo_t *" },
217 { "iscsi", "nop-send", 0, 0, "idm_conn_t *", "conninfo_t *" },
218 { "iscsi", "nop-send", 1, 1, "iscsi_nop_in_hdr_t *", "iscsiinfo_t *" },
219 { "iscsi", "nop-receive", 0, 0, "idm_conn_t *", "conninfo_t *" },
220 { "iscsi", "nop-receive", 1, 1, "iscsi_nop_out_hdr_t *",
221 "iscsiinfo_t *" },
222 { "iscsi", "scsi-command", 0, 0, "idm_conn_t *", "conninfo_t *" },
223 { "iscsi", "scsi-command", 1, 1, "iscsi_scsi_cmd_hdr_t *",

new/usr/src/uts/common/dtrace/sdt_subr.c 3

224 "iscsiinfo_t *" },
225 { "iscsi", "scsi-command", 2, 2, "scsi_task_t *", "scsicmd_t *" },
226 { "iscsi", "scsi-response", 0, 0, "idm_conn_t *", "conninfo_t *" },
227 { "iscsi", "scsi-response", 1, 1, "iscsi_scsi_rsp_hdr_t *",
228 "iscsiinfo_t *" },
229 { "iscsi", "task-command", 0, 0, "idm_conn_t *", "conninfo_t *" },
230 { "iscsi", "task-command", 1, 1, "iscsi_scsi_task_mgt_hdr_t *",
231 "iscsiinfo_t *" },
232 { "iscsi", "task-response", 0, 0, "idm_conn_t *", "conninfo_t *" },
233 { "iscsi", "task-response", 1, 1, "iscsi_scsi_task_mgt_rsp_hdr_t *",
234 "iscsiinfo_t *" },
235 { "iscsi", "text-command", 0, 0, "idm_conn_t *", "conninfo_t *" },
236 { "iscsi", "text-command", 1, 1, "iscsi_text_hdr_t *",
237 "iscsiinfo_t *" },
238 { "iscsi", "text-response", 0, 0, "idm_conn_t *", "conninfo_t *" },
239 { "iscsi", "text-response", 1, 1, "iscsi_text_rsp_hdr_t *",
240 "iscsiinfo_t *" },
241 { "iscsi", "xfer-start", 0, 0, "idm_conn_t *", "conninfo_t *" },
242 { "iscsi", "xfer-start", 1, 0, "idm_conn_t *", "iscsiinfo_t *" },
243 { "iscsi", "xfer-start", 2, 1, "uintptr_t", "xferinfo_t *" },
244 { "iscsi", "xfer-start", 3, 2, "uint32_t"},
245 { "iscsi", "xfer-start", 4, 3, "uintptr_t"},
246 { "iscsi", "xfer-start", 5, 4, "uint32_t"},
247 { "iscsi", "xfer-start", 6, 5, "uint32_t"},
248 { "iscsi", "xfer-start", 7, 6, "uint32_t"},
249 { "iscsi", "xfer-start", 8, 7, "int"},
250 { "iscsi", "xfer-done", 0, 0, "idm_conn_t *", "conninfo_t *" },
251 { "iscsi", "xfer-done", 1, 0, "idm_conn_t *", "iscsiinfo_t *" },
252 { "iscsi", "xfer-done", 2, 1, "uintptr_t", "xferinfo_t *" },
253 { "iscsi", "xfer-done", 3, 2, "uint32_t"},
254 { "iscsi", "xfer-done", 4, 3, "uintptr_t"},
255 { "iscsi", "xfer-done", 5, 4, "uint32_t"},
256 { "iscsi", "xfer-done", 6, 5, "uint32_t"},
257 { "iscsi", "xfer-done", 7, 6, "uint32_t"},
258 { "iscsi", "xfer-done", 8, 7, "int"},

260 { "nfsv3", "op-getattr-start", 0, 0, "struct svc_req *",
261 "conninfo_t *" },
262 { "nfsv3", "op-getattr-start", 1, 1, "nfsv3oparg_t *",
263 "nfsv3opinfo_t *" },
264 { "nfsv3", "op-getattr-start", 2, 3, "GETATTR3args *" },
265 { "nfsv3", "op-getattr-done", 0, 0, "struct svc_req *",
266 "conninfo_t *" },
267 { "nfsv3", "op-getattr-done", 1, 1, "nfsv3oparg_t *",
268 "nfsv3opinfo_t *" },
269 { "nfsv3", "op-getattr-done", 2, 3, "GETATTR3res *" },
270 { "nfsv3", "op-setattr-start", 0, 0, "struct svc_req *",
271 "conninfo_t *" },
272 { "nfsv3", "op-setattr-start", 1, 1, "nfsv3oparg_t *",
273 "nfsv3opinfo_t *" },
274 { "nfsv3", "op-setattr-start", 2, 3, "SETATTR3args *" },
275 { "nfsv3", "op-setattr-done", 0, 0, "struct svc_req *",
276 "conninfo_t *" },
277 { "nfsv3", "op-setattr-done", 1, 1, "nfsv3oparg_t *",
278 "nfsv3opinfo_t *" },
279 { "nfsv3", "op-setattr-done", 2, 3, "SETATTR3res *" },
280 { "nfsv3", "op-lookup-start", 0, 0, "struct svc_req *",
281 "conninfo_t *" },
282 { "nfsv3", "op-lookup-start", 1, 1, "nfsv3oparg_t *",
283 "nfsv3opinfo_t *" },
284 { "nfsv3", "op-lookup-start", 2, 3, "LOOKUP3args *" },
285 { "nfsv3", "op-lookup-done", 0, 0, "struct svc_req *",
286 "conninfo_t *" },
287 { "nfsv3", "op-lookup-done", 1, 1, "nfsv3oparg_t *",
288 "nfsv3opinfo_t *" },
289 { "nfsv3", "op-lookup-done", 2, 3, "LOOKUP3res *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 4

290 { "nfsv3", "op-access-start", 0, 0, "struct svc_req *",
291 "conninfo_t *" },
292 { "nfsv3", "op-access-start", 1, 1, "nfsv3oparg_t *",
293 "nfsv3opinfo_t *" },
294 { "nfsv3", "op-access-start", 2, 3, "ACCESS3args *" },
295 { "nfsv3", "op-access-done", 0, 0, "struct svc_req *",
296 "conninfo_t *" },
297 { "nfsv3", "op-access-done", 1, 1, "nfsv3oparg_t *",
298 "nfsv3opinfo_t *" },
299 { "nfsv3", "op-access-done", 2, 3, "ACCESS3res *" },
300 { "nfsv3", "op-commit-start", 0, 0, "struct svc_req *",
301 "conninfo_t *" },
302 { "nfsv3", "op-commit-start", 1, 1, "nfsv3oparg_t *",
303 "nfsv3opinfo_t *" },
304 { "nfsv3", "op-commit-start", 2, 3, "COMMIT3args *" },
305 { "nfsv3", "op-commit-done", 0, 0, "struct svc_req *",
306 "conninfo_t *" },
307 { "nfsv3", "op-commit-done", 1, 1, "nfsv3oparg_t *",
308 "nfsv3opinfo_t *" },
309 { "nfsv3", "op-commit-done", 2, 3, "COMMIT3res *" },
310 { "nfsv3", "op-create-start", 0, 0, "struct svc_req *",
311 "conninfo_t *" },
312 { "nfsv3", "op-create-start", 1, 1, "nfsv3oparg_t *",
313 "nfsv3opinfo_t *" },
314 { "nfsv3", "op-create-start", 2, 3, "CREATE3args *" },
315 { "nfsv3", "op-create-done", 0, 0, "struct svc_req *",
316 "conninfo_t *" },
317 { "nfsv3", "op-create-done", 1, 1, "nfsv3oparg_t *",
318 "nfsv3opinfo_t *" },
319 { "nfsv3", "op-create-done", 2, 3, "CREATE3res *" },
320 { "nfsv3", "op-fsinfo-start", 0, 0, "struct svc_req *",
321 "conninfo_t *" },
322 { "nfsv3", "op-fsinfo-start", 1, 1, "nfsv3oparg_t *",
323 "nfsv3opinfo_t *" },
324 { "nfsv3", "op-fsinfo-start", 2, 3, "FSINFO3args *" },
325 { "nfsv3", "op-fsinfo-done", 0, 0, "struct svc_req *",
326 "conninfo_t *" },
327 { "nfsv3", "op-fsinfo-done", 1, 1, "nfsv3oparg_t *",
328 "nfsv3opinfo_t *" },
329 { "nfsv3", "op-fsinfo-done", 2, 3, "FSINFO3res *" },
330 { "nfsv3", "op-fsstat-start", 0, 0, "struct svc_req *",
331 "conninfo_t *" },
332 { "nfsv3", "op-fsstat-start", 1, 1, "nfsv3oparg_t *",
333 "nfsv3opinfo_t *" },
334 { "nfsv3", "op-fsstat-start", 2, 3, "FSSTAT3args *" },
335 { "nfsv3", "op-fsstat-done", 0, 0, "struct svc_req *",
336 "conninfo_t *" },
337 { "nfsv3", "op-fsstat-done", 1, 1, "nfsv3oparg_t *",
338 "nfsv3opinfo_t *" },
339 { "nfsv3", "op-fsstat-done", 2, 3, "FSSTAT3res *" },
340 { "nfsv3", "op-link-start", 0, 0, "struct svc_req *",
341 "conninfo_t *" },
342 { "nfsv3", "op-link-start", 1, 1, "nfsv3oparg_t *",
343 "nfsv3opinfo_t *" },
344 { "nfsv3", "op-link-start", 2, 3, "LINK3args *" },
345 { "nfsv3", "op-link-done", 0, 0, "struct svc_req *",
346 "conninfo_t *" },
347 { "nfsv3", "op-link-done", 1, 1, "nfsv3oparg_t *",
348 "nfsv3opinfo_t *" },
349 { "nfsv3", "op-link-done", 2, 3, "LINK3res *" },
350 { "nfsv3", "op-mkdir-start", 0, 0, "struct svc_req *",
351 "conninfo_t *" },
352 { "nfsv3", "op-mkdir-start", 1, 1, "nfsv3oparg_t *",
353 "nfsv3opinfo_t *" },
354 { "nfsv3", "op-mkdir-start", 2, 3, "MKDIR3args *" },
355 { "nfsv3", "op-mkdir-done", 0, 0, "struct svc_req *",

new/usr/src/uts/common/dtrace/sdt_subr.c 5

356 "conninfo_t *" },
357 { "nfsv3", "op-mkdir-done", 1, 1, "nfsv3oparg_t *",
358 "nfsv3opinfo_t *" },
359 { "nfsv3", "op-mkdir-done", 2, 3, "MKDIR3res *" },
360 { "nfsv3", "op-mknod-start", 0, 0, "struct svc_req *",
361 "conninfo_t *" },
362 { "nfsv3", "op-mknod-start", 1, 1, "nfsv3oparg_t *",
363 "nfsv3opinfo_t *" },
364 { "nfsv3", "op-mknod-start", 2, 3, "MKNOD3args *" },
365 { "nfsv3", "op-mknod-done", 0, 0, "struct svc_req *",
366 "conninfo_t *" },
367 { "nfsv3", "op-mknod-done", 1, 1, "nfsv3oparg_t *",
368 "nfsv3opinfo_t *" },
369 { "nfsv3", "op-mknod-done", 2, 3, "MKNOD3res *" },
370 { "nfsv3", "op-null-start", 0, 0, "struct svc_req *",
371 "conninfo_t *" },
372 { "nfsv3", "op-null-start", 1, 1, "nfsv3oparg_t *",
373 "nfsv3opinfo_t *" },
374 { "nfsv3", "op-null-done", 0, 0, "struct svc_req *",
375 "conninfo_t *" },
376 { "nfsv3", "op-null-done", 1, 1, "nfsv3oparg_t *",
377 "nfsv3opinfo_t *" },
378 { "nfsv3", "op-pathconf-start", 0, 0, "struct svc_req *",
379 "conninfo_t *" },
380 { "nfsv3", "op-pathconf-start", 1, 1, "nfsv3oparg_t *",
381 "nfsv3opinfo_t *" },
382 { "nfsv3", "op-pathconf-start", 2, 3, "PATHCONF3args *" },
383 { "nfsv3", "op-pathconf-done", 0, 0, "struct svc_req *",
384 "conninfo_t *" },
385 { "nfsv3", "op-pathconf-done", 1, 1, "nfsv3oparg_t *",
386 "nfsv3opinfo_t *" },
387 { "nfsv3", "op-pathconf-done", 2, 3, "PATHCONF3res *" },
388 { "nfsv3", "op-read-start", 0, 0, "struct svc_req *",
389 "conninfo_t *" },
390 { "nfsv3", "op-read-start", 1, 1, "nfsv3oparg_t *",
391 "nfsv3opinfo_t *" },
392 { "nfsv3", "op-read-start", 2, 3, "READ3args *" },
393 { "nfsv3", "op-read-done", 0, 0, "struct svc_req *",
394 "conninfo_t *" },
395 { "nfsv3", "op-read-done", 1, 1, "nfsv3oparg_t *",
396 "nfsv3opinfo_t *" },
397 { "nfsv3", "op-read-done", 2, 3, "READ3res *" },
398 { "nfsv3", "op-readdir-start", 0, 0, "struct svc_req *",
399 "conninfo_t *" },
400 { "nfsv3", "op-readdir-start", 1, 1, "nfsv3oparg_t *",
401 "nfsv3opinfo_t *" },
402 { "nfsv3", "op-readdir-start", 2, 3, "READDIR3args *" },
403 { "nfsv3", "op-readdir-done", 0, 0, "struct svc_req *",
404 "conninfo_t *" },
405 { "nfsv3", "op-readdir-done", 1, 1, "nfsv3oparg_t *",
406 "nfsv3opinfo_t *" },
407 { "nfsv3", "op-readdir-done", 2, 3, "READDIR3res *" },
408 { "nfsv3", "op-readdirplus-start", 0, 0, "struct svc_req *",
409 "conninfo_t *" },
410 { "nfsv3", "op-readdirplus-start", 1, 1, "nfsv3oparg_t *",
411 "nfsv3opinfo_t *" },
412 { "nfsv3", "op-readdirplus-start", 2, 3, "READDIRPLUS3args *" },
413 { "nfsv3", "op-readdirplus-done", 0, 0, "struct svc_req *",
414 "conninfo_t *" },
415 { "nfsv3", "op-readdirplus-done", 1, 1, "nfsv3oparg_t *",
416 "nfsv3opinfo_t *" },
417 { "nfsv3", "op-readdirplus-done", 2, 3, "READDIRPLUS3res *" },
418 { "nfsv3", "op-readlink-start", 0, 0, "struct svc_req *",
419 "conninfo_t *" },
420 { "nfsv3", "op-readlink-start", 1, 1, "nfsv3oparg_t *",
421 "nfsv3opinfo_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 6

422 { "nfsv3", "op-readlink-start", 2, 3, "READLINK3args *" },
423 { "nfsv3", "op-readlink-done", 0, 0, "struct svc_req *",
424 "conninfo_t *" },
425 { "nfsv3", "op-readlink-done", 1, 1, "nfsv3oparg_t *",
426 "nfsv3opinfo_t *" },
427 { "nfsv3", "op-readlink-done", 2, 3, "READLINK3res *" },
428 { "nfsv3", "op-remove-start", 0, 0, "struct svc_req *",
429 "conninfo_t *" },
430 { "nfsv3", "op-remove-start", 1, 1, "nfsv3oparg_t *",
431 "nfsv3opinfo_t *" },
432 { "nfsv3", "op-remove-start", 2, 3, "REMOVE3args *" },
433 { "nfsv3", "op-remove-done", 0, 0, "struct svc_req *",
434 "conninfo_t *" },
435 { "nfsv3", "op-remove-done", 1, 1, "nfsv3oparg_t *",
436 "nfsv3opinfo_t *" },
437 { "nfsv3", "op-remove-done", 2, 3, "REMOVE3res *" },
438 { "nfsv3", "op-rename-start", 0, 0, "struct svc_req *",
439 "conninfo_t *" },
440 { "nfsv3", "op-rename-start", 1, 1, "nfsv3oparg_t *",
441 "nfsv3opinfo_t *" },
442 { "nfsv3", "op-rename-start", 2, 3, "RENAME3args *" },
443 { "nfsv3", "op-rename-done", 0, 0, "struct svc_req *",
444 "conninfo_t *" },
445 { "nfsv3", "op-rename-done", 1, 1, "nfsv3oparg_t *",
446 "nfsv3opinfo_t *" },
447 { "nfsv3", "op-rename-done", 2, 3, "RENAME3res *" },
448 { "nfsv3", "op-rmdir-start", 0, 0, "struct svc_req *",
449 "conninfo_t *" },
450 { "nfsv3", "op-rmdir-start", 1, 1, "nfsv3oparg_t *",
451 "nfsv3opinfo_t *" },
452 { "nfsv3", "op-rmdir-start", 2, 3, "RMDIR3args *" },
453 { "nfsv3", "op-rmdir-done", 0, 0, "struct svc_req *",
454 "conninfo_t *" },
455 { "nfsv3", "op-rmdir-done", 1, 1, "nfsv3oparg_t *",
456 "nfsv3opinfo_t *" },
457 { "nfsv3", "op-rmdir-done", 2, 3, "RMDIR3res *" },
458 { "nfsv3", "op-setattr-start", 0, 0, "struct svc_req *",
459 "conninfo_t *" },
460 { "nfsv3", "op-setattr-start", 1, 1, "nfsv3oparg_t *",
461 "nfsv3opinfo_t *" },
462 { "nfsv3", "op-setattr-start", 2, 3, "SETATTR3args *" },
463 { "nfsv3", "op-setattr-done", 0, 0, "struct svc_req *",
464 "conninfo_t *" },
465 { "nfsv3", "op-setattr-done", 1, 1, "nfsv3oparg_t *",
466 "nfsv3opinfo_t *" },
467 { "nfsv3", "op-setattr-done", 2, 3, "SETATTR3res *" },
468 { "nfsv3", "op-symlink-start", 0, 0, "struct svc_req *",
469 "conninfo_t *" },
470 { "nfsv3", "op-symlink-start", 1, 1, "nfsv3oparg_t *",
471 "nfsv3opinfo_t *" },
472 { "nfsv3", "op-symlink-start", 2, 3, "SYMLINK3args *" },
473 { "nfsv3", "op-symlink-done", 0, 0, "struct svc_req *",
474 "conninfo_t *" },
475 { "nfsv3", "op-symlink-done", 1, 1, "nfsv3oparg_t *",
476 "nfsv3opinfo_t *" },
477 { "nfsv3", "op-symlink-done", 2, 3, "SYMLINK3res *" },
478 { "nfsv3", "op-write-start", 0, 0, "struct svc_req *",
479 "conninfo_t *" },
480 { "nfsv3", "op-write-start", 1, 1, "nfsv3oparg_t *",
481 "nfsv3opinfo_t *" },
482 { "nfsv3", "op-write-start", 2, 3, "WRITE3args *" },
483 { "nfsv3", "op-write-done", 0, 0, "struct svc_req *",
484 "conninfo_t *" },
485 { "nfsv3", "op-write-done", 1, 1, "nfsv3oparg_t *",
486 "nfsv3opinfo_t *" },
487 { "nfsv3", "op-write-done", 2, 3, "WRITE3res *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 7

489 { "nfsv4", "null-start", 0, 0, "struct svc_req *", "conninfo_t *" },
490 { "nfsv4", "null-done", 0, 0, "struct svc_req *", "conninfo_t *" },
491 { "nfsv4", "compound-start", 0, 0, "struct compound_state *",
492 "conninfo_t *" },
493 { "nfsv4", "compound-start", 1, 0, "struct compound_state *",
494 "nfsv4opinfo_t *" },
495 { "nfsv4", "compound-start", 2, 1, "COMPOUND4args *" },
496 { "nfsv4", "compound-done", 0, 0, "struct compound_state *",
497 "conninfo_t *" },
498 { "nfsv4", "compound-done", 1, 0, "struct compound_state *",
499 "nfsv4opinfo_t *" },
500 { "nfsv4", "compound-done", 2, 1, "COMPOUND4res *" },
501 { "nfsv4", "op-access-start", 0, 0, "struct compound_state *",
502 "conninfo_t *"},
503 { "nfsv4", "op-access-start", 1, 0, "struct compound_state *",
504 "nfsv4opinfo_t *" },
505 { "nfsv4", "op-access-start", 2, 1, "ACCESS4args *" },
506 { "nfsv4", "op-access-done", 0, 0, "struct compound_state *",
507 "conninfo_t *" },
508 { "nfsv4", "op-access-done", 1, 0, "struct compound_state *",
509 "nfsv4opinfo_t *" },
510 { "nfsv4", "op-access-done", 2, 1, "ACCESS4res *" },
511 { "nfsv4", "op-close-start", 0, 0, "struct compound_state *",
512 "conninfo_t *" },
513 { "nfsv4", "op-close-start", 1, 0, "struct compound_state *",
514 "nfsv4opinfo_t *" },
515 { "nfsv4", "op-close-start", 2, 1, "CLOSE4args *" },
516 { "nfsv4", "op-close-done", 0, 0, "struct compound_state *",
517 "conninfo_t *" },
518 { "nfsv4", "op-close-done", 1, 0, "struct compound_state *",
519 "nfsv4opinfo_t *" },
520 { "nfsv4", "op-close-done", 2, 1, "CLOSE4res *" },
521 { "nfsv4", "op-commit-start", 0, 0, "struct compound_state *",
522 "conninfo_t *" },
523 { "nfsv4", "op-commit-start", 1, 0, "struct compound_state *",
524 "nfsv4opinfo_t *" },
525 { "nfsv4", "op-commit-start", 2, 1, "COMMIT4args *" },
526 { "nfsv4", "op-commit-done", 0, 0, "struct compound_state *",
527 "conninfo_t *" },
528 { "nfsv4", "op-commit-done", 1, 0, "struct compound_state *",
529 "nfsv4opinfo_t *" },
530 { "nfsv4", "op-commit-done", 2, 1, "COMMIT4res *" },
531 { "nfsv4", "op-create-start", 0, 0, "struct compound_state *",
532 "conninfo_t *" },
533 { "nfsv4", "op-create-start", 1, 0, "struct compound_state *",
534 "nfsv4opinfo_t *" },
535 { "nfsv4", "op-create-start", 2, 1, "CREATE4args *" },
536 { "nfsv4", "op-create-done", 0, 0, "struct compound_state *",
537 "conninfo_t *" },
538 { "nfsv4", "op-create-done", 1, 0, "struct compound_state *",
539 "nfsv4opinfo_t *" },
540 { "nfsv4", "op-create-done", 2, 1, "CREATE4res *" },
541 { "nfsv4", "op-delegpurge-start", 0, 0, "struct compound_state *",
542 "conninfo_t *" },
543 { "nfsv4", "op-delegpurge-start", 1, 0, "struct compound_state *",
544 "nfsv4opinfo_t *" },
545 { "nfsv4", "op-delegpurge-start", 2, 1, "DELEGPURGE4args *" },
546 { "nfsv4", "op-delegpurge-done", 0, 0, "struct compound_state *",
547 "conninfo_t *" },
548 { "nfsv4", "op-delegpurge-done", 1, 0, "struct compound_state *",
549 "nfsv4opinfo_t *" },
550 { "nfsv4", "op-delegpurge-done", 2, 1, "DELEGPURGE4res *" },
551 { "nfsv4", "op-delegreturn-start", 0, 0, "struct compound_state *",
552 "conninfo_t *" },
553 { "nfsv4", "op-delegreturn-start", 1, 0, "struct compound_state *",

new/usr/src/uts/common/dtrace/sdt_subr.c 8

554 "nfsv4opinfo_t *" },
555 { "nfsv4", "op-delegreturn-start", 2, 1, "DELEGRETURN4args *" },
556 { "nfsv4", "op-delegreturn-done", 0, 0, "struct compound_state *",
557 "conninfo_t *" },
558 { "nfsv4", "op-delegreturn-done", 1, 0, "struct compound_state *",
559 "nfsv4opinfo_t *" },
560 { "nfsv4", "op-delegreturn-done", 2, 1, "DELEGRETURN4res *" },
561 { "nfsv4", "op-getattr-start", 0, 0, "struct compound_state *",
562 "conninfo_t *" },
563 { "nfsv4", "op-getattr-start", 1, 0, "struct compound_state *",
564 "nfsv4opinfo_t *" },
565 { "nfsv4", "op-getattr-start", 2, 1, "GETATTR4args *" },
566 { "nfsv4", "op-getattr-done", 0, 0, "struct compound_state *",
567 "conninfo_t *" },
568 { "nfsv4", "op-getattr-done", 1, 0, "struct compound_state *",
569 "nfsv4opinfo_t *" },
570 { "nfsv4", "op-getattr-done", 2, 1, "GETATTR4res *" },
571 { "nfsv4", "op-getfh-start", 0, 0, "struct compound_state *",
572 "conninfo_t *" },
573 { "nfsv4", "op-getfh-start", 1, 0, "struct compound_state *",
574 "nfsv4opinfo_t *" },
575 { "nfsv4", "op-getfh-done", 0, 0, "struct compound_state *",
576 "conninfo_t *" },
577 { "nfsv4", "op-getfh-done", 1, 0, "struct compound_state *",
578 "nfsv4opinfo_t *" },
579 { "nfsv4", "op-getfh-done", 2, 1, "GETFH4res *" },
580 { "nfsv4", "op-link-start", 0, 0, "struct compound_state *",
581 "conninfo_t *" },
582 { "nfsv4", "op-link-start", 1, 0, "struct compound_state *",
583 "nfsv4opinfo_t *" },
584 { "nfsv4", "op-link-start", 2, 1, "LINK4args *" },
585 { "nfsv4", "op-link-done", 0, 0, "struct compound_state *",
586 "conninfo_t *" },
587 { "nfsv4", "op-link-done", 1, 0, "struct compound_state *",
588 "nfsv4opinfo_t *" },
589 { "nfsv4", "op-link-done", 2, 1, "LINK4res *" },
590 { "nfsv4", "op-lock-start", 0, 0, "struct compound_state *",
591 "conninfo_t *" },
592 { "nfsv4", "op-lock-start", 1, 0, "struct compound_state *",
593 "nfsv4opinfo_t *" },
594 { "nfsv4", "op-lock-start", 2, 1, "LOCK4args *" },
595 { "nfsv4", "op-lock-done", 0, 0, "struct compound_state *",
596 "conninfo_t *" },
597 { "nfsv4", "op-lock-done", 1, 0, "struct compound_state *",
598 "nfsv4opinfo_t *" },
599 { "nfsv4", "op-lock-done", 2, 1, "LOCK4res *" },
600 { "nfsv4", "op-lockt-start", 0, 0, "struct compound_state *",
601 "conninfo_t *" },
602 { "nfsv4", "op-lockt-start", 1, 0, "struct compound_state *",
603 "nfsv4opinfo_t *" },
604 { "nfsv4", "op-lockt-start", 2, 1, "LOCKT4args *" },
605 { "nfsv4", "op-lockt-done", 0, 0, "struct compound_state *",
606 "conninfo_t *" },
607 { "nfsv4", "op-lockt-done", 1, 0, "struct compound_state *",
608 "nfsv4opinfo_t *" },
609 { "nfsv4", "op-lockt-done", 2, 1, "LOCKT4res *" },
610 { "nfsv4", "op-locku-start", 0, 0, "struct compound_state *",
611 "conninfo_t *" },
612 { "nfsv4", "op-locku-start", 1, 0, "struct compound_state *",
613 "nfsv4opinfo_t *" },
614 { "nfsv4", "op-locku-start", 2, 1, "LOCKU4args *" },
615 { "nfsv4", "op-locku-done", 0, 0, "struct compound_state *",
616 "conninfo_t *" },
617 { "nfsv4", "op-locku-done", 1, 0, "struct compound_state *",
618 "nfsv4opinfo_t *" },
619 { "nfsv4", "op-locku-done", 2, 1, "LOCKU4res *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 9

620 { "nfsv4", "op-lookup-start", 0, 0, "struct compound_state *",
621 "conninfo_t *" },
622 { "nfsv4", "op-lookup-start", 1, 0, "struct compound_state *",
623 "nfsv4opinfo_t *" },
624 { "nfsv4", "op-lookup-start", 2, 1, "LOOKUP4args *" },
625 { "nfsv4", "op-lookup-done", 0, 0, "struct compound_state *",
626 "conninfo_t *" },
627 { "nfsv4", "op-lookup-done", 1, 0, "struct compound_state *",
628 "nfsv4opinfo_t *" },
629 { "nfsv4", "op-lookup-done", 2, 1, "LOOKUP4res *" },
630 { "nfsv4", "op-lookupp-start", 0, 0, "struct compound_state *",
631 "conninfo_t *" },
632 { "nfsv4", "op-lookupp-start", 1, 0, "struct compound_state *",
633 "nfsv4opinfo_t *" },
634 { "nfsv4", "op-lookupp-done", 0, 0, "struct compound_state *",
635 "conninfo_t *" },
636 { "nfsv4", "op-lookupp-done", 1, 0, "struct compound_state *",
637 "nfsv4opinfo_t *" },
638 { "nfsv4", "op-lookupp-done", 2, 1, "LOOKUPP4res *" },
639 { "nfsv4", "op-nverify-start", 0, 0, "struct compound_state *",
640 "conninfo_t *" },
641 { "nfsv4", "op-nverify-start", 1, 0, "struct compound_state *",
642 "nfsv4opinfo_t *" },
643 { "nfsv4", "op-nverify-start", 2, 1, "NVERIFY4args *" },
644 { "nfsv4", "op-nverify-done", 0, 0, "struct compound_state *",
645 "conninfo_t *" },
646 { "nfsv4", "op-nverify-done", 1, 0, "struct compound_state *",
647 "nfsv4opinfo_t *" },
648 { "nfsv4", "op-nverify-done", 2, 1, "NVERIFY4res *" },
649 { "nfsv4", "op-open-start", 0, 0, "struct compound_state *",
650 "conninfo_t *" },
651 { "nfsv4", "op-open-start", 1, 0, "struct compound_state *",
652 "nfsv4opinfo_t *" },
653 { "nfsv4", "op-open-start", 2, 1, "OPEN4args *" },
654 { "nfsv4", "op-open-done", 0, 0, "struct compound_state *",
655 "conninfo_t *" },
656 { "nfsv4", "op-open-done", 1, 0, "struct compound_state *",
657 "nfsv4opinfo_t *" },
658 { "nfsv4", "op-open-done", 2, 1, "OPEN4res *" },
659 { "nfsv4", "op-open-confirm-start", 0, 0, "struct compound_state *",
660 "conninfo_t *" },
661 { "nfsv4", "op-open-confirm-start", 1, 0, "struct compound_state *",
662 "nfsv4opinfo_t *" },
663 { "nfsv4", "op-open-confirm-start", 2, 1, "OPEN_CONFIRM4args *" },
664 { "nfsv4", "op-open-confirm-done", 0, 0, "struct compound_state *",
665 "conninfo_t *" },
666 { "nfsv4", "op-open-confirm-done", 1, 0, "struct compound_state *",
667 "nfsv4opinfo_t *" },
668 { "nfsv4", "op-open-confirm-done", 2, 1, "OPEN_CONFIRM4res *" },
669 { "nfsv4", "op-open-downgrade-start", 0, 0, "struct compound_state *",
670 "conninfo_t *" },
671 { "nfsv4", "op-open-downgrade-start", 1, 0, "struct compound_state *",
672 "nfsv4opinfo_t *" },
673 { "nfsv4", "op-open-downgrade-start", 2, 1, "OPEN_DOWNGRADE4args *" },
674 { "nfsv4", "op-open-downgrade-done", 0, 0, "struct compound_state *",
675 "conninfo_t *" },
676 { "nfsv4", "op-open-downgrade-done", 1, 0, "struct compound_state *",
677 "nfsv4opinfo_t *" },
678 { "nfsv4", "op-open-downgrade-done", 2, 1, "OPEN_DOWNGRADE4res *" },
679 { "nfsv4", "op-openattr-start", 0, 0, "struct compound_state *",
680 "conninfo_t *" },
681 { "nfsv4", "op-openattr-start", 1, 0, "struct compound_state *",
682 "nfsv4opinfo_t *" },
683 { "nfsv4", "op-openattr-start", 2, 1, "OPENATTR4args *" },
684 { "nfsv4", "op-openattr-done", 0, 0, "struct compound_state *",
685 "conninfo_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 10

686 { "nfsv4", "op-openattr-done", 1, 0, "struct compound_state *",
687 "nfsv4opinfo_t *" },
688 { "nfsv4", "op-openattr-done", 2, 1, "OPENATTR4res *" },
689 { "nfsv4", "op-putfh-start", 0, 0, "struct compound_state *",
690 "conninfo_t *" },
691 { "nfsv4", "op-putfh-start", 1, 0, "struct compound_state *",
692 "nfsv4opinfo_t *" },
693 { "nfsv4", "op-putfh-start", 2, 1, "PUTFH4args *" },
694 { "nfsv4", "op-putfh-done", 0, 0, "struct compound_state *",
695 "conninfo_t *" },
696 { "nfsv4", "op-putfh-done", 1, 0, "struct compound_state *",
697 "nfsv4opinfo_t *" },
698 { "nfsv4", "op-putfh-done", 2, 1, "PUTFH4res *" },
699 { "nfsv4", "op-putpubfh-start", 0, 0, "struct compound_state *",
700 "conninfo_t *" },
701 { "nfsv4", "op-putpubfh-start", 1, 0, "struct compound_state *",
702 "nfsv4opinfo_t *" },
703 { "nfsv4", "op-putpubfh-done", 0, 0, "struct compound_state *",
704 "conninfo_t *" },
705 { "nfsv4", "op-putpubfh-done", 1, 0, "struct compound_state *",
706 "nfsv4opinfo_t *" },
707 { "nfsv4", "op-putpubfh-done", 2, 1, "PUTPUBFH4res *" },
708 { "nfsv4", "op-putrootfh-start", 0, 0, "struct compound_state *",
709 "conninfo_t *" },
710 { "nfsv4", "op-putrootfh-start", 1, 0, "struct compound_state *",
711 "nfsv4opinfo_t *" },
712 { "nfsv4", "op-putrootfh-done", 0, 0, "struct compound_state *",
713 "conninfo_t *" },
714 { "nfsv4", "op-putrootfh-done", 1, 0, "struct compound_state *",
715 "nfsv4opinfo_t *" },
716 { "nfsv4", "op-putrootfh-done", 2, 1, "PUTROOTFH4res *" },
717 { "nfsv4", "op-read-start", 0, 0, "struct compound_state *",
718 "conninfo_t *" },
719 { "nfsv4", "op-read-start", 1, 0, "struct compound_state *",
720 "nfsv4opinfo_t *" },
721 { "nfsv4", "op-read-start", 2, 1, "READ4args *" },
722 { "nfsv4", "op-read-done", 0, 0, "struct compound_state *",
723 "conninfo_t *" },
724 { "nfsv4", "op-read-done", 1, 0, "struct compound_state *",
725 "nfsv4opinfo_t *" },
726 { "nfsv4", "op-read-done", 2, 1, "READ4res *" },
727 { "nfsv4", "op-readdir-start", 0, 0, "struct compound_state *",
728 "conninfo_t *" },
729 { "nfsv4", "op-readdir-start", 1, 0, "struct compound_state *",
730 "nfsv4opinfo_t *" },
731 { "nfsv4", "op-readdir-start", 2, 1, "READDIR4args *" },
732 { "nfsv4", "op-readdir-done", 0, 0, "struct compound_state *",
733 "conninfo_t *" },
734 { "nfsv4", "op-readdir-done", 1, 0, "struct compound_state *",
735 "nfsv4opinfo_t *" },
736 { "nfsv4", "op-readdir-done", 2, 1, "READDIR4res *" },
737 { "nfsv4", "op-readlink-start", 0, 0, "struct compound_state *",
738 "conninfo_t *" },
739 { "nfsv4", "op-readlink-start", 1, 0, "struct compound_state *",
740 "nfsv4opinfo_t *" },
741 { "nfsv4", "op-readlink-done", 0, 0, "struct compound_state *",
742 "conninfo_t *" },
743 { "nfsv4", "op-readlink-done", 1, 0, "struct compound_state *",
744 "nfsv4opinfo_t *" },
745 { "nfsv4", "op-readlink-done", 2, 1, "READLINK4res *" },
746 { "nfsv4", "op-release-lockowner-start", 0, 0,
747 "struct compound_state *", "conninfo_t *" },
748 { "nfsv4", "op-release-lockowner-start", 1, 0,
749 "struct compound_state *", "nfsv4opinfo_t *" },
750 { "nfsv4", "op-release-lockowner-start", 2, 1,
751 "RELEASE_LOCKOWNER4args *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 11

752 { "nfsv4", "op-release-lockowner-done", 0, 0,
753 "struct compound_state *", "conninfo_t *" },
754 { "nfsv4", "op-release-lockowner-done", 1, 0,
755 "struct compound_state *", "nfsv4opinfo_t *" },
756 { "nfsv4", "op-release-lockowner-done", 2, 1,
757 "RELEASE_LOCKOWNER4res *" },
758 { "nfsv4", "op-remove-start", 0, 0, "struct compound_state *",
759 "conninfo_t *" },
760 { "nfsv4", "op-remove-start", 1, 0, "struct compound_state *",
761 "nfsv4opinfo_t *" },
762 { "nfsv4", "op-remove-start", 2, 1, "REMOVE4args *" },
763 { "nfsv4", "op-remove-done", 0, 0, "struct compound_state *",
764 "conninfo_t *" },
765 { "nfsv4", "op-remove-done", 1, 0, "struct compound_state *",
766 "nfsv4opinfo_t *" },
767 { "nfsv4", "op-remove-done", 2, 1, "REMOVE4res *" },
768 { "nfsv4", "op-rename-start", 0, 0, "struct compound_state *",
769 "conninfo_t *" },
770 { "nfsv4", "op-rename-start", 1, 0, "struct compound_state *",
771 "nfsv4opinfo_t *" },
772 { "nfsv4", "op-rename-start", 2, 1, "RENAME4args *" },
773 { "nfsv4", "op-rename-done", 0, 0, "struct compound_state *",
774 "conninfo_t *" },
775 { "nfsv4", "op-rename-done", 1, 0, "struct compound_state *",
776 "nfsv4opinfo_t *" },
777 { "nfsv4", "op-rename-done", 2, 1, "RENAME4res *" },
778 { "nfsv4", "op-renew-start", 0, 0, "struct compound_state *",
779 "conninfo_t *" },
780 { "nfsv4", "op-renew-start", 1, 0, "struct compound_state *",
781 "nfsv4opinfo_t *" },
782 { "nfsv4", "op-renew-start", 2, 1, "RENEW4args *" },
783 { "nfsv4", "op-renew-done", 0, 0, "struct compound_state *",
784 "conninfo_t *" },
785 { "nfsv4", "op-renew-done", 1, 0, "struct compound_state *",
786 "nfsv4opinfo_t *" },
787 { "nfsv4", "op-renew-done", 2, 1, "RENEW4res *" },
788 { "nfsv4", "op-restorefh-start", 0, 0, "struct compound_state *",
789 "conninfo_t *" },
790 { "nfsv4", "op-restorefh-start", 1, 0, "struct compound_state *",
791 "nfsv4opinfo_t *" },
792 { "nfsv4", "op-restorefh-done", 0, 0, "struct compound_state *",
793 "conninfo_t *" },
794 { "nfsv4", "op-restorefh-done", 1, 0, "struct compound_state *",
795 "nfsv4opinfo_t *" },
796 { "nfsv4", "op-restorefh-done", 2, 1, "RESTOREFH4res *" },
797 { "nfsv4", "op-savefh-start", 0, 0, "struct compound_state *",
798 "conninfo_t *" },
799 { "nfsv4", "op-savefh-start", 1, 0, "struct compound_state *",
800 "nfsv4opinfo_t *" },
801 { "nfsv4", "op-savefh-done", 0, 0, "struct compound_state *",
802 "conninfo_t *" },
803 { "nfsv4", "op-savefh-done", 1, 0, "struct compound_state *",
804 "nfsv4opinfo_t *" },
805 { "nfsv4", "op-savefh-done", 2, 1, "SAVEFH4res *" },
806 { "nfsv4", "op-secinfo-start", 0, 0, "struct compound_state *",
807 "conninfo_t *" },
808 { "nfsv4", "op-secinfo-start", 1, 0, "struct compound_state *",
809 "nfsv4opinfo_t *" },
810 { "nfsv4", "op-secinfo-start", 2, 1, "SECINFO4args *" },
811 { "nfsv4", "op-secinfo-done", 0, 0, "struct compound_state *",
812 "conninfo_t *" },
813 { "nfsv4", "op-secinfo-done", 1, 0, "struct compound_state *",
814 "nfsv4opinfo_t *" },
815 { "nfsv4", "op-secinfo-done", 2, 1, "SECINFO4res *" },
816 { "nfsv4", "op-setattr-start", 0, 0, "struct compound_state *",
817 "conninfo_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 12

818 { "nfsv4", "op-setattr-start", 1, 0, "struct compound_state *",
819 "nfsv4opinfo_t *" },
820 { "nfsv4", "op-setattr-start", 2, 1, "SETATTR4args *" },
821 { "nfsv4", "op-setattr-done", 0, 0, "struct compound_state *",
822 "conninfo_t *" },
823 { "nfsv4", "op-setattr-done", 1, 0, "struct compound_state *",
824 "nfsv4opinfo_t *" },
825 { "nfsv4", "op-setattr-done", 2, 1, "SETATTR4res *" },
826 { "nfsv4", "op-setclientid-start", 0, 0, "struct compound_state *",
827 "conninfo_t *" },
828 { "nfsv4", "op-setclientid-start", 1, 0, "struct compound_state *",
829 "nfsv4opinfo_t *" },
830 { "nfsv4", "op-setclientid-start", 2, 1, "SETCLIENTID4args *" },
831 { "nfsv4", "op-setclientid-done", 0, 0, "struct compound_state *",
832 "conninfo_t *" },
833 { "nfsv4", "op-setclientid-done", 1, 0, "struct compound_state *",
834 "nfsv4opinfo_t *" },
835 { "nfsv4", "op-setclientid-done", 2, 1, "SETCLIENTID4res *" },
836 { "nfsv4", "op-setclientid-confirm-start", 0, 0,
837 "struct compound_state *", "conninfo_t *" },
838 { "nfsv4", "op-setclientid-confirm-start", 1, 0,
839 "struct compound_state *", "nfsv4opinfo_t *" },
840 { "nfsv4", "op-setclientid-confirm-start", 2, 1,
841 "SETCLIENTID_CONFIRM4args *" },
842 { "nfsv4", "op-setclientid-confirm-done", 0, 0,
843 "struct compound_state *", "conninfo_t *" },
844 { "nfsv4", "op-setclientid-confirm-done", 1, 0,
845 "struct compound_state *", "nfsv4opinfo_t *" },
846 { "nfsv4", "op-setclientid-confirm-done", 2, 1,
847 "SETCLIENTID_CONFIRM4res *" },
848 { "nfsv4", "op-verify-start", 0, 0, "struct compound_state *",
849 "conninfo_t *" },
850 { "nfsv4", "op-verify-start", 1, 0, "struct compound_state *",
851 "nfsv4opinfo_t *" },
852 { "nfsv4", "op-verify-start", 2, 1, "VERIFY4args *" },
853 { "nfsv4", "op-verify-done", 0, 0, "struct compound_state *",
854 "conninfo_t *" },
855 { "nfsv4", "op-verify-done", 1, 0, "struct compound_state *",
856 "nfsv4opinfo_t *" },
857 { "nfsv4", "op-verify-done", 2, 1, "VERIFY4res *" },
858 { "nfsv4", "op-write-start", 0, 0, "struct compound_state *",
859 "conninfo_t *" },
860 { "nfsv4", "op-write-start", 1, 0, "struct compound_state *",
861 "nfsv4opinfo_t *" },
862 { "nfsv4", "op-write-start", 2, 1, "WRITE4args *" },
863 { "nfsv4", "op-write-done", 0, 0, "struct compound_state *",
864 "conninfo_t *" },
865 { "nfsv4", "op-write-done", 1, 0, "struct compound_state *",
866 "nfsv4opinfo_t *" },
867 { "nfsv4", "op-write-done", 2, 1, "WRITE4res *" },
868 { "nfsv4", "cb-recall-start", 0, 0, "rfs4_client_t *",
869 "conninfo_t *" },
870 { "nfsv4", "cb-recall-start", 1, 1, "rfs4_deleg_state_t *",
871 "nfsv4cbinfo_t *" },
872 { "nfsv4", "cb-recall-start", 2, 2, "CB_RECALL4args *" },
873 { "nfsv4", "cb-recall-done", 0, 0, "rfs4_client_t *",
874 "conninfo_t *" },
875 { "nfsv4", "cb-recall-done", 1, 1, "rfs4_deleg_state_t *",
876 "nfsv4cbinfo_t *" },
877 { "nfsv4", "cb-recall-done", 2, 2, "CB_RECALL4res *" },

879 { "ip", "send", 0, 0, "mblk_t *", "pktinfo_t *" },
880 { "ip", "send", 1, 1, "conn_t *", "csinfo_t *" },
881 { "ip", "send", 2, 2, "void_ip_t *", "ipinfo_t *" },
882 { "ip", "send", 3, 3, "__dtrace_ipsr_ill_t *", "ifinfo_t *" },
883 { "ip", "send", 4, 4, "ipha_t *", "ipv4info_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 13

884 { "ip", "send", 5, 5, "ip6_t *", "ipv6info_t *" },
885 { "ip", "send", 6, 6, "int" }, /* used by __dtrace_ipsr_ill_t */
886 { "ip", "receive", 0, 0, "mblk_t *", "pktinfo_t *" },
887 { "ip", "receive", 1, 1, "conn_t *", "csinfo_t *" },
888 { "ip", "receive", 2, 2, "void_ip_t *", "ipinfo_t *" },
889 { "ip", "receive", 3, 3, "__dtrace_ipsr_ill_t *", "ifinfo_t *" },
890 { "ip", "receive", 4, 4, "ipha_t *", "ipv4info_t *" },
891 { "ip", "receive", 5, 5, "ip6_t *", "ipv6info_t *" },
892 { "ip", "receive", 6, 6, "int" }, /* used by __dtrace_ipsr_ill_t */

894 { "tcp", "connect-established", 0, 0, "mblk_t *", "pktinfo_t *" },
895 { "tcp", "connect-established", 1, 1, "ip_xmit_attr_t *",
896 "csinfo_t *" },
897 { "tcp", "connect-established", 2, 2, "void_ip_t *", "ipinfo_t *" },
898 { "tcp", "connect-established", 3, 3, "tcp_t *", "tcpsinfo_t *" },
899 { "tcp", "connect-established", 4, 4, "tcph_t *", "tcpinfo_t *" },
900 { "tcp", "connect-refused", 0, 0, "mblk_t *", "pktinfo_t *" },
901 { "tcp", "connect-refused", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
902 { "tcp", "connect-refused", 2, 2, "void_ip_t *", "ipinfo_t *" },
903 { "tcp", "connect-refused", 3, 3, "tcp_t *", "tcpsinfo_t *" },
904 { "tcp", "connect-refused", 4, 4, "tcph_t *", "tcpinfo_t *" },
905 { "tcp", "connect-request", 0, 0, "mblk_t *", "pktinfo_t *" },
906 { "tcp", "connect-request", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
907 { "tcp", "connect-request", 2, 2, "void_ip_t *", "ipinfo_t *" },
908 { "tcp", "connect-request", 3, 3, "tcp_t *", "tcpsinfo_t *" },
909 { "tcp", "connect-request", 4, 4, "tcph_t *", "tcpinfo_t *" },
910 { "tcp", "accept-established", 0, 0, "mblk_t *", "pktinfo_t *" },
911 { "tcp", "accept-established", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
912 { "tcp", "accept-established", 2, 2, "void_ip_t *", "ipinfo_t *" },
913 { "tcp", "accept-established", 3, 3, "tcp_t *", "tcpsinfo_t *" },
914 { "tcp", "accept-established", 4, 4, "tcph_t *", "tcpinfo_t *" },
915 { "tcp", "accept-refused", 0, 0, "mblk_t *", "pktinfo_t *" },
916 { "tcp", "accept-refused", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
917 { "tcp", "accept-refused", 2, 2, "void_ip_t *", "ipinfo_t *" },
918 { "tcp", "accept-refused", 3, 3, "tcp_t *", "tcpsinfo_t *" },
919 { "tcp", "accept-refused", 4, 4, "tcph_t *", "tcpinfo_t *" },
920 { "tcp", "state-change", 0, 0, "void", "void" },
921 { "tcp", "state-change", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
922 { "tcp", "state-change", 2, 2, "void", "void" },
923 { "tcp", "state-change", 3, 3, "tcp_t *", "tcpsinfo_t *" },
924 { "tcp", "state-change", 4, 4, "void", "void" },
925 { "tcp", "state-change", 5, 5, "int32_t", "tcplsinfo_t *" },
926 { "tcp", "send", 0, 0, "mblk_t *", "pktinfo_t *" },
927 { "tcp", "send", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
928 { "tcp", "send", 2, 2, "__dtrace_tcp_void_ip_t *", "ipinfo_t *" },
929 { "tcp", "send", 3, 3, "tcp_t *", "tcpsinfo_t *" },
930 { "tcp", "send", 4, 4, "__dtrace_tcp_tcph_t *", "tcpinfo_t *" },
931 { "tcp", "receive", 0, 0, "mblk_t *", "pktinfo_t *" },
932 { "tcp", "receive", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
933 { "tcp", "receive", 2, 2, "__dtrace_tcp_void_ip_t *", "ipinfo_t *" },
934 { "tcp", "receive", 3, 3, "tcp_t *", "tcpsinfo_t *" },
935 { "tcp", "receive", 4, 4, "__dtrace_tcp_tcph_t *", "tcpinfo_t *" },

937 { "udp", "send", 0, 0, "mblk_t *", "pktinfo_t *" },
938 { "udp", "send", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
939 { "udp", "send", 2, 2, "void_ip_t *", "ipinfo_t *" },
940 { "udp", "send", 3, 3, "udp_t *", "udpsinfo_t *" },
941 { "udp", "send", 4, 4, "udpha_t *", "udpinfo_t *" },
942 { "udp", "receive", 0, 0, "mblk_t *", "pktinfo_t *" },
943 { "udp", "receive", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
944 { "udp", "receive", 2, 2, "void_ip_t *", "ipinfo_t *" },
945 { "udp", "receive", 3, 3, "udp_t *", "udpsinfo_t *" },
946 { "udp", "receive", 4, 4, "udpha_t *", "udpinfo_t *" },

948 { "dccp", "connect-established", 0, 0, "mblk_t *", "pktinfo_t *" },
949 { "dccp", "connect-established", 1, 1, "ip_xmit_attr_t *",

new/usr/src/uts/common/dtrace/sdt_subr.c 14

950 "csinfo_t *" },
951 { "dccp", "connect-established", 2, 2, "void_ip_t *", "ipinfo_t *" },
952 { "dccp", "connect-established", 3, 3, "dccp_t *", "dccpsinfo_t *" },
953 { "dccp", "connect-established", 4, 4, "dccph_t *", "dccpinfo_t *" },
954 { "dccp", "connect-refused", 0, 0, "mblk_t *", "pktinfo_t *" },
955 { "dccp", "connect-refused", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
956 { "dccp", "connect-refused", 2, 2, "void_ip_t *", "ipinfo_t *" },
957 { "dccp", "connect-refused", 3, 3, "dccp_t *", "dccpsinfo_t *" },
958 { "dccp", "connect-refused", 4, 4, "dccph_t *", "dccpinfo_t *" },
959 { "dccp", "connect-request", 0, 0, "mblk_t *", "pktinfo_t *" },
960 { "dccp", "connect-request", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
961 { "dccp", "connect-request", 2, 2, "void_ip_t *", "ipinfo_t *" },
962 { "dccp", "connect-request", 3, 3, "dccp_t *", "dccpsinfo_t *" },
963 { "dccp", "connect-request", 4, 4, "dccph_t *", "dccpinfo_t *" },
964 { "dccp", "accept-established", 0, 0, "mblk_t *", "pktinfo_t *" },
965 { "dccp", "accept-established", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" }
966 { "dccp", "accept-established", 2, 2, "void_ip_t *", "ipinfo_t *" },
967 { "dccp", "accept-established", 3, 3, "dccp_t *", "dccpsinfo_t *" },
968 { "dccp", "accept-established", 4, 4, "dccph_t *", "dccpinfo_t *" },
969 { "dccp", "accept-refused", 0, 0, "mblk_t *", "pktinfo_t *" },
970 { "dccp", "accept-refused", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
971 { "dccp", "accept-refused", 2, 2, "void_ip_t *", "ipinfo_t *" },
972 { "dccp", "accept-refused", 3, 3, "dccp_t *", "dccpsinfo_t *" },
973 { "dccp", "accept-refused", 4, 4, "dccph_t *", "dccpinfo_t *" },
974 { "dccp", "state-change", 0, 0, "void", "void" },
975 { "dccp", "state-change", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
976 { "dccp", "state-change", 2, 2, "void", "void" },
977 { "dccp", "state-change", 3, 3, "dccp_t *", "dccpsinfo_t *" },
978 { "dccp", "state-change", 4, 4, "void", "void" },
979 { "dccp", "state-change", 5, 5, "int32_t", "dccplsinfo_t *" },
980 { "dccp", "send", 0, 0, "mblk_t *", "pktinfo_t *" },
981 { "dccp", "send", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
982 { "dccp", "send", 2, 2, "__dtrace_dccp_void_ip_t *", "ipinfo_t *" },
983 { "dccp", "send", 3, 3, "dccp_t *", "dccpsinfo_t *" },
984 { "dccp", "send", 4, 4, "__dtrace_dccp_dccph_t *", "dccpinfo_t *" },
985 { "dccp", "receive", 0, 0, "mblk_t *", "pktinfo_t *" },
986 { "dccp", "receive", 1, 1, "ip_xmit_attr_t *", "csinfo_t *" },
987 { "dccp", "receive", 2, 2, "__dtrace_dccp_void_ip_t *", "ipinfo_t *" },
988 { "dccp", "receive", 3, 3, "dccp_t *", "dccpsinfo_t *" },
989 { "dccp", "receive", 4, 4, "__dtrace_dccp_dccph_t *", "dccpinfo_t *" },

991 #endif /* ! codereview */
992 { "sysevent", "post", 0, 0, "evch_bind_t *", "syseventchaninfo_t *" },
993 { "sysevent", "post", 1, 1, "sysevent_impl_t *", "syseventinfo_t *" },

995 { "xpv", "add-to-physmap-end", 0, 0, "int" },
996 { "xpv", "add-to-physmap-start", 0, 0, "domid_t" },
997 { "xpv", "add-to-physmap-start", 1, 1, "uint_t" },
998 { "xpv", "add-to-physmap-start", 2, 2, "ulong_t" },
999 { "xpv", "add-to-physmap-start", 3, 3, "ulong_t" },

1000 { "xpv", "decrease-reservation-end", 0, 0, "int" },
1001 { "xpv", "decrease-reservation-start", 0, 0, "domid_t" },
1002 { "xpv", "decrease-reservation-start", 1, 1, "ulong_t" },
1003 { "xpv", "decrease-reservation-start", 2, 2, "uint_t" },
1004 { "xpv", "decrease-reservation-start", 3, 3, "ulong_t *" },
1005 { "xpv", "dom-create-start", 0, 0, "xen_domctl_t *" },
1006 { "xpv", "dom-destroy-start", 0, 0, "domid_t" },
1007 { "xpv", "dom-pause-start", 0, 0, "domid_t" },
1008 { "xpv", "dom-unpause-start", 0, 0, "domid_t" },
1009 { "xpv", "dom-create-end", 0, 0, "int" },
1010 { "xpv", "dom-destroy-end", 0, 0, "int" },
1011 { "xpv", "dom-pause-end", 0, 0, "int" },
1012 { "xpv", "dom-unpause-end", 0, 0, "int" },
1013 { "xpv", "evtchn-op-end", 0, 0, "int" },
1014 { "xpv", "evtchn-op-start", 0, 0, "int" },
1015 { "xpv", "evtchn-op-start", 1, 1, "void *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 15

1016 { "xpv", "increase-reservation-end", 0, 0, "int" },
1017 { "xpv", "increase-reservation-start", 0, 0, "domid_t" },
1018 { "xpv", "increase-reservation-start", 1, 1, "ulong_t" },
1019 { "xpv", "increase-reservation-start", 2, 2, "uint_t" },
1020 { "xpv", "increase-reservation-start", 3, 3, "ulong_t *" },
1021 { "xpv", "mmap-end", 0, 0, "int" },
1022 { "xpv", "mmap-entry", 0, 0, "ulong_t" },
1023 { "xpv", "mmap-entry", 1, 1, "ulong_t" },
1024 { "xpv", "mmap-entry", 2, 2, "ulong_t" },
1025 { "xpv", "mmap-start", 0, 0, "domid_t" },
1026 { "xpv", "mmap-start", 1, 1, "int" },
1027 { "xpv", "mmap-start", 2, 2, "privcmd_mmap_entry_t *" },
1028 { "xpv", "mmapbatch-end", 0, 0, "int" },
1029 { "xpv", "mmapbatch-end", 1, 1, "struct seg *" },
1030 { "xpv", "mmapbatch-end", 2, 2, "caddr_t" },
1031 { "xpv", "mmapbatch-start", 0, 0, "domid_t" },
1032 { "xpv", "mmapbatch-start", 1, 1, "int" },
1033 { "xpv", "mmapbatch-start", 2, 2, "caddr_t" },
1034 { "xpv", "mmu-ext-op-end", 0, 0, "int" },
1035 { "xpv", "mmu-ext-op-start", 0, 0, "int" },
1036 { "xpv", "mmu-ext-op-start", 1, 1, "struct mmuext_op *" },
1037 { "xpv", "mmu-update-start", 0, 0, "int" },
1038 { "xpv", "mmu-update-start", 1, 1, "int" },
1039 { "xpv", "mmu-update-start", 2, 2, "mmu_update_t *" },
1040 { "xpv", "mmu-update-end", 0, 0, "int" },
1041 { "xpv", "populate-physmap-end", 0, 0, "int" },
1042 { "xpv", "populate-physmap-start", 0, 0, "domid_t" },
1043 { "xpv", "populate-physmap-start", 1, 1, "ulong_t" },
1044 { "xpv", "populate-physmap-start", 2, 2, "ulong_t *" },
1045 { "xpv", "set-memory-map-end", 0, 0, "int" },
1046 { "xpv", "set-memory-map-start", 0, 0, "domid_t" },
1047 { "xpv", "set-memory-map-start", 1, 1, "int" },
1048 { "xpv", "set-memory-map-start", 2, 2, "struct xen_memory_map *" },
1049 { "xpv", "setvcpucontext-end", 0, 0, "int" },
1050 { "xpv", "setvcpucontext-start", 0, 0, "domid_t" },
1051 { "xpv", "setvcpucontext-start", 1, 1, "vcpu_guest_context_t *" },

1053 { "srp", "service-up", 0, 0, "srpt_session_t *", "conninfo_t *" },
1054 { "srp", "service-up", 1, 0, "srpt_session_t *", "srp_portinfo_t *" },
1055 { "srp", "service-down", 0, 0, "srpt_session_t *", "conninfo_t *" },
1056 { "srp", "service-down", 1, 0, "srpt_session_t *",
1057 "srp_portinfo_t *" },
1058 { "srp", "login-command", 0, 0, "srpt_session_t *", "conninfo_t *" },
1059 { "srp", "login-command", 1, 0, "srpt_session_t *",
1060 "srp_portinfo_t *" },
1061 { "srp", "login-command", 2, 1, "srp_login_req_t *",
1062 "srp_logininfo_t *" },
1063 { "srp", "login-response", 0, 0, "srpt_session_t *", "conninfo_t *" },
1064 { "srp", "login-response", 1, 0, "srpt_session_t *",
1065 "srp_portinfo_t *" },
1066 { "srp", "login-response", 2, 1, "srp_login_rsp_t *",
1067 "srp_logininfo_t *" },
1068 { "srp", "login-response", 3, 2, "srp_login_rej_t *" },
1069 { "srp", "logout-command", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1070 { "srp", "logout-command", 1, 0, "srpt_channel_t *",
1071 "srp_portinfo_t *" },
1072 { "srp", "task-command", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1073 { "srp", "task-command", 1, 0, "srpt_channel_t *",
1074 "srp_portinfo_t *" },
1075 { "srp", "task-command", 2, 1, "srp_cmd_req_t *", "srp_taskinfo_t *" },
1076 { "srp", "task-response", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1077 { "srp", "task-response", 1, 0, "srpt_channel_t *",
1078 "srp_portinfo_t *" },
1079 { "srp", "task-response", 2, 1, "srp_rsp_t *", "srp_taskinfo_t *" },
1080 { "srp", "task-response", 3, 2, "scsi_task_t *" },
1081 { "srp", "task-response", 4, 3, "int8_t" },

new/usr/src/uts/common/dtrace/sdt_subr.c 16

1082 { "srp", "scsi-command", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1083 { "srp", "scsi-command", 1, 0, "srpt_channel_t *",
1084 "srp_portinfo_t *" },
1085 { "srp", "scsi-command", 2, 1, "scsi_task_t *", "scsicmd_t *" },
1086 { "srp", "scsi-command", 3, 2, "srp_cmd_req_t *", "srp_taskinfo_t *" },
1087 { "srp", "scsi-response", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1088 { "srp", "scsi-response", 1, 0, "srpt_channel_t *",
1089 "srp_portinfo_t *" },
1090 { "srp", "scsi-response", 2, 1, "srp_rsp_t *", "srp_taskinfo_t *" },
1091 { "srp", "scsi-response", 3, 2, "scsi_task_t *" },
1092 { "srp", "scsi-response", 4, 3, "int8_t" },
1093 { "srp", "xfer-start", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1094 { "srp", "xfer-start", 1, 0, "srpt_channel_t *",
1095 "srp_portinfo_t *" },
1096 { "srp", "xfer-start", 2, 1, "ibt_wr_ds_t *", "xferinfo_t *" },
1097 { "srp", "xfer-start", 3, 2, "srpt_iu_t *", "srp_taskinfo_t *" },
1098 { "srp", "xfer-start", 4, 3, "ibt_send_wr_t *"},
1099 { "srp", "xfer-start", 5, 4, "uint32_t" },
1100 { "srp", "xfer-start", 6, 5, "uint32_t" },
1101 { "srp", "xfer-start", 7, 6, "uint32_t" },
1102 { "srp", "xfer-start", 8, 7, "uint32_t" },
1103 { "srp", "xfer-done", 0, 0, "srpt_channel_t *", "conninfo_t *" },
1104 { "srp", "xfer-done", 1, 0, "srpt_channel_t *",
1105 "srp_portinfo_t *" },
1106 { "srp", "xfer-done", 2, 1, "ibt_wr_ds_t *", "xferinfo_t *" },
1107 { "srp", "xfer-done", 3, 2, "srpt_iu_t *", "srp_taskinfo_t *" },
1108 { "srp", "xfer-done", 4, 3, "ibt_send_wr_t *"},
1109 { "srp", "xfer-done", 5, 4, "uint32_t" },
1110 { "srp", "xfer-done", 6, 5, "uint32_t" },
1111 { "srp", "xfer-done", 7, 6, "uint32_t" },
1112 { "srp", "xfer-done", 8, 7, "uint32_t" },

1114 { "fc", "link-up", 0, 0, "fct_i_local_port_t *", "conninfo_t *" },
1115 { "fc", "link-down", 0, 0, "fct_i_local_port_t *", "conninfo_t *" },
1116 { "fc", "fabric-login-start", 0, 0, "fct_i_local_port_t *",
1117 "conninfo_t *" },
1118 { "fc", "fabric-login-start", 1, 0, "fct_i_local_port_t *",
1119 "fc_port_info_t *" },
1120 { "fc", "fabric-login-end", 0, 0, "fct_i_local_port_t *",
1121 "conninfo_t *" },
1122 { "fc", "fabric-login-end", 1, 0, "fct_i_local_port_t *",
1123 "fc_port_info_t *" },
1124 { "fc", "rport-login-start", 0, 0, "fct_cmd_t *",
1125 "conninfo_t *" },
1126 { "fc", "rport-login-start", 1, 1, "fct_local_port_t *",
1127 "fc_port_info_t *" },
1128 { "fc", "rport-login-start", 2, 2, "fct_i_remote_port_t *",
1129 "fc_port_info_t *" },
1130 { "fc", "rport-login-start", 3, 3, "int", "int" },
1131 { "fc", "rport-login-end", 0, 0, "fct_cmd_t *",
1132 "conninfo_t *" },
1133 { "fc", "rport-login-end", 1, 1, "fct_local_port_t *",
1134 "fc_port_info_t *" },
1135 { "fc", "rport-login-end", 2, 2, "fct_i_remote_port_t *",
1136 "fc_port_info_t *" },
1137 { "fc", "rport-login-end", 3, 3, "int", "int" },
1138 { "fc", "rport-login-end", 4, 4, "int", "int" },
1139 { "fc", "rport-logout-start", 0, 0, "fct_cmd_t *",
1140 "conninfo_t *" },
1141 { "fc", "rport-logout-start", 1, 1, "fct_local_port_t *",
1142 "fc_port_info_t *" },
1143 { "fc", "rport-logout-start", 2, 2, "fct_i_remote_port_t *",
1144 "fc_port_info_t *" },
1145 { "fc", "rport-logout-start", 3, 3, "int", "int" },
1146 { "fc", "rport-logout-end", 0, 0, "fct_cmd_t *",
1147 "conninfo_t *" },

new/usr/src/uts/common/dtrace/sdt_subr.c 17

1148 { "fc", "rport-logout-end", 1, 1, "fct_local_port_t *",
1149 "fc_port_info_t *" },
1150 { "fc", "rport-logout-end", 2, 2, "fct_i_remote_port_t *",
1151 "fc_port_info_t *" },
1152 { "fc", "rport-logout-end", 3, 3, "int", "int" },
1153 { "fc", "scsi-command", 0, 0, "fct_cmd_t *",
1154 "conninfo_t *" },
1155 { "fc", "scsi-command", 1, 1, "fct_i_local_port_t *",
1156 "fc_port_info_t *" },
1157 { "fc", "scsi-command", 2, 2, "scsi_task_t *",
1158 "scsicmd_t *" },
1159 { "fc", "scsi-command", 3, 3, "fct_i_remote_port_t *",
1160 "fc_port_info_t *" },
1161 { "fc", "scsi-response", 0, 0, "fct_cmd_t *",
1162 "conninfo_t *" },
1163 { "fc", "scsi-response", 1, 1, "fct_i_local_port_t *",
1164 "fc_port_info_t *" },
1165 { "fc", "scsi-response", 2, 2, "scsi_task_t *",
1166 "scsicmd_t *" },
1167 { "fc", "scsi-response", 3, 3, "fct_i_remote_port_t *",
1168 "fc_port_info_t *" },
1169 { "fc", "xfer-start", 0, 0, "fct_cmd_t *",
1170 "conninfo_t *" },
1171 { "fc", "xfer-start", 1, 1, "fct_i_local_port_t *",
1172 "fc_port_info_t *" },
1173 { "fc", "xfer-start", 2, 2, "scsi_task_t *",
1174 "scsicmd_t *" },
1175 { "fc", "xfer-start", 3, 3, "fct_i_remote_port_t *",
1176 "fc_port_info_t *" },
1177 { "fc", "xfer-start", 4, 4, "stmf_data_buf_t *",
1178 "fc_xferinfo_t *" },
1179 { "fc", "xfer-done", 0, 0, "fct_cmd_t *",
1180 "conninfo_t *" },
1181 { "fc", "xfer-done", 1, 1, "fct_i_local_port_t *",
1182 "fc_port_info_t *" },
1183 { "fc", "xfer-done", 2, 2, "scsi_task_t *",
1184 "scsicmd_t *" },
1185 { "fc", "xfer-done", 3, 3, "fct_i_remote_port_t *",
1186 "fc_port_info_t *" },
1187 { "fc", "xfer-done", 4, 4, "stmf_data_buf_t *",
1188 "fc_xferinfo_t *" },
1189 { "fc", "rscn-receive", 0, 0, "fct_i_local_port_t *",
1190 "conninfo_t *" },
1191 { "fc", "rscn-receive", 1, 1, "int", "int"},
1192 { "fc", "abts-receive", 0, 0, "fct_cmd_t *",
1193 "conninfo_t *" },
1194 { "fc", "abts-receive", 1, 1, "fct_i_local_port_t *",
1195 "fc_port_info_t *" },
1196 { "fc", "abts-receive", 2, 2, "fct_i_remote_port_t *",
1197 "fc_port_info_t *" },

1200 { NULL }
1201 };

1203 /*ARGSUSED*/
1204 void
1205 sdt_getargdesc(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc)
1206 {
1207 sdt_probe_t *sdp = parg;
1208 int i;

1210 desc->dtargd_native[0] = ’\0’;
1211 desc->dtargd_xlate[0] = ’\0’;

1213 for (i = 0; sdt_args[i].sda_provider != NULL; i++) {

new/usr/src/uts/common/dtrace/sdt_subr.c 18

1214 sdt_argdesc_t *a = &sdt_args[i];

1216 if (strcmp(sdp->sdp_provider->sdtp_name, a->sda_provider) != 0)
1217 continue;

1219 if (a->sda_name != NULL &&
1220 strcmp(sdp->sdp_name, a->sda_name) != 0)
1221 continue;

1223 if (desc->dtargd_ndx != a->sda_ndx)
1224 continue;

1226 if (a->sda_native != NULL)
1227 (void) strcpy(desc->dtargd_native, a->sda_native);

1229 if (a->sda_xlate != NULL)
1230 (void) strcpy(desc->dtargd_xlate, a->sda_xlate);

1232 desc->dtargd_mapping = a->sda_mapping;
1233 return;
1234 }

1236 desc->dtargd_ndx = DTRACE_ARGNONE;
1237 }

new/usr/src/uts/common/inet/Makefile 1

**
 1853 Sat Aug 18 10:37:08 2012
new/usr/src/uts/common/inet/Makefile
dccp: finish moving headers
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # uts/common/inet/Makefile
27 #
28 # include global definitions
29 include ../../../Makefile.master

31 HDRS= arp.h common.h ipclassifier.h ip.h ip6.h ipdrop.h ipnet.h \
32 ipsecah.h ipsecesp.h ipsec_info.h iptun.h ip6_asp.h ip_if.h ip_ire.h \
33 ip_multi.h ip_netinfo.h ip_ndp.h ip_rts.h ipsec_impl.h keysock.h \
34 led.h mi.h mib2.h nd.h optcom.h sadb.h sctp_itf.h snmpcom.h tcp.h \
35 tcp_sack.h tcp_stack.h tunables.h udp_impl.h rawip_impl.h ipp_common.h \
36 ip_ftable.h ip_impl.h ip_stack.h ip_arp.h tcp_impl.h wifi_ioctl.h \
37 ip2mac.h ip2mac_impl.h tcp_stats.h dccp.h dccp_impl.h dccp_ip.h \
38 dccp_stack.h dccp_stats.h
37 ip2mac.h ip2mac_impl.h tcp_stats.h

40 ROOTDIRS= $(ROOT)/usr/include/inet

42 ROOTHDRS= $(HDRS:%=$(ROOT)/usr/include/inet/%)

44 CHECKHDRS= $(HDRS:%.h=%.check)

46 $(ROOTDIRS)/%: %
47 $(INS.file)

49 .KEEP_STATE:

51 .PARALLEL: $(CHECKHDRS)

53 install_h: $(ROOTDIRS) $(ROOTHDRS)

55 $(ROOTDIRS):
56 $(INS.dir)

58 check: $(CHECKHDRS)

new/usr/src/uts/common/inet/dccp.h 1

**
 6239 Sat Aug 18 10:37:08 2012
new/usr/src/uts/common/inet/dccp.h
dccp: finish moving headers
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _INET_DCCP_H
17 #define _INET_DCCP_H

19 #include <sys/inttypes.h>
20 #include <sys/socket.h>
21 #include <sys/socket_proto.h>

23 #include <netinet/in.h>
24 #include <netinet/ip6.h>
25 #include <netinet/dccp.h>

27 #include <inet/common.h>
28 #include <inet/ip.h>
29 #include <inet/ip6.h>
30 #include <inet/tunables.h>
31 #include <inet/dccp_stack.h>
32 #include <inet/optcom.h>

34 #ifdef __cplusplus
35 extern "C" {
36 #endif

38 /*
39 * DCCP states
40 */
41 #define DCCPS_CLOSED 1
42 #define DCCPS_BOUND 2
43 #define DCCPS_REQUEST 3
44 #define DCCPS_LISTEN 4
45 #define DCCPS_PARTOPEN 5
46 #define DCCPS_RESPOND 6
47 #define DCCPS_OPEN 7
48 #define DCCPS_CLOSING 8
49 #define DCCPS_CLOSEREQ 9
50 #define DCCPS_TIMEWAIT 10

52 /*
53 * DCCP header structures.
54 */

56 /* Generic protocol header (RFC 4340, Section 5.1.) */
57 typedef struct dccphdr_s {
58 uint8_t dh_lport[2];
59 uint8_t dh_fport[2];
60 uint8_t dh_offset;
61 uint8_t dh_ccval:4,

new/usr/src/uts/common/inet/dccp.h 2

62 dh_cscov:4;
63 uint8_t db_sum[2];
64 uint8_t dh_reserved:3,
65 dh_type:4,
66 dh_x:1;
67 uint8_t dh_res_seq;
68 uint8_t dh_seq[2];
69 } dccph_t;

71 #define DCCP_HDR_LENGTH(dccph) \
72 (((dccph_t *)dccph)->dh_offset * 4) /* XXX >> 2 */
73 #define DCCP_MAX_HDR_LENGTH 1020
74 #define DCCP_MIN_HEADER_LENGTH 12

76 /* Generic protocol header aligned (RFC 4340, Section 5.1.) */
77 typedef struct dccphdra_s {
78 in_port_t dha_lport; /* Source port */
79 in_port_t dha_fport; /* Destination port */
80 uint8_t dha_offset; /* Data offset */
81 uint8_t dha_cscov:4, /* Checksum coverage */
82 dha_ccval:4; /* */
83 uint16_t dha_sum; /* Checksum */
84 uint8_t dha_x:1, /* Reserved */
85 dha_type:4, /* Packet type */
86 dha_reserved:3; /* Header type */
87 uint8_t dha_res_seq;
88 uint16_t dha_seq; /* Partial sequence number */
89 } dccpha_t;

91 typedef struct dccphdra_ext_s {
92 uint32_t dha_ext_seq;
93 } dccpha_ext_t;

95 /* Acknowledgement number */
96 typedef struct dccphdra_ack {
97 uint16_t dha_ack_reserved;
98 uint16_t dha_ack_high;
99 uint32_t dha_ack_low;
100 } dccpha_ack_t;

102 /* Service number */
103 typedef struct dccphdra_srv {
104 uint32_t dha_srv_code;
105 } dccpha_srv_t;

107 /* Reset data */
108 typedef struct dccphdra_reset {
109 uint8_t dha_reset_code;
110 uint8_t dha_reset_data[3];
111 } dccpha_reset_t;

113 /*
114 * Control structure for each open TCP stream,
115 * defined only within the kernel or for a kmem user.
116 * NOTE: tcp_reinit_values MUST have a line for each field in this structure!
117 */
118 #if (defined(_KERNEL) || defined(_KMEMUSER))

120 /* Internal DCCP structure */
121 typedef struct dccp_s {

123 conn_t *dccp_connp; /* Backpointer to conn_t */
124 dccp_stack_t *dccp_dccps; /* Backpointer to dccp_stack_t */

126 int32_t dccp_state;

new/usr/src/uts/common/inet/dccp.h 3

128 uint64_t dccp_last_rcv_lbolt;

130 uint32_t dccp_ibsegs; /* Inbound segments on this stream */
131 uint32_t dccp_obsegs; /* Outbound segments on this stream */

133 uint32_t
134 dccp_hard_binding: 1,
135 dccp_loopback: 1, /* Src and dst are the same machine */
136 dccp_localnet: 1, /* Src and dst are on the same subnet */
137 dccp_active_open: 1, /* This is a active open */
138 dccp_detached : 1, /* If we’re detached from a stream */
139 dccp_dummy: 1;

141 uint32_t
142 dccp_tconnind_started: 1,
143 dccp_dummy2: 1;

145 uint32_t
146 dccp_allow_short_seqnos: 1,
147 dccp_ecn_incapable: 1;

149 /*
150 * Timers and timestamps.
151 */
152 mblk_t *dccp_timercache; /* Timer cache */

154 timeout_id_t dccp_timer_tid; /* Timer service id */
155 timeout_id_t dccp_ka_tid; /* Keepalive timer id */

157 clock_t dccp_timestamp_init; /* Time reference */
158 int32_t dccp_timestamp_echo; /* Timestamp found in options */
159 clock_t dccp_timestamp;

161 clock_t dccp_first_timer_threshold;
162 clock_t dccp_second_timer_threshold;
163 clock_t dccp_first_ctimer_threshold;
164 clock_t dccp_second_ctimer_threshold;

166 int32_t dccp_ka_last_intrvl; /* Last probe interval */
167 uint32_t dccp_ka_interval; /* Keepalive interval */
168 uint32_t dccp_ka_rinterval; /* Keepalive retransmit */
169 uint32_t dccp_ka_abort_thres; /* Abort threshold */
170 uint32_t dccp_ka_cnt; /* Probes counter */

172 int64_t dccp_last_recv_time; /* Last segment recv time */

174 int dccp_conn_req_max; /* # request allowed */

176 int32_t dccp_client_errno; /* How the client screwed up */

178 /*
179 * Bind related.
180 */
181 struct dccp_s *dccp_bind_hash; /* Bind hash chain */
182 struct dccp_s *dccp_bind_hash_port; /* Bound to the same port */
183 struct dccp_s **dccp_ptpbhn;

185 struct dccphdra_s *dccp_dccpha; /* Template header */

187 mblk_t *dccp_xmit_head;

189 /*
190 * Pointers into the header template.
191 */
192 ipha_t *dccp_ipha;
193 ip6_t *dccp_ip6h;

new/usr/src/uts/common/inet/dccp.h 4

195 t_uscalar_t dccp_acceptor_id; /* ACCEPTOR_id */

197 sock_connid_t dccp_connid;

199 /* Incrementing pending conn req ID */
200 t_scalar_t dccp_conn_req_seqnum;

202 boolean_t dccp_issocket; /* This is a socket dccp */

204 /* List of features being negotiated */
205 list_t dccp_features;

207 struct dccp_s *dccp_listener; /* Our listener */
208 struct dccp_s *dccp_saved_listener; /* Saved listener */

210 kmutex_t dccp_eager_lock;

212 /*
213 * Sequence numbers (Section 7.1.)
214 */
215 uint64_t dccp_swl; /* Sequence number window low */
216 uint64_t dccp_swh; /* Sequence number window high */
217 uint64_t dccp_awl; /* Ack number window low */
218 uint64_t dccp_awh; /* Ack number window high */
219 uint64_t dccp_iss; /* Initial sequence number sent */
220 uint64_t dccp_isr; /* Initial sequence number received */
221 uint64_t dccp_osr; /* First OPEN sequence number */
222 uint64_t dccp_gss; /* Greatest sequence number sent */
223 uint64_t dccp_gsr; /* Greatest sequence */
224 /* number received */
225 uint64_t dccp_gar; /* Greatest acknowledgement */
226 /* number received */

228 uint64_t dccp_sequence_window;

230 uint8_t dccp_reset_code;
231 uint8_t dccp_reset_data[3];
232 } dccp_t;

234 typedef struct dccp_df_s {
235 struct dccp_s *df_dccp;
236 kmutex_t df_lock;
237 uchar_t df_pad[TF_CACHEL_PAD - (sizeof (dccp_t *) +
238 sizeof (kmutex_t))];
239 } dccp_df_t;

241 #endif /* _KERNEL */

243 #ifdef __cplusplus
244 }
245 #endif

247 #endif /* _INET_DCCP_H */
248 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp.c 1

**
 32398 Sat Aug 18 10:37:08 2012
new/usr/src/uts/common/inet/dccp/dccp.c
dccp: starting module template
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * This file implements the Data Congestion Control Protocol (DCCP).
33 */

35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/stropts.h>
38 #include <sys/strlog.h>
39 #include <sys/strsun.h>
40 #define _SUN_TPI_VERSION 2
41 #include <sys/tihdr.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/sockio.h>
45 #include <sys/priv.h>
46 #include <sys/vtrace.h>
47 #include <sys/sdt.h>
48 #include <sys/debug.h>
49 #include <sys/ddi.h>
50 #include <sys/isa_defs.h>
51 #include <sys/policy.h>
52 #include <sys/tsol/label.h>
53 #include <sys/tsol/tnet.h>

55 #include <inet/common.h>
56 #include <inet/ip.h>
57 #include <inet/ip_impl.h>
58 #include <inet/ip6.h>
59 #include <inet/dccp.h>
60 #include <inet/dccp_impl.h>
61 #include <inet/dccp_stack.h>

new/usr/src/uts/common/inet/dccp/dccp.c 2

62 #include <inet/kstatcom.h>
63 #include <inet/snmpcom.h>

65 #include <sys/cmn_err.h>

67 int dccp_squeue_flag;

69 /* Setable in /etc/system */
70 uint_t dccp_bind_fanout_size = DCCP_BIND_FANOUT_SIZE;

72 static void dccp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
73 ixa_notify_arg_t);

75 /* Functions to register netstack */
76 static void *dccp_stack_init(netstackid_t, netstack_t *);
77 static void dccp_stack_fini(netstackid_t, void *);

79 /* Stream device open functions */
80 static int dccp_openv4(queue_t *, dev_t *, int, int, cred_t *);
81 static int dccp_openv6(queue_t *, dev_t *, int, int, cred_t *);
82 static int dccp_open(queue_t *, dev_t *, int, int, cred_t *,
83 boolean_t);

85 /* Write service routine */
86 static void dccp_wsrv(queue_t *);

88 /* Connection related functions */
89 static int dccp_connect_ipv4(dccp_t *, ipaddr_t *, in_port_t, uint_t);
90 static int dccp_connect_ipv6(dccp_t *, in6_addr_t *, in_port_t, uint32_t,
91 uint_t, uint32_t);

93 /* Initialise ISS */
94 static void dccp_iss_init(dccp_t *);
95 static void dccp_reinit(dccp_t *);

97 struct module_info dccp_rinfo = {
98 DCCP_MOD_ID, DCCP_MOD_NAME, 0, INFPSZ, DCCP_RECV_HIWATER,
99 DCCP_RECV_LOWATER
100 };

102 static struct module_info dccp_winfo = {
103 DCCP_MOD_ID, DCCP_MOD_NAME, 0, INFPSZ, 127, 16
104 };

106 /*
107 * Queue information structure with DCCP entry points.
108 */
109 struct qinit dccp_rinitv4 = {
110 NULL, (pfi_t)dccp_rsrv, dccp_openv4, dccp_tpi_close, NULL, &dccp_rinfo
111 };

113 struct qinit dccp_rinitv6 = {
114 NULL, (pfi_t)dccp_rsrv, dccp_openv6, dccp_tpi_close, NULL, &dccp_rinfo
115 };

117 struct qinit dccp_winit = {
118 (pfi_t)dccp_wput, (pfi_t)dccp_wsrv, NULL, NULL, NULL, &dccp_winfo
119 };

121 /* Initial entry point for TCP in socket mode */
122 struct qinit dccp_sock_winit = {
123 (pfi_t)dccp_wput_sock, (pfi_t)dccp_wsrv, NULL, NULL, NULL, &dccp_winfo
124 };

126 struct qinit dccp_fallback_sock_winit = {
127 (pfi_t)dccp_wput_fallback, NULL, NULL, NULL, NULL, &dccp_winfo

new/usr/src/uts/common/inet/dccp/dccp.c 3

128 };
129 /*
130 * DCCP as acceptor STREAM.
131 */
132 struct qinit dccp_acceptor_rinit = {
133 NULL, (pfi_t)dccp_rsrv, NULL, dccp_tpi_close_accept, NULL, &dccp_winfo
134 };

136 struct qinit dccp_acceptor_winit = {
137 (pfi_t)dccp_tpi_accept, NULL, NULL, NULL, NULL, &dccp_winfo
138 };

140 /* AF_INET /dev/dccp */
141 struct streamtab dccpinfov4 = {
142 &dccp_rinitv4, &dccp_winit
143 };

145 /* AF_INET6 /dev/dccp6 */
146 struct streamtab dccpinfov6 = {
147 &dccp_rinitv6, &dccp_winit
148 };

150 /* Template for response to info request */
151 struct T_info_ack dccp_g_t_info_ack = {
152 T_INFO_ACK, /* PRIM_type */
153 0, /* TSDU_size */
154 T_INFINITE, /* ETSDU_size */
155 T_INVALID, /* CDATA_size */
156 T_INVALID, /* DDATA_size */
157 sizeof (sin_t), /* ADDR_size */
158 0, /* OPT_size - not initialized here */
159 TIDUSZ, /* TIDU_size */
160 T_COTS_ORD, /* SERV_type */
161 DCCPS_CLOSED, /* CURRENT_state */
162 (XPG4_1|EXPINLINE) /* PROVIDER_flag */
163 };

165 struct T_info_ack dccp_g_t_info_ack_v6 = {
166 T_INFO_ACK, /* PRIM_type */
167 0, /* TSDU_size */
168 T_INFINITE, /* ETSDU_size */
169 T_INVALID, /* CDATA_size */
170 T_INVALID, /* DDATA_size */
171 sizeof (sin6_t), /* ADDR_size */
172 0, /* OPT_size - not initialized here */
173 TIDUSZ, /* TIDU_size */
174 T_COTS_ORD, /* SERV_type */
175 DCCPS_CLOSED, /* CURRENT_state */
176 (XPG4_1|EXPINLINE) /* PROVIDER_flag */
177 };

179 /*
180 * DCCP Tunables.
181 */
182 extern mod_prop_info_t dccp_propinfo_tbl[];
183 extern int dccp_propinfo_count;

185 /*
186 * Register DCCP in ip netstack.
187 */
188 void
189 dccp_ddi_g_init(void)
190 {
191 /* Global timer cache */
192 dccp_timercache = kmem_cache_create("dccp_timercache",
193 sizeof (dccp_timer_t) + sizeof (mblk_t), 0,

new/usr/src/uts/common/inet/dccp/dccp.c 4

194 NULL, NULL, NULL, NULL, NULL, 0);
195
196 netstack_register(NS_DCCP, dccp_stack_init, NULL, dccp_stack_fini);
197 }

199 /*
200 * Unregister DCCP from ip netstack.
201 */
202 void
203 dccp_ddi_g_destroy(void)
204 {
205 /* Global timer cache */
206 kmem_cache_destroy(dccp_timercache);

208 netstack_unregister(NS_DCCP);
209 }

211 #define INET_NAME "ip"

213 /*
214 * Initialize this DCCP stack instance.
215 */
216 static void *
217 dccp_stack_init(netstackid_t stackid, netstack_t *ns)
218 {
219 dccp_stack_t *dccps;
220 major_t major;
221 size_t arrsz;
222 int error;
223 int i;

225 dccps = kmem_zalloc(sizeof (*dccps), KM_SLEEP);
226 if (dccps == NULL) {
227 return (NULL);
228 }
229 dccps->dccps_netstack = ns;

231 /* Ports */
232 mutex_init(&dccps->dccps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
233 dccps->dccps_num_epriv_ports = DCCP_NUM_EPRIV_PORTS;
234 dccps->dccps_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
235 dccps->dccps_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
236 dccps->dccps_min_anonpriv_port = 512;

238 dccps->dccps_bind_fanout_size = dccp_bind_fanout_size;

240 /* Bind fanout */
241 dccps->dccps_bind_fanout = kmem_zalloc(dccps->dccps_bind_fanout_size *
242 sizeof (dccp_df_t), KM_SLEEP);
243 for (i = 0; i < dccps->dccps_bind_fanout_size; i++) {
244 mutex_init(&dccps->dccps_bind_fanout[i].df_lock, NULL,
245 MUTEX_DEFAULT, NULL);
246 }

248 /* Tunable properties */
249 arrsz = dccp_propinfo_count * sizeof (mod_prop_info_t);
250 dccps->dccps_propinfo_tbl = kmem_alloc(arrsz, KM_SLEEP);
251 if (dccps->dccps_propinfo_tbl == NULL) {
252 kmem_free(dccps, sizeof (*dccps));
253 return (NULL);
254 }
255 bcopy(dccp_propinfo_tbl, dccps->dccps_propinfo_tbl, arrsz);

257 /* Allocate per netstack cpu stats */
258 mutex_enter(&cpu_lock);
259 dccps->dccps_sc_cnt = MAX(ncpus, boot_ncpus);

new/usr/src/uts/common/inet/dccp/dccp.c 5

260 mutex_exit(&cpu_lock);

262 dccps->dccps_sc = kmem_zalloc(max_ncpus * sizeof (dccp_stats_cpu_t *),
263 KM_SLEEP);
264 for (i = 0; i < dccps->dccps_sc_cnt; i++) {
265 dccps->dccps_sc[i] = kmem_zalloc(sizeof (dccp_stats_cpu_t),
266 KM_SLEEP);
267 }

269 /* Kernel statistics */
270 //dccps->dccps_kstat = dccp_kstat2_init(stackid);
271 //dccps->dccps_mibkp = dccp_kstat_init(stackid);

273 /* Driver major number */
274 major = mod_name_to_major(INET_NAME);
275 error = ldi_ident_from_major(major, &dccps->dccps_ldi_ident);
276 ASSERT(error == 0);

278 return (dccps);
279 }

281 /*
282 * Destroy this DCCP netstack instance.
283 */
284 static void
285 dccp_stack_fini(netstackid_t stackid, void *arg)
286 {
287 dccp_stack_t *dccps = (dccp_stack_t *)arg;
288 int i;

290 /* Free cpu stats */
291 for (i = 0; i < dccps->dccps_sc_cnt; i++) {
292 kmem_free(dccps->dccps_sc[i], sizeof (dccp_stats_cpu_t));
293 }
294 kmem_free(dccps->dccps_sc, max_ncpus * sizeof (dccp_stats_cpu_t *));

296 /* Free tunable properties */
297 kmem_free(dccps->dccps_propinfo_tbl,
298 dccp_propinfo_count * sizeof (mod_prop_info_t));
299 dccps->dccps_propinfo_tbl = NULL;

301 /* Free bind fanout */
302 for (i = 0; i < dccps->dccps_bind_fanout_size; i++) {
303 ASSERT(dccps->dccps_bind_fanout[i].df_dccp == NULL);
304 mutex_destroy(&dccps->dccps_bind_fanout[i].df_lock);
305 }
306 kmem_free(dccps->dccps_bind_fanout, dccps->dccps_bind_fanout_size *
307 sizeof (dccp_df_t));
308 dccps->dccps_bind_fanout = NULL;

310 /* Kernel statistics */
311 dccp_kstat_fini(stackid, dccps->dccps_mibkp);
312 dccps->dccps_mibkp = NULL;
313 dccp_kstat2_fini(stackid, dccps->dccps_kstat);
314 dccps->dccps_kstat = NULL;

316 ldi_ident_release(dccps->dccps_ldi_ident);

318 kmem_free(dccps, sizeof (*dccps));
319 }

321 /* /dev/dccp */
322 static int
323 dccp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
324 {
325 cmn_err(CE_NOTE, "dccp.c: dccp_openv4\n");

new/usr/src/uts/common/inet/dccp/dccp.c 6

327 return (dccp_open(q, devp, flag, sflag, credp, B_FALSE));
328 }

330 /* /dev/dccp6 */
331 static int
332 dccp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
333 {
334 cmn_err(CE_NOTE, "dccp.c: dccp_openv6\n");

336 return (dccp_open(q, devp, flag, sflag, credp, B_TRUE));
337 }

339 /*
340 * Common open function for v4 and v6 devices.
341 */
342 static int
343 dccp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
344 boolean_t isv6)
345 {
346 conn_t *connp;
347 dccp_t *dccp;
348 vmem_t *minor_arena;
349 dev_t conn_dev;
350 boolean_t issocket;
351 int error;

353 cmn_err(CE_NOTE, "dccp.c: dccp_open");

355 /* If the stream is already open, return immediately */
356 if (q->q_ptr != NULL) {
357 return (0);
358 }

360 if (sflag == MODOPEN) {
361 return (EINVAL);
362 }

364 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
365 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
366 minor_arena = ip_minor_arena_la;
367 } else {
368 /*
369 * Either minor numbers in the large arena were exhausted
370 * or a non socket application is doing the open.
371 * Try to allocate from the small arena.
372 */
373 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
374 return (EBUSY);
375 }
376 minor_arena = ip_minor_arena_sa;
377 }

379 ASSERT(minor_arena != NULL);

381 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev);

383 if (flag & SO_FALLBACK) {
384 /*
385 * Non streams socket needs a stream to fallback to.
386 */
387 RD(q)->q_ptr = (void *)conn_dev;
388 WR(q)->q_qinfo = &dccp_fallback_sock_winit;
389 WR(q)->q_ptr = (void *)minor_arena;
390 qprocson(q);
391 return (0);

new/usr/src/uts/common/inet/dccp/dccp.c 7

392 } else if (flag & SO_ACCEPTOR) {
393 q->q_qinfo = &dccp_acceptor_rinit;
394 /*
395 * The conn_dev and minor_arena will be subsequently used by
396 * dccp_tli_accept() and dccp_tpi_close_accept() to figure out
397 * the minor device number for this connection from the q_ptr.
398 */
399 RD(q)->q_ptr = (void *)conn_dev;
400 WR(q)->q_qinfo = &dccp_acceptor_winit;
401 WR(q)->q_ptr = (void *)minor_arena;
402 qprocson(q);
403 return (0);
404 }

406 issocket = flag & SO_SOCKSTR;
407 connp = dccp_create_common(credp, isv6, issocket, &error);
408 if (connp == NULL) {
409 inet_minor_free(minor_arena, conn_dev);
410 q->q_ptr = WR(q)->q_ptr = NULL;
411 return (error);
412 }

414 connp->conn_rq = q;
415 connp->conn_wq = WR(q);
416 q->q_ptr = WR(q)->q_ptr = connp;

418 connp->conn_dev = conn_dev;
419 connp->conn_minor_arena = minor_arena;

421 ASSERT(q->q_qinfo == &dccp_rinitv4 || q->q_qinfo == &dccp_rinitv6);
422 ASSERT(WR(q)->q_qinfo == &dccp_winit);

424 dccp = connp->conn_dccp;

426 if (issocket) {
427 WR(q)->q_qinfo = &dccp_sock_winit;
428 } else {
429 #ifdef _ILP32
430 dccp->dccp_acceptor_id = (t_uscalar_t)RD(q);
431 #else
432 dccp->dccp_acceptor_id = conn_dev;
433 #endif /* _ILP32 */
434 }

436 /*
437 * Put the ref for DCCP. Ref for IP was already put
438 * by ipcl_conn_create. Also Make the conn_t globally
439 * visible to walkers.
440 */
441 mutex_enter(&connp->conn_lock);
442 CONN_INC_REF_LOCKED(connp);
443 ASSERT(connp->conn_ref == 2);
444 connp->conn_state_flags &= ~CONN_INCIPIENT;
445 mutex_exit(&connp->conn_lock);

447 qprocson(q);

449 return (0);
450 }

452 /*
453 * IXA notify
454 */
455 static void
456 dccp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
457 ixa_notify_arg_t narg)

new/usr/src/uts/common/inet/dccp/dccp.c 8

458 {
459 cmn_err(CE_NOTE, "dccp.c: dccp_notify");
460 }

462 /*
463 * Build the template headers.
464 */
465 int
466 dccp_build_hdrs(dccp_t *dccp)
467 {
468 dccp_stack_t *dccps = dccp->dccp_dccps;
469 conn_t *connp = dccp->dccp_connp;
470 dccpha_t *dccpha;
471 uint32_t cksum;
472 char buf[DCCP_MAX_HDR_LENGTH];
473 uint_t buflen;
474 uint_t ulplen = 12;
475 uint_t extralen = 0;
476 int error;

478 cmn_err(CE_NOTE, "dccp.c: dccp_build_hdrs");

480 buflen = connp->conn_ht_ulp_len;
481 if (buflen != 0) {
482 cmn_err(CE_NOTE, "buflen != 0");
483 bcopy(connp->conn_ht_ulp, buf, buflen);
484 extralen -= buflen - ulplen;
485 ulplen = buflen;
486 }

488 mutex_enter(&connp->conn_lock);
489 error = conn_build_hdr_template(connp, ulplen, extralen,
490 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
491 mutex_exit(&connp->conn_lock);
492 if (error != 0) {
493 cmn_err(CE_NOTE, "conn_build_hdr_template failed");
494 return (error);
495 }

497 dccpha = (dccpha_t *)connp->conn_ht_ulp;
498 dccp->dccp_dccpha = dccpha;

500 if (buflen != 0) {
501 bcopy(buf, connp->conn_ht_ulp, buflen);
502 } else {
503 dccpha->dha_sum = 0;
504 dccpha->dha_lport = connp->conn_lport;
505 dccpha->dha_fport = connp->conn_fport;
506 }

508 cksum = sizeof (dccpha_t) + connp->conn_sum;
509 cksum = (cksum >> 16) + (cksum & 0xFFFF);
510 dccpha->dha_sum = htons(cksum);
511 dccpha->dha_offset = 7;
512 dccpha->dha_x = 1;

514 if (connp->conn_ipversion == IPV4_VERSION) {
515 dccp->dccp_ipha = (ipha_t *)connp->conn_ht_iphc;
516 } else {
517 dccp->dccp_ip6h = (ip6_t *)connp->conn_ht_iphc;
518 }

520 /* XXX */

522 return (0);
523 }

new/usr/src/uts/common/inet/dccp/dccp.c 9

525 /*
526 * DCCP write service routine.
527 */
528 static void
529 dccp_wsrv(queue_t *q)
530 {
531 dccp_stack_t *dccps = Q_TO_DCCP(q)->dccp_dccps;

533 DCCP_STAT(dccps, dccp_wsrv_called);
534 }

536 /*
537 * Common create function for streams and sockets.
538 */
539 conn_t *
540 dccp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
541 int *errorp)
542 {
543 conn_t *connp;
544 dccp_t *dccp;
545 dccp_stack_t *dccps;
546 netstack_t *ns;
547 squeue_t *sqp;
548 zoneid_t zoneid;
549 int error;

551 cmn_err(CE_NOTE, "dccp.c: dccp_create_common\n");

553 ASSERT(errorp != NULL);

555 error = secpolicy_basic_net_access(credp);
556 if (error != 0) {
557 *errorp = error;
558 return (NULL);
559 }

561 /*
562 * Find the right netstack.
563 */
564 ns = netstack_find_by_cred(credp);
565 ASSERT(ns != NULL);
566 dccps = ns->netstack_dccp;
567 ASSERT(dccps != NULL);

569 /*
570 * For exclusive stacks we set the zoneid to zero
571 * to make TCP operate as if in the global zone.
572 */
573 if (ns->netstack_stackid != GLOBAL_NETSTACKID) {
574 zoneid = GLOBAL_ZONEID;
575 } else {
576 zoneid = crgetzoneid(credp);
577 }

579 sqp = IP_SQUEUE_GET((uint_t)gethrtime());
580 connp = (conn_t *)dccp_get_conn(sqp, dccps);
581 netstack_rele(dccps->dccps_netstack);
582 if (connp == NULL) {
583 *errorp = ENOSR;
584 return (NULL);
585 }
586 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);

588 connp->conn_sqp = sqp;
589 connp->conn_initial_sqp = connp->conn_sqp;

new/usr/src/uts/common/inet/dccp/dccp.c 10

590 connp->conn_ixa->ixa_sqp = connp->conn_sqp;
591 dccp = connp->conn_dccp;

593 /* Setting flags for ip output */
594 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
595 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;

597 ASSERT(connp->conn_proto == IPPROTO_DCCP);
598 ASSERT(connp->conn_dccp == dccp);
599 ASSERT(dccp->dccp_connp == connp);

601 if (isv6) {
602 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
603 connp->conn_ipversion = IPV6_VERSION;
604 connp->conn_family = AF_INET6;
605 /* XXX mms, ttl */
606 } else {
607 connp->conn_ipversion = IPV4_VERSION;
608 connp->conn_family = AF_INET;
609 /* XXX mms, ttl */
610 }
611 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;

613 crhold(credp);
614 connp->conn_cred = credp;
615 connp->conn_cpid = curproc->p_pid;
616 connp->conn_open_time = ddi_get_lbolt64();

618 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
619 connp->conn_ixa->ixa_cred = credp;
620 connp->conn_ixa->ixa_cpid = connp->conn_cpid;

622 connp->conn_zoneid = zoneid;
623 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
624 connp->conn_ixa->ixa_zoneid = zoneid;
625 connp->conn_mlp_type = mlptSingle;

627 dccp->dccp_dccps = dccps;
628 dccp->dccp_state = DCCPS_CLOSED;

630 ASSERT(connp->conn_netstack == dccps->dccps_netstack);
631 ASSERT(dccp->dccp_dccps == dccps);

633 /*
634 * If the caller has the process-wide flag set, then default to MAC
635 * exempt mode. This allows read-down to unlabeled hosts.
636 */
637 if (getpflags(NET_MAC_AWARE, credp) != 0) {
638 connp->conn_mac_mode = CONN_MAC_AWARE;
639 }

641 if (issocket) {
642 dccp->dccp_issocket = 1;
643 }

645 /* XXX rcvbuf, sndbuf etc */

647 connp->conn_so_type = SOCK_STREAM;

649 SOCK_CONNID_INIT(dccp->dccp_connid);
650 dccp_init_values(dccp, NULL);

652 return (connp);
653 }

655 /*

new/usr/src/uts/common/inet/dccp/dccp.c 11

656 * Common close function for streams and sockets.
657 */
658 void
659 dccp_close_common(conn_t *connp, int flags)
660 {
661 dccp_t *dccp = connp->conn_dccp;
662 mblk_t *mp;
663 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;

665 cmn_err(CE_NOTE, "dccp.c: dccp_close_common");

667 ASSERT(connp->conn_ref >= 2);

669 /*
670 * Mark the conn as closing. ipsq_pending_mp_add will not
671 * add any mp to the pending mp list, after this conn has
672 * started closing.
673 */
674 mutex_enter(&connp->conn_lock);
675 connp->conn_state_flags |= CONN_CLOSING;

677 if (connp->conn_oper_pending_ill != NULL) {
678 conn_ioctl_cleanup_reqd = B_TRUE;
679 }

681 CONN_INC_REF_LOCKED(connp);
682 mutex_exit(&connp->conn_lock);

684 ASSERT(connp->conn_ref >= 3);

686 /*
687 * Cleanup any queued ioctls here. This must be done before the wq/rq
688 * are re-written by dccp_close_output().
689 */
690 if (conn_ioctl_cleanup_reqd) {
691 conn_ioctl_cleanup(connp);
692 }

694 mutex_enter(&connp->conn_lock);
695 while (connp->conn_ioctlref > 0) {
696 cv_wait(&connp->conn_cv, &connp->conn_lock);
697 }
698 ASSERT(connp->conn_ioctlref == 0);
699 ASSERT(connp->conn_oper_pending_ill == NULL);
700 mutex_exit(&connp->conn_lock);

702 /* generate close */
703 /*
704 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, dccp_close_output, connp,
705 NULL, dccp_squeue_flag, SQTAG_IP_DCCP_CLOSE);

707 */

709 nowait:
710 connp->conn_cpid = NOPID;
711 }

713 /*
714 * Common bind function.
715 */
716 int
717 dccp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
718 boolean_t bind_to_req_port_only)
719 {
720 dccp_t *dccp = connp->conn_dccp;
721 int error;

new/usr/src/uts/common/inet/dccp/dccp.c 12

723 cmn_err(CE_NOTE, "dccp.c: dccp_do_bind");

725 if (dccp->dccp_state >= DCCPS_BOUND) {
726 if (connp->conn_debug) {
727 (void) strlog(DCCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
728 "dccp_bind: bad state, %d", dccp->dccp_state);
729 }
730 return (-TOUTSTATE);
731 }

733 error = dccp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
734 if (error != 0) {
735 return (error);
736 }

738 ASSERT(dccp->dccp_state == DCCPS_LISTEN);
739 /* XXX dccp_conn_req_max = 0 */

741 return (0);
742 }

744 /*
745 * Common unbind function.
746 */
747 int
748 dccp_do_unbind(conn_t *connp)
749 {
750 dccp_t *dccp = connp->conn_dccp;
751 int32_t oldstate;

753 cmn_err(CE_NOTE, "dccp.c: dccp_do_unbind");

755 switch (dccp->dccp_state) {
756 case DCCPS_OPEN:
757 case DCCPS_LISTEN:
758 break;
759 default:
760 return (-TOUTSTATE);
761 }

763 connp->conn_laddr_v6 = ipv6_all_zeros;
764 connp->conn_saddr_v6 = ipv6_all_zeros;

766 dccp_bind_hash_remove(dccp);

768 oldstate = dccp->dccp_state;
769 dccp->dccp_state = DCCPS_CLOSED;
770 DTRACE_DCCP6(state__change, void, NULL, ip_xmit_attr_t *,
771 connp->conn_ixa, void, NULL, dccp_t *, dccp, void, NULL,
772 int32_t, oldstate);

774 ip_unbind(connp);
775 bzero(&connp->conn_ports, sizeof (connp->conn_ports));

777 return (0);
778 }

780 /*
781 * Common listen function.
782 */
783 int
784 dccp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
785 int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
786 {
787 dccp_t *dccp = connp->conn_dccp;

new/usr/src/uts/common/inet/dccp/dccp.c 13

788 dccp_stack_t *dccps = dccp->dccp_dccps;
789 int32_t oldstate;
790 int error;

792 cmn_err(CE_NOTE, "dccp.c: dccp_do_listen");

794 /* All Solaris components should pass a cred for this operation */
795 ASSERT(cr != NULL);

797 if (dccp->dccp_state >= DCCPS_BOUND) {

799 if ((dccp->dccp_state == DCCPS_BOUND ||
800 dccp->dccp_state == DCCPS_LISTEN) && backlog > 0) {
801 goto do_listen;
802 }
803 cmn_err(CE_NOTE, "DCCPS_BOUND, bad state");

805 if (connp->conn_debug) {
806 (void) strlog(DCCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
807 "dccp_listen: bad state, %d", dccp->dccp_state);
808 }
809 return (-TOUTSTATE);
810 } else {
811 if (sa == NULL) {
812 sin6_t addr;
813 sin6_t *sin6;
814 sin_t *sin;

816 ASSERT(IPCL_IS_NONSTR(connp));

818 if (connp->conn_family == AF_INET) {
819 len = sizeof (sin_t);
820 sin = (sin_t *)&addr;
821 *sin = sin_null;
822 sin->sin_family = AF_INET;
823 } else {
824 ASSERT(connp->conn_family == AF_INET6);

826 len = sizeof (sin6_t);
827 sin6 = (sin6_t *)&addr;
828 *sin6 = sin6_null;
829 sin6->sin6_family = AF_INET6;
830 }

832 sa = (struct sockaddr *)&addr;
833 }

835 error = dccp_bind_check(connp, sa, len, cr,
836 bind_to_req_port_only);
837 if (error != 0) {
838 cmn_err(CE_NOTE, "dccp_bind_check failed");
839 return (error);
840 }
841 /* Fall through and do the fanout insertion */
842 }

844 do_listen:
845 ASSERT(dccp->dccp_state == DCCPS_BOUND ||
846 dccp->dccp_state == DCCPS_LISTEN);

848 dccp->dccp_conn_req_max = backlog;
849 if (dccp->dccp_conn_req_max) {
850 if (dccp->dccp_state != DCCPS_LISTEN) {
851 dccp->dccp_state = DCCPS_LISTEN;
852 DTRACE_DCCP6(state__change, void, NULL,
853 ip_xmit_attr_t *, connp->conn_ixa, void, NULL,

new/usr/src/uts/common/inet/dccp/dccp.c 14

854 dccp_t *, dccp, void, NULL, int32_t, DCCPS_BOUND);

856 dccp->dccp_second_ctimer_threshold =
857 dccps->dccps_ip_abort_linterval;
858 }
859 }

861 /* XXX */

863 connp->conn_recv = dccp_input_listener_unbound;

865 /* Insert into the classifier table */
866 error = ip_laddr_fanout_insert(connp);
867 if (error != 0) {
868 /* Error - undo the bind */
869 oldstate = dccp->dccp_state;
870 dccp->dccp_state = DCCPS_CLOSED;
871 DTRACE_DCCP6(state__change, void, NULL, ip_xmit_attr_t *,
872 connp->conn_ixa, void, NULL, dccp_t *, dccp, void, NULL,
873 int32_t, oldstate);

875 connp->conn_bound_addr_v6 = ipv6_all_zeros;
876 connp->conn_laddr_v6 = ipv6_all_zeros;
877 connp->conn_saddr_v6 = ipv6_all_zeros;
878 connp->conn_ports = 0;

880 if (connp->conn_anon_port) {
881 zone_t *zone;

883 zone = crgetzone(cr);
884 connp->conn_anon_port = B_FALSE;
885 (void) tsol_mlp_anon(zone, connp->conn_mlp_type,
886 connp->conn_proto, connp->conn_lport, B_FALSE);
887 }
888 connp->conn_mlp_type = mlptSingle;

890 dccp_bind_hash_remove(dccp);

892 return (error);
893 } else {
894 /* XXX connection limits */
895 }

897 return (error);
898 }

900 /*
901 * Common connect function.
902 */
903 int
904 dccp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
905 cred_t *cr, pid_t pid)
906 {
907 dccp_t *dccp = connp->conn_dccp;
908 dccp_stack_t *dccps = dccp->dccp_dccps;
909 ip_xmit_attr_t *ixa = connp->conn_ixa;
910 mblk_t *req_mp;
911 sin_t *sin = (sin_t *)sa;
912 sin6_t *sin6 = (sin6_t *)sa;
913 ipaddr_t *dstaddrp;
914 in_port_t dstport;
915 uint_t srcid;
916 int32_t oldstate;
917 int error;

919 cmn_err(CE_NOTE, "dccp.c: dccp_do_connect");

new/usr/src/uts/common/inet/dccp/dccp.c 15

921 oldstate = dccp->dccp_state;

923 switch (len) {
924 case sizeof (sin_t):
925 sin = (sin_t *)sa;
926 if (sin->sin_port == 0) {
927 return (-TBADADDR);
928 }
929 if (connp->conn_ipv6_v6only) {
930 return (EAFNOSUPPORT);
931 }
932 break;

934 case sizeof (sin6_t):
935 sin6 = (sin6_t *)sa;
936 if (sin6->sin6_port == 0) {
937 return (-TBADADDR);
938 }
939 break;

941 default:
942 return (EINVAL);
943 }

945 if (connp->conn_family == AF_INET6 &&
946 connp->conn_ipversion == IPV6_VERSION &&
947 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
948 if (connp->conn_ipv6_v6only) {
949 return (EADDRNOTAVAIL);
950 }

952 connp->conn_ipversion = IPV4_VERSION;
953 }

955 switch (dccp->dccp_state) {
956 case DCCPS_LISTEN:
957 /*
958 * Listening sockets are not allowed to issue connect().
959 */
960 if (IPCL_IS_NONSTR(connp)) {
961 return (EOPNOTSUPP);
962 }

964 case DCCPS_CLOSED:
965 /*
966 * We support quick connect.
967 */
968 /* FALLTHRU */
969 case DCCPS_OPEN:
970 break;

972 default:
973 return (-TOUTSTATE);
974 }

976 /*
977 * We update our cred/cpid based on the caller of connect.
978 */
979 if (connp->conn_cred != cr) {
980 crhold(cr);
981 crfree(connp->conn_cred);
982 connp->conn_cred = cr;
983 }
984 connp->conn_cpid = pid;

new/usr/src/uts/common/inet/dccp/dccp.c 16

986 /* Cache things in the ixa without any refhold */
987 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
988 ixa->ixa_cred = cr;
989 ixa->ixa_cpid = pid;

991 if (is_system_labeled()) {
992 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
993 }

995 if (connp->conn_family == AF_INET6) {
996 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
997 error = dccp_connect_ipv6(dccp, &sin6->sin6_addr,
998 sin6->sin6_port, sin6->sin6_flowinfo,
999 sin6->__sin6_src_id, sin6->sin6_scope_id);

1000 } else {
1001 /*
1002 * Destination adress is mapped IPv6 address.
1003 * Source bound address should be unspecified or
1004 * IPv6 mapped address as well.
1005 */
1006 if (!IN6_IS_ADDR_UNSPECIFIED(
1007 &connp->conn_bound_addr_v6) &&
1008 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
1009 return (EADDRNOTAVAIL);
1010 }

1012 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
1013 dstport = sin6->sin6_port;
1014 srcid = sin6->__sin6_src_id;
1015 error = dccp_connect_ipv4(dccp, dstaddrp, dstport,
1016 srcid);
1017 }
1018 } else {
1019 dstaddrp = &sin->sin_addr.s_addr;
1020 dstport = sin->sin_port;
1021 srcid = 0;
1022 error = dccp_connect_ipv4(dccp, dstaddrp, dstport, srcid);
1023 }

1025 if (error != 0) {
1026 cmn_err(CE_NOTE, "dccp_connect_ip failed");
1027 goto connect_failed;
1028 }

1030 /* XXX cluster */

1032 /* Connect succeeded */
1033 DCCPS_BUMP_MIB(dccps, dccpActiveOpens);
1034 dccp->dccp_active_open = 1;

1036 DTRACE_DCCP6(state__change, void, NULL, ip_xmit_attr_t *,
1037 connp->conn_ixa, void, NULL, dccp_t *, dccp, void, NULL,
1038 int32_t, DCCPS_BOUND);

1040 DCCP_TIMER_RESTART(dccp, 100);
1041 req_mp = dccp_generate_request(connp);
1042 if (req_mp != NULL) {
1043 /*
1044 * We must bump the generation before sending the request
1045 * to ensure that we use the right generation in case
1046 * this thread issues a "connected" up call.
1047 */
1048 SOCK_CONNID_BUMP(dccp->dccp_connid);

1050 DTRACE_DCCP5(connect__request, mblk_t *, NULL,
1051 ip_xmit_attr_t *, connp->conn_ixa,

new/usr/src/uts/common/inet/dccp/dccp.c 17

1052 void_ip_t *, req_mp->b_rptr, dccp_t *, dccp,
1053 dccpha_t *,
1054 &req_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);

1056 dccp_send_data(dccp, req_mp);
1057 }

1059 return (0);

1061 connect_failed:
1062 cmn_err(CE_NOTE, "dccp_do_connect failed");

1064 connp->conn_faddr_v6 = ipv6_all_zeros;
1065 connp->conn_fport = 0;
1066 dccp->dccp_state = oldstate;

1068 /* XXX */
1069 return (error);
1070 }

1072 /*
1073 * Init values of a connection.
1074 */
1075 void
1076 dccp_init_values(dccp_t *dccp, dccp_t *parent)
1077 {
1078 conn_t *connp = dccp->dccp_connp;
1079 dccp_stack_t *dccps = dccp->dccp_dccps;

1081 ASSERT((connp->conn_family == AF_INET &&
1082 connp->conn_ipversion == IPV4_VERSION) ||
1083 (connp->conn_family == AF_INET6 &&
1084 (connp->conn_ipversion == IPV4_VERSION ||
1085 connp->conn_ipversion == IPV6_VERSION)));

1087 if (parent == NULL) {

1089 dccp->dccp_first_ctimer_threshold =
1090 dccps->dccps_ip_notify_cinterval;
1091 dccp->dccp_second_ctimer_threshold =
1092 dccps->dccps_ip_abort_cinterval;
1093 dccp->dccp_first_timer_threshold =
1094 dccps->dccps_ip_notify_interval;
1095 dccp->dccp_second_timer_threshold =
1096 dccps->dccps_ip_abort_interval;

1098 dccp->dccp_ka_interval =
1099 dccps->dccps_keepalive_interval;
1100 dccp->dccp_ka_abort_thres =
1101 dccps->dccps_keepalive_abort_interval;
1102 dccp->dccp_ka_cnt = 0;
1103 dccp->dccp_ka_rinterval = 0;
1104 } else {
1105 /* Inherit various DCCP parameters from the parent */
1106 dccp->dccp_first_ctimer_threshold =
1107 parent->dccp_first_ctimer_threshold;
1108 dccp->dccp_second_ctimer_threshold =
1109 parent->dccp_second_ctimer_threshold;
1110 dccp->dccp_first_timer_threshold =
1111 parent->dccp_first_timer_threshold;
1112 dccp->dccp_second_timer_threshold =
1113 parent->dccp_second_timer_threshold;

1115 dccp->dccp_ka_interval = parent->dccp_ka_interval;
1116 dccp->dccp_ka_abort_thres = parent->dccp_ka_abort_thres;
1117 dccp->dccp_ka_cnt = parent->dccp_ka_cnt;

new/usr/src/uts/common/inet/dccp/dccp.c 18

1118 dccp->dccp_ka_rinterval = parent->dccp_ka_rinterval;
1119 }

1121 dccp->dccp_last_recv_time = ddi_get_lbolt();
1122 dccp->dccp_sequence_window = 100;

1124 connp->conn_mlp_type = mlptSingle;

1126 if (!connp->conn_debug) {
1127 connp->conn_debug = dccps->dccps_dbg;
1128 }
1129 }

1131 /*
1132 * Free dccp structure.
1133 */
1134 void
1135 dccp_free(dccp_t *dccp)
1136 {
1137 conn_t *connp = dccp->dccp_connp;

1139 cmn_err(CE_NOTE, "dccp.c: dccp_free");

1141 connp->conn_rq = NULL;
1142 connp->conn_wq = NULL;

1144 if (connp->conn_upper_handle != NULL) {
1145 if (IPCL_IS_NONSTR(connp)) {
1146 (*connp->conn_upcalls->su_closed)(
1147 connp->conn_upper_handle);
1148 dccp->dccp_detached = B_TRUE;
1149 }

1151 connp->conn_upper_handle = NULL;
1152 connp->conn_upcalls = NULL;
1153 }
1154 }

1156 void *
1157 dccp_get_conn(void *arg, dccp_stack_t *dccps)
1158 {
1159 conn_t *connp;
1160 dccp_t *dccp = NULL;
1161 squeue_t *sqp = (squeue_t *)arg;
1162 netstack_t *ns;

1164 /* XXX timewait */

1166 connp = ipcl_conn_create(IPCL_DCCPCONN, KM_NOSLEEP,
1167 dccps->dccps_netstack);
1168 if (connp == NULL) {
1169 return (NULL);
1170 }

1172 dccp = connp->conn_dccp;
1173 dccp->dccp_dccps = dccps;

1175 /* List of features being negotated */
1176 list_create(&dccp->dccp_features, sizeof (dccp_feature_t),
1177 offsetof(dccp_feature_t, df_next));

1179 connp->conn_recv = dccp_input_data;
1180 connp->conn_recvicmp = dccp_icmp_input;
1181 connp->conn_verifyicmp = dccp_verifyicmp;

1183 connp->conn_ixa->ixa_notify = dccp_notify;

new/usr/src/uts/common/inet/dccp/dccp.c 19

1184 connp->conn_ixa->ixa_notify_cookie = dccp;

1186 return ((void *)connp);
1187 }

1189 /*
1190 * Collect protocol properties to send to the upper handle.
1191 */
1192 void
1193 dccp_get_proto_props(dccp_t *dccp, struct sock_proto_props *sopp)
1194 {
1195 conn_t *connp = dccp->dccp_connp;

1197 cmn_err(CE_NOTE, "dccp.c: dccp_get_proto_props");

1199 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
1200 }

1202 /*
1203 * IPv4 connect.
1204 */
1205 static int
1206 dccp_connect_ipv4(dccp_t *dccp, ipaddr_t *dstaddrp, in_port_t dstport,
1207 uint_t srcid)
1208 {
1209 conn_t *connp = dccp->dccp_connp;
1210 dccp_stack_t *dccps = dccp->dccp_dccps;
1211 ipaddr_t dstaddr = *dstaddrp;
1212 uint16_t lport;
1213 int error;

1215 cmn_err(CE_NOTE, "dccp.c: dccp_connect_ipv4");

1217 ASSERT(connp->conn_ipversion == IPV4_VERSION);

1219 if (dstaddr == INADDR_ANY) {
1220 dstaddr = htonl(INADDR_LOOPBACK);
1221 *dstaddrp = dstaddr;
1222 }

1224 /* Handle __sin6_src_id if socket not bound to an IP address */
1225 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1226 ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1227 IPCL_ZONEID(connp), dccps->dccps_netstack);
1228 connp->conn_saddr_v6 = connp->conn_laddr_v6;
1229 }

1231 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1232 connp->conn_fport = dstport;

1234 if (dccp->dccp_state == DCCPS_CLOSED) {
1235 lport = dccp_update_next_port(dccps->dccps_next_port_to_try,
1236 dccp, B_TRUE);
1237 lport = dccp_bindi(dccp, lport, &connp->conn_laddr_v6, 0,
1238 B_TRUE, B_FALSE, B_FALSE);
1239 if (lport == 0) {
1240 return (-TNOADDR);
1241 }
1242 }

1244 error = dccp_set_destination(dccp);
1245 if (error != 0) {
1246 return (error);
1247 }

1249 /*

new/usr/src/uts/common/inet/dccp/dccp.c 20

1250 * Don’t connect to oneself.
1251 */
1252 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1253 connp->conn_fport == connp->conn_lport) {
1254 return (-TBADADDR);
1255 }

1257 dccp->dccp_state = DCCPS_REQUEST;

1259 return (ipcl_conn_insert_v4(connp));
1260 }

1262 /*
1263 * IPv6 connect.
1264 */
1265 static int
1266 dccp_connect_ipv6(dccp_t *dccp, in6_addr_t *dstaddrp, in_port_t dstport,
1267 uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1268 {
1269 cmn_err(CE_NOTE, "dccp.c: dccp_connect_ipv6");

1271 return (0);
1272 }

1274 /*
1275 * Set the ports via conn_connect and build the template
1276 * header.
1277 */
1278 int
1279 dccp_set_destination(dccp_t *dccp)
1280 {
1281 conn_t *connp = dccp->dccp_connp;
1282 dccp_stack_t *dccps = dccp->dccp_dccps;
1283 iulp_t uinfo;
1284 uint32_t flags;
1285 int error;

1287 flags = IPDF_LSO | IPDF_ZCOPY;
1288 flags |= IPDF_UNIQUE_DCE;

1290 mutex_enter(&connp->conn_lock);
1291 error = conn_connect(connp, &uinfo, flags);
1292 mutex_exit(&connp->conn_lock);
1293 if (error != 0) {
1294 cmn_err(CE_NOTE, "conn_connect failed");
1295 return (error);
1296 }

1298 error = dccp_build_hdrs(dccp);
1299 if (error != 0) {
1300 cmn_err(CE_NOTE, "dccp_build_hdrs failed");
1301 return (error);
1302 }

1304 /* XXX */

1306 /* Initialise the ISS */
1307 dccp_iss_init(dccp);

1309 mutex_enter(&connp->conn_lock);
1310 connp->conn_state_flags &= ~CONN_INCIPIENT;
1311 mutex_exit(&connp->conn_lock);

1313 return (0);
1314 }

new/usr/src/uts/common/inet/dccp/dccp.c 21

1316 /*
1317 * Clean up.
1318 */
1319 int
1320 dccp_clean_death(dccp_t *dccp, int error)
1321 {
1322 conn_t *connp = dccp->dccp_connp;
1323 dccp_stack_t *dccps = dccp->dccp_dccps;

1325 ASSERT(dccp != NULL);
1326 ASSERT((connp->conn_family == AF_INET &&
1327 connp->conn_ipversion == IPV4_VERSION) ||
1328 (connp->conn_family == AF_INET6 &&
1329 (connp->conn_ipversion == IPV4_VERSION ||
1330 connp->conn_ipversion == IPV6_VERSION)));

1332 dccp_reinit(dccp);
1333 if (IPCL_IS_NONSTR(connp)) {
1334 (void) dccp_do_unbind(connp);
1335 }

1337 return (-1);
1338 }

1340 /*
1341 * Init the ISS.
1342 */
1343 static void
1344 dccp_iss_init(dccp_t *dccp)
1345 {
1346 cmn_err(CE_NOTE, "dccp.c: dccp_iss_init");

1348 dccp->dccp_iss += gethrtime();
1349 dccp->dccp_gss = dccp->dccp_iss;
1350 }

1352 /*
1353 * Reinitialization of a dccp structure.
1354 */
1355 static void
1356 dccp_reinit(dccp_t *dccp)
1357 {
1358 conn_t *connp = dccp->dccp_connp;
1359 dccp_stack_t *dccps = dccp->dccp_dccps;

1361 ASSERT(dccp->dccp_listener == NULL);
1362 ASSERT((connp->conn_family == AF_INET &&
1363 connp->conn_ipversion == IPV4_VERSION) ||
1364 (connp->conn_family == AF_INET6 &&
1365 (connp->conn_ipversion == IPV4_VERSION ||
1366 connp->conn_ipversion == IPV6_VERSION)));

1368 /* Cancel outstanding timers */
1369 dccp_timers_stop(dccp);
1370 }
1371 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp.conf 1

**
 913 Sat Aug 18 10:37:08 2012
new/usr/src/uts/common/inet/dccp/dccp.conf
dccp: starting module template
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License, Version 1.0 only
6 # (the "License"). You may not use this file except in compliance
7 # with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright (c) 1992, by Sun Microsystems, Inc.
24 #

26 name="dccp" parent="pseudo" instance=0;
27 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp6.conf 1

**
 914 Sat Aug 18 10:37:09 2012
new/usr/src/uts/common/inet/dccp/dccp6.conf
dccp: clean up
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License, Version 1.0 only
6 # (the "License"). You may not use this file except in compliance
7 # with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright (c) 1992, by Sun Microsystems, Inc.
24 #

26 name="dccp6" parent="pseudo" instance=0;
27 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp6ddi.c 1

**
 1578 Sat Aug 18 10:37:09 2012
new/usr/src/uts/common/inet/dccp/dccp6ddi.c
dccp: clean up
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <sys/types.h>
27 #include <sys/conf.h>
28 #include <sys/modctl.h>
29 #include <inet/common.h>
30 #include <inet/ip.h>

32 #define INET_NAME "dccp6"
33 #define INET_DEVSTRTAB dccpinfov6
34 #define INET_DEVDESC "DCCP6 STREAMS driver"
35 #define INET_DEVMINOR 0
36 #define INET_DEVMTFLAGS (D_MP|_D_DIRECT)

38 #include "../inetddi.c"

40 int
41 _init(void)
42 {
43 /*
44 * device initialization happens when the actual code containing
45 * module (/kernel/drv/ip) is loaded, and driven from ip_ddi_init()
46 */
47 return (mod_install(&modlinkage));
48 }

50 int
51 _fini(void)
52 {
53 return (mod_remove(&modlinkage));
54 }

56 int
57 _info(struct modinfo *modinfop)
58 {
59 return (mod_info(&modlinkage, modinfop));
60 }
61 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_bind.c 1

**
 17433 Sat Aug 18 10:37:09 2012
new/usr/src/uts/common/inet/dccp/dccp_bind.c
dccp: bind function
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * This file contains function related to binding.
33 */

35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/strsun.h>
38 #include <sys/strsubr.h>
39 #include <sys/stropts.h>
40 #include <sys/strlog.h>
41 #define _SUN_TPI_VERSION 2
42 #include <sys/tihdr.h>
43 #include <sys/suntpi.h>
44 #include <sys/xti_inet.h>
45 #include <sys/squeue_impl.h>
46 #include <sys/squeue.h>
47 #include <sys/tsol/tnet.h>

49 #include <rpc/pmap_prot.h>

51 #include <inet/common.h>
52 #include <inet/dccp_impl.h>
53 #include <inet/ip.h>
54 #include <inet/proto_set.h>

56 #include <sys/cmn_err.h>

58 /* Setable in /etc/system */
59 static uint32_t dccp_random_anon_port = 1;

61 static int dccp_bind_select_lport(dccp_t *, in_port_t *, boolean_t,

new/usr/src/uts/common/inet/dccp/dccp_bind.c 2

62 cred_t *);
63 static in_port_t dccp_get_next_priv_port(const dccp_t *);

65 void
66 dccp_bind_hash_insert(dccp_df_t *tbf, dccp_t *dccp, int caller_holds_lock)
67 {
68 conn_t *connp = dccp->dccp_connp;
69 conn_t *connext;
70 dccp_t **dccpp;
71 dccp_t *dccpnext;
72 dccp_t *dccphash;

74 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bind_hash_insert");

76 /* XXX:DCCP */

78 dccpp = &tbf->df_dccp;
79 if (!caller_holds_lock) {
80 mutex_enter(&tbf->df_lock);
81 } else {
82 ASSERT(MUTEX_HELD(&tbf->df_lock));
83 }

85 dccphash = dccpp[0];
86 dccpnext = NULL;

88 if (dccphash != NULL) {
89 /* Look for an entry using the same port */
90 while ((dccphash = dccpp[0]) != NULL &&
91 connp->conn_lport != dccphash->dccp_connp->conn_lport) {
92 dccpp = &(dccphash->dccp_bind_hash);
93 }

95 /* The port was not found, just add to the end */
96 if (dccphash == NULL) {
97 goto insert;
98 }

100 dccpnext = dccphash;
101 connext = dccpnext->dccp_connp;
102 dccphash = NULL;
103 if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) &&
104 !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) {
105 while ((dccpnext = dccpp[0]) != NULL) {
106 connext = dccpnext->dccp_connp;
107 if (!V6_OR_V4_INADDR_ANY(
108 connext->conn_bound_addr_v6)) {
109 dccpp = &(dccpnext->dccp_bind_hash_port)
110 } else {
111 break;
112 }
113 }

115 if (dccpnext != NULL) {
116 dccpnext->dccp_ptpbhn = &dccp->dccp_bind_hash_po
117 dccphash = dccpnext->dccp_bind_hash;
118 if (dccphash != NULL) {
119 dccphash->dccp_ptpbhn =
120 &(dccp->dccp_bind_hash);
121 dccpnext->dccp_bind_hash = NULL;
122 }
123 }
124 } else {
125 dccpnext->dccp_ptpbhn = &dccp->dccp_bind_hash_port;
126 dccphash = dccpnext->dccp_bind_hash;
127 if (dccphash != NULL) {

new/usr/src/uts/common/inet/dccp/dccp_bind.c 3

128 dccphash->dccp_ptpbhn =
129 &(dccp->dccp_bind_hash);
130 dccpnext->dccp_bind_hash = NULL;
131 }
132 }
133 }

135 insert:
136 dccp->dccp_bind_hash_port = dccpnext;
137 dccp->dccp_bind_hash = dccphash;
138 dccp->dccp_ptpbhn = dccpp;
139 dccpp[0] = dccp;

141 if (!caller_holds_lock) {
142 mutex_exit(&tbf->df_lock);
143 }
144 }

146 /*
147 * Remove bind hash.
148 */
149 void
150 dccp_bind_hash_remove(dccp_t *dccp)
151 {
152 conn_t *connp = dccp->dccp_connp;
153 dccp_t *dccpnext;
154 dccp_stack_t *dccps = dccp->dccp_dccps;
155 kmutex_t *lockp;

157 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bind_hash_remove");

159 /* Nothing to remove */
160 if (dccp->dccp_ptpbhn == NULL) {
161 return;
162 }

164 ASSERT(connp->conn_lport != 0);
165 lockp = &dccps->dccps_bind_fanout[DCCP_BIND_HASH(connp->conn_lport,
166 dccps->dccps_bind_fanout_size)].df_lock;
167 ASSERT(lockp != NULL);

169 mutex_enter(lockp);
170 if (dccp->dccp_ptpbhn) {
171 dccpnext = dccp->dccp_bind_hash_port;
172 if (dccpnext != NULL) {
173 dccp->dccp_bind_hash_port = NULL;
174 dccpnext->dccp_ptpbhn = dccp->dccp_ptpbhn;
175 dccpnext->dccp_bind_hash = dccp->dccp_bind_hash;
176 if (dccpnext->dccp_bind_hash != NULL) {
177 dccpnext->dccp_bind_hash->dccp_ptpbhn =
178 &(dccpnext->dccp_bind_hash);
179 dccp->dccp_bind_hash = NULL;
180 }
181 } else if ((dccpnext = dccp->dccp_bind_hash) != NULL) {
182 dccpnext->dccp_ptpbhn = dccp->dccp_ptpbhn;
183 dccp->dccp_bind_hash = NULL;
184 }
185 *dccp->dccp_ptpbhn = dccpnext;
186 dccp->dccp_ptpbhn = NULL;
187 }
188 mutex_exit(lockp);
189 }

191 /*
192 * Check for a valid address and get a local port.
193 */

new/usr/src/uts/common/inet/dccp/dccp_bind.c 4

194 int
195 dccp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
196 boolean_t bind_to_req_port_only)
197 {
198 dccp_t *dccp = connp->conn_dccp;
199 ip_stack_t *ips = connp->conn_netstack->netstack_ip;
200 ip_xmit_attr_t *ixa = connp->conn_ixa;
201 sin_t *sin;
202 sin6_t *sin6;
203 ipaddr_t v4addr;
204 in6_addr_t v6addr;
205 ip_laddr_t laddr_type = IPVL_UNICAST_UP;
206 zoneid_t zoneid = IPCL_ZONEID(connp);
207 in_port_t requested_port;
208 uint_t scopeid = 0;
209 int error;

211 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bind_check");

213 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);

215 /*
216 * We should be in a pre-listen state.
217 */
218 if (dccp->dccp_state == DCCPS_LISTEN) {
219 return (0);
220 } else if (dccp->dccp_state > DCCPS_LISTEN) {
221 if (connp->conn_debug) {
222 (void) strlog(DCCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
223 "dccp_bind: bad state, %d", dccp->dccp_state);
224 }
225 return (-TOUTSTATE);
226 }

228 /*
229 * Check for a valid address parameter. Then validate the
230 * addresses and copy them and the required port in.
231 */
232 ASSERT(sa != NULL && len != 0);

234 if (!OK_32PTR((char *)sa)) {
235 if (connp->conn_debug) {
236 (void) strlog(DCCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
237 "dccp_bind: bad address parameter, "
238 "address %p, len %d", (void *)sa, len);
239 }
240 return (-TPROTO);
241 }

243 error = proto_verify_ip_addr(connp->conn_family, sa, len);
244 if (error != 0) {
245 return (error);
246 }

248 switch (len) {
249 case sizeof (sin_t):
250 sin = (sin_t *)sa;
251 v4addr = sin->sin_addr.s_addr;
252 requested_port = ntohs(sin->sin_port);
253 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
254 if (v4addr != INADDR_ANY) {
255 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ips,
256 B_FALSE);
257 }
258 break;

new/usr/src/uts/common/inet/dccp/dccp_bind.c 5

260 case sizeof (sin6_t):
261 sin6 = (sin6_t *)sa;
262 v6addr = sin6->sin6_addr;
263 requested_port = ntohs(sin6->sin6_port);
264 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) {
265 if (connp->conn_ipv6_v6only) {
266 return (EADDRNOTAVAIL);
267 }

269 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr);
270 if (v4addr != INADDR_ANY) {
271 laddr_type = ip_laddr_verify_v4(v4addr, zoneid,
272 ips, B_FALSE);
273 }
274 } else {
275 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) {
276 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) {
277 scopeid = sin6->sin6_scope_id;
278 laddr_type = ip_laddr_verify_v6(&v6addr,
279 zoneid, ips, B_FALSE, scopeid);
280 }
281 }
282 }
283 break;

285 default:
286 if (connp->conn_debug) {
287 (void) strlog(DCCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
288 "dccp_bind: bad address length, %d", len);
289 }
290 return (EAFNOSUPPORT);
291 }

293 if (laddr_type == IPVL_BAD) {
294 return (EADDRNOTAVAIL);
295 }

297 connp->conn_bound_addr_v6 = v6addr;
298 if (scopeid != 0) {
299 ixa->ixa_flags |= IXAF_SCOPEID_SET;
300 ixa->ixa_scopeid = scopeid;
301 connp->conn_incoming_ifindex = scopeid;
302 } else {
303 ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
304 connp->conn_incoming_ifindex = connp->conn_bound_if;
305 }

307 connp->conn_laddr_v6 = v6addr;
308 connp->conn_saddr_v6 = v6addr;

310 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;

312 error = dccp_bind_select_lport(dccp, &requested_port,
313 bind_to_req_port_only, cr);
314 if (error != 0) {
315 connp->conn_laddr_v6 = ipv6_all_zeros;
316 connp->conn_saddr_v6 = ipv6_all_zeros;
317 connp->conn_bound_addr_v6 = ipv6_all_zeros;
318 }

320 return (error);
321 }

323 /*
324 * Bind to a local port.
325 */

new/usr/src/uts/common/inet/dccp/dccp_bind.c 6

326 static int
327 dccp_bind_select_lport(dccp_t *dccp, in_port_t *requested_port_ptr,
328 boolean_t bind_to_req_port_only, cred_t *cr)
329 {
330 dccp_stack_t *dccps = dccp->dccp_dccps;
331 conn_t *connp = dccp->dccp_connp;
332 zone_t *zone;
333 in_port_t allocated_port;
334 in_port_t requested_port = *requested_port_ptr;
335 in_port_t mlp_port;
336 in6_addr_t v6addr = connp->conn_laddr_v6;
337 mlp_type_t addrtype;
338 mlp_type_t mlptype;
339 boolean_t user_specified;

341 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bind_select_lport");

343 ASSERT(cr != NULL);

345 mlptype = mlptSingle;
346 mlp_port = requested_port;
347 if (requested_port == 0) {
348 requested_port = connp->conn_anon_priv_bind ?
349 dccp_get_next_priv_port(dccp) :
350 dccp_update_next_port(dccps->dccps_next_port_to_try,
351 dccp, B_TRUE);
352 if (requested_port == 0) {
353 return (-TNOADDR);
354 }
355 user_specified = B_FALSE;

357 if (connp->conn_anon_mlp && is_system_labeled()) {
358 zone = crgetzone(cr);
359 addrtype = tsol_mlp_addr_type(
360 connp->conn_allzones ? ALL_ZONES : zone->zone_id,
361 IPV6_VERSION, &v6addr,
362 dccps->dccps_netstack->netstack_ip);
363 if (addrtype == mlptSingle) {
364 return (-TNOADDR);
365 }
366 mlptype = tsol_mlp_port_type(zone, IPPROTO_DCCP,
367 PMAPPORT, addrtype);
368 mlp_port = PMAPPORT;
369 }
370 } else {
371 int i;
372 boolean_t priv = B_FALSE;

374 if (requested_port < dccps->dccps_smallest_nonpriv_port) {
375 priv = B_TRUE;
376 } else {
377 for (i = 0; i < dccps->dccps_num_epriv_ports; i++) {
378 if (requested_port ==
379 dccps->dccps_epriv_ports[i]) {
380 priv = B_TRUE;
381 break;
382 }
383 }
384 }

386 if (priv) {
387 if (secpolicy_net_privaddr(cr, requested_port,
388 IPPROTO_DCCP) != 0) {
389 if (connp->conn_debug) {
390 (void) strlog(DCCP_MOD_ID, 0, 1,
391 SL_ERROR|SL_TRACE,

new/usr/src/uts/common/inet/dccp/dccp_bind.c 7

392 "tcp_bind: no priv for port %d",
393 requested_port);
394 }
395 return (-TACCES);
396 }
397 }

399 user_specified = B_TRUE;

401 connp = dccp->dccp_connp;
402 if (is_system_labeled()) {
403 zone = crgetzone(cr);
404 addrtype = tsol_mlp_addr_type(
405 connp->conn_allzones ? ALL_ZONES : zone->zone_id,
406 IPV6_VERSION, &v6addr,
407 dccps->dccps_netstack->netstack_ip);
408 if (addrtype == mlptSingle) {
409 return (-TNOADDR);
410 }
411 mlptype = tsol_mlp_port_type(zone, IPPROTO_DCCP,
412 requested_port, addrtype);
413 }
414 }

416 if (mlptype != mlptSingle) {
417 if (secpolicy_net_bindmlp(cr) != 0) {
418 if (connp->conn_debug) {
419 (void) strlog(DCCP_MOD_ID, 0, 1,
420 SL_ERROR|SL_TRACE,
421 "dccp_bind: no priv for multilevel port %d",
422 requested_port);
423 }
424 return (-TACCES);
425 }

427 /*
428 * If we’re specifically binding a shared IP address and the
429 * port is MLP on shared addresses, then check to see if this
430 * zone actually owns the MLP. Reject if not.
431 */
432 if (mlptype == mlptShared && addrtype == mlptShared) {
433 /*
434 * No need to handle exclusive-stack zones since
435 * ALL_ZONES only applies to the shared stack.
436 */
437 zoneid_t mlpzone;

439 mlpzone = tsol_mlp_findzone(IPPROTO_DCCP,
440 htons(mlp_port));
441 if (connp->conn_zoneid != mlpzone) {
442 if (connp->conn_debug) {
443 (void) strlog(DCCP_MOD_ID, 0, 1,
444 SL_ERROR|SL_TRACE,
445 "dccp_bind: attempt to bind port "
446 "%d on shared addr in zone %d "
447 "(should be %d)",
448 mlp_port, connp->conn_zoneid,
449 mlpzone);
450 }
451 return (-TACCES);
452 }
453 }

455 if (!user_specified) {
456 int error;

new/usr/src/uts/common/inet/dccp/dccp_bind.c 8

458 error = tsol_mlp_anon(zone, mlptype, connp->conn_proto,
459 requested_port, B_TRUE);
460 if (error != 0) {
461 if (connp->conn_debug) {
462 (void) strlog(DCCP_MOD_ID, 0, 1,
463 SL_ERROR|SL_TRACE,
464 "dccp_bind: cannot establish anon "
465 "MLP for port %d",
466 requested_port);
467 }
468 return (error);
469 }
470 connp->conn_anon_port = B_TRUE;
471 }
472 connp->conn_mlp_type = mlptype;
473 }

475 allocated_port = dccp_bindi(dccp, requested_port, &v6addr,
476 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only,
477 user_specified);

479 if (allocated_port == 0) {
480 connp->conn_mlp_type = mlptSingle;

482 if (connp->conn_anon_port) {
483 connp->conn_anon_port = B_FALSE;
484 (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto,
485 requested_port, B_FALSE);
486 }

488 if (bind_to_req_port_only) {
489 if (connp->conn_debug) {
490 (void) strlog(DCCP_MOD_ID, 0, 1,
491 SL_ERROR|SL_TRACE,
492 "dccp_bind: requested addr busy");
493 }
494 return (-TADDRBUSY);
495 } else {
496 /* If we are out of ports, fail the bind */
497 if (connp->conn_debug) {
498 (void) strlog(DCCP_MOD_ID, 0, 1,
499 SL_ERROR|SL_TRACE,
500 "dccp_bind: out of ports?");
501 }
502 return (-TNOADDR);
503 }
504 }

506 /* Pass the allocated port back */
507 *requested_port_ptr = allocated_port;
508 return (0);
509 }

511 in_port_t
512 dccp_bindi(dccp_t *dccp, in_port_t port, const in6_addr_t *laddr,
513 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
514 boolean_t user_specified)
515 {
516 dccp_stack_t *dccps = dccp->dccp_dccps;
517 conn_t *connp = dccp->dccp_connp;
518 int count = 0;
519 int loopmax;

521 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bindi");

523 if (bind_to_req_port_only) {

new/usr/src/uts/common/inet/dccp/dccp_bind.c 9

524 loopmax = 1;
525 } else {
526 if (connp->conn_anon_priv_bind) {
527 loopmax = IPPORT_RESERVED -
528 dccps->dccps_min_anonpriv_port;
529 } else {
530 loopmax = (dccps->dccps_largest_anon_port -
531 dccps->dccps_smallest_anon_port + 1);
532 }
533 }

535 do {
536 conn_t *lconnp;
537 dccp_t *ldccp;
538 dccp_df_t *ldf;
539 uint16_t lport;

541 lport = htons(port);

543 dccp_bind_hash_remove(dccp);
544 ldf = &dccps->dccps_bind_fanout[DCCP_BIND_HASH(lport,
545 dccps->dccps_bind_fanout_size)];
546 mutex_enter(&ldf->df_lock);
547 for (ldccp = ldf->df_dccp; ldccp != NULL;
548 ldccp = ldccp->dccp_bind_hash) {
549 if (lport == ldccp->dccp_connp->conn_lport) {
550 break;
551 }
552 }

554 if (ldccp != NULL) {
555 /* The port number is busy */
556 mutex_exit(&ldf->df_lock);
557 } else {
558 /*
559 * This port is ours. Insert in fanout and mark as
560 * bound to prevent others from getting the port
561 * number.
562 */
563 dccp->dccp_state = DCCPS_BOUND;
564 DTRACE_DCCP6(state__change, void, NULL,
565 ip_xmit_attr_t *, connp->conn_ixa,
566 void, NULL, dccp_t *, dccp, void, NULL,
567 int32_t, DCCPS_CLOSED);

569 connp->conn_lport = htons(port);

571 ASSERT(&dccps->dccps_bind_fanout[DCCP_BIND_HASH(
572 connp->conn_lport,
573 dccps->dccps_bind_fanout_size)] == ldf);
574 dccp_bind_hash_insert(ldf, dccp, 1);

576 mutex_exit(&ldf->df_lock);

578 /*
579 * We don’t want tcp_next_port_to_try to "inherit"
580 * a port number supplied by the user in a bind.
581 */
582 if (user_specified) {
583 return (port);
584 }

586 /*
587 * This is the only place where dccp_next_port_to_try
588 * is updated. After the update, it may or may not
589 * be in the valid range.

new/usr/src/uts/common/inet/dccp/dccp_bind.c 10

590 */
591 if (!connp->conn_anon_priv_bind) {
592 dccps->dccps_next_port_to_try = port + 1;
593 }

595 return (port);
596 }

598 if (connp->conn_anon_priv_bind) {
599 port = dccp_get_next_priv_port(dccp);
600 } else {
601 if (count == 0 && user_specified) {
602 /*
603 * We may have to return an anonymous port. So
604 * get one to start with.
605 */
606 port =
607 dccp_update_next_port(
608 dccps->dccps_next_port_to_try,
609 dccp, B_TRUE);
610 user_specified = B_FALSE;
611 } else {
612 port = dccp_update_next_port(port + 1, dccp,
613 B_FALSE);
614 }
615 }

617 if (port == 0) {
618 break;
619 }

621 } while (++count < loopmax);

623 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bindi exit");

625 return (0);
626 }

628 in_port_t
629 dccp_update_next_port(in_port_t port, const dccp_t *dccp, boolean_t random)
630 {
631 dccp_stack_t *dccps = dccp->dccp_dccps;
632 boolean_t restart = B_FALSE;
633 int i;

635 cmn_err(CE_NOTE, "dccp_bind.c: dccp_update_next_port");

637 if (random && dccp_random_anon_port != 0) {
638 (void) random_get_pseudo_bytes((uint8_t *)&port,
639 sizeof (in_port_t));

641 if (port < dccps->dccps_smallest_anon_port) {
642 port = dccps->dccps_smallest_anon_port +
643 port % (dccps->dccps_largest_anon_port -
644 dccps->dccps_smallest_anon_port);
645 }
646 }

648 retry:
649 if (port < dccps->dccps_smallest_anon_port) {
650 port = (in_port_t)dccps->dccps_smallest_anon_port;
651 }

653 if (port > dccps->dccps_largest_anon_port) {
654 if (restart) {
655 return (0);

new/usr/src/uts/common/inet/dccp/dccp_bind.c 11

656 }
657 restart = B_TRUE;
658 port = (in_port_t)dccps->dccps_smallest_anon_port;
659 }

661 if (port < dccps->dccps_smallest_nonpriv_port) {
662 port = (in_port_t)dccps->dccps_smallest_nonpriv_port;
663 }

665 for (i = 0; i < dccps->dccps_num_epriv_ports; i++) {
666 if (port == dccps->dccps_epriv_ports[i]) {
667 port++;
668 goto retry;
669 }
670 }

672 return (port);
673 }

675 /*
676 * Return the next anonymous port in the privileged port range for
677 * bind checking. It starts at IPPORT_RESERVED - 1 and goes
678 * downwards. This is the same behavior as documented in the userland
679 * library call rresvport(3N).
680 *
681 * TS note: skip multilevel ports.
682 */
683 static in_port_t
684 dccp_get_next_priv_port(const dccp_t *dccp)
685 {
686 static in_port_t next_priv_port = IPPORT_RESERVED - 1;
687 dccp_stack_t *dccps = dccp->dccp_dccps;
688 in_port_t nextport;
689 boolean_t restart = B_FALSE;

691 retry:
692 if (next_priv_port < dccps->dccps_min_anonpriv_port ||
693 next_priv_port >= IPPORT_RESERVED) {
694 next_priv_port = IPPORT_RESERVED - 1;
695 if (restart) {
696 return (0);
697 }
698 restart = B_TRUE;
699 }

701 if (is_system_labeled() &&
702 (nextport = tsol_next_port(crgetzone(dccp->dccp_connp->conn_cred),
703 next_priv_port, IPPROTO_DCCP, B_FALSE)) != 0) {
704 next_priv_port = nextport;
705 goto retry;
706 }

708 return (next_priv_port--);
709 }
710 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_features.c 1

**
 2878 Sat Aug 18 10:37:09 2012
new/usr/src/uts/common/inet/dccp/dccp_features.c
dccp: options and features
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #include <sys/types.h>
17 #include <sys/stream.h>
18 #include <sys/debug.h>
19 #include <sys/cmn_err.h>
20 #include <inet/dccp_impl.h>
21 #include <inet/dccp_stack.h>

23 /*
24 * This file contains functions to parse and process DCCP features.
25 */

27 /*
28 * Feature handling.
29 */
30 int
31 dccp_parse_feature(dccp_t *dccp, uint8_t option, uint8_t length, uchar_t *up,
32 boolean_t mandatory)
33 {
34 dccp_feature_t *feature;
35 uint64_t feature_value;
36 uint8_t feature_type;
37 uint8_t feature_length = length - 1;

39 cmn_err(CE_NOTE, "dccp_features.c: dccp_parse_feature");

41 feature_type = *up;
42 up++;

44 switch (feature_type) {
45 case DCCP_FEATURE_CCID:
46 cmn_err(CE_NOTE, "DCCP_FEATURE_CCID");
47 break;
48 case DCCP_FEATURE_ALLOW_SHORT_SEQNOS:
49 cmn_err(CE_NOTE, "DCCP_FEATURE_ALLOW_SHORT_SEQNOS");
50 break;
51 case DCCP_FEATURE_SEQUENCE_WINDOW:
52 cmn_err(CE_NOTE, "DCCP_FEATURE_SEQUENCE_WINDOW");
53 if (feature_length != 6)
54 return (DCCP_RESET_MANDATORY_ERROR);

56 feature_value = (uint64_t)up[0] << 40;
57 feature_value += ((uint64_t)up[1] << 32);
58 feature_value += ((uint64_t)up[2] << 24);
59 feature_value += ((uint64_t)up[3] << 16);
60 feature_value += ((uint64_t)up[4] << 8);
61 feature_value += (uint64_t)up[5];

new/usr/src/uts/common/inet/dccp/dccp_features.c 2

63 if (feature_value < 32 || feature_value > 70368744177663)
64 return (DCCP_RESET_MANDATORY_ERROR);
65 dccp->dccp_sequence_window = feature_value;
66 break;
67 case DCCP_FEATURE_ECN_INCAPABLE:
68 cmn_err(CE_NOTE, "DCCP_FEATURE_ECN_INCAPABLE");
69 break;
70 case DCCP_FEATURE_ACK_RATIO:
71 cmn_err(CE_NOTE, "DCCP_FEATURE_ACK_RATIO");
72 break;
73 case DCCP_FEATURE_SEND_ACK_VECTOR:
74 cmn_err(CE_NOTE, "DCCP_FEATURE_SEND_ACK_VECTOR");
75 break;
76 case DCCP_FEATURE_SEND_NDP_COUNT:
77 cmn_err(CE_NOTE, "DCCP_FEATURE_SEND_NDP_COUNT");
78 break;
79 case DCCP_FEATURE_MIN_CHECKSUM_COVERAGE:
80 cmn_err(CE_NOTE, "DCCP_FEATURE_MIN_CHECKSUM_COVERAGE");
81 break;
82 case DCCP_FEATURE_CHECK_DATA_CHECKSUM:
83 cmn_err(CE_NOTE, "DCCP_FEATURE_CHECK_DATA_CHECKSUM");
84 break;
85 default:
86 cmn_err(CE_NOTE, "ERROR DEFAULT");
87 break;
88 }

90 cmn_err(CE_NOTE, "feature len: %d", feature_length);

92 feature = (dccp_feature_t *)kmem_alloc(sizeof (dccp_feature_t),
93 KM_SLEEP);
94 if (feature == NULL) {
95 return (0);
96 }

98 feature->df_option = option;
99 feature->df_type = feature_type;
100 feature->df_mandatory = mandatory;

102 list_insert_tail(&dccp->dccp_features, feature);

104 return (0);
105 }

107 void
108 dccp_features_init(void)
109 {
110 }

112 void
113 dccp_features_destroy(void)
114 {
115 }
116 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_input.c 1

**
 25987 Sat Aug 18 10:37:10 2012
new/usr/src/uts/common/inet/dccp/dccp_input.c
dccp: starting module template
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #define _SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/squeue_impl.h>
42 #include <sys/squeue.h>
43 #include <sys/tsol/tnet.h>

45 #include <inet/common.h>
46 #include <inet/dccp_impl.h>
47 #include <inet/ip.h>

49 #include <sys/cmn_err.h>

51 static mblk_t *dccp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
52 ip_recv_attr_t *);
53 static mblk_t *dccp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
54 ip_recv_attr_t *);
55 static void dccp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);
56 static void dccp_icmp_error_ipv6(dccp_t *, mblk_t *, ip_recv_attr_t *);
57 static int dccp_check_input(conn_t *, mblk_t *, ip_recv_attr_t *);

59 void
60 dccp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
61 {

new/usr/src/uts/common/inet/dccp/dccp_input.c 2

62 conn_t *connp = (conn_t *)arg1;
63 dccp_t *dccp = connp->conn_dccp;
64 ipha_t *ipha;
65 icmph_t *icmph;
66 sin_t sin;
67 sin6_t sin6;
68 int iph_hdr_length;
69 int error;

71 cmn_err(CE_NOTE, "dccp_input.c: dccp_icmp_input");

73 ipha = (ipha_t *)mp->b_rptr;

75 /* Assume IP provides aligned packets */
76 ASSERT(OK_32PTR(mp->b_rptr));
77 ASSERT((MBLKL(mp) >= sizeof (ipha_t)));

79 if (dccp->dccp_state == DCCPS_CLOSED) {
80 freemsg(mp);
81 return;
82 }

84 /*
85 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
86 * upstream. ICMPv6 is handled in dccp_icmp_error_ipv6.
87 */
88 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
89 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
90 dccp_icmp_error_ipv6(dccp, mp, ira);
91 return;
92 }
93 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);

95 ASSERT(IPH_HDR_LENGTH(ipha) == ira->ira_ip_hdr_length);
96 /* Skip past the outer IP and ICMP headers */
97 iph_hdr_length = ira->ira_ip_hdr_length;
98 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];

100 switch (icmph->icmph_type) {
101 case ICMP_DEST_UNREACHABLE:
102 switch (icmph->icmph_code) {
103 case ICMP_FRAGMENTATION_NEEDED:
104 case ICMP_PORT_UNREACHABLE:
105 case ICMP_PROTOCOL_UNREACHABLE:
106 case ICMP_HOST_UNREACHABLE:
107 case ICMP_NET_UNREACHABLE:
108 break;
109 default:
110 break;
111 }
112 break;
113 case ICMP_SOURCE_QUENCH:
114 break;
115 }

117 freemsg(mp);
118 }

120 /*
121 * Handler for ICMPv6 error messages.
122 */
123 static void
124 dccp_icmp_error_ipv6(dccp_t *dccp, mblk_t *mp, ip_recv_attr_t *ira)
125 {
126 ip6_t *ip6h;
127 icmp6_t *icmp6;

new/usr/src/uts/common/inet/dccp/dccp_input.c 3

128 uint16_t iph_hdr_length = ira->ira_ip_hdr_length;

130 cmn_err(CE_NOTE, "dccp_input.c: dccp_icmp_error_ipv6");

132 ASSERT((MBLKL(mp) >= sizeof (ip6_t)));

134 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
135 ip6h = (ip6_t *)&icmp6[1];

137 }

139 void
140 dccp_rsrv(queue_t *q)
141 {
142 cmn_err(CE_NOTE, "dccp_input.c: dccp_rsrv");
143 }

145 /*
146 * Handle a REQUEST on an AF_INET6 socket; can be either IPv4 or IPv6.
147 */
148 static mblk_t *
149 dccp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
150 ip_recv_attr_t *ira)
151 {
152 dccp_t *ldccp = lconnp->conn_dccp;
153 dccp_t *dccp = connp->conn_dccp;
154 dccp_stack_t *dccps = dccp->dccp_dccps;
155 ipha_t *ipha;
156 ip6_t *ip6h;
157 mblk_t *tpi_mp;
158 sin6_t sin6;
159 uint_t ifindex = ira->ira_ruifindex;

161 if (ira->ira_flags & IRAF_IS_IPV4) {
162 ipha = (ipha_t *)mp->b_rptr;

164 connp->conn_ipversion = IPV4_VERSION;
165 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
166 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
167 connp->conn_saddr_v6 = connp->conn_laddr_v6;

169 sin6 = sin6_null;
170 sin6.sin6_addr = connp->conn_faddr_v6;
171 sin6.sin6_port = connp->conn_fport;
172 sin6.sin6_family = AF_INET6;
173 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
174 IPCL_ZONEID(lconnp), dccps->dccps_netstack);

176 if (connp->conn_recv_ancillary.crb_recvdstaddr) {
177 sin6_t sin6d;

179 sin6d = sin6_null;
180 sin6d.sin6_addr = connp->conn_laddr_v6;
181 sin6d.sin6_port = connp->conn_lport;
182 sin6d.sin6_family = AF_INET;
183 tpi_mp = mi_tpi_extconn_ind(NULL,
184 (char *)&sin6d, sizeof (sin6_t),
185 (char *)&dccp,
186 (t_scalar_t)sizeof (intptr_t),
187 (char *)&sin6d, sizeof (sin6_t),
188 (t_scalar_t)ldccp->dccp_conn_req_seqnum);
189 } else {
190 tpi_mp = mi_tpi_conn_ind(NULL,
191 (char *)&sin6, sizeof (sin6_t),
192 (char *)&dccp, (t_scalar_t)sizeof (intptr_t),
193 (t_scalar_t)ldccp->dccp_conn_req_seqnum);

new/usr/src/uts/common/inet/dccp/dccp_input.c 4

194 }
195 } else {
196 ip6h = (ip6_t *)mp->b_rptr;

198 connp->conn_ipversion = IPV6_VERSION;
199 connp->conn_laddr_v6 = ip6h->ip6_dst;
200 connp->conn_faddr_v6 = ip6h->ip6_src;
201 connp->conn_saddr_v6 = connp->conn_laddr_v6;

203 sin6 = sin6_null;
204 sin6.sin6_addr = connp->conn_faddr_v6;
205 sin6.sin6_port = connp->conn_fport;
206 sin6.sin6_family = AF_INET6;
207 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
208 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
209 IPCL_ZONEID(lconnp), dccps->dccps_netstack);

211 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
212 /* Pass up the scope_id of remote addr */
213 sin6.sin6_scope_id = ifindex;
214 } else {
215 sin6.sin6_scope_id = 0;
216 }
217 if (connp->conn_recv_ancillary.crb_recvdstaddr) {
218 sin6_t sin6d;

220 sin6d = sin6_null;
221 sin6.sin6_addr = connp->conn_laddr_v6;
222 sin6d.sin6_port = connp->conn_lport;
223 sin6d.sin6_family = AF_INET6;
224 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
225 sin6d.sin6_scope_id = ifindex;

227 tpi_mp = mi_tpi_extconn_ind(NULL,
228 (char *)&sin6d, sizeof (sin6_t),
229 (char *)&dccp, (t_scalar_t)sizeof (intptr_t),
230 (char *)&sin6d, sizeof (sin6_t),
231 (t_scalar_t)ldccp->dccp_conn_req_seqnum);
232 } else {
233 tpi_mp = mi_tpi_conn_ind(NULL,
234 (char *)&sin6, sizeof (sin6_t),
235 (char *)&dccp, (t_scalar_t)sizeof (intptr_t),
236 (t_scalar_t)ldccp->dccp_conn_req_seqnum);
237 }
238 }

240 /* XXX mss */
241 return (tpi_mp);
242 }

244 /*
245 * Handle a REQUEST on an AF_INET socket.
246 */
247 static mblk_t *
248 dccp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
249 ip_recv_attr_t *ira)
250 {
251 dccp_t *ldccp = lconnp->conn_dccp;
252 dccp_t *dccp = connp->conn_dccp;
253 dccp_stack_t *dccps = dccp->dccp_dccps;
254 ipha_t *ipha;
255 mblk_t *tpi_mp;
256 sin_t sin;

258 ASSERT(ira->ira_flags & IRAF_IS_IPV4);
259 ipha = (ipha_t *)mp->b_rptr;

new/usr/src/uts/common/inet/dccp/dccp_input.c 5

261 connp->conn_ipversion = IPV4_VERSION;
262 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
263 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
264 connp->conn_saddr_v6 = connp->conn_laddr_v6;

266 sin = sin_null;
267 sin.sin_addr.s_addr = connp->conn_faddr_v4;
268 sin.sin_port = connp->conn_fport;
269 sin.sin_family = AF_INET;

271 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
272 cmn_err(CE_NOTE, "ancillary");

274 sin_t sind;

276 sind = sin_null;
277 sind.sin_addr.s_addr = connp->conn_laddr_v4;
278 sind.sin_port = connp->conn_lport;
279 sind.sin_family = AF_INET;

281 tpi_mp = mi_tpi_extconn_ind(NULL,
282 (char *)&sind, sizeof (sin_t), (char *)&dccp,
283 (t_scalar_t)sizeof (intptr_t), (char *)&sind,
284 sizeof (sin_t), (t_scalar_t)ldccp->dccp_conn_req_seqnum);

286 } else {
287 tpi_mp = mi_tpi_conn_ind(NULL,
288 (char *)&sin, sizeof (sin_t),
289 (char *)&dccp, (t_scalar_t)sizeof (intptr_t),
290 (t_scalar_t)ldccp->dccp_conn_req_seqnum);
291 }

293 /* XXX mss */

295 return (tpi_mp);
296 }

298 static void
299 dccp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
300 {
301 conn_t *lconnp = (conn_t *)arg;
302 conn_t *econnp;
303 dccp_t *listener = lconnp->conn_dccp;
304 dccp_t *eager;
305 dccp_stack_t *dccps = listener->dccp_dccps;
306 ip_stack_t *ipst = dccps->dccps_netstack->netstack_ip;
307 dccpha_t *dccpha;
308 dccpha_ext_t *dccpha_ext;
309 squeue_t *new_sqp;
310 mblk_t *tpi_mp;
311 mblk_t *mp1;
312 uint64_t seq;
313 uint_t ifindex = ira->ira_ruifindex;
314 uint_t ip_hdr_len;
315 uint_t type;
316 int error;

318 cmn_err(CE_NOTE, "dccp_input.c: dccp_input_listener");

321 DTRACE_DCCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa
322 __dtrace_dccp_void_ip_t *, mp->b_rptr, dccp_t *, listener,
323 __dtrace_dccp_dccph_t *, dccpha);

325 /* Basic checks on packet */

new/usr/src/uts/common/inet/dccp/dccp_input.c 6

326 if (dccp_check_input(lconnp, mp, ira) == 0) {
327 cmn_err(CE_NOTE, "dccp_check_input failed.");
328 freemsg(mp);
329 return;
330 }

332 ip_hdr_len = ira->ira_ip_hdr_length;
333 dccpha = (dccpha_t *)&mp->b_rptr[ip_hdr_len];
334 dccpha_ext = (dccpha_ext_t *)&mp->b_rptr[ip_hdr_len + sizeof (dccpha_t)]
335 type = (uint_t)dccpha->dha_type;

337 if (type != DCCP_PKT_REQUEST) {
338 if (type != DCCP_PKT_RESET) {
339 listener->dccp_reset_code = DCCP_RESET_NO_CONNECTION;
340 dccp_xmit_listeners_reset(mp, ira, ipst, lconnp);
341 }

343 freemsg(mp);
344 return;
345 }

347 /* XXX memory pressure */

349 /* XXX request defense */

351 /* XXX number of connections per listener */

353 ASSERT(ira->ira_sqp != NULL);
354 new_sqp = ira->ira_sqp;

356 econnp = (conn_t *)dccp_get_conn(arg2, dccps);
357 if (econnp == NULL) {
358 cmn_err(CE_NOTE, "econnp not found (eager)");
359 goto error2;
360 }

362 ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
363 econnp->conn_sqp = new_sqp;
364 econnp->conn_initial_sqp = new_sqp;
365 econnp->conn_ixa->ixa_sqp = new_sqp;

367 econnp->conn_fport = dccpha->dha_lport;
368 econnp->conn_lport = dccpha->dha_fport;

370 error = conn_inherit_parent(lconnp, econnp);
371 if (error != 0) {
372 cmn_err(CE_NOTE, "conn_inherit_parent failed");
373 goto error3;
374 }

376 /* We already know the laddr of the new connection is ours */
377 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;

379 ASSERT(OK_32PTR(mp->b_rptr));
380 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
381 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);

383 if (lconnp->conn_family == AF_INET) {
384 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
385 tpi_mp = dccp_conn_create_v4(lconnp, econnp, mp, ira);
386 } else {
387 tpi_mp = dccp_conn_create_v6(lconnp, econnp, mp, ira);
388 }

390 if (tpi_mp == NULL) {
391 cmn_err(CE_NOTE, "tpi_mo == NULL");

new/usr/src/uts/common/inet/dccp/dccp_input.c 7

392 goto error3;
393 }

395 eager = econnp->conn_dccp;
396 SOCK_CONNID_INIT(eager->dccp_connid);

398 dccp_init_values(eager, listener);

400 ASSERT((econnp->conn_ixa->ixa_flags &
401 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
402 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
403 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
404 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));

406 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
407 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
408 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
409 econnp->conn_incoming_ifindex = ifindex;
410 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
411 econnp->conn_ixa->ixa_scopeid = ifindex;
412 }
413 }

415 if (ira->ira_cred != NULL) {
416 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
417 }

419 if (IPCL_IS_NONSTR(lconnp)) {
420 econnp->conn_flags |= IPCL_NONSTR;
421 }

423 /* XXX dccps is right? */
424 dccp_bind_hash_insert(&dccps->dccps_bind_fanout[
425 DCCP_BIND_HASH(econnp->conn_lport, dccps->dccps_bind_fanout_size)],
426 eager, 0);

428 /* XXX CLUSTER */

430 SOCK_CONNID_BUMP(eager->dccp_connid);

432 error = dccp_set_destination(eager);
433 if (error != 0) {
434 cmn_err(CE_NOTE, "dccp_set_destination failed.");
435 DCCPS_BUMP_MIB(dccps, dccpAttemptFails);
436 /* Undo the bind_hash_insert */
437 dccp_bind_hash_remove(eager);
438 goto error3;
439 }

441 /* Eager lock */
442 CONN_INC_REF(lconnp);

444 /* Set tcp_listener before adding it to tcp_conn_fanout */
445 eager->dccp_listener = listener;
446 eager->dccp_saved_listener = listener;

448 eager->dccp_conn_req_seqnum = listener->dccp_conn_req_seqnum;
449 if (++listener->dccp_conn_req_seqnum == -1) {
450 /*
451 * -1 is "special" and defined in TPI as something
452 * that should never be used in T_CONN_IND
453 */
454 ++listener->dccp_conn_req_seqnum;
455 }

457 /* XXX SYN DEFENSE */

new/usr/src/uts/common/inet/dccp/dccp_input.c 8

459 seq = ntohs(dccpha->dha_seq);
460 seq = seq << 32;
461 seq |= ntohl(dccpha_ext->dha_ext_seq);

463 /* ISS was set in set_destination */
464 eager->dccp_gar = eager->dccp_iss;
465 eager->dccp_gsr = seq;
466 eager->dccp_osr = seq;

468 /* Process all DCCP options */
469 error = dccp_process_options(eager, dccpha);
470 if (error != 0) {
471 cmn_err(CE_NOTE, "dccp_process_options failed.");
472 mp1 = dccp_generate_reset(econnp);
473 eager->dccp_state = DCCPS_CLOSED;
474 if (mp1 == NULL) {
475 cmn_err(CE_NOTE, "dccp_generate_reset failed.");
476 goto error;
477 }

479 ip_xmit_attr_t *ixa = econnp->conn_ixa;

481 ixa->ixa_pktlen = msgdsize(mp1);
482 (void) conn_ip_output(mp1, ixa);

484 return;
485 }

487 eager->dccp_state = DCCPS_RESPOND;
488 DTRACE_DCCP6(state__change, void, NULL, ip_xmit_attr_t *,
489 econnp->conn_ixa, void, NULL, dccp_t *, eager, void, NULL,
490 int32_t, DCCPS_LISTEN);

492 mp1 = dccp_generate_response(econnp, mp);
493 if (mp1 == NULL) {
494 cmn_err(CE_NOTE, "dccp_generate_packet failed");
495 /*
496 * Increment the ref count as we are going to
497 * enqueueing an mp in squeue
498 */
499 CONN_INC_REF(econnp);
500 goto error;
501 }

503 CONN_INC_REF(econnp);

505 error = ipcl_conn_insert(econnp);
506 if (error != 0) {
507 cmn_err(CE_NOTE, "ipcl_conn_insert(econnp) failed");
508 goto error;
509 }

511 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_dccp);
512 freemsg(mp);

514 /*
515 * Send the RESPONSE. Use the right squeue so that conn_ixa is
516 * only used by one thread at a time.
517 */
518 if (econnp->conn_sqp == lconnp->conn_sqp) {
519 DTRACE_DCCP5(send, mblk_t *, NULL, ip_xmit_attr_t *,
520 econnp->conn_ixa, __dtrace_dccp_void_ip_t *, mp1->b_rptr,
521 dccp_t *, eager, __dtrace_dccp_dccph_t *,
522 &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]);
523 (void) conn_ip_output(mp1, econnp->conn_ixa);

new/usr/src/uts/common/inet/dccp/dccp_input.c 9

524 CONN_DEC_REF(econnp);
525 } else {
526 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, dccp_send_synack,
527 econnp, NULL, SQ_PROCESS, SQTAG_DCCP_SEND_RESPONSE);
528 }

530 return;
531 error:
532 freemsg(mp1);
533 error2:
534 CONN_DEC_REF(econnp);
535 error3:
536 freemsg(mp);
537 }

539 void
540 dccp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
541 ip_recv_attr_t *ira)
542 {
543 conn_t *connp = (conn_t *)arg;
544 squeue_t *sqp = (squeue_t *)arg2;
545 squeue_t *new_sqp;
546 uint32_t conn_flags;

548 cmn_err(CE_NOTE, "dccp_input.c: dccp_input_listener_unbound");

550 ASSERT(ira->ira_sqp != NULL);
551 new_sqp = ira->ira_sqp;

553 if (connp->conn_fanout == NULL) {
554 goto done;
555 }

557 /*
558 * Bind to correct squeue.
559 */
560 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
561 cmn_err(CE_NOTE, "not fully bound");

563 mutex_enter(&connp->conn_fanout->connf_lock);
564 mutex_enter(&connp->conn_lock);

566 if (connp->conn_ref != 4 ||
567 connp->conn_dccp->dccp_state != DCCPS_LISTEN) {
568 mutex_exit(&connp->conn_lock);
569 mutex_exit(&connp->conn_fanout->connf_lock);
570 goto done;
571 }

573 if (connp->conn_sqp != new_sqp) {
574 while (connp->conn_sqp != new_sqp) {
575 (void) casptr(&connp->conn_sqp, sqp, new_sqp);
576 }
577 connp->conn_ixa->ixa_sqp = new_sqp;
578 }

580 do {
581 conn_flags = connp->conn_flags;
582 conn_flags |= IPCL_FULLY_BOUND;
583 (void) cas32(&connp->conn_flags, connp->conn_flags,
584 conn_flags);
585 } while (!(connp->conn_flags & IPCL_FULLY_BOUND));

587 mutex_exit(&connp->conn_lock);
588 mutex_exit(&connp->conn_fanout->connf_lock);

new/usr/src/uts/common/inet/dccp/dccp_input.c 10

590 connp->conn_recv = dccp_input_listener;
591 }

593 done:
594 if (connp->conn_sqp != sqp) {
595 CONN_INC_REF(connp);
596 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
597 ira, SQ_FILL, SQTAG_DCCP_CONN_REQ_UNBOUND);
598 } else {
599 dccp_input_listener(connp, mp, sqp, ira);
600 }
601 }

603 boolean_t
604 dccp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
605 ip_recv_attr_t *ira)
606 {
607 cmn_err(CE_NOTE, "dccp_input.c: dccp_verifyicmp");

609 return (B_TRUE);
610 }

612 /*
613 * Basic sanity checks on all input packets.
614 */
615 static int
616 dccp_check_input(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira)
617 {
618 dccp_t *dccp = connp->conn_dccp;
619 dccpha_t *dccpha;
620 uint32_t size;
621 uint32_t offset_size;
622 uint_t ip_hdr_len = ira->ira_ip_hdr_length;

624 cmn_err(CE_NOTE, "dccp_input.c: dccp_check_input");

626 size = msgdsize(mp) - (ip_hdr_len);
627 dccpha = (dccpha_t *)&mp->b_rptr[ip_hdr_len];
628 offset_size = dccpha->dha_offset * 4;

630 cmn_err(CE_NOTE, "size: %d", size);
631 cmn_err(CE_NOTE, "offset_size: %d", offset_size);

633 /* Is packet shorter then 12 bytes? */
634 if (size < DCCP_MIN_HEADER_LENGTH) {
635 cmn_err(CE_NOTE, "header < 12");
636 return (0);
637 }

639 /* Data offset is greater then the packet itself */
640 if (offset_size > size) {
641 cmn_err(CE_NOTE, "offset > size");
642 return (0);
643 }

645 /* Check if known packet type */
646 if (dccpha->dha_type > DCCP_PKT_SYNCACK) {
647 cmn_err(CE_NOTE, "type unknown");
648 return (0);
649 }

651 /*
652 * Check data offset for this packet type and
653 * Data, Ack, or DataAck and P.X == 0
654 */
655 if (dccpha->dha_x == 0) {

new/usr/src/uts/common/inet/dccp/dccp_input.c 11

656 switch (dccpha->dha_type) {
657 case DCCP_PKT_DATA:
658 if (size < 12 || offset_size < 12)
659 return (0);
660 break;
661 case DCCP_PKT_ACK:
662 case DCCP_PKT_DATAACK:
663 if (size < 16 || offset_size < 16)
664 return (0);
665 break;
666 default:
667 return (0);
668 }
669 } else {
670 switch (dccpha->dha_type) {
671 case DCCP_PKT_REQUEST:
672 if (size < 20 || offset_size < 20)
673 return (0);
674 break;
675 case DCCP_PKT_RESPONSE:
676 case DCCP_PKT_RESET:
677 if (size < 28 || offset_size < 28)
678 return (0);
679 break;
680 case DCCP_PKT_DATA:
681 if (size < 16 || offset_size < 16)
682 return (0);
683 break;
684 case DCCP_PKT_ACK:
685 case DCCP_PKT_DATAACK:
686 case DCCP_PKT_CLOSEREQ:
687 case DCCP_PKT_CLOSE:
688 case DCCP_PKT_SYNC:
689 case DCCP_PKT_SYNCACK:
690 if (size < 24 || offset_size < 24)
691 return (0);
692 break;
693 default:
694 return (0);
695 }
696 }

698 /* Checksum coverage check */
699 if (dccpha->dha_cscov != 0 && ((dccpha->dha_offset +
700 dccpha->dha_cscov - 1) * 4) > size) {
701 cmn_err(CE_NOTE, "cscov too large");
702 return (0);
703 }

705 return (1);
706 }

708 /*
709 * After a request-response-ack all packets end up here.
710 */
711 void
712 dccp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
713 {
714 conn_t *connp = (conn_t *)arg;
715 squeue_t *sqp = (squeue_t *)arg2;
716 dccp_t *dccp = connp->conn_dccp;
717 dccp_stack_t *dccps = dccp->dccp_dccps;
718 dccpha_t *dccpha;
719 dccpha_ack_t *dccpha_ack;
720 dccpha_ext_t *dccpha_ext;
721 mblk_t *mp1;

new/usr/src/uts/common/inet/dccp/dccp_input.c 12

722 uint64_t seq_seq;
723 uint64_t seq_ack;
724 uchar_t *iphdr;
725 uchar_t *rptr;
726 sock_upcalls_t *sockupcalls;
727 ip_pkt_t ipp;
728 uint_t ip_hdr_len;
729 uint_t len;
730 int seg_len;
731 int pkt_len;
732 int hdr_length;
733 int error;

735 cmn_err(CE_NOTE, "dccp_input.c: dccp_input_data");

737 ASSERT(DB_TYPE(mp) == M_DATA);
738 ASSERT(mp->b_next == NULL);

740 iphdr = mp->b_rptr;
741 rptr = mp->b_rptr;
742 ASSERT(OK_32PTR(rptr));

744 /* Check basic characteristics */
745 if (dccp_check_input(connp, mp, ira) == 0) {
746 cmn_err(CE_NOTE, "rejected packet");
747 return;
748 }

750 ip_hdr_len = ira->ira_ip_hdr_length;
751 if (connp->conn_recv_ancillary.crb_all != 0) {
752 /*
753 * Record packet information in the ip_pkt_t
754 */
755 ipp.ipp_fields = 0;
756 if (ira->ira_flags & IRAF_IS_IPV4) {
757 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
758 B_FALSE);
759 } else {
760 uint8_t nexthdrp;

762 /*
763 * IPv6 packets can only be received by applications
764 * that are prepared to receive IPv6 addresses.
765 * The IP fanout must ensure this.
766 */
767 ASSERT(connp->conn_family == AF_INET6);

769 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
770 &nexthdrp);
771 ASSERT(nexthdrp == IPPROTO_DCCP);

773 /* Could have caused a pullup? */
774 iphdr = mp->b_rptr;
775 rptr = mp->b_rptr;
776 }
777 }

779 len = ip_hdr_len;
780 dccpha = (dccpha_t *)&rptr[len];

782 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
783 seg_len = (int)(mp->b_wptr - rptr) -
784 (ip_hdr_len + DCCP_HDR_LENGTH(dccpha));
785 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
786 do {
787 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=

new/usr/src/uts/common/inet/dccp/dccp_input.c 13

788 (uintptr_t)INT_MAX);
789 seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
790 } while ((mp1 = mp1->b_cont) != NULL &&
791 mp1->b_datap->db_type == M_DATA);
792 }

794 DTRACE_DCCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
795 __dtrace_dccp_void_ip_t *, iphdr, dccp_t *, dccp,
796 __dtrace_dccp_dccph_t *, dccpha);

798 if (sqp != NULL) {
799 dccp->dccp_last_recv_time = LBOLT_FASTPATH;
800 }

802 BUMP_LOCAL(dccp->dccp_ibsegs);
803 DTRACE_PROBE2(dccp__trace__recv, mblk_t *, mp, dccp_t *, dccp);

805 sockupcalls = connp->conn_upcalls;

807 len += sizeof (dccpha_t);
808 dccpha_ext = (dccpha_ext_t *)&rptr[len];

810 /*
811 * Sequence number.
812 */
813 if (dccpha->dha_x == 1) {
814 seq_seq = ntohs(dccpha->dha_seq);
815 seq_seq = seq_seq << 32;
816 seq_seq |= ntohl(dccpha_ext->dha_ext_seq);
817 } else {
818 /* XXX */
819 }

821 dccp->dccp_gsr = seq_seq;

823 /*
824 * Acknowledgement Number.
825 */
826 if (dccpha->dha_type != DCCP_PKT_DATA) {
827 dccpha_ack = (dccpha_ack_t *)&rptr[ip_hdr_len +
828 sizeof (dccpha_t) + sizeof (dccpha_ext_t)];
829 seq_ack = ntohs(dccpha_ack->dha_ack_high);
830 seq_ack = seq_ack << 32;
831 seq_ack |= ntohl(dccpha_ack->dha_ack_low);

833 dccp->dccp_gar = seq_ack;
834 }

837 switch (dccp->dccp_state) {
838 case DCCPS_REQUEST:
839 cmn_err(CE_NOTE, "DCCPS_REQUEST");
840 break;
841 case DCCPS_RESPOND:
842 cmn_err(CE_NOTE, "DCCPS_RESPOND");
843 break;
844 case DCCPS_PARTOPEN:
845 cmn_err(CE_NOTE, "DCCPS_PARTOPEN");
846 break;
847 case DCCPS_LISTEN:
848 cmn_err(CE_NOTE, "DCCPS_LISTEN");
849 break;
850 case DCCPS_BOUND:
851 cmn_err(CE_NOTE, "DCCPS_BOUND");
852 break;
853 case DCCPS_OPEN:

new/usr/src/uts/common/inet/dccp/dccp_input.c 14

854 cmn_err(CE_NOTE, "DCCPS_OPEN");
855 break;
856 default:
857 cmn_err(CE_NOTE, "Unknow state");
858 break;
859 }

861 /*
862 * Check for unexpected packet types.
863 */
864 if ((dccp->dccp_active_open == B_FALSE &&
865 (dccpha->dha_type == DCCP_PKT_RESPONSE ||
866 dccpha->dha_type == DCCP_PKT_CLOSEREQ)) ||
867 (dccp->dccp_state >= DCCPS_OPEN &&
868 (dccpha->dha_type == DCCP_PACKET_REQUEST ||
869 dccpha->dha_type == DCCP_PACKET_RESPONSE) &&
870 seq_seq >= dccp->dccp_osr) ||
871 (dccp->dccp_state == DCCPS_RESPOND &&
872 dccpha->dha_type == DCCP_PACKET_DATA)) {
873 mblk_t *sync_mp;

875 sync_mp = dccp_generate_sync(connp);
876 if (sync_mp != NULL)
877 dccp_send_data(dccp, sync_mp);
878 return;
879 }

881 /*
882 * Process options.
883 */
884 error = dccp_process_options(dccp, dccpha);
885 if (error != 0) {
886 mblk_t *reset_mp;

888 cmn_err(CE_NOTE, "dccp_process_options failed.");

890 reset_mp = dccp_generate_reset(connp);
891 dccp->dccp_state = DCCPS_CLOSED;
892 if (reset_mp != NULL) {
893 ip_xmit_attr_t *ixa = connp->conn_ixa;

895 ixa->ixa_pktlen = msgdsize(reset_mp);
896 (void) conn_ip_output(reset_mp, ixa);
897 }

899 return;
900 }

902 if (dccp->dccp_state == DCCPS_RESPOND) {
903 dccp->dccp_state = DCCPS_OPEN;
904 //dccp->dccp_osr = DCCP_SEQNO_GET(mp);

906 if (dccp->dccp_active_open) {
907 cmn_err(CE_NOTE, "dccp_active_open");
908 if (!dccp_conn_con(dccp, iphdr, mp, NULL, ira)) {
909 cmn_err(CE_NOTE, "dccp_conn_con failed");
910 freemsg(mp);
911 dccp->dccp_state = DCCPS_RESPOND;
912 return;
913 }

915 DTRACE_DCCP5(connect__established, mblk_t *, NULL,
916 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
917 iphdr, dccp_t *, dccp, dccph_t *, dccpha);
918 } else if (IPCL_IS_NONSTR(connp)) {
919 /*

new/usr/src/uts/common/inet/dccp/dccp_input.c 15

920 * Passive open socket
921 */
922 cmn_err(CE_NOTE, "nonstr");

924 CONN_INC_REF(connp);

926 if (!dccp_newconn_notify(dccp, ira)) {
927 cmn_err(CE_NOTE, "dccp_newconn_notify failed");
928 dccp->dccp_state = DCCPS_RESPOND;
929 freemsg(mp);

931 CONN_DEC_REF(connp);
932 return;
933 }

935 /*
936 * dccp_newconn_notify() changes conn_upcalls.
937 */
938 if (connp->conn_upcalls != NULL) {
939 sockupcalls = connp->conn_upcalls;
940 }

942 DTRACE_DCCP5(accept__established, mlbk_t *, NULL,
943 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
944 iphdr, dccp_t *, dccp, dccph_t *, dccpha);
945 } else {
946 cmn_err(CE_NOTE, "str stream");
947 dccp_t *listener = dccp->dccp_listener;

949 ASSERT(mp != NULL);
950 CONN_INC_REF(connp);
951 }
952 }

954 switch (dccpha->dha_type) {
955 case DCCP_PKT_REQUEST:
956 cmn_err(CE_NOTE, "DCCP_REQUEST");
957 break;
958 case DCCP_PKT_RESPONSE:
959 cmn_err(CE_NOTE, "DCCP_RESPONSE");
960 break;
961 case DCCP_PKT_DATA:
962 cmn_err(CE_NOTE, "DCCP_DATA");
963 break;
964 case DCCP_PKT_ACK:
965 cmn_err(CE_NOTE, "DCCP_PKT_ACK");
966 break;
967 case DCCP_PKT_DATAACK:
968 cmn_err(CE_NOTE, "DCCP_DATAACK");
969 break;
970 case DCCP_PKT_CLOSEREQ:
971 cmn_err(CE_NOTE, "DCCP_CLOSEREQ");
972 break;
973 case DCCP_PKT_CLOSE:
974 cmn_err(CE_NOTE, "DCCP_CLOSE");
975 break;
976 case DCCP_PKT_RESET:
977 cmn_err(CE_NOTE, "DCCP_RESET");
978 break;
979 case DCCP_PKT_SYNC:
980 cmn_err(CE_NOTE, "DCCP_SYNC");
981 break;
982 case DCCP_PKT_SYNCACK:
983 cmn_err(CE_NOTE, "DCCP_SYNCACK");
984 break;
985 default:

new/usr/src/uts/common/inet/dccp/dccp_input.c 16

986 break;
987 }

989 switch (dccpha->dha_type) {
990 /* case DCCP_PKT_ACK: { */
991 case DCCP_PKT_DATAACK: {
992 mblk_t *ack_mp;

994 ack_mp = dccp_generate_ack(connp);
995 if (ack_mp != NULL)
996 dccp_send_data(dccp, ack_mp);

998 dccp->dccp_state = DCCPS_OPEN;
999 return;

1000 }
1001 case DCCP_PKT_CLOSE: {
1002 mblk_t *reset_mp;

1004 dccp->dccp_reset_code = DCCP_RESET_CLOSED;
1005 dccp->dccp_reset_data[0] = 0;
1006 dccp->dccp_reset_data[1] = 0;
1007 dccp->dccp_reset_data[2] = 0;
1008 reset_mp = dccp_generate_reset(connp);
1009 dccp_send_data(dccp, reset_mp);
1010 dccp->dccp_state = DCCPS_CLOSED;
1011 return;
1012 }
1013 default:
1014 break;
1015 }

1017 hdr_length = ira->ira_ip_hdr_length;
1018 hdr_length += DCCP_HDR_LENGTH(dccpha);
1019 pkt_len = ira->ira_pktlen;

1021 mp->b_wptr = rptr + pkt_len;
1022 mp->b_rptr = (uchar_t *)&mp->b_rptr[hdr_length];
1023 pkt_len -= hdr_length;

1025 if (IPCL_IS_NONSTR(connp)) {
1026 /*
1027 * Non-STREAMS socket.
1028 */
1029 boolean_t push;
1030 int error;

1032 if ((*sockupcalls->su_recv)(connp->conn_upper_handle,
1033 mp, pkt_len, 0, &error, NULL) <= 0) {
1034 cmn_err(CE_NOTE, "su_recv failed");
1035 ASSERT(error != EOPNOTSUPP);
1036 }
1037 } else if (dccp->dccp_listener != NULL) {
1038 // dccp_recv_enqueue(dccp, mp, seq_len, ira->ira_cred);
1039 } else {
1040 /*
1041 * Active-STREAMS socket.
1042 */
1043 }
1044 }
1045 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_misc.c 1

**
 3084 Sat Aug 18 10:37:10 2012
new/usr/src/uts/common/inet/dccp/dccp_misc.c
dccp: add dccp_misc.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Copyright 2012 David Hoeppner. All rights reserved.
25 */

27 /*
28 * This file contains various helper functions.
29 */

31 #include <sys/types.h>
32 #include <sys/strlog.h>
33 #include <sys/policy.h>
34 #include <sys/strsun.h>

36 #include <inet/common.h>
37 #include <inet/dccp_impl.h>

39 /*
40 * When a CPU is added, we need to allocate the per CPU stats struct.
41 */
42 void
43 dccp_stack_cpu_add(dccp_stack_t *dccps, processorid_t cpu_seqid)
44 {
45 int i;

47 if (cpu_seqid < dccps->dccps_sc_cnt) {
48 return;
49 }

51 for (i = dccps->dccps_sc_cnt; i <= cpu_seqid; i++) {
52 ASSERT(dccps->dccps_sc[i] == NULL);
53 dccps->dccps_sc[i] = kmem_zalloc(sizeof (dccp_stats_cpu_t),
54 KM_SLEEP);
55 }

57 membar_producer();
58 dccps->dccps_sc_cnt = cpu_seqid + 1;
59 }

61 /*

new/usr/src/uts/common/inet/dccp/dccp_misc.c 2

62 * Diagnostic routine used to return a string associated with the dccp state.
63 */
64 char *
65 dccp_display(dccp_t *dccp, char *sup_buf, char format)
66 {
67 conn_t *connp;
68 in6_addr_t local;
69 in6_addr_t remote;
70 char local_addrbuf[INET6_ADDRSTRLEN];
71 char remote_addrbuf[INET6_ADDRSTRLEN];
72 char priv_buf[INET6_ADDRSTRLEN * 2 + 80];
73 char buf1[30];
74 char *buf;
75 char *cp;

77 if (sup_buf != NULL) {
78 buf = sup_buf;
79 } else {
80 buf = priv_buf;
81 }

83 if (dccp == NULL) {
84 return ("NULL_DCCP");
85 }

87 connp = dccp->dccp_connp;
88 switch (dccp->dccp_state) {
89 case DCCPS_CLOSED:
90 cp = "DCCP_CLOSED";
91 break;
92 default:
93 (void) mi_sprintf(buf1, "DCCPUnkState(%d)", dccp->dccp_state);
94 cp = buf1;
95 break;
96 }

98 switch (format) {
99 case DISP_ADDR_AND_PORT:
100 if (connp->conn_ipversion == IPV4_VERSION) {
101 IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local);
102 IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote);
103 } else {
104 local = connp->conn_laddr_v6;
105 remote = connp->conn_faddr_v6;
106 }

108 (void) inet_ntop(AF_INET6, &local, local_addrbuf,
109 sizeof (local_addrbuf));
110 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
111 sizeof (remote_addrbuf));
112 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
113 local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf,
114 ntohs(connp->conn_fport), cp);
115 break;
116 case DISP_PORT_ONLY:
117 default:
118 (void) mi_sprintf(buf, "[%u, %u] %s",
119 ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp);
120 break;
121 }

123 return (buf);
124 }
125 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_opt_data.c 1

**
 7532 Sat Aug 18 10:37:10 2012
new/usr/src/uts/common/inet/dccp/dccp_opt_data.c
dccp: starting with options
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * This file contains functions related to getting and setting options
33 * thought the getsockopt and setsockopt socket functions.
34 */

36 #include <sys/types.h>
37 #include <sys/stream.h>
38 #define _SUN_TPI_VERSION 2
39 #include <sys/tihdr.h>
40 #include <sys/xti_xtiopt.h>
41 #include <sys/xti_inet.h>
42 #include <sys/policy.h>

44 #include <inet/common.h>
45 #include <inet/dccp_impl.h>
46 #include <inet/ip.h>
47 #include <inet/optcom.h>
48 #include <netinet/ip.h>

50 #include <sys/cmn_err.h>

52 static int dccp_opt_default(queue_t *, int, int, uchar_t *);

54 /*
55 * Supported options.
56 */
57 opdes_t dccp_opt_arr[] = {
58 { SO_DEBUG, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
59 };

61 /*

new/usr/src/uts/common/inet/dccp/dccp_opt_data.c 2

62 * Supported levels.
63 */
64 optlevel_t dccp_valid_levels_arr[] = {
65 SOL_SOCKET,
66 };

68 #define DCCP_OPT_ARR_CNT A_CNT(dccp_opt_arr)
69 #define DCCP_VALID_LEVELS_CNT A_CNT(dccp_valid_levels_arr)

71 uint_t dccp_max_optsize;

73 /*
74 * Options database object.
75 */
76 optdb_obj_t dccp_opt_obj = {
77 dccp_opt_default,
78 dccp_tpi_opt_get,
79 dccp_tpi_opt_set,
80 DCCP_OPT_ARR_CNT,
81 dccp_opt_arr,
82 DCCP_VALID_LEVELS_CNT,
83 dccp_valid_levels_arr,
84 };

86 /*
87 * Default value for certain options.
88 */
89 int
90 dccp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
91 {
92 dccp_stack_t *dccps = Q_TO_DCCP(q)->dccp_dccps;
93 int32_t *il = (int32_t *)ptr;

95 return (sizeof (int));
96 }

98 int
99 dccp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
100 {
101 dccp_t *dccp = connp->conn_dccp;
102 conn_opt_arg_t coas;
103 int *i1 = (int *)ptr;
104 int retval;

106 coas.coa_connp = connp;
107 coas.coa_ixa = connp->conn_ixa;
108 coas.coa_ipp = &connp->conn_xmit_ipp;
109 coas.coa_ancillary = B_FALSE;
110 coas.coa_changed = 0;

112 switch (level) {
113 case SOL_SOCKET:
114 break;
115 case IPPROTO_DCCP:
116 switch (name) {
117 case DCCP_NOTIFY_THRESHOLD:
118 *i1 = dccp->dccp_first_timer_threshold;
119 return (sizeof (int));
120 case DCCP_ABORT_THRESHOLD:
121 *i1 = dccp->dccp_second_timer_threshold;
122 return (sizeof (int));
123 case DCCP_CONN_NOTIFY_THRESHOLD:
124 *i1 = dccp->dccp_first_ctimer_threshold;
125 return (sizeof (int));
126 case DCCP_CONN_ABORT_THRESHOLD:
127 *i1 = dccp->dccp_second_ctimer_threshold;

new/usr/src/uts/common/inet/dccp/dccp_opt_data.c 3

128 return (sizeof (int));
129 case DCCP_KEEPALIVE_THRESHOLD:
130 *i1 = dccp->dccp_ka_interval;
131 return (sizeof (int));
132 case DCCP_KEEPINTVL:
133 *i1 = dccp->dccp_ka_rinterval / 1000;
134 return (sizeof (int));
135 }
136 break;
137 case IPPROTO_IP:
138 break;
139 case IPPROTO_IPV6:
140 break;
141 }

143 mutex_enter(&connp->conn_lock);
144 retval = conn_opt_get(&coas, level, name, ptr);
145 mutex_exit(&connp->conn_lock);

147 return (retval);
148 }

150 /* ARGSUSED */
151 int
152 dccp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
153 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
154 void *thisdg_attrs, cred_t *cr)
155 {
156 dccp_t *dccp = connp->conn_dccp;
157 dccp_stack_t *dccps = dccp->dccp_dccps;
158 conn_opt_arg_t coas;
159 uint32_t val = *((uint32_t *)invalp);
160 int *i1 = (int *)invalp;
161 boolean_t onoff = (*i1 == 0) ? B_FALSE : B_TRUE;
162 boolean_t checkonly = B_FALSE;
163 int error;

165 coas.coa_connp = connp;
166 coas.coa_ixa = connp->conn_ixa;
167 coas.coa_ipp = &connp->conn_xmit_ipp;
168 coas.coa_ancillary = B_FALSE;
169 coas.coa_changed = 0;

171 switch (optset_context) {
172 case SETFN_OPTCOM_CHECKONLY:
173 checkonly = B_TRUE;
174 if (inlen = 0) {
175 *outlenp = 0;
176 return (0);
177 }
178 break;
179 case SETFN_OPTCOM_NEGOTIATE:
180 break;
181 case SETFN_UD_NEGOTIATE:
182 case SETFN_CONN_NEGOTIATE:
183 break;
184 default:
185 /*
186 * We should never get here.
187 */
188 *outlenp = 0;
189 return (EINVAL);
190 }

192 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
193 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));

new/usr/src/uts/common/inet/dccp/dccp_opt_data.c 4

195 /*
196 * No ancillary data should be sent down.
197 */
198 ASSERT(thisdg_attrs == NULL);

200 switch (level) {
201 case SOL_SOCKET:
202 switch (name) {
203 case SO_KEEPALIVE:
204 if (checkonly) {
205 /* Check only case */
206 break;
207 }

209 if (!onoff) {
210 if (connp->conn_keepalive) {
211 if (dccp->dccp_ka_tid != 0) {
212 (void) DCCP_TIMER_CANCEL(dccp,
213 dccp->dccp_ka_tid);
214 dccp->dccp_ka_tid = 0;
215 }
216 connp->conn_keepalive = 0;
217 }
218 break;
219 }

221 if (!connp->conn_keepalive) {
222 /* Crank up the keepalive timer */
223 dccp->dccp_ka_last_intrvl = 0;
224 dccp->dccp_ka_tid = DCCP_TIMER(dccp,
225 dccp_keepalive_timer, dccp->dccp_ka_interval
226 connp->conn_keepalive = 1;
227 }
228 break;
229 }
230 break;
231 case IPPROTO_DCCP:
232 switch (name) {
233 case DCCP_NOTIFY_THRESHOLD:
234 if (!checkonly)
235 dccp->dccp_first_timer_threshold = *i1;
236 break;
237 case DCCP_ABORT_THRESHOLD:
238 if (!checkonly)
239 dccp->dccp_second_timer_threshold = *i1;
240 case DCCP_CONN_NOTIFY_THRESHOLD:
241 if (!checkonly)
242 dccp->dccp_first_ctimer_threshold = *i1;
243 break;
244 case DCCP_CONN_ABORT_THRESHOLD:
245 if (!checkonly)
246 dccp->dccp_second_ctimer_threshold = *i1;
247 break;
248 case DCCP_KEEPIDLE:
249 *i1 *= 1000;
250 /* FALLTHRU */
251 case DCCP_KEEPALIVE_THRESHOLD:
252 if (checkonly)
253 break;

255 if (*i1 < dccps->dccps_keepalive_interval_low ||
256 *i1 > dccps->dccps_keepalive_interval_high) {
257 *outlenp = 0;
258 return (EINVAL);
259 }

new/usr/src/uts/common/inet/dccp/dccp_opt_data.c 5

261 if (*i1 != dccp->dccp_ka_interval) {
262 dccp->dccp_ka_interval = *i1;

264 if (dccp->dccp_ka_tid != 0) {
265 ASSERT(connp->conn_keepalive);
266 (void) DCCP_TIMER_CANCEL(dccp,
267 dccp->dccp_ka_tid);
268 dccp->dccp_ka_last_intrvl = 0;
269 dccp->dccp_ka_tid = DCCP_TIMER(dccp,
270 dccp_keepalive_timer,
271 dccp->dccp_ka_interval);
272 }
273 }
274 break;
275 }
276 break;
277 case IPPROTO_IP:
278 break;
279 case IPPROTO_IPV6:
280 break;
281 }

283 error = conn_opt_set(&coas, level, name, inlen, invalp,
284 B_FALSE, cr);
285 if (error !=0) {
286 *outlenp = 0;
287 return (error);
288 }

290 /*
291 * Common case of OK return with outval same as inval.
292 */
293 if (invalp != outvalp) {
294 (void) bcopy(invalp, outvalp, inlen);
295 }
296 *outlenp = inlen;

298 if (coas.coa_changed && COA_HEADER_CHANGED) {
299 /* If we are connected we rebuilt the headers */
300 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
301 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
302 error = dccp_build_hdrs(dccp);
303 if (error != 0) {
304 return (error);
305 }
306 }
307 }

309 if (coas.coa_changed & COA_ROUTE_CHANGED) {
310 in6_addr_t nexthop;

312 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa,
313 &connp->conn_faddr_v6, &nexthop);

315 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
316 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
317 (void) ip_attr_connect(connp, connp->conn_ixa,
318 &connp->conn_laddr_v6, &connp->conn_faddr_v6,
319 &nexthop, connp->conn_fport, NULL, NULL,
320 IPDF_VERIFY_DST);
321 }
322 }

324 /* XXX */

new/usr/src/uts/common/inet/dccp/dccp_opt_data.c 6

326 return (0);
327 }
328 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_options.c 1

**
 6895 Sat Aug 18 10:37:10 2012
new/usr/src/uts/common/inet/dccp/dccp_options.c
dccp: split options and feature functions
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #include <sys/types.h>
17 #include <sys/stream.h>
18 #include <sys/debug.h>
19 #include <sys/cmn_err.h>

21 #include <inet/dccp_impl.h>
22 #include <inet/dccp_stack.h>

24 /*
25 * This file contains functions to parse and process DCCP options.
26 */

29 /*
30 * Parse the options in a DCCP header.
31 */
32 int
33 dccp_parse_options(dccp_t *dccp, dccpha_t *dccpha)
34 {
35 uchar_t *end;
36 uchar_t *up;
37 uint8_t dccp_type;
38 uint32_t option_value;
39 uint8_t option_type;
40 uint8_t option_length;
41 int len;
42 int i;
43 uchar_t *value;
44 boolean_t mandatory = B_FALSE;
45 int error;

47 cmn_err(CE_NOTE, "dccp_features.c: dccp_parse_options");

49 dccp_type = dccpha->dha_type;

51 up = (uchar_t *)dccpha;
52 end = up + DCCP_HDR_LENGTH(dccpha);
53 up += 20;

55 while (up != end) {
56 option_length = 0;
57 option_type = *up++;

59 if (option_type > 31) {
60 if (up == end) {
61 goto length_error;

new/usr/src/uts/common/inet/dccp/dccp_options.c 2

62 }

64 option_length = *up++;
65 if (option_length < 2) {
66 goto length_error;
67 }

69 option_length -= 2;
70 value = up;

72 up += option_length;

74 /* Ignore options with greater length then header */
75 if (up > end) {
76 goto length_error;
77 }
78 } else {
79 value = up;
80 }

82 /* Single byte unknow option */
83 if (option_type >= 3 && option_type <=31) {
84 if (mandatory) {
85 error = DCCP_RESET_MANDATORY_ERROR;
86 } else {
87 error = DCCP_RESET_OPTION_ERROR;
88 }

90 dccp->dccp_reset_code = error;
91 /*
92 * this should be correct:
93 * dccp->dccp_reset_data[0] = option_type;
94 * dccp->dccp_reset_data[1] = value[0];
95 *
96 * error in the test suit?
97 */
98 dccp->dccp_reset_data[0] = value[0];
99 dccp->dccp_reset_data[1] = 0;
100 dccp->dccp_reset_data[2] = 0;

102 return (-1);
103 }

105 if (option_type >= 45 && option_type <=127)
106 break;

109 switch (option_type) {
110 case DCCP_OPTION_PADDING:
111 cmn_err(CE_NOTE, "PADDING");
112 break;
113 case DCCP_OPTION_MANDATORY:
114 cmn_err(CE_NOTE, "MANDATORY");
115 if (mandatory)
116 goto option_error;

118 if (dccp_type != DCCP_PKT_DATA)
119 mandatory = B_TRUE;
120 break;
121 case DCCP_OPTION_SLOW_RECEIVER:
122 cmn_err(CE_NOTE, "SLOW RECEIVER");
123 break;
124 case DCCP_OPTION_CHANGE_L:
125 case DCCP_OPTION_CONFIRM_L:
126 case DCCP_OPTION_CHANGE_R:
127 case DCCP_OPTION_CONFIRM_R:

new/usr/src/uts/common/inet/dccp/dccp_options.c 3

128 if (dccp_type == DCCP_PACKET_DATA)
129 break;

131 if (option_length == 0)
132 goto option_error;

134 error = dccp_parse_feature(dccp, option_type, option_len
135 value, mandatory);
136 if (error != 0)
137 goto feature_error;

139 break;
140 case DCCP_OPTION_INIT_COOKIE:
141 cmn_err(CE_NOTE, "INIT COOKIE");
142 break;
143 case DCCP_OPTION_NDP_COUNT:
144 cmn_err(CE_NOTE, "NDP COUNT");
145 if (option_length > 6)
146 goto option_error;
147 break;
148 case DCCP_OPTION_ACK_VECTOR_1:
149 cmn_err(CE_NOTE, "ACK VECTOR 1");
150 break;
151 case DCCP_OPTION_ACK_VECTOR_2:
152 cmn_err(CE_NOTE, "ACK VECTOR 2");
153 break;
154 case DCCP_OPTION_DATA_DROPPED:
155 cmn_err(CE_NOTE, "DATA DROPPED");
156 break;
157 case DCCP_OPTION_TIMESTAMP:
158 cmn_err(CE_NOTE, "TIMESTAMP");
159 if (option_length != 4)
160 goto option_error;

162 option_value = BE32_TO_U32(value);
163 if (option_value == 0) {
164 cmn_err(CE_NOTE, "Zero timestamp");
165 break;
166 }

168 dccp->dccp_timestamp_echo = ntohs(option_value);
169 dccp->dccp_timestamp = TICK_TO_MSEC(LBOLT_FASTPATH);
170 break;
171 case DCCP_OPTION_TIMESTAMP_ECHO:
172 cmn_err(CE_NOTE, "TIMESTAMP ECHO");
173 if (option_length != 4 && option_length != 6 &&
174 option_length != 8) {
175 goto option_error;
176 }

178 option_value = BE32_TO_U32(value);

180 option_length -= 4;
181 break;
182 case DCCP_OPTION_ELAPSED_TIME:
183 cmn_err(CE_NOTE, "ELAPSES TIME");
184 switch (option_length) {
185 case 2:
186 break;
187 case 4:
188 break;
189 default:
190 goto option_error;
191 }
192 break;
193 case DCCP_OPTION_DATA_CHECKSUM:

new/usr/src/uts/common/inet/dccp/dccp_options.c 4

194 cmn_err(CE_NOTE, "DATA CHECKSUM");
195 break;

197 default:
198 cmn_err(CE_NOTE, "unknow option");
199 break;
200 }

202 if (option_type != DCCP_OPTION_MANDATORY) {
203 mandatory = B_FALSE;
204 }
205 }

207 if (mandatory)
208 goto option_error;

210 length_error:
211 return (0);

213 option_error:
214 if (mandatory) {
215 error = DCCP_RESET_MANDATORY_ERROR;
216 } else {
217 error = DCCP_RESET_OPTION_ERROR;
218 }

220 cmn_err(CE_NOTE, "setting error code");

222 feature_error:
223 dccp->dccp_reset_code = error;
224 dccp->dccp_reset_data[0] = option_type;
225 dccp->dccp_reset_data[1] = option_length > 0 ? value[0] : 0;
226 dccp->dccp_reset_data[2] = option_length > 1 ? value[1] : 0;

228 return (-1);
229 }

231 int
232 dccp_process_options(dccp_t *dccp, dccpha_t *dccpha)
233 {
234 int error;

236 cmn_err(CE_NOTE, "dccp_features.c: dccp_process_features");

238 error = dccp_parse_options(dccp, dccpha);

240 return (error);
241 }

243 int
244 dccp_generate_options(dccp_t *dccp, void **opt, size_t *opt_len)
245 {
246 dccp_feature_t *feature = NULL;
247 uint8_t buf[1024]; /* XXX */
248 uint8_t option_type;
249 uint_t len = 0;
250 uint_t total_len = 0;
251 void *options = NULL;
252 int rest;

254 cmn_err(CE_NOTE, "dccp_features.c: dccp_generate_options");

256 for (feature = list_head(&dccp->dccp_features); feature;
257 feature = list_next(&dccp->dccp_features, feature)) {
258 if (feature->df_option == DCCP_OPTION_CHANGE_L) {
259 option_type = DCCP_OPTION_CONFIRM_R;

new/usr/src/uts/common/inet/dccp/dccp_options.c 5

260 } else {
261 option_type = DCCP_OPTION_CONFIRM_L;
262 }
263 /*
264 if (feature->df_mandatory == B_TRUE) {
265 buf[len] = DCCP_OPTION_MANDATORY;
266 len++;
267 }
268 */
269 if (feature->df_type == DCCP_FEATURE_CCID) {
270 cmn_err(CE_NOTE, "FOUND DCCP_FEATURE_CCID");

272 buf[len] = option_type;
273 len++;
274 buf[len] = 4;
275 len++;
276 buf[len] = DCCP_FEATURE_CCID;
277 len++;
278 buf[len] = 2;
279 len++;
280 }

282 if (feature->df_type == DCCP_FEATURE_ALLOW_SHORT_SEQNOS) {
283 buf[len] = option_type;
284 len++;
285 buf[len] = 4;
286 len++;
287 buf[len] = feature->df_type;
288 len++;
289 buf[len] = 0;
290 len++;
291 }

293 if (feature->df_type == DCCP_FEATURE_ECN_INCAPABLE) {
294 buf[len] = option_type;
295 len++;
296 buf[len] = 4;
297 len++;
298 buf[len] = feature->df_type;
299 len++;
300 buf[len] = 1;
301 len++;
302 }
303 }

305 if (dccp->dccp_timestamp_echo != 0) {
306 uint32_t elapsed;
307 int elapsed_length;
308 clock_t now;

310 buf[len] = DCCP_OPTION_TIMESTAMP_ECHO;
311 len++;
312 buf[len] = 10;
313 len++;

315 now = TICK_TO_MSEC(LBOLT_FASTPATH);
316 elapsed = now - dccp->dccp_timestamp;

319 dccp->dccp_timestamp_echo = 0;
320 }

322 if (len != 0) {
323 total_len = ((len + (4 - 1)) / 4) * 4;
324 options = kmem_zalloc(total_len, KM_SLEEP);
325 if (options == NULL) {

new/usr/src/uts/common/inet/dccp/dccp_options.c 6

326 cmn_err(CE_NOTE, "kmem_zalloc failed");
327 return (ENOMEM);
328 }
329 memcpy(options, buf, len);
330 }

332 *opt = options;
333 *opt_len = len;

335 return (0);
336 }
337 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_output.c 1

**
 25748 Sat Aug 18 10:37:10 2012
new/usr/src/uts/common/inet/dccp/dccp_output.c
dccp: clean up
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * Functions related to the output path.
33 */

35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/strsun.h>
38 #include <sys/strsubr.h>
39 #include <sys/stropts.h>
40 #include <sys/strlog.h>
41 #define _SUN_TPI_VERSION 2
42 #include <sys/tihdr.h>
43 #include <sys/suntpi.h>
44 #include <sys/xti_inet.h>
45 #include <sys/squeue_impl.h>
46 #include <sys/squeue.h>
47 #include <sys/tsol/tnet.h>

49 #include <inet/common.h>
50 #include <inet/dccp_impl.h>
51 #include <inet/dccp_stack.h>
52 #include <inet/ip.h>
53 #include <inet/ipsec_impl.h>

55 #include <sys/cmn_err.h>

57 static void dccp_xmit_early_reset(char *, mblk_t *, uint32_t, uint32_t,
58 int, ip_recv_attr_t *, ip_stack_t *, conn_t *);
59 static boolean_t dccp_send_rst_chk(dccp_stack_t *);
60 static int dccp_xmit_end(dccp_t *);
61 static mblk_t *dccp_generate_common(conn_t *, uint8_t, uint_t);

new/usr/src/uts/common/inet/dccp/dccp_output.c 2

63 /*
64 * STREAMS
65 */
66 void
67 dccp_wput(queue_t *q, mblk_t *mp)
68 {
69 cmn_err(CE_NOTE, "dccp_output.c: dccp_wput");
70 }

72 /*
73 * Fast path write put.
74 */
75 void
76 dccp_wput_data(dccp_t *dccp, mblk_t *mp, boolean_t urgent)
77 {
78 cmn_err(CE_NOTE, "dccp_output.c: dccp_wput_data");
79 }

81 /*
82 *
83 */
84 void
85 dccp_wput_sock(queue_t *wq, mblk_t *mp)
86 {
87 conn_t *connp = Q_TO_CONN(wq);
88 dccp_t *dccp = connp->conn_dccp;
89 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr;

91 cmn_err(CE_NOTE, "dccp_wput_sock");

93 ASSERT(wq->q_qinfo == &dccp_sock_winit);
94 wq->q_qinfo = &dccp_winit;

96 ASSERT(IPCL_IS_TCP(connp));
97 ASSERT(DCCP_IS_SOCKET(dccp));

99 if (DB_TYPE(mp) == M_PCPROTO &&
100 MBLKL(mp) == sizeof (struct T_capability_req) &&
101 car->PRIM_type == T_CAPABILITY_REQ) {
102 dccp_capability_req(dccp, mp);
103 return;
104 }

106 dccp_wput(wq, mp);
107 }

109 /* ARGSUSED */
110 void
111 dccp_wput_fallback(queue_t *eq, mblk_t *mp)
112 {
113 cmn_err(CE_NOTE, "dccp_output.c: dccp_wput_fallback");

115 #ifdef DEBUG
116 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
117 #endif /* DEBUG */

119 freemsg(mp);
120 }

122 /*
123 * Initiate closedown sequence on an active connection.
124 */
125 static int
126 dccp_xmit_end(dccp_t *dccp)
127 {

new/usr/src/uts/common/inet/dccp/dccp_output.c 3

128 conn_t *connp = dccp->dccp_connp;
129 mblk_t *mp;

131 /* XXX */

133 return (0);
134 }

136 /*
137 * Output fast path.
138 */
139 void
140 dccp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
141 {
142 conn_t *connp = (conn_t *)arg;
143 dccp_t *dccp = connp->conn_dccp;
144 dccp_stack_t *dccps = dccp->dccp_dccps;
145 dccpha_t *dccpha;
146 mblk_t *mp1;
147 ip_xmit_attr_t *ixa;
148 struct datab *db;
149 uchar_t *rptr;
150 uint32_t msize;
151 uint32_t sum;
152 int len;
153 int plen;

155 cmn_err(CE_NOTE, "dccp_output.c: dccp_output");

157 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
158 (connp->conn_fanout == NULL && connp->conn_ref >= 3));

160 ASSERT(DB_TYPE(mp) == M_DATA);
161 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);

163 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
164 len = (int)(mp->b_wptr - mp->b_rptr);

166 if ((mp->b_cont != NULL) ||
167 (dccp->dccp_state != DCCPS_OPEN) ||
168 (len == 0)) {
169 dccp_wput_data(dccp, mp, B_FALSE);
170 return;
171 }

173 mp1 = dupb(mp);
174 if (mp1 == NULL) {
175 goto no_memory;
176 }

178 /* Adjust header information */
179 dccpha = dccp->dccp_dccpha;

181 sum = len + connp->conn_ht_ulp_len + connp->conn_sum;
182 sum = (sum >> 16) + (sum & 0xffff);
183 dccpha->dha_sum = htons(sum);

185 DCCPS_BUMP_MIB(dccps, dccpOutDataSegs);
186 DCCPS_UPDATE_MIB(dccps, dccpOutDataBytes, len);
187 BUMP_LOCAL(dccp->dccp_obsegs);

189 plen = len + connp->conn_ht_iphc_len;

191 ixa = connp->conn_ixa;
192 ixa->ixa_pktlen = plen;

new/usr/src/uts/common/inet/dccp/dccp_output.c 4

194 if (ixa->ixa_flags & IXAF_IS_IPV4) {
195 dccp->dccp_ipha->ipha_length = htons(plen);
196 } else {
197 dccp->dccp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN);
198 }

200 rptr = mp1->b_rptr;
201 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);

203 dccp_send_data(dccp, mp1);

205 return;

207 no_memory:
208 return;
209 }

211 void
212 dccp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
213 {
214 cmn_err(CE_NOTE, "dccp_output.c: dccp_output_urgent");
215 }

217 void
218 dccp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
219 {
220 conn_t *connp = (conn_t *)arg;
221 dccp_t *dccp = connp->conn_dccp;
222 dccp_stack_t *dccps = dccp->dccp_dccps;
223 char *msg;

225 cmn_err(CE_NOTE, "dccp_output.c: dccp_close_output");

227 /*
228 * When a non-STREAMS socket is being closed, it does not always
229 * stick around waiting for tcp_close_output to run and can therefore
230 * have dropped a reference already. So adjust the asserts accordingly.
231 */
232 ASSERT((connp->conn_fanout != NULL &&
233 connp->conn_ref >= (IPCL_IS_NONSTR(connp) ? 3 : 4)) ||
234 (connp->conn_fanout == NULL &&
235 connp->conn_ref >= (IPCL_IS_NONSTR(connp) ? 2 : 3)));

237 msg = NULL;
238 switch (dccp->dccp_state) {
239 case DCCPS_CLOSED:
240 break;
241 case DCCPS_BOUND:
242 break;
243 case DCCPS_REQUEST:
244 msg = "dccp_close, during connect";
245 break;
246 case DCCPS_RESPOND:
247 /* FALLTHRU */
248 default:
249 /*
250 * If SO_LINGER has set a zero linger time, abort the
251 * connection with a reset.
252 */
253 if (connp->conn_linger && connp->conn_lingertime == 0) {
254 msg = "dccp_close, zero lingertime";
255 break;
256 }
257 }
258 }

new/usr/src/uts/common/inet/dccp/dccp_output.c 5

260 /* ARGSUSED */
261 void
262 dccp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
263 {
264 conn_t *connp = (conn_t *)arg;
265 dccp_t *dccp = connp->conn_dccp;

267 freemsg(mp);

269 if (dccp_xmit_end(dccp) != 0) {
270 /*
271 * We were crossing FINs and got a reset from
272 * the other side. Just ignore it.
273 */
274 if (connp->conn_debug) {
275 (void) strlog(DCCP_MOD_ID, 0, 1,
276 SL_ERROR|SL_TRACE,
277 "dccp_shutdown_output() out of state %s",
278 dccp_display(dccp, NULL, DISP_ADDR_AND_PORT));
279 }
280 }
281 }

283 #pragma inline(dccp_send_data)

285 void
286 dccp_send_data(dccp_t *dccp, mblk_t *mp)
287 {
288 conn_t *connp = dccp->dccp_connp;
289 int error;

291 cmn_err(CE_NOTE, "dccp_output.c: dccp_sent_data");

293 /* XXX zcopy aware */

295 DTRACE_DCCP5(send, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
296 __dtrace_dccp_void_ip_t *, mp->b_rptr, dccp_t *, dccp,
297 __dtrace_dccp_dccph_t *,
298 &mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);

300 ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp);
301 error = conn_ip_output(mp, connp->conn_ixa);
302 if (error != 0) {
303 cmn_err(CE_NOTE, "conn_ip_output failed with code %d\n", error);
304 }
305 }

307 /*
308 * Send a reset as response to an incoming packet or
309 * reset a connection.
310 */
311 void
312 dccp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst,
313 conn_t *connp)
314 {
315 netstack_t *ns = ipst->ips_netstack;
316 dccp_stack_t *dccps = ns->netstack_dccp;
317 ipsec_stack_t *ipss = dccps->dccps_netstack->netstack_ipsec;
318 dccpha_t *dccpha;
319 ipha_t *ipha;
320 ip6_t *ip6h;
321 uchar_t *rptr;
322 uint32_t seq_len;
323 uint_t ip_hdr_len = ira->ira_ip_hdr_length;
324 boolean_t policy_present;

new/usr/src/uts/common/inet/dccp/dccp_output.c 6

326 cmn_err(CE_NOTE, "dccp_output.c: dccp_xmit_listeners_reset");

328 DCCP_STAT(dccps, dccp_no_listener);

330 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
331 policy_present = ipss->ipsec_inbound_v4_policy_present;
332 ipha = (ipha_t *)mp->b_rptr;
333 ip6h = NULL;
334 } else {
335 policy_present = ipss->ipsec_inbound_v6_policy_present;
336 ipha = NULL;
337 ip6h = (ip6_t *)mp->b_rptr;
338 }

340 if (policy_present) {
341 mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h,
342 ira, ns);
343 if (mp == NULL) {
344 return;
345 }
346 }

348 rptr = mp->b_rptr;

350 dccpha = (dccpha_t *)&rptr[ip_hdr_len];

352 seq_len = msgdsize(mp) - (ip_hdr_len);

354 dccp_xmit_early_reset("no dccp, reset", mp, 0,
355 0, 0, ira, ipst, connp);
356 }

358 /*
359 * RFC 4340, Section 8.1.3
360 */
361 static void
362 dccp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl
363 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp)
364 {
365 dccpha_t *dccpha;
366 dccpha_t *nmp_dccpha;
367 dccpha_ack_t *nmp_dccpha_ack;
368 dccpha_reset_t *dccpha_reset;
369 dccpha_reset_t *nmp_dccpha_reset;
370 dccpha_ext_t *dccpha_ext;
371 dccpha_ext_t *nmp_dccpha_ext;
372 netstack_t *ns = ipst->ips_netstack;
373 dccp_stack_t *dccps = ns->netstack_dccp;
374 ip6_t *ip6h;
375 ipha_t *ipha;
376 ipha_t *nmp_ipha;
377 ip_xmit_attr_t ixas;
378 ip_xmit_attr_t *ixa;
379 in6_addr_t v6addr;
380 ipaddr_t v4addr;
381 mblk_t *nmp;
382 uint64_t pkt_ack;
383 uint_t ip_hdr_len = ira->ira_ip_hdr_length;
384 ushort_t port;
385 ushort_t len;

387 cmn_err(CE_NOTE, "dccp_output.c: dccp_xmit_early_reset");

389 if (!dccp_send_rst_chk(dccps)) {
390 cmn_err(CE_NOTE, "dccp_output.c: not sending reset packet");
391 DCCP_STAT(dccps, dccp_rst_unsent);

new/usr/src/uts/common/inet/dccp/dccp_output.c 7

392 freemsg(mp);
393 return;
394 }

396 bzero(&ixas, sizeof (ixas));
397 ixa = &ixas;

399 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE;
400 ixa->ixa_protocol = IPPROTO_DCCP;
401 ixa->ixa_zoneid = ira->ira_zoneid;
402 ixa->ixa_ifindex = 0;
403 ixa->ixa_ipst = ipst;
404 ixa->ixa_cred = kcred;
405 ixa->ixa_cpid = NOPID;

407 if (str && dccps->dccps_dbg) {
408 (void) strlog(DCCP_MOD_ID, 0, 1, SL_TRACE,
409 "dccp_xmit_early_reset: ’%s’, seq 0x%x, ack 0x%x, "
410 "flags 0x%x",
411 str, seq, ack, ctl);
412 }

414 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
415 ipha = (ipha_t *)mp->b_rptr;

417 } else {
418 /* XXX */
419 }

421 /*
422 * Allocate a new DCCP reset message
423 */
424 len = ip_hdr_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t) + sizeof (d
425 nmp = allocb(len, BPRI_MED);
426 if (nmp == NULL) {
427 cmn_err(CE_NOTE, "alloc failed");
428 return;
429 }
430 bcopy(mp->b_rptr, nmp->b_wptr, ip_hdr_len + sizeof (dccpha_t));

432 nmp_dccpha = (dccpha_t *)&nmp->b_rptr[ip_hdr_len];
433 nmp_dccpha->dha_offset = 7;

435 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
436 nmp_ipha = (ipha_t *)nmp->b_rptr;

438 nmp_ipha->ipha_length = htons(len);
439 nmp_ipha->ipha_src = ipha->ipha_dst;
440 nmp_ipha->ipha_dst = ipha->ipha_src;

442 ixa->ixa_flags |= IXAF_IS_IPV4;
443 ixa->ixa_ip_hdr_length = ip_hdr_len;
444 } else {
445 cmn_err(CE_NOTE, "not v4");
446 }

448 dccpha = (dccpha_t *)&mp->b_rptr[ip_hdr_len];

450 nmp->b_wptr = &nmp->b_rptr[len];

452 ixa->ixa_pktlen = len; // ?

454 nmp_dccpha->dha_fport = dccpha->dha_lport;
455 nmp_dccpha->dha_lport = dccpha->dha_fport;
456 nmp_dccpha->dha_type = DCCP_PKT_RESET;
457 nmp_dccpha->dha_x = 1;

new/usr/src/uts/common/inet/dccp/dccp_output.c 8

458 nmp_dccpha->dha_res_seq = 0;
459 nmp_dccpha->dha_seq = 0;

461 nmp_dccpha->dha_sum = htons(sizeof (dccpha_t) + sizeof (dccpha_ext_t) +
462 sizeof (dccpha_ack_t) + sizeof (dccpha_reset_t));

464 dccpha_ext = (dccpha_ext_t *)&mp->b_rptr[ip_hdr_len + sizeof (dccpha_t)]
465 nmp_dccpha_ext = (dccpha_ext_t *)&nmp->b_rptr[ip_hdr_len + sizeof (dccph
466 nmp_dccpha_ext->dha_ext_seq = 0;

468 len = ip_hdr_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t);
469 nmp_dccpha_ack = (dccpha_ack_t *)&nmp->b_rptr[len];
470 nmp_dccpha_ack->dha_ack_high = dccpha->dha_seq;
471 nmp_dccpha_ack->dha_ack_low = dccpha_ext->dha_ext_seq;
472 nmp_dccpha_ack->dha_ack_reserved = 0;

474 len = ip_hdr_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t) + sizeof (d
475 nmp_dccpha_reset = (dccpha_reset_t *)&nmp->b_rptr[len];

477 if (connp != NULL) {
478 nmp_dccpha_reset->dha_reset_code =
479 connp->conn_dccp->dccp_reset_code;
480 } else {
481 nmp_dccpha_reset->dha_reset_code =
482 DCCP_RESET_CONNECTION_REFUSED;
483 }
484 nmp_dccpha_reset->dha_reset_data[0] = 0;
485 nmp_dccpha_reset->dha_reset_data[1] = 0;
486 nmp_dccpha_reset->dha_reset_data[2] = 0;

488 (void) ip_output_simple(nmp, ixa);

490 ixa_cleanup(ixa);
491 }

493 /*
494 *
495 */
496 static boolean_t
497 dccp_send_rst_chk(dccp_stack_t *dccps)
498 {
499 int64_t now;

501 if (dccps->dccps_rst_sent_rate_enabled != 0) {
502 now = ddi_get_lbolt64();
503 if (TICK_TO_MSEC(now - dccps->dccps_last_rst_intrvl) >
504 1 * SECONDS) {
505 dccps->dccps_last_rst_intrvl = now;
506 dccps->dccps_rst_cnt = 1;
507 } else if (++dccps->dccps_rst_cnt > dccps->dccps_rst_sent_rate)
508 return (B_FALSE);
509 }
510 }

512 return (B_TRUE);
513 }

515 /* ARGSUSED2 */
516 void
517 dccp_send_synack(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
518 {
519 conn_t *econnp = (conn_t *)arg;
520 dccp_t *dccp = econnp->conn_dccp;
521 ip_xmit_attr_t *ixa = econnp->conn_ixa;

523 cmn_err(CE_NOTE, "dccp_output.c: dccp_send_synack");

new/usr/src/uts/common/inet/dccp/dccp_output.c 9

525 /*
526 * Guard against a RESET having blown it away while on the
527 * squeue.
528 */
529 if (dccp->dccp_state == DCCPS_CLOSED) {
530 freemsg(mp);
531 return;
532 }

534 ixa->ixa_pktlen = msgdsize(mp);
535 (void) conn_ip_output(mp, ixa);
536 }

538 mblk_t *
539 dccp_xmit_mp(dccp_t *dccp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
540 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
541 boolean_t rexmit)
542 {
543 conn_t *connp = dccp->dccp_connp;
544 dccp_stack_t *dccps = dccp->dccp_dccps;
545 dccpha_t *dccpha;
546 dccpha_ext_t *dccpha_ext;
547 dccpha_ack_t *dccpha_ack;
548 dccpha_srv_t *dccpha_srv;
549 ip_xmit_attr_t *ixa = connp->conn_ixa;
550 mblk_t *mp1;
551 uchar_t *rptr;
552 ushort_t len;
553 int data_length;

555 cmn_err(CE_NOTE, "dccp_output.c: dccp_xmit_mp");

557 // dccpha_t already in iphc_len?
558 len = connp->conn_ht_iphc_len + sizeof (dccpha_ext_t) + sizeof (dccpha_a

560 mp1 = allocb(len, BPRI_MED);
561 if (mp1 == NULL) {
562 cmn_err(CE_NOTE, "allocb failed");
563 return (NULL);
564 }

566 data_length = 0;

568 rptr = mp1->b_rptr;
569 mp1->b_wptr = &mp1->b_rptr[len];
570 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
571 dccpha = (dccpha_t *)&rptr[ixa->ixa_ip_hdr_length];
572 dccpha->dha_type = DCCP_PKT_RESPONSE;
573 dccpha->dha_offset = 8;
574 dccpha->dha_x = 1;
575 dccpha->dha_ccval = 0;
576 dccpha->dha_cscov = 0;
577 dccpha->dha_reserved = 0;
578 dccpha->dha_res_seq = 0;
579 dccpha->dha_seq = 0;

581 dccpha_ext = (dccpha_ext_t *)&rptr[ixa->ixa_ip_hdr_length + sizeof (dccp
582 dccpha_ext->dha_ext_seq = 0;

584 dccpha_ack = (dccpha_ack_t *)&rptr[ixa->ixa_ip_hdr_length + sizeof (dccp
585 dccpha_ack->dha_ack_reserved = 0;
586 dccpha_ack->dha_ack_high = 0;
587 dccpha_ack->dha_ack_low = 0;

589 dccpha_srv = (dccpha_srv_t *)&rptr[ixa->ixa_ip_hdr_length + sizeof (dccp

new/usr/src/uts/common/inet/dccp/dccp_output.c 10

590 dccpha_srv->dha_srv_code = 0;

592 return (mp1);
593 }

595 /*
596 * Generate a DCCP-Response packet.
597 */
598 mblk_t *
599 dccp_generate_response(conn_t *connp, mblk_t *mp)
600 {
601 dccpha_t *dccpha;
602 dccpha_ext_t *dccpha_ext;
603 dccpha_ack_t *dccpha_ack;
604 dccpha_srv_t *dccpha_srv;
605 mblk_t *mp1;
606 uint64_t seq;
607 uint64_t ack;
608 uint16_t ack_high;
609 uint32_t ack_low;
610 // uint_t ip_hdr_len = ira->ira_ip_hdr_length;
611 ip_xmit_attr_t *ixa = connp->conn_ixa;
612 uint_t ip_hdr_len;
613 uint_t len;
614 uint_t total_hdr_len;
615 uchar_t *rptr;
616 dccp_t *dccp = connp->conn_dccp;
617 void *options;
618 size_t opt_len;
619 int error;

621 cmn_err(CE_NOTE, "dccp_output.c: dccp_generate_packet");

623 ip_hdr_len = ixa->ixa_ip_hdr_length;

625 if (mp == NULL) {
626 cmn_err(CE_NOTE, "NULL pointer mp");
627 return (NULL);
628 }

630 dccpha = (dccpha_t *)&mp->b_rptr[ip_hdr_len];
631 dccpha_ext = (dccpha_ext_t *)&mp->b_rptr[ip_hdr_len + sizeof (dccpha_t)]

633 ack_high = dccpha->dha_seq;
634 ack_low = dccpha_ext->dha_ext_seq;

636 seq = ntohs(ack_high) << 31;
637 seq |= ntohl(ack_low);

639 dccp->dccp_isr = seq;
640 dccp->dccp_gsr = seq;
641 dccp->dccp_swl = seq;
642 dccp->dccp_swh = seq;
643 dccp->dccp_gss++;

645 error = dccp_generate_options(dccp, &options, &opt_len);
646 if (error != 0) {
647 cmn_err(CE_NOTE, "dccp_output.c: dccp_generate_options failed");
648 }
649 cmn_err(CE_NOTE, "generated options len: %d", (int) opt_len);

652 /*
653 * conn_ht_iphc_len = ip_hdr_length (20) + ulp_hdr_length
654 * (20) simple ip header (without vtag or options)
655 */

new/usr/src/uts/common/inet/dccp/dccp_output.c 11

656 total_hdr_len = len = connp->conn_ht_iphc_len + sizeof (dccpha_ext_t) +
657 mp1 = allocb(len, BPRI_MED);
658 if (mp1 == NULL) {
659 cmn_err(CE_NOTE, "allocb failed");
660 return (NULL);
661 }

663 rptr = mp1->b_rptr;
664 mp1->b_wptr = &mp1->b_rptr[len];

666 bcopy(options, &mp1->b_rptr[len-opt_len], opt_len);
667 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
668 dccpha = (dccpha_t *)&rptr[ip_hdr_len];

670 dccpha->dha_type = DCCP_PKT_RESPONSE;
671 dccpha->dha_offset = 7 + (opt_len / 4);
672 dccpha->dha_x = 1;
673 dccpha->dha_ccval = 0;
674 dccpha->dha_cscov = 0;
675 dccpha->dha_reserved = 0;
676 dccpha->dha_res_seq = 0;
677 dccpha->dha_seq = htons(dccp->dccp_gss >> 32);;
678 dccpha->dha_sum = htons(sizeof (dccpha_t) + sizeof (dccpha_ext_t) + size

681 dccpha_ext = (dccpha_ext_t *)&mp1->b_rptr[ip_hdr_len + sizeof (dccpha_t)
682 dccpha_ext->dha_ext_seq = htonl(dccp->dccp_gss & 0xffffffff);

684 dccpha_ack = (dccpha_ack_t *)&mp1->b_rptr[ip_hdr_len + sizeof (dccpha_t)
685 dccpha_ack->dha_ack_high = ack_high;
686 dccpha_ack->dha_ack_low = ack_low;
687 dccpha_ack->dha_ack_reserved = 0;

689 dccpha_srv = (dccpha_srv_t *)&mp1->b_rptr[ip_hdr_len + sizeof (dccpha_t)
690 dccpha_srv->dha_srv_code = 0;

692 ixa->ixa_pktlen = total_hdr_len;

694 if (ixa->ixa_flags & IXAF_IS_IPV4) {
695 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
696 } else {
697 ip6_t *ip6 = (ip6_t *)rptr;

699 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
700 }

702 cmn_err(CE_NOTE, "IPHC LEN: %d", connp->conn_ht_iphc_len);
703 cmn_err(CE_NOTE, "TOTAL LEN: %d", total_hdr_len);

705 kmem_free(options, opt_len);

707 return (mp1);
708 }

710 /*
711 * Generate a request packet. Must use 48-bit sequence
712 * numbers.
713 */
714 mblk_t *
715 dccp_generate_request(conn_t *connp)
716 {
717 dccp_t *dccp = connp->conn_dccp;
718 dccpha_t *dccpha;
719 dccpha_ext_t *dccpha_ext;
720 dccpha_srv_t *dccpha_srv;
721 ip_xmit_attr_t *ixa = connp->conn_ixa;

new/usr/src/uts/common/inet/dccp/dccp_output.c 12

722 mblk_t *mp;
723 uchar_t *rptr;
724 uint_t total_hdr_len;
725 uint_t len;

727 cmn_err(CE_NOTE, "dccp_output.c: dccp_generate_request");

729 total_hdr_len = connp->conn_ht_iphc_len + sizeof (dccpha_ext_t) +
730 sizeof (dccpha_srv_t);
731 mp = allocb(total_hdr_len, BPRI_MED);
732 if (mp == NULL) {
733 cmn_err(CE_NOTE, "allocb failed");
734 return (NULL);
735 }

737 rptr = mp->b_rptr;
738 mp->b_wptr = &mp->b_rptr[total_hdr_len];

740 /* Copy in the template header */
741 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);

743 len = ixa->ixa_ip_hdr_length;
744 dccpha = (dccpha_t *)&rptr[len];
745 dccpha->dha_type = DCCP_PKT_REQUEST;
746 dccpha->dha_offset = (sizeof (dccpha_t) + sizeof (dccpha_ext_t) +
747 sizeof (dccpha_srv_t)) / 4;
748 dccpha->dha_x = 1;
749 dccpha->dha_ccval = 0;
750 dccpha->dha_cscov = 0;
751 dccpha->dha_reserved = 0;
752 dccpha->dha_res_seq = 0;
753 dccpha->dha_seq = 0;
754 dccpha->dha_sum = htons(sizeof (dccpha_t) + sizeof (dccpha_ext_t) +
755 sizeof (dccpha_srv_t));

757 /* Extended sequence number */
758 len += sizeof (dccpha_t);
759 dccpha_ext = (dccpha_ext_t *)&rptr[len];

761 /* Service number */
762 len += sizeof (dccpha_ext_t);
763 dccpha_srv = (dccpha_srv_t *)&rptr[len];
764 dccpha_srv->dha_srv_code = 0;

766 ixa->ixa_pktlen = total_hdr_len;

768 if (ixa->ixa_flags & IXAF_IS_IPV4) {
769 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
770 } else {
771 ip6_t *ip6 = (ip6_t *)rptr;

773 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
774 }

776 return (mp);
777 }

779 /*
780 * Close packet.
781 */
782 mblk_t *
783 dccp_generate_reset(conn_t *connp)
784 {
785 dccp_t *dccp = connp->conn_dccp;
786 dccpha_t *dccpha;
787 dccpha_ext_t *dccpha_ext;

new/usr/src/uts/common/inet/dccp/dccp_output.c 13

788 dccpha_ack_t *dccpha_ack;
789 dccpha_reset_t *dccpha_reset;
790 ip_xmit_attr_t *ixa = connp->conn_ixa;
791 mblk_t *mp;
792 uint64_t gss;
793 uchar_t *rptr;
794 uint_t total_hdr_len;
795 uint_t len = ixa->ixa_ip_hdr_length;

797 cmn_err(CE_NOTE, "dccp_output.c: dccp_generate_reset");

799 /* XXX */
800 dccp->dccp_gss++;

802 /*
803 * Allocate a new DCCP reset message
804 */
805 total_hdr_len = connp->conn_ht_iphc_len + sizeof (dccpha_ext_t) +
806 sizeof (dccpha_ack_t) + sizeof (dccpha_reset_t);
807 mp = allocb(total_hdr_len, BPRI_MED);
808 if (mp == NULL) {
809 cmn_err(CE_NOTE, "allocb failed");
810 return(NULL);
811 }

813 rptr = mp->b_rptr;
814 mp->b_wptr = &mp->b_rptr[total_hdr_len];

816 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);

818 len = ixa->ixa_ip_hdr_length;
819 dccpha = (dccpha_t *)&mp->b_rptr[len];
820 dccpha->dha_type = DCCP_PKT_RESET;
821 dccpha->dha_offset = 7;
822 dccpha->dha_x = 1;
823 dccpha->dha_ccval = 0;
824 dccpha->dha_cscov = 0;
825 dccpha->dha_sum = htons(sizeof (dccpha_t) + sizeof (dccpha_ext_t) +
826 sizeof (dccpha_ack_t) + sizeof (dccpha_reset_t));
827 dccpha->dha_seq = htons(dccp->dccp_gss >> 32);
828 dccpha->dha_res_seq = 0;

830 len += sizeof (dccpha_t);
831 dccpha_ext = (dccpha_ext_t *)&mp->b_rptr[len];
832 dccpha_ext->dha_ext_seq = htonl(dccp->dccp_gss & 0xffffffff);

834 /* Set ack */
835 len += sizeof (dccpha_ext_t);
836 dccpha_ack = (dccpha_ack_t *)&mp->b_rptr[len];
837 dccpha_ack->dha_ack_high = htons(dccp->dccp_gsr >> 32);
838 dccpha_ack->dha_ack_low = htonl(dccp->dccp_gsr & 0xffffffff);
839 dccpha_ack->dha_ack_reserved = 0;

841 len += sizeof (dccpha_ack_t);
842 dccpha_reset = (dccpha_reset_t *)&mp->b_rptr[len];
843 dccpha_reset->dha_reset_code = dccp->dccp_reset_code;
844 dccpha_reset->dha_reset_data[0] = dccp->dccp_reset_data[0];
845 dccpha_reset->dha_reset_data[1] = dccp->dccp_reset_data[1];
846 dccpha_reset->dha_reset_data[2] = dccp->dccp_reset_data[2];

848 ixa->ixa_pktlen = total_hdr_len;

850 if (ixa->ixa_flags & IXAF_IS_IPV4) {
851 cmn_err(CE_NOTE, "setting ip len for ipv4: %d", total_hdr_len);
852 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
853 } else {

new/usr/src/uts/common/inet/dccp/dccp_output.c 14

854 ip6_t *ip6 = (ip6_t *)rptr;

856 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
857 }

859 return (mp);
860 }

862 /*
863 * Acknowledgement packet.
864 */
865 mblk_t *
866 dccp_generate_ack(conn_t *connp)
867 {
868 dccp_t *dccp = connp->conn_dccp;
869 dccpha_t *dccpha;
870 dccpha_ext_t *dccpha_ext;
871 dccpha_ack_t *dccpha_ack;
872 ip_xmit_attr_t *ixa = connp->conn_ixa;
873 mblk_t *mp;
874 uint64_t gss;
875 uchar_t *rptr;
876 uint_t total_hdr_len;
877 uint_t len = ixa->ixa_ip_hdr_length;

879 cmn_err(CE_NOTE, "dccp_output.c: dccp_generate_ack");

881 /* XXX */
882 dccp->dccp_gss++;

884 /*
885 * Allocate a new DCCP reset message
886 */
887 total_hdr_len = connp->conn_ht_iphc_len + sizeof (dccpha_ext_t) +
888 sizeof (dccpha_ack_t);
889 mp = allocb(total_hdr_len, BPRI_MED);
890 if (mp == NULL) {
891 cmn_err(CE_NOTE, "allocb failed");
892 return(NULL);
893 }

895 rptr = mp->b_rptr;
896 mp->b_wptr = &mp->b_rptr[total_hdr_len];

898 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);

900 len = ixa->ixa_ip_hdr_length;
901 dccpha = (dccpha_t *)&mp->b_rptr[len];
902 dccpha->dha_type = DCCP_PKT_ACK;
903 dccpha->dha_offset = 6;
904 dccpha->dha_x = 1;
905 dccpha->dha_ccval = 0;
906 dccpha->dha_cscov = 0;
907 dccpha->dha_sum = htons(sizeof (dccpha_t) + sizeof (dccpha_ext_t) +
908 sizeof (dccpha_ack_t));
909 dccpha->dha_seq = htons(dccp->dccp_gss >> 32);
910 dccpha->dha_res_seq = 0;

912 len += sizeof (dccpha_t);
913 dccpha_ext = (dccpha_ext_t *)&mp->b_rptr[len];
914 dccpha_ext->dha_ext_seq = htonl(dccp->dccp_gss & 0xffffffff);

916 len += sizeof (dccpha_ext_t);
917 dccpha_ack = (dccpha_ack_t *)&mp->b_rptr[len];
918 dccpha_ack->dha_ack_high = htons(dccp->dccp_gsr >> 32);
919 dccpha_ack->dha_ack_low = htonl(dccp->dccp_gsr & 0xffffffff);

new/usr/src/uts/common/inet/dccp/dccp_output.c 15

920 dccpha_ack->dha_ack_reserved = 0;

922 ixa->ixa_pktlen = total_hdr_len;

924 if (ixa->ixa_flags & IXAF_IS_IPV4) {
925 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
926 } else {
927 ip6_t *ip6 = (ip6_t *)rptr;

929 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
930 }

932 return (mp);
933 }

935 /*
936 * Common to all packet generating functions.
937 */
938 static mblk_t *
939 dccp_generate_common(conn_t *connp, uint8_t packet_type,
940 uint_t total_hdr_len)
941 {
942 dccp_t *dccp = connp->conn_dccp;
943 dccpha_t *dccpha;
944 dccpha_ext_t *dccpha_ext;
945 dccpha_ack_t *dccpha_ack;
946 ip_xmit_attr_t *ixa = connp->conn_ixa;
947 mblk_t *mp;
948 uchar_t *rptr;
949 uint_t len;
950 boolean_t extended;

952 /*
953 * Allocate a new DCCP reset message
954 */
955 mp = allocb(total_hdr_len, BPRI_MED);
956 if (mp == NULL) {
957 return(NULL);
958 }

960 dccp->dccp_gss++;

962 rptr = mp->b_rptr;
963 mp->b_wptr = &mp->b_rptr[total_hdr_len];

965 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);

967 /* Basic header */
968 len = ixa->ixa_ip_hdr_length;
969 dccpha = (dccpha_t *)&mp->b_rptr[len];
970 dccpha->dha_type = packet_type;
971 dccpha->dha_offset = 6;
972 dccpha->dha_x = 1;
973 dccpha->dha_ccval = 0;
974 dccpha->dha_cscov = 0;
975 dccpha->dha_sum = htons(total_hdr_len - len);
976 dccpha->dha_seq = htons(dccp->dccp_gss >> 32);
977 dccpha->dha_res_seq = 0;

979 /* Extended sequence number */
980 len += sizeof (dccpha_t);
981 dccpha_ext = (dccpha_ext_t *)&mp->b_rptr[len];
982 dccpha_ext->dha_ext_seq = htonl(dccp->dccp_gss & 0xffffffff);

984 /* Acknowledgement number */
985 len += sizeof (dccpha_ext_t);

new/usr/src/uts/common/inet/dccp/dccp_output.c 16

986 dccpha_ack = (dccpha_ack_t *)&mp->b_rptr[len];
987 dccpha_ack->dha_ack_high = htons(dccp->dccp_gsr >> 32);
988 dccpha_ack->dha_ack_low = htonl(dccp->dccp_gsr & 0xffffffff);
989 dccpha_ack->dha_ack_reserved = 0;

991 ixa->ixa_pktlen = total_hdr_len;

993 if (ixa->ixa_flags & IXAF_IS_IPV4) {
994 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
995 } else {
996 ip6_t *ip6 = (ip6_t *)rptr;

998 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
999 }

1001 return (mp);
1002 }

1004 /*
1005 * Acknowledgement packet.
1006 */
1007 mblk_t *
1008 dccp_generate_sync(conn_t *connp)
1009 {
1010 dccp_t *dccp = connp->conn_dccp;
1011 dccpha_t *dccpha;
1012 dccpha_ext_t *dccpha_ext;
1013 dccpha_ack_t *dccpha_ack;
1014 ip_xmit_attr_t *ixa = connp->conn_ixa;
1015 mblk_t *mp;
1016 uchar_t *rptr;
1017 uint_t total_hdr_len;
1018 uint_t len = ixa->ixa_ip_hdr_length;

1020 cmn_err(CE_NOTE, "dccp_output.c: dccp_generate_ack");

1022 total_hdr_len = connp->conn_ht_iphc_len + sizeof (dccpha_ext_t) +
1023 sizeof (dccpha_ack_t);
1024 mp = dccp_generate_common(connp, DCCP_PACKET_SYNC, total_hdr_len);
1025 if (mp == NULL) {
1026 cmn_err(CE_NOTE, "allocb failed");
1027 return(NULL);
1028 }

1030 rptr = mp->b_rptr;
1031 mp->b_wptr = &mp->b_rptr[total_hdr_len];

1033 return (mp);
1034 }
1035 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_socket.c 1

**
 20359 Sat Aug 18 10:37:10 2012
new/usr/src/uts/common/inet/dccp/dccp_socket.c
dccp: starting module template
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * This file contains all DCCP kernel socket related functions.
33 */

35 #include <sys/types.h>
36 #include <sys/strlog.h>
37 #include <sys/policy.h>
38 #include <sys/sockio.h>
39 #include <sys/strsubr.h>
40 #include <sys/strsun.h>
41 #define _SUN_TPI_VERSION 2
42 #include <sys/tihdr.h>
43 #include <sys/timod.h>
44 #include <sys/squeue_impl.h>
45 #include <sys/squeue.h>
46 #include <sys/socketvar.h>

48 #include <inet/common.h>
49 #include <inet/dccp_impl.h>
50 #include <inet/dccp_stack.h>
51 #include <inet/proto_set.h>
52 #include <inet/ip.h>

54 #include <sys/cmn_err.h>

56 static void dccp_activate(sock_lower_handle_t, sock_upper_handle_t,
57 sock_upcalls_t *, int, cred_t *);
58 static int dccp_accept(sock_lower_handle_t, sock_lower_handle_t,
59 sock_upper_handle_t, cred_t *);
60 static int dccp_bind(sock_lower_handle_t, struct sockaddr *,
61 socklen_t, cred_t *);

new/usr/src/uts/common/inet/dccp/dccp_socket.c 2

62 static int dccp_listen(sock_lower_handle_t, int, cred_t *);
63 static int dccp_connect(sock_lower_handle_t, const struct sockaddr *,
64 socklen_t, sock_connid_t *, cred_t *);
65 static int dccp_getpeername(sock_lower_handle_t, struct sockaddr *,
66 socklen_t *, cred_t *);
67 static int dccp_getsockname(sock_lower_handle_t, struct sockaddr *,
68 socklen_t *, cred_t *);
69 static int dccp_getsockopt(sock_lower_handle_t, int, int, void *,
70 socklen_t *, cred_t *);
71 static int dccp_setsockopt(sock_lower_handle_t, int, int, const void *,
72 socklen_t, cred_t *);
73 static int dccp_send(sock_lower_handle_t, mblk_t *, struct nmsghdr *,
74 cred_t *);
75 static int dccp_shutdown(sock_lower_handle_t, int, cred_t *);
76 static void dccp_clr_flowctrl(sock_lower_handle_t);
77 static int dccp_ioctl(sock_lower_handle_t, int, intptr_t, int, int32_t *,
78 cred_t *);
79 static int dccp_close(sock_lower_handle_t, int, cred_t *);

81 sock_downcalls_t sock_dccp_downcalls = {
82 dccp_activate, /* sd_activate */
83 dccp_accept, /* sd_accept */
84 dccp_bind, /* sd_bind */
85 dccp_listen, /* sd_listen */
86 dccp_connect, /* sd_connect */
87 dccp_getpeername, /* sd_getpeername */
88 dccp_getsockname, /* sd_getsockname */
89 dccp_getsockopt, /* sd_getsockopt */
90 dccp_setsockopt, /* sd_setsockopt */
91 dccp_send, /* sd_send */
92 NULL, /* sd_send_uio */
93 NULL, /* sd_recv_uio */
94 NULL, /* sd_poll */
95 dccp_shutdown, /* sd_shutdown */
96 dccp_clr_flowctrl, /* sd_setflowctrl */
97 dccp_ioctl, /* sd_ioctl */
98 dccp_close, /* sd_close */
99 };

101 /* ARGSUSED */
102 static void
103 dccp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
104 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
105 {
106 conn_t *connp = (conn_t *)proto_handle;
107 struct sock_proto_props sopp;
108 extern struct module_info dccp_rinfo;

110 cmn_err(CE_NOTE, "dccp_socket.c: dccp_activate");

112 ASSERT(connp->conn_upper_handle == NULL);

114 /* All Solaris components should pass a cred for this operation */
115 ASSERT(cr != NULL);

117 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
118 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
119 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;

121 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
122 sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
123 sopp.sopp_maxpsz = INFPSZ;
124 sopp.sopp_maxblk = INFPSZ;
125 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
126 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
127 sopp.sopp_maxaddrlen = sizeof (sin6_t);

new/usr/src/uts/common/inet/dccp/dccp_socket.c 3

128 sopp.sopp_minpsz = (dccp_rinfo.mi_minpsz == 1) ? 0 :
129 dccp_rinfo.mi_minpsz;

131 connp->conn_upcalls = sock_upcalls;
132 connp->conn_upper_handle = sock_handle;

134 /* XXX conn_rcvbuf */
135 (*connp->conn_upcalls->su_set_proto_props)(connp->conn_upper_handle,
136 &sopp);
137 }

139 /*ARGSUSED*/
140 static int
141 dccp_accept(sock_lower_handle_t lproto_handle,
142 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
143 cred_t *cr)
144 {
145 conn_t *lconnp, *econnp;
146 dccp_t *listener, *eager;

148 cmn_err(CE_NOTE, "dccp_socket.c: dccp_accept");

150 econnp = (conn_t *)eproto_handle;
151 eager = econnp->conn_dccp;
152 ASSERT(IPCL_IS_NONSTR(econnp));
153 ASSERT(eager->dccp_listener != NULL);
154 listener = eager->dccp_listener;
155 lconnp = (conn_t *)listener->dccp_connp;
156 ASSERT(listener->dccp_state == DCCPS_LISTEN);
157 ASSERT(lconnp->conn_upper_handle != NULL);

159 ASSERT(econnp->conn_upper_handle == NULL ||
160 econnp->conn_upper_handle == sock_handle);
161 ASSERT(econnp->conn_upcalls == NULL ||
162 econnp->conn_upcalls == lconnp->conn_upcalls);
163 econnp->conn_upper_handle = sock_handle;
164 econnp->conn_upcalls = lconnp->conn_upcalls;

166 ASSERT(econnp->conn_netstack ==
167 listener->dccp_connp->conn_netstack);
168 ASSERT(eager->dccp_dccps == listener->dccp_dccps);

170 ASSERT(econnp->conn_ref >= 2);
171 eager->dccp_listener = NULL; /* XXX */
172 CONN_DEC_REF(listener->dccp_connp);

174 return ((eager->dccp_state < DCCPS_OPEN) ? ECONNABORTED : 0);
175 }

177 static int
178 dccp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
179 socklen_t len, cred_t *cr)
180 {
181 conn_t *connp = (conn_t *)proto_handle;
182 int error;

184 cmn_err(CE_NOTE, "dccp_socket.c: dccp_bind");

186 ASSERT(connp->conn_upper_handle != NULL);

188 /* All Solaris components should pass a cred for this operation */
189 ASSERT(cr != NULL);

191 error = squeue_synch_enter(connp, NULL);
192 if (error != 0) {
193 /* Failed to enter */

new/usr/src/uts/common/inet/dccp/dccp_socket.c 4

194 return (ENOSR);
195 }

197 /* Binding to NULL address means unbind */
198 if (sa == NULL) {
199 if (connp->conn_dccp->dccp_state < DCCPS_LISTEN) {
200 error = dccp_do_unbind(connp);
201 } else {
202 error = EINVAL;
203 }
204 } else {
205 error = dccp_do_bind(connp, sa, len, cr, B_TRUE);
206 }

208 squeue_synch_exit(connp);

210 if (error < 0) {
211 if (error == -TOUTSTATE) {
212 error = EINVAL;
213 } else {
214 error = proto_tlitosyserr(-error);
215 }
216 }

218 return (error);
219 }

221 /* ARGSUSED */
222 static int
223 dccp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
224 {
225 conn_t *connp = (conn_t *)proto_handle;
226 dccp_t *dccp = connp->conn_dccp;
227 int error;

229 cmn_err(CE_NOTE, "dccp_socket.c: dccp_listen");

231 ASSERT(connp->conn_upper_handle != NULL);

233 /* All Solaris components should pass a cred for this operation */
234 ASSERT(cr != NULL);

236 error = squeue_synch_enter(connp, NULL);
237 if (error != 0) {
238 /* Failed to enter */
239 return (ENOBUFS);
240 }

242 error = dccp_do_listen(connp, NULL, 0, backlog, cr, B_FALSE);
243 if (error == 0) {
244 /* XXX dccps->dccps_conn_req_max_q0 */
245 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
246 SOCK_OPCTL_ENAB_ACCEPT,
247 (uintptr_t)(dccp->dccp_conn_req_max));
248 } else if (error < 0) {
249 if (error == -TOUTSTATE) {
250 error = EINVAL;
251 } else {
252 error = proto_tlitosyserr(-error);
253 }
254 }

256 squeue_synch_exit(connp);

258 return (error);
259 }

new/usr/src/uts/common/inet/dccp/dccp_socket.c 5

261 /*
262 * Socket connect.
263 */
264 static int
265 dccp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
266 socklen_t len, sock_connid_t *id, cred_t *cr)
267 {
268 conn_t *connp = (conn_t *)proto_handle;
269 int error;

271 cmn_err(CE_NOTE, "dccp_socket.c: dccp_connect");

273 ASSERT(connp->conn_upper_handle != NULL);

275 /* All Solaris components should pass a cred for this operation */
276 ASSERT(cr != NULL);

278 error = proto_verify_ip_addr(connp->conn_family, sa, len);
279 if (error != 0) {
280 return (error);
281 }

283 error = squeue_synch_enter(connp, NULL);
284 if (error != 0) {
285 /* Failed to enter */
286 return (ENOSR);
287 }

289 /*
290 * DCCP supports quick connect, so no need to do an implicit bind.
291 */
292 error = dccp_do_connect(connp, sa, len, cr, curproc->p_pid);
293 if (error == 0) {
294 *id = connp->conn_dccp->dccp_connid;
295 } else if (error < 0) {
296 if (error == -TOUTSTATE) {
297 switch (connp->conn_dccp->dccp_state) {
298 case DCCPS_REQUEST:
299 error = EALREADY;
300 break;
301 case DCCPS_PARTOPEN:
302 error = EISCONN;
303 break;
304 case DCCPS_LISTEN:
305 error = EOPNOTSUPP;
306 break;
307 default:
308 error = EINVAL;
309 break;
310 }
311 } else {
312 error = proto_tlitosyserr(-error);
313 }
314 }

316 /* XXX loopback */

318 squeue_synch_exit(connp);

320 return ((error == 0) ? EINPROGRESS : error);
321 }

323 /* ARGSUSED3 */
324 static int
325 dccp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,

new/usr/src/uts/common/inet/dccp/dccp_socket.c 6

326 socklen_t *addrlenp, cred_t *cr)
327 {
328 conn_t *connp = (conn_t *)proto_handle;
329 dccp_t *dccp = connp->conn_dccp;

331 cmn_err(CE_NOTE, "dccp_socket.c: dccp_getpeername");

333 /* All Solaris components should pass a cred for this operation */
334 ASSERT(cr != NULL);

336 ASSERT(dccp != NULL);
337 if (dccp->dccp_state < DCCPS_OPEN) {
338 return (ENOTCONN);
339 }

341 return (conn_getpeername(connp, addr, addrlenp));
342 }

344 /* ARGSUSED3 */
345 static int
346 dccp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
347 socklen_t *addrlenp, cred_t *cr)
348 {
349 conn_t *connp = (conn_t *)proto_handle;
350 int error;

352 cmn_err(CE_NOTE, "dccp_socket.c: dccp_getsockname");

354 /* All Solaris components should pass a cred for this operation */
355 ASSERT(cr != NULL);

357 /* XXX UDP has locks here, TCP not */
358 mutex_enter(&connp->conn_lock);
359 error = conn_getsockname(connp, addr, addrlenp);
360 mutex_exit(&connp->conn_lock);

362 return (error);
363 }

365 static int
366 dccp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
367 void *optvalp, socklen_t *optlen, cred_t *cr)
368 {
369 conn_t *connp = (conn_t *)proto_handle;
370 void *optvalp_buf;
371 t_uscalar_t max_optbuf_len;
372 int len;
373 int error;

375 cmn_err(CE_NOTE, "dccp_socket.c: dccp_getsockopt");

377 ASSERT(connp->conn_upper_handle != NULL);

379 /* All Solaris components should pass a cred for this operation */
380 ASSERT(cr != NULL);

382 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
383 dccp_opt_obj.odb_opt_des_arr,
384 dccp_opt_obj.odb_opt_arr_cnt,
385 B_FALSE, B_TRUE, cr);
386 if (error != 0) {
387 if (error < 0) {
388 error = proto_tlitosyserr(-error);
389 }
390 return (error);
391 }

new/usr/src/uts/common/inet/dccp/dccp_socket.c 7

393 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
394 if (optvalp_buf == NULL) {
395 return (ENOMEM);
396 }

398 error = squeue_synch_enter(connp, NULL);
399 if (error == ENOMEM) {
400 kmem_free(optvalp_buf, max_optbuf_len);
401 return (ENOMEM);
402 }

404 len = dccp_opt_get(connp, level, option_name, optvalp_buf);
405 squeue_synch_exit(connp);

407 if (len == -1) {
408 kmem_free(optvalp_buf, max_optbuf_len);
409 return (EINVAL);
410 }

412 /*
413 * Update optlen and copy option value.
414 */
415 t_uscalar_t size = MIN(len, *optlen);

417 bcopy(optvalp_buf, optvalp, size);
418 bcopy(&size, optlen, sizeof (size));

420 kmem_free(optvalp_buf, max_optbuf_len);

422 return (0);
423 }

425 static int
426 dccp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
427 const void *optvalp, socklen_t optlen, cred_t *cr)
428 {
429 conn_t *connp = (conn_t *)proto_handle;
430 int error;

432 cmn_err(CE_NOTE, "dccp_socket.c: dccp_setsockopt");

434 ASSERT(connp->conn_upper_handle != NULL);

436 /* All Solaris components should pass a cred for this operation */
437 ASSERT(cr != NULL);

439 error = squeue_synch_enter(connp, NULL);
440 if (error == ENOMEM) {
441 return (ENOMEM);
442 }

444 error = proto_opt_check(level, option_name, optlen, NULL,
445 dccp_opt_obj.odb_opt_des_arr,
446 dccp_opt_obj.odb_opt_arr_cnt,
447 B_TRUE, B_FALSE, cr);

449 if (error != 0) {
450 if (error < 0) {
451 error = proto_tlitosyserr(-error);
452 }
453 squeue_synch_exit(connp);
454 return (error);
455 }

457 error = dccp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,

new/usr/src/uts/common/inet/dccp/dccp_socket.c 8

458 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
459 NULL, cr);
460 squeue_synch_exit(connp);

462 ASSERT(error >= 0);

464 return (error);
465 }

467 /* ARGSUSED */
468 static int
469 dccp_send(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
470 cred_t *cr)
471 {
472 conn_t *connp = (conn_t *)proto_handle;
473 dccp_t *dccp;
474 uint32_t msize;
475 int32_t dccpstate;

477 cmn_err(CE_NOTE, "dccp_socket.c: dccp_send");

479 /* All Solaris components should pass a cred for this operation */
480 ASSERT(cr != NULL);

482 ASSERT(connp->conn_ref >= 2);
483 ASSERT(connp->conn_upper_handle != NULL);

485 if (msg->msg_controllen != 0) {
486 freemsg(mp);
487 return (EOPNOTSUPP);
488 }

490 switch (DB_TYPE(mp)) {
491 case M_DATA:
492 dccp = connp->conn_dccp;
493 ASSERT(dccp != NULL);

495 dccpstate = dccp->dccp_state;
496 if (dccpstate < DCCPS_OPEN) {
497 freemsg(mp);

499 /*
500 * We return ENOTCONN if the endpoint is trying to
501 * connect or has never been connected, and EPIPE if it
502 * has been disconnected. The connection id helps us
503 * distinguish between the last two cases.
504 */
505 return ((dccpstate == DCCPS_REQUEST) ? ENOTCONN :
506 ((dccp->dccp_connid > 0) ? EPIPE : ENOTCONN));
507 } else if (dccpstate > DCCPS_CLOSING) {
508 freemsg(mp);
509 return (EPIPE);
510 }

512 /* XXX */

514 msize = msgdsize(mp);

516 CONN_INC_REF(connp);

518 if (msg->msg_flags & MSG_OOB) {
519 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, dccp_output_urgent
520 connp, NULL, dccp_squeue_flag, SQTAG_DCCP_OUTPUT);
521 } else {
522 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, dccp_output,
523 connp, NULL, dccp_squeue_flag, SQTAG_DCCP_OUTPUT);

new/usr/src/uts/common/inet/dccp/dccp_socket.c 9

524 }

526 return (0);

528 default:
529 ASSERT(0);
530 }

532 freemsg(mp);

534 return (0);
535 }

537 /* ARGSUSED */
538 static int
539 dccp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
540 {
541 conn_t *connp = (conn_t *)proto_handle;
542 dccp_t *dccp = connp->conn_dccp;

544 cmn_err(CE_NOTE, "dccp_socket.c: dccp_shutdown");

546 /* All Solaris components should pass a cred for this operation. */
547 ASSERT(cr != NULL);

549 ASSERT(connp->conn_upper_handle != NULL);

551 /*
552 * X/Open requires that we check the connected state.
553 */
554 if (dccp->dccp_state < DCCPS_REQUEST)
555 return (ENOTCONN);

557 /* Shutdown the send side */
558 if (how != SHUT_RD) {
559 mblk_t *bp;

561 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
562 CONN_INC_REF(connp);
563 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, dccp_shutdown_output,
564 connp, NULL, SQ_NODRAIN, SQTAG_DCCP_SHUTDOWN_OUTPUT);

566 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
567 SOCK_OPCTL_SHUT_SEND, 0);
568 }

570 /* Shutdown the recv side */
571 if (how != SHUT_WR) {
572 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
573 SOCK_OPCTL_SHUT_RECV, 0);
574 }

576 return (0);
577 }

579 static void
580 dccp_clr_flowctrl(sock_lower_handle_t proto_handle)
581 {
582 conn_t *connp = (conn_t *)proto_handle;
583 dccp_t *dccp = connp->conn_dccp;
584 mblk_t *mp;
585 int error;

587 ASSERT(connp->conn_upper_handle != NULL);

589 cmn_err(CE_NOTE, "dccp_socket.c: dccp_clr_flowctrl");

new/usr/src/uts/common/inet/dccp/dccp_socket.c 10

591 error = squeue_synch_enter(connp, mp);
592 ASSERT(error == 0);

594 squeue_synch_exit(connp);
595 }

597 /* ARGSUSED */
598 static int
599 dccp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
600 int mode, int32_t *rvalp, cred_t *cr)
601 {
602 conn_t *connp = (conn_t *)proto_handle;
603 int error;

605 cmn_err(CE_NOTE, "dccp_socket.c: dccp_ioctl");

607 ASSERT(connp->conn_upper_handle != NULL);

609 /* All Solaris components should pass a cred for this operation. */
610 ASSERT(cr != NULL);

612 /*
613 * If we don’t have a helper stream then create one.
614 * ip_create_helper_stream takes care of locking the conn_t,
615 * so this check for NULL is just a performance optimization.
616 */
617 if (connp->conn_helper_info == NULL) {
618 dccp_stack_t *dccps = connp->conn_dccp->dccp_dccps;

620 /*
621 * Create a helper stream for non-STREAMS socket.
622 */
623 error = ip_create_helper_stream(connp, dccps->dccps_ldi_ident);
624 if (error != 0) {
625 ip0dbg(("dccp_ioctl: create of IP helper stream "
626 "failed %d\n", error));
627 return (error);
628 }
629 }

631 switch (cmd) {
632 case ND_SET:
633 case ND_GET:
634 case _SIOCSOCKFALLBACK:
635 /* XXX case DCCP_IOC_ABORT_CONN: */
636 case TI_GETPEERNAME:
637 case TI_GETMYNAME:
638 ip1dbg(("dccp_ioctl: cmd 0x%x on non streams socket", cmd));
639 error = EINVAL;
640 break;
641 default:
642 /*
643 * If the conn is not closing, pass on to IP using
644 * helper stream. Bump the ioctlref to prevent dccp_close
645 * from closing the rq/wq out from underneath the ioctl
646 * if it ends up queued or aborted/interrupted.
647 */
648 mutex_enter(&connp->conn_lock);
649 if (connp->conn_state_flags & (CONN_CLOSING)) {
650 mutex_exit(&connp->conn_lock);
651 error = EINVAL;
652 break;
653 }
654 CONN_INC_IOCTLREF_LOCKED(connp);
655 error = ldi_ioctl(connp->conn_helper_info->iphs_handle,

new/usr/src/uts/common/inet/dccp/dccp_socket.c 11

656 cmd, arg, mode, cr, rvalp);
657 CONN_DEC_IOCTLREF(connp);
658 break;
659 }

661 return (error);
662 }

664 /* ARGSUSED */
665 static int
666 dccp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
667 {
668 conn_t *connp = (conn_t *)proto_handle;

670 cmn_err(CE_NOTE, "dccp_socket.c: dccp_close\n");

672 ASSERT(connp->conn_upper_handle != NULL);

674 /* All Solaris components should pass a cred for this operation */
675 ASSERT(cr != NULL);

677 dccp_close_common(connp, flags);

679 ip_free_helper_stream(connp);

681 CONN_DEC_REF(connp);

683 /*
684 * EINPROGRESS tells sockfs to wait for a ’closed’ upcall before
685 * freeing the socket.
686 */
687 return (EINPROGRESS);
688 }

691 /*
692 * Socket create function.
693 */
694 sock_lower_handle_t
695 dccp_create(int family, int type, int proto, sock_downcalls_t **sockdowncalls,
696 uint_t *smodep, int *errorp, int flags, cred_t *credp)
697 {
698 conn_t *connp;
699 boolean_t isv6;

701 /* XXX (type != SOCK_STREAM */
702 if ((family != AF_INET && family != AF_INET6) ||
703 (proto != 0 && proto != IPPROTO_DCCP)) {
704 *errorp = EPROTONOSUPPORT;
705 return (NULL);
706 }

708 cmn_err(CE_NOTE, "dccp_socket: dccp_create\n");

710 isv6 = family == AF_INET6 ? B_TRUE: B_FALSE;
711 connp = dccp_create_common(credp, isv6, B_TRUE, errorp);
712 if (connp == NULL) {
713 return (NULL);
714 }

716 /*
717 * Increment ref for DCCP connection.
718 */
719 mutex_enter(&connp->conn_lock);
720 CONN_INC_REF_LOCKED(connp);
721 ASSERT(connp->conn_ref == 2);

new/usr/src/uts/common/inet/dccp/dccp_socket.c 12

722 connp->conn_state_flags &= ~CONN_INCIPIENT;
723 connp->conn_flags |= IPCL_NONSTR;
724 mutex_exit(&connp->conn_lock);

726 ASSERT(errorp != NULL);
727 *errorp = 0;
728 *sockdowncalls = &sock_dccp_downcalls;
729 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
730 SM_SENDFILESUPP;

732 return ((sock_lower_handle_t)connp);
733 }

735 int
736 dccp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
737 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb,
738 sock_quiesce_arg_t *arg)
739 {
740 cmn_err(CE_NOTE, "dccp_socket: dccp_fallback\n");

742 return (0);
743 }

745 /*
746 * Notifies a non-STREAMS based listener about a new connection. This
747 * function is executed on the *eager*’s squeue once the 3 way handshake
748 * has completed. Note that the behavior differs from STREAMS, where the
749 * T_CONN_IND is sent up by tcp_send_conn_ind() while on the *listener*’s
750 * squeue.
751 *
752 * Returns B_TRUE if the notification succeeded and an upper handle was
753 * obtained. ‘tcp’ should be closed on failure.
754 */
755 boolean_t
756 dccp_newconn_notify(dccp_t *dccp, ip_recv_attr_t *ira)
757 {
758 dccp_t *listener = dccp->dccp_listener;
759 dccp_t *tail;
760 conn_t *lconnp = listener->dccp_connp;
761 conn_t *econnp = dccp->dccp_connp;
762 ipaddr_t *addr_cache;
763 sock_upper_handle_t upper;
764 struct sock_proto_props sopp;

766 cmn_err(CE_NOTE, "dccp_socket.c: dccp_newconn_notify");

768 /*
769 mutex_enter(&listener->dccp_eager_lock);
770 addr_cache = (ipaddr_t *)(listener->dccp_ip_addr_cache);
771 if (addr_cache != NULL) {
772 addr_cache[IP_ADDR_CACHE_HASH(dccp->dccp_connp->conn_faddr_v4)]
773 dccp->dccp_connp->conn_faddr_v4;
774 }
775 mutex_exit(&listener->dccp_eager_lock);
776 */

778 /*
779 * Notify the ULP about the new connection.
780 */
781 if ((upper = (*lconnp->conn_upcalls->su_newconn)
782 (lconnp->conn_upper_handle, (sock_lower_handle_t)econnp,
783 &sock_dccp_downcalls, ira->ira_cred, ira->ira_cpid,
784 &econnp->conn_upcalls)) == NULL) {
785 return (B_FALSE);
786 }
787 econnp->conn_upper_handle = upper;

new/usr/src/uts/common/inet/dccp/dccp_socket.c 13

789 dccp->dccp_detached = B_FALSE;
790 dccp->dccp_hard_binding = B_FALSE;
791 dccp->dccp_tconnind_started = B_TRUE;

793 if (econnp->conn_keepalive) {
794 dccp->dccp_ka_last_intrvl = 0;
795 dccp->dccp_ka_tid = DCCP_TIMER(dccp, dccp_keepalive_timer,
796 dccp->dccp_ka_interval);
797 }

799 /* Update the necessary parameters */
800 dccp_get_proto_props(dccp, &sopp);

802 (*econnp->conn_upcalls->su_set_proto_props)
803 (econnp->conn_upper_handle, &sopp);

805 return (B_TRUE);
806 }
807 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_stats.c 1

**
 13741 Sat Aug 18 10:37:10 2012
new/usr/src/uts/common/inet/dccp/dccp_stats.c
dccp: MIB-II
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * Functions related to MIB-II and kstat.
33 */

35 #include <sys/types.h>
36 #include <sys/tihdr.h>
37 #include <sys/policy.h>
38 #include <sys/tsol/tnet.h>

40 #include <inet/common.h>
41 #include <inet/dccp_impl.h>
42 #include <inet/ip.h>
43 #include <inet/kstatcom.h>
44 #include <inet/snmpcom.h>

46 #include <sys/cmn_err.h>

48 static int dccp_snmp_state(dccp_t *);
49 static int dccp_kstat_update(kstat_t *, int);
50 static int dccp_kstat2_update(kstat_t *, int);
51 static void dccp_add_mib(mib2_dccp_t *, mib2_dccp_t *);
52 static void dccp_sum_mib(dccp_stack_t *, mib2_dccp_t *);
53 static void dccp_clr_stats(dccp_stat_t *);
54 static void dccp_add_stats(dccp_stat_counter_t *, dccp_stat_t *);

56 /*
57 * Translate DCCP state to MIB2 state.
58 */
59 static int
60 dccp_snmp_state(dccp_t *dccp)
61 {

new/usr/src/uts/common/inet/dccp/dccp_stats.c 2

62 if (dccp == NULL) {
63 return (0);
64 }

66 switch(dccp->dccp_state) {
67 case DCCPS_CLOSED:
68 return (MIB2_DCCP_closed);
69 default:
70 return (0);
71 }
72 }

74 /*
75 * Get the MIB-II stats.
76 */
77 mblk_t *
78 dccp_snmp_get(queue_t *q, mblk_t *mpctl, boolean_t legacy_req)
79 {
80 conn_t *connp = Q_TO_CONN(q);
81 connf_t *connfp;
82 ip_stack_t *ipst;
83 dccp_stack_t *dccps;
84 struct opthdr *optp;
85 mblk_t *mp2ctl;
86 mblk_t *mpdata;
87 mblk_t *mp_conn_ctl = NULL;
88 mblk_t *mp_conn_tail;
89 mblk_t *mp_attr_ctl = NULL;
90 mblk_t *mp_attr_tail;
91 mblk_t *mp6_conn_ctl = NULL;
92 mblk_t *mp6_conn_tail;
93 mblk_t *mp6_attr_ctl = NULL;
94 mblk_t *mp6_attr_tail;
95 size_t dccp_mib_size;
96 size_t dce_size;
97 size_t dce6_size;
98 boolean_t ispriv;
99 zoneid_t zoneid;
100 int v4_conn_idx;
101 int v6_conn_idx;
102 int i;
103 mib2_dccp_t dccp_mib;
104 mib2_dccpConnEntry_t dce;
105 mib2_dccp6ConnEntry_t dce6;
106 mib2_transportMLPEntry_t mlp;

108 /*
109 * Make a copy of the original message.
110 */
111 mp2ctl = copymsg(mpctl);

113 cmn_err(CE_NOTE, "dccp_stats.c: dccp_snmp_get");

115 if (mpctl == NULL ||
116 (mpdata = mpctl->b_cont) == NULL ||
117 (mp_conn_ctl = copymsg(mpctl)) == NULL ||
118 (mp_attr_ctl = copymsg(mpctl)) == NULL ||
119 (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
120 (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
121 freemsg(mp_conn_ctl);
122 freemsg(mp_attr_ctl);
123 freemsg(mp6_conn_ctl);
124 freemsg(mp6_attr_ctl);
125 freemsg(mpctl);
126 freemsg(mp2ctl);
127 return (NULL);

new/usr/src/uts/common/inet/dccp/dccp_stats.c 3

128 }

130 ipst = connp->conn_netstack->netstack_ip;
131 dccps = connp->conn_netstack->netstack_dccp;

133 if (legacy_req) {
134 dccp_mib_size = LEGACY_MIB_SIZE(&dccp_mib, mib2_dccp_t);
135 dce_size = LEGACY_MIB_SIZE(&dce, mib2_dccpConnEntry_t);
136 dce6_size = LEGACY_MIB_SIZE(&dce6, mib2_dccp6ConnEntry_t);
137 } else {
138 dccp_mib_size = sizeof (mib2_dccp_t);
139 dce_size = sizeof (mib2_dccpConnEntry_t);
140 dce6_size = sizeof (mib2_dccp6ConnEntry_t);
141 }

143 bzero(&dccp_mib, sizeof (dccp_mib));

145 ispriv = secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
146 zoneid = Q_TO_CONN(q)->conn_zoneid;

148 v4_conn_idx = v6_conn_idx = 0;
149 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;

151 for (i = 0; i < CONN_G_HASH_SIZE; i++) {
152 ipst = dccps->dccps_netstack->netstack_ip;

154 connfp = &ipst->ips_ipcl_globalhash_fanout[i];
155 connp = NULL;

157 while ((connp = ipcl_get_next_conn(connfp, connp,
158 IPCL_DCCPCONN)) != NULL) {
159 dccp_t *dccp;
160 boolean_t needattr;

162 if (connp->conn_zoneid != zoneid) {
163 continue; /* Not in this zone */
164 }

166 dccp = connp->conn_dccp;
167 DCCPS_UPDATE_MIB(dccps, dccpHCInSegs, dccp->dccp_ibsegs)
168 dccp->dccp_ibsegs = 0;
169 DCCPS_UPDATE_MIB(dccps, dccpHCOutSegs, dccp->dccp_obsegs
170 dccp->dccp_obsegs = 0;

172 dce.dccpConnState = dccp_snmp_state(dccp);

174 needattr = B_FALSE;
175 bzero(&mlp, sizeof (mlp));
176 if (connp->conn_mlp_type != mlptSingle) {
177 if (connp->conn_mlp_type == mlptShared ||
178 connp->conn_mlp_type == mlptBoth) {
179 mlp.tme_flags |= MIB2_TMEF_SHARED;
180 }

182 if (connp->conn_mlp_type == mlptPrivate ||
183 connp->conn_mlp_type == mlptBoth) {
184 mlp.tme_flags |= MIB2_TMEF_PRIVATE;
185 }

187 needattr = B_TRUE;
188 }

190 if (connp->conn_anon_mlp) {
191 mlp.tme_flags |= MIB2_TMEF_ANONMLP;
192 needattr = B_TRUE;
193 }

new/usr/src/uts/common/inet/dccp/dccp_stats.c 4

195 switch (connp->conn_mac_mode) {
196 case CONN_MAC_DEFAULT:
197 break;
198 case CONN_MAC_AWARE:
199 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT;
200 needattr = B_TRUE;
201 break;
202 case CONN_MAC_IMPLICIT:
203 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT;
204 needattr = B_TRUE;
205 break;
206 }

208 if (connp->conn_ixa->ixa_tsl != NULL) {
209 ts_label_t *tsl;

211 tsl = connp->conn_ixa->ixa_tsl;
212 mlp.tme_flags |= MIB2_TMEF_IS_LABELED;
213 mlp.tme_doi = label2doi(tsl);
214 mlp.tme_label = *label2bslabel(tsl);
215 needattr = B_TRUE;
216 }

218 /* Create a message to report on IPv6 entries */
219 if (connp->conn_ipversion == IPV6_VERSION) {
220 dce6.dccp6ConnLocalAddress =
221 connp->conn_laddr_v6;
222 dce6.dccp6ConnRemAddress =
223 connp->conn_faddr_v6;
224 dce6.dccp6ConnLocalPort =
225 ntohs(connp->conn_lport);
226 dce6.dccp6ConnRemPort =
227 ntohs(connp->conn_fport);

229 if (connp->conn_ixa->ixa_flags &
230 IXAF_SCOPEID_SET) {
231 dce6.dccp6ConnIfIndex =
232 connp->conn_ixa->ixa_scopeid;
233 } else {
234 dce6.dccp6ConnIfIndex =
235 connp->conn_bound_if;
236 }

238 /* XXX */

240 dce6.dccp6ConnEntryInfo.ce_state =
241 dccp->dccp_state;

243 dce6.dccp6ConnCreationProcess =
244 (connp->conn_cpid < 0) ?
245 MIB2_UNKNOWN_PROCESS : connp->conn_cpid;
246 dce6.dccp6ConnCreationTime =
247 connp->conn_open_time;

249 (void) snmp_append_data2(mp6_conn_ctl->b_cont,
250 &mp6_conn_tail, (char *)&dce6, dce6_size);

252 mlp.tme_connidx = v6_conn_idx++;
253 if (needattr) {
254 (void) snmp_append_data2(
255 mp6_attr_ctl->b_cont,
256 &mp6_attr_tail, (char *)&mlp,
257 sizeof (mlp));
258 }
259 }

new/usr/src/uts/common/inet/dccp/dccp_stats.c 5

261 if (connp->conn_ipversion == IPV4_VERSION ||
262 (dccp->dccp_state <= DCCPS_LISTEN &&
263 !connp->conn_ipv6_v6only &&
264 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) {

266 if (connp->conn_ipversion == IPV6_VERSION) {
267 dce.dccpConnRemAddress = INADDR_ANY;
268 dce.dccpConnLocalAddress = INADDR_ANY;
269 } else {
270 dce.dccpConnRemAddress =
271 connp->conn_faddr_v4;
272 dce.dccpConnLocalAddress =
273 connp->conn_laddr_v4;
274 }

276 dce.dccpConnLocalPort =
277 ntohs(connp->conn_lport);
278 dce.dccpConnRemPort =
279 ntohs(connp->conn_fport);

281 /* XXX */

283 dce.dccpConnEntryInfo.ce_state =
284 dccp->dccp_state;

286 dce.dccpConnCreationProcess =
287 (connp->conn_cpid < 0) ?
288 MIB2_UNKNOWN_PROCESS : connp->conn_cpid;
289 dce.dccpConnCreationTime =
290 connp->conn_open_time;

292 (void) snmp_append_data2(mp_conn_ctl->b_cont,
293 &mp_conn_tail, (char *)&dce, dce_size);

295 mlp.tme_connidx = v4_conn_idx++;
296 if (needattr) {
297 (void) snmp_append_data2(
298 mp_attr_ctl->b_cont,
299 &mp_attr_tail, (char *)&mlp,
300 sizeof (mlp));
301 }
302 }
303 }
304 }

306 /* Sum up per CPU stats */
307 dccp_sum_mib(dccps, &dccp_mib);

309 /* Fixed length structure for IPv4 and IPv6 counters */
310 SET_MIB(dccp_mib.dccpConnTableSize, dce_size);
311 SET_MIB(dccp_mib.dccp6ConnTableSize, dce6_size);

313 /* Synchronize 32- and 64-bit counters */
314 SYNC32_MIB(&dccp_mib, dccpInSegs, dccpHCInSegs);
315 SYNC32_MIB(&dccp_mib, dccpOutSegs, dccpHCOutSegs);

317 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
318 optp->level = MIB2_DCCP;
319 optp->name = 0;
320 (void) snmp_append_data(mpdata, (char *)&dccp_mib, dccp_mib_size);
321 optp->len = msgdsize(mpdata);
322 qreply(q, mpctl);

324 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
325 sizeof (struct T_optmgmt_ack)];

new/usr/src/uts/common/inet/dccp/dccp_stats.c 6

326 optp->level = MIB2_DCCP;
327 optp->name = MIB2_DCCP_CONN;
328 optp->len = msgdsize(mp_conn_ctl->b_cont);
329 qreply(q, mp_conn_ctl);

331 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
332 sizeof (struct T_optmgmt_ack)];
333 optp->level = MIB2_DCCP;
334 optp->name = EXPER_XPORT_MLP;
335 optp->len = msgdsize(mp_attr_ctl->b_cont);
336 if (optp->len == 0) {
337 freemsg(mp_attr_ctl);
338 } else {
339 qreply(q, mp_attr_ctl);
340 }

342 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
343 sizeof (struct T_optmgmt_ack)];
344 optp->level = MIB2_DCCP6;
345 optp->name = MIB2_DCCP6_CONN;
346 optp->len = msgdsize(mp6_conn_ctl->b_cont);
347 qreply(q, mp6_conn_ctl);

349 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
350 sizeof (struct T_optmgmt_ack)];
351 optp->level = MIB2_DCCP6;
352 optp->name = EXPER_XPORT_MLP;
353 optp->len = msgdsize(mp6_attr_ctl->b_cont);
354 if (optp->len == 0) {
355 freemsg(mp6_attr_ctl);
356 } else {
357 qreply(q, mp6_attr_ctl);
358 }

360 return (mp2ctl);
361 }

363 /*
364 * DCCP kernel statistics.
365 */
366 void *
367 dccp_kstat_init(netstackid_t stackid)
368 {
369 kstat_t *ksp;

371 dccp_named_kstat_t template = {
372 { "activeOpens", KSTAT_DATA_UINT32, 0 },
373 { "passiveOpens", KSTAT_DATA_UINT32, 0 },
374 { "inSegs", KSTAT_DATA_UINT64, 0 },
375 { "outSegs", KSTAT_DATA_UINT64, 0 },
376 };

378 ksp = kstat_create_netstack(DCCP_MOD_NAME, 0, DCCP_MOD_NAME, "mib2",
379 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(dccp_named_kstat_t), 0, stackid);
380 if (ksp == NULL) {
381 return (NULL);
382 }

384 bcopy(&template, ksp->ks_data, sizeof (template));
385 ksp->ks_update = dccp_kstat_update;
386 ksp->ks_private = (void *)(uintptr_t)stackid;

388 kstat_install(ksp);

390 return (ksp);
391 }

new/usr/src/uts/common/inet/dccp/dccp_stats.c 7

393 /*
394 * Destroy DCCP kernel statistics.
395 */
396 void
397 dccp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
398 {

400 if (ksp != NULL) {
401 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
402 kstat_delete_netstack(ksp, stackid);
403 }
404 }

406 /*
407 * Update DCCP kernel statistics.
408 */
409 static int
410 dccp_kstat_update(kstat_t *kp, int rw)
411 {
412 conn_t *connp;
413 connf_t *connfp;
414 dccp_named_kstat_t *dccpkp;
415 dccp_t *dccp;
416 dccp_stack_t *dccps;
417 ip_stack_t *ipst;
418 netstack_t *ns;
419 netstackid_t stackid;
420 mib2_dccp_t dccp_mib;

422 if (rw == KSTAT_WRITE) {
423 return (EACCES);
424 }

426 stackid = (netstackid_t)(uintptr_t)kp->ks_private;
427 ns = netstack_find_by_stackid(stackid);
428 if (ns == NULL) {
429 return (-1);
430 }

432 dccps = ns->netstack_dccp;
433 if (dccps == NULL) {
434 netstack_rele(ns);
435 return (-1);
436 }

438 dccpkp = (dccp_named_kstat_t *)kp->ks_data;
439 ipst = ns->netstack_ip;

441 bzero(&dccp_mib, sizeof (dccp_mib));
442 dccp_sum_mib(dccps, &dccp_mib);

444 /* Fixed length structure for IPv4 and IPv6 counters */
445 SET_MIB(dccp_mib.dccpConnTableSize, sizeof (mib2_dccpConnEntry_t));
446 SET_MIB(dccp_mib.dccp6ConnTableSize, sizeof (mib2_dccp6ConnEntry_t));

448 dccpkp->activeOpens.value.ui32 = dccp_mib.dccpActiveOpens;
449 dccpkp->passiveOpens.value.ui32 = dccp_mib.dccpPassiveOpens;
450 dccpkp->inSegs.value.ui64 = dccp_mib.dccpHCInSegs;
451 dccpkp->outSegs.value.ui64 = dccp_mib.dccpHCOutSegs;

453 return (0);
454 }

456 /*
457 *

new/usr/src/uts/common/inet/dccp/dccp_stats.c 8

458 */
459 void *
460 dccp_kstat2_init(netstackid_t stackid)
461 {
462 kstat_t *ksp;

464 dccp_stat_t template = {
465 { "dccp_sock_fallback", KSTAT_DATA_UINT64, 0 },
466 };

468 ksp = kstat_create_netstack(DCCP_MOD_NAME, 0, "dccpstat", "net",
469 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 0,
470 stackid);
471 if (ksp == NULL) {
472 return (NULL);
473 }

475 bcopy(&template, ksp->ks_data, sizeof (template));
476 ksp->ks_private = (void *)(uintptr_t)stackid;
477 ksp->ks_update = dccp_kstat2_update;

479 kstat_install(ksp);

481 return (ksp);
482 }

484 /*
485 * Destroy DCCP kernel statistics.
486 */
487 void
488 dccp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
489 {
490 if (ksp != NULL) {
491 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
492 kstat_delete_netstack(ksp, stackid);
493 }
494 }

496 /*
497 * Update routine for .
498 */
499 static int
500 dccp_kstat2_update(kstat_t *kp, int rw)
501 {
502 dccp_stack_t *dccps;
503 dccp_stat_t *stats;
504 netstack_t *ns;
505 netstackid_t stackid;
506 int i;
507 int cnt;

509 if (rw == KSTAT_WRITE) {
510 return (EACCES);
511 }

513 stackid = (netstackid_t)(uintptr_t)kp->ks_private;
514 ns = netstack_find_by_stackid(stackid);
515 if (ns == NULL) {
516 return (-1);
517 }

519 dccps = ns->netstack_dccp;
520 if (dccps == NULL) {
521 netstack_rele(ns);
522 return (-1);
523 }

new/usr/src/uts/common/inet/dccp/dccp_stats.c 9

525 stats = (dccp_stat_t *)kp->ks_data;
526 dccp_clr_stats(stats);

528 /* Sum up all stats */
529 cnt = dccps->dccps_sc_cnt;
530 for (i = 0; i < cnt; i++) {
531 dccp_add_stats(&dccps->dccps_sc[i]->dccp_sc_stats, stats);
532 }

534 netstack_rele(ns);

536 return (0);
537 }

539 /*
540 * Add stats from one to another.
541 */
542 static void
543 dccp_add_mib(mib2_dccp_t *from, mib2_dccp_t *to)
544 {
545 to->dccpActiveOpens += from->dccpActiveOpens;
546 to->dccpPassiveOpens += from->dccpPassiveOpens;
547 to->dccpInSegs += from->dccpInSegs;
548 to->dccpOutSegs += from->dccpOutSegs;
549 }

551 /*
552 * Sum up all MIB-II stats for a dccp_stack_t from all per CPU stats.
553 */
554 static void
555 dccp_sum_mib(dccp_stack_t *dccps, mib2_dccp_t *dccp_mib)
556 {
557 int i;
558 int cnt;

560 cnt = dccps->dccps_sc_cnt;
561 for (i = 0; i < cnt; i++) {
562 dccp_add_mib(&dccps->dccps_sc[i]->dccp_sc_mib, dccp_mib);
563 }
564 }

566 /*
567 * Set all dccp_stat_t counters to zero.
568 */
569 static void
570 dccp_clr_stats(dccp_stat_t *stats)
571 {
572 stats->dccp_sock_fallback.value.ui64 = 0;
573 }

575 /*
576 * Add counters from the per CPU stats.
577 */
578 static void
579 dccp_add_stats(dccp_stat_counter_t *from, dccp_stat_t *to)
580 {
581 to->dccp_sock_fallback.value.ui64 +=
582 from->dccp_sock_fallback;
583 }
584 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_timers.c 1

**
 7387 Sat Aug 18 10:37:11 2012
new/usr/src/uts/common/inet/dccp/dccp_timers.c
dccp: bring in timers
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * This file contains function related to setting and deleting timers.
33 */

35 #include <sys/types.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/strsubr.h>
39 #include <sys/squeue_impl.h>
40 #include <sys/squeue.h>
41 #include <sys/callo.h>

43 #include <inet/common.h>
44 #include <inet/ip.h>
45 #include <inet/ip_ire.h>
46 #include <inet/ip_rts.h>
47 #include <inet/dccp_impl.h>

49 #include <sys/cmn_err.h>

51 kmem_cache_t *dccp_timercache;

53 static void dccp_timer_callback(void *);
54 static void dccp_timer_handler(void *, mblk_t *, void *, ip_recv_attr_t *);
55 static void dccp_timer_free(dccp_t *, mblk_t *);

57 /*
58 * Allocate a new timer.
59 */
60 timeout_id_t
61 dccp_timeout(conn_t *connp, void (*f)(void *), hrtime_t tim)

new/usr/src/uts/common/inet/dccp/dccp_timers.c 2

62 {
63 dccp_t *dccp = connp->conn_dccp;
64 dccp_timer_t *dccpt;
65 mblk_t *mp;

67 cmn_err(CE_NOTE, "dccp_timers.c: dccp_timeout");

69 ASSERT(connp->conn_sqp != NULL);

71 if (dccp->dccp_timercache == NULL) {
72 mp = dccp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
73 } else {
74 mp = dccp->dccp_timercache;
75 dccp->dccp_timercache = mp->b_next;
76 mp->b_next = NULL;
77 ASSERT(mp->b_wptr == NULL);
78 }

80 CONN_INC_REF(connp);
81 dccpt = (dccp_timer_t *)mp->b_rptr;
82 dccpt->connp = connp;
83 dccpt->dccpt_proc = f;
84 dccpt->dccpt_tid = timeout_generic(CALLOUT_NORMAL, dccp_timer_callback,
85 mp, tim * MICROSEC, CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
86 /* CALLOUT_DCCP_RESOLUTION */
87 VERIFY(!(dccpt->dccpt_tid & CALLOUT_ID_FREE));

89 return ((timeout_id_t)mp);
90 }

92 /*
93 * Callback function.
94 */
95 static void
96 dccp_timer_callback(void *arg)
97 {
98 conn_t *connp;
99 dccp_timer_t *dccpt;
100 mblk_t *mp = (mblk_t *)arg;

102 dccpt = (dccp_timer_t *)mp->b_rptr;
103 connp = dccpt->connp;
104 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, dccp_timer_handler, connp,
105 NULL, SQ_FILL, SQTAG_DCCP_TIMER);
106 }

108 /*
109 * Fires the timer callback function.
110 */
111 /* ARGSUSED */
112 static void
113 dccp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
114 {
115 conn_t *connp = (conn_t *)arg;
116 dccp_t *dccp = connp->conn_dccp;
117 dccp_timer_t *dccpt;

119 cmn_err(CE_NOTE, "dccp_timers.c: dccp_timer_handler");

121 dccpt = (dccp_timer_t *)mp->b_rptr;

123 ASSERT(connp == dccpt->connp);
124 ASSERT((squeue_t *)arg2 == connp->conn_sqp);

126 if (dccpt->dccpt_tid & CALLOUT_ID_FREE) {
127 dccp_timer_free(connp->conn_dccp, mp);

new/usr/src/uts/common/inet/dccp/dccp_timers.c 3

128 return;
129 }

131 if (dccp->dccp_state != DCCPS_CLOSED) {
132 (*dccpt->dccpt_proc)(connp);
133 } else {
134 dccp->dccp_timer_tid = 0;
135 }

137 dccp_timer_free(connp->conn_dccp, mp);
138 }

140 clock_t
141 dccp_timeout_cancel(conn_t *connp, timeout_id_t id)
142 {
143 dccp_timer_t *dccpt;
144 mblk_t *mp = (mblk_t *)id;
145 clock_t delta;

147 if (mp == NULL) {
148 return (-1);
149 }

151 dccpt = (dccp_timer_t *)mp->b_rptr;
152 ASSERT(dccpt->connp == connp);

154 delta = untimeout_default(dccpt->dccpt_tid, 0);

156 if (delta >= 0) {
157 dccp_timer_free(connp->conn_dccp, mp);
158 CONN_DEC_REF(connp);
159 } else {
160 dccpt->dccpt_tid |= CALLOUT_ID_FREE;
161 delta = 0;
162 }

164 return (TICK_TO_MSEC(delta));
165 }

167 /*
168 * Allocate per-dccp timer cache.
169 */
170 mblk_t *
171 dccp_timermp_alloc(int kmflags)
172 {
173 mblk_t *mp;

175 mp = (mblk_t *)kmem_cache_alloc(dccp_timercache, kmflags & ~KM_PANIC);
176 if (mp != NULL) {
177 mp->b_next = mp->b_prev = NULL;
178 mp->b_rptr = (uchar_t *)(&mp[1]);
179 mp->b_wptr = NULL;
180 mp->b_datap = NULL;
181 mp->b_queue = NULL;
182 mp->b_cont = NULL;
183 } else if (kmflags & KM_PANIC) {
184 /* XXX */
185 }

187 return (mp);
188 }

190 /*
191 * Free per-dccp timer cache.
192 */
193 void

new/usr/src/uts/common/inet/dccp/dccp_timers.c 4

194 dccp_timermp_free(dccp_t *dccp)
195 {
196 mblk_t *mp;

198 while ((mp = dccp->dccp_timercache) != NULL) {
199 ASSERT(mp->b_wptr == NULL);
200 dccp->dccp_timercache = dccp->dccp_timercache->b_next;
201 kmem_cache_free(dccp_timercache, mp);
202 }
203 }

205 /*
206 * Free timer event.
207 */
208 static void
209 dccp_timer_free(dccp_t *dccp, mblk_t *mp)
210 {
211 mblk_t *mp1 = dccp->dccp_timercache;

213 if (mp->b_wptr != NULL) {
214 if (mp->b_wptr != (uchar_t *)-1) {
215 freeb(mp);
216 } else {
217 kmem_free(mp, (size_t)mp->b_datap);
218 }
219 } else if (mp1 == NULL || mp1->b_next == NULL) {
220 mp->b_rptr = (uchar_t *)(&mp[1]);
221 mp->b_next = mp1;
222 dccp->dccp_timercache = mp;
223 } else {
224 kmem_cache_free(dccp_timercache, mp);
225 }
226 }

228 /*
229 * Stop all DCCP timers.
230 */
231 void
232 dccp_timers_stop(dccp_t *dccp)
233 {
234 if (dccp->dccp_timer_tid != 0) {
235 (void) DCCP_TIMER_CANCEL(dccp, dccp->dccp_timer_tid);
236 dccp->dccp_timer_tid = 0;
237 }

239 if (dccp->dccp_ka_tid != 0) {
240 (void) DCCP_TIMER_CANCEL(dccp, dccp->dccp_ka_tid);
241 dccp->dccp_ka_tid = 0;
242 }
243 }

245 /*
246 * Keepalive timer.
247 */
248 void
249 dccp_keepalive_timer(void *arg)
250 {
251 conn_t *connp = (conn_t *)arg;
252 dccp_t *dccp = connp->conn_dccp;
253 dccp_stack_t *dccps = dccp->dccp_dccps;
254 int32_t firetime;
255 int32_t idletime;
256 int32_t ka_intrvl;

258 cmn_err(CE_NOTE, "dccp_timers.c: dccp_keepalive_timer");

new/usr/src/uts/common/inet/dccp/dccp_timers.c 5

260 dccp->dccp_ka_tid = 0;

262 DCCPS_BUMP_MIB(dccps, dccpTimKeepalive);
263 ka_intrvl = dccp->dccp_ka_interval;

265 if (dccp->dccp_state > DCCPS_CLOSING) {
266 return;
267 }

269 if (dccp->dccp_state < DCCPS_OPEN) {
270 dccp->dccp_ka_tid = DCCP_TIMER(dccp, dccp_keepalive_timer,
271 ka_intrvl);
272 return;
273 }

275 idletime = TICK_TO_MSEC(ddi_get_lbolt() - dccp->dccp_last_recv_time);

277 /* XXX */

279 if ((firetime = ka_intrvl - idletime) < 0) {
280 firetime = ka_intrvl;
281 }

283 dccp->dccp_ka_tid = DCCP_TIMER(dccp, dccp_keepalive_timer, firetime);
284 }

286 /*
287 * Timer service routine.
288 */
289 void
290 dccp_timer(void *arg)
291 {
292 conn_t *connp = (conn_t *)arg;
293 dccp_t *dccp = connp->conn_dccp;
294 dccp_stack_t *dccps = dccp->dccp_dccps;
295 mblk_t *mp;
296 clock_t first_threshold;
297 clock_t second_threshold;
298 clock_t ms;
299 uint32_t mss;
300 boolean_t dont_timeout = B_FALSE;

302 cmn_err(CE_NOTE, "dccp_timers.c: dccp_timer");

304 dccp->dccp_timer_tid = 0;

306 first_threshold = dccp->dccp_first_timer_threshold;
307 second_threshold = dccp->dccp_second_timer_threshold;
308 switch (dccp->dccp_state) {
309 case DCCPS_REQUEST:
310 first_threshold = dccp->dccp_first_ctimer_threshold;
311 second_threshold = dccp->dccp_second_ctimer_threshold;

313 if (second_threshold == 0) {
314 second_threshold = dccps->dccps_ip_abort_linterval;
315 if (dccp->dccp_active_open) {
316 dont_timeout = B_TRUE;
317 }
318 }
319 break;
320 case DCCPS_CLOSING:
321 (void) dccp_clean_death(dccp, 0);
322 return;
323 default:
324 if (connp->conn_debug) {
325 (void) strlog(DCCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,

new/usr/src/uts/common/inet/dccp/dccp_timers.c 6

326 "dccp_timer: strange state (%d) %s",
327 dccp->dccp_state, dccp_display(dccp, NULL,
328 DISP_PORT_ONLY));
329 }
330 return;
331 }

333 ASSERT(second_threshold != 0);

335 ms = 900;

337 DCCP_TIMER_RESTART(dccp, ms);

339 DCCPS_BUMP_MIB(dccps, dccpRetransSegs);
340 }
341 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_tpi.c 1

**
 9481 Sat Aug 18 10:37:11 2012
new/usr/src/uts/common/inet/dccp/dccp_tpi.c
dccp: clean up
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Functions related to TPI.
24 */

26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsun.h>
29 #include <sys/strsubr.h>
30 #include <sys/stropts.h>
31 #include <sys/strlog.h>
32 #define _SUN_TPI_VERSION 2
33 #include <sys/tihdr.h>
34 #include <sys/suntpi.h>
35 #include <sys/xti_inet.h>
36 #include <sys/squeue_impl.h>
37 #include <sys/squeue.h>
38 #include <sys/tsol/tnet.h>

40 #include <inet/common.h>
41 #include <inet/dccp_impl.h>
42 #include <inet/ip.h>
43 #include <inet/proto_set.h>

45 #include <sys/cmn_err.h>

48 /*
49 * This file contains functions related to the TPI interface.
50 */

52 /*
53 * XXX
54 */
55 static void
56 dccp_copy_info(struct T_info_ack *tia, dccp_t *dccp)
57 {
58 conn_t *connp = dccp->dccp_connp;
59 dccp_stack_t *dccps = dccp->dccp_dccps;
60 extern struct T_info_ack dccp_g_t_info_ack;
61 extern struct T_info_ack dccp_g_t_info_ack_v6;

new/usr/src/uts/common/inet/dccp/dccp_tpi.c 2

63 if (connp->conn_family == AF_INET6) {
64 *tia = dccp_g_t_info_ack_v6;
65 } else {
66 *tia = dccp_g_t_info_ack;
67 }

69 /* XXX */
70 }

72 /*
73 * XXX
74 */
75 void
76 dccp_do_capability_ack(dccp_t *dccp, struct T_capability_ack *tcap,
77 t_uscalar_t cap_bits1)
78 {
79 tcap->CAP_bits1 = 0;

81 if (cap_bits1 & TC1_INFO) {
82 dccp_copy_info(&tcap->INFO_ack, dccp);
83 tcap->CAP_bits1 |= TC1_INFO;
84 }

86 if (cap_bits1 & TC1_ACCEPTOR_ID) {
87 tcap->ACCEPTOR_id = dccp->dccp_acceptor_id;
88 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
89 }
90 }

92 /*
93 * This routine responds to T_CAPABILITY_REQ messages.
94 */
95 void
96 dccp_capability_req(dccp_t *dccp, mblk_t *mp)
97 {
98 struct T_capability_ack *tcap;
99 t_uscalar_t cap_bits1;

101 if (MBLKL(mp) < sizeof (struct T_capability_req)) {
102 freemsg(mp);
103 return;
104 }

106 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;

108 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
109 mp->b_datap->db_type, T_CAPABILITY_ACK);
110 if (mp == NULL) {
111 return;
112 }

114 tcap = (struct T_capability_ack *)mp->b_rptr;
115 dccp_do_capability_ack(dccp, tcap, cap_bits1);

117 putnext(dccp->dccp_connp->conn_rq, mp);
118 }

120 /*
121 * This routine responds to T_INFO_REQ messages.
122 */
123 void
124 dccp_info_req(dccp_t *dccp, mblk_t *mp)
125 {
126 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
127 T_INFO_ACK);

new/usr/src/uts/common/inet/dccp/dccp_tpi.c 3

128 if (mp == NULL) {
129 dccp_err_ack(dccp, mp, TSYSERR, ENOMEM);
130 return;
131 }

133 dccp_copy_info((struct T_info_ack *)mp->b_rptr, dccp);
134 putnext(dccp->dccp_connp->conn_rq, mp);
135 }

137 /*
138 * This routine responds to T_ADDR_REQ messages.
139 */
140 void
141 dccp_addr_req(dccp_t *dccp, mblk_t *mp)
142 {
143 conn_t *connp = dccp->dccp_connp;
144 mblk_t *ackmp;
145 uint_t addrlen;
146 struct sockaddr *sa;
147 struct T_addr_ack *taa;

149 /* XXX */
150 }

152 /*
153 * Helper function to generate TPI errors acks.
154 */
155 void
156 dccp_err_ack(dccp_t *dccp, mblk_t *mp, int t_error, int sys_error)
157 {
158 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) {
159 putnext(dccp->dccp_connp->conn_rq, mp);
160 }
161 }

163 void
164 dccp_tpi_connect(dccp_t *dccp, mblk_t *mp)
165 {
166 conn_t *connp = dccp->dccp_connp;
167 queue_t *q = connp->conn_wq;
168 struct sockaddr *sa;
169 struct T_conn_req *tcr;
170 sin_t *sin;
171 sin6_t *sin6;
172 cred_t *cr;
173 pid_t cpid;
174 socklen_t len;
175 int error;

177 cmn_err(CE_NOTE, "dccp_tpi.c: dccp_tpi_connect");

179 cr = msg_getcred(mp, &cpid);
180 ASSERT(cr != NULL);
181 if (cr == NULL) {
182 dccp_err_ack(dccp, mp, TSYSERR, EINVAL);
183 return;
184 }

186 tcr = (struct T_conn_req *)mp->b_rptr;

188 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
189 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
190 dccp_err_ack(dccp, mp, TPROTO, 0);
191 return;
192 }

new/usr/src/uts/common/inet/dccp/dccp_tpi.c 4

194 error = proto_verify_ip_addr(connp->conn_family, sa, len);
195 if (error != 0) {
196 dccp_err_ack(dccp, mp, TSYSERR, 0);
197 return;
198 }

200 error = dccp_do_connect(dccp->dccp_connp, sa, len, cr, cpid);
201 if (error < 0) {
202 mp = mi_tpi_err_ack_alloc(mp, -error, 0);
203 } else if (error > 0) {
204 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
205 } else {
206 mp = mi_tpi_ok_ack_alloc(mp);
207 }
208 }

210 int
211 dccp_tpi_close(queue_t *q, int flags)
212 {
213 conn_t *connp;

215 ASSERT(WR(q)->q_next == NULL);

217 connp = Q_TO_CONN(q);

219 dccp_close_common(connp, flags);

221 qprocsoff(q);
222 inet_minor_free(connp->conn_minor_arena, connp->conn_dev);

224 return (0);
225 }

227 int
228 dccp_tpi_close_accept(queue_t *q)
229 {
230 vmem_t *minor_arena;
231 dev_t conn_dev;

233 cmn_err(CE_NOTE, "dccp_tpi.c: dccp_tpi_close_accept");

235 return (0);
236 }

238 boolean_t
239 dccp_conn_con(dccp_t *dccp, uchar_t *iphdr, mblk_t *idmp,
240 mblk_t **defermp, ip_recv_attr_t *ira)
241 {
242 conn_t *connp = dccp->dccp_connp;
243 sin_t sin;
244 sin6_t sin6;
245 mblk_t *mp;
246 char *optp = NULL;
247 int optlen = 0;

249 cmn_err(CE_NOTE, "dccp_tpi.c: dccp_conn_con");

251 if (defermp != NULL) {
252 *defermp = NULL;
253 }

255 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
256 /* Packet is IPv4 */
257 if (connp->conn_family == AF_INET) {
258 sin = sin_null;
259 sin.sin_addr.s_addr = connp->conn_faddr_v4;

new/usr/src/uts/common/inet/dccp/dccp_tpi.c 5

260 sin.sin_port = connp->conn_fport;
261 sin.sin_family = AF_INET;
262 mp = mi_tpi_conn_con(NULL, (char *)&sin,
263 (int)sizeof (sin_t), optp, optlen);
264 } else {
265 sin6 = sin6_null;
266 sin6.sin6_addr = connp->conn_faddr_v6;
267 sin6.sin6_port = connp->conn_fport;
268 sin6.sin6_family = AF_INET6;
269 mp = mi_tpi_conn_con(NULL, (char *)&sin6,
270 (int)sizeof (sin6_t), optp, optlen);
271 }
272 } else {
273 ip6_t *ip6h = (ip6_t *)iphdr;

275 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
276 ASSERT(connp->conn_family == AF_INET6);

278 sin6 = sin6_null;
279 sin6.sin6_addr = connp->conn_faddr_v6;
280 sin6.sin6_port = connp->conn_fport;
281 sin6.sin6_family = AF_INET6;
282 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
283 mp = mi_tpi_conn_con(NULL, (char *)&sin6,
284 (int)sizeof (sin6_t), optp, optlen);
285 }

287 if (!mp) {
288 return (B_FALSE);
289 }

291 mblk_copycred(mp, idmp);

293 if (defermp == NULL) {
294 if (IPCL_IS_NONSTR(connp)) {
295 cmn_err(CE_NOTE, "calling su_connected");
296 (*connp->conn_upcalls->su_connected)
297 (connp->conn_upper_handle, dccp->dccp_connid,
298 ira->ira_cred, ira->ira_cpid);
299 freemsg(mp);
300 } else {
301 if (ira->ira_cred != NULL) {
302 /* So that getpeerucred works for TPI sockfs */
303 mblk_setcred(mp, ira->ira_cred, ira->ira_cpid);
304 }
305 putnext(connp->conn_rq, mp);
306 }
307 } else {
308 *defermp = mp;
309 }

311 /* XXX */
312 return (B_TRUE);
313 }

315 /*
316 * Routine to get the values of options.
317 */
318 int
319 dccp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
320 {
321 return (dccp_opt_get(Q_TO_CONN(q), level, name, ptr));
322 }

324 /*
325 * Routine to set the values of options.

new/usr/src/uts/common/inet/dccp/dccp_tpi.c 6

326 */
327 /* ARGSUSED */
328 int
329 dccp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
330 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
331 void *thisdg_attrs, cred_t *cr)
332 {
333 conn_t *connp = Q_TO_CONN(q);

335 return (dccp_opt_set(connp, optset_context, level, name, inlen, invalp,
336 outlenp, outvalp, thisdg_attrs, cr));
337 }

339 void
340 dccp_tpi_accept(queue_t *q, mblk_t *mp)
341 {
342 struct T_ok_ack *ok;
343 struct T_conn_res *conn_res;
344 conn_t *econnp;
345 dccp_t *eager;
346 dccp_t *listener;
347 queue_t *rq = RD(q);
348 mblk_t *discon_mp;
349 cred_t *cr;

351 cmn_err(CE_NOTE, "dccp_tpi.c: dccp_tpi_accept");

353 ASSERT(DB_TYPE(mp) == M_PROTO);

355 cr = msg_getcred(mp, NULL);
356 ASSERT(cr != NULL);
357 if (cr == NULL) {
358 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
359 if (mp != NULL) {
360 putnext(rq, mp);
361 }
362 return;
363 }

365 conn_res = (struct T_conn_res *)mp->b_rptr;
366 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
367 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
368 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
369 if (mp != NULL) {
370 putnext(rq, mp);
371 }
372 return;
373 }

375 switch (conn_res->PRIM_type) {
376 case O_T_CONN_RES:
377 case T_CONN_RES:
378 putnext(rq, mp);
379 return;
380 default:
381 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
382 if (mp != NULL) {
383 putnext(rq, mp);
384 }
385 return;
386 }
387 }

389 static void
390 dccp_accept_swap(dccp_t *listener, dccp_t *acceptor, dccp_t *eager)
391 {

new/usr/src/uts/common/inet/dccp/dccp_tpi.c 7

392 conn_t *econnp;
393 conn_t *aconnp;
394 }

396 /*
397 * This runs at the tail end of accept processing on the squeue of the
398 * new connection.
399 */
400 static void
401 dccp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
402 {
403 conn_t *connp = (conn_t *)arg;
404 dccp_t *dccp = connp->conn_dccp;
405 dccp_stack_t *dccps = dccp->dccp_dccps;
406 queue_t *q = connp->conn_rq;
407 struct stroptions *stropt;
408 struct sock_proto_props sopp;

410 /* Should never be called for non-STREAMS sockets */
411 ASSERT(!IPCL_IS_NONSTR(connp));

413 /* We should just receive a single mblk that fits a T_discon_ind */
414 ASSERT(mp->b_cont == NULL);

416 /* XXX */

418 dccp_get_proto_props(dccp, &sopp);

420 ASSERT(DB_REF(mp) == 1);
421 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions));

423 DB_TYPE(mp) = M_SETOPTS;

425 /* XXX */

427 dccp->dccp_hard_binding = B_FALSE;

429 if (connp->conn_keepalive) {
430 dccp->dccp_ka_last_intrvl = 0;
431 dccp->dccp_ka_tid = DCCP_TIMER(dccp, dccp_keepalive_timer,
432 dccp->dccp_ka_interval);
433 }
434 }
435 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_tunables.c 1

**
 2583 Sat Aug 18 10:37:11 2012
new/usr/src/uts/common/inet/dccp/dccp_tunables.c
dccp: starting module template
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 /*
17 * This file contains tunable properties for DCCP.
18 */
19 #include <inet/ip.h>
20 #include <inet/ip6.h>
21 #include <inet/dccp_impl.h>
22 #include <sys/sunddi.h>

24 mod_prop_info_t dccp_propinfo_tbl[] = {
25 /* tunable - 0 */
26 { "smallest_nonpriv_port", MOD_PROTO_DCCP,
27 mod_set_uint32, mod_get_uint32,
28 {1024, (32 * 1024), 1024}, {1024} },

30 { "smallest_anon_port", MOD_PROTO_DCCP,
31 mod_set_uint32, mod_get_uint32,
32 {1024, ULP_MAX_PORT, 32*1024}, {32*1024} },

34 { "largest_anon_port", MOD_PROTO_DCCP,
35 mod_set_uint32, mod_get_uint32,
36 {1024, ULP_MAX_PORT, ULP_MAX_PORT}, {ULP_MAX_PORT} },

38 { "_xmit_lowat", MOD_PROTO_DCCP,
39 mod_set_uint32, mod_get_uint32,
40 {0, (1<<30), DCCP_XMIT_LOWATER},
41 {DCCP_XMIT_LOWATER} },

43 { "_debug", MOD_PROTO_DCCP,
44 mod_set_uint32, mod_get_uint32,
45 {0, 10, 0}, {0} },

47 { "_rst_sent_rate_enabled", MOD_PROTO_DCCP,
48 mod_set_boolean, mod_get_boolean,
49 {B_TRUE}, {B_TRUE} },

51 { "_rst_sent_rate", MOD_PROTO_DCCP,
52 mod_set_uint32, mod_get_uint32,
53 {0, UINT32_MAX, 40}, {40} },

55 { "_ip_abort_cinterval", MOD_PROTO_DCCP,
56 mod_set_uint32, mod_get_uint32,
57 {1*SECONDS, UINT32_MAX, 3*MINUTES}, {3*MINUTES} },

59 { "_ip_abort_linterval", MOD_PROTO_DCCP,
60 mod_set_uint32, mod_get_uint32,
61 {1*SECONDS, UINT32_MAX, 3*MINUTES}, {3*MINUTES} },

new/usr/src/uts/common/inet/dccp/dccp_tunables.c 2

63 { "_ip_abort_interval", MOD_PROTO_DCCP,
64 mod_set_uint32, mod_get_uint32,
65 {500*MS, UINT32_MAX, 5*MINUTES}, {5*MINUTES} },

67 /* tunable - 10 */
68 { "_ip_notify_cinterval", MOD_PROTO_DCCP,
69 mod_set_uint32, mod_get_uint32,
70 {1*SECONDS, UINT32_MAX, 10*SECONDS}, {10*SECONDS} },

72 { "_ip_notify_interval", MOD_PROTO_DCCP,
73 mod_set_uint32, mod_get_uint32,
74 {500*MS, UINT32_MAX, 10*SECONDS}, {10*SECONDS} },

76 { "_keepalive_interval", MOD_PROTO_DCCP,
77 mod_set_uint32, mod_get_uint32,
78 {10*SECONDS, 10*DAYS, 2*HOURS}, {2*HOURS} },

80 { "_keepalive_abort_interval", MOD_PROTO_DCCP,
81 mod_set_uint32, mod_get_uint32,
82 {0, UINT32_MAX, 8*MINUTES}, {8*MINUTES} },

84 { NULL, 0, NULL, NULL, {0}, {0} }
85 };

87 int dccp_propinfo_count = A_CNT(dccp_propinfo_tbl);
88 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccpddi.c 1

**
 1466 Sat Aug 18 10:37:11 2012
new/usr/src/uts/common/inet/dccp/dccpddi.c
dccp: starting module template
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #include <sys/types.h>
17 #include <sys/conf.h>
18 #include <sys/modctl.h>
19 #include <inet/common.h>
20 #include <inet/ip.h>
21 #include <sys/strsubr.h>
22 #include <sys/socketvar.h>
23 #include <inet/dccp.h>
24 #include <inet/dccp_impl.h>

26 #define INET_NAME "dccp"
27 #define INET_MODDESC "DCCP dummy STREAMS module"
28 #define INET_DEVDESC "DCCP STREAMS driver"
29 #define INET_SOCKDESC "DCCP socket module"
30 #define INET_MODSTRTAB dummymodinfo
31 #define INET_DEVSTRTAB dccpinfov4
32 #define INET_MODMTFLAGS D_MP
33 #define INET_SOCK_PROTO_CREATE_FUNC (*dccp_create)
34 #define INET_SOCK_PROTO_FB_FUNC (*dccp_fallback)
35 #define INET_SOCK_FALLBACK_DEV_V4 "/dev/dccp"
36 #define INET_SOCK_FALLBACK_DEV_V6 "/dev/dccp6"
37 #define INET_DEVMINOR 0
38 #define INET_MODMTFLAGS D_MP
39 #define INET_DEVMTFLAGS (D_MP|_D_DIRECT)

41 #include "../inetddi.c"

43 int
44 _init(void)
45 {
46 return (mod_install(&modlinkage));
47 }

49 int
50 _fini(void)
51 {
52 return (mod_remove(&modlinkage));
53 }

55 int
56 _info(struct modinfo *modinfop)
57 {
58 return (mod_info(&modlinkage, modinfop));
59 }
60 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp_impl.h 1

**
 11716 Sat Aug 18 10:37:11 2012
new/usr/src/uts/common/inet/dccp_impl.h
dccp: move headers into inet dir, like other protocols
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _INET_DCCP_IMPL_H
17 #define _INET_DCCP_IMPL_H

19 #include <sys/int_types.h>
20 #include <sys/netstack.h>
21 #include <sys/socket.h>
22 #include <sys/socket_proto.h>
23 #include <sys/clock_impl.h>

25 #include <netinet/in.h>
26 #include <netinet/ip6.h>
27 #include <netinet/dccp.h>

29 #include <inet/common.h>
30 #include <inet/dccp.h>
31 #include <inet/ip.h>
32 #include <inet/ip6.h>
33 #include <inet/optcom.h>
34 #include <inet/tunables.h>

36 #include <inet/dccp_stack.h>

38 #ifdef __cplusplus
39 extern "C" {
40 #endif

42 #ifdef _KERNEL

44 #define DCCP_MOD_ID 5999 /* XXX */

46 extern struct qinit dccp_sock_winit;
47 extern struct qinit dccp_winit;

49 extern sock_downcalls_t sock_dccp_downcalls;

51 #define DCCP_XMIT_LOWATER (4 * 1024)
52 #define DCCP_XMIT_HIWATER 49152
53 #define DCCP_RECV_LOWATER (2 * 1024)
54 #define DCCP_RECV_HIWATER 128000

56 #define TIDUSZ 4096 /* transport interface data unit size */

58 /*
59 * Format arguments passed to dccp_display.
60 */
61 #define DISP_PORT_ONLY 1

new/usr/src/uts/common/inet/dccp_impl.h 2

62 #define DISP_ADDR_AND_PORT 2

64 /*
65 * Bind hash array size and hash function.
66 */
67 #define DCCP_BIND_FANOUT_SIZE 128
68 #define DCCP_BIND_HASH(lport, size) ((ntohs((uint16_t)lport)) & (size - 1))

70 /*
71 * Was this tcp created via socket() interface?
72 */
73 #define DCCP_IS_SOCKET(dccp) ((dccp)->dccp_issocket)

75 /*
76 * Is this dccp not attached to any upper client?
77 */
78 #define DCCP_IS_DETACHED(dccp) ((dccp)->dccp_detached)

80 /* Packet types (RFC 4340, Section 5.1.) */
81 #define DCCP_PKT_REQUEST 0
82 #define DCCP_PKT_RESPONSE 1
83 #define DCCP_PKT_DATA 2
84 #define DCCP_PKT_ACK 3
85 #define DCCP_PKT_DATAACK 4
86 #define DCCP_PKT_CLOSEREQ 5
87 #define DCCP_PKT_CLOSE 6
88 #define DCCP_PKT_RESET 7
89 #define DCCP_PKT_SYNC 8
90 #define DCCP_PKT_SYNCACK 9

92 #define DCCP_PACKET_REQUEST 0
93 #define DCCP_PACKET_RESPONSE 1
94 #define DCCP_PACKET_DATA 2
95 #define DCCP_PACKET_ACK 3
96 #define DCCP_PACKET_DATAACK 4
97 #define DCCP_PACKET_CLOSEREQ 5
98 #define DCCP_PACKET_CLOSE 6
99 #define DCCP_PACKET_RESET 7
100 #define DCCP_PACKET_SYNC 8
101 #define DCCP_PACKET_SYNCACK 9

103 /*
104 * DCCP options and features.
105 */

107 /*
108 * Options types (RFC 4340, Section 5.8.)
109 */
110 #define DCCP_OPTION_PADDING 0
111 #define DCCP_OPTION_MANDATORY 1
112 #define DCCP_OPTION_SLOW_RECEIVER 2
113 #define DCCP_OPTION_CHANGE_L 32
114 #define DCCP_OPTION_CONFIRM_L 33
115 #define DCCP_OPTION_CHANGE_R 34
116 #define DCCP_OPTION_CONFIRM_R 35
117 #define DCCP_OPTION_INIT_COOKIE 36
118 #define DCCP_OPTION_NDP_COUNT 37
119 #define DCCP_OPTION_ACK_VECTOR_1 38
120 #define DCCP_OPTION_ACK_VECTOR_2 39
121 #define DCCP_OPTION_DATA_DROPPED 40
122 #define DCCP_OPTION_TIMESTAMP 41
123 #define DCCP_OPTION_TIMESTAMP_ECHO 42
124 #define DCCP_OPTION_ELAPSED_TIME 43
125 #define DCCP_OPTION_DATA_CHECKSUM 44

127 /*

new/usr/src/uts/common/inet/dccp_impl.h 3

128 * Feature types (RFC 4340, Section 6.4.)
129 */
130 #define DCCP_FEATURE_CCID 1
131 #define DCCP_FEATURE_ALLOW_SHORT_SEQNOS 2
132 #define DCCP_FEATURE_SEQUENCE_WINDOW 3
133 #define DCCP_FEATURE_ECN_INCAPABLE 4
134 #define DCCP_FEATURE_ACK_RATIO 5
135 #define DCCP_FEATURE_SEND_ACK_VECTOR 6
136 #define DCCP_FEATURE_SEND_NDP_COUNT 7
137 #define DCCP_FEATURE_MIN_CHECKSUM_COVERAGE 8
138 #define DCCP_FEATURE_CHECK_DATA_CHECKSUM 9

140 /*
141 * Feature negotation states (RFC 4340, Section 6.6.2.)
142 */
143 #define DCCP_FEATURE_STATE_CHANGING 0
144 #define DCCP_FEATURE_STATE_UNSTABLE 1
145 #define DCCP_FEATURE_STATE_STABLE 2

147 /*
148 * Reset types (RFC 4230, Section 5.6.)
149 */
150 #define DCCP_RESET_UNSPECIFIED 0
151 #define DCCP_RESET_CLOSED 1
152 #define DCCP_RESET_ABORTED 2
153 #define DCCP_RESET_NO_CONNECTION 3
154 #define DCCP_RESET_PACKET_ERROR 4
155 #define DCCP_RESET_OPTION_ERROR 5
156 #define DCCP_RESET_MANDATORY_ERROR 6
157 #define DCCP_RESET_CONNECTION_REFUSED 7
158 #define DCCP_RESET_BAD_SERVICE_CODE 8
159 #define DCCP_RESET_TOO_BUSY 9
160 #define DCCP_RESET_BAD_INIT_COOKIE 10
161 #define DCCP_RESET_AGGRESSION_PENALTY 11
162 #define DCCP_RESET_RESERVED 12

164 typedef struct dccp_feature_s {
165 list_node_t df_next;
166 uint8_t df_option;
167 uint8_t df_type;
168 uint8_t df_state;
169 uint64_t df_value;
170 boolean_t df_mandatory;
171 } dccp_feature_t;

173 /* Options in DCCP header */
174 typedef struct dccp_opt_s {
175 int type;
176 boolean_t mandatory;
177 } dccp_opt_t;

179 /*
180 * Tuneables.
181 */
182 #define dccps_smallest_nonpriv_port dccps_propinfo_tbl[0].prop_cur_uval
183 #define dccps_smallest_anon_port dccps_propinfo_tbl[1].prop_cur_uval
184 #define dccps_largest_anon_port dccps_propinfo_tbl[2].prop_cur_uval

186 #define dccps_dbg dccps_propinfo_tbl[4].prop_cur_uval
187 #define dccps_rst_sent_rate_enabled dccps_propinfo_tbl[5].prop_cur_uval
188 #define dccps_rst_sent_rate dccps_propinfo_tbl[6].prop_cur_uval

190 #define dccps_ip_abort_cinterval dccps_propinfo_tbl[7].prop_cur_uval
191 #define dccps_ip_abort_linterval dccps_propinfo_tbl[8].prop_cur_uval
192 #define dccps_ip_abort_interval dccps_propinfo_tbl[9].prop_cur_uval
193 #define dccps_ip_notify_cinterval dccps_propinfo_tbl[10].prop_cur_uval

new/usr/src/uts/common/inet/dccp_impl.h 4

194 #define dccps_ip_notify_interval dccps_propinfo_tbl[11].prop_cur_uval
195 #define dccps_keepalive_interval_high dccps_propinfo_tbl[12].prop_max_uval
196 #define dccps_keepalive_interval dccps_propinfo_tbl[12].prop_cur_uval
197 #define dccps_keepalive_interval_low dccps_propinfo_tbl[12].prop_min_uval
198 #define dccps_keepalive_abort_interval_high \
199 dccps_propinfo_tbl[13].prop_max_uval
200 #define dccps_keepalive_abort_interval dccps_propinfo_tbl[13].prop_cur_uval
201 #define dccps_keepalive_abort_interval_low \
202 dccps_propinfo_tbl[13].prop_min_uval

204 /*
205 * Timers.
206 */
207 typedef struct dccp_timer_s {
208 conn_t *connp;
209 void (*dccpt_proc)(void *);
210 callout_id_t dccpt_tid;
211 } dccp_timer_t;

213 extern kmem_cache_t *dccp_timercache;

215 #define DCCP_TIMER(dccp, f, tim) \
216 dccp_timeout(dccp->dccp_connp, f, tim)

218 #define DCCP_TIMER_CANCEL(dccp, id) \
219 dccp_timeout_cancel(dccp->dccp_connp, id)

221 #define DCCP_TIMER_RESTART(dccp, intvl) { \
222 if ((dccp)->dccp_timer_tid != 0) \
223 (void) DCCP_TIMER_CANCEL((dccp), (dccp)->dccp_timer_tid); \
224 (dccp)->dccp_timer_tid = DCCP_TIMER((dccp), dccp_timer, (intvl)); \
225 }

227 extern struct qinit dccp_rinitv4, dccp_rinitv6;

229 extern optdb_obj_t dccp_opt_obj;
230 extern uint_t dccp_max_optsize;

232 extern int dccp_squeue_flag;

234 /*
235 * Functions in dccp.c
236 */
237 extern int dccp_build_hdrs(dccp_t *);
238 extern conn_t *dccp_create_common(cred_t *, boolean_t, boolean_t, int *);
239 extern void dccp_close_common(conn_t *, int);
240 extern int dccp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
241 boolean_t);
242 extern int dccp_do_unbind(conn_t *);
243 extern int dccp_do_listen(conn_t *, struct sockaddr *, socklen_t, int,
244 cred_t *, boolean_t);
245 extern int dccp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
246 cred_t *, pid_t);
247 extern void dccp_init_values(dccp_t *, dccp_t *);
248 extern void dccp_free(dccp_t *);
249 extern void *dccp_get_conn(void *, dccp_stack_t *);
250 extern void dccp_get_proto_props(dccp_t *, struct sock_proto_props *);
251 extern int dccp_set_destination(dccp_t *);
252 extern int dccp_clean_death(dccp_t *, int);

255 /*
256 * Functions in dccp_bind.c
257 */
258 extern void dccp_bind_hash_insert(dccp_df_t *, dccp_t *, int);
259 extern void dccp_bind_hash_remove(dccp_t *);

new/usr/src/uts/common/inet/dccp_impl.h 5

260 extern int dccp_bind_check(conn_t *, struct sockaddr *, socklen_t,
261 cred_t *cr, boolean_t);
262 extern in_port_t dccp_bindi(dccp_t *, in_port_t, const in6_addr_t *, int,
263 boolean_t, boolean_t, boolean_t);
264 extern in_port_t dccp_update_next_port(in_port_t, const dccp_t *, boolean_t);

266 /*
267 * Functions in dccp_features.c
268 */
269 extern int dccp_parse_feature(dccp_t *, uint8_t, uint8_t, uchar_t *,
270 boolean_t);

272 /*
273 * Functions in dccp_stats.c
274 */
275 extern mblk_t *dccp_snmp_get(queue_t *, mblk_t *, boolean_t);
276 extern void *dccp_kstat_init(netstackid_t);
277 extern void dccp_kstat_fini(netstackid_t, kstat_t *);
278 extern void *dccp_kstat2_init(netstackid_t);
279 extern void dccp_kstat2_fini(netstackid_t, kstat_t *);

281 /*
282 * Functions in dccp_socket.c
283 */
284 extern sock_lower_handle_t dccp_create(int, int, int, sock_downcalls_t **,
285 uint_t *, int *, int, cred_t *);
286 extern int dccp_fallback(sock_lower_handle_t, queue_t *, boolean_t,
287 so_proto_quiesced_cb_t, sock_quiesce_arg_t *);
288 extern boolean_t dccp_newconn_notify(dccp_t *, ip_recv_attr_t *);

290 /*
291 * Functions in dccp_input.c
292 */
293 extern void dccp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
294 extern void dccp_input_data(void *, mblk_t *, void *, ip_recv_attr_t *);
295 extern void dccp_rsrv(queue_t *);
296 extern void dccp_input_listener_unbound(void *, mblk_t *, void *,
297 ip_recv_attr_t *);
298 extern boolean_t dccp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *,
299 ip_recv_attr_t *);

301 /*
302 * Functions in dccp_misc.c
303 */
304 extern void dccp_stack_cpu_add(dccp_stack_t *, processorid_t);
305 extern char *dccp_display(dccp_t *, char *, char);

307 /*
308 * Functions in dccp_options.c
309 */
310 extern int dccp_parse_options(dccp_t *, dccpha_t *);
311 extern int dccp_process_options(dccp_t *, dccpha_t *);
312 extern int dccp_generate_options(dccp_t *, void **, size_t *);

314 /*
315 * Functions in dccp_output.c
316 */
317 extern void dccp_wput(queue_t *, mblk_t *);
318 extern void dccp_wput_data(dccp_t *, mblk_t *, boolean_t);
319 extern void dccp_wput_sock(queue_t *, mblk_t *);
320 extern void dccp_wput_fallback(queue_t *, mblk_t *);
321 extern void dccp_output(void *, mblk_t *, void *, ip_recv_attr_t *);
322 extern void dccp_output_urgent(void *, mblk_t *, void *, ip_recv_attr_t *);
323 extern void dccp_close_output(void *, mblk_t *, void *, ip_recv_attr_t *);
324 extern void dccp_shutdown_output(void *, mblk_t *, void *, ip_recv_attr_t *)
325 extern void dccp_send_data(dccp_t *, mblk_t *);

new/usr/src/uts/common/inet/dccp_impl.h 6

326 extern void dccp_xmit_listeners_reset(mblk_t *, ip_recv_attr_t *,
327 ip_stack_t *, conn_t *);
328 extern void dccp_send_synack(void *, mblk_t *, void *, ip_recv_attr_t *);
329 extern mblk_t *dccp_xmit_mp(dccp_t *, mblk_t *, int32_t, int32_t *,
330 mblk_t **, uint32_t, boolean_t, uint32_t *, boolean_t);
331 /* XXX following functions should be redone */
332 extern mblk_t *dccp_generate_response(conn_t *, mblk_t *);
333 extern mblk_t *dccp_generate_request(conn_t *);
334 extern mblk_t *dccp_generate_reset(conn_t *);
335 extern mblk_t *dccp_generate_ack(conn_t *);
336 extern mblk_t *dccp_generate_sync(conn_t *);

338 /*
339 * Functions in dccp_opt_data.c
340 */
341 extern int dccp_opt_get(conn_t *, int, int, uchar_t *);
342 extern int dccp_opt_set(conn_t *, uint_t, int, int, uint_t, uchar_t *,
343 uint_t *, uchar_t *, void *, cred_t *);

345 /*
346 * Functions in dccp_timers.c
347 */
348 extern timeout_id_t dccp_timeout(conn_t *, void (*)(void *), hrtime_t);
349 extern clock_t dccp_timeout_cancel(conn_t *, timeout_id_t);
350 extern mblk_t *dccp_timermp_alloc(int);
351 extern void dccp_timermp_free(dccp_t *);
352 extern void dccp_timers_stop(dccp_t *);
353 extern void dccp_keepalive_timer(void *);
354 extern void dccp_timer(void *);

356 /*
357 * Functions in dccp_tpi.c
358 */
359 extern void dccp_do_capability_ack(dccp_t *, struct T_capability_ack *,
360 t_uscalar_t);
361 extern void dccp_capability_req(dccp_t *, mblk_t *);
362 extern void dccp_err_ack(dccp_t *, mblk_t *, int, int);
363 extern void dccp_tpi_connect(dccp_t *, mblk_t *);
364 extern int dccp_tpi_close(queue_t *, int);
365 extern int dccp_tpi_close_accept(queue_t *);
366 extern boolean_t dccp_conn_con(dccp_t *, uchar_t *, mblk_t *, mblk_t **,
367 ip_recv_attr_t *);
368 extern int dccp_tpi_opt_get(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);
369 extern int dccp_tpi_opt_set(queue_t *, uint_t, int, int, uint_t, uchar_t *,
370 uint_t *, uchar_t *, void *, cred_t *);
371 extern void dccp_tpi_accept(queue_t *, mblk_t *);

373 #endif /* _KERNEL */

375 #ifdef __cplusplus
376 }
377 #endif

379 #endif /* _INET_DCCP_IMPL_H */
380 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp_ip.h 1

**
 802 Sat Aug 18 10:37:12 2012
new/usr/src/uts/common/inet/dccp_ip.h
dccp: move headers into inet dir, like other protocols
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _INET_DCCP_DCCP_IP_H
17 #define _INET_DCCP_DCCP_IP_H

19 #include <netinet/dccp.h>
20 #include <inet/dccp_stack.h>

22 #ifdef __cplusplus
23 extern "C" {
24 #endif

26 /*
27 * DCCP functions for IP
28 */
29 extern void dccp_ddi_g_init(void);
30 extern void dccp_ddi_g_destroy(void);

33 #ifdef __cplusplus
34 }
35 #endif

37 #endif /* _INET_DCCP_DCCP_IP_H */
38 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp_stack.h 1

**
 1624 Sat Aug 18 10:37:12 2012
new/usr/src/uts/common/inet/dccp_stack.h
dccp: move headers into inet dir, like other protocols
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _INET_DCCP_DCCP_STACK_H
17 #define _INET_DCCP_DCCP_STACK_H

19 #include <sys/netstack.h>
20 #include <sys/cpuvar.h>
21 #include <sys/sunddi.h>
22 #include <sys/sunldi.h>
23 #include <inet/ip.h>
24 #include <inet/ipdrop.h>
25 #include <inet/dccp_stats.h>

27 #ifdef __cplusplus
28 extern "C" {
29 #endif

31 /*
32 * DCCP stack instances
33 */
34 typedef struct dccp_stack {
35 netstack_t *dccps_netstack; /* Common netstack */

37 uint_t dccps_bind_fanout_size;
38 struct dccp_df_s *dccps_bind_fanout;

40 /*
41 * Privileged ports.
42 */
43 #define DCCP_NUM_EPRIV_PORTS 64
44 int dccps_num_epriv_ports;
45 in_port_t dccps_epriv_ports[DCCP_NUM_EPRIV_PORTS];
46 kmutex_t dccps_epriv_port_lock;

48 in_port_t dccps_min_anonpriv_port;
49 uint_t dccps_next_port_to_try;

51 /* Reset rate control */
52 int64_t dccps_last_rst_intrvl;
53 uint32_t dccps_rst_cnt;

55 /* Tunables table */
56 struct mod_prop_info_s *dccps_propinfo_tbl;

58 ldi_ident_t dccps_ldi_ident;

60 /* MIB-II kernel statistics */
61 kstat_t *dccps_mibkp;

new/usr/src/uts/common/inet/dccp_stack.h 2

62 kstat_t *dccps_kstat;

64 /* CPU stats counter */
65 dccp_stats_cpu_t **dccps_sc;
66 int dccps_sc_cnt;
67 } dccp_stack_t;

69 #ifdef __cplusplus
70 }
71 #endif

73 #endif /* _INET_DCCP_DCCP_STACK_H */
74 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp_stats.h 1

**
 1430 Sat Aug 18 10:37:12 2012
new/usr/src/uts/common/inet/dccp_stats.h
dccp: move headers into inet dir, like other protocols
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _INET_DCCP_DCCP_STATS_H
17 #define _INET_DCCP_DCCP_STATS_H

19 #include <sys/netstack.h>
20 #include <sys/cpuvar.h>

22 #ifdef __cplusplus
23 extern "C" {
24 #endif

26 /* Kstats */
27 typedef struct dccp_stat {
28 kstat_named_t dccp_sock_fallback;
29 } dccp_stat_t;

31 typedef struct dccp_stat_counter_s {
32 uint64_t dccp_no_listener;
33 uint64_t dccp_listendrop;
34 uint64_t dccp_wsrv_called;
35 uint64_t dccp_sock_fallback;
36 uint64_t dccp_rst_unsent;
37 } dccp_stat_counter_t;

39 typedef struct {
40 uint64_t dccp_stats_cnt;
41 mib2_dccp_t dccp_sc_mib;
42 dccp_stat_counter_t dccp_sc_stats;
43 } dccp_stats_cpu_t;

45 /*
46 * MIB-II
47 */
48 #define DCCPS_BUMP_MIB(dccps, x) \
49 BUMP_MIB(&(dccps)->dccps_sc[CPU->cpu_seqid]->dccp_sc_mib, x)

51 #define DCCPS_UPDATE_MIB(dccps, x, y) \
52 UPDATE_MIB(&(dccps)->dccps_sc[CPU->cpu_seqid]->dccp_sc_mib, x, y)

54 #define DCCP_STAT(dccps, x) \
55 ((dccps)->dccps_sc[CPU->cpu_seqid]->dccp_sc_stats.x++)

57 #ifdef __cplusplus
58 }
59 #endif

61 #endif /* _INET_DCCP_DCCP_STATS_H */

new/usr/src/uts/common/inet/dccp_stats.h 2

62 #endif /* ! codereview */

new/usr/src/uts/common/inet/ip.h 1

**
 140318 Sat Aug 18 10:37:12 2012
new/usr/src/uts/common/inet/ip.h
dccp: starting module template
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 1990 Mentat Inc.
25 */

27 #ifndef _INET_IP_H
28 #define _INET_IP_H

30 #ifdef __cplusplus
31 extern "C" {
32 #endif

34 #include <sys/isa_defs.h>
35 #include <sys/types.h>
36 #include <inet/mib2.h>
37 #include <inet/nd.h>
38 #include <sys/atomic.h>
39 #include <net/if_dl.h>
40 #include <net/if.h>
41 #include <netinet/ip.h>
42 #include <netinet/igmp.h>
43 #include <sys/neti.h>
44 #include <sys/hook.h>
45 #include <sys/hook_event.h>
46 #include <sys/hook_impl.h>
47 #include <inet/ip_stack.h>

49 #ifdef _KERNEL
50 #include <netinet/ip6.h>
51 #include <sys/avl.h>
52 #include <sys/list.h>
53 #include <sys/vmem.h>
54 #include <sys/squeue.h>
55 #include <net/route.h>
56 #include <sys/systm.h>
57 #include <net/radix.h>
58 #include <sys/modhash.h>

60 #ifdef DEBUG
61 #define CONN_DEBUG

new/usr/src/uts/common/inet/ip.h 2

62 #endif

64 #define IP_DEBUG
65 /*
66 * The mt-streams(9F) flags for the IP module; put here so that other
67 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set
68 * of flags.
69 */
70 #define IP_DEVMTFLAGS D_MP
71 #endif /* _KERNEL */

73 #define IP_MOD_NAME "ip"
74 #define IP_DEV_NAME "/dev/ip"
75 #define IP6_DEV_NAME "/dev/ip6"

77 #define UDP_MOD_NAME "udp"
78 #define UDP_DEV_NAME "/dev/udp"
79 #define UDP6_DEV_NAME "/dev/udp6"

81 #define TCP_MOD_NAME "tcp"
82 #define TCP_DEV_NAME "/dev/tcp"
83 #define TCP6_DEV_NAME "/dev/tcp6"

85 #define SCTP_MOD_NAME "sctp"

87 #define DCCP_MOD_NAME "dccp"
88 #define DCCP_DEV_NAME "/dev/dccp"
89 #define DCCP6_DEV_NAME "/dev/dccp6"

91 #endif /* ! codereview */
92 #ifndef _IPADDR_T
93 #define _IPADDR_T
94 typedef uint32_t ipaddr_t;
95 #endif

97 /* Number of bits in an address */
98 #define IP_ABITS 32
99 #define IPV4_ABITS IP_ABITS
100 #define IPV6_ABITS 128
101 #define IP_MAX_HW_LEN 40

103 #define IP_HOST_MASK (ipaddr_t)0xffffffffU

105 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF)
106 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum)
107 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum)

109 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64)
110 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t))

112 #define IPV4_ADDR_LEN 4
113 #define IP_ADDR_LEN IPV4_ADDR_LEN
114 #define IP_ARP_PROTO_TYPE 0x0800

116 #define IPV4_VERSION 4
117 #define IP_VERSION IPV4_VERSION
118 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5
119 #define IP_SIMPLE_HDR_LENGTH 20
120 #define IP_MAX_HDR_LENGTH 60

122 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH)

124 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */

126 /*
127 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the

new/usr/src/uts/common/inet/ip.h 3

128 * 2 files should be cleaned up to remove all redundant definitions.
129 */
130 #define IP_MAXPACKET 65535
131 #define IP_SIMPLE_HDR_VERSION \
132 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS)

134 #define UDPH_SIZE 8

136 /*
137 * Constants and type definitions to support IP IOCTL commands
138 */
139 #define IP_IOCTL ((’i’<<8)|’p’)
140 #define IP_IOC_IRE_DELETE 4
141 #define IP_IOC_IRE_DELETE_NO_REPLY 5
142 #define IP_IOC_RTS_REQUEST 7

144 /* Common definitions used by IP IOCTL data structures */
145 typedef struct ipllcmd_s {
146 uint_t ipllc_cmd;
147 uint_t ipllc_name_offset;
148 uint_t ipllc_name_length;
149 } ipllc_t;

151 /* IP IRE Delete Command Structure. */
152 typedef struct ipid_s {
153 ipllc_t ipid_ipllc;
154 uint_t ipid_ire_type;
155 uint_t ipid_addr_offset;
156 uint_t ipid_addr_length;
157 uint_t ipid_mask_offset;
158 uint_t ipid_mask_length;
159 } ipid_t;

161 #define ipid_cmd ipid_ipllc.ipllc_cmd

163 #ifdef _KERNEL
164 /*
165 * Temporary state for ip options parser.
166 */
167 typedef struct ipoptp_s
168 {
169 uint8_t *ipoptp_next; /* next option to look at */
170 uint8_t *ipoptp_end; /* end of options */
171 uint8_t *ipoptp_cur; /* start of current option */
172 uint8_t ipoptp_len; /* length of current option */
173 uint32_t ipoptp_flags;
174 } ipoptp_t;

176 /*
177 * Flag(s) for ipoptp_flags
178 */
179 #define IPOPTP_ERROR 0x00000001
180 #endif /* _KERNEL */

182 /* Controls forwarding of IP packets, set via ipadm(1M)/ndd(1M) */
183 #define IP_FORWARD_NEVER 0
184 #define IP_FORWARD_ALWAYS 1

186 #define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_forwarding == IP_FORWARD_ALWAYS)

188 #define IPH_HDR_LENGTH(ipha) \
189 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2)

191 #define IPH_HDR_VERSION(ipha) \
192 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4)

new/usr/src/uts/common/inet/ip.h 4

194 #ifdef _KERNEL
195 /*
196 * IP reassembly macros. We hide starting and ending offsets in b_next and
197 * b_prev of messages on the reassembly queue. The messages are chained using
198 * b_cont. These macros are used in ip_reassemble() so we don’t have to see
199 * the ugly casts and assignments.
200 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent
201 * them.
202 */
203 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next))
204 #define IP_REASS_SET_START(mp, u) \
205 ((mp)->b_next = (mblk_t *)(uintptr_t)(u))
206 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev))
207 #define IP_REASS_SET_END(mp, u) \
208 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u))

210 #define IP_REASS_COMPLETE 0x1
211 #define IP_REASS_PARTIAL 0x2
212 #define IP_REASS_FAILED 0x4

214 /*
215 * Test to determine whether this is a module instance of IP or a
216 * driver instance of IP.
217 */
218 #define CONN_Q(q) (WR(q)->q_next == NULL)

220 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr)
221 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp)
222 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp)
223 #define Q_TO_ICMP(q) (Q_TO_CONN((q))->conn_icmp)
224 #define Q_TO_RTS(q) (Q_TO_CONN((q))->conn_rts)
225 #define Q_TO_DCCP(q) (Q_TO_CONN((q))->conn_dccp)
226 #endif /* ! codereview */

228 #define CONNP_TO_WQ(connp) ((connp)->conn_wq)
229 #define CONNP_TO_RQ(connp) ((connp)->conn_rq)

231 #define GRAB_CONN_LOCK(q) { \
232 if (q != NULL && CONN_Q(q)) \
233 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \
234 }

236 #define RELEASE_CONN_LOCK(q) { \
237 if (q != NULL && CONN_Q(q)) \
238 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \
239 }

241 /*
242 * Ref counter macros for ioctls. This provides a guard for TCP to stop
243 * tcp_close from removing the rq/wq whilst an ioctl is still in flight on the
244 * stream. The ioctl could have been queued on e.g. an ipsq. tcp_close will wait
245 * until the ioctlref count is zero before proceeding.
246 * Ideally conn_oper_pending_ill would be used for this purpose. However, in the
247 * case where an ioctl is aborted or interrupted, it can be cleared prematurely.
248 * There are also some race possibilities between ip and the stream head which
249 * can also end up with conn_oper_pending_ill being cleared prematurely. So, to
250 * avoid these situations, we use a dedicated ref counter for ioctls which is
251 * used in addition to and in parallel with the normal conn_ref count.
252 */
253 #define CONN_INC_IOCTLREF_LOCKED(connp) { \
254 ASSERT(MUTEX_HELD(&(connp)->conn_lock)); \
255 DTRACE_PROBE1(conn__inc__ioctlref, conn_t *, (connp)); \
256 (connp)->conn_ioctlref++; \
257 mutex_exit(&(connp)->conn_lock); \
258 }

new/usr/src/uts/common/inet/ip.h 5

260 #define CONN_INC_IOCTLREF(connp) { \
261 mutex_enter(&(connp)->conn_lock); \
262 CONN_INC_IOCTLREF_LOCKED(connp); \
263 }

265 #define CONN_DEC_IOCTLREF(connp) { \
266 mutex_enter(&(connp)->conn_lock); \
267 DTRACE_PROBE1(conn__dec__ioctlref, conn_t *, (connp)); \
268 /* Make sure conn_ioctlref will not underflow. */ \
269 ASSERT((connp)->conn_ioctlref != 0); \
270 if ((--(connp)->conn_ioctlref == 0) && \
271 ((connp)->conn_state_flags & CONN_CLOSING)) { \
272 cv_broadcast(&(connp)->conn_cv); \
273 } \
274 mutex_exit(&(connp)->conn_lock); \
275 }

278 /*
279 * Complete the pending operation. Usually an ioctl. Can also
280 * be a bind or option management request that got enqueued
281 * in an ipsq_t. Called on completion of the operation.
282 */
283 #define CONN_OPER_PENDING_DONE(connp) { \
284 mutex_enter(&(connp)->conn_lock); \
285 (connp)->conn_oper_pending_ill = NULL; \
286 cv_broadcast(&(connp)->conn_refcv); \
287 mutex_exit(&(connp)->conn_lock); \
288 CONN_DEC_REF(connp); \
289 }

291 /*
292 * Values for squeue switch:
293 */
294 #define IP_SQUEUE_ENTER_NODRAIN 1
295 #define IP_SQUEUE_ENTER 2
296 #define IP_SQUEUE_FILL 3

298 extern int ip_squeue_flag;

300 /* IP Fragmentation Reassembly Header */
301 typedef struct ipf_s {
302 struct ipf_s *ipf_hash_next;
303 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */
304 uint32_t ipf_ident; /* Ident to match. */
305 uint8_t ipf_protocol; /* Protocol to match. */
306 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */
307 time_t ipf_timestamp; /* Reassembly start time. */
308 mblk_t *ipf_mp; /* mblk we live in. */
309 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */
310 int ipf_hole_cnt; /* Number of holes (hard-case). */
311 int ipf_end; /* Tail end offset (0 -> hard-case). */
312 uint_t ipf_gen; /* Frag queue generation */
313 size_t ipf_count; /* Count of bytes used by frag */
314 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */
315 in6_addr_t ipf_v6src; /* IPv6 source address */
316 in6_addr_t ipf_v6dst; /* IPv6 dest address */
317 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */
318 uint8_t ipf_ecn; /* ECN info for the fragments */
319 uint8_t ipf_num_dups; /* Number of times dup frags recvd */
320 uint16_t ipf_checksum_flags; /* Hardware checksum flags */
321 uint32_t ipf_checksum; /* Partial checksum of fragment data */
322 } ipf_t;

324 /*
325 * IPv4 Fragments

new/usr/src/uts/common/inet/ip.h 6

326 */
327 #define IS_V4_FRAGMENT(ipha_fragment_offset_and_flags) \
328 (((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) || \
329 ((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0))

331 #define ipf_src V4_PART_OF_V6(ipf_v6src)
332 #define ipf_dst V4_PART_OF_V6(ipf_v6dst)

334 #endif /* _KERNEL */

336 /* ICMP types */
337 #define ICMP_ECHO_REPLY 0
338 #define ICMP_DEST_UNREACHABLE 3
339 #define ICMP_SOURCE_QUENCH 4
340 #define ICMP_REDIRECT 5
341 #define ICMP_ECHO_REQUEST 8
342 #define ICMP_ROUTER_ADVERTISEMENT 9
343 #define ICMP_ROUTER_SOLICITATION 10
344 #define ICMP_TIME_EXCEEDED 11
345 #define ICMP_PARAM_PROBLEM 12
346 #define ICMP_TIME_STAMP_REQUEST 13
347 #define ICMP_TIME_STAMP_REPLY 14
348 #define ICMP_INFO_REQUEST 15
349 #define ICMP_INFO_REPLY 16
350 #define ICMP_ADDRESS_MASK_REQUEST 17
351 #define ICMP_ADDRESS_MASK_REPLY 18

353 /* Evaluates to true if the ICMP type is an ICMP error */
354 #define ICMP_IS_ERROR(type) (\
355 (type) == ICMP_DEST_UNREACHABLE || \
356 (type) == ICMP_SOURCE_QUENCH || \
357 (type) == ICMP_TIME_EXCEEDED || \
358 (type) == ICMP_PARAM_PROBLEM)

360 /* ICMP_TIME_EXCEEDED codes */
361 #define ICMP_TTL_EXCEEDED 0
362 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1

364 /* ICMP_DEST_UNREACHABLE codes */
365 #define ICMP_NET_UNREACHABLE 0
366 #define ICMP_HOST_UNREACHABLE 1
367 #define ICMP_PROTOCOL_UNREACHABLE 2
368 #define ICMP_PORT_UNREACHABLE 3
369 #define ICMP_FRAGMENTATION_NEEDED 4
370 #define ICMP_SOURCE_ROUTE_FAILED 5
371 #define ICMP_DEST_NET_UNKNOWN 6
372 #define ICMP_DEST_HOST_UNKNOWN 7
373 #define ICMP_SRC_HOST_ISOLATED 8
374 #define ICMP_DEST_NET_UNREACH_ADMIN 9
375 #define ICMP_DEST_HOST_UNREACH_ADMIN 10
376 #define ICMP_DEST_NET_UNREACH_TOS 11
377 #define ICMP_DEST_HOST_UNREACH_TOS 12

379 /* ICMP Header Structure */
380 typedef struct icmph_s {
381 uint8_t icmph_type;
382 uint8_t icmph_code;
383 uint16_t icmph_checksum;
384 union {
385 struct { /* ECHO request/response structure */
386 uint16_t u_echo_ident;
387 uint16_t u_echo_seqnum;
388 } u_echo;
389 struct { /* Destination unreachable structure */
390 uint16_t u_du_zero;
391 uint16_t u_du_mtu;

new/usr/src/uts/common/inet/ip.h 7

392 } u_du;
393 struct { /* Parameter problem structure */
394 uint8_t u_pp_ptr;
395 uint8_t u_pp_rsvd[3];
396 } u_pp;
397 struct { /* Redirect structure */
398 ipaddr_t u_rd_gateway;
399 } u_rd;
400 } icmph_u;
401 } icmph_t;

403 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident
404 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum
405 #define icmph_du_zero icmph_u.u_du.u_du_zero
406 #define icmph_du_mtu icmph_u.u_du.u_du_mtu
407 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr
408 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway

410 #define ICMPH_SIZE 8

412 /*
413 * Minimum length of transport layer header included in an ICMP error
414 * message for it to be considered valid.
415 */
416 #define ICMP_MIN_TP_HDR_LEN 8

418 /* Aligned IP header */
419 typedef struct ipha_s {
420 uint8_t ipha_version_and_hdr_length;
421 uint8_t ipha_type_of_service;
422 uint16_t ipha_length;
423 uint16_t ipha_ident;
424 uint16_t ipha_fragment_offset_and_flags;
425 uint8_t ipha_ttl;
426 uint8_t ipha_protocol;
427 uint16_t ipha_hdr_checksum;
428 ipaddr_t ipha_src;
429 ipaddr_t ipha_dst;
430 } ipha_t;

432 /*
433 * IP Flags
434 *
435 * Some of these constant names are copied for the DTrace IP provider in
436 * usr/src/lib/libdtrace/common/{ip.d.in, ip.sed.in}, which should be kept
437 * in sync.
438 */
439 #define IPH_DF 0x4000 /* Don’t fragment */
440 #define IPH_MF 0x2000 /* More fragments to come */
441 #define IPH_OFFSET 0x1FFF /* Where the offset lives */

443 /* Byte-order specific values */
444 #ifdef _BIG_ENDIAN
445 #define IPH_DF_HTONS 0x4000 /* Don’t fragment */
446 #define IPH_MF_HTONS 0x2000 /* More fragments to come */
447 #define IPH_OFFSET_HTONS 0x1FFF /* Where the offset lives */
448 #else
449 #define IPH_DF_HTONS 0x0040 /* Don’t fragment */
450 #define IPH_MF_HTONS 0x0020 /* More fragments to come */
451 #define IPH_OFFSET_HTONS 0xFF1F /* Where the offset lives */
452 #endif

454 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */
455 #define IPH_ECN_NECT 0x0 /* Not ECN-Capable Transport */
456 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */
457 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */

new/usr/src/uts/common/inet/ip.h 8

458 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */

460 struct ill_s;

462 typedef void ip_v6intfid_func_t(struct ill_s *, in6_addr_t *);
463 typedef void ip_v6mapinfo_func_t(struct ill_s *, uchar_t *, uchar_t *);
464 typedef void ip_v4mapinfo_func_t(struct ill_s *, uchar_t *, uchar_t *);

466 /* IP Mac info structure */
467 typedef struct ip_m_s {
468 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */
469 int ip_m_type; /* From <net/if_types.h> */
470 t_uscalar_t ip_m_ipv4sap;
471 t_uscalar_t ip_m_ipv6sap;
472 ip_v4mapinfo_func_t *ip_m_v4mapping;
473 ip_v6mapinfo_func_t *ip_m_v6mapping;
474 ip_v6intfid_func_t *ip_m_v6intfid;
475 ip_v6intfid_func_t *ip_m_v6destintfid;
476 } ip_m_t;

478 /*
479 * The following functions attempt to reduce the link layer dependency
480 * of the IP stack. The current set of link specific operations are:
481 * a. map from IPv4 class D (224.0/4) multicast address range or the
482 * IPv6 multicast address range (ff00::/8) to the link layer multicast
483 * address.
484 * b. derive the default IPv6 interface identifier from the interface.
485 * c. derive the default IPv6 destination interface identifier from
486 * the interface (point-to-point only).
487 */
488 extern void ip_mcast_mapping(struct ill_s *, uchar_t *, uchar_t *);
489 /* ip_m_v6*intfid return void and are never NULL */
490 #define MEDIA_V6INTFID(ip_m, ill, v6ptr) (ip_m)->ip_m_v6intfid(ill, v6ptr)
491 #define MEDIA_V6DESTINTFID(ip_m, ill, v6ptr) \
492 (ip_m)->ip_m_v6destintfid(ill, v6ptr)

494 /* Router entry types */
495 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */
496 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */
497 #define IRE_LOCAL 0x0004 /* Route entry for local address */
498 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */
499 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */
500 #ifndef _KERNEL
501 /* Keep so user-level still compiles */
502 #define IRE_CACHE 0x0020 /* Cached Route entry */
503 #endif
504 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */
505 /* net without any address mapping. */
506 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */
507 /* net with resolver. */
508 #define IRE_HOST 0x0100 /* Host route entry */
509 /* Keep so user-level still compiles */
510 #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */
511 #define IRE_IF_CLONE 0x0400 /* Per host clone of IRE_IF */
512 #define IRE_MULTICAST 0x0800 /* Special - not in table */
513 #define IRE_NOROUTE 0x1000 /* Special - not in table */

515 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER)

517 #define IRE_IF_ALL (IRE_IF_NORESOLVER | IRE_IF_RESOLVER | \
518 IRE_IF_CLONE)
519 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST)
520 #define IRE_OFFLINK IRE_OFFSUBNET
521 /*
522 * Note that we view IRE_NOROUTE as ONLINK since we can "send" to them without
523 * going through a router; the result of sending will be an error/icmp error.

new/usr/src/uts/common/inet/ip.h 9

524 */
525 #define IRE_ONLINK (IRE_IF_ALL|IRE_LOCAL|IRE_LOOPBACK| \
526 IRE_BROADCAST|IRE_MULTICAST|IRE_NOROUTE)

528 /* Arguments to ire_flush_cache() */
529 #define IRE_FLUSH_DELETE 0
530 #define IRE_FLUSH_ADD 1
531 #define IRE_FLUSH_GWCHANGE 2

533 /*
534 * Flags to ire_route_recursive
535 */
536 #define IRR_NONE 0
537 #define IRR_ALLOCATE 1 /* OK to allocate IRE_IF_CLONE */
538 #define IRR_INCOMPLETE 2 /* OK to return incomplete chain */

540 /*
541 * Open/close synchronization flags.
542 * These are kept in a separate field in the conn and the synchronization
543 * depends on the atomic 32 bit access to that field.
544 */
545 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */
546 #define CONN_CONDEMNED 0x02 /* conn is closing, no more refs */
547 #define CONN_INCIPIENT 0x04 /* conn not yet visible, no refs */
548 #define CONN_QUIESCED 0x08 /* conn is now quiescent */
549 #define CONN_UPDATE_ILL 0x10 /* conn_update_ill in progress */

551 /*
552 * Flags for dce_flags field. Specifies which information has been set.
553 * dce_ident is always present, but the other ones are identified by the flags.
554 */
555 #define DCEF_DEFAULT 0x0001 /* Default DCE - no pmtu or uinfo */
556 #define DCEF_PMTU 0x0002 /* Different than interface MTU */
557 #define DCEF_UINFO 0x0004 /* dce_uinfo set */
558 #define DCEF_TOO_SMALL_PMTU 0x0008 /* Smaller than IPv4/IPv6 MIN */

560 #ifdef _KERNEL
561 /*
562 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2)
563 */
564 #define MAX_FILTER_SIZE 64

566 typedef struct slist_s {
567 int sl_numsrc;
568 in6_addr_t sl_addr[MAX_FILTER_SIZE];
569 } slist_t;

571 /*
572 * Following struct is used to maintain retransmission state for
573 * a multicast group. One rtx_state_t struct is an in-line field
574 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are
575 * alloc’d as needed.
576 */
577 typedef struct rtx_state_s {
578 uint_t rtx_timer; /* retrans timer */
579 int rtx_cnt; /* retrans count */
580 int rtx_fmode_cnt; /* retrans count for fmode change */
581 slist_t *rtx_allow;
582 slist_t *rtx_block;
583 } rtx_state_t;

585 /*
586 * Used to construct list of multicast address records that will be
587 * sent in a single listener report.
588 */
589 typedef struct mrec_s {

new/usr/src/uts/common/inet/ip.h 10

590 struct mrec_s *mrec_next;
591 uint8_t mrec_type;
592 uint8_t mrec_auxlen; /* currently unused */
593 in6_addr_t mrec_group;
594 slist_t mrec_srcs;
595 } mrec_t;

597 /* Group membership list per upper conn */

599 /*
600 * We record the multicast information from the socket option in
601 * ilg_ifaddr/ilg_ifindex. This allows rejoining the group in the case when
602 * the ifaddr (or ifindex) disappears and later reappears, potentially on
603 * a different ill. The IPv6 multicast socket options and ioctls all specify
604 * the interface using an ifindex. For IPv4 some socket options/ioctls use
605 * the interface address and others use the index. We record here the method
606 * that was actually used (and leave the other of ilg_ifaddr or ilg_ifindex)
607 * at zero so that we can rejoin the way the application intended.
608 *
609 * We track the ill on which we will or already have joined an ilm using
610 * ilg_ill. When we have succeeded joining the ilm and have a refhold on it
611 * then we set ilg_ilm. Thus intentionally there is a window where ilg_ill is
612 * set and ilg_ilm is not set. This allows clearing ilg_ill as a signal that
613 * the ill is being unplumbed and the ilm should be discarded.
614 *
615 * ilg records the state of multicast memberships of a socket end point.
616 * ilm records the state of multicast memberships with the driver and is
617 * maintained per interface.
618 *
619 * The ilg state is protected by conn_ilg_lock.
620 * The ilg will not be freed until ilg_refcnt drops to zero.
621 */
622 typedef struct ilg_s {
623 struct ilg_s *ilg_next;
624 struct ilg_s **ilg_ptpn;
625 struct conn_s *ilg_connp; /* Back pointer to get lock */
626 in6_addr_t ilg_v6group;
627 ipaddr_t ilg_ifaddr; /* For some IPv4 cases */
628 uint_t ilg_ifindex; /* IPv6 and some other IPv4 cases */
629 struct ill_s *ilg_ill; /* Where ilm is joined. No refhold */
630 struct ilm_s *ilg_ilm; /* With ilm_refhold */
631 uint_t ilg_refcnt;
632 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
633 slist_t *ilg_filter;
634 boolean_t ilg_condemned; /* Conceptually deleted */
635 } ilg_t;

637 /*
638 * Multicast address list entry for ill.
639 * ilm_ill is used by IPv4 and IPv6
640 *
641 * The ilm state (and other multicast state on the ill) is protected by
642 * ill_mcast_lock. Operations that change state on both an ilg and ilm
643 * in addition use ill_mcast_serializer to ensure that we can’t have
644 * interleaving between e.g., add and delete operations for the same conn_t,
645 * group, and ill. The ill_mcast_serializer is also used to ensure that
646 * multicast group joins do not occur on an interface that is in the process
647 * of joining an IPMP group.
648 *
649 * The comment below (and for other netstack_t references) refers
650 * to the fact that we only do netstack_hold in particular cases,
651 * such as the references from open endpoints (ill_t and conn_t’s
652 * pointers). Internally within IP we rely on IP’s ability to cleanup e.g.
653 * ire_t’s when an ill goes away.
654 */
655 typedef struct ilm_s {

new/usr/src/uts/common/inet/ip.h 11

656 in6_addr_t ilm_v6addr;
657 int ilm_refcnt;
658 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */
659 struct ilm_s *ilm_next; /* Linked list for each ill */
660 uint_t ilm_state; /* state of the membership */
661 struct ill_s *ilm_ill; /* Back pointer to ill - ill_ilm_cnt */
662 zoneid_t ilm_zoneid;
663 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */
664 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
665 slist_t *ilm_filter; /* source filter list */
666 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */
667 rtx_state_t ilm_rtx; /* SCR retransmission state */
668 ipaddr_t ilm_ifaddr; /* For IPv4 netstat */
669 ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */
670 } ilm_t;

672 #define ilm_addr V4_PART_OF_V6(ilm_v6addr)

674 /*
675 * Soft reference to an IPsec SA.
676 *
677 * On relative terms, conn’s can be persistent (living as long as the
678 * processes which create them), while SA’s are ephemeral (dying when
679 * they hit their time-based or byte-based lifetimes).
680 *
681 * We could hold a hard reference to an SA from an ipsec_latch_t,
682 * but this would cause expired SA’s to linger for a potentially
683 * unbounded time.
684 *
685 * Instead, we remember the hash bucket number and bucket generation
686 * in addition to the pointer. The bucket generation is incremented on
687 * each deletion.
688 */
689 typedef struct ipsa_ref_s
690 {
691 struct ipsa_s *ipsr_sa;
692 struct isaf_s *ipsr_bucket;
693 uint64_t ipsr_gen;
694 } ipsa_ref_t;

696 /*
697 * IPsec "latching" state.
698 *
699 * In the presence of IPsec policy, fully-bound conn’s bind a connection
700 * to more than just the 5-tuple, but also a specific IPsec action and
701 * identity-pair.
702 * The identity pair is accessed from both the receive and transmit side
703 * hence it is maintained in the ipsec_latch_t structure. conn_latch and
704 * ixa_ipsec_latch points to it.
705 * The policy and actions are stored in conn_latch_in_policy and
706 * conn_latch_in_action for the inbound side, and in ixa_ipsec_policy and
707 * ixa_ipsec_action for the transmit side.
708 *
709 * As an optimization, we also cache soft references to IPsec SA’s in
710 * ip_xmit_attr_t so that we can fast-path around most of the work needed for
711 * outbound IPsec SA selection.
712 */
713 typedef struct ipsec_latch_s
714 {
715 kmutex_t ipl_lock;
716 uint32_t ipl_refcnt;

718 struct ipsid_s *ipl_local_cid;
719 struct ipsid_s *ipl_remote_cid;
720 unsigned int
721 ipl_ids_latched : 1,

new/usr/src/uts/common/inet/ip.h 12

723 ipl_pad_to_bit_31 : 31;
724 } ipsec_latch_t;

726 #define IPLATCH_REFHOLD(ipl) { \
727 atomic_add_32(&(ipl)->ipl_refcnt, 1); \
728 ASSERT((ipl)->ipl_refcnt != 0); \
729 }

731 #define IPLATCH_REFRELE(ipl) { \
732 ASSERT((ipl)->ipl_refcnt != 0); \
733 membar_exit(); \
734 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \
735 iplatch_free(ipl); \
736 }

738 /*
739 * peer identity structure.
740 */
741 typedef struct conn_s conn_t;

743 /*
744 * This is used to match an inbound/outbound datagram with policy.
745 */
746 typedef struct ipsec_selector {
747 in6_addr_t ips_local_addr_v6;
748 in6_addr_t ips_remote_addr_v6;
749 uint16_t ips_local_port;
750 uint16_t ips_remote_port;
751 uint8_t ips_icmp_type;
752 uint8_t ips_icmp_code;
753 uint8_t ips_protocol;
754 uint8_t ips_isv4 : 1,
755 ips_is_icmp_inv_acq: 1;
756 } ipsec_selector_t;

758 /*
759 * Note that we put v4 addresses in the *first* 32-bit word of the
760 * selector rather than the last to simplify the prefix match/mask code
761 * in spd.c
762 */
763 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0]
764 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0]

766 /* Values used in IP by IPSEC Code */
767 #define IPSEC_OUTBOUND B_TRUE
768 #define IPSEC_INBOUND B_FALSE

770 /*
771 * There are two variants in policy failures. The packet may come in
772 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not
773 * have the desired level of protection (IPSEC_POLICY_MISMATCH).
774 */
775 #define IPSEC_POLICY_NOT_NEEDED 0
776 #define IPSEC_POLICY_MISMATCH 1
777 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2
778 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3
779 #define IPSEC_POLICY_SE_NOT_NEEDED 4
780 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */

782 /*
783 * Check with IPSEC inbound policy if
784 *
785 * 1) per-socket policy is present - indicated by conn_in_enforce_policy.
786 * 2) Or if we have not cached policy on the conn and the global policy is
787 * non-empty.

new/usr/src/uts/common/inet/ip.h 13

788 */
789 #define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \
790 ((connp)->conn_in_enforce_policy || \
791 (!((connp)->conn_policy_cached) && \
792 (ipss)->ipsec_inbound_v4_policy_present))

794 #define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \
795 ((connp)->conn_in_enforce_policy || \
796 (!(connp)->conn_policy_cached && \
797 (ipss)->ipsec_inbound_v6_policy_present))

799 #define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \
800 ((connp)->conn_out_enforce_policy || \
801 (!((connp)->conn_policy_cached) && \
802 (ipss)->ipsec_outbound_v4_policy_present))

804 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \
805 ((connp)->conn_out_enforce_policy || \
806 (!(connp)->conn_policy_cached && \
807 (ipss)->ipsec_outbound_v6_policy_present))

809 /*
810 * Information cached in IRE for upper layer protocol (ULP).
811 */
812 typedef struct iulp_s {
813 boolean_t iulp_set; /* Is any metric set? */
814 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */
815 clock_t iulp_rtt; /* Guestimate in millisecs. */
816 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */
817 uint32_t iulp_spipe; /* Send pipe size. */
818 uint32_t iulp_rpipe; /* Receive pipe size. */
819 uint32_t iulp_rtomax; /* Max round trip timeout. */
820 uint32_t iulp_sack; /* Use SACK option (TCP)? */
821 uint32_t iulp_mtu; /* Setable with routing sockets */

823 uint32_t
824 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */
825 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */
826 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */
827 iulp_pmtud_ok : 1, /* Enable PMTUd? */

829 /* These three are passed out by ip_set_destination */
830 iulp_localnet: 1, /* IRE_ONLINK */
831 iulp_loopback: 1, /* IRE_LOOPBACK */
832 iulp_local: 1, /* IRE_LOCAL */

834 iulp_not_used : 25;
835 } iulp_t;

837 /*
838 * The conn drain list structure (idl_t), protected by idl_lock. Each conn_t
839 * inserted in the list points back at this idl_t using conn_idl, and is
840 * chained by conn_drain_next and conn_drain_prev, which are also protected by
841 * idl_lock. When flow control is relieved, either ip_wsrv() (STREAMS) or
842 * ill_flow_enable() (non-STREAMS) will call conn_drain().
843 *
844 * The conn drain list, idl_t, itself is part of tx cookie list structure.
845 * A tx cookie list points to a blocked Tx ring and contains the list of
846 * all conn’s that are blocked due to the flow-controlled Tx ring (via
847 * the idl drain list). Note that a link can have multiple Tx rings. The
848 * drain list will store the conn’s blocked due to Tx ring being flow
849 * controlled.
850 */

852 typedef uintptr_t ip_mac_tx_cookie_t;
853 typedef struct idl_s idl_t;

new/usr/src/uts/common/inet/ip.h 14

854 typedef struct idl_tx_list_s idl_tx_list_t;

856 struct idl_tx_list_s {
857 ip_mac_tx_cookie_t txl_cookie;
858 kmutex_t txl_lock; /* Lock for this list */
859 idl_t *txl_drain_list;
860 int txl_drain_index;
861 };

863 struct idl_s {
864 conn_t *idl_conn; /* Head of drain list */
865 kmutex_t idl_lock; /* Lock for this list */
866 idl_tx_list_t *idl_itl;
867 };

869 /*
870 * Interface route structure which holds the necessary information to recreate
871 * routes that are tied to an interface i.e. have ire_ill set.
872 *
873 * These routes which were initially created via a routing socket or via the
874 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be
875 * traditional interface routes. When an ill comes back up after being
876 * down, this information will be used to recreate the routes. These
877 * are part of an mblk_t chain that hangs off of the ILL (ill_saved_ire_mp).
878 */
879 typedef struct ifrt_s {
880 ushort_t ifrt_type; /* Type of IRE */
881 in6_addr_t ifrt_v6addr; /* Address IRE represents. */
882 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFLINK */
883 in6_addr_t ifrt_v6setsrc_addr; /* Src addr if RTF_SETSRC */
884 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */
885 uint32_t ifrt_flags; /* flags related to route */
886 iulp_t ifrt_metrics; /* Routing socket metrics */
887 zoneid_t ifrt_zoneid; /* zoneid for route */
888 } ifrt_t;

890 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr)
891 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr)
892 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask)
893 #define ifrt_setsrc_addr V4_PART_OF_V6(ifrt_v6setsrc_addr)

895 /* Number of IP addresses that can be hosted on a physical interface */
896 #define MAX_ADDRS_PER_IF 8192
897 /*
898 * Number of Source addresses to be considered for source address
899 * selection. Used by ipif_select_source_v4/v6.
900 */
901 #define MAX_IPIF_SELECT_SOURCE 50

903 #ifdef IP_DEBUG
904 /*
905 * Trace refholds and refreles for debugging.
906 */
907 #define TR_STACK_DEPTH 14
908 typedef struct tr_buf_s {
909 int tr_depth;
910 clock_t tr_time;
911 pc_t tr_stack[TR_STACK_DEPTH];
912 } tr_buf_t;

914 typedef struct th_trace_s {
915 int th_refcnt;
916 uint_t th_trace_lastref;
917 kthread_t *th_id;
918 #define TR_BUF_MAX 38
919 tr_buf_t th_trbuf[TR_BUF_MAX];

new/usr/src/uts/common/inet/ip.h 15

920 } th_trace_t;

922 typedef struct th_hash_s {
923 list_node_t thh_link;
924 mod_hash_t *thh_hash;
925 ip_stack_t *thh_ipst;
926 } th_hash_t;
927 #endif

929 /* The following are ipif_state_flags */
930 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */
931 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */
932 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */

934 /* IP interface structure, one per local address */
935 typedef struct ipif_s {
936 struct ipif_s *ipif_next;
937 struct ill_s *ipif_ill; /* Back pointer to our ill */
938 int ipif_id; /* Logical unit number */
939 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */
940 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */
941 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */
942 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */
943 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */
944 uint64_t ipif_flags; /* Interface flags. */
945 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */

947 /*
948 * The packet count in the ipif contain the sum of the
949 * packet counts in dead IRE_LOCAL/LOOPBACK for this ipif.
950 */
951 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */

953 /* Exclusive bit fields, protected by ipsq_t */
954 unsigned int
955 ipif_was_up : 1, /* ipif was up before */
956 ipif_addr_ready : 1, /* DAD is done */
957 ipif_was_dup : 1, /* DAD had failed */
958 ipif_added_nce : 1, /* nce added for local address */

960 ipif_pad_to_31 : 28;

962 ilm_t *ipif_allhosts_ilm; /* For all-nodes join */
963 ilm_t *ipif_solmulti_ilm; /* For IPv6 solicited multicast join */

965 uint_t ipif_seqid; /* unique index across all ills */
966 uint_t ipif_state_flags; /* See IPIF_* flag defs above */
967 uint_t ipif_refcnt; /* active consistent reader cnt */

969 zoneid_t ipif_zoneid; /* zone ID number */
970 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */
971 boolean_t ipif_trace_disable; /* True when alloc fails */
972 /*
973 * For an IPMP interface, ipif_bound_ill tracks the ill whose hardware
974 * information this ipif is associated with via ARP/NDP. We can use
975 * an ill pointer (rather than an index) because only ills that are
976 * part of a group will be pointed to, and an ill cannot disappear
977 * while it’s in a group.
978 */
979 struct ill_s *ipif_bound_ill;
980 struct ipif_s *ipif_bound_next; /* bound ipif chain */
981 boolean_t ipif_bound; /* B_TRUE if we successfully bound */

983 struct ire_s *ipif_ire_local; /* Our IRE_LOCAL or LOOPBACK */
984 struct ire_s *ipif_ire_if; /* Our IRE_INTERFACE */
985 } ipif_t;

new/usr/src/uts/common/inet/ip.h 16

987 /*
988 * The following table lists the protection levels of the various members
989 * of the ipif_t. The following notation is used.
990 *
991 * Write once - Written to only once at the time of bringing up
992 * the interface and can be safely read after the bringup without any lock.
993 *
994 * ipsq - Need to execute in the ipsq to perform the indicated access.
995 *
996 * ill_lock - Need to hold this mutex to perform the indicated access.
997 *
998 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or
999 * write access respectively.

1000 *
1001 * down ill - Written to only when the ill is down (i.e all ipifs are down)
1002 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up)
1003 *
1004 * Table of ipif_t members and their protection
1005 *
1006 * ipif_next ipsq + ill_lock + ipsq OR ill_lock OR
1007 * ill_g_lock ill_g_lock
1008 * ipif_ill ipsq + down ipif write once
1009 * ipif_id ipsq + down ipif write once
1010 * ipif_v6lcl_addr ipsq + down ipif up ipif
1011 * ipif_v6subnet ipsq + down ipif up ipif
1012 * ipif_v6net_mask ipsq + down ipif up ipif
1013 *
1014 * ipif_v6brd_addr
1015 * ipif_v6pp_dst_addr
1016 * ipif_flags ill_lock ill_lock
1017 * ipif_ire_type ipsq + down ill up ill
1018 *
1019 * ipif_ib_pkt_count Approx
1020 *
1021 * bit fields ill_lock ill_lock
1022 *
1023 * ipif_allhosts_ilm ipsq ipsq
1024 * ipif_solmulti_ilm ipsq ipsq
1025 *
1026 * ipif_seqid ipsq Write once
1027 *
1028 * ipif_state_flags ill_lock ill_lock
1029 * ipif_refcnt ill_lock ill_lock
1030 * ipif_bound_ill ipsq + ipmp_lock ipsq OR ipmp_lock
1031 * ipif_bound_next ipsq ipsq
1032 * ipif_bound ipsq ipsq
1033 *
1034 * ipif_ire_local ipsq + ips_ill_g_lock ipsq OR ips_ill_g_lock
1035 * ipif_ire_if ipsq + ips_ill_g_lock ipsq OR ips_ill_g_lock
1036 */

1038 /*
1039 * Return values from ip_laddr_verify_{v4,v6}
1040 */
1041 typedef enum { IPVL_UNICAST_UP, IPVL_UNICAST_DOWN, IPVL_MCAST, IPVL_BCAST,
1042 IPVL_BAD} ip_laddr_t;

1045 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1))

1047 #ifdef DEBUG
1048 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif)
1049 #define ILL_TRACE_REF(ill) ill_trace_ref(ill)
1050 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif)
1051 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill)

new/usr/src/uts/common/inet/ip.h 17

1052 #else
1053 #define IPIF_TRACE_REF(ipif)
1054 #define ILL_TRACE_REF(ill)
1055 #define IPIF_UNTRACE_REF(ipif)
1056 #define ILL_UNTRACE_REF(ill)
1057 #endif

1059 /* IPv4 compatibility macros */
1060 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr)
1061 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet)
1062 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask)
1063 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr)
1064 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr)

1066 /* Macros for easy backreferences to the ill. */
1067 #define ipif_isv6 ipif_ill->ill_isv6

1069 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */

1071 /*
1072 * mode value for ip_ioctl_finish for finishing an ioctl
1073 */
1074 #define CONN_CLOSE 1 /* No mi_copy */
1075 #define COPYOUT 2 /* do an mi_copyout if needed */
1076 #define NO_COPYOUT 3 /* do an mi_copy_done */
1077 #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT)

1079 /*
1080 * The IP-MT design revolves around the serialization objects ipsq_t (IPSQ)
1081 * and ipxop_t (exclusive operation or "xop"). Becoming "writer" on an IPSQ
1082 * ensures that no other threads can become "writer" on any IPSQs sharing that
1083 * IPSQ’s xop until the writer thread is done.
1084 *
1085 * Each phyint points to one IPSQ that remains fixed over the phyint’s life.
1086 * Each IPSQ points to one xop that can change over the IPSQ’s life. If a
1087 * phyint is *not* in an IPMP group, then its IPSQ will refer to the IPSQ’s
1088 * "own" xop (ipsq_ownxop). If a phyint *is* part of an IPMP group, then its
1089 * IPSQ will refer to the "group" xop, which is shorthand for the xop of the
1090 * IPSQ of the IPMP meta-interface’s phyint. Thus, all phyints that are part
1091 * of the same IPMP group will have their IPSQ’s point to the group xop, and
1092 * thus becoming "writer" on any phyint in the group will prevent any other
1093 * writer on any other phyint in the group. All IPSQs sharing the same xop
1094 * are chained together through ipsq_next (in the degenerate common case,
1095 * ipsq_next simply refers to itself). Note that the group xop is guaranteed
1096 * to exist at least as long as there are members in the group, since the IPMP
1097 * meta-interface can only be destroyed if the group is empty.
1098 *
1099 * Incoming exclusive operation requests are enqueued on the IPSQ they arrived
1100 * on rather than the xop. This makes switching xop’s (as would happen when a
1101 * phyint leaves an IPMP group) simple, because after the phyint leaves the
1102 * group, any operations enqueued on its IPSQ can be safely processed with
1103 * respect to its new xop, and any operations enqueued on the IPSQs of its
1104 * former group can be processed with respect to their existing group xop.
1105 * Even so, switching xops is a subtle dance; see ipsq_dq() for details.
1106 *
1107 * An IPSQ’s "own" xop is embedded within the IPSQ itself since they have have
1108 * identical lifetimes, and because doing so simplifies pointer management.
1109 * While each phyint and IPSQ point to each other, it is not possible to free
1110 * the IPSQ when the phyint is freed, since we may still *inside* the IPSQ
1111 * when the phyint is being freed. Thus, ipsq_phyint is set to NULL when the
1112 * phyint is freed, and the IPSQ free is later done in ipsq_exit().
1113 *
1114 * ipsq_t synchronization: read write
1115 *
1116 * ipsq_xopq_mphead ipx_lock ipx_lock
1117 * ipsq_xopq_mptail ipx_lock ipx_lock

new/usr/src/uts/common/inet/ip.h 18

1118 * ipsq_xop_switch_mp ipsq_lock ipsq_lock
1119 * ipsq_phyint write once write once
1120 * ipsq_next RW_READER ill_g_lock RW_WRITER ill_g_lock
1121 * ipsq_xop ipsq_lock or ipsq ipsq_lock + ipsq
1122 * ipsq_swxop ipsq ipsq
1123 * ipsq_ownxop see ipxop_t see ipxop_t
1124 * ipsq_ipst write once write once
1125 *
1126 * ipxop_t synchronization: read write
1127 *
1128 * ipx_writer ipx_lock ipx_lock
1129 * ipx_xop_queued ipx_lock ipx_lock
1130 * ipx_mphead ipx_lock ipx_lock
1131 * ipx_mptail ipx_lock ipx_lock
1132 * ipx_ipsq write once write once
1133 * ips_ipsq_queued ipx_lock ipx_lock
1134 * ipx_waitfor ipsq or ipx_lock ipsq + ipx_lock
1135 * ipx_reentry_cnt ipsq or ipx_lock ipsq + ipx_lock
1136 * ipx_current_done ipsq ipsq
1137 * ipx_current_ioctl ipsq ipsq
1138 * ipx_current_ipif ipsq or ipx_lock ipsq + ipx_lock
1139 * ipx_pending_ipif ipsq or ipx_lock ipsq + ipx_lock
1140 * ipx_pending_mp ipsq or ipx_lock ipsq + ipx_lock
1141 * ipx_forced ipsq ipsq
1142 * ipx_depth ipsq ipsq
1143 * ipx_stack ipsq ipsq
1144 */
1145 typedef struct ipxop_s {
1146 kmutex_t ipx_lock; /* see above */
1147 kthread_t *ipx_writer; /* current owner */
1148 mblk_t *ipx_mphead; /* messages tied to this op */
1149 mblk_t *ipx_mptail;
1150 struct ipsq_s *ipx_ipsq; /* associated ipsq */
1151 boolean_t ipx_ipsq_queued; /* ipsq using xop has queued op */
1152 int ipx_waitfor; /* waiting; values encoded below */
1153 int ipx_reentry_cnt;
1154 boolean_t ipx_current_done; /* is the current operation done? */
1155 int ipx_current_ioctl; /* current ioctl, or 0 if no ioctl */
1156 ipif_t *ipx_current_ipif; /* ipif for current op */
1157 ipif_t *ipx_pending_ipif; /* ipif for ipx_pending_mp */
1158 mblk_t *ipx_pending_mp; /* current ioctl mp while waiting */
1159 boolean_t ipx_forced; /* debugging aid */
1160 #ifdef DEBUG
1161 int ipx_depth; /* debugging aid */
1162 #define IPX_STACK_DEPTH 15
1163 pc_t ipx_stack[IPX_STACK_DEPTH]; /* debugging aid */
1164 #endif
1165 } ipxop_t;

1167 typedef struct ipsq_s {
1168 kmutex_t ipsq_lock; /* see above */
1169 mblk_t *ipsq_switch_mp; /* op to handle right after switch */
1170 mblk_t *ipsq_xopq_mphead; /* list of excl ops (mostly ioctls) */
1171 mblk_t *ipsq_xopq_mptail;
1172 struct phyint *ipsq_phyint; /* associated phyint */
1173 struct ipsq_s *ipsq_next; /* next ipsq sharing ipsq_xop */
1174 struct ipxop_s *ipsq_xop; /* current xop synchronization info */
1175 struct ipxop_s *ipsq_swxop; /* switch xop to on ipsq_exit() */
1176 struct ipxop_s ipsq_ownxop; /* our own xop (may not be in-use) */
1177 ip_stack_t *ipsq_ipst; /* does not have a netstack_hold */
1178 } ipsq_t;

1180 /*
1181 * ipx_waitfor values:
1182 */
1183 enum {

new/usr/src/uts/common/inet/ip.h 19

1184 IPIF_DOWN = 1, /* ipif_down() waiting for refcnts to drop */
1185 ILL_DOWN, /* ill_down() waiting for refcnts to drop */
1186 IPIF_FREE, /* ipif_free() waiting for refcnts to drop */
1187 ILL_FREE /* ill unplumb waiting for refcnts to drop */
1188 };

1190 /* Operation types for ipsq_try_enter() */
1191 #define CUR_OP 0 /* request writer within current operation */
1192 #define NEW_OP 1 /* request writer for a new operation */
1193 #define SWITCH_OP 2 /* request writer once IPSQ XOP switches */

1195 /*
1196 * Kstats tracked on each IPMP meta-interface. Order here must match
1197 * ipmp_kstats[] in ip/ipmp.c.
1198 */
1199 enum {
1200 IPMP_KSTAT_OBYTES, IPMP_KSTAT_OBYTES64, IPMP_KSTAT_RBYTES,
1201 IPMP_KSTAT_RBYTES64, IPMP_KSTAT_OPACKETS, IPMP_KSTAT_OPACKETS64,
1202 IPMP_KSTAT_OERRORS, IPMP_KSTAT_IPACKETS, IPMP_KSTAT_IPACKETS64,
1203 IPMP_KSTAT_IERRORS, IPMP_KSTAT_MULTIRCV, IPMP_KSTAT_MULTIXMT,
1204 IPMP_KSTAT_BRDCSTRCV, IPMP_KSTAT_BRDCSTXMT, IPMP_KSTAT_LINK_UP,
1205 IPMP_KSTAT_MAX /* keep last */
1206 };

1208 /*
1209 * phyint represents state that is common to both IPv4 and IPv6 interfaces.
1210 * There is a separate ill_t representing IPv4 and IPv6 which has a
1211 * backpointer to the phyint structure for accessing common state.
1212 */
1213 typedef struct phyint {
1214 struct ill_s *phyint_illv4;
1215 struct ill_s *phyint_illv6;
1216 uint_t phyint_ifindex; /* SIOCSLIFINDEX */
1217 uint64_t phyint_flags;
1218 avl_node_t phyint_avl_by_index; /* avl tree by index */
1219 avl_node_t phyint_avl_by_name; /* avl tree by name */
1220 kmutex_t phyint_lock;
1221 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */
1222 struct ipmp_grp_s *phyint_grp; /* associated IPMP group */
1223 char phyint_name[LIFNAMSIZ]; /* physical interface name */
1224 uint64_t phyint_kstats0[IPMP_KSTAT_MAX]; /* baseline kstats */
1225 } phyint_t;

1227 #define CACHE_ALIGN_SIZE 64
1228 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\
1229 CACHE_ALIGN_SIZE)
1230 struct _phyint_list_s_ {
1231 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */
1232 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */
1233 };

1235 typedef union phyint_list_u {
1236 struct _phyint_list_s_ phyint_list_s;
1237 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)];
1238 } phyint_list_t;

1240 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index
1241 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name

1243 /*
1244 * Fragmentation hash bucket
1245 */
1246 typedef struct ipfb_s {
1247 struct ipf_s *ipfb_ipf; /* List of ... */
1248 size_t ipfb_count; /* Count of bytes used by frag(s) */
1249 kmutex_t ipfb_lock; /* Protect all ipf in list */

new/usr/src/uts/common/inet/ip.h 20

1250 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */
1251 } ipfb_t;

1253 /*
1254 * IRE bucket structure. Usually there is an array of such structures,
1255 * each pointing to a linked list of ires. irb_refcnt counts the number
1256 * of walkers of a given hash bucket. Usually the reference count is
1257 * bumped up if the walker wants no IRES to be DELETED while walking the
1258 * list. Bumping up does not PREVENT ADDITION. This allows walking a given
1259 * hash bucket without stumbling up on a free pointer.
1260 *
1261 * irb_t structures in ip_ftable are dynamically allocated and freed.
1262 * In order to identify the irb_t structures that can be safely kmem_free’d
1263 * we need to ensure that
1264 * - the irb_refcnt is quiescent, indicating no other walkers,
1265 * - no other threads or ire’s are holding references to the irb,
1266 * i.e., irb_nire == 0,
1267 * - there are no active ire’s in the bucket, i.e., irb_ire_cnt == 0
1268 */
1269 typedef struct irb {
1270 struct ire_s *irb_ire; /* First ire in this bucket */
1271 /* Should be first in this struct */
1272 krwlock_t irb_lock; /* Protect this bucket */
1273 uint_t irb_refcnt; /* Protected by irb_lock */
1274 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */
1275 #define IRB_MARK_CONDEMNED 0x0001 /* Contains some IRE_IS_CONDEMNED */
1276 #define IRB_MARK_DYNAMIC 0x0002 /* Dynamically allocated */
1277 /* Once IPv6 uses radix then IRB_MARK_DYNAMIC will be always be set */
1278 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */
1279 int irb_nire; /* Num of ftable ire’s that ref irb */
1280 ip_stack_t *irb_ipst; /* Does not have a netstack_hold */
1281 } irb_t;

1283 /*
1284 * This is the structure used to store the multicast physical addresses
1285 * that an interface has joined.
1286 * The refcnt keeps track of the number of multicast IP addresses mapping
1287 * to a physical multicast address.
1288 */
1289 typedef struct multiphysaddr_s {
1290 struct multiphysaddr_s *mpa_next;
1291 char mpa_addr[IP_MAX_HW_LEN];
1292 int mpa_refcnt;
1293 } multiphysaddr_t;

1295 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb))

1297 /* Forward declarations */
1298 struct dce_s;
1299 typedef struct dce_s dce_t;
1300 struct ire_s;
1301 typedef struct ire_s ire_t;
1302 struct ncec_s;
1303 typedef struct ncec_s ncec_t;
1304 struct nce_s;
1305 typedef struct nce_s nce_t;
1306 struct ip_recv_attr_s;
1307 typedef struct ip_recv_attr_s ip_recv_attr_t;
1308 struct ip_xmit_attr_s;
1309 typedef struct ip_xmit_attr_s ip_xmit_attr_t;

1311 struct tsol_ire_gw_secattr_s;
1312 typedef struct tsol_ire_gw_secattr_s tsol_ire_gw_secattr_t;

1314 /*
1315 * This is a structure for a one-element route cache that is passed

new/usr/src/uts/common/inet/ip.h 21

1316 * by reference between ip_input and ill_inputfn.
1317 */
1318 typedef struct {
1319 ire_t *rtc_ire;
1320 ipaddr_t rtc_ipaddr;
1321 in6_addr_t rtc_ip6addr;
1322 } rtc_t;

1324 /*
1325 * Note: Temporarily use 64 bits, and will probably go back to 32 bits after
1326 * more cleanup work is done.
1327 */
1328 typedef uint64_t iaflags_t;

1330 /* The ill input function pointer type */
1331 typedef void (*pfillinput_t)(mblk_t *, void *, void *, ip_recv_attr_t *,
1332 rtc_t *);

1334 /* The ire receive function pointer type */
1335 typedef void (*pfirerecv_t)(ire_t *, mblk_t *, void *, ip_recv_attr_t *);

1337 /* The ire send and postfrag function pointer types */
1338 typedef int (*pfiresend_t)(ire_t *, mblk_t *, void *,
1339 ip_xmit_attr_t *, uint32_t *);
1340 typedef int (*pfirepostfrag_t)(mblk_t *, nce_t *, iaflags_t, uint_t, uint32_t,
1341 zoneid_t, zoneid_t, uintptr_t *);

1344 #define IP_V4_G_HEAD 0
1345 #define IP_V6_G_HEAD 1

1347 #define MAX_G_HEADS 2

1349 /*
1350 * unpadded ill_if structure
1351 */
1352 struct _ill_if_s_ {
1353 union ill_if_u *illif_next;
1354 union ill_if_u *illif_prev;
1355 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */
1356 vmem_t *illif_ppa_arena; /* ppa index space */
1357 uint16_t illif_mcast_v1; /* hints for */
1358 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */
1359 int illif_name_len; /* name length */
1360 char illif_name[LIFNAMSIZ]; /* name of interface type */
1361 };

1363 /* cache aligned ill_if structure */
1364 typedef union ill_if_u {
1365 struct _ill_if_s_ ill_if_s;
1366 char illif_filler[CACHE_ALIGN(_ill_if_s_)];
1367 } ill_if_t;

1369 #define illif_next ill_if_s.illif_next
1370 #define illif_prev ill_if_s.illif_prev
1371 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa
1372 #define illif_ppa_arena ill_if_s.illif_ppa_arena
1373 #define illif_mcast_v1 ill_if_s.illif_mcast_v1
1374 #define illif_mcast_v2 ill_if_s.illif_mcast_v2
1375 #define illif_name ill_if_s.illif_name
1376 #define illif_name_len ill_if_s.illif_name_len

1378 typedef struct ill_walk_context_s {
1379 int ctx_current_list; /* current list being searched */
1380 int ctx_last_list; /* last list to search */
1381 } ill_walk_context_t;

new/usr/src/uts/common/inet/ip.h 22

1383 /*
1384 * ill_g_heads structure, one for IPV4 and one for IPV6
1385 */
1386 struct _ill_g_head_s_ {
1387 ill_if_t *ill_g_list_head;
1388 ill_if_t *ill_g_list_tail;
1389 };

1391 typedef union ill_g_head_u {
1392 struct _ill_g_head_s_ ill_g_head_s;
1393 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)];
1394 } ill_g_head_t;

1396 #define ill_g_list_head ill_g_head_s.ill_g_list_head
1397 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail

1399 #define IP_V4_ILL_G_LIST(ipst) \
1400 (ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head
1401 #define IP_V6_ILL_G_LIST(ipst) \
1402 (ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head
1403 #define IP_VX_ILL_G_LIST(i, ipst) \
1404 (ipst)->ips_ill_g_heads[i].ill_g_list_head

1406 #define ILL_START_WALK_V4(ctx_ptr, ipst) \
1407 ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst)
1408 #define ILL_START_WALK_V6(ctx_ptr, ipst) \
1409 ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst)
1410 #define ILL_START_WALK_ALL(ctx_ptr, ipst) \
1411 ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst)

1413 /*
1414 * Capabilities, possible flags for ill_capabilities.
1415 */
1416 #define ILL_CAPAB_LSO 0x04 /* Large Send Offload */
1417 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */
1418 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */
1419 #define ILL_CAPAB_DLD 0x20 /* DLD capabilities */
1420 #define ILL_CAPAB_DLD_POLL 0x40 /* Polling */
1421 #define ILL_CAPAB_DLD_DIRECT 0x80 /* Direct function call */

1423 /*
1424 * Per-ill Hardware Checksumming capbilities.
1425 */
1426 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t;

1428 /*
1429 * Per-ill Zero-copy capabilities.
1430 */
1431 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t;

1433 /*
1434 * DLD capbilities.
1435 */
1436 typedef struct ill_dld_capab_s ill_dld_capab_t;

1438 /*
1439 * Per-ill polling resource map.
1440 */
1441 typedef struct ill_rx_ring ill_rx_ring_t;

1443 /*
1444 * Per-ill Large Send Offload capabilities.
1445 */
1446 typedef struct ill_lso_capab_s ill_lso_capab_t;

new/usr/src/uts/common/inet/ip.h 23

1448 /* The following are ill_state_flags */
1449 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */
1450 #define ILL_CONDEMNED 0x02 /* No more new ref’s to the ILL */
1451 #define ILL_DL_UNBIND_IN_PROGRESS 0x04 /* UNBIND_REQ is sent */
1452 /*
1453 * ILL_DOWN_IN_PROGRESS is set to ensure the following:
1454 * - no packets are sent to the driver after the DL_UNBIND_REQ is sent,
1455 * - no longstanding references will be acquired on objects that are being
1456 * brought down.
1457 */
1458 #define ILL_DOWN_IN_PROGRESS 0x08

1460 /* Is this an ILL whose source address is used by other ILL’s ? */
1461 #define IS_USESRC_ILL(ill) \
1462 (((ill)->ill_usesrc_ifindex == 0) && \
1463 ((ill)->ill_usesrc_grp_next != NULL))

1465 /* Is this a client/consumer of the usesrc ILL ? */
1466 #define IS_USESRC_CLI_ILL(ill) \
1467 (((ill)->ill_usesrc_ifindex != 0) && \
1468 ((ill)->ill_usesrc_grp_next != NULL))

1470 /* Is this an virtual network interface (vni) ILL ? */
1471 #define IS_VNI(ill) \
1472 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \
1473 PHYI_VIRTUAL)

1475 /* Is this a loopback ILL? */
1476 #define IS_LOOPBACK(ill) \
1477 ((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK)

1479 /* Is this an IPMP meta-interface ILL? */
1480 #define IS_IPMP(ill) \
1481 ((ill)->ill_phyint->phyint_flags & PHYI_IPMP)

1483 /* Is this ILL under an IPMP meta-interface? (aka "in a group?") */
1484 #define IS_UNDER_IPMP(ill) \
1485 ((ill)->ill_grp != NULL && !IS_IPMP(ill))

1487 /* Is ill1 in the same illgrp as ill2? */
1488 #define IS_IN_SAME_ILLGRP(ill1, ill2) \
1489 ((ill1)->ill_grp != NULL && ((ill1)->ill_grp == (ill2)->ill_grp))

1491 /* Is ill1 on the same LAN as ill2? */
1492 #define IS_ON_SAME_LAN(ill1, ill2) \
1493 ((ill1) == (ill2) || IS_IN_SAME_ILLGRP(ill1, ill2))

1495 #define ILL_OTHER(ill) \
1496 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \
1497 (ill)->ill_phyint->phyint_illv6)

1499 /*
1500 * IPMP group ILL state structure -- up to two per IPMP group (V4 and V6).
1501 * Created when the V4 and/or V6 IPMP meta-interface is I_PLINK’d. It is
1502 * guaranteed to persist while there are interfaces of that type in the group.
1503 * In general, most fields are accessed outside of the IPSQ (e.g., in the
1504 * datapath), and thus use locks in addition to the IPSQ for protection.
1505 *
1506 * synchronization: read write
1507 *
1508 * ig_if ipsq or ill_g_lock ipsq and ill_g_lock
1509 * ig_actif ipsq or ipmp_lock ipsq and ipmp_lock
1510 * ig_nactif ipsq or ipmp_lock ipsq and ipmp_lock
1511 * ig_next_ill ipsq or ipmp_lock ipsq and ipmp_lock
1512 * ig_ipmp_ill write once write once
1513 * ig_cast_ill ipsq or ipmp_lock ipsq and ipmp_lock

new/usr/src/uts/common/inet/ip.h 24

1514 * ig_arpent ipsq ipsq
1515 * ig_mtu ipsq ipsq
1516 * ig_mc_mtu ipsq ipsq
1517 */
1518 typedef struct ipmp_illgrp_s {
1519 list_t ig_if; /* list of all interfaces */
1520 list_t ig_actif; /* list of active interfaces */
1521 uint_t ig_nactif; /* number of active interfaces */
1522 struct ill_s *ig_next_ill; /* next active interface to use */
1523 struct ill_s *ig_ipmp_ill; /* backpointer to IPMP meta-interface */
1524 struct ill_s *ig_cast_ill; /* nominated ill for multi/broadcast */
1525 list_t ig_arpent; /* list of ARP entries */
1526 uint_t ig_mtu; /* ig_ipmp_ill->ill_mtu */
1527 uint_t ig_mc_mtu; /* ig_ipmp_ill->ill_mc_mtu */
1528 } ipmp_illgrp_t;

1530 /*
1531 * IPMP group state structure -- one per IPMP group. Created when the
1532 * IPMP meta-interface is plumbed; it is guaranteed to persist while there
1533 * are interfaces in it.
1534 *
1535 * ipmp_grp_t synchronization: read write
1536 *
1537 * gr_name ipmp_lock ipmp_lock
1538 * gr_ifname write once write once
1539 * gr_mactype ipmp_lock ipmp_lock
1540 * gr_phyint write once write once
1541 * gr_nif ipmp_lock ipmp_lock
1542 * gr_nactif ipsq ipsq
1543 * gr_v4 ipmp_lock ipmp_lock
1544 * gr_v6 ipmp_lock ipmp_lock
1545 * gr_nv4 ipmp_lock ipmp_lock
1546 * gr_nv6 ipmp_lock ipmp_lock
1547 * gr_pendv4 ipmp_lock ipmp_lock
1548 * gr_pendv6 ipmp_lock ipmp_lock
1549 * gr_linkdownmp ipsq ipsq
1550 * gr_ksp ipmp_lock ipmp_lock
1551 * gr_kstats0 atomic atomic
1552 */
1553 typedef struct ipmp_grp_s {
1554 char gr_name[LIFGRNAMSIZ]; /* group name */
1555 char gr_ifname[LIFNAMSIZ]; /* interface name */
1556 t_uscalar_t gr_mactype; /* DLPI mactype of group */
1557 phyint_t *gr_phyint; /* IPMP group phyint */
1558 uint_t gr_nif; /* number of interfaces in group */
1559 uint_t gr_nactif; /* number of active interfaces */
1560 ipmp_illgrp_t *gr_v4; /* V4 group information */
1561 ipmp_illgrp_t *gr_v6; /* V6 group information */
1562 uint_t gr_nv4; /* number of ills in V4 group */
1563 uint_t gr_nv6; /* number of ills in V6 group */
1564 uint_t gr_pendv4; /* number of pending ills in V4 group */
1565 uint_t gr_pendv6; /* number of pending ills in V6 group */
1566 mblk_t *gr_linkdownmp; /* message used to bring link down */
1567 kstat_t *gr_ksp; /* group kstat pointer */
1568 uint64_t gr_kstats0[IPMP_KSTAT_MAX]; /* baseline group kstats */
1569 } ipmp_grp_t;

1571 /*
1572 * IPMP ARP entry -- one per SIOCS*ARP entry tied to the group. Used to keep
1573 * ARP up-to-date as the active set of interfaces in the group changes.
1574 */
1575 typedef struct ipmp_arpent_s {
1576 ipaddr_t ia_ipaddr; /* IP address for this entry */
1577 boolean_t ia_proxyarp; /* proxy ARP entry? */
1578 boolean_t ia_notified; /* ARP notified about this entry? */
1579 list_node_t ia_node; /* next ARP entry in list */

new/usr/src/uts/common/inet/ip.h 25

1580 uint16_t ia_flags; /* nce_flags for the address */
1581 size_t ia_lladdr_len;
1582 uchar_t *ia_lladdr;
1583 } ipmp_arpent_t;

1585 struct arl_s;

1587 /*
1588 * Per-ill capabilities.
1589 */
1590 struct ill_hcksum_capab_s {
1591 uint_t ill_hcksum_version; /* interface version */
1592 uint_t ill_hcksum_txflags; /* capabilities on transmit */
1593 };

1595 struct ill_zerocopy_capab_s {
1596 uint_t ill_zerocopy_version; /* interface version */
1597 uint_t ill_zerocopy_flags; /* capabilities */
1598 };

1600 struct ill_lso_capab_s {
1601 uint_t ill_lso_flags; /* capabilities */
1602 uint_t ill_lso_max; /* maximum size of payload */
1603 };

1605 /*
1606 * IP Lower level Structure.
1607 * Instance data structure in ip_open when there is a device below us.
1608 */
1609 typedef struct ill_s {
1610 pfillinput_t ill_inputfn; /* Fast input function selector */
1611 ill_if_t *ill_ifptr; /* pointer to interface type */
1612 queue_t *ill_rq; /* Read queue. */
1613 queue_t *ill_wq; /* Write queue. */

1615 int ill_error; /* Error value sent up by device. */

1617 ipif_t *ill_ipif; /* Interface chain for this ILL. */

1619 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */
1620 uint_t ill_max_frag; /* Max IDU from DLPI. */
1621 uint_t ill_current_frag; /* Current IDU from DLPI. */
1622 uint_t ill_mtu; /* User-specified MTU; SIOCSLIFMTU */
1623 uint_t ill_mc_mtu; /* MTU for multi/broadcast */
1624 uint_t ill_metric; /* BSD if metric, for compatibility. */
1625 char *ill_name; /* Our name. */
1626 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */
1627 uint_t ill_name_length; /* Name length, incl. terminator. */
1628 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */
1629 /*
1630 * Physical Point of Attachment num. If DLPI style 1 provider
1631 * then this is derived from the devname.
1632 */
1633 uint_t ill_ppa;
1634 t_uscalar_t ill_sap;
1635 t_scalar_t ill_sap_length; /* Including sign (for position) */
1636 uint_t ill_phys_addr_length; /* Excluding the sap. */
1637 uint_t ill_bcast_addr_length; /* Only set when the DL provider */
1638 /* supports broadcast. */
1639 t_uscalar_t ill_mactype;
1640 uint8_t *ill_frag_ptr; /* Reassembly state. */
1641 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */
1642 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */

1644 krwlock_t ill_mcast_lock; /* Protects multicast state */
1645 kmutex_t ill_mcast_serializer; /* Serialize across ilg and ilm state */

new/usr/src/uts/common/inet/ip.h 26

1646 ilm_t *ill_ilm; /* Multicast membership for ill */
1647 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */
1648 int ill_mcast_type; /* type of router which is querier */
1649 /* on this interface */
1650 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */
1651 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */
1652 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */
1653 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */

1655 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */
1656 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */

1658 /*
1659 * All non-NULL cells between ’ill_first_mp_to_free’ and
1660 * ’ill_last_mp_to_free’ are freed in ill_delete.
1661 */
1662 #define ill_first_mp_to_free ill_bcast_mp
1663 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */
1664 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */
1665 mblk_t *ill_promiscoff_mp; /* for ill_leave_allmulti() */
1666 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */
1667 mblk_t *ill_dest_addr_mp; /* mblk which holds ill_dest_addr */
1668 mblk_t *ill_replumb_mp; /* replumb mp from ill_replumb() */
1669 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */
1670 mblk_t *ill_mcast_deferred; /* b_next chain of IGMP/MLD packets */
1671 #define ill_last_mp_to_free ill_mcast_deferred

1673 cred_t *ill_credp; /* opener’s credentials */
1674 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */
1675 uint8_t *ill_dest_addr; /* ill_dest_addr_mp->b_rptr + off */

1677 uint_t ill_state_flags; /* see ILL_* flags above */

1679 /* Following bit fields protected by ipsq_t */
1680 uint_t
1681 ill_needs_attach : 1,
1682 ill_reserved : 1,
1683 ill_isv6 : 1,
1684 ill_dlpi_style_set : 1,

1686 ill_ifname_pending : 1,
1687 ill_logical_down : 1,
1688 ill_dl_up : 1,
1689 ill_up_ipifs : 1,

1691 ill_note_link : 1, /* supports link-up notification */
1692 ill_capab_reneg : 1, /* capability renegotiation to be done */
1693 ill_dld_capab_inprog : 1, /* direct dld capab call in prog */
1694 ill_need_recover_multicast : 1,

1696 ill_replumbing : 1,
1697 ill_arl_dlpi_pending : 1,
1698 ill_grp_pending : 1,

1700 ill_pad_to_bit_31 : 17;

1702 /* Following bit fields protected by ill_lock */
1703 uint_t
1704 ill_fragtimer_executing : 1,
1705 ill_fragtimer_needrestart : 1,
1706 ill_manual_token : 1, /* system won’t override ill_token */
1707 /*
1708 * ill_manual_linklocal : system will not change the
1709 * linklocal whenever ill_token changes.
1710 */
1711 ill_manual_linklocal : 1,

new/usr/src/uts/common/inet/ip.h 27

1713 ill_manual_dst_linklocal : 1, /* same for pt-pt dst linklocal */

1715 ill_pad_bit_31 : 27;

1717 /*
1718 * Used in SIOCSIFMUXID and SIOCGIFMUXID for ’ifconfig unplumb’.
1719 */
1720 int ill_muxid; /* muxid returned from plink */

1722 /* Used for IP frag reassembly throttling on a per ILL basis. */
1723 uint_t ill_ipf_gen; /* Generation of next fragment queue */
1724 uint_t ill_frag_count; /* Count of all reassembly mblk bytes */
1725 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */
1726 clock_t ill_last_frag_clean_time; /* time when frag’s were pruned */
1727 int ill_type; /* From <net/if_types.h> */
1728 uint_t ill_dlpi_multicast_state; /* See below IDS_* */
1729 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */

1731 /*
1732 * Capabilities related fields.
1733 */
1734 uint_t ill_dlpi_capab_state; /* State of capability query, IDCS_* */
1735 uint_t ill_capab_pending_cnt;
1736 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */
1737 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */
1738 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */
1739 ill_dld_capab_t *ill_dld_capab; /* DLD capabilities */
1740 ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */
1741 mblk_t *ill_capab_reset_mp; /* Preallocated mblk for capab reset */

1743 uint8_t ill_max_hops; /* Maximum hops for any logical interface */
1744 uint_t ill_user_mtu; /* User-specified MTU via SIOCSLIFLNKINFO */
1745 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */
1746 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */
1747 uint_t ill_max_buf; /* Max # of req to buffer for ND */
1748 in6_addr_t ill_token; /* IPv6 interface id */
1749 in6_addr_t ill_dest_token; /* Destination IPv6 interface id */
1750 uint_t ill_token_length;
1751 uint32_t ill_xmit_count; /* ndp max multicast xmits */
1752 mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */
1753 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */

1755 phyint_t *ill_phyint;
1756 uint64_t ill_flags;

1758 kmutex_t ill_lock; /* Please see table below */
1759 /*
1760 * The ill_nd_lla* fields handle the link layer address option
1761 * from neighbor discovery. This is used for external IPv6
1762 * address resolution.
1763 */
1764 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */
1765 uint8_t *ill_nd_lla; /* Link Layer Address */
1766 uint_t ill_nd_lla_len; /* Link Layer Address length */
1767 /*
1768 * We have 4 phys_addr_req’s sent down. This field keeps track
1769 * of which one is pending.
1770 */
1771 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */
1772 /*
1773 * Used to save errors that occur during plumbing
1774 */
1775 uint_t ill_ifname_pending_err;
1776 avl_node_t ill_avl_byppa; /* avl node based on ppa */
1777 list_t ill_nce; /* pointer to nce_s list */

new/usr/src/uts/common/inet/ip.h 28

1778 uint_t ill_refcnt; /* active refcnt by threads */
1779 uint_t ill_ire_cnt; /* ires associated with this ill */
1780 kcondvar_t ill_cv;
1781 uint_t ill_ncec_cnt; /* ncecs associated with this ill */
1782 uint_t ill_nce_cnt; /* nces associated with this ill */
1783 uint_t ill_waiters; /* threads waiting in ipsq_enter */
1784 /*
1785 * Contains the upper read queue pointer of the module immediately
1786 * beneath IP. This field allows IP to validate sub-capability
1787 * acknowledgments coming up from downstream.
1788 */
1789 queue_t *ill_lmod_rq; /* read queue pointer of module below */
1790 uint_t ill_lmod_cnt; /* number of modules beneath IP */
1791 ip_m_t *ill_media; /* media specific params/functions */
1792 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */
1793 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */
1794 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */
1795 boolean_t ill_trace_disable; /* True when alloc fails */
1796 zoneid_t ill_zoneid;
1797 ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */
1798 uint32_t ill_dhcpinit; /* IP_DHCPINIT_IFs for ill */
1799 void *ill_flownotify_mh; /* Tx flow ctl, mac cb handle */
1800 uint_t ill_ilm_cnt; /* ilms referencing this ill */
1801 uint_t ill_ipallmulti_cnt; /* ip_join_allmulti() calls */
1802 ilm_t *ill_ipallmulti_ilm;

1804 mblk_t *ill_saved_ire_mp; /* Allocated for each extra IRE */
1805 /* with ire_ill set so they can */
1806 /* survive the ill going down and up. */
1807 kmutex_t ill_saved_ire_lock; /* Protects ill_saved_ire_mp, cnt */
1808 uint_t ill_saved_ire_cnt; /* # entries */
1809 struct arl_ill_common_s *ill_common;
1810 ire_t *ill_ire_multicast; /* IRE_MULTICAST for ill */
1811 clock_t ill_defend_start; /* start of 1 hour period */
1812 uint_t ill_defend_count; /* # of announce/defends per ill */
1813 /*
1814 * IPMP fields.
1815 */
1816 ipmp_illgrp_t *ill_grp; /* IPMP group information */
1817 list_node_t ill_actnode; /* next active ill in group */
1818 list_node_t ill_grpnode; /* next ill in group */
1819 ipif_t *ill_src_ipif; /* source address selection rotor */
1820 ipif_t *ill_move_ipif; /* ipif awaiting move to new ill */
1821 boolean_t ill_nom_cast; /* nominated for mcast/bcast */
1822 uint_t ill_bound_cnt; /* # of data addresses bound to ill */
1823 ipif_t *ill_bound_ipif; /* ipif chain bound to ill */
1824 timeout_id_t ill_refresh_tid; /* ill refresh retry timeout id */

1826 uint32_t ill_mrouter_cnt; /* mrouter allmulti joins */
1827 uint32_t ill_allowed_ips_cnt;
1828 in6_addr_t *ill_allowed_ips;

1830 /* list of multicast physical addresses joined on this ill */
1831 multiphysaddr_t *ill_mphysaddr_list;
1832 } ill_t;

1834 /*
1835 * ILL_FREE_OK() means that there are no incoming pointer references
1836 * to the ill.
1837 */
1838 #define ILL_FREE_OK(ill) \
1839 ((ill)->ill_ire_cnt == 0 && (ill)->ill_ilm_cnt == 0 && \
1840 (ill)->ill_ncec_cnt == 0 && (ill)->ill_nce_cnt == 0)

1842 /*
1843 * An ipif/ill can be marked down only when the ire and ncec references

new/usr/src/uts/common/inet/ip.h 29

1844 * to that ipif/ill goes to zero. ILL_DOWN_OK() is a necessary condition
1845 * quiescence checks. See comments above IPIF_DOWN_OK for details
1846 * on why ires and nces are selectively considered for this macro.
1847 */
1848 #define ILL_DOWN_OK(ill) \
1849 (ill->ill_ire_cnt == 0 && ill->ill_ncec_cnt == 0 && \
1850 ill->ill_nce_cnt == 0)

1852 /*
1853 * The following table lists the protection levels of the various members
1854 * of the ill_t. Same notation as that used for ipif_t above is used.
1855 *
1856 * Write Read
1857 *
1858 * ill_ifptr ill_g_lock + s Write once
1859 * ill_rq ipsq Write once
1860 * ill_wq ipsq Write once
1861 *
1862 * ill_error ipsq None
1863 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq
1864 * ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq
1865 * ill_max_frag ill_lock ill_lock
1866 * ill_current_frag ill_lock ill_lock
1867 *
1868 * ill_name ill_g_lock + ipsq Write once
1869 * ill_name_length ill_g_lock + ipsq Write once
1870 * ill_ndd_name ipsq Write once
1871 * ill_net_type ipsq Write once
1872 * ill_ppa ill_g_lock + ipsq Write once
1873 * ill_sap ipsq + down ill Write once
1874 * ill_sap_length ipsq + down ill Write once
1875 * ill_phys_addr_length ipsq + down ill Write once
1876 *
1877 * ill_bcast_addr_length ipsq ipsq
1878 * ill_mactype ipsq ipsq
1879 * ill_frag_ptr ipsq ipsq
1880 *
1881 * ill_frag_timer_id ill_lock ill_lock
1882 * ill_frag_hash_tbl ipsq up ill
1883 * ill_ilm ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1884 * ill_global_timer ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1885 * ill_mcast_type ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1886 * ill_mcast_v1_time ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1887 * ill_mcast_v2_time ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1888 * ill_mcast_v1_tset ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1889 * ill_mcast_v2_tset ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1890 * ill_mcast_rv ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1891 * ill_mcast_qi ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1892 *
1893 * ill_down_mp ipsq ipsq
1894 * ill_dlpi_deferred ill_lock ill_lock
1895 * ill_dlpi_pending ipsq + ill_lock ipsq or ill_lock or
1896 * absence of ipsq writer.
1897 * ill_phys_addr_mp ipsq + down ill only when ill is up
1898 * ill_mcast_deferred ill_lock ill_lock
1899 * ill_phys_addr ipsq + down ill only when ill is up
1900 * ill_dest_addr_mp ipsq + down ill only when ill is up
1901 * ill_dest_addr ipsq + down ill only when ill is up
1902 *
1903 * ill_state_flags ill_lock ill_lock
1904 * exclusive bit flags ipsq_t ipsq_t
1905 * shared bit flags ill_lock ill_lock
1906 *
1907 * ill_muxid ipsq Not atomic
1908 *
1909 * ill_ipf_gen Not atomic

new/usr/src/uts/common/inet/ip.h 30

1910 * ill_frag_count atomics atomics
1911 * ill_type ipsq + down ill only when ill is up
1912 * ill_dlpi_multicast_state ill_lock ill_lock
1913 * ill_dlpi_fastpath_state ill_lock ill_lock
1914 * ill_dlpi_capab_state ipsq ipsq
1915 * ill_max_hops ipsq Not atomic
1916 *
1917 * ill_mtu ill_lock None
1918 * ill_mc_mtu ill_lock None
1919 *
1920 * ill_user_mtu ipsq + ill_lock ill_lock
1921 * ill_reachable_time ipsq + ill_lock ill_lock
1922 * ill_reachable_retrans_time ipsq + ill_lock ill_lock
1923 * ill_max_buf ipsq + ill_lock ill_lock
1924 *
1925 * Next 2 fields need ill_lock because of the get ioctls. They should not
1926 * report partially updated results without executing in the ipsq.
1927 * ill_token ipsq + ill_lock ill_lock
1928 * ill_token_length ipsq + ill_lock ill_lock
1929 * ill_dest_token ipsq + down ill only when ill is up
1930 * ill_xmit_count ipsq + down ill write once
1931 * ill_ip6_mib ipsq + down ill only when ill is up
1932 * ill_icmp6_mib ipsq + down ill only when ill is up
1933 *
1934 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them
1935 * ill_flags ill_lock ill_lock
1936 * ill_nd_lla_mp ipsq + down ill only when ill is up
1937 * ill_nd_lla ipsq + down ill only when ill is up
1938 * ill_nd_lla_len ipsq + down ill only when ill is up
1939 * ill_phys_addr_pend ipsq + down ill only when ill is up
1940 * ill_ifname_pending_err ipsq ipsq
1941 * ill_avl_byppa ipsq, ill_g_lock write once
1942 *
1943 * ill_fastpath_list ill_lock ill_lock
1944 * ill_refcnt ill_lock ill_lock
1945 * ill_ire_cnt ill_lock ill_lock
1946 * ill_cv ill_lock ill_lock
1947 * ill_ncec_cnt ill_lock ill_lock
1948 * ill_nce_cnt ill_lock ill_lock
1949 * ill_ilm_cnt ill_lock ill_lock
1950 * ill_src_ipif ill_g_lock ill_g_lock
1951 * ill_trace ill_lock ill_lock
1952 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock
1953 * ill_dhcpinit atomics atomics
1954 * ill_flownotify_mh write once write once
1955 * ill_capab_pending_cnt ipsq ipsq
1956 * ill_ipallmulti_cnt ill_lock ill_lock
1957 * ill_ipallmulti_ilm ill_lock ill_lock
1958 * ill_saved_ire_mp ill_saved_ire_lock ill_saved_ire_lock
1959 * ill_saved_ire_cnt ill_saved_ire_lock ill_saved_ire_lock
1960 * ill_arl ??? ???
1961 * ill_ire_multicast ipsq + quiescent none
1962 * ill_bound_ipif ipsq ipsq
1963 * ill_actnode ipsq + ipmp_lock ipsq OR ipmp_lock
1964 * ill_grpnode ipsq + ill_g_lock ipsq OR ill_g_lock
1965 * ill_src_ipif ill_g_lock ill_g_lock
1966 * ill_move_ipif ipsq ipsq
1967 * ill_nom_cast ipsq ipsq OR advisory
1968 * ill_refresh_tid ill_lock ill_lock
1969 * ill_grp (for IPMP ill) write once write once
1970 * ill_grp (for underlying ill) ipsq + ill_g_lock ipsq OR ill_g_lock
1971 * ill_grp_pending ill_mcast_serializer ill_mcast_serializer
1972 * ill_mrouter_cnt atomics atomics
1973 * ill_mphysaddr_list ill_lock ill_lock
1974 *
1975 * NOTE: It’s OK to make heuristic decisions on an underlying interface

new/usr/src/uts/common/inet/ip.h 31

1976 * by using IS_UNDER_IPMP() or comparing ill_grp’s raw pointer value.
1977 */

1979 /*
1980 * For ioctl restart mechanism see ip_reprocess_ioctl()
1981 */
1982 struct ip_ioctl_cmd_s;

1984 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *,
1985 struct ip_ioctl_cmd_s *, void *);

1987 typedef struct ip_ioctl_cmd_s {
1988 int ipi_cmd;
1989 size_t ipi_copyin_size;
1990 uint_t ipi_flags;
1991 uint_t ipi_cmd_type;
1992 ifunc_t ipi_func;
1993 ifunc_t ipi_func_restart;
1994 } ip_ioctl_cmd_t;

1996 /*
1997 * ipi_cmd_type:
1998 *
1999 * IF_CMD 1 old style ifreq cmd
2000 * LIF_CMD 2 new style lifreq cmd
2001 * ARP_CMD 3 arpreq cmd
2002 * XARP_CMD 4 xarpreq cmd
2003 * MSFILT_CMD 5 multicast source filter cmd
2004 * MISC_CMD 6 misc cmd (not a more specific one above)
2005 */

2007 enum { IF_CMD = 1, LIF_CMD, ARP_CMD, XARP_CMD, MSFILT_CMD, MISC_CMD };

2009 #define IPI_DONTCARE 0 /* For ioctl encoded values that don’t matter */

2011 /* Flag values in ipi_flags */
2012 #define IPI_PRIV 0x1 /* Root only command */
2013 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */
2014 #define IPI_WR 0x4 /* Need to grab writer access */
2015 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */
2016 /* unused 0x10 */
2017 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */

2019 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[];
2020 extern ip_ioctl_cmd_t ip_misc_ioctl_table[];
2021 extern int ip_ndx_ioctl_count;
2022 extern int ip_misc_ioctl_count;

2024 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */
2025 typedef struct ipmx_s {
2026 char ipmx_name[LIFNAMSIZ]; /* if name */
2027 uint_t
2028 ipmx_arpdev_stream : 1, /* This is the arp stream */
2029 ipmx_notused : 31;
2030 } ipmx_t;

2032 /*
2033 * State for detecting if a driver supports certain features.
2034 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state.
2035 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state.
2036 */
2037 #define IDS_UNKNOWN 0 /* No DLPI request sent */
2038 #define IDS_INPROGRESS 1 /* DLPI request sent */
2039 #define IDS_OK 2 /* DLPI request completed successfully */
2040 #define IDS_FAILED 3 /* DLPI request failed */

new/usr/src/uts/common/inet/ip.h 32

2042 /* Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. */
2043 enum {
2044 IDCS_UNKNOWN,
2045 IDCS_PROBE_SENT,
2046 IDCS_OK,
2047 IDCS_RESET_SENT,
2048 IDCS_RENEG,
2049 IDCS_FAILED
2050 };

2052 /* Extended NDP Management Structure */
2053 typedef struct ipndp_s {
2054 ndgetf_t ip_ndp_getf;
2055 ndsetf_t ip_ndp_setf;
2056 caddr_t ip_ndp_data;
2057 char *ip_ndp_name;
2058 } ipndp_t;

2060 /* IXA Notification types */
2061 typedef enum {
2062 IXAN_LSO, /* LSO capability change */
2063 IXAN_PMTU, /* PMTU change */
2064 IXAN_ZCOPY /* ZEROCOPY capability change */
2065 } ixa_notify_type_t;

2067 typedef uint_t ixa_notify_arg_t;

2069 typedef void (*ixa_notify_t)(void *, ip_xmit_attr_t *ixa, ixa_notify_type_t,
2070 ixa_notify_arg_t);

2072 /*
2073 * Attribute flags that are common to the transmit and receive attributes
2074 */
2075 #define IAF_IS_IPV4 0x80000000 /* ipsec_*_v4 */
2076 #define IAF_TRUSTED_ICMP 0x40000000 /* ipsec_*_icmp_loopback */
2077 #define IAF_NO_LOOP_ZONEID_SET 0x20000000 /* Zone that shouldn’t have */
2078 /* a copy */
2079 #define IAF_LOOPBACK_COPY 0x10000000 /* For multi and broadcast */

2081 #define IAF_MASK 0xf0000000 /* Flags that are common */

2083 /*
2084 * Transmit side attributes used between the transport protocols and IP as
2085 * well as inside IP. It is also used to cache information in the conn_t i.e.
2086 * replaces conn_ire and the IPsec caching in the conn_t.
2087 */
2088 struct ip_xmit_attr_s {
2089 iaflags_t ixa_flags; /* IXAF_*. See below */

2091 uint32_t ixa_free_flags; /* IXA_FREE_*. See below */
2092 uint32_t ixa_refcnt; /* Using atomics */

2094 /*
2095 * Always initialized independently of ixa_flags settings.
2096 * Used by ip_xmit so we keep them up front for cache locality.
2097 */
2098 uint32_t ixa_xmit_hint; /* For ECMP and GLD TX ring fanout */
2099 uint_t ixa_pktlen; /* Always set. For frag and stats */
2100 zoneid_t ixa_zoneid; /* Assumed always set */

2102 /* Always set for conn_ip_output(); might be stale */
2103 /*
2104 * Since TCP keeps the conn_t around past the process going away
2105 * we need to use the "notr" (e.g, ire_refhold_notr) for ixa_ire,
2106 * ixa_nce, and ixa_dce.
2107 */

new/usr/src/uts/common/inet/ip.h 33

2108 ire_t *ixa_ire; /* Forwarding table entry */
2109 uint_t ixa_ire_generation;
2110 nce_t *ixa_nce; /* Neighbor cache entry */
2111 dce_t *ixa_dce; /* Destination cache entry */
2112 uint_t ixa_dce_generation;
2113 uint_t ixa_src_generation; /* If IXAF_VERIFY_SOURCE */

2115 uint32_t ixa_src_preferences; /* prefs for src addr select */
2116 uint32_t ixa_pmtu; /* IXAF_VERIFY_PMTU */

2118 /* Set by ULP if IXAF_VERIFY_PMTU; otherwise set by IP */
2119 uint32_t ixa_fragsize;

2121 int8_t ixa_use_min_mtu; /* IXAF_USE_MIN_MTU values */

2123 pfirepostfrag_t ixa_postfragfn; /* Set internally in IP */

2125 in6_addr_t ixa_nexthop_v6; /* IXAF_NEXTHOP_SET */
2126 #define ixa_nexthop_v4 V4_PART_OF_V6(ixa_nexthop_v6)

2128 zoneid_t ixa_no_loop_zoneid; /* IXAF_NO_LOOP_ZONEID_SET */

2130 uint_t ixa_scopeid; /* For IPv6 link-locals */

2132 uint_t ixa_broadcast_ttl; /* IXAF_BROACAST_TTL_SET */

2134 uint_t ixa_multicast_ttl; /* Assumed set for multicast */
2135 uint_t ixa_multicast_ifindex; /* Assumed set for multicast */
2136 ipaddr_t ixa_multicast_ifaddr; /* Assumed set for multicast */

2138 int ixa_raw_cksum_offset; /* If IXAF_SET_RAW_CKSUM */

2140 uint32_t ixa_ident; /* For IPv6 fragment header */

2142 uint64_t ixa_conn_id; /* Used by DTrace */
2143 /*
2144 * Cached LSO information.
2145 */
2146 ill_lso_capab_t ixa_lso_capab; /* Valid when IXAF_LSO_CAPAB */

2148 uint64_t ixa_ipsec_policy_gen; /* Generation from iph_gen */
2149 /*
2150 * The following IPsec fields are only initialized when
2151 * IXAF_IPSEC_SECURE is set. Otherwise they contain garbage.
2152 */
2153 ipsec_latch_t *ixa_ipsec_latch; /* Just the ids */
2154 struct ipsa_s *ixa_ipsec_ah_sa; /* Hard reference SA for AH */
2155 struct ipsa_s *ixa_ipsec_esp_sa; /* Hard reference SA for ESP */
2156 struct ipsec_policy_s *ixa_ipsec_policy; /* why are we here? */
2157 struct ipsec_action_s *ixa_ipsec_action; /* For reflected packets */
2158 ipsa_ref_t ixa_ipsec_ref[2]; /* Soft reference to SA */
2159 /* 0: ESP, 1: AH */

2161 /*
2162 * The selectors here are potentially different than the SPD rule’s
2163 * selectors, and we need to have both available for IKEv2.
2164 *
2165 * NOTE: "Source" and "Dest" are w.r.t. outbound datagrams. Ports can
2166 * be zero, and the protocol number is needed to make the ports
2167 * significant.
2168 */
2169 uint16_t ixa_ipsec_src_port; /* Source port number of d-gram. */
2170 uint16_t ixa_ipsec_dst_port; /* Destination port number of d-gram. */
2171 uint8_t ixa_ipsec_icmp_type; /* ICMP type of d-gram */
2172 uint8_t ixa_ipsec_icmp_code; /* ICMP code of d-gram */

new/usr/src/uts/common/inet/ip.h 34

2174 sa_family_t ixa_ipsec_inaf; /* Inner address family */
2175 #define IXA_MAX_ADDRLEN 4 /* Max addr len. (in 32-bit words) */
2176 uint32_t ixa_ipsec_insrc[IXA_MAX_ADDRLEN]; /* Inner src address */
2177 uint32_t ixa_ipsec_indst[IXA_MAX_ADDRLEN]; /* Inner dest address */
2178 uint8_t ixa_ipsec_insrcpfx; /* Inner source prefix */
2179 uint8_t ixa_ipsec_indstpfx; /* Inner destination prefix */

2181 uint8_t ixa_ipsec_proto; /* IP protocol number for d-gram. */

2183 /* Always initialized independently of ixa_flags settings */
2184 uint_t ixa_ifindex; /* Assumed always set */
2185 uint16_t ixa_ip_hdr_length; /* Points to ULP header */
2186 uint8_t ixa_protocol; /* Protocol number for ULP cksum */
2187 ts_label_t *ixa_tsl; /* Always set. NULL if not TX */
2188 ip_stack_t *ixa_ipst; /* Always set */
2189 uint32_t ixa_extra_ident; /* Set if LSO */
2190 cred_t *ixa_cred; /* For getpeerucred */
2191 pid_t ixa_cpid; /* For getpeerucred */

2193 #ifdef DEBUG
2194 kthread_t *ixa_curthread; /* For serialization assert */
2195 #endif
2196 squeue_t *ixa_sqp; /* Set from conn_sqp as a hint */
2197 uintptr_t ixa_cookie; /* cookie to use for tx flow control */

2199 /*
2200 * Must be set by ULP if any of IXAF_VERIFY_LSO, IXAF_VERIFY_PMTU,
2201 * or IXAF_VERIFY_ZCOPY is set.
2202 */
2203 ixa_notify_t ixa_notify; /* Registered upcall notify function */
2204 void *ixa_notify_cookie; /* ULP cookie for ixa_notify */
2205 };

2207 /*
2208 * Flags to indicate which transmit attributes are set.
2209 * Split into "xxx_SET" ones which indicate that the "xxx" field it set, and
2210 * single flags.
2211 */
2212 #define IXAF_REACH_CONF 0x00000001 /* Reachability confirmation */
2213 #define IXAF_BROADCAST_TTL_SET 0x00000002 /* ixa_broadcast_ttl valid */
2214 #define IXAF_SET_SOURCE 0x00000004 /* Replace if broadcast */
2215 #define IXAF_USE_MIN_MTU 0x00000008 /* IPV6_USE_MIN_MTU */

2217 #define IXAF_DONTFRAG 0x00000010 /* IP*_DONTFRAG */
2218 #define IXAF_VERIFY_PMTU 0x00000020 /* ixa_pmtu/ixa_fragsize set */
2219 #define IXAF_PMTU_DISCOVERY 0x00000040 /* Create/use PMTU state */
2220 #define IXAF_MULTICAST_LOOP 0x00000080 /* IP_MULTICAST_LOOP */

2222 #define IXAF_IPSEC_SECURE 0x00000100 /* Need IPsec processing */
2223 #define IXAF_UCRED_TSL 0x00000200 /* ixa_tsl from SCM_UCRED */
2224 #define IXAF_DONTROUTE 0x00000400 /* SO_DONTROUTE */
2225 #define IXAF_NO_IPSEC 0x00000800 /* Ignore policy */

2227 #define IXAF_PMTU_TOO_SMALL 0x00001000 /* PMTU too small */
2228 #define IXAF_SET_ULP_CKSUM 0x00002000 /* Calculate ULP checksum */
2229 #define IXAF_VERIFY_SOURCE 0x00004000 /* Check that source is ok */
2230 #define IXAF_NEXTHOP_SET 0x00008000 /* ixa_nexthop set */

2232 #define IXAF_PMTU_IPV4_DF 0x00010000 /* Set IPv4 DF */
2233 #define IXAF_NO_DEV_FLOW_CTL 0x00020000 /* Protocol needs no flow ctl */
2234 #define IXAF_NO_TTL_CHANGE 0x00040000 /* Internal to IP */
2235 #define IXAF_IPV6_ADD_FRAGHDR 0x00080000 /* Add fragment header */

2237 #define IXAF_IPSEC_TUNNEL 0x00100000 /* Tunnel mode */
2238 #define IXAF_NO_PFHOOK 0x00200000 /* Skip xmit pfhook */
2239 #define IXAF_NO_TRACE 0x00400000 /* When back from ARP/ND */

new/usr/src/uts/common/inet/ip.h 35

2240 #define IXAF_SCOPEID_SET 0x00800000 /* ixa_scopeid set */

2242 #define IXAF_MULTIRT_MULTICAST 0x01000000 /* MULTIRT for multicast */
2243 #define IXAF_NO_HW_CKSUM 0x02000000 /* Force software cksum */
2244 #define IXAF_SET_RAW_CKSUM 0x04000000 /* Use ixa_raw_cksum_offset */
2245 #define IXAF_IPSEC_GLOBAL_POLICY 0x08000000 /* Policy came from global */

2247 /* Note the following uses bits 0x10000000 through 0x80000000 */
2248 #define IXAF_IS_IPV4 IAF_IS_IPV4
2249 #define IXAF_TRUSTED_ICMP IAF_TRUSTED_ICMP
2250 #define IXAF_NO_LOOP_ZONEID_SET IAF_NO_LOOP_ZONEID_SET
2251 #define IXAF_LOOPBACK_COPY IAF_LOOPBACK_COPY

2253 /* Note: use the upper 32 bits */
2254 #define IXAF_VERIFY_LSO 0x100000000 /* Check LSO capability */
2255 #define IXAF_LSO_CAPAB 0x200000000 /* Capable of LSO */
2256 #define IXAF_VERIFY_ZCOPY 0x400000000 /* Check Zero Copy capability */
2257 #define IXAF_ZCOPY_CAPAB 0x800000000 /* Capable of ZEROCOPY */

2259 /*
2260 * The normal flags for sending packets e.g., icmp errors
2261 */
2262 #define IXAF_BASIC_SIMPLE_V4 \
2263 (IXAF_SET_ULP_CKSUM | IXAF_IS_IPV4 | IXAF_VERIFY_SOURCE)
2264 #define IXAF_BASIC_SIMPLE_V6 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE)

2266 /*
2267 * Normally these fields do not have a hold. But in some cases they do, for
2268 * instance when we’ve gone through ip_*_attr_to/from_mblk.
2269 * We use ixa_free_flags to indicate that they have a hold and need to be
2270 * released on cleanup.
2271 */
2272 #define IXA_FREE_CRED 0x00000001 /* ixa_cred needs to be rele */
2273 #define IXA_FREE_TSL 0x00000002 /* ixa_tsl needs to be rele */

2275 /*
2276 * Simplistic way to set the ixa_xmit_hint for locally generated traffic
2277 * and forwarded traffic. The shift amount are based on the size of the
2278 * structs to discard the low order bits which don’t have much if any variation
2279 * (coloring in kmem_cache_alloc might provide some variation).
2280 *
2281 * Basing the locally generated hint on the address of the conn_t means that
2282 * the packets from the same socket/connection do not get reordered.
2283 * Basing the hint for forwarded traffic on the ill_ring_t means that
2284 * packets from the same NIC+ring are likely to use the same outbound ring
2285 * hence we get low contention on the ring in the transmitting driver.
2286 */
2287 #define CONN_TO_XMIT_HINT(connp) ((uint32_t)(((uintptr_t)connp) >> 11))
2288 #define ILL_RING_TO_XMIT_HINT(ring) ((uint32_t)(((uintptr_t)ring) >> 7))

2290 /*
2291 * IP set Destination Flags used by function ip_set_destination,
2292 * ip_attr_connect, and conn_connect.
2293 */
2294 #define IPDF_ALLOW_MCBC 0x1 /* Allow multi/broadcast */
2295 #define IPDF_VERIFY_DST 0x2 /* Verify destination addr */
2296 #define IPDF_SELECT_SRC 0x4 /* Select source address */
2297 #define IPDF_LSO 0x8 /* Try LSO */
2298 #define IPDF_IPSEC 0x10 /* Set IPsec policy */
2299 #define IPDF_ZONE_IS_GLOBAL 0x20 /* From conn_zone_is_global */
2300 #define IPDF_ZCOPY 0x40 /* Try ZEROCOPY */
2301 #define IPDF_UNIQUE_DCE 0x80 /* Get a per-destination DCE */

2303 /*
2304 * Receive side attributes used between the transport protocols and IP as
2305 * well as inside IP.

new/usr/src/uts/common/inet/ip.h 36

2306 */
2307 struct ip_recv_attr_s {
2308 iaflags_t ira_flags; /* See below */

2310 uint32_t ira_free_flags; /* IRA_FREE_*. See below */

2312 /*
2313 * This is a hint for TCP SYN packets.
2314 * Always initialized independently of ira_flags settings
2315 */
2316 squeue_t *ira_sqp;
2317 ill_rx_ring_t *ira_ring; /* Internal to IP */

2319 /* For ip_accept_tcp when IRAF_TARGET_SQP is set */
2320 squeue_t *ira_target_sqp;
2321 mblk_t *ira_target_sqp_mp;

2323 /* Always initialized independently of ira_flags settings */
2324 uint32_t ira_xmit_hint; /* For ECMP and GLD TX ring fanout */
2325 zoneid_t ira_zoneid; /* ALL_ZONES unless local delivery */
2326 uint_t ira_pktlen; /* Always set. For frag and stats */
2327 uint16_t ira_ip_hdr_length; /* Points to ULP header */
2328 uint8_t ira_protocol; /* Protocol number for ULP cksum */
2329 uint_t ira_rifindex; /* Received ifindex */
2330 uint_t ira_ruifindex; /* Received upper ifindex */
2331 ts_label_t *ira_tsl; /* Always set. NULL if not TX */
2332 /*
2333 * ira_rill and ira_ill is set inside IP, but not when conn_recv is
2334 * called; ULPs should use ira_ruifindex instead.
2335 */
2336 ill_t *ira_rill; /* ill where packet came */
2337 ill_t *ira_ill; /* ill where IP address hosted */
2338 cred_t *ira_cred; /* For getpeerucred */
2339 pid_t ira_cpid; /* For getpeerucred */

2341 /* Used when IRAF_VERIFIED_SRC is set; this source was ok */
2342 ipaddr_t ira_verified_src;

2344 /*
2345 * The following IPsec fields are only initialized when
2346 * IRAF_IPSEC_SECURE is set. Otherwise they contain garbage.
2347 */
2348 struct ipsec_action_s *ira_ipsec_action; /* how we made it in.. */
2349 struct ipsa_s *ira_ipsec_ah_sa; /* SA for AH */
2350 struct ipsa_s *ira_ipsec_esp_sa; /* SA for ESP */

2352 ipaddr_t ira_mroute_tunnel; /* IRAF_MROUTE_TUNNEL_SET */

2354 zoneid_t ira_no_loop_zoneid; /* IRAF_NO_LOOP_ZONEID_SET */

2356 uint32_t ira_esp_udp_ports; /* IRAF_ESP_UDP_PORTS */

2358 /*
2359 * For IP_RECVSLLA and ip_ndp_conflict/find_solicitation.
2360 * Same size as max for sockaddr_dl
2361 */
2362 #define IRA_L2SRC_SIZE 244
2363 uint8_t ira_l2src[IRA_L2SRC_SIZE]; /* If IRAF_L2SRC_SET */

2365 /*
2366 * Local handle that we use to do lazy setting of ira_l2src.
2367 * We defer setting l2src until needed but we do before any
2368 * ip_input pullupmsg or copymsg.
2369 */
2370 struct mac_header_info_s *ira_mhip; /* Could be NULL */
2371 };

new/usr/src/uts/common/inet/ip.h 37

2373 /*
2374 * Flags to indicate which receive attributes are set.
2375 */
2376 #define IRAF_SYSTEM_LABELED 0x00000001 /* is_system_labeled() */
2377 #define IRAF_IPV4_OPTIONS 0x00000002 /* Performance */
2378 #define IRAF_MULTICAST 0x00000004 /* Was multicast at L3 */
2379 #define IRAF_BROADCAST 0x00000008 /* Was broadcast at L3 */
2380 #define IRAF_MULTIBROADCAST (IRAF_MULTICAST|IRAF_BROADCAST)

2382 #define IRAF_LOOPBACK 0x00000010 /* Looped back by IP */
2383 #define IRAF_VERIFY_IP_CKSUM 0x00000020 /* Need to verify IP */
2384 #define IRAF_VERIFY_ULP_CKSUM 0x00000040 /* Need to verify TCP,UDP,etc */
2385 #define IRAF_SCTP_CSUM_ERR 0x00000080 /* sctp pkt has failed chksum */

2387 #define IRAF_IPSEC_SECURE 0x00000100 /* Passed AH and/or ESP */
2388 #define IRAF_DHCP_UNICAST 0x00000200
2389 #define IRAF_IPSEC_DECAPS 0x00000400 /* Was packet decapsulated */
2390 /* from a matching inner packet? */
2391 #define IRAF_TARGET_SQP 0x00000800 /* ira_target_sqp is set */
2392 #define IRAF_VERIFIED_SRC 0x00001000 /* ira_verified_src set */
2393 #define IRAF_RSVP 0x00002000 /* RSVP packet for rsvpd */
2394 #define IRAF_MROUTE_TUNNEL_SET 0x00004000 /* From ip_mroute_decap */
2395 #define IRAF_PIM_REGISTER 0x00008000 /* From register_mforward */

2397 #define IRAF_TX_MAC_EXEMPTABLE 0x00010000 /* Allow MAC_EXEMPT readdown */
2398 #define IRAF_TX_SHARED_ADDR 0x00020000 /* Arrived on ALL_ZONES addr */
2399 #define IRAF_ESP_UDP_PORTS 0x00040000 /* NAT-traversal packet */
2400 #define IRAF_NO_HW_CKSUM 0x00080000 /* Force software cksum */

2402 #define IRAF_ICMP_ERROR 0x00100000 /* Send to conn_recvicmp */
2403 #define IRAF_ROUTER_ALERT 0x00200000 /* IPv6 router alert */
2404 #define IRAF_L2SRC_SET 0x00400000 /* ira_l2src has been set */
2405 #define IRAF_L2SRC_LOOPBACK 0x00800000 /* Came from us */

2407 #define IRAF_L2DST_MULTICAST 0x01000000 /* Multicast at L2 */
2408 #define IRAF_L2DST_BROADCAST 0x02000000 /* Broadcast at L2 */
2409 /* Unused 0x04000000 */
2410 /* Unused 0x08000000 */

2412 /* Below starts with 0x10000000 */
2413 #define IRAF_IS_IPV4 IAF_IS_IPV4
2414 #define IRAF_TRUSTED_ICMP IAF_TRUSTED_ICMP
2415 #define IRAF_NO_LOOP_ZONEID_SET IAF_NO_LOOP_ZONEID_SET
2416 #define IRAF_LOOPBACK_COPY IAF_LOOPBACK_COPY

2418 /*
2419 * Normally these fields do not have a hold. But in some cases they do, for
2420 * instance when we’ve gone through ip_*_attr_to/from_mblk.
2421 * We use ira_free_flags to indicate that they have a hold and need to be
2422 * released on cleanup.
2423 */
2424 #define IRA_FREE_CRED 0x00000001 /* ira_cred needs to be rele */
2425 #define IRA_FREE_TSL 0x00000002 /* ira_tsl needs to be rele */

2427 /*
2428 * Optional destination cache entry for path MTU information,
2429 * and ULP metrics.
2430 */
2431 struct dce_s {
2432 uint_t dce_generation; /* Changed since cached? */
2433 uint_t dce_flags; /* See below */
2434 uint_t dce_ipversion; /* IPv4/IPv6 version */
2435 uint32_t dce_pmtu; /* Path MTU if DCEF_PMTU */
2436 uint32_t dce_ident; /* Per destination IP ident. */
2437 iulp_t dce_uinfo; /* Metrics if DCEF_UINFO */

new/usr/src/uts/common/inet/ip.h 38

2439 struct dce_s *dce_next;
2440 struct dce_s **dce_ptpn;
2441 struct dcb_s *dce_bucket;

2443 union {
2444 in6_addr_t dceu_v6addr;
2445 ipaddr_t dceu_v4addr;
2446 } dce_u;
2447 #define dce_v4addr dce_u.dceu_v4addr
2448 #define dce_v6addr dce_u.dceu_v6addr
2449 /* Note that for IPv6+IPMP we use the ifindex for the upper interface */
2450 uint_t dce_ifindex; /* For IPv6 link-locals */

2452 kmutex_t dce_lock;
2453 uint_t dce_refcnt;
2454 uint64_t dce_last_change_time; /* Path MTU. In seconds */

2456 ip_stack_t *dce_ipst; /* Does not have a netstack_hold */
2457 };

2459 /*
2460 * Values for dce_generation.
2461 *
2462 * If a DCE has DCE_GENERATION_CONDEMNED, the last dce_refrele should delete
2463 * it.
2464 *
2465 * DCE_GENERATION_VERIFY is never stored in dce_generation but it is
2466 * stored in places that cache DCE (such as ixa_dce_generation).
2467 * It is used as a signal that the cache is stale and needs to be reverified.
2468 */
2469 #define DCE_GENERATION_CONDEMNED 0
2470 #define DCE_GENERATION_VERIFY 1
2471 #define DCE_GENERATION_INITIAL 2
2472 #define DCE_IS_CONDEMNED(dce) \
2473 ((dce)->dce_generation == DCE_GENERATION_CONDEMNED)

2476 /*
2477 * Values for ips_src_generation.
2478 *
2479 * SRC_GENERATION_VERIFY is never stored in ips_src_generation but it is
2480 * stored in places that cache IREs (ixa_src_generation). It is used as a
2481 * signal that the cache is stale and needs to be reverified.
2482 */
2483 #define SRC_GENERATION_VERIFY 0
2484 #define SRC_GENERATION_INITIAL 1

2486 /*
2487 * The kernel stores security attributes of all gateways in a database made
2488 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the
2489 * security-related credentials of the gateway. More than one gateways may
2490 * share entries in the database.
2491 *
2492 * The tsol_gc_t structure represents the gateway to credential association,
2493 * and refers to an entry in the database. One or more tsol_gc_t entities are
2494 * grouped together to form one or more tsol_gcgrp_t, each representing the
2495 * list of security attributes specific to the gateway. A gateway may be
2496 * associated with at most one credentials group.
2497 */
2498 struct tsol_gcgrp_s;

2500 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */

2502 /*
2503 * Gateway security credential record.

new/usr/src/uts/common/inet/ip.h 39

2504 */
2505 typedef struct tsol_gcdb_s {
2506 uint_t gcdb_refcnt; /* reference count */
2507 struct rtsa_s gcdb_attr; /* security attributes */
2508 #define gcdb_mask gcdb_attr.rtsa_mask
2509 #define gcdb_doi gcdb_attr.rtsa_doi
2510 #define gcdb_slrange gcdb_attr.rtsa_slrange
2511 } tsol_gcdb_t;

2513 /*
2514 * Gateway to credential association.
2515 */
2516 typedef struct tsol_gc_s {
2517 uint_t gc_refcnt; /* reference count */
2518 struct tsol_gcgrp_s *gc_grp; /* pointer to group */
2519 struct tsol_gc_s *gc_prev; /* previous in list */
2520 struct tsol_gc_s *gc_next; /* next in list */
2521 tsol_gcdb_t *gc_db; /* pointer to actual credentials */
2522 } tsol_gc_t;

2524 /*
2525 * Gateway credentials group address.
2526 */
2527 typedef struct tsol_gcgrp_addr_s {
2528 int ga_af; /* address family */
2529 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */
2530 } tsol_gcgrp_addr_t;

2532 /*
2533 * Gateway credentials group.
2534 */
2535 typedef struct tsol_gcgrp_s {
2536 uint_t gcgrp_refcnt; /* reference count */
2537 krwlock_t gcgrp_rwlock; /* lock to protect following */
2538 uint_t gcgrp_count; /* number of credentials */
2539 tsol_gc_t *gcgrp_head; /* first credential in list */
2540 tsol_gc_t *gcgrp_tail; /* last credential in list */
2541 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */
2542 } tsol_gcgrp_t;

2544 extern kmutex_t gcgrp_lock;

2546 #define GC_REFRELE(p) { \
2547 ASSERT((p)->gc_grp != NULL); \
2548 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \
2549 ASSERT((p)->gc_refcnt > 0); \
2550 if (--((p)->gc_refcnt) == 0) \
2551 gc_inactive(p); \
2552 else \
2553 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \
2554 }

2556 #define GCGRP_REFHOLD(p) { \
2557 mutex_enter(&gcgrp_lock); \
2558 ++((p)->gcgrp_refcnt); \
2559 ASSERT((p)->gcgrp_refcnt != 0); \
2560 mutex_exit(&gcgrp_lock); \
2561 }

2563 #define GCGRP_REFRELE(p) { \
2564 mutex_enter(&gcgrp_lock); \
2565 ASSERT((p)->gcgrp_refcnt > 0); \
2566 if (--((p)->gcgrp_refcnt) == 0) \
2567 gcgrp_inactive(p); \
2568 ASSERT(MUTEX_HELD(&gcgrp_lock)); \
2569 mutex_exit(&gcgrp_lock); \

new/usr/src/uts/common/inet/ip.h 40

2570 }

2572 /*
2573 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr
2574 */
2575 struct tsol_tnrhc;

2577 struct tsol_ire_gw_secattr_s {
2578 kmutex_t igsa_lock; /* lock to protect following */
2579 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */
2580 tsol_gc_t *igsa_gc; /* for prefix IREs */
2581 };

2583 void irb_refrele_ftable(irb_t *);

2585 extern struct kmem_cache *rt_entry_cache;

2587 typedef struct ire4 {
2588 ipaddr_t ire4_mask; /* Mask for matching this IRE. */
2589 ipaddr_t ire4_addr; /* Address this IRE represents. */
2590 ipaddr_t ire4_gateway_addr; /* Gateway including for IRE_ONLINK */
2591 ipaddr_t ire4_setsrc_addr; /* RTF_SETSRC */
2592 } ire4_t;

2594 typedef struct ire6 {
2595 in6_addr_t ire6_mask; /* Mask for matching this IRE. */
2596 in6_addr_t ire6_addr; /* Address this IRE represents. */
2597 in6_addr_t ire6_gateway_addr; /* Gateway including for IRE_ONLINK */
2598 in6_addr_t ire6_setsrc_addr; /* RTF_SETSRC */
2599 } ire6_t;

2601 typedef union ire_addr {
2602 ire6_t ire6_u;
2603 ire4_t ire4_u;
2604 } ire_addr_u_t;

2606 /*
2607 * Internet Routing Entry
2608 * When we have multiple identical IREs we logically add them by manipulating
2609 * ire_identical_ref and ire_delete first decrements
2610 * that and when it reaches 1 we know it is the last IRE.
2611 * "identical" is defined as being the same for:
2612 * ire_addr, ire_netmask, ire_gateway, ire_ill, ire_zoneid, and ire_type
2613 * For instance, multiple IRE_BROADCASTs for the same subnet number are
2614 * viewed as identical, and so are the IRE_INTERFACEs when there are
2615 * multiple logical interfaces (on the same ill) with the same subnet prefix.
2616 */
2617 struct ire_s {
2618 struct ire_s *ire_next; /* The hash chain must be first. */
2619 struct ire_s **ire_ptpn; /* Pointer to previous next. */
2620 uint32_t ire_refcnt; /* Number of references */
2621 ill_t *ire_ill;
2622 uint32_t ire_identical_ref; /* IRE_INTERFACE, IRE_BROADCAST */
2623 uchar_t ire_ipversion; /* IPv4/IPv6 version */
2624 ushort_t ire_type; /* Type of IRE */
2625 uint_t ire_generation; /* Generation including CONDEMNED */
2626 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */
2627 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */
2628 time_t ire_create_time; /* Time (in secs) IRE was created. */
2629 uint32_t ire_flags; /* flags related to route (RTF_*) */
2630 /*
2631 * ire_testhidden is TRUE for INTERFACE IREs of IS_UNDER_IPMP(ill)
2632 * interfaces
2633 */
2634 boolean_t ire_testhidden;
2635 pfirerecv_t ire_recvfn; /* Receive side handling */

new/usr/src/uts/common/inet/ip.h 41

2636 pfiresend_t ire_sendfn; /* Send side handling */
2637 pfirepostfrag_t ire_postfragfn; /* Bottom end of send handling */

2639 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */
2640 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */

2642 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */
2643 kmutex_t ire_lock;
2644 clock_t ire_last_used_time; /* For IRE_LOCAL reception */
2645 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */
2646 zoneid_t ire_zoneid;

2648 /*
2649 * Cached information of where to send packets that match this route.
2650 * The ire_dep_* information is used to determine when ire_nce_cache
2651 * needs to be updated.
2652 * ire_nce_cache is the fastpath for the Neighbor Cache Entry
2653 * for IPv6; arp info for IPv4
2654 * Since this is a cache setup and torn down independently of
2655 * applications we need to use nce_ref{rele,hold}_notr for it.
2656 */
2657 nce_t *ire_nce_cache;

2659 /*
2660 * Quick check whether the ire_type and ire_masklen indicates
2661 * that the IRE can have ire_nce_cache set i.e., whether it is
2662 * IRE_ONLINK and for a single destination.
2663 */
2664 boolean_t ire_nce_capable;

2666 /*
2667 * Dependency tracking so we can safely cache IRE and NCE pointers
2668 * in offlink and onlink IREs.
2669 * These are locked under the ips_ire_dep_lock rwlock. Write held
2670 * when modifying the linkage.
2671 * ire_dep_parent (Also chain towards IRE for nexthop)
2672 * ire_dep_parent_generation: ire_generation of ire_dep_parent
2673 * ire_dep_children (From parent to first child)
2674 * ire_dep_sib_next (linked list of siblings)
2675 * ire_dep_sib_ptpn (linked list of siblings)
2676 *
2677 * The parent has a ire_refhold on each child, and each child has
2678 * an ire_refhold on its parent.
2679 * Since ire_dep_parent is a cache setup and torn down independently of
2680 * applications we need to use ire_ref{rele,hold}_notr for it.
2681 */
2682 ire_t *ire_dep_parent;
2683 ire_t *ire_dep_children;
2684 ire_t *ire_dep_sib_next;
2685 ire_t **ire_dep_sib_ptpn; /* Pointer to previous next */
2686 uint_t ire_dep_parent_generation;

2688 uint_t ire_badcnt; /* Number of times ND_UNREACHABLE */
2689 uint64_t ire_last_badcnt; /* In seconds */

2691 /* ire_defense* and ire_last_used_time are only used on IRE_LOCALs */
2692 uint_t ire_defense_count; /* number of ARP conflicts */
2693 uint_t ire_defense_time; /* last time defended (secs) */

2695 boolean_t ire_trace_disable; /* True when alloc fails */
2696 ip_stack_t *ire_ipst; /* Does not have a netstack_hold */
2697 iulp_t ire_metrics;
2698 /*
2699 * default and prefix routes that are added without explicitly
2700 * specifying the interface are termed "unbound" routes, and will
2701 * have ire_unbound set to true.

new/usr/src/uts/common/inet/ip.h 42

2702 */
2703 boolean_t ire_unbound;
2704 };

2706 /* IPv4 compatibility macros */
2707 #define ire_mask ire_u.ire4_u.ire4_mask
2708 #define ire_addr ire_u.ire4_u.ire4_addr
2709 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr
2710 #define ire_setsrc_addr ire_u.ire4_u.ire4_setsrc_addr

2712 #define ire_mask_v6 ire_u.ire6_u.ire6_mask
2713 #define ire_addr_v6 ire_u.ire6_u.ire6_addr
2714 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr
2715 #define ire_setsrc_addr_v6 ire_u.ire6_u.ire6_setsrc_addr

2717 /*
2718 * Values for ire_generation.
2719 *
2720 * If an IRE is marked with IRE_IS_CONDEMNED, the last walker of
2721 * the bucket should delete this IRE from this bucket.
2722 *
2723 * IRE_GENERATION_VERIFY is never stored in ire_generation but it is
2724 * stored in places that cache IREs (such as ixa_ire_generation and
2725 * ire_dep_parent_generation). It is used as a signal that the cache is
2726 * stale and needs to be reverified.
2727 */
2728 #define IRE_GENERATION_CONDEMNED 0
2729 #define IRE_GENERATION_VERIFY 1
2730 #define IRE_GENERATION_INITIAL 2
2731 #define IRE_IS_CONDEMNED(ire) \
2732 ((ire)->ire_generation == IRE_GENERATION_CONDEMNED)

2734 /* Convenient typedefs for sockaddrs */
2735 typedef struct sockaddr_in sin_t;
2736 typedef struct sockaddr_in6 sin6_t;

2738 /* Name/Value Descriptor. */
2739 typedef struct nv_s {
2740 uint64_t nv_value;
2741 char *nv_name;
2742 } nv_t;

2744 #define ILL_FRAG_HASH(s, i) \
2745 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT)

2747 /*
2748 * The MAX number of allowed fragmented packets per hash bucket
2749 * calculation is based on the most common mtu size of 1500. This limit
2750 * will work well for other mtu sizes as well.
2751 */
2752 #define COMMON_IP_MTU 1500
2753 #define MAX_FRAG_MIN 10
2754 #define MAX_FRAG_PKTS(ipst) \
2755 MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \
2756 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT))))

2758 /*
2759 * Maximum dups allowed per packet.
2760 */
2761 extern uint_t ip_max_frag_dups;

2763 /*
2764 * Per-packet information for received packets and transmitted.
2765 * Used by the transport protocols when converting between the packet
2766 * and ancillary data and socket options.
2767 *

new/usr/src/uts/common/inet/ip.h 43

2768 * Note: This private data structure and related IPPF_* constant
2769 * definitions are exposed to enable compilation of some debugging tools
2770 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be
2771 * a temporary hack and long term alternate interfaces should be defined
2772 * to support the needs of such tools and private definitions moved to
2773 * private headers.
2774 */
2775 struct ip_pkt_s {
2776 uint_t ipp_fields; /* Which fields are valid */
2777 in6_addr_t ipp_addr; /* pktinfo src/dst addr */
2778 #define ipp_addr_v4 V4_PART_OF_V6(ipp_addr)
2779 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS, IP_TTL */
2780 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */
2781 uint_t ipp_hopoptslen;
2782 uint_t ipp_rthdrdstoptslen;
2783 uint_t ipp_rthdrlen;
2784 uint_t ipp_dstoptslen;
2785 uint_t ipp_fraghdrlen;
2786 ip6_hbh_t *ipp_hopopts;
2787 ip6_dest_t *ipp_rthdrdstopts;
2788 ip6_rthdr_t *ipp_rthdr;
2789 ip6_dest_t *ipp_dstopts;
2790 ip6_frag_t *ipp_fraghdr;
2791 uint8_t ipp_tclass; /* IPV6_TCLASS */
2792 uint8_t ipp_type_of_service; /* IP_TOS */
2793 uint_t ipp_ipv4_options_len; /* Len of IPv4 options */
2794 uint8_t *ipp_ipv4_options; /* Ptr to IPv4 options */
2795 uint_t ipp_label_len_v4; /* Len of TX label for IPv4 */
2796 uint8_t *ipp_label_v4; /* TX label for IPv4 */
2797 uint_t ipp_label_len_v6; /* Len of TX label for IPv6 */
2798 uint8_t *ipp_label_v6; /* TX label for IPv6 */
2799 };
2800 typedef struct ip_pkt_s ip_pkt_t;

2802 extern void ip_pkt_free(ip_pkt_t *); /* free storage inside ip_pkt_t */
2803 extern ipaddr_t ip_pkt_source_route_v4(const ip_pkt_t *);
2804 extern in6_addr_t *ip_pkt_source_route_v6(const ip_pkt_t *);
2805 extern int ip_pkt_copy(ip_pkt_t *, ip_pkt_t *, int);
2806 extern void ip_pkt_source_route_reverse_v4(ip_pkt_t *);

2808 /* ipp_fields values */
2809 #define IPPF_ADDR 0x0001 /* Part of in6_pktinfo: src/dst addr */
2810 #define IPPF_HOPLIMIT 0x0002 /* Overrides unicast and multicast */
2811 #define IPPF_TCLASS 0x0004 /* Overrides class in sin6_flowinfo */

2813 #define IPPF_HOPOPTS 0x0010 /* ipp_hopopts set */
2814 #define IPPF_RTHDR 0x0020 /* ipp_rthdr set */
2815 #define IPPF_RTHDRDSTOPTS 0x0040 /* ipp_rthdrdstopts set */
2816 #define IPPF_DSTOPTS 0x0080 /* ipp_dstopts set */

2818 #define IPPF_IPV4_OPTIONS 0x0100 /* ipp_ipv4_options set */
2819 #define IPPF_LABEL_V4 0x0200 /* ipp_label_v4 set */
2820 #define IPPF_LABEL_V6 0x0400 /* ipp_label_v6 set */

2822 #define IPPF_FRAGHDR 0x0800 /* Used for IPsec receive side */

2824 /*
2825 * Data structure which is passed to conn_opt_get/set.
2826 * The conn_t is included even though it can be inferred from queue_t.
2827 * setsockopt and getsockopt use conn_ixa and conn_xmit_ipp. However,
2828 * when handling ancillary data we use separate ixa and ipps.
2829 */
2830 typedef struct conn_opt_arg_s {
2831 conn_t *coa_connp;
2832 ip_xmit_attr_t *coa_ixa;
2833 ip_pkt_t *coa_ipp;

new/usr/src/uts/common/inet/ip.h 44

2834 boolean_t coa_ancillary; /* Ancillary data and not setsockopt */
2835 uint_t coa_changed; /* See below */
2836 } conn_opt_arg_t;

2838 /*
2839 * Flags for what changed.
2840 * If we want to be more efficient in the future we can have more fine
2841 * grained flags e.g., a flag for just IP_TOS changing.
2842 * For now we either call ip_set_destination (for "route changed")
2843 * and/or conn_build_hdr_template/conn_prepend_hdr (for "header changed").
2844 */
2845 #define COA_HEADER_CHANGED 0x0001
2846 #define COA_ROUTE_CHANGED 0x0002
2847 #define COA_RCVBUF_CHANGED 0x0004 /* SO_RCVBUF */
2848 #define COA_SNDBUF_CHANGED 0x0008 /* SO_SNDBUF */
2849 #define COA_WROFF_CHANGED 0x0010 /* Header size changed */
2850 #define COA_ICMP_BIND_NEEDED 0x0020
2851 #define COA_OOBINLINE_CHANGED 0x0040

2853 #define TCP_PORTS_OFFSET 0
2854 #define UDP_PORTS_OFFSET 0

2856 /*
2857 * lookups return the ill/ipif only if the flags are clear OR Iam writer.
2858 * ill / ipif lookup functions increment the refcnt on the ill / ipif only
2859 * after calling these macros. This ensures that the refcnt on the ipif or
2860 * ill will eventually drop down to zero.
2861 */
2862 #define ILL_LOOKUP_FAILED 1 /* Used as error code */
2863 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */

2865 #define ILL_CAN_LOOKUP(ill) \
2866 (!((ill)->ill_state_flags & ILL_CONDEMNED) || \
2867 IAM_WRITER_ILL(ill))

2869 #define ILL_IS_CONDEMNED(ill) \
2870 ((ill)->ill_state_flags & ILL_CONDEMNED)

2872 #define IPIF_CAN_LOOKUP(ipif) \
2873 (!((ipif)->ipif_state_flags & IPIF_CONDEMNED) || \
2874 IAM_WRITER_IPIF(ipif))

2876 #define IPIF_IS_CONDEMNED(ipif) \
2877 ((ipif)->ipif_state_flags & IPIF_CONDEMNED)

2879 #define IPIF_IS_CHANGING(ipif) \
2880 ((ipif)->ipif_state_flags & IPIF_CHANGING)

2882 /* Macros used to assert that this thread is a writer */
2883 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_xop->ipx_writer == curthread)
2884 #define IAM_WRITER_ILL(ill) IAM_WRITER_IPSQ((ill)->ill_phyint->phyint_ipsq)
2885 #define IAM_WRITER_IPIF(ipif) IAM_WRITER_ILL((ipif)->ipif_ill)

2887 /*
2888 * Grab ill locks in the proper order. The order is highest addressed
2889 * ill is locked first.
2890 */
2891 #define GRAB_ILL_LOCKS(ill_1, ill_2) \
2892 { \
2893 if ((ill_1) > (ill_2)) { \
2894 if (ill_1 != NULL) \
2895 mutex_enter(&(ill_1)->ill_lock); \
2896 if (ill_2 != NULL) \
2897 mutex_enter(&(ill_2)->ill_lock); \
2898 } else { \
2899 if (ill_2 != NULL) \

new/usr/src/uts/common/inet/ip.h 45

2900 mutex_enter(&(ill_2)->ill_lock); \
2901 if (ill_1 != NULL && ill_1 != ill_2) \
2902 mutex_enter(&(ill_1)->ill_lock); \
2903 } \
2904 }

2906 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \
2907 { \
2908 if (ill_1 != NULL) \
2909 mutex_exit(&(ill_1)->ill_lock); \
2910 if (ill_2 != NULL && ill_2 != ill_1) \
2911 mutex_exit(&(ill_2)->ill_lock); \
2912 }

2914 /* Get the other protocol instance ill */
2915 #define ILL_OTHER(ill) \
2916 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \
2917 (ill)->ill_phyint->phyint_illv6)

2919 /* ioctl command info: Ioctl properties extracted and stored in here */
2920 typedef struct cmd_info_s
2921 {
2922 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl’s */
2923 sin_t *ci_sin; /* the sin struct passed down */
2924 sin6_t *ci_sin6; /* the sin6_t struct passed down */
2925 struct lifreq *ci_lifr; /* the lifreq struct passed down */
2926 } cmd_info_t;

2928 extern struct kmem_cache *ire_cache;

2930 extern ipaddr_t ip_g_all_ones;

2932 extern uint_t ip_loopback_mtu; /* /etc/system */
2933 extern uint_t ip_loopback_mtuplus;
2934 extern uint_t ip_loopback_mtu_v6plus;

2936 extern vmem_t *ip_minor_arena_sa;
2937 extern vmem_t *ip_minor_arena_la;

2939 /*
2940 * ip_g_forward controls IP forwarding. It takes two values:
2941 * 0: IP_FORWARD_NEVER Don’t forward packets ever.
2942 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere.
2943 *
2944 * RFC1122 says there must be a configuration switch to control forwarding,
2945 * but that the default MUST be to not forward packets ever. Implicit
2946 * control based on configuration of multiple interfaces MUST NOT be
2947 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability
2948 * and, in fact, it was the default. That capability is now provided in the
2949 * /etc/rc2.d/S69inet script.
2950 */

2952 #define ips_ip_respond_to_address_mask_broadcast \
2953 ips_propinfo_tbl[0].prop_cur_bval
2954 #define ips_ip_g_resp_to_echo_bcast ips_propinfo_tbl[1].prop_cur_bval
2955 #define ips_ip_g_resp_to_echo_mcast ips_propinfo_tbl[2].prop_cur_bval
2956 #define ips_ip_g_resp_to_timestamp ips_propinfo_tbl[3].prop_cur_bval
2957 #define ips_ip_g_resp_to_timestamp_bcast ips_propinfo_tbl[4].prop_cur_bval
2958 #define ips_ip_g_send_redirects ips_propinfo_tbl[5].prop_cur_bval
2959 #define ips_ip_g_forward_directed_bcast ips_propinfo_tbl[6].prop_cur_bval
2960 #define ips_ip_mrtdebug ips_propinfo_tbl[7].prop_cur_uval
2961 #define ips_ip_ire_reclaim_fraction ips_propinfo_tbl[8].prop_cur_uval
2962 #define ips_ip_nce_reclaim_fraction ips_propinfo_tbl[9].prop_cur_uval
2963 #define ips_ip_dce_reclaim_fraction ips_propinfo_tbl[10].prop_cur_uval
2964 #define ips_ip_def_ttl ips_propinfo_tbl[11].prop_cur_uval
2965 #define ips_ip_forward_src_routed ips_propinfo_tbl[12].prop_cur_bval

new/usr/src/uts/common/inet/ip.h 46

2966 #define ips_ip_wroff_extra ips_propinfo_tbl[13].prop_cur_uval
2967 #define ips_ip_pathmtu_interval ips_propinfo_tbl[14].prop_cur_uval
2968 #define ips_ip_icmp_return ips_propinfo_tbl[15].prop_cur_uval
2969 #define ips_ip_path_mtu_discovery ips_propinfo_tbl[16].prop_cur_bval
2970 #define ips_ip_pmtu_min ips_propinfo_tbl[17].prop_cur_uval
2971 #define ips_ip_ignore_redirect ips_propinfo_tbl[18].prop_cur_bval
2972 #define ips_ip_arp_icmp_error ips_propinfo_tbl[19].prop_cur_bval
2973 #define ips_ip_broadcast_ttl ips_propinfo_tbl[20].prop_cur_uval
2974 #define ips_ip_icmp_err_interval ips_propinfo_tbl[21].prop_cur_uval
2975 #define ips_ip_icmp_err_burst ips_propinfo_tbl[22].prop_cur_uval
2976 #define ips_ip_reass_queue_bytes ips_propinfo_tbl[23].prop_cur_uval
2977 #define ips_ip_strict_dst_multihoming ips_propinfo_tbl[24].prop_cur_uval
2978 #define ips_ip_addrs_per_if ips_propinfo_tbl[25].prop_cur_uval
2979 #define ips_ipsec_override_persocket_policy ips_propinfo_tbl[26].prop_cur_bval
2980 #define ips_icmp_accept_clear_messages ips_propinfo_tbl[27].prop_cur_bval
2981 #define ips_igmp_accept_clear_messages ips_propinfo_tbl[28].prop_cur_bval

2983 /* IPv6 configuration knobs */
2984 #define ips_delay_first_probe_time ips_propinfo_tbl[29].prop_cur_uval
2985 #define ips_max_unicast_solicit ips_propinfo_tbl[30].prop_cur_uval
2986 #define ips_ipv6_def_hops ips_propinfo_tbl[31].prop_cur_uval
2987 #define ips_ipv6_icmp_return ips_propinfo_tbl[32].prop_cur_uval
2988 #define ips_ipv6_forward_src_routed ips_propinfo_tbl[33].prop_cur_bval
2989 #define ips_ipv6_resp_echo_mcast ips_propinfo_tbl[34].prop_cur_bval
2990 #define ips_ipv6_send_redirects ips_propinfo_tbl[35].prop_cur_bval
2991 #define ips_ipv6_ignore_redirect ips_propinfo_tbl[36].prop_cur_bval
2992 #define ips_ipv6_strict_dst_multihoming ips_propinfo_tbl[37].prop_cur_uval
2993 #define ips_src_check ips_propinfo_tbl[38].prop_cur_uval
2994 #define ips_ipsec_policy_log_interval ips_propinfo_tbl[39].prop_cur_uval
2995 #define ips_pim_accept_clear_messages ips_propinfo_tbl[40].prop_cur_bval
2996 #define ips_ip_ndp_unsolicit_interval ips_propinfo_tbl[41].prop_cur_uval
2997 #define ips_ip_ndp_unsolicit_count ips_propinfo_tbl[42].prop_cur_uval
2998 #define ips_ipv6_ignore_home_address_opt ips_propinfo_tbl[43].prop_cur_bval

3000 /* Misc IP configuration knobs */
3001 #define ips_ip_policy_mask ips_propinfo_tbl[44].prop_cur_uval
3002 #define ips_ip_ecmp_behavior ips_propinfo_tbl[45].prop_cur_uval
3003 #define ips_ip_multirt_ttl ips_propinfo_tbl[46].prop_cur_uval
3004 #define ips_ip_ire_badcnt_lifetime ips_propinfo_tbl[47].prop_cur_uval
3005 #define ips_ip_max_temp_idle ips_propinfo_tbl[48].prop_cur_uval
3006 #define ips_ip_max_temp_defend ips_propinfo_tbl[49].prop_cur_uval
3007 #define ips_ip_max_defend ips_propinfo_tbl[50].prop_cur_uval
3008 #define ips_ip_defend_interval ips_propinfo_tbl[51].prop_cur_uval
3009 #define ips_ip_dup_recovery ips_propinfo_tbl[52].prop_cur_uval
3010 #define ips_ip_restrict_interzone_loopback ips_propinfo_tbl[53].prop_cur_bval
3011 #define ips_ip_lso_outbound ips_propinfo_tbl[54].prop_cur_bval
3012 #define ips_igmp_max_version ips_propinfo_tbl[55].prop_cur_uval
3013 #define ips_mld_max_version ips_propinfo_tbl[56].prop_cur_uval
3014 #define ips_ip_forwarding ips_propinfo_tbl[57].prop_cur_bval
3015 #define ips_ipv6_forwarding ips_propinfo_tbl[58].prop_cur_bval
3016 #define ips_ip_reassembly_timeout ips_propinfo_tbl[59].prop_cur_uval
3017 #define ips_ipv6_reassembly_timeout ips_propinfo_tbl[60].prop_cur_uval
3018 #define ips_ip_cgtp_filter ips_propinfo_tbl[61].prop_cur_bval
3019 #define ips_arp_probe_delay ips_propinfo_tbl[62].prop_cur_uval
3020 #define ips_arp_fastprobe_delay ips_propinfo_tbl[63].prop_cur_uval
3021 #define ips_arp_probe_interval ips_propinfo_tbl[64].prop_cur_uval
3022 #define ips_arp_fastprobe_interval ips_propinfo_tbl[65].prop_cur_uval
3023 #define ips_arp_probe_count ips_propinfo_tbl[66].prop_cur_uval
3024 #define ips_arp_fastprobe_count ips_propinfo_tbl[67].prop_cur_uval
3025 #define ips_ipv4_dad_announce_interval ips_propinfo_tbl[68].prop_cur_uval
3026 #define ips_ipv6_dad_announce_interval ips_propinfo_tbl[69].prop_cur_uval
3027 #define ips_arp_defend_interval ips_propinfo_tbl[70].prop_cur_uval
3028 #define ips_arp_defend_rate ips_propinfo_tbl[71].prop_cur_uval
3029 #define ips_ndp_defend_interval ips_propinfo_tbl[72].prop_cur_uval
3030 #define ips_ndp_defend_rate ips_propinfo_tbl[73].prop_cur_uval
3031 #define ips_arp_defend_period ips_propinfo_tbl[74].prop_cur_uval

new/usr/src/uts/common/inet/ip.h 47

3032 #define ips_ndp_defend_period ips_propinfo_tbl[75].prop_cur_uval
3033 #define ips_ipv4_icmp_return_pmtu ips_propinfo_tbl[76].prop_cur_bval
3034 #define ips_ipv6_icmp_return_pmtu ips_propinfo_tbl[77].prop_cur_bval
3035 #define ips_ip_arp_publish_count ips_propinfo_tbl[78].prop_cur_uval
3036 #define ips_ip_arp_publish_interval ips_propinfo_tbl[79].prop_cur_uval
3037 #define ips_ip_strict_src_multihoming ips_propinfo_tbl[80].prop_cur_uval
3038 #define ips_ipv6_strict_src_multihoming ips_propinfo_tbl[81].prop_cur_uval
3039 #define ips_ipv6_drop_inbound_icmpv6 ips_propinfo_tbl[82].prop_cur_bval

3041 extern int dohwcksum; /* use h/w cksum if supported by the h/w */
3042 #ifdef ZC_TEST
3043 extern int noswcksum;
3044 #endif

3046 extern char ipif_loopback_name[];

3048 extern nv_t *ire_nv_tbl;

3050 extern struct module_info ip_mod_info;

3052 #define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \
3053 ((ipst)->ips_ip4_physical_in_event.he_interested)
3054 #define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \
3055 ((ipst)->ips_ip6_physical_in_event.he_interested)
3056 #define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \
3057 ((ipst)->ips_ip4_physical_out_event.he_interested)
3058 #define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \
3059 ((ipst)->ips_ip6_physical_out_event.he_interested)
3060 #define HOOKS4_INTERESTED_FORWARDING(ipst) \
3061 ((ipst)->ips_ip4_forwarding_event.he_interested)
3062 #define HOOKS6_INTERESTED_FORWARDING(ipst) \
3063 ((ipst)->ips_ip6_forwarding_event.he_interested)
3064 #define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \
3065 ((ipst)->ips_ip4_loopback_in_event.he_interested)
3066 #define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \
3067 ((ipst)->ips_ip6_loopback_in_event.he_interested)
3068 #define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \
3069 ((ipst)->ips_ip4_loopback_out_event.he_interested)
3070 #define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \
3071 ((ipst)->ips_ip6_loopback_out_event.he_interested)
3072 /*
3073 * Hooks marcos used inside of ip
3074 * The callers use the above INTERESTED macros first, hence
3075 * the he_interested check is superflous.
3076 */
3077 #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst, _err) \
3078 if ((_hook).he_interested) { \
3079 hook_pkt_event_t info; \
3080 \
3081 _NOTE(CONSTCOND) \
3082 ASSERT((_ilp != NULL) || (_olp != NULL)); \
3083 \
3084 FW_SET_ILL_INDEX(info.hpe_ifp, (ill_t *)_ilp); \
3085 FW_SET_ILL_INDEX(info.hpe_ofp, (ill_t *)_olp); \
3086 info.hpe_protocol = ipst->ips_ipv4_net_data; \
3087 info.hpe_hdr = _iph; \
3088 info.hpe_mp = &(_fm); \
3089 info.hpe_mb = _m; \
3090 info.hpe_flags = _llm; \
3091 _err = hook_run(ipst->ips_ipv4_net_data->netd_hooks, \
3092 _event, (hook_data_t)&info); \
3093 if (_err != 0) { \
3094 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\
3095 (_hook).he_name, (void *)_fm, (void *)_m)); \
3096 if (_fm != NULL) { \
3097 freemsg(_fm); \

new/usr/src/uts/common/inet/ip.h 48

3098 _fm = NULL; \
3099 } \
3100 _iph = NULL; \
3101 _m = NULL; \
3102 } else { \
3103 _iph = info.hpe_hdr; \
3104 _m = info.hpe_mb; \
3105 } \
3106 }

3108 #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst, _err) \
3109 if ((_hook).he_interested) { \
3110 hook_pkt_event_t info; \
3111 \
3112 _NOTE(CONSTCOND) \
3113 ASSERT((_ilp != NULL) || (_olp != NULL)); \
3114 \
3115 FW_SET_ILL_INDEX(info.hpe_ifp, (ill_t *)_ilp); \
3116 FW_SET_ILL_INDEX(info.hpe_ofp, (ill_t *)_olp); \
3117 info.hpe_protocol = ipst->ips_ipv6_net_data; \
3118 info.hpe_hdr = _iph; \
3119 info.hpe_mp = &(_fm); \
3120 info.hpe_mb = _m; \
3121 info.hpe_flags = _llm; \
3122 _err = hook_run(ipst->ips_ipv6_net_data->netd_hooks, \
3123 _event, (hook_data_t)&info); \
3124 if (_err != 0) { \
3125 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\
3126 (_hook).he_name, (void *)_fm, (void *)_m)); \
3127 if (_fm != NULL) { \
3128 freemsg(_fm); \
3129 _fm = NULL; \
3130 } \
3131 _iph = NULL; \
3132 _m = NULL; \
3133 } else { \
3134 _iph = info.hpe_hdr; \
3135 _m = info.hpe_mb; \
3136 } \
3137 }

3139 #define FW_SET_ILL_INDEX(fp, ill) \
3140 _NOTE(CONSTCOND) \
3141 if ((ill) == NULL || (ill)->ill_phyint == NULL) { \
3142 (fp) = 0; \
3143 _NOTE(CONSTCOND) \
3144 } else if (IS_UNDER_IPMP(ill)) { \
3145 (fp) = ipmp_ill_get_ipmp_ifindex(ill); \
3146 } else { \
3147 (fp) = (ill)->ill_phyint->phyint_ifindex; \
3148 }

3150 /*
3151 * Network byte order macros
3152 */
3153 #ifdef _BIG_ENDIAN
3154 #define N_IN_CLASSA_NET IN_CLASSA_NET
3155 #define N_IN_CLASSD_NET IN_CLASSD_NET
3156 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP
3157 #define N_IN_LOOPBACK_NET (ipaddr_t)0x7f000000U
3158 #else /* _BIG_ENDIAN */
3159 #define N_IN_CLASSA_NET (ipaddr_t)0x000000ffU
3160 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U
3161 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U
3162 #define N_IN_LOOPBACK_NET (ipaddr_t)0x0000007fU
3163 #endif /* _BIG_ENDIAN */

new/usr/src/uts/common/inet/ip.h 49

3164 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP)
3165 #define CLASSE(addr) (((addr) & N_IN_CLASSD_NET) == N_IN_CLASSD_NET)
3166 #define IP_LOOPBACK_ADDR(addr) \
3167 (((addr) & N_IN_CLASSA_NET == N_IN_LOOPBACK_NET))

3169 extern int ip_debug;
3170 extern uint_t ip_thread_data;
3171 extern krwlock_t ip_thread_rwlock;
3172 extern list_t ip_thread_list;

3174 #ifdef IP_DEBUG
3175 #include <sys/debug.h>
3176 #include <sys/promif.h>

3178 #define ip0dbg(a) printf a
3179 #define ip1dbg(a) if (ip_debug > 2) printf a
3180 #define ip2dbg(a) if (ip_debug > 3) printf a
3181 #define ip3dbg(a) if (ip_debug > 4) printf a
3182 #else
3183 #define ip0dbg(a) /* */
3184 #define ip1dbg(a) /* */
3185 #define ip2dbg(a) /* */
3186 #define ip3dbg(a) /* */
3187 #endif /* IP_DEBUG */

3189 /* Default MAC-layer address string length for mac_colon_addr */
3190 #define MAC_STR_LEN 128

3192 struct mac_header_info_s;

3194 extern void ill_frag_timer(void *);
3195 extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *);
3196 extern ill_t *ill_next(ill_walk_context_t *, ill_t *);
3197 extern void ill_frag_timer_start(ill_t *);
3198 extern void ill_nic_event_dispatch(ill_t *, lif_if_t, nic_event_t,
3199 nic_event_data_t, size_t);
3200 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t);
3201 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t);
3202 extern mblk_t *ip_dlnotify_alloc(uint_t, uint_t);
3203 extern mblk_t *ip_dlnotify_alloc2(uint_t, uint_t, uint_t);
3204 extern char *ip_dot_addr(ipaddr_t, char *);
3205 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t);
3206 extern void ip_lwput(queue_t *, mblk_t *);
3207 extern boolean_t icmp_err_rate_limit(ip_stack_t *);
3208 extern void icmp_frag_needed(mblk_t *, int, ip_recv_attr_t *);
3209 extern mblk_t *icmp_inbound_v4(mblk_t *, ip_recv_attr_t *);
3210 extern void icmp_time_exceeded(mblk_t *, uint8_t, ip_recv_attr_t *);
3211 extern void icmp_unreachable(mblk_t *, uint8_t, ip_recv_attr_t *);
3212 extern boolean_t ip_ipsec_policy_inherit(conn_t *, conn_t *, ip_recv_attr_t *);
3213 extern void *ip_pullup(mblk_t *, ssize_t, ip_recv_attr_t *);
3214 extern void ip_setl2src(mblk_t *, ip_recv_attr_t *, ill_t *);
3215 extern mblk_t *ip_check_and_align_header(mblk_t *, uint_t, ip_recv_attr_t *);
3216 extern mblk_t *ip_check_length(mblk_t *, uchar_t *, ssize_t, uint_t, uint_t,
3217 ip_recv_attr_t *);
3218 extern mblk_t *ip_check_optlen(mblk_t *, ipha_t *, uint_t, uint_t,
3219 ip_recv_attr_t *);
3220 extern mblk_t *ip_fix_dbref(mblk_t *, ip_recv_attr_t *);
3221 extern uint_t ip_cksum(mblk_t *, int, uint32_t);
3222 extern int ip_close(queue_t *, int);
3223 extern uint16_t ip_csum_hdr(ipha_t *);
3224 extern void ip_forward_xmit_v4(nce_t *, ill_t *, mblk_t *, ipha_t *,
3225 ip_recv_attr_t *, uint32_t, uint32_t);
3226 extern boolean_t ip_forward_options(mblk_t *, ipha_t *, ill_t *,
3227 ip_recv_attr_t *);
3228 extern int ip_fragment_v4(mblk_t *, nce_t *, iaflags_t, uint_t, uint32_t,
3229 uint32_t, zoneid_t, zoneid_t, pfirepostfrag_t postfragfn,

new/usr/src/uts/common/inet/ip.h 50

3230 uintptr_t *cookie);
3231 extern void ip_proto_not_sup(mblk_t *, ip_recv_attr_t *);
3232 extern void ip_ire_g_fini(void);
3233 extern void ip_ire_g_init(void);
3234 extern void ip_ire_fini(ip_stack_t *);
3235 extern void ip_ire_init(ip_stack_t *);
3236 extern void ip_mdata_to_mhi(ill_t *, mblk_t *, struct mac_header_info_s *);
3237 extern int ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag,
3238 cred_t *credp);
3239 extern int ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
3240 cred_t *credp);
3241 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *,
3242 size_t);
3243 extern void ip_rput(queue_t *, mblk_t *);
3244 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *,
3245 struct mac_header_info_s *);
3246 extern void ip_input_v6(ill_t *, ill_rx_ring_t *, mblk_t *,
3247 struct mac_header_info_s *);
3248 extern mblk_t *ip_input_common_v4(ill_t *, ill_rx_ring_t *, mblk_t *,
3249 struct mac_header_info_s *, squeue_t *, mblk_t **, uint_t *);
3250 extern mblk_t *ip_input_common_v6(ill_t *, ill_rx_ring_t *, mblk_t *,
3251 struct mac_header_info_s *, squeue_t *, mblk_t **, uint_t *);
3252 extern void ill_input_full_v4(mblk_t *, void *, void *,
3253 ip_recv_attr_t *, rtc_t *);
3254 extern void ill_input_short_v4(mblk_t *, void *, void *,
3255 ip_recv_attr_t *, rtc_t *);
3256 extern void ill_input_full_v6(mblk_t *, void *, void *,
3257 ip_recv_attr_t *, rtc_t *);
3258 extern void ill_input_short_v6(mblk_t *, void *, void *,
3259 ip_recv_attr_t *, rtc_t *);
3260 extern ipaddr_t ip_input_options(ipha_t *, ipaddr_t, mblk_t *,
3261 ip_recv_attr_t *, int *);
3262 extern boolean_t ip_input_local_options(mblk_t *, ipha_t *, ip_recv_attr_t *);
3263 extern mblk_t *ip_input_fragment(mblk_t *, ipha_t *, ip_recv_attr_t *);
3264 extern mblk_t *ip_input_fragment_v6(mblk_t *, ip6_t *, ip6_frag_t *, uint_t,
3265 ip_recv_attr_t *);
3266 extern void ip_input_post_ipsec(mblk_t *, ip_recv_attr_t *);
3267 extern void ip_fanout_v4(mblk_t *, ipha_t *, ip_recv_attr_t *);
3268 extern void ip_fanout_v6(mblk_t *, ip6_t *, ip_recv_attr_t *);
3269 extern void ip_fanout_proto_conn(conn_t *, mblk_t *, ipha_t *, ip6_t *,
3270 ip_recv_attr_t *);
3271 extern void ip_fanout_proto_v4(mblk_t *, ipha_t *, ip_recv_attr_t *);
3272 extern void ip_fanout_send_icmp_v4(mblk_t *, uint_t, uint_t,
3273 ip_recv_attr_t *);
3274 extern void ip_fanout_udp_conn(conn_t *, mblk_t *, ipha_t *, ip6_t *,
3275 ip_recv_attr_t *);
3276 extern void ip_fanout_udp_multi_v4(mblk_t *, ipha_t *, uint16_t, uint16_t,
3277 ip_recv_attr_t *);
3278 extern mblk_t *zero_spi_check(mblk_t *, ip_recv_attr_t *);
3279 extern void ip_build_hdrs_v4(uchar_t *, uint_t, const ip_pkt_t *, uint8_t);
3280 extern int ip_find_hdr_v4(ipha_t *, ip_pkt_t *, boolean_t);
3281 extern int ip_total_hdrs_len_v4(const ip_pkt_t *);

3283 extern mblk_t *ip_accept_tcp(ill_t *, ill_rx_ring_t *, squeue_t *,
3284 mblk_t *, mblk_t **, uint_t *cnt);
3285 extern void ip_rput_dlpi(ill_t *, mblk_t *);
3286 extern void ip_rput_notdata(ill_t *, mblk_t *);

3288 extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *,
3289 mib2_ipIfStatsEntry_t *);
3290 extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *,
3291 mib2_ipv6IfIcmpEntry_t *);
3292 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *);
3293 extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *);
3294 extern void ip_send_potential_redirect_v4(mblk_t *, ipha_t *, ire_t *,
3295 ip_recv_attr_t *);

new/usr/src/uts/common/inet/ip.h 51

3296 extern int ip_set_destination_v4(ipaddr_t *, ipaddr_t, ipaddr_t,
3297 ip_xmit_attr_t *, iulp_t *, uint32_t, uint_t);
3298 extern int ip_set_destination_v6(in6_addr_t *, const in6_addr_t *,
3299 const in6_addr_t *, ip_xmit_attr_t *, iulp_t *, uint32_t, uint_t);

3301 extern int ip_output_simple(mblk_t *, ip_xmit_attr_t *);
3302 extern int ip_output_simple_v4(mblk_t *, ip_xmit_attr_t *);
3303 extern int ip_output_simple_v6(mblk_t *, ip_xmit_attr_t *);
3304 extern int ip_output_options(mblk_t *, ipha_t *, ip_xmit_attr_t *,
3305 ill_t *);
3306 extern void ip_output_local_options(ipha_t *, ip_stack_t *);

3308 extern ip_xmit_attr_t *conn_get_ixa(conn_t *, boolean_t);
3309 extern ip_xmit_attr_t *conn_get_ixa_tryhard(conn_t *, boolean_t);
3310 extern ip_xmit_attr_t *conn_replace_ixa(conn_t *, ip_xmit_attr_t *);
3311 extern ip_xmit_attr_t *conn_get_ixa_exclusive(conn_t *);
3312 extern ip_xmit_attr_t *ip_xmit_attr_duplicate(ip_xmit_attr_t *);
3313 extern void ip_xmit_attr_replace_tsl(ip_xmit_attr_t *, ts_label_t *);
3314 extern void ip_xmit_attr_restore_tsl(ip_xmit_attr_t *, cred_t *);
3315 boolean_t ip_recv_attr_replace_label(ip_recv_attr_t *, ts_label_t *);
3316 extern void ixa_inactive(ip_xmit_attr_t *);
3317 extern void ixa_refrele(ip_xmit_attr_t *);
3318 extern boolean_t ixa_check_drain_insert(conn_t *, ip_xmit_attr_t *);
3319 extern void ixa_cleanup(ip_xmit_attr_t *);
3320 extern void ira_cleanup(ip_recv_attr_t *, boolean_t);
3321 extern void ixa_safe_copy(ip_xmit_attr_t *, ip_xmit_attr_t *);

3323 extern int conn_ip_output(mblk_t *, ip_xmit_attr_t *);
3324 extern boolean_t ip_output_verify_local(ip_xmit_attr_t *);
3325 extern mblk_t *ip_output_process_local(mblk_t *, ip_xmit_attr_t *, boolean_t,
3326 boolean_t, conn_t *);

3328 extern int conn_opt_get(conn_opt_arg_t *, t_scalar_t, t_scalar_t,
3329 uchar_t *);
3330 extern int conn_opt_set(conn_opt_arg_t *, t_scalar_t, t_scalar_t, uint_t,
3331 uchar_t *, boolean_t, cred_t *);
3332 extern boolean_t conn_same_as_last_v4(conn_t *, sin_t *);
3333 extern boolean_t conn_same_as_last_v6(conn_t *, sin6_t *);
3334 extern int conn_update_label(const conn_t *, const ip_xmit_attr_t *,
3335 const in6_addr_t *, ip_pkt_t *);

3337 extern int ip_opt_set_multicast_group(conn_t *, t_scalar_t,
3338 uchar_t *, boolean_t, boolean_t);
3339 extern int ip_opt_set_multicast_sources(conn_t *, t_scalar_t,
3340 uchar_t *, boolean_t, boolean_t);
3341 extern int conn_getsockname(conn_t *, struct sockaddr *, uint_t *);
3342 extern int conn_getpeername(conn_t *, struct sockaddr *, uint_t *);

3344 extern int conn_build_hdr_template(conn_t *, uint_t, uint_t,
3345 const in6_addr_t *, const in6_addr_t *, uint32_t);
3346 extern mblk_t *conn_prepend_hdr(ip_xmit_attr_t *, const ip_pkt_t *,
3347 const in6_addr_t *, const in6_addr_t *, uint8_t, uint32_t, uint_t,
3348 mblk_t *, uint_t, uint_t, uint32_t *, int *);
3349 extern void ip_attr_newdst(ip_xmit_attr_t *);
3350 extern void ip_attr_nexthop(const ip_pkt_t *, const ip_xmit_attr_t *,
3351 const in6_addr_t *, in6_addr_t *);
3352 extern int conn_connect(conn_t *, iulp_t *, uint32_t);
3353 extern int ip_attr_connect(const conn_t *, ip_xmit_attr_t *,
3354 const in6_addr_t *, const in6_addr_t *, const in6_addr_t *, in_port_t,
3355 in6_addr_t *, iulp_t *, uint32_t);
3356 extern int conn_inherit_parent(conn_t *, conn_t *);

3358 extern void conn_ixa_cleanup(conn_t *connp, void *arg);

3360 extern boolean_t conn_wantpacket(conn_t *, ip_recv_attr_t *, ipha_t *);
3361 extern uint_t ip_type_v4(ipaddr_t, ip_stack_t *);

new/usr/src/uts/common/inet/ip.h 52

3362 extern uint_t ip_type_v6(const in6_addr_t *, ip_stack_t *);

3364 extern void ip_wput_nondata(queue_t *, mblk_t *);
3365 extern void ip_wsrv(queue_t *);
3366 extern char *ip_nv_lookup(nv_t *, int);
3367 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
3368 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
3369 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *);
3370 extern ipaddr_t ip_net_mask(ipaddr_t);
3371 extern void arp_bringup_done(ill_t *, int);
3372 extern void arp_replumb_done(ill_t *, int);

3374 extern struct qinit iprinitv6;

3376 extern void ipmp_init(ip_stack_t *);
3377 extern void ipmp_destroy(ip_stack_t *);
3378 extern ipmp_grp_t *ipmp_grp_create(const char *, phyint_t *);
3379 extern void ipmp_grp_destroy(ipmp_grp_t *);
3380 extern void ipmp_grp_info(const ipmp_grp_t *, lifgroupinfo_t *);
3381 extern int ipmp_grp_rename(ipmp_grp_t *, const char *);
3382 extern ipmp_grp_t *ipmp_grp_lookup(const char *, ip_stack_t *);
3383 extern int ipmp_grp_vet_phyint(ipmp_grp_t *, phyint_t *);
3384 extern ipmp_illgrp_t *ipmp_illgrp_create(ill_t *);
3385 extern void ipmp_illgrp_destroy(ipmp_illgrp_t *);
3386 extern ill_t *ipmp_illgrp_add_ipif(ipmp_illgrp_t *, ipif_t *);
3387 extern void ipmp_illgrp_del_ipif(ipmp_illgrp_t *, ipif_t *);
3388 extern ill_t *ipmp_illgrp_next_ill(ipmp_illgrp_t *);
3389 extern ill_t *ipmp_illgrp_hold_next_ill(ipmp_illgrp_t *);
3390 extern ill_t *ipmp_illgrp_hold_cast_ill(ipmp_illgrp_t *);
3391 extern ill_t *ipmp_illgrp_ipmp_ill(ipmp_illgrp_t *);
3392 extern void ipmp_illgrp_refresh_mtu(ipmp_illgrp_t *);
3393 extern ipmp_arpent_t *ipmp_illgrp_create_arpent(ipmp_illgrp_t *,
3394 boolean_t, ipaddr_t, uchar_t *, size_t, uint16_t);
3395 extern void ipmp_illgrp_destroy_arpent(ipmp_illgrp_t *, ipmp_arpent_t *);
3396 extern ipmp_arpent_t *ipmp_illgrp_lookup_arpent(ipmp_illgrp_t *, ipaddr_t *);
3397 extern void ipmp_illgrp_refresh_arpent(ipmp_illgrp_t *);
3398 extern void ipmp_illgrp_mark_arpent(ipmp_illgrp_t *, ipmp_arpent_t *);
3399 extern ill_t *ipmp_illgrp_find_ill(ipmp_illgrp_t *, uchar_t *, uint_t);
3400 extern void ipmp_illgrp_link_grp(ipmp_illgrp_t *, ipmp_grp_t *);
3401 extern int ipmp_illgrp_unlink_grp(ipmp_illgrp_t *);
3402 extern uint_t ipmp_ill_get_ipmp_ifindex(const ill_t *);
3403 extern void ipmp_ill_join_illgrp(ill_t *, ipmp_illgrp_t *);
3404 extern void ipmp_ill_leave_illgrp(ill_t *);
3405 extern ill_t *ipmp_ill_hold_ipmp_ill(ill_t *);
3406 extern ill_t *ipmp_ill_hold_xmit_ill(ill_t *, boolean_t);
3407 extern boolean_t ipmp_ill_is_active(ill_t *);
3408 extern void ipmp_ill_refresh_active(ill_t *);
3409 extern void ipmp_phyint_join_grp(phyint_t *, ipmp_grp_t *);
3410 extern void ipmp_phyint_leave_grp(phyint_t *);
3411 extern void ipmp_phyint_refresh_active(phyint_t *);
3412 extern ill_t *ipmp_ipif_bound_ill(const ipif_t *);
3413 extern ill_t *ipmp_ipif_hold_bound_ill(const ipif_t *);
3414 extern boolean_t ipmp_ipif_is_dataaddr(const ipif_t *);
3415 extern boolean_t ipmp_ipif_is_stubaddr(const ipif_t *);
3416 extern boolean_t ipmp_packet_is_probe(mblk_t *, ill_t *);
3417 extern void ipmp_ncec_delete_nce(ncec_t *);
3418 extern void ipmp_ncec_refresh_nce(ncec_t *);

3420 extern void conn_drain_insert(conn_t *, idl_tx_list_t *);
3421 extern void conn_setqfull(conn_t *, boolean_t *);
3422 extern void conn_clrqfull(conn_t *, boolean_t *);
3423 extern int conn_ipsec_length(conn_t *);
3424 extern ipaddr_t ip_get_dst(ipha_t *);
3425 extern uint_t ip_get_pmtu(ip_xmit_attr_t *);
3426 extern uint_t ip_get_base_mtu(ill_t *, ire_t *);
3427 extern mblk_t *ip_output_attach_policy(mblk_t *, ipha_t *, ip6_t *,

new/usr/src/uts/common/inet/ip.h 53

3428 const conn_t *, ip_xmit_attr_t *);
3429 extern int ipsec_out_extra_length(ip_xmit_attr_t *);
3430 extern int ipsec_out_process(mblk_t *, ip_xmit_attr_t *);
3431 extern int ip_output_post_ipsec(mblk_t *, ip_xmit_attr_t *);
3432 extern void ipsec_out_to_in(ip_xmit_attr_t *, ill_t *ill,
3433 ip_recv_attr_t *);

3435 extern void ire_cleanup(ire_t *);
3436 extern void ire_inactive(ire_t *);
3437 extern boolean_t irb_inactive(irb_t *);
3438 extern ire_t *ire_unlink(irb_t *);

3440 #ifdef DEBUG
3441 extern boolean_t th_trace_ref(const void *, ip_stack_t *);
3442 extern void th_trace_unref(const void *);
3443 extern void th_trace_cleanup(const void *, boolean_t);
3444 extern void ire_trace_ref(ire_t *);
3445 extern void ire_untrace_ref(ire_t *);
3446 #endif

3448 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *);
3449 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *);
3450 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *);
3451 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *);

3453 extern uint8_t ipoptp_next(ipoptp_t *);
3454 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *);
3455 extern int ip_opt_get_user(conn_t *, uchar_t *);
3456 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int);
3457 extern int ip_snmp_get(queue_t *q, mblk_t *mctl, int level, boolean_t);
3458 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int);
3459 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3460 extern void ip_quiesce_conn(conn_t *);
3461 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3462 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *);

3464 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *,
3465 uint_t);
3466 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *,
3467 uint_t);
3468 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t);

3470 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *);
3471 extern void conn_ioctl_cleanup(conn_t *);

3473 extern void ip_unbind(conn_t *);

3475 extern void tnet_init(void);
3476 extern void tnet_fini(void);

3478 /*
3479 * Hook functions to enable cluster networking
3480 * On non-clustered systems these vectors must always be NULL.
3481 */
3482 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
3483 sa_family_t addr_family, uint8_t *laddrp, void *args);
3484 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
3485 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
3486 void *args);
3487 extern int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
3488 boolean_t is_outgoing, sa_family_t addr_family, uint8_t *laddrp,
3489 in_port_t lport, uint8_t *faddrp, in_port_t fport, void *args);
3490 extern void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
3491 void *);
3492 extern void (*cl_inet_getspi)(netstackid_t stack_id, uint8_t protocol,
3493 uint8_t *ptr, size_t len, void *args);

new/usr/src/uts/common/inet/ip.h 54

3494 extern int (*cl_inet_checkspi)(netstackid_t stack_id, uint8_t protocol,
3495 uint32_t spi, void *args);
3496 extern void (*cl_inet_deletespi)(netstackid_t stack_id, uint8_t protocol,
3497 uint32_t spi, void *args);
3498 extern void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t,
3499 sa_family_t, in6_addr_t, in6_addr_t, void *);

3502 /* Hooks for CGTP (multirt routes) filtering module */
3503 #define CGTP_FILTER_REV_1 1
3504 #define CGTP_FILTER_REV_2 2
3505 #define CGTP_FILTER_REV_3 3
3506 #define CGTP_FILTER_REV CGTP_FILTER_REV_3

3508 /* cfo_filter and cfo_filter_v6 hooks return values */
3509 #define CGTP_IP_PKT_NOT_CGTP 0
3510 #define CGTP_IP_PKT_PREMIUM 1
3511 #define CGTP_IP_PKT_DUPLICATE 2

3513 /* Version 3 of the filter interface */
3514 typedef struct cgtp_filter_ops {
3515 int cfo_filter_rev; /* CGTP_FILTER_REV_3 */
3516 int (*cfo_change_state)(netstackid_t, int);
3517 int (*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t,
3518 ipaddr_t, ipaddr_t);
3519 int (*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t);
3520 int (*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *,
3521 in6_addr_t *, in6_addr_t *);
3522 int (*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *);
3523 int (*cfo_filter)(netstackid_t, uint_t, mblk_t *);
3524 int (*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *,
3525 ip6_frag_t *);
3526 } cgtp_filter_ops_t;

3528 #define CGTP_MCAST_SUCCESS 1

3530 /*
3531 * The separate CGTP module needs this global symbol so that it
3532 * can check the version and determine whether to use the old or the new
3533 * version of the filtering interface.
3534 */
3535 extern int ip_cgtp_filter_rev;

3537 extern int ip_cgtp_filter_supported(void);
3538 extern int ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *);
3539 extern int ip_cgtp_filter_unregister(netstackid_t);
3540 extern int ip_cgtp_filter_is_registered(netstackid_t);

3542 /*
3543 * rr_ring_state cycles in the order shown below from RR_FREE through
3544 * RR_FREE_IN_PROG and back to RR_FREE.
3545 */
3546 typedef enum {
3547 RR_FREE, /* Free slot */
3548 RR_SQUEUE_UNBOUND, /* Ring’s squeue is unbound */
3549 RR_SQUEUE_BIND_INPROG, /* Ring’s squeue bind in progress */
3550 RR_SQUEUE_BOUND, /* Ring’s squeue bound to cpu */
3551 RR_FREE_INPROG /* Ring is being freed */
3552 } ip_ring_state_t;

3554 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */
3555 #define ILL_POLLING 0x01 /* Polling in use */

3557 /*
3558 * These functions pointer types are exported by the mac/dls layer.
3559 * we need to duplicate the definitions here because we cannot

new/usr/src/uts/common/inet/ip.h 55

3560 * include mac/dls header files here.
3561 */
3562 typedef boolean_t (*ip_mac_intr_disable_t)(void *);
3563 typedef void (*ip_mac_intr_enable_t)(void *);
3564 typedef ip_mac_tx_cookie_t (*ip_dld_tx_t)(void *, mblk_t *,
3565 uint64_t, uint16_t);
3566 typedef void (*ip_flow_enable_t)(void *, ip_mac_tx_cookie_t);
3567 typedef void *(*ip_dld_callb_t)(void *,
3568 ip_flow_enable_t, void *);
3569 typedef boolean_t (*ip_dld_fctl_t)(void *, ip_mac_tx_cookie_t);
3570 typedef int (*ip_capab_func_t)(void *, uint_t,
3571 void *, uint_t);

3573 /*
3574 * POLLING README
3575 * sq_get_pkts() is called to pick packets from softring in poll mode. It
3576 * calls rr_rx to get the chain and process it with rr_ip_accept.
3577 * rr_rx = mac_soft_ring_poll() to pick packets
3578 * rr_ip_accept = ip_accept_tcp() to process packets
3579 */

3581 /*
3582 * XXX: With protocol, service specific squeues, they will have
3583 * specific acceptor functions.
3584 */
3585 typedef mblk_t *(*ip_mac_rx_t)(void *, size_t);
3586 typedef mblk_t *(*ip_accept_t)(ill_t *, ill_rx_ring_t *,
3587 squeue_t *, mblk_t *, mblk_t **, uint_t *);

3589 /*
3590 * rr_intr_enable, rr_intr_disable, rr_rx_handle, rr_rx:
3591 * May be accessed while in the squeue AND after checking that SQS_POLL_CAPAB
3592 * is set.
3593 *
3594 * rr_ring_state: Protected by ill_lock.
3595 */
3596 struct ill_rx_ring {
3597 ip_mac_intr_disable_t rr_intr_disable; /* Interrupt disabling func */
3598 ip_mac_intr_enable_t rr_intr_enable; /* Interrupt enabling func */
3599 void *rr_intr_handle; /* Handle interrupt funcs */
3600 ip_mac_rx_t rr_rx; /* Driver receive function */
3601 ip_accept_t rr_ip_accept; /* IP accept function */
3602 void *rr_rx_handle; /* Handle for Rx ring */
3603 squeue_t *rr_sqp; /* Squeue the ring is bound to */
3604 ill_t *rr_ill; /* back pointer to ill */
3605 ip_ring_state_t rr_ring_state; /* State of this ring */
3606 };

3608 /*
3609 * IP - DLD direct function call capability
3610 * Suffixes, df - dld function, dh - dld handle,
3611 * cf - client (IP) function, ch - client handle
3612 */
3613 typedef struct ill_dld_direct_s { /* DLD provided driver Tx */
3614 ip_dld_tx_t idd_tx_df; /* str_mdata_fastpath_put */
3615 void *idd_tx_dh; /* dld_str_t *dsp */
3616 ip_dld_callb_t idd_tx_cb_df; /* mac_tx_srs_notify */
3617 void *idd_tx_cb_dh; /* mac_client_handle_t *mch */
3618 ip_dld_fctl_t idd_tx_fctl_df; /* mac_tx_is_flow_blocked */
3619 void *idd_tx_fctl_dh; /* mac_client_handle */
3620 } ill_dld_direct_t;

3622 /* IP - DLD polling capability */
3623 typedef struct ill_dld_poll_s {
3624 ill_rx_ring_t idp_ring_tbl[ILL_MAX_RINGS];
3625 } ill_dld_poll_t;

new/usr/src/uts/common/inet/ip.h 56

3627 /* Describes ill->ill_dld_capab */
3628 struct ill_dld_capab_s {
3629 ip_capab_func_t idc_capab_df; /* dld_capab_func */
3630 void *idc_capab_dh; /* dld_str_t *dsp */
3631 ill_dld_direct_t idc_direct;
3632 ill_dld_poll_t idc_poll;
3633 };

3635 /*
3636 * IP squeues exports
3637 */
3638 extern boolean_t ip_squeue_fanout;

3640 #define IP_SQUEUE_GET(hint) ip_squeue_random(hint)

3642 extern void ip_squeue_init(void (*)(squeue_t *));
3643 extern squeue_t *ip_squeue_random(uint_t);
3644 extern squeue_t *ip_squeue_get(ill_rx_ring_t *);
3645 extern squeue_t *ip_squeue_getfree(pri_t);
3646 extern int ip_squeue_cpu_move(squeue_t *, processorid_t);
3647 extern void *ip_squeue_add_ring(ill_t *, void *);
3648 extern void ip_squeue_bind_ring(ill_t *, ill_rx_ring_t *, processorid_t);
3649 extern void ip_squeue_clean_ring(ill_t *, ill_rx_ring_t *);
3650 extern void ip_squeue_quiesce_ring(ill_t *, ill_rx_ring_t *);
3651 extern void ip_squeue_restart_ring(ill_t *, ill_rx_ring_t *);
3652 extern void ip_squeue_clean_all(ill_t *);
3653 extern boolean_t ip_source_routed(ipha_t *, ip_stack_t *);

3655 extern void tcp_wput(queue_t *, mblk_t *);

3657 extern int ip_fill_mtuinfo(conn_t *, ip_xmit_attr_t *,
3658 struct ip6_mtuinfo *);
3659 extern hook_t *ipobs_register_hook(netstack_t *, pfv_t);
3660 extern void ipobs_unregister_hook(netstack_t *, hook_t *);
3661 extern void ipobs_hook(mblk_t *, int, zoneid_t, zoneid_t, const ill_t *,
3662 ip_stack_t *);
3663 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *);

3665 extern void dce_g_init(void);
3666 extern void dce_g_destroy(void);
3667 extern void dce_stack_init(ip_stack_t *);
3668 extern void dce_stack_destroy(ip_stack_t *);
3669 extern void dce_cleanup(uint_t, ip_stack_t *);
3670 extern dce_t *dce_get_default(ip_stack_t *);
3671 extern dce_t *dce_lookup_pkt(mblk_t *, ip_xmit_attr_t *, uint_t *);
3672 extern dce_t *dce_lookup_v4(ipaddr_t, ip_stack_t *, uint_t *);
3673 extern dce_t *dce_lookup_v6(const in6_addr_t *, uint_t, ip_stack_t *,
3674 uint_t *);
3675 extern dce_t *dce_lookup_and_add_v4(ipaddr_t, ip_stack_t *);
3676 extern dce_t *dce_lookup_and_add_v6(const in6_addr_t *, uint_t,
3677 ip_stack_t *);
3678 extern int dce_update_uinfo_v4(ipaddr_t, iulp_t *, ip_stack_t *);
3679 extern int dce_update_uinfo_v6(const in6_addr_t *, uint_t, iulp_t *,
3680 ip_stack_t *);
3681 extern int dce_update_uinfo(const in6_addr_t *, uint_t, iulp_t *,
3682 ip_stack_t *);
3683 extern void dce_increment_generation(dce_t *);
3684 extern void dce_increment_all_generations(boolean_t, ip_stack_t *);
3685 extern void dce_refrele(dce_t *);
3686 extern void dce_refhold(dce_t *);
3687 extern void dce_refrele_notr(dce_t *);
3688 extern void dce_refhold_notr(dce_t *);
3689 mblk_t *ip_snmp_get_mib2_ip_dce(queue_t *, mblk_t *, ip_stack_t *ipst);

3691 extern ip_laddr_t ip_laddr_verify_v4(ipaddr_t, zoneid_t,

new/usr/src/uts/common/inet/ip.h 57

3692 ip_stack_t *, boolean_t);
3693 extern ip_laddr_t ip_laddr_verify_v6(const in6_addr_t *, zoneid_t,
3694 ip_stack_t *, boolean_t, uint_t);
3695 extern int ip_laddr_fanout_insert(conn_t *);

3697 extern boolean_t ip_verify_src(mblk_t *, ip_xmit_attr_t *, uint_t *);
3698 extern int ip_verify_ire(mblk_t *, ip_xmit_attr_t *);

3700 extern mblk_t *ip_xmit_attr_to_mblk(ip_xmit_attr_t *);
3701 extern boolean_t ip_xmit_attr_from_mblk(mblk_t *, ip_xmit_attr_t *);
3702 extern mblk_t *ip_xmit_attr_free_mblk(mblk_t *);
3703 extern mblk_t *ip_recv_attr_to_mblk(ip_recv_attr_t *);
3704 extern boolean_t ip_recv_attr_from_mblk(mblk_t *, ip_recv_attr_t *);
3705 extern mblk_t *ip_recv_attr_free_mblk(mblk_t *);
3706 extern boolean_t ip_recv_attr_is_mblk(mblk_t *);

3708 /*
3709 * Squeue tags. Tags only need to be unique when the callback function is the
3710 * same to distinguish between different calls, but we use unique tags for
3711 * convenience anyway.
3712 */
3713 #define SQTAG_IP_INPUT 1
3714 #define SQTAG_TCP_INPUT_ICMP_ERR 2
3715 #define SQTAG_TCP6_INPUT_ICMP_ERR 3
3716 #define SQTAG_IP_TCP_INPUT 4
3717 #define SQTAG_IP6_TCP_INPUT 5
3718 #define SQTAG_IP_TCP_CLOSE 6
3719 #define SQTAG_TCP_OUTPUT 7
3720 #define SQTAG_TCP_TIMER 8
3721 #define SQTAG_TCP_TIMEWAIT 9
3722 #define SQTAG_TCP_ACCEPT_FINISH 10
3723 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11
3724 #define SQTAG_TCP_ACCEPT_PENDING 12
3725 #define SQTAG_TCP_LISTEN_DISCON 13
3726 #define SQTAG_TCP_CONN_REQ_1 14
3727 #define SQTAG_TCP_EAGER_BLOWOFF 15
3728 #define SQTAG_TCP_EAGER_CLEANUP 16
3729 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17
3730 #define SQTAG_TCP_CONN_IND 18
3731 #define SQTAG_TCP_RSRV 19
3732 #define SQTAG_TCP_ABORT_BUCKET 20
3733 #define SQTAG_TCP_REINPUT 21
3734 #define SQTAG_TCP_REINPUT_EAGER 22
3735 #define SQTAG_TCP_INPUT_MCTL 23
3736 #define SQTAG_TCP_RPUTOTHER 24
3737 #define SQTAG_IP_PROTO_AGAIN 25
3738 #define SQTAG_IP_FANOUT_TCP 26
3739 #define SQTAG_IPSQ_CLEAN_RING 27
3740 #define SQTAG_TCP_WPUT_OTHER 28
3741 #define SQTAG_TCP_CONN_REQ_UNBOUND 29
3742 #define SQTAG_TCP_SEND_PENDING 30
3743 #define SQTAG_BIND_RETRY 31
3744 #define SQTAG_UDP_FANOUT 32
3745 #define SQTAG_UDP_INPUT 33
3746 #define SQTAG_UDP_WPUT 34
3747 #define SQTAG_UDP_OUTPUT 35
3748 #define SQTAG_TCP_KSSL_INPUT 36
3749 #define SQTAG_TCP_DROP_Q0 37
3750 #define SQTAG_TCP_CONN_REQ_2 38
3751 #define SQTAG_IP_INPUT_RX_RING 39
3752 #define SQTAG_SQUEUE_CHANGE 40
3753 #define SQTAG_CONNECT_FINISH 41
3754 #define SQTAG_SYNCHRONOUS_OP 42
3755 #define SQTAG_TCP_SHUTDOWN_OUTPUT 43
3756 #define SQTAG_TCP_IXA_CLEANUP 44
3757 #define SQTAG_TCP_SEND_SYNACK 45

new/usr/src/uts/common/inet/ip.h 58

3758 #define SQTAG_IP_DCCP_INPUT 46
3759 #define SQTAG_DCCP_OUTPUT 47
3760 #define SQTAG_DCCP_CONN_REQ_UNBOUND 48
3761 #define SQTAG_DCCP_SEND_RESPONSE 49
3762 #define SQTAG_IP_DCCP_CLOSE 50
3763 #define SQTAG_DCCP_TIMER 51
3764 #define SQTAG_DCCP_SHUTDOWN_OUTPUT 52
3765 #endif /* ! codereview */

3767 extern sin_t sin_null; /* Zero address for quick clears */
3768 extern sin6_t sin6_null; /* Zero address for quick clears */

3770 #endif /* _KERNEL */

3772 #ifdef __cplusplus
3773 }
3774 #endif

3776 #endif /* _INET_IP_H */

new/usr/src/uts/common/inet/ip/ip.c 1

**
 449431 Sat Aug 18 10:37:13 2012
new/usr/src/uts/common/inet/ip/ip.c
dccp: starting module template
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 1990 Mentat Inc.
25 * Copyright (c) 2011 Joyent, Inc. All rights reserved.
26 */

28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/dlpi.h>
31 #include <sys/stropts.h>
32 #include <sys/sysmacros.h>
33 #include <sys/strsubr.h>
34 #include <sys/strlog.h>
35 #include <sys/strsun.h>
36 #include <sys/zone.h>
37 #define _SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/xti_inet.h>
40 #include <sys/ddi.h>
41 #include <sys/suntpi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/kobj.h>
45 #include <sys/modctl.h>
46 #include <sys/atomic.h>
47 #include <sys/policy.h>
48 #include <sys/priv.h>
49 #include <sys/taskq.h>

51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/kmem.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/vtrace.h>
57 #include <sys/isa_defs.h>
58 #include <sys/mac.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/route.h>

new/usr/src/uts/common/inet/ip/ip.c 2

62 #include <sys/sockio.h>
63 #include <netinet/in.h>
64 #include <net/if_dl.h>

66 #include <inet/common.h>
67 #include <inet/mi.h>
68 #include <inet/mib2.h>
69 #include <inet/nd.h>
70 #include <inet/arp.h>
71 #include <inet/snmpcom.h>
72 #include <inet/optcom.h>
73 #include <inet/kstatcom.h>

75 #include <netinet/igmp_var.h>
76 #include <netinet/ip6.h>
77 #include <netinet/icmp6.h>
78 #include <netinet/sctp.h>

80 #include <inet/ip.h>
81 #include <inet/ip_impl.h>
82 #include <inet/ip6.h>
83 #include <inet/ip6_asp.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/ip_multi.h>
87 #include <inet/ip_if.h>
88 #include <inet/ip_ire.h>
89 #include <inet/ip_ftable.h>
90 #include <inet/ip_rts.h>
91 #include <inet/ip_ndp.h>
92 #include <inet/ip_listutils.h>
93 #include <netinet/igmp.h>
94 #include <netinet/ip_mroute.h>
95 #include <inet/ipp_common.h>

97 #include <net/pfkeyv2.h>
98 #include <inet/sadb.h>
99 #include <inet/ipsec_impl.h>
100 #include <inet/iptun/iptun_impl.h>
101 #include <inet/ipdrop.h>
102 #include <inet/ip_netinfo.h>
103 #include <inet/ilb_ip.h>

105 #include <sys/ethernet.h>
106 #include <net/if_types.h>
107 #include <sys/cpuvar.h>

109 #include <ipp/ipp.h>
110 #include <ipp/ipp_impl.h>
111 #include <ipp/ipgpc/ipgpc.h>

113 #include <sys/pattr.h>
114 #include <inet/dccp.h>
115 #include <inet/dccp_impl.h>
116 #include <inet/dccp_ip.h>
117 #endif /* ! codereview */
118 #include <inet/ipclassifier.h>
119 #include <inet/sctp_ip.h>
120 #include <inet/sctp/sctp_impl.h>
121 #include <inet/udp_impl.h>
122 #include <inet/rawip_impl.h>
123 #include <inet/rts_impl.h>

125 #include <sys/tsol/label.h>
126 #include <sys/tsol/tnet.h>

new/usr/src/uts/common/inet/ip/ip.c 3

128 #include <sys/squeue_impl.h>
129 #include <inet/ip_arp.h>

131 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */

133 /*
134 * Values for squeue switch:
135 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
136 * IP_SQUEUE_ENTER: SQ_PROCESS
137 * IP_SQUEUE_FILL: SQ_FILL
138 */
139 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */

141 int ip_squeue_flag;

143 /*
144 * Setable in /etc/system
145 */
146 int ip_poll_normal_ms = 100;
147 int ip_poll_normal_ticks = 0;
148 int ip_modclose_ackwait_ms = 3000;

150 /*
151 * It would be nice to have these present only in DEBUG systems, but the
152 * current design of the global symbol checking logic requires them to be
153 * unconditionally present.
154 */
155 uint_t ip_thread_data; /* TSD key for debug support */
156 krwlock_t ip_thread_rwlock;
157 list_t ip_thread_list;

159 /*
160 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
161 */

163 struct listptr_s {
164 mblk_t *lp_head; /* pointer to the head of the list */
165 mblk_t *lp_tail; /* pointer to the tail of the list */
166 };

168 typedef struct listptr_s listptr_t;

170 /*
171 * This is used by ip_snmp_get_mib2_ip_route_media and
172 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
173 */
174 typedef struct iproutedata_s {
175 uint_t ird_idx;
176 uint_t ird_flags; /* see below */
177 listptr_t ird_route; /* ipRouteEntryTable */
178 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */
179 listptr_t ird_attrs; /* ipRouteAttributeTable */
180 } iproutedata_t;

182 /* Include ire_testhidden and IRE_IF_CLONE routes */
183 #define IRD_REPORT_ALL 0x01

185 /*
186 * Cluster specific hooks. These should be NULL when booted as a non-cluster
187 */

189 /*
190 * Hook functions to enable cluster networking
191 * On non-clustered systems these vectors must always be NULL.
192 *
193 * Hook function to Check ip specified ip address is a shared ip address

new/usr/src/uts/common/inet/ip/ip.c 4

194 * in the cluster
195 *
196 */
197 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
198 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;

200 /*
201 * Hook function to generate cluster wide ip fragment identifier
202 */
203 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
204 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
205 void *args) = NULL;

207 /*
208 * Hook function to generate cluster wide SPI.
209 */
210 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
211 void *) = NULL;

213 /*
214 * Hook function to verify if the SPI is already utlized.
215 */

217 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;

219 /*
220 * Hook function to delete the SPI from the cluster wide repository.
221 */

223 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;

225 /*
226 * Hook function to inform the cluster when packet received on an IDLE SA
227 */

229 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
230 in6_addr_t, in6_addr_t, void *) = NULL;

232 /*
233 * Synchronization notes:
234 *
235 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
236 * MT level protection given by STREAMS. IP uses a combination of its own
237 * internal serialization mechanism and standard Solaris locking techniques.
238 * The internal serialization is per phyint. This is used to serialize
239 * plumbing operations, IPMP operations, most set ioctls, etc.
240 *
241 * Plumbing is a long sequence of operations involving message
242 * exchanges between IP, ARP and device drivers. Many set ioctls are typically
243 * involved in plumbing operations. A natural model is to serialize these
244 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
245 * parallel without any interference. But various set ioctls on hme0 are best
246 * serialized, along with IPMP operations and processing of DLPI control
247 * messages received from drivers on a per phyint basis. This serialization is
248 * provided by the ipsq_t and primitives operating on this. Details can
249 * be found in ip_if.c above the core primitives operating on ipsq_t.
250 *
251 * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
252 * Simiarly lookup of an ire by a thread also returns a refheld ire.
253 * In addition ipif’s and ill’s referenced by the ire are also indirectly
254 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
255 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
256 * address of an ipif has to go through the ipsq_t. This ensures that only
257 * one such exclusive operation proceeds at any time on the ipif. It then
258 * waits for all refcnts
259 * associated with this ipif to come down to zero. The address is changed

new/usr/src/uts/common/inet/ip/ip.c 5

260 * only after the ipif has been quiesced. Then the ipif is brought up again.
261 * More details are described above the comment in ip_sioctl_flags.
262 *
263 * Packet processing is based mostly on IREs and are fully multi-threaded
264 * using standard Solaris MT techniques.
265 *
266 * There are explicit locks in IP to handle:
267 * - The ip_g_head list maintained by mi_open_link() and friends.
268 *
269 * - The reassembly data structures (one lock per hash bucket)
270 *
271 * - conn_lock is meant to protect conn_t fields. The fields actually
272 * protected by conn_lock are documented in the conn_t definition.
273 *
274 * - ire_lock to protect some of the fields of the ire, IRE tables
275 * (one lock per hash bucket). Refer to ip_ire.c for details.
276 *
277 * - ndp_g_lock and ncec_lock for protecting NCEs.
278 *
279 * - ill_lock protects fields of the ill and ipif. Details in ip.h
280 *
281 * - ill_g_lock: This is a global reader/writer lock. Protects the following
282 * * The AVL tree based global multi list of all ills.
283 * * The linked list of all ipifs of an ill
284 * * The <ipsq-xop> mapping
285 * * <ill-phyint> association
286 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif
287 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the
288 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
289 * writer for the actual duration of the insertion/deletion/change.
290 *
291 * - ill_lock: This is a per ill mutex.
292 * It protects some members of the ill_t struct; see ip.h for details.
293 * It also protects the <ill-phyint> assoc.
294 * It also protects the list of ipifs hanging off the ill.
295 *
296 * - ipsq_lock: This is a per ipsq_t mutex lock.
297 * This protects some members of the ipsq_t struct; see ip.h for details.
298 * It also protects the <ipsq-ipxop> mapping
299 *
300 * - ipx_lock: This is a per ipxop_t mutex lock.
301 * This protects some members of the ipxop_t struct; see ip.h for details.
302 *
303 * - phyint_lock: This is a per phyint mutex lock. Protects just the
304 * phyint_flags
305 *
306 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
307 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
308 * uniqueness check also done atomically.
309 *
310 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
311 * group list linked by ill_usesrc_grp_next. It also protects the
312 * ill_usesrc_ifindex field. It is taken as a writer when a member of the
313 * group is being added or deleted. This lock is taken as a reader when
314 * walking the list/group(eg: to get the number of members in a usesrc group).
315 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next
316 * field is changing state i.e from NULL to non-NULL or vice-versa. For
317 * example, it is not necessary to take this lock in the initial portion
318 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
319 * operations are executed exclusively and that ensures that the "usesrc
320 * group state" cannot change. The "usesrc group state" change can happen
321 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
322 *
323 * Changing <ill-phyint>, <ipsq-xop> assocications:
324 *
325 * To change the <ill-phyint> association, the ill_g_lock must be held

new/usr/src/uts/common/inet/ip/ip.c 6

326 * as writer, and the ill_locks of both the v4 and v6 instance of the ill
327 * must be held.
328 *
329 * To change the <ipsq-xop> association, the ill_g_lock must be held as
330 * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
331 * This is only done when ills are added or removed from IPMP groups.
332 *
333 * To add or delete an ipif from the list of ipifs hanging off the ill,
334 * ill_g_lock (writer) and ill_lock must be held and the thread must be
335 * a writer on the associated ipsq.
336 *
337 * To add or delete an ill to the system, the ill_g_lock must be held as
338 * writer and the thread must be a writer on the associated ipsq.
339 *
340 * To add or delete an ilm to an ill, the ill_lock must be held and the thread
341 * must be a writer on the associated ipsq.
342 *
343 * Lock hierarchy
344 *
345 * Some lock hierarchy scenarios are listed below.
346 *
347 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
348 * ill_g_lock -> ill_lock(s) -> phyint_lock
349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
350 * ill_g_lock -> ip_addr_avail_lock
351 * conn_lock -> irb_lock -> ill_lock -> ire_lock
352 * ill_g_lock -> ip_g_nd_lock
353 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
354 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
355 * arl_lock -> ill_lock
356 * ips_ire_dep_lock -> irb_lock
357 *
358 * When more than 1 ill lock is needed to be held, all ill lock addresses
359 * are sorted on address and locked starting from highest addressed lock
360 * downward.
361 *
362 * Multicast scenarios
363 * ips_ill_g_lock -> ill_mcast_lock
364 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
365 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
366 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
367 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
368 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
369 *
370 * IPsec scenarios
371 *
372 * ipsa_lock -> ill_g_lock -> ill_lock
373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
374 *
375 * Trusted Solaris scenarios
376 *
377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
378 * igsa_lock -> gcdb_lock
379 * gcgrp_rwlock -> ire_lock
380 * gcgrp_rwlock -> gcdb_lock
381 *
382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
383 *
384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
385 * sq_lock -> conn_lock -> QLOCK(q)
386 * ill_lock -> ft_lock -> fe_lock
387 *
388 * Routing/forwarding table locking notes:
389 *
390 * Lock acquisition order: Radix tree lock, irb_lock.
391 * Requirements:

new/usr/src/uts/common/inet/ip/ip.c 7

392 * i. Walker must not hold any locks during the walker callback.
393 * ii Walker must not see a truncated tree during the walk because of any node
394 * deletion.
395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used
396 * in many places in the code to walk the irb list. Thus even if all the
397 * ires in a bucket have been deleted, we still can’t free the radix node
398 * until the ires have actually been inactive’d (freed).
399 *
400 * Tree traversal - Need to hold the global tree lock in read mode.
401 * Before dropping the global tree lock, need to either increment the ire_refcnt
402 * to ensure that the radix node can’t be deleted.
403 *
404 * Tree add - Need to hold the global tree lock in write mode to add a
405 * radix node. To prevent the node from being deleted, increment the
406 * irb_refcnt, after the node is added to the tree. The ire itself is
407 * added later while holding the irb_lock, but not the tree lock.
408 *
409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
410 * All associated ires must be inactive (i.e. freed), and irb_refcnt
411 * must be zero.
412 *
413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the
414 * global tree lock (read mode) for traversal.
415 *
416 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
417 * hence we will acquire irb_lock while holding ips_ire_dep_lock.
418 *
419 * IPsec notes :
420 *
421 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
422 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
423 * ip_xmit_attr_t has the
424 * information used by the IPsec code for applying the right level of
425 * protection. The information initialized by IP in the ip_xmit_attr_t
426 * is determined by the per-socket policy or global policy in the system.
427 * For inbound datagrams, the ip_recv_attr_t
428 * starts out with nothing in it. It gets filled
429 * with the right information if it goes through the AH/ESP code, which
430 * happens if the incoming packet is secure. The information initialized
431 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
432 * the policy requirements needed by per-socket policy or global policy
433 * is met or not.
434 *
435 * For fully connected sockets i.e dst, src [addr, port] is known,
436 * conn_policy_cached is set indicating that policy has been cached.
437 * conn_in_enforce_policy may or may not be set depending on whether
438 * there is a global policy match or per-socket policy match.
439 * Policy inheriting happpens in ip_policy_set once the destination is known.
440 * Once the right policy is set on the conn_t, policy cannot change for
441 * this socket. This makes life simpler for TCP (UDP ?) where
442 * re-transmissions go out with the same policy. For symmetry, policy
443 * is cached for fully connected UDP sockets also. Thus if policy is cached,
444 * it also implies that policy is latched i.e policy cannot change
445 * on these sockets. As we have the right policy on the conn, we don’t
446 * have to lookup global policy for every outbound and inbound datagram
447 * and thus serving as an optimization. Note that a global policy change
448 * does not affect fully connected sockets if they have policy. If fully
449 * connected sockets did not have any policy associated with it, global
450 * policy change may affect them.
451 *
452 * IP Flow control notes:
453 * ---------------------
454 * Non-TCP streams are flow controlled by IP. The way this is accomplished
455 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
456 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
457 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS

new/usr/src/uts/common/inet/ip/ip.c 8

458 * functions.
459 *
460 * Per Tx ring udp flow control:
461 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
462 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
463 *
464 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
465 * To achieve best performance, outgoing traffic need to be fanned out among
466 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
467 * traffic out of the NIC and it takes a fanout hint. UDP connections pass
468 * the address of connp as fanout hint to mac_tx(). Under flow controlled
469 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
470 * cookie points to a specific Tx ring that is blocked. The cookie is used to
471 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
472 * point to drain_lists (idl_t’s). These drain list will store the blocked UDP
473 * connp’s. The drain list is not a single list but a configurable number of
474 * lists.
475 *
476 * The diagram below shows idl_tx_list_t’s and their drain_lists. ip_stack_t
477 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
478 * which is equal to 128. This array in turn contains a pointer to idl_t[],
479 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
480 * list will point to the list of connp’s that are flow controlled.
481 *
482 * --------------- ------- ------- -------
483 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
484 * | --------------- ------- ------- -------
485 * | --------------- ------- ------- -------
486 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
487 * ---------------- | --------------- ------- ------- -------
488 * |idl_tx_list[0]|->| --------------- ------- ------- -------
489 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
490 * | --------------- ------- ------- -------
491 *
492 * | --------------- ------- ------- -------
493 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
494 * --------------- ------- ------- -------
495 * --------------- ------- ------- -------
496 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
497 * | --------------- ------- ------- -------
498 * | --------------- ------- ------- -------
499 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
500 * |idl_tx_list[1]|->| --------------- ------- ------- -------
501 * ---------------- |
502 * | --------------- ------- ------- -------
503 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
504 * --------------- ------- ------- -------
505 *
506 * ----------------
507 * |idl_tx_list[n]|-> ...
508 * ----------------
509 *
510 * When mac_tx() returns a cookie, the cookie is hashed into an index into
511 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
512 * to insert the conn onto. conn_drain_insert() asserts flow control for the
513 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
514 * Further, conn_blocked is set to indicate that the conn is blocked.
515 *
516 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie
517 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
518 * is again hashed to locate the appropriate idl_tx_list, which is then
519 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in
520 * the drain list and calls conn_drain_remove() to clear flow control (via
521 * calling su_txq_full() or clearing QFULL), and remove the conn from the
522 * drain list.
523 *

new/usr/src/uts/common/inet/ip/ip.c 9

524 * Note that the drain list is not a single list but a (configurable) array of
525 * lists (8 elements by default). Synchronization between drain insertion and
526 * flow control wakeup is handled by using idl_txl->txl_lock, and only
527 * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
528 *
529 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
530 * On the send side, if the packet cannot be sent down to the driver by IP
531 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
532 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
533 * the 0’th drain list. When ip_wsrv() runs on the ill_wq because flow
534 * control has been relieved, the blocked conns in the 0’th drain list are
535 * drained as in the non-STREAMS case.
536 *
537 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
538 * is done when the conn is inserted into the drain list (conn_drain_insert())
539 * and cleared when the conn is removed from the it (conn_drain_remove()).
540 *
541 * IPQOS notes:
542 *
543 * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
544 * and IPQoS modules. IPPF includes hooks in IP at different control points
545 * (callout positions) which direct packets to IPQoS modules for policy
546 * processing. Policies, if present, are global.
547 *
548 * The callout positions are located in the following paths:
549 * o local_in (packets destined for this host)
550 * o local_out (packets orginating from this host)
551 * o fwd_in (packets forwarded by this m/c - inbound)
552 * o fwd_out (packets forwarded by this m/c - outbound)
553 * Hooks at these callout points can be enabled/disabled using the ndd variable
554 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
555 * By default all the callout positions are enabled.
556 *
557 * Outbound (local_out)
558 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
559 *
560 * Inbound (local_in)
561 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
562 *
563 * Forwarding (in and out)
564 * Hooks are placed in ire_recv_forward_v4/v6.
565 *
566 * IP Policy Framework processing (IPPF processing)
567 * Policy processing for a packet is initiated by ip_process, which ascertains
568 * that the classifier (ipgpc) is loaded and configured, failing which the
569 * packet resumes normal processing in IP. If the clasifier is present, the
570 * packet is acted upon by one or more IPQoS modules (action instances), per
571 * filters configured in ipgpc and resumes normal IP processing thereafter.
572 * An action instance can drop a packet in course of its processing.
573 *
574 * Zones notes:
575 *
576 * The partitioning rules for networking are as follows:
577 * 1) Packets coming from a zone must have a source address belonging to that
578 * zone.
579 * 2) Packets coming from a zone can only be sent on a physical interface on
580 * which the zone has an IP address.
581 * 3) Between two zones on the same machine, packet delivery is only allowed if
582 * there’s a matching route for the destination and zone in the forwarding
583 * table.
584 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
585 * different zones can bind to the same port with the wildcard address
586 * (INADDR_ANY).
587 *
588 * The granularity of interface partitioning is at the logical interface level.
589 * Therefore, every zone has its own IP addresses, and incoming packets can be

new/usr/src/uts/common/inet/ip/ip.c 10

590 * attributed to a zone unambiguously. A logical interface is placed into a zone
591 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
592 * structure. Rule (1) is implemented by modifying the source address selection
593 * algorithm so that the list of eligible addresses is filtered based on the
594 * sending process zone.
595 *
596 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
597 * across all zones, depending on their type. Here is the break-up:
598 *
599 * IRE type Shared/exclusive
600 * -------- ----------------
601 * IRE_BROADCAST Exclusive
602 * IRE_DEFAULT (default routes) Shared (*)
603 * IRE_LOCAL Exclusive (x)
604 * IRE_LOOPBACK Exclusive
605 * IRE_PREFIX (net routes) Shared (*)
606 * IRE_IF_NORESOLVER (interface routes) Exclusive
607 * IRE_IF_RESOLVER (interface routes) Exclusive
608 * IRE_IF_CLONE (interface routes) Exclusive
609 * IRE_HOST (host routes) Shared (*)
610 *
611 * (*) A zone can only use a default or off-subnet route if the gateway is
612 * directly reachable from the zone, that is, if the gateway’s address matches
613 * one of the zone’s logical interfaces.
614 *
615 * (x) IRE_LOCAL are handled a bit differently.
616 * When ip_restrict_interzone_loopback is set (the default),
617 * ire_route_recursive restricts loopback using an IRE_LOCAL
618 * between zone to the case when L2 would have conceptually looped the packet
619 * back, i.e. the loopback which is required since neither Ethernet drivers
620 * nor Ethernet hardware loops them back. This is the case when the normal
621 * routes (ignoring IREs with different zoneids) would send out the packet on
622 * the same ill as the ill with which is IRE_LOCAL is associated.
623 *
624 * Multiple zones can share a common broadcast address; typically all zones
625 * share the 255.255.255.255 address. Incoming as well as locally originated
626 * broadcast packets must be dispatched to all the zones on the broadcast
627 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
628 * since some zones may not be on the 10.16.72/24 network. To handle this, each
629 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
630 * sent to every zone that has an IRE_BROADCAST entry for the destination
631 * address on the input ill, see ip_input_broadcast().
632 *
633 * Applications in different zones can join the same multicast group address.
634 * The same logic applies for multicast as for broadcast. ip_input_multicast
635 * dispatches packets to all zones that have members on the physical interface.
636 */

638 /*
639 * Squeue Fanout flags:
640 * 0: No fanout.
641 * 1: Fanout across all squeues
642 */
643 boolean_t ip_squeue_fanout = 0;

645 /*
646 * Maximum dups allowed per packet.
647 */
648 uint_t ip_max_frag_dups = 10;

650 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
651 cred_t *credp, boolean_t isv6);
652 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *);

654 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
655 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);

new/usr/src/uts/common/inet/ip/ip.c 11

656 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
657 ip_recv_attr_t *);
658 static void icmp_options_update(ipha_t *);
659 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *);
660 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
661 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
662 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
663 ip_recv_attr_t *);
664 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
665 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
666 ip_recv_attr_t *);

668 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t);
669 char *ip_dot_addr(ipaddr_t, char *);
670 mblk_t *ip_carve_mp(mblk_t **, ssize_t);
671 int ip_close(queue_t *, int);
672 static char *ip_dot_saddr(uchar_t *, char *);
673 static void ip_lrput(queue_t *, mblk_t *);
674 ipaddr_t ip_net_mask(ipaddr_t);
675 char *ip_nv_lookup(nv_t *, int);
676 void ip_rput(queue_t *, mblk_t *);
677 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
678 void *dummy_arg);
679 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
680 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
681 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
682 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
683 ip_stack_t *, boolean_t);
684 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
685 boolean_t);
686 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
687 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
688 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
689 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
690 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
691 ip_stack_t *ipst, boolean_t);
692 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
693 ip_stack_t *ipst, boolean_t);
694 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
695 ip_stack_t *ipst);
696 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
697 ip_stack_t *ipst);
698 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
699 ip_stack_t *ipst);
700 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
701 ip_stack_t *ipst);
702 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
703 ip_stack_t *ipst);
704 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
705 ip_stack_t *ipst);
706 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
707 ip_stack_t *ipst);
708 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
709 ip_stack_t *ipst);
710 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *);
711 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
712 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
713 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
714 int ip_snmp_set(queue_t *, int, int, uchar_t *, int);

716 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
717 mblk_t *);

719 static void conn_drain_init(ip_stack_t *);
720 static void conn_drain_fini(ip_stack_t *);
721 static void conn_drain(conn_t *connp, boolean_t closing);

new/usr/src/uts/common/inet/ip/ip.c 12

723 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
724 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);

726 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns);
727 static void ip_stack_shutdown(netstackid_t stackid, void *arg);
728 static void ip_stack_fini(netstackid_t stackid, void *arg);

730 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
731 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
732 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t,
733 const in6_addr_t *);

735 static int ip_squeue_switch(int);

737 static void *ip_kstat_init(netstackid_t, ip_stack_t *);
738 static void ip_kstat_fini(netstackid_t, kstat_t *);
739 static int ip_kstat_update(kstat_t *kp, int rw);
740 static void *icmp_kstat_init(netstackid_t);
741 static void icmp_kstat_fini(netstackid_t, kstat_t *);
742 static int icmp_kstat_update(kstat_t *kp, int rw);
743 static void *ip_kstat2_init(netstackid_t, ip_stat_t *);
744 static void ip_kstat2_fini(netstackid_t, kstat_t *);

746 static void ipobs_init(ip_stack_t *);
747 static void ipobs_fini(ip_stack_t *);

749 static int ip_tp_cpu_update(cpu_setup_t, int, void *);

751 ipaddr_t ip_g_all_ones = IP_HOST_MASK;

753 static long ip_rput_pullups;
754 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */

756 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
757 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */

759 int ip_debug;

761 /*
762 * Multirouting/CGTP stuff
763 */
764 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */

766 /*
767 * IP tunables related declarations. Definitions are in ip_tunables.c
768 */
769 extern mod_prop_info_t ip_propinfo_tbl[];
770 extern int ip_propinfo_count;

772 /*
773 * Table of IP ioctls encoding the various properties of the ioctl and
774 * indexed based on the last byte of the ioctl command. Occasionally there
775 * is a clash, and there is more than 1 ioctl with the same last byte.
776 * In such a case 1 ioctl is encoded in the ndx table and the remaining
777 * ioctls are encoded in the misc table. An entry in the ndx table is
778 * retrieved by indexing on the last byte of the ioctl command and comparing
779 * the ioctl command with the value in the ndx table. In the event of a
780 * mismatch the misc table is then searched sequentially for the desired
781 * ioctl command.
782 *
783 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
784 */
785 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
786 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

new/usr/src/uts/common/inet/ip/ip.c 13

788 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
793 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
794 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
795 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

797 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV,
798 MISC_CMD, ip_siocaddrt, NULL },
799 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV,
800 MISC_CMD, ip_siocdelrt, NULL },

802 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
803 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
804 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
805 IF_CMD, ip_sioctl_get_addr, NULL },

807 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
808 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
809 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
810 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },

812 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
813 IPI_PRIV | IPI_WR,
814 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
815 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
816 IPI_MODOK | IPI_GET_CMD,
817 IF_CMD, ip_sioctl_get_flags, NULL },

819 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
820 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

822 /* copyin size cannot be coded for SIOCGIFCONF */
823 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
824 MISC_CMD, ip_sioctl_get_ifconf, NULL },

826 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
827 IF_CMD, ip_sioctl_mtu, NULL },
828 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
829 IF_CMD, ip_sioctl_get_mtu, NULL },
830 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
831 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
832 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
833 IF_CMD, ip_sioctl_brdaddr, NULL },
834 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
835 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
836 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
837 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
838 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
839 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
840 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
841 IF_CMD, ip_sioctl_metric, NULL },
842 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

844 /* See 166-168 below for extended SIOC*XARP ioctls */
845 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
846 ARP_CMD, ip_sioctl_arp, NULL },
847 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
848 ARP_CMD, ip_sioctl_arp, NULL },
849 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
850 ARP_CMD, ip_sioctl_arp, NULL },

852 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

new/usr/src/uts/common/inet/ip/ip.c 14

854 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
870 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
871 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
872 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

874 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
875 MISC_CMD, if_unitsel, if_unitsel_restart },

877 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
892 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
893 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
894 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

896 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
897 IPI_PRIV | IPI_WR | IPI_MODOK,
898 IF_CMD, ip_sioctl_sifname, NULL },

900 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
910 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
911 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
912 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

914 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
915 MISC_CMD, ip_sioctl_get_ifnum, NULL },
916 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
917 IF_CMD, ip_sioctl_get_muxid, NULL },
918 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
919 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },

new/usr/src/uts/common/inet/ip/ip.c 15

921 /* Both if and lif variants share same func */
922 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
923 IF_CMD, ip_sioctl_get_lifindex, NULL },
924 /* Both if and lif variants share same func */
925 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
926 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },

928 /* copyin size cannot be coded for SIOCGIFCONF */
929 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
930 MISC_CMD, ip_sioctl_get_ifconf, NULL },
931 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
946 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
947 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

949 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
950 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
951 ip_sioctl_removeif_restart },
952 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
953 IPI_GET_CMD | IPI_PRIV | IPI_WR,
954 LIF_CMD, ip_sioctl_addif, NULL },
955 #define SIOCLIFADDR_NDX 112
956 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
957 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
958 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
959 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
960 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
961 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
962 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
963 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
964 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
965 IPI_PRIV | IPI_WR,
966 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
967 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
968 IPI_GET_CMD | IPI_MODOK,
969 LIF_CMD, ip_sioctl_get_flags, NULL },

971 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
972 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

974 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
975 ip_sioctl_get_lifconf, NULL },
976 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
977 LIF_CMD, ip_sioctl_mtu, NULL },
978 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
979 LIF_CMD, ip_sioctl_get_mtu, NULL },
980 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
981 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
982 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
983 LIF_CMD, ip_sioctl_brdaddr, NULL },
984 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
985 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },

new/usr/src/uts/common/inet/ip/ip.c 16

986 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
987 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
988 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
989 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
990 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
991 LIF_CMD, ip_sioctl_metric, NULL },
992 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
993 IPI_PRIV | IPI_WR | IPI_MODOK,
994 LIF_CMD, ip_sioctl_slifname,
995 ip_sioctl_slifname_restart },

997 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
998 MISC_CMD, ip_sioctl_get_lifnum, NULL },
999 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),

1000 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
1001 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1002 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1003 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1004 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1005 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1006 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1007 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1008 LIF_CMD, ip_sioctl_token, NULL },
1009 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1010 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1011 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1012 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1013 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1014 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1015 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1016 LIF_CMD, ip_sioctl_lnkinfo, NULL },

1018 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1019 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1020 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1021 LIF_CMD, ip_siocdelndp_v6, NULL },
1022 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1023 LIF_CMD, ip_siocqueryndp_v6, NULL },
1024 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1025 LIF_CMD, ip_siocsetndp_v6, NULL },
1026 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1027 MISC_CMD, ip_sioctl_tmyaddr, NULL },
1028 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1029 MISC_CMD, ip_sioctl_tonlink, NULL },
1030 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1031 MISC_CMD, ip_sioctl_tmysite, NULL },
1032 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1033 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1034 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1035 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1036 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1037 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1038 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },

1040 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

1042 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1043 LIF_CMD, ip_sioctl_get_binding, NULL },
1044 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1045 IPI_PRIV | IPI_WR,
1046 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1047 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1048 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1049 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1050 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },

new/usr/src/uts/common/inet/ip/ip.c 17

1052 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1053 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

1057 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

1059 /* These are handled in ip_sioctl_copyin_setup itself */
1060 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1061 MISC_CMD, NULL, NULL },
1062 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1063 MISC_CMD, NULL, NULL },
1064 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },

1066 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1067 ip_sioctl_get_lifconf, NULL },

1069 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1070 XARP_CMD, ip_sioctl_arp, NULL },
1071 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1072 XARP_CMD, ip_sioctl_arp, NULL },
1073 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1074 XARP_CMD, ip_sioctl_arp, NULL },

1076 /* SIOCPOPSOCKFS is not handled by IP */
1077 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },

1079 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1080 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1081 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1082 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1083 ip_sioctl_slifzone_restart },
1084 /* 172-174 are SCTP ioctls and not handled by IP */
1085 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1087 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1088 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1089 IPI_GET_CMD, LIF_CMD,
1090 ip_sioctl_get_lifusesrc, 0 },
1091 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1092 IPI_PRIV | IPI_WR,
1093 LIF_CMD, ip_sioctl_slifusesrc,
1094 NULL },
1095 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1096 ip_sioctl_get_lifsrcof, NULL },
1097 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1098 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1099 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1100 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1101 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1102 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1103 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1104 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1105 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1106 /* SIOCSENABLESDP is handled by SDP */
1107 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1108 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1109 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1110 IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1111 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1112 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1113 ip_sioctl_ilb_cmd, NULL },
1114 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1115 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1116 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1117 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },

new/usr/src/uts/common/inet/ip/ip.c 18

1118 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1119 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1120 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1121 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1122 };

1124 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);

1126 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1127 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1130 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1131 { ND_GET, 0, 0, 0, NULL, NULL },
1132 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1133 { IP_IOCTL, 0, 0, 0, NULL, NULL },
1134 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1135 MISC_CMD, mrt_ioctl},
1136 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1137 MISC_CMD, mrt_ioctl},
1138 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1139 MISC_CMD, mrt_ioctl}
1140 };

1142 int ip_misc_ioctl_count =
1143 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);

1145 int conn_drain_nthreads; /* Number of drainers reqd. */
1146 /* Settable in /etc/system */
1147 /* Defined in ip_ire.c */
1148 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1149 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1150 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;

1152 static nv_t ire_nv_arr[] = {
1153 { IRE_BROADCAST, "BROADCAST" },
1154 { IRE_LOCAL, "LOCAL" },
1155 { IRE_LOOPBACK, "LOOPBACK" },
1156 { IRE_DEFAULT, "DEFAULT" },
1157 { IRE_PREFIX, "PREFIX" },
1158 { IRE_IF_NORESOLVER, "IF_NORESOL" },
1159 { IRE_IF_RESOLVER, "IF_RESOLV" },
1160 { IRE_IF_CLONE, "IF_CLONE" },
1161 { IRE_HOST, "HOST" },
1162 { IRE_MULTICAST, "MULTICAST" },
1163 { IRE_NOROUTE, "NOROUTE" },
1164 { 0 }
1165 };

1167 nv_t *ire_nv_tbl = ire_nv_arr;

1169 /* Simple ICMP IP Header Template */
1170 static ipha_t icmp_ipha = {
1171 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1172 };

1174 struct module_info ip_mod_info = {
1175 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1176 IP_MOD_LOWAT
1177 };

1179 /*
1180 * Duplicate static symbols within a module confuses mdb; so we avoid the
1181 * problem by making the symbols here distinct from those in udp.c.
1182 */

new/usr/src/uts/common/inet/ip/ip.c 19

1184 /*
1185 * Entry points for IP as a device and as a module.
1186 * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1187 */
1188 static struct qinit iprinitv4 = {
1189 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1190 &ip_mod_info
1191 };

1193 struct qinit iprinitv6 = {
1194 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1195 &ip_mod_info
1196 };

1198 static struct qinit ipwinit = {
1199 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1200 &ip_mod_info
1201 };

1203 static struct qinit iplrinit = {
1204 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1205 &ip_mod_info
1206 };

1208 static struct qinit iplwinit = {
1209 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1210 &ip_mod_info
1211 };

1213 /* For AF_INET aka /dev/ip */
1214 struct streamtab ipinfov4 = {
1215 &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1216 };

1218 /* For AF_INET6 aka /dev/ip6 */
1219 struct streamtab ipinfov6 = {
1220 &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1221 };

1223 #ifdef DEBUG
1224 boolean_t skip_sctp_cksum = B_FALSE;
1225 #endif

1227 /*
1228 * Generate an ICMP fragmentation needed message.
1229 * When called from ip_output side a minimal ip_recv_attr_t needs to be
1230 * constructed by the caller.
1231 */
1232 void
1233 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1234 {
1235 icmph_t icmph;
1236 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

1238 mp = icmp_pkt_err_ok(mp, ira);
1239 if (mp == NULL)
1240 return;

1242 bzero(&icmph, sizeof (icmph_t));
1243 icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1244 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1245 icmph.icmph_du_mtu = htons((uint16_t)mtu);
1246 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1247 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);

1249 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);

new/usr/src/uts/common/inet/ip/ip.c 20

1250 }

1252 /*
1253 * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1254 * If the ICMP message is consumed by IP, i.e., it should not be delivered
1255 * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1256 * Likewise, if the ICMP error is misformed (too short, etc), then it
1257 * returns NULL. The caller uses this to determine whether or not to send
1258 * to raw sockets.
1259 *
1260 * All error messages are passed to the matching transport stream.
1261 *
1262 * The following cases are handled by icmp_inbound:
1263 * 1) It needs to send a reply back and possibly delivering it
1264 * to the "interested" upper clients.
1265 * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1266 * 3) It needs to change some values in IP only.
1267 * 4) It needs to change some values in IP and upper layers e.g TCP
1268 * by delivering an error to the upper layers.
1269 *
1270 * We handle the above three cases in the context of IPsec in the
1271 * following way :
1272 *
1273 * 1) Send the reply back in the same way as the request came in.
1274 * If it came in encrypted, it goes out encrypted. If it came in
1275 * clear, it goes out in clear. Thus, this will prevent chosen
1276 * plain text attack.
1277 * 2) The client may or may not expect things to come in secure.
1278 * If it comes in secure, the policy constraints are checked
1279 * before delivering it to the upper layers. If it comes in
1280 * clear, ipsec_inbound_accept_clear will decide whether to
1281 * accept this in clear or not. In both the cases, if the returned
1282 * message (IP header + 8 bytes) that caused the icmp message has
1283 * AH/ESP headers, it is sent up to AH/ESP for validation before
1284 * sending up. If there are only 8 bytes of returned message, then
1285 * upper client will not be notified.
1286 * 3) Check with global policy to see whether it matches the constaints.
1287 * But this will be done only if icmp_accept_messages_in_clear is
1288 * zero.
1289 * 4) If we need to change both in IP and ULP, then the decision taken
1290 * while affecting the values in IP and while delivering up to TCP
1291 * should be the same.
1292 *
1293 * There are two cases.
1294 *
1295 * a) If we reject data at the IP layer (ipsec_check_global_policy()
1296 * failed), we will not deliver it to the ULP, even though they
1297 * are *willing* to accept in *clear*. This is fine as our global
1298 * disposition to icmp messages asks us reject the datagram.
1299 *
1300 * b) If we accept data at the IP layer (ipsec_check_global_policy()
1301 * succeeded or icmp_accept_messages_in_clear is 1), and not able
1302 * to deliver it to ULP (policy failed), it can lead to
1303 * consistency problems. The cases known at this time are
1304 * ICMP_DESTINATION_UNREACHABLE messages with following code
1305 * values :
1306 *
1307 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1308 * and Upper layer rejects. Then the communication will
1309 * come to a stop. This is solved by making similar decisions
1310 * at both levels. Currently, when we are unable to deliver
1311 * to the Upper Layer (due to policy failures) while IP has
1312 * adjusted dce_pmtu, the next outbound datagram would
1313 * generate a local ICMP_FRAGMENTATION_NEEDED message - which
1314 * will be with the right level of protection. Thus the right
1315 * value will be communicated even if we are not able to

new/usr/src/uts/common/inet/ip/ip.c 21

1316 * communicate when we get from the wire initially. But this
1317 * assumes there would be at least one outbound datagram after
1318 * IP has adjusted its dce_pmtu value. To make things
1319 * simpler, we accept in clear after the validation of
1320 * AH/ESP headers.
1321 *
1322 * - Other ICMP ERRORS : We may not be able to deliver it to the
1323 * upper layer depending on the level of protection the upper
1324 * layer expects and the disposition in ipsec_inbound_accept_clear().
1325 * ipsec_inbound_accept_clear() decides whether a given ICMP error
1326 * should be accepted in clear when the Upper layer expects secure.
1327 * Thus the communication may get aborted by some bad ICMP
1328 * packets.
1329 */
1330 mblk_t *
1331 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1332 {
1333 icmph_t *icmph;
1334 ipha_t *ipha; /* Outer header */
1335 int ip_hdr_length; /* Outer header length */
1336 boolean_t interested;
1337 ipif_t *ipif;
1338 uint32_t ts;
1339 uint32_t *tsp;
1340 timestruc_t now;
1341 ill_t *ill = ira->ira_ill;
1342 ip_stack_t *ipst = ill->ill_ipst;
1343 zoneid_t zoneid = ira->ira_zoneid;
1344 int len_needed;
1345 mblk_t *mp_ret = NULL;

1347 ipha = (ipha_t *)mp->b_rptr;

1349 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);

1351 ip_hdr_length = ira->ira_ip_hdr_length;
1352 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1353 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1354 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1355 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1356 freemsg(mp);
1357 return (NULL);
1358 }
1359 /* Last chance to get real. */
1360 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1361 if (ipha == NULL) {
1362 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1363 freemsg(mp);
1364 return (NULL);
1365 }
1366 }

1368 /* The IP header will always be a multiple of four bytes */
1369 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1370 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1371 icmph->icmph_code));

1373 /*
1374 * We will set "interested" to "true" if we should pass a copy to
1375 * the transport or if we handle the packet locally.
1376 */
1377 interested = B_FALSE;
1378 switch (icmph->icmph_type) {
1379 case ICMP_ECHO_REPLY:
1380 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1381 break;

new/usr/src/uts/common/inet/ip/ip.c 22

1382 case ICMP_DEST_UNREACHABLE:
1383 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1385 interested = B_TRUE; /* Pass up to transport */
1386 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1387 break;
1388 case ICMP_SOURCE_QUENCH:
1389 interested = B_TRUE; /* Pass up to transport */
1390 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1391 break;
1392 case ICMP_REDIRECT:
1393 if (!ipst->ips_ip_ignore_redirect)
1394 interested = B_TRUE;
1395 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1396 break;
1397 case ICMP_ECHO_REQUEST:
1398 /*
1399 * Whether to respond to echo requests that come in as IP
1400 * broadcasts or as IP multicast is subject to debate
1401 * (what isn’t?). We aim to please, you pick it.
1402 * Default is do it.
1403 */
1404 if (ira->ira_flags & IRAF_MULTICAST) {
1405 /* multicast: respond based on tunable */
1406 interested = ipst->ips_ip_g_resp_to_echo_mcast;
1407 } else if (ira->ira_flags & IRAF_BROADCAST) {
1408 /* broadcast: respond based on tunable */
1409 interested = ipst->ips_ip_g_resp_to_echo_bcast;
1410 } else {
1411 /* unicast: always respond */
1412 interested = B_TRUE;
1413 }
1414 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1415 if (!interested) {
1416 /* We never pass these to RAW sockets */
1417 freemsg(mp);
1418 return (NULL);
1419 }

1421 /* Check db_ref to make sure we can modify the packet. */
1422 if (mp->b_datap->db_ref > 1) {
1423 mblk_t *mp1;

1425 mp1 = copymsg(mp);
1426 freemsg(mp);
1427 if (!mp1) {
1428 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1429 return (NULL);
1430 }
1431 mp = mp1;
1432 ipha = (ipha_t *)mp->b_rptr;
1433 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1434 }
1435 icmph->icmph_type = ICMP_ECHO_REPLY;
1436 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1437 icmp_send_reply_v4(mp, ipha, icmph, ira);
1438 return (NULL);

1440 case ICMP_ROUTER_ADVERTISEMENT:
1441 case ICMP_ROUTER_SOLICITATION:
1442 break;
1443 case ICMP_TIME_EXCEEDED:
1444 interested = B_TRUE; /* Pass up to transport */
1445 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1446 break;
1447 case ICMP_PARAM_PROBLEM:

new/usr/src/uts/common/inet/ip/ip.c 23

1448 interested = B_TRUE; /* Pass up to transport */
1449 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1450 break;
1451 case ICMP_TIME_STAMP_REQUEST:
1452 /* Response to Time Stamp Requests is local policy. */
1453 if (ipst->ips_ip_g_resp_to_timestamp) {
1454 if (ira->ira_flags & IRAF_MULTIBROADCAST)
1455 interested =
1456 ipst->ips_ip_g_resp_to_timestamp_bcast;
1457 else
1458 interested = B_TRUE;
1459 }
1460 if (!interested) {
1461 /* We never pass these to RAW sockets */
1462 freemsg(mp);
1463 return (NULL);
1464 }

1466 /* Make sure we have enough of the packet */
1467 len_needed = ip_hdr_length + ICMPH_SIZE +
1468 3 * sizeof (uint32_t);

1470 if (mp->b_wptr - mp->b_rptr < len_needed) {
1471 ipha = ip_pullup(mp, len_needed, ira);
1472 if (ipha == NULL) {
1473 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1474 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1475 mp, ill);
1476 freemsg(mp);
1477 return (NULL);
1478 }
1479 /* Refresh following the pullup. */
1480 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1481 }
1482 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1483 /* Check db_ref to make sure we can modify the packet. */
1484 if (mp->b_datap->db_ref > 1) {
1485 mblk_t *mp1;

1487 mp1 = copymsg(mp);
1488 freemsg(mp);
1489 if (!mp1) {
1490 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1491 return (NULL);
1492 }
1493 mp = mp1;
1494 ipha = (ipha_t *)mp->b_rptr;
1495 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1496 }
1497 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1498 tsp = (uint32_t *)&icmph[1];
1499 tsp++; /* Skip past ’originate time’ */
1500 /* Compute # of milliseconds since midnight */
1501 gethrestime(&now);
1502 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1503 now.tv_nsec / (NANOSEC / MILLISEC);
1504 *tsp++ = htonl(ts); /* Lay in ’receive time’ */
1505 *tsp++ = htonl(ts); /* Lay in ’send time’ */
1506 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1507 icmp_send_reply_v4(mp, ipha, icmph, ira);
1508 return (NULL);

1510 case ICMP_TIME_STAMP_REPLY:
1511 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1512 break;
1513 case ICMP_INFO_REQUEST:

new/usr/src/uts/common/inet/ip/ip.c 24

1514 /* Per RFC 1122 3.2.2.7, ignore this. */
1515 case ICMP_INFO_REPLY:
1516 break;
1517 case ICMP_ADDRESS_MASK_REQUEST:
1518 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1519 interested =
1520 ipst->ips_ip_respond_to_address_mask_broadcast;
1521 } else {
1522 interested = B_TRUE;
1523 }
1524 if (!interested) {
1525 /* We never pass these to RAW sockets */
1526 freemsg(mp);
1527 return (NULL);
1528 }
1529 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1530 if (mp->b_wptr - mp->b_rptr < len_needed) {
1531 ipha = ip_pullup(mp, len_needed, ira);
1532 if (ipha == NULL) {
1533 BUMP_MIB(ill->ill_ip_mib,
1534 ipIfStatsInTruncatedPkts);
1535 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1536 ill);
1537 freemsg(mp);
1538 return (NULL);
1539 }
1540 /* Refresh following the pullup. */
1541 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1542 }
1543 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1544 /* Check db_ref to make sure we can modify the packet. */
1545 if (mp->b_datap->db_ref > 1) {
1546 mblk_t *mp1;

1548 mp1 = copymsg(mp);
1549 freemsg(mp);
1550 if (!mp1) {
1551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1552 return (NULL);
1553 }
1554 mp = mp1;
1555 ipha = (ipha_t *)mp->b_rptr;
1556 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1557 }
1558 /*
1559 * Need the ipif with the mask be the same as the source
1560 * address of the mask reply. For unicast we have a specific
1561 * ipif. For multicast/broadcast we only handle onlink
1562 * senders, and use the source address to pick an ipif.
1563 */
1564 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1565 if (ipif == NULL) {
1566 /* Broadcast or multicast */
1567 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1568 if (ipif == NULL) {
1569 freemsg(mp);
1570 return (NULL);
1571 }
1572 }
1573 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1574 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1575 ipif_refrele(ipif);
1576 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1577 icmp_send_reply_v4(mp, ipha, icmph, ira);
1578 return (NULL);

new/usr/src/uts/common/inet/ip/ip.c 25

1580 case ICMP_ADDRESS_MASK_REPLY:
1581 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1582 break;
1583 default:
1584 interested = B_TRUE; /* Pass up to transport */
1585 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1586 break;
1587 }
1588 /*
1589 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1590 * if there isn’t one.
1591 */
1592 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1593 /* If there is an ICMP client and we want one too, copy it. */

1595 if (!interested) {
1596 /* Caller will deliver to RAW sockets */
1597 return (mp);
1598 }
1599 mp_ret = copymsg(mp);
1600 if (mp_ret == NULL) {
1601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1602 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1603 }
1604 } else if (!interested) {
1605 /* Neither we nor raw sockets are interested. Drop packet now */
1606 freemsg(mp);
1607 return (NULL);
1608 }

1610 /*
1611 * ICMP error or redirect packet. Make sure we have enough of
1612 * the header and that db_ref == 1 since we might end up modifying
1613 * the packet.
1614 */
1615 if (mp->b_cont != NULL) {
1616 if (ip_pullup(mp, -1, ira) == NULL) {
1617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1618 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1619 mp, ill);
1620 freemsg(mp);
1621 return (mp_ret);
1622 }
1623 }

1625 if (mp->b_datap->db_ref > 1) {
1626 mblk_t *mp1;

1628 mp1 = copymsg(mp);
1629 if (mp1 == NULL) {
1630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1631 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1632 freemsg(mp);
1633 return (mp_ret);
1634 }
1635 freemsg(mp);
1636 mp = mp1;
1637 }

1639 /*
1640 * In case mp has changed, verify the message before any further
1641 * processes.
1642 */
1643 ipha = (ipha_t *)mp->b_rptr;
1644 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1645 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {

new/usr/src/uts/common/inet/ip/ip.c 26

1646 freemsg(mp);
1647 return (mp_ret);
1648 }

1650 switch (icmph->icmph_type) {
1651 case ICMP_REDIRECT:
1652 icmp_redirect_v4(mp, ipha, icmph, ira);
1653 break;
1654 case ICMP_DEST_UNREACHABLE:
1655 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1656 /* Update DCE and adjust MTU is icmp header if needed */
1657 icmp_inbound_too_big_v4(icmph, ira);
1658 }
1659 /* FALLTHRU */
1660 default:
1661 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1662 break;
1663 }
1664 return (mp_ret);
1665 }

1667 /*
1668 * Send an ICMP echo, timestamp or address mask reply.
1669 * The caller has already updated the payload part of the packet.
1670 * We handle the ICMP checksum, IP source address selection and feed
1671 * the packet into ip_output_simple.
1672 */
1673 static void
1674 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1675 ip_recv_attr_t *ira)
1676 {
1677 uint_t ip_hdr_length = ira->ira_ip_hdr_length;
1678 ill_t *ill = ira->ira_ill;
1679 ip_stack_t *ipst = ill->ill_ipst;
1680 ip_xmit_attr_t ixas;

1682 /* Send out an ICMP packet */
1683 icmph->icmph_checksum = 0;
1684 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1685 /* Reset time to live. */
1686 ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1687 {
1688 /* Swap source and destination addresses */
1689 ipaddr_t tmp;

1691 tmp = ipha->ipha_src;
1692 ipha->ipha_src = ipha->ipha_dst;
1693 ipha->ipha_dst = tmp;
1694 }
1695 ipha->ipha_ident = 0;
1696 if (!IS_SIMPLE_IPH(ipha))
1697 icmp_options_update(ipha);

1699 bzero(&ixas, sizeof (ixas));
1700 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1701 ixas.ixa_zoneid = ira->ira_zoneid;
1702 ixas.ixa_cred = kcred;
1703 ixas.ixa_cpid = NOPID;
1704 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1705 ixas.ixa_ifindex = 0;
1706 ixas.ixa_ipst = ipst;
1707 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;

1709 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1710 /*
1711 * This packet should go out the same way as it

new/usr/src/uts/common/inet/ip/ip.c 27

1712 * came in i.e in clear, independent of the IPsec policy
1713 * for transmitting packets.
1714 */
1715 ixas.ixa_flags |= IXAF_NO_IPSEC;
1716 } else {
1717 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1719 /* Note: mp already consumed and ip_drop_packet done */
1720 return;
1721 }
1722 }
1723 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1724 /*
1725 * Not one or our addresses (IRE_LOCALs), thus we let
1726 * ip_output_simple pick the source.
1727 */
1728 ipha->ipha_src = INADDR_ANY;
1729 ixas.ixa_flags |= IXAF_SET_SOURCE;
1730 }
1731 /* Should we send with DF and use dce_pmtu? */
1732 if (ipst->ips_ipv4_icmp_return_pmtu) {
1733 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1734 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1735 }

1737 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);

1739 (void) ip_output_simple(mp, &ixas);
1740 ixa_cleanup(&ixas);
1741 }

1743 /*
1744 * Verify the ICMP messages for either for ICMP error or redirect packet.
1745 * The caller should have fully pulled up the message. If it’s a redirect
1746 * packet, only basic checks on IP header will be done; otherwise, verify
1747 * the packet by looking at the included ULP header.
1748 *
1749 * Called before icmp_inbound_error_fanout_v4 is called.
1750 */
1751 static boolean_t
1752 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1753 {
1754 ill_t *ill = ira->ira_ill;
1755 int hdr_length;
1756 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
1757 conn_t *connp;
1758 ipha_t *ipha; /* Inner IP header */

1760 ipha = (ipha_t *)&icmph[1];
1761 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1762 goto truncated;

1764 hdr_length = IPH_HDR_LENGTH(ipha);

1766 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1767 goto discard_pkt;

1769 if (hdr_length < sizeof (ipha_t))
1770 goto truncated;

1772 if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1773 goto truncated;

1775 /*
1776 * Stop here for ICMP_REDIRECT.
1777 */

new/usr/src/uts/common/inet/ip/ip.c 28

1778 if (icmph->icmph_type == ICMP_REDIRECT)
1779 return (B_TRUE);

1781 /*
1782 * ICMP errors only.
1783 */
1784 switch (ipha->ipha_protocol) {
1785 case IPPROTO_UDP:
1786 /*
1787 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1788 * transport header.
1789 */
1790 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1791 mp->b_wptr)
1792 goto truncated;
1793 break;
1794 case IPPROTO_TCP: {
1795 tcpha_t *tcpha;

1797 /*
1798 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1799 * transport header.
1800 */
1801 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1802 mp->b_wptr)
1803 goto truncated;

1805 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1806 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1807 ipst);
1808 if (connp == NULL)
1809 goto discard_pkt;

1811 if ((connp->conn_verifyicmp != NULL) &&
1812 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1813 CONN_DEC_REF(connp);
1814 goto discard_pkt;
1815 }
1816 CONN_DEC_REF(connp);
1817 break;
1818 }
1819 case IPPROTO_SCTP:
1820 /*
1821 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1822 * transport header.
1823 */
1824 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1825 mp->b_wptr)
1826 goto truncated;
1827 break;
1828 case IPPROTO_DCCP: {
1829 dccpha_t *dccpha;

1831 /*
1832 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1833 * transport header.
1834 */
1835 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1836 mp->b_wptr)
1837 goto truncated;

1839 cmn_err(CE_NOTE, "icmp_inbound_verify_v4");

1841 dccpha = (dccpha_t *)((uchar_t *)ipha + hdr_length);
1842 /* XXX:DCCP */
1843 /*

new/usr/src/uts/common/inet/ip/ip.c 29

1844 connp = ipcl_dccp_lookup_reversed_ipv4(ipha, dccpha,
1845 DCCPS_LISTEN, ipst);
1846 if (connp == NULL) {
1847 goto discard_pkt;
1848 }

1850 if ((connp->conn_verifyicmp != NULL) &&
1851 !connp->conn_verifyicmp(connp, dccpha, icmph, NULL, ira)) {
1852 CONN_DEC_REF(connp);
1853 goto discard_pkt;
1854 }

1856 CONN_DEC_REF(connp);
1857 */
1858 break;
1859 }
1860 #endif /* ! codereview */
1861 case IPPROTO_ESP:
1862 case IPPROTO_AH:
1863 break;
1864 case IPPROTO_ENCAP:
1865 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1866 mp->b_wptr)
1867 goto truncated;
1868 break;
1869 default:
1870 break;
1871 }

1873 return (B_TRUE);

1875 discard_pkt:
1876 /* Bogus ICMP error. */
1877 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1878 return (B_FALSE);

1880 truncated:
1881 /* We pulled up everthing already. Must be truncated */
1882 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1883 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1884 return (B_FALSE);
1885 }

1887 /* Table from RFC 1191 */
1888 static int icmp_frag_size_table[] =
1889 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };

1891 /*
1892 * Process received ICMP Packet too big.
1893 * Just handles the DCE create/update, including using the above table of
1894 * PMTU guesses. The caller is responsible for validating the packet before
1895 * passing it in and also to fanout the ICMP error to any matching transport
1896 * conns. Assumes the message has been fully pulled up and verified.
1897 *
1898 * Before getting here, the caller has called icmp_inbound_verify_v4()
1899 * that should have verified with ULP to prevent undoing the changes we’re
1900 * going to make to DCE. For example, TCP might have verified that the packet
1901 * which generated error is in the send window.
1902 *
1903 * In some cases modified this MTU in the ICMP header packet; the caller
1904 * should pass to the matching ULP after this returns.
1905 */
1906 static void
1907 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1908 {
1909 dce_t *dce;

new/usr/src/uts/common/inet/ip/ip.c 30

1910 int old_mtu;
1911 int mtu, orig_mtu;
1912 ipaddr_t dst;
1913 boolean_t disable_pmtud;
1914 ill_t *ill = ira->ira_ill;
1915 ip_stack_t *ipst = ill->ill_ipst;
1916 uint_t hdr_length;
1917 ipha_t *ipha;

1919 /* Caller already pulled up everything. */
1920 ipha = (ipha_t *)&icmph[1];
1921 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1922 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1923 ASSERT(ill != NULL);

1925 hdr_length = IPH_HDR_LENGTH(ipha);

1927 /*
1928 * We handle path MTU for source routed packets since the DCE
1929 * is looked up using the final destination.
1930 */
1931 dst = ip_get_dst(ipha);

1933 dce = dce_lookup_and_add_v4(dst, ipst);
1934 if (dce == NULL) {
1935 /* Couldn’t add a unique one - ENOMEM */
1936 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1937 ntohl(dst)));
1938 return;
1939 }

1941 /* Check for MTU discovery advice as described in RFC 1191 */
1942 mtu = ntohs(icmph->icmph_du_mtu);
1943 orig_mtu = mtu;
1944 disable_pmtud = B_FALSE;

1946 mutex_enter(&dce->dce_lock);
1947 if (dce->dce_flags & DCEF_PMTU)
1948 old_mtu = dce->dce_pmtu;
1949 else
1950 old_mtu = ill->ill_mtu;

1952 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1953 uint32_t length;
1954 int i;

1956 /*
1957 * Use the table from RFC 1191 to figure out
1958 * the next "plateau" based on the length in
1959 * the original IP packet.
1960 */
1961 length = ntohs(ipha->ipha_length);
1962 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1963 uint32_t, length);
1964 if (old_mtu <= length &&
1965 old_mtu >= length - hdr_length) {
1966 /*
1967 * Handle broken BSD 4.2 systems that
1968 * return the wrong ipha_length in ICMP
1969 * errors.
1970 */
1971 ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1972 length, old_mtu));
1973 length -= hdr_length;
1974 }
1975 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {

new/usr/src/uts/common/inet/ip/ip.c 31

1976 if (length > icmp_frag_size_table[i])
1977 break;
1978 }
1979 if (i == A_CNT(icmp_frag_size_table)) {
1980 /* Smaller than IP_MIN_MTU! */
1981 ip1dbg(("Too big for packet size %d\n",
1982 length));
1983 disable_pmtud = B_TRUE;
1984 mtu = ipst->ips_ip_pmtu_min;
1985 } else {
1986 mtu = icmp_frag_size_table[i];
1987 ip1dbg(("Calculated mtu %d, packet size %d, "
1988 "before %d\n", mtu, length, old_mtu));
1989 if (mtu < ipst->ips_ip_pmtu_min) {
1990 mtu = ipst->ips_ip_pmtu_min;
1991 disable_pmtud = B_TRUE;
1992 }
1993 }
1994 }
1995 if (disable_pmtud)
1996 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1997 else
1998 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;

2000 dce->dce_pmtu = MIN(old_mtu, mtu);
2001 /* Prepare to send the new max frag size for the ULP. */
2002 icmph->icmph_du_zero = 0;
2003 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu);
2004 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
2005 dce, int, orig_mtu, int, mtu);

2007 /* We now have a PMTU for sure */
2008 dce->dce_flags |= DCEF_PMTU;
2009 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
2010 mutex_exit(&dce->dce_lock);
2011 /*
2012 * After dropping the lock the new value is visible to everyone.
2013 * Then we bump the generation number so any cached values reinspect
2014 * the dce_t.
2015 */
2016 dce_increment_generation(dce);
2017 dce_refrele(dce);
2018 }

2020 /*
2021 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
2022 * calls this function.
2023 */
2024 static mblk_t *
2025 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
2026 {
2027 int length;

2029 ASSERT(mp->b_datap->db_type == M_DATA);

2031 /* icmp_inbound_v4 has already pulled up the whole error packet */
2032 ASSERT(mp->b_cont == NULL);

2034 /*
2035 * The length that we want to overlay is the inner header
2036 * and what follows it.
2037 */
2038 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);

2040 /*
2041 * Overlay the inner header and whatever follows it over the

new/usr/src/uts/common/inet/ip/ip.c 32

2042 * outer header.
2043 */
2044 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);

2046 /* Adjust for what we removed */
2047 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2048 return (mp);
2049 }

2051 /*
2052 * Try to pass the ICMP message upstream in case the ULP cares.
2053 *
2054 * If the packet that caused the ICMP error is secure, we send
2055 * it to AH/ESP to make sure that the attached packet has a
2056 * valid association. ipha in the code below points to the
2057 * IP header of the packet that caused the error.
2058 *
2059 * For IPsec cases, we let the next-layer-up (which has access to
2060 * cached policy on the conn_t, or can query the SPD directly)
2061 * subtract out any IPsec overhead if they must. We therefore make no
2062 * adjustments here for IPsec overhead.
2063 *
2064 * IFN could have been generated locally or by some router.
2065 *
2066 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2067 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2068 * This happens because IP adjusted its value of MTU on an
2069 * earlier IFN message and could not tell the upper layer,
2070 * the new adjusted value of MTU e.g. Packet was encrypted
2071 * or there was not enough information to fanout to upper
2072 * layers. Thus on the next outbound datagram, ire_send_wire
2073 * generates the IFN, where IPsec processing has *not* been
2074 * done.
2075 *
2076 * Note that we retain ixa_fragsize across IPsec thus once
2077 * we have picking ixa_fragsize and entered ipsec_out_process we do
2078 * no change the fragsize even if the path MTU changes before
2079 * we reach ip_output_post_ipsec.
2080 *
2081 * In the local case, IRAF_LOOPBACK will be set indicating
2082 * that IFN was generated locally.
2083 *
2084 * ROUTER : IFN could be secure or non-secure.
2085 *
2086 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2087 * packet in error has AH/ESP headers to validate the AH/ESP
2088 * headers. AH/ESP will verify whether there is a valid SA or
2089 * not and send it back. We will fanout again if we have more
2090 * data in the packet.
2091 *
2092 * If the packet in error does not have AH/ESP, we handle it
2093 * like any other case.
2094 *
2095 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2096 * up to AH/ESP for validation. AH/ESP will verify whether there is a
2097 * valid SA or not and send it back. We will fanout again if
2098 * we have more data in the packet.
2099 *
2100 * If the packet in error does not have AH/ESP, we handle it
2101 * like any other case.
2102 *
2103 * The caller must have called icmp_inbound_verify_v4.
2104 */
2105 static void
2106 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2107 {

new/usr/src/uts/common/inet/ip/ip.c 33

2108 uint16_t *up; /* Pointer to ports in ULP header */
2109 uint32_t ports; /* reversed ports for fanout */
2110 ipha_t ripha; /* With reversed addresses */
2111 ipha_t *ipha; /* Inner IP header */
2112 uint_t hdr_length; /* Inner IP header length */
2113 tcpha_t *tcpha;
2114 conn_t *connp;
2115 ill_t *ill = ira->ira_ill;
2116 ip_stack_t *ipst = ill->ill_ipst;
2117 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
2118 ill_t *rill = ira->ira_rill;

2120 /* Caller already pulled up everything. */
2121 ipha = (ipha_t *)&icmph[1];
2122 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2123 ASSERT(mp->b_cont == NULL);

2125 hdr_length = IPH_HDR_LENGTH(ipha);
2126 ira->ira_protocol = ipha->ipha_protocol;

2128 /*
2129 * We need a separate IP header with the source and destination
2130 * addresses reversed to do fanout/classification because the ipha in
2131 * the ICMP error is in the form we sent it out.
2132 */
2133 ripha.ipha_src = ipha->ipha_dst;
2134 ripha.ipha_dst = ipha->ipha_src;
2135 ripha.ipha_protocol = ipha->ipha_protocol;
2136 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;

2138 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2139 ripha.ipha_protocol, ntohl(ipha->ipha_src),
2140 ntohl(ipha->ipha_dst),
2141 icmph->icmph_type, icmph->icmph_code));

2143 switch (ipha->ipha_protocol) {
2144 case IPPROTO_UDP:
2145 up = (uint16_t *)((uchar_t *)ipha + hdr_length);

2147 /* Attempt to find a client stream based on port. */
2148 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2149 ntohs(up[0]), ntohs(up[1])));

2151 /* Note that we send error to all matches. */
2152 ira->ira_flags |= IRAF_ICMP_ERROR;
2153 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2154 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2155 return;

2157 case IPPROTO_TCP:
2158 /*
2159 * Find a TCP client stream for this packet.
2160 * Note that we do a reverse lookup since the header is
2161 * in the form we sent it out.
2162 */
2163 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2164 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2165 ipst);
2166 if (connp == NULL)
2167 goto discard_pkt;

2169 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2170 (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2171 mp = ipsec_check_inbound_policy(mp, connp,
2172 ipha, NULL, ira);
2173 if (mp == NULL) {

new/usr/src/uts/common/inet/ip/ip.c 34

2174 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2175 /* Note that mp is NULL */
2176 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2177 CONN_DEC_REF(connp);
2178 return;
2179 }
2180 }

2182 ira->ira_flags |= IRAF_ICMP_ERROR;
2183 ira->ira_ill = ira->ira_rill = NULL;
2184 if (IPCL_IS_TCP(connp)) {
2185 SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2186 connp->conn_recvicmp, connp, ira, SQ_FILL,
2187 SQTAG_TCP_INPUT_ICMP_ERR);
2188 } else {
2189 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2190 (connp->conn_recv)(connp, mp, NULL, ira);
2191 CONN_DEC_REF(connp);
2192 }
2193 ira->ira_ill = ill;
2194 ira->ira_rill = rill;
2195 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2196 return;

2198 case IPPROTO_SCTP:
2199 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2200 /* Find a SCTP client stream for this packet. */
2201 ((uint16_t *)&ports)[0] = up[1];
2202 ((uint16_t *)&ports)[1] = up[0];

2204 ira->ira_flags |= IRAF_ICMP_ERROR;
2205 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2206 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2207 return;

2209 case IPPROTO_DCCP:
2210 cmn_err(CE_NOTE, "icmp_inbound_error_fanout_v4");
2211 return;

2213 #endif /* ! codereview */
2214 case IPPROTO_ESP:
2215 case IPPROTO_AH:
2216 if (!ipsec_loaded(ipss)) {
2217 ip_proto_not_sup(mp, ira);
2218 return;
2219 }

2221 if (ipha->ipha_protocol == IPPROTO_ESP)
2222 mp = ipsecesp_icmp_error(mp, ira);
2223 else
2224 mp = ipsecah_icmp_error(mp, ira);
2225 if (mp == NULL)
2226 return;

2228 /* Just in case ipsec didn’t preserve the NULL b_cont */
2229 if (mp->b_cont != NULL) {
2230 if (!pullupmsg(mp, -1))
2231 goto discard_pkt;
2232 }

2234 /*
2235 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2236 * correct, but we don’t use them any more here.
2237 *
2238 * If succesful, the mp has been modified to not include
2239 * the ESP/AH header so we can fanout to the ULP’s icmp

new/usr/src/uts/common/inet/ip/ip.c 35

2240 * error handler.
2241 */
2242 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2243 goto truncated;

2245 /* Verify the modified message before any further processes. */
2246 ipha = (ipha_t *)mp->b_rptr;
2247 hdr_length = IPH_HDR_LENGTH(ipha);
2248 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2249 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2250 freemsg(mp);
2251 return;
2252 }

2254 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2255 return;

2257 case IPPROTO_ENCAP: {
2258 /* Look for self-encapsulated packets that caused an error */
2259 ipha_t *in_ipha;

2261 /*
2262 * Caller has verified that length has to be
2263 * at least the size of IP header.
2264 */
2265 ASSERT(hdr_length >= sizeof (ipha_t));
2266 /*
2267 * Check the sanity of the inner IP header like
2268 * we did for the outer header.
2269 */
2270 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2271 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2272 goto discard_pkt;
2273 }
2274 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2275 goto discard_pkt;
2276 }
2277 /* Check for Self-encapsulated tunnels */
2278 if (in_ipha->ipha_src == ipha->ipha_src &&
2279 in_ipha->ipha_dst == ipha->ipha_dst) {

2281 mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2282 in_ipha);
2283 if (mp == NULL)
2284 goto discard_pkt;

2286 /*
2287 * Just in case self_encap didn’t preserve the NULL
2288 * b_cont
2289 */
2290 if (mp->b_cont != NULL) {
2291 if (!pullupmsg(mp, -1))
2292 goto discard_pkt;
2293 }
2294 /*
2295 * Note that ira_pktlen and ira_ip_hdr_length are no
2296 * longer correct, but we don’t use them any more here.
2297 */
2298 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2299 goto truncated;

2301 /*
2302 * Verify the modified message before any further
2303 * processes.
2304 */
2305 ipha = (ipha_t *)mp->b_rptr;

new/usr/src/uts/common/inet/ip/ip.c 36

2306 hdr_length = IPH_HDR_LENGTH(ipha);
2307 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2308 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2309 freemsg(mp);
2310 return;
2311 }

2313 /*
2314 * The packet in error is self-encapsualted.
2315 * And we are finding it further encapsulated
2316 * which we could not have possibly generated.
2317 */
2318 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2319 goto discard_pkt;
2320 }
2321 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2322 return;
2323 }
2324 /* No self-encapsulated */
2325 /* FALLTHRU */
2326 }
2327 case IPPROTO_IPV6:
2328 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2329 &ripha.ipha_dst, ipst)) != NULL) {
2330 ira->ira_flags |= IRAF_ICMP_ERROR;
2331 connp->conn_recvicmp(connp, mp, NULL, ira);
2332 CONN_DEC_REF(connp);
2333 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2334 return;
2335 }
2336 /*
2337 * No IP tunnel is interested, fallthrough and see
2338 * if a raw socket will want it.
2339 */
2340 /* FALLTHRU */
2341 default:
2342 ira->ira_flags |= IRAF_ICMP_ERROR;
2343 ip_fanout_proto_v4(mp, &ripha, ira);
2344 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2345 return;
2346 }
2347 /* NOTREACHED */
2348 discard_pkt:
2349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2350 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2351 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2352 freemsg(mp);
2353 return;

2355 truncated:
2356 /* We pulled up everthing already. Must be truncated */
2357 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2358 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2359 freemsg(mp);
2360 }

2362 /*
2363 * Common IP options parser.
2364 *
2365 * Setup routine: fill in *optp with options-parsing state, then
2366 * tail-call ipoptp_next to return the first option.
2367 */
2368 uint8_t
2369 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2370 {
2371 uint32_t totallen; /* total length of all options */

new/usr/src/uts/common/inet/ip/ip.c 37

2373 totallen = ipha->ipha_version_and_hdr_length -
2374 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2375 totallen <<= 2;
2376 optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2377 optp->ipoptp_end = optp->ipoptp_next + totallen;
2378 optp->ipoptp_flags = 0;
2379 return (ipoptp_next(optp));
2380 }

2382 /* Like above but without an ipha_t */
2383 uint8_t
2384 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2385 {
2386 optp->ipoptp_next = opt;
2387 optp->ipoptp_end = optp->ipoptp_next + totallen;
2388 optp->ipoptp_flags = 0;
2389 return (ipoptp_next(optp));
2390 }

2392 /*
2393 * Common IP options parser: extract next option.
2394 */
2395 uint8_t
2396 ipoptp_next(ipoptp_t *optp)
2397 {
2398 uint8_t *end = optp->ipoptp_end;
2399 uint8_t *cur = optp->ipoptp_next;
2400 uint8_t opt, len, pointer;

2402 /*
2403 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2404 * has been corrupted.
2405 */
2406 ASSERT(cur <= end);

2408 if (cur == end)
2409 return (IPOPT_EOL);

2411 opt = cur[IPOPT_OPTVAL];

2413 /*
2414 * Skip any NOP options.
2415 */
2416 while (opt == IPOPT_NOP) {
2417 cur++;
2418 if (cur == end)
2419 return (IPOPT_EOL);
2420 opt = cur[IPOPT_OPTVAL];
2421 }

2423 if (opt == IPOPT_EOL)
2424 return (IPOPT_EOL);

2426 /*
2427 * Option requiring a length.
2428 */
2429 if ((cur + 1) >= end) {
2430 optp->ipoptp_flags |= IPOPTP_ERROR;
2431 return (IPOPT_EOL);
2432 }
2433 len = cur[IPOPT_OLEN];
2434 if (len < 2) {
2435 optp->ipoptp_flags |= IPOPTP_ERROR;
2436 return (IPOPT_EOL);
2437 }

new/usr/src/uts/common/inet/ip/ip.c 38

2438 optp->ipoptp_cur = cur;
2439 optp->ipoptp_len = len;
2440 optp->ipoptp_next = cur + len;
2441 if (cur + len > end) {
2442 optp->ipoptp_flags |= IPOPTP_ERROR;
2443 return (IPOPT_EOL);
2444 }

2446 /*
2447 * For the options which require a pointer field, make sure
2448 * its there, and make sure it points to either something
2449 * inside this option, or the end of the option.
2450 */
2451 switch (opt) {
2452 case IPOPT_RR:
2453 case IPOPT_TS:
2454 case IPOPT_LSRR:
2455 case IPOPT_SSRR:
2456 if (len <= IPOPT_OFFSET) {
2457 optp->ipoptp_flags |= IPOPTP_ERROR;
2458 return (opt);
2459 }
2460 pointer = cur[IPOPT_OFFSET];
2461 if (pointer - 1 > len) {
2462 optp->ipoptp_flags |= IPOPTP_ERROR;
2463 return (opt);
2464 }
2465 break;
2466 }

2468 /*
2469 * Sanity check the pointer field based on the type of the
2470 * option.
2471 */
2472 switch (opt) {
2473 case IPOPT_RR:
2474 case IPOPT_SSRR:
2475 case IPOPT_LSRR:
2476 if (pointer < IPOPT_MINOFF_SR)
2477 optp->ipoptp_flags |= IPOPTP_ERROR;
2478 break;
2479 case IPOPT_TS:
2480 if (pointer < IPOPT_MINOFF_IT)
2481 optp->ipoptp_flags |= IPOPTP_ERROR;
2482 /*
2483 * Note that the Internet Timestamp option also
2484 * contains two four bit fields (the Overflow field,
2485 * and the Flag field), which follow the pointer
2486 * field. We don’t need to check that these fields
2487 * fall within the length of the option because this
2488 * was implicitely done above. We’ve checked that the
2489 * pointer value is at least IPOPT_MINOFF_IT, and that
2490 * it falls within the option. Since IPOPT_MINOFF_IT >
2491 * IPOPT_POS_OV_FLG, we don’t need the explicit check.
2492 */
2493 ASSERT(len > IPOPT_POS_OV_FLG);
2494 break;
2495 }

2497 return (opt);
2498 }

2500 /*
2501 * Use the outgoing IP header to create an IP_OPTIONS option the way
2502 * it was passed down from the application.
2503 *

new/usr/src/uts/common/inet/ip/ip.c 39

2504 * This is compatible with BSD in that it returns
2505 * the reverse source route with the final destination
2506 * as the last entry. The first 4 bytes of the option
2507 * will contain the final destination.
2508 */
2509 int
2510 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2511 {
2512 ipoptp_t opts;
2513 uchar_t *opt;
2514 uint8_t optval;
2515 uint8_t optlen;
2516 uint32_t len = 0;
2517 uchar_t *buf1 = buf;
2518 uint32_t totallen;
2519 ipaddr_t dst;
2520 ip_pkt_t *ipp = &connp->conn_xmit_ipp;

2522 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2523 return (0);

2525 totallen = ipp->ipp_ipv4_options_len;
2526 if (totallen & 0x3)
2527 return (0);

2529 buf += IP_ADDR_LEN; /* Leave room for final destination */
2530 len += IP_ADDR_LEN;
2531 bzero(buf1, IP_ADDR_LEN);

2533 dst = connp->conn_faddr_v4;

2535 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2536 optval != IPOPT_EOL;
2537 optval = ipoptp_next(&opts)) {
2538 int off;

2540 opt = opts.ipoptp_cur;
2541 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2542 break;
2543 }
2544 optlen = opts.ipoptp_len;

2546 switch (optval) {
2547 case IPOPT_SSRR:
2548 case IPOPT_LSRR:

2550 /*
2551 * Insert destination as the first entry in the source
2552 * route and move down the entries on step.
2553 * The last entry gets placed at buf1.
2554 */
2555 buf[IPOPT_OPTVAL] = optval;
2556 buf[IPOPT_OLEN] = optlen;
2557 buf[IPOPT_OFFSET] = optlen;

2559 off = optlen - IP_ADDR_LEN;
2560 if (off < 0) {
2561 /* No entries in source route */
2562 break;
2563 }
2564 /* Last entry in source route if not already set */
2565 if (dst == INADDR_ANY)
2566 bcopy(opt + off, buf1, IP_ADDR_LEN);
2567 off -= IP_ADDR_LEN;

2569 while (off > 0) {

new/usr/src/uts/common/inet/ip/ip.c 40

2570 bcopy(opt + off,
2571 buf + off + IP_ADDR_LEN,
2572 IP_ADDR_LEN);
2573 off -= IP_ADDR_LEN;
2574 }
2575 /* ipha_dst into first slot */
2576 bcopy(&dst, buf + off + IP_ADDR_LEN,
2577 IP_ADDR_LEN);
2578 buf += optlen;
2579 len += optlen;
2580 break;

2582 default:
2583 bcopy(opt, buf, optlen);
2584 buf += optlen;
2585 len += optlen;
2586 break;
2587 }
2588 }
2589 done:
2590 /* Pad the resulting options */
2591 while (len & 0x3) {
2592 *buf++ = IPOPT_EOL;
2593 len++;
2594 }
2595 return (len);
2596 }

2598 /*
2599 * Update any record route or timestamp options to include this host.
2600 * Reverse any source route option.
2601 * This routine assumes that the options are well formed i.e. that they
2602 * have already been checked.
2603 */
2604 static void
2605 icmp_options_update(ipha_t *ipha)
2606 {
2607 ipoptp_t opts;
2608 uchar_t *opt;
2609 uint8_t optval;
2610 ipaddr_t src; /* Our local address */
2611 ipaddr_t dst;

2613 ip2dbg(("icmp_options_update\n"));
2614 src = ipha->ipha_src;
2615 dst = ipha->ipha_dst;

2617 for (optval = ipoptp_first(&opts, ipha);
2618 optval != IPOPT_EOL;
2619 optval = ipoptp_next(&opts)) {
2620 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2621 opt = opts.ipoptp_cur;
2622 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2623 optval, opts.ipoptp_len));
2624 switch (optval) {
2625 int off1, off2;
2626 case IPOPT_SSRR:
2627 case IPOPT_LSRR:
2628 /*
2629 * Reverse the source route. The first entry
2630 * should be the next to last one in the current
2631 * source route (the last entry is our address).
2632 * The last entry should be the final destination.
2633 */
2634 off1 = IPOPT_MINOFF_SR - 1;
2635 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;

new/usr/src/uts/common/inet/ip/ip.c 41

2636 if (off2 < 0) {
2637 /* No entries in source route */
2638 ip1dbg((
2639 "icmp_options_update: bad src route\n"));
2640 break;
2641 }
2642 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2643 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2644 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2645 off2 -= IP_ADDR_LEN;

2647 while (off1 < off2) {
2648 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2649 bcopy((char *)opt + off2, (char *)opt + off1,
2650 IP_ADDR_LEN);
2651 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2652 off1 += IP_ADDR_LEN;
2653 off2 -= IP_ADDR_LEN;
2654 }
2655 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2656 break;
2657 }
2658 }
2659 }

2661 /*
2662 * Process received ICMP Redirect messages.
2663 * Assumes the caller has verified that the headers are in the pulled up mblk.
2664 * Consumes mp.
2665 */
2666 static void
2667 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2668 {
2669 ire_t *ire, *nire;
2670 ire_t *prev_ire;
2671 ipaddr_t src, dst, gateway;
2672 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2673 ipha_t *inner_ipha; /* Inner IP header */

2675 /* Caller already pulled up everything. */
2676 inner_ipha = (ipha_t *)&icmph[1];
2677 src = ipha->ipha_src;
2678 dst = inner_ipha->ipha_dst;
2679 gateway = icmph->icmph_rd_gateway;
2680 /* Make sure the new gateway is reachable somehow. */
2681 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2682 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2683 /*
2684 * Make sure we had a route for the dest in question and that
2685 * that route was pointing to the old gateway (the source of the
2686 * redirect packet.)
2687 * We do longest match and then compare ire_gateway_addr below.
2688 */
2689 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2690 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2691 /*
2692 * Check that
2693 * the redirect was not from ourselves
2694 * the new gateway and the old gateway are directly reachable
2695 */
2696 if (prev_ire == NULL || ire == NULL ||
2697 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2698 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2699 !(ire->ire_type & IRE_IF_ALL) ||
2700 prev_ire->ire_gateway_addr != src) {
2701 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);

new/usr/src/uts/common/inet/ip/ip.c 42

2702 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2703 freemsg(mp);
2704 if (ire != NULL)
2705 ire_refrele(ire);
2706 if (prev_ire != NULL)
2707 ire_refrele(prev_ire);
2708 return;
2709 }

2711 ire_refrele(prev_ire);
2712 ire_refrele(ire);

2714 /*
2715 * TODO: more precise handling for cases 0, 2, 3, the latter two
2716 * require TOS routing
2717 */
2718 switch (icmph->icmph_code) {
2719 case 0:
2720 case 1:
2721 /* TODO: TOS specificity for cases 2 and 3 */
2722 case 2:
2723 case 3:
2724 break;
2725 default:
2726 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2727 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2728 freemsg(mp);
2729 return;
2730 }
2731 /*
2732 * Create a Route Association. This will allow us to remember that
2733 * someone we believe told us to use the particular gateway.
2734 */
2735 ire = ire_create(
2736 (uchar_t *)&dst, /* dest addr */
2737 (uchar_t *)&ip_g_all_ones, /* mask */
2738 (uchar_t *)&gateway, /* gateway addr */
2739 IRE_HOST,
2740 NULL, /* ill */
2741 ALL_ZONES,
2742 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2743 NULL, /* tsol_gc_t */
2744 ipst);

2746 if (ire == NULL) {
2747 freemsg(mp);
2748 return;
2749 }
2750 nire = ire_add(ire);
2751 /* Check if it was a duplicate entry */
2752 if (nire != NULL && nire != ire) {
2753 ASSERT(nire->ire_identical_ref > 1);
2754 ire_delete(nire);
2755 ire_refrele(nire);
2756 nire = NULL;
2757 }
2758 ire = nire;
2759 if (ire != NULL) {
2760 ire_refrele(ire); /* Held in ire_add */

2762 /* tell routing sockets that we received a redirect */
2763 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2764 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2765 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2766 }

new/usr/src/uts/common/inet/ip/ip.c 43

2768 /*
2769 * Delete any existing IRE_HOST type redirect ires for this destination.
2770 * This together with the added IRE has the effect of
2771 * modifying an existing redirect.
2772 */
2773 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2774 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2775 if (prev_ire != NULL) {
2776 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2777 ire_delete(prev_ire);
2778 ire_refrele(prev_ire);
2779 }

2781 freemsg(mp);
2782 }

2784 /*
2785 * Generate an ICMP parameter problem message.
2786 * When called from ip_output side a minimal ip_recv_attr_t needs to be
2787 * constructed by the caller.
2788 */
2789 static void
2790 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2791 {
2792 icmph_t icmph;
2793 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

2795 mp = icmp_pkt_err_ok(mp, ira);
2796 if (mp == NULL)
2797 return;

2799 bzero(&icmph, sizeof (icmph_t));
2800 icmph.icmph_type = ICMP_PARAM_PROBLEM;
2801 icmph.icmph_pp_ptr = ptr;
2802 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2803 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2804 }

2806 /*
2807 * Build and ship an IPv4 ICMP message using the packet data in mp, and
2808 * the ICMP header pointed to by "stuff". (May be called as writer.)
2809 * Note: assumes that icmp_pkt_err_ok has been called to verify that
2810 * an icmp error packet can be sent.
2811 * Assigns an appropriate source address to the packet. If ipha_dst is
2812 * one of our addresses use it for source. Otherwise let ip_output_simple
2813 * pick the source address.
2814 */
2815 static void
2816 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2817 {
2818 ipaddr_t dst;
2819 icmph_t *icmph;
2820 ipha_t *ipha;
2821 uint_t len_needed;
2822 size_t msg_len;
2823 mblk_t *mp1;
2824 ipaddr_t src;
2825 ire_t *ire;
2826 ip_xmit_attr_t ixas;
2827 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

2829 ipha = (ipha_t *)mp->b_rptr;

2831 bzero(&ixas, sizeof (ixas));
2832 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2833 ixas.ixa_zoneid = ira->ira_zoneid;

new/usr/src/uts/common/inet/ip/ip.c 44

2834 ixas.ixa_ifindex = 0;
2835 ixas.ixa_ipst = ipst;
2836 ixas.ixa_cred = kcred;
2837 ixas.ixa_cpid = NOPID;
2838 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2839 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;

2841 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2842 /*
2843 * Apply IPsec based on how IPsec was applied to
2844 * the packet that had the error.
2845 *
2846 * If it was an outbound packet that caused the ICMP
2847 * error, then the caller will have setup the IRA
2848 * appropriately.
2849 */
2850 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2851 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2852 /* Note: mp already consumed and ip_drop_packet done */
2853 return;
2854 }
2855 } else {
2856 /*
2857 * This is in clear. The icmp message we are building
2858 * here should go out in clear, independent of our policy.
2859 */
2860 ixas.ixa_flags |= IXAF_NO_IPSEC;
2861 }

2863 /* Remember our eventual destination */
2864 dst = ipha->ipha_src;

2866 /*
2867 * If the packet was for one of our unicast addresses, make
2868 * sure we respond with that as the source. Otherwise
2869 * have ip_output_simple pick the source address.
2870 */
2871 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2872 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2873 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2874 if (ire != NULL) {
2875 ire_refrele(ire);
2876 src = ipha->ipha_dst;
2877 } else {
2878 src = INADDR_ANY;
2879 ixas.ixa_flags |= IXAF_SET_SOURCE;
2880 }

2882 /*
2883 * Check if we can send back more then 8 bytes in addition to
2884 * the IP header. We try to send 64 bytes of data and the internal
2885 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2886 */
2887 len_needed = IPH_HDR_LENGTH(ipha);
2888 if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2889 ipha->ipha_protocol == IPPROTO_IPV6) {
2890 if (!pullupmsg(mp, -1)) {
2891 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2892 ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2893 freemsg(mp);
2894 return;
2895 }
2896 ipha = (ipha_t *)mp->b_rptr;

2898 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2899 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +

new/usr/src/uts/common/inet/ip/ip.c 45

2900 len_needed));
2901 } else {
2902 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);

2904 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2905 len_needed += ip_hdr_length_v6(mp, ip6h);
2906 }
2907 }
2908 len_needed += ipst->ips_ip_icmp_return;
2909 msg_len = msgdsize(mp);
2910 if (msg_len > len_needed) {
2911 (void) adjmsg(mp, len_needed - msg_len);
2912 msg_len = len_needed;
2913 }
2914 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2915 if (mp1 == NULL) {
2916 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2917 freemsg(mp);
2918 return;
2919 }
2920 mp1->b_cont = mp;
2921 mp = mp1;

2923 /*
2924 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2925 * node generates be accepted in peace by all on-host destinations.
2926 * If we do NOT assume that all on-host destinations trust
2927 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2928 * (Look for IXAF_TRUSTED_ICMP).
2929 */
2930 ixas.ixa_flags |= IXAF_TRUSTED_ICMP;

2932 ipha = (ipha_t *)mp->b_rptr;
2933 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2934 *ipha = icmp_ipha;
2935 ipha->ipha_src = src;
2936 ipha->ipha_dst = dst;
2937 ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2938 msg_len += sizeof (icmp_ipha) + len;
2939 if (msg_len > IP_MAXPACKET) {
2940 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2941 msg_len = IP_MAXPACKET;
2942 }
2943 ipha->ipha_length = htons((uint16_t)msg_len);
2944 icmph = (icmph_t *)&ipha[1];
2945 bcopy(stuff, icmph, len);
2946 icmph->icmph_checksum = 0;
2947 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2948 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);

2950 (void) ip_output_simple(mp, &ixas);
2951 ixa_cleanup(&ixas);
2952 }

2954 /*
2955 * Determine if an ICMP error packet can be sent given the rate limit.
2956 * The limit consists of an average frequency (icmp_pkt_err_interval measured
2957 * in milliseconds) and a burst size. Burst size number of packets can
2958 * be sent arbitrarely closely spaced.
2959 * The state is tracked using two variables to implement an approximate
2960 * token bucket filter:
2961 * icmp_pkt_err_last - lbolt value when the last burst started
2962 * icmp_pkt_err_sent - number of packets sent in current burst
2963 */
2964 boolean_t
2965 icmp_err_rate_limit(ip_stack_t *ipst)

new/usr/src/uts/common/inet/ip/ip.c 46

2966 {
2967 clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2968 uint_t refilled; /* Number of packets refilled in tbf since last */
2969 /* Guard against changes by loading into local variable */
2970 uint_t err_interval = ipst->ips_ip_icmp_err_interval;

2972 if (err_interval == 0)
2973 return (B_FALSE);

2975 if (ipst->ips_icmp_pkt_err_last > now) {
2976 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2977 ipst->ips_icmp_pkt_err_last = 0;
2978 ipst->ips_icmp_pkt_err_sent = 0;
2979 }
2980 /*
2981 * If we are in a burst update the token bucket filter.
2982 * Update the "last" time to be close to "now" but make sure
2983 * we don’t loose precision.
2984 */
2985 if (ipst->ips_icmp_pkt_err_sent != 0) {
2986 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2987 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2988 ipst->ips_icmp_pkt_err_sent = 0;
2989 } else {
2990 ipst->ips_icmp_pkt_err_sent -= refilled;
2991 ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2992 }
2993 }
2994 if (ipst->ips_icmp_pkt_err_sent == 0) {
2995 /* Start of new burst */
2996 ipst->ips_icmp_pkt_err_last = now;
2997 }
2998 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2999 ipst->ips_icmp_pkt_err_sent++;
3000 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
3001 ipst->ips_icmp_pkt_err_sent));
3002 return (B_FALSE);
3003 }
3004 ip1dbg(("icmp_err_rate_limit: dropped\n"));
3005 return (B_TRUE);
3006 }

3008 /*
3009 * Check if it is ok to send an IPv4 ICMP error packet in
3010 * response to the IPv4 packet in mp.
3011 * Free the message and return null if no
3012 * ICMP error packet should be sent.
3013 */
3014 static mblk_t *
3015 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
3016 {
3017 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3018 icmph_t *icmph;
3019 ipha_t *ipha;
3020 uint_t len_needed;

3022 if (!mp)
3023 return (NULL);
3024 ipha = (ipha_t *)mp->b_rptr;
3025 if (ip_csum_hdr(ipha)) {
3026 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
3027 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
3028 freemsg(mp);
3029 return (NULL);
3030 }
3031 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||

new/usr/src/uts/common/inet/ip/ip.c 47

3032 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
3033 CLASSD(ipha->ipha_dst) ||
3034 CLASSD(ipha->ipha_src) ||
3035 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
3036 /* Note: only errors to the fragment with offset 0 */
3037 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3038 freemsg(mp);
3039 return (NULL);
3040 }
3041 if (ipha->ipha_protocol == IPPROTO_ICMP) {
3042 /*
3043 * Check the ICMP type. RFC 1122 sez: don’t send ICMP
3044 * errors in response to any ICMP errors.
3045 */
3046 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3047 if (mp->b_wptr - mp->b_rptr < len_needed) {
3048 if (!pullupmsg(mp, len_needed)) {
3049 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3050 freemsg(mp);
3051 return (NULL);
3052 }
3053 ipha = (ipha_t *)mp->b_rptr;
3054 }
3055 icmph = (icmph_t *)
3056 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3057 switch (icmph->icmph_type) {
3058 case ICMP_DEST_UNREACHABLE:
3059 case ICMP_SOURCE_QUENCH:
3060 case ICMP_TIME_EXCEEDED:
3061 case ICMP_PARAM_PROBLEM:
3062 case ICMP_REDIRECT:
3063 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3064 freemsg(mp);
3065 return (NULL);
3066 default:
3067 break;
3068 }
3069 }
3070 /*
3071 * If this is a labeled system, then check to see if we’re allowed to
3072 * send a response to this particular sender. If not, then just drop.
3073 */
3074 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3075 ip2dbg(("icmp_pkt_err_ok: can’t respond to packet\n"));
3076 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3077 freemsg(mp);
3078 return (NULL);
3079 }
3080 if (icmp_err_rate_limit(ipst)) {
3081 /*
3082 * Only send ICMP error packets every so often.
3083 * This should be done on a per port/source basis,
3084 * but for now this will suffice.
3085 */
3086 freemsg(mp);
3087 return (NULL);
3088 }
3089 return (mp);
3090 }

3092 /*
3093 * Called when a packet was sent out the same link that it arrived on.
3094 * Check if it is ok to send a redirect and then send it.
3095 */
3096 void
3097 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,

new/usr/src/uts/common/inet/ip/ip.c 48

3098 ip_recv_attr_t *ira)
3099 {
3100 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3101 ipaddr_t src, nhop;
3102 mblk_t *mp1;
3103 ire_t *nhop_ire;

3105 /*
3106 * Check the source address to see if it originated
3107 * on the same logical subnet it is going back out on.
3108 * If so, we should be able to send it a redirect.
3109 * Avoid sending a redirect if the destination
3110 * is directly connected (i.e., we matched an IRE_ONLINK),
3111 * or if the packet was source routed out this interface.
3112 *
3113 * We avoid sending a redirect if the
3114 * destination is directly connected
3115 * because it is possible that multiple
3116 * IP subnets may have been configured on
3117 * the link, and the source may not
3118 * be on the same subnet as ip destination,
3119 * even though they are on the same
3120 * physical link.
3121 */
3122 if ((ire->ire_type & IRE_ONLINK) ||
3123 ip_source_routed(ipha, ipst))
3124 return;

3126 nhop_ire = ire_nexthop(ire);
3127 if (nhop_ire == NULL)
3128 return;

3130 nhop = nhop_ire->ire_addr;

3132 if (nhop_ire->ire_type & IRE_IF_CLONE) {
3133 ire_t *ire2;

3135 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3136 mutex_enter(&nhop_ire->ire_lock);
3137 ire2 = nhop_ire->ire_dep_parent;
3138 if (ire2 != NULL)
3139 ire_refhold(ire2);
3140 mutex_exit(&nhop_ire->ire_lock);
3141 ire_refrele(nhop_ire);
3142 nhop_ire = ire2;
3143 }
3144 if (nhop_ire == NULL)
3145 return;

3147 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));

3149 src = ipha->ipha_src;

3151 /*
3152 * We look at the interface ire for the nexthop,
3153 * to see if ipha_src is in the same subnet
3154 * as the nexthop.
3155 */
3156 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3157 /*
3158 * The source is directly connected.
3159 */
3160 mp1 = copymsg(mp);
3161 if (mp1 != NULL) {
3162 icmp_send_redirect(mp1, nhop, ira);
3163 }

new/usr/src/uts/common/inet/ip/ip.c 49

3164 }
3165 ire_refrele(nhop_ire);
3166 }

3168 /*
3169 * Generate an ICMP redirect message.
3170 */
3171 static void
3172 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3173 {
3174 icmph_t icmph;
3175 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

3177 mp = icmp_pkt_err_ok(mp, ira);
3178 if (mp == NULL)
3179 return;

3181 bzero(&icmph, sizeof (icmph_t));
3182 icmph.icmph_type = ICMP_REDIRECT;
3183 icmph.icmph_code = 1;
3184 icmph.icmph_rd_gateway = gateway;
3185 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3186 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3187 }

3189 /*
3190 * Generate an ICMP time exceeded message.
3191 */
3192 void
3193 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3194 {
3195 icmph_t icmph;
3196 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

3198 mp = icmp_pkt_err_ok(mp, ira);
3199 if (mp == NULL)
3200 return;

3202 bzero(&icmph, sizeof (icmph_t));
3203 icmph.icmph_type = ICMP_TIME_EXCEEDED;
3204 icmph.icmph_code = code;
3205 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3206 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3207 }

3209 /*
3210 * Generate an ICMP unreachable message.
3211 * When called from ip_output side a minimal ip_recv_attr_t needs to be
3212 * constructed by the caller.
3213 */
3214 void
3215 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3216 {
3217 icmph_t icmph;
3218 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

3220 mp = icmp_pkt_err_ok(mp, ira);
3221 if (mp == NULL)
3222 return;

3224 bzero(&icmph, sizeof (icmph_t));
3225 icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3226 icmph.icmph_code = code;
3227 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3228 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3229 }

new/usr/src/uts/common/inet/ip/ip.c 50

3231 /*
3232 * Latch in the IPsec state for a stream based the policy in the listener
3233 * and the actions in the ip_recv_attr_t.
3234 * Called directly from TCP and SCTP.
3235 */
3236 boolean_t
3237 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3238 {
3239 ASSERT(lconnp->conn_policy != NULL);
3240 ASSERT(connp->conn_policy == NULL);

3242 IPPH_REFHOLD(lconnp->conn_policy);
3243 connp->conn_policy = lconnp->conn_policy;

3245 if (ira->ira_ipsec_action != NULL) {
3246 if (connp->conn_latch == NULL) {
3247 connp->conn_latch = iplatch_create();
3248 if (connp->conn_latch == NULL)
3249 return (B_FALSE);
3250 }
3251 ipsec_latch_inbound(connp, ira);
3252 }
3253 return (B_TRUE);
3254 }

3256 /*
3257 * Verify whether or not the IP address is a valid local address.
3258 * Could be a unicast, including one for a down interface.
3259 * If allow_mcbc then a multicast or broadcast address is also
3260 * acceptable.
3261 *
3262 * In the case of a broadcast/multicast address, however, the
3263 * upper protocol is expected to reset the src address
3264 * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3265 * no packets are emitted with broadcast/multicast address as
3266 * source address (that violates hosts requirements RFC 1122)
3267 * The addresses valid for bind are:
3268 * (1) - INADDR_ANY (0)
3269 * (2) - IP address of an UP interface
3270 * (3) - IP address of a DOWN interface
3271 * (4) - valid local IP broadcast addresses. In this case
3272 * the conn will only receive packets destined to
3273 * the specified broadcast address.
3274 * (5) - a multicast address. In this case
3275 * the conn will only receive packets destined to
3276 * the specified multicast address. Note: the
3277 * application still has to issue an
3278 * IP_ADD_MEMBERSHIP socket option.
3279 *
3280 * In all the above cases, the bound address must be valid in the current zone.
3281 * When the address is loopback, multicast or broadcast, there might be many
3282 * matching IREs so bind has to look up based on the zone.
3283 */
3284 ip_laddr_t
3285 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3286 ip_stack_t *ipst, boolean_t allow_mcbc)
3287 {
3288 ire_t *src_ire;

3290 ASSERT(src_addr != INADDR_ANY);

3292 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3293 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);

3295 /*

new/usr/src/uts/common/inet/ip/ip.c 51

3296 * If an address other than in6addr_any is requested,
3297 * we verify that it is a valid address for bind
3298 * Note: Following code is in if-else-if form for
3299 * readability compared to a condition check.
3300 */
3301 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3302 /*
3303 * (2) Bind to address of local UP interface
3304 */
3305 ire_refrele(src_ire);
3306 return (IPVL_UNICAST_UP);
3307 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3308 /*
3309 * (4) Bind to broadcast address
3310 */
3311 ire_refrele(src_ire);
3312 if (allow_mcbc)
3313 return (IPVL_BCAST);
3314 else
3315 return (IPVL_BAD);
3316 } else if (CLASSD(src_addr)) {
3317 /* (5) bind to multicast address. */
3318 if (src_ire != NULL)
3319 ire_refrele(src_ire);

3321 if (allow_mcbc)
3322 return (IPVL_MCAST);
3323 else
3324 return (IPVL_BAD);
3325 } else {
3326 ipif_t *ipif;

3328 /*
3329 * (3) Bind to address of local DOWN interface?
3330 * (ipif_lookup_addr() looks up all interfaces
3331 * but we do not get here for UP interfaces
3332 * - case (2) above)
3333 */
3334 if (src_ire != NULL)
3335 ire_refrele(src_ire);

3337 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3338 if (ipif == NULL)
3339 return (IPVL_BAD);

3341 /* Not a useful source? */
3342 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3343 ipif_refrele(ipif);
3344 return (IPVL_BAD);
3345 }
3346 ipif_refrele(ipif);
3347 return (IPVL_UNICAST_DOWN);
3348 }
3349 }

3351 /*
3352 * Insert in the bind fanout for IPv4 and IPv6.
3353 * The caller should already have used ip_laddr_verify_v*() before calling
3354 * this.
3355 */
3356 int
3357 ip_laddr_fanout_insert(conn_t *connp)
3358 {
3359 int error;

3361 /*

new/usr/src/uts/common/inet/ip/ip.c 52

3362 * Allow setting new policies. For example, disconnects result
3363 * in us being called. As we would have set conn_policy_cached
3364 * to B_TRUE before, we should set it to B_FALSE, so that policy
3365 * can change after the disconnect.
3366 */
3367 connp->conn_policy_cached = B_FALSE;

3369 error = ipcl_bind_insert(connp);
3370 if (error != 0) {
3371 if (connp->conn_anon_port) {
3372 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3373 connp->conn_mlp_type, connp->conn_proto,
3374 ntohs(connp->conn_lport), B_FALSE);
3375 }
3376 connp->conn_mlp_type = mlptSingle;
3377 }
3378 return (error);
3379 }

3381 /*
3382 * Verify that both the source and destination addresses are valid. If
3383 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3384 * i.e. have no route to it. Protocols like TCP want to verify destination
3385 * reachability, while tunnels do not.
3386 *
3387 * Determine the route, the interface, and (optionally) the source address
3388 * to use to reach a given destination.
3389 * Note that we allow connect to broadcast and multicast addresses when
3390 * IPDF_ALLOW_MCBC is set.
3391 * first_hop and dst_addr are normally the same, but if source routing
3392 * they will differ; in that case the first_hop is what we’ll use for the
3393 * routing lookup but the dce and label checks will be done on dst_addr,
3394 *
3395 * If uinfo is set, then we fill in the best available information
3396 * we have for the destination. This is based on (in priority order) any
3397 * metrics and path MTU stored in a dce_t, route metrics, and finally the
3398 * ill_mtu/ill_mc_mtu.
3399 *
3400 * Tsol note: If we have a source route then dst_addr != firsthop. But we
3401 * always do the label check on dst_addr.
3402 */
3403 int
3404 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3405 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3406 {
3407 ire_t *ire = NULL;
3408 int error = 0;
3409 ipaddr_t setsrc; /* RTF_SETSRC */
3410 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */
3411 ip_stack_t *ipst = ixa->ixa_ipst;
3412 dce_t *dce;
3413 uint_t pmtu;
3414 uint_t generation;
3415 nce_t *nce;
3416 ill_t *ill = NULL;
3417 boolean_t multirt = B_FALSE;

3419 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);

3421 /*
3422 * We never send to zero; the ULPs map it to the loopback address.
3423 * We can’t allow it since we use zero to mean unitialized in some
3424 * places.
3425 */
3426 ASSERT(dst_addr != INADDR_ANY);

new/usr/src/uts/common/inet/ip/ip.c 53

3428 if (is_system_labeled()) {
3429 ts_label_t *tsl = NULL;

3431 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3432 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3433 if (error != 0)
3434 return (error);
3435 if (tsl != NULL) {
3436 /* Update the label */
3437 ip_xmit_attr_replace_tsl(ixa, tsl);
3438 }
3439 }

3441 setsrc = INADDR_ANY;
3442 /*
3443 * Select a route; For IPMP interfaces, we would only select
3444 * a "hidden" route (i.e., going through a specific under_ill)
3445 * if ixa_ifindex has been specified.
3446 */
3447 ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3448 &generation, &setsrc, &error, &multirt);
3449 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */
3450 if (error != 0)
3451 goto bad_addr;

3453 /*
3454 * ire can’t be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3455 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3456 * Otherwise the destination needn’t be reachable.
3457 *
3458 * If we match on a reject or black hole, then we’ve got a
3459 * local failure. May as well fail out the connect() attempt,
3460 * since it’s never going to succeed.
3461 */
3462 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3463 /*
3464 * If we’re verifying destination reachability, we always want
3465 * to complain here.
3466 *
3467 * If we’re not verifying destination reachability but the
3468 * destination has a route, we still want to fail on the
3469 * temporary address and broadcast address tests.
3470 *
3471 * In both cases do we let the code continue so some reasonable
3472 * information is returned to the caller. That enables the
3473 * caller to use (and even cache) the IRE. conn_ip_ouput will
3474 * use the generation mismatch path to check for the unreachable
3475 * case thereby avoiding any specific check in the main path.
3476 */
3477 ASSERT(generation == IRE_GENERATION_VERIFY);
3478 if (flags & IPDF_VERIFY_DST) {
3479 /*
3480 * Set errno but continue to set up ixa_ire to be
3481 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3482 * That allows callers to use ip_output to get an
3483 * ICMP error back.
3484 */
3485 if (!(ire->ire_type & IRE_HOST))
3486 error = ENETUNREACH;
3487 else
3488 error = EHOSTUNREACH;
3489 }
3490 }

3492 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3493 !(flags & IPDF_ALLOW_MCBC)) {

new/usr/src/uts/common/inet/ip/ip.c 54

3494 ire_refrele(ire);
3495 ire = ire_reject(ipst, B_FALSE);
3496 generation = IRE_GENERATION_VERIFY;
3497 error = ENETUNREACH;
3498 }

3500 /* Cache things */
3501 if (ixa->ixa_ire != NULL)
3502 ire_refrele_notr(ixa->ixa_ire);
3503 #ifdef DEBUG
3504 ire_refhold_notr(ire);
3505 ire_refrele(ire);
3506 #endif
3507 ixa->ixa_ire = ire;
3508 ixa->ixa_ire_generation = generation;

3510 /*
3511 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3512 * since some callers will send a packet to conn_ip_output() even if
3513 * there’s an error.
3514 */
3515 if (flags & IPDF_UNIQUE_DCE) {
3516 /* Fallback to the default dce if allocation fails */
3517 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3518 if (dce != NULL)
3519 generation = dce->dce_generation;
3520 else
3521 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3522 } else {
3523 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3524 }
3525 ASSERT(dce != NULL);
3526 if (ixa->ixa_dce != NULL)
3527 dce_refrele_notr(ixa->ixa_dce);
3528 #ifdef DEBUG
3529 dce_refhold_notr(dce);
3530 dce_refrele(dce);
3531 #endif
3532 ixa->ixa_dce = dce;
3533 ixa->ixa_dce_generation = generation;

3535 /*
3536 * For multicast with multirt we have a flag passed back from
3537 * ire_lookup_multi_ill_v4 since we don’t have an IRE for each
3538 * possible multicast address.
3539 * We also need a flag for multicast since we can’t check
3540 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3541 */
3542 if (multirt) {
3543 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3544 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3545 } else {
3546 ixa->ixa_postfragfn = ire->ire_postfragfn;
3547 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3548 }
3549 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3550 /* Get an nce to cache. */
3551 nce = ire_to_nce(ire, firsthop, NULL);
3552 if (nce == NULL) {
3553 /* Allocation failure? */
3554 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3555 } else {
3556 if (ixa->ixa_nce != NULL)
3557 nce_refrele(ixa->ixa_nce);
3558 ixa->ixa_nce = nce;
3559 }

new/usr/src/uts/common/inet/ip/ip.c 55

3560 }

3562 /*
3563 * If the source address is a loopback address, the
3564 * destination had best be local or multicast.
3565 * If we are sending to an IRE_LOCAL using a loopback source then
3566 * it had better be the same zoneid.
3567 */
3568 if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3569 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3570 ire = NULL; /* Stored in ixa_ire */
3571 error = EADDRNOTAVAIL;
3572 goto bad_addr;
3573 }
3574 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3575 ire = NULL; /* Stored in ixa_ire */
3576 error = EADDRNOTAVAIL;
3577 goto bad_addr;
3578 }
3579 }
3580 if (ire->ire_type & IRE_BROADCAST) {
3581 /*
3582 * If the ULP didn’t have a specified source, then we
3583 * make sure we reselect the source when sending
3584 * broadcasts out different interfaces.
3585 */
3586 if (flags & IPDF_SELECT_SRC)
3587 ixa->ixa_flags |= IXAF_SET_SOURCE;
3588 else
3589 ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3590 }

3592 /*
3593 * Does the caller want us to pick a source address?
3594 */
3595 if (flags & IPDF_SELECT_SRC) {
3596 ipaddr_t src_addr;

3598 /*
3599 * We use use ire_nexthop_ill to avoid the under ipmp
3600 * interface for source address selection. Note that for ipmp
3601 * probe packets, ixa_ifindex would have been specified, and
3602 * the ip_select_route() invocation would have picked an ire
3603 * will ire_ill pointing at an under interface.
3604 */
3605 ill = ire_nexthop_ill(ire);

3607 /* If unreachable we have no ill but need some source */
3608 if (ill == NULL) {
3609 src_addr = htonl(INADDR_LOOPBACK);
3610 /* Make sure we look for a better source address */
3611 generation = SRC_GENERATION_VERIFY;
3612 } else {
3613 error = ip_select_source_v4(ill, setsrc, dst_addr,
3614 ixa->ixa_multicast_ifaddr, zoneid,
3615 ipst, &src_addr, &generation, NULL);
3616 if (error != 0) {
3617 ire = NULL; /* Stored in ixa_ire */
3618 goto bad_addr;
3619 }
3620 }

3622 /*
3623 * We allow the source address to to down.
3624 * However, we check that we don’t use the loopback address
3625 * as a source when sending out on the wire.

new/usr/src/uts/common/inet/ip/ip.c 56

3626 */
3627 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3628 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3629 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3630 ire = NULL; /* Stored in ixa_ire */
3631 error = EADDRNOTAVAIL;
3632 goto bad_addr;
3633 }

3635 *src_addrp = src_addr;
3636 ixa->ixa_src_generation = generation;
3637 }

3639 /*
3640 * Make sure we don’t leave an unreachable ixa_nce in place
3641 * since ip_select_route is used when we unplumb i.e., remove
3642 * references on ixa_ire, ixa_nce, and ixa_dce.
3643 */
3644 nce = ixa->ixa_nce;
3645 if (nce != NULL && nce->nce_is_condemned) {
3646 nce_refrele(nce);
3647 ixa->ixa_nce = NULL;
3648 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3649 }

3651 /*
3652 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3653 * However, we can’t do it for IPv4 multicast or broadcast.
3654 */
3655 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3656 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;

3658 /*
3659 * Set initial value for fragmentation limit. Either conn_ip_output
3660 * or ULP might updates it when there are routing changes.
3661 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3662 */
3663 pmtu = ip_get_pmtu(ixa);
3664 ixa->ixa_fragsize = pmtu;
3665 /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3666 if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3667 ixa->ixa_pmtu = pmtu;

3669 /*
3670 * Extract information useful for some transports.
3671 * First we look for DCE metrics. Then we take what we have in
3672 * the metrics in the route, where the offlink is used if we have
3673 * one.
3674 */
3675 if (uinfo != NULL) {
3676 bzero(uinfo, sizeof (*uinfo));

3678 if (dce->dce_flags & DCEF_UINFO)
3679 *uinfo = dce->dce_uinfo;

3681 rts_merge_metrics(uinfo, &ire->ire_metrics);

3683 /* Allow ire_metrics to decrease the path MTU from above */
3684 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3685 uinfo->iulp_mtu = pmtu;

3687 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3688 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3689 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3690 }

new/usr/src/uts/common/inet/ip/ip.c 57

3692 if (ill != NULL)
3693 ill_refrele(ill);

3695 return (error);

3697 bad_addr:
3698 if (ire != NULL)
3699 ire_refrele(ire);

3701 if (ill != NULL)
3702 ill_refrele(ill);

3704 /*
3705 * Make sure we don’t leave an unreachable ixa_nce in place
3706 * since ip_select_route is used when we unplumb i.e., remove
3707 * references on ixa_ire, ixa_nce, and ixa_dce.
3708 */
3709 nce = ixa->ixa_nce;
3710 if (nce != NULL && nce->nce_is_condemned) {
3711 nce_refrele(nce);
3712 ixa->ixa_nce = NULL;
3713 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3714 }

3716 return (error);
3717 }

3720 /*
3721 * Get the base MTU for the case when path MTU discovery is not used.
3722 * Takes the MTU of the IRE into account.
3723 */
3724 uint_t
3725 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3726 {
3727 uint_t mtu;
3728 uint_t iremtu = ire->ire_metrics.iulp_mtu;

3730 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3731 mtu = ill->ill_mc_mtu;
3732 else
3733 mtu = ill->ill_mtu;

3735 if (iremtu != 0 && iremtu < mtu)
3736 mtu = iremtu;

3738 return (mtu);
3739 }

3741 /*
3742 * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3743 * Assumes that ixa_ire, dce, and nce have already been set up.
3744 *
3745 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3746 * We avoid path MTU discovery if it is disabled with ndd.
3747 * Furtermore, if the path MTU is too small, then we don’t set DF for IPv4.
3748 *
3749 * NOTE: We also used to turn it off for source routed packets. That
3750 * is no longer required since the dce is per final destination.
3751 */
3752 uint_t
3753 ip_get_pmtu(ip_xmit_attr_t *ixa)
3754 {
3755 ip_stack_t *ipst = ixa->ixa_ipst;
3756 dce_t *dce;
3757 nce_t *nce;

new/usr/src/uts/common/inet/ip/ip.c 58

3758 ire_t *ire;
3759 uint_t pmtu;

3761 ire = ixa->ixa_ire;
3762 dce = ixa->ixa_dce;
3763 nce = ixa->ixa_nce;

3765 /*
3766 * If path MTU discovery has been turned off by ndd, then we ignore
3767 * any dce_pmtu and for IPv4 we will not set DF.
3768 */
3769 if (!ipst->ips_ip_path_mtu_discovery)
3770 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;

3772 pmtu = IP_MAXPACKET;
3773 /*
3774 * Decide whether whether IPv4 sets DF
3775 * For IPv6 "no DF" means to use the 1280 mtu
3776 */
3777 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3778 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3779 } else {
3780 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3781 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3782 pmtu = IPV6_MIN_MTU;
3783 }

3785 /* Check if the PMTU is to old before we use it */
3786 if ((dce->dce_flags & DCEF_PMTU) &&
3787 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3788 ipst->ips_ip_pathmtu_interval) {
3789 /*
3790 * Older than 20 minutes. Drop the path MTU information.
3791 */
3792 mutex_enter(&dce->dce_lock);
3793 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3794 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3795 mutex_exit(&dce->dce_lock);
3796 dce_increment_generation(dce);
3797 }

3799 /* The metrics on the route can lower the path MTU */
3800 if (ire->ire_metrics.iulp_mtu != 0 &&
3801 ire->ire_metrics.iulp_mtu < pmtu)
3802 pmtu = ire->ire_metrics.iulp_mtu;

3804 /*
3805 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3806 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3807 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3808 */
3809 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3810 if (dce->dce_flags & DCEF_PMTU) {
3811 if (dce->dce_pmtu < pmtu)
3812 pmtu = dce->dce_pmtu;

3814 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3815 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3816 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3817 } else {
3818 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3819 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3820 }
3821 } else {
3822 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3823 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;

new/usr/src/uts/common/inet/ip/ip.c 59

3824 }
3825 }

3827 /*
3828 * If we have an IRE_LOCAL we use the loopback mtu instead of
3829 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3830 * mtu as IRE_LOOPBACK.
3831 */
3832 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3833 uint_t loopback_mtu;

3835 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3836 ip_loopback_mtu_v6plus : ip_loopback_mtuplus;

3838 if (loopback_mtu < pmtu)
3839 pmtu = loopback_mtu;
3840 } else if (nce != NULL) {
3841 /*
3842 * Make sure we don’t exceed the interface MTU.
3843 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3844 * an ill. We’d use the above IP_MAXPACKET in that case just
3845 * to tell the transport something larger than zero.
3846 */
3847 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3848 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3849 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3850 if (nce->nce_common->ncec_ill != nce->nce_ill &&
3851 nce->nce_ill->ill_mc_mtu < pmtu) {
3852 /*
3853 * for interfaces in an IPMP group, the mtu of
3854 * the nce_ill (under_ill) could be different
3855 * from the mtu of the ncec_ill, so we take the
3856 * min of the two.
3857 */
3858 pmtu = nce->nce_ill->ill_mc_mtu;
3859 }
3860 } else {
3861 if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3862 pmtu = nce->nce_common->ncec_ill->ill_mtu;
3863 if (nce->nce_common->ncec_ill != nce->nce_ill &&
3864 nce->nce_ill->ill_mtu < pmtu) {
3865 /*
3866 * for interfaces in an IPMP group, the mtu of
3867 * the nce_ill (under_ill) could be different
3868 * from the mtu of the ncec_ill, so we take the
3869 * min of the two.
3870 */
3871 pmtu = nce->nce_ill->ill_mtu;
3872 }
3873 }
3874 }

3876 /*
3877 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3878 * Only applies to IPv6.
3879 */
3880 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3881 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3882 switch (ixa->ixa_use_min_mtu) {
3883 case IPV6_USE_MIN_MTU_MULTICAST:
3884 if (ire->ire_type & IRE_MULTICAST)
3885 pmtu = IPV6_MIN_MTU;
3886 break;
3887 case IPV6_USE_MIN_MTU_ALWAYS:
3888 pmtu = IPV6_MIN_MTU;
3889 break;

new/usr/src/uts/common/inet/ip/ip.c 60

3890 case IPV6_USE_MIN_MTU_NEVER:
3891 break;
3892 }
3893 } else {
3894 /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3895 if (ire->ire_type & IRE_MULTICAST)
3896 pmtu = IPV6_MIN_MTU;
3897 }
3898 }

3900 /*
3901 * After receiving an ICMPv6 "packet too big" message with a
3902 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3903 * will insert a 8-byte fragment header in every packet. We compensate
3904 * for those cases by returning a smaller path MTU to the ULP.
3905 *
3906 * In the case of CGTP then ip_output will add a fragment header.
3907 * Make sure there is room for it by telling a smaller number
3908 * to the transport.
3909 *
3910 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3911 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3912 * which is the size of the packets it can send.
3913 */
3914 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3915 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
3916 (ire->ire_flags & RTF_MULTIRT) ||
3917 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3918 pmtu -= sizeof (ip6_frag_t);
3919 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3920 }
3921 }

3923 return (pmtu);
3924 }

3926 /*
3927 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3928 * the final piece where we don’t. Return a pointer to the first mblk in the
3929 * result, and update the pointer to the next mblk to chew on. If anything
3930 * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3931 * NULL pointer.
3932 */
3933 mblk_t *
3934 ip_carve_mp(mblk_t **mpp, ssize_t len)
3935 {
3936 mblk_t *mp0;
3937 mblk_t *mp1;
3938 mblk_t *mp2;

3940 if (!len || !mpp || !(mp0 = *mpp))
3941 return (NULL);
3942 /* If we aren’t going to consume the first mblk, we need a dup. */
3943 if (mp0->b_wptr - mp0->b_rptr > len) {
3944 mp1 = dupb(mp0);
3945 if (mp1) {
3946 /* Partition the data between the two mblks. */
3947 mp1->b_wptr = mp1->b_rptr + len;
3948 mp0->b_rptr = mp1->b_wptr;
3949 /*
3950 * after adjustments if mblk not consumed is now
3951 * unaligned, try to align it. If this fails free
3952 * all messages and let upper layer recover.
3953 */
3954 if (!OK_32PTR(mp0->b_rptr)) {
3955 if (!pullupmsg(mp0, -1)) {

new/usr/src/uts/common/inet/ip/ip.c 61

3956 freemsg(mp0);
3957 freemsg(mp1);
3958 *mpp = NULL;
3959 return (NULL);
3960 }
3961 }
3962 }
3963 return (mp1);
3964 }
3965 /* Eat through as many mblks as we need to get len bytes. */
3966 len -= mp0->b_wptr - mp0->b_rptr;
3967 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3968 if (mp2->b_wptr - mp2->b_rptr > len) {
3969 /*
3970 * We won’t consume the entire last mblk. Like
3971 * above, dup and partition it.
3972 */
3973 mp1->b_cont = dupb(mp2);
3974 mp1 = mp1->b_cont;
3975 if (!mp1) {
3976 /*
3977 * Trouble. Rather than go to a lot of
3978 * trouble to clean up, we free the messages.
3979 * This won’t be any worse than losing it on
3980 * the wire.
3981 */
3982 freemsg(mp0);
3983 freemsg(mp2);
3984 *mpp = NULL;
3985 return (NULL);
3986 }
3987 mp1->b_wptr = mp1->b_rptr + len;
3988 mp2->b_rptr = mp1->b_wptr;
3989 /*
3990 * after adjustments if mblk not consumed is now
3991 * unaligned, try to align it. If this fails free
3992 * all messages and let upper layer recover.
3993 */
3994 if (!OK_32PTR(mp2->b_rptr)) {
3995 if (!pullupmsg(mp2, -1)) {
3996 freemsg(mp0);
3997 freemsg(mp2);
3998 *mpp = NULL;
3999 return (NULL);
4000 }
4001 }
4002 *mpp = mp2;
4003 return (mp0);
4004 }
4005 /* Decrement len by the amount we just got. */
4006 len -= mp2->b_wptr - mp2->b_rptr;
4007 }
4008 /*
4009 * len should be reduced to zero now. If not our caller has
4010 * screwed up.
4011 */
4012 if (len) {
4013 /* Shouldn’t happen! */
4014 freemsg(mp0);
4015 *mpp = NULL;
4016 return (NULL);
4017 }
4018 /*
4019 * We consumed up to exactly the end of an mblk. Detach the part
4020 * we are returning from the rest of the chain.
4021 */

new/usr/src/uts/common/inet/ip/ip.c 62

4022 mp1->b_cont = NULL;
4023 *mpp = mp2;
4024 return (mp0);
4025 }

4027 /* The ill stream is being unplumbed. Called from ip_close */
4028 int
4029 ip_modclose(ill_t *ill)
4030 {
4031 boolean_t success;
4032 ipsq_t *ipsq;
4033 ipif_t *ipif;
4034 queue_t *q = ill->ill_rq;
4035 ip_stack_t *ipst = ill->ill_ipst;
4036 int i;
4037 arl_ill_common_t *ai = ill->ill_common;

4039 /*
4040 * The punlink prior to this may have initiated a capability
4041 * negotiation. But ipsq_enter will block until that finishes or
4042 * times out.
4043 */
4044 success = ipsq_enter(ill, B_FALSE, NEW_OP);

4046 /*
4047 * Open/close/push/pop is guaranteed to be single threaded
4048 * per stream by STREAMS. FS guarantees that all references
4049 * from top are gone before close is called. So there can’t
4050 * be another close thread that has set CONDEMNED on this ill.
4051 * and cause ipsq_enter to return failure.
4052 */
4053 ASSERT(success);
4054 ipsq = ill->ill_phyint->phyint_ipsq;

4056 /*
4057 * Mark it condemned. No new reference will be made to this ill.
4058 * Lookup functions will return an error. Threads that try to
4059 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4060 * that the refcnt will drop down to zero.
4061 */
4062 mutex_enter(&ill->ill_lock);
4063 ill->ill_state_flags |= ILL_CONDEMNED;
4064 for (ipif = ill->ill_ipif; ipif != NULL;
4065 ipif = ipif->ipif_next) {
4066 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4067 }
4068 /*
4069 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4070 * returns error if ILL_CONDEMNED is set
4071 */
4072 cv_broadcast(&ill->ill_cv);
4073 mutex_exit(&ill->ill_lock);

4075 /*
4076 * Send all the deferred DLPI messages downstream which came in
4077 * during the small window right before ipsq_enter(). We do this
4078 * without waiting for the ACKs because all the ACKs for M_PROTO
4079 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4080 */
4081 ill_dlpi_send_deferred(ill);

4083 /*
4084 * Shut down fragmentation reassembly.
4085 * ill_frag_timer won’t start a timer again.
4086 * Now cancel any existing timer
4087 */

new/usr/src/uts/common/inet/ip/ip.c 63

4088 (void) untimeout(ill->ill_frag_timer_id);
4089 (void) ill_frag_timeout(ill, 0);

4091 /*
4092 * Call ill_delete to bring down the ipifs, ilms and ill on
4093 * this ill. Then wait for the refcnts to drop to zero.
4094 * ill_is_freeable checks whether the ill is really quiescent.
4095 * Then make sure that threads that are waiting to enter the
4096 * ipsq have seen the error returned by ipsq_enter and have
4097 * gone away. Then we call ill_delete_tail which does the
4098 * DL_UNBIND_REQ with the driver and then qprocsoff.
4099 */
4100 ill_delete(ill);
4101 mutex_enter(&ill->ill_lock);
4102 while (!ill_is_freeable(ill))
4103 cv_wait(&ill->ill_cv, &ill->ill_lock);

4105 while (ill->ill_waiters)
4106 cv_wait(&ill->ill_cv, &ill->ill_lock);

4108 mutex_exit(&ill->ill_lock);

4110 /*
4111 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4112 * it held until the end of the function since the cleanup
4113 * below needs to be able to use the ip_stack_t.
4114 */
4115 netstack_hold(ipst->ips_netstack);

4117 /* qprocsoff is done via ill_delete_tail */
4118 ill_delete_tail(ill);
4119 /*
4120 * synchronously wait for arp stream to unbind. After this, we
4121 * cannot get any data packets up from the driver.
4122 */
4123 arp_unbind_complete(ill);
4124 ASSERT(ill->ill_ipst == NULL);

4126 /*
4127 * Walk through all conns and qenable those that have queued data.
4128 * Close synchronization needs this to
4129 * be done to ensure that all upper layers blocked
4130 * due to flow control to the closing device
4131 * get unblocked.
4132 */
4133 ip1dbg(("ip_wsrv: walking\n"));
4134 for (i = 0; i < TX_FANOUT_SIZE; i++) {
4135 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4136 }

4138 /*
4139 * ai can be null if this is an IPv6 ill, or if the IPv4
4140 * stream is being torn down before ARP was plumbed (e.g.,
4141 * /sbin/ifconfig plumbing a stream twice, and encountering
4142 * an error
4143 */
4144 if (ai != NULL) {
4145 ASSERT(!ill->ill_isv6);
4146 mutex_enter(&ai->ai_lock);
4147 ai->ai_ill = NULL;
4148 if (ai->ai_arl == NULL) {
4149 mutex_destroy(&ai->ai_lock);
4150 kmem_free(ai, sizeof (*ai));
4151 } else {
4152 cv_signal(&ai->ai_ill_unplumb_done);
4153 mutex_exit(&ai->ai_lock);

new/usr/src/uts/common/inet/ip/ip.c 64

4154 }
4155 }

4157 mutex_enter(&ipst->ips_ip_mi_lock);
4158 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4159 mutex_exit(&ipst->ips_ip_mi_lock);

4161 /*
4162 * credp could be null if the open didn’t succeed and ip_modopen
4163 * itself calls ip_close.
4164 */
4165 if (ill->ill_credp != NULL)
4166 crfree(ill->ill_credp);

4168 mutex_destroy(&ill->ill_saved_ire_lock);
4169 mutex_destroy(&ill->ill_lock);
4170 rw_destroy(&ill->ill_mcast_lock);
4171 mutex_destroy(&ill->ill_mcast_serializer);
4172 list_destroy(&ill->ill_nce);

4174 /*
4175 * Now we are done with the module close pieces that
4176 * need the netstack_t.
4177 */
4178 netstack_rele(ipst->ips_netstack);

4180 mi_close_free((IDP)ill);
4181 q->q_ptr = WR(q)->q_ptr = NULL;

4183 ipsq_exit(ipsq);

4185 return (0);
4186 }

4188 /*
4189 * This is called as part of close() for IP, UDP, ICMP, and RTS
4190 * in order to quiesce the conn.
4191 */
4192 void
4193 ip_quiesce_conn(conn_t *connp)
4194 {
4195 boolean_t drain_cleanup_reqd = B_FALSE;
4196 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
4197 boolean_t ilg_cleanup_reqd = B_FALSE;
4198 ip_stack_t *ipst;

4200 ASSERT(!IPCL_IS_TCP(connp));
4201 ipst = connp->conn_netstack->netstack_ip;

4203 /*
4204 * Mark the conn as closing, and this conn must not be
4205 * inserted in future into any list. Eg. conn_drain_insert(),
4206 * won’t insert this conn into the conn_drain_list.
4207 *
4208 * conn_idl, and conn_ilg cannot get set henceforth.
4209 */
4210 mutex_enter(&connp->conn_lock);
4211 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4212 connp->conn_state_flags |= CONN_CLOSING;
4213 if (connp->conn_idl != NULL)
4214 drain_cleanup_reqd = B_TRUE;
4215 if (connp->conn_oper_pending_ill != NULL)
4216 conn_ioctl_cleanup_reqd = B_TRUE;
4217 if (connp->conn_dhcpinit_ill != NULL) {
4218 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4219 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);

new/usr/src/uts/common/inet/ip/ip.c 65

4220 ill_set_inputfn(connp->conn_dhcpinit_ill);
4221 connp->conn_dhcpinit_ill = NULL;
4222 }
4223 if (connp->conn_ilg != NULL)
4224 ilg_cleanup_reqd = B_TRUE;
4225 mutex_exit(&connp->conn_lock);

4227 if (conn_ioctl_cleanup_reqd)
4228 conn_ioctl_cleanup(connp);

4230 if (is_system_labeled() && connp->conn_anon_port) {
4231 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4232 connp->conn_mlp_type, connp->conn_proto,
4233 ntohs(connp->conn_lport), B_FALSE);
4234 connp->conn_anon_port = 0;
4235 }
4236 connp->conn_mlp_type = mlptSingle;

4238 /*
4239 * Remove this conn from any fanout list it is on.
4240 * and then wait for any threads currently operating
4241 * on this endpoint to finish
4242 */
4243 ipcl_hash_remove(connp);

4245 /*
4246 * Remove this conn from the drain list, and do any other cleanup that
4247 * may be required. (TCP conns are never flow controlled, and
4248 * conn_idl will be NULL.)
4249 */
4250 if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4251 idl_t *idl = connp->conn_idl;

4253 mutex_enter(&idl->idl_lock);
4254 conn_drain(connp, B_TRUE);
4255 mutex_exit(&idl->idl_lock);
4256 }

4258 if (connp == ipst->ips_ip_g_mrouter)
4259 (void) ip_mrouter_done(ipst);

4261 if (ilg_cleanup_reqd)
4262 ilg_delete_all(connp);

4264 /*
4265 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4266 * callers from write side can’t be there now because close
4267 * is in progress. The only other caller is ipcl_walk
4268 * which checks for the condemned flag.
4269 */
4270 mutex_enter(&connp->conn_lock);
4271 connp->conn_state_flags |= CONN_CONDEMNED;
4272 while (connp->conn_ref != 1)
4273 cv_wait(&connp->conn_cv, &connp->conn_lock);
4274 connp->conn_state_flags |= CONN_QUIESCED;
4275 mutex_exit(&connp->conn_lock);
4276 }

4278 /* ARGSUSED */
4279 int
4280 ip_close(queue_t *q, int flags)
4281 {
4282 conn_t *connp;

4284 /*
4285 * Call the appropriate delete routine depending on whether this is

new/usr/src/uts/common/inet/ip/ip.c 66

4286 * a module or device.
4287 */
4288 if (WR(q)->q_next != NULL) {
4289 /* This is a module close */
4290 return (ip_modclose((ill_t *)q->q_ptr));
4291 }

4293 connp = q->q_ptr;
4294 ip_quiesce_conn(connp);

4296 qprocsoff(q);

4298 /*
4299 * Now we are truly single threaded on this stream, and can
4300 * delete the things hanging off the connp, and finally the connp.
4301 * We removed this connp from the fanout list, it cannot be
4302 * accessed thru the fanouts, and we already waited for the
4303 * conn_ref to drop to 0. We are already in close, so
4304 * there cannot be any other thread from the top. qprocsoff
4305 * has completed, and service has completed or won’t run in
4306 * future.
4307 */
4308 ASSERT(connp->conn_ref == 1);

4310 inet_minor_free(connp->conn_minor_arena, connp->conn_dev);

4312 connp->conn_ref--;
4313 ipcl_conn_destroy(connp);

4315 q->q_ptr = WR(q)->q_ptr = NULL;
4316 return (0);
4317 }

4319 /*
4320 * Wapper around putnext() so that ip_rts_request can merely use
4321 * conn_recv.
4322 */
4323 /*ARGSUSED2*/
4324 static void
4325 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4326 {
4327 conn_t *connp = (conn_t *)arg1;

4329 putnext(connp->conn_rq, mp);
4330 }

4332 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4333 /* ARGSUSED */
4334 static void
4335 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4336 {
4337 freemsg(mp);
4338 }

4340 /*
4341 * Called when the module is about to be unloaded
4342 */
4343 void
4344 ip_ddi_destroy(void)
4345 {
4346 /* This needs to be called before destroying any transports. */
4347 mutex_enter(&cpu_lock);
4348 unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4349 mutex_exit(&cpu_lock);

4351 tnet_fini();

new/usr/src/uts/common/inet/ip/ip.c 67

4353 icmp_ddi_g_destroy();
4354 rts_ddi_g_destroy();
4355 udp_ddi_g_destroy();
4356 dccp_ddi_g_destroy();
4357 #endif /* ! codereview */
4358 sctp_ddi_g_destroy();
4359 tcp_ddi_g_destroy();
4360 ilb_ddi_g_destroy();
4361 dce_g_destroy();
4362 ipsec_policy_g_destroy();
4363 ipcl_g_destroy();
4364 ip_net_g_destroy();
4365 ip_ire_g_fini();
4366 inet_minor_destroy(ip_minor_arena_sa);
4367 #if defined(_LP64)
4368 inet_minor_destroy(ip_minor_arena_la);
4369 #endif

4371 #ifdef DEBUG
4372 list_destroy(&ip_thread_list);
4373 rw_destroy(&ip_thread_rwlock);
4374 tsd_destroy(&ip_thread_data);
4375 #endif

4377 netstack_unregister(NS_IP);
4378 }

4380 /*
4381 * First step in cleanup.
4382 */
4383 /* ARGSUSED */
4384 static void
4385 ip_stack_shutdown(netstackid_t stackid, void *arg)
4386 {
4387 ip_stack_t *ipst = (ip_stack_t *)arg;

4389 #ifdef NS_DEBUG
4390 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4391 #endif

4393 /*
4394 * Perform cleanup for special interfaces (loopback and IPMP).
4395 */
4396 ip_interface_cleanup(ipst);

4398 /*
4399 * The *_hook_shutdown()s start the process of notifying any
4400 * consumers that things are going away.... nothing is destroyed.
4401 */
4402 ipv4_hook_shutdown(ipst);
4403 ipv6_hook_shutdown(ipst);
4404 arp_hook_shutdown(ipst);

4406 mutex_enter(&ipst->ips_capab_taskq_lock);
4407 ipst->ips_capab_taskq_quit = B_TRUE;
4408 cv_signal(&ipst->ips_capab_taskq_cv);
4409 mutex_exit(&ipst->ips_capab_taskq_lock);
4410 }

4412 /*
4413 * Free the IP stack instance.
4414 */
4415 static void
4416 ip_stack_fini(netstackid_t stackid, void *arg)
4417 {

new/usr/src/uts/common/inet/ip/ip.c 68

4418 ip_stack_t *ipst = (ip_stack_t *)arg;
4419 int ret;

4421 #ifdef NS_DEBUG
4422 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4423 #endif
4424 /*
4425 * At this point, all of the notifications that the events and
4426 * protocols are going away have been run, meaning that we can
4427 * now set about starting to clean things up.
4428 */
4429 ipobs_fini(ipst);
4430 ipv4_hook_destroy(ipst);
4431 ipv6_hook_destroy(ipst);
4432 arp_hook_destroy(ipst);
4433 ip_net_destroy(ipst);

4435 ipmp_destroy(ipst);

4437 ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4438 ipst->ips_ip_mibkp = NULL;
4439 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4440 ipst->ips_icmp_mibkp = NULL;
4441 ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4442 ipst->ips_ip_kstat = NULL;
4443 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4444 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4445 ipst->ips_ip6_kstat = NULL;
4446 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));

4448 kmem_free(ipst->ips_propinfo_tbl,
4449 ip_propinfo_count * sizeof (mod_prop_info_t));
4450 ipst->ips_propinfo_tbl = NULL;

4452 dce_stack_destroy(ipst);
4453 ip_mrouter_stack_destroy(ipst);

4455 ret = untimeout(ipst->ips_igmp_timeout_id);
4456 if (ret == -1) {
4457 ASSERT(ipst->ips_igmp_timeout_id == 0);
4458 } else {
4459 ASSERT(ipst->ips_igmp_timeout_id != 0);
4460 ipst->ips_igmp_timeout_id = 0;
4461 }
4462 ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4463 if (ret == -1) {
4464 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4465 } else {
4466 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4467 ipst->ips_igmp_slowtimeout_id = 0;
4468 }
4469 ret = untimeout(ipst->ips_mld_timeout_id);
4470 if (ret == -1) {
4471 ASSERT(ipst->ips_mld_timeout_id == 0);
4472 } else {
4473 ASSERT(ipst->ips_mld_timeout_id != 0);
4474 ipst->ips_mld_timeout_id = 0;
4475 }
4476 ret = untimeout(ipst->ips_mld_slowtimeout_id);
4477 if (ret == -1) {
4478 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4479 } else {
4480 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4481 ipst->ips_mld_slowtimeout_id = 0;
4482 }

new/usr/src/uts/common/inet/ip/ip.c 69

4484 ip_ire_fini(ipst);
4485 ip6_asp_free(ipst);
4486 conn_drain_fini(ipst);
4487 ipcl_destroy(ipst);

4489 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4490 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4491 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4492 ipst->ips_ndp4 = NULL;
4493 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4494 ipst->ips_ndp6 = NULL;

4496 if (ipst->ips_loopback_ksp != NULL) {
4497 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4498 ipst->ips_loopback_ksp = NULL;
4499 }

4501 mutex_destroy(&ipst->ips_capab_taskq_lock);
4502 cv_destroy(&ipst->ips_capab_taskq_cv);

4504 rw_destroy(&ipst->ips_srcid_lock);

4506 mutex_destroy(&ipst->ips_ip_mi_lock);
4507 rw_destroy(&ipst->ips_ill_g_usesrc_lock);

4509 mutex_destroy(&ipst->ips_igmp_timer_lock);
4510 mutex_destroy(&ipst->ips_mld_timer_lock);
4511 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4512 mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4513 mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4514 rw_destroy(&ipst->ips_ill_g_lock);

4516 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4517 ipst->ips_phyint_g_list = NULL;
4518 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4519 ipst->ips_ill_g_heads = NULL;

4521 ldi_ident_release(ipst->ips_ldi_ident);
4522 kmem_free(ipst, sizeof (*ipst));
4523 }

4525 /*
4526 * This function is called from the TSD destructor, and is used to debug
4527 * reference count issues in IP. See block comment in <inet/ip_if.h> for
4528 * details.
4529 */
4530 static void
4531 ip_thread_exit(void *phash)
4532 {
4533 th_hash_t *thh = phash;

4535 rw_enter(&ip_thread_rwlock, RW_WRITER);
4536 list_remove(&ip_thread_list, thh);
4537 rw_exit(&ip_thread_rwlock);
4538 mod_hash_destroy_hash(thh->thh_hash);
4539 kmem_free(thh, sizeof (*thh));
4540 }

4542 /*
4543 * Called when the IP kernel module is loaded into the kernel
4544 */
4545 void
4546 ip_ddi_init(void)
4547 {
4548 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);

new/usr/src/uts/common/inet/ip/ip.c 70

4550 /*
4551 * For IP and TCP the minor numbers should start from 2 since we have 4
4552 * initial devices: ip, ip6, tcp, tcp6.
4553 */
4554 /*
4555 * If this is a 64-bit kernel, then create two separate arenas -
4556 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4557 * other for socket apps in the range 2^^18 through 2^^32-1.
4558 */
4559 ip_minor_arena_la = NULL;
4560 ip_minor_arena_sa = NULL;
4561 #if defined(_LP64)
4562 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4563 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4564 cmn_err(CE_PANIC,
4565 "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4566 }
4567 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4568 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4569 cmn_err(CE_PANIC,
4570 "ip_ddi_init: ip_minor_arena_la creation failed\n");
4571 }
4572 #else
4573 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4574 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4575 cmn_err(CE_PANIC,
4576 "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4577 }
4578 #endif
4579 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);

4581 ipcl_g_init();
4582 ip_ire_g_init();
4583 ip_net_g_init();

4585 #ifdef DEBUG
4586 tsd_create(&ip_thread_data, ip_thread_exit);
4587 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4588 list_create(&ip_thread_list, sizeof (th_hash_t),
4589 offsetof(th_hash_t, thh_link));
4590 #endif
4591 ipsec_policy_g_init();
4592 tcp_ddi_g_init();
4593 sctp_ddi_g_init();
4594 dccp_ddi_g_init();
4595 #endif /* ! codereview */
4596 dce_g_init();

4598 /*
4599 * We want to be informed each time a stack is created or
4600 * destroyed in the kernel, so we can maintain the
4601 * set of udp_stack_t’s.
4602 */
4603 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4604 ip_stack_fini);

4606 tnet_init();

4608 udp_ddi_g_init();
4609 rts_ddi_g_init();
4610 icmp_ddi_g_init();
4611 ilb_ddi_g_init();

4613 /* This needs to be called after all transports are initialized. */
4614 mutex_enter(&cpu_lock);
4615 register_cpu_setup_func(ip_tp_cpu_update, NULL);

new/usr/src/uts/common/inet/ip/ip.c 71

4616 mutex_exit(&cpu_lock);
4617 }

4619 /*
4620 * Initialize the IP stack instance.
4621 */
4622 static void *
4623 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4624 {
4625 ip_stack_t *ipst;
4626 size_t arrsz;
4627 major_t major;

4629 #ifdef NS_DEBUG
4630 printf("ip_stack_init(stack %d)\n", stackid);
4631 #endif

4633 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4634 ipst->ips_netstack = ns;

4636 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4637 KM_SLEEP);
4638 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4639 KM_SLEEP);
4640 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4641 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4642 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4643 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);

4645 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4646 ipst->ips_igmp_deferred_next = INFINITY;
4647 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4648 ipst->ips_mld_deferred_next = INFINITY;
4649 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4650 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4651 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4652 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4653 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4654 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);

4656 ipcl_init(ipst);
4657 ip_ire_init(ipst);
4658 ip6_asp_init(ipst);
4659 ipif_init(ipst);
4660 conn_drain_init(ipst);
4661 ip_mrouter_stack_init(ipst);
4662 dce_stack_init(ipst);

4664 ipst->ips_ip_multirt_log_interval = 1000;

4666 ipst->ips_ill_index = 1;

4668 ipst->ips_saved_ip_forwarding = -1;
4669 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */

4671 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4672 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4673 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);

4675 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4676 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4677 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4678 ipst->ips_ip6_kstat =
4679 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);

4681 ipst->ips_ip_src_id = 1;

new/usr/src/uts/common/inet/ip/ip.c 72

4682 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);

4684 ipst->ips_src_generation = SRC_GENERATION_INITIAL;

4686 ip_net_init(ipst, ns);
4687 ipv4_hook_init(ipst);
4688 ipv6_hook_init(ipst);
4689 arp_hook_init(ipst);
4690 ipmp_init(ipst);
4691 ipobs_init(ipst);

4693 /*
4694 * Create the taskq dispatcher thread and initialize related stuff.
4695 */
4696 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4697 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4698 ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4699 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);

4701 major = mod_name_to_major(INET_NAME);
4702 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4703 return (ipst);
4704 }

4706 /*
4707 * Allocate and initialize a DLPI template of the specified length. (May be
4708 * called as writer.)
4709 */
4710 mblk_t *
4711 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4712 {
4713 mblk_t *mp;

4715 mp = allocb(len, BPRI_MED);
4716 if (!mp)
4717 return (NULL);

4719 /*
4720 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4721 * of which we don’t seem to use) are sent with M_PCPROTO, and
4722 * that other DLPI are M_PROTO.
4723 */
4724 if (prim == DL_INFO_REQ) {
4725 mp->b_datap->db_type = M_PCPROTO;
4726 } else {
4727 mp->b_datap->db_type = M_PROTO;
4728 }

4730 mp->b_wptr = mp->b_rptr + len;
4731 bzero(mp->b_rptr, len);
4732 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4733 return (mp);
4734 }

4736 /*
4737 * Allocate and initialize a DLPI notification. (May be called as writer.)
4738 */
4739 mblk_t *
4740 ip_dlnotify_alloc(uint_t notification, uint_t data)
4741 {
4742 dl_notify_ind_t *notifyp;
4743 mblk_t *mp;

4745 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4746 return (NULL);

new/usr/src/uts/common/inet/ip/ip.c 73

4748 notifyp = (dl_notify_ind_t *)mp->b_rptr;
4749 notifyp->dl_notification = notification;
4750 notifyp->dl_data = data;
4751 return (mp);
4752 }

4754 mblk_t *
4755 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4756 {
4757 dl_notify_ind_t *notifyp;
4758 mblk_t *mp;

4760 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4761 return (NULL);

4763 notifyp = (dl_notify_ind_t *)mp->b_rptr;
4764 notifyp->dl_notification = notification;
4765 notifyp->dl_data1 = data1;
4766 notifyp->dl_data2 = data2;
4767 return (mp);
4768 }

4770 /*
4771 * Debug formatting routine. Returns a character string representation of the
4772 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address
4773 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4774 *
4775 * Once the ndd table-printing interfaces are removed, this can be changed to
4776 * standard dotted-decimal form.
4777 */
4778 char *
4779 ip_dot_addr(ipaddr_t addr, char *buf)
4780 {
4781 uint8_t *ap = (uint8_t *)&addr;

4783 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4784 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4785 return (buf);
4786 }

4788 /*
4789 * Write the given MAC address as a printable string in the usual colon-
4790 * separated format.
4791 */
4792 const char *
4793 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4794 {
4795 char *bp;

4797 if (alen == 0 || buflen < 4)
4798 return ("?");
4799 bp = buf;
4800 for (;;) {
4801 /*
4802 * If there are more MAC address bytes available, but we won’t
4803 * have any room to print them, then add "..." to the string
4804 * instead. See below for the ’magic number’ explanation.
4805 */
4806 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4807 (void) strcpy(bp, "...");
4808 break;
4809 }
4810 (void) sprintf(bp, "%02x", *addr++);
4811 bp += 2;
4812 if (--alen == 0)
4813 break;

new/usr/src/uts/common/inet/ip/ip.c 74

4814 *bp++ = ’:’;
4815 buflen -= 3;
4816 /*
4817 * At this point, based on the first ’if’ statement above,
4818 * either alen == 1 and buflen >= 3, or alen > 1 and
4819 * buflen >= 4. The first case leaves room for the final "xx"
4820 * number and trailing NUL byte. The second leaves room for at
4821 * least "...". Thus the apparently ’magic’ numbers chosen for
4822 * that statement.
4823 */
4824 }
4825 return (buf);
4826 }

4828 /*
4829 * Called when it is conceptually a ULP that would sent the packet
4830 * e.g., port unreachable and protocol unreachable. Check that the packet
4831 * would have passed the IPsec global policy before sending the error.
4832 *
4833 * Send an ICMP error after patching up the packet appropriately.
4834 * Uses ip_drop_input and bumps the appropriate MIB.
4835 */
4836 void
4837 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4838 ip_recv_attr_t *ira)
4839 {
4840 ipha_t *ipha;
4841 boolean_t secure;
4842 ill_t *ill = ira->ira_ill;
4843 ip_stack_t *ipst = ill->ill_ipst;
4844 netstack_t *ns = ipst->ips_netstack;
4845 ipsec_stack_t *ipss = ns->netstack_ipsec;

4847 secure = ira->ira_flags & IRAF_IPSEC_SECURE;

4849 /*
4850 * We are generating an icmp error for some inbound packet.
4851 * Called from all ip_fanout_(udp, tcp, proto) functions.
4852 * Before we generate an error, check with global policy
4853 * to see whether this is allowed to enter the system. As
4854 * there is no "conn", we are checking with global policy.
4855 */
4856 ipha = (ipha_t *)mp->b_rptr;
4857 if (secure || ipss->ipsec_inbound_v4_policy_present) {
4858 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4859 if (mp == NULL)
4860 return;
4861 }

4863 /* We never send errors for protocols that we do implement */
4864 if (ira->ira_protocol == IPPROTO_ICMP ||
4865 ira->ira_protocol == IPPROTO_IGMP) {
4866 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4867 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4868 freemsg(mp);
4869 return;
4870 }
4871 /*
4872 * Have to correct checksum since
4873 * the packet might have been
4874 * fragmented and the reassembly code in ip_rput
4875 * does not restore the IP checksum.
4876 */
4877 ipha->ipha_hdr_checksum = 0;
4878 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);

new/usr/src/uts/common/inet/ip/ip.c 75

4880 switch (icmp_type) {
4881 case ICMP_DEST_UNREACHABLE:
4882 switch (icmp_code) {
4883 case ICMP_PROTOCOL_UNREACHABLE:
4884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4885 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4886 break;
4887 case ICMP_PORT_UNREACHABLE:
4888 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4889 ip_drop_input("ipIfStatsNoPorts", mp, ill);
4890 break;
4891 }

4893 icmp_unreachable(mp, icmp_code, ira);
4894 break;
4895 default:
4896 #ifdef DEBUG
4897 panic("ip_fanout_send_icmp_v4: wrong type");
4898 /*NOTREACHED*/
4899 #else
4900 freemsg(mp);
4901 break;
4902 #endif
4903 }
4904 }

4906 /*
4907 * Used to send an ICMP error message when a packet is received for
4908 * a protocol that is not supported. The mblk passed as argument
4909 * is consumed by this function.
4910 */
4911 void
4912 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4913 {
4914 ipha_t *ipha;

4916 ipha = (ipha_t *)mp->b_rptr;
4917 if (ira->ira_flags & IRAF_IS_IPV4) {
4918 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4919 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4920 ICMP_PROTOCOL_UNREACHABLE, ira);
4921 } else {
4922 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4923 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4924 ICMP6_PARAMPROB_NEXTHEADER, ira);
4925 }
4926 }

4928 /*
4929 * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4930 * Handles IPv4 and IPv6.
4931 * We are responsible for disposing of mp, such as by freemsg() or putnext()
4932 * Caller is responsible for dropping references to the conn.
4933 */
4934 void
4935 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4936 ip_recv_attr_t *ira)
4937 {
4938 ill_t *ill = ira->ira_ill;
4939 ip_stack_t *ipst = ill->ill_ipst;
4940 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
4941 boolean_t secure;
4942 uint_t protocol = ira->ira_protocol;
4943 iaflags_t iraflags = ira->ira_flags;
4944 queue_t *rq;

new/usr/src/uts/common/inet/ip/ip.c 76

4946 secure = iraflags & IRAF_IPSEC_SECURE;

4948 rq = connp->conn_rq;
4949 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4950 switch (protocol) {
4951 case IPPROTO_ICMPV6:
4952 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4953 break;
4954 case IPPROTO_ICMP:
4955 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4956 break;
4957 default:
4958 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4959 break;
4960 }
4961 freemsg(mp);
4962 return;
4963 }

4965 ASSERT(!(IPCL_IS_IPTUN(connp)));

4967 if (((iraflags & IRAF_IS_IPV4) ?
4968 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4969 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4970 secure) {
4971 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4972 ip6h, ira);
4973 if (mp == NULL) {
4974 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4975 /* Note that mp is NULL */
4976 ip_drop_input("ipIfStatsInDiscards", mp, ill);
4977 return;
4978 }
4979 }

4981 if (iraflags & IRAF_ICMP_ERROR) {
4982 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4983 } else {
4984 ill_t *rill = ira->ira_rill;

4986 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4987 ira->ira_ill = ira->ira_rill = NULL;
4988 /* Send it upstream */
4989 (connp->conn_recv)(connp, mp, NULL, ira);
4990 ira->ira_ill = ill;
4991 ira->ira_rill = rill;
4992 }
4993 }

4995 /*
4996 * Handle protocols with which IP is less intimate. There
4997 * can be more than one stream bound to a particular
4998 * protocol. When this is the case, normally each one gets a copy
4999 * of any incoming packets.
5000 *
5001 * IPsec NOTE :
5002 *
5003 * Don’t allow a secure packet going up a non-secure connection.
5004 * We don’t allow this because
5005 *
5006 * 1) Reply might go out in clear which will be dropped at
5007 * the sending side.
5008 * 2) If the reply goes out in clear it will give the
5009 * adversary enough information for getting the key in
5010 * most of the cases.
5011 *

new/usr/src/uts/common/inet/ip/ip.c 77

5012 * Moreover getting a secure packet when we expect clear
5013 * implies that SA’s were added without checking for
5014 * policy on both ends. This should not happen once ISAKMP
5015 * is used to negotiate SAs as SAs will be added only after
5016 * verifying the policy.
5017 *
5018 * Zones notes:
5019 * Earlier in ip_input on a system with multiple shared-IP zones we
5020 * duplicate the multicast and broadcast packets and send them up
5021 * with each explicit zoneid that exists on that ill.
5022 * This means that here we can match the zoneid with SO_ALLZONES being special.
5023 */
5024 void
5025 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5026 {
5027 mblk_t *mp1;
5028 ipaddr_t laddr;
5029 conn_t *connp, *first_connp, *next_connp;
5030 connf_t *connfp;
5031 ill_t *ill = ira->ira_ill;
5032 ip_stack_t *ipst = ill->ill_ipst;

5034 laddr = ipha->ipha_dst;

5036 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5037 mutex_enter(&connfp->connf_lock);
5038 connp = connfp->connf_head;
5039 for (connp = connfp->connf_head; connp != NULL;
5040 connp = connp->conn_next) {
5041 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5042 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5043 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5044 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5045 break;
5046 }
5047 }

5049 if (connp == NULL) {
5050 /*
5051 * No one bound to these addresses. Is
5052 * there a client that wants all
5053 * unclaimed datagrams?
5054 */
5055 mutex_exit(&connfp->connf_lock);
5056 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5057 ICMP_PROTOCOL_UNREACHABLE, ira);
5058 return;
5059 }

5061 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);

5063 CONN_INC_REF(connp);
5064 first_connp = connp;
5065 connp = connp->conn_next;

5067 for (;;) {
5068 while (connp != NULL) {
5069 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5070 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5071 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5072 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5073 ira, connp)))
5074 break;
5075 connp = connp->conn_next;
5076 }

new/usr/src/uts/common/inet/ip/ip.c 78

5078 if (connp == NULL) {
5079 /* No more interested clients */
5080 connp = first_connp;
5081 break;
5082 }
5083 if (((mp1 = dupmsg(mp)) == NULL) &&
5084 ((mp1 = copymsg(mp)) == NULL)) {
5085 /* Memory allocation failed */
5086 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5087 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5088 connp = first_connp;
5089 break;
5090 }

5092 CONN_INC_REF(connp);
5093 mutex_exit(&connfp->connf_lock);

5095 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5096 ira);

5098 mutex_enter(&connfp->connf_lock);
5099 /* Follow the next pointer before releasing the conn. */
5100 next_connp = connp->conn_next;
5101 CONN_DEC_REF(connp);
5102 connp = next_connp;
5103 }

5105 /* Last one. Send it upstream. */
5106 mutex_exit(&connfp->connf_lock);

5108 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);

5110 CONN_DEC_REF(connp);
5111 }

5113 /*
5114 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5115 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk
5116 * is not consumed.
5117 *
5118 * One of three things can happen, all of which affect the passed-in mblk:
5119 *
5120 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk..
5121 *
5122 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5123 * ESP packet, and is passed along to ESP for consumption. Return NULL.
5124 *
5125 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL.
5126 */
5127 mblk_t *
5128 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5129 {
5130 int shift, plen, iph_len;
5131 ipha_t *ipha;
5132 udpha_t *udpha;
5133 uint32_t *spi;
5134 uint32_t esp_ports;
5135 uint8_t *orptr;
5136 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
5137 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;

5139 ipha = (ipha_t *)mp->b_rptr;
5140 iph_len = ira->ira_ip_hdr_length;
5141 plen = ira->ira_pktlen;

5143 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {

new/usr/src/uts/common/inet/ip/ip.c 79

5144 /*
5145 * Most likely a keepalive for the benefit of an intervening
5146 * NAT. These aren’t for us, per se, so drop it.
5147 *
5148 * RFC 3947/8 doesn’t say for sure what to do for 2-3
5149 * byte packets (keepalives are 1-byte), but we’ll drop them
5150 * also.
5151 */
5152 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5153 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5154 return (NULL);
5155 }

5157 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5158 /* might as well pull it all up - it might be ESP. */
5159 if (!pullupmsg(mp, -1)) {
5160 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5161 DROPPER(ipss, ipds_esp_nomem),
5162 &ipss->ipsec_dropper);
5163 return (NULL);
5164 }

5166 ipha = (ipha_t *)mp->b_rptr;
5167 }
5168 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5169 if (*spi == 0) {
5170 /* UDP packet - remove 0-spi. */
5171 shift = sizeof (uint32_t);
5172 } else {
5173 /* ESP-in-UDP packet - reduce to ESP. */
5174 ipha->ipha_protocol = IPPROTO_ESP;
5175 shift = sizeof (udpha_t);
5176 }

5178 /* Fix IP header */
5179 ira->ira_pktlen = (plen - shift);
5180 ipha->ipha_length = htons(ira->ira_pktlen);
5181 ipha->ipha_hdr_checksum = 0;

5183 orptr = mp->b_rptr;
5184 mp->b_rptr += shift;

5186 udpha = (udpha_t *)(orptr + iph_len);
5187 if (*spi == 0) {
5188 ASSERT((uint8_t *)ipha == orptr);
5189 udpha->uha_length = htons(plen - shift - iph_len);
5190 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */
5191 esp_ports = 0;
5192 } else {
5193 esp_ports = *((uint32_t *)udpha);
5194 ASSERT(esp_ports != 0);
5195 }
5196 ovbcopy(orptr, orptr + shift, iph_len);
5197 if (esp_ports != 0) /* Punt up for ESP processing. */ {
5198 ipha = (ipha_t *)(orptr + shift);

5200 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5201 ira->ira_esp_udp_ports = esp_ports;
5202 ip_fanout_v4(mp, ipha, ira);
5203 return (NULL);
5204 }
5205 return (mp);
5206 }

5208 /*
5209 * Deliver a udp packet to the given conn, possibly applying ipsec policy.

new/usr/src/uts/common/inet/ip/ip.c 80

5210 * Handles IPv4 and IPv6.
5211 * We are responsible for disposing of mp, such as by freemsg() or putnext()
5212 * Caller is responsible for dropping references to the conn.
5213 */
5214 void
5215 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5216 ip_recv_attr_t *ira)
5217 {
5218 ill_t *ill = ira->ira_ill;
5219 ip_stack_t *ipst = ill->ill_ipst;
5220 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
5221 boolean_t secure;
5222 iaflags_t iraflags = ira->ira_flags;

5224 secure = iraflags & IRAF_IPSEC_SECURE;

5226 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5227 !canputnext(connp->conn_rq)) {
5228 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5229 freemsg(mp);
5230 return;
5231 }

5233 if (((iraflags & IRAF_IS_IPV4) ?
5234 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5235 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5236 secure) {
5237 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5238 ip6h, ira);
5239 if (mp == NULL) {
5240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5241 /* Note that mp is NULL */
5242 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5243 return;
5244 }
5245 }

5247 /*
5248 * Since this code is not used for UDP unicast we don’t need a NAT_T
5249 * check. Only ip_fanout_v4 has that check.
5250 */
5251 if (ira->ira_flags & IRAF_ICMP_ERROR) {
5252 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5253 } else {
5254 ill_t *rill = ira->ira_rill;

5256 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5257 ira->ira_ill = ira->ira_rill = NULL;
5258 /* Send it upstream */
5259 (connp->conn_recv)(connp, mp, NULL, ira);
5260 ira->ira_ill = ill;
5261 ira->ira_rill = rill;
5262 }
5263 }

5265 /*
5266 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5267 * (Unicast fanout is handled in ip_input_v4.)
5268 *
5269 * If SO_REUSEADDR is set all multicast and broadcast packets
5270 * will be delivered to all conns bound to the same port.
5271 *
5272 * If there is at least one matching AF_INET receiver, then we will
5273 * ignore any AF_INET6 receivers.
5274 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5275 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4

new/usr/src/uts/common/inet/ip/ip.c 81

5276 * packets.
5277 *
5278 * Zones notes:
5279 * Earlier in ip_input on a system with multiple shared-IP zones we
5280 * duplicate the multicast and broadcast packets and send them up
5281 * with each explicit zoneid that exists on that ill.
5282 * This means that here we can match the zoneid with SO_ALLZONES being special.
5283 */
5284 void
5285 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5286 ip_recv_attr_t *ira)
5287 {
5288 ipaddr_t laddr;
5289 in6_addr_t v6faddr;
5290 conn_t *connp;
5291 connf_t *connfp;
5292 ipaddr_t faddr;
5293 ill_t *ill = ira->ira_ill;
5294 ip_stack_t *ipst = ill->ill_ipst;

5296 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));

5298 laddr = ipha->ipha_dst;
5299 faddr = ipha->ipha_src;

5301 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5302 mutex_enter(&connfp->connf_lock);
5303 connp = connfp->connf_head;

5305 /*
5306 * If SO_REUSEADDR has been set on the first we send the
5307 * packet to all clients that have joined the group and
5308 * match the port.
5309 */
5310 while (connp != NULL) {
5311 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5312 conn_wantpacket(connp, ira, ipha) &&
5313 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5314 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5315 break;
5316 connp = connp->conn_next;
5317 }

5319 if (connp == NULL)
5320 goto notfound;

5322 CONN_INC_REF(connp);

5324 if (connp->conn_reuseaddr) {
5325 conn_t *first_connp = connp;
5326 conn_t *next_connp;
5327 mblk_t *mp1;

5329 connp = connp->conn_next;
5330 for (;;) {
5331 while (connp != NULL) {
5332 if (IPCL_UDP_MATCH(connp, lport, laddr,
5333 fport, faddr) &&
5334 conn_wantpacket(connp, ira, ipha) &&
5335 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5336 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5337 ira, connp)))
5338 break;
5339 connp = connp->conn_next;
5340 }
5341 if (connp == NULL) {

new/usr/src/uts/common/inet/ip/ip.c 82

5342 /* No more interested clients */
5343 connp = first_connp;
5344 break;
5345 }
5346 if (((mp1 = dupmsg(mp)) == NULL) &&
5347 ((mp1 = copymsg(mp)) == NULL)) {
5348 /* Memory allocation failed */
5349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5350 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5351 connp = first_connp;
5352 break;
5353 }
5354 CONN_INC_REF(connp);
5355 mutex_exit(&connfp->connf_lock);

5357 IP_STAT(ipst, ip_udp_fanmb);
5358 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5359 NULL, ira);
5360 mutex_enter(&connfp->connf_lock);
5361 /* Follow the next pointer before releasing the conn */
5362 next_connp = connp->conn_next;
5363 CONN_DEC_REF(connp);
5364 connp = next_connp;
5365 }
5366 }

5368 /* Last one. Send it upstream. */
5369 mutex_exit(&connfp->connf_lock);
5370 IP_STAT(ipst, ip_udp_fanmb);
5371 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5372 CONN_DEC_REF(connp);
5373 return;

5375 notfound:
5376 mutex_exit(&connfp->connf_lock);
5377 /*
5378 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5379 * have already been matched above, since they live in the IPv4
5380 * fanout tables. This implies we only need to
5381 * check for IPv6 in6addr_any endpoints here.
5382 * Thus we compare using ipv6_all_zeros instead of the destination
5383 * address, except for the multicast group membership lookup which
5384 * uses the IPv4 destination.
5385 */
5386 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5387 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5388 mutex_enter(&connfp->connf_lock);
5389 connp = connfp->connf_head;
5390 /*
5391 * IPv4 multicast packet being delivered to an AF_INET6
5392 * in6addr_any endpoint.
5393 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5394 * and not conn_wantpacket_v6() since any multicast membership is
5395 * for an IPv4-mapped multicast address.
5396 */
5397 while (connp != NULL) {
5398 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5399 fport, v6faddr) &&
5400 conn_wantpacket(connp, ira, ipha) &&
5401 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5402 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5403 break;
5404 connp = connp->conn_next;
5405 }

5407 if (connp == NULL) {

new/usr/src/uts/common/inet/ip/ip.c 83

5408 /*
5409 * No one bound to this port. Is
5410 * there a client that wants all
5411 * unclaimed datagrams?
5412 */
5413 mutex_exit(&connfp->connf_lock);

5415 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5416 NULL) {
5417 ASSERT(ira->ira_protocol == IPPROTO_UDP);
5418 ip_fanout_proto_v4(mp, ipha, ira);
5419 } else {
5420 /*
5421 * We used to attempt to send an icmp error here, but
5422 * since this is known to be a multicast packet
5423 * and we don’t send icmp errors in response to
5424 * multicast, just drop the packet and give up sooner.
5425 */
5426 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5427 freemsg(mp);
5428 }
5429 return;
5430 }
5431 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);

5433 /*
5434 * If SO_REUSEADDR has been set on the first we send the
5435 * packet to all clients that have joined the group and
5436 * match the port.
5437 */
5438 if (connp->conn_reuseaddr) {
5439 conn_t *first_connp = connp;
5440 conn_t *next_connp;
5441 mblk_t *mp1;

5443 CONN_INC_REF(connp);
5444 connp = connp->conn_next;
5445 for (;;) {
5446 while (connp != NULL) {
5447 if (IPCL_UDP_MATCH_V6(connp, lport,
5448 ipv6_all_zeros, fport, v6faddr) &&
5449 conn_wantpacket(connp, ira, ipha) &&
5450 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5451 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5452 ira, connp)))
5453 break;
5454 connp = connp->conn_next;
5455 }
5456 if (connp == NULL) {
5457 /* No more interested clients */
5458 connp = first_connp;
5459 break;
5460 }
5461 if (((mp1 = dupmsg(mp)) == NULL) &&
5462 ((mp1 = copymsg(mp)) == NULL)) {
5463 /* Memory allocation failed */
5464 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5465 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5466 connp = first_connp;
5467 break;
5468 }
5469 CONN_INC_REF(connp);
5470 mutex_exit(&connfp->connf_lock);

5472 IP_STAT(ipst, ip_udp_fanmb);
5473 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,

new/usr/src/uts/common/inet/ip/ip.c 84

5474 NULL, ira);
5475 mutex_enter(&connfp->connf_lock);
5476 /* Follow the next pointer before releasing the conn */
5477 next_connp = connp->conn_next;
5478 CONN_DEC_REF(connp);
5479 connp = next_connp;
5480 }
5481 }

5483 /* Last one. Send it upstream. */
5484 mutex_exit(&connfp->connf_lock);
5485 IP_STAT(ipst, ip_udp_fanmb);
5486 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5487 CONN_DEC_REF(connp);
5488 }

5490 /*
5491 * Split an incoming packet’s IPv4 options into the label and the other options.
5492 * If ’allocate’ is set it does memory allocation for the ip_pkt_t, including
5493 * clearing out any leftover label or options.
5494 * Otherwise it just makes ipp point into the packet.
5495 *
5496 * Returns zero if ok; ENOMEM if the buffer couldn’t be allocated.
5497 */
5498 int
5499 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5500 {
5501 uchar_t *opt;
5502 uint32_t totallen;
5503 uint32_t optval;
5504 uint32_t optlen;

5506 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5507 ipp->ipp_hoplimit = ipha->ipha_ttl;
5508 ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5509 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);

5511 /*
5512 * Get length (in 4 byte octets) of IP header options.
5513 */
5514 totallen = ipha->ipha_version_and_hdr_length -
5515 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);

5517 if (totallen == 0) {
5518 if (!allocate)
5519 return (0);

5521 /* Clear out anything from a previous packet */
5522 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5523 kmem_free(ipp->ipp_ipv4_options,
5524 ipp->ipp_ipv4_options_len);
5525 ipp->ipp_ipv4_options = NULL;
5526 ipp->ipp_ipv4_options_len = 0;
5527 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5528 }
5529 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5530 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5531 ipp->ipp_label_v4 = NULL;
5532 ipp->ipp_label_len_v4 = 0;
5533 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5534 }
5535 return (0);
5536 }

5538 totallen <<= 2;
5539 opt = (uchar_t *)&ipha[1];

new/usr/src/uts/common/inet/ip/ip.c 85

5540 if (!is_system_labeled()) {

5542 copyall:
5543 if (!allocate) {
5544 if (totallen != 0) {
5545 ipp->ipp_ipv4_options = opt;
5546 ipp->ipp_ipv4_options_len = totallen;
5547 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5548 }
5549 return (0);
5550 }
5551 /* Just copy all of options */
5552 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5553 if (totallen == ipp->ipp_ipv4_options_len) {
5554 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5555 return (0);
5556 }
5557 kmem_free(ipp->ipp_ipv4_options,
5558 ipp->ipp_ipv4_options_len);
5559 ipp->ipp_ipv4_options = NULL;
5560 ipp->ipp_ipv4_options_len = 0;
5561 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5562 }
5563 if (totallen == 0)
5564 return (0);

5566 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5567 if (ipp->ipp_ipv4_options == NULL)
5568 return (ENOMEM);
5569 ipp->ipp_ipv4_options_len = totallen;
5570 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5571 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5572 return (0);
5573 }

5575 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5576 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5577 ipp->ipp_label_v4 = NULL;
5578 ipp->ipp_label_len_v4 = 0;
5579 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5580 }

5582 /*
5583 * Search for CIPSO option.
5584 * We assume CIPSO is first in options if it is present.
5585 * If it isn’t, then ipp_opt_ipv4_options will not include the options
5586 * prior to the CIPSO option.
5587 */
5588 while (totallen != 0) {
5589 switch (optval = opt[IPOPT_OPTVAL]) {
5590 case IPOPT_EOL:
5591 return (0);
5592 case IPOPT_NOP:
5593 optlen = 1;
5594 break;
5595 default:
5596 if (totallen <= IPOPT_OLEN)
5597 return (EINVAL);
5598 optlen = opt[IPOPT_OLEN];
5599 if (optlen < 2)
5600 return (EINVAL);
5601 }
5602 if (optlen > totallen)
5603 return (EINVAL);

5605 switch (optval) {

new/usr/src/uts/common/inet/ip/ip.c 86

5606 case IPOPT_COMSEC:
5607 if (!allocate) {
5608 ipp->ipp_label_v4 = opt;
5609 ipp->ipp_label_len_v4 = optlen;
5610 ipp->ipp_fields |= IPPF_LABEL_V4;
5611 } else {
5612 ipp->ipp_label_v4 = kmem_alloc(optlen,
5613 KM_NOSLEEP);
5614 if (ipp->ipp_label_v4 == NULL)
5615 return (ENOMEM);
5616 ipp->ipp_label_len_v4 = optlen;
5617 ipp->ipp_fields |= IPPF_LABEL_V4;
5618 bcopy(opt, ipp->ipp_label_v4, optlen);
5619 }
5620 totallen -= optlen;
5621 opt += optlen;

5623 /* Skip padding bytes until we get to a multiple of 4 */
5624 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5625 totallen--;
5626 opt++;
5627 }
5628 /* Remaining as ipp_ipv4_options */
5629 goto copyall;
5630 }
5631 totallen -= optlen;
5632 opt += optlen;
5633 }
5634 /* No CIPSO found; return everything as ipp_ipv4_options */
5635 totallen = ipha->ipha_version_and_hdr_length -
5636 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5637 totallen <<= 2;
5638 opt = (uchar_t *)&ipha[1];
5639 goto copyall;
5640 }

5642 /*
5643 * Efficient versions of lookup for an IRE when we only
5644 * match the address.
5645 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5646 * Does not handle multicast addresses.
5647 */
5648 uint_t
5649 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5650 {
5651 ire_t *ire;
5652 uint_t result;

5654 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5655 ASSERT(ire != NULL);
5656 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5657 result = IRE_NOROUTE;
5658 else
5659 result = ire->ire_type;
5660 ire_refrele(ire);
5661 return (result);
5662 }

5664 /*
5665 * Efficient versions of lookup for an IRE when we only
5666 * match the address.
5667 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5668 * Does not handle multicast addresses.
5669 */
5670 uint_t
5671 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)

new/usr/src/uts/common/inet/ip/ip.c 87

5672 {
5673 ire_t *ire;
5674 uint_t result;

5676 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5677 ASSERT(ire != NULL);
5678 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5679 result = IRE_NOROUTE;
5680 else
5681 result = ire->ire_type;
5682 ire_refrele(ire);
5683 return (result);
5684 }

5686 /*
5687 * Nobody should be sending
5688 * packets up this stream
5689 */
5690 static void
5691 ip_lrput(queue_t *q, mblk_t *mp)
5692 {
5693 switch (mp->b_datap->db_type) {
5694 case M_FLUSH:
5695 /* Turn around */
5696 if (*mp->b_rptr & FLUSHW) {
5697 *mp->b_rptr &= ~FLUSHR;
5698 qreply(q, mp);
5699 return;
5700 }
5701 break;
5702 }
5703 freemsg(mp);
5704 }

5706 /* Nobody should be sending packets down this stream */
5707 /* ARGSUSED */
5708 void
5709 ip_lwput(queue_t *q, mblk_t *mp)
5710 {
5711 freemsg(mp);
5712 }

5714 /*
5715 * Move the first hop in any source route to ipha_dst and remove that part of
5716 * the source route. Called by other protocols. Errors in option formatting
5717 * are ignored - will be handled by ip_output_options. Return the final
5718 * destination (either ipha_dst or the last entry in a source route.)
5719 */
5720 ipaddr_t
5721 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5722 {
5723 ipoptp_t opts;
5724 uchar_t *opt;
5725 uint8_t optval;
5726 uint8_t optlen;
5727 ipaddr_t dst;
5728 int i;
5729 ip_stack_t *ipst = ns->netstack_ip;

5731 ip2dbg(("ip_massage_options\n"));
5732 dst = ipha->ipha_dst;
5733 for (optval = ipoptp_first(&opts, ipha);
5734 optval != IPOPT_EOL;
5735 optval = ipoptp_next(&opts)) {
5736 opt = opts.ipoptp_cur;
5737 switch (optval) {

new/usr/src/uts/common/inet/ip/ip.c 88

5738 uint8_t off;
5739 case IPOPT_SSRR:
5740 case IPOPT_LSRR:
5741 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5742 ip1dbg(("ip_massage_options: bad src route\n"));
5743 break;
5744 }
5745 optlen = opts.ipoptp_len;
5746 off = opt[IPOPT_OFFSET];
5747 off--;
5748 redo_srr:
5749 if (optlen < IP_ADDR_LEN ||
5750 off > optlen - IP_ADDR_LEN) {
5751 /* End of source route */
5752 ip1dbg(("ip_massage_options: end of SR\n"));
5753 break;
5754 }
5755 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5756 ip1dbg(("ip_massage_options: next hop 0x%x\n",
5757 ntohl(dst)));
5758 /*
5759 * Check if our address is present more than
5760 * once as consecutive hops in source route.
5761 * XXX verify per-interface ip_forwarding
5762 * for source route?
5763 */
5764 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5765 off += IP_ADDR_LEN;
5766 goto redo_srr;
5767 }
5768 if (dst == htonl(INADDR_LOOPBACK)) {
5769 ip1dbg(("ip_massage_options: loopback addr in "
5770 "source route!\n"));
5771 break;
5772 }
5773 /*
5774 * Update ipha_dst to be the first hop and remove the
5775 * first hop from the source route (by overwriting
5776 * part of the option with NOP options).
5777 */
5778 ipha->ipha_dst = dst;
5779 /* Put the last entry in dst */
5780 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5781 3;
5782 bcopy(&opt[off], &dst, IP_ADDR_LEN);

5784 ip1dbg(("ip_massage_options: last hop 0x%x\n",
5785 ntohl(dst)));
5786 /* Move down and overwrite */
5787 opt[IP_ADDR_LEN] = opt[0];
5788 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5789 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5790 for (i = 0; i < IP_ADDR_LEN; i++)
5791 opt[i] = IPOPT_NOP;
5792 break;
5793 }
5794 }
5795 return (dst);
5796 }

5798 /*
5799 * Return the network mask
5800 * associated with the specified address.
5801 */
5802 ipaddr_t
5803 ip_net_mask(ipaddr_t addr)

new/usr/src/uts/common/inet/ip/ip.c 89

5804 {
5805 uchar_t *up = (uchar_t *)&addr;
5806 ipaddr_t mask = 0;
5807 uchar_t *maskp = (uchar_t *)&mask;

5809 #if defined(__i386) || defined(__amd64)
5810 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5811 #endif
5812 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER
5813 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5814 #endif
5815 if (CLASSD(addr)) {
5816 maskp[0] = 0xF0;
5817 return (mask);
5818 }

5820 /* We assume Class E default netmask to be 32 */
5821 if (CLASSE(addr))
5822 return (0xffffffffU);

5824 if (addr == 0)
5825 return (0);
5826 maskp[0] = 0xFF;
5827 if ((up[0] & 0x80) == 0)
5828 return (mask);

5830 maskp[1] = 0xFF;
5831 if ((up[0] & 0xC0) == 0x80)
5832 return (mask);

5834 maskp[2] = 0xFF;
5835 if ((up[0] & 0xE0) == 0xC0)
5836 return (mask);

5838 /* Otherwise return no mask */
5839 return ((ipaddr_t)0);
5840 }

5842 /* Name/Value Table Lookup Routine */
5843 char *
5844 ip_nv_lookup(nv_t *nv, int value)
5845 {
5846 if (!nv)
5847 return (NULL);
5848 for (; nv->nv_name; nv++) {
5849 if (nv->nv_value == value)
5850 return (nv->nv_name);
5851 }
5852 return ("unknown");
5853 }

5855 static int
5856 ip_wait_for_info_ack(ill_t *ill)
5857 {
5858 int err;

5860 mutex_enter(&ill->ill_lock);
5861 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5862 /*
5863 * Return value of 0 indicates a pending signal.
5864 */
5865 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5866 if (err == 0) {
5867 mutex_exit(&ill->ill_lock);
5868 return (EINTR);
5869 }

new/usr/src/uts/common/inet/ip/ip.c 90

5870 }
5871 mutex_exit(&ill->ill_lock);
5872 /*
5873 * ip_rput_other could have set an error in ill_error on
5874 * receipt of M_ERROR.
5875 */
5876 return (ill->ill_error);
5877 }

5879 /*
5880 * This is a module open, i.e. this is a control stream for access
5881 * to a DLPI device. We allocate an ill_t as the instance data in
5882 * this case.
5883 */
5884 static int
5885 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5886 {
5887 ill_t *ill;
5888 int err;
5889 zoneid_t zoneid;
5890 netstack_t *ns;
5891 ip_stack_t *ipst;

5893 /*
5894 * Prevent unprivileged processes from pushing IP so that
5895 * they can’t send raw IP.
5896 */
5897 if (secpolicy_net_rawaccess(credp) != 0)
5898 return (EPERM);

5900 ns = netstack_find_by_cred(credp);
5901 ASSERT(ns != NULL);
5902 ipst = ns->netstack_ip;
5903 ASSERT(ipst != NULL);

5905 /*
5906 * For exclusive stacks we set the zoneid to zero
5907 * to make IP operate as if in the global zone.
5908 */
5909 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5910 zoneid = GLOBAL_ZONEID;
5911 else
5912 zoneid = crgetzoneid(credp);

5914 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5915 q->q_ptr = WR(q)->q_ptr = ill;
5916 ill->ill_ipst = ipst;
5917 ill->ill_zoneid = zoneid;

5919 /*
5920 * ill_init initializes the ill fields and then sends down
5921 * down a DL_INFO_REQ after calling qprocson.
5922 */
5923 err = ill_init(q, ill);

5925 if (err != 0) {
5926 mi_free(ill);
5927 netstack_rele(ipst->ips_netstack);
5928 q->q_ptr = NULL;
5929 WR(q)->q_ptr = NULL;
5930 return (err);
5931 }

5933 /*
5934 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5935 *

new/usr/src/uts/common/inet/ip/ip.c 91

5936 * ill_init initializes the ipsq marking this thread as
5937 * writer
5938 */
5939 ipsq_exit(ill->ill_phyint->phyint_ipsq);
5940 err = ip_wait_for_info_ack(ill);
5941 if (err == 0)
5942 ill->ill_credp = credp;
5943 else
5944 goto fail;

5946 crhold(credp);

5948 mutex_enter(&ipst->ips_ip_mi_lock);
5949 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5950 sflag, credp);
5951 mutex_exit(&ipst->ips_ip_mi_lock);
5952 fail:
5953 if (err) {
5954 (void) ip_close(q, 0);
5955 return (err);
5956 }
5957 return (0);
5958 }

5960 /* For /dev/ip aka AF_INET open */
5961 int
5962 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5963 {
5964 return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5965 }

5967 /* For /dev/ip6 aka AF_INET6 open */
5968 int
5969 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5970 {
5971 return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5972 }

5974 /* IP open routine. */
5975 int
5976 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5977 boolean_t isv6)
5978 {
5979 conn_t *connp;
5980 major_t maj;
5981 zoneid_t zoneid;
5982 netstack_t *ns;
5983 ip_stack_t *ipst;

5985 /* Allow reopen. */
5986 if (q->q_ptr != NULL)
5987 return (0);

5989 if (sflag & MODOPEN) {
5990 /* This is a module open */
5991 return (ip_modopen(q, devp, flag, sflag, credp));
5992 }

5994 if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5995 /*
5996 * Non streams based socket looking for a stream
5997 * to access IP
5998 */
5999 return (ip_helper_stream_setup(q, devp, flag, sflag,
6000 credp, isv6));
6001 }

new/usr/src/uts/common/inet/ip/ip.c 92

6003 ns = netstack_find_by_cred(credp);
6004 ASSERT(ns != NULL);
6005 ipst = ns->netstack_ip;
6006 ASSERT(ipst != NULL);

6008 /*
6009 * For exclusive stacks we set the zoneid to zero
6010 * to make IP operate as if in the global zone.
6011 */
6012 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
6013 zoneid = GLOBAL_ZONEID;
6014 else
6015 zoneid = crgetzoneid(credp);

6017 /*
6018 * We are opening as a device. This is an IP client stream, and we
6019 * allocate an conn_t as the instance data.
6020 */
6021 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);

6023 /*
6024 * ipcl_conn_create did a netstack_hold. Undo the hold that was
6025 * done by netstack_find_by_cred()
6026 */
6027 netstack_rele(ipst->ips_netstack);

6029 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6030 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6031 connp->conn_ixa->ixa_zoneid = zoneid;
6032 connp->conn_zoneid = zoneid;

6034 connp->conn_rq = q;
6035 q->q_ptr = WR(q)->q_ptr = connp;

6037 /* Minor tells us which /dev entry was opened */
6038 if (isv6) {
6039 connp->conn_family = AF_INET6;
6040 connp->conn_ipversion = IPV6_VERSION;
6041 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6042 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6043 } else {
6044 connp->conn_family = AF_INET;
6045 connp->conn_ipversion = IPV4_VERSION;
6046 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6047 }

6049 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6050 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6051 connp->conn_minor_arena = ip_minor_arena_la;
6052 } else {
6053 /*
6054 * Either minor numbers in the large arena were exhausted
6055 * or a non socket application is doing the open.
6056 * Try to allocate from the small arena.
6057 */
6058 if ((connp->conn_dev =
6059 inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6060 /* CONN_DEC_REF takes care of netstack_rele() */
6061 q->q_ptr = WR(q)->q_ptr = NULL;
6062 CONN_DEC_REF(connp);
6063 return (EBUSY);
6064 }
6065 connp->conn_minor_arena = ip_minor_arena_sa;
6066 }

new/usr/src/uts/common/inet/ip/ip.c 93

6068 maj = getemajor(*devp);
6069 *devp = makedevice(maj, (minor_t)connp->conn_dev);

6071 /*
6072 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6073 */
6074 connp->conn_cred = credp;
6075 connp->conn_cpid = curproc->p_pid;
6076 /* Cache things in ixa without an extra refhold */
6077 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6078 connp->conn_ixa->ixa_cred = connp->conn_cred;
6079 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6080 if (is_system_labeled())
6081 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);

6083 /*
6084 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6085 */
6086 connp->conn_recv = ip_conn_input;
6087 connp->conn_recvicmp = ip_conn_input_icmp;

6089 crhold(connp->conn_cred);

6091 /*
6092 * If the caller has the process-wide flag set, then default to MAC
6093 * exempt mode. This allows read-down to unlabeled hosts.
6094 */
6095 if (getpflags(NET_MAC_AWARE, credp) != 0)
6096 connp->conn_mac_mode = CONN_MAC_AWARE;

6098 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);

6100 connp->conn_rq = q;
6101 connp->conn_wq = WR(q);

6103 /* Non-zero default values */
6104 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;

6106 /*
6107 * Make the conn globally visible to walkers
6108 */
6109 ASSERT(connp->conn_ref == 1);
6110 mutex_enter(&connp->conn_lock);
6111 connp->conn_state_flags &= ~CONN_INCIPIENT;
6112 mutex_exit(&connp->conn_lock);

6114 qprocson(q);

6116 return (0);
6117 }

6119 /*
6120 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6121 * all of them are copied to the conn_t. If the req is "zero", the policy is
6122 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6123 * fields.
6124 * We keep only the latest setting of the policy and thus policy setting
6125 * is not incremental/cumulative.
6126 *
6127 * Requests to set policies with multiple alternative actions will
6128 * go through a different API.
6129 */
6130 int
6131 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6132 {
6133 uint_t ah_req = 0;

new/usr/src/uts/common/inet/ip/ip.c 94

6134 uint_t esp_req = 0;
6135 uint_t se_req = 0;
6136 ipsec_act_t *actp = NULL;
6137 uint_t nact;
6138 ipsec_policy_head_t *ph;
6139 boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6140 int error = 0;
6141 netstack_t *ns = connp->conn_netstack;
6142 ip_stack_t *ipst = ns->netstack_ip;
6143 ipsec_stack_t *ipss = ns->netstack_ipsec;

6145 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)

6147 /*
6148 * The IP_SEC_OPT option does not allow variable length parameters,
6149 * hence a request cannot be NULL.
6150 */
6151 if (req == NULL)
6152 return (EINVAL);

6154 ah_req = req->ipsr_ah_req;
6155 esp_req = req->ipsr_esp_req;
6156 se_req = req->ipsr_self_encap_req;

6158 /* Don’t allow setting self-encap without one or more of AH/ESP. */
6159 if (se_req != 0 && esp_req == 0 && ah_req == 0)
6160 return (EINVAL);

6162 /*
6163 * Are we dealing with a request to reset the policy (i.e.
6164 * zero requests).
6165 */
6166 is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6167 (esp_req & REQ_MASK) == 0 &&
6168 (se_req & REQ_MASK) == 0);

6170 if (!is_pol_reset) {
6171 /*
6172 * If we couldn’t load IPsec, fail with "protocol
6173 * not supported".
6174 * IPsec may not have been loaded for a request with zero
6175 * policies, so we don’t fail in this case.
6176 */
6177 mutex_enter(&ipss->ipsec_loader_lock);
6178 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6179 mutex_exit(&ipss->ipsec_loader_lock);
6180 return (EPROTONOSUPPORT);
6181 }
6182 mutex_exit(&ipss->ipsec_loader_lock);

6184 /*
6185 * Test for valid requests. Invalid algorithms
6186 * need to be tested by IPsec code because new
6187 * algorithms can be added dynamically.
6188 */
6189 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6190 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6191 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6192 return (EINVAL);
6193 }

6195 /*
6196 * Only privileged users can issue these
6197 * requests.
6198 */
6199 if (((ah_req & IPSEC_PREF_NEVER) ||

new/usr/src/uts/common/inet/ip/ip.c 95

6200 (esp_req & IPSEC_PREF_NEVER) ||
6201 (se_req & IPSEC_PREF_NEVER)) &&
6202 secpolicy_ip_config(cr, B_FALSE) != 0) {
6203 return (EPERM);
6204 }

6206 /*
6207 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6208 * are mutually exclusive.
6209 */
6210 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6211 ((esp_req & REQ_MASK) == REQ_MASK) ||
6212 ((se_req & REQ_MASK) == REQ_MASK)) {
6213 /* Both of them are set */
6214 return (EINVAL);
6215 }
6216 }

6218 ASSERT(MUTEX_HELD(&connp->conn_lock));

6220 /*
6221 * If we have already cached policies in conn_connect(), don’t
6222 * let them change now. We cache policies for connections
6223 * whose src,dst [addr, port] is known.
6224 */
6225 if (connp->conn_policy_cached) {
6226 return (EINVAL);
6227 }

6229 /*
6230 * We have a zero policies, reset the connection policy if already
6231 * set. This will cause the connection to inherit the
6232 * global policy, if any.
6233 */
6234 if (is_pol_reset) {
6235 if (connp->conn_policy != NULL) {
6236 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6237 connp->conn_policy = NULL;
6238 }
6239 connp->conn_in_enforce_policy = B_FALSE;
6240 connp->conn_out_enforce_policy = B_FALSE;
6241 return (0);
6242 }

6244 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6245 ipst->ips_netstack);
6246 if (ph == NULL)
6247 goto enomem;

6249 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6250 if (actp == NULL)
6251 goto enomem;

6253 /*
6254 * Always insert IPv4 policy entries, since they can also apply to
6255 * ipv6 sockets being used in ipv4-compat mode.
6256 */
6257 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6258 IPSEC_TYPE_INBOUND, ns))
6259 goto enomem;
6260 is_pol_inserted = B_TRUE;
6261 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6262 IPSEC_TYPE_OUTBOUND, ns))
6263 goto enomem;

6265 /*

new/usr/src/uts/common/inet/ip/ip.c 96

6266 * We’re looking at a v6 socket, also insert the v6-specific
6267 * entries.
6268 */
6269 if (connp->conn_family == AF_INET6) {
6270 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6271 IPSEC_TYPE_INBOUND, ns))
6272 goto enomem;
6273 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6274 IPSEC_TYPE_OUTBOUND, ns))
6275 goto enomem;
6276 }

6278 ipsec_actvec_free(actp, nact);

6280 /*
6281 * If the requests need security, set enforce_policy.
6282 * If the requests are IPSEC_PREF_NEVER, one should
6283 * still set conn_out_enforce_policy so that ip_set_destination
6284 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6285 * for connections that we don’t cache policy in at connect time,
6286 * if global policy matches in ip_output_attach_policy, we
6287 * don’t wrongly inherit global policy. Similarly, we need
6288 * to set conn_in_enforce_policy also so that we don’t verify
6289 * policy wrongly.
6290 */
6291 if ((ah_req & REQ_MASK) != 0 ||
6292 (esp_req & REQ_MASK) != 0 ||
6293 (se_req & REQ_MASK) != 0) {
6294 connp->conn_in_enforce_policy = B_TRUE;
6295 connp->conn_out_enforce_policy = B_TRUE;
6296 }

6298 return (error);
6299 #undef REQ_MASK

6301 /*
6302 * Common memory-allocation-failure exit path.
6303 */
6304 enomem:
6305 if (actp != NULL)
6306 ipsec_actvec_free(actp, nact);
6307 if (is_pol_inserted)
6308 ipsec_polhead_flush(ph, ns);
6309 return (ENOMEM);
6310 }

6312 /*
6313 * Set socket options for joining and leaving multicast groups.
6314 * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6315 * The caller has already check that the option name is consistent with
6316 * the address family of the socket.
6317 */
6318 int
6319 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6320 uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6321 {
6322 int *i1 = (int *)invalp;
6323 int error = 0;
6324 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6325 struct ip_mreq *v4_mreqp;
6326 struct ipv6_mreq *v6_mreqp;
6327 struct group_req *greqp;
6328 ire_t *ire;
6329 boolean_t done = B_FALSE;
6330 ipaddr_t ifaddr;
6331 in6_addr_t v6group;

new/usr/src/uts/common/inet/ip/ip.c 97

6332 uint_t ifindex;
6333 boolean_t mcast_opt = B_TRUE;
6334 mcast_record_t fmode;
6335 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6336 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);

6338 switch (name) {
6339 case IP_ADD_MEMBERSHIP:
6340 case IPV6_JOIN_GROUP:
6341 mcast_opt = B_FALSE;
6342 /* FALLTHRU */
6343 case MCAST_JOIN_GROUP:
6344 fmode = MODE_IS_EXCLUDE;
6345 optfn = ip_opt_add_group;
6346 break;

6348 case IP_DROP_MEMBERSHIP:
6349 case IPV6_LEAVE_GROUP:
6350 mcast_opt = B_FALSE;
6351 /* FALLTHRU */
6352 case MCAST_LEAVE_GROUP:
6353 fmode = MODE_IS_INCLUDE;
6354 optfn = ip_opt_delete_group;
6355 break;
6356 default:
6357 ASSERT(0);
6358 }

6360 if (mcast_opt) {
6361 struct sockaddr_in *sin;
6362 struct sockaddr_in6 *sin6;

6364 greqp = (struct group_req *)i1;
6365 if (greqp->gr_group.ss_family == AF_INET) {
6366 sin = (struct sockaddr_in *)&(greqp->gr_group);
6367 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6368 } else {
6369 if (!inet6)
6370 return (EINVAL); /* Not on INET socket */

6372 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6373 v6group = sin6->sin6_addr;
6374 }
6375 ifaddr = INADDR_ANY;
6376 ifindex = greqp->gr_interface;
6377 } else if (inet6) {
6378 v6_mreqp = (struct ipv6_mreq *)i1;
6379 v6group = v6_mreqp->ipv6mr_multiaddr;
6380 ifaddr = INADDR_ANY;
6381 ifindex = v6_mreqp->ipv6mr_interface;
6382 } else {
6383 v4_mreqp = (struct ip_mreq *)i1;
6384 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6385 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6386 ifindex = 0;
6387 }

6389 /*
6390 * In the multirouting case, we need to replicate
6391 * the request on all interfaces that will take part
6392 * in replication. We do so because multirouting is
6393 * reflective, thus we will probably receive multi-
6394 * casts on those interfaces.
6395 * The ip_multirt_apply_membership() succeeds if
6396 * the operation succeeds on at least one interface.
6397 */

new/usr/src/uts/common/inet/ip/ip.c 98

6398 if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6399 ipaddr_t group;

6401 IN6_V4MAPPED_TO_IPADDR(&v6group, group);

6403 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6404 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6405 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6406 } else {
6407 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6408 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6409 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6410 }
6411 if (ire != NULL) {
6412 if (ire->ire_flags & RTF_MULTIRT) {
6413 error = ip_multirt_apply_membership(optfn, ire, connp,
6414 checkonly, &v6group, fmode, &ipv6_all_zeros);
6415 done = B_TRUE;
6416 }
6417 ire_refrele(ire);
6418 }

6420 if (!done) {
6421 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6422 fmode, &ipv6_all_zeros);
6423 }
6424 return (error);
6425 }

6427 /*
6428 * Set socket options for joining and leaving multicast groups
6429 * for specific sources.
6430 * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6431 * The caller has already check that the option name is consistent with
6432 * the address family of the socket.
6433 */
6434 int
6435 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6436 uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6437 {
6438 int *i1 = (int *)invalp;
6439 int error = 0;
6440 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6441 struct ip_mreq_source *imreqp;
6442 struct group_source_req *gsreqp;
6443 in6_addr_t v6group, v6src;
6444 uint32_t ifindex;
6445 ipaddr_t ifaddr;
6446 boolean_t mcast_opt = B_TRUE;
6447 mcast_record_t fmode;
6448 ire_t *ire;
6449 boolean_t done = B_FALSE;
6450 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6451 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);

6453 switch (name) {
6454 case IP_BLOCK_SOURCE:
6455 mcast_opt = B_FALSE;
6456 /* FALLTHRU */
6457 case MCAST_BLOCK_SOURCE:
6458 fmode = MODE_IS_EXCLUDE;
6459 optfn = ip_opt_add_group;
6460 break;

6462 case IP_UNBLOCK_SOURCE:
6463 mcast_opt = B_FALSE;

new/usr/src/uts/common/inet/ip/ip.c 99

6464 /* FALLTHRU */
6465 case MCAST_UNBLOCK_SOURCE:
6466 fmode = MODE_IS_EXCLUDE;
6467 optfn = ip_opt_delete_group;
6468 break;

6470 case IP_ADD_SOURCE_MEMBERSHIP:
6471 mcast_opt = B_FALSE;
6472 /* FALLTHRU */
6473 case MCAST_JOIN_SOURCE_GROUP:
6474 fmode = MODE_IS_INCLUDE;
6475 optfn = ip_opt_add_group;
6476 break;

6478 case IP_DROP_SOURCE_MEMBERSHIP:
6479 mcast_opt = B_FALSE;
6480 /* FALLTHRU */
6481 case MCAST_LEAVE_SOURCE_GROUP:
6482 fmode = MODE_IS_INCLUDE;
6483 optfn = ip_opt_delete_group;
6484 break;
6485 default:
6486 ASSERT(0);
6487 }

6489 if (mcast_opt) {
6490 gsreqp = (struct group_source_req *)i1;
6491 ifindex = gsreqp->gsr_interface;
6492 if (gsreqp->gsr_group.ss_family == AF_INET) {
6493 struct sockaddr_in *s;
6494 s = (struct sockaddr_in *)&gsreqp->gsr_group;
6495 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6496 s = (struct sockaddr_in *)&gsreqp->gsr_source;
6497 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6498 } else {
6499 struct sockaddr_in6 *s6;

6501 if (!inet6)
6502 return (EINVAL); /* Not on INET socket */

6504 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6505 v6group = s6->sin6_addr;
6506 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6507 v6src = s6->sin6_addr;
6508 }
6509 ifaddr = INADDR_ANY;
6510 } else {
6511 imreqp = (struct ip_mreq_source *)i1;
6512 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6513 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6514 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6515 ifindex = 0;
6516 }

6518 /*
6519 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6520 */
6521 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6522 v6src = ipv6_all_zeros;

6524 /*
6525 * In the multirouting case, we need to replicate
6526 * the request as noted in the mcast cases above.
6527 */
6528 if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6529 ipaddr_t group;

new/usr/src/uts/common/inet/ip/ip.c 100

6531 IN6_V4MAPPED_TO_IPADDR(&v6group, group);

6533 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6534 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6535 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6536 } else {
6537 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6538 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6539 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6540 }
6541 if (ire != NULL) {
6542 if (ire->ire_flags & RTF_MULTIRT) {
6543 error = ip_multirt_apply_membership(optfn, ire, connp,
6544 checkonly, &v6group, fmode, &v6src);
6545 done = B_TRUE;
6546 }
6547 ire_refrele(ire);
6548 }
6549 if (!done) {
6550 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6551 fmode, &v6src);
6552 }
6553 return (error);
6554 }

6556 /*
6557 * Given a destination address and a pointer to where to put the information
6558 * this routine fills in the mtuinfo.
6559 * The socket must be connected.
6560 * For sctp conn_faddr is the primary address.
6561 */
6562 int
6563 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6564 {
6565 uint32_t pmtu = IP_MAXPACKET;
6566 uint_t scopeid;

6568 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6569 return (-1);

6571 /* In case we never sent or called ip_set_destination_v4/v6 */
6572 if (ixa->ixa_ire != NULL)
6573 pmtu = ip_get_pmtu(ixa);

6575 if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6576 scopeid = ixa->ixa_scopeid;
6577 else
6578 scopeid = 0;

6580 bzero(mtuinfo, sizeof (*mtuinfo));
6581 mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6582 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6583 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6584 mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6585 mtuinfo->ip6m_mtu = pmtu;

6587 return (sizeof (struct ip6_mtuinfo));
6588 }

6590 /*
6591 * When the src multihoming is changed from weak to [strong, preferred]
6592 * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6593 * and identify routes that were created by user-applications in the
6594 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6595 * currently defined. These routes are then ’rebound’, i.e., their ire_ill

new/usr/src/uts/common/inet/ip/ip.c 101

6596 * is selected by finding an interface route for the gateway.
6597 */
6598 /* ARGSUSED */
6599 void
6600 ip_ire_rebind_walker(ire_t *ire, void *notused)
6601 {
6602 if (!ire->ire_unbound || ire->ire_ill != NULL)
6603 return;
6604 ire_rebind(ire);
6605 ire_delete(ire);
6606 }

6608 /*
6609 * When the src multihoming is changed from [strong, preferred] to weak,
6610 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6611 * set any entries that were created by user-applications in the unbound state
6612 * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6613 */
6614 /* ARGSUSED */
6615 void
6616 ip_ire_unbind_walker(ire_t *ire, void *notused)
6617 {
6618 ire_t *new_ire;

6620 if (!ire->ire_unbound || ire->ire_ill == NULL)
6621 return;
6622 if (ire->ire_ipversion == IPV6_VERSION) {
6623 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6624 &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6625 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6626 } else {
6627 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6628 (uchar_t *)&ire->ire_mask,
6629 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6630 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6631 }
6632 if (new_ire == NULL)
6633 return;
6634 new_ire->ire_unbound = B_TRUE;
6635 /*
6636 * The bound ire must first be deleted so that we don’t return
6637 * the existing one on the attempt to add the unbound new_ire.
6638 */
6639 ire_delete(ire);
6640 new_ire = ire_add(new_ire);
6641 if (new_ire != NULL)
6642 ire_refrele(new_ire);
6643 }

6645 /*
6646 * When the settings of ip*_strict_src_multihoming tunables are changed,
6647 * all cached routes need to be recomputed. This recomputation needs to be
6648 * done when going from weaker to stronger modes so that the cached ire
6649 * for the connection does not violate the current ip*_strict_src_multihoming
6650 * setting. It also needs to be done when going from stronger to weaker modes,
6651 * so that we fall back to matching on the longest-matching-route (as opposed
6652 * to a shorter match that may have been selected in the strong mode
6653 * to satisfy src_multihoming settings).
6654 *
6655 * The cached ixa_ire entires for all conn_t entries are marked as
6656 * "verify" so that they will be recomputed for the next packet.
6657 */
6658 void
6659 conn_ire_revalidate(conn_t *connp, void *arg)
6660 {
6661 boolean_t isv6 = (boolean_t)arg;

new/usr/src/uts/common/inet/ip/ip.c 102

6663 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6664 (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6665 return;
6666 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6667 }

6669 /*
6670 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6671 * When an ipf is passed here for the first time, if
6672 * we already have in-order fragments on the queue, we convert from the fast-
6673 * path reassembly scheme to the hard-case scheme. From then on, additional
6674 * fragments are reassembled here. We keep track of the start and end offsets
6675 * of each piece, and the number of holes in the chain. When the hole count
6676 * goes to zero, we are done!
6677 *
6678 * The ipf_count will be updated to account for any mblk(s) added (pointed to
6679 * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6680 * ipfb_count and ill_frag_count by the difference of ipf_count before and
6681 * after the call to ip_reassemble().
6682 */
6683 int
6684 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6685 size_t msg_len)
6686 {
6687 uint_t end;
6688 mblk_t *next_mp;
6689 mblk_t *mp1;
6690 uint_t offset;
6691 boolean_t incr_dups = B_TRUE;
6692 boolean_t offset_zero_seen = B_FALSE;
6693 boolean_t pkt_boundary_checked = B_FALSE;

6695 /* If start == 0 then ipf_nf_hdr_len has to be set. */
6696 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);

6698 /* Add in byte count */
6699 ipf->ipf_count += msg_len;
6700 if (ipf->ipf_end) {
6701 /*
6702 * We were part way through in-order reassembly, but now there
6703 * is a hole. We walk through messages already queued, and
6704 * mark them for hard case reassembly. We know that up till
6705 * now they were in order starting from offset zero.
6706 */
6707 offset = 0;
6708 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6709 IP_REASS_SET_START(mp1, offset);
6710 if (offset == 0) {
6711 ASSERT(ipf->ipf_nf_hdr_len != 0);
6712 offset = -ipf->ipf_nf_hdr_len;
6713 }
6714 offset += mp1->b_wptr - mp1->b_rptr;
6715 IP_REASS_SET_END(mp1, offset);
6716 }
6717 /* One hole at the end. */
6718 ipf->ipf_hole_cnt = 1;
6719 /* Brand it as a hard case, forever. */
6720 ipf->ipf_end = 0;
6721 }
6722 /* Walk through all the new pieces. */
6723 do {
6724 end = start + (mp->b_wptr - mp->b_rptr);
6725 /*
6726 * If start is 0, decrease ’end’ only for the first mblk of
6727 * the fragment. Otherwise ’end’ can get wrong value in the

new/usr/src/uts/common/inet/ip/ip.c 103

6728 * second pass of the loop if first mblk is exactly the
6729 * size of ipf_nf_hdr_len.
6730 */
6731 if (start == 0 && !offset_zero_seen) {
6732 /* First segment */
6733 ASSERT(ipf->ipf_nf_hdr_len != 0);
6734 end -= ipf->ipf_nf_hdr_len;
6735 offset_zero_seen = B_TRUE;
6736 }
6737 next_mp = mp->b_cont;
6738 /*
6739 * We are checking to see if there is any interesing data
6740 * to process. If there isn’t and the mblk isn’t the
6741 * one which carries the unfragmentable header then we
6742 * drop it. It’s possible to have just the unfragmentable
6743 * header come through without any data. That needs to be
6744 * saved.
6745 *
6746 * If the assert at the top of this function holds then the
6747 * term "ipf->ipf_nf_hdr_len != 0" isn’t needed. This code
6748 * is infrequently traveled enough that the test is left in
6749 * to protect against future code changes which break that
6750 * invariant.
6751 */
6752 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6753 /* Empty. Blast it. */
6754 IP_REASS_SET_START(mp, 0);
6755 IP_REASS_SET_END(mp, 0);
6756 /*
6757 * If the ipf points to the mblk we are about to free,
6758 * update ipf to point to the next mblk (or NULL
6759 * if none).
6760 */
6761 if (ipf->ipf_mp->b_cont == mp)
6762 ipf->ipf_mp->b_cont = next_mp;
6763 freeb(mp);
6764 continue;
6765 }
6766 mp->b_cont = NULL;
6767 IP_REASS_SET_START(mp, start);
6768 IP_REASS_SET_END(mp, end);
6769 if (!ipf->ipf_tail_mp) {
6770 ipf->ipf_tail_mp = mp;
6771 ipf->ipf_mp->b_cont = mp;
6772 if (start == 0 || !more) {
6773 ipf->ipf_hole_cnt = 1;
6774 /*
6775 * if the first fragment comes in more than one
6776 * mblk, this loop will be executed for each
6777 * mblk. Need to adjust hole count so exiting
6778 * this routine will leave hole count at 1.
6779 */
6780 if (next_mp)
6781 ipf->ipf_hole_cnt++;
6782 } else
6783 ipf->ipf_hole_cnt = 2;
6784 continue;
6785 } else if (ipf->ipf_last_frag_seen && !more &&
6786 !pkt_boundary_checked) {
6787 /*
6788 * We check datagram boundary only if this fragment
6789 * claims to be the last fragment and we have seen a
6790 * last fragment in the past too. We do this only
6791 * once for a given fragment.
6792 *
6793 * start cannot be 0 here as fragments with start=0

new/usr/src/uts/common/inet/ip/ip.c 104

6794 * and MF=0 gets handled as a complete packet. These
6795 * fragments should not reach here.
6796 */

6798 if (start + msgdsize(mp) !=
6799 IP_REASS_END(ipf->ipf_tail_mp)) {
6800 /*
6801 * We have two fragments both of which claim
6802 * to be the last fragment but gives conflicting
6803 * information about the whole datagram size.
6804 * Something fishy is going on. Drop the
6805 * fragment and free up the reassembly list.
6806 */
6807 return (IP_REASS_FAILED);
6808 }

6810 /*
6811 * We shouldn’t come to this code block again for this
6812 * particular fragment.
6813 */
6814 pkt_boundary_checked = B_TRUE;
6815 }

6817 /* New stuff at or beyond tail? */
6818 offset = IP_REASS_END(ipf->ipf_tail_mp);
6819 if (start >= offset) {
6820 if (ipf->ipf_last_frag_seen) {
6821 /* current fragment is beyond last fragment */
6822 return (IP_REASS_FAILED);
6823 }
6824 /* Link it on end. */
6825 ipf->ipf_tail_mp->b_cont = mp;
6826 ipf->ipf_tail_mp = mp;
6827 if (more) {
6828 if (start != offset)
6829 ipf->ipf_hole_cnt++;
6830 } else if (start == offset && next_mp == NULL)
6831 ipf->ipf_hole_cnt--;
6832 continue;
6833 }
6834 mp1 = ipf->ipf_mp->b_cont;
6835 offset = IP_REASS_START(mp1);
6836 /* New stuff at the front? */
6837 if (start < offset) {
6838 if (start == 0) {
6839 if (end >= offset) {
6840 /* Nailed the hole at the begining. */
6841 ipf->ipf_hole_cnt--;
6842 }
6843 } else if (end < offset) {
6844 /*
6845 * A hole, stuff, and a hole where there used
6846 * to be just a hole.
6847 */
6848 ipf->ipf_hole_cnt++;
6849 }
6850 mp->b_cont = mp1;
6851 /* Check for overlap. */
6852 while (end > offset) {
6853 if (end < IP_REASS_END(mp1)) {
6854 mp->b_wptr -= end - offset;
6855 IP_REASS_SET_END(mp, offset);
6856 BUMP_MIB(ill->ill_ip_mib,
6857 ipIfStatsReasmPartDups);
6858 break;
6859 }

new/usr/src/uts/common/inet/ip/ip.c 105

6860 /* Did we cover another hole? */
6861 if ((mp1->b_cont &&
6862 IP_REASS_END(mp1) !=
6863 IP_REASS_START(mp1->b_cont) &&
6864 end >= IP_REASS_START(mp1->b_cont)) ||
6865 (!ipf->ipf_last_frag_seen && !more)) {
6866 ipf->ipf_hole_cnt--;
6867 }
6868 /* Clip out mp1. */
6869 if ((mp->b_cont = mp1->b_cont) == NULL) {
6870 /*
6871 * After clipping out mp1, this guy
6872 * is now hanging off the end.
6873 */
6874 ipf->ipf_tail_mp = mp;
6875 }
6876 IP_REASS_SET_START(mp1, 0);
6877 IP_REASS_SET_END(mp1, 0);
6878 /* Subtract byte count */
6879 ipf->ipf_count -= mp1->b_datap->db_lim -
6880 mp1->b_datap->db_base;
6881 freeb(mp1);
6882 BUMP_MIB(ill->ill_ip_mib,
6883 ipIfStatsReasmPartDups);
6884 mp1 = mp->b_cont;
6885 if (!mp1)
6886 break;
6887 offset = IP_REASS_START(mp1);
6888 }
6889 ipf->ipf_mp->b_cont = mp;
6890 continue;
6891 }
6892 /*
6893 * The new piece starts somewhere between the start of the head
6894 * and before the end of the tail.
6895 */
6896 for (; mp1; mp1 = mp1->b_cont) {
6897 offset = IP_REASS_END(mp1);
6898 if (start < offset) {
6899 if (end <= offset) {
6900 /* Nothing new. */
6901 IP_REASS_SET_START(mp, 0);
6902 IP_REASS_SET_END(mp, 0);
6903 /* Subtract byte count */
6904 ipf->ipf_count -= mp->b_datap->db_lim -
6905 mp->b_datap->db_base;
6906 if (incr_dups) {
6907 ipf->ipf_num_dups++;
6908 incr_dups = B_FALSE;
6909 }
6910 freeb(mp);
6911 BUMP_MIB(ill->ill_ip_mib,
6912 ipIfStatsReasmDuplicates);
6913 break;
6914 }
6915 /*
6916 * Trim redundant stuff off beginning of new
6917 * piece.
6918 */
6919 IP_REASS_SET_START(mp, offset);
6920 mp->b_rptr += offset - start;
6921 BUMP_MIB(ill->ill_ip_mib,
6922 ipIfStatsReasmPartDups);
6923 start = offset;
6924 if (!mp1->b_cont) {
6925 /*

new/usr/src/uts/common/inet/ip/ip.c 106

6926 * After trimming, this guy is now
6927 * hanging off the end.
6928 */
6929 mp1->b_cont = mp;
6930 ipf->ipf_tail_mp = mp;
6931 if (!more) {
6932 ipf->ipf_hole_cnt--;
6933 }
6934 break;
6935 }
6936 }
6937 if (start >= IP_REASS_START(mp1->b_cont))
6938 continue;
6939 /* Fill a hole */
6940 if (start > offset)
6941 ipf->ipf_hole_cnt++;
6942 mp->b_cont = mp1->b_cont;
6943 mp1->b_cont = mp;
6944 mp1 = mp->b_cont;
6945 offset = IP_REASS_START(mp1);
6946 if (end >= offset) {
6947 ipf->ipf_hole_cnt--;
6948 /* Check for overlap. */
6949 while (end > offset) {
6950 if (end < IP_REASS_END(mp1)) {
6951 mp->b_wptr -= end - offset;
6952 IP_REASS_SET_END(mp, offset);
6953 /*
6954 * TODO we might bump
6955 * this up twice if there is
6956 * overlap at both ends.
6957 */
6958 BUMP_MIB(ill->ill_ip_mib,
6959 ipIfStatsReasmPartDups);
6960 break;
6961 }
6962 /* Did we cover another hole? */
6963 if ((mp1->b_cont &&
6964 IP_REASS_END(mp1)
6965 != IP_REASS_START(mp1->b_cont) &&
6966 end >=
6967 IP_REASS_START(mp1->b_cont)) ||
6968 (!ipf->ipf_last_frag_seen &&
6969 !more)) {
6970 ipf->ipf_hole_cnt--;
6971 }
6972 /* Clip out mp1. */
6973 if ((mp->b_cont = mp1->b_cont) ==
6974 NULL) {
6975 /*
6976 * After clipping out mp1,
6977 * this guy is now hanging
6978 * off the end.
6979 */
6980 ipf->ipf_tail_mp = mp;
6981 }
6982 IP_REASS_SET_START(mp1, 0);
6983 IP_REASS_SET_END(mp1, 0);
6984 /* Subtract byte count */
6985 ipf->ipf_count -=
6986 mp1->b_datap->db_lim -
6987 mp1->b_datap->db_base;
6988 freeb(mp1);
6989 BUMP_MIB(ill->ill_ip_mib,
6990 ipIfStatsReasmPartDups);
6991 mp1 = mp->b_cont;

new/usr/src/uts/common/inet/ip/ip.c 107

6992 if (!mp1)
6993 break;
6994 offset = IP_REASS_START(mp1);
6995 }
6996 }
6997 break;
6998 }
6999 } while (start = end, mp = next_mp);

7001 /* Fragment just processed could be the last one. Remember this fact */
7002 if (!more)
7003 ipf->ipf_last_frag_seen = B_TRUE;

7005 /* Still got holes? */
7006 if (ipf->ipf_hole_cnt)
7007 return (IP_REASS_PARTIAL);
7008 /* Clean up overloaded fields to avoid upstream disasters. */
7009 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
7010 IP_REASS_SET_START(mp1, 0);
7011 IP_REASS_SET_END(mp1, 0);
7012 }
7013 return (IP_REASS_COMPLETE);
7014 }

7016 /*
7017 * Fragmentation reassembly. Each ILL has a hash table for
7018 * queuing packets undergoing reassembly for all IPIFs
7019 * associated with the ILL. The hash is based on the packet
7020 * IP ident field. The ILL frag hash table was allocated
7021 * as a timer block at the time the ILL was created. Whenever
7022 * there is anything on the reassembly queue, the timer will
7023 * be running. Returns the reassembled packet if reassembly completes.
7024 */
7025 mblk_t *
7026 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7027 {
7028 uint32_t frag_offset_flags;
7029 mblk_t *t_mp;
7030 ipaddr_t dst;
7031 uint8_t proto = ipha->ipha_protocol;
7032 uint32_t sum_val;
7033 uint16_t sum_flags;
7034 ipf_t *ipf;
7035 ipf_t **ipfp;
7036 ipfb_t *ipfb;
7037 uint16_t ident;
7038 uint32_t offset;
7039 ipaddr_t src;
7040 uint_t hdr_length;
7041 uint32_t end;
7042 mblk_t *mp1;
7043 mblk_t *tail_mp;
7044 size_t count;
7045 size_t msg_len;
7046 uint8_t ecn_info = 0;
7047 uint32_t packet_size;
7048 boolean_t pruned = B_FALSE;
7049 ill_t *ill = ira->ira_ill;
7050 ip_stack_t *ipst = ill->ill_ipst;

7052 /*
7053 * Drop the fragmented as early as possible, if
7054 * we don’t have resource(s) to re-assemble.
7055 */
7056 if (ipst->ips_ip_reass_queue_bytes == 0) {
7057 freemsg(mp);

new/usr/src/uts/common/inet/ip/ip.c 108

7058 return (NULL);
7059 }

7061 /* Check for fragmentation offset; return if there’s none */
7062 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7063 (IPH_MF | IPH_OFFSET)) == 0)
7064 return (mp);

7066 /*
7067 * We utilize hardware computed checksum info only for UDP since
7068 * IP fragmentation is a normal occurrence for the protocol. In
7069 * addition, checksum offload support for IP fragments carrying
7070 * UDP payload is commonly implemented across network adapters.
7071 */
7072 ASSERT(ira->ira_rill != NULL);
7073 if (proto == IPPROTO_UDP && dohwcksum &&
7074 ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7075 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7076 mblk_t *mp1 = mp->b_cont;
7077 int32_t len;

7079 /* Record checksum information from the packet */
7080 sum_val = (uint32_t)DB_CKSUM16(mp);
7081 sum_flags = DB_CKSUMFLAGS(mp);

7083 /* IP payload offset from beginning of mblk */
7084 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;

7086 if ((sum_flags & HCK_PARTIALCKSUM) &&
7087 (mp1 == NULL || mp1->b_cont == NULL) &&
7088 offset >= DB_CKSUMSTART(mp) &&
7089 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7090 uint32_t adj;
7091 /*
7092 * Partial checksum has been calculated by hardware
7093 * and attached to the packet; in addition, any
7094 * prepended extraneous data is even byte aligned.
7095 * If any such data exists, we adjust the checksum;
7096 * this would also handle any postpended data.
7097 */
7098 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7099 mp, mp1, len, adj);

7101 /* One’s complement subtract extraneous checksum */
7102 if (adj >= sum_val)
7103 sum_val = ~(adj - sum_val) & 0xFFFF;
7104 else
7105 sum_val -= adj;
7106 }
7107 } else {
7108 sum_val = 0;
7109 sum_flags = 0;
7110 }

7112 /* Clear hardware checksumming flag */
7113 DB_CKSUMFLAGS(mp) = 0;

7115 ident = ipha->ipha_ident;
7116 offset = (frag_offset_flags << 3) & 0xFFFF;
7117 src = ipha->ipha_src;
7118 dst = ipha->ipha_dst;
7119 hdr_length = IPH_HDR_LENGTH(ipha);
7120 end = ntohs(ipha->ipha_length) - hdr_length;

7122 /* If end == 0 then we have a packet with no data, so just free it */
7123 if (end == 0) {

new/usr/src/uts/common/inet/ip/ip.c 109

7124 freemsg(mp);
7125 return (NULL);
7126 }

7128 /* Record the ECN field info. */
7129 ecn_info = (ipha->ipha_type_of_service & 0x3);
7130 if (offset != 0) {
7131 /*
7132 * If this isn’t the first piece, strip the header, and
7133 * add the offset to the end value.
7134 */
7135 mp->b_rptr += hdr_length;
7136 end += offset;
7137 }

7139 /* Handle vnic loopback of fragments */
7140 if (mp->b_datap->db_ref > 2)
7141 msg_len = 0;
7142 else
7143 msg_len = MBLKSIZE(mp);

7145 tail_mp = mp;
7146 while (tail_mp->b_cont != NULL) {
7147 tail_mp = tail_mp->b_cont;
7148 if (tail_mp->b_datap->db_ref <= 2)
7149 msg_len += MBLKSIZE(tail_mp);
7150 }

7152 /* If the reassembly list for this ILL will get too big, prune it */
7153 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7154 ipst->ips_ip_reass_queue_bytes) {
7155 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7156 uint_t, ill->ill_frag_count,
7157 uint_t, ipst->ips_ip_reass_queue_bytes);
7158 ill_frag_prune(ill,
7159 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7160 (ipst->ips_ip_reass_queue_bytes - msg_len));
7161 pruned = B_TRUE;
7162 }

7164 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7165 mutex_enter(&ipfb->ipfb_lock);

7167 ipfp = &ipfb->ipfb_ipf;
7168 /* Try to find an existing fragment queue for this packet. */
7169 for (;;) {
7170 ipf = ipfp[0];
7171 if (ipf != NULL) {
7172 /*
7173 * It has to match on ident and src/dst address.
7174 */
7175 if (ipf->ipf_ident == ident &&
7176 ipf->ipf_src == src &&
7177 ipf->ipf_dst == dst &&
7178 ipf->ipf_protocol == proto) {
7179 /*
7180 * If we have received too many
7181 * duplicate fragments for this packet
7182 * free it.
7183 */
7184 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7185 ill_frag_free_pkts(ill, ipfb, ipf, 1);
7186 freemsg(mp);
7187 mutex_exit(&ipfb->ipfb_lock);
7188 return (NULL);
7189 }

new/usr/src/uts/common/inet/ip/ip.c 110

7190 /* Found it. */
7191 break;
7192 }
7193 ipfp = &ipf->ipf_hash_next;
7194 continue;
7195 }

7197 /*
7198 * If we pruned the list, do we want to store this new
7199 * fragment?. We apply an optimization here based on the
7200 * fact that most fragments will be received in order.
7201 * So if the offset of this incoming fragment is zero,
7202 * it is the first fragment of a new packet. We will
7203 * keep it. Otherwise drop the fragment, as we have
7204 * probably pruned the packet already (since the
7205 * packet cannot be found).
7206 */
7207 if (pruned && offset != 0) {
7208 mutex_exit(&ipfb->ipfb_lock);
7209 freemsg(mp);
7210 return (NULL);
7211 }

7213 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) {
7214 /*
7215 * Too many fragmented packets in this hash
7216 * bucket. Free the oldest.
7217 */
7218 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7219 }

7221 /* New guy. Allocate a frag message. */
7222 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7223 if (mp1 == NULL) {
7224 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7225 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7226 freemsg(mp);
7227 reass_done:
7228 mutex_exit(&ipfb->ipfb_lock);
7229 return (NULL);
7230 }

7232 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7233 mp1->b_cont = mp;

7235 /* Initialize the fragment header. */
7236 ipf = (ipf_t *)mp1->b_rptr;
7237 ipf->ipf_mp = mp1;
7238 ipf->ipf_ptphn = ipfp;
7239 ipfp[0] = ipf;
7240 ipf->ipf_hash_next = NULL;
7241 ipf->ipf_ident = ident;
7242 ipf->ipf_protocol = proto;
7243 ipf->ipf_src = src;
7244 ipf->ipf_dst = dst;
7245 ipf->ipf_nf_hdr_len = 0;
7246 /* Record reassembly start time. */
7247 ipf->ipf_timestamp = gethrestime_sec();
7248 /* Record ipf generation and account for frag header */
7249 ipf->ipf_gen = ill->ill_ipf_gen++;
7250 ipf->ipf_count = MBLKSIZE(mp1);
7251 ipf->ipf_last_frag_seen = B_FALSE;
7252 ipf->ipf_ecn = ecn_info;
7253 ipf->ipf_num_dups = 0;
7254 ipfb->ipfb_frag_pkts++;
7255 ipf->ipf_checksum = 0;

new/usr/src/uts/common/inet/ip/ip.c 111

7256 ipf->ipf_checksum_flags = 0;

7258 /* Store checksum value in fragment header */
7259 if (sum_flags != 0) {
7260 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7261 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7262 ipf->ipf_checksum = sum_val;
7263 ipf->ipf_checksum_flags = sum_flags;
7264 }

7266 /*
7267 * We handle reassembly two ways. In the easy case,
7268 * where all the fragments show up in order, we do
7269 * minimal bookkeeping, and just clip new pieces on
7270 * the end. If we ever see a hole, then we go off
7271 * to ip_reassemble which has to mark the pieces and
7272 * keep track of the number of holes, etc. Obviously,
7273 * the point of having both mechanisms is so we can
7274 * handle the easy case as efficiently as possible.
7275 */
7276 if (offset == 0) {
7277 /* Easy case, in-order reassembly so far. */
7278 ipf->ipf_count += msg_len;
7279 ipf->ipf_tail_mp = tail_mp;
7280 /*
7281 * Keep track of next expected offset in
7282 * ipf_end.
7283 */
7284 ipf->ipf_end = end;
7285 ipf->ipf_nf_hdr_len = hdr_length;
7286 } else {
7287 /* Hard case, hole at the beginning. */
7288 ipf->ipf_tail_mp = NULL;
7289 /*
7290 * ipf_end == 0 means that we have given up
7291 * on easy reassembly.
7292 */
7293 ipf->ipf_end = 0;

7295 /* Forget checksum offload from now on */
7296 ipf->ipf_checksum_flags = 0;

7298 /*
7299 * ipf_hole_cnt is set by ip_reassemble.
7300 * ipf_count is updated by ip_reassemble.
7301 * No need to check for return value here
7302 * as we don’t expect reassembly to complete
7303 * or fail for the first fragment itself.
7304 */
7305 (void) ip_reassemble(mp, ipf,
7306 (frag_offset_flags & IPH_OFFSET) << 3,
7307 (frag_offset_flags & IPH_MF), ill, msg_len);
7308 }
7309 /* Update per ipfb and ill byte counts */
7310 ipfb->ipfb_count += ipf->ipf_count;
7311 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7312 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7313 /* If the frag timer wasn’t already going, start it. */
7314 mutex_enter(&ill->ill_lock);
7315 ill_frag_timer_start(ill);
7316 mutex_exit(&ill->ill_lock);
7317 goto reass_done;
7318 }

7320 /*
7321 * If the packet’s flag has changed (it could be coming up

new/usr/src/uts/common/inet/ip/ip.c 112

7322 * from an interface different than the previous, therefore
7323 * possibly different checksum capability), then forget about
7324 * any stored checksum states. Otherwise add the value to
7325 * the existing one stored in the fragment header.
7326 */
7327 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7328 sum_val += ipf->ipf_checksum;
7329 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7330 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7331 ipf->ipf_checksum = sum_val;
7332 } else if (ipf->ipf_checksum_flags != 0) {
7333 /* Forget checksum offload from now on */
7334 ipf->ipf_checksum_flags = 0;
7335 }

7337 /*
7338 * We have a new piece of a datagram which is already being
7339 * reassembled. Update the ECN info if all IP fragments
7340 * are ECN capable. If there is one which is not, clear
7341 * all the info. If there is at least one which has CE
7342 * code point, IP needs to report that up to transport.
7343 */
7344 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7345 if (ecn_info == IPH_ECN_CE)
7346 ipf->ipf_ecn = IPH_ECN_CE;
7347 } else {
7348 ipf->ipf_ecn = IPH_ECN_NECT;
7349 }
7350 if (offset && ipf->ipf_end == offset) {
7351 /* The new fragment fits at the end */
7352 ipf->ipf_tail_mp->b_cont = mp;
7353 /* Update the byte count */
7354 ipf->ipf_count += msg_len;
7355 /* Update per ipfb and ill byte counts */
7356 ipfb->ipfb_count += msg_len;
7357 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7358 atomic_add_32(&ill->ill_frag_count, msg_len);
7359 if (frag_offset_flags & IPH_MF) {
7360 /* More to come. */
7361 ipf->ipf_end = end;
7362 ipf->ipf_tail_mp = tail_mp;
7363 goto reass_done;
7364 }
7365 } else {
7366 /* Go do the hard cases. */
7367 int ret;

7369 if (offset == 0)
7370 ipf->ipf_nf_hdr_len = hdr_length;

7372 /* Save current byte count */
7373 count = ipf->ipf_count;
7374 ret = ip_reassemble(mp, ipf,
7375 (frag_offset_flags & IPH_OFFSET) << 3,
7376 (frag_offset_flags & IPH_MF), ill, msg_len);
7377 /* Count of bytes added and subtracted (freeb()ed) */
7378 count = ipf->ipf_count - count;
7379 if (count) {
7380 /* Update per ipfb and ill byte counts */
7381 ipfb->ipfb_count += count;
7382 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7383 atomic_add_32(&ill->ill_frag_count, count);
7384 }
7385 if (ret == IP_REASS_PARTIAL) {
7386 goto reass_done;
7387 } else if (ret == IP_REASS_FAILED) {

new/usr/src/uts/common/inet/ip/ip.c 113

7388 /* Reassembly failed. Free up all resources */
7389 ill_frag_free_pkts(ill, ipfb, ipf, 1);
7390 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7391 IP_REASS_SET_START(t_mp, 0);
7392 IP_REASS_SET_END(t_mp, 0);
7393 }
7394 freemsg(mp);
7395 goto reass_done;
7396 }
7397 /* We will reach here iff ’ret’ is IP_REASS_COMPLETE */
7398 }
7399 /*
7400 * We have completed reassembly. Unhook the frag header from
7401 * the reassembly list.
7402 *
7403 * Before we free the frag header, record the ECN info
7404 * to report back to the transport.
7405 */
7406 ecn_info = ipf->ipf_ecn;
7407 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7408 ipfp = ipf->ipf_ptphn;

7410 /* We need to supply these to caller */
7411 if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7412 sum_val = ipf->ipf_checksum;
7413 else
7414 sum_val = 0;

7416 mp1 = ipf->ipf_mp;
7417 count = ipf->ipf_count;
7418 ipf = ipf->ipf_hash_next;
7419 if (ipf != NULL)
7420 ipf->ipf_ptphn = ipfp;
7421 ipfp[0] = ipf;
7422 atomic_add_32(&ill->ill_frag_count, -count);
7423 ASSERT(ipfb->ipfb_count >= count);
7424 ipfb->ipfb_count -= count;
7425 ipfb->ipfb_frag_pkts--;
7426 mutex_exit(&ipfb->ipfb_lock);
7427 /* Ditch the frag header. */
7428 mp = mp1->b_cont;

7430 freeb(mp1);

7432 /* Restore original IP length in header. */
7433 packet_size = (uint32_t)msgdsize(mp);
7434 if (packet_size > IP_MAXPACKET) {
7435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7436 ip_drop_input("Reassembled packet too large", mp, ill);
7437 freemsg(mp);
7438 return (NULL);
7439 }

7441 if (DB_REF(mp) > 1) {
7442 mblk_t *mp2 = copymsg(mp);

7444 if (mp2 == NULL) {
7445 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7446 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7447 freemsg(mp);
7448 return (NULL);
7449 }
7450 freemsg(mp);
7451 mp = mp2;
7452 }
7453 ipha = (ipha_t *)mp->b_rptr;

new/usr/src/uts/common/inet/ip/ip.c 114

7455 ipha->ipha_length = htons((uint16_t)packet_size);
7456 /* We’re now complete, zip the frag state */
7457 ipha->ipha_fragment_offset_and_flags = 0;
7458 /* Record the ECN info. */
7459 ipha->ipha_type_of_service &= 0xFC;
7460 ipha->ipha_type_of_service |= ecn_info;

7462 /* Update the receive attributes */
7463 ira->ira_pktlen = packet_size;
7464 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);

7466 /* Reassembly is successful; set checksum information in packet */
7467 DB_CKSUM16(mp) = (uint16_t)sum_val;
7468 DB_CKSUMFLAGS(mp) = sum_flags;
7469 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;

7471 return (mp);
7472 }

7474 /*
7475 * Pullup function that should be used for IP input in order to
7476 * ensure we do not loose the L2 source address; we need the l2 source
7477 * address for IP_RECVSLLA and for ndp_input.
7478 *
7479 * We return either NULL or b_rptr.
7480 */
7481 void *
7482 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7483 {
7484 ill_t *ill = ira->ira_ill;

7486 if (ip_rput_pullups++ == 0) {
7487 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7488 "ip_pullup: %s forced us to "
7489 " pullup pkt, hdr len %ld, hdr addr %p",
7490 ill->ill_name, len, (void *)mp->b_rptr);
7491 }
7492 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7493 ip_setl2src(mp, ira, ira->ira_rill);
7494 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7495 if (!pullupmsg(mp, len))
7496 return (NULL);
7497 else
7498 return (mp->b_rptr);
7499 }

7501 /*
7502 * Make sure ira_l2src has an address. If we don’t have one fill with zeros.
7503 * When called from the ULP ira_rill will be NULL hence the caller has to
7504 * pass in the ill.
7505 */
7506 /* ARGSUSED */
7507 void
7508 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7509 {
7510 const uchar_t *addr;
7511 int alen;

7513 if (ira->ira_flags & IRAF_L2SRC_SET)
7514 return;

7516 ASSERT(ill != NULL);
7517 alen = ill->ill_phys_addr_length;
7518 ASSERT(alen <= sizeof (ira->ira_l2src));
7519 if (ira->ira_mhip != NULL &&

new/usr/src/uts/common/inet/ip/ip.c 115

7520 (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7521 bcopy(addr, ira->ira_l2src, alen);
7522 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7523 (addr = ill->ill_phys_addr) != NULL) {
7524 bcopy(addr, ira->ira_l2src, alen);
7525 } else {
7526 bzero(ira->ira_l2src, alen);
7527 }
7528 ira->ira_flags |= IRAF_L2SRC_SET;
7529 }

7531 /*
7532 * check ip header length and align it.
7533 */
7534 mblk_t *
7535 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7536 {
7537 ill_t *ill = ira->ira_ill;
7538 ssize_t len;

7540 len = MBLKL(mp);

7542 if (!OK_32PTR(mp->b_rptr))
7543 IP_STAT(ill->ill_ipst, ip_notaligned);
7544 else
7545 IP_STAT(ill->ill_ipst, ip_recv_pullup);

7547 /* Guard against bogus device drivers */
7548 if (len < 0) {
7549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7550 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7551 freemsg(mp);
7552 return (NULL);
7553 }

7555 if (len == 0) {
7556 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7557 mblk_t *mp1 = mp->b_cont;

7559 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7560 ip_setl2src(mp, ira, ira->ira_rill);
7561 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);

7563 freeb(mp);
7564 mp = mp1;
7565 if (mp == NULL)
7566 return (NULL);

7568 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7569 return (mp);
7570 }
7571 if (ip_pullup(mp, min_size, ira) == NULL) {
7572 if (msgdsize(mp) < min_size) {
7573 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7574 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7575 } else {
7576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7577 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7578 }
7579 freemsg(mp);
7580 return (NULL);
7581 }
7582 return (mp);
7583 }

7585 /*

new/usr/src/uts/common/inet/ip/ip.c 116

7586 * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7587 */
7588 mblk_t *
7589 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7590 uint_t min_size, ip_recv_attr_t *ira)
7591 {
7592 ill_t *ill = ira->ira_ill;

7594 /*
7595 * Make sure we have data length consistent
7596 * with the IP header.
7597 */
7598 if (mp->b_cont == NULL) {
7599 /* pkt_len is based on ipha_len, not the mblk length */
7600 if (pkt_len < min_size) {
7601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7602 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7603 freemsg(mp);
7604 return (NULL);
7605 }
7606 if (len < 0) {
7607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7608 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7609 freemsg(mp);
7610 return (NULL);
7611 }
7612 /* Drop any pad */
7613 mp->b_wptr = rptr + pkt_len;
7614 } else if ((len += msgdsize(mp->b_cont)) != 0) {
7615 ASSERT(pkt_len >= min_size);
7616 if (pkt_len < min_size) {
7617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7618 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7619 freemsg(mp);
7620 return (NULL);
7621 }
7622 if (len < 0) {
7623 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7624 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7625 freemsg(mp);
7626 return (NULL);
7627 }
7628 /* Drop any pad */
7629 (void) adjmsg(mp, -len);
7630 /*
7631 * adjmsg may have freed an mblk from the chain, hence
7632 * invalidate any hw checksum here. This will force IP to
7633 * calculate the checksum in sw, but only for this packet.
7634 */
7635 DB_CKSUMFLAGS(mp) = 0;
7636 IP_STAT(ill->ill_ipst, ip_multimblk);
7637 }
7638 return (mp);
7639 }

7641 /*
7642 * Check that the IPv4 opt_len is consistent with the packet and pullup
7643 * the options.
7644 */
7645 mblk_t *
7646 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7647 ip_recv_attr_t *ira)
7648 {
7649 ill_t *ill = ira->ira_ill;
7650 ssize_t len;

new/usr/src/uts/common/inet/ip/ip.c 117

7652 /* Assume no IPv6 packets arrive over the IPv4 queue */
7653 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7654 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7656 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7657 freemsg(mp);
7658 return (NULL);
7659 }

7661 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7662 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7663 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7664 freemsg(mp);
7665 return (NULL);
7666 }
7667 /*
7668 * Recompute complete header length and make sure we
7669 * have access to all of it.
7670 */
7671 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7672 if (len > (mp->b_wptr - mp->b_rptr)) {
7673 if (len > pkt_len) {
7674 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7675 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7676 freemsg(mp);
7677 return (NULL);
7678 }
7679 if (ip_pullup(mp, len, ira) == NULL) {
7680 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7681 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7682 freemsg(mp);
7683 return (NULL);
7684 }
7685 }
7686 return (mp);
7687 }

7689 /*
7690 * Returns a new ire, or the same ire, or NULL.
7691 * If a different IRE is returned, then it is held; the caller
7692 * needs to release it.
7693 * In no case is there any hold/release on the ire argument.
7694 */
7695 ire_t *
7696 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7697 {
7698 ire_t *new_ire;
7699 ill_t *ire_ill;
7700 uint_t ifindex;
7701 ip_stack_t *ipst = ill->ill_ipst;
7702 boolean_t strict_check = B_FALSE;

7704 /*
7705 * IPMP common case: if IRE and ILL are in the same group, there’s no
7706 * issue (e.g. packet received on an underlying interface matched an
7707 * IRE_LOCAL on its associated group interface).
7708 */
7709 ASSERT(ire->ire_ill != NULL);
7710 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7711 return (ire);

7713 /*
7714 * Do another ire lookup here, using the ingress ill, to see if the
7715 * interface is in a usesrc group.
7716 * As long as the ills belong to the same group, we don’t consider
7717 * them to be arriving on the wrong interface. Thus, if the switch

new/usr/src/uts/common/inet/ip/ip.c 118

7718 * is doing inbound load spreading, we won’t drop packets when the
7719 * ip*_strict_dst_multihoming switch is on.
7720 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7721 * where the local address may not be unique. In this case we were
7722 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7723 * actually returned. The new lookup, which is more specific, should
7724 * only find the IRE_LOCAL associated with the ingress ill if one
7725 * exists.
7726 */
7727 if (ire->ire_ipversion == IPV4_VERSION) {
7728 if (ipst->ips_ip_strict_dst_multihoming)
7729 strict_check = B_TRUE;
7730 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7731 IRE_LOCAL, ill, ALL_ZONES, NULL,
7732 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7733 } else {
7734 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7735 if (ipst->ips_ipv6_strict_dst_multihoming)
7736 strict_check = B_TRUE;
7737 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7738 IRE_LOCAL, ill, ALL_ZONES, NULL,
7739 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7740 }
7741 /*
7742 * If the same ire that was returned in ip_input() is found then this
7743 * is an indication that usesrc groups are in use. The packet
7744 * arrived on a different ill in the group than the one associated with
7745 * the destination address. If a different ire was found then the same
7746 * IP address must be hosted on multiple ills. This is possible with
7747 * unnumbered point2point interfaces. We switch to use this new ire in
7748 * order to have accurate interface statistics.
7749 */
7750 if (new_ire != NULL) {
7751 /* Note: held in one case but not the other? Caller handles */
7752 if (new_ire != ire)
7753 return (new_ire);
7754 /* Unchanged */
7755 ire_refrele(new_ire);
7756 return (ire);
7757 }

7759 /*
7760 * Chase pointers once and store locally.
7761 */
7762 ASSERT(ire->ire_ill != NULL);
7763 ire_ill = ire->ire_ill;
7764 ifindex = ill->ill_usesrc_ifindex;

7766 /*
7767 * Check if it’s a legal address on the ’usesrc’ interface.
7768 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7769 * can just check phyint_ifindex.
7770 */
7771 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7772 return (ire);
7773 }

7775 /*
7776 * If the ip*_strict_dst_multihoming switch is on then we can
7777 * only accept this packet if the interface is marked as routing.
7778 */
7779 if (!(strict_check))
7780 return (ire);

7782 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7783 return (ire);

new/usr/src/uts/common/inet/ip/ip.c 119

7784 }
7785 return (NULL);
7786 }

7788 /*
7789 * This function is used to construct a mac_header_info_s from a
7790 * DL_UNITDATA_IND message.
7791 * The address fields in the mhi structure points into the message,
7792 * thus the caller can’t use those fields after freeing the message.
7793 *
7794 * We determine whether the packet received is a non-unicast packet
7795 * and in doing so, determine whether or not it is broadcast vs multicast.
7796 * For it to be a broadcast packet, we must have the appropriate mblk_t
7797 * hanging off the ill_t. If this is either not present or doesn’t match
7798 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7799 * to be multicast. Thus NICs that have no broadcast address (or no
7800 * capability for one, such as point to point links) cannot return as
7801 * the packet being broadcast.
7802 */
7803 void
7804 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7805 {
7806 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7807 mblk_t *bmp;
7808 uint_t extra_offset;

7810 bzero(mhip, sizeof (struct mac_header_info_s));

7812 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;

7814 if (ill->ill_sap_length < 0)
7815 extra_offset = 0;
7816 else
7817 extra_offset = ill->ill_sap_length;

7819 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7820 extra_offset;
7821 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7822 extra_offset;

7824 if (!ind->dl_group_address)
7825 return;

7827 /* Multicast or broadcast */
7828 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;

7830 if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7831 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7832 (bmp = ill->ill_bcast_mp) != NULL) {
7833 dl_unitdata_req_t *dlur;
7834 uint8_t *bphys_addr;

7836 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7837 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7838 extra_offset;

7840 if (bcmp(mhip->mhi_daddr, bphys_addr,
7841 ind->dl_dest_addr_length) == 0)
7842 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7843 }
7844 }

7846 /*
7847 * This function is used to construct a mac_header_info_s from a
7848 * M_DATA fastpath message from a DLPI driver.
7849 * The address fields in the mhi structure points into the message,

new/usr/src/uts/common/inet/ip/ip.c 120

7850 * thus the caller can’t use those fields after freeing the message.
7851 *
7852 * We determine whether the packet received is a non-unicast packet
7853 * and in doing so, determine whether or not it is broadcast vs multicast.
7854 * For it to be a broadcast packet, we must have the appropriate mblk_t
7855 * hanging off the ill_t. If this is either not present or doesn’t match
7856 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7857 * to be multicast. Thus NICs that have no broadcast address (or no
7858 * capability for one, such as point to point links) cannot return as
7859 * the packet being broadcast.
7860 */
7861 void
7862 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7863 {
7864 mblk_t *bmp;
7865 struct ether_header *pether;

7867 bzero(mhip, sizeof (struct mac_header_info_s));

7869 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;

7871 pether = (struct ether_header *)((char *)mp->b_rptr
7872 - sizeof (struct ether_header));

7874 /*
7875 * Make sure the interface is an ethernet type, since we don’t
7876 * know the header format for anything but Ethernet. Also make
7877 * sure we are pointing correctly above db_base.
7878 */
7879 if (ill->ill_type != IFT_ETHER)
7880 return;

7882 retry:
7883 if ((uchar_t *)pether < mp->b_datap->db_base)
7884 return;

7886 /* Is there a VLAN tag? */
7887 if (ill->ill_isv6) {
7888 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7889 pether = (struct ether_header *)((char *)pether - 4);
7890 goto retry;
7891 }
7892 } else {
7893 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7894 pether = (struct ether_header *)((char *)pether - 4);
7895 goto retry;
7896 }
7897 }
7898 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7899 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;

7901 if (!(mhip->mhi_daddr[0] & 0x01))
7902 return;

7904 /* Multicast or broadcast */
7905 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;

7907 if ((bmp = ill->ill_bcast_mp) != NULL) {
7908 dl_unitdata_req_t *dlur;
7909 uint8_t *bphys_addr;
7910 uint_t addrlen;

7912 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7913 addrlen = dlur->dl_dest_addr_length;
7914 if (ill->ill_sap_length < 0) {
7915 bphys_addr = (uchar_t *)dlur +

new/usr/src/uts/common/inet/ip/ip.c 121

7916 dlur->dl_dest_addr_offset;
7917 addrlen += ill->ill_sap_length;
7918 } else {
7919 bphys_addr = (uchar_t *)dlur +
7920 dlur->dl_dest_addr_offset +
7921 ill->ill_sap_length;
7922 addrlen -= ill->ill_sap_length;
7923 }
7924 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7925 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7926 }
7927 }

7929 /*
7930 * Handle anything but M_DATA messages
7931 * We see the DL_UNITDATA_IND which are part
7932 * of the data path, and also the other messages from the driver.
7933 */
7934 void
7935 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7936 {
7937 mblk_t *first_mp;
7938 struct iocblk *iocp;
7939 struct mac_header_info_s mhi;

7941 switch (DB_TYPE(mp)) {
7942 case M_PROTO:
7943 case M_PCPROTO: {
7944 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7945 DL_UNITDATA_IND) {
7946 /* Go handle anything other than data elsewhere. */
7947 ip_rput_dlpi(ill, mp);
7948 return;
7949 }

7951 first_mp = mp;
7952 mp = first_mp->b_cont;
7953 first_mp->b_cont = NULL;

7955 if (mp == NULL) {
7956 freeb(first_mp);
7957 return;
7958 }
7959 ip_dlur_to_mhi(ill, first_mp, &mhi);
7960 if (ill->ill_isv6)
7961 ip_input_v6(ill, NULL, mp, &mhi);
7962 else
7963 ip_input(ill, NULL, mp, &mhi);

7965 /* Ditch the DLPI header. */
7966 freeb(first_mp);
7967 return;
7968 }
7969 case M_IOCACK:
7970 iocp = (struct iocblk *)mp->b_rptr;
7971 switch (iocp->ioc_cmd) {
7972 case DL_IOC_HDR_INFO:
7973 ill_fastpath_ack(ill, mp);
7974 return;
7975 default:
7976 putnext(ill->ill_rq, mp);
7977 return;
7978 }
7979 /* FALLTHRU */
7980 case M_ERROR:
7981 case M_HANGUP:

new/usr/src/uts/common/inet/ip/ip.c 122

7982 mutex_enter(&ill->ill_lock);
7983 if (ill->ill_state_flags & ILL_CONDEMNED) {
7984 mutex_exit(&ill->ill_lock);
7985 freemsg(mp);
7986 return;
7987 }
7988 ill_refhold_locked(ill);
7989 mutex_exit(&ill->ill_lock);
7990 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7991 B_FALSE);
7992 return;
7993 case M_CTL:
7994 putnext(ill->ill_rq, mp);
7995 return;
7996 case M_IOCNAK:
7997 ip1dbg(("got iocnak "));
7998 iocp = (struct iocblk *)mp->b_rptr;
7999 switch (iocp->ioc_cmd) {
8000 case DL_IOC_HDR_INFO:
8001 ip_rput_other(NULL, ill->ill_rq, mp, NULL);
8002 return;
8003 default:
8004 break;
8005 }
8006 /* FALLTHRU */
8007 default:
8008 putnext(ill->ill_rq, mp);
8009 return;
8010 }
8011 }

8013 /* Read side put procedure. Packets coming from the wire arrive here. */
8014 void
8015 ip_rput(queue_t *q, mblk_t *mp)
8016 {
8017 ill_t *ill;
8018 union DL_primitives *dl;

8020 ill = (ill_t *)q->q_ptr;

8022 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8023 /*
8024 * If things are opening or closing, only accept high-priority
8025 * DLPI messages. (On open ill->ill_ipif has not yet been
8026 * created; on close, things hanging off the ill may have been
8027 * freed already.)
8028 */
8029 dl = (union DL_primitives *)mp->b_rptr;
8030 if (DB_TYPE(mp) != M_PCPROTO ||
8031 dl->dl_primitive == DL_UNITDATA_IND) {
8032 inet_freemsg(mp);
8033 return;
8034 }
8035 }
8036 if (DB_TYPE(mp) == M_DATA) {
8037 struct mac_header_info_s mhi;

8039 ip_mdata_to_mhi(ill, mp, &mhi);
8040 ip_input(ill, NULL, mp, &mhi);
8041 } else {
8042 ip_rput_notdata(ill, mp);
8043 }
8044 }

8046 /*
8047 * Move the information to a copy.

new/usr/src/uts/common/inet/ip/ip.c 123

8048 */
8049 mblk_t *
8050 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8051 {
8052 mblk_t *mp1;
8053 ill_t *ill = ira->ira_ill;
8054 ip_stack_t *ipst = ill->ill_ipst;

8056 IP_STAT(ipst, ip_db_ref);

8058 /* Make sure we have ira_l2src before we loose the original mblk */
8059 if (!(ira->ira_flags & IRAF_L2SRC_SET))
8060 ip_setl2src(mp, ira, ira->ira_rill);

8062 mp1 = copymsg(mp);
8063 if (mp1 == NULL) {
8064 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8065 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8066 freemsg(mp);
8067 return (NULL);
8068 }
8069 /* preserve the hardware checksum flags and data, if present */
8070 if (DB_CKSUMFLAGS(mp) != 0) {
8071 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8072 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8073 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8074 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8075 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8076 }
8077 freemsg(mp);
8078 return (mp1);
8079 }

8081 static void
8082 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8083 t_uscalar_t err)
8084 {
8085 if (dl_err == DL_SYSERR) {
8086 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8087 "%s: %s failed: DL_SYSERR (errno %u)\n",
8088 ill->ill_name, dl_primstr(prim), err);
8089 return;
8090 }

8092 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8093 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8094 dl_errstr(dl_err));
8095 }

8097 /*
8098 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8099 * than DL_UNITDATA_IND messages. If we need to process this message
8100 * exclusively, we call qwriter_ip, in which case we also need to call
8101 * ill_refhold before that, since qwriter_ip does an ill_refrele.
8102 */
8103 void
8104 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8105 {
8106 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
8107 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
8108 queue_t *q = ill->ill_rq;
8109 t_uscalar_t prim = dloa->dl_primitive;
8110 t_uscalar_t reqprim = DL_PRIM_INVAL;

8112 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8113 char *, dl_primstr(prim), ill_t *, ill);

new/usr/src/uts/common/inet/ip/ip.c 124

8114 ip1dbg(("ip_rput_dlpi"));

8116 /*
8117 * If we received an ACK but didn’t send a request for it, then it
8118 * can’t be part of any pending operation; discard up-front.
8119 */
8120 switch (prim) {
8121 case DL_ERROR_ACK:
8122 reqprim = dlea->dl_error_primitive;
8123 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8124 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8125 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8126 dlea->dl_unix_errno));
8127 break;
8128 case DL_OK_ACK:
8129 reqprim = dloa->dl_correct_primitive;
8130 break;
8131 case DL_INFO_ACK:
8132 reqprim = DL_INFO_REQ;
8133 break;
8134 case DL_BIND_ACK:
8135 reqprim = DL_BIND_REQ;
8136 break;
8137 case DL_PHYS_ADDR_ACK:
8138 reqprim = DL_PHYS_ADDR_REQ;
8139 break;
8140 case DL_NOTIFY_ACK:
8141 reqprim = DL_NOTIFY_REQ;
8142 break;
8143 case DL_CAPABILITY_ACK:
8144 reqprim = DL_CAPABILITY_REQ;
8145 break;
8146 }

8148 if (prim != DL_NOTIFY_IND) {
8149 if (reqprim == DL_PRIM_INVAL ||
8150 !ill_dlpi_pending(ill, reqprim)) {
8151 /* Not a DLPI message we support or expected */
8152 freemsg(mp);
8153 return;
8154 }
8155 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8156 dl_primstr(reqprim)));
8157 }

8159 switch (reqprim) {
8160 case DL_UNBIND_REQ:
8161 /*
8162 * NOTE: we mark the unbind as complete even if we got a
8163 * DL_ERROR_ACK, since there’s not much else we can do.
8164 */
8165 mutex_enter(&ill->ill_lock);
8166 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8167 cv_signal(&ill->ill_cv);
8168 mutex_exit(&ill->ill_lock);
8169 break;

8171 case DL_ENABMULTI_REQ:
8172 if (prim == DL_OK_ACK) {
8173 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8174 ill->ill_dlpi_multicast_state = IDS_OK;
8175 }
8176 break;
8177 }

8179 /*

new/usr/src/uts/common/inet/ip/ip.c 125

8180 * The message is one we’re waiting for (or DL_NOTIFY_IND), but we
8181 * need to become writer to continue to process it. Because an
8182 * exclusive operation doesn’t complete until replies to all queued
8183 * DLPI messages have been received, we know we’re in the middle of an
8184 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8185 *
8186 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8187 * Since this is on the ill stream we unconditionally bump up the
8188 * refcount without doing ILL_CAN_LOOKUP().
8189 */
8190 ill_refhold(ill);
8191 if (prim == DL_NOTIFY_IND)
8192 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8193 else
8194 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8195 }

8197 /*
8198 * Handling of DLPI messages that require exclusive access to the ipsq.
8199 *
8200 * Need to do ipsq_pending_mp_get on ioctl completion, which could
8201 * happen here. (along with mi_copy_done)
8202 */
8203 /* ARGSUSED */
8204 static void
8205 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8206 {
8207 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
8208 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
8209 int err = 0;
8210 ill_t *ill = (ill_t *)q->q_ptr;
8211 ipif_t *ipif = NULL;
8212 mblk_t *mp1 = NULL;
8213 conn_t *connp = NULL;
8214 t_uscalar_t paddrreq;
8215 mblk_t *mp_hw;
8216 boolean_t success;
8217 boolean_t ioctl_aborted = B_FALSE;
8218 boolean_t log = B_TRUE;

8220 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8221 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);

8223 ip1dbg(("ip_rput_dlpi_writer .."));
8224 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8225 ASSERT(IAM_WRITER_ILL(ill));

8227 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8228 /*
8229 * The current ioctl could have been aborted by the user and a new
8230 * ioctl to bring up another ill could have started. We could still
8231 * get a response from the driver later.
8232 */
8233 if (ipif != NULL && ipif->ipif_ill != ill)
8234 ioctl_aborted = B_TRUE;

8236 switch (dloa->dl_primitive) {
8237 case DL_ERROR_ACK:
8238 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8239 dl_primstr(dlea->dl_error_primitive)));

8241 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8242 char *, dl_primstr(dlea->dl_error_primitive),
8243 ill_t *, ill);

8245 switch (dlea->dl_error_primitive) {

new/usr/src/uts/common/inet/ip/ip.c 126

8246 case DL_DISABMULTI_REQ:
8247 ill_dlpi_done(ill, dlea->dl_error_primitive);
8248 break;
8249 case DL_PROMISCON_REQ:
8250 case DL_PROMISCOFF_REQ:
8251 case DL_UNBIND_REQ:
8252 case DL_ATTACH_REQ:
8253 case DL_INFO_REQ:
8254 ill_dlpi_done(ill, dlea->dl_error_primitive);
8255 break;
8256 case DL_NOTIFY_REQ:
8257 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8258 log = B_FALSE;
8259 break;
8260 case DL_PHYS_ADDR_REQ:
8261 /*
8262 * For IPv6 only, there are two additional
8263 * phys_addr_req’s sent to the driver to get the
8264 * IPv6 token and lla. This allows IP to acquire
8265 * the hardware address format for a given interface
8266 * without having built in knowledge of the hardware
8267 * address. ill_phys_addr_pend keeps track of the last
8268 * DL_PAR sent so we know which response we are
8269 * dealing with. ill_dlpi_done will update
8270 * ill_phys_addr_pend when it sends the next req.
8271 * We don’t complete the IOCTL until all three DL_PARs
8272 * have been attempted, so set *_len to 0 and break.
8273 */
8274 paddrreq = ill->ill_phys_addr_pend;
8275 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8276 if (paddrreq == DL_IPV6_TOKEN) {
8277 ill->ill_token_length = 0;
8278 log = B_FALSE;
8279 break;
8280 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8281 ill->ill_nd_lla_len = 0;
8282 log = B_FALSE;
8283 break;
8284 }
8285 /*
8286 * Something went wrong with the DL_PHYS_ADDR_REQ.
8287 * We presumably have an IOCTL hanging out waiting
8288 * for completion. Find it and complete the IOCTL
8289 * with the error noted.
8290 * However, ill_dl_phys was called on an ill queue
8291 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8292 * set. But the ioctl is known to be pending on ill_wq.
8293 */
8294 if (!ill->ill_ifname_pending)
8295 break;
8296 ill->ill_ifname_pending = 0;
8297 if (!ioctl_aborted)
8298 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8299 if (mp1 != NULL) {
8300 /*
8301 * This operation (SIOCSLIFNAME) must have
8302 * happened on the ill. Assert there is no conn
8303 */
8304 ASSERT(connp == NULL);
8305 q = ill->ill_wq;
8306 }
8307 break;
8308 case DL_BIND_REQ:
8309 ill_dlpi_done(ill, DL_BIND_REQ);
8310 if (ill->ill_ifname_pending)
8311 break;

new/usr/src/uts/common/inet/ip/ip.c 127

8312 mutex_enter(&ill->ill_lock);
8313 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8314 mutex_exit(&ill->ill_lock);
8315 /*
8316 * Something went wrong with the bind. We presumably
8317 * have an IOCTL hanging out waiting for completion.
8318 * Find it, take down the interface that was coming
8319 * up, and complete the IOCTL with the error noted.
8320 */
8321 if (!ioctl_aborted)
8322 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8323 if (mp1 != NULL) {
8324 /*
8325 * This might be a result of a DL_NOTE_REPLUMB
8326 * notification. In that case, connp is NULL.
8327 */
8328 if (connp != NULL)
8329 q = CONNP_TO_WQ(connp);

8331 (void) ipif_down(ipif, NULL, NULL);
8332 /* error is set below the switch */
8333 }
8334 break;
8335 case DL_ENABMULTI_REQ:
8336 ill_dlpi_done(ill, DL_ENABMULTI_REQ);

8338 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8339 ill->ill_dlpi_multicast_state = IDS_FAILED;
8340 if (ill->ill_dlpi_multicast_state == IDS_FAILED) {

8342 printf("ip: joining multicasts failed (%d)"
8343 " on %s - will use link layer "
8344 "broadcasts for multicast\n",
8345 dlea->dl_errno, ill->ill_name);

8347 /*
8348 * Set up for multi_bcast; We are the
8349 * writer, so ok to access ill->ill_ipif
8350 * without any lock.
8351 */
8352 mutex_enter(&ill->ill_phyint->phyint_lock);
8353 ill->ill_phyint->phyint_flags |=
8354 PHYI_MULTI_BCAST;
8355 mutex_exit(&ill->ill_phyint->phyint_lock);

8357 }
8358 freemsg(mp); /* Don’t want to pass this up */
8359 return;
8360 case DL_CAPABILITY_REQ:
8361 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8362 "DL_CAPABILITY REQ\n"));
8363 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8364 ill->ill_dlpi_capab_state = IDCS_FAILED;
8365 ill_capability_done(ill);
8366 freemsg(mp);
8367 return;
8368 }
8369 /*
8370 * Note the error for IOCTL completion (mp1 is set when
8371 * ready to complete ioctl). If ill_ifname_pending_err is
8372 * set, an error occured during plumbing (ill_ifname_pending),
8373 * so we want to report that error.
8374 *
8375 * NOTE: there are two addtional DL_PHYS_ADDR_REQ’s
8376 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8377 * expected to get errack’d if the driver doesn’t support

new/usr/src/uts/common/inet/ip/ip.c 128

8378 * these flags (e.g. ethernet). log will be set to B_FALSE
8379 * if these error conditions are encountered.
8380 */
8381 if (mp1 != NULL) {
8382 if (ill->ill_ifname_pending_err != 0) {
8383 err = ill->ill_ifname_pending_err;
8384 ill->ill_ifname_pending_err = 0;
8385 } else {
8386 err = dlea->dl_unix_errno ?
8387 dlea->dl_unix_errno : ENXIO;
8388 }
8389 /*
8390 * If we’re plumbing an interface and an error hasn’t already
8391 * been saved, set ill_ifname_pending_err to the error passed
8392 * up. Ignore the error if log is B_FALSE (see comment above).
8393 */
8394 } else if (log && ill->ill_ifname_pending &&
8395 ill->ill_ifname_pending_err == 0) {
8396 ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8397 dlea->dl_unix_errno : ENXIO;
8398 }

8400 if (log)
8401 ip_dlpi_error(ill, dlea->dl_error_primitive,
8402 dlea->dl_errno, dlea->dl_unix_errno);
8403 break;
8404 case DL_CAPABILITY_ACK:
8405 ill_capability_ack(ill, mp);
8406 /*
8407 * The message has been handed off to ill_capability_ack
8408 * and must not be freed below
8409 */
8410 mp = NULL;
8411 break;

8413 case DL_INFO_ACK:
8414 /* Call a routine to handle this one. */
8415 ill_dlpi_done(ill, DL_INFO_REQ);
8416 ip_ll_subnet_defaults(ill, mp);
8417 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8418 return;
8419 case DL_BIND_ACK:
8420 /*
8421 * We should have an IOCTL waiting on this unless
8422 * sent by ill_dl_phys, in which case just return
8423 */
8424 ill_dlpi_done(ill, DL_BIND_REQ);

8426 if (ill->ill_ifname_pending) {
8427 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8428 ill_t *, ill, mblk_t *, mp);
8429 break;
8430 }
8431 mutex_enter(&ill->ill_lock);
8432 ill->ill_dl_up = 1;
8433 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8434 mutex_exit(&ill->ill_lock);

8436 if (!ioctl_aborted)
8437 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8438 if (mp1 == NULL) {
8439 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8440 break;
8441 }
8442 /*
8443 * mp1 was added by ill_dl_up(). if that is a result of

new/usr/src/uts/common/inet/ip/ip.c 129

8444 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8445 */
8446 if (connp != NULL)
8447 q = CONNP_TO_WQ(connp);
8448 /*
8449 * We are exclusive. So nothing can change even after
8450 * we get the pending mp.
8451 */
8452 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8453 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8454 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);

8456 /*
8457 * Now bring up the resolver; when that is complete, we’ll
8458 * create IREs. Note that we intentionally mirror what
8459 * ipif_up() would have done, because we got here by way of
8460 * ill_dl_up(), which stopped ipif_up()’s processing.
8461 */
8462 if (ill->ill_isv6) {
8463 /*
8464 * v6 interfaces.
8465 * Unlike ARP which has to do another bind
8466 * and attach, once we get here we are
8467 * done with NDP
8468 */
8469 (void) ipif_resolver_up(ipif, Res_act_initial);
8470 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8471 err = ipif_up_done_v6(ipif);
8472 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8473 /*
8474 * ARP and other v4 external resolvers.
8475 * Leave the pending mblk intact so that
8476 * the ioctl completes in ip_rput().
8477 */
8478 if (connp != NULL)
8479 mutex_enter(&connp->conn_lock);
8480 mutex_enter(&ill->ill_lock);
8481 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8482 mutex_exit(&ill->ill_lock);
8483 if (connp != NULL)
8484 mutex_exit(&connp->conn_lock);
8485 if (success) {
8486 err = ipif_resolver_up(ipif, Res_act_initial);
8487 if (err == EINPROGRESS) {
8488 freemsg(mp);
8489 return;
8490 }
8491 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8492 } else {
8493 /* The conn has started closing */
8494 err = EINTR;
8495 }
8496 } else {
8497 /*
8498 * This one is complete. Reply to pending ioctl.
8499 */
8500 (void) ipif_resolver_up(ipif, Res_act_initial);
8501 err = ipif_up_done(ipif);
8502 }

8504 if ((err == 0) && (ill->ill_up_ipifs)) {
8505 err = ill_up_ipifs(ill, q, mp1);
8506 if (err == EINPROGRESS) {
8507 freemsg(mp);
8508 return;
8509 }

new/usr/src/uts/common/inet/ip/ip.c 130

8510 }

8512 /*
8513 * If we have a moved ipif to bring up, and everything has
8514 * succeeded to this point, bring it up on the IPMP ill.
8515 * Otherwise, leave it down -- the admin can try to bring it
8516 * up by hand if need be.
8517 */
8518 if (ill->ill_move_ipif != NULL) {
8519 if (err != 0) {
8520 ill->ill_move_ipif = NULL;
8521 } else {
8522 ipif = ill->ill_move_ipif;
8523 ill->ill_move_ipif = NULL;
8524 err = ipif_up(ipif, q, mp1);
8525 if (err == EINPROGRESS) {
8526 freemsg(mp);
8527 return;
8528 }
8529 }
8530 }
8531 break;

8533 case DL_NOTIFY_IND: {
8534 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8535 uint_t orig_mtu, orig_mc_mtu;

8537 switch (notify->dl_notification) {
8538 case DL_NOTE_PHYS_ADDR:
8539 err = ill_set_phys_addr(ill, mp);
8540 break;

8542 case DL_NOTE_REPLUMB:
8543 /*
8544 * Directly return after calling ill_replumb().
8545 * Note that we should not free mp as it is reused
8546 * in the ill_replumb() function.
8547 */
8548 err = ill_replumb(ill, mp);
8549 return;

8551 case DL_NOTE_FASTPATH_FLUSH:
8552 nce_flush(ill, B_FALSE);
8553 break;

8555 case DL_NOTE_SDU_SIZE:
8556 case DL_NOTE_SDU_SIZE2:
8557 /*
8558 * The dce and fragmentation code can cope with
8559 * this changing while packets are being sent.
8560 * When packets are sent ip_output will discover
8561 * a change.
8562 *
8563 * Change the MTU size of the interface.
8564 */
8565 mutex_enter(&ill->ill_lock);
8566 orig_mtu = ill->ill_mtu;
8567 orig_mc_mtu = ill->ill_mc_mtu;
8568 switch (notify->dl_notification) {
8569 case DL_NOTE_SDU_SIZE:
8570 ill->ill_current_frag =
8571 (uint_t)notify->dl_data;
8572 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8573 break;
8574 case DL_NOTE_SDU_SIZE2:
8575 ill->ill_current_frag =

new/usr/src/uts/common/inet/ip/ip.c 131

8576 (uint_t)notify->dl_data1;
8577 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8578 break;
8579 }
8580 if (ill->ill_current_frag > ill->ill_max_frag)
8581 ill->ill_max_frag = ill->ill_current_frag;

8583 if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8584 ill->ill_mtu = ill->ill_current_frag;

8586 /*
8587 * If ill_user_mtu was set (via
8588 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8589 */
8590 if (ill->ill_user_mtu != 0 &&
8591 ill->ill_user_mtu < ill->ill_mtu)
8592 ill->ill_mtu = ill->ill_user_mtu;

8594 if (ill->ill_user_mtu != 0 &&
8595 ill->ill_user_mtu < ill->ill_mc_mtu)
8596 ill->ill_mc_mtu = ill->ill_user_mtu;

8598 if (ill->ill_isv6) {
8599 if (ill->ill_mtu < IPV6_MIN_MTU)
8600 ill->ill_mtu = IPV6_MIN_MTU;
8601 if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8602 ill->ill_mc_mtu = IPV6_MIN_MTU;
8603 } else {
8604 if (ill->ill_mtu < IP_MIN_MTU)
8605 ill->ill_mtu = IP_MIN_MTU;
8606 if (ill->ill_mc_mtu < IP_MIN_MTU)
8607 ill->ill_mc_mtu = IP_MIN_MTU;
8608 }
8609 } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8610 ill->ill_mc_mtu = ill->ill_mtu;
8611 }

8613 mutex_exit(&ill->ill_lock);
8614 /*
8615 * Make sure all dce_generation checks find out
8616 * that ill_mtu/ill_mc_mtu has changed.
8617 */
8618 if (orig_mtu != ill->ill_mtu ||
8619 orig_mc_mtu != ill->ill_mc_mtu) {
8620 dce_increment_all_generations(ill->ill_isv6,
8621 ill->ill_ipst);
8622 }

8624 /*
8625 * Refresh IPMP meta-interface MTU if necessary.
8626 */
8627 if (IS_UNDER_IPMP(ill))
8628 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8629 break;

8631 case DL_NOTE_LINK_UP:
8632 case DL_NOTE_LINK_DOWN: {
8633 /*
8634 * We are writer. ill / phyint / ipsq assocs stable.
8635 * The RUNNING flag reflects the state of the link.
8636 */
8637 phyint_t *phyint = ill->ill_phyint;
8638 uint64_t new_phyint_flags;
8639 boolean_t changed = B_FALSE;
8640 boolean_t went_up;

new/usr/src/uts/common/inet/ip/ip.c 132

8642 went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8643 mutex_enter(&phyint->phyint_lock);

8645 new_phyint_flags = went_up ?
8646 phyint->phyint_flags | PHYI_RUNNING :
8647 phyint->phyint_flags & ~PHYI_RUNNING;

8649 if (IS_IPMP(ill)) {
8650 new_phyint_flags = went_up ?
8651 new_phyint_flags & ~PHYI_FAILED :
8652 new_phyint_flags | PHYI_FAILED;
8653 }

8655 if (new_phyint_flags != phyint->phyint_flags) {
8656 phyint->phyint_flags = new_phyint_flags;
8657 changed = B_TRUE;
8658 }
8659 mutex_exit(&phyint->phyint_lock);
8660 /*
8661 * ill_restart_dad handles the DAD restart and routing
8662 * socket notification logic.
8663 */
8664 if (changed) {
8665 ill_restart_dad(phyint->phyint_illv4, went_up);
8666 ill_restart_dad(phyint->phyint_illv6, went_up);
8667 }
8668 break;
8669 }
8670 case DL_NOTE_PROMISC_ON_PHYS: {
8671 phyint_t *phyint = ill->ill_phyint;

8673 mutex_enter(&phyint->phyint_lock);
8674 phyint->phyint_flags |= PHYI_PROMISC;
8675 mutex_exit(&phyint->phyint_lock);
8676 break;
8677 }
8678 case DL_NOTE_PROMISC_OFF_PHYS: {
8679 phyint_t *phyint = ill->ill_phyint;

8681 mutex_enter(&phyint->phyint_lock);
8682 phyint->phyint_flags &= ~PHYI_PROMISC;
8683 mutex_exit(&phyint->phyint_lock);
8684 break;
8685 }
8686 case DL_NOTE_CAPAB_RENEG:
8687 /*
8688 * Something changed on the driver side.
8689 * It wants us to renegotiate the capabilities
8690 * on this ill. One possible cause is the aggregation
8691 * interface under us where a port got added or
8692 * went away.
8693 *
8694 * If the capability negotiation is already done
8695 * or is in progress, reset the capabilities and
8696 * mark the ill’s ill_capab_reneg to be B_TRUE,
8697 * so that when the ack comes back, we can start
8698 * the renegotiation process.
8699 *
8700 * Note that if ill_capab_reneg is already B_TRUE
8701 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8702 * the capability resetting request has been sent
8703 * and the renegotiation has not been started yet;
8704 * nothing needs to be done in this case.
8705 */
8706 ipsq_current_start(ipsq, ill->ill_ipif, 0);
8707 ill_capability_reset(ill, B_TRUE);

new/usr/src/uts/common/inet/ip/ip.c 133

8708 ipsq_current_finish(ipsq);
8709 break;

8711 case DL_NOTE_ALLOWED_IPS:
8712 ill_set_allowed_ips(ill, mp);
8713 break;
8714 default:
8715 ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8716 "type 0x%x for DL_NOTIFY_IND\n",
8717 notify->dl_notification));
8718 break;
8719 }

8721 /*
8722 * As this is an asynchronous operation, we
8723 * should not call ill_dlpi_done
8724 */
8725 break;
8726 }
8727 case DL_NOTIFY_ACK: {
8728 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;

8730 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8731 ill->ill_note_link = 1;
8732 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8733 break;
8734 }
8735 case DL_PHYS_ADDR_ACK: {
8736 /*
8737 * As part of plumbing the interface via SIOCSLIFNAME,
8738 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8739 * whose answers we receive here. As each answer is received,
8740 * we call ill_dlpi_done() to dispatch the next request as
8741 * we’re processing the current one. Once all answers have
8742 * been received, we use ipsq_pending_mp_get() to dequeue the
8743 * outstanding IOCTL and reply to it. (Because ill_dl_phys()
8744 * is invoked from an ill queue, conn_oper_pending_ill is not
8745 * available, but we know the ioctl is pending on ill_wq.)
8746 */
8747 uint_t paddrlen, paddroff;
8748 uint8_t *addr;

8750 paddrreq = ill->ill_phys_addr_pend;
8751 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8752 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8753 addr = mp->b_rptr + paddroff;

8755 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8756 if (paddrreq == DL_IPV6_TOKEN) {
8757 /*
8758 * bcopy to low-order bits of ill_token
8759 *
8760 * XXX Temporary hack - currently, all known tokens
8761 * are 64 bits, so I’ll cheat for the moment.
8762 */
8763 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8764 ill->ill_token_length = paddrlen;
8765 break;
8766 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8767 ASSERT(ill->ill_nd_lla_mp == NULL);
8768 ill_set_ndmp(ill, mp, paddroff, paddrlen);
8769 mp = NULL;
8770 break;
8771 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8772 ASSERT(ill->ill_dest_addr_mp == NULL);
8773 ill->ill_dest_addr_mp = mp;

new/usr/src/uts/common/inet/ip/ip.c 134

8774 ill->ill_dest_addr = addr;
8775 mp = NULL;
8776 if (ill->ill_isv6) {
8777 ill_setdesttoken(ill);
8778 ipif_setdestlinklocal(ill->ill_ipif);
8779 }
8780 break;
8781 }

8783 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8784 ASSERT(ill->ill_phys_addr_mp == NULL);
8785 if (!ill->ill_ifname_pending)
8786 break;
8787 ill->ill_ifname_pending = 0;
8788 if (!ioctl_aborted)
8789 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8790 if (mp1 != NULL) {
8791 ASSERT(connp == NULL);
8792 q = ill->ill_wq;
8793 }
8794 /*
8795 * If any error acks received during the plumbing sequence,
8796 * ill_ifname_pending_err will be set. Break out and send up
8797 * the error to the pending ioctl.
8798 */
8799 if (ill->ill_ifname_pending_err != 0) {
8800 err = ill->ill_ifname_pending_err;
8801 ill->ill_ifname_pending_err = 0;
8802 break;
8803 }

8805 ill->ill_phys_addr_mp = mp;
8806 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8807 mp = NULL;

8809 /*
8810 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8811 * provider doesn’t support physical addresses. We check both
8812 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8813 * not have physical addresses, but historically adversises a
8814 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8815 * its DL_PHYS_ADDR_ACK.
8816 */
8817 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8818 ill->ill_phys_addr = NULL;
8819 } else if (paddrlen != ill->ill_phys_addr_length) {
8820 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8821 paddrlen, ill->ill_phys_addr_length));
8822 err = EINVAL;
8823 break;
8824 }

8826 if (ill->ill_nd_lla_mp == NULL) {
8827 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8828 err = ENOMEM;
8829 break;
8830 }
8831 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8832 }

8834 if (ill->ill_isv6) {
8835 ill_setdefaulttoken(ill);
8836 ipif_setlinklocal(ill->ill_ipif);
8837 }
8838 break;
8839 }

new/usr/src/uts/common/inet/ip/ip.c 135

8840 case DL_OK_ACK:
8841 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8842 dl_primstr((int)dloa->dl_correct_primitive),
8843 dloa->dl_correct_primitive));
8844 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8845 char *, dl_primstr(dloa->dl_correct_primitive),
8846 ill_t *, ill);

8848 switch (dloa->dl_correct_primitive) {
8849 case DL_ENABMULTI_REQ:
8850 case DL_DISABMULTI_REQ:
8851 ill_dlpi_done(ill, dloa->dl_correct_primitive);
8852 break;
8853 case DL_PROMISCON_REQ:
8854 case DL_PROMISCOFF_REQ:
8855 case DL_UNBIND_REQ:
8856 case DL_ATTACH_REQ:
8857 ill_dlpi_done(ill, dloa->dl_correct_primitive);
8858 break;
8859 }
8860 break;
8861 default:
8862 break;
8863 }

8865 freemsg(mp);
8866 if (mp1 == NULL)
8867 return;

8869 /*
8870 * The operation must complete without EINPROGRESS since
8871 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise,
8872 * the operation will be stuck forever inside the IPSQ.
8873 */
8874 ASSERT(err != EINPROGRESS);

8876 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8877 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8878 ipif_t *, NULL);

8880 switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8881 case 0:
8882 ipsq_current_finish(ipsq);
8883 break;

8885 case SIOCSLIFNAME:
8886 case IF_UNITSEL: {
8887 ill_t *ill_other = ILL_OTHER(ill);

8889 /*
8890 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8891 * ill has a peer which is in an IPMP group, then place ill
8892 * into the same group. One catch: although ifconfig plumbs
8893 * the appropriate IPMP meta-interface prior to plumbing this
8894 * ill, it is possible for multiple ifconfig applications to
8895 * race (or for another application to adjust plumbing), in
8896 * which case the IPMP meta-interface we need will be missing.
8897 * If so, kick the phyint out of the group.
8898 */
8899 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8900 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp;
8901 ipmp_illgrp_t *illg;

8903 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8904 if (illg == NULL)
8905 ipmp_phyint_leave_grp(ill->ill_phyint);

new/usr/src/uts/common/inet/ip/ip.c 136

8906 else
8907 ipmp_ill_join_illgrp(ill, illg);
8908 }

8910 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8911 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8912 else
8913 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8914 break;
8915 }
8916 case SIOCLIFADDIF:
8917 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8918 break;

8920 default:
8921 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8922 break;
8923 }
8924 }

8926 /*
8927 * ip_rput_other is called by ip_rput to handle messages modifying the global
8928 * state in IP. If ’ipsq’ is non-NULL, caller is writer on it.
8929 */
8930 /* ARGSUSED */
8931 void
8932 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8933 {
8934 ill_t *ill = q->q_ptr;
8935 struct iocblk *iocp;

8937 ip1dbg(("ip_rput_other "));
8938 if (ipsq != NULL) {
8939 ASSERT(IAM_WRITER_IPSQ(ipsq));
8940 ASSERT(ipsq->ipsq_xop ==
8941 ill->ill_phyint->phyint_ipsq->ipsq_xop);
8942 }

8944 switch (mp->b_datap->db_type) {
8945 case M_ERROR:
8946 case M_HANGUP:
8947 /*
8948 * The device has a problem. We force the ILL down. It can
8949 * be brought up again manually using SIOCSIFFLAGS (via
8950 * ifconfig or equivalent).
8951 */
8952 ASSERT(ipsq != NULL);
8953 if (mp->b_rptr < mp->b_wptr)
8954 ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8955 if (ill->ill_error == 0)
8956 ill->ill_error = ENXIO;
8957 if (!ill_down_start(q, mp))
8958 return;
8959 ipif_all_down_tail(ipsq, q, mp, NULL);
8960 break;
8961 case M_IOCNAK: {
8962 iocp = (struct iocblk *)mp->b_rptr;

8964 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8965 /*
8966 * If this was the first attempt, turn off the fastpath
8967 * probing.
8968 */
8969 mutex_enter(&ill->ill_lock);
8970 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8971 ill->ill_dlpi_fastpath_state = IDS_FAILED;

new/usr/src/uts/common/inet/ip/ip.c 137

8972 mutex_exit(&ill->ill_lock);
8973 /*
8974 * don’t flush the nce_t entries: we use them
8975 * as an index to the ncec itself.
8976 */
8977 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8978 ill->ill_name));
8979 } else {
8980 mutex_exit(&ill->ill_lock);
8981 }
8982 freemsg(mp);
8983 break;
8984 }
8985 default:
8986 ASSERT(0);
8987 break;
8988 }
8989 }

8991 /*
8992 * Update any source route, record route or timestamp options
8993 * When it fails it has consumed the message and BUMPed the MIB.
8994 */
8995 boolean_t
8996 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8997 ip_recv_attr_t *ira)
8998 {
8999 ipoptp_t opts;
9000 uchar_t *opt;
9001 uint8_t optval;
9002 uint8_t optlen;
9003 ipaddr_t dst;
9004 ipaddr_t ifaddr;
9005 uint32_t ts;
9006 timestruc_t now;
9007 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

9009 ip2dbg(("ip_forward_options\n"));
9010 dst = ipha->ipha_dst;
9011 for (optval = ipoptp_first(&opts, ipha);
9012 optval != IPOPT_EOL;
9013 optval = ipoptp_next(&opts)) {
9014 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9015 opt = opts.ipoptp_cur;
9016 optlen = opts.ipoptp_len;
9017 ip2dbg(("ip_forward_options: opt %d, len %d\n",
9018 optval, opts.ipoptp_len));
9019 switch (optval) {
9020 uint32_t off;
9021 case IPOPT_SSRR:
9022 case IPOPT_LSRR:
9023 /* Check if adminstratively disabled */
9024 if (!ipst->ips_ip_forward_src_routed) {
9025 BUMP_MIB(dst_ill->ill_ip_mib,
9026 ipIfStatsForwProhibits);
9027 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9028 mp, dst_ill);
9029 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9030 ira);
9031 return (B_FALSE);
9032 }
9033 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9034 /*
9035 * Must be partial since ip_input_options
9036 * checked for strict.
9037 */

new/usr/src/uts/common/inet/ip/ip.c 138

9038 break;
9039 }
9040 off = opt[IPOPT_OFFSET];
9041 off--;
9042 redo_srr:
9043 if (optlen < IP_ADDR_LEN ||
9044 off > optlen - IP_ADDR_LEN) {
9045 /* End of source route */
9046 ip1dbg((
9047 "ip_forward_options: end of SR\n"));
9048 break;
9049 }
9050 /* Pick a reasonable address on the outbound if */
9051 ASSERT(dst_ill != NULL);
9052 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9053 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9054 NULL) != 0) {
9055 /* No source! Shouldn’t happen */
9056 ifaddr = INADDR_ANY;
9057 }
9058 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9059 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9060 ip1dbg(("ip_forward_options: next hop 0x%x\n",
9061 ntohl(dst)));

9063 /*
9064 * Check if our address is present more than
9065 * once as consecutive hops in source route.
9066 */
9067 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9068 off += IP_ADDR_LEN;
9069 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9070 goto redo_srr;
9071 }
9072 ipha->ipha_dst = dst;
9073 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9074 break;
9075 case IPOPT_RR:
9076 off = opt[IPOPT_OFFSET];
9077 off--;
9078 if (optlen < IP_ADDR_LEN ||
9079 off > optlen - IP_ADDR_LEN) {
9080 /* No more room - ignore */
9081 ip1dbg((
9082 "ip_forward_options: end of RR\n"));
9083 break;
9084 }
9085 /* Pick a reasonable address on the outbound if */
9086 ASSERT(dst_ill != NULL);
9087 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9088 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9089 NULL) != 0) {
9090 /* No source! Shouldn’t happen */
9091 ifaddr = INADDR_ANY;
9092 }
9093 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9094 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9095 break;
9096 case IPOPT_TS:
9097 /* Insert timestamp if there is room */
9098 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9099 case IPOPT_TS_TSONLY:
9100 off = IPOPT_TS_TIMELEN;
9101 break;
9102 case IPOPT_TS_PRESPEC:
9103 case IPOPT_TS_PRESPEC_RFC791:

new/usr/src/uts/common/inet/ip/ip.c 139

9104 /* Verify that the address matched */
9105 off = opt[IPOPT_OFFSET] - 1;
9106 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9107 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9108 /* Not for us */
9109 break;
9110 }
9111 /* FALLTHRU */
9112 case IPOPT_TS_TSANDADDR:
9113 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9114 break;
9115 default:
9116 /*
9117 * ip_*put_options should have already
9118 * dropped this packet.
9119 */
9120 cmn_err(CE_PANIC, "ip_forward_options: "
9121 "unknown IT - bug in ip_input_options?\n");
9122 return (B_TRUE); /* Keep "lint" happy */
9123 }
9124 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9125 /* Increase overflow counter */
9126 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9127 opt[IPOPT_POS_OV_FLG] =
9128 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9129 (off << 4));
9130 break;
9131 }
9132 off = opt[IPOPT_OFFSET] - 1;
9133 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9134 case IPOPT_TS_PRESPEC:
9135 case IPOPT_TS_PRESPEC_RFC791:
9136 case IPOPT_TS_TSANDADDR:
9137 /* Pick a reasonable addr on the outbound if */
9138 ASSERT(dst_ill != NULL);
9139 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9140 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9141 NULL, NULL) != 0) {
9142 /* No source! Shouldn’t happen */
9143 ifaddr = INADDR_ANY;
9144 }
9145 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9146 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9147 /* FALLTHRU */
9148 case IPOPT_TS_TSONLY:
9149 off = opt[IPOPT_OFFSET] - 1;
9150 /* Compute # of milliseconds since midnight */
9151 gethrestime(&now);
9152 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9153 now.tv_nsec / (NANOSEC / MILLISEC);
9154 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9155 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9156 break;
9157 }
9158 break;
9159 }
9160 }
9161 return (B_TRUE);
9162 }

9164 /*
9165 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9166 * returns ’true’ if there are still fragments left on the queue, in
9167 * which case we restart the timer.
9168 */
9169 void

new/usr/src/uts/common/inet/ip/ip.c 140

9170 ill_frag_timer(void *arg)
9171 {
9172 ill_t *ill = (ill_t *)arg;
9173 boolean_t frag_pending;
9174 ip_stack_t *ipst = ill->ill_ipst;
9175 time_t timeout;

9177 mutex_enter(&ill->ill_lock);
9178 ASSERT(!ill->ill_fragtimer_executing);
9179 if (ill->ill_state_flags & ILL_CONDEMNED) {
9180 ill->ill_frag_timer_id = 0;
9181 mutex_exit(&ill->ill_lock);
9182 return;
9183 }
9184 ill->ill_fragtimer_executing = 1;
9185 mutex_exit(&ill->ill_lock);

9187 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9188 ipst->ips_ip_reassembly_timeout);

9190 frag_pending = ill_frag_timeout(ill, timeout);

9192 /*
9193 * Restart the timer, if we have fragments pending or if someone
9194 * wanted us to be scheduled again.
9195 */
9196 mutex_enter(&ill->ill_lock);
9197 ill->ill_fragtimer_executing = 0;
9198 ill->ill_frag_timer_id = 0;
9199 if (frag_pending || ill->ill_fragtimer_needrestart)
9200 ill_frag_timer_start(ill);
9201 mutex_exit(&ill->ill_lock);
9202 }

9204 void
9205 ill_frag_timer_start(ill_t *ill)
9206 {
9207 ip_stack_t *ipst = ill->ill_ipst;
9208 clock_t timeo_ms;

9210 ASSERT(MUTEX_HELD(&ill->ill_lock));

9212 /* If the ill is closing or opening don’t proceed */
9213 if (ill->ill_state_flags & ILL_CONDEMNED)
9214 return;

9216 if (ill->ill_fragtimer_executing) {
9217 /*
9218 * ill_frag_timer is currently executing. Just record the
9219 * the fact that we want the timer to be restarted.
9220 * ill_frag_timer will post a timeout before it returns,
9221 * ensuring it will be called again.
9222 */
9223 ill->ill_fragtimer_needrestart = 1;
9224 return;
9225 }

9227 if (ill->ill_frag_timer_id == 0) {
9228 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9229 ipst->ips_ip_reassembly_timeout) * SECONDS;

9231 /*
9232 * The timer is neither running nor is the timeout handler
9233 * executing. Post a timeout so that ill_frag_timer will be
9234 * called
9235 */

new/usr/src/uts/common/inet/ip/ip.c 141

9236 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9237 MSEC_TO_TICK(timeo_ms >> 1));
9238 ill->ill_fragtimer_needrestart = 0;
9239 }
9240 }

9242 /*
9243 * Update any source route, record route or timestamp options.
9244 * Check that we are at end of strict source route.
9245 * The options have already been checked for sanity in ip_input_options().
9246 */
9247 boolean_t
9248 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9249 {
9250 ipoptp_t opts;
9251 uchar_t *opt;
9252 uint8_t optval;
9253 uint8_t optlen;
9254 ipaddr_t dst;
9255 ipaddr_t ifaddr;
9256 uint32_t ts;
9257 timestruc_t now;
9258 ill_t *ill = ira->ira_ill;
9259 ip_stack_t *ipst = ill->ill_ipst;

9261 ip2dbg(("ip_input_local_options\n"));

9263 for (optval = ipoptp_first(&opts, ipha);
9264 optval != IPOPT_EOL;
9265 optval = ipoptp_next(&opts)) {
9266 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9267 opt = opts.ipoptp_cur;
9268 optlen = opts.ipoptp_len;
9269 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9270 optval, optlen));
9271 switch (optval) {
9272 uint32_t off;
9273 case IPOPT_SSRR:
9274 case IPOPT_LSRR:
9275 off = opt[IPOPT_OFFSET];
9276 off--;
9277 if (optlen < IP_ADDR_LEN ||
9278 off > optlen - IP_ADDR_LEN) {
9279 /* End of source route */
9280 ip1dbg(("ip_input_local_options: end of SR\n"));
9281 break;
9282 }
9283 /*
9284 * This will only happen if two consecutive entries
9285 * in the source route contains our address or if
9286 * it is a packet with a loose source route which
9287 * reaches us before consuming the whole source route
9288 */
9289 ip1dbg(("ip_input_local_options: not end of SR\n"));
9290 if (optval == IPOPT_SSRR) {
9291 goto bad_src_route;
9292 }
9293 /*
9294 * Hack: instead of dropping the packet truncate the
9295 * source route to what has been used by filling the
9296 * rest with IPOPT_NOP.
9297 */
9298 opt[IPOPT_OLEN] = (uint8_t)off;
9299 while (off < optlen) {
9300 opt[off++] = IPOPT_NOP;
9301 }

new/usr/src/uts/common/inet/ip/ip.c 142

9302 break;
9303 case IPOPT_RR:
9304 off = opt[IPOPT_OFFSET];
9305 off--;
9306 if (optlen < IP_ADDR_LEN ||
9307 off > optlen - IP_ADDR_LEN) {
9308 /* No more room - ignore */
9309 ip1dbg((
9310 "ip_input_local_options: end of RR\n"));
9311 break;
9312 }
9313 /* Pick a reasonable address on the outbound if */
9314 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9315 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9316 NULL) != 0) {
9317 /* No source! Shouldn’t happen */
9318 ifaddr = INADDR_ANY;
9319 }
9320 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9321 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9322 break;
9323 case IPOPT_TS:
9324 /* Insert timestamp if there is romm */
9325 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9326 case IPOPT_TS_TSONLY:
9327 off = IPOPT_TS_TIMELEN;
9328 break;
9329 case IPOPT_TS_PRESPEC:
9330 case IPOPT_TS_PRESPEC_RFC791:
9331 /* Verify that the address matched */
9332 off = opt[IPOPT_OFFSET] - 1;
9333 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9334 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9335 /* Not for us */
9336 break;
9337 }
9338 /* FALLTHRU */
9339 case IPOPT_TS_TSANDADDR:
9340 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9341 break;
9342 default:
9343 /*
9344 * ip_*put_options should have already
9345 * dropped this packet.
9346 */
9347 cmn_err(CE_PANIC, "ip_input_local_options: "
9348 "unknown IT - bug in ip_input_options?\n");
9349 return (B_TRUE); /* Keep "lint" happy */
9350 }
9351 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9352 /* Increase overflow counter */
9353 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9354 opt[IPOPT_POS_OV_FLG] =
9355 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9356 (off << 4));
9357 break;
9358 }
9359 off = opt[IPOPT_OFFSET] - 1;
9360 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9361 case IPOPT_TS_PRESPEC:
9362 case IPOPT_TS_PRESPEC_RFC791:
9363 case IPOPT_TS_TSANDADDR:
9364 /* Pick a reasonable addr on the outbound if */
9365 if (ip_select_source_v4(ill, INADDR_ANY,
9366 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9367 &ifaddr, NULL, NULL) != 0) {

new/usr/src/uts/common/inet/ip/ip.c 143

9368 /* No source! Shouldn’t happen */
9369 ifaddr = INADDR_ANY;
9370 }
9371 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9372 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9373 /* FALLTHRU */
9374 case IPOPT_TS_TSONLY:
9375 off = opt[IPOPT_OFFSET] - 1;
9376 /* Compute # of milliseconds since midnight */
9377 gethrestime(&now);
9378 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9379 now.tv_nsec / (NANOSEC / MILLISEC);
9380 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9381 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9382 break;
9383 }
9384 break;
9385 }
9386 }
9387 return (B_TRUE);

9389 bad_src_route:
9390 /* make sure we clear any indication of a hardware checksum */
9391 DB_CKSUMFLAGS(mp) = 0;
9392 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9393 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9394 return (B_FALSE);

9396 }

9398 /*
9399 * Process IP options in an inbound packet. Always returns the nexthop.
9400 * Normally this is the passed in nexthop, but if there is an option
9401 * that effects the nexthop (such as a source route) that will be returned.
9402 * Sets *errorp if there is an error, in which case an ICMP error has been sent
9403 * and mp freed.
9404 */
9405 ipaddr_t
9406 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9407 ip_recv_attr_t *ira, int *errorp)
9408 {
9409 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
9410 ipoptp_t opts;
9411 uchar_t *opt;
9412 uint8_t optval;
9413 uint8_t optlen;
9414 intptr_t code = 0;
9415 ire_t *ire;

9417 ip2dbg(("ip_input_options\n"));
9418 *errorp = 0;
9419 for (optval = ipoptp_first(&opts, ipha);
9420 optval != IPOPT_EOL;
9421 optval = ipoptp_next(&opts)) {
9422 opt = opts.ipoptp_cur;
9423 optlen = opts.ipoptp_len;
9424 ip2dbg(("ip_input_options: opt %d, len %d\n",
9425 optval, optlen));
9426 /*
9427 * Note: we need to verify the checksum before we
9428 * modify anything thus this routine only extracts the next
9429 * hop dst from any source route.
9430 */
9431 switch (optval) {
9432 uint32_t off;
9433 case IPOPT_SSRR:

new/usr/src/uts/common/inet/ip/ip.c 144

9434 case IPOPT_LSRR:
9435 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9436 if (optval == IPOPT_SSRR) {
9437 ip1dbg(("ip_input_options: not next"
9438 " strict source route 0x%x\n",
9439 ntohl(dst)));
9440 code = (char *)&ipha->ipha_dst -
9441 (char *)ipha;
9442 goto param_prob; /* RouterReq’s */
9443 }
9444 ip2dbg(("ip_input_options: "
9445 "not next source route 0x%x\n",
9446 ntohl(dst)));
9447 break;
9448 }

9450 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9451 ip1dbg((
9452 "ip_input_options: bad option offset\n"));
9453 code = (char *)&opt[IPOPT_OLEN] -
9454 (char *)ipha;
9455 goto param_prob;
9456 }
9457 off = opt[IPOPT_OFFSET];
9458 off--;
9459 redo_srr:
9460 if (optlen < IP_ADDR_LEN ||
9461 off > optlen - IP_ADDR_LEN) {
9462 /* End of source route */
9463 ip1dbg(("ip_input_options: end of SR\n"));
9464 break;
9465 }
9466 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9467 ip1dbg(("ip_input_options: next hop 0x%x\n",
9468 ntohl(dst)));

9470 /*
9471 * Check if our address is present more than
9472 * once as consecutive hops in source route.
9473 * XXX verify per-interface ip_forwarding
9474 * for source route?
9475 */
9476 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9477 off += IP_ADDR_LEN;
9478 goto redo_srr;
9479 }

9481 if (dst == htonl(INADDR_LOOPBACK)) {
9482 ip1dbg(("ip_input_options: loopback addr in "
9483 "source route!\n"));
9484 goto bad_src_route;
9485 }
9486 /*
9487 * For strict: verify that dst is directly
9488 * reachable.
9489 */
9490 if (optval == IPOPT_SSRR) {
9491 ire = ire_ftable_lookup_v4(dst, 0, 0,
9492 IRE_INTERFACE, NULL, ALL_ZONES,
9493 ira->ira_tsl,
9494 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9495 NULL);
9496 if (ire == NULL) {
9497 ip1dbg(("ip_input_options: SSRR not "
9498 "directly reachable: 0x%x\n",
9499 ntohl(dst)));

new/usr/src/uts/common/inet/ip/ip.c 145

9500 goto bad_src_route;
9501 }
9502 ire_refrele(ire);
9503 }
9504 /*
9505 * Defer update of the offset and the record route
9506 * until the packet is forwarded.
9507 */
9508 break;
9509 case IPOPT_RR:
9510 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9511 ip1dbg((
9512 "ip_input_options: bad option offset\n"));
9513 code = (char *)&opt[IPOPT_OLEN] -
9514 (char *)ipha;
9515 goto param_prob;
9516 }
9517 break;
9518 case IPOPT_TS:
9519 /*
9520 * Verify that length >= 5 and that there is either
9521 * room for another timestamp or that the overflow
9522 * counter is not maxed out.
9523 */
9524 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9525 if (optlen < IPOPT_MINLEN_IT) {
9526 goto param_prob;
9527 }
9528 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9529 ip1dbg((
9530 "ip_input_options: bad option offset\n"));
9531 code = (char *)&opt[IPOPT_OFFSET] -
9532 (char *)ipha;
9533 goto param_prob;
9534 }
9535 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9536 case IPOPT_TS_TSONLY:
9537 off = IPOPT_TS_TIMELEN;
9538 break;
9539 case IPOPT_TS_TSANDADDR:
9540 case IPOPT_TS_PRESPEC:
9541 case IPOPT_TS_PRESPEC_RFC791:
9542 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9543 break;
9544 default:
9545 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9546 (char *)ipha;
9547 goto param_prob;
9548 }
9549 if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9550 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9551 /*
9552 * No room and the overflow counter is 15
9553 * already.
9554 */
9555 goto param_prob;
9556 }
9557 break;
9558 }
9559 }

9561 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9562 return (dst);
9563 }

9565 ip1dbg(("ip_input_options: error processing IP options."));

new/usr/src/uts/common/inet/ip/ip.c 146

9566 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;

9568 param_prob:
9569 /* make sure we clear any indication of a hardware checksum */
9570 DB_CKSUMFLAGS(mp) = 0;
9571 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9572 icmp_param_problem(mp, (uint8_t)code, ira);
9573 *errorp = -1;
9574 return (dst);

9576 bad_src_route:
9577 /* make sure we clear any indication of a hardware checksum */
9578 DB_CKSUMFLAGS(mp) = 0;
9579 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9580 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9581 *errorp = -1;
9582 return (dst);
9583 }

9585 /*
9586 * IP & ICMP info in >=14 msg’s ...
9587 * - ip fixed part (mib2_ip_t)
9588 * - icmp fixed part (mib2_icmp_t)
9589 * - ipAddrEntryTable (ip 20) all IPv4 ipifs
9590 * - ipRouteEntryTable (ip 21) all IPv4 IREs
9591 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries
9592 * - ipRouteAttributeTable (ip 102) labeled routes
9593 * - ip multicast membership (ip_member_t)
9594 * - ip multicast source filtering (ip_grpsrc_t)
9595 * - igmp fixed part (struct igmpstat)
9596 * - multicast routing stats (struct mrtstat)
9597 * - multicast routing vifs (array of struct vifctl)
9598 * - multicast routing routes (array of struct mfcctl)
9599 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9600 * One per ill plus one generic
9601 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9602 * One per ill plus one generic
9603 * - ipv6RouteEntry all IPv6 IREs
9604 * - ipv6RouteAttributeTable (ip6 102) labeled routes
9605 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries
9606 * - ipv6AddrEntry all IPv6 ipifs
9607 * - ipv6 multicast membership (ipv6_member_t)
9608 * - ipv6 multicast source filtering (ipv6_grpsrc_t)
9609 *
9610 * NOTE: original mpctl is copied for msg’s 2..N, since its ctl part is
9611 * already filled in by the caller.
9612 * If legacy_req is true then MIB structures needs to be truncated to their
9613 * legacy sizes before being returned.
9614 * Return value of 0 indicates that no messages were sent and caller
9615 * should free mpctl.
9616 */
9617 int
9618 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9619 {
9620 ip_stack_t *ipst;
9621 sctp_stack_t *sctps;

9623 if (q->q_next != NULL) {
9624 ipst = ILLQ_TO_IPST(q);
9625 } else {
9626 ipst = CONNQ_TO_IPST(q);
9627 }
9628 ASSERT(ipst != NULL);
9629 sctps = ipst->ips_netstack->netstack_sctp;

9631 if (mpctl == NULL || mpctl->b_cont == NULL) {

new/usr/src/uts/common/inet/ip/ip.c 147

9632 return (0);
9633 }

9635 /*
9636 * For the purposes of the (broken) packet shell use
9637 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9638 * to make TCP and UDP appear first in the list of mib items.
9639 * TBD: We could expand this and use it in netstat so that
9640 * the kernel doesn’t have to produce large tables (connections,
9641 * routes, etc) when netstat only wants the statistics or a particular
9642 * table.
9643 */
9644 if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9645 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9646 return (1);
9647 }
9648 }

9650 if (level != MIB2_TCP) {
9651 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9652 return (1);
9653 }
9654 }

9656 if (level != MIB2_UDP) {
9657 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9658 return (1);
9659 }
9660 }

9662 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9663 ipst, legacy_req)) == NULL) {
9664 return (1);
9665 }

9667 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9668 legacy_req)) == NULL) {
9669 return (1);
9670 }

9672 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9673 return (1);
9674 }

9676 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9677 return (1);
9678 }

9680 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9681 return (1);
9682 }

9684 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9685 return (1);
9686 }

9688 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9689 legacy_req)) == NULL) {
9690 return (1);
9691 }

9693 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9694 legacy_req)) == NULL) {
9695 return (1);
9696 }

new/usr/src/uts/common/inet/ip/ip.c 148

9698 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9699 return (1);
9700 }

9702 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9703 return (1);
9704 }

9706 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9707 return (1);
9708 }

9710 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9711 return (1);
9712 }

9714 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9715 return (1);
9716 }

9718 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9719 return (1);
9720 }

9722 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9723 if (mpctl == NULL)
9724 return (1);

9726 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9727 if (mpctl == NULL)
9728 return (1);

9730 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9731 return (1);
9732 }

9734 #endif /* ! codereview */
9735 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9736 return (1);
9737 }

9739 if ((mpctl = dccp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9740 return (1);
9741 }

9743 #endif /* ! codereview */
9744 freemsg(mpctl);
9745 return (1);
9746 }

9748 /* Get global (legacy) IPv4 statistics */
9749 static mblk_t *
9750 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9751 ip_stack_t *ipst, boolean_t legacy_req)
9752 {
9753 mib2_ip_t old_ip_mib;
9754 struct opthdr *optp;
9755 mblk_t *mp2ctl;
9756 mib2_ipAddrEntry_t mae;

9758 /*
9759 * make a copy of the original message
9760 */
9761 mp2ctl = copymsg(mpctl);

9763 /* fixed length IP structure... */

new/usr/src/uts/common/inet/ip/ip.c 149

9764 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9765 optp->level = MIB2_IP;
9766 optp->name = 0;
9767 SET_MIB(old_ip_mib.ipForwarding,
9768 (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9769 SET_MIB(old_ip_mib.ipDefaultTTL,
9770 (uint32_t)ipst->ips_ip_def_ttl);
9771 SET_MIB(old_ip_mib.ipReasmTimeout,
9772 ipst->ips_ip_reassembly_timeout);
9773 SET_MIB(old_ip_mib.ipAddrEntrySize,
9774 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9775 sizeof (mib2_ipAddrEntry_t));
9776 SET_MIB(old_ip_mib.ipRouteEntrySize,
9777 sizeof (mib2_ipRouteEntry_t));
9778 SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9779 sizeof (mib2_ipNetToMediaEntry_t));
9780 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9781 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9782 SET_MIB(old_ip_mib.ipRouteAttributeSize,
9783 sizeof (mib2_ipAttributeEntry_t));
9784 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9785 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));

9787 /*
9788 * Grab the statistics from the new IP MIB
9789 */
9790 SET_MIB(old_ip_mib.ipInReceives,
9791 (uint32_t)ipmib->ipIfStatsHCInReceives);
9792 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9793 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9794 SET_MIB(old_ip_mib.ipForwDatagrams,
9795 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9796 SET_MIB(old_ip_mib.ipInUnknownProtos,
9797 ipmib->ipIfStatsInUnknownProtos);
9798 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9799 SET_MIB(old_ip_mib.ipInDelivers,
9800 (uint32_t)ipmib->ipIfStatsHCInDelivers);
9801 SET_MIB(old_ip_mib.ipOutRequests,
9802 (uint32_t)ipmib->ipIfStatsHCOutRequests);
9803 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9804 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9805 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9806 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9807 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9808 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9809 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9810 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);

9812 /* ipRoutingDiscards is not being used */
9813 SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9814 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9815 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9816 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9817 SET_MIB(old_ip_mib.ipReasmDuplicates,
9818 ipmib->ipIfStatsReasmDuplicates);
9819 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9820 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9821 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9822 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9823 SET_MIB(old_ip_mib.rawipInOverflows,
9824 ipmib->rawipIfStatsInOverflows);

9826 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9827 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9828 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9829 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);

new/usr/src/uts/common/inet/ip/ip.c 150

9830 SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9831 ipmib->ipIfStatsOutSwitchIPVersion);

9833 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9834 (int)sizeof (old_ip_mib))) {
9835 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9836 (uint_t)sizeof (old_ip_mib)));
9837 }

9839 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9840 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9841 (int)optp->level, (int)optp->name, (int)optp->len));
9842 qreply(q, mpctl);
9843 return (mp2ctl);
9844 }

9846 /* Per interface IPv4 statistics */
9847 static mblk_t *
9848 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9849 boolean_t legacy_req)
9850 {
9851 struct opthdr *optp;
9852 mblk_t *mp2ctl;
9853 ill_t *ill;
9854 ill_walk_context_t ctx;
9855 mblk_t *mp_tail = NULL;
9856 mib2_ipIfStatsEntry_t global_ip_mib;
9857 mib2_ipAddrEntry_t mae;

9859 /*
9860 * Make a copy of the original message
9861 */
9862 mp2ctl = copymsg(mpctl);

9864 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9865 optp->level = MIB2_IP;
9866 optp->name = MIB2_IP_TRAFFIC_STATS;
9867 /* Include "unknown interface" ip_mib */
9868 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9869 ipst->ips_ip_mib.ipIfStatsIfIndex =
9870 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9871 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9872 (ipst->ips_ip_forwarding ? 1 : 2));
9873 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9874 (uint32_t)ipst->ips_ip_def_ttl);
9875 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9876 sizeof (mib2_ipIfStatsEntry_t));
9877 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9878 sizeof (mib2_ipAddrEntry_t));
9879 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9880 sizeof (mib2_ipRouteEntry_t));
9881 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9882 sizeof (mib2_ipNetToMediaEntry_t));
9883 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9884 sizeof (ip_member_t));
9885 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9886 sizeof (ip_grpsrc_t));

9888 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));

9890 if (legacy_req) {
9891 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9892 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9893 }

9895 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,

new/usr/src/uts/common/inet/ip/ip.c 151

9896 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9897 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9898 "failed to allocate %u bytes\n",
9899 (uint_t)sizeof (global_ip_mib)));
9900 }

9902 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9903 ill = ILL_START_WALK_V4(&ctx, ipst);
9904 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9905 ill->ill_ip_mib->ipIfStatsIfIndex =
9906 ill->ill_phyint->phyint_ifindex;
9907 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9908 (ipst->ips_ip_forwarding ? 1 : 2));
9909 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9910 (uint32_t)ipst->ips_ip_def_ttl);

9912 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9913 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9914 (char *)ill->ill_ip_mib,
9915 (int)sizeof (*ill->ill_ip_mib))) {
9916 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9917 "failed to allocate %u bytes\n",
9918 (uint_t)sizeof (*ill->ill_ip_mib)));
9919 }
9920 }
9921 rw_exit(&ipst->ips_ill_g_lock);

9923 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9924 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9925 "level %d, name %d, len %d\n",
9926 (int)optp->level, (int)optp->name, (int)optp->len));
9927 qreply(q, mpctl);

9929 if (mp2ctl == NULL)
9930 return (NULL);

9932 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9933 legacy_req));
9934 }

9936 /* Global IPv4 ICMP statistics */
9937 static mblk_t *
9938 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9939 {
9940 struct opthdr *optp;
9941 mblk_t *mp2ctl;

9943 /*
9944 * Make a copy of the original message
9945 */
9946 mp2ctl = copymsg(mpctl);

9948 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9949 optp->level = MIB2_ICMP;
9950 optp->name = 0;
9951 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9952 (int)sizeof (ipst->ips_icmp_mib))) {
9953 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9954 (uint_t)sizeof (ipst->ips_icmp_mib)));
9955 }
9956 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9957 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9958 (int)optp->level, (int)optp->name, (int)optp->len));
9959 qreply(q, mpctl);
9960 return (mp2ctl);
9961 }

new/usr/src/uts/common/inet/ip/ip.c 152

9963 /* Global IPv4 IGMP statistics */
9964 static mblk_t *
9965 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9966 {
9967 struct opthdr *optp;
9968 mblk_t *mp2ctl;

9970 /*
9971 * make a copy of the original message
9972 */
9973 mp2ctl = copymsg(mpctl);

9975 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9976 optp->level = EXPER_IGMP;
9977 optp->name = 0;
9978 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9979 (int)sizeof (ipst->ips_igmpstat))) {
9980 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9981 (uint_t)sizeof (ipst->ips_igmpstat)));
9982 }
9983 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9984 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9985 (int)optp->level, (int)optp->name, (int)optp->len));
9986 qreply(q, mpctl);
9987 return (mp2ctl);
9988 }

9990 /* Global IPv4 Multicast Routing statistics */
9991 static mblk_t *
9992 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9993 {
9994 struct opthdr *optp;
9995 mblk_t *mp2ctl;

9997 /*
9998 * make a copy of the original message
9999 */
10000 mp2ctl = copymsg(mpctl);

10002 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10003 optp->level = EXPER_DVMRP;
10004 optp->name = 0;
10005 if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
10006 ip0dbg(("ip_mroute_stats: failed\n"));
10007 }
10008 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10009 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
10010 (int)optp->level, (int)optp->name, (int)optp->len));
10011 qreply(q, mpctl);
10012 return (mp2ctl);
10013 }

10015 /* IPv4 address information */
10016 static mblk_t *
10017 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10018 boolean_t legacy_req)
10019 {
10020 struct opthdr *optp;
10021 mblk_t *mp2ctl;
10022 mblk_t *mp_tail = NULL;
10023 ill_t *ill;
10024 ipif_t *ipif;
10025 uint_t bitval;
10026 mib2_ipAddrEntry_t mae;
10027 size_t mae_size;

new/usr/src/uts/common/inet/ip/ip.c 153

10028 zoneid_t zoneid;
10029 ill_walk_context_t ctx;

10031 /*
10032 * make a copy of the original message
10033 */
10034 mp2ctl = copymsg(mpctl);

10036 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
10037 sizeof (mib2_ipAddrEntry_t);

10039 /* ipAddrEntryTable */

10041 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10042 optp->level = MIB2_IP;
10043 optp->name = MIB2_IP_ADDR;
10044 zoneid = Q_TO_CONN(q)->conn_zoneid;

10046 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10047 ill = ILL_START_WALK_V4(&ctx, ipst);
10048 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10049 for (ipif = ill->ill_ipif; ipif != NULL;
10050 ipif = ipif->ipif_next) {
10051 if (ipif->ipif_zoneid != zoneid &&
10052 ipif->ipif_zoneid != ALL_ZONES)
10053 continue;
10054 /* Sum of count from dead IRE_LO* and our current */
10055 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10056 if (ipif->ipif_ire_local != NULL) {
10057 mae.ipAdEntInfo.ae_ibcnt +=
10058 ipif->ipif_ire_local->ire_ib_pkt_count;
10059 }
10060 mae.ipAdEntInfo.ae_obcnt = 0;
10061 mae.ipAdEntInfo.ae_focnt = 0;

10063 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10064 OCTET_LENGTH);
10065 mae.ipAdEntIfIndex.o_length =
10066 mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10067 mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10068 mae.ipAdEntNetMask = ipif->ipif_net_mask;
10069 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10070 mae.ipAdEntInfo.ae_subnet_len =
10071 ip_mask_to_plen(ipif->ipif_net_mask);
10072 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10073 for (bitval = 1;
10074 bitval &&
10075 !(bitval & ipif->ipif_brd_addr);
10076 bitval <<= 1)
10077 noop;
10078 mae.ipAdEntBcastAddr = bitval;
10079 mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10080 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10081 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric;
10082 mae.ipAdEntInfo.ae_broadcast_addr =
10083 ipif->ipif_brd_addr;
10084 mae.ipAdEntInfo.ae_pp_dst_addr =
10085 ipif->ipif_pp_dst_addr;
10086 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10087 ill->ill_flags | ill->ill_phyint->phyint_flags;
10088 mae.ipAdEntRetransmitTime =
10089 ill->ill_reachable_retrans_time;

10091 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10092 (char *)&mae, (int)mae_size)) {
10093 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "

new/usr/src/uts/common/inet/ip/ip.c 154

10094 "allocate %u bytes\n", (uint_t)mae_size));
10095 }
10096 }
10097 }
10098 rw_exit(&ipst->ips_ill_g_lock);

10100 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10101 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10102 (int)optp->level, (int)optp->name, (int)optp->len));
10103 qreply(q, mpctl);
10104 return (mp2ctl);
10105 }

10107 /* IPv6 address information */
10108 static mblk_t *
10109 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10110 boolean_t legacy_req)
10111 {
10112 struct opthdr *optp;
10113 mblk_t *mp2ctl;
10114 mblk_t *mp_tail = NULL;
10115 ill_t *ill;
10116 ipif_t *ipif;
10117 mib2_ipv6AddrEntry_t mae6;
10118 size_t mae6_size;
10119 zoneid_t zoneid;
10120 ill_walk_context_t ctx;

10122 /*
10123 * make a copy of the original message
10124 */
10125 mp2ctl = copymsg(mpctl);

10127 mae6_size = (legacy_req) ?
10128 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10129 sizeof (mib2_ipv6AddrEntry_t);

10131 /* ipv6AddrEntryTable */

10133 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10134 optp->level = MIB2_IP6;
10135 optp->name = MIB2_IP6_ADDR;
10136 zoneid = Q_TO_CONN(q)->conn_zoneid;

10138 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10139 ill = ILL_START_WALK_V6(&ctx, ipst);
10140 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10141 for (ipif = ill->ill_ipif; ipif != NULL;
10142 ipif = ipif->ipif_next) {
10143 if (ipif->ipif_zoneid != zoneid &&
10144 ipif->ipif_zoneid != ALL_ZONES)
10145 continue;
10146 /* Sum of count from dead IRE_LO* and our current */
10147 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10148 if (ipif->ipif_ire_local != NULL) {
10149 mae6.ipv6AddrInfo.ae_ibcnt +=
10150 ipif->ipif_ire_local->ire_ib_pkt_count;
10151 }
10152 mae6.ipv6AddrInfo.ae_obcnt = 0;
10153 mae6.ipv6AddrInfo.ae_focnt = 0;

10155 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10156 OCTET_LENGTH);
10157 mae6.ipv6AddrIfIndex.o_length =
10158 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10159 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;

new/usr/src/uts/common/inet/ip/ip.c 155

10160 mae6.ipv6AddrPfxLength =
10161 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10162 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10163 mae6.ipv6AddrInfo.ae_subnet_len =
10164 mae6.ipv6AddrPfxLength;
10165 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;

10167 /* Type: stateless(1), stateful(2), unknown(3) */
10168 if (ipif->ipif_flags & IPIF_ADDRCONF)
10169 mae6.ipv6AddrType = 1;
10170 else
10171 mae6.ipv6AddrType = 2;
10172 /* Anycast: true(1), false(2) */
10173 if (ipif->ipif_flags & IPIF_ANYCAST)
10174 mae6.ipv6AddrAnycastFlag = 1;
10175 else
10176 mae6.ipv6AddrAnycastFlag = 2;

10178 /*
10179 * Address status: preferred(1), deprecated(2),
10180 * invalid(3), inaccessible(4), unknown(5)
10181 */
10182 if (ipif->ipif_flags & IPIF_NOLOCAL)
10183 mae6.ipv6AddrStatus = 3;
10184 else if (ipif->ipif_flags & IPIF_DEPRECATED)
10185 mae6.ipv6AddrStatus = 2;
10186 else
10187 mae6.ipv6AddrStatus = 1;
10188 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10189 mae6.ipv6AddrInfo.ae_metric =
10190 ipif->ipif_ill->ill_metric;
10191 mae6.ipv6AddrInfo.ae_pp_dst_addr =
10192 ipif->ipif_v6pp_dst_addr;
10193 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10194 ill->ill_flags | ill->ill_phyint->phyint_flags;
10195 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10196 mae6.ipv6AddrIdentifier = ill->ill_token;
10197 mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10198 mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10199 mae6.ipv6AddrRetransmitTime =
10200 ill->ill_reachable_retrans_time;
10201 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10202 (char *)&mae6, (int)mae6_size)) {
10203 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10204 "allocate %u bytes\n",
10205 (uint_t)mae6_size));
10206 }
10207 }
10208 }
10209 rw_exit(&ipst->ips_ill_g_lock);

10211 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10212 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10213 (int)optp->level, (int)optp->name, (int)optp->len));
10214 qreply(q, mpctl);
10215 return (mp2ctl);
10216 }

10218 /* IPv4 multicast group membership. */
10219 static mblk_t *
10220 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10221 {
10222 struct opthdr *optp;
10223 mblk_t *mp2ctl;
10224 ill_t *ill;
10225 ipif_t *ipif;

new/usr/src/uts/common/inet/ip/ip.c 156

10226 ilm_t *ilm;
10227 ip_member_t ipm;
10228 mblk_t *mp_tail = NULL;
10229 ill_walk_context_t ctx;
10230 zoneid_t zoneid;

10232 /*
10233 * make a copy of the original message
10234 */
10235 mp2ctl = copymsg(mpctl);
10236 zoneid = Q_TO_CONN(q)->conn_zoneid;

10238 /* ipGroupMember table */
10239 optp = (struct opthdr *)&mpctl->b_rptr[
10240 sizeof (struct T_optmgmt_ack)];
10241 optp->level = MIB2_IP;
10242 optp->name = EXPER_IP_GROUP_MEMBERSHIP;

10244 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10245 ill = ILL_START_WALK_V4(&ctx, ipst);
10246 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10247 /* Make sure the ill isn’t going away. */
10248 if (!ill_check_and_refhold(ill))
10249 continue;
10250 rw_exit(&ipst->ips_ill_g_lock);
10251 rw_enter(&ill->ill_mcast_lock, RW_READER);
10252 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10253 if (ilm->ilm_zoneid != zoneid &&
10254 ilm->ilm_zoneid != ALL_ZONES)
10255 continue;

10257 /* Is there an ipif for ilm_ifaddr? */
10258 for (ipif = ill->ill_ipif; ipif != NULL;
10259 ipif = ipif->ipif_next) {
10260 if (!IPIF_IS_CONDEMNED(ipif) &&
10261 ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10262 ilm->ilm_ifaddr != INADDR_ANY)
10263 break;
10264 }
10265 if (ipif != NULL) {
10266 ipif_get_name(ipif,
10267 ipm.ipGroupMemberIfIndex.o_bytes,
10268 OCTET_LENGTH);
10269 } else {
10270 ill_get_name(ill,
10271 ipm.ipGroupMemberIfIndex.o_bytes,
10272 OCTET_LENGTH);
10273 }
10274 ipm.ipGroupMemberIfIndex.o_length =
10275 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);

10277 ipm.ipGroupMemberAddress = ilm->ilm_addr;
10278 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10279 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10280 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10281 (char *)&ipm, (int)sizeof (ipm))) {
10282 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10283 "failed to allocate %u bytes\n",
10284 (uint_t)sizeof (ipm)));
10285 }
10286 }
10287 rw_exit(&ill->ill_mcast_lock);
10288 ill_refrele(ill);
10289 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10290 }
10291 rw_exit(&ipst->ips_ill_g_lock);

new/usr/src/uts/common/inet/ip/ip.c 157

10292 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10293 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10294 (int)optp->level, (int)optp->name, (int)optp->len));
10295 qreply(q, mpctl);
10296 return (mp2ctl);
10297 }

10299 /* IPv6 multicast group membership. */
10300 static mblk_t *
10301 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10302 {
10303 struct opthdr *optp;
10304 mblk_t *mp2ctl;
10305 ill_t *ill;
10306 ilm_t *ilm;
10307 ipv6_member_t ipm6;
10308 mblk_t *mp_tail = NULL;
10309 ill_walk_context_t ctx;
10310 zoneid_t zoneid;

10312 /*
10313 * make a copy of the original message
10314 */
10315 mp2ctl = copymsg(mpctl);
10316 zoneid = Q_TO_CONN(q)->conn_zoneid;

10318 /* ip6GroupMember table */
10319 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10320 optp->level = MIB2_IP6;
10321 optp->name = EXPER_IP6_GROUP_MEMBERSHIP;

10323 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10324 ill = ILL_START_WALK_V6(&ctx, ipst);
10325 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10326 /* Make sure the ill isn’t going away. */
10327 if (!ill_check_and_refhold(ill))
10328 continue;
10329 rw_exit(&ipst->ips_ill_g_lock);
10330 /*
10331 * Normally we don’t have any members on under IPMP interfaces.
10332 * We report them as a debugging aid.
10333 */
10334 rw_enter(&ill->ill_mcast_lock, RW_READER);
10335 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10336 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10337 if (ilm->ilm_zoneid != zoneid &&
10338 ilm->ilm_zoneid != ALL_ZONES)
10339 continue; /* not this zone */
10340 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10341 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10342 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10343 if (!snmp_append_data2(mpctl->b_cont,
10344 &mp_tail,
10345 (char *)&ipm6, (int)sizeof (ipm6))) {
10346 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10347 "failed to allocate %u bytes\n",
10348 (uint_t)sizeof (ipm6)));
10349 }
10350 }
10351 rw_exit(&ill->ill_mcast_lock);
10352 ill_refrele(ill);
10353 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10354 }
10355 rw_exit(&ipst->ips_ill_g_lock);

10357 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);

new/usr/src/uts/common/inet/ip/ip.c 158

10358 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10359 (int)optp->level, (int)optp->name, (int)optp->len));
10360 qreply(q, mpctl);
10361 return (mp2ctl);
10362 }

10364 /* IP multicast filtered sources */
10365 static mblk_t *
10366 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10367 {
10368 struct opthdr *optp;
10369 mblk_t *mp2ctl;
10370 ill_t *ill;
10371 ipif_t *ipif;
10372 ilm_t *ilm;
10373 ip_grpsrc_t ips;
10374 mblk_t *mp_tail = NULL;
10375 ill_walk_context_t ctx;
10376 zoneid_t zoneid;
10377 int i;
10378 slist_t *sl;

10380 /*
10381 * make a copy of the original message
10382 */
10383 mp2ctl = copymsg(mpctl);
10384 zoneid = Q_TO_CONN(q)->conn_zoneid;

10386 /* ipGroupSource table */
10387 optp = (struct opthdr *)&mpctl->b_rptr[
10388 sizeof (struct T_optmgmt_ack)];
10389 optp->level = MIB2_IP;
10390 optp->name = EXPER_IP_GROUP_SOURCES;

10392 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10393 ill = ILL_START_WALK_V4(&ctx, ipst);
10394 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10395 /* Make sure the ill isn’t going away. */
10396 if (!ill_check_and_refhold(ill))
10397 continue;
10398 rw_exit(&ipst->ips_ill_g_lock);
10399 rw_enter(&ill->ill_mcast_lock, RW_READER);
10400 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10401 sl = ilm->ilm_filter;
10402 if (ilm->ilm_zoneid != zoneid &&
10403 ilm->ilm_zoneid != ALL_ZONES)
10404 continue;
10405 if (SLIST_IS_EMPTY(sl))
10406 continue;

10408 /* Is there an ipif for ilm_ifaddr? */
10409 for (ipif = ill->ill_ipif; ipif != NULL;
10410 ipif = ipif->ipif_next) {
10411 if (!IPIF_IS_CONDEMNED(ipif) &&
10412 ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10413 ilm->ilm_ifaddr != INADDR_ANY)
10414 break;
10415 }
10416 if (ipif != NULL) {
10417 ipif_get_name(ipif,
10418 ips.ipGroupSourceIfIndex.o_bytes,
10419 OCTET_LENGTH);
10420 } else {
10421 ill_get_name(ill,
10422 ips.ipGroupSourceIfIndex.o_bytes,
10423 OCTET_LENGTH);

new/usr/src/uts/common/inet/ip/ip.c 159

10424 }
10425 ips.ipGroupSourceIfIndex.o_length =
10426 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);

10428 ips.ipGroupSourceGroup = ilm->ilm_addr;
10429 for (i = 0; i < sl->sl_numsrc; i++) {
10430 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10431 continue;
10432 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10433 ips.ipGroupSourceAddress);
10434 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10435 (char *)&ips, (int)sizeof (ips)) == 0) {
10436 ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10437 " failed to allocate %u bytes\n",
10438 (uint_t)sizeof (ips)));
10439 }
10440 }
10441 }
10442 rw_exit(&ill->ill_mcast_lock);
10443 ill_refrele(ill);
10444 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10445 }
10446 rw_exit(&ipst->ips_ill_g_lock);
10447 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10448 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10449 (int)optp->level, (int)optp->name, (int)optp->len));
10450 qreply(q, mpctl);
10451 return (mp2ctl);
10452 }

10454 /* IPv6 multicast filtered sources. */
10455 static mblk_t *
10456 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10457 {
10458 struct opthdr *optp;
10459 mblk_t *mp2ctl;
10460 ill_t *ill;
10461 ilm_t *ilm;
10462 ipv6_grpsrc_t ips6;
10463 mblk_t *mp_tail = NULL;
10464 ill_walk_context_t ctx;
10465 zoneid_t zoneid;
10466 int i;
10467 slist_t *sl;

10469 /*
10470 * make a copy of the original message
10471 */
10472 mp2ctl = copymsg(mpctl);
10473 zoneid = Q_TO_CONN(q)->conn_zoneid;

10475 /* ip6GroupMember table */
10476 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10477 optp->level = MIB2_IP6;
10478 optp->name = EXPER_IP6_GROUP_SOURCES;

10480 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10481 ill = ILL_START_WALK_V6(&ctx, ipst);
10482 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10483 /* Make sure the ill isn’t going away. */
10484 if (!ill_check_and_refhold(ill))
10485 continue;
10486 rw_exit(&ipst->ips_ill_g_lock);
10487 /*
10488 * Normally we don’t have any members on under IPMP interfaces.
10489 * We report them as a debugging aid.

new/usr/src/uts/common/inet/ip/ip.c 160

10490 */
10491 rw_enter(&ill->ill_mcast_lock, RW_READER);
10492 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10493 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10494 sl = ilm->ilm_filter;
10495 if (ilm->ilm_zoneid != zoneid &&
10496 ilm->ilm_zoneid != ALL_ZONES)
10497 continue;
10498 if (SLIST_IS_EMPTY(sl))
10499 continue;
10500 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10501 for (i = 0; i < sl->sl_numsrc; i++) {
10502 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10503 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10504 (char *)&ips6, (int)sizeof (ips6))) {
10505 ip1dbg(("ip_snmp_get_mib2_ip6_"
10506 "group_src: failed to allocate "
10507 "%u bytes\n",
10508 (uint_t)sizeof (ips6)));
10509 }
10510 }
10511 }
10512 rw_exit(&ill->ill_mcast_lock);
10513 ill_refrele(ill);
10514 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10515 }
10516 rw_exit(&ipst->ips_ill_g_lock);

10518 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10519 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10520 (int)optp->level, (int)optp->name, (int)optp->len));
10521 qreply(q, mpctl);
10522 return (mp2ctl);
10523 }

10525 /* Multicast routing virtual interface table. */
10526 static mblk_t *
10527 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10528 {
10529 struct opthdr *optp;
10530 mblk_t *mp2ctl;

10532 /*
10533 * make a copy of the original message
10534 */
10535 mp2ctl = copymsg(mpctl);

10537 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10538 optp->level = EXPER_DVMRP;
10539 optp->name = EXPER_DVMRP_VIF;
10540 if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10541 ip0dbg(("ip_mroute_vif: failed\n"));
10542 }
10543 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10544 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10545 (int)optp->level, (int)optp->name, (int)optp->len));
10546 qreply(q, mpctl);
10547 return (mp2ctl);
10548 }

10550 /* Multicast routing table. */
10551 static mblk_t *
10552 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10553 {
10554 struct opthdr *optp;
10555 mblk_t *mp2ctl;

new/usr/src/uts/common/inet/ip/ip.c 161

10557 /*
10558 * make a copy of the original message
10559 */
10560 mp2ctl = copymsg(mpctl);

10562 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10563 optp->level = EXPER_DVMRP;
10564 optp->name = EXPER_DVMRP_MRT;
10565 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10566 ip0dbg(("ip_mroute_mrt: failed\n"));
10567 }
10568 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10569 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10570 (int)optp->level, (int)optp->name, (int)optp->len));
10571 qreply(q, mpctl);
10572 return (mp2ctl);
10573 }

10575 /*
10576 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10577 * in one IRE walk.
10578 */
10579 static mblk_t *
10580 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10581 ip_stack_t *ipst)
10582 {
10583 struct opthdr *optp;
10584 mblk_t *mp2ctl; /* Returned */
10585 mblk_t *mp3ctl; /* nettomedia */
10586 mblk_t *mp4ctl; /* routeattrs */
10587 iproutedata_t ird;
10588 zoneid_t zoneid;

10590 /*
10591 * make copies of the original message
10592 * - mp2ctl is returned unchanged to the caller for his use
10593 * - mpctl is sent upstream as ipRouteEntryTable
10594 * - mp3ctl is sent upstream as ipNetToMediaEntryTable
10595 * - mp4ctl is sent upstream as ipRouteAttributeTable
10596 */
10597 mp2ctl = copymsg(mpctl);
10598 mp3ctl = copymsg(mpctl);
10599 mp4ctl = copymsg(mpctl);
10600 if (mp3ctl == NULL || mp4ctl == NULL) {
10601 freemsg(mp4ctl);
10602 freemsg(mp3ctl);
10603 freemsg(mp2ctl);
10604 freemsg(mpctl);
10605 return (NULL);
10606 }

10608 bzero(&ird, sizeof (ird));

10610 ird.ird_route.lp_head = mpctl->b_cont;
10611 ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10612 ird.ird_attrs.lp_head = mp4ctl->b_cont;
10613 /*
10614 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10615 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is
10616 * intended a temporary solution until a proper MIB API is provided
10617 * that provides complete filtering/caller-opt-in.
10618 */
10619 if (level == EXPER_IP_AND_ALL_IRES)
10620 ird.ird_flags |= IRD_REPORT_ALL;

new/usr/src/uts/common/inet/ip/ip.c 162

10622 zoneid = Q_TO_CONN(q)->conn_zoneid;
10623 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);

10625 /* ipRouteEntryTable in mpctl */
10626 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10627 optp->level = MIB2_IP;
10628 optp->name = MIB2_IP_ROUTE;
10629 optp->len = msgdsize(ird.ird_route.lp_head);
10630 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10631 (int)optp->level, (int)optp->name, (int)optp->len));
10632 qreply(q, mpctl);

10634 /* ipNetToMediaEntryTable in mp3ctl */
10635 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);

10637 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10638 optp->level = MIB2_IP;
10639 optp->name = MIB2_IP_MEDIA;
10640 optp->len = msgdsize(ird.ird_netmedia.lp_head);
10641 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10642 (int)optp->level, (int)optp->name, (int)optp->len));
10643 qreply(q, mp3ctl);

10645 /* ipRouteAttributeTable in mp4ctl */
10646 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10647 optp->level = MIB2_IP;
10648 optp->name = EXPER_IP_RTATTR;
10649 optp->len = msgdsize(ird.ird_attrs.lp_head);
10650 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10651 (int)optp->level, (int)optp->name, (int)optp->len));
10652 if (optp->len == 0)
10653 freemsg(mp4ctl);
10654 else
10655 qreply(q, mp4ctl);

10657 return (mp2ctl);
10658 }

10660 /*
10661 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10662 * ipv6NetToMediaEntryTable in an NDP walk.
10663 */
10664 static mblk_t *
10665 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10666 ip_stack_t *ipst)
10667 {
10668 struct opthdr *optp;
10669 mblk_t *mp2ctl; /* Returned */
10670 mblk_t *mp3ctl; /* nettomedia */
10671 mblk_t *mp4ctl; /* routeattrs */
10672 iproutedata_t ird;
10673 zoneid_t zoneid;

10675 /*
10676 * make copies of the original message
10677 * - mp2ctl is returned unchanged to the caller for his use
10678 * - mpctl is sent upstream as ipv6RouteEntryTable
10679 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10680 * - mp4ctl is sent upstream as ipv6RouteAttributeTable
10681 */
10682 mp2ctl = copymsg(mpctl);
10683 mp3ctl = copymsg(mpctl);
10684 mp4ctl = copymsg(mpctl);
10685 if (mp3ctl == NULL || mp4ctl == NULL) {
10686 freemsg(mp4ctl);
10687 freemsg(mp3ctl);

new/usr/src/uts/common/inet/ip/ip.c 163

10688 freemsg(mp2ctl);
10689 freemsg(mpctl);
10690 return (NULL);
10691 }

10693 bzero(&ird, sizeof (ird));

10695 ird.ird_route.lp_head = mpctl->b_cont;
10696 ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10697 ird.ird_attrs.lp_head = mp4ctl->b_cont;
10698 /*
10699 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10700 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is
10701 * intended a temporary solution until a proper MIB API is provided
10702 * that provides complete filtering/caller-opt-in.
10703 */
10704 if (level == EXPER_IP_AND_ALL_IRES)
10705 ird.ird_flags |= IRD_REPORT_ALL;

10707 zoneid = Q_TO_CONN(q)->conn_zoneid;
10708 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);

10710 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10711 optp->level = MIB2_IP6;
10712 optp->name = MIB2_IP6_ROUTE;
10713 optp->len = msgdsize(ird.ird_route.lp_head);
10714 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10715 (int)optp->level, (int)optp->name, (int)optp->len));
10716 qreply(q, mpctl);

10718 /* ipv6NetToMediaEntryTable in mp3ctl */
10719 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);

10721 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10722 optp->level = MIB2_IP6;
10723 optp->name = MIB2_IP6_MEDIA;
10724 optp->len = msgdsize(ird.ird_netmedia.lp_head);
10725 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10726 (int)optp->level, (int)optp->name, (int)optp->len));
10727 qreply(q, mp3ctl);

10729 /* ipv6RouteAttributeTable in mp4ctl */
10730 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10731 optp->level = MIB2_IP6;
10732 optp->name = EXPER_IP_RTATTR;
10733 optp->len = msgdsize(ird.ird_attrs.lp_head);
10734 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10735 (int)optp->level, (int)optp->name, (int)optp->len));
10736 if (optp->len == 0)
10737 freemsg(mp4ctl);
10738 else
10739 qreply(q, mp4ctl);

10741 return (mp2ctl);
10742 }

10744 /*
10745 * IPv6 mib: One per ill
10746 */
10747 static mblk_t *
10748 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10749 boolean_t legacy_req)
10750 {
10751 struct opthdr *optp;
10752 mblk_t *mp2ctl;
10753 ill_t *ill;

new/usr/src/uts/common/inet/ip/ip.c 164

10754 ill_walk_context_t ctx;
10755 mblk_t *mp_tail = NULL;
10756 mib2_ipv6AddrEntry_t mae6;
10757 mib2_ipIfStatsEntry_t *ise;
10758 size_t ise_size, iae_size;

10760 /*
10761 * Make a copy of the original message
10762 */
10763 mp2ctl = copymsg(mpctl);

10765 /* fixed length IPv6 structure ... */

10767 if (legacy_req) {
10768 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10769 mib2_ipIfStatsEntry_t);
10770 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10771 } else {
10772 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10773 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10774 }

10776 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10777 optp->level = MIB2_IP6;
10778 optp->name = 0;
10779 /* Include "unknown interface" ip6_mib */
10780 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10781 ipst->ips_ip6_mib.ipIfStatsIfIndex =
10782 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10783 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10784 ipst->ips_ipv6_forwarding ? 1 : 2);
10785 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10786 ipst->ips_ipv6_def_hops);
10787 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10788 sizeof (mib2_ipIfStatsEntry_t));
10789 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10790 sizeof (mib2_ipv6AddrEntry_t));
10791 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10792 sizeof (mib2_ipv6RouteEntry_t));
10793 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10794 sizeof (mib2_ipv6NetToMediaEntry_t));
10795 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10796 sizeof (ipv6_member_t));
10797 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10798 sizeof (ipv6_grpsrc_t));

10800 /*
10801 * Synchronize 64- and 32-bit counters
10802 */
10803 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10804 ipIfStatsHCInReceives);
10805 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10806 ipIfStatsHCInDelivers);
10807 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10808 ipIfStatsHCOutRequests);
10809 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10810 ipIfStatsHCOutForwDatagrams);
10811 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10812 ipIfStatsHCOutMcastPkts);
10813 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10814 ipIfStatsHCInMcastPkts);

10816 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10817 (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10818 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10819 (uint_t)ise_size));

new/usr/src/uts/common/inet/ip/ip.c 165

10820 } else if (legacy_req) {
10821 /* Adjust the EntrySize fields for legacy requests. */
10822 ise =
10823 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10824 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10825 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10826 }

10828 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10829 ill = ILL_START_WALK_V6(&ctx, ipst);
10830 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10831 ill->ill_ip_mib->ipIfStatsIfIndex =
10832 ill->ill_phyint->phyint_ifindex;
10833 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10834 ipst->ips_ipv6_forwarding ? 1 : 2);
10835 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10836 ill->ill_max_hops);

10838 /*
10839 * Synchronize 64- and 32-bit counters
10840 */
10841 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10842 ipIfStatsHCInReceives);
10843 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10844 ipIfStatsHCInDelivers);
10845 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10846 ipIfStatsHCOutRequests);
10847 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10848 ipIfStatsHCOutForwDatagrams);
10849 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10850 ipIfStatsHCOutMcastPkts);
10851 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10852 ipIfStatsHCInMcastPkts);

10854 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10855 (char *)ill->ill_ip_mib, (int)ise_size)) {
10856 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10857 "%u bytes\n", (uint_t)ise_size));
10858 } else if (legacy_req) {
10859 /* Adjust the EntrySize fields for legacy requests. */
10860 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10861 (int)ise_size);
10862 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10863 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10864 }
10865 }
10866 rw_exit(&ipst->ips_ill_g_lock);

10868 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10869 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10870 (int)optp->level, (int)optp->name, (int)optp->len));
10871 qreply(q, mpctl);
10872 return (mp2ctl);
10873 }

10875 /*
10876 * ICMPv6 mib: One per ill
10877 */
10878 static mblk_t *
10879 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10880 {
10881 struct opthdr *optp;
10882 mblk_t *mp2ctl;
10883 ill_t *ill;
10884 ill_walk_context_t ctx;
10885 mblk_t *mp_tail = NULL;

new/usr/src/uts/common/inet/ip/ip.c 166

10886 /*
10887 * Make a copy of the original message
10888 */
10889 mp2ctl = copymsg(mpctl);

10891 /* fixed length ICMPv6 structure ... */

10893 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10894 optp->level = MIB2_ICMP6;
10895 optp->name = 0;
10896 /* Include "unknown interface" icmp6_mib */
10897 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10898 MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10899 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10900 sizeof (mib2_ipv6IfIcmpEntry_t);
10901 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10902 (char *)&ipst->ips_icmp6_mib,
10903 (int)sizeof (ipst->ips_icmp6_mib))) {
10904 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10905 (uint_t)sizeof (ipst->ips_icmp6_mib)));
10906 }

10908 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10909 ill = ILL_START_WALK_V6(&ctx, ipst);
10910 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10911 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10912 ill->ill_phyint->phyint_ifindex;
10913 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10914 (char *)ill->ill_icmp6_mib,
10915 (int)sizeof (*ill->ill_icmp6_mib))) {
10916 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10917 "%u bytes\n",
10918 (uint_t)sizeof (*ill->ill_icmp6_mib)));
10919 }
10920 }
10921 rw_exit(&ipst->ips_ill_g_lock);

10923 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10924 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10925 (int)optp->level, (int)optp->name, (int)optp->len));
10926 qreply(q, mpctl);
10927 return (mp2ctl);
10928 }

10930 /*
10931 * ire_walk routine to create both ipRouteEntryTable and
10932 * ipRouteAttributeTable in one IRE walk
10933 */
10934 static void
10935 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10936 {
10937 ill_t *ill;
10938 mib2_ipRouteEntry_t *re;
10939 mib2_ipAttributeEntry_t iaes;
10940 tsol_ire_gw_secattr_t *attrp;
10941 tsol_gc_t *gc = NULL;
10942 tsol_gcgrp_t *gcgrp = NULL;
10943 ip_stack_t *ipst = ire->ire_ipst;

10945 ASSERT(ire->ire_ipversion == IPV4_VERSION);

10947 if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10948 if (ire->ire_testhidden)
10949 return;
10950 if (ire->ire_type & IRE_IF_CLONE)
10951 return;

new/usr/src/uts/common/inet/ip/ip.c 167

10952 }

10954 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10955 return;

10957 if ((attrp = ire->ire_gw_secattr) != NULL) {
10958 mutex_enter(&attrp->igsa_lock);
10959 if ((gc = attrp->igsa_gc) != NULL) {
10960 gcgrp = gc->gc_grp;
10961 ASSERT(gcgrp != NULL);
10962 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10963 }
10964 mutex_exit(&attrp->igsa_lock);
10965 }
10966 /*
10967 * Return all IRE types for route table... let caller pick and choose
10968 */
10969 re->ipRouteDest = ire->ire_addr;
10970 ill = ire->ire_ill;
10971 re->ipRouteIfIndex.o_length = 0;
10972 if (ill != NULL) {
10973 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10974 re->ipRouteIfIndex.o_length =
10975 mi_strlen(re->ipRouteIfIndex.o_bytes);
10976 }
10977 re->ipRouteMetric1 = -1;
10978 re->ipRouteMetric2 = -1;
10979 re->ipRouteMetric3 = -1;
10980 re->ipRouteMetric4 = -1;

10982 re->ipRouteNextHop = ire->ire_gateway_addr;
10983 /* indirect(4), direct(3), or invalid(2) */
10984 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10985 re->ipRouteType = 2;
10986 else if (ire->ire_type & IRE_ONLINK)
10987 re->ipRouteType = 3;
10988 else
10989 re->ipRouteType = 4;

10991 re->ipRouteProto = -1;
10992 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10993 re->ipRouteMask = ire->ire_mask;
10994 re->ipRouteMetric5 = -1;
10995 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10996 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10997 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;

10999 re->ipRouteInfo.re_frag_flag = 0;
11000 re->ipRouteInfo.re_rtt = 0;
11001 re->ipRouteInfo.re_src_addr = 0;
11002 re->ipRouteInfo.re_ref = ire->ire_refcnt;
11003 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count;
11004 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
11005 re->ipRouteInfo.re_flags = ire->ire_flags;

11007 /* Add the IRE_IF_CLONE’s counters to their parent IRE_INTERFACE */
11008 if (ire->ire_type & IRE_INTERFACE) {
11009 ire_t *child;

11011 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11012 child = ire->ire_dep_children;
11013 while (child != NULL) {
11014 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
11015 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11016 child = child->ire_dep_sib_next;
11017 }

new/usr/src/uts/common/inet/ip/ip.c 168

11018 rw_exit(&ipst->ips_ire_dep_lock);
11019 }

11021 if (ire->ire_flags & RTF_DYNAMIC) {
11022 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT;
11023 } else {
11024 re->ipRouteInfo.re_ire_type = ire->ire_type;
11025 }

11027 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11028 (char *)re, (int)sizeof (*re))) {
11029 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11030 (uint_t)sizeof (*re)));
11031 }

11033 if (gc != NULL) {
11034 iaes.iae_routeidx = ird->ird_idx;
11035 iaes.iae_doi = gc->gc_db->gcdb_doi;
11036 iaes.iae_slrange = gc->gc_db->gcdb_slrange;

11038 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11039 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11040 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11041 "bytes\n", (uint_t)sizeof (iaes)));
11042 }
11043 }

11045 /* bump route index for next pass */
11046 ird->ird_idx++;

11048 kmem_free(re, sizeof (*re));
11049 if (gcgrp != NULL)
11050 rw_exit(&gcgrp->gcgrp_rwlock);
11051 }

11053 /*
11054 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11055 */
11056 static void
11057 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11058 {
11059 ill_t *ill;
11060 mib2_ipv6RouteEntry_t *re;
11061 mib2_ipAttributeEntry_t iaes;
11062 tsol_ire_gw_secattr_t *attrp;
11063 tsol_gc_t *gc = NULL;
11064 tsol_gcgrp_t *gcgrp = NULL;
11065 ip_stack_t *ipst = ire->ire_ipst;

11067 ASSERT(ire->ire_ipversion == IPV6_VERSION);

11069 if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11070 if (ire->ire_testhidden)
11071 return;
11072 if (ire->ire_type & IRE_IF_CLONE)
11073 return;
11074 }

11076 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11077 return;

11079 if ((attrp = ire->ire_gw_secattr) != NULL) {
11080 mutex_enter(&attrp->igsa_lock);
11081 if ((gc = attrp->igsa_gc) != NULL) {
11082 gcgrp = gc->gc_grp;
11083 ASSERT(gcgrp != NULL);

new/usr/src/uts/common/inet/ip/ip.c 169

11084 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11085 }
11086 mutex_exit(&attrp->igsa_lock);
11087 }
11088 /*
11089 * Return all IRE types for route table... let caller pick and choose
11090 */
11091 re->ipv6RouteDest = ire->ire_addr_v6;
11092 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11093 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */
11094 re->ipv6RouteIfIndex.o_length = 0;
11095 ill = ire->ire_ill;
11096 if (ill != NULL) {
11097 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11098 re->ipv6RouteIfIndex.o_length =
11099 mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11100 }

11102 ASSERT(!(ire->ire_type & IRE_BROADCAST));

11104 mutex_enter(&ire->ire_lock);
11105 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11106 mutex_exit(&ire->ire_lock);

11108 /* remote(4), local(3), or discard(2) */
11109 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11110 re->ipv6RouteType = 2;
11111 else if (ire->ire_type & IRE_ONLINK)
11112 re->ipv6RouteType = 3;
11113 else
11114 re->ipv6RouteType = 4;

11116 re->ipv6RouteProtocol = -1;
11117 re->ipv6RoutePolicy = 0;
11118 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time;
11119 re->ipv6RouteNextHopRDI = 0;
11120 re->ipv6RouteWeight = 0;
11121 re->ipv6RouteMetric = 0;
11122 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11123 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11124 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;

11126 re->ipv6RouteInfo.re_frag_flag = 0;
11127 re->ipv6RouteInfo.re_rtt = 0;
11128 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros;
11129 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count;
11130 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
11131 re->ipv6RouteInfo.re_ref = ire->ire_refcnt;
11132 re->ipv6RouteInfo.re_flags = ire->ire_flags;

11134 /* Add the IRE_IF_CLONE’s counters to their parent IRE_INTERFACE */
11135 if (ire->ire_type & IRE_INTERFACE) {
11136 ire_t *child;

11138 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11139 child = ire->ire_dep_children;
11140 while (child != NULL) {
11141 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11142 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11143 child = child->ire_dep_sib_next;
11144 }
11145 rw_exit(&ipst->ips_ire_dep_lock);
11146 }
11147 if (ire->ire_flags & RTF_DYNAMIC) {
11148 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT;
11149 } else {

new/usr/src/uts/common/inet/ip/ip.c 170

11150 re->ipv6RouteInfo.re_ire_type = ire->ire_type;
11151 }

11153 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11154 (char *)re, (int)sizeof (*re))) {
11155 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11156 (uint_t)sizeof (*re)));
11157 }

11159 if (gc != NULL) {
11160 iaes.iae_routeidx = ird->ird_idx;
11161 iaes.iae_doi = gc->gc_db->gcdb_doi;
11162 iaes.iae_slrange = gc->gc_db->gcdb_slrange;

11164 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11165 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11166 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11167 "bytes\n", (uint_t)sizeof (iaes)));
11168 }
11169 }

11171 /* bump route index for next pass */
11172 ird->ird_idx++;

11174 kmem_free(re, sizeof (*re));
11175 if (gcgrp != NULL)
11176 rw_exit(&gcgrp->gcgrp_rwlock);
11177 }

11179 /*
11180 * ncec_walk routine to create ipv6NetToMediaEntryTable
11181 */
11182 static int
11183 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11184 {
11185 ill_t *ill;
11186 mib2_ipv6NetToMediaEntry_t ntme;

11188 ill = ncec->ncec_ill;
11189 /* skip arpce entries, and loopback ncec entries */
11190 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11191 return (0);
11192 /*
11193 * Neighbor cache entry attached to IRE with on-link
11194 * destination.
11195 * We report all IPMP groups on ncec_ill which is normally the upper.
11196 */
11197 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11198 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11199 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11200 if (ncec->ncec_lladdr != NULL) {
11201 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11202 ntme.ipv6NetToMediaPhysAddress.o_length);
11203 }
11204 /*
11205 * Note: Returns ND_* states. Should be:
11206 * reachable(1), stale(2), delay(3), probe(4),
11207 * invalid(5), unknown(6)
11208 */
11209 ntme.ipv6NetToMediaState = ncec->ncec_state;
11210 ntme.ipv6NetToMediaLastUpdated = 0;

11212 /* other(1), dynamic(2), static(3), local(4) */
11213 if (NCE_MYADDR(ncec)) {
11214 ntme.ipv6NetToMediaType = 4;
11215 } else if (ncec->ncec_flags & NCE_F_PUBLISH) {

new/usr/src/uts/common/inet/ip/ip.c 171

11216 ntme.ipv6NetToMediaType = 1; /* proxy */
11217 } else if (ncec->ncec_flags & NCE_F_STATIC) {
11218 ntme.ipv6NetToMediaType = 3;
11219 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11220 ntme.ipv6NetToMediaType = 1;
11221 } else {
11222 ntme.ipv6NetToMediaType = 2;
11223 }

11225 if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11226 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11227 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11228 (uint_t)sizeof (ntme)));
11229 }
11230 return (0);
11231 }

11233 int
11234 nce2ace(ncec_t *ncec)
11235 {
11236 int flags = 0;

11238 if (NCE_ISREACHABLE(ncec))
11239 flags |= ACE_F_RESOLVED;
11240 if (ncec->ncec_flags & NCE_F_AUTHORITY)
11241 flags |= ACE_F_AUTHORITY;
11242 if (ncec->ncec_flags & NCE_F_PUBLISH)
11243 flags |= ACE_F_PUBLISH;
11244 if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11245 flags |= ACE_F_PERMANENT;
11246 if (NCE_MYADDR(ncec))
11247 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11248 if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11249 flags |= ACE_F_UNVERIFIED;
11250 if (ncec->ncec_flags & NCE_F_AUTHORITY)
11251 flags |= ACE_F_AUTHORITY;
11252 if (ncec->ncec_flags & NCE_F_DELAYED)
11253 flags |= ACE_F_DELAYED;
11254 return (flags);
11255 }

11257 /*
11258 * ncec_walk routine to create ipNetToMediaEntryTable
11259 */
11260 static int
11261 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11262 {
11263 ill_t *ill;
11264 mib2_ipNetToMediaEntry_t ntme;
11265 const char *name = "unknown";
11266 ipaddr_t ncec_addr;

11268 ill = ncec->ncec_ill;
11269 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11270 ill->ill_net_type == IRE_LOOPBACK)
11271 return (0);

11273 /* We report all IPMP groups on ncec_ill which is normally the upper. */
11274 name = ill->ill_name;
11275 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11276 if (NCE_MYADDR(ncec)) {
11277 ntme.ipNetToMediaType = 4;
11278 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11279 ntme.ipNetToMediaType = 1;
11280 } else {
11281 ntme.ipNetToMediaType = 3;

new/usr/src/uts/common/inet/ip/ip.c 172

11282 }
11283 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11284 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11285 ntme.ipNetToMediaIfIndex.o_length);

11287 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11288 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));

11290 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11291 ncec_addr = INADDR_BROADCAST;
11292 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11293 sizeof (ncec_addr));
11294 /*
11295 * map all the flags to the ACE counterpart.
11296 */
11297 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);

11299 ntme.ipNetToMediaPhysAddress.o_length =
11300 MIN(OCTET_LENGTH, ill->ill_phys_addr_length);

11302 if (!NCE_ISREACHABLE(ncec))
11303 ntme.ipNetToMediaPhysAddress.o_length = 0;
11304 else {
11305 if (ncec->ncec_lladdr != NULL) {
11306 bcopy(ncec->ncec_lladdr,
11307 ntme.ipNetToMediaPhysAddress.o_bytes,
11308 ntme.ipNetToMediaPhysAddress.o_length);
11309 }
11310 }

11312 if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11313 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11314 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11315 (uint_t)sizeof (ntme)));
11316 }
11317 return (0);
11318 }

11320 /*
11321 * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11322 */
11323 /* ARGSUSED */
11324 int
11325 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11326 {
11327 switch (level) {
11328 case MIB2_IP:
11329 case MIB2_ICMP:
11330 switch (name) {
11331 default:
11332 break;
11333 }
11334 return (1);
11335 default:
11336 return (1);
11337 }
11338 }

11340 /*
11341 * When there exists both a 64- and 32-bit counter of a particular type
11342 * (i.e., InReceives), only the 64-bit counters are added.
11343 */
11344 void
11345 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11346 {
11347 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);

new/usr/src/uts/common/inet/ip/ip.c 173

11348 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11349 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11350 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11351 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11352 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11353 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11354 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11355 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11356 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11357 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11358 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11359 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11360 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11361 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11362 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11363 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11364 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11365 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11366 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11367 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11368 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11369 o2->ipIfStatsInWrongIPVersion);
11370 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11371 o2->ipIfStatsInWrongIPVersion);
11372 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11373 o2->ipIfStatsOutSwitchIPVersion);
11374 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11375 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11376 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11377 o2->ipIfStatsHCInForwDatagrams);
11378 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11379 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11380 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11381 o2->ipIfStatsHCOutForwDatagrams);
11382 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11383 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11384 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11385 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11386 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11387 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11388 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11389 o2->ipIfStatsHCOutMcastOctets);
11390 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11391 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11392 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11393 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11394 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11395 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11396 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11397 }

11399 void
11400 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11401 {
11402 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11403 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11404 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11405 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11406 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11407 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11408 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11409 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11410 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11411 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11412 o2->ipv6IfIcmpInRouterSolicits);
11413 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,

new/usr/src/uts/common/inet/ip/ip.c 174

11414 o2->ipv6IfIcmpInRouterAdvertisements);
11415 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11416 o2->ipv6IfIcmpInNeighborSolicits);
11417 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11418 o2->ipv6IfIcmpInNeighborAdvertisements);
11419 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11420 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11421 o2->ipv6IfIcmpInGroupMembQueries);
11422 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11423 o2->ipv6IfIcmpInGroupMembResponses);
11424 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11425 o2->ipv6IfIcmpInGroupMembReductions);
11426 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11427 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11428 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11429 o2->ipv6IfIcmpOutDestUnreachs);
11430 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11431 o2->ipv6IfIcmpOutAdminProhibs);
11432 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11433 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11434 o2->ipv6IfIcmpOutParmProblems);
11435 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11436 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11437 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11438 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11439 o2->ipv6IfIcmpOutRouterSolicits);
11440 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11441 o2->ipv6IfIcmpOutRouterAdvertisements);
11442 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11443 o2->ipv6IfIcmpOutNeighborSolicits);
11444 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11445 o2->ipv6IfIcmpOutNeighborAdvertisements);
11446 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11447 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11448 o2->ipv6IfIcmpOutGroupMembQueries);
11449 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11450 o2->ipv6IfIcmpOutGroupMembResponses);
11451 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11452 o2->ipv6IfIcmpOutGroupMembReductions);
11453 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11454 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11455 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11456 o2->ipv6IfIcmpInBadNeighborAdvertisements);
11457 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11458 o2->ipv6IfIcmpInBadNeighborSolicitations);
11459 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11460 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11461 o2->ipv6IfIcmpInGroupMembTotal);
11462 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11463 o2->ipv6IfIcmpInGroupMembBadQueries);
11464 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11465 o2->ipv6IfIcmpInGroupMembBadReports);
11466 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11467 o2->ipv6IfIcmpInGroupMembOurReports);
11468 }

11470 /*
11471 * Called before the options are updated to check if this packet will
11472 * be source routed from here.
11473 * This routine assumes that the options are well formed i.e. that they
11474 * have already been checked.
11475 */
11476 boolean_t
11477 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11478 {
11479 ipoptp_t opts;

new/usr/src/uts/common/inet/ip/ip.c 175

11480 uchar_t *opt;
11481 uint8_t optval;
11482 uint8_t optlen;
11483 ipaddr_t dst;

11485 if (IS_SIMPLE_IPH(ipha)) {
11486 ip2dbg(("not source routed\n"));
11487 return (B_FALSE);
11488 }
11489 dst = ipha->ipha_dst;
11490 for (optval = ipoptp_first(&opts, ipha);
11491 optval != IPOPT_EOL;
11492 optval = ipoptp_next(&opts)) {
11493 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11494 opt = opts.ipoptp_cur;
11495 optlen = opts.ipoptp_len;
11496 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11497 optval, optlen));
11498 switch (optval) {
11499 uint32_t off;
11500 case IPOPT_SSRR:
11501 case IPOPT_LSRR:
11502 /*
11503 * If dst is one of our addresses and there are some
11504 * entries left in the source route return (true).
11505 */
11506 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11507 ip2dbg(("ip_source_routed: not next"
11508 " source route 0x%x\n",
11509 ntohl(dst)));
11510 return (B_FALSE);
11511 }
11512 off = opt[IPOPT_OFFSET];
11513 off--;
11514 if (optlen < IP_ADDR_LEN ||
11515 off > optlen - IP_ADDR_LEN) {
11516 /* End of source route */
11517 ip1dbg(("ip_source_routed: end of SR\n"));
11518 return (B_FALSE);
11519 }
11520 return (B_TRUE);
11521 }
11522 }
11523 ip2dbg(("not source routed\n"));
11524 return (B_FALSE);
11525 }

11527 /*
11528 * ip_unbind is called by the transports to remove a conn from
11529 * the fanout table.
11530 */
11531 void
11532 ip_unbind(conn_t *connp)
11533 {

11535 ASSERT(!MUTEX_HELD(&connp->conn_lock));

11537 if (is_system_labeled() && connp->conn_anon_port) {
11538 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11539 connp->conn_mlp_type, connp->conn_proto,
11540 ntohs(connp->conn_lport), B_FALSE);
11541 connp->conn_anon_port = 0;
11542 }
11543 connp->conn_mlp_type = mlptSingle;

11545 ipcl_hash_remove(connp);

new/usr/src/uts/common/inet/ip/ip.c 176

11546 }

11548 /*
11549 * Used for deciding the MSS size for the upper layer. Thus
11550 * we need to check the outbound policy values in the conn.
11551 */
11552 int
11553 conn_ipsec_length(conn_t *connp)
11554 {
11555 ipsec_latch_t *ipl;

11557 ipl = connp->conn_latch;
11558 if (ipl == NULL)
11559 return (0);

11561 if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11562 return (0);

11564 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11565 }

11567 /*
11568 * Returns an estimate of the IPsec headers size. This is used if
11569 * we don’t want to call into IPsec to get the exact size.
11570 */
11571 int
11572 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11573 {
11574 ipsec_action_t *a;

11576 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11577 return (0);

11579 a = ixa->ixa_ipsec_action;
11580 if (a == NULL) {
11581 ASSERT(ixa->ixa_ipsec_policy != NULL);
11582 a = ixa->ixa_ipsec_policy->ipsp_act;
11583 }
11584 ASSERT(a != NULL);

11586 return (a->ipa_ovhd);
11587 }

11589 /*
11590 * If there are any source route options, return the true final
11591 * destination. Otherwise, return the destination.
11592 */
11593 ipaddr_t
11594 ip_get_dst(ipha_t *ipha)
11595 {
11596 ipoptp_t opts;
11597 uchar_t *opt;
11598 uint8_t optval;
11599 uint8_t optlen;
11600 ipaddr_t dst;
11601 uint32_t off;

11603 dst = ipha->ipha_dst;

11605 if (IS_SIMPLE_IPH(ipha))
11606 return (dst);

11608 for (optval = ipoptp_first(&opts, ipha);
11609 optval != IPOPT_EOL;
11610 optval = ipoptp_next(&opts)) {
11611 opt = opts.ipoptp_cur;

new/usr/src/uts/common/inet/ip/ip.c 177

11612 optlen = opts.ipoptp_len;
11613 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11614 switch (optval) {
11615 case IPOPT_SSRR:
11616 case IPOPT_LSRR:
11617 off = opt[IPOPT_OFFSET];
11618 /*
11619 * If one of the conditions is true, it means
11620 * end of options and dst already has the right
11621 * value.
11622 */
11623 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11624 off = optlen - IP_ADDR_LEN;
11625 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11626 }
11627 return (dst);
11628 default:
11629 break;
11630 }
11631 }

11633 return (dst);
11634 }

11636 /*
11637 * Outbound IP fragmentation routine.
11638 * Assumes the caller has checked whether or not fragmentation should
11639 * be allowed. Here we copy the DF bit from the header to all the generated
11640 * fragments.
11641 */
11642 int
11643 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11644 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11645 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11646 {
11647 int i1;
11648 int hdr_len;
11649 mblk_t *hdr_mp;
11650 ipha_t *ipha;
11651 int ip_data_end;
11652 int len;
11653 mblk_t *mp = mp_orig;
11654 int offset;
11655 ill_t *ill = nce->nce_ill;
11656 ip_stack_t *ipst = ill->ill_ipst;
11657 mblk_t *carve_mp;
11658 uint32_t frag_flag;
11659 uint_t priority = mp->b_band;
11660 int error = 0;

11662 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);

11664 if (pkt_len != msgdsize(mp)) {
11665 ip0dbg(("Packet length mismatch: %d, %ld\n",
11666 pkt_len, msgdsize(mp)));
11667 freemsg(mp);
11668 return (EINVAL);
11669 }

11671 if (max_frag == 0) {
11672 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11673 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11674 ip_drop_output("FragFails: zero max_frag", mp, ill);
11675 freemsg(mp);
11676 return (EINVAL);
11677 }

new/usr/src/uts/common/inet/ip/ip.c 178

11679 ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11680 ipha = (ipha_t *)mp->b_rptr;
11681 ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11682 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;

11684 /*
11685 * Establish the starting offset. May not be zero if we are fragging
11686 * a fragment that is being forwarded.
11687 */
11688 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;

11690 /* TODO why is this test needed? */
11691 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11692 /* TODO: notify ulp somehow */
11693 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11694 ip_drop_output("FragFails: bad starting offset", mp, ill);
11695 freemsg(mp);
11696 return (EINVAL);
11697 }

11699 hdr_len = IPH_HDR_LENGTH(ipha);
11700 ipha->ipha_hdr_checksum = 0;

11702 /*
11703 * Establish the number of bytes maximum per frag, after putting
11704 * in the header.
11705 */
11706 len = (max_frag - hdr_len) & ~7;

11708 /* Get a copy of the header for the trailing frags */
11709 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11710 mp);
11711 if (hdr_mp == NULL) {
11712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11713 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11714 freemsg(mp);
11715 return (ENOBUFS);
11716 }

11718 /* Store the starting offset, with the MoreFrags flag. */
11719 i1 = offset | IPH_MF | frag_flag;
11720 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);

11722 /* Establish the ending byte offset, based on the starting offset. */
11723 offset <<= 3;
11724 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;

11726 /* Store the length of the first fragment in the IP header. */
11727 i1 = len + hdr_len;
11728 ASSERT(i1 <= IP_MAXPACKET);
11729 ipha->ipha_length = htons((uint16_t)i1);

11731 /*
11732 * Compute the IP header checksum for the first frag. We have to
11733 * watch out that we stop at the end of the header.
11734 */
11735 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);

11737 /*
11738 * Now carve off the first frag. Note that this will include the
11739 * original IP header.
11740 */
11741 if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11742 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11743 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);

new/usr/src/uts/common/inet/ip/ip.c 179

11744 freeb(hdr_mp);
11745 freemsg(mp_orig);
11746 return (ENOBUFS);
11747 }

11749 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);

11751 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11752 ixa_cookie);
11753 if (error != 0 && error != EWOULDBLOCK) {
11754 /* No point in sending the other fragments */
11755 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11756 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11757 freeb(hdr_mp);
11758 freemsg(mp_orig);
11759 return (error);
11760 }

11762 /* No need to redo state machine in loop */
11763 ixaflags &= ~IXAF_REACH_CONF;

11765 /* Advance the offset to the second frag starting point. */
11766 offset += len;
11767 /*
11768 * Update hdr_len from the copied header - there might be less options
11769 * in the later fragments.
11770 */
11771 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11772 /* Loop until done. */
11773 for (;;) {
11774 uint16_t offset_and_flags;
11775 uint16_t ip_len;

11777 if (ip_data_end - offset > len) {
11778 /*
11779 * Carve off the appropriate amount from the original
11780 * datagram.
11781 */
11782 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11783 mp = NULL;
11784 break;
11785 }
11786 /*
11787 * More frags after this one. Get another copy
11788 * of the header.
11789 */
11790 if (carve_mp->b_datap->db_ref == 1 &&
11791 hdr_mp->b_wptr - hdr_mp->b_rptr <
11792 carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11793 /* Inline IP header */
11794 carve_mp->b_rptr -= hdr_mp->b_wptr -
11795 hdr_mp->b_rptr;
11796 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11797 hdr_mp->b_wptr - hdr_mp->b_rptr);
11798 mp = carve_mp;
11799 } else {
11800 if (!(mp = copyb(hdr_mp))) {
11801 freemsg(carve_mp);
11802 break;
11803 }
11804 /* Get priority marking, if any. */
11805 mp->b_band = priority;
11806 mp->b_cont = carve_mp;
11807 }
11808 ipha = (ipha_t *)mp->b_rptr;
11809 offset_and_flags = IPH_MF;

new/usr/src/uts/common/inet/ip/ip.c 180

11810 } else {
11811 /*
11812 * Last frag. Consume the header. Set len to
11813 * the length of this last piece.
11814 */
11815 len = ip_data_end - offset;

11817 /*
11818 * Carve off the appropriate amount from the original
11819 * datagram.
11820 */
11821 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11822 mp = NULL;
11823 break;
11824 }
11825 if (carve_mp->b_datap->db_ref == 1 &&
11826 hdr_mp->b_wptr - hdr_mp->b_rptr <
11827 carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11828 /* Inline IP header */
11829 carve_mp->b_rptr -= hdr_mp->b_wptr -
11830 hdr_mp->b_rptr;
11831 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11832 hdr_mp->b_wptr - hdr_mp->b_rptr);
11833 mp = carve_mp;
11834 freeb(hdr_mp);
11835 hdr_mp = mp;
11836 } else {
11837 mp = hdr_mp;
11838 /* Get priority marking, if any. */
11839 mp->b_band = priority;
11840 mp->b_cont = carve_mp;
11841 }
11842 ipha = (ipha_t *)mp->b_rptr;
11843 /* A frag of a frag might have IPH_MF non-zero */
11844 offset_and_flags =
11845 ntohs(ipha->ipha_fragment_offset_and_flags) &
11846 IPH_MF;
11847 }
11848 offset_and_flags |= (uint16_t)(offset >> 3);
11849 offset_and_flags |= (uint16_t)frag_flag;
11850 /* Store the offset and flags in the IP header. */
11851 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);

11853 /* Store the length in the IP header. */
11854 ip_len = (uint16_t)(len + hdr_len);
11855 ipha->ipha_length = htons(ip_len);

11857 /*
11858 * Set the IP header checksum. Note that mp is just
11859 * the header, so this is easy to pass to ip_csum.
11860 */
11861 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);

11863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);

11865 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11866 nolzid, ixa_cookie);
11867 /* All done if we just consumed the hdr_mp. */
11868 if (mp == hdr_mp) {
11869 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11870 return (error);
11871 }
11872 if (error != 0 && error != EWOULDBLOCK) {
11873 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11874 mblk_t *, hdr_mp);
11875 /* No point in sending the other fragments */

new/usr/src/uts/common/inet/ip/ip.c 181

11876 break;
11877 }

11879 /* Otherwise, advance and loop. */
11880 offset += len;
11881 }
11882 /* Clean up following allocation failure. */
11883 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11884 ip_drop_output("FragFails: loop ended", NULL, ill);
11885 if (mp != hdr_mp)
11886 freeb(hdr_mp);
11887 if (mp != mp_orig)
11888 freemsg(mp_orig);
11889 return (error);
11890 }

11892 /*
11893 * Copy the header plus those options which have the copy bit set
11894 */
11895 static mblk_t *
11896 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11897 mblk_t *src)
11898 {
11899 mblk_t *mp;
11900 uchar_t *up;

11902 /*
11903 * Quick check if we need to look for options without the copy bit
11904 * set
11905 */
11906 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11907 if (!mp)
11908 return (mp);
11909 mp->b_rptr += ipst->ips_ip_wroff_extra;
11910 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11911 bcopy(rptr, mp->b_rptr, hdr_len);
11912 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11913 return (mp);
11914 }
11915 up = mp->b_rptr;
11916 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11917 up += IP_SIMPLE_HDR_LENGTH;
11918 rptr += IP_SIMPLE_HDR_LENGTH;
11919 hdr_len -= IP_SIMPLE_HDR_LENGTH;
11920 while (hdr_len > 0) {
11921 uint32_t optval;
11922 uint32_t optlen;

11924 optval = *rptr;
11925 if (optval == IPOPT_EOL)
11926 break;
11927 if (optval == IPOPT_NOP)
11928 optlen = 1;
11929 else
11930 optlen = rptr[1];
11931 if (optval & IPOPT_COPY) {
11932 bcopy(rptr, up, optlen);
11933 up += optlen;
11934 }
11935 rptr += optlen;
11936 hdr_len -= optlen;
11937 }
11938 /*
11939 * Make sure that we drop an even number of words by filling
11940 * with EOL to the next word boundary.
11941 */

new/usr/src/uts/common/inet/ip/ip.c 182

11942 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11943 hdr_len & 0x3; hdr_len++)
11944 *up++ = IPOPT_EOL;
11945 mp->b_wptr = up;
11946 /* Update header length */
11947 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11948 return (mp);
11949 }

11951 /*
11952 * Update any source route, record route, or timestamp options when
11953 * sending a packet back to ourselves.
11954 * Check that we are at end of strict source route.
11955 * The options have been sanity checked by ip_output_options().
11956 */
11957 void
11958 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11959 {
11960 ipoptp_t opts;
11961 uchar_t *opt;
11962 uint8_t optval;
11963 uint8_t optlen;
11964 ipaddr_t dst;
11965 uint32_t ts;
11966 timestruc_t now;

11968 for (optval = ipoptp_first(&opts, ipha);
11969 optval != IPOPT_EOL;
11970 optval = ipoptp_next(&opts)) {
11971 opt = opts.ipoptp_cur;
11972 optlen = opts.ipoptp_len;
11973 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11974 switch (optval) {
11975 uint32_t off;
11976 case IPOPT_SSRR:
11977 case IPOPT_LSRR:
11978 off = opt[IPOPT_OFFSET];
11979 off--;
11980 if (optlen < IP_ADDR_LEN ||
11981 off > optlen - IP_ADDR_LEN) {
11982 /* End of source route */
11983 break;
11984 }
11985 /*
11986 * This will only happen if two consecutive entries
11987 * in the source route contains our address or if
11988 * it is a packet with a loose source route which
11989 * reaches us before consuming the whole source route
11990 */

11992 if (optval == IPOPT_SSRR) {
11993 return;
11994 }
11995 /*
11996 * Hack: instead of dropping the packet truncate the
11997 * source route to what has been used by filling the
11998 * rest with IPOPT_NOP.
11999 */
12000 opt[IPOPT_OLEN] = (uint8_t)off;
12001 while (off < optlen) {
12002 opt[off++] = IPOPT_NOP;
12003 }
12004 break;
12005 case IPOPT_RR:
12006 off = opt[IPOPT_OFFSET];
12007 off--;

new/usr/src/uts/common/inet/ip/ip.c 183

12008 if (optlen < IP_ADDR_LEN ||
12009 off > optlen - IP_ADDR_LEN) {
12010 /* No more room - ignore */
12011 ip1dbg((
12012 "ip_output_local_options: end of RR\n"));
12013 break;
12014 }
12015 dst = htonl(INADDR_LOOPBACK);
12016 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12017 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12018 break;
12019 case IPOPT_TS:
12020 /* Insert timestamp if there is romm */
12021 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12022 case IPOPT_TS_TSONLY:
12023 off = IPOPT_TS_TIMELEN;
12024 break;
12025 case IPOPT_TS_PRESPEC:
12026 case IPOPT_TS_PRESPEC_RFC791:
12027 /* Verify that the address matched */
12028 off = opt[IPOPT_OFFSET] - 1;
12029 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12030 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12031 /* Not for us */
12032 break;
12033 }
12034 /* FALLTHRU */
12035 case IPOPT_TS_TSANDADDR:
12036 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12037 break;
12038 default:
12039 /*
12040 * ip_*put_options should have already
12041 * dropped this packet.
12042 */
12043 cmn_err(CE_PANIC, "ip_output_local_options: "
12044 "unknown IT - bug in ip_output_options?\n");
12045 return; /* Keep "lint" happy */
12046 }
12047 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12048 /* Increase overflow counter */
12049 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12050 opt[IPOPT_POS_OV_FLG] = (uint8_t)
12051 (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12052 (off << 4);
12053 break;
12054 }
12055 off = opt[IPOPT_OFFSET] - 1;
12056 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12057 case IPOPT_TS_PRESPEC:
12058 case IPOPT_TS_PRESPEC_RFC791:
12059 case IPOPT_TS_TSANDADDR:
12060 dst = htonl(INADDR_LOOPBACK);
12061 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12062 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12063 /* FALLTHRU */
12064 case IPOPT_TS_TSONLY:
12065 off = opt[IPOPT_OFFSET] - 1;
12066 /* Compute # of milliseconds since midnight */
12067 gethrestime(&now);
12068 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12069 now.tv_nsec / (NANOSEC / MILLISEC);
12070 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12071 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12072 break;
12073 }

new/usr/src/uts/common/inet/ip/ip.c 184

12074 break;
12075 }
12076 }
12077 }

12079 /*
12080 * Prepend an M_DATA fastpath header, and if none present prepend a
12081 * DL_UNITDATA_REQ. Frees the mblk on failure.
12082 *
12083 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12084 * If there is a change to them, the nce will be deleted (condemned) and
12085 * a new nce_t will be created when packets are sent. Thus we need no locks
12086 * to access those fields.
12087 *
12088 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12089 * we place b_band in dl_priority.dl_max.
12090 */
12091 static mblk_t *
12092 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12093 {
12094 uint_t hlen;
12095 mblk_t *mp1;
12096 uint_t priority;
12097 uchar_t *rptr;

12099 rptr = mp->b_rptr;

12101 ASSERT(DB_TYPE(mp) == M_DATA);
12102 priority = mp->b_band;

12104 ASSERT(nce != NULL);
12105 if ((mp1 = nce->nce_fp_mp) != NULL) {
12106 hlen = MBLKL(mp1);
12107 /*
12108 * Check if we have enough room to prepend fastpath
12109 * header
12110 */
12111 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12112 rptr -= hlen;
12113 bcopy(mp1->b_rptr, rptr, hlen);
12114 /*
12115 * Set the b_rptr to the start of the link layer
12116 * header
12117 */
12118 mp->b_rptr = rptr;
12119 return (mp);
12120 }
12121 mp1 = copyb(mp1);
12122 if (mp1 == NULL) {
12123 ill_t *ill = nce->nce_ill;

12125 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12126 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12127 freemsg(mp);
12128 return (NULL);
12129 }
12130 mp1->b_band = priority;
12131 mp1->b_cont = mp;
12132 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12133 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12134 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12135 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12136 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12137 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12138 /*
12139 * XXX disable ICK_VALID and compute checksum

new/usr/src/uts/common/inet/ip/ip.c 185

12140 * here; can happen if nce_fp_mp changes and
12141 * it can’t be copied now due to insufficient
12142 * space. (unlikely, fp mp can change, but it
12143 * does not increase in length)
12144 */
12145 return (mp1);
12146 }
12147 mp1 = copyb(nce->nce_dlur_mp);

12149 if (mp1 == NULL) {
12150 ill_t *ill = nce->nce_ill;

12152 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12153 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12154 freemsg(mp);
12155 return (NULL);
12156 }
12157 mp1->b_cont = mp;
12158 if (priority != 0) {
12159 mp1->b_band = priority;
12160 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12161 priority;
12162 }
12163 return (mp1);
12164 #undef rptr
12165 }

12167 /*
12168 * Finish the outbound IPsec processing. This function is called from
12169 * ipsec_out_process() if the IPsec packet was processed
12170 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12171 * asynchronously.
12172 *
12173 * This is common to IPv4 and IPv6.
12174 */
12175 int
12176 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12177 {
12178 iaflags_t ixaflags = ixa->ixa_flags;
12179 uint_t pktlen;

12182 /* AH/ESP don’t update ixa_pktlen when they modify the packet */
12183 if (ixaflags & IXAF_IS_IPV4) {
12184 ipha_t *ipha = (ipha_t *)mp->b_rptr;

12186 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12187 pktlen = ntohs(ipha->ipha_length);
12188 } else {
12189 ip6_t *ip6h = (ip6_t *)mp->b_rptr;

12191 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12192 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12193 }

12195 /*
12196 * We release any hard reference on the SAs here to make
12197 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12198 * on the SAs.
12199 * If in the future we want the hard latching of the SAs in the
12200 * ip_xmit_attr_t then we should remove this.
12201 */
12202 if (ixa->ixa_ipsec_esp_sa != NULL) {
12203 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12204 ixa->ixa_ipsec_esp_sa = NULL;
12205 }

new/usr/src/uts/common/inet/ip/ip.c 186

12206 if (ixa->ixa_ipsec_ah_sa != NULL) {
12207 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12208 ixa->ixa_ipsec_ah_sa = NULL;
12209 }

12211 /* Do we need to fragment? */
12212 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12213 pktlen > ixa->ixa_fragsize) {
12214 if (ixaflags & IXAF_IS_IPV4) {
12215 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12216 /*
12217 * We check for the DF case in ipsec_out_process
12218 * hence this only handles the non-DF case.
12219 */
12220 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12221 pktlen, ixa->ixa_fragsize,
12222 ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12223 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12224 &ixa->ixa_cookie));
12225 } else {
12226 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12227 if (mp == NULL) {
12228 /* MIB and ip_drop_output already done */
12229 return (ENOMEM);
12230 }
12231 pktlen += sizeof (ip6_frag_t);
12232 if (pktlen > ixa->ixa_fragsize) {
12233 return (ip_fragment_v6(mp, ixa->ixa_nce,
12234 ixa->ixa_flags, pktlen,
12235 ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12236 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12237 ixa->ixa_postfragfn, &ixa->ixa_cookie));
12238 }
12239 }
12240 }
12241 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12242 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12243 ixa->ixa_no_loop_zoneid, NULL));
12244 }

12246 /*
12247 * Finish the inbound IPsec processing. This function is called from
12248 * ipsec_out_process() if the IPsec packet was processed
12249 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12250 * asynchronously.
12251 *
12252 * This is common to IPv4 and IPv6.
12253 */
12254 void
12255 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12256 {
12257 iaflags_t iraflags = ira->ira_flags;

12259 /* Length might have changed */
12260 if (iraflags & IRAF_IS_IPV4) {
12261 ipha_t *ipha = (ipha_t *)mp->b_rptr;

12263 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12264 ira->ira_pktlen = ntohs(ipha->ipha_length);
12265 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12266 ira->ira_protocol = ipha->ipha_protocol;

12268 ip_fanout_v4(mp, ipha, ira);
12269 } else {
12270 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
12271 uint8_t *nexthdrp;

new/usr/src/uts/common/inet/ip/ip.c 187

12273 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12274 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12275 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12276 &nexthdrp)) {
12277 /* Malformed packet */
12278 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12279 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12280 freemsg(mp);
12281 return;
12282 }
12283 ira->ira_protocol = *nexthdrp;
12284 ip_fanout_v6(mp, ip6h, ira);
12285 }
12286 }

12288 /*
12289 * Select which AH & ESP SA’s to use (if any) for the outbound packet.
12290 *
12291 * If this function returns B_TRUE, the requested SA’s have been filled
12292 * into the ixa_ipsec_*_sa pointers.
12293 *
12294 * If the function returns B_FALSE, the packet has been "consumed", most
12295 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12296 *
12297 * The SA references created by the protocol-specific "select"
12298 * function will be released in ip_output_post_ipsec.
12299 */
12300 static boolean_t
12301 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12302 {
12303 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12304 ipsec_policy_t *pp;
12305 ipsec_action_t *ap;

12307 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12308 ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12309 (ixa->ixa_ipsec_action != NULL));

12311 ap = ixa->ixa_ipsec_action;
12312 if (ap == NULL) {
12313 pp = ixa->ixa_ipsec_policy;
12314 ASSERT(pp != NULL);
12315 ap = pp->ipsp_act;
12316 ASSERT(ap != NULL);
12317 }

12319 /*
12320 * We have an action. now, let’s select SA’s.
12321 * A side effect of setting ixa_ipsec_*_sa is that it will
12322 * be cached in the conn_t.
12323 */
12324 if (ap->ipa_want_esp) {
12325 if (ixa->ixa_ipsec_esp_sa == NULL) {
12326 need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12327 IPPROTO_ESP);
12328 }
12329 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12330 }

12332 if (ap->ipa_want_ah) {
12333 if (ixa->ixa_ipsec_ah_sa == NULL) {
12334 need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12335 IPPROTO_AH);
12336 }
12337 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);

new/usr/src/uts/common/inet/ip/ip.c 188

12338 /*
12339 * The ESP and AH processing order needs to be preserved
12340 * when both protocols are required (ESP should be applied
12341 * before AH for an outbound packet). Force an ESP ACQUIRE
12342 * when both ESP and AH are required, and an AH ACQUIRE
12343 * is needed.
12344 */
12345 if (ap->ipa_want_esp && need_ah_acquire)
12346 need_esp_acquire = B_TRUE;
12347 }

12349 /*
12350 * Send an ACQUIRE (extended, regular, or both) if we need one.
12351 * Release SAs that got referenced, but will not be used until we
12352 * acquire _all_ of the SAs we need.
12353 */
12354 if (need_ah_acquire || need_esp_acquire) {
12355 if (ixa->ixa_ipsec_ah_sa != NULL) {
12356 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12357 ixa->ixa_ipsec_ah_sa = NULL;
12358 }
12359 if (ixa->ixa_ipsec_esp_sa != NULL) {
12360 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12361 ixa->ixa_ipsec_esp_sa = NULL;
12362 }

12364 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12365 return (B_FALSE);
12366 }

12368 return (B_TRUE);
12369 }

12371 /*
12372 * Handle IPsec output processing.
12373 * This function is only entered once for a given packet.
12374 * We try to do things synchronously, but if we need to have user-level
12375 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12376 * will be completed
12377 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12378 * - when asynchronous ESP is done it will do AH
12379 *
12380 * In all cases we come back in ip_output_post_ipsec() to fragment and
12381 * send out the packet.
12382 */
12383 int
12384 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12385 {
12386 ill_t *ill = ixa->ixa_nce->nce_ill;
12387 ip_stack_t *ipst = ixa->ixa_ipst;
12388 ipsec_stack_t *ipss;
12389 ipsec_policy_t *pp;
12390 ipsec_action_t *ap;

12392 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);

12394 ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12395 (ixa->ixa_ipsec_action != NULL));

12397 ipss = ipst->ips_netstack->netstack_ipsec;
12398 if (!ipsec_loaded(ipss)) {
12399 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12400 ip_drop_packet(mp, B_TRUE, ill,
12401 DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12402 &ipss->ipsec_dropper);
12403 return (ENOTSUP);

new/usr/src/uts/common/inet/ip/ip.c 189

12404 }

12406 ap = ixa->ixa_ipsec_action;
12407 if (ap == NULL) {
12408 pp = ixa->ixa_ipsec_policy;
12409 ASSERT(pp != NULL);
12410 ap = pp->ipsp_act;
12411 ASSERT(ap != NULL);
12412 }

12414 /* Handle explicit drop action and bypass. */
12415 switch (ap->ipa_act.ipa_type) {
12416 case IPSEC_ACT_DISCARD:
12417 case IPSEC_ACT_REJECT:
12418 ip_drop_packet(mp, B_FALSE, ill,
12419 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12420 return (EHOSTUNREACH); /* IPsec policy failure */
12421 case IPSEC_ACT_BYPASS:
12422 return (ip_output_post_ipsec(mp, ixa));
12423 }

12425 /*
12426 * The order of processing is first insert a IP header if needed.
12427 * Then insert the ESP header and then the AH header.
12428 */
12429 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12430 /*
12431 * First get the outer IP header before sending
12432 * it to ESP.
12433 */
12434 ipha_t *oipha, *iipha;
12435 mblk_t *outer_mp, *inner_mp;

12437 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12438 (void) mi_strlog(ill->ill_rq, 0,
12439 SL_ERROR|SL_TRACE|SL_CONSOLE,
12440 "ipsec_out_process: "
12441 "Self-Encapsulation failed: Out of memory\n");
12442 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12443 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12444 freemsg(mp);
12445 return (ENOBUFS);
12446 }
12447 inner_mp = mp;
12448 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12449 oipha = (ipha_t *)outer_mp->b_rptr;
12450 iipha = (ipha_t *)inner_mp->b_rptr;
12451 *oipha = *iipha;
12452 outer_mp->b_wptr += sizeof (ipha_t);
12453 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12454 sizeof (ipha_t));
12455 oipha->ipha_protocol = IPPROTO_ENCAP;
12456 oipha->ipha_version_and_hdr_length =
12457 IP_SIMPLE_HDR_VERSION;
12458 oipha->ipha_hdr_checksum = 0;
12459 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12460 outer_mp->b_cont = inner_mp;
12461 mp = outer_mp;

12463 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12464 }

12466 /* If we need to wait for a SA then we can’t return any errno */
12467 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12468 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12469 !ipsec_out_select_sa(mp, ixa))

new/usr/src/uts/common/inet/ip/ip.c 190

12470 return (0);

12472 /*
12473 * By now, we know what SA’s to use. Toss over to ESP & AH
12474 * to do the heavy lifting.
12475 */
12476 if (ap->ipa_want_esp) {
12477 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);

12479 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12480 if (mp == NULL) {
12481 /*
12482 * Either it failed or is pending. In the former case
12483 * ipIfStatsInDiscards was increased.
12484 */
12485 return (0);
12486 }
12487 }

12489 if (ap->ipa_want_ah) {
12490 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);

12492 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12493 if (mp == NULL) {
12494 /*
12495 * Either it failed or is pending. In the former case
12496 * ipIfStatsInDiscards was increased.
12497 */
12498 return (0);
12499 }
12500 }
12501 /*
12502 * We are done with IPsec processing. Send it over
12503 * the wire.
12504 */
12505 return (ip_output_post_ipsec(mp, ixa));
12506 }

12508 /*
12509 * ioctls that go through a down/up sequence may need to wait for the down
12510 * to complete. This involves waiting for the ire and ipif refcnts to go down
12511 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12512 */
12513 /* ARGSUSED */
12514 void
12515 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12516 {
12517 struct iocblk *iocp;
12518 mblk_t *mp1;
12519 ip_ioctl_cmd_t *ipip;
12520 int err;
12521 sin_t *sin;
12522 struct lifreq *lifr;
12523 struct ifreq *ifr;

12525 iocp = (struct iocblk *)mp->b_rptr;
12526 ASSERT(ipsq != NULL);
12527 /* Existence of mp1 verified in ip_wput_nondata */
12528 mp1 = mp->b_cont->b_cont;
12529 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12530 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12531 /*
12532 * Special case where ipx_current_ipif is not set:
12533 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12534 * We are here as were not able to complete the operation in
12535 * ipif_set_values because we could not become exclusive on

new/usr/src/uts/common/inet/ip/ip.c 191

12536 * the new ipsq.
12537 */
12538 ill_t *ill = q->q_ptr;
12539 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12540 }
12541 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);

12543 if (ipip->ipi_cmd_type == IF_CMD) {
12544 /* This a old style SIOC[GS]IF* command */
12545 ifr = (struct ifreq *)mp1->b_rptr;
12546 sin = (sin_t *)&ifr->ifr_addr;
12547 } else if (ipip->ipi_cmd_type == LIF_CMD) {
12548 /* This a new style SIOC[GS]LIF* command */
12549 lifr = (struct lifreq *)mp1->b_rptr;
12550 sin = (sin_t *)&lifr->lifr_addr;
12551 } else {
12552 sin = NULL;
12553 }

12555 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12556 q, mp, ipip, mp1->b_rptr);

12558 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12559 int, ipip->ipi_cmd,
12560 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12561 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);

12563 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12564 }

12566 /*
12567 * ioctl processing
12568 *
12569 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12570 * the ioctl command in the ioctl tables, determines the copyin data size
12571 * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12572 *
12573 * ioctl processing then continues when the M_IOCDATA makes its way down to
12574 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its
12575 * associated ’conn’ is refheld till the end of the ioctl and the general
12576 * ioctl processing function ip_process_ioctl() is called to extract the
12577 * arguments and process the ioctl. To simplify extraction, ioctl commands
12578 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12579 * ‘struct lifreq’), and a common extract function (e.g., ip_extract_lifreq())
12580 * is used to extract the ioctl’s arguments.
12581 *
12582 * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12583 * so goes thru the serialization primitive ipsq_try_enter. Then the
12584 * appropriate function to handle the ioctl is called based on the entry in
12585 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12586 * which also refreleases the ’conn’ that was refheld at the start of the
12587 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12588 *
12589 * Many exclusive ioctls go thru an internal down up sequence as part of
12590 * the operation. For example an attempt to change the IP address of an
12591 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12592 * does all the cleanup such as deleting all ires that use this address.
12593 * Then we need to wait till all references to the interface go away.
12594 */
12595 void
12596 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12597 {
12598 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12599 ip_ioctl_cmd_t *ipip = arg;
12600 ip_extract_func_t *extract_funcp;
12601 cmd_info_t ci;

new/usr/src/uts/common/inet/ip/ip.c 192

12602 int err;
12603 boolean_t entered_ipsq = B_FALSE;

12605 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));

12607 if (ipip == NULL)
12608 ipip = ip_sioctl_lookup(iocp->ioc_cmd);

12610 /*
12611 * SIOCLIFADDIF needs to go thru a special path since the
12612 * ill may not exist yet. This happens in the case of lo0
12613 * which is created using this ioctl.
12614 */
12615 if (ipip->ipi_cmd == SIOCLIFADDIF) {
12616 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12617 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12618 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12619 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12620 return;
12621 }

12623 ci.ci_ipif = NULL;
12624 switch (ipip->ipi_cmd_type) {
12625 case MISC_CMD:
12626 case MSFILT_CMD:
12627 /*
12628 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12629 */
12630 if (ipip->ipi_cmd == IF_UNITSEL) {
12631 /* ioctl comes down the ill */
12632 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12633 ipif_refhold(ci.ci_ipif);
12634 }
12635 err = 0;
12636 ci.ci_sin = NULL;
12637 ci.ci_sin6 = NULL;
12638 ci.ci_lifr = NULL;
12639 extract_funcp = NULL;
12640 break;

12642 case IF_CMD:
12643 case LIF_CMD:
12644 extract_funcp = ip_extract_lifreq;
12645 break;

12647 case ARP_CMD:
12648 case XARP_CMD:
12649 extract_funcp = ip_extract_arpreq;
12650 break;

12652 default:
12653 ASSERT(0);
12654 }

12656 if (extract_funcp != NULL) {
12657 err = (*extract_funcp)(q, mp, ipip, &ci);
12658 if (err != 0) {
12659 DTRACE_PROBE4(ipif__ioctl,
12660 char *, "ip_process_ioctl finish err",
12661 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12662 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12663 return;
12664 }

12666 /*
12667 * All of the extraction functions return a refheld ipif.

new/usr/src/uts/common/inet/ip/ip.c 193

12668 */
12669 ASSERT(ci.ci_ipif != NULL);
12670 }

12672 if (!(ipip->ipi_flags & IPI_WR)) {
12673 /*
12674 * A return value of EINPROGRESS means the ioctl is
12675 * either queued and waiting for some reason or has
12676 * already completed.
12677 */
12678 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12679 ci.ci_lifr);
12680 if (ci.ci_ipif != NULL) {
12681 DTRACE_PROBE4(ipif__ioctl,
12682 char *, "ip_process_ioctl finish RD",
12683 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12684 ipif_t *, ci.ci_ipif);
12685 ipif_refrele(ci.ci_ipif);
12686 } else {
12687 DTRACE_PROBE4(ipif__ioctl,
12688 char *, "ip_process_ioctl finish RD",
12689 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12690 }
12691 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12692 return;
12693 }

12695 ASSERT(ci.ci_ipif != NULL);

12697 /*
12698 * If ipsq is non-NULL, we are already being called exclusively
12699 */
12700 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12701 if (ipsq == NULL) {
12702 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12703 NEW_OP, B_TRUE);
12704 if (ipsq == NULL) {
12705 ipif_refrele(ci.ci_ipif);
12706 return;
12707 }
12708 entered_ipsq = B_TRUE;
12709 }
12710 /*
12711 * Release the ipif so that ipif_down and friends that wait for
12712 * references to go away are not misled about the current ipif_refcnt
12713 * values. We are writer so we can access the ipif even after releasing
12714 * the ipif.
12715 */
12716 ipif_refrele(ci.ci_ipif);

12718 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);

12720 /*
12721 * A return value of EINPROGRESS means the ioctl is
12722 * either queued and waiting for some reason or has
12723 * already completed.
12724 */
12725 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);

12727 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12728 int, ipip->ipi_cmd,
12729 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12730 ipif_t *, ci.ci_ipif);
12731 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);

12733 if (entered_ipsq)

new/usr/src/uts/common/inet/ip/ip.c 194

12734 ipsq_exit(ipsq);
12735 }

12737 /*
12738 * Complete the ioctl. Typically ioctls use the mi package and need to
12739 * do mi_copyout/mi_copy_done.
12740 */
12741 void
12742 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12743 {
12744 conn_t *connp = NULL;

12746 if (err == EINPROGRESS)
12747 return;

12749 if (CONN_Q(q)) {
12750 connp = Q_TO_CONN(q);
12751 ASSERT(connp->conn_ref >= 2);
12752 }

12754 switch (mode) {
12755 case COPYOUT:
12756 if (err == 0)
12757 mi_copyout(q, mp);
12758 else
12759 mi_copy_done(q, mp, err);
12760 break;

12762 case NO_COPYOUT:
12763 mi_copy_done(q, mp, err);
12764 break;

12766 default:
12767 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */
12768 break;
12769 }

12771 /*
12772 * The conn refhold and ioctlref placed on the conn at the start of the
12773 * ioctl are released here.
12774 */
12775 if (connp != NULL) {
12776 CONN_DEC_IOCTLREF(connp);
12777 CONN_OPER_PENDING_DONE(connp);
12778 }

12780 if (ipsq != NULL)
12781 ipsq_current_finish(ipsq);
12782 }

12784 /* Handles all non data messages */
12785 void
12786 ip_wput_nondata(queue_t *q, mblk_t *mp)
12787 {
12788 mblk_t *mp1;
12789 struct iocblk *iocp;
12790 ip_ioctl_cmd_t *ipip;
12791 conn_t *connp;
12792 cred_t *cr;
12793 char *proto_str;

12795 if (CONN_Q(q))
12796 connp = Q_TO_CONN(q);
12797 else
12798 connp = NULL;

new/usr/src/uts/common/inet/ip/ip.c 195

12800 switch (DB_TYPE(mp)) {
12801 case M_IOCTL:
12802 /*
12803 * IOCTL processing begins in ip_sioctl_copyin_setup which
12804 * will arrange to copy in associated control structures.
12805 */
12806 ip_sioctl_copyin_setup(q, mp);
12807 return;
12808 case M_IOCDATA:
12809 /*
12810 * Ensure that this is associated with one of our trans-
12811 * parent ioctls. If it’s not ours, discard it if we’re
12812 * running as a driver, or pass it on if we’re a module.
12813 */
12814 iocp = (struct iocblk *)mp->b_rptr;
12815 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12816 if (ipip == NULL) {
12817 if (q->q_next == NULL) {
12818 goto nak;
12819 } else {
12820 putnext(q, mp);
12821 }
12822 return;
12823 }
12824 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12825 /*
12826 * The ioctl is one we recognise, but is not consumed
12827 * by IP as a module and we are a module, so we drop
12828 */
12829 goto nak;
12830 }

12832 /* IOCTL continuation following copyin or copyout. */
12833 if (mi_copy_state(q, mp, NULL) == -1) {
12834 /*
12835 * The copy operation failed. mi_copy_state already
12836 * cleaned up, so we’re out of here.
12837 */
12838 return;
12839 }
12840 /*
12841 * If we just completed a copy in, we become writer and
12842 * continue processing in ip_sioctl_copyin_done. If it
12843 * was a copy out, we call mi_copyout again. If there is
12844 * nothing more to copy out, it will complete the IOCTL.
12845 */
12846 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12847 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12848 mi_copy_done(q, mp, EPROTO);
12849 return;
12850 }
12851 /*
12852 * Check for cases that need more copying. A return
12853 * value of 0 means a second copyin has been started,
12854 * so we return; a return value of 1 means no more
12855 * copying is needed, so we continue.
12856 */
12857 if (ipip->ipi_cmd_type == MSFILT_CMD &&
12858 MI_COPY_COUNT(mp) == 1) {
12859 if (ip_copyin_msfilter(q, mp) == 0)
12860 return;
12861 }
12862 /*
12863 * Refhold the conn, till the ioctl completes. This is
12864 * needed in case the ioctl ends up in the pending mp
12865 * list. Every mp in the ipx_pending_mp list must have

new/usr/src/uts/common/inet/ip/ip.c 196

12866 * a refhold on the conn to resume processing. The
12867 * refhold is released when the ioctl completes
12868 * (whether normally or abnormally). An ioctlref is also
12869 * placed on the conn to prevent TCP from removing the
12870 * queue needed to send the ioctl reply back.
12871 * In all cases ip_ioctl_finish is called to finish
12872 * the ioctl and release the refholds.
12873 */
12874 if (connp != NULL) {
12875 /* This is not a reentry */
12876 CONN_INC_REF(connp);
12877 CONN_INC_IOCTLREF(connp);
12878 } else {
12879 if (!(ipip->ipi_flags & IPI_MODOK)) {
12880 mi_copy_done(q, mp, EINVAL);
12881 return;
12882 }
12883 }

12885 ip_process_ioctl(NULL, q, mp, ipip);

12887 } else {
12888 mi_copyout(q, mp);
12889 }
12890 return;

12892 case M_IOCNAK:
12893 /*
12894 * The only way we could get here is if a resolver didn’t like
12895 * an IOCTL we sent it. This shouldn’t happen.
12896 */
12897 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12898 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12899 ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12900 freemsg(mp);
12901 return;
12902 case M_IOCACK:
12903 /* /dev/ip shouldn’t see this */
12904 goto nak;
12905 case M_FLUSH:
12906 if (*mp->b_rptr & FLUSHW)
12907 flushq(q, FLUSHALL);
12908 if (q->q_next) {
12909 putnext(q, mp);
12910 return;
12911 }
12912 if (*mp->b_rptr & FLUSHR) {
12913 *mp->b_rptr &= ~FLUSHW;
12914 qreply(q, mp);
12915 return;
12916 }
12917 freemsg(mp);
12918 return;
12919 case M_CTL:
12920 break;
12921 case M_PROTO:
12922 case M_PCPROTO:
12923 /*
12924 * The only PROTO messages we expect are SNMP-related.
12925 */
12926 switch (((union T_primitives *)mp->b_rptr)->type) {
12927 case T_SVR4_OPTMGMT_REQ:
12928 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12929 "flags %x\n",
12930 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));

new/usr/src/uts/common/inet/ip/ip.c 197

12932 if (connp == NULL) {
12933 proto_str = "T_SVR4_OPTMGMT_REQ";
12934 goto protonak;
12935 }

12937 /*
12938 * All Solaris components should pass a db_credp
12939 * for this TPI message, hence we ASSERT.
12940 * But in case there is some other M_PROTO that looks
12941 * like a TPI message sent by some other kernel
12942 * component, we check and return an error.
12943 */
12944 cr = msg_getcred(mp, NULL);
12945 ASSERT(cr != NULL);
12946 if (cr == NULL) {
12947 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12948 if (mp != NULL)
12949 qreply(q, mp);
12950 return;
12951 }

12953 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12954 proto_str = "Bad SNMPCOM request?";
12955 goto protonak;
12956 }
12957 return;
12958 default:
12959 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12960 (int)*(uint_t *)mp->b_rptr));
12961 freemsg(mp);
12962 return;
12963 }
12964 default:
12965 break;
12966 }
12967 if (q->q_next) {
12968 putnext(q, mp);
12969 } else
12970 freemsg(mp);
12971 return;

12973 nak:
12974 iocp->ioc_error = EINVAL;
12975 mp->b_datap->db_type = M_IOCNAK;
12976 iocp->ioc_count = 0;
12977 qreply(q, mp);
12978 return;

12980 protonak:
12981 cmn_err(CE_NOTE, "IP doesn’t process %s as a module", proto_str);
12982 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12983 qreply(q, mp);
12984 }

12986 /*
12987 * Process IP options in an outbound packet. Verify that the nexthop in a
12988 * strict source route is onlink.
12989 * Returns non-zero if something fails in which case an ICMP error has been
12990 * sent and mp freed.
12991 *
12992 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12993 */
12994 int
12995 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12996 {
12997 ipoptp_t opts;

new/usr/src/uts/common/inet/ip/ip.c 198

12998 uchar_t *opt;
12999 uint8_t optval;
13000 uint8_t optlen;
13001 ipaddr_t dst;
13002 intptr_t code = 0;
13003 ire_t *ire;
13004 ip_stack_t *ipst = ixa->ixa_ipst;
13005 ip_recv_attr_t iras;

13007 ip2dbg(("ip_output_options\n"));

13009 dst = ipha->ipha_dst;
13010 for (optval = ipoptp_first(&opts, ipha);
13011 optval != IPOPT_EOL;
13012 optval = ipoptp_next(&opts)) {
13013 opt = opts.ipoptp_cur;
13014 optlen = opts.ipoptp_len;
13015 ip2dbg(("ip_output_options: opt %d, len %d\n",
13016 optval, optlen));
13017 switch (optval) {
13018 uint32_t off;
13019 case IPOPT_SSRR:
13020 case IPOPT_LSRR:
13021 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13022 ip1dbg((
13023 "ip_output_options: bad option offset\n"));
13024 code = (char *)&opt[IPOPT_OLEN] -
13025 (char *)ipha;
13026 goto param_prob;
13027 }
13028 off = opt[IPOPT_OFFSET];
13029 ip1dbg(("ip_output_options: next hop 0x%x\n",
13030 ntohl(dst)));
13031 /*
13032 * For strict: verify that dst is directly
13033 * reachable.
13034 */
13035 if (optval == IPOPT_SSRR) {
13036 ire = ire_ftable_lookup_v4(dst, 0, 0,
13037 IRE_INTERFACE, NULL, ALL_ZONES,
13038 ixa->ixa_tsl,
13039 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13040 NULL);
13041 if (ire == NULL) {
13042 ip1dbg(("ip_output_options: SSRR not"
13043 " directly reachable: 0x%x\n",
13044 ntohl(dst)));
13045 goto bad_src_route;
13046 }
13047 ire_refrele(ire);
13048 }
13049 break;
13050 case IPOPT_RR:
13051 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13052 ip1dbg((
13053 "ip_output_options: bad option offset\n"));
13054 code = (char *)&opt[IPOPT_OLEN] -
13055 (char *)ipha;
13056 goto param_prob;
13057 }
13058 break;
13059 case IPOPT_TS:
13060 /*
13061 * Verify that length >=5 and that there is either
13062 * room for another timestamp or that the overflow
13063 * counter is not maxed out.

new/usr/src/uts/common/inet/ip/ip.c 199

13064 */
13065 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13066 if (optlen < IPOPT_MINLEN_IT) {
13067 goto param_prob;
13068 }
13069 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13070 ip1dbg((
13071 "ip_output_options: bad option offset\n"));
13072 code = (char *)&opt[IPOPT_OFFSET] -
13073 (char *)ipha;
13074 goto param_prob;
13075 }
13076 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13077 case IPOPT_TS_TSONLY:
13078 off = IPOPT_TS_TIMELEN;
13079 break;
13080 case IPOPT_TS_TSANDADDR:
13081 case IPOPT_TS_PRESPEC:
13082 case IPOPT_TS_PRESPEC_RFC791:
13083 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13084 break;
13085 default:
13086 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13087 (char *)ipha;
13088 goto param_prob;
13089 }
13090 if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13091 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13092 /*
13093 * No room and the overflow counter is 15
13094 * already.
13095 */
13096 goto param_prob;
13097 }
13098 break;
13099 }
13100 }

13102 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13103 return (0);

13105 ip1dbg(("ip_output_options: error processing IP options."));
13106 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;

13108 param_prob:
13109 bzero(&iras, sizeof (iras));
13110 iras.ira_ill = iras.ira_rill = ill;
13111 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13112 iras.ira_rifindex = iras.ira_ruifindex;
13113 iras.ira_flags = IRAF_IS_IPV4;

13115 ip_drop_output("ip_output_options", mp, ill);
13116 icmp_param_problem(mp, (uint8_t)code, &iras);
13117 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13118 return (-1);

13120 bad_src_route:
13121 bzero(&iras, sizeof (iras));
13122 iras.ira_ill = iras.ira_rill = ill;
13123 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13124 iras.ira_rifindex = iras.ira_ruifindex;
13125 iras.ira_flags = IRAF_IS_IPV4;

13127 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13128 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13129 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));

new/usr/src/uts/common/inet/ip/ip.c 200

13130 return (-1);
13131 }

13133 /*
13134 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13135 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13136 * thru /etc/system.
13137 */
13138 #define CONN_MAXDRAINCNT 64

13140 static void
13141 conn_drain_init(ip_stack_t *ipst)
13142 {
13143 int i, j;
13144 idl_tx_list_t *itl_tx;

13146 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;

13148 if ((ipst->ips_conn_drain_list_cnt == 0) ||
13149 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13150 /*
13151 * Default value of the number of drainers is the
13152 * number of cpus, subject to maximum of 8 drainers.
13153 */
13154 if (boot_max_ncpus != -1)
13155 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13156 else
13157 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13158 }

13160 ipst->ips_idl_tx_list =
13161 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13162 for (i = 0; i < TX_FANOUT_SIZE; i++) {
13163 itl_tx = &ipst->ips_idl_tx_list[i];
13164 itl_tx->txl_drain_list =
13165 kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13166 sizeof (idl_t), KM_SLEEP);
13167 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13168 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13169 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13170 MUTEX_DEFAULT, NULL);
13171 itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13172 }
13173 }
13174 }

13176 static void
13177 conn_drain_fini(ip_stack_t *ipst)
13178 {
13179 int i;
13180 idl_tx_list_t *itl_tx;

13182 for (i = 0; i < TX_FANOUT_SIZE; i++) {
13183 itl_tx = &ipst->ips_idl_tx_list[i];
13184 kmem_free(itl_tx->txl_drain_list,
13185 ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13186 }
13187 kmem_free(ipst->ips_idl_tx_list,
13188 TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13189 ipst->ips_idl_tx_list = NULL;
13190 }

13192 /*
13193 * Flow control has blocked us from proceeding. Insert the given conn in one
13194 * of the conn drain lists. When flow control is unblocked, either ip_wsrv()
13195 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn

new/usr/src/uts/common/inet/ip/ip.c 201

13196 * will call conn_walk_drain(). See the flow control notes at the top of this
13197 * file for more details.
13198 */
13199 void
13200 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13201 {
13202 idl_t *idl = tx_list->txl_drain_list;
13203 uint_t index;
13204 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;

13206 mutex_enter(&connp->conn_lock);
13207 if (connp->conn_state_flags & CONN_CLOSING) {
13208 /*
13209 * The conn is closing as a result of which CONN_CLOSING
13210 * is set. Return.
13211 */
13212 mutex_exit(&connp->conn_lock);
13213 return;
13214 } else if (connp->conn_idl == NULL) {
13215 /*
13216 * Assign the next drain list round robin. We dont’ use
13217 * a lock, and thus it may not be strictly round robin.
13218 * Atomicity of load/stores is enough to make sure that
13219 * conn_drain_list_index is always within bounds.
13220 */
13221 index = tx_list->txl_drain_index;
13222 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13223 connp->conn_idl = &tx_list->txl_drain_list[index];
13224 index++;
13225 if (index == ipst->ips_conn_drain_list_cnt)
13226 index = 0;
13227 tx_list->txl_drain_index = index;
13228 } else {
13229 ASSERT(connp->conn_idl->idl_itl == tx_list);
13230 }
13231 mutex_exit(&connp->conn_lock);

13233 idl = connp->conn_idl;
13234 mutex_enter(&idl->idl_lock);
13235 if ((connp->conn_drain_prev != NULL) ||
13236 (connp->conn_state_flags & CONN_CLOSING)) {
13237 /*
13238 * The conn is either already in the drain list or closing.
13239 * (We needed to check for CONN_CLOSING again since close can
13240 * sneak in between dropping conn_lock and acquiring idl_lock.)
13241 */
13242 mutex_exit(&idl->idl_lock);
13243 return;
13244 }

13246 /*
13247 * The conn is not in the drain list. Insert it at the
13248 * tail of the drain list. The drain list is circular
13249 * and doubly linked. idl_conn points to the 1st element
13250 * in the list.
13251 */
13252 if (idl->idl_conn == NULL) {
13253 idl->idl_conn = connp;
13254 connp->conn_drain_next = connp;
13255 connp->conn_drain_prev = connp;
13256 } else {
13257 conn_t *head = idl->idl_conn;

13259 connp->conn_drain_next = head;
13260 connp->conn_drain_prev = head->conn_drain_prev;
13261 head->conn_drain_prev->conn_drain_next = connp;

new/usr/src/uts/common/inet/ip/ip.c 202

13262 head->conn_drain_prev = connp;
13263 }
13264 /*
13265 * For non streams based sockets assert flow control.
13266 */
13267 conn_setqfull(connp, NULL);
13268 mutex_exit(&idl->idl_lock);
13269 }

13271 static void
13272 conn_drain_remove(conn_t *connp)
13273 {
13274 idl_t *idl = connp->conn_idl;

13276 if (idl != NULL) {
13277 /*
13278 * Remove ourself from the drain list.
13279 */
13280 if (connp->conn_drain_next == connp) {
13281 /* Singleton in the list */
13282 ASSERT(connp->conn_drain_prev == connp);
13283 idl->idl_conn = NULL;
13284 } else {
13285 connp->conn_drain_prev->conn_drain_next =
13286 connp->conn_drain_next;
13287 connp->conn_drain_next->conn_drain_prev =
13288 connp->conn_drain_prev;
13289 if (idl->idl_conn == connp)
13290 idl->idl_conn = connp->conn_drain_next;
13291 }

13293 /*
13294 * NOTE: because conn_idl is associated with a specific drain
13295 * list which in turn is tied to the index the TX ring
13296 * (txl_cookie) hashes to, and because the TX ring can change
13297 * over the lifetime of the conn_t, we must clear conn_idl so
13298 * a subsequent conn_drain_insert() will set conn_idl again
13299 * based on the latest txl_cookie.
13300 */
13301 connp->conn_idl = NULL;
13302 }
13303 connp->conn_drain_next = NULL;
13304 connp->conn_drain_prev = NULL;

13306 conn_clrqfull(connp, NULL);
13307 /*
13308 * For streams based sockets open up flow control.
13309 */
13310 if (!IPCL_IS_NONSTR(connp))
13311 enableok(connp->conn_wq);
13312 }

13314 /*
13315 * This conn is closing, and we are called from ip_close. OR
13316 * this conn is draining because flow-control on the ill has been relieved.
13317 *
13318 * We must also need to remove conn’s on this idl from the list, and also
13319 * inform the sockfs upcalls about the change in flow-control.
13320 */
13321 static void
13322 conn_drain(conn_t *connp, boolean_t closing)
13323 {
13324 idl_t *idl;
13325 conn_t *next_connp;

13327 /*

new/usr/src/uts/common/inet/ip/ip.c 203

13328 * connp->conn_idl is stable at this point, and no lock is needed
13329 * to check it. If we are called from ip_close, close has already
13330 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13331 * called us only because conn_idl is non-null. If we are called thru
13332 * service, conn_idl could be null, but it cannot change because
13333 * service is single-threaded per queue, and there cannot be another
13334 * instance of service trying to call conn_drain_insert on this conn
13335 * now.
13336 */
13337 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);

13339 /*
13340 * If the conn doesn’t exist or is not on a drain list, bail.
13341 */
13342 if (connp == NULL || connp->conn_idl == NULL ||
13343 connp->conn_drain_prev == NULL) {
13344 return;
13345 }

13347 idl = connp->conn_idl;
13348 ASSERT(MUTEX_HELD(&idl->idl_lock));

13350 if (!closing) {
13351 next_connp = connp->conn_drain_next;
13352 while (next_connp != connp) {
13353 conn_t *delconnp = next_connp;

13355 next_connp = next_connp->conn_drain_next;
13356 conn_drain_remove(delconnp);
13357 }
13358 ASSERT(connp->conn_drain_next == idl->idl_conn);
13359 }
13360 conn_drain_remove(connp);
13361 }

13363 /*
13364 * Write service routine. Shared perimeter entry point.
13365 * The device queue’s messages has fallen below the low water mark and STREAMS
13366 * has backenabled the ill_wq. Send sockfs notification about flow-control on
13367 * each waiting conn.
13368 */
13369 void
13370 ip_wsrv(queue_t *q)
13371 {
13372 ill_t *ill;

13374 ill = (ill_t *)q->q_ptr;
13375 if (ill->ill_state_flags == 0) {
13376 ip_stack_t *ipst = ill->ill_ipst;

13378 /*
13379 * The device flow control has opened up.
13380 * Walk through conn drain lists and qenable the
13381 * first conn in each list. This makes sense only
13382 * if the stream is fully plumbed and setup.
13383 * Hence the ill_state_flags check above.
13384 */
13385 ip1dbg(("ip_wsrv: walking\n"));
13386 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13387 enableok(ill->ill_wq);
13388 }
13389 }

13391 /*
13392 * Callback to disable flow control in IP.
13393 *

new/usr/src/uts/common/inet/ip/ip.c 204

13394 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13395 * is enabled.
13396 *
13397 * When MAC_TX() is not able to send any more packets, dld sets its queue
13398 * to QFULL and enable the STREAMS flow control. Later, when the underlying
13399 * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13400 * function and wakes up corresponding mac worker threads, which in turn
13401 * calls this callback function, and disables flow control.
13402 */
13403 void
13404 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13405 {
13406 ill_t *ill = (ill_t *)arg;
13407 ip_stack_t *ipst = ill->ill_ipst;
13408 idl_tx_list_t *idl_txl;

13410 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13411 mutex_enter(&idl_txl->txl_lock);
13412 /* add code to to set a flag to indicate idl_txl is enabled */
13413 conn_walk_drain(ipst, idl_txl);
13414 mutex_exit(&idl_txl->txl_lock);
13415 }

13417 /*
13418 * Flow control has been relieved and STREAMS has backenabled us; drain
13419 * all the conn lists on ‘tx_list’.
13420 */
13421 static void
13422 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13423 {
13424 int i;
13425 idl_t *idl;

13427 IP_STAT(ipst, ip_conn_walk_drain);

13429 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13430 idl = &tx_list->txl_drain_list[i];
13431 mutex_enter(&idl->idl_lock);
13432 conn_drain(idl->idl_conn, B_FALSE);
13433 mutex_exit(&idl->idl_lock);
13434 }
13435 }

13437 /*
13438 * Determine if the ill and multicast aspects of that packets
13439 * "matches" the conn.
13440 */
13441 boolean_t
13442 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13443 {
13444 ill_t *ill = ira->ira_rill;
13445 zoneid_t zoneid = ira->ira_zoneid;
13446 uint_t in_ifindex;
13447 ipaddr_t dst, src;

13449 dst = ipha->ipha_dst;
13450 src = ipha->ipha_src;

13452 /*
13453 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13454 * unicast, broadcast and multicast reception to
13455 * conn_incoming_ifindex.
13456 * conn_wantpacket is called for unicast, broadcast and
13457 * multicast packets.
13458 */
13459 in_ifindex = connp->conn_incoming_ifindex;

new/usr/src/uts/common/inet/ip/ip.c 205

13461 /* mpathd can bind to the under IPMP interface, which we allow */
13462 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13463 if (!IS_UNDER_IPMP(ill))
13464 return (B_FALSE);

13466 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13467 return (B_FALSE);
13468 }

13470 if (!IPCL_ZONE_MATCH(connp, zoneid))
13471 return (B_FALSE);

13473 if (!(ira->ira_flags & IRAF_MULTICAST))
13474 return (B_TRUE);

13476 if (connp->conn_multi_router) {
13477 /* multicast packet and multicast router socket: send up */
13478 return (B_TRUE);
13479 }

13481 if (ipha->ipha_protocol == IPPROTO_PIM ||
13482 ipha->ipha_protocol == IPPROTO_RSVP)
13483 return (B_TRUE);

13485 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13486 }

13488 void
13489 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13490 {
13491 if (IPCL_IS_NONSTR(connp)) {
13492 (*connp->conn_upcalls->su_txq_full)
13493 (connp->conn_upper_handle, B_TRUE);
13494 if (flow_stopped != NULL)
13495 *flow_stopped = B_TRUE;
13496 } else {
13497 queue_t *q = connp->conn_wq;

13499 ASSERT(q != NULL);
13500 if (!(q->q_flag & QFULL)) {
13501 mutex_enter(QLOCK(q));
13502 if (!(q->q_flag & QFULL)) {
13503 /* still need to set QFULL */
13504 q->q_flag |= QFULL;
13505 /* set flow_stopped to true under QLOCK */
13506 if (flow_stopped != NULL)
13507 *flow_stopped = B_TRUE;
13508 mutex_exit(QLOCK(q));
13509 } else {
13510 /* flow_stopped is left unchanged */
13511 mutex_exit(QLOCK(q));
13512 }
13513 }
13514 }
13515 }

13517 void
13518 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13519 {
13520 if (IPCL_IS_NONSTR(connp)) {
13521 (*connp->conn_upcalls->su_txq_full)
13522 (connp->conn_upper_handle, B_FALSE);
13523 if (flow_stopped != NULL)
13524 *flow_stopped = B_FALSE;
13525 } else {

new/usr/src/uts/common/inet/ip/ip.c 206

13526 queue_t *q = connp->conn_wq;

13528 ASSERT(q != NULL);
13529 if (q->q_flag & QFULL) {
13530 mutex_enter(QLOCK(q));
13531 if (q->q_flag & QFULL) {
13532 q->q_flag &= ~QFULL;
13533 /* set flow_stopped to false under QLOCK */
13534 if (flow_stopped != NULL)
13535 *flow_stopped = B_FALSE;
13536 mutex_exit(QLOCK(q));
13537 if (q->q_flag & QWANTW)
13538 qbackenable(q, 0);
13539 } else {
13540 /* flow_stopped is left unchanged */
13541 mutex_exit(QLOCK(q));
13542 }
13543 }
13544 }

13546 mutex_enter(&connp->conn_lock);
13547 connp->conn_blocked = B_FALSE;
13548 mutex_exit(&connp->conn_lock);
13549 }

13551 /*
13552 * Return the length in bytes of the IPv4 headers (base header, label, and
13553 * other IP options) that will be needed based on the
13554 * ip_pkt_t structure passed by the caller.
13555 *
13556 * The returned length does not include the length of the upper level
13557 * protocol (ULP) header.
13558 * The caller needs to check that the length doesn’t exceed the max for IPv4.
13559 */
13560 int
13561 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13562 {
13563 int len;

13565 len = IP_SIMPLE_HDR_LENGTH;
13566 if (ipp->ipp_fields & IPPF_LABEL_V4) {
13567 ASSERT(ipp->ipp_label_len_v4 != 0);
13568 /* We need to round up here */
13569 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13570 }

13572 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13573 ASSERT(ipp->ipp_ipv4_options_len != 0);
13574 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13575 len += ipp->ipp_ipv4_options_len;
13576 }
13577 return (len);
13578 }

13580 /*
13581 * All-purpose routine to build an IPv4 header with options based
13582 * on the abstract ip_pkt_t.
13583 *
13584 * The caller has to set the source and destination address as well as
13585 * ipha_length. The caller has to massage any source route and compensate
13586 * for the ULP pseudo-header checksum due to the source route.
13587 */
13588 void
13589 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13590 uint8_t protocol)
13591 {

new/usr/src/uts/common/inet/ip/ip.c 207

13592 ipha_t *ipha = (ipha_t *)buf;
13593 uint8_t *cp;

13595 /* Initialize IPv4 header */
13596 ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13597 ipha->ipha_length = 0; /* Caller will set later */
13598 ipha->ipha_ident = 0;
13599 ipha->ipha_fragment_offset_and_flags = 0;
13600 ipha->ipha_ttl = ipp->ipp_unicast_hops;
13601 ipha->ipha_protocol = protocol;
13602 ipha->ipha_hdr_checksum = 0;

13604 if ((ipp->ipp_fields & IPPF_ADDR) &&
13605 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13606 ipha->ipha_src = ipp->ipp_addr_v4;

13608 cp = (uint8_t *)&ipha[1];
13609 if (ipp->ipp_fields & IPPF_LABEL_V4) {
13610 ASSERT(ipp->ipp_label_len_v4 != 0);
13611 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13612 cp += ipp->ipp_label_len_v4;
13613 /* We need to round up here */
13614 while ((uintptr_t)cp & 0x3) {
13615 *cp++ = IPOPT_NOP;
13616 }
13617 }

13619 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13620 ASSERT(ipp->ipp_ipv4_options_len != 0);
13621 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13622 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13623 cp += ipp->ipp_ipv4_options_len;
13624 }
13625 ipha->ipha_version_and_hdr_length =
13626 (uint8_t)((IP_VERSION << 4) + buf_len / 4);

13628 ASSERT((int)(cp - buf) == buf_len);
13629 }

13631 /* Allocate the private structure */
13632 static int
13633 ip_priv_alloc(void **bufp)
13634 {
13635 void *buf;

13637 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13638 return (ENOMEM);

13640 *bufp = buf;
13641 return (0);
13642 }

13644 /* Function to delete the private structure */
13645 void
13646 ip_priv_free(void *buf)
13647 {
13648 ASSERT(buf != NULL);
13649 kmem_free(buf, sizeof (ip_priv_t));
13650 }

13652 /*
13653 * The entry point for IPPF processing.
13654 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13655 * routine just returns.
13656 *
13657 * When called, ip_process generates an ipp_packet_t structure

new/usr/src/uts/common/inet/ip/ip.c 208

13658 * which holds the state information for this packet and invokes the
13659 * the classifier (via ipp_packet_process). The classification, depending on
13660 * configured filters, results in a list of actions for this packet. Invoking
13661 * an action may cause the packet to be dropped, in which case we return NULL.
13662 * proc indicates the callout position for
13663 * this packet and ill is the interface this packet arrived on or will leave
13664 * on (inbound and outbound resp.).
13665 *
13666 * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13667 * on the ill corrsponding to the destination IP address.
13668 */
13669 mblk_t *
13670 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13671 {
13672 ip_priv_t *priv;
13673 ipp_action_id_t aid;
13674 int rc = 0;
13675 ipp_packet_t *pp;

13677 /* If the classifier is not loaded, return */
13678 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13679 return (mp);
13680 }

13682 ASSERT(mp != NULL);

13684 /* Allocate the packet structure */
13685 rc = ipp_packet_alloc(&pp, "ip", aid);
13686 if (rc != 0)
13687 goto drop;

13689 /* Allocate the private structure */
13690 rc = ip_priv_alloc((void **)&priv);
13691 if (rc != 0) {
13692 ipp_packet_free(pp);
13693 goto drop;
13694 }
13695 priv->proc = proc;
13696 priv->ill_index = ill_get_upper_ifindex(rill);

13698 ipp_packet_set_private(pp, priv, ip_priv_free);
13699 ipp_packet_set_data(pp, mp);

13701 /* Invoke the classifier */
13702 rc = ipp_packet_process(&pp);
13703 if (pp != NULL) {
13704 mp = ipp_packet_get_data(pp);
13705 ipp_packet_free(pp);
13706 if (rc != 0)
13707 goto drop;
13708 return (mp);
13709 } else {
13710 /* No mp to trace in ip_drop_input/ip_drop_output */
13711 mp = NULL;
13712 }
13713 drop:
13714 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13715 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13716 ip_drop_input("ip_process", mp, ill);
13717 } else {
13718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13719 ip_drop_output("ip_process", mp, ill);
13720 }
13721 freemsg(mp);
13722 return (NULL);
13723 }

new/usr/src/uts/common/inet/ip/ip.c 209

13725 /*
13726 * Propagate a multicast group membership operation (add/drop) on
13727 * all the interfaces crossed by the related multirt routes.
13728 * The call is considered successful if the operation succeeds
13729 * on at least one interface.
13730 *
13731 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13732 * multicast addresses with the ire argument being the first one.
13733 * We walk the bucket to find all the of those.
13734 *
13735 * Common to IPv4 and IPv6.
13736 */
13737 static int
13738 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13739 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13740 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13741 mcast_record_t fmode, const in6_addr_t *v6src)
13742 {
13743 ire_t *ire_gw;
13744 irb_t *irb;
13745 int ifindex;
13746 int error = 0;
13747 int result;
13748 ip_stack_t *ipst = ire->ire_ipst;
13749 ipaddr_t group;
13750 boolean_t isv6;
13751 int match_flags;

13753 if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13754 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13755 isv6 = B_FALSE;
13756 } else {
13757 isv6 = B_TRUE;
13758 }

13760 irb = ire->ire_bucket;
13761 ASSERT(irb != NULL);

13763 result = 0;
13764 irb_refhold(irb);
13765 for (; ire != NULL; ire = ire->ire_next) {
13766 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13767 continue;

13769 /* We handle -ifp routes by matching on the ill if set */
13770 match_flags = MATCH_IRE_TYPE;
13771 if (ire->ire_ill != NULL)
13772 match_flags |= MATCH_IRE_ILL;

13774 if (isv6) {
13775 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13776 continue;

13778 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13779 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13780 match_flags, 0, ipst, NULL);
13781 } else {
13782 if (ire->ire_addr != group)
13783 continue;

13785 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13786 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13787 match_flags, 0, ipst, NULL);
13788 }
13789 /* No interface route exists for the gateway; skip this ire. */

new/usr/src/uts/common/inet/ip/ip.c 210

13790 if (ire_gw == NULL)
13791 continue;
13792 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13793 ire_refrele(ire_gw);
13794 continue;
13795 }
13796 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */
13797 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;

13799 /*
13800 * The operation is considered a success if
13801 * it succeeds at least once on any one interface.
13802 */
13803 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13804 fmode, v6src);
13805 if (error == 0)
13806 result = CGTP_MCAST_SUCCESS;

13808 ire_refrele(ire_gw);
13809 }
13810 irb_refrele(irb);
13811 /*
13812 * Consider the call as successful if we succeeded on at least
13813 * one interface. Otherwise, return the last encountered error.
13814 */
13815 return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13816 }

13818 /*
13819 * Return the expected CGTP hooks version number.
13820 */
13821 int
13822 ip_cgtp_filter_supported(void)
13823 {
13824 return (ip_cgtp_filter_rev);
13825 }

13827 /*
13828 * CGTP hooks can be registered by invoking this function.
13829 * Checks that the version number matches.
13830 */
13831 int
13832 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13833 {
13834 netstack_t *ns;
13835 ip_stack_t *ipst;

13837 if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13838 return (ENOTSUP);

13840 ns = netstack_find_by_stackid(stackid);
13841 if (ns == NULL)
13842 return (EINVAL);
13843 ipst = ns->netstack_ip;
13844 ASSERT(ipst != NULL);

13846 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13847 netstack_rele(ns);
13848 return (EALREADY);
13849 }

13851 ipst->ips_ip_cgtp_filter_ops = ops;

13853 ill_set_inputfn_all(ipst);

13855 netstack_rele(ns);

new/usr/src/uts/common/inet/ip/ip.c 211

13856 return (0);
13857 }

13859 /*
13860 * CGTP hooks can be unregistered by invoking this function.
13861 * Returns ENXIO if there was no registration.
13862 * Returns EBUSY if the ndd variable has not been turned off.
13863 */
13864 int
13865 ip_cgtp_filter_unregister(netstackid_t stackid)
13866 {
13867 netstack_t *ns;
13868 ip_stack_t *ipst;

13870 ns = netstack_find_by_stackid(stackid);
13871 if (ns == NULL)
13872 return (EINVAL);
13873 ipst = ns->netstack_ip;
13874 ASSERT(ipst != NULL);

13876 if (ipst->ips_ip_cgtp_filter) {
13877 netstack_rele(ns);
13878 return (EBUSY);
13879 }

13881 if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13882 netstack_rele(ns);
13883 return (ENXIO);
13884 }
13885 ipst->ips_ip_cgtp_filter_ops = NULL;

13887 ill_set_inputfn_all(ipst);

13889 netstack_rele(ns);
13890 return (0);
13891 }

13893 /*
13894 * Check whether there is a CGTP filter registration.
13895 * Returns non-zero if there is a registration, otherwise returns zero.
13896 * Note: returns zero if bad stackid.
13897 */
13898 int
13899 ip_cgtp_filter_is_registered(netstackid_t stackid)
13900 {
13901 netstack_t *ns;
13902 ip_stack_t *ipst;
13903 int ret;

13905 ns = netstack_find_by_stackid(stackid);
13906 if (ns == NULL)
13907 return (0);
13908 ipst = ns->netstack_ip;
13909 ASSERT(ipst != NULL);

13911 if (ipst->ips_ip_cgtp_filter_ops != NULL)
13912 ret = 1;
13913 else
13914 ret = 0;

13916 netstack_rele(ns);
13917 return (ret);
13918 }

13920 static int
13921 ip_squeue_switch(int val)

new/usr/src/uts/common/inet/ip/ip.c 212

13922 {
13923 int rval;

13925 switch (val) {
13926 case IP_SQUEUE_ENTER_NODRAIN:
13927 rval = SQ_NODRAIN;
13928 break;
13929 case IP_SQUEUE_ENTER:
13930 rval = SQ_PROCESS;
13931 break;
13932 case IP_SQUEUE_FILL:
13933 default:
13934 rval = SQ_FILL;
13935 break;
13936 }
13937 return (rval);
13938 }

13940 static void *
13941 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13942 {
13943 kstat_t *ksp;

13945 ip_stat_t template = {
13946 { "ip_udp_fannorm", KSTAT_DATA_UINT64 },
13947 { "ip_udp_fanmb", KSTAT_DATA_UINT64 },
13948 { "ip_recv_pullup", KSTAT_DATA_UINT64 },
13949 { "ip_db_ref", KSTAT_DATA_UINT64 },
13950 { "ip_notaligned", KSTAT_DATA_UINT64 },
13951 { "ip_multimblk", KSTAT_DATA_UINT64 },
13952 { "ip_opt", KSTAT_DATA_UINT64 },
13953 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 },
13954 { "ip_conn_flputbq", KSTAT_DATA_UINT64 },
13955 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 },
13956 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 },
13957 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 },
13958 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 },
13959 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 },
13960 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 },
13961 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 },
13962 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 },
13963 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 },
13964 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 },
13965 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
13966 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
13967 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
13968 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
13969 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
13970 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
13971 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 },
13972 { "conn_in_recvopts", KSTAT_DATA_UINT64 },
13973 { "conn_in_recvif", KSTAT_DATA_UINT64 },
13974 { "conn_in_recvslla", KSTAT_DATA_UINT64 },
13975 { "conn_in_recvucred", KSTAT_DATA_UINT64 },
13976 { "conn_in_recvttl", KSTAT_DATA_UINT64 },
13977 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 },
13978 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 },
13979 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 },
13980 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 },
13981 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 },
13982 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 },
13983 { "conn_in_recvtclass", KSTAT_DATA_UINT64 },
13984 { "conn_in_timestamp", KSTAT_DATA_UINT64 },
13985 };

13987 ksp = kstat_create_netstack("ip", 0, "ipstat", "net",

new/usr/src/uts/common/inet/ip/ip.c 213

13988 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13989 KSTAT_FLAG_VIRTUAL, stackid);

13991 if (ksp == NULL)
13992 return (NULL);

13994 bcopy(&template, ip_statisticsp, sizeof (template));
13995 ksp->ks_data = (void *)ip_statisticsp;
13996 ksp->ks_private = (void *)(uintptr_t)stackid;

13998 kstat_install(ksp);
13999 return (ksp);
14000 }

14002 static void
14003 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
14004 {
14005 if (ksp != NULL) {
14006 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14007 kstat_delete_netstack(ksp, stackid);
14008 }
14009 }

14011 static void *
14012 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
14013 {
14014 kstat_t *ksp;

14016 ip_named_kstat_t template = {
14017 { "forwarding", KSTAT_DATA_UINT32, 0 },
14018 { "defaultTTL", KSTAT_DATA_UINT32, 0 },
14019 { "inReceives", KSTAT_DATA_UINT64, 0 },
14020 { "inHdrErrors", KSTAT_DATA_UINT32, 0 },
14021 { "inAddrErrors", KSTAT_DATA_UINT32, 0 },
14022 { "forwDatagrams", KSTAT_DATA_UINT64, 0 },
14023 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 },
14024 { "inDiscards", KSTAT_DATA_UINT32, 0 },
14025 { "inDelivers", KSTAT_DATA_UINT64, 0 },
14026 { "outRequests", KSTAT_DATA_UINT64, 0 },
14027 { "outDiscards", KSTAT_DATA_UINT32, 0 },
14028 { "outNoRoutes", KSTAT_DATA_UINT32, 0 },
14029 { "reasmTimeout", KSTAT_DATA_UINT32, 0 },
14030 { "reasmReqds", KSTAT_DATA_UINT32, 0 },
14031 { "reasmOKs", KSTAT_DATA_UINT32, 0 },
14032 { "reasmFails", KSTAT_DATA_UINT32, 0 },
14033 { "fragOKs", KSTAT_DATA_UINT32, 0 },
14034 { "fragFails", KSTAT_DATA_UINT32, 0 },
14035 { "fragCreates", KSTAT_DATA_UINT32, 0 },
14036 { "addrEntrySize", KSTAT_DATA_INT32, 0 },
14037 { "routeEntrySize", KSTAT_DATA_INT32, 0 },
14038 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 },
14039 { "routingDiscards", KSTAT_DATA_UINT32, 0 },
14040 { "inErrs", KSTAT_DATA_UINT32, 0 },
14041 { "noPorts", KSTAT_DATA_UINT32, 0 },
14042 { "inCksumErrs", KSTAT_DATA_UINT32, 0 },
14043 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 },
14044 { "reasmPartDups", KSTAT_DATA_UINT32, 0 },
14045 { "forwProhibits", KSTAT_DATA_UINT32, 0 },
14046 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 },
14047 { "udpInOverflows", KSTAT_DATA_UINT32, 0 },
14048 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 },
14049 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 },
14050 { "ipsecInFailed", KSTAT_DATA_INT32, 0 },
14051 { "memberEntrySize", KSTAT_DATA_INT32, 0 },
14052 { "inIPv6", KSTAT_DATA_UINT32, 0 },
14053 { "outIPv6", KSTAT_DATA_UINT32, 0 },

new/usr/src/uts/common/inet/ip/ip.c 214

14054 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 },
14055 };

14057 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14058 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14059 if (ksp == NULL || ksp->ks_data == NULL)
14060 return (NULL);

14062 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14063 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14064 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14065 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14066 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);

14068 template.netToMediaEntrySize.value.i32 =
14069 sizeof (mib2_ipNetToMediaEntry_t);

14071 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);

14073 bcopy(&template, ksp->ks_data, sizeof (template));
14074 ksp->ks_update = ip_kstat_update;
14075 ksp->ks_private = (void *)(uintptr_t)stackid;

14077 kstat_install(ksp);
14078 return (ksp);
14079 }

14081 static void
14082 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14083 {
14084 if (ksp != NULL) {
14085 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14086 kstat_delete_netstack(ksp, stackid);
14087 }
14088 }

14090 static int
14091 ip_kstat_update(kstat_t *kp, int rw)
14092 {
14093 ip_named_kstat_t *ipkp;
14094 mib2_ipIfStatsEntry_t ipmib;
14095 ill_walk_context_t ctx;
14096 ill_t *ill;
14097 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14098 netstack_t *ns;
14099 ip_stack_t *ipst;

14101 if (kp == NULL || kp->ks_data == NULL)
14102 return (EIO);

14104 if (rw == KSTAT_WRITE)
14105 return (EACCES);

14107 ns = netstack_find_by_stackid(stackid);
14108 if (ns == NULL)
14109 return (-1);
14110 ipst = ns->netstack_ip;
14111 if (ipst == NULL) {
14112 netstack_rele(ns);
14113 return (-1);
14114 }
14115 ipkp = (ip_named_kstat_t *)kp->ks_data;

14117 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14118 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14119 ill = ILL_START_WALK_V4(&ctx, ipst);

new/usr/src/uts/common/inet/ip/ip.c 215

14120 for (; ill != NULL; ill = ill_next(&ctx, ill))
14121 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14122 rw_exit(&ipst->ips_ill_g_lock);

14124 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding;
14125 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL;
14126 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives;
14127 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors;
14128 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors;
14129 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14130 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos;
14131 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards;
14132 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers;
14133 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests;
14134 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards;
14135 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes;
14136 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14137 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds;
14138 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs;
14139 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails;
14140 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs;
14141 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails;
14142 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates;

14144 ipkp->routingDiscards.value.ui32 = 0;
14145 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs;
14146 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts;
14147 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs;
14148 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates;
14149 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups;
14150 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits;
14151 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs;
14152 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows;
14153 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows;
14154 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded;
14155 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed;

14157 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion;
14158 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion;
14159 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;

14161 netstack_rele(ns);

14163 return (0);
14164 }

14166 static void *
14167 icmp_kstat_init(netstackid_t stackid)
14168 {
14169 kstat_t *ksp;

14171 icmp_named_kstat_t template = {
14172 { "inMsgs", KSTAT_DATA_UINT32 },
14173 { "inErrors", KSTAT_DATA_UINT32 },
14174 { "inDestUnreachs", KSTAT_DATA_UINT32 },
14175 { "inTimeExcds", KSTAT_DATA_UINT32 },
14176 { "inParmProbs", KSTAT_DATA_UINT32 },
14177 { "inSrcQuenchs", KSTAT_DATA_UINT32 },
14178 { "inRedirects", KSTAT_DATA_UINT32 },
14179 { "inEchos", KSTAT_DATA_UINT32 },
14180 { "inEchoReps", KSTAT_DATA_UINT32 },
14181 { "inTimestamps", KSTAT_DATA_UINT32 },
14182 { "inTimestampReps", KSTAT_DATA_UINT32 },
14183 { "inAddrMasks", KSTAT_DATA_UINT32 },
14184 { "inAddrMaskReps", KSTAT_DATA_UINT32 },
14185 { "outMsgs", KSTAT_DATA_UINT32 },

new/usr/src/uts/common/inet/ip/ip.c 216

14186 { "outErrors", KSTAT_DATA_UINT32 },
14187 { "outDestUnreachs", KSTAT_DATA_UINT32 },
14188 { "outTimeExcds", KSTAT_DATA_UINT32 },
14189 { "outParmProbs", KSTAT_DATA_UINT32 },
14190 { "outSrcQuenchs", KSTAT_DATA_UINT32 },
14191 { "outRedirects", KSTAT_DATA_UINT32 },
14192 { "outEchos", KSTAT_DATA_UINT32 },
14193 { "outEchoReps", KSTAT_DATA_UINT32 },
14194 { "outTimestamps", KSTAT_DATA_UINT32 },
14195 { "outTimestampReps", KSTAT_DATA_UINT32 },
14196 { "outAddrMasks", KSTAT_DATA_UINT32 },
14197 { "outAddrMaskReps", KSTAT_DATA_UINT32 },
14198 { "inChksumErrs", KSTAT_DATA_UINT32 },
14199 { "inUnknowns", KSTAT_DATA_UINT32 },
14200 { "inFragNeeded", KSTAT_DATA_UINT32 },
14201 { "outFragNeeded", KSTAT_DATA_UINT32 },
14202 { "outDrops", KSTAT_DATA_UINT32 },
14203 { "inOverFlows", KSTAT_DATA_UINT32 },
14204 { "inBadRedirects", KSTAT_DATA_UINT32 },
14205 };

14207 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14208 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14209 if (ksp == NULL || ksp->ks_data == NULL)
14210 return (NULL);

14212 bcopy(&template, ksp->ks_data, sizeof (template));

14214 ksp->ks_update = icmp_kstat_update;
14215 ksp->ks_private = (void *)(uintptr_t)stackid;

14217 kstat_install(ksp);
14218 return (ksp);
14219 }

14221 static void
14222 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14223 {
14224 if (ksp != NULL) {
14225 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14226 kstat_delete_netstack(ksp, stackid);
14227 }
14228 }

14230 static int
14231 icmp_kstat_update(kstat_t *kp, int rw)
14232 {
14233 icmp_named_kstat_t *icmpkp;
14234 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14235 netstack_t *ns;
14236 ip_stack_t *ipst;

14238 if ((kp == NULL) || (kp->ks_data == NULL))
14239 return (EIO);

14241 if (rw == KSTAT_WRITE)
14242 return (EACCES);

14244 ns = netstack_find_by_stackid(stackid);
14245 if (ns == NULL)
14246 return (-1);
14247 ipst = ns->netstack_ip;
14248 if (ipst == NULL) {
14249 netstack_rele(ns);
14250 return (-1);
14251 }

new/usr/src/uts/common/inet/ip/ip.c 217

14252 icmpkp = (icmp_named_kstat_t *)kp->ks_data;

14254 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs;
14255 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors;
14256 icmpkp->inDestUnreachs.value.ui32 =
14257 ipst->ips_icmp_mib.icmpInDestUnreachs;
14258 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds;
14259 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs;
14260 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs;
14261 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects;
14262 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos;
14263 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps;
14264 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps;
14265 icmpkp->inTimestampReps.value.ui32 =
14266 ipst->ips_icmp_mib.icmpInTimestampReps;
14267 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks;
14268 icmpkp->inAddrMaskReps.value.ui32 =
14269 ipst->ips_icmp_mib.icmpInAddrMaskReps;
14270 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs;
14271 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors;
14272 icmpkp->outDestUnreachs.value.ui32 =
14273 ipst->ips_icmp_mib.icmpOutDestUnreachs;
14274 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds;
14275 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs;
14276 icmpkp->outSrcQuenchs.value.ui32 =
14277 ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14278 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects;
14279 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos;
14280 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps;
14281 icmpkp->outTimestamps.value.ui32 =
14282 ipst->ips_icmp_mib.icmpOutTimestamps;
14283 icmpkp->outTimestampReps.value.ui32 =
14284 ipst->ips_icmp_mib.icmpOutTimestampReps;
14285 icmpkp->outAddrMasks.value.ui32 =
14286 ipst->ips_icmp_mib.icmpOutAddrMasks;
14287 icmpkp->outAddrMaskReps.value.ui32 =
14288 ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14289 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs;
14290 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns;
14291 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded;
14292 icmpkp->outFragNeeded.value.ui32 =
14293 ipst->ips_icmp_mib.icmpOutFragNeeded;
14294 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops;
14295 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows;
14296 icmpkp->inBadRedirects.value.ui32 =
14297 ipst->ips_icmp_mib.icmpInBadRedirects;

14299 netstack_rele(ns);
14300 return (0);
14301 }

14303 /*
14304 * This is the fanout function for raw socket opened for SCTP. Note
14305 * that it is called after SCTP checks that there is no socket which
14306 * wants a packet. Then before SCTP handles this out of the blue packet,
14307 * this function is called to see if there is any raw socket for SCTP.
14308 * If there is and it is bound to the correct address, the packet will
14309 * be sent to that socket. Note that only one raw socket can be bound to
14310 * a port. This is assured in ipcl_sctp_hash_insert();
14311 */
14312 void
14313 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14314 ip_recv_attr_t *ira)
14315 {
14316 conn_t *connp;
14317 queue_t *rq;

new/usr/src/uts/common/inet/ip/ip.c 218

14318 boolean_t secure;
14319 ill_t *ill = ira->ira_ill;
14320 ip_stack_t *ipst = ill->ill_ipst;
14321 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
14322 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp;
14323 iaflags_t iraflags = ira->ira_flags;
14324 ill_t *rill = ira->ira_rill;

14326 secure = iraflags & IRAF_IPSEC_SECURE;

14328 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14329 ira, ipst);
14330 if (connp == NULL) {
14331 /*
14332 * Although raw sctp is not summed, OOB chunks must be.
14333 * Drop the packet here if the sctp checksum failed.
14334 */
14335 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14336 SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14337 freemsg(mp);
14338 return;
14339 }
14340 ira->ira_ill = ira->ira_rill = NULL;
14341 sctp_ootb_input(mp, ira, ipst);
14342 ira->ira_ill = ill;
14343 ira->ira_rill = rill;
14344 return;
14345 }
14346 rq = connp->conn_rq;
14347 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14348 CONN_DEC_REF(connp);
14349 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14350 freemsg(mp);
14351 return;
14352 }
14353 if (((iraflags & IRAF_IS_IPV4) ?
14354 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14355 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14356 secure) {
14357 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14358 ip6h, ira);
14359 if (mp == NULL) {
14360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14361 /* Note that mp is NULL */
14362 ip_drop_input("ipIfStatsInDiscards", mp, ill);
14363 CONN_DEC_REF(connp);
14364 return;
14365 }
14366 }

14368 if (iraflags & IRAF_ICMP_ERROR) {
14369 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14370 } else {
14371 ill_t *rill = ira->ira_rill;

14373 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14374 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14375 ira->ira_ill = ira->ira_rill = NULL;
14376 (connp->conn_recv)(connp, mp, NULL, ira);
14377 ira->ira_ill = ill;
14378 ira->ira_rill = rill;
14379 }
14380 CONN_DEC_REF(connp);
14381 }

14383 /*

new/usr/src/uts/common/inet/ip/ip.c 219

14384 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14385 * header before the ip payload.
14386 */
14387 static void
14388 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14389 {
14390 int len = (mp->b_wptr - mp->b_rptr);
14391 mblk_t *ip_mp;

14393 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14394 if (is_fp_mp || len != fp_mp_len) {
14395 if (len > fp_mp_len) {
14396 /*
14397 * fastpath header and ip header in the first mblk
14398 */
14399 mp->b_rptr += fp_mp_len;
14400 } else {
14401 /*
14402 * ip_xmit_attach_llhdr had to prepend an mblk to
14403 * attach the fastpath header before ip header.
14404 */
14405 ip_mp = mp->b_cont;
14406 freeb(mp);
14407 mp = ip_mp;
14408 mp->b_rptr += (fp_mp_len - len);
14409 }
14410 } else {
14411 ip_mp = mp->b_cont;
14412 freeb(mp);
14413 mp = ip_mp;
14414 }
14415 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14416 freemsg(mp);
14417 }

14419 /*
14420 * Normal post fragmentation function.
14421 *
14422 * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14423 * using the same state machine.
14424 *
14425 * We return an error on failure. In particular we return EWOULDBLOCK
14426 * when the driver flow controls. In that case this ensures that ip_wsrv runs
14427 * (currently by canputnext failure resulting in backenabling from GLD.)
14428 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14429 * indication that they can flow control until ip_wsrv() tells then to restart.
14430 *
14431 * If the nce passed by caller is incomplete, this function
14432 * queues the packet and if necessary, sends ARP request and bails.
14433 * If the Neighbor Cache passed is fully resolved, we simply prepend
14434 * the link-layer header to the packet, do ipsec hw acceleration
14435 * work if necessary, and send the packet out on the wire.
14436 */
14437 /* ARGSUSED6 */
14438 int
14439 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14440 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14441 {
14442 queue_t *wq;
14443 ill_t *ill = nce->nce_ill;
14444 ip_stack_t *ipst = ill->ill_ipst;
14445 uint64_t delta;
14446 boolean_t isv6 = ill->ill_isv6;
14447 boolean_t fp_mp;
14448 ncec_t *ncec = nce->nce_common;
14449 int64_t now = LBOLT_FASTPATH64;

new/usr/src/uts/common/inet/ip/ip.c 220

14450 boolean_t is_probe;

14452 DTRACE_PROBE1(ip__xmit, nce_t *, nce);

14454 ASSERT(mp != NULL);
14455 ASSERT(mp->b_datap->db_type == M_DATA);
14456 ASSERT(pkt_len == msgdsize(mp));

14458 /*
14459 * If we have already been here and are coming back after ARP/ND.
14460 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14461 * in that case since they have seen the packet when it came here
14462 * the first time.
14463 */
14464 if (ixaflags & IXAF_NO_TRACE)
14465 goto sendit;

14467 if (ixaflags & IXAF_IS_IPV4) {
14468 ipha_t *ipha = (ipha_t *)mp->b_rptr;

14470 ASSERT(!isv6);
14471 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14472 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14473 !(ixaflags & IXAF_NO_PFHOOK)) {
14474 int error;

14476 FW_HOOKS(ipst->ips_ip4_physical_out_event,
14477 ipst->ips_ipv4firewall_physical_out,
14478 NULL, ill, ipha, mp, mp, 0, ipst, error);
14479 DTRACE_PROBE1(ip4__physical__out__end,
14480 mblk_t *, mp);
14481 if (mp == NULL)
14482 return (error);

14484 /* The length could have changed */
14485 pkt_len = msgdsize(mp);
14486 }
14487 if (ipst->ips_ip4_observe.he_interested) {
14488 /*
14489 * Note that for TX the zoneid is the sending
14490 * zone, whether or not MLP is in play.
14491 * Since the szone argument is the IP zoneid (i.e.,
14492 * zero for exclusive-IP zones) and ipobs wants
14493 * the system zoneid, we map it here.
14494 */
14495 szone = IP_REAL_ZONEID(szone, ipst);

14497 /*
14498 * On the outbound path the destination zone will be
14499 * unknown as we’re sending this packet out on the
14500 * wire.
14501 */
14502 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14503 ill, ipst);
14504 }
14505 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
14506 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill,
14507 ipha_t *, ipha, ip6_t *, NULL, int, 0);
14508 } else {
14509 ip6_t *ip6h = (ip6_t *)mp->b_rptr;

14511 ASSERT(isv6);
14512 ASSERT(pkt_len ==
14513 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14514 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14515 !(ixaflags & IXAF_NO_PFHOOK)) {

new/usr/src/uts/common/inet/ip/ip.c 221

14516 int error;

14518 FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14519 ipst->ips_ipv6firewall_physical_out,
14520 NULL, ill, ip6h, mp, mp, 0, ipst, error);
14521 DTRACE_PROBE1(ip6__physical__out__end,
14522 mblk_t *, mp);
14523 if (mp == NULL)
14524 return (error);

14526 /* The length could have changed */
14527 pkt_len = msgdsize(mp);
14528 }
14529 if (ipst->ips_ip6_observe.he_interested) {
14530 /* See above */
14531 szone = IP_REAL_ZONEID(szone, ipst);

14533 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14534 ill, ipst);
14535 }
14536 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
14537 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill,
14538 ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14539 }

14541 sendit:
14542 /*
14543 * We check the state without a lock because the state can never
14544 * move "backwards" to initial or incomplete.
14545 */
14546 switch (ncec->ncec_state) {
14547 case ND_REACHABLE:
14548 case ND_STALE:
14549 case ND_DELAY:
14550 case ND_PROBE:
14551 mp = ip_xmit_attach_llhdr(mp, nce);
14552 if (mp == NULL) {
14553 /*
14554 * ip_xmit_attach_llhdr has increased
14555 * ipIfStatsOutDiscards and called ip_drop_output()
14556 */
14557 return (ENOBUFS);
14558 }
14559 /*
14560 * check if nce_fastpath completed and we tagged on a
14561 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14562 */
14563 fp_mp = (mp->b_datap->db_type == M_DATA);

14565 if (fp_mp &&
14566 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14567 ill_dld_direct_t *idd;

14569 idd = &ill->ill_dld_capab->idc_direct;
14570 /*
14571 * Send the packet directly to DLD, where it
14572 * may be queued depending on the availability
14573 * of transmit resources at the media layer.
14574 * Return value should be taken into
14575 * account and flow control the TCP.
14576 */
14577 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14578 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14579 pkt_len);

14581 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {

new/usr/src/uts/common/inet/ip/ip.c 222

14582 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14583 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14584 } else {
14585 uintptr_t cookie;

14587 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14588 mp, (uintptr_t)xmit_hint, 0)) != 0) {
14589 if (ixacookie != NULL)
14590 *ixacookie = cookie;
14591 return (EWOULDBLOCK);
14592 }
14593 }
14594 } else {
14595 wq = ill->ill_wq;

14597 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14598 !canputnext(wq)) {
14599 if (ixacookie != NULL)
14600 *ixacookie = 0;
14601 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14602 nce->nce_fp_mp != NULL ?
14603 MBLKL(nce->nce_fp_mp) : 0);
14604 return (EWOULDBLOCK);
14605 }
14606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14607 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14608 pkt_len);
14609 putnext(wq, mp);
14610 }

14612 /*
14613 * The rest of this function implements Neighbor Unreachability
14614 * detection. Determine if the ncec is eligible for NUD.
14615 */
14616 if (ncec->ncec_flags & NCE_F_NONUD)
14617 return (0);

14619 ASSERT(ncec->ncec_state != ND_INCOMPLETE);

14621 /*
14622 * Check for upper layer advice
14623 */
14624 if (ixaflags & IXAF_REACH_CONF) {
14625 timeout_id_t tid;

14627 /*
14628 * It should be o.k. to check the state without
14629 * a lock here, at most we lose an advice.
14630 */
14631 ncec->ncec_last = TICK_TO_MSEC(now);
14632 if (ncec->ncec_state != ND_REACHABLE) {
14633 mutex_enter(&ncec->ncec_lock);
14634 ncec->ncec_state = ND_REACHABLE;
14635 tid = ncec->ncec_timeout_id;
14636 ncec->ncec_timeout_id = 0;
14637 mutex_exit(&ncec->ncec_lock);
14638 (void) untimeout(tid);
14639 if (ip_debug > 2) {
14640 /* ip1dbg */
14641 pr_addr_dbg("ip_xmit: state"
14642 " for %s changed to"
14643 " REACHABLE\n", AF_INET6,
14644 &ncec->ncec_addr);
14645 }
14646 }
14647 return (0);

new/usr/src/uts/common/inet/ip/ip.c 223

14648 }

14650 delta = TICK_TO_MSEC(now) - ncec->ncec_last;
14651 ip1dbg(("ip_xmit: delta = %" PRId64
14652 " ill_reachable_time = %d \n", delta,
14653 ill->ill_reachable_time));
14654 if (delta > (uint64_t)ill->ill_reachable_time) {
14655 mutex_enter(&ncec->ncec_lock);
14656 switch (ncec->ncec_state) {
14657 case ND_REACHABLE:
14658 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14659 /* FALLTHROUGH */
14660 case ND_STALE:
14661 /*
14662 * ND_REACHABLE is identical to
14663 * ND_STALE in this specific case. If
14664 * reachable time has expired for this
14665 * neighbor (delta is greater than
14666 * reachable time), conceptually, the
14667 * neighbor cache is no longer in
14668 * REACHABLE state, but already in
14669 * STALE state. So the correct
14670 * transition here is to ND_DELAY.
14671 */
14672 ncec->ncec_state = ND_DELAY;
14673 mutex_exit(&ncec->ncec_lock);
14674 nce_restart_timer(ncec,
14675 ipst->ips_delay_first_probe_time);
14676 if (ip_debug > 3) {
14677 /* ip2dbg */
14678 pr_addr_dbg("ip_xmit: state"
14679 " for %s changed to"
14680 " DELAY\n", AF_INET6,
14681 &ncec->ncec_addr);
14682 }
14683 break;
14684 case ND_DELAY:
14685 case ND_PROBE:
14686 mutex_exit(&ncec->ncec_lock);
14687 /* Timers have already started */
14688 break;
14689 case ND_UNREACHABLE:
14690 /*
14691 * nce_timer has detected that this ncec
14692 * is unreachable and initiated deleting
14693 * this ncec.
14694 * This is a harmless race where we found the
14695 * ncec before it was deleted and have
14696 * just sent out a packet using this
14697 * unreachable ncec.
14698 */
14699 mutex_exit(&ncec->ncec_lock);
14700 break;
14701 default:
14702 ASSERT(0);
14703 mutex_exit(&ncec->ncec_lock);
14704 }
14705 }
14706 return (0);

14708 case ND_INCOMPLETE:
14709 /*
14710 * the state could have changed since we didn’t hold the lock.
14711 * Re-verify state under lock.
14712 */
14713 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);

new/usr/src/uts/common/inet/ip/ip.c 224

14714 mutex_enter(&ncec->ncec_lock);
14715 if (NCE_ISREACHABLE(ncec)) {
14716 mutex_exit(&ncec->ncec_lock);
14717 goto sendit;
14718 }
14719 /* queue the packet */
14720 nce_queue_mp(ncec, mp, is_probe);
14721 mutex_exit(&ncec->ncec_lock);
14722 DTRACE_PROBE2(ip__xmit__incomplete,
14723 (ncec_t *), ncec, (mblk_t *), mp);
14724 return (0);

14726 case ND_INITIAL:
14727 /*
14728 * State could have changed since we didn’t hold the lock, so
14729 * re-verify state.
14730 */
14731 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14732 mutex_enter(&ncec->ncec_lock);
14733 if (NCE_ISREACHABLE(ncec)) {
14734 mutex_exit(&ncec->ncec_lock);
14735 goto sendit;
14736 }
14737 nce_queue_mp(ncec, mp, is_probe);
14738 if (ncec->ncec_state == ND_INITIAL) {
14739 ncec->ncec_state = ND_INCOMPLETE;
14740 mutex_exit(&ncec->ncec_lock);
14741 /*
14742 * figure out the source we want to use
14743 * and resolve it.
14744 */
14745 ip_ndp_resolve(ncec);
14746 } else {
14747 mutex_exit(&ncec->ncec_lock);
14748 }
14749 return (0);

14751 case ND_UNREACHABLE:
14752 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14753 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14754 mp, ill);
14755 freemsg(mp);
14756 return (0);

14758 default:
14759 ASSERT(0);
14760 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14761 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14762 mp, ill);
14763 freemsg(mp);
14764 return (ENETUNREACH);
14765 }
14766 }

14768 /*
14769 * Return B_TRUE if the buffers differ in length or content.
14770 * This is used for comparing extension header buffers.
14771 * Note that an extension header would be declared different
14772 * even if all that changed was the next header value in that header i.e.
14773 * what really changed is the next extension header.
14774 */
14775 boolean_t
14776 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14777 uint_t blen)
14778 {
14779 if (!b_valid)

new/usr/src/uts/common/inet/ip/ip.c 225

14780 blen = 0;

14782 if (alen != blen)
14783 return (B_TRUE);
14784 if (alen == 0)
14785 return (B_FALSE); /* Both zero length */
14786 return (bcmp(abuf, bbuf, alen));
14787 }

14789 /*
14790 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14791 * Return B_FALSE if memory allocation fails - don’t change any state!
14792 */
14793 boolean_t
14794 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14795 const void *src, uint_t srclen)
14796 {
14797 void *dst;

14799 if (!src_valid)
14800 srclen = 0;

14802 ASSERT(*dstlenp == 0);
14803 if (src != NULL && srclen != 0) {
14804 dst = mi_alloc(srclen, BPRI_MED);
14805 if (dst == NULL)
14806 return (B_FALSE);
14807 } else {
14808 dst = NULL;
14809 }
14810 if (*dstp != NULL)
14811 mi_free(*dstp);
14812 *dstp = dst;
14813 *dstlenp = dst == NULL ? 0 : srclen;
14814 return (B_TRUE);
14815 }

14817 /*
14818 * Replace what is in *dst, *dstlen with the source.
14819 * Assumes ip_allocbuf has already been called.
14820 */
14821 void
14822 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14823 const void *src, uint_t srclen)
14824 {
14825 if (!src_valid)
14826 srclen = 0;

14828 ASSERT(*dstlenp == srclen);
14829 if (src != NULL && srclen != 0)
14830 bcopy(src, *dstp, srclen);
14831 }

14833 /*
14834 * Free the storage pointed to by the members of an ip_pkt_t.
14835 */
14836 void
14837 ip_pkt_free(ip_pkt_t *ipp)
14838 {
14839 uint_t fields = ipp->ipp_fields;

14841 if (fields & IPPF_HOPOPTS) {
14842 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14843 ipp->ipp_hopopts = NULL;
14844 ipp->ipp_hopoptslen = 0;
14845 }

new/usr/src/uts/common/inet/ip/ip.c 226

14846 if (fields & IPPF_RTHDRDSTOPTS) {
14847 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14848 ipp->ipp_rthdrdstopts = NULL;
14849 ipp->ipp_rthdrdstoptslen = 0;
14850 }
14851 if (fields & IPPF_DSTOPTS) {
14852 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14853 ipp->ipp_dstopts = NULL;
14854 ipp->ipp_dstoptslen = 0;
14855 }
14856 if (fields & IPPF_RTHDR) {
14857 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14858 ipp->ipp_rthdr = NULL;
14859 ipp->ipp_rthdrlen = 0;
14860 }
14861 if (fields & IPPF_IPV4_OPTIONS) {
14862 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14863 ipp->ipp_ipv4_options = NULL;
14864 ipp->ipp_ipv4_options_len = 0;
14865 }
14866 if (fields & IPPF_LABEL_V4) {
14867 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14868 ipp->ipp_label_v4 = NULL;
14869 ipp->ipp_label_len_v4 = 0;
14870 }
14871 if (fields & IPPF_LABEL_V6) {
14872 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14873 ipp->ipp_label_v6 = NULL;
14874 ipp->ipp_label_len_v6 = 0;
14875 }
14876 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14877 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14878 }

14880 /*
14881 * Copy from src to dst and allocate as needed.
14882 * Returns zero or ENOMEM.
14883 *
14884 * The caller must initialize dst to zero.
14885 */
14886 int
14887 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14888 {
14889 uint_t fields = src->ipp_fields;

14891 /* Start with fields that don’t require memory allocation */
14892 dst->ipp_fields = fields &
14893 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14894 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);

14896 dst->ipp_addr = src->ipp_addr;
14897 dst->ipp_unicast_hops = src->ipp_unicast_hops;
14898 dst->ipp_hoplimit = src->ipp_hoplimit;
14899 dst->ipp_tclass = src->ipp_tclass;
14900 dst->ipp_type_of_service = src->ipp_type_of_service;

14902 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14903 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14904 return (0);

14906 if (fields & IPPF_HOPOPTS) {
14907 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14908 if (dst->ipp_hopopts == NULL) {
14909 ip_pkt_free(dst);
14910 return (ENOMEM);
14911 }

new/usr/src/uts/common/inet/ip/ip.c 227

14912 dst->ipp_fields |= IPPF_HOPOPTS;
14913 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14914 src->ipp_hopoptslen);
14915 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14916 }
14917 if (fields & IPPF_RTHDRDSTOPTS) {
14918 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14919 kmflag);
14920 if (dst->ipp_rthdrdstopts == NULL) {
14921 ip_pkt_free(dst);
14922 return (ENOMEM);
14923 }
14924 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14925 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14926 src->ipp_rthdrdstoptslen);
14927 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14928 }
14929 if (fields & IPPF_DSTOPTS) {
14930 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14931 if (dst->ipp_dstopts == NULL) {
14932 ip_pkt_free(dst);
14933 return (ENOMEM);
14934 }
14935 dst->ipp_fields |= IPPF_DSTOPTS;
14936 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14937 src->ipp_dstoptslen);
14938 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14939 }
14940 if (fields & IPPF_RTHDR) {
14941 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14942 if (dst->ipp_rthdr == NULL) {
14943 ip_pkt_free(dst);
14944 return (ENOMEM);
14945 }
14946 dst->ipp_fields |= IPPF_RTHDR;
14947 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14948 src->ipp_rthdrlen);
14949 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14950 }
14951 if (fields & IPPF_IPV4_OPTIONS) {
14952 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14953 kmflag);
14954 if (dst->ipp_ipv4_options == NULL) {
14955 ip_pkt_free(dst);
14956 return (ENOMEM);
14957 }
14958 dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14959 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14960 src->ipp_ipv4_options_len);
14961 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14962 }
14963 if (fields & IPPF_LABEL_V4) {
14964 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14965 if (dst->ipp_label_v4 == NULL) {
14966 ip_pkt_free(dst);
14967 return (ENOMEM);
14968 }
14969 dst->ipp_fields |= IPPF_LABEL_V4;
14970 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14971 src->ipp_label_len_v4);
14972 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14973 }
14974 if (fields & IPPF_LABEL_V6) {
14975 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14976 if (dst->ipp_label_v6 == NULL) {
14977 ip_pkt_free(dst);

new/usr/src/uts/common/inet/ip/ip.c 228

14978 return (ENOMEM);
14979 }
14980 dst->ipp_fields |= IPPF_LABEL_V6;
14981 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14982 src->ipp_label_len_v6);
14983 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14984 }
14985 if (fields & IPPF_FRAGHDR) {
14986 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14987 if (dst->ipp_fraghdr == NULL) {
14988 ip_pkt_free(dst);
14989 return (ENOMEM);
14990 }
14991 dst->ipp_fields |= IPPF_FRAGHDR;
14992 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14993 src->ipp_fraghdrlen);
14994 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14995 }
14996 return (0);
14997 }

14999 /*
15000 * Returns INADDR_ANY if no source route
15001 */
15002 ipaddr_t
15003 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
15004 {
15005 ipaddr_t nexthop = INADDR_ANY;
15006 ipoptp_t opts;
15007 uchar_t *opt;
15008 uint8_t optval;
15009 uint8_t optlen;
15010 uint32_t totallen;

15012 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15013 return (INADDR_ANY);

15015 totallen = ipp->ipp_ipv4_options_len;
15016 if (totallen & 0x3)
15017 return (INADDR_ANY);

15019 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15020 optval != IPOPT_EOL;
15021 optval = ipoptp_next(&opts)) {
15022 opt = opts.ipoptp_cur;
15023 switch (optval) {
15024 uint8_t off;
15025 case IPOPT_SSRR:
15026 case IPOPT_LSRR:
15027 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15028 break;
15029 }
15030 optlen = opts.ipoptp_len;
15031 off = opt[IPOPT_OFFSET];
15032 off--;
15033 if (optlen < IP_ADDR_LEN ||
15034 off > optlen - IP_ADDR_LEN) {
15035 /* End of source route */
15036 break;
15037 }
15038 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15039 if (nexthop == htonl(INADDR_LOOPBACK)) {
15040 /* Ignore */
15041 nexthop = INADDR_ANY;
15042 break;
15043 }

new/usr/src/uts/common/inet/ip/ip.c 229

15044 break;
15045 }
15046 }
15047 return (nexthop);
15048 }

15050 /*
15051 * Reverse a source route.
15052 */
15053 void
15054 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15055 {
15056 ipaddr_t tmp;
15057 ipoptp_t opts;
15058 uchar_t *opt;
15059 uint8_t optval;
15060 uint32_t totallen;

15062 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15063 return;

15065 totallen = ipp->ipp_ipv4_options_len;
15066 if (totallen & 0x3)
15067 return;

15069 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15070 optval != IPOPT_EOL;
15071 optval = ipoptp_next(&opts)) {
15072 uint8_t off1, off2;

15074 opt = opts.ipoptp_cur;
15075 switch (optval) {
15076 case IPOPT_SSRR:
15077 case IPOPT_LSRR:
15078 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15079 break;
15080 }
15081 off1 = IPOPT_MINOFF_SR - 1;
15082 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15083 while (off2 > off1) {
15084 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15085 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15086 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15087 off2 -= IP_ADDR_LEN;
15088 off1 += IP_ADDR_LEN;
15089 }
15090 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15091 break;
15092 }
15093 }
15094 }

15096 /*
15097 * Returns NULL if no routing header
15098 */
15099 in6_addr_t *
15100 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15101 {
15102 in6_addr_t *nexthop = NULL;
15103 ip6_rthdr0_t *rthdr;

15105 if (!(ipp->ipp_fields & IPPF_RTHDR))
15106 return (NULL);

15108 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15109 if (rthdr->ip6r0_segleft == 0)

new/usr/src/uts/common/inet/ip/ip.c 230

15110 return (NULL);

15112 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15113 return (nexthop);
15114 }

15116 zoneid_t
15117 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15118 zoneid_t lookup_zoneid)
15119 {
15120 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
15121 ire_t *ire;
15122 int ire_flags = MATCH_IRE_TYPE;
15123 zoneid_t zoneid = ALL_ZONES;

15125 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15126 return (ALL_ZONES);

15128 if (lookup_zoneid != ALL_ZONES)
15129 ire_flags |= MATCH_IRE_ZONEONLY;
15130 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15131 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15132 if (ire != NULL) {
15133 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15134 ire_refrele(ire);
15135 }
15136 return (zoneid);
15137 }

15139 zoneid_t
15140 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15141 ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15142 {
15143 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
15144 ire_t *ire;
15145 int ire_flags = MATCH_IRE_TYPE;
15146 zoneid_t zoneid = ALL_ZONES;

15148 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15149 return (ALL_ZONES);

15151 if (IN6_IS_ADDR_LINKLOCAL(addr))
15152 ire_flags |= MATCH_IRE_ILL;

15154 if (lookup_zoneid != ALL_ZONES)
15155 ire_flags |= MATCH_IRE_ZONEONLY;
15156 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15157 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15158 if (ire != NULL) {
15159 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15160 ire_refrele(ire);
15161 }
15162 return (zoneid);
15163 }

15165 /*
15166 * IP obserability hook support functions.
15167 */
15168 static void
15169 ipobs_init(ip_stack_t *ipst)
15170 {
15171 netid_t id;

15173 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);

15175 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);

new/usr/src/uts/common/inet/ip/ip.c 231

15176 VERIFY(ipst->ips_ip4_observe_pr != NULL);

15178 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15179 VERIFY(ipst->ips_ip6_observe_pr != NULL);
15180 }

15182 static void
15183 ipobs_fini(ip_stack_t *ipst)
15184 {

15186 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15187 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15188 }

15190 /*
15191 * hook_pkt_observe_t is composed in network byte order so that the
15192 * entire mblk_t chain handed into hook_run can be used as-is.
15193 * The caveat is that use of the fields, such as the zone fields,
15194 * requires conversion into host byte order first.
15195 */
15196 void
15197 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15198 const ill_t *ill, ip_stack_t *ipst)
15199 {
15200 hook_pkt_observe_t *hdr;
15201 uint64_t grifindex;
15202 mblk_t *imp;

15204 imp = allocb(sizeof (*hdr), BPRI_HI);
15205 if (imp == NULL)
15206 return;

15208 hdr = (hook_pkt_observe_t *)imp->b_rptr;
15209 /*
15210 * b_wptr is set to make the apparent size of the data in the mblk_t
15211 * to exclude the pointers at the end of hook_pkt_observer_t.
15212 */
15213 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15214 imp->b_cont = mp;

15216 ASSERT(DB_TYPE(mp) == M_DATA);

15218 if (IS_UNDER_IPMP(ill))
15219 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15220 else
15221 grifindex = 0;

15223 hdr->hpo_version = 1;
15224 hdr->hpo_htype = htons(htype);
15225 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15226 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15227 hdr->hpo_grifindex = htonl(grifindex);
15228 hdr->hpo_zsrc = htonl(zsrc);
15229 hdr->hpo_zdst = htonl(zdst);
15230 hdr->hpo_pkt = imp;
15231 hdr->hpo_ctx = ipst->ips_netstack;

15233 if (ill->ill_isv6) {
15234 hdr->hpo_family = AF_INET6;
15235 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15236 ipst->ips_ipv6observing, (hook_data_t)hdr);
15237 } else {
15238 hdr->hpo_family = AF_INET;
15239 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15240 ipst->ips_ipv4observing, (hook_data_t)hdr);
15241 }

new/usr/src/uts/common/inet/ip/ip.c 232

15243 imp->b_cont = NULL;
15244 freemsg(imp);
15245 }

15247 /*
15248 * Utility routine that checks if ‘v4srcp’ is a valid address on underlying
15249 * interface ‘ill’. If ‘ipifp’ is non-NULL, it’s set to a held ipif
15250 * associated with ‘v4srcp’ on success. NOTE: if this is not called from
15251 * inside the IPSQ (ill_g_lock is not held), ‘ill’ may be removed from the
15252 * group during or after this lookup.
15253 */
15254 boolean_t
15255 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15256 {
15257 ipif_t *ipif;

15259 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15260 if (ipif != NULL) {
15261 if (ipifp != NULL)
15262 *ipifp = ipif;
15263 else
15264 ipif_refrele(ipif);
15265 return (B_TRUE);
15266 }

15268 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15269 *v4srcp));
15270 return (B_FALSE);
15271 }

15273 /*
15274 * Transport protocol call back function for CPU state change.
15275 */
15276 /* ARGSUSED */
15277 static int
15278 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15279 {
15280 processorid_t cpu_seqid;
15281 netstack_handle_t nh;
15282 netstack_t *ns;

15284 ASSERT(MUTEX_HELD(&cpu_lock));

15286 switch (what) {
15287 case CPU_CONFIG:
15288 case CPU_ON:
15289 case CPU_INIT:
15290 case CPU_CPUPART_IN:
15291 cpu_seqid = cpu[id]->cpu_seqid;
15292 netstack_next_init(&nh);
15293 while ((ns = netstack_next(&nh)) != NULL) {
15294 dccp_stack_cpu_add(ns->netstack_dccp, cpu_seqid);
15295 #endif /* ! codereview */
15296 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15297 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15298 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15299 netstack_rele(ns);
15300 }
15301 netstack_next_fini(&nh);
15302 break;
15303 case CPU_UNCONFIG:
15304 case CPU_OFF:
15305 case CPU_CPUPART_OUT:
15306 /*
15307 * Nothing to do. We don’t remove the per CPU stats from

new/usr/src/uts/common/inet/ip/ip.c 233

15308 * the IP stack even when the CPU goes offline.
15309 */
15310 break;
15311 default:
15312 break;
15313 }
15314 return (0);
15315 }

new/usr/src/uts/common/inet/ip/ip_if.c 1

**
 533850 Sat Aug 18 10:37:14 2012
new/usr/src/uts/common/inet/ip/ip_if.c
dccp: properties
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
24 */

26 /*
27 * This file contains the interface control functions for IP.
28 */

30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/strsun.h>
35 #include <sys/sysmacros.h>
36 #include <sys/strsubr.h>
37 #include <sys/strlog.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/cmn_err.h>
41 #include <sys/kstat.h>
42 #include <sys/debug.h>
43 #include <sys/zone.h>
44 #include <sys/sunldi.h>
45 #include <sys/file.h>
46 #include <sys/bitmap.h>
47 #include <sys/cpuvar.h>
48 #include <sys/time.h>
49 #include <sys/ctype.h>
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/socket.h>
54 #include <sys/isa_defs.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <sys/sockio.h>
61 #include <netinet/in.h>

new/usr/src/uts/common/inet/ip/ip_if.c 2

62 #include <netinet/ip6.h>
63 #include <netinet/icmp6.h>
64 #include <netinet/igmp_var.h>
65 #include <sys/policy.h>
66 #include <sys/ethernet.h>
67 #include <sys/callb.h>
68 #include <sys/md5.h>

70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */
71 #include <inet/mi.h>
72 #include <inet/nd.h>
73 #include <inet/tunables.h>
74 #include <inet/arp.h>
75 #include <inet/ip_arp.h>
76 #include <inet/mib2.h>
77 #include <inet/ip.h>
78 #include <inet/ip6.h>
79 #include <inet/ip6_asp.h>
80 #include <inet/tcp.h>
81 #include <inet/ip_multi.h>
82 #include <inet/ip_ire.h>
83 #include <inet/ip_ftable.h>
84 #include <inet/ip_rts.h>
85 #include <inet/ip_ndp.h>
86 #include <inet/ip_if.h>
87 #include <inet/ip_impl.h>
88 #include <inet/sctp_ip.h>
89 #include <inet/ip_netinfo.h>
90 #include <inet/ilb_ip.h>

92 #include <netinet/igmp.h>
93 #include <inet/ip_listutils.h>
94 #include <inet/ipclassifier.h>
95 #include <sys/mac_client.h>
96 #include <sys/dld.h>
97 #include <sys/mac_flow.h>

99 #include <sys/systeminfo.h>
100 #include <sys/bootconf.h>

102 #include <sys/tsol/tndb.h>
103 #include <sys/tsol/tnet.h>

105 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */
106 #include <inet/udp_impl.h> /* needed for udp_stack_t */
107 #include <inet/dccp_stack.h> /* needed for dccp_stack_t */
108 #endif /* ! codereview */

110 /* The character which tells where the ill_name ends */
111 #define IPIF_SEPARATOR_CHAR ’:’

113 /* IP ioctl function table entry */
114 typedef struct ipft_s {
115 int ipft_cmd;
116 pfi_t ipft_pfi;
117 int ipft_min_size;
118 int ipft_flags;
119 } ipft_t;
120 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */
121 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */

123 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
124 static int nd_ill_forward_set(queue_t *q, mblk_t *mp,
125 char *value, caddr_t cp, cred_t *ioc_cr);

127 static boolean_t ill_is_quiescent(ill_t *);

new/usr/src/uts/common/inet/ip/ip_if.c 3

128 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
129 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type);
130 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
131 mblk_t *mp, boolean_t need_up);
132 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
133 mblk_t *mp, boolean_t need_up);
134 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
135 queue_t *q, mblk_t *mp, boolean_t need_up);
136 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
137 mblk_t *mp);
138 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
139 mblk_t *mp);
140 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
141 queue_t *q, mblk_t *mp, boolean_t need_up);
142 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
143 int ioccmd, struct linkblk *li);
144 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
145 static void ip_wput_ioctl(queue_t *q, mblk_t *mp);
146 static void ipsq_flush(ill_t *ill);

148 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
149 queue_t *q, mblk_t *mp, boolean_t need_up);
150 static void ipsq_delete(ipsq_t *);

152 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type,
153 boolean_t initialize, boolean_t insert, int *errorp);
154 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
155 static void ipif_delete_bcast_ires(ipif_t *ipif);
156 static int ipif_add_ires_v4(ipif_t *, boolean_t);
157 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
158 boolean_t isv6);
159 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
160 static void ipif_free(ipif_t *ipif);
161 static void ipif_free_tail(ipif_t *ipif);
162 static void ipif_set_default(ipif_t *ipif);
163 static int ipif_set_values(queue_t *q, mblk_t *mp,
164 char *interf_name, uint_t *ppa);
165 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
166 queue_t *q);
167 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen,
168 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
169 ip_stack_t *);
170 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen,
171 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func,
172 int *error, ip_stack_t *);

174 static int ill_alloc_ppa(ill_if_t *, ill_t *);
175 static void ill_delete_interface_type(ill_if_t *);
176 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
177 static void ill_dl_down(ill_t *ill);
178 static void ill_down(ill_t *ill);
179 static void ill_down_ipifs(ill_t *, boolean_t);
180 static void ill_free_mib(ill_t *ill);
181 static void ill_glist_delete(ill_t *);
182 static void ill_phyint_reinit(ill_t *ill);
183 static void ill_set_nce_router_flags(ill_t *, boolean_t);
184 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
185 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);

187 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
188 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
189 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
190 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
191 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
192 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
193 static ip_v4mapinfo_func_t ip_ib_v4_mapping;

new/usr/src/uts/common/inet/ip/ip_if.c 4

194 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
195 static ip_v4mapinfo_func_t ip_mbcast_mapping;
196 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
197 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
198 static void phyint_free(phyint_t *);

200 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
201 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
202 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
203 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
204 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
205 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
206 dl_capability_sub_t *);
207 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
208 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *);
209 static void ill_capability_dld_ack(ill_t *, mblk_t *,
210 dl_capability_sub_t *);
211 static void ill_capability_dld_enable(ill_t *);
212 static void ill_capability_ack_thr(void *);
213 static void ill_capability_lso_enable(ill_t *);

215 static ill_t *ill_prev_usesrc(ill_t *);
216 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
217 static void ill_disband_usesrc_group(ill_t *);
218 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);

220 #ifdef DEBUG
221 static void ill_trace_cleanup(const ill_t *);
222 static void ipif_trace_cleanup(const ipif_t *);
223 #endif

225 static void ill_dlpi_clear_deferred(ill_t *ill);

227 /*
228 * if we go over the memory footprint limit more than once in this msec
229 * interval, we’ll start pruning aggressively.
230 */
231 int ip_min_frag_prune_time = 0;

233 static ipft_t ip_ioctl_ftbl[] = {
234 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
235 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
236 IPFT_F_NO_REPLY },
237 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
238 { 0 }
239 };

241 /* Simple ICMP IP Header Template */
242 static ipha_t icmp_ipha = {
243 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
244 };

246 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };

248 static ip_m_t ip_m_tbl[] = {
249 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
251 ip_nodef_v6intfid },
252 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
254 ip_nodef_v6intfid },
255 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
257 ip_nodef_v6intfid },
258 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
259 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,

new/usr/src/uts/common/inet/ip/ip_if.c 5

260 ip_nodef_v6intfid },
261 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
262 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
263 ip_nodef_v6intfid },
264 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
265 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
266 ip_nodef_v6intfid },
267 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
268 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
269 ip_ipv4_v6destintfid },
270 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
271 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
272 ip_ipv6_v6destintfid },
273 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
274 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
275 ip_nodef_v6intfid },
276 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
277 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
278 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
279 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
280 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
281 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
282 ip_nodef_v6intfid }
283 };

285 static ill_t ill_null; /* Empty ILL for init. */
286 char ipif_loopback_name[] = "lo0";

288 /* These are used by all IP network modules. */
289 sin6_t sin6_null; /* Zero address for quick clears */
290 sin_t sin_null; /* Zero address for quick clears */

292 /* When set search for unused ipif_seqid */
293 static ipif_t ipif_zero;

295 /*
296 * ppa arena is created after these many
297 * interfaces have been plumbed.
298 */
299 uint_t ill_no_arena = 12; /* Setable in /etc/system */

301 /*
302 * Allocate per-interface mibs.
303 * Returns true if ok. False otherwise.
304 * ipsq may not yet be allocated (loopback case).
305 */
306 static boolean_t
307 ill_allocate_mibs(ill_t *ill)
308 {
309 /* Already allocated? */
310 if (ill->ill_ip_mib != NULL) {
311 if (ill->ill_isv6)
312 ASSERT(ill->ill_icmp6_mib != NULL);
313 return (B_TRUE);
314 }

316 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
317 KM_NOSLEEP);
318 if (ill->ill_ip_mib == NULL) {
319 return (B_FALSE);
320 }

322 /* Setup static information */
323 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
324 sizeof (mib2_ipIfStatsEntry_t));
325 if (ill->ill_isv6) {

new/usr/src/uts/common/inet/ip/ip_if.c 6

326 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
327 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
328 sizeof (mib2_ipv6AddrEntry_t));
329 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
330 sizeof (mib2_ipv6RouteEntry_t));
331 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
332 sizeof (mib2_ipv6NetToMediaEntry_t));
333 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
334 sizeof (ipv6_member_t));
335 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
336 sizeof (ipv6_grpsrc_t));
337 } else {
338 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
339 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
340 sizeof (mib2_ipAddrEntry_t));
341 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
342 sizeof (mib2_ipRouteEntry_t));
343 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
344 sizeof (mib2_ipNetToMediaEntry_t));
345 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
346 sizeof (ip_member_t));
347 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
348 sizeof (ip_grpsrc_t));

350 /*
351 * For a v4 ill, we are done at this point, because per ill
352 * icmp mibs are only used for v6.
353 */
354 return (B_TRUE);
355 }

357 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
358 KM_NOSLEEP);
359 if (ill->ill_icmp6_mib == NULL) {
360 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
361 ill->ill_ip_mib = NULL;
362 return (B_FALSE);
363 }
364 /* static icmp info */
365 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
366 sizeof (mib2_ipv6IfIcmpEntry_t);
367 /*
368 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
369 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
370 * -> ill_phyint_reinit
371 */
372 return (B_TRUE);
373 }

375 /*
376 * Completely vaporize a lower level tap and all associated interfaces.
377 * ill_delete is called only out of ip_close when the device control
378 * stream is being closed.
379 */
380 void
381 ill_delete(ill_t *ill)
382 {
383 ipif_t *ipif;
384 ill_t *prev_ill;
385 ip_stack_t *ipst = ill->ill_ipst;

387 /*
388 * ill_delete may be forcibly entering the ipsq. The previous
389 * ioctl may not have completed and may need to be aborted.
390 * ipsq_flush takes care of it. If we don’t need to enter the
391 * the ipsq forcibly, the 2nd invocation of ipsq_flush in

new/usr/src/uts/common/inet/ip/ip_if.c 7

392 * ill_delete_tail is sufficient.
393 */
394 ipsq_flush(ill);

396 /*
397 * Nuke all interfaces. ipif_free will take down the interface,
398 * remove it from the list, and free the data structure.
399 * Walk down the ipif list and remove the logical interfaces
400 * first before removing the main ipif. We can’t unplumb
401 * zeroth interface first in the case of IPv6 as update_conn_ill
402 * -> ip_ll_multireq de-references ill_ipif for checking
403 * POINTOPOINT.
404 *
405 * If ill_ipif was not properly initialized (i.e low on memory),
406 * then no interfaces to clean up. In this case just clean up the
407 * ill.
408 */
409 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
410 ipif_free(ipif);

412 /*
413 * clean out all the nce_t entries that depend on this
414 * ill for the ill_phys_addr.
415 */
416 nce_flush(ill, B_TRUE);

418 /* Clean up msgs on pending upcalls for mrouted */
419 reset_mrt_ill(ill);

421 update_conn_ill(ill, ipst);

423 /*
424 * Remove multicast references added as a result of calls to
425 * ip_join_allmulti().
426 */
427 ip_purge_allmulti(ill);

429 /*
430 * If the ill being deleted is under IPMP, boot it out of the illgrp.
431 */
432 if (IS_UNDER_IPMP(ill))
433 ipmp_ill_leave_illgrp(ill);

435 /*
436 * ill_down will arrange to blow off any IRE’s dependent on this
437 * ILL, and shut down fragmentation reassembly.
438 */
439 ill_down(ill);

441 /* Let SCTP know, so that it can remove this from its list. */
442 sctp_update_ill(ill, SCTP_ILL_REMOVE);

444 /*
445 * Walk all CONNs that can have a reference on an ire or nce for this
446 * ill (we actually walk all that now have stale references).
447 */
448 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);

450 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
451 if (ill->ill_isv6)
452 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);

454 /*
455 * If an address on this ILL is being used as a source address then
456 * clear out the pointers in other ILLs that point to this ILL.
457 */

new/usr/src/uts/common/inet/ip/ip_if.c 8

458 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
459 if (ill->ill_usesrc_grp_next != NULL) {
460 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
461 ill_disband_usesrc_group(ill);
462 } else { /* consumer of the usesrc ILL */
463 prev_ill = ill_prev_usesrc(ill);
464 prev_ill->ill_usesrc_grp_next =
465 ill->ill_usesrc_grp_next;
466 }
467 }
468 rw_exit(&ipst->ips_ill_g_usesrc_lock);
469 }

471 static void
472 ipif_non_duplicate(ipif_t *ipif)
473 {
474 ill_t *ill = ipif->ipif_ill;
475 mutex_enter(&ill->ill_lock);
476 if (ipif->ipif_flags & IPIF_DUPLICATE) {
477 ipif->ipif_flags &= ~IPIF_DUPLICATE;
478 ASSERT(ill->ill_ipif_dup_count > 0);
479 ill->ill_ipif_dup_count--;
480 }
481 mutex_exit(&ill->ill_lock);
482 }

484 /*
485 * ill_delete_tail is called from ip_modclose after all references
486 * to the closing ill are gone. The wait is done in ip_modclose
487 */
488 void
489 ill_delete_tail(ill_t *ill)
490 {
491 mblk_t **mpp;
492 ipif_t *ipif;
493 ip_stack_t *ipst = ill->ill_ipst;

495 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
496 ipif_non_duplicate(ipif);
497 (void) ipif_down_tail(ipif);
498 }

500 ASSERT(ill->ill_ipif_dup_count == 0);

502 /*
503 * If polling capability is enabled (which signifies direct
504 * upcall into IP and driver has ill saved as a handle),
505 * we need to make sure that unbind has completed before we
506 * let the ill disappear and driver no longer has any reference
507 * to this ill.
508 */
509 mutex_enter(&ill->ill_lock);
510 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
511 cv_wait(&ill->ill_cv, &ill->ill_lock);
512 mutex_exit(&ill->ill_lock);
513 ASSERT(!(ill->ill_capabilities &
514 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));

516 if (ill->ill_net_type != IRE_LOOPBACK)
517 qprocsoff(ill->ill_rq);

519 /*
520 * We do an ipsq_flush once again now. New messages could have
521 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
522 * could also have landed up if an ioctl thread had looked up
523 * the ill before we set the ILL_CONDEMNED flag, but not yet

new/usr/src/uts/common/inet/ip/ip_if.c 9

524 * enqueued the ioctl when we did the ipsq_flush last time.
525 */
526 ipsq_flush(ill);

528 /*
529 * Free capabilities.
530 */
531 if (ill->ill_hcksum_capab != NULL) {
532 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
533 ill->ill_hcksum_capab = NULL;
534 }

536 if (ill->ill_zerocopy_capab != NULL) {
537 kmem_free(ill->ill_zerocopy_capab,
538 sizeof (ill_zerocopy_capab_t));
539 ill->ill_zerocopy_capab = NULL;
540 }

542 if (ill->ill_lso_capab != NULL) {
543 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
544 ill->ill_lso_capab = NULL;
545 }

547 if (ill->ill_dld_capab != NULL) {
548 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
549 ill->ill_dld_capab = NULL;
550 }

552 /* Clean up ill_allowed_ips* related state */
553 if (ill->ill_allowed_ips != NULL) {
554 ASSERT(ill->ill_allowed_ips_cnt > 0);
555 kmem_free(ill->ill_allowed_ips,
556 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
557 ill->ill_allowed_ips = NULL;
558 ill->ill_allowed_ips_cnt = 0;
559 }

561 while (ill->ill_ipif != NULL)
562 ipif_free_tail(ill->ill_ipif);

564 /*
565 * We have removed all references to ilm from conn and the ones joined
566 * within the kernel.
567 *
568 * We don’t walk conns, mrts and ires because
569 *
570 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
571 * 2) ill_down ->ill_downi walks all the ires and cleans up
572 * ill references.
573 */

575 /*
576 * If this ill is an IPMP meta-interface, blow away the illgrp. This
577 * is safe to do because the illgrp has already been unlinked from the
578 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
579 */
580 if (IS_IPMP(ill)) {
581 ipmp_illgrp_destroy(ill->ill_grp);
582 ill->ill_grp = NULL;
583 }

585 if (ill->ill_mphysaddr_list != NULL) {
586 multiphysaddr_t *mpa, *tmpa;

588 mpa = ill->ill_mphysaddr_list;
589 ill->ill_mphysaddr_list = NULL;

new/usr/src/uts/common/inet/ip/ip_if.c 10

590 while (mpa) {
591 tmpa = mpa->mpa_next;
592 kmem_free(mpa, sizeof (*mpa));
593 mpa = tmpa;
594 }
595 }
596 /*
597 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
598 * could free the phyint. No more reference to the phyint after this
599 * point.
600 */
601 (void) ill_glist_delete(ill);

603 if (ill->ill_frag_ptr != NULL) {
604 uint_t count;

606 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
607 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
608 }
609 mi_free(ill->ill_frag_ptr);
610 ill->ill_frag_ptr = NULL;
611 ill->ill_frag_hash_tbl = NULL;
612 }

614 freemsg(ill->ill_nd_lla_mp);
615 /* Free all retained control messages. */
616 mpp = &ill->ill_first_mp_to_free;
617 do {
618 while (mpp[0]) {
619 mblk_t *mp;
620 mblk_t *mp1;

622 mp = mpp[0];
623 mpp[0] = mp->b_next;
624 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
625 mp1->b_next = NULL;
626 mp1->b_prev = NULL;
627 }
628 freemsg(mp);
629 }
630 } while (mpp++ != &ill->ill_last_mp_to_free);

632 ill_free_mib(ill);

634 #ifdef DEBUG
635 ill_trace_cleanup(ill);
636 #endif

638 /* The default multicast interface might have changed */
639 ire_increment_multicast_generation(ipst, ill->ill_isv6);

641 /* Drop refcnt here */
642 netstack_rele(ill->ill_ipst->ips_netstack);
643 ill->ill_ipst = NULL;
644 }

646 static void
647 ill_free_mib(ill_t *ill)
648 {
649 ip_stack_t *ipst = ill->ill_ipst;

651 /*
652 * MIB statistics must not be lost, so when an interface
653 * goes away the counter values will be added to the global
654 * MIBs.
655 */

new/usr/src/uts/common/inet/ip/ip_if.c 11

656 if (ill->ill_ip_mib != NULL) {
657 if (ill->ill_isv6) {
658 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
659 ill->ill_ip_mib);
660 } else {
661 ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
662 ill->ill_ip_mib);
663 }

665 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
666 ill->ill_ip_mib = NULL;
667 }
668 if (ill->ill_icmp6_mib != NULL) {
669 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
670 ill->ill_icmp6_mib);
671 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
672 ill->ill_icmp6_mib = NULL;
673 }
674 }

676 /*
677 * Concatenate together a physical address and a sap.
678 *
679 * Sap_lengths are interpreted as follows:
680 * sap_length == 0 ==> no sap
681 * sap_length > 0 ==> sap is at the head of the dlpi address
682 * sap_length < 0 ==> sap is at the tail of the dlpi address
683 */
684 static void
685 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
686 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
687 {
688 uint16_t sap_addr = (uint16_t)sap_src;

690 if (sap_length == 0) {
691 if (phys_src == NULL)
692 bzero(dst, phys_length);
693 else
694 bcopy(phys_src, dst, phys_length);
695 } else if (sap_length < 0) {
696 if (phys_src == NULL)
697 bzero(dst, phys_length);
698 else
699 bcopy(phys_src, dst, phys_length);
700 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
701 } else {
702 bcopy(&sap_addr, dst, sizeof (sap_addr));
703 if (phys_src == NULL)
704 bzero((char *)dst + sap_length, phys_length);
705 else
706 bcopy(phys_src, (char *)dst + sap_length, phys_length);
707 }
708 }

710 /*
711 * Generate a dl_unitdata_req mblk for the device and address given.
712 * addr_length is the length of the physical portion of the address.
713 * If addr is NULL include an all zero address of the specified length.
714 * TRUE? In any case, addr_length is taken to be the entire length of the
715 * dlpi address, including the absolute value of sap_length.
716 */
717 mblk_t *
718 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
719 t_scalar_t sap_length)
720 {
721 dl_unitdata_req_t *dlur;

new/usr/src/uts/common/inet/ip/ip_if.c 12

722 mblk_t *mp;
723 t_scalar_t abs_sap_length; /* absolute value */

725 abs_sap_length = ABS(sap_length);
726 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
727 DL_UNITDATA_REQ);
728 if (mp == NULL)
729 return (NULL);
730 dlur = (dl_unitdata_req_t *)mp->b_rptr;
731 /* HACK: accomodate incompatible DLPI drivers */
732 if (addr_length == 8)
733 addr_length = 6;
734 dlur->dl_dest_addr_length = addr_length + abs_sap_length;
735 dlur->dl_dest_addr_offset = sizeof (*dlur);
736 dlur->dl_priority.dl_min = 0;
737 dlur->dl_priority.dl_max = 0;
738 ill_dlur_copy_address(addr, addr_length, sap, sap_length,
739 (uchar_t *)&dlur[1]);
740 return (mp);
741 }

743 /*
744 * Add the pending mp to the list. There can be only 1 pending mp
745 * in the list. Any exclusive ioctl that needs to wait for a response
746 * from another module or driver needs to use this function to set
747 * the ipx_pending_mp to the ioctl mblk and wait for the response from
748 * the other module/driver. This is also used while waiting for the
749 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
750 */
751 boolean_t
752 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
753 int waitfor)
754 {
755 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;

757 ASSERT(IAM_WRITER_IPIF(ipif));
758 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
759 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
760 ASSERT(ipx->ipx_pending_mp == NULL);
761 /*
762 * The caller may be using a different ipif than the one passed into
763 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
764 * ill needs to wait for the V6 ill to quiesce). So we can’t ASSERT
765 * that ‘ipx_current_ipif == ipif’.
766 */
767 ASSERT(ipx->ipx_current_ipif != NULL);

769 /*
770 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
771 * driver.
772 */
773 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
774 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
775 (DB_TYPE(add_mp) == M_PCPROTO));

777 if (connp != NULL) {
778 ASSERT(MUTEX_HELD(&connp->conn_lock));
779 /*
780 * Return error if the conn has started closing. The conn
781 * could have finished cleaning up the pending mp list,
782 * If so we should not add another mp to the list negating
783 * the cleanup.
784 */
785 if (connp->conn_state_flags & CONN_CLOSING)
786 return (B_FALSE);
787 }

new/usr/src/uts/common/inet/ip/ip_if.c 13

788 mutex_enter(&ipx->ipx_lock);
789 ipx->ipx_pending_ipif = ipif;
790 /*
791 * Note down the queue in b_queue. This will be returned by
792 * ipsq_pending_mp_get. Caller will then use these values to restart
793 * the processing
794 */
795 add_mp->b_next = NULL;
796 add_mp->b_queue = q;
797 ipx->ipx_pending_mp = add_mp;
798 ipx->ipx_waitfor = waitfor;
799 mutex_exit(&ipx->ipx_lock);

801 if (connp != NULL)
802 connp->conn_oper_pending_ill = ipif->ipif_ill;

804 return (B_TRUE);
805 }

807 /*
808 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
809 * queued in the list.
810 */
811 mblk_t *
812 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
813 {
814 mblk_t *curr = NULL;
815 ipxop_t *ipx = ipsq->ipsq_xop;

817 *connpp = NULL;
818 mutex_enter(&ipx->ipx_lock);
819 if (ipx->ipx_pending_mp == NULL) {
820 mutex_exit(&ipx->ipx_lock);
821 return (NULL);
822 }

824 /* There can be only 1 such excl message */
825 curr = ipx->ipx_pending_mp;
826 ASSERT(curr->b_next == NULL);
827 ipx->ipx_pending_ipif = NULL;
828 ipx->ipx_pending_mp = NULL;
829 ipx->ipx_waitfor = 0;
830 mutex_exit(&ipx->ipx_lock);

832 if (CONN_Q(curr->b_queue)) {
833 /*
834 * This mp did a refhold on the conn, at the start of the ioctl.
835 * So we can safely return a pointer to the conn to the caller.
836 */
837 *connpp = Q_TO_CONN(curr->b_queue);
838 } else {
839 *connpp = NULL;
840 }
841 curr->b_next = NULL;
842 curr->b_prev = NULL;
843 return (curr);
844 }

846 /*
847 * Cleanup the ioctl mp queued in ipx_pending_mp
848 * - Called in the ill_delete path
849 * - Called in the M_ERROR or M_HANGUP path on the ill.
850 * - Called in the conn close path.
851 *
852 * Returns success on finding the pending mblk associated with the ioctl or
853 * exclusive operation in progress, failure otherwise.

new/usr/src/uts/common/inet/ip/ip_if.c 14

854 */
855 boolean_t
856 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
857 {
858 mblk_t *mp;
859 ipxop_t *ipx;
860 queue_t *q;
861 ipif_t *ipif;
862 int cmd;

864 ASSERT(IAM_WRITER_ILL(ill));
865 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;

867 mutex_enter(&ipx->ipx_lock);
868 mp = ipx->ipx_pending_mp;
869 if (connp != NULL) {
870 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
871 /*
872 * Nothing to clean since the conn that is closing
873 * does not have a matching pending mblk in
874 * ipx_pending_mp.
875 */
876 mutex_exit(&ipx->ipx_lock);
877 return (B_FALSE);
878 }
879 } else {
880 /*
881 * A non-zero ill_error signifies we are called in the
882 * M_ERROR or M_HANGUP path and we need to unconditionally
883 * abort any current ioctl and do the corresponding cleanup.
884 * A zero ill_error means we are in the ill_delete path and
885 * we do the cleanup only if there is a pending mp.
886 */
887 if (mp == NULL && ill->ill_error == 0) {
888 mutex_exit(&ipx->ipx_lock);
889 return (B_FALSE);
890 }
891 }

893 /* Now remove from the ipx_pending_mp */
894 ipx->ipx_pending_mp = NULL;
895 ipif = ipx->ipx_pending_ipif;
896 ipx->ipx_pending_ipif = NULL;
897 ipx->ipx_waitfor = 0;
898 ipx->ipx_current_ipif = NULL;
899 cmd = ipx->ipx_current_ioctl;
900 ipx->ipx_current_ioctl = 0;
901 ipx->ipx_current_done = B_TRUE;
902 mutex_exit(&ipx->ipx_lock);

904 if (mp == NULL)
905 return (B_FALSE);

907 q = mp->b_queue;
908 mp->b_next = NULL;
909 mp->b_prev = NULL;
910 mp->b_queue = NULL;

912 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
913 DTRACE_PROBE4(ipif__ioctl,
914 char *, "ipsq_pending_mp_cleanup",
915 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
916 ipif_t *, ipif);
917 if (connp == NULL) {
918 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
919 } else {

new/usr/src/uts/common/inet/ip/ip_if.c 15

920 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
921 mutex_enter(&ipif->ipif_ill->ill_lock);
922 ipif->ipif_state_flags &= ~IPIF_CHANGING;
923 mutex_exit(&ipif->ipif_ill->ill_lock);
924 }
925 } else {
926 inet_freemsg(mp);
927 }
928 return (B_TRUE);
929 }

931 /*
932 * Called in the conn close path and ill delete path
933 */
934 static void
935 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
936 {
937 ipsq_t *ipsq;
938 mblk_t *prev;
939 mblk_t *curr;
940 mblk_t *next;
941 queue_t *wq, *rq = NULL;
942 mblk_t *tmp_list = NULL;

944 ASSERT(IAM_WRITER_ILL(ill));
945 if (connp != NULL)
946 wq = CONNP_TO_WQ(connp);
947 else
948 wq = ill->ill_wq;

950 /*
951 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
952 * against this here.
953 */
954 if (wq != NULL)
955 rq = RD(wq);

957 ipsq = ill->ill_phyint->phyint_ipsq;
958 /*
959 * Cleanup the ioctl mp’s queued in ipsq_xopq_pending_mp if any.
960 * In the case of ioctl from a conn, there can be only 1 mp
961 * queued on the ipsq. If an ill is being unplumbed flush all
962 * the messages.
963 */
964 mutex_enter(&ipsq->ipsq_lock);
965 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
966 curr = next) {
967 next = curr->b_next;
968 if (connp == NULL ||
969 (curr->b_queue == wq || curr->b_queue == rq)) {
970 /* Unlink the mblk from the pending mp list */
971 if (prev != NULL) {
972 prev->b_next = curr->b_next;
973 } else {
974 ASSERT(ipsq->ipsq_xopq_mphead == curr);
975 ipsq->ipsq_xopq_mphead = curr->b_next;
976 }
977 if (ipsq->ipsq_xopq_mptail == curr)
978 ipsq->ipsq_xopq_mptail = prev;
979 /*
980 * Create a temporary list and release the ipsq lock
981 * New elements are added to the head of the tmp_list
982 */
983 curr->b_next = tmp_list;
984 tmp_list = curr;
985 } else {

new/usr/src/uts/common/inet/ip/ip_if.c 16

986 prev = curr;
987 }
988 }
989 mutex_exit(&ipsq->ipsq_lock);

991 while (tmp_list != NULL) {
992 curr = tmp_list;
993 tmp_list = curr->b_next;
994 curr->b_next = NULL;
995 curr->b_prev = NULL;
996 wq = curr->b_queue;
997 curr->b_queue = NULL;
998 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
999 DTRACE_PROBE4(ipif__ioctl,

1000 char *, "ipsq_xopq_mp_cleanup",
1001 int, 0, ill_t *, NULL, ipif_t *, NULL);
1002 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
1003 CONN_CLOSE : NO_COPYOUT, NULL);
1004 } else {
1005 /*
1006 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1007 * this can’t be just inet_freemsg. we have to
1008 * restart it otherwise the thread will be stuck.
1009 */
1010 inet_freemsg(curr);
1011 }
1012 }
1013 }

1015 /*
1016 * This conn has started closing. Cleanup any pending ioctl from this conn.
1017 * STREAMS ensures that there can be at most 1 active ioctl on a stream.
1018 */
1019 void
1020 conn_ioctl_cleanup(conn_t *connp)
1021 {
1022 ipsq_t *ipsq;
1023 ill_t *ill;
1024 boolean_t refheld;

1026 /*
1027 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1028 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1029 * started the mp could be present in ipx_pending_mp. Note that if
1030 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1031 * not yet queued anywhere. In this case, the conn close code will wait
1032 * until the conn_ref is dropped. If the stream was a tcp stream, then
1033 * tcp_close will wait first until all ioctls have completed for this
1034 * conn.
1035 */
1036 mutex_enter(&connp->conn_lock);
1037 ill = connp->conn_oper_pending_ill;
1038 if (ill == NULL) {
1039 mutex_exit(&connp->conn_lock);
1040 return;
1041 }

1043 /*
1044 * We may not be able to refhold the ill if the ill/ipif
1045 * is changing. But we need to make sure that the ill will
1046 * not vanish. So we just bump up the ill_waiter count.
1047 */
1048 refheld = ill_waiter_inc(ill);
1049 mutex_exit(&connp->conn_lock);
1050 if (refheld) {
1051 if (ipsq_enter(ill, B_TRUE, NEW_OP)) {

new/usr/src/uts/common/inet/ip/ip_if.c 17

1052 ill_waiter_dcr(ill);
1053 /*
1054 * Check whether this ioctl has started and is
1055 * pending. If it is not found there then check
1056 * whether this ioctl has not even started and is in
1057 * the ipsq_xopq list.
1058 */
1059 if (!ipsq_pending_mp_cleanup(ill, connp))
1060 ipsq_xopq_mp_cleanup(ill, connp);
1061 ipsq = ill->ill_phyint->phyint_ipsq;
1062 ipsq_exit(ipsq);
1063 return;
1064 }
1065 }

1067 /*
1068 * The ill is also closing and we could not bump up the
1069 * ill_waiter_count or we could not enter the ipsq. Leave
1070 * the cleanup to ill_delete
1071 */
1072 mutex_enter(&connp->conn_lock);
1073 while (connp->conn_oper_pending_ill != NULL)
1074 cv_wait(&connp->conn_refcv, &connp->conn_lock);
1075 mutex_exit(&connp->conn_lock);
1076 if (refheld)
1077 ill_waiter_dcr(ill);
1078 }

1080 /*
1081 * ipcl_walk function for cleaning up conn_*_ill fields.
1082 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1083 * conn_bound_if in place. We prefer dropping
1084 * packets instead of sending them out the wrong interface, or accepting
1085 * packets from the wrong ifindex.
1086 */
1087 static void
1088 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1089 {
1090 ill_t *ill = (ill_t *)arg;

1092 mutex_enter(&connp->conn_lock);
1093 if (connp->conn_dhcpinit_ill == ill) {
1094 connp->conn_dhcpinit_ill = NULL;
1095 ASSERT(ill->ill_dhcpinit != 0);
1096 atomic_dec_32(&ill->ill_dhcpinit);
1097 ill_set_inputfn(ill);
1098 }
1099 mutex_exit(&connp->conn_lock);
1100 }

1102 static int
1103 ill_down_ipifs_tail(ill_t *ill)
1104 {
1105 ipif_t *ipif;
1106 int err;

1108 ASSERT(IAM_WRITER_ILL(ill));
1109 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1110 ipif_non_duplicate(ipif);
1111 /*
1112 * ipif_down_tail will call arp_ll_down on the last ipif
1113 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1114 */
1115 if ((err = ipif_down_tail(ipif)) != 0)
1116 return (err);
1117 }

new/usr/src/uts/common/inet/ip/ip_if.c 18

1118 return (0);
1119 }

1121 /* ARGSUSED */
1122 void
1123 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1124 {
1125 ASSERT(IAM_WRITER_IPSQ(ipsq));
1126 (void) ill_down_ipifs_tail(q->q_ptr);
1127 freemsg(mp);
1128 ipsq_current_finish(ipsq);
1129 }

1131 /*
1132 * ill_down_start is called when we want to down this ill and bring it up again
1133 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1134 * all interfaces, but don’t tear down any plumbing.
1135 */
1136 boolean_t
1137 ill_down_start(queue_t *q, mblk_t *mp)
1138 {
1139 ill_t *ill = q->q_ptr;
1140 ipif_t *ipif;

1142 ASSERT(IAM_WRITER_ILL(ill));
1143 /*
1144 * It is possible that some ioctl is already in progress while we
1145 * received the M_ERROR / M_HANGUP in which case, we need to abort
1146 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1147 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1148 * the in progress ioctl from ever completing.
1149 *
1150 * The thread that started the ioctl (if any) must have returned,
1151 * since we are now executing as writer. After the 2 calls below,
1152 * the state of the ipsq and the ill would reflect no trace of any
1153 * pending operation. Subsequently if there is any response to the
1154 * original ioctl from the driver, it would be discarded as an
1155 * unsolicited message from the driver.
1156 */
1157 (void) ipsq_pending_mp_cleanup(ill, NULL);
1158 ill_dlpi_clear_deferred(ill);

1160 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1161 (void) ipif_down(ipif, NULL, NULL);

1163 ill_down(ill);

1165 /*
1166 * Walk all CONNs that can have a reference on an ire or nce for this
1167 * ill (we actually walk all that now have stale references).
1168 */
1169 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);

1171 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
1172 if (ill->ill_isv6)
1173 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);

1175 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);

1177 /*
1178 * Atomically test and add the pending mp if references are active.
1179 */
1180 mutex_enter(&ill->ill_lock);
1181 if (!ill_is_quiescent(ill)) {
1182 /* call cannot fail since ‘conn_t *’ argument is NULL */
1183 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,

new/usr/src/uts/common/inet/ip/ip_if.c 19

1184 mp, ILL_DOWN);
1185 mutex_exit(&ill->ill_lock);
1186 return (B_FALSE);
1187 }
1188 mutex_exit(&ill->ill_lock);
1189 return (B_TRUE);
1190 }

1192 static void
1193 ill_down(ill_t *ill)
1194 {
1195 mblk_t *mp;
1196 ip_stack_t *ipst = ill->ill_ipst;

1198 /*
1199 * Blow off any IREs dependent on this ILL.
1200 * The caller needs to handle conn_ixa_cleanup
1201 */
1202 ill_delete_ires(ill);

1204 ire_walk_ill(0, 0, ill_downi, ill, ill);

1206 /* Remove any conn_*_ill depending on this ill */
1207 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);

1209 /*
1210 * Free state for additional IREs.
1211 */
1212 mutex_enter(&ill->ill_saved_ire_lock);
1213 mp = ill->ill_saved_ire_mp;
1214 ill->ill_saved_ire_mp = NULL;
1215 ill->ill_saved_ire_cnt = 0;
1216 mutex_exit(&ill->ill_saved_ire_lock);
1217 freemsg(mp);
1218 }

1220 /*
1221 * ire_walk routine used to delete every IRE that depends on
1222 * ’ill’. (Always called as writer, and may only be called from ire_walk.)
1223 *
1224 * Note: since the routes added by the kernel are deleted separately,
1225 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1226 *
1227 * We also remove references on ire_nce_cache entries that refer to the ill.
1228 */
1229 void
1230 ill_downi(ire_t *ire, char *ill_arg)
1231 {
1232 ill_t *ill = (ill_t *)ill_arg;
1233 nce_t *nce;

1235 mutex_enter(&ire->ire_lock);
1236 nce = ire->ire_nce_cache;
1237 if (nce != NULL && nce->nce_ill == ill)
1238 ire->ire_nce_cache = NULL;
1239 else
1240 nce = NULL;
1241 mutex_exit(&ire->ire_lock);
1242 if (nce != NULL)
1243 nce_refrele(nce);
1244 if (ire->ire_ill == ill) {
1245 /*
1246 * The existing interface binding for ire must be
1247 * deleted before trying to bind the route to another
1248 * interface. However, since we are using the contents of the
1249 * ire after ire_delete, the caller has to ensure that

new/usr/src/uts/common/inet/ip/ip_if.c 20

1250 * CONDEMNED (deleted) ire’s are not removed from the list
1251 * when ire_delete() returns. Currently ill_downi() is
1252 * only called as part of ire_walk*() routines, so that
1253 * the irb_refhold() done by ire_walk*() will ensure that
1254 * ire_delete() does not lead to ire_inactive().
1255 */
1256 ASSERT(ire->ire_bucket->irb_refcnt > 0);
1257 ire_delete(ire);
1258 if (ire->ire_unbound)
1259 ire_rebind(ire);
1260 }
1261 }

1263 /* Remove IRE_IF_CLONE on this ill */
1264 void
1265 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1266 {
1267 ill_t *ill = (ill_t *)ill_arg;

1269 ASSERT(ire->ire_type & IRE_IF_CLONE);
1270 if (ire->ire_ill == ill)
1271 ire_delete(ire);
1272 }

1274 /* Consume an M_IOCACK of the fastpath probe. */
1275 void
1276 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1277 {
1278 mblk_t *mp1 = mp;

1280 /*
1281 * If this was the first attempt turn on the fastpath probing.
1282 */
1283 mutex_enter(&ill->ill_lock);
1284 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1285 ill->ill_dlpi_fastpath_state = IDS_OK;
1286 mutex_exit(&ill->ill_lock);

1288 /* Free the M_IOCACK mblk, hold on to the data */
1289 mp = mp->b_cont;
1290 freeb(mp1);
1291 if (mp == NULL)
1292 return;
1293 if (mp->b_cont != NULL)
1294 nce_fastpath_update(ill, mp);
1295 else
1296 ip0dbg(("ill_fastpath_ack: no b_cont\n"));
1297 freemsg(mp);
1298 }

1300 /*
1301 * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1302 * The data portion of the request is a dl_unitdata_req_t template for
1303 * what we would send downstream in the absence of a fastpath confirmation.
1304 */
1305 int
1306 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1307 {
1308 struct iocblk *ioc;
1309 mblk_t *mp;

1311 if (dlur_mp == NULL)
1312 return (EINVAL);

1314 mutex_enter(&ill->ill_lock);
1315 switch (ill->ill_dlpi_fastpath_state) {

new/usr/src/uts/common/inet/ip/ip_if.c 21

1316 case IDS_FAILED:
1317 /*
1318 * Driver NAKed the first fastpath ioctl - assume it doesn’t
1319 * support it.
1320 */
1321 mutex_exit(&ill->ill_lock);
1322 return (ENOTSUP);
1323 case IDS_UNKNOWN:
1324 /* This is the first probe */
1325 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1326 break;
1327 default:
1328 break;
1329 }
1330 mutex_exit(&ill->ill_lock);

1332 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1333 return (EAGAIN);

1335 mp->b_cont = copyb(dlur_mp);
1336 if (mp->b_cont == NULL) {
1337 freeb(mp);
1338 return (EAGAIN);
1339 }

1341 ioc = (struct iocblk *)mp->b_rptr;
1342 ioc->ioc_count = msgdsize(mp->b_cont);

1344 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1345 char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1346 putnext(ill->ill_wq, mp);
1347 return (0);
1348 }

1350 void
1351 ill_capability_probe(ill_t *ill)
1352 {
1353 mblk_t *mp;

1355 ASSERT(IAM_WRITER_ILL(ill));

1357 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1358 ill->ill_dlpi_capab_state != IDCS_FAILED)
1359 return;

1361 /*
1362 * We are starting a new cycle of capability negotiation.
1363 * Free up the capab reset messages of any previous incarnation.
1364 * We will do a fresh allocation when we get the response to our probe
1365 */
1366 if (ill->ill_capab_reset_mp != NULL) {
1367 freemsg(ill->ill_capab_reset_mp);
1368 ill->ill_capab_reset_mp = NULL;
1369 }

1371 ip1dbg(("ill_capability_probe: starting capability negotiation\n"));

1373 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1374 if (mp == NULL)
1375 return;

1377 ill_capability_send(ill, mp);
1378 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1379 }

1381 void

new/usr/src/uts/common/inet/ip/ip_if.c 22

1382 ill_capability_reset(ill_t *ill, boolean_t reneg)
1383 {
1384 ASSERT(IAM_WRITER_ILL(ill));

1386 if (ill->ill_dlpi_capab_state != IDCS_OK)
1387 return;

1389 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;

1391 ill_capability_send(ill, ill->ill_capab_reset_mp);
1392 ill->ill_capab_reset_mp = NULL;
1393 /*
1394 * We turn off all capabilities except those pertaining to
1395 * direct function call capabilities viz. ILL_CAPAB_DLD*
1396 * which will be turned off by the corresponding reset functions.
1397 */
1398 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY);
1399 }

1401 static void
1402 ill_capability_reset_alloc(ill_t *ill)
1403 {
1404 mblk_t *mp;
1405 size_t size = 0;
1406 int err;
1407 dl_capability_req_t *capb;

1409 ASSERT(IAM_WRITER_ILL(ill));
1410 ASSERT(ill->ill_capab_reset_mp == NULL);

1412 if (ILL_HCKSUM_CAPABLE(ill)) {
1413 size += sizeof (dl_capability_sub_t) +
1414 sizeof (dl_capab_hcksum_t);
1415 }

1417 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1418 size += sizeof (dl_capability_sub_t) +
1419 sizeof (dl_capab_zerocopy_t);
1420 }

1422 if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1423 size += sizeof (dl_capability_sub_t) +
1424 sizeof (dl_capab_dld_t);
1425 }

1427 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1428 STR_NOSIG, &err);

1430 mp->b_datap->db_type = M_PROTO;
1431 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));

1433 capb = (dl_capability_req_t *)mp->b_rptr;
1434 capb->dl_primitive = DL_CAPABILITY_REQ;
1435 capb->dl_sub_offset = sizeof (dl_capability_req_t);
1436 capb->dl_sub_length = size;

1438 mp->b_wptr += sizeof (dl_capability_req_t);

1440 /*
1441 * Each handler fills in the corresponding dl_capability_sub_t
1442 * inside the mblk,
1443 */
1444 ill_capability_hcksum_reset_fill(ill, mp);
1445 ill_capability_zerocopy_reset_fill(ill, mp);
1446 ill_capability_dld_reset_fill(ill, mp);

new/usr/src/uts/common/inet/ip/ip_if.c 23

1448 ill->ill_capab_reset_mp = mp;
1449 }

1451 static void
1452 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1453 {
1454 dl_capab_id_t *id_ic;
1455 uint_t sub_dl_cap = outers->dl_cap;
1456 dl_capability_sub_t *inners;
1457 uint8_t *capend;

1459 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);

1461 /*
1462 * Note: range checks here are not absolutely sufficient to
1463 * make us robust against malformed messages sent by drivers;
1464 * this is in keeping with the rest of IP’s dlpi handling.
1465 * (Remember, it’s coming from something else in the kernel
1466 * address space)
1467 */

1469 capend = (uint8_t *)(outers + 1) + outers->dl_length;
1470 if (capend > mp->b_wptr) {
1471 cmn_err(CE_WARN, "ill_capability_id_ack: "
1472 "malformed sub-capability too long for mblk");
1473 return;
1474 }

1476 id_ic = (dl_capab_id_t *)(outers + 1);

1478 if (outers->dl_length < sizeof (*id_ic) ||
1479 (inners = &id_ic->id_subcap,
1480 inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1481 cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1482 "encapsulated capab type %d too long for mblk",
1483 inners->dl_cap);
1484 return;
1485 }

1487 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1488 ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1489 "isn’t as expected; pass-thru module(s) detected, "
1490 "discarding capability\n", inners->dl_cap));
1491 return;
1492 }

1494 /* Process the encapsulated sub-capability */
1495 ill_capability_dispatch(ill, mp, inners);
1496 }

1498 static void
1499 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1500 {
1501 dl_capability_sub_t *dl_subcap;

1503 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1504 return;

1506 /*
1507 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1508 * initialized below since it is not used by DLD.
1509 */
1510 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1511 dl_subcap->dl_cap = DL_CAPAB_DLD;
1512 dl_subcap->dl_length = sizeof (dl_capab_dld_t);

new/usr/src/uts/common/inet/ip/ip_if.c 24

1514 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1515 }

1517 static void
1518 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1519 {
1520 /*
1521 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1522 * is only to get the VRRP capability.
1523 *
1524 * Note that we cannot check ill_ipif_up_count here since
1525 * ill_ipif_up_count is only incremented when the resolver is setup.
1526 * That is done asynchronously, and can race with this function.
1527 */
1528 if (!ill->ill_dl_up) {
1529 if (subp->dl_cap == DL_CAPAB_VRRP)
1530 ill_capability_vrrp_ack(ill, mp, subp);
1531 return;
1532 }

1534 switch (subp->dl_cap) {
1535 case DL_CAPAB_HCKSUM:
1536 ill_capability_hcksum_ack(ill, mp, subp);
1537 break;
1538 case DL_CAPAB_ZEROCOPY:
1539 ill_capability_zerocopy_ack(ill, mp, subp);
1540 break;
1541 case DL_CAPAB_DLD:
1542 ill_capability_dld_ack(ill, mp, subp);
1543 break;
1544 case DL_CAPAB_VRRP:
1545 break;
1546 default:
1547 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1548 subp->dl_cap));
1549 }
1550 }

1552 /*
1553 * Process the vrrp capability received from a DLS Provider. isub must point
1554 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1555 */
1556 static void
1557 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1558 {
1559 dl_capab_vrrp_t *vrrp;
1560 uint_t sub_dl_cap = isub->dl_cap;
1561 uint8_t *capend;

1563 ASSERT(IAM_WRITER_ILL(ill));
1564 ASSERT(sub_dl_cap == DL_CAPAB_VRRP);

1566 /*
1567 * Note: range checks here are not absolutely sufficient to
1568 * make us robust against malformed messages sent by drivers;
1569 * this is in keeping with the rest of IP’s dlpi handling.
1570 * (Remember, it’s coming from something else in the kernel
1571 * address space)
1572 */
1573 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1574 if (capend > mp->b_wptr) {
1575 cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1576 "malformed sub-capability too long for mblk");
1577 return;
1578 }
1579 vrrp = (dl_capab_vrrp_t *)(isub + 1);

new/usr/src/uts/common/inet/ip/ip_if.c 25

1581 /*
1582 * Compare the IP address family and set ILLF_VRRP for the right ill.
1583 */
1584 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1585 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1586 ill->ill_flags |= ILLF_VRRP;
1587 }
1588 }

1590 /*
1591 * Process a hardware checksum offload capability negotiation ack received
1592 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1593 * of a DL_CAPABILITY_ACK message.
1594 */
1595 static void
1596 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1597 {
1598 dl_capability_req_t *ocap;
1599 dl_capab_hcksum_t *ihck, *ohck;
1600 ill_hcksum_capab_t **ill_hcksum;
1601 mblk_t *nmp = NULL;
1602 uint_t sub_dl_cap = isub->dl_cap;
1603 uint8_t *capend;

1605 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);

1607 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;

1609 /*
1610 * Note: range checks here are not absolutely sufficient to
1611 * make us robust against malformed messages sent by drivers;
1612 * this is in keeping with the rest of IP’s dlpi handling.
1613 * (Remember, it’s coming from something else in the kernel
1614 * address space)
1615 */
1616 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1617 if (capend > mp->b_wptr) {
1618 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1619 "malformed sub-capability too long for mblk");
1620 return;
1621 }

1623 /*
1624 * There are two types of acks we process here:
1625 * 1. acks in reply to a (first form) generic capability req
1626 * (no ENABLE flag set)
1627 * 2. acks in reply to a ENABLE capability req.
1628 * (ENABLE flag set)
1629 */
1630 ihck = (dl_capab_hcksum_t *)(isub + 1);

1632 if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1633 cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1634 "unsupported hardware checksum "
1635 "sub-capability (version %d, expected %d)",
1636 ihck->hcksum_version, HCKSUM_VERSION_1);
1637 return;
1638 }

1640 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1641 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1642 "checksum capability isn’t as expected; pass-thru "
1643 "module(s) detected, discarding capability\n"));
1644 return;
1645 }

new/usr/src/uts/common/inet/ip/ip_if.c 26

1647 #define CURR_HCKSUM_CAPAB \
1648 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \
1649 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)

1651 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1652 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1653 /* do ENABLE processing */
1654 if (*ill_hcksum == NULL) {
1655 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1656 KM_NOSLEEP);

1658 if (*ill_hcksum == NULL) {
1659 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1660 "could not enable hcksum version %d "
1661 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1662 ill->ill_name);
1663 return;
1664 }
1665 }

1667 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1668 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1669 ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1670 ip1dbg(("ill_capability_hcksum_ack: interface %s "
1671 "has enabled hardware checksumming\n ",
1672 ill->ill_name));
1673 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1674 /*
1675 * Enabling hardware checksum offload
1676 * Currently IP supports {TCP,UDP}/IPv4
1677 * partial and full cksum offload and
1678 * IPv4 header checksum offload.
1679 * Allocate new mblk which will
1680 * contain a new capability request
1681 * to enable hardware checksum offload.
1682 */
1683 uint_t size;
1684 uchar_t *rptr;

1686 size = sizeof (dl_capability_req_t) +
1687 sizeof (dl_capability_sub_t) + isub->dl_length;

1689 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1690 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1691 "could not enable hardware cksum for %s (ENOMEM)\n",
1692 ill->ill_name);
1693 return;
1694 }

1696 rptr = nmp->b_rptr;
1697 /* initialize dl_capability_req_t */
1698 ocap = (dl_capability_req_t *)nmp->b_rptr;
1699 ocap->dl_sub_offset =
1700 sizeof (dl_capability_req_t);
1701 ocap->dl_sub_length =
1702 sizeof (dl_capability_sub_t) +
1703 isub->dl_length;
1704 nmp->b_rptr += sizeof (dl_capability_req_t);

1706 /* initialize dl_capability_sub_t */
1707 bcopy(isub, nmp->b_rptr, sizeof (*isub));
1708 nmp->b_rptr += sizeof (*isub);

1710 /* initialize dl_capab_hcksum_t */
1711 ohck = (dl_capab_hcksum_t *)nmp->b_rptr;

new/usr/src/uts/common/inet/ip/ip_if.c 27

1712 bcopy(ihck, ohck, sizeof (*ihck));

1714 nmp->b_rptr = rptr;
1715 ASSERT(nmp->b_wptr == (nmp->b_rptr + size));

1717 /* Set ENABLE flag */
1718 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1719 ohck->hcksum_txflags |= HCKSUM_ENABLE;

1721 /*
1722 * nmp points to a DL_CAPABILITY_REQ message to enable
1723 * hardware checksum acceleration.
1724 */
1725 ill_capability_send(ill, nmp);
1726 } else {
1727 ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1728 "advertised %x hardware checksum capability flags\n",
1729 ill->ill_name, ihck->hcksum_txflags));
1730 }
1731 }

1733 static void
1734 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1735 {
1736 dl_capab_hcksum_t *hck_subcap;
1737 dl_capability_sub_t *dl_subcap;

1739 if (!ILL_HCKSUM_CAPABLE(ill))
1740 return;

1742 ASSERT(ill->ill_hcksum_capab != NULL);

1744 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1745 dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1746 dl_subcap->dl_length = sizeof (*hck_subcap);

1748 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1749 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1750 hck_subcap->hcksum_txflags = 0;

1752 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1753 }

1755 static void
1756 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1757 {
1758 mblk_t *nmp = NULL;
1759 dl_capability_req_t *oc;
1760 dl_capab_zerocopy_t *zc_ic, *zc_oc;
1761 ill_zerocopy_capab_t **ill_zerocopy_capab;
1762 uint_t sub_dl_cap = isub->dl_cap;
1763 uint8_t *capend;

1765 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);

1767 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;

1769 /*
1770 * Note: range checks here are not absolutely sufficient to
1771 * make us robust against malformed messages sent by drivers;
1772 * this is in keeping with the rest of IP’s dlpi handling.
1773 * (Remember, it’s coming from something else in the kernel
1774 * address space)
1775 */
1776 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1777 if (capend > mp->b_wptr) {

new/usr/src/uts/common/inet/ip/ip_if.c 28

1778 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1779 "malformed sub-capability too long for mblk");
1780 return;
1781 }

1783 zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1784 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1785 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1786 "unsupported ZEROCOPY sub-capability (version %d, "
1787 "expected %d)", zc_ic->zerocopy_version,
1788 ZEROCOPY_VERSION_1);
1789 return;
1790 }

1792 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1793 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1794 "capability isn’t as expected; pass-thru module(s) "
1795 "detected, discarding capability\n"));
1796 return;
1797 }

1799 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1800 if (*ill_zerocopy_capab == NULL) {
1801 *ill_zerocopy_capab =
1802 kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1803 KM_NOSLEEP);

1805 if (*ill_zerocopy_capab == NULL) {
1806 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1807 "could not enable Zero-copy version %d "
1808 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1809 ill->ill_name);
1810 return;
1811 }
1812 }

1814 ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1815 "supports Zero-copy version %d\n", ill->ill_name,
1816 ZEROCOPY_VERSION_1));

1818 (*ill_zerocopy_capab)->ill_zerocopy_version =
1819 zc_ic->zerocopy_version;
1820 (*ill_zerocopy_capab)->ill_zerocopy_flags =
1821 zc_ic->zerocopy_flags;

1823 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1824 } else {
1825 uint_t size;
1826 uchar_t *rptr;

1828 size = sizeof (dl_capability_req_t) +
1829 sizeof (dl_capability_sub_t) +
1830 sizeof (dl_capab_zerocopy_t);

1832 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1833 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1834 "could not enable zerocopy for %s (ENOMEM)\n",
1835 ill->ill_name);
1836 return;
1837 }

1839 rptr = nmp->b_rptr;
1840 /* initialize dl_capability_req_t */
1841 oc = (dl_capability_req_t *)rptr;
1842 oc->dl_sub_offset = sizeof (dl_capability_req_t);
1843 oc->dl_sub_length = sizeof (dl_capability_sub_t) +

new/usr/src/uts/common/inet/ip/ip_if.c 29

1844 sizeof (dl_capab_zerocopy_t);
1845 rptr += sizeof (dl_capability_req_t);

1847 /* initialize dl_capability_sub_t */
1848 bcopy(isub, rptr, sizeof (*isub));
1849 rptr += sizeof (*isub);

1851 /* initialize dl_capab_zerocopy_t */
1852 zc_oc = (dl_capab_zerocopy_t *)rptr;
1853 *zc_oc = *zc_ic;

1855 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1856 "to enable zero-copy version %d\n", ill->ill_name,
1857 ZEROCOPY_VERSION_1));

1859 /* set VMSAFE_MEM flag */
1860 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;

1862 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1863 ill_capability_send(ill, nmp);
1864 }
1865 }

1867 static void
1868 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1869 {
1870 dl_capab_zerocopy_t *zerocopy_subcap;
1871 dl_capability_sub_t *dl_subcap;

1873 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1874 return;

1876 ASSERT(ill->ill_zerocopy_capab != NULL);

1878 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1879 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1880 dl_subcap->dl_length = sizeof (*zerocopy_subcap);

1882 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1883 zerocopy_subcap->zerocopy_version =
1884 ill->ill_zerocopy_capab->ill_zerocopy_version;
1885 zerocopy_subcap->zerocopy_flags = 0;

1887 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1888 }

1890 /*
1891 * DLD capability
1892 * Refer to dld.h for more information regarding the purpose and usage
1893 * of this capability.
1894 */
1895 static void
1896 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1897 {
1898 dl_capab_dld_t *dld_ic, dld;
1899 uint_t sub_dl_cap = isub->dl_cap;
1900 uint8_t *capend;
1901 ill_dld_capab_t *idc;

1903 ASSERT(IAM_WRITER_ILL(ill));
1904 ASSERT(sub_dl_cap == DL_CAPAB_DLD);

1906 /*
1907 * Note: range checks here are not absolutely sufficient to
1908 * make us robust against malformed messages sent by drivers;
1909 * this is in keeping with the rest of IP’s dlpi handling.

new/usr/src/uts/common/inet/ip/ip_if.c 30

1910 * (Remember, it’s coming from something else in the kernel
1911 * address space)
1912 */
1913 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1914 if (capend > mp->b_wptr) {
1915 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1916 "malformed sub-capability too long for mblk");
1917 return;
1918 }
1919 dld_ic = (dl_capab_dld_t *)(isub + 1);
1920 if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1921 cmn_err(CE_CONT, "ill_capability_dld_ack: "
1922 "unsupported DLD sub-capability (version %d, "
1923 "expected %d)", dld_ic->dld_version,
1924 DLD_CURRENT_VERSION);
1925 return;
1926 }
1927 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1928 ip1dbg(("ill_capability_dld_ack: mid token for dld "
1929 "capability isn’t as expected; pass-thru module(s) "
1930 "detected, discarding capability\n"));
1931 return;
1932 }

1934 /*
1935 * Copy locally to ensure alignment.
1936 */
1937 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));

1939 if ((idc = ill->ill_dld_capab) == NULL) {
1940 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1941 if (idc == NULL) {
1942 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1943 "could not enable DLD version %d "
1944 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1945 ill->ill_name);
1946 return;
1947 }
1948 ill->ill_dld_capab = idc;
1949 }
1950 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1951 idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1952 ip1dbg(("ill_capability_dld_ack: interface %s "
1953 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));

1955 ill_capability_dld_enable(ill);
1956 }

1958 /*
1959 * Typically capability negotiation between IP and the driver happens via
1960 * DLPI message exchange. However GLD also offers a direct function call
1961 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1962 * But arbitrary function calls into IP or GLD are not permitted, since both
1963 * of them are protected by their own perimeter mechanism. The perimeter can
1964 * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1965 * these perimeters is IP -> MAC. Thus for example to enable the squeue
1966 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1967 * to enter the mac perimeter and then do the direct function calls into
1968 * GLD to enable squeue polling. The ring related callbacks from the mac into
1969 * the stack to add, bind, quiesce, restart or cleanup a ring are all
1970 * protected by the mac perimeter.
1971 */
1972 static void
1973 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1974 {
1975 ill_dld_capab_t *idc = ill->ill_dld_capab;

new/usr/src/uts/common/inet/ip/ip_if.c 31

1976 int err;

1978 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1979 DLD_ENABLE);
1980 ASSERT(err == 0);
1981 }

1983 static void
1984 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1985 {
1986 ill_dld_capab_t *idc = ill->ill_dld_capab;
1987 int err;

1989 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1990 DLD_DISABLE);
1991 ASSERT(err == 0);
1992 }

1994 boolean_t
1995 ill_mac_perim_held(ill_t *ill)
1996 {
1997 ill_dld_capab_t *idc = ill->ill_dld_capab;

1999 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
2000 DLD_QUERY));
2001 }

2003 static void
2004 ill_capability_direct_enable(ill_t *ill)
2005 {
2006 ill_dld_capab_t *idc = ill->ill_dld_capab;
2007 ill_dld_direct_t *idd = &idc->idc_direct;
2008 dld_capab_direct_t direct;
2009 int rc;

2011 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));

2013 bzero(&direct, sizeof (direct));
2014 direct.di_rx_cf = (uintptr_t)ip_input;
2015 direct.di_rx_ch = ill;

2017 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2018 DLD_ENABLE);
2019 if (rc == 0) {
2020 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2021 idd->idd_tx_dh = direct.di_tx_dh;
2022 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2023 idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2024 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2025 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2026 ASSERT(idd->idd_tx_cb_df != NULL);
2027 ASSERT(idd->idd_tx_fctl_df != NULL);
2028 ASSERT(idd->idd_tx_df != NULL);
2029 /*
2030 * One time registration of flow enable callback function
2031 */
2032 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2033 ill_flow_enable, ill);
2034 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2035 DTRACE_PROBE1(direct_on, (ill_t *), ill);
2036 } else {
2037 cmn_err(CE_WARN, "warning: could not enable DIRECT "
2038 "capability, rc = %d\n", rc);
2039 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2040 }
2041 }

new/usr/src/uts/common/inet/ip/ip_if.c 32

2043 static void
2044 ill_capability_poll_enable(ill_t *ill)
2045 {
2046 ill_dld_capab_t *idc = ill->ill_dld_capab;
2047 dld_capab_poll_t poll;
2048 int rc;

2050 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));

2052 bzero(&poll, sizeof (poll));
2053 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2054 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2055 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2056 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2057 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2058 poll.poll_ring_ch = ill;
2059 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2060 DLD_ENABLE);
2061 if (rc == 0) {
2062 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2063 DTRACE_PROBE1(poll_on, (ill_t *), ill);
2064 } else {
2065 ip1dbg(("warning: could not enable POLL "
2066 "capability, rc = %d\n", rc));
2067 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2068 }
2069 }

2071 /*
2072 * Enable the LSO capability.
2073 */
2074 static void
2075 ill_capability_lso_enable(ill_t *ill)
2076 {
2077 ill_dld_capab_t *idc = ill->ill_dld_capab;
2078 dld_capab_lso_t lso;
2079 int rc;

2081 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));

2083 if (ill->ill_lso_capab == NULL) {
2084 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2085 KM_NOSLEEP);
2086 if (ill->ill_lso_capab == NULL) {
2087 cmn_err(CE_WARN, "ill_capability_lso_enable: "
2088 "could not enable LSO for %s (ENOMEM)\n",
2089 ill->ill_name);
2090 return;
2091 }
2092 }

2094 bzero(&lso, sizeof (lso));
2095 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2096 DLD_ENABLE)) == 0) {
2097 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2098 ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2099 ill->ill_capabilities |= ILL_CAPAB_LSO;
2100 ip1dbg(("ill_capability_lso_enable: interface %s "
2101 "has enabled LSO\n ", ill->ill_name));
2102 } else {
2103 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2104 ill->ill_lso_capab = NULL;
2105 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2106 }
2107 }

new/usr/src/uts/common/inet/ip/ip_if.c 33

2109 static void
2110 ill_capability_dld_enable(ill_t *ill)
2111 {
2112 mac_perim_handle_t mph;

2114 ASSERT(IAM_WRITER_ILL(ill));

2116 if (ill->ill_isv6)
2117 return;

2119 ill_mac_perim_enter(ill, &mph);
2120 if (!ill->ill_isv6) {
2121 ill_capability_direct_enable(ill);
2122 ill_capability_poll_enable(ill);
2123 ill_capability_lso_enable(ill);
2124 }
2125 ill->ill_capabilities |= ILL_CAPAB_DLD;
2126 ill_mac_perim_exit(ill, mph);
2127 }

2129 static void
2130 ill_capability_dld_disable(ill_t *ill)
2131 {
2132 ill_dld_capab_t *idc;
2133 ill_dld_direct_t *idd;
2134 mac_perim_handle_t mph;

2136 ASSERT(IAM_WRITER_ILL(ill));

2138 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2139 return;

2141 ill_mac_perim_enter(ill, &mph);

2143 idc = ill->ill_dld_capab;
2144 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2145 /*
2146 * For performance we avoid locks in the transmit data path
2147 * and don’t maintain a count of the number of threads using
2148 * direct calls. Thus some threads could be using direct
2149 * transmit calls to GLD, even after the capability mechanism
2150 * turns it off. This is still safe since the handles used in
2151 * the direct calls continue to be valid until the unplumb is
2152 * completed. Remove the callback that was added (1-time) at
2153 * capab enable time.
2154 */
2155 mutex_enter(&ill->ill_lock);
2156 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2157 mutex_exit(&ill->ill_lock);
2158 if (ill->ill_flownotify_mh != NULL) {
2159 idd = &idc->idc_direct;
2160 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2161 ill->ill_flownotify_mh);
2162 ill->ill_flownotify_mh = NULL;
2163 }
2164 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2165 NULL, DLD_DISABLE);
2166 }

2168 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2169 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2170 ip_squeue_clean_all(ill);
2171 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2172 NULL, DLD_DISABLE);
2173 }

new/usr/src/uts/common/inet/ip/ip_if.c 34

2175 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2176 ASSERT(ill->ill_lso_capab != NULL);
2177 /*
2178 * Clear the capability flag for LSO but retain the
2179 * ill_lso_capab structure since it’s possible that another
2180 * thread is still referring to it. The structure only gets
2181 * deallocated when we destroy the ill.
2182 */

2184 ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2185 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2186 NULL, DLD_DISABLE);
2187 }

2189 ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2190 ill_mac_perim_exit(ill, mph);
2191 }

2193 /*
2194 * Capability Negotiation protocol
2195 *
2196 * We don’t wait for DLPI capability operations to finish during interface
2197 * bringup or teardown. Doing so would introduce more asynchrony and the
2198 * interface up/down operations will need multiple return and restarts.
2199 * Instead the ’ipsq_current_ipif’ of the ipsq is not cleared as long as
2200 * the ’ill_dlpi_deferred’ chain is non-empty. This ensures that the next
2201 * exclusive operation won’t start until the DLPI operations of the previous
2202 * exclusive operation complete.
2203 *
2204 * The capability state machine is shown below.
2205 *
2206 * state next state event, action
2207 *
2208 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe
2209 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack
2210 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack)
2211 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG
2212 * IDCS_OK IDCS_RESET_SENT ill_capability_reset
2213 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr
2214 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr ->
2215 * ill_capability_probe.
2216 */

2218 /*
2219 * Dedicated thread started from ip_stack_init that handles capability
2220 * disable. This thread ensures the taskq dispatch does not fail by waiting
2221 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2222 * that direct calls to DLD are done in a cv_waitable context.
2223 */
2224 void
2225 ill_taskq_dispatch(ip_stack_t *ipst)
2226 {
2227 callb_cpr_t cprinfo;
2228 char name[64];
2229 mblk_t *mp;

2231 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2232 ipst->ips_netstack->netstack_stackid);
2233 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2234 name);
2235 mutex_enter(&ipst->ips_capab_taskq_lock);

2237 for (;;) {
2238 mp = ipst->ips_capab_taskq_head;
2239 while (mp != NULL) {

new/usr/src/uts/common/inet/ip/ip_if.c 35

2240 ipst->ips_capab_taskq_head = mp->b_next;
2241 if (ipst->ips_capab_taskq_head == NULL)
2242 ipst->ips_capab_taskq_tail = NULL;
2243 mutex_exit(&ipst->ips_capab_taskq_lock);
2244 mp->b_next = NULL;

2246 VERIFY(taskq_dispatch(system_taskq,
2247 ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2248 mutex_enter(&ipst->ips_capab_taskq_lock);
2249 mp = ipst->ips_capab_taskq_head;
2250 }

2252 if (ipst->ips_capab_taskq_quit)
2253 break;
2254 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2255 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2256 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2257 }
2258 VERIFY(ipst->ips_capab_taskq_head == NULL);
2259 VERIFY(ipst->ips_capab_taskq_tail == NULL);
2260 CALLB_CPR_EXIT(&cprinfo);
2261 thread_exit();
2262 }

2264 /*
2265 * Consume a new-style hardware capabilities negotiation ack.
2266 * Called via taskq on receipt of DL_CAPABILITY_ACK.
2267 */
2268 static void
2269 ill_capability_ack_thr(void *arg)
2270 {
2271 mblk_t *mp = arg;
2272 dl_capability_ack_t *capp;
2273 dl_capability_sub_t *subp, *endp;
2274 ill_t *ill;
2275 boolean_t reneg;

2277 ill = (ill_t *)mp->b_prev;
2278 mp->b_prev = NULL;

2280 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);

2282 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2283 ill->ill_dlpi_capab_state == IDCS_RENEG) {
2284 /*
2285 * We have received the ack for our DL_CAPAB reset request.
2286 * There isnt’ anything in the message that needs processing.
2287 * All message based capabilities have been disabled, now
2288 * do the function call based capability disable.
2289 */
2290 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2291 ill_capability_dld_disable(ill);
2292 ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2293 if (reneg)
2294 ill_capability_probe(ill);
2295 goto done;
2296 }

2298 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2299 ill->ill_dlpi_capab_state = IDCS_OK;

2301 capp = (dl_capability_ack_t *)mp->b_rptr;

2303 if (capp->dl_sub_length == 0) {
2304 /* no new-style capabilities */
2305 goto done;

new/usr/src/uts/common/inet/ip/ip_if.c 36

2306 }

2308 /* make sure the driver supplied correct dl_sub_length */
2309 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2310 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2311 "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2312 goto done;
2313 }

2315 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2316 /*
2317 * There are sub-capabilities. Process the ones we know about.
2318 * Loop until we don’t have room for another sub-cap header..
2319 */
2320 for (subp = SC(capp, capp->dl_sub_offset),
2321 endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2322 subp <= endp;
2323 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {

2325 switch (subp->dl_cap) {
2326 case DL_CAPAB_ID_WRAPPER:
2327 ill_capability_id_ack(ill, mp, subp);
2328 break;
2329 default:
2330 ill_capability_dispatch(ill, mp, subp);
2331 break;
2332 }
2333 }
2334 #undef SC
2335 done:
2336 inet_freemsg(mp);
2337 ill_capability_done(ill);
2338 ipsq_exit(ill->ill_phyint->phyint_ipsq);
2339 }

2341 /*
2342 * This needs to be started in a taskq thread to provide a cv_waitable
2343 * context.
2344 */
2345 void
2346 ill_capability_ack(ill_t *ill, mblk_t *mp)
2347 {
2348 ip_stack_t *ipst = ill->ill_ipst;

2350 mp->b_prev = (mblk_t *)ill;
2351 ASSERT(mp->b_next == NULL);

2353 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2354 TQ_NOSLEEP) != 0)
2355 return;

2357 /*
2358 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2359 * which will do the dispatch using TQ_SLEEP to guarantee success.
2360 */
2361 mutex_enter(&ipst->ips_capab_taskq_lock);
2362 if (ipst->ips_capab_taskq_head == NULL) {
2363 ASSERT(ipst->ips_capab_taskq_tail == NULL);
2364 ipst->ips_capab_taskq_head = mp;
2365 } else {
2366 ipst->ips_capab_taskq_tail->b_next = mp;
2367 }
2368 ipst->ips_capab_taskq_tail = mp;

2370 cv_signal(&ipst->ips_capab_taskq_cv);
2371 mutex_exit(&ipst->ips_capab_taskq_lock);

new/usr/src/uts/common/inet/ip/ip_if.c 37

2372 }

2374 /*
2375 * This routine is called to scan the fragmentation reassembly table for
2376 * the specified ILL for any packets that are starting to smell.
2377 * dead_interval is the maximum time in seconds that will be tolerated. It
2378 * will either be the value specified in ip_g_frag_timeout, or zero if the
2379 * ILL is shutting down and it is time to blow everything off.
2380 *
2381 * It returns the number of seconds (as a time_t) that the next frag timer
2382 * should be scheduled for, 0 meaning that the timer doesn’t need to be
2383 * re-started. Note that the method of calculating next_timeout isn’t
2384 * entirely accurate since time will flow between the time we grab
2385 * current_time and the time we schedule the next timeout. This isn’t a
2386 * big problem since this is the timer for sending an ICMP reassembly time
2387 * exceeded messages, and it doesn’t have to be exactly accurate.
2388 *
2389 * This function is
2390 * sometimes called as writer, although this is not required.
2391 */
2392 time_t
2393 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2394 {
2395 ipfb_t *ipfb;
2396 ipfb_t *endp;
2397 ipf_t *ipf;
2398 ipf_t *ipfnext;
2399 mblk_t *mp;
2400 time_t current_time = gethrestime_sec();
2401 time_t next_timeout = 0;
2402 uint32_t hdr_length;
2403 mblk_t *send_icmp_head;
2404 mblk_t *send_icmp_head_v6;
2405 ip_stack_t *ipst = ill->ill_ipst;
2406 ip_recv_attr_t iras;

2408 bzero(&iras, sizeof (iras));
2409 iras.ira_flags = 0;
2410 iras.ira_ill = iras.ira_rill = ill;
2411 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2412 iras.ira_rifindex = iras.ira_ruifindex;

2414 ipfb = ill->ill_frag_hash_tbl;
2415 if (ipfb == NULL)
2416 return (B_FALSE);
2417 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2418 /* Walk the frag hash table. */
2419 for (; ipfb < endp; ipfb++) {
2420 send_icmp_head = NULL;
2421 send_icmp_head_v6 = NULL;
2422 mutex_enter(&ipfb->ipfb_lock);
2423 while ((ipf = ipfb->ipfb_ipf) != 0) {
2424 time_t frag_time = current_time - ipf->ipf_timestamp;
2425 time_t frag_timeout;

2427 if (frag_time < dead_interval) {
2428 /*
2429 * There are some outstanding fragments
2430 * that will timeout later. Make note of
2431 * the time so that we can reschedule the
2432 * next timeout appropriately.
2433 */
2434 frag_timeout = dead_interval - frag_time;
2435 if (next_timeout == 0 ||
2436 frag_timeout < next_timeout) {
2437 next_timeout = frag_timeout;

new/usr/src/uts/common/inet/ip/ip_if.c 38

2438 }
2439 break;
2440 }
2441 /* Time’s up. Get it out of here. */
2442 hdr_length = ipf->ipf_nf_hdr_len;
2443 ipfnext = ipf->ipf_hash_next;
2444 if (ipfnext)
2445 ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2446 *ipf->ipf_ptphn = ipfnext;
2447 mp = ipf->ipf_mp->b_cont;
2448 for (; mp; mp = mp->b_cont) {
2449 /* Extra points for neatness. */
2450 IP_REASS_SET_START(mp, 0);
2451 IP_REASS_SET_END(mp, 0);
2452 }
2453 mp = ipf->ipf_mp->b_cont;
2454 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2455 ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2456 ipfb->ipfb_count -= ipf->ipf_count;
2457 ASSERT(ipfb->ipfb_frag_pkts > 0);
2458 ipfb->ipfb_frag_pkts--;
2459 /*
2460 * We do not send any icmp message from here because
2461 * we currently are holding the ipfb_lock for this
2462 * hash chain. If we try and send any icmp messages
2463 * from here we may end up via a put back into ip
2464 * trying to get the same lock, causing a recursive
2465 * mutex panic. Instead we build a list and send all
2466 * the icmp messages after we have dropped the lock.
2467 */
2468 if (ill->ill_isv6) {
2469 if (hdr_length != 0) {
2470 mp->b_next = send_icmp_head_v6;
2471 send_icmp_head_v6 = mp;
2472 } else {
2473 freemsg(mp);
2474 }
2475 } else {
2476 if (hdr_length != 0) {
2477 mp->b_next = send_icmp_head;
2478 send_icmp_head = mp;
2479 } else {
2480 freemsg(mp);
2481 }
2482 }
2483 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2484 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2485 freeb(ipf->ipf_mp);
2486 }
2487 mutex_exit(&ipfb->ipfb_lock);
2488 /*
2489 * Now need to send any icmp messages that we delayed from
2490 * above.
2491 */
2492 while (send_icmp_head_v6 != NULL) {
2493 ip6_t *ip6h;

2495 mp = send_icmp_head_v6;
2496 send_icmp_head_v6 = send_icmp_head_v6->b_next;
2497 mp->b_next = NULL;
2498 ip6h = (ip6_t *)mp->b_rptr;
2499 iras.ira_flags = 0;
2500 /*
2501 * This will result in an incorrect ALL_ZONES zoneid
2502 * for multicast packets, but we
2503 * don’t send ICMP errors for those in any case.

new/usr/src/uts/common/inet/ip/ip_if.c 39

2504 */
2505 iras.ira_zoneid =
2506 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2507 ill, ipst);
2508 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2509 icmp_time_exceeded_v6(mp,
2510 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2511 &iras);
2512 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2513 }
2514 while (send_icmp_head != NULL) {
2515 ipaddr_t dst;

2517 mp = send_icmp_head;
2518 send_icmp_head = send_icmp_head->b_next;
2519 mp->b_next = NULL;

2521 dst = ((ipha_t *)mp->b_rptr)->ipha_dst;

2523 iras.ira_flags = IRAF_IS_IPV4;
2524 /*
2525 * This will result in an incorrect ALL_ZONES zoneid
2526 * for broadcast and multicast packets, but we
2527 * don’t send ICMP errors for those in any case.
2528 */
2529 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2530 ill, ipst);
2531 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2532 icmp_time_exceeded(mp,
2533 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2534 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2535 }
2536 }
2537 /*
2538 * A non-dying ILL will use the return value to decide whether to
2539 * restart the frag timer, and for how long.
2540 */
2541 return (next_timeout);
2542 }

2544 /*
2545 * This routine is called when the approximate count of mblk memory used
2546 * for the specified ILL has exceeded max_count.
2547 */
2548 void
2549 ill_frag_prune(ill_t *ill, uint_t max_count)
2550 {
2551 ipfb_t *ipfb;
2552 ipf_t *ipf;
2553 size_t count;
2554 clock_t now;

2556 /*
2557 * If we are here within ip_min_frag_prune_time msecs remove
2558 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2559 * ill_frag_free_num_pkts.
2560 */
2561 mutex_enter(&ill->ill_lock);
2562 now = ddi_get_lbolt();
2563 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2564 (ip_min_frag_prune_time != 0 ?
2565 ip_min_frag_prune_time : msec_per_tick)) {

2567 ill->ill_frag_free_num_pkts++;

2569 } else {

new/usr/src/uts/common/inet/ip/ip_if.c 40

2570 ill->ill_frag_free_num_pkts = 0;
2571 }
2572 ill->ill_last_frag_clean_time = now;
2573 mutex_exit(&ill->ill_lock);

2575 /*
2576 * free ill_frag_free_num_pkts oldest packets from each bucket.
2577 */
2578 if (ill->ill_frag_free_num_pkts != 0) {
2579 int ix;

2581 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2582 ipfb = &ill->ill_frag_hash_tbl[ix];
2583 mutex_enter(&ipfb->ipfb_lock);
2584 if (ipfb->ipfb_ipf != NULL) {
2585 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2586 ill->ill_frag_free_num_pkts);
2587 }
2588 mutex_exit(&ipfb->ipfb_lock);
2589 }
2590 }
2591 /*
2592 * While the reassembly list for this ILL is too big, prune a fragment
2593 * queue by age, oldest first.
2594 */
2595 while (ill->ill_frag_count > max_count) {
2596 int ix;
2597 ipfb_t *oipfb = NULL;
2598 uint_t oldest = UINT_MAX;

2600 count = 0;
2601 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2602 ipfb = &ill->ill_frag_hash_tbl[ix];
2603 mutex_enter(&ipfb->ipfb_lock);
2604 ipf = ipfb->ipfb_ipf;
2605 if (ipf != NULL && ipf->ipf_gen < oldest) {
2606 oldest = ipf->ipf_gen;
2607 oipfb = ipfb;
2608 }
2609 count += ipfb->ipfb_count;
2610 mutex_exit(&ipfb->ipfb_lock);
2611 }
2612 if (oipfb == NULL)
2613 break;

2615 if (count <= max_count)
2616 return; /* Somebody beat us to it, nothing to do */
2617 mutex_enter(&oipfb->ipfb_lock);
2618 ipf = oipfb->ipfb_ipf;
2619 if (ipf != NULL) {
2620 ill_frag_free_pkts(ill, oipfb, ipf, 1);
2621 }
2622 mutex_exit(&oipfb->ipfb_lock);
2623 }
2624 }

2626 /*
2627 * free ’free_cnt’ fragmented packets starting at ipf.
2628 */
2629 void
2630 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2631 {
2632 size_t count;
2633 mblk_t *mp;
2634 mblk_t *tmp;
2635 ipf_t **ipfp = ipf->ipf_ptphn;

new/usr/src/uts/common/inet/ip/ip_if.c 41

2637 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2638 ASSERT(ipfp != NULL);
2639 ASSERT(ipf != NULL);

2641 while (ipf != NULL && free_cnt-- > 0) {
2642 count = ipf->ipf_count;
2643 mp = ipf->ipf_mp;
2644 ipf = ipf->ipf_hash_next;
2645 for (tmp = mp; tmp; tmp = tmp->b_cont) {
2646 IP_REASS_SET_START(tmp, 0);
2647 IP_REASS_SET_END(tmp, 0);
2648 }
2649 atomic_add_32(&ill->ill_frag_count, -count);
2650 ASSERT(ipfb->ipfb_count >= count);
2651 ipfb->ipfb_count -= count;
2652 ASSERT(ipfb->ipfb_frag_pkts > 0);
2653 ipfb->ipfb_frag_pkts--;
2654 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2655 ip_drop_input("ipIfStatsReasmFails", mp, ill);
2656 freemsg(mp);
2657 }

2659 if (ipf)
2660 ipf->ipf_ptphn = ipfp;
2661 ipfp[0] = ipf;
2662 }

2664 /*
2665 * Helper function for ill_forward_set().
2666 */
2667 static void
2668 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2669 {
2670 ip_stack_t *ipst = ill->ill_ipst;

2672 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));

2674 ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2675 (enable ? "Enabling" : "Disabling"),
2676 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2677 mutex_enter(&ill->ill_lock);
2678 if (enable)
2679 ill->ill_flags |= ILLF_ROUTER;
2680 else
2681 ill->ill_flags &= ~ILLF_ROUTER;
2682 mutex_exit(&ill->ill_lock);
2683 if (ill->ill_isv6)
2684 ill_set_nce_router_flags(ill, enable);
2685 /* Notify routing socket listeners of this change. */
2686 if (ill->ill_ipif != NULL)
2687 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2688 }

2690 /*
2691 * Set an ill’s ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing
2692 * socket messages for each interface whose flags we change.
2693 */
2694 int
2695 ill_forward_set(ill_t *ill, boolean_t enable)
2696 {
2697 ipmp_illgrp_t *illg;
2698 ip_stack_t *ipst = ill->ill_ipst;

2700 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));

new/usr/src/uts/common/inet/ip/ip_if.c 42

2702 if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2703 (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2704 return (0);

2706 if (IS_LOOPBACK(ill))
2707 return (EINVAL);

2709 if (enable && ill->ill_allowed_ips_cnt > 0)
2710 return (EPERM);

2712 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2713 /*
2714 * Update all of the interfaces in the group.
2715 */
2716 illg = ill->ill_grp;
2717 ill = list_head(&illg->ig_if);
2718 for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2719 ill_forward_set_on_ill(ill, enable);

2721 /*
2722 * Update the IPMP meta-interface.
2723 */
2724 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2725 return (0);
2726 }

2728 ill_forward_set_on_ill(ill, enable);
2729 return (0);
2730 }

2732 /*
2733 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce’s for
2734 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2735 * set or clear.
2736 */
2737 static void
2738 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2739 {
2740 ipif_t *ipif;
2741 ncec_t *ncec;
2742 nce_t *nce;

2744 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2745 /*
2746 * NOTE: we match across the illgrp because nce’s for
2747 * addresses on IPMP interfaces have an nce_ill that points to
2748 * the bound underlying ill.
2749 */
2750 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2751 if (nce != NULL) {
2752 ncec = nce->nce_common;
2753 mutex_enter(&ncec->ncec_lock);
2754 if (enable)
2755 ncec->ncec_flags |= NCE_F_ISROUTER;
2756 else
2757 ncec->ncec_flags &= ~NCE_F_ISROUTER;
2758 mutex_exit(&ncec->ncec_lock);
2759 nce_refrele(nce);
2760 }
2761 }
2762 }

2764 /*
2765 * Intializes the context structure and returns the first ill in the list
2766 * cuurently start_list and end_list can have values:
2767 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists.

new/usr/src/uts/common/inet/ip/ip_if.c 43

2768 * IP_V4_G_HEAD Traverse IPV4 list only.
2769 * IP_V6_G_HEAD Traverse IPV6 list only.
2770 */

2772 /*
2773 * We don’t check for CONDEMNED ills here. Caller must do that if
2774 * necessary under the ill lock.
2775 */
2776 ill_t *
2777 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2778 ip_stack_t *ipst)
2779 {
2780 ill_if_t *ifp;
2781 ill_t *ill;
2782 avl_tree_t *avl_tree;

2784 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2785 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);

2787 /*
2788 * setup the lists to search
2789 */
2790 if (end_list != MAX_G_HEADS) {
2791 ctx->ctx_current_list = start_list;
2792 ctx->ctx_last_list = end_list;
2793 } else {
2794 ctx->ctx_last_list = MAX_G_HEADS - 1;
2795 ctx->ctx_current_list = 0;
2796 }

2798 while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2799 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2800 if (ifp != (ill_if_t *)
2801 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2802 avl_tree = &ifp->illif_avl_by_ppa;
2803 ill = avl_first(avl_tree);
2804 /*
2805 * ill is guaranteed to be non NULL or ifp should have
2806 * not existed.
2807 */
2808 ASSERT(ill != NULL);
2809 return (ill);
2810 }
2811 ctx->ctx_current_list++;
2812 }

2814 return (NULL);
2815 }

2817 /*
2818 * returns the next ill in the list. ill_first() must have been called
2819 * before calling ill_next() or bad things will happen.
2820 */

2822 /*
2823 * We don’t check for CONDEMNED ills here. Caller must do that if
2824 * necessary under the ill lock.
2825 */
2826 ill_t *
2827 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2828 {
2829 ill_if_t *ifp;
2830 ill_t *ill;
2831 ip_stack_t *ipst = lastill->ill_ipst;

2833 ASSERT(lastill->ill_ifptr != (ill_if_t *)

new/usr/src/uts/common/inet/ip/ip_if.c 44

2834 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2835 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2836 AVL_AFTER)) != NULL) {
2837 return (ill);
2838 }

2840 /* goto next ill_ifp in the list. */
2841 ifp = lastill->ill_ifptr->illif_next;

2843 /* make sure not at end of circular list */
2844 while (ifp ==
2845 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2846 if (++ctx->ctx_current_list > ctx->ctx_last_list)
2847 return (NULL);
2848 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2849 }

2851 return (avl_first(&ifp->illif_avl_by_ppa));
2852 }

2854 /*
2855 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2856 * The final number (PPA) must not have any leading zeros. Upon success, a
2857 * pointer to the start of the PPA is returned; otherwise NULL is returned.
2858 */
2859 static char *
2860 ill_get_ppa_ptr(char *name)
2861 {
2862 int namelen = strlen(name);
2863 int end_ndx = namelen - 1;
2864 int ppa_ndx, i;

2866 /*
2867 * Check that the first character is [a-zA-Z], and that the last
2868 * character is [0-9].
2869 */
2870 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2871 return (NULL);

2873 /*
2874 * Set ‘ppa_ndx’ to the PPA start, and check for leading zeroes.
2875 */
2876 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2877 if (!isdigit(name[ppa_ndx - 1]))
2878 break;

2880 if (name[ppa_ndx] == ’0’ && ppa_ndx < end_ndx)
2881 return (NULL);

2883 /*
2884 * Check that the intermediate characters are [a-z0-9.]
2885 */
2886 for (i = 1; i < ppa_ndx; i++) {
2887 if (!isalpha(name[i]) && !isdigit(name[i]) &&
2888 name[i] != ’.’ && name[i] != ’_’) {
2889 return (NULL);
2890 }
2891 }

2893 return (name + ppa_ndx);
2894 }

2896 /*
2897 * use avl tree to locate the ill.
2898 */
2899 static ill_t *

new/usr/src/uts/common/inet/ip/ip_if.c 45

2900 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2901 {
2902 char *ppa_ptr = NULL;
2903 int len;
2904 uint_t ppa;
2905 ill_t *ill = NULL;
2906 ill_if_t *ifp;
2907 int list;

2909 /*
2910 * get ppa ptr
2911 */
2912 if (isv6)
2913 list = IP_V6_G_HEAD;
2914 else
2915 list = IP_V4_G_HEAD;

2917 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2918 return (NULL);
2919 }

2921 len = ppa_ptr - name + 1;

2923 ppa = stoi(&ppa_ptr);

2925 ifp = IP_VX_ILL_G_LIST(list, ipst);

2927 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2928 /*
2929 * match is done on len - 1 as the name is not null
2930 * terminated it contains ppa in addition to the interface
2931 * name.
2932 */
2933 if ((ifp->illif_name_len == len) &&
2934 bcmp(ifp->illif_name, name, len - 1) == 0) {
2935 break;
2936 } else {
2937 ifp = ifp->illif_next;
2938 }
2939 }

2941 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2942 /*
2943 * Even the interface type does not exist.
2944 */
2945 return (NULL);
2946 }

2948 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2949 if (ill != NULL) {
2950 mutex_enter(&ill->ill_lock);
2951 if (ILL_CAN_LOOKUP(ill)) {
2952 ill_refhold_locked(ill);
2953 mutex_exit(&ill->ill_lock);
2954 return (ill);
2955 }
2956 mutex_exit(&ill->ill_lock);
2957 }
2958 return (NULL);
2959 }

2961 /*
2962 * comparison function for use with avl.
2963 */
2964 static int
2965 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)

new/usr/src/uts/common/inet/ip/ip_if.c 46

2966 {
2967 uint_t ppa;
2968 uint_t ill_ppa;

2970 ASSERT(ppa_ptr != NULL && ill_ptr != NULL);

2972 ppa = *((uint_t *)ppa_ptr);
2973 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2974 /*
2975 * We want the ill with the lowest ppa to be on the
2976 * top.
2977 */
2978 if (ill_ppa < ppa)
2979 return (1);
2980 if (ill_ppa > ppa)
2981 return (-1);
2982 return (0);
2983 }

2985 /*
2986 * remove an interface type from the global list.
2987 */
2988 static void
2989 ill_delete_interface_type(ill_if_t *interface)
2990 {
2991 ASSERT(interface != NULL);
2992 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);

2994 avl_destroy(&interface->illif_avl_by_ppa);
2995 if (interface->illif_ppa_arena != NULL)
2996 vmem_destroy(interface->illif_ppa_arena);

2998 remque(interface);

3000 mi_free(interface);
3001 }

3003 /*
3004 * remove ill from the global list.
3005 */
3006 static void
3007 ill_glist_delete(ill_t *ill)
3008 {
3009 ip_stack_t *ipst;
3010 phyint_t *phyi;

3012 if (ill == NULL)
3013 return;
3014 ipst = ill->ill_ipst;
3015 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);

3017 /*
3018 * If the ill was never inserted into the AVL tree
3019 * we skip the if branch.
3020 */
3021 if (ill->ill_ifptr != NULL) {
3022 /*
3023 * remove from AVL tree and free ppa number
3024 */
3025 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);

3027 if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3028 vmem_free(ill->ill_ifptr->illif_ppa_arena,
3029 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3030 }
3031 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {

new/usr/src/uts/common/inet/ip/ip_if.c 47

3032 ill_delete_interface_type(ill->ill_ifptr);
3033 }

3035 /*
3036 * Indicate ill is no longer in the list.
3037 */
3038 ill->ill_ifptr = NULL;
3039 ill->ill_name_length = 0;
3040 ill->ill_name[0] = ’\0’;
3041 ill->ill_ppa = UINT_MAX;
3042 }

3044 /* Generate one last event for this ill. */
3045 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3046 ill->ill_name_length);

3048 ASSERT(ill->ill_phyint != NULL);
3049 phyi = ill->ill_phyint;
3050 ill->ill_phyint = NULL;

3052 /*
3053 * ill_init allocates a phyint always to store the copy
3054 * of flags relevant to phyint. At that point in time, we could
3055 * not assign the name and hence phyint_illv4/v6 could not be
3056 * initialized. Later in ipif_set_values, we assign the name to
3057 * the ill, at which point in time we assign phyint_illv4/v6.
3058 * Thus we don’t rely on phyint_illv6 to be initialized always.
3059 */
3060 if (ill->ill_flags & ILLF_IPV6)
3061 phyi->phyint_illv6 = NULL;
3062 else
3063 phyi->phyint_illv4 = NULL;

3065 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3066 rw_exit(&ipst->ips_ill_g_lock);
3067 return;
3068 }

3070 /*
3071 * There are no ills left on this phyint; pull it out of the phyint
3072 * avl trees, and free it.
3073 */
3074 if (phyi->phyint_ifindex > 0) {
3075 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3076 phyi);
3077 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3078 phyi);
3079 }
3080 rw_exit(&ipst->ips_ill_g_lock);

3082 phyint_free(phyi);
3083 }

3085 /*
3086 * allocate a ppa, if the number of plumbed interfaces of this type are
3087 * less than ill_no_arena do a linear search to find a unused ppa.
3088 * When the number goes beyond ill_no_arena switch to using an arena.
3089 * Note: ppa value of zero cannot be allocated from vmem_arena as it
3090 * is the return value for an error condition, so allocation starts at one
3091 * and is decremented by one.
3092 */
3093 static int
3094 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3095 {
3096 ill_t *tmp_ill;
3097 uint_t start, end;

new/usr/src/uts/common/inet/ip/ip_if.c 48

3098 int ppa;

3100 if (ifp->illif_ppa_arena == NULL &&
3101 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3102 /*
3103 * Create an arena.
3104 */
3105 ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3106 (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3107 NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3108 /* allocate what has already been assigned */
3109 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3110 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3111 tmp_ill, AVL_AFTER)) {
3112 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3113 1, /* size */
3114 1, /* align/quantum */
3115 0, /* phase */
3116 0, /* nocross */
3117 /* minaddr */
3118 (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3119 /* maxaddr */
3120 (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3121 VM_NOSLEEP|VM_FIRSTFIT);
3122 if (ppa == 0) {
3123 ip1dbg(("ill_alloc_ppa: ppa allocation"
3124 " failed while switching"));
3125 vmem_destroy(ifp->illif_ppa_arena);
3126 ifp->illif_ppa_arena = NULL;
3127 break;
3128 }
3129 }
3130 }

3132 if (ifp->illif_ppa_arena != NULL) {
3133 if (ill->ill_ppa == UINT_MAX) {
3134 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3135 1, VM_NOSLEEP|VM_FIRSTFIT);
3136 if (ppa == 0)
3137 return (EAGAIN);
3138 ill->ill_ppa = --ppa;
3139 } else {
3140 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3141 1, /* size */
3142 1, /* align/quantum */
3143 0, /* phase */
3144 0, /* nocross */
3145 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3146 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3147 VM_NOSLEEP|VM_FIRSTFIT);
3148 /*
3149 * Most likely the allocation failed because
3150 * the requested ppa was in use.
3151 */
3152 if (ppa == 0)
3153 return (EEXIST);
3154 }
3155 return (0);
3156 }

3158 /*
3159 * No arena is in use and not enough (>ill_no_arena) interfaces have
3160 * been plumbed to create one. Do a linear search to get a unused ppa.
3161 */
3162 if (ill->ill_ppa == UINT_MAX) {
3163 end = UINT_MAX - 1;

new/usr/src/uts/common/inet/ip/ip_if.c 49

3164 start = 0;
3165 } else {
3166 end = start = ill->ill_ppa;
3167 }

3169 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3170 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3171 if (start++ >= end) {
3172 if (ill->ill_ppa == UINT_MAX)
3173 return (EAGAIN);
3174 else
3175 return (EEXIST);
3176 }
3177 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3178 }
3179 ill->ill_ppa = start;
3180 return (0);
3181 }

3183 /*
3184 * Insert ill into the list of configured ill’s. Once this function completes,
3185 * the ill is globally visible and is available through lookups. More precisely
3186 * this happens after the caller drops the ill_g_lock.
3187 */
3188 static int
3189 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3190 {
3191 ill_if_t *ill_interface;
3192 avl_index_t where = 0;
3193 int error;
3194 int name_length;
3195 int index;
3196 boolean_t check_length = B_FALSE;
3197 ip_stack_t *ipst = ill->ill_ipst;

3199 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));

3201 name_length = mi_strlen(name) + 1;

3203 if (isv6)
3204 index = IP_V6_G_HEAD;
3205 else
3206 index = IP_V4_G_HEAD;

3208 ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3209 /*
3210 * Search for interface type based on name
3211 */
3212 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3213 if ((ill_interface->illif_name_len == name_length) &&
3214 (strcmp(ill_interface->illif_name, name) == 0)) {
3215 break;
3216 }
3217 ill_interface = ill_interface->illif_next;
3218 }

3220 /*
3221 * Interface type not found, create one.
3222 */
3223 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3224 ill_g_head_t ghead;

3226 /*
3227 * allocate ill_if_t structure
3228 */
3229 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));

new/usr/src/uts/common/inet/ip/ip_if.c 50

3230 if (ill_interface == NULL) {
3231 return (ENOMEM);
3232 }

3234 (void) strcpy(ill_interface->illif_name, name);
3235 ill_interface->illif_name_len = name_length;

3237 avl_create(&ill_interface->illif_avl_by_ppa,
3238 ill_compare_ppa, sizeof (ill_t),
3239 offsetof(struct ill_s, ill_avl_byppa));

3241 /*
3242 * link the structure in the back to maintain order
3243 * of configuration for ifconfig output.
3244 */
3245 ghead = ipst->ips_ill_g_heads[index];
3246 insque(ill_interface, ghead.ill_g_list_tail);
3247 }

3249 if (ill->ill_ppa == UINT_MAX)
3250 check_length = B_TRUE;

3252 error = ill_alloc_ppa(ill_interface, ill);
3253 if (error != 0) {
3254 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3255 ill_delete_interface_type(ill->ill_ifptr);
3256 return (error);
3257 }

3259 /*
3260 * When the ppa is choosen by the system, check that there is
3261 * enough space to insert ppa. if a specific ppa was passed in this
3262 * check is not required as the interface name passed in will have
3263 * the right ppa in it.
3264 */
3265 if (check_length) {
3266 /*
3267 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3268 */
3269 char buf[sizeof (uint_t) * 3];

3271 /*
3272 * convert ppa to string to calculate the amount of space
3273 * required for it in the name.
3274 */
3275 numtos(ill->ill_ppa, buf);

3277 /* Do we have enough space to insert ppa ? */

3279 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3280 /* Free ppa and interface type struct */
3281 if (ill_interface->illif_ppa_arena != NULL) {
3282 vmem_free(ill_interface->illif_ppa_arena,
3283 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3284 }
3285 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3286 ill_delete_interface_type(ill->ill_ifptr);

3288 return (EINVAL);
3289 }
3290 }

3292 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3293 ill->ill_name_length = mi_strlen(ill->ill_name) + 1;

3295 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,

new/usr/src/uts/common/inet/ip/ip_if.c 51

3296 &where);
3297 ill->ill_ifptr = ill_interface;
3298 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);

3300 ill_phyint_reinit(ill);
3301 return (0);
3302 }

3304 /* Initialize the per phyint ipsq used for serialization */
3305 static boolean_t
3306 ipsq_init(ill_t *ill, boolean_t enter)
3307 {
3308 ipsq_t *ipsq;
3309 ipxop_t *ipx;

3311 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3312 return (B_FALSE);

3314 ill->ill_phyint->phyint_ipsq = ipsq;
3315 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3316 ipx->ipx_ipsq = ipsq;
3317 ipsq->ipsq_next = ipsq;
3318 ipsq->ipsq_phyint = ill->ill_phyint;
3319 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3320 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3321 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */
3322 if (enter) {
3323 ipx->ipx_writer = curthread;
3324 ipx->ipx_forced = B_FALSE;
3325 ipx->ipx_reentry_cnt = 1;
3326 #ifdef DEBUG
3327 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3328 #endif
3329 }
3330 return (B_TRUE);
3331 }

3333 /*
3334 * ill_init is called by ip_open when a device control stream is opened.
3335 * It does a few initializations, and shoots a DL_INFO_REQ message down
3336 * to the driver. The response is later picked up in ip_rput_dlpi and
3337 * used to set up default mechanisms for talking to the driver. (Always
3338 * called as writer.)
3339 *
3340 * If this function returns error, ip_open will call ip_close which in
3341 * turn will call ill_delete to clean up any memory allocated here that
3342 * is not yet freed.
3343 */
3344 int
3345 ill_init(queue_t *q, ill_t *ill)
3346 {
3347 int count;
3348 dl_info_req_t *dlir;
3349 mblk_t *info_mp;
3350 uchar_t *frag_ptr;

3352 /*
3353 * The ill is initialized to zero by mi_alloc*(). In addition
3354 * some fields already contain valid values, initialized in
3355 * ip_open(), before we reach here.
3356 */
3357 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3358 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3359 ill->ill_saved_ire_cnt = 0;

3361 ill->ill_rq = q;

new/usr/src/uts/common/inet/ip/ip_if.c 52

3362 ill->ill_wq = WR(q);

3364 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3365 BPRI_HI);
3366 if (info_mp == NULL)
3367 return (ENOMEM);

3369 /*
3370 * Allocate sufficient space to contain our fragment hash table and
3371 * the device name.
3372 */
3373 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ);
3374 if (frag_ptr == NULL) {
3375 freemsg(info_mp);
3376 return (ENOMEM);
3377 }
3378 ill->ill_frag_ptr = frag_ptr;
3379 ill->ill_frag_free_num_pkts = 0;
3380 ill->ill_last_frag_clean_time = 0;
3381 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3382 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3383 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3384 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3385 NULL, MUTEX_DEFAULT, NULL);
3386 }

3388 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3389 if (ill->ill_phyint == NULL) {
3390 freemsg(info_mp);
3391 mi_free(frag_ptr);
3392 return (ENOMEM);
3393 }

3395 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3396 /*
3397 * For now pretend this is a v4 ill. We need to set phyint_ill*
3398 * at this point because of the following reason. If we can’t
3399 * enter the ipsq at some point and cv_wait, the writer that
3400 * wakes us up tries to locate us using the list of all phyints
3401 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3402 * If we don’t set it now, we risk a missed wakeup.
3403 */
3404 ill->ill_phyint->phyint_illv4 = ill;
3405 ill->ill_ppa = UINT_MAX;
3406 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));

3408 ill_set_inputfn(ill);

3410 if (!ipsq_init(ill, B_TRUE)) {
3411 freemsg(info_mp);
3412 mi_free(frag_ptr);
3413 mi_free(ill->ill_phyint);
3414 return (ENOMEM);
3415 }

3417 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;

3419 /* Frag queue limit stuff */
3420 ill->ill_frag_count = 0;
3421 ill->ill_ipf_gen = 0;

3423 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3424 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3425 ill->ill_global_timer = INFINITY;
3426 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3427 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;

new/usr/src/uts/common/inet/ip/ip_if.c 53

3428 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3429 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;

3431 /*
3432 * Initialize IPv6 configuration variables. The IP module is always
3433 * opened as an IPv4 module. Instead tracking down the cases where
3434 * it switches to do ipv6, we’ll just initialize the IPv6 configuration
3435 * here for convenience, this has no effect until the ill is set to do
3436 * IPv6.
3437 */
3438 ill->ill_reachable_time = ND_REACHABLE_TIME;
3439 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3440 ill->ill_max_buf = ND_MAX_Q;
3441 ill->ill_refcnt = 0;

3443 /* Send down the Info Request to the driver. */
3444 info_mp->b_datap->db_type = M_PCPROTO;
3445 dlir = (dl_info_req_t *)info_mp->b_rptr;
3446 info_mp->b_wptr = (uchar_t *)&dlir[1];
3447 dlir->dl_primitive = DL_INFO_REQ;

3449 ill->ill_dlpi_pending = DL_PRIM_INVAL;

3451 qprocson(q);
3452 ill_dlpi_send(ill, info_mp);

3454 return (0);
3455 }

3457 /*
3458 * ill_dls_info
3459 * creates datalink socket info from the device.
3460 */
3461 int
3462 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3463 {
3464 size_t len;

3466 sdl->sdl_family = AF_LINK;
3467 sdl->sdl_index = ill_get_upper_ifindex(ill);
3468 sdl->sdl_type = ill->ill_type;
3469 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3470 len = strlen(sdl->sdl_data);
3471 ASSERT(len < 256);
3472 sdl->sdl_nlen = (uchar_t)len;
3473 sdl->sdl_alen = ill->ill_phys_addr_length;
3474 sdl->sdl_slen = 0;
3475 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3476 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);

3478 return (sizeof (struct sockaddr_dl));
3479 }

3481 /*
3482 * ill_xarp_info
3483 * creates xarp info from the device.
3484 */
3485 static int
3486 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3487 {
3488 sdl->sdl_family = AF_LINK;
3489 sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3490 sdl->sdl_type = ill->ill_type;
3491 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3492 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3493 sdl->sdl_alen = ill->ill_phys_addr_length;

new/usr/src/uts/common/inet/ip/ip_if.c 54

3494 sdl->sdl_slen = 0;
3495 return (sdl->sdl_nlen);
3496 }

3498 static int
3499 loopback_kstat_update(kstat_t *ksp, int rw)
3500 {
3501 kstat_named_t *kn;
3502 netstackid_t stackid;
3503 netstack_t *ns;
3504 ip_stack_t *ipst;

3506 if (ksp == NULL || ksp->ks_data == NULL)
3507 return (EIO);

3509 if (rw == KSTAT_WRITE)
3510 return (EACCES);

3512 kn = KSTAT_NAMED_PTR(ksp);
3513 stackid = (zoneid_t)(uintptr_t)ksp->ks_private;

3515 ns = netstack_find_by_stackid(stackid);
3516 if (ns == NULL)
3517 return (-1);

3519 ipst = ns->netstack_ip;
3520 if (ipst == NULL) {
3521 netstack_rele(ns);
3522 return (-1);
3523 }
3524 kn[0].value.ui32 = ipst->ips_loopback_packets;
3525 kn[1].value.ui32 = ipst->ips_loopback_packets;
3526 netstack_rele(ns);
3527 return (0);
3528 }

3530 /*
3531 * Has ifindex been plumbed already?
3532 */
3533 static boolean_t
3534 phyint_exists(uint_t index, ip_stack_t *ipst)
3535 {
3536 ASSERT(index != 0);
3537 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));

3539 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3540 &index, NULL) != NULL);
3541 }

3543 /*
3544 * Pick a unique ifindex.
3545 * When the index counter passes IF_INDEX_MAX for the first time, the wrap
3546 * flag is set so that next time time ip_assign_ifindex() is called, it
3547 * falls through and resets the index counter back to 1, the minimum value
3548 * for the interface index. The logic below assumes that ips_ill_index
3549 * can hold a value of IF_INDEX_MAX+1 without there being any loss
3550 * (i.e. reset back to 0.)
3551 */
3552 boolean_t
3553 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3554 {
3555 uint_t loops;

3557 if (!ipst->ips_ill_index_wrap) {
3558 *indexp = ipst->ips_ill_index++;
3559 if (ipst->ips_ill_index > IF_INDEX_MAX) {

new/usr/src/uts/common/inet/ip/ip_if.c 55

3560 /*
3561 * Reached the maximum ifindex value, set the wrap
3562 * flag to indicate that it is no longer possible
3563 * to assume that a given index is unallocated.
3564 */
3565 ipst->ips_ill_index_wrap = B_TRUE;
3566 }
3567 return (B_TRUE);
3568 }

3570 if (ipst->ips_ill_index > IF_INDEX_MAX)
3571 ipst->ips_ill_index = 1;

3573 /*
3574 * Start reusing unused indexes. Note that we hold the ill_g_lock
3575 * at this point and don’t want to call any function that attempts
3576 * to get the lock again.
3577 */
3578 for (loops = IF_INDEX_MAX; loops > 0; loops--) {
3579 if (!phyint_exists(ipst->ips_ill_index, ipst)) {
3580 /* found unused index - use it */
3581 *indexp = ipst->ips_ill_index;
3582 return (B_TRUE);
3583 }

3585 ipst->ips_ill_index++;
3586 if (ipst->ips_ill_index > IF_INDEX_MAX)
3587 ipst->ips_ill_index = 1;
3588 }

3590 /*
3591 * all interface indicies are inuse.
3592 */
3593 return (B_FALSE);
3594 }

3596 /*
3597 * Assign a unique interface index for the phyint.
3598 */
3599 static boolean_t
3600 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3601 {
3602 ASSERT(phyi->phyint_ifindex == 0);
3603 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3604 }

3606 /*
3607 * Initialize the flags on ‘phyi’ as per the provided mactype.
3608 */
3609 static void
3610 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3611 {
3612 uint64_t flags = 0;

3614 /*
3615 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces,
3616 * we always presume the underlying hardware is working and set
3617 * PHYI_RUNNING (if it’s not, the driver will subsequently send a
3618 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization
3619 * there are no active interfaces in the group so we set PHYI_FAILED.
3620 */
3621 if (mactype == SUNW_DL_IPMP)
3622 flags |= PHYI_FAILED;
3623 else
3624 flags |= PHYI_RUNNING;

new/usr/src/uts/common/inet/ip/ip_if.c 56

3626 switch (mactype) {
3627 case SUNW_DL_VNI:
3628 flags |= PHYI_VIRTUAL;
3629 break;
3630 case SUNW_DL_IPMP:
3631 flags |= PHYI_IPMP;
3632 break;
3633 case DL_LOOP:
3634 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3635 break;
3636 }

3638 mutex_enter(&phyi->phyint_lock);
3639 phyi->phyint_flags |= flags;
3640 mutex_exit(&phyi->phyint_lock);
3641 }

3643 /*
3644 * Return a pointer to the ill which matches the supplied name. Note that
3645 * the ill name length includes the null termination character. (May be
3646 * called as writer.)
3647 * If do_alloc and the interface is "lo0" it will be automatically created.
3648 * Cannot bump up reference on condemned ills. So dup detect can’t be done
3649 * using this func.
3650 */
3651 ill_t *
3652 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3653 boolean_t *did_alloc, ip_stack_t *ipst)
3654 {
3655 ill_t *ill;
3656 ipif_t *ipif;
3657 ipsq_t *ipsq;
3658 kstat_named_t *kn;
3659 boolean_t isloopback;
3660 in6_addr_t ov6addr;

3662 isloopback = mi_strcmp(name, ipif_loopback_name) == 0;

3664 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3665 ill = ill_find_by_name(name, isv6, ipst);
3666 rw_exit(&ipst->ips_ill_g_lock);
3667 if (ill != NULL)
3668 return (ill);

3670 /*
3671 * Couldn’t find it. Does this happen to be a lookup for the
3672 * loopback device and are we allowed to allocate it?
3673 */
3674 if (!isloopback || !do_alloc)
3675 return (NULL);

3677 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3678 ill = ill_find_by_name(name, isv6, ipst);
3679 if (ill != NULL) {
3680 rw_exit(&ipst->ips_ill_g_lock);
3681 return (ill);
3682 }

3684 /* Create the loopback device on demand */
3685 ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3686 sizeof (ipif_loopback_name), BPRI_MED));
3687 if (ill == NULL)
3688 goto done;

3690 *ill = ill_null;
3691 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);

new/usr/src/uts/common/inet/ip/ip_if.c 57

3692 ill->ill_ipst = ipst;
3693 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3694 netstack_hold(ipst->ips_netstack);
3695 /*
3696 * For exclusive stacks we set the zoneid to zero
3697 * to make IP operate as if in the global zone.
3698 */
3699 ill->ill_zoneid = GLOBAL_ZONEID;

3701 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3702 if (ill->ill_phyint == NULL)
3703 goto done;

3705 if (isv6)
3706 ill->ill_phyint->phyint_illv6 = ill;
3707 else
3708 ill->ill_phyint->phyint_illv4 = ill;
3709 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3710 phyint_flags_init(ill->ill_phyint, DL_LOOP);

3712 if (isv6) {
3713 ill->ill_isv6 = B_TRUE;
3714 ill->ill_max_frag = ip_loopback_mtu_v6plus;
3715 } else {
3716 ill->ill_max_frag = ip_loopback_mtuplus;
3717 }
3718 if (!ill_allocate_mibs(ill))
3719 goto done;
3720 ill->ill_current_frag = ill->ill_max_frag;
3721 ill->ill_mtu = ill->ill_max_frag; /* Initial value */
3722 ill->ill_mc_mtu = ill->ill_mtu;
3723 /*
3724 * ipif_loopback_name can’t be pointed at directly because its used
3725 * by both the ipv4 and ipv6 interfaces. When the ill is removed
3726 * from the glist, ill_glist_delete() sets the first character of
3727 * ill_name to ’\0’.
3728 */
3729 ill->ill_name = (char *)ill + sizeof (*ill);
3730 (void) strcpy(ill->ill_name, ipif_loopback_name);
3731 ill->ill_name_length = sizeof (ipif_loopback_name);
3732 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3733 ill->ill_dlpi_pending = DL_PRIM_INVAL;

3735 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3736 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3737 ill->ill_global_timer = INFINITY;
3738 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3739 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3740 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3741 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;

3743 /* No resolver here. */
3744 ill->ill_net_type = IRE_LOOPBACK;

3746 /* Initialize the ipsq */
3747 if (!ipsq_init(ill, B_FALSE))
3748 goto done;

3750 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3751 if (ipif == NULL)
3752 goto done;

3754 ill->ill_flags = ILLF_MULTICAST;

3756 ov6addr = ipif->ipif_v6lcl_addr;
3757 /* Set up default loopback address and mask. */

new/usr/src/uts/common/inet/ip/ip_if.c 58

3758 if (!isv6) {
3759 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);

3761 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3762 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3763 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3764 ipif->ipif_v6subnet);
3765 ill->ill_flags |= ILLF_IPV4;
3766 } else {
3767 ipif->ipif_v6lcl_addr = ipv6_loopback;
3768 ipif->ipif_v6net_mask = ipv6_all_ones;
3769 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3770 ipif->ipif_v6subnet);
3771 ill->ill_flags |= ILLF_IPV6;
3772 }

3774 /*
3775 * Chain us in at the end of the ill list. hold the ill
3776 * before we make it globally visible. 1 for the lookup.
3777 */
3778 ill->ill_refcnt = 0;
3779 ill_refhold(ill);

3781 ill->ill_frag_count = 0;
3782 ill->ill_frag_free_num_pkts = 0;
3783 ill->ill_last_frag_clean_time = 0;

3785 ipsq = ill->ill_phyint->phyint_ipsq;

3787 ill_set_inputfn(ill);

3789 if (ill_glist_insert(ill, "lo", isv6) != 0)
3790 cmn_err(CE_PANIC, "cannot insert loopback interface");

3792 /* Let SCTP know so that it can add this to its list */
3793 sctp_update_ill(ill, SCTP_ILL_INSERT);

3795 /*
3796 * We have already assigned ipif_v6lcl_addr above, but we need to
3797 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3798 * requires to be after ill_glist_insert() since we need the
3799 * ill_index set. Pass on ipv6_loopback as the old address.
3800 */
3801 sctp_update_ipif_addr(ipif, ov6addr);

3803 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);

3805 /*
3806 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3807 * If so, free our original one.
3808 */
3809 if (ipsq != ill->ill_phyint->phyint_ipsq)
3810 ipsq_delete(ipsq);

3812 if (ipst->ips_loopback_ksp == NULL) {
3813 /* Export loopback interface statistics */
3814 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3815 ipif_loopback_name, "net",
3816 KSTAT_TYPE_NAMED, 2, 0,
3817 ipst->ips_netstack->netstack_stackid);
3818 if (ipst->ips_loopback_ksp != NULL) {
3819 ipst->ips_loopback_ksp->ks_update =
3820 loopback_kstat_update;
3821 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3822 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3823 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);

new/usr/src/uts/common/inet/ip/ip_if.c 59

3824 ipst->ips_loopback_ksp->ks_private =
3825 (void *)(uintptr_t)ipst->ips_netstack->
3826 netstack_stackid;
3827 kstat_install(ipst->ips_loopback_ksp);
3828 }
3829 }

3831 *did_alloc = B_TRUE;
3832 rw_exit(&ipst->ips_ill_g_lock);
3833 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3834 NE_PLUMB, ill->ill_name, ill->ill_name_length);
3835 return (ill);
3836 done:
3837 if (ill != NULL) {
3838 if (ill->ill_phyint != NULL) {
3839 ipsq = ill->ill_phyint->phyint_ipsq;
3840 if (ipsq != NULL) {
3841 ipsq->ipsq_phyint = NULL;
3842 ipsq_delete(ipsq);
3843 }
3844 mi_free(ill->ill_phyint);
3845 }
3846 ill_free_mib(ill);
3847 if (ill->ill_ipst != NULL)
3848 netstack_rele(ill->ill_ipst->ips_netstack);
3849 mi_free(ill);
3850 }
3851 rw_exit(&ipst->ips_ill_g_lock);
3852 return (NULL);
3853 }

3855 /*
3856 * For IPP calls - use the ip_stack_t for global stack.
3857 */
3858 ill_t *
3859 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3860 {
3861 ip_stack_t *ipst;
3862 ill_t *ill;

3864 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3865 if (ipst == NULL) {
3866 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3867 return (NULL);
3868 }

3870 ill = ill_lookup_on_ifindex(index, isv6, ipst);
3871 netstack_rele(ipst->ips_netstack);
3872 return (ill);
3873 }

3875 /*
3876 * Return a pointer to the ill which matches the index and IP version type.
3877 */
3878 ill_t *
3879 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3880 {
3881 ill_t *ill;
3882 phyint_t *phyi;

3884 /*
3885 * Indexes are stored in the phyint - a common structure
3886 * to both IPv4 and IPv6.
3887 */
3888 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3889 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,

new/usr/src/uts/common/inet/ip/ip_if.c 60

3890 (void *) &index, NULL);
3891 if (phyi != NULL) {
3892 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3893 if (ill != NULL) {
3894 mutex_enter(&ill->ill_lock);
3895 if (!ILL_IS_CONDEMNED(ill)) {
3896 ill_refhold_locked(ill);
3897 mutex_exit(&ill->ill_lock);
3898 rw_exit(&ipst->ips_ill_g_lock);
3899 return (ill);
3900 }
3901 mutex_exit(&ill->ill_lock);
3902 }
3903 }
3904 rw_exit(&ipst->ips_ill_g_lock);
3905 return (NULL);
3906 }

3908 /*
3909 * Verify whether or not an interface index is valid for the specified zoneid
3910 * to transmit packets.
3911 * It can be zero (meaning "reset") or an interface index assigned
3912 * to a non-VNI interface. (We don’t use VNI interface to send packets.)
3913 */
3914 boolean_t
3915 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3916 ip_stack_t *ipst)
3917 {
3918 ill_t *ill;

3920 if (ifindex == 0)
3921 return (B_TRUE);

3923 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3924 if (ill == NULL)
3925 return (B_FALSE);
3926 if (IS_VNI(ill)) {
3927 ill_refrele(ill);
3928 return (B_FALSE);
3929 }
3930 ill_refrele(ill);
3931 return (B_TRUE);
3932 }

3934 /*
3935 * Return the ifindex next in sequence after the passed in ifindex.
3936 * If there is no next ifindex for the given protocol, return 0.
3937 */
3938 uint_t
3939 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3940 {
3941 phyint_t *phyi;
3942 phyint_t *phyi_initial;
3943 uint_t ifindex;

3945 rw_enter(&ipst->ips_ill_g_lock, RW_READER);

3947 if (index == 0) {
3948 phyi = avl_first(
3949 &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3950 } else {
3951 phyi = phyi_initial = avl_find(
3952 &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3953 (void *) &index, NULL);
3954 }

new/usr/src/uts/common/inet/ip/ip_if.c 61

3956 for (; phyi != NULL;
3957 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3958 phyi, AVL_AFTER)) {
3959 /*
3960 * If we’re not returning the first interface in the tree
3961 * and we still haven’t moved past the phyint_t that
3962 * corresponds to index, avl_walk needs to be called again
3963 */
3964 if (!((index != 0) && (phyi == phyi_initial))) {
3965 if (isv6) {
3966 if ((phyi->phyint_illv6) &&
3967 ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3968 (phyi->phyint_illv6->ill_isv6 == 1))
3969 break;
3970 } else {
3971 if ((phyi->phyint_illv4) &&
3972 ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3973 (phyi->phyint_illv4->ill_isv6 == 0))
3974 break;
3975 }
3976 }
3977 }

3979 rw_exit(&ipst->ips_ill_g_lock);

3981 if (phyi != NULL)
3982 ifindex = phyi->phyint_ifindex;
3983 else
3984 ifindex = 0;

3986 return (ifindex);
3987 }

3989 /*
3990 * Return the ifindex for the named interface.
3991 * If there is no next ifindex for the interface, return 0.
3992 */
3993 uint_t
3994 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
3995 {
3996 phyint_t *phyi;
3997 avl_index_t where = 0;
3998 uint_t ifindex;

4000 rw_enter(&ipst->ips_ill_g_lock, RW_READER);

4002 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4003 name, &where)) == NULL) {
4004 rw_exit(&ipst->ips_ill_g_lock);
4005 return (0);
4006 }

4008 ifindex = phyi->phyint_ifindex;

4010 rw_exit(&ipst->ips_ill_g_lock);

4012 return (ifindex);
4013 }

4015 /*
4016 * Return the ifindex to be used by upper layer protocols for instance
4017 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4018 */
4019 uint_t
4020 ill_get_upper_ifindex(const ill_t *ill)
4021 {

new/usr/src/uts/common/inet/ip/ip_if.c 62

4022 if (IS_UNDER_IPMP(ill))
4023 return (ipmp_ill_get_ipmp_ifindex(ill));
4024 else
4025 return (ill->ill_phyint->phyint_ifindex);
4026 }

4029 /*
4030 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4031 * that gives a running thread a reference to the ill. This reference must be
4032 * released by the thread when it is done accessing the ill and related
4033 * objects. ill_refcnt can not be used to account for static references
4034 * such as other structures pointing to an ill. Callers must generally
4035 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4036 * or be sure that the ill is not being deleted or changing state before
4037 * calling the refhold functions. A non-zero ill_refcnt ensures that the
4038 * ill won’t change any of its critical state such as address, netmask etc.
4039 */
4040 void
4041 ill_refhold(ill_t *ill)
4042 {
4043 mutex_enter(&ill->ill_lock);
4044 ill->ill_refcnt++;
4045 ILL_TRACE_REF(ill);
4046 mutex_exit(&ill->ill_lock);
4047 }

4049 void
4050 ill_refhold_locked(ill_t *ill)
4051 {
4052 ASSERT(MUTEX_HELD(&ill->ill_lock));
4053 ill->ill_refcnt++;
4054 ILL_TRACE_REF(ill);
4055 }

4057 /* Returns true if we managed to get a refhold */
4058 boolean_t
4059 ill_check_and_refhold(ill_t *ill)
4060 {
4061 mutex_enter(&ill->ill_lock);
4062 if (!ILL_IS_CONDEMNED(ill)) {
4063 ill_refhold_locked(ill);
4064 mutex_exit(&ill->ill_lock);
4065 return (B_TRUE);
4066 }
4067 mutex_exit(&ill->ill_lock);
4068 return (B_FALSE);
4069 }

4071 /*
4072 * Must not be called while holding any locks. Otherwise if this is
4073 * the last reference to be released, there is a chance of recursive mutex
4074 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4075 * to restart an ioctl.
4076 */
4077 void
4078 ill_refrele(ill_t *ill)
4079 {
4080 mutex_enter(&ill->ill_lock);
4081 ASSERT(ill->ill_refcnt != 0);
4082 ill->ill_refcnt--;
4083 ILL_UNTRACE_REF(ill);
4084 if (ill->ill_refcnt != 0) {
4085 /* Every ire pointing to the ill adds 1 to ill_refcnt */
4086 mutex_exit(&ill->ill_lock);
4087 return;

new/usr/src/uts/common/inet/ip/ip_if.c 63

4088 }

4090 /* Drops the ill_lock */
4091 ipif_ill_refrele_tail(ill);
4092 }

4094 /*
4095 * Obtain a weak reference count on the ill. This reference ensures the
4096 * ill won’t be freed, but the ill may change any of its critical state
4097 * such as netmask, address etc. Returns an error if the ill has started
4098 * closing.
4099 */
4100 boolean_t
4101 ill_waiter_inc(ill_t *ill)
4102 {
4103 mutex_enter(&ill->ill_lock);
4104 if (ill->ill_state_flags & ILL_CONDEMNED) {
4105 mutex_exit(&ill->ill_lock);
4106 return (B_FALSE);
4107 }
4108 ill->ill_waiters++;
4109 mutex_exit(&ill->ill_lock);
4110 return (B_TRUE);
4111 }

4113 void
4114 ill_waiter_dcr(ill_t *ill)
4115 {
4116 mutex_enter(&ill->ill_lock);
4117 ill->ill_waiters--;
4118 if (ill->ill_waiters == 0)
4119 cv_broadcast(&ill->ill_cv);
4120 mutex_exit(&ill->ill_lock);
4121 }

4123 /*
4124 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4125 * driver. We construct best guess defaults for lower level information that
4126 * we need. If an interface is brought up without injection of any overriding
4127 * information from outside, we have to be ready to go with these defaults.
4128 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4129 * we primarely want the dl_provider_style.
4130 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4131 * at which point we assume the other part of the information is valid.
4132 */
4133 void
4134 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4135 {
4136 uchar_t *brdcst_addr;
4137 uint_t brdcst_addr_length, phys_addr_length;
4138 t_scalar_t sap_length;
4139 dl_info_ack_t *dlia;
4140 ip_m_t *ipm;
4141 dl_qos_cl_sel1_t *sel1;
4142 int min_mtu;

4144 ASSERT(IAM_WRITER_ILL(ill));

4146 /*
4147 * Till the ill is fully up the ill is not globally visible.
4148 * So no need for a lock.
4149 */
4150 dlia = (dl_info_ack_t *)mp->b_rptr;
4151 ill->ill_mactype = dlia->dl_mac_type;

4153 ipm = ip_m_lookup(dlia->dl_mac_type);

new/usr/src/uts/common/inet/ip/ip_if.c 64

4154 if (ipm == NULL) {
4155 ipm = ip_m_lookup(DL_OTHER);
4156 ASSERT(ipm != NULL);
4157 }
4158 ill->ill_media = ipm;

4160 /*
4161 * When the new DLPI stuff is ready we’ll pull lengths
4162 * from dlia.
4163 */
4164 if (dlia->dl_version == DL_VERSION_2) {
4165 brdcst_addr_length = dlia->dl_brdcst_addr_length;
4166 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4167 brdcst_addr_length);
4168 if (brdcst_addr == NULL) {
4169 brdcst_addr_length = 0;
4170 }
4171 sap_length = dlia->dl_sap_length;
4172 phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4173 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4174 brdcst_addr_length, sap_length, phys_addr_length));
4175 } else {
4176 brdcst_addr_length = 6;
4177 brdcst_addr = ip_six_byte_all_ones;
4178 sap_length = -2;
4179 phys_addr_length = brdcst_addr_length;
4180 }

4182 ill->ill_bcast_addr_length = brdcst_addr_length;
4183 ill->ill_phys_addr_length = phys_addr_length;
4184 ill->ill_sap_length = sap_length;

4186 /*
4187 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4188 * but we must ensure a minimum IP MTU is used since other bits of
4189 * IP will fly apart otherwise.
4190 */
4191 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4192 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4193 ill->ill_current_frag = ill->ill_max_frag;
4194 ill->ill_mtu = ill->ill_max_frag;
4195 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */

4197 ill->ill_type = ipm->ip_m_type;

4199 if (!ill->ill_dlpi_style_set) {
4200 if (dlia->dl_provider_style == DL_STYLE2)
4201 ill->ill_needs_attach = 1;

4203 phyint_flags_init(ill->ill_phyint, ill->ill_mactype);

4205 /*
4206 * Allocate the first ipif on this ill. We don’t delay it
4207 * further as ioctl handling assumes at least one ipif exists.
4208 *
4209 * At this point we don’t know whether the ill is v4 or v6.
4210 * We will know this whan the SIOCSLIFNAME happens and
4211 * the correct value for ill_isv6 will be assigned in
4212 * ipif_set_values(). We need to hold the ill lock and
4213 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4214 * the wakeup.
4215 */
4216 (void) ipif_allocate(ill, 0, IRE_LOCAL,
4217 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4218 mutex_enter(&ill->ill_lock);
4219 ASSERT(ill->ill_dlpi_style_set == 0);

new/usr/src/uts/common/inet/ip/ip_if.c 65

4220 ill->ill_dlpi_style_set = 1;
4221 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4222 cv_broadcast(&ill->ill_cv);
4223 mutex_exit(&ill->ill_lock);
4224 freemsg(mp);
4225 return;
4226 }
4227 ASSERT(ill->ill_ipif != NULL);
4228 /*
4229 * We know whether it is IPv4 or IPv6 now, as this is the
4230 * second DL_INFO_ACK we are recieving in response to the
4231 * DL_INFO_REQ sent in ipif_set_values.
4232 */
4233 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4234 /*
4235 * Clear all the flags that were set based on ill_bcast_addr_length
4236 * and ill_phys_addr_length (in ipif_set_values) as these could have
4237 * changed now and we need to re-evaluate.
4238 */
4239 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4240 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);

4242 /*
4243 * Free ill_bcast_mp as things could have changed now.
4244 *
4245 * NOTE: The IPMP meta-interface is special-cased because it starts
4246 * with no underlying interfaces (and thus an unknown broadcast
4247 * address length), but we enforce that an interface is broadcast-
4248 * capable as part of allowing it to join a group.
4249 */
4250 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4251 if (ill->ill_bcast_mp != NULL)
4252 freemsg(ill->ill_bcast_mp);
4253 ill->ill_net_type = IRE_IF_NORESOLVER;

4255 ill->ill_bcast_mp = ill_dlur_gen(NULL,
4256 ill->ill_phys_addr_length,
4257 ill->ill_sap,
4258 ill->ill_sap_length);

4260 if (ill->ill_isv6)
4261 /*
4262 * Note: xresolv interfaces will eventually need NOARP
4263 * set here as well, but that will require those
4264 * external resolvers to have some knowledge of
4265 * that flag and act appropriately. Not to be changed
4266 * at present.
4267 */
4268 ill->ill_flags |= ILLF_NONUD;
4269 else
4270 ill->ill_flags |= ILLF_NOARP;

4272 if (ill->ill_mactype == SUNW_DL_VNI) {
4273 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4274 } else if (ill->ill_phys_addr_length == 0 ||
4275 ill->ill_mactype == DL_IPV4 ||
4276 ill->ill_mactype == DL_IPV6) {
4277 /*
4278 * The underying link is point-to-point, so mark the
4279 * interface as such. We can do IP multicast over
4280 * such a link since it transmits all network-layer
4281 * packets to the remote side the same way.
4282 */
4283 ill->ill_flags |= ILLF_MULTICAST;
4284 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4285 }

new/usr/src/uts/common/inet/ip/ip_if.c 66

4286 } else {
4287 ill->ill_net_type = IRE_IF_RESOLVER;
4288 if (ill->ill_bcast_mp != NULL)
4289 freemsg(ill->ill_bcast_mp);
4290 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4291 ill->ill_bcast_addr_length, ill->ill_sap,
4292 ill->ill_sap_length);
4293 /*
4294 * Later detect lack of DLPI driver multicast
4295 * capability by catching DL_ENABMULTI errors in
4296 * ip_rput_dlpi.
4297 */
4298 ill->ill_flags |= ILLF_MULTICAST;
4299 if (!ill->ill_isv6)
4300 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4301 }

4303 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4304 if (ill->ill_mactype == SUNW_DL_IPMP)
4305 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);

4307 /* By default an interface does not support any CoS marking */
4308 ill->ill_flags &= ~ILLF_COS_ENABLED;

4310 /*
4311 * If we get QoS information in DL_INFO_ACK, the device supports
4312 * some form of CoS marking, set ILLF_COS_ENABLED.
4313 */
4314 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4315 dlia->dl_qos_length);
4316 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4317 ill->ill_flags |= ILLF_COS_ENABLED;
4318 }

4320 /* Clear any previous error indication. */
4321 ill->ill_error = 0;
4322 freemsg(mp);
4323 }

4325 /*
4326 * Perform various checks to verify that an address would make sense as a
4327 * local, remote, or subnet interface address.
4328 */
4329 static boolean_t
4330 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4331 {
4332 ipaddr_t net_mask;

4334 /*
4335 * Don’t allow all zeroes, or all ones, but allow
4336 * all ones netmask.
4337 */
4338 if ((net_mask = ip_net_mask(addr)) == 0)
4339 return (B_FALSE);
4340 /* A given netmask overrides the "guess" netmask */
4341 if (subnet_mask != 0)
4342 net_mask = subnet_mask;
4343 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4344 (addr == (addr | ~net_mask)))) {
4345 return (B_FALSE);
4346 }

4348 /*
4349 * Even if the netmask is all ones, we do not allow address to be
4350 * 255.255.255.255
4351 */

new/usr/src/uts/common/inet/ip/ip_if.c 67

4352 if (addr == INADDR_BROADCAST)
4353 return (B_FALSE);

4355 if (CLASSD(addr))
4356 return (B_FALSE);

4358 return (B_TRUE);
4359 }

4361 #define V6_IPIF_LINKLOCAL(p) \
4362 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)

4364 /*
4365 * Compare two given ipifs and check if the second one is better than
4366 * the first one using the order of preference (not taking deprecated
4367 * into acount) specified in ipif_lookup_multicast().
4368 */
4369 static boolean_t
4370 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4371 {
4372 /* Check the least preferred first. */
4373 if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4374 /* If both ipifs are the same, use the first one. */
4375 if (IS_LOOPBACK(new_ipif->ipif_ill))
4376 return (B_FALSE);
4377 else
4378 return (B_TRUE);
4379 }

4381 /* For IPv6, check for link local address. */
4382 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4383 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4384 V6_IPIF_LINKLOCAL(new_ipif)) {
4385 /* The second one is equal or less preferred. */
4386 return (B_FALSE);
4387 } else {
4388 return (B_TRUE);
4389 }
4390 }

4392 /* Then check for point to point interface. */
4393 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4394 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4395 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4396 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4397 return (B_FALSE);
4398 } else {
4399 return (B_TRUE);
4400 }
4401 }

4403 /* old_ipif is a normal interface, so no need to use the new one. */
4404 return (B_FALSE);
4405 }

4407 /*
4408 * Find a mulitcast-capable ipif given an IP instance and zoneid.
4409 * The ipif must be up, and its ill must multicast-capable, not
4410 * condemned, not an underlying interface in an IPMP group, and
4411 * not a VNI interface. Order of preference:
4412 *
4413 * 1a. normal
4414 * 1b. normal, but deprecated
4415 * 2a. point to point
4416 * 2b. point to point, but deprecated
4417 * 3a. link local

new/usr/src/uts/common/inet/ip/ip_if.c 68

4418 * 3b. link local, but deprecated
4419 * 4. loopback.
4420 */
4421 static ipif_t *
4422 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4423 {
4424 ill_t *ill;
4425 ill_walk_context_t ctx;
4426 ipif_t *ipif;
4427 ipif_t *saved_ipif = NULL;
4428 ipif_t *dep_ipif = NULL;

4430 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4431 if (isv6)
4432 ill = ILL_START_WALK_V6(&ctx, ipst);
4433 else
4434 ill = ILL_START_WALK_V4(&ctx, ipst);

4436 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4437 mutex_enter(&ill->ill_lock);
4438 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4439 ILL_IS_CONDEMNED(ill) ||
4440 !(ill->ill_flags & ILLF_MULTICAST)) {
4441 mutex_exit(&ill->ill_lock);
4442 continue;
4443 }
4444 for (ipif = ill->ill_ipif; ipif != NULL;
4445 ipif = ipif->ipif_next) {
4446 if (zoneid != ipif->ipif_zoneid &&
4447 zoneid != ALL_ZONES &&
4448 ipif->ipif_zoneid != ALL_ZONES) {
4449 continue;
4450 }
4451 if (!(ipif->ipif_flags & IPIF_UP) ||
4452 IPIF_IS_CONDEMNED(ipif)) {
4453 continue;
4454 }

4456 /*
4457 * Found one candidate. If it is deprecated,
4458 * remember it in dep_ipif. If it is not deprecated,
4459 * remember it in saved_ipif.
4460 */
4461 if (ipif->ipif_flags & IPIF_DEPRECATED) {
4462 if (dep_ipif == NULL) {
4463 dep_ipif = ipif;
4464 } else if (ipif_comp_multi(dep_ipif, ipif,
4465 isv6)) {
4466 /*
4467 * If the previous dep_ipif does not
4468 * belong to the same ill, we’ve done
4469 * a ipif_refhold() on it. So we need
4470 * to release it.
4471 */
4472 if (dep_ipif->ipif_ill != ill)
4473 ipif_refrele(dep_ipif);
4474 dep_ipif = ipif;
4475 }
4476 continue;
4477 }
4478 if (saved_ipif == NULL) {
4479 saved_ipif = ipif;
4480 } else {
4481 if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4482 if (saved_ipif->ipif_ill != ill)
4483 ipif_refrele(saved_ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 69

4484 saved_ipif = ipif;
4485 }
4486 }
4487 }
4488 /*
4489 * Before going to the next ill, do a ipif_refhold() on the
4490 * saved ones.
4491 */
4492 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4493 ipif_refhold_locked(saved_ipif);
4494 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4495 ipif_refhold_locked(dep_ipif);
4496 mutex_exit(&ill->ill_lock);
4497 }
4498 rw_exit(&ipst->ips_ill_g_lock);

4500 /*
4501 * If we have only the saved_ipif, return it. But if we have both
4502 * saved_ipif and dep_ipif, check to see which one is better.
4503 */
4504 if (saved_ipif != NULL) {
4505 if (dep_ipif != NULL) {
4506 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4507 ipif_refrele(saved_ipif);
4508 return (dep_ipif);
4509 } else {
4510 ipif_refrele(dep_ipif);
4511 return (saved_ipif);
4512 }
4513 }
4514 return (saved_ipif);
4515 } else {
4516 return (dep_ipif);
4517 }
4518 }

4520 ill_t *
4521 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4522 {
4523 ipif_t *ipif;
4524 ill_t *ill;

4526 ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4527 if (ipif == NULL)
4528 return (NULL);

4530 ill = ipif->ipif_ill;
4531 ill_refhold(ill);
4532 ipif_refrele(ipif);
4533 return (ill);
4534 }

4536 /*
4537 * This function is called when an application does not specify an interface
4538 * to be used for multicast traffic (joining a group/sending data). It
4539 * calls ire_lookup_multi() to look for an interface route for the
4540 * specified multicast group. Doing this allows the administrator to add
4541 * prefix routes for multicast to indicate which interface to be used for
4542 * multicast traffic in the above scenario. The route could be for all
4543 * multicast (224.0/4), for a single multicast group (a /32 route) or
4544 * anything in between. If there is no such multicast route, we just find
4545 * any multicast capable interface and return it. The returned ipif
4546 * is refhold’ed.
4547 *
4548 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4549 * unicast table. This is used by CGTP.

new/usr/src/uts/common/inet/ip/ip_if.c 70

4550 */
4551 ill_t *
4552 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4553 boolean_t *multirtp, ipaddr_t *setsrcp)
4554 {
4555 ill_t *ill;

4557 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4558 if (ill != NULL)
4559 return (ill);

4561 return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4562 }

4564 /*
4565 * Look for an ipif with the specified interface address and destination.
4566 * The destination address is used only for matching point-to-point interfaces.
4567 */
4568 ipif_t *
4569 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4570 {
4571 ipif_t *ipif;
4572 ill_t *ill;
4573 ill_walk_context_t ctx;

4575 /*
4576 * First match all the point-to-point interfaces
4577 * before looking at non-point-to-point interfaces.
4578 * This is done to avoid returning non-point-to-point
4579 * ipif instead of unnumbered point-to-point ipif.
4580 */
4581 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4582 ill = ILL_START_WALK_V4(&ctx, ipst);
4583 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4584 mutex_enter(&ill->ill_lock);
4585 for (ipif = ill->ill_ipif; ipif != NULL;
4586 ipif = ipif->ipif_next) {
4587 /* Allow the ipif to be down */
4588 if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4589 (ipif->ipif_lcl_addr == if_addr) &&
4590 (ipif->ipif_pp_dst_addr == dst)) {
4591 if (!IPIF_IS_CONDEMNED(ipif)) {
4592 ipif_refhold_locked(ipif);
4593 mutex_exit(&ill->ill_lock);
4594 rw_exit(&ipst->ips_ill_g_lock);
4595 return (ipif);
4596 }
4597 }
4598 }
4599 mutex_exit(&ill->ill_lock);
4600 }
4601 rw_exit(&ipst->ips_ill_g_lock);

4603 /* lookup the ipif based on interface address */
4604 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4605 ASSERT(ipif == NULL || !ipif->ipif_isv6);
4606 return (ipif);
4607 }

4609 /*
4610 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4611 */
4612 static ipif_t *
4613 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4614 zoneid_t zoneid, ip_stack_t *ipst)
4615 {

new/usr/src/uts/common/inet/ip/ip_if.c 71

4616 ipif_t *ipif;
4617 ill_t *ill;
4618 boolean_t ptp = B_FALSE;
4619 ill_walk_context_t ctx;
4620 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4621 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);

4623 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4624 /*
4625 * Repeat twice, first based on local addresses and
4626 * next time for pointopoint.
4627 */
4628 repeat:
4629 ill = ILL_START_WALK_V4(&ctx, ipst);
4630 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4631 if (match_ill != NULL && ill != match_ill &&
4632 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4633 continue;
4634 }
4635 mutex_enter(&ill->ill_lock);
4636 for (ipif = ill->ill_ipif; ipif != NULL;
4637 ipif = ipif->ipif_next) {
4638 if (zoneid != ALL_ZONES &&
4639 zoneid != ipif->ipif_zoneid &&
4640 ipif->ipif_zoneid != ALL_ZONES)
4641 continue;

4643 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4644 continue;

4646 /* Allow the ipif to be down */
4647 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4648 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4649 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4650 (ipif->ipif_pp_dst_addr == addr))) {
4651 if (!IPIF_IS_CONDEMNED(ipif)) {
4652 ipif_refhold_locked(ipif);
4653 mutex_exit(&ill->ill_lock);
4654 rw_exit(&ipst->ips_ill_g_lock);
4655 return (ipif);
4656 }
4657 }
4658 }
4659 mutex_exit(&ill->ill_lock);
4660 }

4662 /* If we already did the ptp case, then we are done */
4663 if (ptp) {
4664 rw_exit(&ipst->ips_ill_g_lock);
4665 return (NULL);
4666 }
4667 ptp = B_TRUE;
4668 goto repeat;
4669 }

4671 /*
4672 * Lookup an ipif with the specified address. For point-to-point links we
4673 * look for matches on either the destination address or the local address,
4674 * but we skip the local address check if IPIF_UNNUMBERED is set. If the
4675 * ‘match_ill’ argument is non-NULL, the lookup is restricted to that ill
4676 * (or illgrp if ‘match_ill’ is in an IPMP group).
4677 */
4678 ipif_t *
4679 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4680 ip_stack_t *ipst)
4681 {

new/usr/src/uts/common/inet/ip/ip_if.c 72

4682 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4683 zoneid, ipst));
4684 }

4686 /*
4687 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4688 * except that we will only return an address if it is not marked as
4689 * IPIF_DUPLICATE
4690 */
4691 ipif_t *
4692 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4693 ip_stack_t *ipst)
4694 {
4695 return (ipif_lookup_addr_common(addr, match_ill,
4696 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4697 zoneid, ipst));
4698 }

4700 /*
4701 * Special abbreviated version of ipif_lookup_addr() that doesn’t match
4702 * ‘match_ill’ across the IPMP group. This function is only needed in some
4703 * corner-cases; almost everything should use ipif_lookup_addr().
4704 */
4705 ipif_t *
4706 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4707 {
4708 ASSERT(match_ill != NULL);
4709 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4710 ipst));
4711 }

4713 /*
4714 * Look for an ipif with the specified address. For point-point links
4715 * we look for matches on either the destination address and the local
4716 * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4717 * is set.
4718 * If the ‘match_ill’ argument is non-NULL, the lookup is restricted to that
4719 * ill (or illgrp if ‘match_ill’ is in an IPMP group).
4720 * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4721 */
4722 zoneid_t
4723 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4724 {
4725 zoneid_t zoneid;
4726 ipif_t *ipif;
4727 ill_t *ill;
4728 boolean_t ptp = B_FALSE;
4729 ill_walk_context_t ctx;

4731 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4732 /*
4733 * Repeat twice, first based on local addresses and
4734 * next time for pointopoint.
4735 */
4736 repeat:
4737 ill = ILL_START_WALK_V4(&ctx, ipst);
4738 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4739 if (match_ill != NULL && ill != match_ill &&
4740 !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4741 continue;
4742 }
4743 mutex_enter(&ill->ill_lock);
4744 for (ipif = ill->ill_ipif; ipif != NULL;
4745 ipif = ipif->ipif_next) {
4746 /* Allow the ipif to be down */
4747 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&

new/usr/src/uts/common/inet/ip/ip_if.c 73

4748 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4749 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4750 (ipif->ipif_pp_dst_addr == addr)) &&
4751 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4752 zoneid = ipif->ipif_zoneid;
4753 mutex_exit(&ill->ill_lock);
4754 rw_exit(&ipst->ips_ill_g_lock);
4755 /*
4756 * If ipif_zoneid was ALL_ZONES then we have
4757 * a trusted extensions shared IP address.
4758 * In that case GLOBAL_ZONEID works to send.
4759 */
4760 if (zoneid == ALL_ZONES)
4761 zoneid = GLOBAL_ZONEID;
4762 return (zoneid);
4763 }
4764 }
4765 mutex_exit(&ill->ill_lock);
4766 }

4768 /* If we already did the ptp case, then we are done */
4769 if (ptp) {
4770 rw_exit(&ipst->ips_ill_g_lock);
4771 return (ALL_ZONES);
4772 }
4773 ptp = B_TRUE;
4774 goto repeat;
4775 }

4777 /*
4778 * Look for an ipif that matches the specified remote address i.e. the
4779 * ipif that would receive the specified packet.
4780 * First look for directly connected interfaces and then do a recursive
4781 * IRE lookup and pick the first ipif corresponding to the source address in the
4782 * ire.
4783 * Returns: held ipif
4784 *
4785 * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4786 */
4787 ipif_t *
4788 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4789 {
4790 ipif_t *ipif;

4792 ASSERT(!ill->ill_isv6);

4794 /*
4795 * Someone could be changing this ipif currently or change it
4796 * after we return this. Thus a few packets could use the old
4797 * old values. However structure updates/creates (ire, ilg, ilm etc)
4798 * will atomically be updated or cleaned up with the new value
4799 * Thus we don’t need a lock to check the flags or other attrs below.
4800 */
4801 mutex_enter(&ill->ill_lock);
4802 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4803 if (IPIF_IS_CONDEMNED(ipif))
4804 continue;
4805 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4806 ipif->ipif_zoneid != ALL_ZONES)
4807 continue;
4808 /* Allow the ipif to be down */
4809 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4810 if ((ipif->ipif_pp_dst_addr == addr) ||
4811 (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4812 ipif->ipif_lcl_addr == addr)) {
4813 ipif_refhold_locked(ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 74

4814 mutex_exit(&ill->ill_lock);
4815 return (ipif);
4816 }
4817 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4818 ipif_refhold_locked(ipif);
4819 mutex_exit(&ill->ill_lock);
4820 return (ipif);
4821 }
4822 }
4823 mutex_exit(&ill->ill_lock);
4824 /*
4825 * For a remote destination it isn’t possible to nail down a particular
4826 * ipif.
4827 */

4829 /* Pick the first interface */
4830 ipif = ipif_get_next_ipif(NULL, ill);
4831 return (ipif);
4832 }

4834 /*
4835 * This func does not prevent refcnt from increasing. But if
4836 * the caller has taken steps to that effect, then this func
4837 * can be used to determine whether the ill has become quiescent
4838 */
4839 static boolean_t
4840 ill_is_quiescent(ill_t *ill)
4841 {
4842 ipif_t *ipif;

4844 ASSERT(MUTEX_HELD(&ill->ill_lock));

4846 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4847 if (ipif->ipif_refcnt != 0)
4848 return (B_FALSE);
4849 }
4850 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4851 return (B_FALSE);
4852 }
4853 return (B_TRUE);
4854 }

4856 boolean_t
4857 ill_is_freeable(ill_t *ill)
4858 {
4859 ipif_t *ipif;

4861 ASSERT(MUTEX_HELD(&ill->ill_lock));

4863 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4864 if (ipif->ipif_refcnt != 0) {
4865 return (B_FALSE);
4866 }
4867 }
4868 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4869 return (B_FALSE);
4870 }
4871 return (B_TRUE);
4872 }

4874 /*
4875 * This func does not prevent refcnt from increasing. But if
4876 * the caller has taken steps to that effect, then this func
4877 * can be used to determine whether the ipif has become quiescent
4878 */
4879 static boolean_t

new/usr/src/uts/common/inet/ip/ip_if.c 75

4880 ipif_is_quiescent(ipif_t *ipif)
4881 {
4882 ill_t *ill;

4884 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));

4886 if (ipif->ipif_refcnt != 0)
4887 return (B_FALSE);

4889 ill = ipif->ipif_ill;
4890 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4891 ill->ill_logical_down) {
4892 return (B_TRUE);
4893 }

4895 /* This is the last ipif going down or being deleted on this ill */
4896 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4897 return (B_FALSE);
4898 }

4900 return (B_TRUE);
4901 }

4903 /*
4904 * return true if the ipif can be destroyed: the ipif has to be quiescent
4905 * with zero references from ire/ilm to it.
4906 */
4907 static boolean_t
4908 ipif_is_freeable(ipif_t *ipif)
4909 {
4910 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4911 ASSERT(ipif->ipif_id != 0);
4912 return (ipif->ipif_refcnt == 0);
4913 }

4915 /*
4916 * The ipif/ill/ire has been refreled. Do the tail processing.
4917 * Determine if the ipif or ill in question has become quiescent and if so
4918 * wakeup close and/or restart any queued pending ioctl that is waiting
4919 * for the ipif_down (or ill_down)
4920 */
4921 void
4922 ipif_ill_refrele_tail(ill_t *ill)
4923 {
4924 mblk_t *mp;
4925 conn_t *connp;
4926 ipsq_t *ipsq;
4927 ipxop_t *ipx;
4928 ipif_t *ipif;
4929 dl_notify_ind_t *dlindp;

4931 ASSERT(MUTEX_HELD(&ill->ill_lock));

4933 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4934 /* ip_modclose() may be waiting */
4935 cv_broadcast(&ill->ill_cv);
4936 }

4938 ipsq = ill->ill_phyint->phyint_ipsq;
4939 mutex_enter(&ipsq->ipsq_lock);
4940 ipx = ipsq->ipsq_xop;
4941 mutex_enter(&ipx->ipx_lock);
4942 if (ipx->ipx_waitfor == 0) /* no one’s waiting; bail */
4943 goto unlock;

4945 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);

new/usr/src/uts/common/inet/ip/ip_if.c 76

4947 ipif = ipx->ipx_pending_ipif;
4948 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */
4949 goto unlock;

4951 switch (ipx->ipx_waitfor) {
4952 case IPIF_DOWN:
4953 if (!ipif_is_quiescent(ipif))
4954 goto unlock;
4955 break;
4956 case IPIF_FREE:
4957 if (!ipif_is_freeable(ipif))
4958 goto unlock;
4959 break;
4960 case ILL_DOWN:
4961 if (!ill_is_quiescent(ill))
4962 goto unlock;
4963 break;
4964 case ILL_FREE:
4965 /*
4966 * ILL_FREE is only for loopback; normal ill teardown waits
4967 * synchronously in ip_modclose() without using ipx_waitfor,
4968 * handled by the cv_broadcast() at the top of this function.
4969 */
4970 if (!ill_is_freeable(ill))
4971 goto unlock;
4972 break;
4973 default:
4974 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4975 (void *)ipsq, ipx->ipx_waitfor);
4976 }

4978 ill_refhold_locked(ill); /* for qwriter_ip() call below */
4979 mutex_exit(&ipx->ipx_lock);
4980 mp = ipsq_pending_mp_get(ipsq, &connp);
4981 mutex_exit(&ipsq->ipsq_lock);
4982 mutex_exit(&ill->ill_lock);

4984 ASSERT(mp != NULL);
4985 /*
4986 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4987 * we can only get here when the current operation decides it
4988 * it needs to quiesce via ipsq_pending_mp_add().
4989 */
4990 switch (mp->b_datap->db_type) {
4991 case M_PCPROTO:
4992 case M_PROTO:
4993 /*
4994 * For now, only DL_NOTIFY_IND messages can use this facility.
4995 */
4996 dlindp = (dl_notify_ind_t *)mp->b_rptr;
4997 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);

4999 switch (dlindp->dl_notification) {
5000 case DL_NOTE_PHYS_ADDR:
5001 qwriter_ip(ill, ill->ill_rq, mp,
5002 ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5003 return;
5004 case DL_NOTE_REPLUMB:
5005 qwriter_ip(ill, ill->ill_rq, mp,
5006 ill_replumb_tail, CUR_OP, B_TRUE);
5007 return;
5008 default:
5009 ASSERT(0);
5010 ill_refrele(ill);
5011 }

new/usr/src/uts/common/inet/ip/ip_if.c 77

5012 break;

5014 case M_ERROR:
5015 case M_HANGUP:
5016 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5017 B_TRUE);
5018 return;

5020 case M_IOCTL:
5021 case M_IOCDATA:
5022 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5023 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5024 return;

5026 default:
5027 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5028 "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5029 }
5030 return;
5031 unlock:
5032 mutex_exit(&ipsq->ipsq_lock);
5033 mutex_exit(&ipx->ipx_lock);
5034 mutex_exit(&ill->ill_lock);
5035 }

5037 #ifdef DEBUG
5038 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5039 static void
5040 th_trace_rrecord(th_trace_t *th_trace)
5041 {
5042 tr_buf_t *tr_buf;
5043 uint_t lastref;

5045 lastref = th_trace->th_trace_lastref;
5046 lastref++;
5047 if (lastref == TR_BUF_MAX)
5048 lastref = 0;
5049 th_trace->th_trace_lastref = lastref;
5050 tr_buf = &th_trace->th_trbuf[lastref];
5051 tr_buf->tr_time = ddi_get_lbolt();
5052 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5053 }

5055 static void
5056 th_trace_free(void *value)
5057 {
5058 th_trace_t *th_trace = value;

5060 ASSERT(th_trace->th_refcnt == 0);
5061 kmem_free(th_trace, sizeof (*th_trace));
5062 }

5064 /*
5065 * Find or create the per-thread hash table used to track object references.
5066 * The ipst argument is NULL if we shouldn’t allocate.
5067 *
5068 * Accesses per-thread data, so there’s no need to lock here.
5069 */
5070 static mod_hash_t *
5071 th_trace_gethash(ip_stack_t *ipst)
5072 {
5073 th_hash_t *thh;

5075 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5076 mod_hash_t *mh;
5077 char name[256];

new/usr/src/uts/common/inet/ip/ip_if.c 78

5078 size_t objsize, rshift;
5079 int retv;

5081 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5082 return (NULL);
5083 (void) snprintf(name, sizeof (name), "th_trace_%p",
5084 (void *)curthread);

5086 /*
5087 * We use mod_hash_create_extended here rather than the more
5088 * obvious mod_hash_create_ptrhash because the latter has a
5089 * hard-coded KM_SLEEP, and we’d prefer to fail rather than
5090 * block.
5091 */
5092 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5093 MAX(sizeof (ire_t), sizeof (ncec_t)));
5094 rshift = highbit(objsize);
5095 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5096 th_trace_free, mod_hash_byptr, (void *)rshift,
5097 mod_hash_ptrkey_cmp, KM_NOSLEEP);
5098 if (mh == NULL) {
5099 kmem_free(thh, sizeof (*thh));
5100 return (NULL);
5101 }
5102 thh->thh_hash = mh;
5103 thh->thh_ipst = ipst;
5104 /*
5105 * We trace ills, ipifs, ires, and nces. All of these are
5106 * per-IP-stack, so the lock on the thread list is as well.
5107 */
5108 rw_enter(&ip_thread_rwlock, RW_WRITER);
5109 list_insert_tail(&ip_thread_list, thh);
5110 rw_exit(&ip_thread_rwlock);
5111 retv = tsd_set(ip_thread_data, thh);
5112 ASSERT(retv == 0);
5113 }
5114 return (thh != NULL ? thh->thh_hash : NULL);
5115 }

5117 boolean_t
5118 th_trace_ref(const void *obj, ip_stack_t *ipst)
5119 {
5120 th_trace_t *th_trace;
5121 mod_hash_t *mh;
5122 mod_hash_val_t val;

5124 if ((mh = th_trace_gethash(ipst)) == NULL)
5125 return (B_FALSE);

5127 /*
5128 * Attempt to locate the trace buffer for this obj and thread.
5129 * If it does not exist, then allocate a new trace buffer and
5130 * insert into the hash.
5131 */
5132 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5133 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5134 if (th_trace == NULL)
5135 return (B_FALSE);

5137 th_trace->th_id = curthread;
5138 if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5139 (mod_hash_val_t)th_trace) != 0) {
5140 kmem_free(th_trace, sizeof (th_trace_t));
5141 return (B_FALSE);
5142 }
5143 } else {

new/usr/src/uts/common/inet/ip/ip_if.c 79

5144 th_trace = (th_trace_t *)val;
5145 }

5147 ASSERT(th_trace->th_refcnt >= 0 &&
5148 th_trace->th_refcnt < TR_BUF_MAX - 1);

5150 th_trace->th_refcnt++;
5151 th_trace_rrecord(th_trace);
5152 return (B_TRUE);
5153 }

5155 /*
5156 * For the purpose of tracing a reference release, we assume that global
5157 * tracing is always on and that the same thread initiated the reference hold
5158 * is releasing.
5159 */
5160 void
5161 th_trace_unref(const void *obj)
5162 {
5163 int retv;
5164 mod_hash_t *mh;
5165 th_trace_t *th_trace;
5166 mod_hash_val_t val;

5168 mh = th_trace_gethash(NULL);
5169 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5170 ASSERT(retv == 0);
5171 th_trace = (th_trace_t *)val;

5173 ASSERT(th_trace->th_refcnt > 0);
5174 th_trace->th_refcnt--;
5175 th_trace_rrecord(th_trace);
5176 }

5178 /*
5179 * If tracing has been disabled, then we assume that the reference counts are
5180 * now useless, and we clear them out before destroying the entries.
5181 */
5182 void
5183 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5184 {
5185 th_hash_t *thh;
5186 mod_hash_t *mh;
5187 mod_hash_val_t val;
5188 th_trace_t *th_trace;
5189 int retv;

5191 rw_enter(&ip_thread_rwlock, RW_READER);
5192 for (thh = list_head(&ip_thread_list); thh != NULL;
5193 thh = list_next(&ip_thread_list, thh)) {
5194 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5195 &val) == 0) {
5196 th_trace = (th_trace_t *)val;
5197 if (trace_disable)
5198 th_trace->th_refcnt = 0;
5199 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5200 ASSERT(retv == 0);
5201 }
5202 }
5203 rw_exit(&ip_thread_rwlock);
5204 }

5206 void
5207 ipif_trace_ref(ipif_t *ipif)
5208 {
5209 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));

new/usr/src/uts/common/inet/ip/ip_if.c 80

5211 if (ipif->ipif_trace_disable)
5212 return;

5214 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5215 ipif->ipif_trace_disable = B_TRUE;
5216 ipif_trace_cleanup(ipif);
5217 }
5218 }

5220 void
5221 ipif_untrace_ref(ipif_t *ipif)
5222 {
5223 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));

5225 if (!ipif->ipif_trace_disable)
5226 th_trace_unref(ipif);
5227 }

5229 void
5230 ill_trace_ref(ill_t *ill)
5231 {
5232 ASSERT(MUTEX_HELD(&ill->ill_lock));

5234 if (ill->ill_trace_disable)
5235 return;

5237 if (!th_trace_ref(ill, ill->ill_ipst)) {
5238 ill->ill_trace_disable = B_TRUE;
5239 ill_trace_cleanup(ill);
5240 }
5241 }

5243 void
5244 ill_untrace_ref(ill_t *ill)
5245 {
5246 ASSERT(MUTEX_HELD(&ill->ill_lock));

5248 if (!ill->ill_trace_disable)
5249 th_trace_unref(ill);
5250 }

5252 /*
5253 * Called when ipif is unplumbed or when memory alloc fails. Note that on
5254 * failure, ipif_trace_disable is set.
5255 */
5256 static void
5257 ipif_trace_cleanup(const ipif_t *ipif)
5258 {
5259 th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5260 }

5262 /*
5263 * Called when ill is unplumbed or when memory alloc fails. Note that on
5264 * failure, ill_trace_disable is set.
5265 */
5266 static void
5267 ill_trace_cleanup(const ill_t *ill)
5268 {
5269 th_trace_cleanup(ill, ill->ill_trace_disable);
5270 }
5271 #endif /* DEBUG */

5273 void
5274 ipif_refhold_locked(ipif_t *ipif)
5275 {

new/usr/src/uts/common/inet/ip/ip_if.c 81

5276 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5277 ipif->ipif_refcnt++;
5278 IPIF_TRACE_REF(ipif);
5279 }

5281 void
5282 ipif_refhold(ipif_t *ipif)
5283 {
5284 ill_t *ill;

5286 ill = ipif->ipif_ill;
5287 mutex_enter(&ill->ill_lock);
5288 ipif->ipif_refcnt++;
5289 IPIF_TRACE_REF(ipif);
5290 mutex_exit(&ill->ill_lock);
5291 }

5293 /*
5294 * Must not be called while holding any locks. Otherwise if this is
5295 * the last reference to be released there is a chance of recursive mutex
5296 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5297 * to restart an ioctl.
5298 */
5299 void
5300 ipif_refrele(ipif_t *ipif)
5301 {
5302 ill_t *ill;

5304 ill = ipif->ipif_ill;

5306 mutex_enter(&ill->ill_lock);
5307 ASSERT(ipif->ipif_refcnt != 0);
5308 ipif->ipif_refcnt--;
5309 IPIF_UNTRACE_REF(ipif);
5310 if (ipif->ipif_refcnt != 0) {
5311 mutex_exit(&ill->ill_lock);
5312 return;
5313 }

5315 /* Drops the ill_lock */
5316 ipif_ill_refrele_tail(ill);
5317 }

5319 ipif_t *
5320 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5321 {
5322 ipif_t *ipif;

5324 mutex_enter(&ill->ill_lock);
5325 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5326 ipif != NULL; ipif = ipif->ipif_next) {
5327 if (IPIF_IS_CONDEMNED(ipif))
5328 continue;
5329 ipif_refhold_locked(ipif);
5330 mutex_exit(&ill->ill_lock);
5331 return (ipif);
5332 }
5333 mutex_exit(&ill->ill_lock);
5334 return (NULL);
5335 }

5337 /*
5338 * TODO: make this table extendible at run time
5339 * Return a pointer to the mac type info for ’mac_type’
5340 */
5341 static ip_m_t *

new/usr/src/uts/common/inet/ip/ip_if.c 82

5342 ip_m_lookup(t_uscalar_t mac_type)
5343 {
5344 ip_m_t *ipm;

5346 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5347 if (ipm->ip_m_mac_type == mac_type)
5348 return (ipm);
5349 return (NULL);
5350 }

5352 /*
5353 * Make a link layer address from the multicast IP address *addr.
5354 * To form the link layer address, invoke the ip_m_v*mapping function
5355 * associated with the link-layer type.
5356 */
5357 void
5358 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5359 {
5360 ip_m_t *ipm;

5362 if (ill->ill_net_type == IRE_IF_NORESOLVER)
5363 return;

5365 ASSERT(addr != NULL);

5367 ipm = ip_m_lookup(ill->ill_mactype);
5368 if (ipm == NULL ||
5369 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5370 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5371 ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5372 ill->ill_name, ill->ill_mactype));
5373 return;
5374 }
5375 if (ill->ill_isv6)
5376 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5377 else
5378 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5379 }

5381 /*
5382 * Returns B_FALSE if the IPv4 netmask pointed by ‘mask’ is non-contiguous.
5383 * Otherwise returns B_TRUE.
5384 *
5385 * The netmask can be verified to be contiguous with 32 shifts and or
5386 * operations. Take the contiguous mask (in host byte order) and compute
5387 * mask | mask << 1 | mask << 2 | ... | mask << 31
5388 * the result will be the same as the ’mask’ for contiguous mask.
5389 */
5390 static boolean_t
5391 ip_contiguous_mask(uint32_t mask)
5392 {
5393 uint32_t m = mask;
5394 int i;

5396 for (i = 1; i < 32; i++)
5397 m |= (mask << i);

5399 return (m == mask);
5400 }

5402 /*
5403 * ip_rt_add is called to add an IPv4 route to the forwarding table.
5404 * ill is passed in to associate it with the correct interface.
5405 * If ire_arg is set, then we return the held IRE in that location.
5406 */
5407 int

new/usr/src/uts/common/inet/ip/ip_if.c 83

5408 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5409 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5410 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5411 {
5412 ire_t *ire, *nire;
5413 ire_t *gw_ire = NULL;
5414 ipif_t *ipif = NULL;
5415 uint_t type;
5416 int match_flags = MATCH_IRE_TYPE;
5417 tsol_gc_t *gc = NULL;
5418 tsol_gcgrp_t *gcgrp = NULL;
5419 boolean_t gcgrp_xtraref = B_FALSE;
5420 boolean_t cgtp_broadcast;
5421 boolean_t unbound = B_FALSE;

5423 ip1dbg(("ip_rt_add:"));

5425 if (ire_arg != NULL)
5426 *ire_arg = NULL;

5428 /* disallow non-contiguous netmasks */
5429 if (!ip_contiguous_mask(ntohl(mask)))
5430 return (ENOTSUP);

5432 /*
5433 * If this is the case of RTF_HOST being set, then we set the netmask
5434 * to all ones (regardless if one was supplied).
5435 */
5436 if (flags & RTF_HOST)
5437 mask = IP_HOST_MASK;

5439 /*
5440 * Prevent routes with a zero gateway from being created (since
5441 * interfaces can currently be plumbed and brought up no assigned
5442 * address).
5443 */
5444 if (gw_addr == 0)
5445 return (ENETUNREACH);
5446 /*
5447 * Get the ipif, if any, corresponding to the gw_addr
5448 * If -ifp was specified we restrict ourselves to the ill, otherwise
5449 * we match on the gatway and destination to handle unnumbered pt-pt
5450 * interfaces.
5451 */
5452 if (ill != NULL)
5453 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5454 else
5455 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5456 if (ipif != NULL) {
5457 if (IS_VNI(ipif->ipif_ill)) {
5458 ipif_refrele(ipif);
5459 return (EINVAL);
5460 }
5461 }

5463 /*
5464 * GateD will attempt to create routes with a loopback interface
5465 * address as the gateway and with RTF_GATEWAY set. We allow
5466 * these routes to be added, but create them as interface routes
5467 * since the gateway is an interface address.
5468 */
5469 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5470 flags &= ~RTF_GATEWAY;
5471 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5472 mask == IP_HOST_MASK) {
5473 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,

new/usr/src/uts/common/inet/ip/ip_if.c 84

5474 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5475 NULL);
5476 if (ire != NULL) {
5477 ire_refrele(ire);
5478 ipif_refrele(ipif);
5479 return (EEXIST);
5480 }
5481 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5482 "for 0x%x\n", (void *)ipif,
5483 ipif->ipif_ire_type,
5484 ntohl(ipif->ipif_lcl_addr)));
5485 ire = ire_create(
5486 (uchar_t *)&dst_addr, /* dest address */
5487 (uchar_t *)&mask, /* mask */
5488 NULL, /* no gateway */
5489 ipif->ipif_ire_type, /* LOOPBACK */
5490 ipif->ipif_ill,
5491 zoneid,
5492 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5493 NULL,
5494 ipst);

5496 if (ire == NULL) {
5497 ipif_refrele(ipif);
5498 return (ENOMEM);
5499 }
5500 /* src address assigned by the caller? */
5501 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5502 ire->ire_setsrc_addr = src_addr;

5504 nire = ire_add(ire);
5505 if (nire == NULL) {
5506 /*
5507 * In the result of failure, ire_add() will have
5508 * already deleted the ire in question, so there
5509 * is no need to do that here.
5510 */
5511 ipif_refrele(ipif);
5512 return (ENOMEM);
5513 }
5514 /*
5515 * Check if it was a duplicate entry. This handles
5516 * the case of two racing route adds for the same route
5517 */
5518 if (nire != ire) {
5519 ASSERT(nire->ire_identical_ref > 1);
5520 ire_delete(nire);
5521 ire_refrele(nire);
5522 ipif_refrele(ipif);
5523 return (EEXIST);
5524 }
5525 ire = nire;
5526 goto save_ire;
5527 }
5528 }

5530 /*
5531 * The routes for multicast with CGTP are quite special in that
5532 * the gateway is the local interface address, yet RTF_GATEWAY
5533 * is set. We turn off RTF_GATEWAY to provide compatibility with
5534 * this undocumented and unusual use of multicast routes.
5535 */
5536 if ((flags & RTF_MULTIRT) && ipif != NULL)
5537 flags &= ~RTF_GATEWAY;

5539 /*

new/usr/src/uts/common/inet/ip/ip_if.c 85

5540 * Traditionally, interface routes are ones where RTF_GATEWAY isn’t set
5541 * and the gateway address provided is one of the system’s interface
5542 * addresses. By using the routing socket interface and supplying an
5543 * RTA_IFP sockaddr with an interface index, an alternate method of
5544 * specifying an interface route to be created is available which uses
5545 * the interface index that specifies the outgoing interface rather than
5546 * the address of an outgoing interface (which may not be able to
5547 * uniquely identify an interface). When coupled with the RTF_GATEWAY
5548 * flag, routes can be specified which not only specify the next-hop to
5549 * be used when routing to a certain prefix, but also which outgoing
5550 * interface should be used.
5551 *
5552 * Previously, interfaces would have unique addresses assigned to them
5553 * and so the address assigned to a particular interface could be used
5554 * to identify a particular interface. One exception to this was the
5555 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5556 *
5557 * With the advent of IPv6 and its link-local addresses, this
5558 * restriction was relaxed and interfaces could share addresses between
5559 * themselves. In fact, typically all of the link-local interfaces on
5560 * an IPv6 node or router will have the same link-local address. In
5561 * order to differentiate between these interfaces, the use of an
5562 * interface index is necessary and this index can be carried inside a
5563 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction
5564 * of using the interface index, however, is that all of the ipif’s that
5565 * are part of an ill have the same index and so the RTA_IFP sockaddr
5566 * cannot be used to differentiate between ipif’s (or logical
5567 * interfaces) that belong to the same ill (physical interface).
5568 *
5569 * For example, in the following case involving IPv4 interfaces and
5570 * logical interfaces
5571 *
5572 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0
5573 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0
5574 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0
5575 *
5576 * the ipif’s corresponding to each of these interface routes can be
5577 * uniquely identified by the "gateway" (actually interface address).
5578 *
5579 * In this case involving multiple IPv6 default routes to a particular
5580 * link-local gateway, the use of RTA_IFP is necessary to specify which
5581 * default route is of interest:
5582 *
5583 * default fe80::123:4567:89ab:cdef U if0
5584 * default fe80::123:4567:89ab:cdef U if1
5585 */

5587 /* RTF_GATEWAY not set */
5588 if (!(flags & RTF_GATEWAY)) {
5589 if (sp != NULL) {
5590 ip2dbg(("ip_rt_add: gateway security attributes "
5591 "cannot be set with interface route\n"));
5592 if (ipif != NULL)
5593 ipif_refrele(ipif);
5594 return (EINVAL);
5595 }

5597 /*
5598 * Whether or not ill (RTA_IFP) is set, we require that
5599 * the gateway is one of our local addresses.
5600 */
5601 if (ipif == NULL)
5602 return (ENETUNREACH);

5604 /*
5605 * We use MATCH_IRE_ILL here. If the caller specified an

new/usr/src/uts/common/inet/ip/ip_if.c 86

5606 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5607 * we use the ill derived from the gateway address.
5608 * We can always match the gateway address since we record it
5609 * in ire_gateway_addr.
5610 * We don’t allow RTA_IFP to specify a different ill than the
5611 * one matching the ipif to make sure we can delete the route.
5612 */
5613 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5614 if (ill == NULL) {
5615 ill = ipif->ipif_ill;
5616 } else if (ill != ipif->ipif_ill) {
5617 ipif_refrele(ipif);
5618 return (EINVAL);
5619 }

5621 /*
5622 * We check for an existing entry at this point.
5623 *
5624 * Since a netmask isn’t passed in via the ioctl interface
5625 * (SIOCADDRT), we don’t check for a matching netmask in that
5626 * case.
5627 */
5628 if (!ioctl_msg)
5629 match_flags |= MATCH_IRE_MASK;
5630 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5631 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5632 NULL);
5633 if (ire != NULL) {
5634 ire_refrele(ire);
5635 ipif_refrele(ipif);
5636 return (EEXIST);
5637 }

5639 /*
5640 * Some software (for example, GateD and Sun Cluster) attempts
5641 * to create (what amount to) IRE_PREFIX routes with the
5642 * loopback address as the gateway. This is primarily done to
5643 * set up prefixes with the RTF_REJECT flag set (for example,
5644 * when generating aggregate routes.)
5645 *
5646 * If the IRE type (as defined by ill->ill_net_type) would be
5647 * IRE_LOOPBACK, then we map the request into a
5648 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5649 * these interface routes, by definition, can only be that.
5650 *
5651 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5652 * routine, but rather using ire_create() directly.
5653 *
5654 */
5655 type = ill->ill_net_type;
5656 if (type == IRE_LOOPBACK) {
5657 type = IRE_IF_NORESOLVER;
5658 flags |= RTF_BLACKHOLE;
5659 }

5661 /*
5662 * Create a copy of the IRE_IF_NORESOLVER or
5663 * IRE_IF_RESOLVER with the modified address, netmask, and
5664 * gateway.
5665 */
5666 ire = ire_create(
5667 (uchar_t *)&dst_addr,
5668 (uint8_t *)&mask,
5669 (uint8_t *)&gw_addr,
5670 type,
5671 ill,

new/usr/src/uts/common/inet/ip/ip_if.c 87

5672 zoneid,
5673 flags,
5674 NULL,
5675 ipst);
5676 if (ire == NULL) {
5677 ipif_refrele(ipif);
5678 return (ENOMEM);
5679 }

5681 /* src address assigned by the caller? */
5682 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5683 ire->ire_setsrc_addr = src_addr;

5685 nire = ire_add(ire);
5686 if (nire == NULL) {
5687 /*
5688 * In the result of failure, ire_add() will have
5689 * already deleted the ire in question, so there
5690 * is no need to do that here.
5691 */
5692 ipif_refrele(ipif);
5693 return (ENOMEM);
5694 }
5695 /*
5696 * Check if it was a duplicate entry. This handles
5697 * the case of two racing route adds for the same route
5698 */
5699 if (nire != ire) {
5700 ire_delete(nire);
5701 ire_refrele(nire);
5702 ipif_refrele(ipif);
5703 return (EEXIST);
5704 }
5705 ire = nire;
5706 goto save_ire;
5707 }

5709 /*
5710 * Get an interface IRE for the specified gateway.
5711 * If we don’t have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5712 * gateway, it is currently unreachable and we fail the request
5713 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5714 * is an IRE_LOCAL or IRE_LOOPBACK.
5715 * If RTA_IFP was specified we look on that particular ill.
5716 */
5717 if (ill != NULL)
5718 match_flags |= MATCH_IRE_ILL;

5720 /* Check whether the gateway is reachable. */
5721 again:
5722 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5723 if (flags & RTF_INDIRECT)
5724 type |= IRE_OFFLINK;

5726 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5727 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5728 if (gw_ire == NULL) {
5729 /*
5730 * With IPMP, we allow host routes to influence in.mpathd’s
5731 * target selection. However, if the test addresses are on
5732 * their own network, the above lookup will fail since the
5733 * underlying IRE_INTERFACEs are marked hidden. So allow
5734 * hidden test IREs to be found and try again.
5735 */
5736 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) {
5737 match_flags |= MATCH_IRE_TESTHIDDEN;

new/usr/src/uts/common/inet/ip/ip_if.c 88

5738 goto again;
5739 }
5740 if (ipif != NULL)
5741 ipif_refrele(ipif);
5742 return (ENETUNREACH);
5743 }
5744 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5745 ire_refrele(gw_ire);
5746 if (ipif != NULL)
5747 ipif_refrele(ipif);
5748 return (ENETUNREACH);
5749 }

5751 if (ill == NULL && !(flags & RTF_INDIRECT)) {
5752 unbound = B_TRUE;
5753 if (ipst->ips_ip_strict_src_multihoming > 0)
5754 ill = gw_ire->ire_ill;
5755 }

5757 /*
5758 * We create one of three types of IREs as a result of this request
5759 * based on the netmask. A netmask of all ones (which is automatically
5760 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5761 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5762 * created. Otherwise, an IRE_PREFIX route is created for the
5763 * destination prefix.
5764 */
5765 if (mask == IP_HOST_MASK)
5766 type = IRE_HOST;
5767 else if (mask == 0)
5768 type = IRE_DEFAULT;
5769 else
5770 type = IRE_PREFIX;

5772 /* check for a duplicate entry */
5773 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5774 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5775 0, ipst, NULL);
5776 if (ire != NULL) {
5777 if (ipif != NULL)
5778 ipif_refrele(ipif);
5779 ire_refrele(gw_ire);
5780 ire_refrele(ire);
5781 return (EEXIST);
5782 }

5784 /* Security attribute exists */
5785 if (sp != NULL) {
5786 tsol_gcgrp_addr_t ga;

5788 /* find or create the gateway credentials group */
5789 ga.ga_af = AF_INET;
5790 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);

5792 /* we hold reference to it upon success */
5793 gcgrp = gcgrp_lookup(&ga, B_TRUE);
5794 if (gcgrp == NULL) {
5795 if (ipif != NULL)
5796 ipif_refrele(ipif);
5797 ire_refrele(gw_ire);
5798 return (ENOMEM);
5799 }

5801 /*
5802 * Create and add the security attribute to the group; a
5803 * reference to the group is made upon allocating a new

new/usr/src/uts/common/inet/ip/ip_if.c 89

5804 * entry successfully. If it finds an already-existing
5805 * entry for the security attribute in the group, it simply
5806 * returns it and no new reference is made to the group.
5807 */
5808 gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5809 if (gc == NULL) {
5810 if (ipif != NULL)
5811 ipif_refrele(ipif);
5812 /* release reference held by gcgrp_lookup */
5813 GCGRP_REFRELE(gcgrp);
5814 ire_refrele(gw_ire);
5815 return (ENOMEM);
5816 }
5817 }

5819 /* Create the IRE. */
5820 ire = ire_create(
5821 (uchar_t *)&dst_addr, /* dest address */
5822 (uchar_t *)&mask, /* mask */
5823 (uchar_t *)&gw_addr, /* gateway address */
5824 (ushort_t)type, /* IRE type */
5825 ill,
5826 zoneid,
5827 flags,
5828 gc, /* security attribute */
5829 ipst);

5831 /*
5832 * The ire holds a reference to the ’gc’ and the ’gc’ holds a
5833 * reference to the ’gcgrp’. We can now release the extra reference
5834 * the ’gcgrp’ acquired in the gcgrp_lookup, if it was not used.
5835 */
5836 if (gcgrp_xtraref)
5837 GCGRP_REFRELE(gcgrp);
5838 if (ire == NULL) {
5839 if (gc != NULL)
5840 GC_REFRELE(gc);
5841 if (ipif != NULL)
5842 ipif_refrele(ipif);
5843 ire_refrele(gw_ire);
5844 return (ENOMEM);
5845 }

5847 /* Before we add, check if an extra CGTP broadcast is needed */
5848 cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5849 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);

5851 /* src address assigned by the caller? */
5852 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5853 ire->ire_setsrc_addr = src_addr;

5855 ire->ire_unbound = unbound;

5857 /*
5858 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5859 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5860 */

5862 /* Add the new IRE. */
5863 nire = ire_add(ire);
5864 if (nire == NULL) {
5865 /*
5866 * In the result of failure, ire_add() will have
5867 * already deleted the ire in question, so there
5868 * is no need to do that here.
5869 */

new/usr/src/uts/common/inet/ip/ip_if.c 90

5870 if (ipif != NULL)
5871 ipif_refrele(ipif);
5872 ire_refrele(gw_ire);
5873 return (ENOMEM);
5874 }
5875 /*
5876 * Check if it was a duplicate entry. This handles
5877 * the case of two racing route adds for the same route
5878 */
5879 if (nire != ire) {
5880 ire_delete(nire);
5881 ire_refrele(nire);
5882 if (ipif != NULL)
5883 ipif_refrele(ipif);
5884 ire_refrele(gw_ire);
5885 return (EEXIST);
5886 }
5887 ire = nire;

5889 if (flags & RTF_MULTIRT) {
5890 /*
5891 * Invoke the CGTP (multirouting) filtering module
5892 * to add the dst address in the filtering database.
5893 * Replicated inbound packets coming from that address
5894 * will be filtered to discard the duplicates.
5895 * It is not necessary to call the CGTP filter hook
5896 * when the dst address is a broadcast or multicast,
5897 * because an IP source address cannot be a broadcast
5898 * or a multicast.
5899 */
5900 if (cgtp_broadcast) {
5901 ip_cgtp_bcast_add(ire, ipst);
5902 goto save_ire;
5903 }
5904 if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5905 !CLASSD(ire->ire_addr)) {
5906 int res;
5907 ipif_t *src_ipif;

5909 /* Find the source address corresponding to gw_ire */
5910 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5911 NULL, zoneid, ipst);
5912 if (src_ipif != NULL) {
5913 res = ipst->ips_ip_cgtp_filter_ops->
5914 cfo_add_dest_v4(
5915 ipst->ips_netstack->netstack_stackid,
5916 ire->ire_addr,
5917 ire->ire_gateway_addr,
5918 ire->ire_setsrc_addr,
5919 src_ipif->ipif_lcl_addr);
5920 ipif_refrele(src_ipif);
5921 } else {
5922 res = EADDRNOTAVAIL;
5923 }
5924 if (res != 0) {
5925 if (ipif != NULL)
5926 ipif_refrele(ipif);
5927 ire_refrele(gw_ire);
5928 ire_delete(ire);
5929 ire_refrele(ire); /* Held in ire_add */
5930 return (res);
5931 }
5932 }
5933 }

5935 save_ire:

new/usr/src/uts/common/inet/ip/ip_if.c 91

5936 if (gw_ire != NULL) {
5937 ire_refrele(gw_ire);
5938 gw_ire = NULL;
5939 }
5940 if (ill != NULL) {
5941 /*
5942 * Save enough information so that we can recreate the IRE if
5943 * the interface goes down and then up. The metrics associated
5944 * with the route will be saved as well when rts_setmetrics() is
5945 * called after the IRE has been created. In the case where
5946 * memory cannot be allocated, none of this information will be
5947 * saved.
5948 */
5949 ill_save_ire(ill, ire);
5950 }
5951 if (ioctl_msg)
5952 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5953 if (ire_arg != NULL) {
5954 /*
5955 * Store the ire that was successfully added into where ire_arg
5956 * points to so that callers don’t have to look it up
5957 * themselves (but they are responsible for ire_refrele()ing
5958 * the ire when they are finished with it).
5959 */
5960 *ire_arg = ire;
5961 } else {
5962 ire_refrele(ire); /* Held in ire_add */
5963 }
5964 if (ipif != NULL)
5965 ipif_refrele(ipif);
5966 return (0);
5967 }

5969 /*
5970 * ip_rt_delete is called to delete an IPv4 route.
5971 * ill is passed in to associate it with the correct interface.
5972 */
5973 /* ARGSUSED4 */
5974 int
5975 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5976 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5977 ip_stack_t *ipst, zoneid_t zoneid)
5978 {
5979 ire_t *ire = NULL;
5980 ipif_t *ipif;
5981 uint_t type;
5982 uint_t match_flags = MATCH_IRE_TYPE;
5983 int err = 0;

5985 ip1dbg(("ip_rt_delete:"));
5986 /*
5987 * If this is the case of RTF_HOST being set, then we set the netmask
5988 * to all ones. Otherwise, we use the netmask if one was supplied.
5989 */
5990 if (flags & RTF_HOST) {
5991 mask = IP_HOST_MASK;
5992 match_flags |= MATCH_IRE_MASK;
5993 } else if (rtm_addrs & RTA_NETMASK) {
5994 match_flags |= MATCH_IRE_MASK;
5995 }

5997 /*
5998 * Note that RTF_GATEWAY is never set on a delete, therefore
5999 * we check if the gateway address is one of our interfaces first,
6000 * and fall back on RTF_GATEWAY routes.
6001 *

new/usr/src/uts/common/inet/ip/ip_if.c 92

6002 * This makes it possible to delete an original
6003 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
6004 * However, we have RTF_KERNEL set on the ones created by ipif_up
6005 * and those can not be deleted here.
6006 *
6007 * We use MATCH_IRE_ILL if we know the interface. If the caller
6008 * specified an interface (from the RTA_IFP sockaddr) we use it,
6009 * otherwise we use the ill derived from the gateway address.
6010 * We can always match the gateway address since we record it
6011 * in ire_gateway_addr.
6012 *
6013 * For more detail on specifying routes by gateway address and by
6014 * interface index, see the comments in ip_rt_add().
6015 */
6016 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
6017 if (ipif != NULL) {
6018 ill_t *ill_match;

6020 if (ill != NULL)
6021 ill_match = ill;
6022 else
6023 ill_match = ipif->ipif_ill;

6025 match_flags |= MATCH_IRE_ILL;
6026 if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6027 ire = ire_ftable_lookup_v4(dst_addr, mask, 0,
6028 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
6029 match_flags, 0, ipst, NULL);
6030 }
6031 if (ire == NULL) {
6032 match_flags |= MATCH_IRE_GW;
6033 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6034 IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6035 match_flags, 0, ipst, NULL);
6036 }
6037 /* Avoid deleting routes created by kernel from an ipif */
6038 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6039 ire_refrele(ire);
6040 ire = NULL;
6041 }

6043 /* Restore in case we didn’t find a match */
6044 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6045 }

6047 if (ire == NULL) {
6048 /*
6049 * At this point, the gateway address is not one of our own
6050 * addresses or a matching interface route was not found. We
6051 * set the IRE type to lookup based on whether
6052 * this is a host route, a default route or just a prefix.
6053 *
6054 * If an ill was passed in, then the lookup is based on an
6055 * interface index so MATCH_IRE_ILL is added to match_flags.
6056 */
6057 match_flags |= MATCH_IRE_GW;
6058 if (ill != NULL)
6059 match_flags |= MATCH_IRE_ILL;
6060 if (mask == IP_HOST_MASK)
6061 type = IRE_HOST;
6062 else if (mask == 0)
6063 type = IRE_DEFAULT;
6064 else
6065 type = IRE_PREFIX;
6066 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6067 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);

new/usr/src/uts/common/inet/ip/ip_if.c 93

6068 }

6070 if (ipif != NULL) {
6071 ipif_refrele(ipif);
6072 ipif = NULL;
6073 }

6075 if (ire == NULL)
6076 return (ESRCH);

6078 if (ire->ire_flags & RTF_MULTIRT) {
6079 /*
6080 * Invoke the CGTP (multirouting) filtering module
6081 * to remove the dst address from the filtering database.
6082 * Packets coming from that address will no longer be
6083 * filtered to remove duplicates.
6084 */
6085 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6086 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6087 ipst->ips_netstack->netstack_stackid,
6088 ire->ire_addr, ire->ire_gateway_addr);
6089 }
6090 ip_cgtp_bcast_delete(ire, ipst);
6091 }

6093 ill = ire->ire_ill;
6094 if (ill != NULL)
6095 ill_remove_saved_ire(ill, ire);
6096 if (ioctl_msg)
6097 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6098 ire_delete(ire);
6099 ire_refrele(ire);
6100 return (err);
6101 }

6103 /*
6104 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6105 */
6106 /* ARGSUSED */
6107 int
6108 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6109 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6110 {
6111 ipaddr_t dst_addr;
6112 ipaddr_t gw_addr;
6113 ipaddr_t mask;
6114 int error = 0;
6115 mblk_t *mp1;
6116 struct rtentry *rt;
6117 ipif_t *ipif = NULL;
6118 ip_stack_t *ipst;

6120 ASSERT(q->q_next == NULL);
6121 ipst = CONNQ_TO_IPST(q);

6123 ip1dbg(("ip_siocaddrt:"));
6124 /* Existence of mp1 verified in ip_wput_nondata */
6125 mp1 = mp->b_cont->b_cont;
6126 rt = (struct rtentry *)mp1->b_rptr;

6128 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6129 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;

6131 /*
6132 * If the RTF_HOST flag is on, this is a request to assign a gateway
6133 * to a particular host address. In this case, we set the netmask to

new/usr/src/uts/common/inet/ip/ip_if.c 94

6134 * all ones for the particular destination address. Otherwise,
6135 * determine the netmask to be used based on dst_addr and the interfaces
6136 * in use.
6137 */
6138 if (rt->rt_flags & RTF_HOST) {
6139 mask = IP_HOST_MASK;
6140 } else {
6141 /*
6142 * Note that ip_subnet_mask returns a zero mask in the case of
6143 * default (an all-zeroes address).
6144 */
6145 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6146 }

6148 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6149 B_TRUE, NULL, ipst, ALL_ZONES);
6150 if (ipif != NULL)
6151 ipif_refrele(ipif);
6152 return (error);
6153 }

6155 /*
6156 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6157 */
6158 /* ARGSUSED */
6159 int
6160 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6161 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6162 {
6163 ipaddr_t dst_addr;
6164 ipaddr_t gw_addr;
6165 ipaddr_t mask;
6166 int error;
6167 mblk_t *mp1;
6168 struct rtentry *rt;
6169 ipif_t *ipif = NULL;
6170 ip_stack_t *ipst;

6172 ASSERT(q->q_next == NULL);
6173 ipst = CONNQ_TO_IPST(q);

6175 ip1dbg(("ip_siocdelrt:"));
6176 /* Existence of mp1 verified in ip_wput_nondata */
6177 mp1 = mp->b_cont->b_cont;
6178 rt = (struct rtentry *)mp1->b_rptr;

6180 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6181 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;

6183 /*
6184 * If the RTF_HOST flag is on, this is a request to delete a gateway
6185 * to a particular host address. In this case, we set the netmask to
6186 * all ones for the particular destination address. Otherwise,
6187 * determine the netmask to be used based on dst_addr and the interfaces
6188 * in use.
6189 */
6190 if (rt->rt_flags & RTF_HOST) {
6191 mask = IP_HOST_MASK;
6192 } else {
6193 /*
6194 * Note that ip_subnet_mask returns a zero mask in the case of
6195 * default (an all-zeroes address).
6196 */
6197 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6198 }

new/usr/src/uts/common/inet/ip/ip_if.c 95

6200 error = ip_rt_delete(dst_addr, mask, gw_addr,
6201 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6202 ipst, ALL_ZONES);
6203 if (ipif != NULL)
6204 ipif_refrele(ipif);
6205 return (error);
6206 }

6208 /*
6209 * Enqueue the mp onto the ipsq, chained by b_next.
6210 * b_prev stores the function to be executed later, and b_queue the queue
6211 * where this mp originated.
6212 */
6213 void
6214 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6215 ill_t *pending_ill)
6216 {
6217 conn_t *connp;
6218 ipxop_t *ipx = ipsq->ipsq_xop;

6220 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6221 ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6222 ASSERT(func != NULL);

6224 mp->b_queue = q;
6225 mp->b_prev = (void *)func;
6226 mp->b_next = NULL;

6228 switch (type) {
6229 case CUR_OP:
6230 if (ipx->ipx_mptail != NULL) {
6231 ASSERT(ipx->ipx_mphead != NULL);
6232 ipx->ipx_mptail->b_next = mp;
6233 } else {
6234 ASSERT(ipx->ipx_mphead == NULL);
6235 ipx->ipx_mphead = mp;
6236 }
6237 ipx->ipx_mptail = mp;
6238 break;

6240 case NEW_OP:
6241 if (ipsq->ipsq_xopq_mptail != NULL) {
6242 ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6243 ipsq->ipsq_xopq_mptail->b_next = mp;
6244 } else {
6245 ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6246 ipsq->ipsq_xopq_mphead = mp;
6247 }
6248 ipsq->ipsq_xopq_mptail = mp;
6249 ipx->ipx_ipsq_queued = B_TRUE;
6250 break;

6252 case SWITCH_OP:
6253 ASSERT(ipsq->ipsq_swxop != NULL);
6254 /* only one switch operation is currently allowed */
6255 ASSERT(ipsq->ipsq_switch_mp == NULL);
6256 ipsq->ipsq_switch_mp = mp;
6257 ipx->ipx_ipsq_queued = B_TRUE;
6258 break;
6259 default:
6260 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6261 }

6263 if (CONN_Q(q) && pending_ill != NULL) {
6264 connp = Q_TO_CONN(q);
6265 ASSERT(MUTEX_HELD(&connp->conn_lock));

new/usr/src/uts/common/inet/ip/ip_if.c 96

6266 connp->conn_oper_pending_ill = pending_ill;
6267 }
6268 }

6270 /*
6271 * Dequeue the next message that requested exclusive access to this IPSQ’s
6272 * xop. Specifically:
6273 *
6274 * 1. If we’re still processing the current operation on ‘ipsq’, then
6275 * dequeue the next message for the operation (from ipx_mphead), or
6276 * return NULL if there are no queued messages for the operation.
6277 * These messages are queued via CUR_OP to qwriter_ip() and friends.
6278 *
6279 * 2. If the current operation on ‘ipsq’ has completed (ipx_current_ipif is
6280 * not set) see if the ipsq has requested an xop switch. If so, switch
6281 * ‘ipsq’ to a different xop. Xop switches only happen when joining or
6282 * leaving IPMP groups and require a careful dance -- see the comments
6283 * in-line below for details. If we’re leaving a group xop or if we’re
6284 * joining a group xop and become writer on it, then we proceed to (3).
6285 * Otherwise, we return NULL and exit the xop.
6286 *
6287 * 3. For each IPSQ in the xop, return any switch operation stored on
6288 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6289 * any other messages queued on the IPSQ. Otherwise, dequeue the next
6290 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6291 * Note that if the phyint tied to ‘ipsq’ is not using IPMP there will
6292 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for
6293 * each phyint in the group, including the IPMP meta-interface phyint.
6294 */
6295 static mblk_t *
6296 ipsq_dq(ipsq_t *ipsq)
6297 {
6298 ill_t *illv4, *illv6;
6299 mblk_t *mp;
6300 ipsq_t *xopipsq;
6301 ipsq_t *leftipsq = NULL;
6302 ipxop_t *ipx;
6303 phyint_t *phyi = ipsq->ipsq_phyint;
6304 ip_stack_t *ipst = ipsq->ipsq_ipst;
6305 boolean_t emptied = B_FALSE;

6307 /*
6308 * Grab all the locks we need in the defined order (ill_g_lock ->
6309 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6310 */
6311 rw_enter(&ipst->ips_ill_g_lock,
6312 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6313 mutex_enter(&ipsq->ipsq_lock);
6314 ipx = ipsq->ipsq_xop;
6315 mutex_enter(&ipx->ipx_lock);

6317 /*
6318 * Dequeue the next message associated with the current exclusive
6319 * operation, if any.
6320 */
6321 if ((mp = ipx->ipx_mphead) != NULL) {
6322 ipx->ipx_mphead = mp->b_next;
6323 if (ipx->ipx_mphead == NULL)
6324 ipx->ipx_mptail = NULL;
6325 mp->b_next = (void *)ipsq;
6326 goto out;
6327 }

6329 if (ipx->ipx_current_ipif != NULL)
6330 goto empty;

new/usr/src/uts/common/inet/ip/ip_if.c 97

6332 if (ipsq->ipsq_swxop != NULL) {
6333 /*
6334 * The exclusive operation that is now being completed has
6335 * requested a switch to a different xop. This happens
6336 * when an interface joins or leaves an IPMP group. Joins
6337 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6338 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6339 * (phyint_free()), or interface plumb for an ill type
6340 * not in the IPMP group (ip_rput_dlpi_writer()).
6341 *
6342 * Xop switches are not allowed on the IPMP meta-interface.
6343 */
6344 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6345 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6346 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);

6348 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6349 /*
6350 * We’re switching back to our own xop, so we have two
6351 * xop’s to drain/exit: our own, and the group xop
6352 * that we are leaving.
6353 *
6354 * First, pull ourselves out of the group ipsq list.
6355 * This is safe since we’re writer on ill_g_lock.
6356 */
6357 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);

6359 xopipsq = ipx->ipx_ipsq;
6360 while (xopipsq->ipsq_next != ipsq)
6361 xopipsq = xopipsq->ipsq_next;

6363 xopipsq->ipsq_next = ipsq->ipsq_next;
6364 ipsq->ipsq_next = ipsq;
6365 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6366 ipsq->ipsq_swxop = NULL;

6368 /*
6369 * Second, prepare to exit the group xop. The actual
6370 * ipsq_exit() is done at the end of this function
6371 * since we cannot hold any locks across ipsq_exit().
6372 * Note that although we drop the group’s ipx_lock, no
6373 * threads can proceed since we’re still ipx_writer.
6374 */
6375 leftipsq = xopipsq;
6376 mutex_exit(&ipx->ipx_lock);

6378 /*
6379 * Third, set ipx to point to our own xop (which was
6380 * inactive and therefore can be entered).
6381 */
6382 ipx = ipsq->ipsq_xop;
6383 mutex_enter(&ipx->ipx_lock);
6384 ASSERT(ipx->ipx_writer == NULL);
6385 ASSERT(ipx->ipx_current_ipif == NULL);
6386 } else {
6387 /*
6388 * We’re switching from our own xop to a group xop.
6389 * The requestor of the switch must ensure that the
6390 * group xop cannot go away (e.g. by ensuring the
6391 * phyint associated with the xop cannot go away).
6392 *
6393 * If we can become writer on our new xop, then we’ll
6394 * do the drain. Otherwise, the current writer of our
6395 * new xop will do the drain when it exits.
6396 *
6397 * First, splice ourselves into the group IPSQ list.

new/usr/src/uts/common/inet/ip/ip_if.c 98

6398 * This is safe since we’re writer on ill_g_lock.
6399 */
6400 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);

6402 xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6403 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6404 xopipsq = xopipsq->ipsq_next;

6406 xopipsq->ipsq_next = ipsq;
6407 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6408 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6409 ipsq->ipsq_swxop = NULL;

6411 /*
6412 * Second, exit our own xop, since it’s now unused.
6413 * This is safe since we’ve got the only reference.
6414 */
6415 ASSERT(ipx->ipx_writer == curthread);
6416 ipx->ipx_writer = NULL;
6417 VERIFY(--ipx->ipx_reentry_cnt == 0);
6418 ipx->ipx_ipsq_queued = B_FALSE;
6419 mutex_exit(&ipx->ipx_lock);

6421 /*
6422 * Third, set ipx to point to our new xop, and check
6423 * if we can become writer on it. If we cannot, then
6424 * the current writer will drain the IPSQ group when
6425 * it exits. Our ipsq_xop is guaranteed to be stable
6426 * because we’re still holding ipsq_lock.
6427 */
6428 ipx = ipsq->ipsq_xop;
6429 mutex_enter(&ipx->ipx_lock);
6430 if (ipx->ipx_writer != NULL ||
6431 ipx->ipx_current_ipif != NULL) {
6432 goto out;
6433 }
6434 }

6436 /*
6437 * Fourth, become writer on our new ipx before we continue
6438 * with the drain. Note that we never dropped ipsq_lock
6439 * above, so no other thread could’ve raced with us to
6440 * become writer first. Also, we’re holding ipx_lock, so
6441 * no other thread can examine the ipx right now.
6442 */
6443 ASSERT(ipx->ipx_current_ipif == NULL);
6444 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6445 VERIFY(ipx->ipx_reentry_cnt++ == 0);
6446 ipx->ipx_writer = curthread;
6447 ipx->ipx_forced = B_FALSE;
6448 #ifdef DEBUG
6449 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6450 #endif
6451 }

6453 xopipsq = ipsq;
6454 do {
6455 /*
6456 * So that other operations operate on a consistent and
6457 * complete phyint, a switch message on an IPSQ must be
6458 * handled prior to any other operations on that IPSQ.
6459 */
6460 if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6461 xopipsq->ipsq_switch_mp = NULL;
6462 ASSERT(mp->b_next == NULL);
6463 mp->b_next = (void *)xopipsq;

new/usr/src/uts/common/inet/ip/ip_if.c 99

6464 goto out;
6465 }

6467 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6468 xopipsq->ipsq_xopq_mphead = mp->b_next;
6469 if (xopipsq->ipsq_xopq_mphead == NULL)
6470 xopipsq->ipsq_xopq_mptail = NULL;
6471 mp->b_next = (void *)xopipsq;
6472 goto out;
6473 }
6474 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6475 empty:
6476 /*
6477 * There are no messages. Further, we are holding ipx_lock, hence no
6478 * new messages can end up on any IPSQ in the xop.
6479 */
6480 ipx->ipx_writer = NULL;
6481 ipx->ipx_forced = B_FALSE;
6482 VERIFY(--ipx->ipx_reentry_cnt == 0);
6483 ipx->ipx_ipsq_queued = B_FALSE;
6484 emptied = B_TRUE;
6485 #ifdef DEBUG
6486 ipx->ipx_depth = 0;
6487 #endif
6488 out:
6489 mutex_exit(&ipx->ipx_lock);
6490 mutex_exit(&ipsq->ipsq_lock);

6492 /*
6493 * If we completely emptied the xop, then wake up any threads waiting
6494 * to enter any of the IPSQ’s associated with it.
6495 */
6496 if (emptied) {
6497 xopipsq = ipsq;
6498 do {
6499 if ((phyi = xopipsq->ipsq_phyint) == NULL)
6500 continue;

6502 illv4 = phyi->phyint_illv4;
6503 illv6 = phyi->phyint_illv6;

6505 GRAB_ILL_LOCKS(illv4, illv6);
6506 if (illv4 != NULL)
6507 cv_broadcast(&illv4->ill_cv);
6508 if (illv6 != NULL)
6509 cv_broadcast(&illv6->ill_cv);
6510 RELEASE_ILL_LOCKS(illv4, illv6);
6511 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6512 }
6513 rw_exit(&ipst->ips_ill_g_lock);

6515 /*
6516 * Now that all locks are dropped, exit the IPSQ we left.
6517 */
6518 if (leftipsq != NULL)
6519 ipsq_exit(leftipsq);

6521 return (mp);
6522 }

6524 /*
6525 * Return completion status of previously initiated DLPI operations on
6526 * ills in the purview of an ipsq.
6527 */
6528 static boolean_t
6529 ipsq_dlpi_done(ipsq_t *ipsq)

new/usr/src/uts/common/inet/ip/ip_if.c 100

6530 {
6531 ipsq_t *ipsq_start;
6532 phyint_t *phyi;
6533 ill_t *ill;

6535 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6536 ipsq_start = ipsq;

6538 do {
6539 /*
6540 * The only current users of this function are ipsq_try_enter
6541 * and ipsq_enter which have made sure that ipsq_writer is
6542 * NULL before we reach here. ill_dlpi_pending is modified
6543 * only by an ipsq writer
6544 */
6545 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6546 phyi = ipsq->ipsq_phyint;
6547 /*
6548 * phyi could be NULL if a phyint that is part of an
6549 * IPMP group is being unplumbed. A more detailed
6550 * comment is in ipmp_grp_update_kstats()
6551 */
6552 if (phyi != NULL) {
6553 ill = phyi->phyint_illv4;
6554 if (ill != NULL &&
6555 (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6556 ill->ill_arl_dlpi_pending))
6557 return (B_FALSE);

6559 ill = phyi->phyint_illv6;
6560 if (ill != NULL &&
6561 ill->ill_dlpi_pending != DL_PRIM_INVAL)
6562 return (B_FALSE);
6563 }

6565 } while ((ipsq = ipsq->ipsq_next) != ipsq_start);

6567 return (B_TRUE);
6568 }

6570 /*
6571 * Enter the ipsq corresponding to ill, by waiting synchronously till
6572 * we can enter the ipsq exclusively. Unless ’force’ is used, the ipsq
6573 * will have to drain completely before ipsq_enter returns success.
6574 * ipx_current_ipif will be set if some exclusive op is in progress,
6575 * and the ipsq_exit logic will start the next enqueued op after
6576 * completion of the current op. If ’force’ is used, we don’t wait
6577 * for the enqueued ops. This is needed when a conn_close wants to
6578 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6579 * of an ill can also use this option. But we dont’ use it currently.
6580 */
6581 #define ENTER_SQ_WAIT_TICKS 100
6582 boolean_t
6583 ipsq_enter(ill_t *ill, boolean_t force, int type)
6584 {
6585 ipsq_t *ipsq;
6586 ipxop_t *ipx;
6587 boolean_t waited_enough = B_FALSE;
6588 ip_stack_t *ipst = ill->ill_ipst;

6590 /*
6591 * Note that the relationship between ill and ipsq is fixed as long as
6592 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the
6593 * relationship between the IPSQ and xop cannot change. However,
6594 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6595 * while we’re waiting. We wait on ill_cv and rely on ipsq_exit()

new/usr/src/uts/common/inet/ip/ip_if.c 101

6596 * waking up all ills in the xop when it becomes available.
6597 */
6598 for (;;) {
6599 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6600 mutex_enter(&ill->ill_lock);
6601 if (ill->ill_state_flags & ILL_CONDEMNED) {
6602 mutex_exit(&ill->ill_lock);
6603 rw_exit(&ipst->ips_ill_g_lock);
6604 return (B_FALSE);
6605 }

6607 ipsq = ill->ill_phyint->phyint_ipsq;
6608 mutex_enter(&ipsq->ipsq_lock);
6609 ipx = ipsq->ipsq_xop;
6610 mutex_enter(&ipx->ipx_lock);

6612 if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6613 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6614 waited_enough))
6615 break;

6617 rw_exit(&ipst->ips_ill_g_lock);

6619 if (!force || ipx->ipx_writer != NULL) {
6620 mutex_exit(&ipx->ipx_lock);
6621 mutex_exit(&ipsq->ipsq_lock);
6622 cv_wait(&ill->ill_cv, &ill->ill_lock);
6623 } else {
6624 mutex_exit(&ipx->ipx_lock);
6625 mutex_exit(&ipsq->ipsq_lock);
6626 (void) cv_reltimedwait(&ill->ill_cv,
6627 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6628 waited_enough = B_TRUE;
6629 }
6630 mutex_exit(&ill->ill_lock);
6631 }

6633 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6634 ASSERT(ipx->ipx_reentry_cnt == 0);
6635 ipx->ipx_writer = curthread;
6636 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6637 ipx->ipx_reentry_cnt++;
6638 #ifdef DEBUG
6639 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6640 #endif
6641 mutex_exit(&ipx->ipx_lock);
6642 mutex_exit(&ipsq->ipsq_lock);
6643 mutex_exit(&ill->ill_lock);
6644 rw_exit(&ipst->ips_ill_g_lock);

6646 return (B_TRUE);
6647 }

6649 /*
6650 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6651 * across the call to the core interface ipsq_try_enter() and hence calls this
6652 * function directly. This is explained more fully in ipif_set_values().
6653 * In order to support the above constraint, ipsq_try_enter is implemented as
6654 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6655 */
6656 static ipsq_t *
6657 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6658 int type, boolean_t reentry_ok)
6659 {
6660 ipsq_t *ipsq;
6661 ipxop_t *ipx;

new/usr/src/uts/common/inet/ip/ip_if.c 102

6662 ip_stack_t *ipst = ill->ill_ipst;

6664 /*
6665 * lock ordering:
6666 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6667 *
6668 * ipx of an ipsq can’t change when ipsq_lock is held.
6669 */
6670 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6671 GRAB_CONN_LOCK(q);
6672 mutex_enter(&ill->ill_lock);
6673 ipsq = ill->ill_phyint->phyint_ipsq;
6674 mutex_enter(&ipsq->ipsq_lock);
6675 ipx = ipsq->ipsq_xop;
6676 mutex_enter(&ipx->ipx_lock);

6678 /*
6679 * 1. Enter the ipsq if we are already writer and reentry is ok.
6680 * (Note: If the caller does not specify reentry_ok then neither
6681 * ’func’ nor any of its callees must ever attempt to enter the ipsq
6682 * again. Otherwise it can lead to an infinite loop
6683 * 2. Enter the ipsq if there is no current writer and this attempted
6684 * entry is part of the current operation
6685 * 3. Enter the ipsq if there is no current writer and this is a new
6686 * operation and the operation queue is empty and there is no
6687 * operation currently in progress and if all previously initiated
6688 * DLPI operations have completed.
6689 */
6690 if ((ipx->ipx_writer == curthread && reentry_ok) ||
6691 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6692 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6693 ipsq_dlpi_done(ipsq))))) {
6694 /* Success. */
6695 ipx->ipx_reentry_cnt++;
6696 ipx->ipx_writer = curthread;
6697 ipx->ipx_forced = B_FALSE;
6698 mutex_exit(&ipx->ipx_lock);
6699 mutex_exit(&ipsq->ipsq_lock);
6700 mutex_exit(&ill->ill_lock);
6701 RELEASE_CONN_LOCK(q);
6702 #ifdef DEBUG
6703 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6704 #endif
6705 return (ipsq);
6706 }

6708 if (func != NULL)
6709 ipsq_enq(ipsq, q, mp, func, type, ill);

6711 mutex_exit(&ipx->ipx_lock);
6712 mutex_exit(&ipsq->ipsq_lock);
6713 mutex_exit(&ill->ill_lock);
6714 RELEASE_CONN_LOCK(q);
6715 return (NULL);
6716 }

6718 /*
6719 * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6720 * certain critical operations like plumbing (i.e. most set ioctls), etc.
6721 * There is one ipsq per phyint. The ipsq
6722 * serializes exclusive ioctls issued by applications on a per ipsq basis in
6723 * ipsq_xopq_mphead. It also protects against multiple threads executing in
6724 * the ipsq. Responses from the driver pertain to the current ioctl (say a
6725 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6726 * up the interface) and are enqueued in ipx_mphead.
6727 *

new/usr/src/uts/common/inet/ip/ip_if.c 103

6728 * If a thread does not want to reenter the ipsq when it is already writer,
6729 * it must make sure that the specified reentry point to be called later
6730 * when the ipsq is empty, nor any code path starting from the specified reentry
6731 * point must never ever try to enter the ipsq again. Otherwise it can lead
6732 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6733 * When the thread that is currently exclusive finishes, it (ipsq_exit)
6734 * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6735 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6736 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6737 * ioctl if the current ioctl has completed. If the current ioctl is still
6738 * in progress it simply returns. The current ioctl could be waiting for
6739 * a response from another module (the driver or could be waiting for
6740 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6741 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6742 * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6743 * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6744 * all associated DLPI operations have completed.
6745 */

6747 /*
6748 * Try to enter the IPSQ corresponding to ‘ipif’ or ‘ill’ exclusively (‘ipif’
6749 * and ‘ill’ cannot both be specified). Returns a pointer to the entered IPSQ
6750 * on success, or NULL on failure. The caller ensures ipif/ill is valid by
6751 * refholding it as necessary. If the IPSQ cannot be entered and ‘func’ is
6752 * non-NULL, then ‘func’ will be called back with ‘q’ and ‘mp’ once the IPSQ
6753 * can be entered. If ‘func’ is NULL, then ‘q’ and ‘mp’ are ignored.
6754 */
6755 ipsq_t *
6756 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6757 ipsq_func_t func, int type, boolean_t reentry_ok)
6758 {
6759 ip_stack_t *ipst;
6760 ipsq_t *ipsq;

6762 /* Only 1 of ipif or ill can be specified */
6763 ASSERT((ipif != NULL) ^ (ill != NULL));

6765 if (ipif != NULL)
6766 ill = ipif->ipif_ill;
6767 ipst = ill->ill_ipst;

6769 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6770 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6771 rw_exit(&ipst->ips_ill_g_lock);

6773 return (ipsq);
6774 }

6776 /*
6777 * Try to enter the IPSQ corresponding to ‘ill’ as writer. The caller ensures
6778 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ
6779 * cannot be entered, the mp is queued for completion.
6780 */
6781 void
6782 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6783 boolean_t reentry_ok)
6784 {
6785 ipsq_t *ipsq;

6787 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);

6789 /*
6790 * Drop the caller’s refhold on the ill. This is safe since we either
6791 * entered the IPSQ (and thus are exclusive), or failed to enter the
6792 * IPSQ, in which case we return without accessing ill anymore. This
6793 * is needed because func needs to see the correct refcount.

new/usr/src/uts/common/inet/ip/ip_if.c 104

6794 * e.g. removeif can work only then.
6795 */
6796 ill_refrele(ill);
6797 if (ipsq != NULL) {
6798 (*func)(ipsq, q, mp, NULL);
6799 ipsq_exit(ipsq);
6800 }
6801 }

6803 /*
6804 * Exit the specified IPSQ. If this is the final exit on it then drain it
6805 * prior to exiting. Caller must be writer on the specified IPSQ.
6806 */
6807 void
6808 ipsq_exit(ipsq_t *ipsq)
6809 {
6810 mblk_t *mp;
6811 ipsq_t *mp_ipsq;
6812 queue_t *q;
6813 phyint_t *phyi;
6814 ipsq_func_t func;

6816 ASSERT(IAM_WRITER_IPSQ(ipsq));

6818 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6819 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6820 ipsq->ipsq_xop->ipx_reentry_cnt--;
6821 return;
6822 }

6824 for (;;) {
6825 phyi = ipsq->ipsq_phyint;
6826 mp = ipsq_dq(ipsq);
6827 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;

6829 /*
6830 * If we’ve changed to a new IPSQ, and the phyint associated
6831 * with the old one has gone away, free the old IPSQ. Note
6832 * that this cannot happen while the IPSQ is in a group.
6833 */
6834 if (mp_ipsq != ipsq && phyi == NULL) {
6835 ASSERT(ipsq->ipsq_next == ipsq);
6836 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6837 ipsq_delete(ipsq);
6838 }

6840 if (mp == NULL)
6841 break;

6843 q = mp->b_queue;
6844 func = (ipsq_func_t)mp->b_prev;
6845 ipsq = mp_ipsq;
6846 mp->b_next = mp->b_prev = NULL;
6847 mp->b_queue = NULL;

6849 /*
6850 * If ’q’ is an conn queue, it is valid, since we did a
6851 * a refhold on the conn at the start of the ioctl.
6852 * If ’q’ is an ill queue, it is valid, since close of an
6853 * ill will clean up its IPSQ.
6854 */
6855 (*func)(ipsq, q, mp, NULL);
6856 }
6857 }

6859 /*

new/usr/src/uts/common/inet/ip/ip_if.c 105

6860 * Used to start any igmp or mld timers that could not be started
6861 * while holding ill_mcast_lock. The timers can’t be started while holding
6862 * the lock, since mld/igmp_start_timers may need to call untimeout()
6863 * which can’t be done while holding the lock which the timeout handler
6864 * acquires. Otherwise
6865 * there could be a deadlock since the timeout handlers
6866 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6867 * ill_mcast_lock.
6868 */
6869 void
6870 ill_mcast_timer_start(ip_stack_t *ipst)
6871 {
6872 int next;

6874 mutex_enter(&ipst->ips_igmp_timer_lock);
6875 next = ipst->ips_igmp_deferred_next;
6876 ipst->ips_igmp_deferred_next = INFINITY;
6877 mutex_exit(&ipst->ips_igmp_timer_lock);

6879 if (next != INFINITY)
6880 igmp_start_timers(next, ipst);

6882 mutex_enter(&ipst->ips_mld_timer_lock);
6883 next = ipst->ips_mld_deferred_next;
6884 ipst->ips_mld_deferred_next = INFINITY;
6885 mutex_exit(&ipst->ips_mld_timer_lock);

6887 if (next != INFINITY)
6888 mld_start_timers(next, ipst);
6889 }

6891 /*
6892 * Start the current exclusive operation on ‘ipsq’; associate it with ‘ipif’
6893 * and ‘ioccmd’.
6894 */
6895 void
6896 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6897 {
6898 ill_t *ill = ipif->ipif_ill;
6899 ipxop_t *ipx = ipsq->ipsq_xop;

6901 ASSERT(IAM_WRITER_IPSQ(ipsq));
6902 ASSERT(ipx->ipx_current_ipif == NULL);
6903 ASSERT(ipx->ipx_current_ioctl == 0);

6905 ipx->ipx_current_done = B_FALSE;
6906 ipx->ipx_current_ioctl = ioccmd;
6907 mutex_enter(&ipx->ipx_lock);
6908 ipx->ipx_current_ipif = ipif;
6909 mutex_exit(&ipx->ipx_lock);

6911 /*
6912 * Set IPIF_CHANGING on one or more ipifs associated with the
6913 * current exclusive operation. IPIF_CHANGING prevents any new
6914 * references to the ipif (so that the references will eventually
6915 * drop to zero) and also prevents any "get" operations (e.g.,
6916 * SIOCGLIFFLAGS) from being able to access the ipif until the
6917 * operation has completed and the ipif is again in a stable state.
6918 *
6919 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6920 * ioctl. For internal operations (where ioccmd is zero), all ipifs
6921 * on the ill are marked with IPIF_CHANGING since it’s unclear which
6922 * ipifs will be affected.
6923 *
6924 * Note that SIOCLIFREMOVEIF is a special case as it sets
6925 * IPIF_CONDEMNED internally after identifying the right ipif to

new/usr/src/uts/common/inet/ip/ip_if.c 106

6926 * operate on.
6927 */
6928 switch (ioccmd) {
6929 case SIOCLIFREMOVEIF:
6930 break;
6931 case 0:
6932 mutex_enter(&ill->ill_lock);
6933 ipif = ipif->ipif_ill->ill_ipif;
6934 for (; ipif != NULL; ipif = ipif->ipif_next)
6935 ipif->ipif_state_flags |= IPIF_CHANGING;
6936 mutex_exit(&ill->ill_lock);
6937 break;
6938 default:
6939 mutex_enter(&ill->ill_lock);
6940 ipif->ipif_state_flags |= IPIF_CHANGING;
6941 mutex_exit(&ill->ill_lock);
6942 }
6943 }

6945 /*
6946 * Finish the current exclusive operation on ‘ipsq’. Usually, this will allow
6947 * the next exclusive operation to begin once we ipsq_exit(). However, if
6948 * pending DLPI operations remain, then we will wait for the queue to drain
6949 * before allowing the next exclusive operation to begin. This ensures that
6950 * DLPI operations from one exclusive operation are never improperly processed
6951 * as part of a subsequent exclusive operation.
6952 */
6953 void
6954 ipsq_current_finish(ipsq_t *ipsq)
6955 {
6956 ipxop_t *ipx = ipsq->ipsq_xop;
6957 t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6958 ipif_t *ipif = ipx->ipx_current_ipif;

6960 ASSERT(IAM_WRITER_IPSQ(ipsq));

6962 /*
6963 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6964 * (but in that case, IPIF_CHANGING will already be clear and no
6965 * pending DLPI messages can remain).
6966 */
6967 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6968 ill_t *ill = ipif->ipif_ill;

6970 mutex_enter(&ill->ill_lock);
6971 dlpi_pending = ill->ill_dlpi_pending;
6972 if (ipx->ipx_current_ioctl == 0) {
6973 ipif = ill->ill_ipif;
6974 for (; ipif != NULL; ipif = ipif->ipif_next)
6975 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6976 } else {
6977 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6978 }
6979 mutex_exit(&ill->ill_lock);
6980 }

6982 ASSERT(!ipx->ipx_current_done);
6983 ipx->ipx_current_done = B_TRUE;
6984 ipx->ipx_current_ioctl = 0;
6985 if (dlpi_pending == DL_PRIM_INVAL) {
6986 mutex_enter(&ipx->ipx_lock);
6987 ipx->ipx_current_ipif = NULL;
6988 mutex_exit(&ipx->ipx_lock);
6989 }
6990 }

new/usr/src/uts/common/inet/ip/ip_if.c 107

6992 /*
6993 * The ill is closing. Flush all messages on the ipsq that originated
6994 * from this ill. Usually there wont’ be any messages on the ipsq_xopq_mphead
6995 * for this ill since ipsq_enter could not have entered until then.
6996 * New messages can’t be queued since the CONDEMNED flag is set.
6997 */
6998 static void
6999 ipsq_flush(ill_t *ill)
7000 {
7001 queue_t *q;
7002 mblk_t *prev;
7003 mblk_t *mp;
7004 mblk_t *mp_next;
7005 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;

7007 ASSERT(IAM_WRITER_ILL(ill));

7009 /*
7010 * Flush any messages sent up by the driver.
7011 */
7012 mutex_enter(&ipx->ipx_lock);
7013 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
7014 mp_next = mp->b_next;
7015 q = mp->b_queue;
7016 if (q == ill->ill_rq || q == ill->ill_wq) {
7017 /* dequeue mp */
7018 if (prev == NULL)
7019 ipx->ipx_mphead = mp->b_next;
7020 else
7021 prev->b_next = mp->b_next;
7022 if (ipx->ipx_mptail == mp) {
7023 ASSERT(mp_next == NULL);
7024 ipx->ipx_mptail = prev;
7025 }
7026 inet_freemsg(mp);
7027 } else {
7028 prev = mp;
7029 }
7030 }
7031 mutex_exit(&ipx->ipx_lock);
7032 (void) ipsq_pending_mp_cleanup(ill, NULL);
7033 ipsq_xopq_mp_cleanup(ill, NULL);
7034 }

7036 /*
7037 * Parse an ifreq or lifreq struct coming down ioctls and refhold
7038 * and return the associated ipif.
7039 * Return value:
7040 * Non zero: An error has occurred. ci may not be filled out.
7041 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7042 * a held ipif in ci.ci_ipif.
7043 */
7044 int
7045 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7046 cmd_info_t *ci)
7047 {
7048 char *name;
7049 struct ifreq *ifr;
7050 struct lifreq *lifr;
7051 ipif_t *ipif = NULL;
7052 ill_t *ill;
7053 conn_t *connp;
7054 boolean_t isv6;
7055 int err;
7056 mblk_t *mp1;
7057 zoneid_t zoneid;

new/usr/src/uts/common/inet/ip/ip_if.c 108

7058 ip_stack_t *ipst;

7060 if (q->q_next != NULL) {
7061 ill = (ill_t *)q->q_ptr;
7062 isv6 = ill->ill_isv6;
7063 connp = NULL;
7064 zoneid = ALL_ZONES;
7065 ipst = ill->ill_ipst;
7066 } else {
7067 ill = NULL;
7068 connp = Q_TO_CONN(q);
7069 isv6 = (connp->conn_family == AF_INET6);
7070 zoneid = connp->conn_zoneid;
7071 if (zoneid == GLOBAL_ZONEID) {
7072 /* global zone can access ipifs in all zones */
7073 zoneid = ALL_ZONES;
7074 }
7075 ipst = connp->conn_netstack->netstack_ip;
7076 }

7078 /* Has been checked in ip_wput_nondata */
7079 mp1 = mp->b_cont->b_cont;

7081 if (ipip->ipi_cmd_type == IF_CMD) {
7082 /* This a old style SIOC[GS]IF* command */
7083 ifr = (struct ifreq *)mp1->b_rptr;
7084 /*
7085 * Null terminate the string to protect against buffer
7086 * overrun. String was generated by user code and may not
7087 * be trusted.
7088 */
7089 ifr->ifr_name[IFNAMSIZ - 1] = ’\0’;
7090 name = ifr->ifr_name;
7091 ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7092 ci->ci_sin6 = NULL;
7093 ci->ci_lifr = (struct lifreq *)ifr;
7094 } else {
7095 /* This a new style SIOC[GS]LIF* command */
7096 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7097 lifr = (struct lifreq *)mp1->b_rptr;
7098 /*
7099 * Null terminate the string to protect against buffer
7100 * overrun. String was generated by user code and may not
7101 * be trusted.
7102 */
7103 lifr->lifr_name[LIFNAMSIZ - 1] = ’\0’;
7104 name = lifr->lifr_name;
7105 ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7106 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7107 ci->ci_lifr = lifr;
7108 }

7110 if (ipip->ipi_cmd == SIOCSLIFNAME) {
7111 /*
7112 * The ioctl will be failed if the ioctl comes down
7113 * an conn stream
7114 */
7115 if (ill == NULL) {
7116 /*
7117 * Not an ill queue, return EINVAL same as the
7118 * old error code.
7119 */
7120 return (ENXIO);
7121 }
7122 ipif = ill->ill_ipif;
7123 ipif_refhold(ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 109

7124 } else {
7125 /*
7126 * Ensure that ioctls don’t see any internal state changes
7127 * caused by set ioctls by deferring them if IPIF_CHANGING is
7128 * set.
7129 */
7130 ipif = ipif_lookup_on_name_async(name, mi_strlen(name),
7131 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst);
7132 if (ipif == NULL) {
7133 if (err == EINPROGRESS)
7134 return (err);
7135 err = 0; /* Ensure we don’t use it below */
7136 }
7137 }

7139 /*
7140 * Old style [GS]IFCMD does not admit IPv6 ipif
7141 */
7142 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7143 ipif_refrele(ipif);
7144 return (ENXIO);
7145 }

7147 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7148 name[0] == ’\0’) {
7149 /*
7150 * Handle a or a SIOC?IF* with a null name
7151 * during plumb (on the ill queue before the I_PLINK).
7152 */
7153 ipif = ill->ill_ipif;
7154 ipif_refhold(ipif);
7155 }

7157 if (ipif == NULL)
7158 return (ENXIO);

7160 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7161 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);

7163 ci->ci_ipif = ipif;
7164 return (0);
7165 }

7167 /*
7168 * Return the total number of ipifs.
7169 */
7170 static uint_t
7171 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7172 {
7173 uint_t numifs = 0;
7174 ill_t *ill;
7175 ill_walk_context_t ctx;
7176 ipif_t *ipif;

7178 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7179 ill = ILL_START_WALK_V4(&ctx, ipst);
7180 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7181 if (IS_UNDER_IPMP(ill))
7182 continue;
7183 for (ipif = ill->ill_ipif; ipif != NULL;
7184 ipif = ipif->ipif_next) {
7185 if (ipif->ipif_zoneid == zoneid ||
7186 ipif->ipif_zoneid == ALL_ZONES)
7187 numifs++;
7188 }
7189 }

new/usr/src/uts/common/inet/ip/ip_if.c 110

7190 rw_exit(&ipst->ips_ill_g_lock);
7191 return (numifs);
7192 }

7194 /*
7195 * Return the total number of ipifs.
7196 */
7197 static uint_t
7198 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7199 {
7200 uint_t numifs = 0;
7201 ill_t *ill;
7202 ipif_t *ipif;
7203 ill_walk_context_t ctx;

7205 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));

7207 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7208 if (family == AF_INET)
7209 ill = ILL_START_WALK_V4(&ctx, ipst);
7210 else if (family == AF_INET6)
7211 ill = ILL_START_WALK_V6(&ctx, ipst);
7212 else
7213 ill = ILL_START_WALK_ALL(&ctx, ipst);

7215 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7216 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7217 continue;

7219 for (ipif = ill->ill_ipif; ipif != NULL;
7220 ipif = ipif->ipif_next) {
7221 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7222 !(lifn_flags & LIFC_NOXMIT))
7223 continue;
7224 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7225 !(lifn_flags & LIFC_TEMPORARY))
7226 continue;
7227 if (((ipif->ipif_flags &
7228 (IPIF_NOXMIT|IPIF_NOLOCAL|
7229 IPIF_DEPRECATED)) ||
7230 IS_LOOPBACK(ill) ||
7231 !(ipif->ipif_flags & IPIF_UP)) &&
7232 (lifn_flags & LIFC_EXTERNAL_SOURCE))
7233 continue;

7235 if (zoneid != ipif->ipif_zoneid &&
7236 ipif->ipif_zoneid != ALL_ZONES &&
7237 (zoneid != GLOBAL_ZONEID ||
7238 !(lifn_flags & LIFC_ALLZONES)))
7239 continue;

7241 numifs++;
7242 }
7243 }
7244 rw_exit(&ipst->ips_ill_g_lock);
7245 return (numifs);
7246 }

7248 uint_t
7249 ip_get_lifsrcofnum(ill_t *ill)
7250 {
7251 uint_t numifs = 0;
7252 ill_t *ill_head = ill;
7253 ip_stack_t *ipst = ill->ill_ipst;

7255 /*

new/usr/src/uts/common/inet/ip/ip_if.c 111

7256 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7257 * other thread may be trying to relink the ILLs in this usesrc group
7258 * and adjusting the ill_usesrc_grp_next pointers
7259 */
7260 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7261 if ((ill->ill_usesrc_ifindex == 0) &&
7262 (ill->ill_usesrc_grp_next != NULL)) {
7263 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7264 ill = ill->ill_usesrc_grp_next)
7265 numifs++;
7266 }
7267 rw_exit(&ipst->ips_ill_g_usesrc_lock);

7269 return (numifs);
7270 }

7272 /* Null values are passed in for ipif, sin, and ifreq */
7273 /* ARGSUSED */
7274 int
7275 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7276 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7277 {
7278 int *nump;
7279 conn_t *connp = Q_TO_CONN(q);

7281 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */

7283 /* Existence of b_cont->b_cont checked in ip_wput_nondata */
7284 nump = (int *)mp->b_cont->b_cont->b_rptr;

7286 *nump = ip_get_numifs(connp->conn_zoneid,
7287 connp->conn_netstack->netstack_ip);
7288 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7289 return (0);
7290 }

7292 /* Null values are passed in for ipif, sin, and ifreq */
7293 /* ARGSUSED */
7294 int
7295 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7296 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7297 {
7298 struct lifnum *lifn;
7299 mblk_t *mp1;
7300 conn_t *connp = Q_TO_CONN(q);

7302 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */

7304 /* Existence checked in ip_wput_nondata */
7305 mp1 = mp->b_cont->b_cont;

7307 lifn = (struct lifnum *)mp1->b_rptr;
7308 switch (lifn->lifn_family) {
7309 case AF_UNSPEC:
7310 case AF_INET:
7311 case AF_INET6:
7312 break;
7313 default:
7314 return (EAFNOSUPPORT);
7315 }

7317 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7318 connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7319 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7320 return (0);
7321 }

new/usr/src/uts/common/inet/ip/ip_if.c 112

7323 /* ARGSUSED */
7324 int
7325 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7326 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7327 {
7328 STRUCT_HANDLE(ifconf, ifc);
7329 mblk_t *mp1;
7330 struct iocblk *iocp;
7331 struct ifreq *ifr;
7332 ill_walk_context_t ctx;
7333 ill_t *ill;
7334 ipif_t *ipif;
7335 struct sockaddr_in *sin;
7336 int32_t ifclen;
7337 zoneid_t zoneid;
7338 ip_stack_t *ipst = CONNQ_TO_IPST(q);

7340 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */

7342 ip1dbg(("ip_sioctl_get_ifconf"));
7343 /* Existence verified in ip_wput_nondata */
7344 mp1 = mp->b_cont->b_cont;
7345 iocp = (struct iocblk *)mp->b_rptr;
7346 zoneid = Q_TO_CONN(q)->conn_zoneid;

7348 /*
7349 * The original SIOCGIFCONF passed in a struct ifconf which specified
7350 * the user buffer address and length into which the list of struct
7351 * ifreqs was to be copied. Since AT&T Streams does not seem to
7352 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7353 * the SIOCGIFCONF operation was redefined to simply provide
7354 * a large output buffer into which we are supposed to jam the ifreq
7355 * array. The same ioctl command code was used, despite the fact that
7356 * both the applications and the kernel code had to change, thus making
7357 * it impossible to support both interfaces.
7358 *
7359 * For reasons not good enough to try to explain, the following
7360 * algorithm is used for deciding what to do with one of these:
7361 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7362 * form with the output buffer coming down as the continuation message.
7363 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7364 * and we have to copy in the ifconf structure to find out how big the
7365 * output buffer is and where to copy out to. Sure no problem...
7366 *
7367 */
7368 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7369 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7370 int numifs = 0;
7371 size_t ifc_bufsize;

7373 /*
7374 * Must be (better be!) continuation of a TRANSPARENT
7375 * IOCTL. We just copied in the ifconf structure.
7376 */
7377 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7378 (struct ifconf *)mp1->b_rptr);

7380 /*
7381 * Allocate a buffer to hold requested information.
7382 *
7383 * If ifc_len is larger than what is needed, we only
7384 * allocate what we will use.
7385 *
7386 * If ifc_len is smaller than what is needed, return
7387 * EINVAL.

new/usr/src/uts/common/inet/ip/ip_if.c 113

7388 *
7389 * XXX: the ill_t structure can hava 2 counters, for
7390 * v4 and v6 (not just ill_ipif_up_count) to store the
7391 * number of interfaces for a device, so we don’t need
7392 * to count them here...
7393 */
7394 numifs = ip_get_numifs(zoneid, ipst);

7396 ifclen = STRUCT_FGET(ifc, ifc_len);
7397 ifc_bufsize = numifs * sizeof (struct ifreq);
7398 if (ifc_bufsize > ifclen) {
7399 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7400 /* old behaviour */
7401 return (EINVAL);
7402 } else {
7403 ifc_bufsize = ifclen;
7404 }
7405 }

7407 mp1 = mi_copyout_alloc(q, mp,
7408 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7409 if (mp1 == NULL)
7410 return (ENOMEM);

7412 mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7413 }
7414 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7415 /*
7416 * the SIOCGIFCONF ioctl only knows about
7417 * IPv4 addresses, so don’t try to tell
7418 * it about interfaces with IPv6-only
7419 * addresses. (Last parm ’isv6’ is B_FALSE)
7420 */

7422 ifr = (struct ifreq *)mp1->b_rptr;

7424 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7425 ill = ILL_START_WALK_V4(&ctx, ipst);
7426 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7427 if (IS_UNDER_IPMP(ill))
7428 continue;
7429 for (ipif = ill->ill_ipif; ipif != NULL;
7430 ipif = ipif->ipif_next) {
7431 if (zoneid != ipif->ipif_zoneid &&
7432 ipif->ipif_zoneid != ALL_ZONES)
7433 continue;
7434 if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7435 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7436 /* old behaviour */
7437 rw_exit(&ipst->ips_ill_g_lock);
7438 return (EINVAL);
7439 } else {
7440 goto if_copydone;
7441 }
7442 }
7443 ipif_get_name(ipif, ifr->ifr_name,
7444 sizeof (ifr->ifr_name));
7445 sin = (sin_t *)&ifr->ifr_addr;
7446 *sin = sin_null;
7447 sin->sin_family = AF_INET;
7448 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7449 ifr++;
7450 }
7451 }
7452 if_copydone:
7453 rw_exit(&ipst->ips_ill_g_lock);

new/usr/src/uts/common/inet/ip/ip_if.c 114

7454 mp1->b_wptr = (uchar_t *)ifr;

7456 if (STRUCT_BUF(ifc) != NULL) {
7457 STRUCT_FSET(ifc, ifc_len,
7458 (int)((uchar_t *)ifr - mp1->b_rptr));
7459 }
7460 return (0);
7461 }

7463 /*
7464 * Get the interfaces using the address hosted on the interface passed in,
7465 * as a source adddress
7466 */
7467 /* ARGSUSED */
7468 int
7469 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7470 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7471 {
7472 mblk_t *mp1;
7473 ill_t *ill, *ill_head;
7474 ipif_t *ipif, *orig_ipif;
7475 int numlifs = 0;
7476 size_t lifs_bufsize, lifsmaxlen;
7477 struct lifreq *lifr;
7478 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7479 uint_t ifindex;
7480 zoneid_t zoneid;
7481 boolean_t isv6 = B_FALSE;
7482 struct sockaddr_in *sin;
7483 struct sockaddr_in6 *sin6;
7484 STRUCT_HANDLE(lifsrcof, lifs);
7485 ip_stack_t *ipst;

7487 ipst = CONNQ_TO_IPST(q);

7489 ASSERT(q->q_next == NULL);

7491 zoneid = Q_TO_CONN(q)->conn_zoneid;

7493 /* Existence verified in ip_wput_nondata */
7494 mp1 = mp->b_cont->b_cont;

7496 /*
7497 * Must be (better be!) continuation of a TRANSPARENT
7498 * IOCTL. We just copied in the lifsrcof structure.
7499 */
7500 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7501 (struct lifsrcof *)mp1->b_rptr);

7503 if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7504 return (EINVAL);

7506 ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7507 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7508 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7509 if (ipif == NULL) {
7510 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7511 ifindex));
7512 return (ENXIO);
7513 }

7515 /* Allocate a buffer to hold requested information */
7516 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7517 lifs_bufsize = numlifs * sizeof (struct lifreq);
7518 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen);
7519 /* The actual size needed is always returned in lifs_len */

new/usr/src/uts/common/inet/ip/ip_if.c 115

7520 STRUCT_FSET(lifs, lifs_len, lifs_bufsize);

7522 /* If the amount we need is more than what is passed in, abort */
7523 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7524 ipif_refrele(ipif);
7525 return (0);
7526 }

7528 mp1 = mi_copyout_alloc(q, mp,
7529 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7530 if (mp1 == NULL) {
7531 ipif_refrele(ipif);
7532 return (ENOMEM);
7533 }

7535 mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7536 bzero(mp1->b_rptr, lifs_bufsize);

7538 lifr = (struct lifreq *)mp1->b_rptr;

7540 ill = ill_head = ipif->ipif_ill;
7541 orig_ipif = ipif;

7543 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7544 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7545 rw_enter(&ipst->ips_ill_g_lock, RW_READER);

7547 ill = ill->ill_usesrc_grp_next; /* start from next ill */
7548 for (; (ill != NULL) && (ill != ill_head);
7549 ill = ill->ill_usesrc_grp_next) {

7551 if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7552 break;

7554 ipif = ill->ill_ipif;
7555 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7556 if (ipif->ipif_isv6) {
7557 sin6 = (sin6_t *)&lifr->lifr_addr;
7558 *sin6 = sin6_null;
7559 sin6->sin6_family = AF_INET6;
7560 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7561 lifr->lifr_addrlen = ip_mask_to_plen_v6(
7562 &ipif->ipif_v6net_mask);
7563 } else {
7564 sin = (sin_t *)&lifr->lifr_addr;
7565 *sin = sin_null;
7566 sin->sin_family = AF_INET;
7567 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7568 lifr->lifr_addrlen = ip_mask_to_plen(
7569 ipif->ipif_net_mask);
7570 }
7571 lifr++;
7572 }
7573 rw_exit(&ipst->ips_ill_g_lock);
7574 rw_exit(&ipst->ips_ill_g_usesrc_lock);
7575 ipif_refrele(orig_ipif);
7576 mp1->b_wptr = (uchar_t *)lifr;
7577 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));

7579 return (0);
7580 }

7582 /* ARGSUSED */
7583 int
7584 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7585 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)

new/usr/src/uts/common/inet/ip/ip_if.c 116

7586 {
7587 mblk_t *mp1;
7588 int list;
7589 ill_t *ill;
7590 ipif_t *ipif;
7591 int flags;
7592 int numlifs = 0;
7593 size_t lifc_bufsize;
7594 struct lifreq *lifr;
7595 sa_family_t family;
7596 struct sockaddr_in *sin;
7597 struct sockaddr_in6 *sin6;
7598 ill_walk_context_t ctx;
7599 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7600 int32_t lifclen;
7601 zoneid_t zoneid;
7602 STRUCT_HANDLE(lifconf, lifc);
7603 ip_stack_t *ipst = CONNQ_TO_IPST(q);

7605 ip1dbg(("ip_sioctl_get_lifconf"));

7607 ASSERT(q->q_next == NULL);

7609 zoneid = Q_TO_CONN(q)->conn_zoneid;

7611 /* Existence verified in ip_wput_nondata */
7612 mp1 = mp->b_cont->b_cont;

7614 /*
7615 * An extended version of SIOCGIFCONF that takes an
7616 * additional address family and flags field.
7617 * AF_UNSPEC retrieve both IPv4 and IPv6.
7618 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7619 * interfaces are omitted.
7620 * Similarly, IPIF_TEMPORARY interfaces are omitted
7621 * unless LIFC_TEMPORARY is specified.
7622 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7623 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7624 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7625 * has priority over LIFC_NOXMIT.
7626 */
7627 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);

7629 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7630 return (EINVAL);

7632 /*
7633 * Must be (better be!) continuation of a TRANSPARENT
7634 * IOCTL. We just copied in the lifconf structure.
7635 */
7636 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);

7638 family = STRUCT_FGET(lifc, lifc_family);
7639 flags = STRUCT_FGET(lifc, lifc_flags);

7641 switch (family) {
7642 case AF_UNSPEC:
7643 /*
7644 * walk all ILL’s.
7645 */
7646 list = MAX_G_HEADS;
7647 break;
7648 case AF_INET:
7649 /*
7650 * walk only IPV4 ILL’s.
7651 */

new/usr/src/uts/common/inet/ip/ip_if.c 117

7652 list = IP_V4_G_HEAD;
7653 break;
7654 case AF_INET6:
7655 /*
7656 * walk only IPV6 ILL’s.
7657 */
7658 list = IP_V6_G_HEAD;
7659 break;
7660 default:
7661 return (EAFNOSUPPORT);
7662 }

7664 /*
7665 * Allocate a buffer to hold requested information.
7666 *
7667 * If lifc_len is larger than what is needed, we only
7668 * allocate what we will use.
7669 *
7670 * If lifc_len is smaller than what is needed, return
7671 * EINVAL.
7672 */
7673 numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7674 lifc_bufsize = numlifs * sizeof (struct lifreq);
7675 lifclen = STRUCT_FGET(lifc, lifc_len);
7676 if (lifc_bufsize > lifclen) {
7677 if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7678 return (EINVAL);
7679 else
7680 lifc_bufsize = lifclen;
7681 }

7683 mp1 = mi_copyout_alloc(q, mp,
7684 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7685 if (mp1 == NULL)
7686 return (ENOMEM);

7688 mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7689 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);

7691 lifr = (struct lifreq *)mp1->b_rptr;

7693 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7694 ill = ill_first(list, list, &ctx, ipst);
7695 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7696 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7697 continue;

7699 for (ipif = ill->ill_ipif; ipif != NULL;
7700 ipif = ipif->ipif_next) {
7701 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7702 !(flags & LIFC_NOXMIT))
7703 continue;

7705 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7706 !(flags & LIFC_TEMPORARY))
7707 continue;

7709 if (((ipif->ipif_flags &
7710 (IPIF_NOXMIT|IPIF_NOLOCAL|
7711 IPIF_DEPRECATED)) ||
7712 IS_LOOPBACK(ill) ||
7713 !(ipif->ipif_flags & IPIF_UP)) &&
7714 (flags & LIFC_EXTERNAL_SOURCE))
7715 continue;

7717 if (zoneid != ipif->ipif_zoneid &&

new/usr/src/uts/common/inet/ip/ip_if.c 118

7718 ipif->ipif_zoneid != ALL_ZONES &&
7719 (zoneid != GLOBAL_ZONEID ||
7720 !(flags & LIFC_ALLZONES)))
7721 continue;

7723 if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7724 if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7725 rw_exit(&ipst->ips_ill_g_lock);
7726 return (EINVAL);
7727 } else {
7728 goto lif_copydone;
7729 }
7730 }

7732 ipif_get_name(ipif, lifr->lifr_name,
7733 sizeof (lifr->lifr_name));
7734 lifr->lifr_type = ill->ill_type;
7735 if (ipif->ipif_isv6) {
7736 sin6 = (sin6_t *)&lifr->lifr_addr;
7737 *sin6 = sin6_null;
7738 sin6->sin6_family = AF_INET6;
7739 sin6->sin6_addr =
7740 ipif->ipif_v6lcl_addr;
7741 lifr->lifr_addrlen =
7742 ip_mask_to_plen_v6(
7743 &ipif->ipif_v6net_mask);
7744 } else {
7745 sin = (sin_t *)&lifr->lifr_addr;
7746 *sin = sin_null;
7747 sin->sin_family = AF_INET;
7748 sin->sin_addr.s_addr =
7749 ipif->ipif_lcl_addr;
7750 lifr->lifr_addrlen =
7751 ip_mask_to_plen(
7752 ipif->ipif_net_mask);
7753 }
7754 lifr++;
7755 }
7756 }
7757 lif_copydone:
7758 rw_exit(&ipst->ips_ill_g_lock);

7760 mp1->b_wptr = (uchar_t *)lifr;
7761 if (STRUCT_BUF(lifc) != NULL) {
7762 STRUCT_FSET(lifc, lifc_len,
7763 (int)((uchar_t *)lifr - mp1->b_rptr));
7764 }
7765 return (0);
7766 }

7768 static void
7769 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7770 {
7771 ip6_asp_t *table;
7772 size_t table_size;
7773 mblk_t *data_mp;
7774 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7775 ip_stack_t *ipst;

7777 if (q->q_next == NULL)
7778 ipst = CONNQ_TO_IPST(q);
7779 else
7780 ipst = ILLQ_TO_IPST(q);

7782 /* These two ioctls are I_STR only */
7783 if (iocp->ioc_count == TRANSPARENT) {

new/usr/src/uts/common/inet/ip/ip_if.c 119

7784 miocnak(q, mp, 0, EINVAL);
7785 return;
7786 }

7788 data_mp = mp->b_cont;
7789 if (data_mp == NULL) {
7790 /* The user passed us a NULL argument */
7791 table = NULL;
7792 table_size = iocp->ioc_count;
7793 } else {
7794 /*
7795 * The user provided a table. The stream head
7796 * may have copied in the user data in chunks,
7797 * so make sure everything is pulled up
7798 * properly.
7799 */
7800 if (MBLKL(data_mp) < iocp->ioc_count) {
7801 mblk_t *new_data_mp;
7802 if ((new_data_mp = msgpullup(data_mp, -1)) ==
7803 NULL) {
7804 miocnak(q, mp, 0, ENOMEM);
7805 return;
7806 }
7807 freemsg(data_mp);
7808 data_mp = new_data_mp;
7809 mp->b_cont = data_mp;
7810 }
7811 table = (ip6_asp_t *)data_mp->b_rptr;
7812 table_size = iocp->ioc_count;
7813 }

7815 switch (iocp->ioc_cmd) {
7816 case SIOCGIP6ADDRPOLICY:
7817 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7818 if (iocp->ioc_rval == -1)
7819 iocp->ioc_error = EINVAL;
7820 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7821 else if (table != NULL &&
7822 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7823 ip6_asp_t *src = table;
7824 ip6_asp32_t *dst = (void *)table;
7825 int count = table_size / sizeof (ip6_asp_t);
7826 int i;

7828 /*
7829 * We need to do an in-place shrink of the array
7830 * to match the alignment attributes of the
7831 * 32-bit ABI looking at it.
7832 */
7833 /* LINTED: logical expression always true: op "||" */
7834 ASSERT(sizeof (*src) > sizeof (*dst));
7835 for (i = 1; i < count; i++)
7836 bcopy(src + i, dst + i, sizeof (*dst));
7837 }
7838 #endif
7839 break;

7841 case SIOCSIP6ADDRPOLICY:
7842 ASSERT(mp->b_prev == NULL);
7843 mp->b_prev = (void *)q;
7844 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7845 /*
7846 * We pass in the datamodel here so that the ip6_asp_replace()
7847 * routine can handle converting from 32-bit to native formats
7848 * where necessary.
7849 *

new/usr/src/uts/common/inet/ip/ip_if.c 120

7850 * A better way to handle this might be to convert the inbound
7851 * data structure here, and hang it off a new ’mp’; thus the
7852 * ip6_asp_replace() logic would always be dealing with native
7853 * format data structures..
7854 *
7855 * (An even simpler way to handle these ioctls is to just
7856 * add a 32-bit trailing ’pad’ field to the ip6_asp_t structure
7857 * and just recompile everything that depends on it.)
7858 */
7859 #endif
7860 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7861 iocp->ioc_flag & IOC_MODELS);
7862 return;
7863 }

7865 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7866 qreply(q, mp);
7867 }

7869 static void
7870 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7871 {
7872 mblk_t *data_mp;
7873 struct dstinforeq *dir;
7874 uint8_t *end, *cur;
7875 in6_addr_t *daddr, *saddr;
7876 ipaddr_t v4daddr;
7877 ire_t *ire;
7878 ipaddr_t v4setsrc;
7879 in6_addr_t v6setsrc;
7880 char *slabel, *dlabel;
7881 boolean_t isipv4;
7882 int match_ire;
7883 ill_t *dst_ill;
7884 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7885 conn_t *connp = Q_TO_CONN(q);
7886 zoneid_t zoneid = IPCL_ZONEID(connp);
7887 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
7888 uint64_t ipif_flags;

7890 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */

7892 /*
7893 * This ioctl is I_STR only, and must have a
7894 * data mblk following the M_IOCTL mblk.
7895 */
7896 data_mp = mp->b_cont;
7897 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7898 miocnak(q, mp, 0, EINVAL);
7899 return;
7900 }

7902 if (MBLKL(data_mp) < iocp->ioc_count) {
7903 mblk_t *new_data_mp;

7905 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7906 miocnak(q, mp, 0, ENOMEM);
7907 return;
7908 }
7909 freemsg(data_mp);
7910 data_mp = new_data_mp;
7911 mp->b_cont = data_mp;
7912 }
7913 match_ire = MATCH_IRE_DSTONLY;

7915 for (cur = data_mp->b_rptr, end = data_mp->b_wptr;

new/usr/src/uts/common/inet/ip/ip_if.c 121

7916 end - cur >= sizeof (struct dstinforeq);
7917 cur += sizeof (struct dstinforeq)) {
7918 dir = (struct dstinforeq *)cur;
7919 daddr = &dir->dir_daddr;
7920 saddr = &dir->dir_saddr;

7922 /*
7923 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7924 * v4 mapped addresses; ire_ftable_lookup_v6()
7925 * and ip_select_source_v6() do not.
7926 */
7927 dir->dir_dscope = ip_addr_scope_v6(daddr);
7928 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);

7930 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7931 if (isipv4) {
7932 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7933 v4setsrc = INADDR_ANY;
7934 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7935 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7936 NULL, NULL);
7937 } else {
7938 v6setsrc = ipv6_all_zeros;
7939 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7940 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7941 NULL, NULL);
7942 }
7943 ASSERT(ire != NULL);
7944 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7945 ire_refrele(ire);
7946 dir->dir_dreachable = 0;

7948 /* move on to next dst addr */
7949 continue;
7950 }
7951 dir->dir_dreachable = 1;

7953 dst_ill = ire_nexthop_ill(ire);
7954 if (dst_ill == NULL) {
7955 ire_refrele(ire);
7956 continue;
7957 }

7959 /* With ipmp we most likely look at the ipmp ill here */
7960 dir->dir_dmactype = dst_ill->ill_mactype;

7962 if (isipv4) {
7963 ipaddr_t v4saddr;

7965 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7966 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7967 &v4saddr, NULL, &ipif_flags) != 0) {
7968 v4saddr = INADDR_ANY;
7969 ipif_flags = 0;
7970 }
7971 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7972 } else {
7973 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7974 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7975 saddr, NULL, &ipif_flags) != 0) {
7976 *saddr = ipv6_all_zeros;
7977 ipif_flags = 0;
7978 }
7979 }

7981 dir->dir_sscope = ip_addr_scope_v6(saddr);

new/usr/src/uts/common/inet/ip/ip_if.c 122

7982 slabel = ip6_asp_lookup(saddr, NULL, ipst);
7983 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7984 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7985 ire_refrele(ire);
7986 ill_refrele(dst_ill);
7987 }
7988 miocack(q, mp, iocp->ioc_count, 0);
7989 }

7991 /*
7992 * Check if this is an address assigned to this machine.
7993 * Skips interfaces that are down by using ire checks.
7994 * Translates mapped addresses to v4 addresses and then
7995 * treats them as such, returning true if the v4 address
7996 * associated with this mapped address is configured.
7997 * Note: Applications will have to be careful what they do
7998 * with the response; use of mapped addresses limits
7999 * what can be done with the socket, especially with
8000 * respect to socket options and ioctls - neither IPv4
8001 * options nor IPv6 sticky options/ancillary data options
8002 * may be used.
8003 */
8004 /* ARGSUSED */
8005 int
8006 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8007 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8008 {
8009 struct sioc_addrreq *sia;
8010 sin_t *sin;
8011 ire_t *ire;
8012 mblk_t *mp1;
8013 zoneid_t zoneid;
8014 ip_stack_t *ipst;

8016 ip1dbg(("ip_sioctl_tmyaddr"));

8018 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8019 zoneid = Q_TO_CONN(q)->conn_zoneid;
8020 ipst = CONNQ_TO_IPST(q);

8022 /* Existence verified in ip_wput_nondata */
8023 mp1 = mp->b_cont->b_cont;
8024 sia = (struct sioc_addrreq *)mp1->b_rptr;
8025 sin = (sin_t *)&sia->sa_addr;
8026 switch (sin->sin_family) {
8027 case AF_INET6: {
8028 sin6_t *sin6 = (sin6_t *)sin;

8030 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8031 ipaddr_t v4_addr;

8033 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8034 v4_addr);
8035 ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8036 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8037 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8038 } else {
8039 in6_addr_t v6addr;

8041 v6addr = sin6->sin6_addr;
8042 ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8043 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8044 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8045 }
8046 break;
8047 }

new/usr/src/uts/common/inet/ip/ip_if.c 123

8048 case AF_INET: {
8049 ipaddr_t v4addr;

8051 v4addr = sin->sin_addr.s_addr;
8052 ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8053 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8054 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8055 break;
8056 }
8057 default:
8058 return (EAFNOSUPPORT);
8059 }
8060 if (ire != NULL) {
8061 sia->sa_res = 1;
8062 ire_refrele(ire);
8063 } else {
8064 sia->sa_res = 0;
8065 }
8066 return (0);
8067 }

8069 /*
8070 * Check if this is an address assigned on-link i.e. neighbor,
8071 * and makes sure it’s reachable from the current zone.
8072 * Returns true for my addresses as well.
8073 * Translates mapped addresses to v4 addresses and then
8074 * treats them as such, returning true if the v4 address
8075 * associated with this mapped address is configured.
8076 * Note: Applications will have to be careful what they do
8077 * with the response; use of mapped addresses limits
8078 * what can be done with the socket, especially with
8079 * respect to socket options and ioctls - neither IPv4
8080 * options nor IPv6 sticky options/ancillary data options
8081 * may be used.
8082 */
8083 /* ARGSUSED */
8084 int
8085 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8086 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8087 {
8088 struct sioc_addrreq *sia;
8089 sin_t *sin;
8090 mblk_t *mp1;
8091 ire_t *ire = NULL;
8092 zoneid_t zoneid;
8093 ip_stack_t *ipst;

8095 ip1dbg(("ip_sioctl_tonlink"));

8097 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8098 zoneid = Q_TO_CONN(q)->conn_zoneid;
8099 ipst = CONNQ_TO_IPST(q);

8101 /* Existence verified in ip_wput_nondata */
8102 mp1 = mp->b_cont->b_cont;
8103 sia = (struct sioc_addrreq *)mp1->b_rptr;
8104 sin = (sin_t *)&sia->sa_addr;

8106 /*
8107 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8108 * to make sure we only look at on-link unicast address.
8109 */
8110 switch (sin->sin_family) {
8111 case AF_INET6: {
8112 sin6_t *sin6 = (sin6_t *)sin;

new/usr/src/uts/common/inet/ip/ip_if.c 124

8114 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8115 ipaddr_t v4_addr;

8117 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8118 v4_addr);
8119 if (!CLASSD(v4_addr)) {
8120 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8121 NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8122 0, ipst, NULL);
8123 }
8124 } else {
8125 in6_addr_t v6addr;

8127 v6addr = sin6->sin6_addr;
8128 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8129 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8130 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8131 ipst, NULL);
8132 }
8133 }
8134 break;
8135 }
8136 case AF_INET: {
8137 ipaddr_t v4addr;

8139 v4addr = sin->sin_addr.s_addr;
8140 if (!CLASSD(v4addr)) {
8141 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8142 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8143 }
8144 break;
8145 }
8146 default:
8147 return (EAFNOSUPPORT);
8148 }
8149 sia->sa_res = 0;
8150 if (ire != NULL) {
8151 ASSERT(!(ire->ire_type & IRE_MULTICAST));

8153 if ((ire->ire_type & IRE_ONLINK) &&
8154 !(ire->ire_type & IRE_BROADCAST))
8155 sia->sa_res = 1;
8156 ire_refrele(ire);
8157 }
8158 return (0);
8159 }

8161 /*
8162 * TBD: implement when kernel maintaines a list of site prefixes.
8163 */
8164 /* ARGSUSED */
8165 int
8166 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8167 ip_ioctl_cmd_t *ipip, void *ifreq)
8168 {
8169 return (ENXIO);
8170 }

8172 /* ARP IOCTLs. */
8173 /* ARGSUSED */
8174 int
8175 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8176 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8177 {
8178 int err;
8179 ipaddr_t ipaddr;

new/usr/src/uts/common/inet/ip/ip_if.c 125

8180 struct iocblk *iocp;
8181 conn_t *connp;
8182 struct arpreq *ar;
8183 struct xarpreq *xar;
8184 int arp_flags, flags, alength;
8185 uchar_t *lladdr;
8186 ip_stack_t *ipst;
8187 ill_t *ill = ipif->ipif_ill;
8188 ill_t *proxy_ill = NULL;
8189 ipmp_arpent_t *entp = NULL;
8190 boolean_t proxyarp = B_FALSE;
8191 boolean_t if_arp_ioctl = B_FALSE;
8192 ncec_t *ncec = NULL;
8193 nce_t *nce;

8195 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8196 connp = Q_TO_CONN(q);
8197 ipst = connp->conn_netstack->netstack_ip;
8198 iocp = (struct iocblk *)mp->b_rptr;

8200 if (ipip->ipi_cmd_type == XARP_CMD) {
8201 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8202 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8203 ar = NULL;

8205 arp_flags = xar->xarp_flags;
8206 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8207 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8208 /*
8209 * Validate against user’s link layer address length
8210 * input and name and addr length limits.
8211 */
8212 alength = ill->ill_phys_addr_length;
8213 if (ipip->ipi_cmd == SIOCSXARP) {
8214 if (alength != xar->xarp_ha.sdl_alen ||
8215 (alength + xar->xarp_ha.sdl_nlen >
8216 sizeof (xar->xarp_ha.sdl_data)))
8217 return (EINVAL);
8218 }
8219 } else {
8220 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8221 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8222 xar = NULL;

8224 arp_flags = ar->arp_flags;
8225 lladdr = (uchar_t *)ar->arp_ha.sa_data;
8226 /*
8227 * Theoretically, the sa_family could tell us what link
8228 * layer type this operation is trying to deal with. By
8229 * common usage AF_UNSPEC means ethernet. We’ll assume
8230 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8231 * for now. Our new SIOC*XARP ioctls can be used more
8232 * generally.
8233 *
8234 * If the underlying media happens to have a non 6 byte
8235 * address, arp module will fail set/get, but the del
8236 * operation will succeed.
8237 */
8238 alength = 6;
8239 if ((ipip->ipi_cmd != SIOCDARP) &&
8240 (alength != ill->ill_phys_addr_length)) {
8241 return (EINVAL);
8242 }
8243 }

8245 /* Translate ATF* flags to NCE* flags */

new/usr/src/uts/common/inet/ip/ip_if.c 126

8246 flags = 0;
8247 if (arp_flags & ATF_AUTHORITY)
8248 flags |= NCE_F_AUTHORITY;
8249 if (arp_flags & ATF_PERM)
8250 flags |= NCE_F_NONUD; /* not subject to aging */
8251 if (arp_flags & ATF_PUBL)
8252 flags |= NCE_F_PUBLISH;

8254 /*
8255 * IPMP ARP special handling:
8256 *
8257 * 1. Since ARP mappings must appear consistent across the group,
8258 * prohibit changing ARP mappings on the underlying interfaces.
8259 *
8260 * 2. Since ARP mappings for IPMP data addresses are maintained by
8261 * IP itself, prohibit changing them.
8262 *
8263 * 3. For proxy ARP, use a functioning hardware address in the group,
8264 * provided one exists. If one doesn’t, just add the entry as-is;
8265 * ipmp_illgrp_refresh_arpent() will refresh it if things change.
8266 */
8267 if (IS_UNDER_IPMP(ill)) {
8268 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8269 return (EPERM);
8270 }
8271 if (IS_IPMP(ill)) {
8272 ipmp_illgrp_t *illg = ill->ill_grp;

8274 switch (ipip->ipi_cmd) {
8275 case SIOCSARP:
8276 case SIOCSXARP:
8277 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8278 if (proxy_ill != NULL) {
8279 proxyarp = B_TRUE;
8280 if (!ipmp_ill_is_active(proxy_ill))
8281 proxy_ill = ipmp_illgrp_next_ill(illg);
8282 if (proxy_ill != NULL)
8283 lladdr = proxy_ill->ill_phys_addr;
8284 }
8285 /* FALLTHRU */
8286 }
8287 }

8289 ipaddr = sin->sin_addr.s_addr;
8290 /*
8291 * don’t match across illgrp per case (1) and (2).
8292 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8293 */
8294 nce = nce_lookup_v4(ill, &ipaddr);
8295 if (nce != NULL)
8296 ncec = nce->nce_common;

8298 switch (iocp->ioc_cmd) {
8299 case SIOCDARP:
8300 case SIOCDXARP: {
8301 /*
8302 * Delete the NCE if any.
8303 */
8304 if (ncec == NULL) {
8305 iocp->ioc_error = ENXIO;
8306 break;
8307 }
8308 /* Don’t allow changes to arp mappings of local addresses. */
8309 if (NCE_MYADDR(ncec)) {
8310 nce_refrele(nce);
8311 return (ENOTSUP);

new/usr/src/uts/common/inet/ip/ip_if.c 127

8312 }
8313 iocp->ioc_error = 0;

8315 /*
8316 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8317 * This will delete all the nce entries on the under_ills.
8318 */
8319 ncec_delete(ncec);
8320 /*
8321 * Once the NCE has been deleted, then the ire_dep* consistency
8322 * mechanism will find any IRE which depended on the now
8323 * condemned NCE (as part of sending packets).
8324 * That mechanism handles redirects by deleting redirects
8325 * that refer to UNREACHABLE nces.
8326 */
8327 break;
8328 }
8329 case SIOCGARP:
8330 case SIOCGXARP:
8331 if (ncec != NULL) {
8332 lladdr = ncec->ncec_lladdr;
8333 flags = ncec->ncec_flags;
8334 iocp->ioc_error = 0;
8335 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8336 } else {
8337 iocp->ioc_error = ENXIO;
8338 }
8339 break;
8340 case SIOCSARP:
8341 case SIOCSXARP:
8342 /* Don’t allow changes to arp mappings of local addresses. */
8343 if (ncec != NULL && NCE_MYADDR(ncec)) {
8344 nce_refrele(nce);
8345 return (ENOTSUP);
8346 }

8348 /* static arp entries will undergo NUD if ATF_PERM is not set */
8349 flags |= NCE_F_STATIC;
8350 if (!if_arp_ioctl) {
8351 ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8352 lladdr, alength, flags);
8353 } else {
8354 ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8355 if (ipif != NULL) {
8356 ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8357 lladdr, alength, flags);
8358 ipif_refrele(ipif);
8359 }
8360 }
8361 if (nce != NULL) {
8362 nce_refrele(nce);
8363 nce = NULL;
8364 }
8365 /*
8366 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8367 * by nce_add_common()
8368 */
8369 err = nce_lookup_then_add_v4(ill, lladdr,
8370 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8371 &nce);
8372 if (err == EEXIST) {
8373 ncec = nce->nce_common;
8374 mutex_enter(&ncec->ncec_lock);
8375 ncec->ncec_state = ND_REACHABLE;
8376 ncec->ncec_flags = flags;
8377 nce_update(ncec, ND_UNCHANGED, lladdr);

new/usr/src/uts/common/inet/ip/ip_if.c 128

8378 mutex_exit(&ncec->ncec_lock);
8379 err = 0;
8380 }
8381 if (nce != NULL) {
8382 nce_refrele(nce);
8383 nce = NULL;
8384 }
8385 if (IS_IPMP(ill) && err == 0) {
8386 entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8387 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8388 flags);
8389 if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8390 iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8391 break;
8392 }
8393 }
8394 iocp->ioc_error = err;
8395 }

8397 if (nce != NULL) {
8398 nce_refrele(nce);
8399 }

8401 /*
8402 * If we created an IPMP ARP entry, mark that we’ve notified ARP.
8403 */
8404 if (entp != NULL)
8405 ipmp_illgrp_mark_arpent(ill->ill_grp, entp);

8407 return (iocp->ioc_error);
8408 }

8410 /*
8411 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8412 * the associated sin and refhold and return the associated ipif via ‘ci’.
8413 */
8414 int
8415 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8416 cmd_info_t *ci)
8417 {
8418 mblk_t *mp1;
8419 sin_t *sin;
8420 conn_t *connp;
8421 ipif_t *ipif;
8422 ire_t *ire = NULL;
8423 ill_t *ill = NULL;
8424 boolean_t exists;
8425 ip_stack_t *ipst;
8426 struct arpreq *ar;
8427 struct xarpreq *xar;
8428 struct sockaddr_dl *sdl;

8430 /* ioctl comes down on a conn */
8431 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8432 connp = Q_TO_CONN(q);
8433 if (connp->conn_family == AF_INET6)
8434 return (ENXIO);

8436 ipst = connp->conn_netstack->netstack_ip;

8438 /* Verified in ip_wput_nondata */
8439 mp1 = mp->b_cont->b_cont;

8441 if (ipip->ipi_cmd_type == XARP_CMD) {
8442 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8443 xar = (struct xarpreq *)mp1->b_rptr;

new/usr/src/uts/common/inet/ip/ip_if.c 129

8444 sin = (sin_t *)&xar->xarp_pa;
8445 sdl = &xar->xarp_ha;

8447 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8448 return (ENXIO);
8449 if (sdl->sdl_nlen >= LIFNAMSIZ)
8450 return (EINVAL);
8451 } else {
8452 ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8453 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8454 ar = (struct arpreq *)mp1->b_rptr;
8455 sin = (sin_t *)&ar->arp_pa;
8456 }

8458 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8459 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8460 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8461 if (ipif == NULL)
8462 return (ENXIO);
8463 if (ipif->ipif_id != 0) {
8464 ipif_refrele(ipif);
8465 return (ENXIO);
8466 }
8467 } else {
8468 /*
8469 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8470 * of 0: use the IP address to find the ipif. If the IP
8471 * address is an IPMP test address, ire_ftable_lookup() will
8472 * find the wrong ill, so we first do an ipif_lookup_addr().
8473 */
8474 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8475 ipst);
8476 if (ipif == NULL) {
8477 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8478 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8479 NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8480 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8481 if (ire != NULL)
8482 ire_refrele(ire);
8483 return (ENXIO);
8484 }
8485 ASSERT(ire != NULL && ill != NULL);
8486 ipif = ill->ill_ipif;
8487 ipif_refhold(ipif);
8488 ire_refrele(ire);
8489 }
8490 }

8492 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8493 ipif_refrele(ipif);
8494 return (ENXIO);
8495 }

8497 ci->ci_sin = sin;
8498 ci->ci_ipif = ipif;
8499 return (0);
8500 }

8502 /*
8503 * Link or unlink the illgrp on IPMP meta-interface ‘ill’ depending on the
8504 * value of ‘ioccmd’. While an illgrp is linked to an ipmp_grp_t, it is
8505 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8506 * up and thus an ill can join that illgrp.
8507 *
8508 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8509 * open()/close() primarily because close() is not allowed to fail or block

new/usr/src/uts/common/inet/ip/ip_if.c 130

8510 * forever. On the other hand, I_PUNLINK *can* fail, and there’s no reason
8511 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure
8512 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8513 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts
8514 * to I_LINK since I_UNLINK is optional and we’d end up in an inconsistent
8515 * state if I_UNLINK didn’t occur.
8516 *
8517 * Note that for each plumb/unplumb operation, we may end up here more than
8518 * once because of the way ifconfig works. However, it’s OK to link the same
8519 * illgrp more than once, or unlink an illgrp that’s already unlinked.
8520 */
8521 static int
8522 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8523 {
8524 int err;
8525 ip_stack_t *ipst = ill->ill_ipst;

8527 ASSERT(IS_IPMP(ill));
8528 ASSERT(IAM_WRITER_ILL(ill));

8530 switch (ioccmd) {
8531 case I_LINK:
8532 return (ENOTSUP);

8534 case I_PLINK:
8535 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8536 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8537 rw_exit(&ipst->ips_ipmp_lock);
8538 break;

8540 case I_PUNLINK:
8541 /*
8542 * Require all UP ipifs be brought down prior to unlinking the
8543 * illgrp so any associated IREs (and other state) is torched.
8544 */
8545 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8546 return (EBUSY);

8548 /*
8549 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8550 * with an SIOCSLIFGROUPNAME request from an ill trying to
8551 * join this group. Specifically: ills trying to join grab
8552 * ipmp_lock and bump a "pending join" counter checked by
8553 * ipmp_illgrp_unlink_grp(). During the unlink no new pending
8554 * joins can occur (since we have ipmp_lock). Once we drop
8555 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8556 * find the illgrp (since we unlinked it) and will return
8557 * EAFNOSUPPORT. This will then take them back through the
8558 * IPMP meta-interface plumbing logic in ifconfig, and thus
8559 * back through I_PLINK above.
8560 */
8561 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8562 err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8563 rw_exit(&ipst->ips_ipmp_lock);
8564 return (err);
8565 default:
8566 break;
8567 }
8568 return (0);
8569 }

8571 /*
8572 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8573 * atomically set/clear the muxids. Also complete the ioctl by acking or
8574 * naking it. Note that the code is structured such that the link type,
8575 * whether it’s persistent or not, is treated equally. ifconfig(1M) and

new/usr/src/uts/common/inet/ip/ip_if.c 131

8576 * its clones use the persistent link, while pppd(1M) and perhaps many
8577 * other daemons may use non-persistent link. When combined with some
8578 * ill_t states, linking and unlinking lower streams may be used as
8579 * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8580 */
8581 /* ARGSUSED */
8582 void
8583 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8584 {
8585 mblk_t *mp1;
8586 struct linkblk *li;
8587 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8588 int err = 0;

8590 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8591 ioccmd == I_LINK || ioccmd == I_UNLINK);

8593 mp1 = mp->b_cont; /* This is the linkblk info */
8594 li = (struct linkblk *)mp1->b_rptr;

8596 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8597 if (err == EINPROGRESS)
8598 return;
8599 if (err == 0)
8600 miocack(q, mp, 0, 0);
8601 else
8602 miocnak(q, mp, 0, err);

8604 /* Conn was refheld in ip_sioctl_copyin_setup */
8605 if (CONN_Q(q)) {
8606 CONN_DEC_IOCTLREF(Q_TO_CONN(q));
8607 CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8608 }
8609 }

8611 /*
8612 * Process I_{P}LINK and I_{P}UNLINK requests named by ‘ioccmd’ and pointed to
8613 * by ‘mp’ and ‘li’ for the IP module stream (if li->q_bot is in fact an IP
8614 * module stream).
8615 * Returns zero on success, EINPROGRESS if the operation is still pending, or
8616 * an error code on failure.
8617 */
8618 static int
8619 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8620 struct linkblk *li)
8621 {
8622 int err = 0;
8623 ill_t *ill;
8624 queue_t *ipwq, *dwq;
8625 const char *name;
8626 struct qinit *qinfo;
8627 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8628 boolean_t entered_ipsq = B_FALSE;
8629 boolean_t is_ip = B_FALSE;
8630 arl_t *arl;

8632 /*
8633 * Walk the lower stream to verify it’s the IP module stream.
8634 * The IP module is identified by its name, wput function,
8635 * and non-NULL q_next. STREAMS ensures that the lower stream
8636 * (li->l_qbot) will not vanish until this ioctl completes.
8637 */
8638 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8639 qinfo = ipwq->q_qinfo;
8640 name = qinfo->qi_minfo->mi_idname;
8641 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&

new/usr/src/uts/common/inet/ip/ip_if.c 132

8642 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8643 is_ip = B_TRUE;
8644 break;
8645 }
8646 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8647 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8648 break;
8649 }
8650 }

8652 /*
8653 * If this isn’t an IP module stream, bail.
8654 */
8655 if (ipwq == NULL)
8656 return (0);

8658 if (!is_ip) {
8659 arl = (arl_t *)ipwq->q_ptr;
8660 ill = arl_to_ill(arl);
8661 if (ill == NULL)
8662 return (0);
8663 } else {
8664 ill = ipwq->q_ptr;
8665 }
8666 ASSERT(ill != NULL);

8668 if (ipsq == NULL) {
8669 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8670 NEW_OP, B_FALSE);
8671 if (ipsq == NULL) {
8672 if (!is_ip)
8673 ill_refrele(ill);
8674 return (EINPROGRESS);
8675 }
8676 entered_ipsq = B_TRUE;
8677 }
8678 ASSERT(IAM_WRITER_ILL(ill));
8679 mutex_enter(&ill->ill_lock);
8680 if (!is_ip) {
8681 if (islink && ill->ill_muxid == 0) {
8682 /*
8683 * Plumbing has to be done with IP plumbed first, arp
8684 * second, but here we have arp being plumbed first.
8685 */
8686 mutex_exit(&ill->ill_lock);
8687 if (entered_ipsq)
8688 ipsq_exit(ipsq);
8689 ill_refrele(ill);
8690 return (EINVAL);
8691 }
8692 }
8693 mutex_exit(&ill->ill_lock);
8694 if (!is_ip) {
8695 arl->arl_muxid = islink ? li->l_index : 0;
8696 ill_refrele(ill);
8697 goto done;
8698 }

8700 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8701 goto done;

8703 /*
8704 * As part of I_{P}LINKing, stash the number of downstream modules and
8705 * the read queue of the module immediately below IP in the ill.
8706 * These are used during the capability negotiation below.
8707 */

new/usr/src/uts/common/inet/ip/ip_if.c 133

8708 ill->ill_lmod_rq = NULL;
8709 ill->ill_lmod_cnt = 0;
8710 if (islink && ((dwq = ipwq->q_next) != NULL)) {
8711 ill->ill_lmod_rq = RD(dwq);
8712 for (; dwq != NULL; dwq = dwq->q_next)
8713 ill->ill_lmod_cnt++;
8714 }

8716 ill->ill_muxid = islink ? li->l_index : 0;

8718 /*
8719 * Mark the ipsq busy until the capability operations initiated below
8720 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8721 * returns, but the capability operation may complete asynchronously
8722 * much later.
8723 */
8724 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8725 /*
8726 * If there’s at least one up ipif on this ill, then we’re bound to
8727 * the underlying driver via DLPI. In that case, renegotiate
8728 * capabilities to account for any possible change in modules
8729 * interposed between IP and the driver.
8730 */
8731 if (ill->ill_ipif_up_count > 0) {
8732 if (islink)
8733 ill_capability_probe(ill);
8734 else
8735 ill_capability_reset(ill, B_FALSE);
8736 }
8737 ipsq_current_finish(ipsq);
8738 done:
8739 if (entered_ipsq)
8740 ipsq_exit(ipsq);

8742 return (err);
8743 }

8745 /*
8746 * Search the ioctl command in the ioctl tables and return a pointer
8747 * to the ioctl command information. The ioctl command tables are
8748 * static and fully populated at compile time.
8749 */
8750 ip_ioctl_cmd_t *
8751 ip_sioctl_lookup(int ioc_cmd)
8752 {
8753 int index;
8754 ip_ioctl_cmd_t *ipip;
8755 ip_ioctl_cmd_t *ipip_end;

8757 if (ioc_cmd == IPI_DONTCARE)
8758 return (NULL);

8760 /*
8761 * Do a 2 step search. First search the indexed table
8762 * based on the least significant byte of the ioctl cmd.
8763 * If we don’t find a match, then search the misc table
8764 * serially.
8765 */
8766 index = ioc_cmd & 0xFF;
8767 if (index < ip_ndx_ioctl_count) {
8768 ipip = &ip_ndx_ioctl_table[index];
8769 if (ipip->ipi_cmd == ioc_cmd) {
8770 /* Found a match in the ndx table */
8771 return (ipip);
8772 }
8773 }

new/usr/src/uts/common/inet/ip/ip_if.c 134

8775 /* Search the misc table */
8776 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8777 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8778 if (ipip->ipi_cmd == ioc_cmd)
8779 /* Found a match in the misc table */
8780 return (ipip);
8781 }

8783 return (NULL);
8784 }

8786 /*
8787 * helper function for ip_sioctl_getsetprop(), which does some sanity checks
8788 */
8789 static boolean_t
8790 getset_ioctl_checks(mblk_t *mp)
8791 {
8792 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8793 mblk_t *mp1 = mp->b_cont;
8794 mod_ioc_prop_t *pioc;
8795 uint_t flags;
8796 uint_t pioc_size;

8798 /* do sanity checks on various arguments */
8799 if (mp1 == NULL || iocp->ioc_count == 0 ||
8800 iocp->ioc_count == TRANSPARENT) {
8801 return (B_FALSE);
8802 }
8803 if (msgdsize(mp1) < iocp->ioc_count) {
8804 if (!pullupmsg(mp1, iocp->ioc_count))
8805 return (B_FALSE);
8806 }

8808 pioc = (mod_ioc_prop_t *)mp1->b_rptr;

8810 /* sanity checks on mpr_valsize */
8811 pioc_size = sizeof (mod_ioc_prop_t);
8812 if (pioc->mpr_valsize != 0)
8813 pioc_size += pioc->mpr_valsize - 1;

8815 if (iocp->ioc_count != pioc_size)
8816 return (B_FALSE);

8818 flags = pioc->mpr_flags;
8819 if (iocp->ioc_cmd == SIOCSETPROP) {
8820 /*
8821 * One can either reset the value to it’s default value or
8822 * change the current value or append/remove the value from
8823 * a multi-valued properties.
8824 */
8825 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8826 flags != MOD_PROP_ACTIVE &&
8827 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) &&
8828 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE))
8829 return (B_FALSE);
8830 } else {
8831 ASSERT(iocp->ioc_cmd == SIOCGETPROP);

8833 /*
8834 * One can retrieve only one kind of property information
8835 * at a time.
8836 */
8837 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE &&
8838 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8839 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE &&

new/usr/src/uts/common/inet/ip/ip_if.c 135

8840 (flags & MOD_PROP_PERM) != MOD_PROP_PERM)
8841 return (B_FALSE);
8842 }

8844 return (B_TRUE);
8845 }

8847 /*
8848 * process the SIOC{SET|GET}PROP ioctl’s
8849 */
8850 /* ARGSUSED */
8851 static void
8852 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp)
8853 {
8854 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8855 mblk_t *mp1 = mp->b_cont;
8856 mod_ioc_prop_t *pioc;
8857 mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8858 ip_stack_t *ipst;
8859 icmp_stack_t *is;
8860 tcp_stack_t *tcps;
8861 sctp_stack_t *sctps;
8862 dccp_stack_t *dccps;
8863 #endif /* ! codereview */
8864 udp_stack_t *us;
8865 netstack_t *stack;
8866 void *cbarg;
8867 cred_t *cr;
8868 boolean_t set;
8869 int err;

8871 ASSERT(q->q_next == NULL);
8872 ASSERT(CONN_Q(q));

8874 if (!getset_ioctl_checks(mp)) {
8875 miocnak(q, mp, 0, EINVAL);
8876 return;
8877 }
8878 ipst = CONNQ_TO_IPST(q);
8879 stack = ipst->ips_netstack;
8880 pioc = (mod_ioc_prop_t *)mp1->b_rptr;

8882 switch (pioc->mpr_proto) {
8883 case MOD_PROTO_IP:
8884 case MOD_PROTO_IPV4:
8885 case MOD_PROTO_IPV6:
8886 ptbl = ipst->ips_propinfo_tbl;
8887 cbarg = ipst;
8888 break;
8889 case MOD_PROTO_RAWIP:
8890 is = stack->netstack_icmp;
8891 ptbl = is->is_propinfo_tbl;
8892 cbarg = is;
8893 break;
8894 case MOD_PROTO_TCP:
8895 tcps = stack->netstack_tcp;
8896 ptbl = tcps->tcps_propinfo_tbl;
8897 cbarg = tcps;
8898 break;
8899 case MOD_PROTO_UDP:
8900 us = stack->netstack_udp;
8901 ptbl = us->us_propinfo_tbl;
8902 cbarg = us;
8903 break;
8904 case MOD_PROTO_SCTP:
8905 sctps = stack->netstack_sctp;

new/usr/src/uts/common/inet/ip/ip_if.c 136

8906 ptbl = sctps->sctps_propinfo_tbl;
8907 cbarg = sctps;
8908 break;
8909 case MOD_PROTO_DCCP:
8910 dccps = stack->netstack_dccp;
8911 ptbl = dccps->dccps_propinfo_tbl;
8912 cbarg = dccps;
8913 #endif /* ! codereview */
8914 default:
8915 miocnak(q, mp, 0, EINVAL);
8916 return;
8917 }

8919 /* search for given property in respective protocol propinfo table */
8920 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) {
8921 if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 &&
8922 pinfo->mpi_proto == pioc->mpr_proto)
8923 break;
8924 }
8925 if (pinfo->mpi_name == NULL) {
8926 miocnak(q, mp, 0, ENOENT);
8927 return;
8928 }

8930 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE;
8931 if (set && pinfo->mpi_setf != NULL) {
8932 cr = msg_getcred(mp, NULL);
8933 if (cr == NULL)
8934 cr = iocp->ioc_cr;
8935 err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname,
8936 pioc->mpr_val, pioc->mpr_flags);
8937 } else if (!set && pinfo->mpi_getf != NULL) {
8938 err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname,
8939 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags);
8940 } else {
8941 err = EPERM;
8942 }

8944 if (err != 0) {
8945 miocnak(q, mp, 0, err);
8946 } else {
8947 if (set)
8948 miocack(q, mp, 0, 0);
8949 else /* For get, we need to return back the data */
8950 miocack(q, mp, iocp->ioc_count, 0);
8951 }
8952 }

8954 /*
8955 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding
8956 * as several routing daemons have unfortunately used this ’unpublished’
8957 * but well-known ioctls.
8958 */
8959 /* ARGSUSED */
8960 static void
8961 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp)
8962 {
8963 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8964 mblk_t *mp1 = mp->b_cont;
8965 char *pname, *pval, *buf;
8966 uint_t bufsize, proto;
8967 mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8968 ip_stack_t *ipst;
8969 int err = 0;

8971 ASSERT(CONN_Q(q));

new/usr/src/uts/common/inet/ip/ip_if.c 137

8972 ipst = CONNQ_TO_IPST(q);

8974 if (iocp->ioc_count == 0 || mp1 == NULL) {
8975 miocnak(q, mp, 0, EINVAL);
8976 return;
8977 }

8979 mp1->b_datap->db_lim[-1] = ’\0’; /* Force null termination */
8980 pval = buf = pname = (char *)mp1->b_rptr;
8981 bufsize = MBLKL(mp1);

8983 if (strcmp(pname, "ip_forwarding") == 0) {
8984 pname = "forwarding";
8985 proto = MOD_PROTO_IPV4;
8986 } else if (strcmp(pname, "ip6_forwarding") == 0) {
8987 pname = "forwarding";
8988 proto = MOD_PROTO_IPV6;
8989 } else {
8990 miocnak(q, mp, 0, EINVAL);
8991 return;
8992 }

8994 ptbl = ipst->ips_propinfo_tbl;
8995 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) {
8996 if (strcmp(pinfo->mpi_name, pname) == 0 &&
8997 pinfo->mpi_proto == proto)
8998 break;
8999 }

9001 ASSERT(pinfo->mpi_name != NULL);

9003 switch (iocp->ioc_cmd) {
9004 case ND_GET:
9005 if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize,
9006 0)) == 0) {
9007 miocack(q, mp, iocp->ioc_count, 0);
9008 return;
9009 }
9010 break;
9011 case ND_SET:
9012 /*
9013 * buffer will have property name and value in the following
9014 * format,
9015 * <property name>’\0’<property value>’\0’, extract them;
9016 */
9017 while (*pval++)
9018 noop;

9020 if (!*pval || pval >= (char *)mp1->b_wptr) {
9021 err = EINVAL;
9022 } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL,
9023 pval, 0)) == 0) {
9024 miocack(q, mp, 0, 0);
9025 return;
9026 }
9027 break;
9028 default:
9029 err = EINVAL;
9030 break;
9031 }
9032 miocnak(q, mp, 0, err);
9033 }

9035 /*
9036 * Wrapper function for resuming deferred ioctl processing
9037 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,

new/usr/src/uts/common/inet/ip/ip_if.c 138

9038 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9039 */
9040 /* ARGSUSED */
9041 void
9042 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9043 void *dummy_arg)
9044 {
9045 ip_sioctl_copyin_setup(q, mp);
9046 }

9048 /*
9049 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
9050 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle
9051 * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9052 * We establish here the size of the block to be copied in. mi_copyin
9053 * arranges for this to happen, an processing continues in ip_wput_nondata with
9054 * an M_IOCDATA message.
9055 */
9056 void
9057 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9058 {
9059 int copyin_size;
9060 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9061 ip_ioctl_cmd_t *ipip;
9062 cred_t *cr;
9063 ip_stack_t *ipst;

9065 if (CONN_Q(q))
9066 ipst = CONNQ_TO_IPST(q);
9067 else
9068 ipst = ILLQ_TO_IPST(q);

9070 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9071 if (ipip == NULL) {
9072 /*
9073 * The ioctl is not one we understand or own.
9074 * Pass it along to be processed down stream,
9075 * if this is a module instance of IP, else nak
9076 * the ioctl.
9077 */
9078 if (q->q_next == NULL) {
9079 goto nak;
9080 } else {
9081 putnext(q, mp);
9082 return;
9083 }
9084 }

9086 /*
9087 * If this is deferred, then we will do all the checks when we
9088 * come back.
9089 */
9090 if ((iocp->ioc_cmd == SIOCGDSTINFO ||
9091 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
9092 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
9093 return;
9094 }

9096 /*
9097 * Only allow a very small subset of IP ioctls on this stream if
9098 * IP is a module and not a driver. Allowing ioctls to be processed
9099 * in this case may cause assert failures or data corruption.
9100 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
9101 * ioctls allowed on an IP module stream, after which this stream
9102 * normally becomes a multiplexor (at which time the stream head
9103 * will fail all ioctls).

new/usr/src/uts/common/inet/ip/ip_if.c 139

9104 */
9105 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
9106 goto nak;
9107 }

9109 /* Make sure we have ioctl data to process. */
9110 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
9111 goto nak;

9113 /*
9114 * Prefer dblk credential over ioctl credential; some synthesized
9115 * ioctls have kcred set because there’s no way to crhold()
9116 * a credential in some contexts. (ioc_cr is not crfree() by
9117 * the framework; the caller of ioctl needs to hold the reference
9118 * for the duration of the call).
9119 */
9120 cr = msg_getcred(mp, NULL);
9121 if (cr == NULL)
9122 cr = iocp->ioc_cr;

9124 /* Make sure normal users don’t send down privileged ioctls */
9125 if ((ipip->ipi_flags & IPI_PRIV) &&
9126 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
9127 /* We checked the privilege earlier but log it here */
9128 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
9129 return;
9130 }

9132 /*
9133 * The ioctl command tables can only encode fixed length
9134 * ioctl data. If the length is variable, the table will
9135 * encode the length as zero. Such special cases are handled
9136 * below in the switch.
9137 */
9138 if (ipip->ipi_copyin_size != 0) {
9139 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
9140 return;
9141 }

9143 switch (iocp->ioc_cmd) {
9144 case O_SIOCGIFCONF:
9145 case SIOCGIFCONF:
9146 /*
9147 * This IOCTL is hilarious. See comments in
9148 * ip_sioctl_get_ifconf for the story.
9149 */
9150 if (iocp->ioc_count == TRANSPARENT)
9151 copyin_size = SIZEOF_STRUCT(ifconf,
9152 iocp->ioc_flag);
9153 else
9154 copyin_size = iocp->ioc_count;
9155 mi_copyin(q, mp, NULL, copyin_size);
9156 return;

9158 case O_SIOCGLIFCONF:
9159 case SIOCGLIFCONF:
9160 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
9161 mi_copyin(q, mp, NULL, copyin_size);
9162 return;

9164 case SIOCGLIFSRCOF:
9165 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
9166 mi_copyin(q, mp, NULL, copyin_size);
9167 return;

9169 case SIOCGIP6ADDRPOLICY:

new/usr/src/uts/common/inet/ip/ip_if.c 140

9170 ip_sioctl_ip6addrpolicy(q, mp);
9171 ip6_asp_table_refrele(ipst);
9172 return;

9174 case SIOCSIP6ADDRPOLICY:
9175 ip_sioctl_ip6addrpolicy(q, mp);
9176 return;

9178 case SIOCGDSTINFO:
9179 ip_sioctl_dstinfo(q, mp);
9180 ip6_asp_table_refrele(ipst);
9181 return;

9183 case ND_SET:
9184 case ND_GET:
9185 ip_process_legacy_nddprop(q, mp);
9186 return;

9188 case SIOCSETPROP:
9189 case SIOCGETPROP:
9190 ip_sioctl_getsetprop(q, mp);
9191 return;

9193 case I_PLINK:
9194 case I_PUNLINK:
9195 case I_LINK:
9196 case I_UNLINK:
9197 /*
9198 * We treat non-persistent link similarly as the persistent
9199 * link case, in terms of plumbing/unplumbing, as well as
9200 * dynamic re-plumbing events indicator. See comments
9201 * in ip_sioctl_plink() for more.
9202 *
9203 * Request can be enqueued in the ’ipsq’ while waiting
9204 * to become exclusive. So bump up the conn ref.
9205 */
9206 if (CONN_Q(q)) {
9207 CONN_INC_REF(Q_TO_CONN(q));
9208 CONN_INC_IOCTLREF(Q_TO_CONN(q))
9209 }
9210 ip_sioctl_plink(NULL, q, mp, NULL);
9211 return;

9213 case IP_IOCTL:
9214 ip_wput_ioctl(q, mp);
9215 return;

9217 case SIOCILB:
9218 /* The ioctl length varies depending on the ILB command. */
9219 copyin_size = iocp->ioc_count;
9220 if (copyin_size < sizeof (ilb_cmd_t))
9221 goto nak;
9222 mi_copyin(q, mp, NULL, copyin_size);
9223 return;

9225 default:
9226 cmn_err(CE_PANIC, "should not happen ");
9227 }
9228 nak:
9229 if (mp->b_cont != NULL) {
9230 freemsg(mp->b_cont);
9231 mp->b_cont = NULL;
9232 }
9233 iocp->ioc_error = EINVAL;
9234 mp->b_datap->db_type = M_IOCNAK;
9235 iocp->ioc_count = 0;

new/usr/src/uts/common/inet/ip/ip_if.c 141

9236 qreply(q, mp);
9237 }

9239 static void
9240 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9241 {
9242 struct arpreq *ar;
9243 struct xarpreq *xar;
9244 mblk_t *tmp;
9245 struct iocblk *iocp;
9246 int x_arp_ioctl = B_FALSE;
9247 int *flagsp;
9248 char *storage = NULL;

9250 ASSERT(ill != NULL);

9252 iocp = (struct iocblk *)mp->b_rptr;
9253 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);

9255 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9256 if ((iocp->ioc_cmd == SIOCGXARP) ||
9257 (iocp->ioc_cmd == SIOCSXARP)) {
9258 x_arp_ioctl = B_TRUE;
9259 xar = (struct xarpreq *)tmp->b_rptr;
9260 flagsp = &xar->xarp_flags;
9261 storage = xar->xarp_ha.sdl_data;
9262 } else {
9263 ar = (struct arpreq *)tmp->b_rptr;
9264 flagsp = &ar->arp_flags;
9265 storage = ar->arp_ha.sa_data;
9266 }

9268 /*
9269 * We’re done if this is not an SIOCG{X}ARP
9270 */
9271 if (x_arp_ioctl) {
9272 storage += ill_xarp_info(&xar->xarp_ha, ill);
9273 if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9274 sizeof (xar->xarp_ha.sdl_data)) {
9275 iocp->ioc_error = EINVAL;
9276 return;
9277 }
9278 }
9279 *flagsp = ATF_INUSE;
9280 /*
9281 * If /sbin/arp told us we are the authority using the "permanent"
9282 * flag, or if this is one of my addresses print "permanent"
9283 * in the /sbin/arp output.
9284 */
9285 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9286 *flagsp |= ATF_AUTHORITY;
9287 if (flags & NCE_F_NONUD)
9288 *flagsp |= ATF_PERM; /* not subject to aging */
9289 if (flags & NCE_F_PUBLISH)
9290 *flagsp |= ATF_PUBL;
9291 if (hwaddr != NULL) {
9292 *flagsp |= ATF_COM;
9293 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9294 }
9295 }

9297 /*
9298 * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9299 * interface) create the next available logical interface for this
9300 * physical interface.
9301 * If ipif is NULL (i.e. the lookup didn’t find one) attempt to create an

new/usr/src/uts/common/inet/ip/ip_if.c 142

9302 * ipif with the specified name.
9303 *
9304 * If the address family is not AF_UNSPEC then set the address as well.
9305 *
9306 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9307 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9308 *
9309 * Executed as a writer on the ill.
9310 * So no lock is needed to traverse the ipif chain, or examine the
9311 * phyint flags.
9312 */
9313 /* ARGSUSED */
9314 int
9315 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9316 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9317 {
9318 mblk_t *mp1;
9319 struct lifreq *lifr;
9320 boolean_t isv6;
9321 boolean_t exists;
9322 char *name;
9323 char *endp;
9324 char *cp;
9325 int namelen;
9326 ipif_t *ipif;
9327 long id;
9328 ipsq_t *ipsq;
9329 ill_t *ill;
9330 sin_t *sin;
9331 int err = 0;
9332 boolean_t found_sep = B_FALSE;
9333 conn_t *connp;
9334 zoneid_t zoneid;
9335 ip_stack_t *ipst = CONNQ_TO_IPST(q);

9337 ASSERT(q->q_next == NULL);
9338 ip1dbg(("ip_sioctl_addif\n"));
9339 /* Existence of mp1 has been checked in ip_wput_nondata */
9340 mp1 = mp->b_cont->b_cont;
9341 /*
9342 * Null terminate the string to protect against buffer
9343 * overrun. String was generated by user code and may not
9344 * be trusted.
9345 */
9346 lifr = (struct lifreq *)mp1->b_rptr;
9347 lifr->lifr_name[LIFNAMSIZ - 1] = ’\0’;
9348 name = lifr->lifr_name;
9349 ASSERT(CONN_Q(q));
9350 connp = Q_TO_CONN(q);
9351 isv6 = (connp->conn_family == AF_INET6);
9352 zoneid = connp->conn_zoneid;
9353 namelen = mi_strlen(name);
9354 if (namelen == 0)
9355 return (EINVAL);

9357 exists = B_FALSE;
9358 if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9359 (mi_strcmp(name, ipif_loopback_name) == 0)) {
9360 /*
9361 * Allow creating lo0 using SIOCLIFADDIF.
9362 * can’t be any other writer thread. So can pass null below
9363 * for the last 4 args to ipif_lookup_name.
9364 */
9365 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9366 &exists, isv6, zoneid, ipst);
9367 /* Prevent any further action */

new/usr/src/uts/common/inet/ip/ip_if.c 143

9368 if (ipif == NULL) {
9369 return (ENOBUFS);
9370 } else if (!exists) {
9371 /* We created the ipif now and as writer */
9372 ipif_refrele(ipif);
9373 return (0);
9374 } else {
9375 ill = ipif->ipif_ill;
9376 ill_refhold(ill);
9377 ipif_refrele(ipif);
9378 }
9379 } else {
9380 /* Look for a colon in the name. */
9381 endp = &name[namelen];
9382 for (cp = endp; --cp > name;) {
9383 if (*cp == IPIF_SEPARATOR_CHAR) {
9384 found_sep = B_TRUE;
9385 /*
9386 * Reject any non-decimal aliases for plumbing
9387 * of logical interfaces. Aliases with leading
9388 * zeroes are also rejected as they introduce
9389 * ambiguity in the naming of the interfaces.
9390 * Comparing with "0" takes care of all such
9391 * cases.
9392 */
9393 if ((strncmp("0", cp+1, 1)) == 0)
9394 return (EINVAL);

9396 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9397 id <= 0 || *endp != ’\0’) {
9398 return (EINVAL);
9399 }
9400 *cp = ’\0’;
9401 break;
9402 }
9403 }
9404 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9405 if (found_sep)
9406 *cp = IPIF_SEPARATOR_CHAR;
9407 if (ill == NULL)
9408 return (ENXIO);
9409 }

9411 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9412 B_TRUE);

9414 /*
9415 * Release the refhold due to the lookup, now that we are excl
9416 * or we are just returning
9417 */
9418 ill_refrele(ill);

9420 if (ipsq == NULL)
9421 return (EINPROGRESS);

9423 /* We are now exclusive on the IPSQ */
9424 ASSERT(IAM_WRITER_ILL(ill));

9426 if (found_sep) {
9427 /* Now see if there is an IPIF with this unit number. */
9428 for (ipif = ill->ill_ipif; ipif != NULL;
9429 ipif = ipif->ipif_next) {
9430 if (ipif->ipif_id == id) {
9431 err = EEXIST;
9432 goto done;
9433 }

new/usr/src/uts/common/inet/ip/ip_if.c 144

9434 }
9435 }

9437 /*
9438 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9439 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name()
9440 * instead.
9441 */
9442 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9443 B_TRUE, B_TRUE, &err)) == NULL) {
9444 goto done;
9445 }

9447 /* Return created name with ioctl */
9448 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9449 IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9450 ip1dbg(("created %s\n", lifr->lifr_name));

9452 /* Set address */
9453 sin = (sin_t *)&lifr->lifr_addr;
9454 if (sin->sin_family != AF_UNSPEC) {
9455 err = ip_sioctl_addr(ipif, sin, q, mp,
9456 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9457 }

9459 done:
9460 ipsq_exit(ipsq);
9461 return (err);
9462 }

9464 /*
9465 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9466 * interface) delete it based on the IP address (on this physical interface).
9467 * Otherwise delete it based on the ipif_id.
9468 * Also, special handling to allow a removeif of lo0.
9469 */
9470 /* ARGSUSED */
9471 int
9472 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9473 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9474 {
9475 conn_t *connp;
9476 ill_t *ill = ipif->ipif_ill;
9477 boolean_t success;
9478 ip_stack_t *ipst;

9480 ipst = CONNQ_TO_IPST(q);

9482 ASSERT(q->q_next == NULL);
9483 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9484 ill->ill_name, ipif->ipif_id, (void *)ipif));
9485 ASSERT(IAM_WRITER_IPIF(ipif));

9487 connp = Q_TO_CONN(q);
9488 /*
9489 * Special case for unplumbing lo0 (the loopback physical interface).
9490 * If unplumbing lo0, the incoming address structure has been
9491 * initialized to all zeros. When unplumbing lo0, all its logical
9492 * interfaces must be removed too.
9493 *
9494 * Note that this interface may be called to remove a specific
9495 * loopback logical interface (eg, lo0:1). But in that case
9496 * ipif->ipif_id != 0 so that the code path for that case is the
9497 * same as any other interface (meaning it skips the code directly
9498 * below).
9499 */

new/usr/src/uts/common/inet/ip/ip_if.c 145

9500 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9501 if (sin->sin_family == AF_UNSPEC &&
9502 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9503 /*
9504 * Mark it condemned. No new ref. will be made to ill.
9505 */
9506 mutex_enter(&ill->ill_lock);
9507 ill->ill_state_flags |= ILL_CONDEMNED;
9508 for (ipif = ill->ill_ipif; ipif != NULL;
9509 ipif = ipif->ipif_next) {
9510 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9511 }
9512 mutex_exit(&ill->ill_lock);

9514 ipif = ill->ill_ipif;
9515 /* unplumb the loopback interface */
9516 ill_delete(ill);
9517 mutex_enter(&connp->conn_lock);
9518 mutex_enter(&ill->ill_lock);

9520 /* Are any references to this ill active */
9521 if (ill_is_freeable(ill)) {
9522 mutex_exit(&ill->ill_lock);
9523 mutex_exit(&connp->conn_lock);
9524 ill_delete_tail(ill);
9525 mi_free(ill);
9526 return (0);
9527 }
9528 success = ipsq_pending_mp_add(connp, ipif,
9529 CONNP_TO_WQ(connp), mp, ILL_FREE);
9530 mutex_exit(&connp->conn_lock);
9531 mutex_exit(&ill->ill_lock);
9532 if (success)
9533 return (EINPROGRESS);
9534 else
9535 return (EINTR);
9536 }
9537 }

9539 if (ipif->ipif_id == 0) {
9540 ipsq_t *ipsq;

9542 /* Find based on address */
9543 if (ipif->ipif_isv6) {
9544 sin6_t *sin6;

9546 if (sin->sin_family != AF_INET6)
9547 return (EAFNOSUPPORT);

9549 sin6 = (sin6_t *)sin;
9550 /* We are a writer, so we should be able to lookup */
9551 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9552 ipst);
9553 } else {
9554 if (sin->sin_family != AF_INET)
9555 return (EAFNOSUPPORT);

9557 /* We are a writer, so we should be able to lookup */
9558 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9559 ipst);
9560 }
9561 if (ipif == NULL) {
9562 return (EADDRNOTAVAIL);
9563 }

9565 /*

new/usr/src/uts/common/inet/ip/ip_if.c 146

9566 * It is possible for a user to send an SIOCLIFREMOVEIF with
9567 * lifr_name of the physical interface but with an ip address
9568 * lifr_addr of a logical interface plumbed over it.
9569 * So update ipx_current_ipif now that ipif points to the
9570 * correct one.
9571 */
9572 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9573 ipsq->ipsq_xop->ipx_current_ipif = ipif;

9575 /* This is a writer */
9576 ipif_refrele(ipif);
9577 }

9579 /*
9580 * Can not delete instance zero since it is tied to the ill.
9581 */
9582 if (ipif->ipif_id == 0)
9583 return (EBUSY);

9585 mutex_enter(&ill->ill_lock);
9586 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9587 mutex_exit(&ill->ill_lock);

9589 ipif_free(ipif);

9591 mutex_enter(&connp->conn_lock);
9592 mutex_enter(&ill->ill_lock);

9594 /* Are any references to this ipif active */
9595 if (ipif_is_freeable(ipif)) {
9596 mutex_exit(&ill->ill_lock);
9597 mutex_exit(&connp->conn_lock);
9598 ipif_non_duplicate(ipif);
9599 (void) ipif_down_tail(ipif);
9600 ipif_free_tail(ipif); /* frees ipif */
9601 return (0);
9602 }
9603 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9604 IPIF_FREE);
9605 mutex_exit(&ill->ill_lock);
9606 mutex_exit(&connp->conn_lock);
9607 if (success)
9608 return (EINPROGRESS);
9609 else
9610 return (EINTR);
9611 }

9613 /*
9614 * Restart the removeif ioctl. The refcnt has gone down to 0.
9615 * The ipif is already condemned. So can’t find it thru lookups.
9616 */
9617 /* ARGSUSED */
9618 int
9619 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9620 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9621 {
9622 ill_t *ill = ipif->ipif_ill;

9624 ASSERT(IAM_WRITER_IPIF(ipif));
9625 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);

9627 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9628 ill->ill_name, ipif->ipif_id, (void *)ipif));

9630 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9631 ASSERT(ill->ill_state_flags & ILL_CONDEMNED);

new/usr/src/uts/common/inet/ip/ip_if.c 147

9632 ill_delete_tail(ill);
9633 mi_free(ill);
9634 return (0);
9635 }

9637 ipif_non_duplicate(ipif);
9638 (void) ipif_down_tail(ipif);
9639 ipif_free_tail(ipif);

9641 return (0);
9642 }

9644 /*
9645 * Set the local interface address using the given prefix and ill_token.
9646 */
9647 /* ARGSUSED */
9648 int
9649 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9650 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9651 {
9652 int err;
9653 in6_addr_t v6addr;
9654 sin6_t *sin6;
9655 ill_t *ill;
9656 int i;

9658 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n",
9659 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

9661 ASSERT(IAM_WRITER_IPIF(ipif));

9663 if (!ipif->ipif_isv6)
9664 return (EINVAL);

9666 if (sin->sin_family != AF_INET6)
9667 return (EAFNOSUPPORT);

9669 sin6 = (sin6_t *)sin;
9670 v6addr = sin6->sin6_addr;
9671 ill = ipif->ipif_ill;

9673 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) ||
9674 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
9675 return (EADDRNOTAVAIL);

9677 for (i = 0; i < 4; i++)
9678 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i];

9680 err = ip_sioctl_addr(ipif, sin, q, mp,
9681 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq);
9682 return (err);
9683 }

9685 /*
9686 * Restart entry point to restart the address set operation after the
9687 * refcounts have dropped to zero.
9688 */
9689 /* ARGSUSED */
9690 int
9691 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9692 ip_ioctl_cmd_t *ipip, void *ifreq)
9693 {
9694 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n",
9695 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9696 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq));
9697 }

new/usr/src/uts/common/inet/ip/ip_if.c 148

9699 /*
9700 * Set the local interface address.
9701 * Allow an address of all zero when the interface is down.
9702 */
9703 /* ARGSUSED */
9704 int
9705 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9706 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9707 {
9708 int err = 0;
9709 in6_addr_t v6addr;
9710 boolean_t need_up = B_FALSE;
9711 ill_t *ill;
9712 int i;

9714 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9715 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

9717 ASSERT(IAM_WRITER_IPIF(ipif));

9719 ill = ipif->ipif_ill;
9720 if (ipif->ipif_isv6) {
9721 sin6_t *sin6;
9722 phyint_t *phyi;

9724 if (sin->sin_family != AF_INET6)
9725 return (EAFNOSUPPORT);

9727 sin6 = (sin6_t *)sin;
9728 v6addr = sin6->sin6_addr;
9729 phyi = ill->ill_phyint;

9731 /*
9732 * Enforce that true multicast interfaces have a link-local
9733 * address for logical unit 0.
9734 *
9735 * However for those ipif’s for which link-local address was
9736 * not created by default, also allow setting :: as the address.
9737 * This scenario would arise, when we delete an address on ipif
9738 * with logical unit 0, we would want to set :: as the address.
9739 */
9740 if (ipif->ipif_id == 0 &&
9741 (ill->ill_flags & ILLF_MULTICAST) &&
9742 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9743 !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9744 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {

9746 /*
9747 * if default link-local was not created by kernel for
9748 * this ill, allow setting :: as the address on ipif:0.
9749 */
9750 if (ill->ill_flags & ILLF_NOLINKLOCAL) {
9751 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr))
9752 return (EADDRNOTAVAIL);
9753 } else {
9754 return (EADDRNOTAVAIL);
9755 }
9756 }

9758 /*
9759 * up interfaces shouldn’t have the unspecified address
9760 * unless they also have the IPIF_NOLOCAL flags set and
9761 * have a subnet assigned.
9762 */
9763 if ((ipif->ipif_flags & IPIF_UP) &&

new/usr/src/uts/common/inet/ip/ip_if.c 149

9764 IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9765 (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9766 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9767 return (EADDRNOTAVAIL);
9768 }

9770 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9771 return (EADDRNOTAVAIL);
9772 } else {
9773 ipaddr_t addr;

9775 if (sin->sin_family != AF_INET)
9776 return (EAFNOSUPPORT);

9778 addr = sin->sin_addr.s_addr;

9780 /* Allow INADDR_ANY as the local address. */
9781 if (addr != INADDR_ANY &&
9782 !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9783 return (EADDRNOTAVAIL);

9785 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9786 }
9787 /*
9788 * verify that the address being configured is permitted by the
9789 * ill_allowed_ips[] for the interface.
9790 */
9791 if (ill->ill_allowed_ips_cnt > 0) {
9792 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) {
9793 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i],
9794 &v6addr))
9795 break;
9796 }
9797 if (i == ill->ill_allowed_ips_cnt) {
9798 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr);
9799 return (EPERM);
9800 }
9801 }
9802 /*
9803 * Even if there is no change we redo things just to rerun
9804 * ipif_set_default.
9805 */
9806 if (ipif->ipif_flags & IPIF_UP) {
9807 /*
9808 * Setting a new local address, make sure
9809 * we have net and subnet bcast ire’s for
9810 * the old address if we need them.
9811 */
9812 /*
9813 * If the interface is already marked up,
9814 * we call ipif_down which will take care
9815 * of ditching any IREs that have been set
9816 * up based on the old interface address.
9817 */
9818 err = ipif_logical_down(ipif, q, mp);
9819 if (err == EINPROGRESS)
9820 return (err);
9821 (void) ipif_down_tail(ipif);
9822 need_up = 1;
9823 }

9825 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9826 return (err);
9827 }

9829 int

new/usr/src/uts/common/inet/ip/ip_if.c 150

9830 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9831 boolean_t need_up)
9832 {
9833 in6_addr_t v6addr;
9834 in6_addr_t ov6addr;
9835 ipaddr_t addr;
9836 sin6_t *sin6;
9837 int sinlen;
9838 int err = 0;
9839 ill_t *ill = ipif->ipif_ill;
9840 boolean_t need_dl_down;
9841 boolean_t need_arp_down;
9842 struct iocblk *iocp;

9844 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;

9846 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9847 ill->ill_name, ipif->ipif_id, (void *)ipif));
9848 ASSERT(IAM_WRITER_IPIF(ipif));

9850 /* Must cancel any pending timer before taking the ill_lock */
9851 if (ipif->ipif_recovery_id != 0)
9852 (void) untimeout(ipif->ipif_recovery_id);
9853 ipif->ipif_recovery_id = 0;

9855 if (ipif->ipif_isv6) {
9856 sin6 = (sin6_t *)sin;
9857 v6addr = sin6->sin6_addr;
9858 sinlen = sizeof (struct sockaddr_in6);
9859 } else {
9860 addr = sin->sin_addr.s_addr;
9861 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9862 sinlen = sizeof (struct sockaddr_in);
9863 }
9864 mutex_enter(&ill->ill_lock);
9865 ov6addr = ipif->ipif_v6lcl_addr;
9866 ipif->ipif_v6lcl_addr = v6addr;
9867 sctp_update_ipif_addr(ipif, ov6addr);
9868 ipif->ipif_addr_ready = 0;

9870 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);

9872 /*
9873 * If the interface was previously marked as a duplicate, then since
9874 * we’ve now got a "new" address, it should no longer be considered a
9875 * duplicate -- even if the "new" address is the same as the old one.
9876 * Note that if all ipifs are down, we may have a pending ARP down
9877 * event to handle. This is because we want to recover from duplicates
9878 * and thus delay tearing down ARP until the duplicates have been
9879 * removed or disabled.
9880 */
9881 need_dl_down = need_arp_down = B_FALSE;
9882 if (ipif->ipif_flags & IPIF_DUPLICATE) {
9883 need_arp_down = !need_up;
9884 ipif->ipif_flags &= ~IPIF_DUPLICATE;
9885 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9886 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9887 need_dl_down = B_TRUE;
9888 }
9889 }

9891 ipif_set_default(ipif);

9893 /*
9894 * If we’ve just manually set the IPv6 link-local address (0th ipif),
9895 * tag the ill so that future updates to the interface ID don’t result

new/usr/src/uts/common/inet/ip/ip_if.c 151

9896 * in this address getting automatically reconfigured from under the
9897 * administrator.
9898 */
9899 if (ipif->ipif_isv6 && ipif->ipif_id == 0) {
9900 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR &&
9901 !IN6_IS_ADDR_UNSPECIFIED(&v6addr)))
9902 ill->ill_manual_linklocal = 1;
9903 }

9905 /*
9906 * When publishing an interface address change event, we only notify
9907 * the event listeners of the new address. It is assumed that if they
9908 * actively care about the addresses assigned that they will have
9909 * already discovered the previous address assigned (if there was one.)
9910 *
9911 * Don’t attach nic event message for SIOCLIFADDIF ioctl.
9912 */
9913 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9914 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9915 NE_ADDRESS_CHANGE, sin, sinlen);
9916 }

9918 mutex_exit(&ill->ill_lock);

9920 if (need_up) {
9921 /*
9922 * Now bring the interface back up. If this
9923 * is the only IPIF for the ILL, ipif_up
9924 * will have to re-bind to the device, so
9925 * we may get back EINPROGRESS, in which
9926 * case, this IOCTL will get completed in
9927 * ip_rput_dlpi when we see the DL_BIND_ACK.
9928 */
9929 err = ipif_up(ipif, q, mp);
9930 } else {
9931 /* Perhaps ilgs should use this ill */
9932 update_conn_ill(NULL, ill->ill_ipst);
9933 }

9935 if (need_dl_down)
9936 ill_dl_down(ill);

9938 if (need_arp_down && !ill->ill_isv6)
9939 (void) ipif_arp_down(ipif);

9941 /*
9942 * The default multicast interface might have changed (for
9943 * instance if the IPv6 scope of the address changed)
9944 */
9945 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);

9947 return (err);
9948 }

9950 /*
9951 * Restart entry point to restart the address set operation after the
9952 * refcounts have dropped to zero.
9953 */
9954 /* ARGSUSED */
9955 int
9956 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9957 ip_ioctl_cmd_t *ipip, void *ifreq)
9958 {
9959 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9960 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9961 ASSERT(IAM_WRITER_IPIF(ipif));

new/usr/src/uts/common/inet/ip/ip_if.c 152

9962 (void) ipif_down_tail(ipif);
9963 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9964 }

9966 /* ARGSUSED */
9967 int
9968 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9969 ip_ioctl_cmd_t *ipip, void *if_req)
9970 {
9971 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9972 struct lifreq *lifr = (struct lifreq *)if_req;

9974 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9975 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9976 /*
9977 * The net mask and address can’t change since we have a
9978 * reference to the ipif. So no lock is necessary.
9979 */
9980 if (ipif->ipif_isv6) {
9981 *sin6 = sin6_null;
9982 sin6->sin6_family = AF_INET6;
9983 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9984 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9985 lifr->lifr_addrlen =
9986 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9987 } else {
9988 *sin = sin_null;
9989 sin->sin_family = AF_INET;
9990 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9991 if (ipip->ipi_cmd_type == LIF_CMD) {
9992 lifr->lifr_addrlen =
9993 ip_mask_to_plen(ipif->ipif_net_mask);
9994 }
9995 }
9996 return (0);
9997 }

9999 /*
10000 * Set the destination address for a pt-pt interface.
10001 */
10002 /* ARGSUSED */
10003 int
10004 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10005 ip_ioctl_cmd_t *ipip, void *if_req)
10006 {
10007 int err = 0;
10008 in6_addr_t v6addr;
10009 boolean_t need_up = B_FALSE;

10011 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
10012 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10013 ASSERT(IAM_WRITER_IPIF(ipif));

10015 if (ipif->ipif_isv6) {
10016 sin6_t *sin6;

10018 if (sin->sin_family != AF_INET6)
10019 return (EAFNOSUPPORT);

10021 sin6 = (sin6_t *)sin;
10022 v6addr = sin6->sin6_addr;

10024 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
10025 return (EADDRNOTAVAIL);
10026 } else {
10027 ipaddr_t addr;

new/usr/src/uts/common/inet/ip/ip_if.c 153

10029 if (sin->sin_family != AF_INET)
10030 return (EAFNOSUPPORT);

10032 addr = sin->sin_addr.s_addr;
10033 if (addr != INADDR_ANY &&
10034 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) {
10035 return (EADDRNOTAVAIL);
10036 }

10038 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10039 }

10041 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
10042 return (0); /* No change */

10044 if (ipif->ipif_flags & IPIF_UP) {
10045 /*
10046 * If the interface is already marked up,
10047 * we call ipif_down which will take care
10048 * of ditching any IREs that have been set
10049 * up based on the old pp dst address.
10050 */
10051 err = ipif_logical_down(ipif, q, mp);
10052 if (err == EINPROGRESS)
10053 return (err);
10054 (void) ipif_down_tail(ipif);
10055 need_up = B_TRUE;
10056 }
10057 /*
10058 * could return EINPROGRESS. If so ioctl will complete in
10059 * ip_rput_dlpi_writer
10060 */
10061 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
10062 return (err);
10063 }

10065 static int
10066 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10067 boolean_t need_up)
10068 {
10069 in6_addr_t v6addr;
10070 ill_t *ill = ipif->ipif_ill;
10071 int err = 0;
10072 boolean_t need_dl_down;
10073 boolean_t need_arp_down;

10075 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
10076 ipif->ipif_id, (void *)ipif));

10078 /* Must cancel any pending timer before taking the ill_lock */
10079 if (ipif->ipif_recovery_id != 0)
10080 (void) untimeout(ipif->ipif_recovery_id);
10081 ipif->ipif_recovery_id = 0;

10083 if (ipif->ipif_isv6) {
10084 sin6_t *sin6;

10086 sin6 = (sin6_t *)sin;
10087 v6addr = sin6->sin6_addr;
10088 } else {
10089 ipaddr_t addr;

10091 addr = sin->sin_addr.s_addr;
10092 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10093 }

new/usr/src/uts/common/inet/ip/ip_if.c 154

10094 mutex_enter(&ill->ill_lock);
10095 /* Set point to point destination address. */
10096 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10097 /*
10098 * Allow this as a means of creating logical
10099 * pt-pt interfaces on top of e.g. an Ethernet.
10100 * XXX Undocumented HACK for testing.
10101 * pt-pt interfaces are created with NUD disabled.
10102 */
10103 ipif->ipif_flags |= IPIF_POINTOPOINT;
10104 ipif->ipif_flags &= ~IPIF_BROADCAST;
10105 if (ipif->ipif_isv6)
10106 ill->ill_flags |= ILLF_NONUD;
10107 }

10109 /*
10110 * If the interface was previously marked as a duplicate, then since
10111 * we’ve now got a "new" address, it should no longer be considered a
10112 * duplicate -- even if the "new" address is the same as the old one.
10113 * Note that if all ipifs are down, we may have a pending ARP down
10114 * event to handle.
10115 */
10116 need_dl_down = need_arp_down = B_FALSE;
10117 if (ipif->ipif_flags & IPIF_DUPLICATE) {
10118 need_arp_down = !need_up;
10119 ipif->ipif_flags &= ~IPIF_DUPLICATE;
10120 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
10121 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
10122 need_dl_down = B_TRUE;
10123 }
10124 }

10126 /*
10127 * If we’ve just manually set the IPv6 destination link-local address
10128 * (0th ipif), tag the ill so that future updates to the destination
10129 * interface ID (as can happen with interfaces over IP tunnels) don’t
10130 * result in this address getting automatically reconfigured from
10131 * under the administrator.
10132 */
10133 if (ipif->ipif_isv6 && ipif->ipif_id == 0)
10134 ill->ill_manual_dst_linklocal = 1;

10136 /* Set the new address. */
10137 ipif->ipif_v6pp_dst_addr = v6addr;
10138 /* Make sure subnet tracks pp_dst */
10139 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
10140 mutex_exit(&ill->ill_lock);

10142 if (need_up) {
10143 /*
10144 * Now bring the interface back up. If this
10145 * is the only IPIF for the ILL, ipif_up
10146 * will have to re-bind to the device, so
10147 * we may get back EINPROGRESS, in which
10148 * case, this IOCTL will get completed in
10149 * ip_rput_dlpi when we see the DL_BIND_ACK.
10150 */
10151 err = ipif_up(ipif, q, mp);
10152 }

10154 if (need_dl_down)
10155 ill_dl_down(ill);
10156 if (need_arp_down && !ipif->ipif_isv6)
10157 (void) ipif_arp_down(ipif);

10159 return (err);

new/usr/src/uts/common/inet/ip/ip_if.c 155

10160 }

10162 /*
10163 * Restart entry point to restart the dstaddress set operation after the
10164 * refcounts have dropped to zero.
10165 */
10166 /* ARGSUSED */
10167 int
10168 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10169 ip_ioctl_cmd_t *ipip, void *ifreq)
10170 {
10171 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
10172 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10173 (void) ipif_down_tail(ipif);
10174 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
10175 }

10177 /* ARGSUSED */
10178 int
10179 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10180 ip_ioctl_cmd_t *ipip, void *if_req)
10181 {
10182 sin6_t *sin6 = (struct sockaddr_in6 *)sin;

10184 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
10185 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10186 /*
10187 * Get point to point destination address. The addresses can’t
10188 * change since we hold a reference to the ipif.
10189 */
10190 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
10191 return (EADDRNOTAVAIL);

10193 if (ipif->ipif_isv6) {
10194 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10195 *sin6 = sin6_null;
10196 sin6->sin6_family = AF_INET6;
10197 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
10198 } else {
10199 *sin = sin_null;
10200 sin->sin_family = AF_INET;
10201 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
10202 }
10203 return (0);
10204 }

10206 /*
10207 * Check which flags will change by the given flags being set
10208 * silently ignore flags which userland is not allowed to control.
10209 * (Because these flags may change between SIOCGLIFFLAGS and
10210 * SIOCSLIFFLAGS, and that’s outside of userland’s control,
10211 * we need to silently ignore them rather than fail.)
10212 */
10213 static void
10214 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
10215 uint64_t *offp)
10216 {
10217 ill_t *ill = ipif->ipif_ill;
10218 phyint_t *phyi = ill->ill_phyint;
10219 uint64_t cantchange_flags, intf_flags;
10220 uint64_t turn_on, turn_off;

10222 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10223 cantchange_flags = IFF_CANTCHANGE;
10224 if (IS_IPMP(ill))
10225 cantchange_flags |= IFF_IPMP_CANTCHANGE;

new/usr/src/uts/common/inet/ip/ip_if.c 156

10226 turn_on = (flags ^ intf_flags) & ~cantchange_flags;
10227 turn_off = intf_flags & turn_on;
10228 turn_on ^= turn_off;
10229 *onp = turn_on;
10230 *offp = turn_off;
10231 }

10233 /*
10234 * Set interface flags. Many flags require special handling (e.g.,
10235 * bringing the interface down); see below for details.
10236 *
10237 * NOTE : We really don’t enforce that ipif_id zero should be used
10238 * for setting any flags other than IFF_LOGINT_FLAGS. This
10239 * is because applications generally does SICGLIFFLAGS and
10240 * ORs in the new flags (that affects the logical) and does a
10241 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
10242 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
10243 * flags that will be turned on is correct with respect to
10244 * ipif_id 0. For backward compatibility reasons, it is not done.
10245 */
10246 /* ARGSUSED */
10247 int
10248 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10249 ip_ioctl_cmd_t *ipip, void *if_req)
10250 {
10251 uint64_t turn_on;
10252 uint64_t turn_off;
10253 int err = 0;
10254 phyint_t *phyi;
10255 ill_t *ill;
10256 conn_t *connp;
10257 uint64_t intf_flags;
10258 boolean_t phyint_flags_modified = B_FALSE;
10259 uint64_t flags;
10260 struct ifreq *ifr;
10261 struct lifreq *lifr;
10262 boolean_t set_linklocal = B_FALSE;

10264 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
10265 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

10267 ASSERT(IAM_WRITER_IPIF(ipif));

10269 ill = ipif->ipif_ill;
10270 phyi = ill->ill_phyint;

10272 if (ipip->ipi_cmd_type == IF_CMD) {
10273 ifr = (struct ifreq *)if_req;
10274 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10275 } else {
10276 lifr = (struct lifreq *)if_req;
10277 flags = lifr->lifr_flags;
10278 }

10280 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;

10282 /*
10283 * Have the flags been set correctly until now?
10284 */
10285 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10286 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10287 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10288 /*
10289 * Compare the new flags to the old, and partition
10290 * into those coming on and those going off.
10291 * For the 16 bit command keep the bits above bit 16 unchanged.

new/usr/src/uts/common/inet/ip/ip_if.c 157

10292 */
10293 if (ipip->ipi_cmd == SIOCSIFFLAGS)
10294 flags |= intf_flags & ~0xFFFF;

10296 /*
10297 * Explicitly fail attempts to change flags that are always invalid on
10298 * an IPMP meta-interface.
10299 */
10300 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10301 return (EINVAL);

10303 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10304 if ((turn_on|turn_off) == 0)
10305 return (0); /* No change */

10307 /*
10308 * All test addresses must be IFF_DEPRECATED (to ensure source address
10309 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10310 * allow it to be turned off.
10311 */
10312 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10313 (turn_on|intf_flags) & IFF_NOFAILOVER)
10314 return (EINVAL);

10316 if ((connp = Q_TO_CONN(q)) == NULL)
10317 return (EINVAL);

10319 /*
10320 * Only vrrp control socket is allowed to change IFF_UP and
10321 * IFF_NOACCEPT flags when IFF_VRRP is set.
10322 */
10323 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10324 if (!connp->conn_isvrrp)
10325 return (EINVAL);
10326 }

10328 /*
10329 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10330 * VRRP control socket.
10331 */
10332 if ((turn_off | turn_on) & IFF_NOACCEPT) {
10333 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10334 return (EINVAL);
10335 }

10337 if (turn_on & IFF_NOFAILOVER) {
10338 turn_on |= IFF_DEPRECATED;
10339 flags |= IFF_DEPRECATED;
10340 }

10342 /*
10343 * On underlying interfaces, only allow applications to manage test
10344 * addresses -- otherwise, they may get confused when the address
10345 * moves as part of being brought up. Likewise, prevent an
10346 * application-managed test address from being converted to a data
10347 * address. To prevent migration of administratively up addresses in
10348 * the kernel, we don’t allow them to be converted either.
10349 */
10350 if (IS_UNDER_IPMP(ill)) {
10351 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;

10353 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10354 return (EINVAL);

10356 if ((turn_off & IFF_NOFAILOVER) &&
10357 (flags & (appflags | IFF_UP | IFF_DUPLICATE)))

new/usr/src/uts/common/inet/ip/ip_if.c 158

10358 return (EINVAL);
10359 }

10361 /*
10362 * Only allow IFF_TEMPORARY flag to be set on
10363 * IPv6 interfaces.
10364 */
10365 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10366 return (EINVAL);

10368 /*
10369 * cannot turn off IFF_NOXMIT on VNI interfaces.
10370 */
10371 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10372 return (EINVAL);

10374 /*
10375 * Don’t allow the IFF_ROUTER flag to be turned on on loopback
10376 * interfaces. It makes no sense in that context.
10377 */
10378 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10379 return (EINVAL);

10381 /*
10382 * For IPv6 ipif_id 0, don’t allow the interface to be up without
10383 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10384 * If the link local address isn’t set, and can be set, it will get
10385 * set later on in this function.
10386 */
10387 if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10388 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10389 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10390 if (ipif_cant_setlinklocal(ipif))
10391 return (EINVAL);
10392 set_linklocal = B_TRUE;
10393 }

10395 /*
10396 * If we modify physical interface flags, we’ll potentially need to
10397 * send up two routing socket messages for the changes (one for the
10398 * IPv4 ill, and another for the IPv6 ill). Note that here.
10399 */
10400 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10401 phyint_flags_modified = B_TRUE;

10403 /*
10404 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10405 * (otherwise, we’d immediately use them, defeating standby). Also,
10406 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10407 * set, don’t allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10408 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We
10409 * also don’t allow PHYI_STANDBY if VNI is enabled since its semantics
10410 * will not be honored.
10411 */
10412 if (turn_on & PHYI_STANDBY) {
10413 /*
10414 * No need to grab ill_g_usesrc_lock here; see the
10415 * synchronization notes in ip.c.
10416 */
10417 if (ill->ill_usesrc_grp_next != NULL ||
10418 intf_flags & PHYI_INACTIVE)
10419 return (EINVAL);
10420 if (!(flags & PHYI_FAILED)) {
10421 flags |= PHYI_INACTIVE;
10422 turn_on |= PHYI_INACTIVE;
10423 }

new/usr/src/uts/common/inet/ip/ip_if.c 159

10424 }

10426 if (turn_off & PHYI_STANDBY) {
10427 flags &= ~PHYI_INACTIVE;
10428 turn_off |= PHYI_INACTIVE;
10429 }

10431 /*
10432 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10433 * would end up on.
10434 */
10435 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10436 (PHYI_FAILED | PHYI_INACTIVE))
10437 return (EINVAL);

10439 /*
10440 * If ILLF_ROUTER changes, we need to change the ip forwarding
10441 * status of the interface.
10442 */
10443 if ((turn_on | turn_off) & ILLF_ROUTER) {
10444 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10445 if (err != 0)
10446 return (err);
10447 }

10449 /*
10450 * If the interface is not UP and we are not going to
10451 * bring it UP, record the flags and return. When the
10452 * interface comes UP later, the right actions will be
10453 * taken.
10454 */
10455 if (!(ipif->ipif_flags & IPIF_UP) &&
10456 !(turn_on & IPIF_UP)) {
10457 /* Record new flags in their respective places. */
10458 mutex_enter(&ill->ill_lock);
10459 mutex_enter(&ill->ill_phyint->phyint_lock);
10460 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10461 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10462 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10463 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10464 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10465 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10466 mutex_exit(&ill->ill_lock);
10467 mutex_exit(&ill->ill_phyint->phyint_lock);

10469 /*
10470 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10471 * same to the kernel: if any of them has been set by
10472 * userland, the interface cannot be used for data traffic.
10473 */
10474 if ((turn_on|turn_off) &
10475 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10476 ASSERT(!IS_IPMP(ill));
10477 /*
10478 * It’s possible the ill is part of an "anonymous"
10479 * IPMP group rather than a real group. In that case,
10480 * there are no other interfaces in the group and thus
10481 * no need to call ipmp_phyint_refresh_active().
10482 */
10483 if (IS_UNDER_IPMP(ill))
10484 ipmp_phyint_refresh_active(phyi);
10485 }

10487 if (phyint_flags_modified) {
10488 if (phyi->phyint_illv4 != NULL) {
10489 ip_rts_ifmsg(phyi->phyint_illv4->

new/usr/src/uts/common/inet/ip/ip_if.c 160

10490 ill_ipif, RTSQ_DEFAULT);
10491 }
10492 if (phyi->phyint_illv6 != NULL) {
10493 ip_rts_ifmsg(phyi->phyint_illv6->
10494 ill_ipif, RTSQ_DEFAULT);
10495 }
10496 }
10497 /* The default multicast interface might have changed */
10498 ire_increment_multicast_generation(ill->ill_ipst,
10499 ill->ill_isv6);

10501 return (0);
10502 } else if (set_linklocal) {
10503 mutex_enter(&ill->ill_lock);
10504 if (set_linklocal)
10505 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10506 mutex_exit(&ill->ill_lock);
10507 }

10509 /*
10510 * Disallow IPv6 interfaces coming up that have the unspecified address,
10511 * or point-to-point interfaces with an unspecified destination. We do
10512 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10513 * have a subnet assigned, which is how in.ndpd currently manages its
10514 * onlink prefix list when no addresses are configured with those
10515 * prefixes.
10516 */
10517 if (ipif->ipif_isv6 &&
10518 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10519 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10520 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10521 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10522 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10523 return (EINVAL);
10524 }

10526 /*
10527 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10528 * from being brought up.
10529 */
10530 if (!ipif->ipif_isv6 &&
10531 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10532 ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10533 return (EINVAL);
10534 }

10536 /*
10537 * If we are going to change one or more of the flags that are
10538 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10539 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10540 * IPIF_NOFAILOVER, we will take special action. This is
10541 * done by bring the ipif down, changing the flags and bringing
10542 * it back up again. For IPIF_NOFAILOVER, the act of bringing it
10543 * back up will trigger the address to be moved.
10544 *
10545 * If we are going to change IFF_NOACCEPT, we need to bring
10546 * all the ipifs down then bring them up again. The act of
10547 * bringing all the ipifs back up will trigger the local
10548 * ires being recreated with "no_accept" set/cleared.
10549 *
10550 * Note that ILLF_NOACCEPT is always set separately from the
10551 * other flags.
10552 */
10553 if ((turn_on|turn_off) &
10554 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10555 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|

new/usr/src/uts/common/inet/ip/ip_if.c 161

10556 IPIF_NOFAILOVER)) {
10557 /*
10558 * ipif_down() will ire_delete bcast ire’s for the subnet,
10559 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10560 * entries shared between multiple ipifs on the same subnet.
10561 */
10562 if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10563 !(turn_off & IPIF_UP)) {
10564 if (ipif->ipif_flags & IPIF_UP)
10565 ill->ill_logical_down = 1;
10566 turn_on &= ~IPIF_UP;
10567 }
10568 err = ipif_down(ipif, q, mp);
10569 ip1dbg(("ipif_down returns %d err ", err));
10570 if (err == EINPROGRESS)
10571 return (err);
10572 (void) ipif_down_tail(ipif);
10573 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10574 /*
10575 * If we can quiesce the ill, then continue. If not, then
10576 * ip_sioctl_flags_tail() will be called from
10577 * ipif_ill_refrele_tail().
10578 */
10579 ill_down_ipifs(ill, B_TRUE);

10581 mutex_enter(&connp->conn_lock);
10582 mutex_enter(&ill->ill_lock);
10583 if (!ill_is_quiescent(ill)) {
10584 boolean_t success;

10586 success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10587 q, mp, ILL_DOWN);
10588 mutex_exit(&ill->ill_lock);
10589 mutex_exit(&connp->conn_lock);
10590 return (success ? EINPROGRESS : EINTR);
10591 }
10592 mutex_exit(&ill->ill_lock);
10593 mutex_exit(&connp->conn_lock);
10594 }
10595 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10596 }

10598 static int
10599 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10600 {
10601 ill_t *ill;
10602 phyint_t *phyi;
10603 uint64_t turn_on, turn_off;
10604 boolean_t phyint_flags_modified = B_FALSE;
10605 int err = 0;
10606 boolean_t set_linklocal = B_FALSE;

10608 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10609 ipif->ipif_ill->ill_name, ipif->ipif_id));

10611 ASSERT(IAM_WRITER_IPIF(ipif));

10613 ill = ipif->ipif_ill;
10614 phyi = ill->ill_phyint;

10616 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);

10618 /*
10619 * IFF_UP is handled separately.
10620 */
10621 turn_on &= ~IFF_UP;

new/usr/src/uts/common/inet/ip/ip_if.c 162

10622 turn_off &= ~IFF_UP;

10624 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10625 phyint_flags_modified = B_TRUE;

10627 /*
10628 * Now we change the flags. Track current value of
10629 * other flags in their respective places.
10630 */
10631 mutex_enter(&ill->ill_lock);
10632 mutex_enter(&phyi->phyint_lock);
10633 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10634 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10635 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10636 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10637 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10638 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10639 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10640 set_linklocal = B_TRUE;
10641 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10642 }

10644 mutex_exit(&ill->ill_lock);
10645 mutex_exit(&phyi->phyint_lock);

10647 if (set_linklocal)
10648 (void) ipif_setlinklocal(ipif);

10650 /*
10651 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10652 * the kernel: if any of them has been set by userland, the interface
10653 * cannot be used for data traffic.
10654 */
10655 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10656 ASSERT(!IS_IPMP(ill));
10657 /*
10658 * It’s possible the ill is part of an "anonymous" IPMP group
10659 * rather than a real group. In that case, there are no other
10660 * interfaces in the group and thus no need for us to call
10661 * ipmp_phyint_refresh_active().
10662 */
10663 if (IS_UNDER_IPMP(ill))
10664 ipmp_phyint_refresh_active(phyi);
10665 }

10667 if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10668 /*
10669 * If the ILLF_NOACCEPT flag is changed, bring up all the
10670 * ipifs that were brought down.
10671 *
10672 * The routing sockets messages are sent as the result
10673 * of ill_up_ipifs(), further, SCTP’s IPIF list was updated
10674 * as well.
10675 */
10676 err = ill_up_ipifs(ill, q, mp);
10677 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10678 /*
10679 * XXX ipif_up really does not know whether a phyint flags
10680 * was modified or not. So, it sends up information on
10681 * only one routing sockets message. As we don’t bring up
10682 * the interface and also set PHYI_ flags simultaneously
10683 * it should be okay.
10684 */
10685 err = ipif_up(ipif, q, mp);
10686 } else {
10687 /*

new/usr/src/uts/common/inet/ip/ip_if.c 163

10688 * Make sure routing socket sees all changes to the flags.
10689 * ipif_up_done* handles this when we use ipif_up.
10690 */
10691 if (phyint_flags_modified) {
10692 if (phyi->phyint_illv4 != NULL) {
10693 ip_rts_ifmsg(phyi->phyint_illv4->
10694 ill_ipif, RTSQ_DEFAULT);
10695 }
10696 if (phyi->phyint_illv6 != NULL) {
10697 ip_rts_ifmsg(phyi->phyint_illv6->
10698 ill_ipif, RTSQ_DEFAULT);
10699 }
10700 } else {
10701 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10702 }
10703 /*
10704 * Update the flags in SCTP’s IPIF list, ipif_up() will do
10705 * this in need_up case.
10706 */
10707 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10708 }

10710 /* The default multicast interface might have changed */
10711 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10712 return (err);
10713 }

10715 /*
10716 * Restart the flags operation now that the refcounts have dropped to zero.
10717 */
10718 /* ARGSUSED */
10719 int
10720 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10721 ip_ioctl_cmd_t *ipip, void *if_req)
10722 {
10723 uint64_t flags;
10724 struct ifreq *ifr = if_req;
10725 struct lifreq *lifr = if_req;
10726 uint64_t turn_on, turn_off;

10728 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10729 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

10731 if (ipip->ipi_cmd_type == IF_CMD) {
10732 /* cast to uint16_t prevents unwanted sign extension */
10733 flags = (uint16_t)ifr->ifr_flags;
10734 } else {
10735 flags = lifr->lifr_flags;
10736 }

10738 /*
10739 * If this function call is a result of the ILLF_NOACCEPT flag
10740 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10741 */
10742 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10743 if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10744 (void) ipif_down_tail(ipif);

10746 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10747 }

10749 /*
10750 * Can operate on either a module or a driver queue.
10751 */
10752 /* ARGSUSED */
10753 int

new/usr/src/uts/common/inet/ip/ip_if.c 164

10754 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10755 ip_ioctl_cmd_t *ipip, void *if_req)
10756 {
10757 /*
10758 * Has the flags been set correctly till now ?
10759 */
10760 ill_t *ill = ipif->ipif_ill;
10761 phyint_t *phyi = ill->ill_phyint;

10763 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10764 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10765 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10766 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10767 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);

10769 /*
10770 * Need a lock since some flags can be set even when there are
10771 * references to the ipif.
10772 */
10773 mutex_enter(&ill->ill_lock);
10774 if (ipip->ipi_cmd_type == IF_CMD) {
10775 struct ifreq *ifr = (struct ifreq *)if_req;

10777 /* Get interface flags (low 16 only). */
10778 ifr->ifr_flags = ((ipif->ipif_flags |
10779 ill->ill_flags | phyi->phyint_flags) & 0xffff);
10780 } else {
10781 struct lifreq *lifr = (struct lifreq *)if_req;

10783 /* Get interface flags. */
10784 lifr->lifr_flags = ipif->ipif_flags |
10785 ill->ill_flags | phyi->phyint_flags;
10786 }
10787 mutex_exit(&ill->ill_lock);
10788 return (0);
10789 }

10791 /*
10792 * We allow the MTU to be set on an ILL, but not have it be different
10793 * for different IPIFs since we don’t actually send packets on IPIFs.
10794 */
10795 /* ARGSUSED */
10796 int
10797 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10798 ip_ioctl_cmd_t *ipip, void *if_req)
10799 {
10800 int mtu;
10801 int ip_min_mtu;
10802 struct ifreq *ifr;
10803 struct lifreq *lifr;
10804 ill_t *ill;

10806 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10807 ipif->ipif_id, (void *)ipif));
10808 if (ipip->ipi_cmd_type == IF_CMD) {
10809 ifr = (struct ifreq *)if_req;
10810 mtu = ifr->ifr_metric;
10811 } else {
10812 lifr = (struct lifreq *)if_req;
10813 mtu = lifr->lifr_mtu;
10814 }
10815 /* Only allow for logical unit zero i.e. not on "bge0:17" */
10816 if (ipif->ipif_id != 0)
10817 return (EINVAL);

10819 ill = ipif->ipif_ill;

new/usr/src/uts/common/inet/ip/ip_if.c 165

10820 if (ipif->ipif_isv6)
10821 ip_min_mtu = IPV6_MIN_MTU;
10822 else
10823 ip_min_mtu = IP_MIN_MTU;

10825 mutex_enter(&ill->ill_lock);
10826 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10827 mutex_exit(&ill->ill_lock);
10828 return (EINVAL);
10829 }
10830 /* Avoid increasing ill_mc_mtu */
10831 if (ill->ill_mc_mtu > mtu)
10832 ill->ill_mc_mtu = mtu;

10834 /*
10835 * The dce and fragmentation code can handle changes to ill_mtu
10836 * concurrent with sending/fragmenting packets.
10837 */
10838 ill->ill_mtu = mtu;
10839 ill->ill_flags |= ILLF_FIXEDMTU;
10840 mutex_exit(&ill->ill_lock);

10842 /*
10843 * Make sure all dce_generation checks find out
10844 * that ill_mtu/ill_mc_mtu has changed.
10845 */
10846 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);

10848 /*
10849 * Refresh IPMP meta-interface MTU if necessary.
10850 */
10851 if (IS_UNDER_IPMP(ill))
10852 ipmp_illgrp_refresh_mtu(ill->ill_grp);

10854 /* Update the MTU in SCTP’s list */
10855 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10856 return (0);
10857 }

10859 /* Get interface MTU. */
10860 /* ARGSUSED */
10861 int
10862 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10863 ip_ioctl_cmd_t *ipip, void *if_req)
10864 {
10865 struct ifreq *ifr;
10866 struct lifreq *lifr;

10868 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10869 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

10871 /*
10872 * We allow a get on any logical interface even though the set
10873 * can only be done on logical unit 0.
10874 */
10875 if (ipip->ipi_cmd_type == IF_CMD) {
10876 ifr = (struct ifreq *)if_req;
10877 ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10878 } else {
10879 lifr = (struct lifreq *)if_req;
10880 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10881 }
10882 return (0);
10883 }

10885 /* Set interface broadcast address. */

new/usr/src/uts/common/inet/ip/ip_if.c 166

10886 /* ARGSUSED2 */
10887 int
10888 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10889 ip_ioctl_cmd_t *ipip, void *if_req)
10890 {
10891 ipaddr_t addr;
10892 ire_t *ire;
10893 ill_t *ill = ipif->ipif_ill;
10894 ip_stack_t *ipst = ill->ill_ipst;

10896 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10897 ipif->ipif_id));

10899 ASSERT(IAM_WRITER_IPIF(ipif));
10900 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10901 return (EADDRNOTAVAIL);

10903 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */

10905 if (sin->sin_family != AF_INET)
10906 return (EAFNOSUPPORT);

10908 addr = sin->sin_addr.s_addr;

10910 if (ipif->ipif_flags & IPIF_UP) {
10911 /*
10912 * If we are already up, make sure the new
10913 * broadcast address makes sense. If it does,
10914 * there should be an IRE for it already.
10915 */
10916 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10917 ill, ipif->ipif_zoneid, NULL,
10918 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10919 if (ire == NULL) {
10920 return (EINVAL);
10921 } else {
10922 ire_refrele(ire);
10923 }
10924 }
10925 /*
10926 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10927 * needs to already exist we never need to change the set of
10928 * IRE_BROADCASTs when we are UP.
10929 */
10930 if (addr != ipif->ipif_brd_addr)
10931 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);

10933 return (0);
10934 }

10936 /* Get interface broadcast address. */
10937 /* ARGSUSED */
10938 int
10939 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10940 ip_ioctl_cmd_t *ipip, void *if_req)
10941 {
10942 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10943 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10944 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10945 return (EADDRNOTAVAIL);

10947 /* IPIF_BROADCAST not possible with IPv6 */
10948 ASSERT(!ipif->ipif_isv6);
10949 *sin = sin_null;
10950 sin->sin_family = AF_INET;
10951 sin->sin_addr.s_addr = ipif->ipif_brd_addr;

new/usr/src/uts/common/inet/ip/ip_if.c 167

10952 return (0);
10953 }

10955 /*
10956 * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10957 */
10958 /* ARGSUSED */
10959 int
10960 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10961 ip_ioctl_cmd_t *ipip, void *if_req)
10962 {
10963 int err = 0;
10964 in6_addr_t v6mask;

10966 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10967 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

10969 ASSERT(IAM_WRITER_IPIF(ipif));

10971 if (ipif->ipif_isv6) {
10972 sin6_t *sin6;

10974 if (sin->sin_family != AF_INET6)
10975 return (EAFNOSUPPORT);

10977 sin6 = (sin6_t *)sin;
10978 v6mask = sin6->sin6_addr;
10979 } else {
10980 ipaddr_t mask;

10982 if (sin->sin_family != AF_INET)
10983 return (EAFNOSUPPORT);

10985 mask = sin->sin_addr.s_addr;
10986 if (!ip_contiguous_mask(ntohl(mask)))
10987 return (ENOTSUP);
10988 V4MASK_TO_V6(mask, v6mask);
10989 }

10991 /*
10992 * No big deal if the interface isn’t already up, or the mask
10993 * isn’t really changing, or this is pt-pt.
10994 */
10995 if (!(ipif->ipif_flags & IPIF_UP) ||
10996 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10997 (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10998 ipif->ipif_v6net_mask = v6mask;
10999 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11000 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
11001 ipif->ipif_v6net_mask,
11002 ipif->ipif_v6subnet);
11003 }
11004 return (0);
11005 }
11006 /*
11007 * Make sure we have valid net and subnet broadcast ire’s
11008 * for the old netmask, if needed by other logical interfaces.
11009 */
11010 err = ipif_logical_down(ipif, q, mp);
11011 if (err == EINPROGRESS)
11012 return (err);
11013 (void) ipif_down_tail(ipif);
11014 err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
11015 return (err);
11016 }

new/usr/src/uts/common/inet/ip/ip_if.c 168

11018 static int
11019 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
11020 {
11021 in6_addr_t v6mask;
11022 int err = 0;

11024 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
11025 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

11027 if (ipif->ipif_isv6) {
11028 sin6_t *sin6;

11030 sin6 = (sin6_t *)sin;
11031 v6mask = sin6->sin6_addr;
11032 } else {
11033 ipaddr_t mask;

11035 mask = sin->sin_addr.s_addr;
11036 V4MASK_TO_V6(mask, v6mask);
11037 }

11039 ipif->ipif_v6net_mask = v6mask;
11040 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11041 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
11042 ipif->ipif_v6subnet);
11043 }
11044 err = ipif_up(ipif, q, mp);

11046 if (err == 0 || err == EINPROGRESS) {
11047 /*
11048 * The interface must be DL_BOUND if this packet has to
11049 * go out on the wire. Since we only go through a logical
11050 * down and are bound with the driver during an internal
11051 * down/up that is satisfied.
11052 */
11053 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
11054 /* Potentially broadcast an address mask reply. */
11055 ipif_mask_reply(ipif);
11056 }
11057 }
11058 return (err);
11059 }

11061 /* ARGSUSED */
11062 int
11063 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11064 ip_ioctl_cmd_t *ipip, void *if_req)
11065 {
11066 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
11067 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11068 (void) ipif_down_tail(ipif);
11069 return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
11070 }

11072 /* Get interface net mask. */
11073 /* ARGSUSED */
11074 int
11075 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11076 ip_ioctl_cmd_t *ipip, void *if_req)
11077 {
11078 struct lifreq *lifr = (struct lifreq *)if_req;
11079 struct sockaddr_in6 *sin6 = (sin6_t *)sin;

11081 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
11082 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

new/usr/src/uts/common/inet/ip/ip_if.c 169

11084 /*
11085 * net mask can’t change since we have a reference to the ipif.
11086 */
11087 if (ipif->ipif_isv6) {
11088 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11089 *sin6 = sin6_null;
11090 sin6->sin6_family = AF_INET6;
11091 sin6->sin6_addr = ipif->ipif_v6net_mask;
11092 lifr->lifr_addrlen =
11093 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11094 } else {
11095 *sin = sin_null;
11096 sin->sin_family = AF_INET;
11097 sin->sin_addr.s_addr = ipif->ipif_net_mask;
11098 if (ipip->ipi_cmd_type == LIF_CMD) {
11099 lifr->lifr_addrlen =
11100 ip_mask_to_plen(ipif->ipif_net_mask);
11101 }
11102 }
11103 return (0);
11104 }

11106 /* ARGSUSED */
11107 int
11108 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11109 ip_ioctl_cmd_t *ipip, void *if_req)
11110 {
11111 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
11112 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

11114 /*
11115 * Since no applications should ever be setting metrics on underlying
11116 * interfaces, we explicitly fail to smoke ’em out.
11117 */
11118 if (IS_UNDER_IPMP(ipif->ipif_ill))
11119 return (EINVAL);

11121 /*
11122 * Set interface metric. We don’t use this for
11123 * anything but we keep track of it in case it is
11124 * important to routing applications or such.
11125 */
11126 if (ipip->ipi_cmd_type == IF_CMD) {
11127 struct ifreq *ifr;

11129 ifr = (struct ifreq *)if_req;
11130 ipif->ipif_ill->ill_metric = ifr->ifr_metric;
11131 } else {
11132 struct lifreq *lifr;

11134 lifr = (struct lifreq *)if_req;
11135 ipif->ipif_ill->ill_metric = lifr->lifr_metric;
11136 }
11137 return (0);
11138 }

11140 /* ARGSUSED */
11141 int
11142 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11143 ip_ioctl_cmd_t *ipip, void *if_req)
11144 {
11145 /* Get interface metric. */
11146 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
11147 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

11149 if (ipip->ipi_cmd_type == IF_CMD) {

new/usr/src/uts/common/inet/ip/ip_if.c 170

11150 struct ifreq *ifr;

11152 ifr = (struct ifreq *)if_req;
11153 ifr->ifr_metric = ipif->ipif_ill->ill_metric;
11154 } else {
11155 struct lifreq *lifr;

11157 lifr = (struct lifreq *)if_req;
11158 lifr->lifr_metric = ipif->ipif_ill->ill_metric;
11159 }

11161 return (0);
11162 }

11164 /* ARGSUSED */
11165 int
11166 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11167 ip_ioctl_cmd_t *ipip, void *if_req)
11168 {
11169 int arp_muxid;

11171 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
11172 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11173 /*
11174 * Set the muxid returned from I_PLINK.
11175 */
11176 if (ipip->ipi_cmd_type == IF_CMD) {
11177 struct ifreq *ifr = (struct ifreq *)if_req;

11179 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
11180 arp_muxid = ifr->ifr_arp_muxid;
11181 } else {
11182 struct lifreq *lifr = (struct lifreq *)if_req;

11184 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
11185 arp_muxid = lifr->lifr_arp_muxid;
11186 }
11187 arl_set_muxid(ipif->ipif_ill, arp_muxid);
11188 return (0);
11189 }

11191 /* ARGSUSED */
11192 int
11193 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11194 ip_ioctl_cmd_t *ipip, void *if_req)
11195 {
11196 int arp_muxid = 0;

11198 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
11199 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11200 /*
11201 * Get the muxid saved in ill for I_PUNLINK.
11202 */
11203 arp_muxid = arl_get_muxid(ipif->ipif_ill);
11204 if (ipip->ipi_cmd_type == IF_CMD) {
11205 struct ifreq *ifr = (struct ifreq *)if_req;

11207 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11208 ifr->ifr_arp_muxid = arp_muxid;
11209 } else {
11210 struct lifreq *lifr = (struct lifreq *)if_req;

11212 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11213 lifr->lifr_arp_muxid = arp_muxid;
11214 }
11215 return (0);

new/usr/src/uts/common/inet/ip/ip_if.c 171

11216 }

11218 /*
11219 * Set the subnet prefix. Does not modify the broadcast address.
11220 */
11221 /* ARGSUSED */
11222 int
11223 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11224 ip_ioctl_cmd_t *ipip, void *if_req)
11225 {
11226 int err = 0;
11227 in6_addr_t v6addr;
11228 in6_addr_t v6mask;
11229 boolean_t need_up = B_FALSE;
11230 int addrlen;

11232 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
11233 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

11235 ASSERT(IAM_WRITER_IPIF(ipif));
11236 addrlen = ((struct lifreq *)if_req)->lifr_addrlen;

11238 if (ipif->ipif_isv6) {
11239 sin6_t *sin6;

11241 if (sin->sin_family != AF_INET6)
11242 return (EAFNOSUPPORT);

11244 sin6 = (sin6_t *)sin;
11245 v6addr = sin6->sin6_addr;
11246 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
11247 return (EADDRNOTAVAIL);
11248 } else {
11249 ipaddr_t addr;

11251 if (sin->sin_family != AF_INET)
11252 return (EAFNOSUPPORT);

11254 addr = sin->sin_addr.s_addr;
11255 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
11256 return (EADDRNOTAVAIL);
11257 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11258 /* Add 96 bits */
11259 addrlen += IPV6_ABITS - IP_ABITS;
11260 }

11262 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
11263 return (EINVAL);

11265 /* Check if bits in the address is set past the mask */
11266 if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
11267 return (EINVAL);

11269 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
11270 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
11271 return (0); /* No change */

11273 if (ipif->ipif_flags & IPIF_UP) {
11274 /*
11275 * If the interface is already marked up,
11276 * we call ipif_down which will take care
11277 * of ditching any IREs that have been set
11278 * up based on the old interface address.
11279 */
11280 err = ipif_logical_down(ipif, q, mp);
11281 if (err == EINPROGRESS)

new/usr/src/uts/common/inet/ip/ip_if.c 172

11282 return (err);
11283 (void) ipif_down_tail(ipif);
11284 need_up = B_TRUE;
11285 }

11287 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11288 return (err);
11289 }

11291 static int
11292 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11293 queue_t *q, mblk_t *mp, boolean_t need_up)
11294 {
11295 ill_t *ill = ipif->ipif_ill;
11296 int err = 0;

11298 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11299 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

11301 /* Set the new address. */
11302 mutex_enter(&ill->ill_lock);
11303 ipif->ipif_v6net_mask = v6mask;
11304 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11305 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11306 ipif->ipif_v6subnet);
11307 }
11308 mutex_exit(&ill->ill_lock);

11310 if (need_up) {
11311 /*
11312 * Now bring the interface back up. If this
11313 * is the only IPIF for the ILL, ipif_up
11314 * will have to re-bind to the device, so
11315 * we may get back EINPROGRESS, in which
11316 * case, this IOCTL will get completed in
11317 * ip_rput_dlpi when we see the DL_BIND_ACK.
11318 */
11319 err = ipif_up(ipif, q, mp);
11320 if (err == EINPROGRESS)
11321 return (err);
11322 }
11323 return (err);
11324 }

11326 /* ARGSUSED */
11327 int
11328 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11329 ip_ioctl_cmd_t *ipip, void *if_req)
11330 {
11331 int addrlen;
11332 in6_addr_t v6addr;
11333 in6_addr_t v6mask;
11334 struct lifreq *lifr = (struct lifreq *)if_req;

11336 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11337 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11338 (void) ipif_down_tail(ipif);

11340 addrlen = lifr->lifr_addrlen;
11341 if (ipif->ipif_isv6) {
11342 sin6_t *sin6;

11344 sin6 = (sin6_t *)sin;
11345 v6addr = sin6->sin6_addr;
11346 } else {
11347 ipaddr_t addr;

new/usr/src/uts/common/inet/ip/ip_if.c 173

11349 addr = sin->sin_addr.s_addr;
11350 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11351 addrlen += IPV6_ABITS - IP_ABITS;
11352 }
11353 (void) ip_plen_to_mask_v6(addrlen, &v6mask);

11355 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11356 }

11358 /* ARGSUSED */
11359 int
11360 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11361 ip_ioctl_cmd_t *ipip, void *if_req)
11362 {
11363 struct lifreq *lifr = (struct lifreq *)if_req;
11364 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;

11366 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11367 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11368 ASSERT(ipip->ipi_cmd_type == LIF_CMD);

11370 if (ipif->ipif_isv6) {
11371 *sin6 = sin6_null;
11372 sin6->sin6_family = AF_INET6;
11373 sin6->sin6_addr = ipif->ipif_v6subnet;
11374 lifr->lifr_addrlen =
11375 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11376 } else {
11377 *sin = sin_null;
11378 sin->sin_family = AF_INET;
11379 sin->sin_addr.s_addr = ipif->ipif_subnet;
11380 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11381 }
11382 return (0);
11383 }

11385 /*
11386 * Set the IPv6 address token.
11387 */
11388 /* ARGSUSED */
11389 int
11390 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11391 ip_ioctl_cmd_t *ipi, void *if_req)
11392 {
11393 ill_t *ill = ipif->ipif_ill;
11394 int err;
11395 in6_addr_t v6addr;
11396 in6_addr_t v6mask;
11397 boolean_t need_up = B_FALSE;
11398 int i;
11399 sin6_t *sin6 = (sin6_t *)sin;
11400 struct lifreq *lifr = (struct lifreq *)if_req;
11401 int addrlen;

11403 ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11404 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11405 ASSERT(IAM_WRITER_IPIF(ipif));

11407 addrlen = lifr->lifr_addrlen;
11408 /* Only allow for logical unit zero i.e. not on "le0:17" */
11409 if (ipif->ipif_id != 0)
11410 return (EINVAL);

11412 if (!ipif->ipif_isv6)
11413 return (EINVAL);

new/usr/src/uts/common/inet/ip/ip_if.c 174

11415 if (addrlen > IPV6_ABITS)
11416 return (EINVAL);

11418 v6addr = sin6->sin6_addr;

11420 /*
11421 * The length of the token is the length from the end. To get
11422 * the proper mask for this, compute the mask of the bits not
11423 * in the token; ie. the prefix, and then xor to get the mask.
11424 */
11425 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11426 return (EINVAL);
11427 for (i = 0; i < 4; i++) {
11428 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11429 }

11431 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11432 ill->ill_token_length == addrlen)
11433 return (0); /* No change */

11435 if (ipif->ipif_flags & IPIF_UP) {
11436 err = ipif_logical_down(ipif, q, mp);
11437 if (err == EINPROGRESS)
11438 return (err);
11439 (void) ipif_down_tail(ipif);
11440 need_up = B_TRUE;
11441 }
11442 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11443 return (err);
11444 }

11446 static int
11447 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11448 mblk_t *mp, boolean_t need_up)
11449 {
11450 in6_addr_t v6addr;
11451 in6_addr_t v6mask;
11452 ill_t *ill = ipif->ipif_ill;
11453 int i;
11454 int err = 0;

11456 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11458 v6addr = sin6->sin6_addr;
11459 /*
11460 * The length of the token is the length from the end. To get
11461 * the proper mask for this, compute the mask of the bits not
11462 * in the token; ie. the prefix, and then xor to get the mask.
11463 */
11464 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11465 for (i = 0; i < 4; i++)
11466 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;

11468 mutex_enter(&ill->ill_lock);
11469 V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11470 ill->ill_token_length = addrlen;
11471 ill->ill_manual_token = 1;

11473 /* Reconfigure the link-local address based on this new token */
11474 ipif_setlinklocal(ill->ill_ipif);

11476 mutex_exit(&ill->ill_lock);

11478 if (need_up) {
11479 /*

new/usr/src/uts/common/inet/ip/ip_if.c 175

11480 * Now bring the interface back up. If this
11481 * is the only IPIF for the ILL, ipif_up
11482 * will have to re-bind to the device, so
11483 * we may get back EINPROGRESS, in which
11484 * case, this IOCTL will get completed in
11485 * ip_rput_dlpi when we see the DL_BIND_ACK.
11486 */
11487 err = ipif_up(ipif, q, mp);
11488 if (err == EINPROGRESS)
11489 return (err);
11490 }
11491 return (err);
11492 }

11494 /* ARGSUSED */
11495 int
11496 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11497 ip_ioctl_cmd_t *ipi, void *if_req)
11498 {
11499 ill_t *ill;
11500 sin6_t *sin6 = (sin6_t *)sin;
11501 struct lifreq *lifr = (struct lifreq *)if_req;

11503 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11504 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11505 if (ipif->ipif_id != 0)
11506 return (EINVAL);

11508 ill = ipif->ipif_ill;
11509 if (!ill->ill_isv6)
11510 return (ENXIO);

11512 *sin6 = sin6_null;
11513 sin6->sin6_family = AF_INET6;
11514 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11515 sin6->sin6_addr = ill->ill_token;
11516 lifr->lifr_addrlen = ill->ill_token_length;
11517 return (0);
11518 }

11520 /*
11521 * Set (hardware) link specific information that might override
11522 * what was acquired through the DL_INFO_ACK.
11523 */
11524 /* ARGSUSED */
11525 int
11526 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11527 ip_ioctl_cmd_t *ipi, void *if_req)
11528 {
11529 ill_t *ill = ipif->ipif_ill;
11530 int ip_min_mtu;
11531 struct lifreq *lifr = (struct lifreq *)if_req;
11532 lif_ifinfo_req_t *lir;

11534 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11535 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11536 lir = &lifr->lifr_ifinfo;
11537 ASSERT(IAM_WRITER_IPIF(ipif));

11539 /* Only allow for logical unit zero i.e. not on "bge0:17" */
11540 if (ipif->ipif_id != 0)
11541 return (EINVAL);

11543 /* Set interface MTU. */
11544 if (ipif->ipif_isv6)
11545 ip_min_mtu = IPV6_MIN_MTU;

new/usr/src/uts/common/inet/ip/ip_if.c 176

11546 else
11547 ip_min_mtu = IP_MIN_MTU;

11549 /*
11550 * Verify values before we set anything. Allow zero to
11551 * mean unspecified.
11552 *
11553 * XXX We should be able to set the user-defined lir_mtu to some value
11554 * that is greater than ill_current_frag but less than ill_max_frag- the
11555 * ill_max_frag value tells us the max MTU that can be handled by the
11556 * datalink, whereas the ill_current_frag is dynamically computed for
11557 * some link-types like tunnels, based on the tunnel PMTU. However,
11558 * since there is currently no way of distinguishing between
11559 * administratively fixed link mtu values (e.g., those set via
11560 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11561 * for tunnels) we conservatively choose the ill_current_frag as the
11562 * upper-bound.
11563 */
11564 if (lir->lir_maxmtu != 0 &&
11565 (lir->lir_maxmtu > ill->ill_current_frag ||
11566 lir->lir_maxmtu < ip_min_mtu))
11567 return (EINVAL);
11568 if (lir->lir_reachtime != 0 &&
11569 lir->lir_reachtime > ND_MAX_REACHTIME)
11570 return (EINVAL);
11571 if (lir->lir_reachretrans != 0 &&
11572 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11573 return (EINVAL);

11575 mutex_enter(&ill->ill_lock);
11576 /*
11577 * The dce and fragmentation code can handle changes to ill_mtu
11578 * concurrent with sending/fragmenting packets.
11579 */
11580 if (lir->lir_maxmtu != 0)
11581 ill->ill_user_mtu = lir->lir_maxmtu;

11583 if (lir->lir_reachtime != 0)
11584 ill->ill_reachable_time = lir->lir_reachtime;

11586 if (lir->lir_reachretrans != 0)
11587 ill->ill_reachable_retrans_time = lir->lir_reachretrans;

11589 ill->ill_max_hops = lir->lir_maxhops;
11590 ill->ill_max_buf = ND_MAX_Q;
11591 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11592 /*
11593 * ill_mtu is the actual interface MTU, obtained as the min
11594 * of user-configured mtu and the value announced by the
11595 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11596 * we have already made the choice of requiring
11597 * ill_user_mtu < ill_current_frag by the time we get here,
11598 * the ill_mtu effectively gets assigned to the ill_user_mtu
11599 * here.
11600 */
11601 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11602 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu);
11603 }
11604 mutex_exit(&ill->ill_lock);

11606 /*
11607 * Make sure all dce_generation checks find out
11608 * that ill_mtu/ill_mc_mtu has changed.
11609 */
11610 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11611 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);

new/usr/src/uts/common/inet/ip/ip_if.c 177

11613 /*
11614 * Refresh IPMP meta-interface MTU if necessary.
11615 */
11616 if (IS_UNDER_IPMP(ill))
11617 ipmp_illgrp_refresh_mtu(ill->ill_grp);

11619 return (0);
11620 }

11622 /* ARGSUSED */
11623 int
11624 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11625 ip_ioctl_cmd_t *ipi, void *if_req)
11626 {
11627 struct lif_ifinfo_req *lir;
11628 ill_t *ill = ipif->ipif_ill;

11630 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11631 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11632 if (ipif->ipif_id != 0)
11633 return (EINVAL);

11635 lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11636 lir->lir_maxhops = ill->ill_max_hops;
11637 lir->lir_reachtime = ill->ill_reachable_time;
11638 lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11639 lir->lir_maxmtu = ill->ill_mtu;

11641 return (0);
11642 }

11644 /*
11645 * Return best guess as to the subnet mask for the specified address.
11646 * Based on the subnet masks for all the configured interfaces.
11647 *
11648 * We end up returning a zero mask in the case of default, multicast or
11649 * experimental.
11650 */
11651 static ipaddr_t
11652 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11653 {
11654 ipaddr_t net_mask;
11655 ill_t *ill;
11656 ipif_t *ipif;
11657 ill_walk_context_t ctx;
11658 ipif_t *fallback_ipif = NULL;

11660 net_mask = ip_net_mask(addr);
11661 if (net_mask == 0) {
11662 *ipifp = NULL;
11663 return (0);
11664 }

11666 /* Let’s check to see if this is maybe a local subnet route. */
11667 /* this function only applies to IPv4 interfaces */
11668 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11669 ill = ILL_START_WALK_V4(&ctx, ipst);
11670 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11671 mutex_enter(&ill->ill_lock);
11672 for (ipif = ill->ill_ipif; ipif != NULL;
11673 ipif = ipif->ipif_next) {
11674 if (IPIF_IS_CONDEMNED(ipif))
11675 continue;
11676 if (!(ipif->ipif_flags & IPIF_UP))
11677 continue;

new/usr/src/uts/common/inet/ip/ip_if.c 178

11678 if ((ipif->ipif_subnet & net_mask) ==
11679 (addr & net_mask)) {
11680 /*
11681 * Don’t trust pt-pt interfaces if there are
11682 * other interfaces.
11683 */
11684 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11685 if (fallback_ipif == NULL) {
11686 ipif_refhold_locked(ipif);
11687 fallback_ipif = ipif;
11688 }
11689 continue;
11690 }

11692 /*
11693 * Fine. Just assume the same net mask as the
11694 * directly attached subnet interface is using.
11695 */
11696 ipif_refhold_locked(ipif);
11697 mutex_exit(&ill->ill_lock);
11698 rw_exit(&ipst->ips_ill_g_lock);
11699 if (fallback_ipif != NULL)
11700 ipif_refrele(fallback_ipif);
11701 *ipifp = ipif;
11702 return (ipif->ipif_net_mask);
11703 }
11704 }
11705 mutex_exit(&ill->ill_lock);
11706 }
11707 rw_exit(&ipst->ips_ill_g_lock);

11709 *ipifp = fallback_ipif;
11710 return ((fallback_ipif != NULL) ?
11711 fallback_ipif->ipif_net_mask : net_mask);
11712 }

11714 /*
11715 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11716 */
11717 static void
11718 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11719 {
11720 IOCP iocp;
11721 ipft_t *ipft;
11722 ipllc_t *ipllc;
11723 mblk_t *mp1;
11724 cred_t *cr;
11725 int error = 0;
11726 conn_t *connp;

11728 ip1dbg(("ip_wput_ioctl"));
11729 iocp = (IOCP)mp->b_rptr;
11730 mp1 = mp->b_cont;
11731 if (mp1 == NULL) {
11732 iocp->ioc_error = EINVAL;
11733 mp->b_datap->db_type = M_IOCNAK;
11734 iocp->ioc_count = 0;
11735 qreply(q, mp);
11736 return;
11737 }

11739 /*
11740 * These IOCTLs provide various control capabilities to
11741 * upstream agents such as ULPs and processes. There
11742 * are currently two such IOCTLs implemented. They
11743 * are used by TCP to provide update information for

new/usr/src/uts/common/inet/ip/ip_if.c 179

11744 * existing IREs and to forcibly delete an IRE for a
11745 * host that is not responding, thereby forcing an
11746 * attempt at a new route.
11747 */
11748 iocp->ioc_error = EINVAL;
11749 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11750 goto done;

11752 ipllc = (ipllc_t *)mp1->b_rptr;
11753 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11754 if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11755 break;
11756 }
11757 /*
11758 * prefer credential from mblk over ioctl;
11759 * see ip_sioctl_copyin_setup
11760 */
11761 cr = msg_getcred(mp, NULL);
11762 if (cr == NULL)
11763 cr = iocp->ioc_cr;

11765 /*
11766 * Refhold the conn in case the request gets queued up in some lookup
11767 */
11768 ASSERT(CONN_Q(q));
11769 connp = Q_TO_CONN(q);
11770 CONN_INC_REF(connp);
11771 CONN_INC_IOCTLREF(connp);
11772 if (ipft->ipft_pfi &&
11773 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11774 pullupmsg(mp1, ipft->ipft_min_size))) {
11775 error = (*ipft->ipft_pfi)(q,
11776 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11777 }
11778 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11779 /*
11780 * CONN_OPER_PENDING_DONE happens in the function called
11781 * through ipft_pfi above.
11782 */
11783 return;
11784 }

11786 CONN_DEC_IOCTLREF(connp);
11787 CONN_OPER_PENDING_DONE(connp);
11788 if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11789 freemsg(mp);
11790 return;
11791 }
11792 iocp->ioc_error = error;

11794 done:
11795 mp->b_datap->db_type = M_IOCACK;
11796 if (iocp->ioc_error)
11797 iocp->ioc_count = 0;
11798 qreply(q, mp);
11799 }

11801 /*
11802 * Assign a unique id for the ipif. This is used by sctp_addr.c
11803 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11804 */
11805 static void
11806 ipif_assign_seqid(ipif_t *ipif)
11807 {
11808 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

new/usr/src/uts/common/inet/ip/ip_if.c 180

11810 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
11811 }

11813 /*
11814 * Clone the contents of ‘sipif’ to ‘dipif’. Requires that both ipifs are
11815 * administratively down (i.e., no DAD), of the same type, and locked. Note
11816 * that the clone is complete -- including the seqid -- and the expectation is
11817 * that the caller will either free or overwrite ‘sipif’ before it’s unlocked.
11818 */
11819 static void
11820 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11821 {
11822 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11823 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11824 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11825 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11826 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);

11828 dipif->ipif_flags = sipif->ipif_flags;
11829 dipif->ipif_zoneid = sipif->ipif_zoneid;
11830 dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11831 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11832 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11833 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11834 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;

11836 /*
11837 * As per the comment atop the function, we assume that these sipif
11838 * fields will be changed before sipif is unlocked.
11839 */
11840 dipif->ipif_seqid = sipif->ipif_seqid;
11841 dipif->ipif_state_flags = sipif->ipif_state_flags;
11842 }

11844 /*
11845 * Transfer the contents of ‘sipif’ to ‘dipif’, and then free (if ‘virgipif’
11846 * is NULL) or overwrite ‘sipif’ with ‘virgipif’, which must be a virgin
11847 * (unreferenced) ipif. Also, if ‘sipif’ is used by the current xop, then
11848 * transfer the xop to ‘dipif’. Requires that all ipifs are administratively
11849 * down (i.e., no DAD), of the same type, and unlocked.
11850 */
11851 static void
11852 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11853 {
11854 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11855 ipxop_t *ipx = ipsq->ipsq_xop;

11857 ASSERT(sipif != dipif);
11858 ASSERT(sipif != virgipif);

11860 /*
11861 * Grab all of the locks that protect the ipif in a defined order.
11862 */
11863 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);

11865 ipif_clone(sipif, dipif);
11866 if (virgipif != NULL) {
11867 ipif_clone(virgipif, sipif);
11868 mi_free(virgipif);
11869 }

11871 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);

11873 /*
11874 * Transfer ownership of the current xop, if necessary.
11875 */

new/usr/src/uts/common/inet/ip/ip_if.c 181

11876 if (ipx->ipx_current_ipif == sipif) {
11877 ASSERT(ipx->ipx_pending_ipif == NULL);
11878 mutex_enter(&ipx->ipx_lock);
11879 ipx->ipx_current_ipif = dipif;
11880 mutex_exit(&ipx->ipx_lock);
11881 }

11883 if (virgipif == NULL)
11884 mi_free(sipif);
11885 }

11887 /*
11888 * checks if:
11889 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11890 * - logical interface is within the allowed range
11891 */
11892 static int
11893 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11894 {
11895 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11896 return (ENAMETOOLONG);

11898 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11899 return (ERANGE);
11900 return (0);
11901 }

11903 /*
11904 * Insert the ipif, so that the list of ipifs on the ill will be sorted
11905 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11906 * be inserted into the first space available in the list. The value of
11907 * ipif_id will then be set to the appropriate value for its position.
11908 */
11909 static int
11910 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11911 {
11912 ill_t *ill;
11913 ipif_t *tipif;
11914 ipif_t **tipifp;
11915 int id, err;
11916 ip_stack_t *ipst;

11918 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11919 IAM_WRITER_IPIF(ipif));

11921 ill = ipif->ipif_ill;
11922 ASSERT(ill != NULL);
11923 ipst = ill->ill_ipst;

11925 /*
11926 * In the case of lo0:0 we already hold the ill_g_lock.
11927 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11928 * ipif_insert.
11929 */
11930 if (acquire_g_lock)
11931 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11932 mutex_enter(&ill->ill_lock);
11933 id = ipif->ipif_id;
11934 tipifp = &(ill->ill_ipif);
11935 if (id == -1) { /* need to find a real id */
11936 id = 0;
11937 while ((tipif = *tipifp) != NULL) {
11938 ASSERT(tipif->ipif_id >= id);
11939 if (tipif->ipif_id != id)
11940 break; /* non-consecutive id */
11941 id++;

new/usr/src/uts/common/inet/ip/ip_if.c 182

11942 tipifp = &(tipif->ipif_next);
11943 }
11944 if ((err = is_lifname_valid(ill, id)) != 0) {
11945 mutex_exit(&ill->ill_lock);
11946 if (acquire_g_lock)
11947 rw_exit(&ipst->ips_ill_g_lock);
11948 return (err);
11949 }
11950 ipif->ipif_id = id; /* assign new id */
11951 } else if ((err = is_lifname_valid(ill, id)) == 0) {
11952 /* we have a real id; insert ipif in the right place */
11953 while ((tipif = *tipifp) != NULL) {
11954 ASSERT(tipif->ipif_id != id);
11955 if (tipif->ipif_id > id)
11956 break; /* found correct location */
11957 tipifp = &(tipif->ipif_next);
11958 }
11959 } else {
11960 mutex_exit(&ill->ill_lock);
11961 if (acquire_g_lock)
11962 rw_exit(&ipst->ips_ill_g_lock);
11963 return (err);
11964 }

11966 ASSERT(tipifp != &(ill->ill_ipif) || id == 0);

11968 ipif->ipif_next = tipif;
11969 *tipifp = ipif;
11970 mutex_exit(&ill->ill_lock);
11971 if (acquire_g_lock)
11972 rw_exit(&ipst->ips_ill_g_lock);

11974 return (0);
11975 }

11977 static void
11978 ipif_remove(ipif_t *ipif)
11979 {
11980 ipif_t **ipifp;
11981 ill_t *ill = ipif->ipif_ill;

11983 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));

11985 mutex_enter(&ill->ill_lock);
11986 ipifp = &ill->ill_ipif;
11987 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11988 if (*ipifp == ipif) {
11989 *ipifp = ipif->ipif_next;
11990 break;
11991 }
11992 }
11993 mutex_exit(&ill->ill_lock);
11994 }

11996 /*
11997 * Allocate and initialize a new interface control structure. (Always
11998 * called as writer.)
11999 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
12000 * is not part of the global linked list of ills. ipif_seqid is unique
12001 * in the system and to preserve the uniqueness, it is assigned only
12002 * when ill becomes part of the global list. At that point ill will
12003 * have a name. If it doesn’t get assigned here, it will get assigned
12004 * in ipif_set_values() as part of SIOCSLIFNAME processing.
12005 * Aditionally, if we come here from ip_ll_subnet_defaults, we don’t set
12006 * the interface flags or any other information from the DL_INFO_ACK for
12007 * DL_STYLE2 drivers (initialize == B_FALSE), since we won’t have them at

new/usr/src/uts/common/inet/ip/ip_if.c 183

12008 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
12009 * second DL_INFO_ACK comes in from the driver.
12010 */
12011 static ipif_t *
12012 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
12013 boolean_t insert, int *errorp)
12014 {
12015 int err;
12016 ipif_t *ipif;
12017 ip_stack_t *ipst = ill->ill_ipst;

12019 ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
12020 ill->ill_name, id, (void *)ill));
12021 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));

12023 if (errorp != NULL)
12024 *errorp = 0;

12026 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
12027 if (errorp != NULL)
12028 *errorp = ENOMEM;
12029 return (NULL);
12030 }
12031 *ipif = ipif_zero; /* start clean */

12033 ipif->ipif_ill = ill;
12034 ipif->ipif_id = id; /* could be -1 */
12035 /*
12036 * Inherit the zoneid from the ill; for the shared stack instance
12037 * this is always the global zone
12038 */
12039 ipif->ipif_zoneid = ill->ill_zoneid;

12041 ipif->ipif_refcnt = 0;

12043 if (insert) {
12044 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
12045 mi_free(ipif);
12046 if (errorp != NULL)
12047 *errorp = err;
12048 return (NULL);
12049 }
12050 /* -1 id should have been replaced by real id */
12051 id = ipif->ipif_id;
12052 ASSERT(id >= 0);
12053 }

12055 if (ill->ill_name[0] != ’\0’)
12056 ipif_assign_seqid(ipif);

12058 /*
12059 * If this is the zeroth ipif on the IPMP ill, create the illgrp
12060 * (which must not exist yet because the zeroth ipif is created once
12061 * per ill). However, do not not link it to the ipmp_grp_t until
12062 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
12063 */
12064 if (id == 0 && IS_IPMP(ill)) {
12065 if (ipmp_illgrp_create(ill) == NULL) {
12066 if (insert) {
12067 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
12068 ipif_remove(ipif);
12069 rw_exit(&ipst->ips_ill_g_lock);
12070 }
12071 mi_free(ipif);
12072 if (errorp != NULL)
12073 *errorp = ENOMEM;

new/usr/src/uts/common/inet/ip/ip_if.c 184

12074 return (NULL);
12075 }
12076 }

12078 /*
12079 * We grab ill_lock to protect the flag changes. The ipif is still
12080 * not up and can’t be looked up until the ioctl completes and the
12081 * IPIF_CHANGING flag is cleared.
12082 */
12083 mutex_enter(&ill->ill_lock);

12085 ipif->ipif_ire_type = ire_type;

12087 if (ipif->ipif_isv6) {
12088 ill->ill_flags |= ILLF_IPV6;
12089 } else {
12090 ipaddr_t inaddr_any = INADDR_ANY;

12092 ill->ill_flags |= ILLF_IPV4;

12094 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
12095 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12096 &ipif->ipif_v6lcl_addr);
12097 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12098 &ipif->ipif_v6subnet);
12099 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12100 &ipif->ipif_v6net_mask);
12101 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12102 &ipif->ipif_v6brd_addr);
12103 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12104 &ipif->ipif_v6pp_dst_addr);
12105 }

12107 /*
12108 * Don’t set the interface flags etc. now, will do it in
12109 * ip_ll_subnet_defaults.
12110 */
12111 if (!initialize)
12112 goto out;

12114 /*
12115 * NOTE: The IPMP meta-interface is special-cased because it starts
12116 * with no underlying interfaces (and thus an unknown broadcast
12117 * address length), but all interfaces that can be placed into an IPMP
12118 * group are required to be broadcast-capable.
12119 */
12120 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
12121 /*
12122 * Later detect lack of DLPI driver multicast capability by
12123 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
12124 */
12125 ill->ill_flags |= ILLF_MULTICAST;
12126 if (!ipif->ipif_isv6)
12127 ipif->ipif_flags |= IPIF_BROADCAST;
12128 } else {
12129 if (ill->ill_net_type != IRE_LOOPBACK) {
12130 if (ipif->ipif_isv6)
12131 /*
12132 * Note: xresolv interfaces will eventually need
12133 * NOARP set here as well, but that will require
12134 * those external resolvers to have some
12135 * knowledge of that flag and act appropriately.
12136 * Not to be changed at present.
12137 */
12138 ill->ill_flags |= ILLF_NONUD;
12139 else

new/usr/src/uts/common/inet/ip/ip_if.c 185

12140 ill->ill_flags |= ILLF_NOARP;
12141 }
12142 if (ill->ill_phys_addr_length == 0) {
12143 if (IS_VNI(ill)) {
12144 ipif->ipif_flags |= IPIF_NOXMIT;
12145 } else {
12146 /* pt-pt supports multicast. */
12147 ill->ill_flags |= ILLF_MULTICAST;
12148 if (ill->ill_net_type != IRE_LOOPBACK)
12149 ipif->ipif_flags |= IPIF_POINTOPOINT;
12150 }
12151 }
12152 }
12153 out:
12154 mutex_exit(&ill->ill_lock);
12155 return (ipif);
12156 }

12158 /*
12159 * Remove the neighbor cache entries associated with this logical
12160 * interface.
12161 */
12162 int
12163 ipif_arp_down(ipif_t *ipif)
12164 {
12165 ill_t *ill = ipif->ipif_ill;
12166 int err = 0;

12168 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12169 ASSERT(IAM_WRITER_IPIF(ipif));

12171 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
12172 ill_t *, ill, ipif_t *, ipif);
12173 ipif_nce_down(ipif);

12175 /*
12176 * If this is the last ipif that is going down and there are no
12177 * duplicate addresses we may yet attempt to re-probe, then we need to
12178 * clean up ARP completely.
12179 */
12180 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
12181 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
12182 /*
12183 * If this was the last ipif on an IPMP interface, purge any
12184 * static ARP entries associated with it.
12185 */
12186 if (IS_IPMP(ill))
12187 ipmp_illgrp_refresh_arpent(ill->ill_grp);

12189 /* UNBIND, DETACH */
12190 err = arp_ll_down(ill);
12191 }

12193 return (err);
12194 }

12196 /*
12197 * Get the resolver set up for a new IP address. (Always called as writer.)
12198 * Called both for IPv4 and IPv6 interfaces, though it only does some
12199 * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
12200 *
12201 * The enumerated value res_act tunes the behavior:
12202 * * Res_act_initial: set up all the resolver structures for a new
12203 * IP address.
12204 * * Res_act_defend: tell ARP that it needs to send a single gratuitous
12205 * ARP message in defense of the address.

new/usr/src/uts/common/inet/ip/ip_if.c 186

12206 * * Res_act_rebind: tell ARP to change the hardware address for an IP
12207 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif().
12208 *
12209 * Returns zero on success, or an errno upon failure.
12210 */
12211 int
12212 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
12213 {
12214 ill_t *ill = ipif->ipif_ill;
12215 int err;
12216 boolean_t was_dup;

12218 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
12219 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
12220 ASSERT(IAM_WRITER_IPIF(ipif));

12222 was_dup = B_FALSE;
12223 if (res_act == Res_act_initial) {
12224 ipif->ipif_addr_ready = 0;
12225 /*
12226 * We’re bringing an interface up here. There’s no way that we
12227 * should need to shut down ARP now.
12228 */
12229 mutex_enter(&ill->ill_lock);
12230 if (ipif->ipif_flags & IPIF_DUPLICATE) {
12231 ipif->ipif_flags &= ~IPIF_DUPLICATE;
12232 ill->ill_ipif_dup_count--;
12233 was_dup = B_TRUE;
12234 }
12235 mutex_exit(&ill->ill_lock);
12236 }
12237 if (ipif->ipif_recovery_id != 0)
12238 (void) untimeout(ipif->ipif_recovery_id);
12239 ipif->ipif_recovery_id = 0;
12240 if (ill->ill_net_type != IRE_IF_RESOLVER) {
12241 ipif->ipif_addr_ready = 1;
12242 return (0);
12243 }
12244 /* NDP will set the ipif_addr_ready flag when it’s ready */
12245 if (ill->ill_isv6)
12246 return (0);

12248 err = ipif_arp_up(ipif, res_act, was_dup);
12249 return (err);
12250 }

12252 /*
12253 * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
12254 * when a link has just gone back up.
12255 */
12256 static void
12257 ipif_nce_start_dad(ipif_t *ipif)
12258 {
12259 ncec_t *ncec;
12260 ill_t *ill = ipif->ipif_ill;
12261 boolean_t isv6 = ill->ill_isv6;

12263 if (isv6) {
12264 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
12265 &ipif->ipif_v6lcl_addr);
12266 } else {
12267 ipaddr_t v4addr;

12269 if (ill->ill_net_type != IRE_IF_RESOLVER ||
12270 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
12271 ipif->ipif_lcl_addr == INADDR_ANY) {

new/usr/src/uts/common/inet/ip/ip_if.c 187

12272 /*
12273 * If we can’t contact ARP for some reason,
12274 * that’s not really a problem. Just send
12275 * out the routing socket notification that
12276 * DAD completion would have done, and continue.
12277 */
12278 ipif_mask_reply(ipif);
12279 ipif_up_notify(ipif);
12280 ipif->ipif_addr_ready = 1;
12281 return;
12282 }

12284 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12285 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12286 }

12288 if (ncec == NULL) {
12289 ip1dbg(("couldn’t find ncec for ipif %p leaving !ready\n",
12290 (void *)ipif));
12291 return;
12292 }
12293 if (!nce_restart_dad(ncec)) {
12294 /*
12295 * If we can’t restart DAD for some reason, that’s not really a
12296 * problem. Just send out the routing socket notification that
12297 * DAD completion would have done, and continue.
12298 */
12299 ipif_up_notify(ipif);
12300 ipif->ipif_addr_ready = 1;
12301 }
12302 ncec_refrele(ncec);
12303 }

12305 /*
12306 * Restart duplicate address detection on all interfaces on the given ill.
12307 *
12308 * This is called when an interface transitions from down to up
12309 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12310 *
12311 * Note that since the underlying physical link has transitioned, we must cause
12312 * at least one routing socket message to be sent here, either via DAD
12313 * completion or just by default on the first ipif. (If we don’t do this, then
12314 * in.mpathd will see long delays when doing link-based failure recovery.)
12315 */
12316 void
12317 ill_restart_dad(ill_t *ill, boolean_t went_up)
12318 {
12319 ipif_t *ipif;

12321 if (ill == NULL)
12322 return;

12324 /*
12325 * If layer two doesn’t support duplicate address detection, then just
12326 * send the routing socket message now and be done with it.
12327 */
12328 if (!ill->ill_isv6 && arp_no_defense) {
12329 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12330 return;
12331 }

12333 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12334 if (went_up) {

12336 if (ipif->ipif_flags & IPIF_UP) {
12337 ipif_nce_start_dad(ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 188

12338 } else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12339 /*
12340 * kick off the bring-up process now.
12341 */
12342 ipif_do_recovery(ipif);
12343 } else {
12344 /*
12345 * Unfortunately, the first ipif is "special"
12346 * and represents the underlying ill in the
12347 * routing socket messages. Thus, when this
12348 * one ipif is down, we must still notify so
12349 * that the user knows the IFF_RUNNING status
12350 * change. (If the first ipif is up, then
12351 * we’ll handle eventual routing socket
12352 * notification via DAD completion.)
12353 */
12354 if (ipif == ill->ill_ipif) {
12355 ip_rts_ifmsg(ill->ill_ipif,
12356 RTSQ_DEFAULT);
12357 }
12358 }
12359 } else {
12360 /*
12361 * After link down, we’ll need to send a new routing
12362 * message when the link comes back, so clear
12363 * ipif_addr_ready.
12364 */
12365 ipif->ipif_addr_ready = 0;
12366 }
12367 }

12369 /*
12370 * If we’ve torn down links, then notify the user right away.
12371 */
12372 if (!went_up)
12373 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12374 }

12376 static void
12377 ipsq_delete(ipsq_t *ipsq)
12378 {
12379 ipxop_t *ipx = ipsq->ipsq_xop;

12381 ipsq->ipsq_ipst = NULL;
12382 ASSERT(ipsq->ipsq_phyint == NULL);
12383 ASSERT(ipsq->ipsq_xop != NULL);
12384 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12385 ASSERT(ipx->ipx_pending_mp == NULL);
12386 kmem_free(ipsq, sizeof (ipsq_t));
12387 }

12389 static int
12390 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12391 {
12392 int err = 0;
12393 ipif_t *ipif;

12395 if (ill == NULL)
12396 return (0);

12398 ASSERT(IAM_WRITER_ILL(ill));
12399 ill->ill_up_ipifs = B_TRUE;
12400 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12401 if (ipif->ipif_was_up) {
12402 if (!(ipif->ipif_flags & IPIF_UP))
12403 err = ipif_up(ipif, q, mp);

new/usr/src/uts/common/inet/ip/ip_if.c 189

12404 ipif->ipif_was_up = B_FALSE;
12405 if (err != 0) {
12406 ASSERT(err == EINPROGRESS);
12407 return (err);
12408 }
12409 }
12410 }
12411 ill->ill_up_ipifs = B_FALSE;
12412 return (0);
12413 }

12415 /*
12416 * This function is called to bring up all the ipifs that were up before
12417 * bringing the ill down via ill_down_ipifs().
12418 */
12419 int
12420 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12421 {
12422 int err;

12424 ASSERT(IAM_WRITER_ILL(ill));

12426 if (ill->ill_replumbing) {
12427 ill->ill_replumbing = 0;
12428 /*
12429 * Send down REPLUMB_DONE notification followed by the
12430 * BIND_REQ on the arp stream.
12431 */
12432 if (!ill->ill_isv6)
12433 arp_send_replumb_conf(ill);
12434 }
12435 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12436 if (err != 0)
12437 return (err);

12439 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12440 }

12442 /*
12443 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12444 * down the ipifs without sending DL_UNBIND_REQ to the driver.
12445 */
12446 static void
12447 ill_down_ipifs(ill_t *ill, boolean_t logical)
12448 {
12449 ipif_t *ipif;

12451 ASSERT(IAM_WRITER_ILL(ill));

12453 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12454 /*
12455 * We go through the ipif_down logic even if the ipif
12456 * is already down, since routes can be added based
12457 * on down ipifs. Going through ipif_down once again
12458 * will delete any IREs created based on these routes.
12459 */
12460 if (ipif->ipif_flags & IPIF_UP)
12461 ipif->ipif_was_up = B_TRUE;

12463 if (logical) {
12464 (void) ipif_logical_down(ipif, NULL, NULL);
12465 ipif_non_duplicate(ipif);
12466 (void) ipif_down_tail(ipif);
12467 } else {
12468 (void) ipif_down(ipif, NULL, NULL);
12469 }

new/usr/src/uts/common/inet/ip/ip_if.c 190

12470 }
12471 }

12473 /*
12474 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take
12475 * a look again at valid source addresses.
12476 * This should be called each time after the set of source addresses has been
12477 * changed.
12478 */
12479 void
12480 ip_update_source_selection(ip_stack_t *ipst)
12481 {
12482 /* We skip past SRC_GENERATION_VERIFY */
12483 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) ==
12484 SRC_GENERATION_VERIFY)
12485 atomic_add_32(&ipst->ips_src_generation, 1);
12486 }

12488 /*
12489 * Finish the group join started in ip_sioctl_groupname().
12490 */
12491 /* ARGSUSED */
12492 static void
12493 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12494 {
12495 ill_t *ill = q->q_ptr;
12496 phyint_t *phyi = ill->ill_phyint;
12497 ipmp_grp_t *grp = phyi->phyint_grp;
12498 ip_stack_t *ipst = ill->ill_ipst;

12500 /* IS_UNDER_IPMP() won’t work until ipmp_ill_join_illgrp() is called */
12501 ASSERT(!IS_IPMP(ill) && grp != NULL);
12502 ASSERT(IAM_WRITER_IPSQ(ipsq));

12504 if (phyi->phyint_illv4 != NULL) {
12505 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12506 VERIFY(grp->gr_pendv4-- > 0);
12507 rw_exit(&ipst->ips_ipmp_lock);
12508 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12509 }
12510 if (phyi->phyint_illv6 != NULL) {
12511 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12512 VERIFY(grp->gr_pendv6-- > 0);
12513 rw_exit(&ipst->ips_ipmp_lock);
12514 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12515 }
12516 freemsg(mp);
12517 }

12519 /*
12520 * Process an SIOCSLIFGROUPNAME request.
12521 */
12522 /* ARGSUSED */
12523 int
12524 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12525 ip_ioctl_cmd_t *ipip, void *ifreq)
12526 {
12527 struct lifreq *lifr = ifreq;
12528 ill_t *ill = ipif->ipif_ill;
12529 ip_stack_t *ipst = ill->ill_ipst;
12530 phyint_t *phyi = ill->ill_phyint;
12531 ipmp_grp_t *grp = phyi->phyint_grp;
12532 mblk_t *ipsq_mp;
12533 int err = 0;

12535 /*

new/usr/src/uts/common/inet/ip/ip_if.c 191

12536 * Note that phyint_grp can only change here, where we’re exclusive.
12537 */
12538 ASSERT(IAM_WRITER_ILL(ill));

12540 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12541 (phyi->phyint_flags & PHYI_VIRTUAL))
12542 return (EINVAL);

12544 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = ’\0’;

12546 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);

12548 /*
12549 * If the name hasn’t changed, there’s nothing to do.
12550 */
12551 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12552 goto unlock;

12554 /*
12555 * Handle requests to rename an IPMP meta-interface.
12556 *
12557 * Note that creation of the IPMP meta-interface is handled in
12558 * userland through the standard plumbing sequence. As part of the
12559 * plumbing the IPMP meta-interface, its initial groupname is set to
12560 * the name of the interface (see ipif_set_values_tail()).
12561 */
12562 if (IS_IPMP(ill)) {
12563 err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12564 goto unlock;
12565 }

12567 /*
12568 * Handle requests to add or remove an IP interface from a group.
12569 */
12570 if (lifr->lifr_groupname[0] != ’\0’) { /* add */
12571 /*
12572 * Moves are handled by first removing the interface from
12573 * its existing group, and then adding it to another group.
12574 * So, fail if it’s already in a group.
12575 */
12576 if (IS_UNDER_IPMP(ill)) {
12577 err = EALREADY;
12578 goto unlock;
12579 }

12581 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12582 if (grp == NULL) {
12583 err = ENOENT;
12584 goto unlock;
12585 }

12587 /*
12588 * Check if the phyint and its ills are suitable for
12589 * inclusion into the group.
12590 */
12591 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12592 goto unlock;

12594 /*
12595 * Checks pass; join the group, and enqueue the remaining
12596 * illgrp joins for when we’ve become part of the group xop
12597 * and are exclusive across its IPSQs. Since qwriter_ip()
12598 * requires an mblk_t to scribble on, and since ‘mp’ will be
12599 * freed as part of completing the ioctl, allocate another.
12600 */
12601 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {

new/usr/src/uts/common/inet/ip/ip_if.c 192

12602 err = ENOMEM;
12603 goto unlock;
12604 }

12606 /*
12607 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12608 * IPMP meta-interface ills needed by ‘phyi’ cannot go away
12609 * before ip_join_illgrps() is called back. See the comments
12610 * in ip_sioctl_plink_ipmp() for more.
12611 */
12612 if (phyi->phyint_illv4 != NULL)
12613 grp->gr_pendv4++;
12614 if (phyi->phyint_illv6 != NULL)
12615 grp->gr_pendv6++;

12617 rw_exit(&ipst->ips_ipmp_lock);

12619 ipmp_phyint_join_grp(phyi, grp);
12620 ill_refhold(ill);
12621 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12622 SWITCH_OP, B_FALSE);
12623 return (0);
12624 } else {
12625 /*
12626 * Request to remove the interface from a group. If the
12627 * interface is not in a group, this trivially succeeds.
12628 */
12629 rw_exit(&ipst->ips_ipmp_lock);
12630 if (IS_UNDER_IPMP(ill))
12631 ipmp_phyint_leave_grp(phyi);
12632 return (0);
12633 }
12634 unlock:
12635 rw_exit(&ipst->ips_ipmp_lock);
12636 return (err);
12637 }

12639 /*
12640 * Process an SIOCGLIFBINDING request.
12641 */
12642 /* ARGSUSED */
12643 int
12644 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12645 ip_ioctl_cmd_t *ipip, void *ifreq)
12646 {
12647 ill_t *ill;
12648 struct lifreq *lifr = ifreq;
12649 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

12651 if (!IS_IPMP(ipif->ipif_ill))
12652 return (EINVAL);

12654 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12655 if ((ill = ipif->ipif_bound_ill) == NULL)
12656 lifr->lifr_binding[0] = ’\0’;
12657 else
12658 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12659 rw_exit(&ipst->ips_ipmp_lock);
12660 return (0);
12661 }

12663 /*
12664 * Process an SIOCGLIFGROUPNAME request.
12665 */
12666 /* ARGSUSED */
12667 int

new/usr/src/uts/common/inet/ip/ip_if.c 193

12668 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12669 ip_ioctl_cmd_t *ipip, void *ifreq)
12670 {
12671 ipmp_grp_t *grp;
12672 struct lifreq *lifr = ifreq;
12673 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

12675 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12676 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12677 lifr->lifr_groupname[0] = ’\0’;
12678 else
12679 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12680 rw_exit(&ipst->ips_ipmp_lock);
12681 return (0);
12682 }

12684 /*
12685 * Process an SIOCGLIFGROUPINFO request.
12686 */
12687 /* ARGSUSED */
12688 int
12689 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12690 ip_ioctl_cmd_t *ipip, void *dummy)
12691 {
12692 ipmp_grp_t *grp;
12693 lifgroupinfo_t *lifgr;
12694 ip_stack_t *ipst = CONNQ_TO_IPST(q);

12696 /* ip_wput_nondata() verified mp->b_cont->b_cont */
12697 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12698 lifgr->gi_grname[LIFGRNAMSIZ - 1] = ’\0’;

12700 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12701 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12702 rw_exit(&ipst->ips_ipmp_lock);
12703 return (ENOENT);
12704 }
12705 ipmp_grp_info(grp, lifgr);
12706 rw_exit(&ipst->ips_ipmp_lock);
12707 return (0);
12708 }

12710 static void
12711 ill_dl_down(ill_t *ill)
12712 {
12713 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);

12715 /*
12716 * The ill is down; unbind but stay attached since we’re still
12717 * associated with a PPA. If we have negotiated DLPI capabilites
12718 * with the data link service provider (IDS_OK) then reset them.
12719 * The interval between unbinding and rebinding is potentially
12720 * unbounded hence we cannot assume things will be the same.
12721 * The DLPI capabilities will be probed again when the data link
12722 * is brought up.
12723 */
12724 mblk_t *mp = ill->ill_unbind_mp;

12726 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));

12728 if (!ill->ill_replumbing) {
12729 /* Free all ilms for this ill */
12730 update_conn_ill(ill, ill->ill_ipst);
12731 } else {
12732 ill_leave_multicast(ill);
12733 }

new/usr/src/uts/common/inet/ip/ip_if.c 194

12735 ill->ill_unbind_mp = NULL;
12736 if (mp != NULL) {
12737 ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12738 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12739 ill->ill_name));
12740 mutex_enter(&ill->ill_lock);
12741 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12742 mutex_exit(&ill->ill_lock);
12743 /*
12744 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12745 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12746 * ill_capability_dld_disable disable rightaway. If this is not
12747 * an unplumb operation then the disable happens on receipt of
12748 * the capab ack via ip_rput_dlpi_writer ->
12749 * ill_capability_ack_thr. In both cases the order of
12750 * the operations seen by DLD is capability disable followed
12751 * by DL_UNBIND. Also the DLD capability disable needs a
12752 * cv_wait’able context.
12753 */
12754 if (ill->ill_state_flags & ILL_CONDEMNED)
12755 ill_capability_dld_disable(ill);
12756 ill_capability_reset(ill, B_FALSE);
12757 ill_dlpi_send(ill, mp);
12758 }
12759 mutex_enter(&ill->ill_lock);
12760 ill->ill_dl_up = 0;
12761 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12762 mutex_exit(&ill->ill_lock);
12763 }

12765 void
12766 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12767 {
12768 union DL_primitives *dlp;
12769 t_uscalar_t prim;
12770 boolean_t waitack = B_FALSE;

12772 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);

12774 dlp = (union DL_primitives *)mp->b_rptr;
12775 prim = dlp->dl_primitive;

12777 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12778 dl_primstr(prim), prim, ill->ill_name));

12780 switch (prim) {
12781 case DL_PHYS_ADDR_REQ:
12782 {
12783 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12784 ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12785 break;
12786 }
12787 case DL_BIND_REQ:
12788 mutex_enter(&ill->ill_lock);
12789 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12790 mutex_exit(&ill->ill_lock);
12791 break;
12792 }

12794 /*
12795 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12796 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12797 * we only wait for the ACK of the DL_UNBIND_REQ.
12798 */
12799 mutex_enter(&ill->ill_lock);

new/usr/src/uts/common/inet/ip/ip_if.c 195

12800 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12801 (prim == DL_UNBIND_REQ)) {
12802 ill->ill_dlpi_pending = prim;
12803 waitack = B_TRUE;
12804 }

12806 mutex_exit(&ill->ill_lock);
12807 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12808 char *, dl_primstr(prim), ill_t *, ill);
12809 putnext(ill->ill_wq, mp);

12811 /*
12812 * There is no ack for DL_NOTIFY_CONF messages
12813 */
12814 if (waitack && prim == DL_NOTIFY_CONF)
12815 ill_dlpi_done(ill, prim);
12816 }

12818 /*
12819 * Helper function for ill_dlpi_send().
12820 */
12821 /* ARGSUSED */
12822 static void
12823 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12824 {
12825 ill_dlpi_send(q->q_ptr, mp);
12826 }

12828 /*
12829 * Send a DLPI control message to the driver but make sure there
12830 * is only one outstanding message. Uses ill_dlpi_pending to tell
12831 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12832 * when an ACK or a NAK is received to process the next queued message.
12833 */
12834 void
12835 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12836 {
12837 mblk_t **mpp;

12839 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);

12841 /*
12842 * To ensure that any DLPI requests for current exclusive operation
12843 * are always completely sent before any DLPI messages for other
12844 * operations, require writer access before enqueuing.
12845 */
12846 if (!IAM_WRITER_ILL(ill)) {
12847 ill_refhold(ill);
12848 /* qwriter_ip() does the ill_refrele() */
12849 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12850 NEW_OP, B_TRUE);
12851 return;
12852 }

12854 mutex_enter(&ill->ill_lock);
12855 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12856 /* Must queue message. Tail insertion */
12857 mpp = &ill->ill_dlpi_deferred;
12858 while (*mpp != NULL)
12859 mpp = &((*mpp)->b_next);

12861 ip1dbg(("ill_dlpi_send: deferring request for %s "
12862 "while %s pending\n", ill->ill_name,
12863 dl_primstr(ill->ill_dlpi_pending)));

12865 *mpp = mp;

new/usr/src/uts/common/inet/ip/ip_if.c 196

12866 mutex_exit(&ill->ill_lock);
12867 return;
12868 }
12869 mutex_exit(&ill->ill_lock);
12870 ill_dlpi_dispatch(ill, mp);
12871 }

12873 void
12874 ill_capability_send(ill_t *ill, mblk_t *mp)
12875 {
12876 ill->ill_capab_pending_cnt++;
12877 ill_dlpi_send(ill, mp);
12878 }

12880 void
12881 ill_capability_done(ill_t *ill)
12882 {
12883 ASSERT(ill->ill_capab_pending_cnt != 0);

12885 ill_dlpi_done(ill, DL_CAPABILITY_REQ);

12887 ill->ill_capab_pending_cnt--;
12888 if (ill->ill_capab_pending_cnt == 0 &&
12889 ill->ill_dlpi_capab_state == IDCS_OK)
12890 ill_capability_reset_alloc(ill);
12891 }

12893 /*
12894 * Send all deferred DLPI messages without waiting for their ACKs.
12895 */
12896 void
12897 ill_dlpi_send_deferred(ill_t *ill)
12898 {
12899 mblk_t *mp, *nextmp;

12901 /*
12902 * Clear ill_dlpi_pending so that the message is not queued in
12903 * ill_dlpi_send().
12904 */
12905 mutex_enter(&ill->ill_lock);
12906 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12907 mp = ill->ill_dlpi_deferred;
12908 ill->ill_dlpi_deferred = NULL;
12909 mutex_exit(&ill->ill_lock);

12911 for (; mp != NULL; mp = nextmp) {
12912 nextmp = mp->b_next;
12913 mp->b_next = NULL;
12914 ill_dlpi_send(ill, mp);
12915 }
12916 }

12918 /*
12919 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12920 * or M_HANGUP
12921 */
12922 static void
12923 ill_dlpi_clear_deferred(ill_t *ill)
12924 {
12925 mblk_t *mp, *nextmp;

12927 mutex_enter(&ill->ill_lock);
12928 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12929 mp = ill->ill_dlpi_deferred;
12930 ill->ill_dlpi_deferred = NULL;
12931 mutex_exit(&ill->ill_lock);

new/usr/src/uts/common/inet/ip/ip_if.c 197

12933 for (; mp != NULL; mp = nextmp) {
12934 nextmp = mp->b_next;
12935 inet_freemsg(mp);
12936 }
12937 }

12939 /*
12940 * Check if the DLPI primitive ‘prim’ is pending; print a warning if not.
12941 */
12942 boolean_t
12943 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12944 {
12945 t_uscalar_t pending;

12947 mutex_enter(&ill->ill_lock);
12948 if (ill->ill_dlpi_pending == prim) {
12949 mutex_exit(&ill->ill_lock);
12950 return (B_TRUE);
12951 }

12953 /*
12954 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12955 * without waiting, so don’t print any warnings in that case.
12956 */
12957 if (ill->ill_state_flags & ILL_CONDEMNED) {
12958 mutex_exit(&ill->ill_lock);
12959 return (B_FALSE);
12960 }
12961 pending = ill->ill_dlpi_pending;
12962 mutex_exit(&ill->ill_lock);

12964 if (pending == DL_PRIM_INVAL) {
12965 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12966 "received unsolicited ack for %s on %s\n",
12967 dl_primstr(prim), ill->ill_name);
12968 } else {
12969 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12970 "received unexpected ack for %s on %s (expecting %s)\n",
12971 dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12972 }
12973 return (B_FALSE);
12974 }

12976 /*
12977 * Complete the current DLPI operation associated with ‘prim’ on ‘ill’ and
12978 * start the next queued DLPI operation (if any). If there are no queued DLPI
12979 * operations and the ill’s current exclusive IPSQ operation has finished
12980 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12981 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See
12982 * the comments above ipsq_current_finish() for details.
12983 */
12984 void
12985 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12986 {
12987 mblk_t *mp;
12988 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12989 ipxop_t *ipx = ipsq->ipsq_xop;

12991 ASSERT(IAM_WRITER_IPSQ(ipsq));
12992 mutex_enter(&ill->ill_lock);

12994 ASSERT(prim != DL_PRIM_INVAL);
12995 ASSERT(ill->ill_dlpi_pending == prim);

12997 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,

new/usr/src/uts/common/inet/ip/ip_if.c 198

12998 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));

13000 if ((mp = ill->ill_dlpi_deferred) == NULL) {
13001 ill->ill_dlpi_pending = DL_PRIM_INVAL;
13002 if (ipx->ipx_current_done) {
13003 mutex_enter(&ipx->ipx_lock);
13004 ipx->ipx_current_ipif = NULL;
13005 mutex_exit(&ipx->ipx_lock);
13006 }
13007 cv_signal(&ill->ill_cv);
13008 mutex_exit(&ill->ill_lock);
13009 return;
13010 }

13012 ill->ill_dlpi_deferred = mp->b_next;
13013 mp->b_next = NULL;
13014 mutex_exit(&ill->ill_lock);

13016 ill_dlpi_dispatch(ill, mp);
13017 }

13019 /*
13020 * Queue a (multicast) DLPI control message to be sent to the driver by
13021 * later calling ill_dlpi_send_queued.
13022 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13023 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
13024 * for the same group to race.
13025 * We send DLPI control messages in order using ill_lock.
13026 * For IPMP we should be called on the cast_ill.
13027 */
13028 void
13029 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
13030 {
13031 mblk_t **mpp;

13033 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);

13035 mutex_enter(&ill->ill_lock);
13036 /* Must queue message. Tail insertion */
13037 mpp = &ill->ill_dlpi_deferred;
13038 while (*mpp != NULL)
13039 mpp = &((*mpp)->b_next);

13041 *mpp = mp;
13042 mutex_exit(&ill->ill_lock);
13043 }

13045 /*
13046 * Send the messages that were queued. Make sure there is only
13047 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
13048 * when an ACK or a NAK is received to process the next queued message.
13049 * For IPMP we are called on the upper ill, but when send what is queued
13050 * on the cast_ill.
13051 */
13052 void
13053 ill_dlpi_send_queued(ill_t *ill)
13054 {
13055 mblk_t *mp;
13056 union DL_primitives *dlp;
13057 t_uscalar_t prim;
13058 ill_t *release_ill = NULL;

13060 if (IS_IPMP(ill)) {
13061 /* On the upper IPMP ill. */
13062 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13063 if (release_ill == NULL) {

new/usr/src/uts/common/inet/ip/ip_if.c 199

13064 /* Avoid ever sending anything down to the ipmpstub */
13065 return;
13066 }
13067 ill = release_ill;
13068 }
13069 mutex_enter(&ill->ill_lock);
13070 while ((mp = ill->ill_dlpi_deferred) != NULL) {
13071 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
13072 /* Can’t send. Somebody else will send it */
13073 mutex_exit(&ill->ill_lock);
13074 goto done;
13075 }
13076 ill->ill_dlpi_deferred = mp->b_next;
13077 mp->b_next = NULL;
13078 if (!ill->ill_dl_up) {
13079 /*
13080 * Nobody there. All multicast addresses will be
13081 * re-joined when we get the DL_BIND_ACK bringing the
13082 * interface up.
13083 */
13084 freemsg(mp);
13085 continue;
13086 }
13087 dlp = (union DL_primitives *)mp->b_rptr;
13088 prim = dlp->dl_primitive;

13090 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
13091 (prim == DL_UNBIND_REQ)) {
13092 ill->ill_dlpi_pending = prim;
13093 }
13094 mutex_exit(&ill->ill_lock);

13096 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
13097 char *, dl_primstr(prim), ill_t *, ill);
13098 putnext(ill->ill_wq, mp);
13099 mutex_enter(&ill->ill_lock);
13100 }
13101 mutex_exit(&ill->ill_lock);
13102 done:
13103 if (release_ill != NULL)
13104 ill_refrele(release_ill);
13105 }

13107 /*
13108 * Queue an IP (IGMP/MLD) message to be sent by IP from
13109 * ill_mcast_send_queued
13110 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13111 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
13112 * group to race.
13113 * We send them in order using ill_lock.
13114 * For IPMP we are called on the upper ill, but we queue on the cast_ill.
13115 */
13116 void
13117 ill_mcast_queue(ill_t *ill, mblk_t *mp)
13118 {
13119 mblk_t **mpp;
13120 ill_t *release_ill = NULL;

13122 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));

13124 if (IS_IPMP(ill)) {
13125 /* On the upper IPMP ill. */
13126 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13127 if (release_ill == NULL) {
13128 /* Discard instead of queuing for the ipmp interface */
13129 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);

new/usr/src/uts/common/inet/ip/ip_if.c 200

13130 ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
13131 mp, ill);
13132 freemsg(mp);
13133 return;
13134 }
13135 ill = release_ill;
13136 }

13138 mutex_enter(&ill->ill_lock);
13139 /* Must queue message. Tail insertion */
13140 mpp = &ill->ill_mcast_deferred;
13141 while (*mpp != NULL)
13142 mpp = &((*mpp)->b_next);

13144 *mpp = mp;
13145 mutex_exit(&ill->ill_lock);
13146 if (release_ill != NULL)
13147 ill_refrele(release_ill);
13148 }

13150 /*
13151 * Send the IP packets that were queued by ill_mcast_queue.
13152 * These are IGMP/MLD packets.
13153 *
13154 * For IPMP we are called on the upper ill, but when send what is queued
13155 * on the cast_ill.
13156 *
13157 * Request loopback of the report if we are acting as a multicast
13158 * router, so that the process-level routing demon can hear it.
13159 * This will run multiple times for the same group if there are members
13160 * on the same group for multiple ipif’s on the same ill. The
13161 * igmp_input/mld_input code will suppress this due to the loopback thus we
13162 * always loopback membership report.
13163 *
13164 * We also need to make sure that this does not get load balanced
13165 * by IPMP. We do this by passing an ill to ip_output_simple.
13166 */
13167 void
13168 ill_mcast_send_queued(ill_t *ill)
13169 {
13170 mblk_t *mp;
13171 ip_xmit_attr_t ixas;
13172 ill_t *release_ill = NULL;

13174 if (IS_IPMP(ill)) {
13175 /* On the upper IPMP ill. */
13176 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13177 if (release_ill == NULL) {
13178 /*
13179 * We should have no messages on the ipmp interface
13180 * but no point in trying to send them.
13181 */
13182 return;
13183 }
13184 ill = release_ill;
13185 }
13186 bzero(&ixas, sizeof (ixas));
13187 ixas.ixa_zoneid = ALL_ZONES;
13188 ixas.ixa_cred = kcred;
13189 ixas.ixa_cpid = NOPID;
13190 ixas.ixa_tsl = NULL;
13191 /*
13192 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
13193 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
13194 * That is necessary to handle IGMP/MLD snooping switches.
13195 */

new/usr/src/uts/common/inet/ip/ip_if.c 201

13196 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
13197 ixas.ixa_ipst = ill->ill_ipst;

13199 mutex_enter(&ill->ill_lock);
13200 while ((mp = ill->ill_mcast_deferred) != NULL) {
13201 ill->ill_mcast_deferred = mp->b_next;
13202 mp->b_next = NULL;
13203 if (!ill->ill_dl_up) {
13204 /*
13205 * Nobody there. Just drop the ip packets.
13206 * IGMP/MLD will resend later, if this is a replumb.
13207 */
13208 freemsg(mp);
13209 continue;
13210 }
13211 mutex_enter(&ill->ill_phyint->phyint_lock);
13212 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
13213 /*
13214 * When the ill is getting deactivated, we only want to
13215 * send the DLPI messages, so drop IGMP/MLD packets.
13216 * DLPI messages are handled by ill_dlpi_send_queued()
13217 */
13218 mutex_exit(&ill->ill_phyint->phyint_lock);
13219 freemsg(mp);
13220 continue;
13221 }
13222 mutex_exit(&ill->ill_phyint->phyint_lock);
13223 mutex_exit(&ill->ill_lock);

13225 /* Check whether we are sending IPv4 or IPv6. */
13226 if (ill->ill_isv6) {
13227 ip6_t *ip6h = (ip6_t *)mp->b_rptr;

13229 ixas.ixa_multicast_ttl = ip6h->ip6_hops;
13230 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
13231 } else {
13232 ipha_t *ipha = (ipha_t *)mp->b_rptr;

13234 ixas.ixa_multicast_ttl = ipha->ipha_ttl;
13235 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13236 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
13237 }
13238 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE;
13239 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
13240 (void) ip_output_simple(mp, &ixas);
13241 ixa_cleanup(&ixas);

13243 mutex_enter(&ill->ill_lock);
13244 }
13245 mutex_exit(&ill->ill_lock);

13247 done:
13248 if (release_ill != NULL)
13249 ill_refrele(release_ill);
13250 }

13252 /*
13253 * Take down a specific interface, but don’t lose any information about it.
13254 * (Always called as writer.)
13255 * This function goes through the down sequence even if the interface is
13256 * already down. There are 2 reasons.
13257 * a. Currently we permit interface routes that depend on down interfaces
13258 * to be added. This behaviour itself is questionable. However it appears
13259 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long
13260 * time. We go thru the cleanup in order to remove these routes.
13261 * b. The bringup of the interface could fail in ill_dl_up i.e. we get

new/usr/src/uts/common/inet/ip/ip_if.c 202

13262 * DL_ERROR_ACK in response to the DL_BIND request. The interface is
13263 * down, but we need to cleanup i.e. do ill_dl_down and
13264 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
13265 *
13266 * IP-MT notes:
13267 *
13268 * Model of reference to interfaces.
13269 *
13270 * The following members in ipif_t track references to the ipif.
13271 * int ipif_refcnt; Active reference count
13272 *
13273 * The following members in ill_t track references to the ill.
13274 * int ill_refcnt; active refcnt
13275 * uint_t ill_ire_cnt; Number of ires referencing ill
13276 * uint_t ill_ncec_cnt; Number of ncecs referencing ill
13277 * uint_t ill_nce_cnt; Number of nces referencing ill
13278 * uint_t ill_ilm_cnt; Number of ilms referencing ill
13279 *
13280 * Reference to an ipif or ill can be obtained in any of the following ways.
13281 *
13282 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
13283 * Pointers to ipif / ill from other data structures viz ire and conn.
13284 * Implicit reference to the ipif / ill by holding a reference to the ire.
13285 *
13286 * The ipif/ill lookup functions return a reference held ipif / ill.
13287 * ipif_refcnt and ill_refcnt track the reference counts respectively.
13288 * This is a purely dynamic reference count associated with threads holding
13289 * references to the ipif / ill. Pointers from other structures do not
13290 * count towards this reference count.
13291 *
13292 * ill_ire_cnt is the number of ire’s associated with the
13293 * ill. This is incremented whenever a new ire is created referencing the
13294 * ill. This is done atomically inside ire_add_v[46] where the ire is
13295 * actually added to the ire hash table. The count is decremented in
13296 * ire_inactive where the ire is destroyed.
13297 *
13298 * ill_ncec_cnt is the number of ncec’s referencing the ill thru ncec_ill.
13299 * This is incremented atomically in
13300 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13301 * table. Similarly it is decremented in ncec_inactive() where the ncec
13302 * is destroyed.
13303 *
13304 * ill_nce_cnt is the number of nce’s referencing the ill thru nce_ill. This is
13305 * incremented atomically in nce_add() where the nce is actually added to the
13306 * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13307 * is destroyed.
13308 *
13309 * ill_ilm_cnt is the ilm’s reference to the ill. It is incremented in
13310 * ilm_add() and decremented before the ilm is freed in ilm_delete().
13311 *
13312 * Flow of ioctls involving interface down/up
13313 *
13314 * The following is the sequence of an attempt to set some critical flags on an
13315 * up interface.
13316 * ip_sioctl_flags
13317 * ipif_down
13318 * wait for ipif to be quiescent
13319 * ipif_down_tail
13320 * ip_sioctl_flags_tail
13321 *
13322 * All set ioctls that involve down/up sequence would have a skeleton similar
13323 * to the above. All the *tail functions are called after the refcounts have
13324 * dropped to the appropriate values.
13325 *
13326 * SIOC ioctls during the IPIF_CHANGING interval.
13327 *

new/usr/src/uts/common/inet/ip/ip_if.c 203

13328 * Threads handling SIOC set ioctls serialize on the squeue, but this
13329 * is not done for SIOC get ioctls. Since a set ioctl can cause several
13330 * steps of internal changes to the state, some of which are visible in
13331 * ipif_flags (such as IFF_UP being cleared and later set), and we want
13332 * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13333 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13334 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13335 * the current exclusive operation completes. The IPIF_CHANGING check
13336 * and enqueue is atomic using the ill_lock and ipsq_lock. The
13337 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can’t
13338 * change while the ill_lock is held. Before dropping the ill_lock we acquire
13339 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can’t finish
13340 * until we release the ipsq_lock, even though the ill/ipif state flags
13341 * can change after we drop the ill_lock.
13342 */
13343 int
13344 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13345 {
13346 ill_t *ill = ipif->ipif_ill;
13347 conn_t *connp;
13348 boolean_t success;
13349 boolean_t ipif_was_up = B_FALSE;
13350 ip_stack_t *ipst = ill->ill_ipst;

13352 ASSERT(IAM_WRITER_IPIF(ipif));

13354 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));

13356 DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13357 ill_t *, ill, ipif_t *, ipif);

13359 if (ipif->ipif_flags & IPIF_UP) {
13360 mutex_enter(&ill->ill_lock);
13361 ipif->ipif_flags &= ~IPIF_UP;
13362 ASSERT(ill->ill_ipif_up_count > 0);
13363 --ill->ill_ipif_up_count;
13364 mutex_exit(&ill->ill_lock);
13365 ipif_was_up = B_TRUE;
13366 /* Update status in SCTP’s list */
13367 sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13368 ill_nic_event_dispatch(ipif->ipif_ill,
13369 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13370 }

13372 /*
13373 * Removal of the last ipif from an ill may result in a DL_UNBIND
13374 * being sent to the driver, and we must not send any data packets to
13375 * the driver after the DL_UNBIND_REQ. To ensure this, all the
13376 * ire and nce entries used in the data path will be cleaned
13377 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make
13378 * sure on new entries will be added until the ill is bound
13379 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon
13380 * receipt of a DL_BIND_ACK.
13381 */
13382 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13383 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13384 ill->ill_dl_up) {
13385 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
13386 }

13388 /*
13389 * Blow away memberships we established in ipif_multicast_up().
13390 */
13391 ipif_multicast_down(ipif);

13393 /*

new/usr/src/uts/common/inet/ip/ip_if.c 204

13394 * Remove from the mapping for __sin6_src_id. We insert only
13395 * when the address is not INADDR_ANY. As IPv4 addresses are
13396 * stored as mapped addresses, we need to check for mapped
13397 * INADDR_ANY also.
13398 */
13399 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13400 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13401 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13402 int err;

13404 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13405 ipif->ipif_zoneid, ipst);
13406 if (err != 0) {
13407 ip0dbg(("ipif_down: srcid_remove %d\n", err));
13408 }
13409 }

13411 if (ipif_was_up) {
13412 /* only delete if we’d added ire’s before */
13413 if (ipif->ipif_isv6)
13414 ipif_delete_ires_v6(ipif);
13415 else
13416 ipif_delete_ires_v4(ipif);
13417 }

13419 if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13420 /*
13421 * Since the interface is now down, it may have just become
13422 * inactive. Note that this needs to be done even for a
13423 * lll_logical_down(), or ARP entries will not get correctly
13424 * restored when the interface comes back up.
13425 */
13426 if (IS_UNDER_IPMP(ill))
13427 ipmp_ill_refresh_active(ill);
13428 }

13430 /*
13431 * neighbor-discovery or arp entries for this interface. The ipif
13432 * has to be quiesced, so we walk all the nce’s and delete those
13433 * that point at the ipif->ipif_ill. At the same time, we also
13434 * update IPMP so that ipifs for data addresses are unbound. We dont
13435 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13436 * that for ipif_down_tail()
13437 */
13438 ipif_nce_down(ipif);

13440 /*
13441 * If this is the last ipif on the ill, we also need to remove
13442 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13443 * never succeed.
13444 */
13445 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13446 ire_walk_ill(0, 0, ill_downi, ill, ill);

13448 /*
13449 * Walk all CONNs that can have a reference on an ire for this
13450 * ipif (we actually walk all that now have stale references).
13451 */
13452 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);

13454 /*
13455 * If mp is NULL the caller will wait for the appropriate refcnt.
13456 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down
13457 * and ill_delete -> ipif_free -> ipif_down
13458 */
13459 if (mp == NULL) {

new/usr/src/uts/common/inet/ip/ip_if.c 205

13460 ASSERT(q == NULL);
13461 return (0);
13462 }

13464 if (CONN_Q(q)) {
13465 connp = Q_TO_CONN(q);
13466 mutex_enter(&connp->conn_lock);
13467 } else {
13468 connp = NULL;
13469 }
13470 mutex_enter(&ill->ill_lock);
13471 /*
13472 * Are there any ire’s pointing to this ipif that are still active ?
13473 * If this is the last ipif going down, are there any ire’s pointing
13474 * to this ill that are still active ?
13475 */
13476 if (ipif_is_quiescent(ipif)) {
13477 mutex_exit(&ill->ill_lock);
13478 if (connp != NULL)
13479 mutex_exit(&connp->conn_lock);
13480 return (0);
13481 }

13483 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13484 ill->ill_name, (void *)ill));
13485 /*
13486 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13487 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13488 * which in turn is called by the last refrele on the ipif/ill/ire.
13489 */
13490 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13491 if (!success) {
13492 /* The conn is closing. So just return */
13493 ASSERT(connp != NULL);
13494 mutex_exit(&ill->ill_lock);
13495 mutex_exit(&connp->conn_lock);
13496 return (EINTR);
13497 }

13499 mutex_exit(&ill->ill_lock);
13500 if (connp != NULL)
13501 mutex_exit(&connp->conn_lock);
13502 return (EINPROGRESS);
13503 }

13505 int
13506 ipif_down_tail(ipif_t *ipif)
13507 {
13508 ill_t *ill = ipif->ipif_ill;
13509 int err = 0;

13511 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13512 ill_t *, ill, ipif_t *, ipif);

13514 /*
13515 * Skip any loopback interface (null wq).
13516 * If this is the last logical interface on the ill
13517 * have ill_dl_down tell the driver we are gone (unbind)
13518 * Note that lun 0 can ipif_down even though
13519 * there are other logical units that are up.
13520 * This occurs e.g. when we change a "significant" IFF_ flag.
13521 */
13522 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13523 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13524 ill->ill_dl_up) {
13525 ill_dl_down(ill);

new/usr/src/uts/common/inet/ip/ip_if.c 206

13526 }
13527 if (!ipif->ipif_isv6)
13528 err = ipif_arp_down(ipif);

13530 ill->ill_logical_down = 0;

13532 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13533 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13534 return (err);
13535 }

13537 /*
13538 * Bring interface logically down without bringing the physical interface
13539 * down e.g. when the netmask is changed. This avoids long lasting link
13540 * negotiations between an ethernet interface and a certain switches.
13541 */
13542 static int
13543 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13544 {
13545 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13546 ill_t *, ipif->ipif_ill, ipif_t *, ipif);

13548 /*
13549 * The ill_logical_down flag is a transient flag. It is set here
13550 * and is cleared once the down has completed in ipif_down_tail.
13551 * This flag does not indicate whether the ill stream is in the
13552 * DL_BOUND state with the driver. Instead this flag is used by
13553 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13554 * the driver. The state of the ill stream i.e. whether it is
13555 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13556 */
13557 ipif->ipif_ill->ill_logical_down = 1;
13558 return (ipif_down(ipif, q, mp));
13559 }

13561 /*
13562 * Initiate deallocate of an IPIF. Always called as writer. Called by
13563 * ill_delete or ip_sioctl_removeif.
13564 */
13565 static void
13566 ipif_free(ipif_t *ipif)
13567 {
13568 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

13570 ASSERT(IAM_WRITER_IPIF(ipif));

13572 if (ipif->ipif_recovery_id != 0)
13573 (void) untimeout(ipif->ipif_recovery_id);
13574 ipif->ipif_recovery_id = 0;

13576 /*
13577 * Take down the interface. We can be called either from ill_delete
13578 * or from ip_sioctl_removeif.
13579 */
13580 (void) ipif_down(ipif, NULL, NULL);

13582 /*
13583 * Now that the interface is down, there’s no chance it can still
13584 * become a duplicate. Cancel any timer that may have been set while
13585 * tearing down.
13586 */
13587 if (ipif->ipif_recovery_id != 0)
13588 (void) untimeout(ipif->ipif_recovery_id);
13589 ipif->ipif_recovery_id = 0;

13591 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);

new/usr/src/uts/common/inet/ip/ip_if.c 207

13592 /* Remove pointers to this ill in the multicast routing tables */
13593 reset_mrt_vif_ipif(ipif);
13594 /* If necessary, clear the cached source ipif rotor. */
13595 if (ipif->ipif_ill->ill_src_ipif == ipif)
13596 ipif->ipif_ill->ill_src_ipif = NULL;
13597 rw_exit(&ipst->ips_ill_g_lock);
13598 }

13600 static void
13601 ipif_free_tail(ipif_t *ipif)
13602 {
13603 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

13605 /*
13606 * Need to hold both ill_g_lock and ill_lock while
13607 * inserting or removing an ipif from the linked list
13608 * of ipifs hanging off the ill.
13609 */
13610 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);

13612 #ifdef DEBUG
13613 ipif_trace_cleanup(ipif);
13614 #endif

13616 /* Ask SCTP to take it out of it list */
13617 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13618 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);

13620 /* Get it out of the ILL interface list. */
13621 ipif_remove(ipif);
13622 rw_exit(&ipst->ips_ill_g_lock);

13624 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13625 ASSERT(ipif->ipif_recovery_id == 0);
13626 ASSERT(ipif->ipif_ire_local == NULL);
13627 ASSERT(ipif->ipif_ire_if == NULL);

13629 /* Free the memory. */
13630 mi_free(ipif);
13631 }

13633 /*
13634 * Sets ‘buf’ to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13635 * is zero.
13636 */
13637 void
13638 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13639 {
13640 char lbuf[LIFNAMSIZ];
13641 char *name;
13642 size_t name_len;

13644 buf[0] = ’\0’;
13645 name = ipif->ipif_ill->ill_name;
13646 name_len = ipif->ipif_ill->ill_name_length;
13647 if (ipif->ipif_id != 0) {
13648 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13649 ipif->ipif_id);
13650 name = lbuf;
13651 name_len = mi_strlen(name) + 1;
13652 }
13653 len -= 1;
13654 buf[len] = ’\0’;
13655 len = MIN(len, name_len);
13656 bcopy(name, buf, len);
13657 }

new/usr/src/uts/common/inet/ip/ip_if.c 208

13659 /*
13660 * Sets ‘buf’ to an ill name.
13661 */
13662 void
13663 ill_get_name(const ill_t *ill, char *buf, int len)
13664 {
13665 char *name;
13666 size_t name_len;

13668 name = ill->ill_name;
13669 name_len = ill->ill_name_length;
13670 len -= 1;
13671 buf[len] = ’\0’;
13672 len = MIN(len, name_len);
13673 bcopy(name, buf, len);
13674 }

13676 /*
13677 * Find an IPIF based on the name passed in. Names can be of the form <phys>
13678 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the
13679 * implied unit id is zero. <phys> must correspond to the name of an ILL.
13680 * (May be called as writer.)
13681 */
13682 static ipif_t *
13683 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13684 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13685 {
13686 char *cp;
13687 char *endp;
13688 long id;
13689 ill_t *ill;
13690 ipif_t *ipif;
13691 uint_t ire_type;
13692 boolean_t did_alloc = B_FALSE;
13693 char last;

13695 /*
13696 * If the caller wants to us to create the ipif, make sure we have a
13697 * valid zoneid
13698 */
13699 ASSERT(!do_alloc || zoneid != ALL_ZONES);

13701 if (namelen == 0) {
13702 return (NULL);
13703 }

13705 *exists = B_FALSE;
13706 /* Look for a colon in the name. */
13707 endp = &name[namelen];
13708 for (cp = endp; --cp > name;) {
13709 if (*cp == IPIF_SEPARATOR_CHAR)
13710 break;
13711 }

13713 if (*cp == IPIF_SEPARATOR_CHAR) {
13714 /*
13715 * Reject any non-decimal aliases for logical
13716 * interfaces. Aliases with leading zeroes
13717 * are also rejected as they introduce ambiguity
13718 * in the naming of the interfaces.
13719 * In order to confirm with existing semantics,
13720 * and to not break any programs/script relying
13721 * on that behaviour, if<0>:0 is considered to be
13722 * a valid interface.
13723 *

new/usr/src/uts/common/inet/ip/ip_if.c 209

13724 * If alias has two or more digits and the first
13725 * is zero, fail.
13726 */
13727 if (&cp[2] < endp && cp[1] == ’0’) {
13728 return (NULL);
13729 }
13730 }

13732 if (cp <= name) {
13733 cp = endp;
13734 }
13735 last = *cp;
13736 *cp = ’\0’;

13738 /*
13739 * Look up the ILL, based on the portion of the name
13740 * before the slash. ill_lookup_on_name returns a held ill.
13741 * Temporary to check whether ill exists already. If so
13742 * ill_lookup_on_name will clear it.
13743 */
13744 ill = ill_lookup_on_name(name, do_alloc, isv6,
13745 &did_alloc, ipst);
13746 *cp = last;
13747 if (ill == NULL)
13748 return (NULL);

13750 /* Establish the unit number in the name. */
13751 id = 0;
13752 if (cp < endp && *endp == ’\0’) {
13753 /* If there was a colon, the unit number follows. */
13754 cp++;
13755 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13756 ill_refrele(ill);
13757 return (NULL);
13758 }
13759 }

13761 mutex_enter(&ill->ill_lock);
13762 /* Now see if there is an IPIF with this unit number. */
13763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13764 if (ipif->ipif_id == id) {
13765 if (zoneid != ALL_ZONES &&
13766 zoneid != ipif->ipif_zoneid &&
13767 ipif->ipif_zoneid != ALL_ZONES) {
13768 mutex_exit(&ill->ill_lock);
13769 ill_refrele(ill);
13770 return (NULL);
13771 }
13772 if (IPIF_CAN_LOOKUP(ipif)) {
13773 ipif_refhold_locked(ipif);
13774 mutex_exit(&ill->ill_lock);
13775 if (!did_alloc)
13776 *exists = B_TRUE;
13777 /*
13778 * Drop locks before calling ill_refrele
13779 * since it can potentially call into
13780 * ipif_ill_refrele_tail which can end up
13781 * in trying to acquire any lock.
13782 */
13783 ill_refrele(ill);
13784 return (ipif);
13785 }
13786 }
13787 }

13789 if (!do_alloc) {

new/usr/src/uts/common/inet/ip/ip_if.c 210

13790 mutex_exit(&ill->ill_lock);
13791 ill_refrele(ill);
13792 return (NULL);
13793 }

13795 /*
13796 * If none found, atomically allocate and return a new one.
13797 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13798 * to support "receive only" use of lo0:1 etc. as is still done
13799 * below as an initial guess.
13800 * However, this is now likely to be overriden later in ipif_up_done()
13801 * when we know for sure what address has been configured on the
13802 * interface, since we might have more than one loopback interface
13803 * with a loopback address, e.g. in the case of zones, and all the
13804 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13805 */
13806 if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13807 ire_type = IRE_LOOPBACK;
13808 else
13809 ire_type = IRE_LOCAL;
13810 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13811 if (ipif != NULL)
13812 ipif_refhold_locked(ipif);
13813 mutex_exit(&ill->ill_lock);
13814 ill_refrele(ill);
13815 return (ipif);
13816 }

13818 /*
13819 * Variant of the above that queues the request on the ipsq when
13820 * IPIF_CHANGING is set.
13821 */
13822 static ipif_t *
13823 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6,
13824 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
13825 ip_stack_t *ipst)
13826 {
13827 char *cp;
13828 char *endp;
13829 long id;
13830 ill_t *ill;
13831 ipif_t *ipif;
13832 boolean_t did_alloc = B_FALSE;
13833 ipsq_t *ipsq;

13835 if (error != NULL)
13836 *error = 0;

13838 if (namelen == 0) {
13839 if (error != NULL)
13840 *error = ENXIO;
13841 return (NULL);
13842 }

13844 /* Look for a colon in the name. */
13845 endp = &name[namelen];
13846 for (cp = endp; --cp > name;) {
13847 if (*cp == IPIF_SEPARATOR_CHAR)
13848 break;
13849 }

13851 if (*cp == IPIF_SEPARATOR_CHAR) {
13852 /*
13853 * Reject any non-decimal aliases for logical
13854 * interfaces. Aliases with leading zeroes
13855 * are also rejected as they introduce ambiguity

new/usr/src/uts/common/inet/ip/ip_if.c 211

13856 * in the naming of the interfaces.
13857 * In order to confirm with existing semantics,
13858 * and to not break any programs/script relying
13859 * on that behaviour, if<0>:0 is considered to be
13860 * a valid interface.
13861 *
13862 * If alias has two or more digits and the first
13863 * is zero, fail.
13864 */
13865 if (&cp[2] < endp && cp[1] == ’0’) {
13866 if (error != NULL)
13867 *error = EINVAL;
13868 return (NULL);
13869 }
13870 }

13872 if (cp <= name) {
13873 cp = endp;
13874 } else {
13875 *cp = ’\0’;
13876 }

13878 /*
13879 * Look up the ILL, based on the portion of the name
13880 * before the slash. ill_lookup_on_name returns a held ill.
13881 * Temporary to check whether ill exists already. If so
13882 * ill_lookup_on_name will clear it.
13883 */
13884 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst);
13885 if (cp != endp)
13886 *cp = IPIF_SEPARATOR_CHAR;
13887 if (ill == NULL)
13888 return (NULL);

13890 /* Establish the unit number in the name. */
13891 id = 0;
13892 if (cp < endp && *endp == ’\0’) {
13893 /* If there was a colon, the unit number follows. */
13894 cp++;
13895 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13896 ill_refrele(ill);
13897 if (error != NULL)
13898 *error = ENXIO;
13899 return (NULL);
13900 }
13901 }

13903 GRAB_CONN_LOCK(q);
13904 mutex_enter(&ill->ill_lock);
13905 /* Now see if there is an IPIF with this unit number. */
13906 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13907 if (ipif->ipif_id == id) {
13908 if (zoneid != ALL_ZONES &&
13909 zoneid != ipif->ipif_zoneid &&
13910 ipif->ipif_zoneid != ALL_ZONES) {
13911 mutex_exit(&ill->ill_lock);
13912 RELEASE_CONN_LOCK(q);
13913 ill_refrele(ill);
13914 if (error != NULL)
13915 *error = ENXIO;
13916 return (NULL);
13917 }

13919 if (!(IPIF_IS_CHANGING(ipif) ||
13920 IPIF_IS_CONDEMNED(ipif)) ||
13921 IAM_WRITER_IPIF(ipif)) {

new/usr/src/uts/common/inet/ip/ip_if.c 212

13922 ipif_refhold_locked(ipif);
13923 mutex_exit(&ill->ill_lock);
13924 /*
13925 * Drop locks before calling ill_refrele
13926 * since it can potentially call into
13927 * ipif_ill_refrele_tail which can end up
13928 * in trying to acquire any lock.
13929 */
13930 RELEASE_CONN_LOCK(q);
13931 ill_refrele(ill);
13932 return (ipif);
13933 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) {
13934 ipsq = ill->ill_phyint->phyint_ipsq;
13935 mutex_enter(&ipsq->ipsq_lock);
13936 mutex_enter(&ipsq->ipsq_xop->ipx_lock);
13937 mutex_exit(&ill->ill_lock);
13938 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
13939 mutex_exit(&ipsq->ipsq_xop->ipx_lock);
13940 mutex_exit(&ipsq->ipsq_lock);
13941 RELEASE_CONN_LOCK(q);
13942 ill_refrele(ill);
13943 if (error != NULL)
13944 *error = EINPROGRESS;
13945 return (NULL);
13946 }
13947 }
13948 }
13949 RELEASE_CONN_LOCK(q);
13950 mutex_exit(&ill->ill_lock);
13951 ill_refrele(ill);
13952 if (error != NULL)
13953 *error = ENXIO;
13954 return (NULL);
13955 }

13957 /*
13958 * This routine is called whenever a new address comes up on an ipif. If
13959 * we are configured to respond to address mask requests, then we are supposed
13960 * to broadcast an address mask reply at this time. This routine is also
13961 * called if we are already up, but a netmask change is made. This is legal
13962 * but might not make the system manager very popular. (May be called
13963 * as writer.)
13964 */
13965 void
13966 ipif_mask_reply(ipif_t *ipif)
13967 {
13968 icmph_t *icmph;
13969 ipha_t *ipha;
13970 mblk_t *mp;
13971 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13972 ip_xmit_attr_t ixas;

13974 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)

13976 if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13977 return;

13979 /* ICMP mask reply is IPv4 only */
13980 ASSERT(!ipif->ipif_isv6);
13981 /* ICMP mask reply is not for a loopback interface */
13982 ASSERT(ipif->ipif_ill->ill_wq != NULL);

13984 if (ipif->ipif_lcl_addr == INADDR_ANY)
13985 return;

13987 mp = allocb(REPLY_LEN, BPRI_HI);

new/usr/src/uts/common/inet/ip/ip_if.c 213

13988 if (mp == NULL)
13989 return;
13990 mp->b_wptr = mp->b_rptr + REPLY_LEN;

13992 ipha = (ipha_t *)mp->b_rptr;
13993 bzero(ipha, REPLY_LEN);
13994 *ipha = icmp_ipha;
13995 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13996 ipha->ipha_src = ipif->ipif_lcl_addr;
13997 ipha->ipha_dst = ipif->ipif_brd_addr;
13998 ipha->ipha_length = htons(REPLY_LEN);
13999 ipha->ipha_ident = 0;

14001 icmph = (icmph_t *)&ipha[1];
14002 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
14003 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
14004 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);

14006 bzero(&ixas, sizeof (ixas));
14007 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
14008 ixas.ixa_zoneid = ALL_ZONES;
14009 ixas.ixa_ifindex = 0;
14010 ixas.ixa_ipst = ipst;
14011 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
14012 (void) ip_output_simple(mp, &ixas);
14013 ixa_cleanup(&ixas);
14014 #undef REPLY_LEN
14015 }

14017 /*
14018 * Join the ipif specific multicast groups.
14019 * Must be called after a mapping has been set up in the resolver. (Always
14020 * called as writer.)
14021 */
14022 void
14023 ipif_multicast_up(ipif_t *ipif)
14024 {
14025 int err;
14026 ill_t *ill;
14027 ilm_t *ilm;

14029 ASSERT(IAM_WRITER_IPIF(ipif));

14031 ill = ipif->ipif_ill;

14033 ip1dbg(("ipif_multicast_up\n"));
14034 if (!(ill->ill_flags & ILLF_MULTICAST) ||
14035 ipif->ipif_allhosts_ilm != NULL)
14036 return;

14038 if (ipif->ipif_isv6) {
14039 in6_addr_t v6allmc = ipv6_all_hosts_mcast;
14040 in6_addr_t v6solmc = ipv6_solicited_node_mcast;

14042 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];

14044 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14045 return;

14047 ip1dbg(("ipif_multicast_up - addmulti\n"));

14049 /*
14050 * Join the all hosts multicast address. We skip this for
14051 * underlying IPMP interfaces since they should be invisible.
14052 */
14053 if (!IS_UNDER_IPMP(ill)) {

new/usr/src/uts/common/inet/ip/ip_if.c 214

14054 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
14055 &err);
14056 if (ilm == NULL) {
14057 ASSERT(err != 0);
14058 ip0dbg(("ipif_multicast_up: "
14059 "all_hosts_mcast failed %d\n", err));
14060 return;
14061 }
14062 ipif->ipif_allhosts_ilm = ilm;
14063 }

14065 /*
14066 * Enable multicast for the solicited node multicast address.
14067 * If IPMP we need to put the membership on the upper ill.
14068 */
14069 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
14070 ill_t *mcast_ill = NULL;
14071 boolean_t need_refrele;

14073 if (IS_UNDER_IPMP(ill) &&
14074 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
14075 need_refrele = B_TRUE;
14076 } else {
14077 mcast_ill = ill;
14078 need_refrele = B_FALSE;
14079 }

14081 ilm = ip_addmulti(&v6solmc, mcast_ill,
14082 ipif->ipif_zoneid, &err);
14083 if (need_refrele)
14084 ill_refrele(mcast_ill);

14086 if (ilm == NULL) {
14087 ASSERT(err != 0);
14088 ip0dbg(("ipif_multicast_up: solicited MC"
14089 " failed %d\n", err));
14090 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
14091 ipif->ipif_allhosts_ilm = NULL;
14092 (void) ip_delmulti(ilm);
14093 }
14094 return;
14095 }
14096 ipif->ipif_solmulti_ilm = ilm;
14097 }
14098 } else {
14099 in6_addr_t v6group;

14101 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
14102 return;

14104 /* Join the all hosts multicast address */
14105 ip1dbg(("ipif_multicast_up - addmulti\n"));
14106 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);

14108 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
14109 if (ilm == NULL) {
14110 ASSERT(err != 0);
14111 ip0dbg(("ipif_multicast_up: failed %d\n", err));
14112 return;
14113 }
14114 ipif->ipif_allhosts_ilm = ilm;
14115 }
14116 }

14118 /*
14119 * Blow away any multicast groups that we joined in ipif_multicast_up().

new/usr/src/uts/common/inet/ip/ip_if.c 215

14120 * (ilms from explicit memberships are handled in conn_update_ill.)
14121 */
14122 void
14123 ipif_multicast_down(ipif_t *ipif)
14124 {
14125 ASSERT(IAM_WRITER_IPIF(ipif));

14127 ip1dbg(("ipif_multicast_down\n"));

14129 if (ipif->ipif_allhosts_ilm != NULL) {
14130 (void) ip_delmulti(ipif->ipif_allhosts_ilm);
14131 ipif->ipif_allhosts_ilm = NULL;
14132 }
14133 if (ipif->ipif_solmulti_ilm != NULL) {
14134 (void) ip_delmulti(ipif->ipif_solmulti_ilm);
14135 ipif->ipif_solmulti_ilm = NULL;
14136 }
14137 }

14139 /*
14140 * Used when an interface comes up to recreate any extra routes on this
14141 * interface.
14142 */
14143 int
14144 ill_recover_saved_ire(ill_t *ill)
14145 {
14146 mblk_t *mp;
14147 ip_stack_t *ipst = ill->ill_ipst;

14149 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));

14151 mutex_enter(&ill->ill_saved_ire_lock);
14152 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
14153 ire_t *ire, *nire;
14154 ifrt_t *ifrt;

14156 ifrt = (ifrt_t *)mp->b_rptr;
14157 /*
14158 * Create a copy of the IRE with the saved address and netmask.
14159 */
14160 if (ill->ill_isv6) {
14161 ire = ire_create_v6(
14162 &ifrt->ifrt_v6addr,
14163 &ifrt->ifrt_v6mask,
14164 &ifrt->ifrt_v6gateway_addr,
14165 ifrt->ifrt_type,
14166 ill,
14167 ifrt->ifrt_zoneid,
14168 ifrt->ifrt_flags,
14169 NULL,
14170 ipst);
14171 } else {
14172 ire = ire_create(
14173 (uint8_t *)&ifrt->ifrt_addr,
14174 (uint8_t *)&ifrt->ifrt_mask,
14175 (uint8_t *)&ifrt->ifrt_gateway_addr,
14176 ifrt->ifrt_type,
14177 ill,
14178 ifrt->ifrt_zoneid,
14179 ifrt->ifrt_flags,
14180 NULL,
14181 ipst);
14182 }
14183 if (ire == NULL) {
14184 mutex_exit(&ill->ill_saved_ire_lock);
14185 return (ENOMEM);

new/usr/src/uts/common/inet/ip/ip_if.c 216

14186 }

14188 if (ifrt->ifrt_flags & RTF_SETSRC) {
14189 if (ill->ill_isv6) {
14190 ire->ire_setsrc_addr_v6 =
14191 ifrt->ifrt_v6setsrc_addr;
14192 } else {
14193 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
14194 }
14195 }

14197 /*
14198 * Some software (for example, GateD and Sun Cluster) attempts
14199 * to create (what amount to) IRE_PREFIX routes with the
14200 * loopback address as the gateway. This is primarily done to
14201 * set up prefixes with the RTF_REJECT flag set (for example,
14202 * when generating aggregate routes.)
14203 *
14204 * If the IRE type (as defined by ill->ill_net_type) is
14205 * IRE_LOOPBACK, then we map the request into a
14206 * IRE_IF_NORESOLVER.
14207 */
14208 if (ill->ill_net_type == IRE_LOOPBACK)
14209 ire->ire_type = IRE_IF_NORESOLVER;

14211 /*
14212 * ire held by ire_add, will be refreled’ towards the
14213 * the end of ipif_up_done
14214 */
14215 nire = ire_add(ire);
14216 /*
14217 * Check if it was a duplicate entry. This handles
14218 * the case of two racing route adds for the same route
14219 */
14220 if (nire == NULL) {
14221 ip1dbg(("ill_recover_saved_ire: FAILED\n"));
14222 } else if (nire != ire) {
14223 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
14224 (void *)nire));
14225 ire_delete(nire);
14226 } else {
14227 ip1dbg(("ill_recover_saved_ire: added ire %p\n",
14228 (void *)nire));
14229 }
14230 if (nire != NULL)
14231 ire_refrele(nire);
14232 }
14233 mutex_exit(&ill->ill_saved_ire_lock);
14234 return (0);
14235 }

14237 /*
14238 * Used to set the netmask and broadcast address to default values when the
14239 * interface is brought up. (Always called as writer.)
14240 */
14241 static void
14242 ipif_set_default(ipif_t *ipif)
14243 {
14244 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));

14246 if (!ipif->ipif_isv6) {
14247 /*
14248 * Interface holds an IPv4 address. Default
14249 * mask is the natural netmask.
14250 */
14251 if (!ipif->ipif_net_mask) {

new/usr/src/uts/common/inet/ip/ip_if.c 217

14252 ipaddr_t v4mask;

14254 v4mask = ip_net_mask(ipif->ipif_lcl_addr);
14255 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
14256 }
14257 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14258 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14259 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14260 } else {
14261 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14262 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14263 }
14264 /*
14265 * NOTE: SunOS 4.X does this even if the broadcast address
14266 * has been already set thus we do the same here.
14267 */
14268 if (ipif->ipif_flags & IPIF_BROADCAST) {
14269 ipaddr_t v4addr;

14271 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
14272 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
14273 }
14274 } else {
14275 /*
14276 * Interface holds an IPv6-only address. Default
14277 * mask is all-ones.
14278 */
14279 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
14280 ipif->ipif_v6net_mask = ipv6_all_ones;
14281 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14282 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14283 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14284 } else {
14285 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14286 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14287 }
14288 }
14289 }

14291 /*
14292 * Return 0 if this address can be used as local address without causing
14293 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
14294 * is already up on a different ill, and EADDRINUSE if it’s up on the same ill.
14295 * Note that the same IPv6 link-local address is allowed as long as the ills
14296 * are not on the same link.
14297 */
14298 int
14299 ip_addr_availability_check(ipif_t *new_ipif)
14300 {
14301 in6_addr_t our_v6addr;
14302 ill_t *ill;
14303 ipif_t *ipif;
14304 ill_walk_context_t ctx;
14305 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst;

14307 ASSERT(IAM_WRITER_IPIF(new_ipif));
14308 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
14309 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));

14311 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
14312 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
14313 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
14314 return (0);

14316 our_v6addr = new_ipif->ipif_v6lcl_addr;

new/usr/src/uts/common/inet/ip/ip_if.c 218

14318 if (new_ipif->ipif_isv6)
14319 ill = ILL_START_WALK_V6(&ctx, ipst);
14320 else
14321 ill = ILL_START_WALK_V4(&ctx, ipst);

14323 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
14324 for (ipif = ill->ill_ipif; ipif != NULL;
14325 ipif = ipif->ipif_next) {
14326 if ((ipif == new_ipif) ||
14327 !(ipif->ipif_flags & IPIF_UP) ||
14328 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14329 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
14330 &our_v6addr))
14331 continue;

14333 if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
14334 new_ipif->ipif_flags |= IPIF_UNNUMBERED;
14335 else if (ipif->ipif_flags & IPIF_POINTOPOINT)
14336 ipif->ipif_flags |= IPIF_UNNUMBERED;
14337 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
14338 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
14339 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
14340 continue;
14341 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
14342 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
14343 continue;
14344 else if (new_ipif->ipif_ill == ill)
14345 return (EADDRINUSE);
14346 else
14347 return (EADDRNOTAVAIL);
14348 }
14349 }

14351 return (0);
14352 }

14354 /*
14355 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
14356 * IREs for the ipif.
14357 * When the routine returns EINPROGRESS then mp has been consumed and
14358 * the ioctl will be acked from ip_rput_dlpi.
14359 */
14360 int
14361 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
14362 {
14363 ill_t *ill = ipif->ipif_ill;
14364 boolean_t isv6 = ipif->ipif_isv6;
14365 int err = 0;
14366 boolean_t success;
14367 uint_t ipif_orig_id;
14368 ip_stack_t *ipst = ill->ill_ipst;

14370 ASSERT(IAM_WRITER_IPIF(ipif));

14372 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14373 DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
14374 ill_t *, ill, ipif_t *, ipif);

14376 /* Shouldn’t get here if it is already up. */
14377 if (ipif->ipif_flags & IPIF_UP)
14378 return (EALREADY);

14380 /*
14381 * If this is a request to bring up a data address on an interface
14382 * under IPMP, then move the address to its IPMP meta-interface and
14383 * try to bring it up. One complication is that the zeroth ipif for

new/usr/src/uts/common/inet/ip/ip_if.c 219

14384 * an ill is special, in that every ill always has one, and that code
14385 * throughout IP deferences ill->ill_ipif without holding any locks.
14386 */
14387 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
14388 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
14389 ipif_t *stubipif = NULL, *moveipif = NULL;
14390 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);

14392 /*
14393 * The ipif being brought up should be quiesced. If it’s not,
14394 * something has gone amiss and we need to bail out. (If it’s
14395 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
14396 */
14397 mutex_enter(&ill->ill_lock);
14398 if (!ipif_is_quiescent(ipif)) {
14399 mutex_exit(&ill->ill_lock);
14400 return (EINVAL);
14401 }
14402 mutex_exit(&ill->ill_lock);

14404 /*
14405 * If we’re going to need to allocate ipifs, do it prior
14406 * to starting the move (and grabbing locks).
14407 */
14408 if (ipif->ipif_id == 0) {
14409 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14410 B_FALSE, &err)) == NULL) {
14411 return (err);
14412 }
14413 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14414 B_FALSE, &err)) == NULL) {
14415 mi_free(moveipif);
14416 return (err);
14417 }
14418 }

14420 /*
14421 * Grab or transfer the ipif to move. During the move, keep
14422 * ill_g_lock held to prevent any ill walker threads from
14423 * seeing things in an inconsistent state.
14424 */
14425 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14426 if (ipif->ipif_id != 0) {
14427 ipif_remove(ipif);
14428 } else {
14429 ipif_transfer(ipif, moveipif, stubipif);
14430 ipif = moveipif;
14431 }

14433 /*
14434 * Place the ipif on the IPMP ill. If the zeroth ipif on
14435 * the IPMP ill is a stub (0.0.0.0 down address) then we
14436 * replace that one. Otherwise, pick the next available slot.
14437 */
14438 ipif->ipif_ill = ipmp_ill;
14439 ipif_orig_id = ipif->ipif_id;

14441 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14442 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14443 ipif = ipmp_ill->ill_ipif;
14444 } else {
14445 ipif->ipif_id = -1;
14446 if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14447 /*
14448 * No more available ipif_id’s -- put it back
14449 * on the original ill and fail the operation.

new/usr/src/uts/common/inet/ip/ip_if.c 220

14450 * Since we’re writer on the ill, we can be
14451 * sure our old slot is still available.
14452 */
14453 ipif->ipif_id = ipif_orig_id;
14454 ipif->ipif_ill = ill;
14455 if (ipif_orig_id == 0) {
14456 ipif_transfer(ipif, ill->ill_ipif,
14457 NULL);
14458 } else {
14459 VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14460 }
14461 rw_exit(&ipst->ips_ill_g_lock);
14462 return (err);
14463 }
14464 }
14465 rw_exit(&ipst->ips_ill_g_lock);

14467 /*
14468 * Tell SCTP that the ipif has moved. Note that even if we
14469 * had to allocate a new ipif, the original sequence id was
14470 * preserved and therefore SCTP won’t know.
14471 */
14472 sctp_move_ipif(ipif, ill, ipmp_ill);

14474 /*
14475 * If the ipif being brought up was on slot zero, then we
14476 * first need to bring up the placeholder we stuck there. In
14477 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14478 * call to ipif_up() itself, if we successfully bring up the
14479 * placeholder, we’ll check ill_move_ipif and bring it up too.
14480 */
14481 if (ipif_orig_id == 0) {
14482 ASSERT(ill->ill_move_ipif == NULL);
14483 ill->ill_move_ipif = ipif;
14484 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14485 ASSERT(ill->ill_move_ipif == NULL);
14486 if (err != EINPROGRESS)
14487 ill->ill_move_ipif = NULL;
14488 return (err);
14489 }

14491 /*
14492 * Bring it up on the IPMP ill.
14493 */
14494 return (ipif_up(ipif, q, mp));
14495 }

14497 /* Skip arp/ndp for any loopback interface. */
14498 if (ill->ill_wq != NULL) {
14499 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14500 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;

14502 if (!ill->ill_dl_up) {
14503 /*
14504 * ill_dl_up is not yet set. i.e. we are yet to
14505 * DL_BIND with the driver and this is the first
14506 * logical interface on the ill to become "up".
14507 * Tell the driver to get going (via DL_BIND_REQ).
14508 * Note that changing "significant" IFF_ flags
14509 * address/netmask etc cause a down/up dance, but
14510 * does not cause an unbind (DL_UNBIND) with the driver
14511 */
14512 return (ill_dl_up(ill, ipif, mp, q));
14513 }

14515 /*

new/usr/src/uts/common/inet/ip/ip_if.c 221

14516 * ipif_resolver_up may end up needeing to bind/attach
14517 * the ARP stream, which in turn necessitates a
14518 * DLPI message exchange with the driver. ioctls are
14519 * serialized and so we cannot send more than one
14520 * interface up message at a time. If ipif_resolver_up
14521 * does need to wait for the DLPI handshake for the ARP stream,
14522 * we get EINPROGRESS and we will complete in arp_bringup_done.
14523 */

14525 ASSERT(connp != NULL || !CONN_Q(q));
14526 if (connp != NULL)
14527 mutex_enter(&connp->conn_lock);
14528 mutex_enter(&ill->ill_lock);
14529 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14530 mutex_exit(&ill->ill_lock);
14531 if (connp != NULL)
14532 mutex_exit(&connp->conn_lock);
14533 if (!success)
14534 return (EINTR);

14536 /*
14537 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14538 * complete when ipif_ndp_up returns.
14539 */
14540 err = ipif_resolver_up(ipif, Res_act_initial);
14541 if (err == EINPROGRESS) {
14542 /* We will complete it in arp_bringup_done() */
14543 return (err);
14544 }

14546 if (isv6 && err == 0)
14547 err = ipif_ndp_up(ipif, B_TRUE);

14549 ASSERT(err != EINPROGRESS);
14550 mp = ipsq_pending_mp_get(ipsq, &connp);
14551 ASSERT(mp != NULL);
14552 if (err != 0)
14553 return (err);
14554 } else {
14555 /*
14556 * Interfaces without underlying hardware don’t do duplicate
14557 * address detection.
14558 */
14559 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14560 ipif->ipif_addr_ready = 1;
14561 err = ill_add_ires(ill);
14562 /* allocation failure? */
14563 if (err != 0)
14564 return (err);
14565 }

14567 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14568 if (err == 0 && ill->ill_move_ipif != NULL) {
14569 ipif = ill->ill_move_ipif;
14570 ill->ill_move_ipif = NULL;
14571 return (ipif_up(ipif, q, mp));
14572 }
14573 return (err);
14574 }

14576 /*
14577 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14578 * The identical set of IREs need to be removed in ill_delete_ires().
14579 */
14580 int
14581 ill_add_ires(ill_t *ill)

new/usr/src/uts/common/inet/ip/ip_if.c 222

14582 {
14583 ire_t *ire;
14584 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14585 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);

14587 if (ill->ill_ire_multicast != NULL)
14588 return (0);

14590 /*
14591 * provide some dummy ire_addr for creating the ire.
14592 */
14593 if (ill->ill_isv6) {
14594 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14595 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14596 } else {
14597 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14598 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14599 }
14600 if (ire == NULL)
14601 return (ENOMEM);

14603 ill->ill_ire_multicast = ire;
14604 return (0);
14605 }

14607 void
14608 ill_delete_ires(ill_t *ill)
14609 {
14610 if (ill->ill_ire_multicast != NULL) {
14611 /*
14612 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14613 * which was taken without any th_tracing enabled.
14614 * We also mark it as condemned (note that it was never added)
14615 * so that caching conn’s can move off of it.
14616 */
14617 ire_make_condemned(ill->ill_ire_multicast);
14618 ire_refrele_notr(ill->ill_ire_multicast);
14619 ill->ill_ire_multicast = NULL;
14620 }
14621 }

14623 /*
14624 * Perform a bind for the physical device.
14625 * When the routine returns EINPROGRESS then mp has been consumed and
14626 * the ioctl will be acked from ip_rput_dlpi.
14627 * Allocate an unbind message and save it until ipif_down.
14628 */
14629 static int
14630 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14631 {
14632 mblk_t *bind_mp = NULL;
14633 mblk_t *unbind_mp = NULL;
14634 conn_t *connp;
14635 boolean_t success;
14636 int err;

14638 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);

14640 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14641 ASSERT(IAM_WRITER_ILL(ill));
14642 ASSERT(mp != NULL);

14644 /*
14645 * Make sure we have an IRE_MULTICAST in case we immediately
14646 * start receiving packets.
14647 */

new/usr/src/uts/common/inet/ip/ip_if.c 223

14648 err = ill_add_ires(ill);
14649 if (err != 0)
14650 goto bad;

14652 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14653 DL_BIND_REQ);
14654 if (bind_mp == NULL)
14655 goto bad;
14656 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14657 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;

14659 /*
14660 * ill_unbind_mp would be non-null if the following sequence had
14661 * happened:
14662 * - send DL_BIND_REQ to driver, wait for response
14663 * - multiple ioctls that need to bring the ipif up are encountered,
14664 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ.
14665 * These ioctls will then be enqueued on the ipsq
14666 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ
14667 * At this point, the pending ioctls in the ipsq will be drained, and
14668 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with
14669 * a non-null ill->ill_unbind_mp
14670 */
14671 if (ill->ill_unbind_mp == NULL) {
14672 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t),
14673 DL_UNBIND_REQ);
14674 if (unbind_mp == NULL)
14675 goto bad;
14676 }
14677 /*
14678 * Record state needed to complete this operation when the
14679 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks.
14680 */
14681 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14682 ASSERT(connp != NULL || !CONN_Q(q));
14683 GRAB_CONN_LOCK(q);
14684 mutex_enter(&ipif->ipif_ill->ill_lock);
14685 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14686 mutex_exit(&ipif->ipif_ill->ill_lock);
14687 RELEASE_CONN_LOCK(q);
14688 if (!success)
14689 goto bad;

14691 /*
14692 * Save the unbind message for ill_dl_down(); it will be consumed when
14693 * the interface goes down.
14694 */
14695 if (ill->ill_unbind_mp == NULL)
14696 ill->ill_unbind_mp = unbind_mp;

14698 ill_dlpi_send(ill, bind_mp);
14699 /* Send down link-layer capabilities probe if not already done. */
14700 ill_capability_probe(ill);

14702 /*
14703 * Sysid used to rely on the fact that netboots set domainname
14704 * and the like. Now that miniroot boots aren’t strictly netboots
14705 * and miniroot network configuration is driven from userland
14706 * these things still need to be set. This situation can be detected
14707 * by comparing the interface being configured here to the one
14708 * dhcifname was set to reference by the boot loader. Once sysid is
14709 * converted to use dhcp_ipc_getinfo() this call can go away.
14710 */
14711 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14712 (strcmp(ill->ill_name, dhcifname) == 0) &&
14713 (strlen(srpc_domain) == 0)) {

new/usr/src/uts/common/inet/ip/ip_if.c 224

14714 if (dhcpinit() != 0)
14715 cmn_err(CE_WARN, "no cached dhcp response");
14716 }

14718 /*
14719 * This operation will complete in ip_rput_dlpi with either
14720 * a DL_BIND_ACK or DL_ERROR_ACK.
14721 */
14722 return (EINPROGRESS);
14723 bad:
14724 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));

14726 freemsg(bind_mp);
14727 freemsg(unbind_mp);
14728 return (ENOMEM);
14729 }

14731 /* Add room for tcp+ip headers */
14732 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;

14734 /*
14735 * DLPI and ARP is up.
14736 * Create all the IREs associated with an interface. Bring up multicast.
14737 * Set the interface flag and finish other initialization
14738 * that potentially had to be deferred to after DL_BIND_ACK.
14739 */
14740 int
14741 ipif_up_done(ipif_t *ipif)
14742 {
14743 ill_t *ill = ipif->ipif_ill;
14744 int err = 0;
14745 boolean_t loopback = B_FALSE;
14746 boolean_t update_src_selection = B_TRUE;
14747 ipif_t *tmp_ipif;

14749 ip1dbg(("ipif_up_done(%s:%u)\n",
14750 ipif->ipif_ill->ill_name, ipif->ipif_id));
14751 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14752 ill_t *, ill, ipif_t *, ipif);

14754 /* Check if this is a loopback interface */
14755 if (ipif->ipif_ill->ill_wq == NULL)
14756 loopback = B_TRUE;

14758 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));

14760 /*
14761 * If all other interfaces for this ill are down or DEPRECATED,
14762 * or otherwise unsuitable for source address selection,
14763 * reset the src generation numbers to make sure source
14764 * address selection gets to take this new ipif into account.
14765 * No need to hold ill_lock while traversing the ipif list since
14766 * we are writer
14767 */
14768 for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14769 tmp_ipif = tmp_ipif->ipif_next) {
14770 if (((tmp_ipif->ipif_flags &
14771 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14772 !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14773 (tmp_ipif == ipif))
14774 continue;
14775 /* first useable pre-existing interface */
14776 update_src_selection = B_FALSE;
14777 break;
14778 }
14779 if (update_src_selection)

new/usr/src/uts/common/inet/ip/ip_if.c 225

14780 ip_update_source_selection(ill->ill_ipst);

14782 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14783 nce_t *loop_nce = NULL;
14784 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);

14786 /*
14787 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14788 * ipif_lookup_on_name(), but in the case of zones we can have
14789 * several loopback addresses on lo0. So all the interfaces with
14790 * loopback addresses need to be marked IRE_LOOPBACK.
14791 */
14792 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14793 htonl(INADDR_LOOPBACK))
14794 ipif->ipif_ire_type = IRE_LOOPBACK;
14795 else
14796 ipif->ipif_ire_type = IRE_LOCAL;
14797 if (ill->ill_net_type != IRE_LOOPBACK)
14798 flags |= NCE_F_PUBLISH;

14800 /* add unicast nce for the local addr */
14801 err = nce_lookup_then_add_v4(ill, NULL,
14802 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14803 ND_REACHABLE, &loop_nce);
14804 /* A shared-IP zone sees EEXIST for lo0:N */
14805 if (err == 0 || err == EEXIST) {
14806 ipif->ipif_added_nce = 1;
14807 loop_nce->nce_ipif_cnt++;
14808 nce_refrele(loop_nce);
14809 err = 0;
14810 } else {
14811 ASSERT(loop_nce == NULL);
14812 return (err);
14813 }
14814 }

14816 /* Create all the IREs associated with this interface */
14817 err = ipif_add_ires_v4(ipif, loopback);
14818 if (err != 0) {
14819 /*
14820 * see comments about return value from
14821 * ip_addr_availability_check() in ipif_add_ires_v4().
14822 */
14823 if (err != EADDRINUSE) {
14824 (void) ipif_arp_down(ipif);
14825 } else {
14826 /*
14827 * Make IPMP aware of the deleted ipif so that
14828 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14829 * can be completed. Note that we do not want to
14830 * destroy the nce that was created on the ipmp_ill
14831 * for the active copy of the duplicate address in
14832 * use.
14833 */
14834 if (IS_IPMP(ill))
14835 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14836 err = EADDRNOTAVAIL;
14837 }
14838 return (err);
14839 }

14841 if (ill->ill_ipif_up_count == 1 && !loopback) {
14842 /* Recover any additional IREs entries for this ill */
14843 (void) ill_recover_saved_ire(ill);
14844 }

new/usr/src/uts/common/inet/ip/ip_if.c 226

14846 if (ill->ill_need_recover_multicast) {
14847 /*
14848 * Need to recover all multicast memberships in the driver.
14849 * This had to be deferred until we had attached. The same
14850 * code exists in ipif_up_done_v6() to recover IPv6
14851 * memberships.
14852 *
14853 * Note that it would be preferable to unconditionally do the
14854 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14855 * that since ill_join_allmulti() depends on ill_dl_up being
14856 * set, and it is not set until we receive a DL_BIND_ACK after
14857 * having called ill_dl_up().
14858 */
14859 ill_recover_multicast(ill);
14860 }

14862 if (ill->ill_ipif_up_count == 1) {
14863 /*
14864 * Since the interface is now up, it may now be active.
14865 */
14866 if (IS_UNDER_IPMP(ill))
14867 ipmp_ill_refresh_active(ill);

14869 /*
14870 * If this is an IPMP interface, we may now be able to
14871 * establish ARP entries.
14872 */
14873 if (IS_IPMP(ill))
14874 ipmp_illgrp_refresh_arpent(ill->ill_grp);
14875 }

14877 /* Join the allhosts multicast address */
14878 ipif_multicast_up(ipif);

14880 if (!loopback && !update_src_selection &&
14881 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14882 ip_update_source_selection(ill->ill_ipst);

14884 if (!loopback && ipif->ipif_addr_ready) {
14885 /* Broadcast an address mask reply. */
14886 ipif_mask_reply(ipif);
14887 }
14888 /* Perhaps ilgs should use this ill */
14889 update_conn_ill(NULL, ill->ill_ipst);

14891 /*
14892 * This had to be deferred until we had bound. Tell routing sockets and
14893 * others that this interface is up if it looks like the address has
14894 * been validated. Otherwise, if it isn’t ready yet, wait for
14895 * duplicate address detection to do its thing.
14896 */
14897 if (ipif->ipif_addr_ready)
14898 ipif_up_notify(ipif);
14899 return (0);
14900 }

14902 /*
14903 * Add the IREs associated with the ipif.
14904 * Those MUST be explicitly removed in ipif_delete_ires_v4.
14905 */
14906 static int
14907 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14908 {
14909 ill_t *ill = ipif->ipif_ill;
14910 ip_stack_t *ipst = ill->ill_ipst;
14911 ire_t *ire_array[20];

new/usr/src/uts/common/inet/ip/ip_if.c 227

14912 ire_t **irep = ire_array;
14913 ire_t **irep1;
14914 ipaddr_t net_mask = 0;
14915 ipaddr_t subnet_mask, route_mask;
14916 int err;
14917 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */
14918 ire_t *ire_if = NULL;
14919 uchar_t *gw;

14921 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14922 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14923 /*
14924 * If we’re on a labeled system then make sure that zone-
14925 * private addresses have proper remote host database entries.
14926 */
14927 if (is_system_labeled() &&
14928 ipif->ipif_ire_type != IRE_LOOPBACK &&
14929 !tsol_check_interface_address(ipif))
14930 return (EINVAL);

14932 /* Register the source address for __sin6_src_id */
14933 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14934 ipif->ipif_zoneid, ipst);
14935 if (err != 0) {
14936 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14937 return (err);
14938 }

14940 if (loopback)
14941 gw = (uchar_t *)&ipif->ipif_lcl_addr;
14942 else
14943 gw = NULL;

14945 /* If the interface address is set, create the local IRE. */
14946 ire_local = ire_create(
14947 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */
14948 (uchar_t *)&ip_g_all_ones, /* mask */
14949 gw, /* gateway */
14950 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */
14951 ipif->ipif_ill,
14952 ipif->ipif_zoneid,
14953 ((ipif->ipif_flags & IPIF_PRIVATE) ?
14954 RTF_PRIVATE : 0) | RTF_KERNEL,
14955 NULL,
14956 ipst);
14957 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14958 " for 0x%x\n", (void *)ipif, (void *)ire_local,
14959 ipif->ipif_ire_type,
14960 ntohl(ipif->ipif_lcl_addr)));
14961 if (ire_local == NULL) {
14962 ip1dbg(("ipif_up_done: NULL ire_local\n"));
14963 err = ENOMEM;
14964 goto bad;
14965 }
14966 } else {
14967 ip1dbg((
14968 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14969 ipif->ipif_ire_type,
14970 ntohl(ipif->ipif_lcl_addr),
14971 (uint_t)ipif->ipif_flags));
14972 }
14973 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14974 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14975 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14976 } else {
14977 net_mask = htonl(IN_CLASSA_NET); /* fallback */

new/usr/src/uts/common/inet/ip/ip_if.c 228

14978 }

14980 subnet_mask = ipif->ipif_net_mask;

14982 /*
14983 * If mask was not specified, use natural netmask of
14984 * interface address. Also, store this mask back into the
14985 * ipif struct.
14986 */
14987 if (subnet_mask == 0) {
14988 subnet_mask = net_mask;
14989 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14990 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14991 ipif->ipif_v6subnet);
14992 }

14994 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14995 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14996 ipif->ipif_subnet != INADDR_ANY) {
14997 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */

14999 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
15000 route_mask = IP_HOST_MASK;
15001 } else {
15002 route_mask = subnet_mask;
15003 }

15005 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
15006 "creating if IRE ill_net_type 0x%x for 0x%x\n",
15007 (void *)ipif, (void *)ill, ill->ill_net_type,
15008 ntohl(ipif->ipif_subnet)));
15009 ire_if = ire_create(
15010 (uchar_t *)&ipif->ipif_subnet,
15011 (uchar_t *)&route_mask,
15012 (uchar_t *)&ipif->ipif_lcl_addr,
15013 ill->ill_net_type,
15014 ill,
15015 ipif->ipif_zoneid,
15016 ((ipif->ipif_flags & IPIF_PRIVATE) ?
15017 RTF_PRIVATE: 0) | RTF_KERNEL,
15018 NULL,
15019 ipst);
15020 if (ire_if == NULL) {
15021 ip1dbg(("ipif_up_done: NULL ire_if\n"));
15022 err = ENOMEM;
15023 goto bad;
15024 }
15025 }

15027 /*
15028 * Create any necessary broadcast IREs.
15029 */
15030 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15031 !(ipif->ipif_flags & IPIF_NOXMIT))
15032 irep = ipif_create_bcast_ires(ipif, irep);

15034 /* If an earlier ire_create failed, get out now */
15035 for (irep1 = irep; irep1 > ire_array;) {
15036 irep1--;
15037 if (*irep1 == NULL) {
15038 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
15039 err = ENOMEM;
15040 goto bad;
15041 }
15042 }

new/usr/src/uts/common/inet/ip/ip_if.c 229

15044 /*
15045 * Need to atomically check for IP address availability under
15046 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new
15047 * ills or new ipifs can be added while we are checking availability.
15048 */
15049 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15050 mutex_enter(&ipst->ips_ip_addr_avail_lock);
15051 /* Mark it up, and increment counters. */
15052 ipif->ipif_flags |= IPIF_UP;
15053 ill->ill_ipif_up_count++;
15054 err = ip_addr_availability_check(ipif);
15055 mutex_exit(&ipst->ips_ip_addr_avail_lock);
15056 rw_exit(&ipst->ips_ill_g_lock);

15058 if (err != 0) {
15059 /*
15060 * Our address may already be up on the same ill. In this case,
15061 * the ARP entry for our ipif replaced the one for the other
15062 * ipif. So we don’t want to delete it (otherwise the other ipif
15063 * would be unable to send packets).
15064 * ip_addr_availability_check() identifies this case for us and
15065 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
15066 * which is the expected error code.
15067 */
15068 ill->ill_ipif_up_count--;
15069 ipif->ipif_flags &= ~IPIF_UP;
15070 goto bad;
15071 }

15073 /*
15074 * Add in all newly created IREs. ire_create_bcast() has
15075 * already checked for duplicates of the IRE_BROADCAST type.
15076 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
15077 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
15078 * a /32 route.
15079 */
15080 if (ire_if != NULL) {
15081 ire_if = ire_add(ire_if);
15082 if (ire_if == NULL) {
15083 err = ENOMEM;
15084 goto bad2;
15085 }
15086 #ifdef DEBUG
15087 ire_refhold_notr(ire_if);
15088 ire_refrele(ire_if);
15089 #endif
15090 }
15091 if (ire_local != NULL) {
15092 ire_local = ire_add(ire_local);
15093 if (ire_local == NULL) {
15094 err = ENOMEM;
15095 goto bad2;
15096 }
15097 #ifdef DEBUG
15098 ire_refhold_notr(ire_local);
15099 ire_refrele(ire_local);
15100 #endif
15101 }
15102 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15103 if (ire_local != NULL)
15104 ipif->ipif_ire_local = ire_local;
15105 if (ire_if != NULL)
15106 ipif->ipif_ire_if = ire_if;
15107 rw_exit(&ipst->ips_ill_g_lock);
15108 ire_local = NULL;
15109 ire_if = NULL;

new/usr/src/uts/common/inet/ip/ip_if.c 230

15111 /*
15112 * We first add all of them, and if that succeeds we refrele the
15113 * bunch. That enables us to delete all of them should any of the
15114 * ire_adds fail.
15115 */
15116 for (irep1 = irep; irep1 > ire_array;) {
15117 irep1--;
15118 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
15119 *irep1 = ire_add(*irep1);
15120 if (*irep1 == NULL) {
15121 err = ENOMEM;
15122 goto bad2;
15123 }
15124 }

15126 for (irep1 = irep; irep1 > ire_array;) {
15127 irep1--;
15128 /* refheld by ire_add. */
15129 if (*irep1 != NULL) {
15130 ire_refrele(*irep1);
15131 *irep1 = NULL;
15132 }
15133 }

15135 if (!loopback) {
15136 /*
15137 * If the broadcast address has been set, make sure it makes
15138 * sense based on the interface address.
15139 * Only match on ill since we are sharing broadcast addresses.
15140 */
15141 if ((ipif->ipif_brd_addr != INADDR_ANY) &&
15142 (ipif->ipif_flags & IPIF_BROADCAST)) {
15143 ire_t *ire;

15145 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
15146 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
15147 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);

15149 if (ire == NULL) {
15150 /*
15151 * If there isn’t a matching broadcast IRE,
15152 * revert to the default for this netmask.
15153 */
15154 ipif->ipif_v6brd_addr = ipv6_all_zeros;
15155 mutex_enter(&ipif->ipif_ill->ill_lock);
15156 ipif_set_default(ipif);
15157 mutex_exit(&ipif->ipif_ill->ill_lock);
15158 } else {
15159 ire_refrele(ire);
15160 }
15161 }

15163 }
15164 return (0);

15166 bad2:
15167 ill->ill_ipif_up_count--;
15168 ipif->ipif_flags &= ~IPIF_UP;

15170 bad:
15171 ip1dbg(("ipif_add_ires: FAILED \n"));
15172 if (ire_local != NULL)
15173 ire_delete(ire_local);
15174 if (ire_if != NULL)
15175 ire_delete(ire_if);

new/usr/src/uts/common/inet/ip/ip_if.c 231

15177 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15178 ire_local = ipif->ipif_ire_local;
15179 ipif->ipif_ire_local = NULL;
15180 ire_if = ipif->ipif_ire_if;
15181 ipif->ipif_ire_if = NULL;
15182 rw_exit(&ipst->ips_ill_g_lock);
15183 if (ire_local != NULL) {
15184 ire_delete(ire_local);
15185 ire_refrele_notr(ire_local);
15186 }
15187 if (ire_if != NULL) {
15188 ire_delete(ire_if);
15189 ire_refrele_notr(ire_if);
15190 }

15192 while (irep > ire_array) {
15193 irep--;
15194 if (*irep != NULL) {
15195 ire_delete(*irep);
15196 }
15197 }
15198 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);

15200 return (err);
15201 }

15203 /* Remove all the IREs created by ipif_add_ires_v4 */
15204 void
15205 ipif_delete_ires_v4(ipif_t *ipif)
15206 {
15207 ill_t *ill = ipif->ipif_ill;
15208 ip_stack_t *ipst = ill->ill_ipst;
15209 ire_t *ire;

15211 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15212 ire = ipif->ipif_ire_local;
15213 ipif->ipif_ire_local = NULL;
15214 rw_exit(&ipst->ips_ill_g_lock);
15215 if (ire != NULL) {
15216 /*
15217 * Move count to ipif so we don’t loose the count due to
15218 * a down/up dance.
15219 */
15220 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);

15222 ire_delete(ire);
15223 ire_refrele_notr(ire);
15224 }
15225 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15226 ire = ipif->ipif_ire_if;
15227 ipif->ipif_ire_if = NULL;
15228 rw_exit(&ipst->ips_ill_g_lock);
15229 if (ire != NULL) {
15230 ire_delete(ire);
15231 ire_refrele_notr(ire);
15232 }

15234 /*
15235 * Delete the broadcast IREs.
15236 */
15237 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15238 !(ipif->ipif_flags & IPIF_NOXMIT))
15239 ipif_delete_bcast_ires(ipif);
15240 }

new/usr/src/uts/common/inet/ip/ip_if.c 232

15242 /*
15243 * Checks for availbility of a usable source address (if there is one) when the
15244 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
15245 * this selection is done regardless of the destination.
15246 */
15247 boolean_t
15248 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
15249 ip_stack_t *ipst)
15250 {
15251 ipif_t *ipif = NULL;
15252 ill_t *uill;

15254 ASSERT(ifindex != 0);

15256 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15257 if (uill == NULL)
15258 return (B_FALSE);

15260 mutex_enter(&uill->ill_lock);
15261 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15262 if (IPIF_IS_CONDEMNED(ipif))
15263 continue;
15264 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15265 continue;
15266 if (!(ipif->ipif_flags & IPIF_UP))
15267 continue;
15268 if (ipif->ipif_zoneid != zoneid)
15269 continue;
15270 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15271 ipif->ipif_lcl_addr == INADDR_ANY)
15272 continue;
15273 mutex_exit(&uill->ill_lock);
15274 ill_refrele(uill);
15275 return (B_TRUE);
15276 }
15277 mutex_exit(&uill->ill_lock);
15278 ill_refrele(uill);
15279 return (B_FALSE);
15280 }

15282 /*
15283 * Find an ipif with a good local address on the ill+zoneid.
15284 */
15285 ipif_t *
15286 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
15287 {
15288 ipif_t *ipif;

15290 mutex_enter(&ill->ill_lock);
15291 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15292 if (IPIF_IS_CONDEMNED(ipif))
15293 continue;
15294 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15295 continue;
15296 if (!(ipif->ipif_flags & IPIF_UP))
15297 continue;
15298 if (ipif->ipif_zoneid != zoneid &&
15299 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
15300 continue;
15301 if (ill->ill_isv6 ?
15302 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15303 ipif->ipif_lcl_addr == INADDR_ANY)
15304 continue;
15305 ipif_refhold_locked(ipif);
15306 mutex_exit(&ill->ill_lock);
15307 return (ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 233

15308 }
15309 mutex_exit(&ill->ill_lock);
15310 return (NULL);
15311 }

15313 /*
15314 * IP source address type, sorted from worst to best. For a given type,
15315 * always prefer IP addresses on the same subnet. All-zones addresses are
15316 * suboptimal because they pose problems with unlabeled destinations.
15317 */
15318 typedef enum {
15319 IPIF_NONE,
15320 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */
15321 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */
15322 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */
15323 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */
15324 IPIF_DIFFNET, /* normal and different subnet */
15325 IPIF_SAMENET, /* normal and same subnet */
15326 IPIF_LOCALADDR /* local loopback */
15327 } ipif_type_t;

15329 /*
15330 * Pick the optimal ipif on ‘ill’ for sending to destination ‘dst’ from zone
15331 * ‘zoneid’. We rate usable ipifs from low -> high as per the ipif_type_t
15332 * enumeration, and return the highest-rated ipif. If there’s a tie, we pick
15333 * the first one, unless IPMP is used in which case we round-robin among them;
15334 * see below for more.
15335 *
15336 * Returns NULL if there is no suitable source address for the ill.
15337 * This only occurs when there is no valid source address for the ill.
15338 */
15339 ipif_t *
15340 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
15341 boolean_t allow_usesrc, boolean_t *notreadyp)
15342 {
15343 ill_t *usill = NULL;
15344 ill_t *ipmp_ill = NULL;
15345 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif;
15346 ipif_type_t type, best_type;
15347 tsol_tpc_t *src_rhtp, *dst_rhtp;
15348 ip_stack_t *ipst = ill->ill_ipst;
15349 boolean_t samenet;

15351 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
15352 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
15353 B_FALSE, ipst);
15354 if (usill != NULL)
15355 ill = usill; /* Select source from usesrc ILL */
15356 else
15357 return (NULL);
15358 }

15360 /*
15361 * Test addresses should never be used for source address selection,
15362 * so if we were passed one, switch to the IPMP meta-interface.
15363 */
15364 if (IS_UNDER_IPMP(ill)) {
15365 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
15366 ill = ipmp_ill; /* Select source from IPMP ill */
15367 else
15368 return (NULL);
15369 }

15371 /*
15372 * If we’re dealing with an unlabeled destination on a labeled system,
15373 * make sure that we ignore source addresses that are incompatible with

new/usr/src/uts/common/inet/ip/ip_if.c 234

15374 * the destination’s default label. That destination’s default label
15375 * must dominate the minimum label on the source address.
15376 */
15377 dst_rhtp = NULL;
15378 if (is_system_labeled()) {
15379 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
15380 if (dst_rhtp == NULL)
15381 return (NULL);
15382 if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
15383 TPC_RELE(dst_rhtp);
15384 dst_rhtp = NULL;
15385 }
15386 }

15388 /*
15389 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
15390 * can be deleted. But an ipif/ill can get CONDEMNED any time.
15391 * After selecting the right ipif, under ill_lock make sure ipif is
15392 * not condemned, and increment refcnt. If ipif is CONDEMNED,
15393 * we retry. Inside the loop we still need to check for CONDEMNED,
15394 * but not under a lock.
15395 */
15396 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15397 retry:
15398 /*
15399 * For source address selection, we treat the ipif list as circular
15400 * and continue until we get back to where we started. This allows
15401 * IPMP to vary source address selection (which improves inbound load
15402 * spreading) by caching its last ending point and starting from
15403 * there. NOTE: we don’t have to worry about ill_src_ipif changing
15404 * ills since that can’t happen on the IPMP ill.
15405 */
15406 start_ipif = ill->ill_ipif;
15407 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
15408 start_ipif = ill->ill_src_ipif;

15410 ipif = start_ipif;
15411 best_ipif = NULL;
15412 best_type = IPIF_NONE;
15413 do {
15414 if ((next_ipif = ipif->ipif_next) == NULL)
15415 next_ipif = ill->ill_ipif;

15417 if (IPIF_IS_CONDEMNED(ipif))
15418 continue;
15419 /* Always skip NOLOCAL and ANYCAST interfaces */
15420 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15421 continue;
15422 /* Always skip NOACCEPT interfaces */
15423 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
15424 continue;
15425 if (!(ipif->ipif_flags & IPIF_UP))
15426 continue;

15428 if (!ipif->ipif_addr_ready) {
15429 if (notreadyp != NULL)
15430 *notreadyp = B_TRUE;
15431 continue;
15432 }

15434 if (zoneid != ALL_ZONES &&
15435 ipif->ipif_zoneid != zoneid &&
15436 ipif->ipif_zoneid != ALL_ZONES)
15437 continue;

15439 /*

new/usr/src/uts/common/inet/ip/ip_if.c 235

15440 * Interfaces with 0.0.0.0 address are allowed to be UP, but
15441 * are not valid as source addresses.
15442 */
15443 if (ipif->ipif_lcl_addr == INADDR_ANY)
15444 continue;

15446 /*
15447 * Check compatibility of local address for destination’s
15448 * default label if we’re on a labeled system. Incompatible
15449 * addresses can’t be used at all.
15450 */
15451 if (dst_rhtp != NULL) {
15452 boolean_t incompat;

15454 src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15455 IPV4_VERSION, B_FALSE);
15456 if (src_rhtp == NULL)
15457 continue;
15458 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15459 src_rhtp->tpc_tp.tp_doi !=
15460 dst_rhtp->tpc_tp.tp_doi ||
15461 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15462 &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15463 !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15464 src_rhtp->tpc_tp.tp_sl_set_cipso));
15465 TPC_RELE(src_rhtp);
15466 if (incompat)
15467 continue;
15468 }

15470 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);

15472 if (ipif->ipif_lcl_addr == dst) {
15473 type = IPIF_LOCALADDR;
15474 } else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15475 type = samenet ? IPIF_SAMENET_DEPRECATED :
15476 IPIF_DIFFNET_DEPRECATED;
15477 } else if (ipif->ipif_zoneid == ALL_ZONES) {
15478 type = samenet ? IPIF_SAMENET_ALLZONES :
15479 IPIF_DIFFNET_ALLZONES;
15480 } else {
15481 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15482 }

15484 if (type > best_type) {
15485 best_type = type;
15486 best_ipif = ipif;
15487 if (best_type == IPIF_LOCALADDR)
15488 break; /* can’t get better */
15489 }
15490 } while ((ipif = next_ipif) != start_ipif);

15492 if ((ipif = best_ipif) != NULL) {
15493 mutex_enter(&ipif->ipif_ill->ill_lock);
15494 if (IPIF_IS_CONDEMNED(ipif)) {
15495 mutex_exit(&ipif->ipif_ill->ill_lock);
15496 goto retry;
15497 }
15498 ipif_refhold_locked(ipif);

15500 /*
15501 * For IPMP, update the source ipif rotor to the next ipif,
15502 * provided we can look it up. (We must not use it if it’s
15503 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15504 * ipif_free() checked ill_src_ipif.)
15505 */

new/usr/src/uts/common/inet/ip/ip_if.c 236

15506 if (IS_IPMP(ill) && ipif != NULL) {
15507 next_ipif = ipif->ipif_next;
15508 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15509 ill->ill_src_ipif = next_ipif;
15510 else
15511 ill->ill_src_ipif = NULL;
15512 }
15513 mutex_exit(&ipif->ipif_ill->ill_lock);
15514 }

15516 rw_exit(&ipst->ips_ill_g_lock);
15517 if (usill != NULL)
15518 ill_refrele(usill);
15519 if (ipmp_ill != NULL)
15520 ill_refrele(ipmp_ill);
15521 if (dst_rhtp != NULL)
15522 TPC_RELE(dst_rhtp);

15524 #ifdef DEBUG
15525 if (ipif == NULL) {
15526 char buf1[INET6_ADDRSTRLEN];

15528 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15529 ill->ill_name,
15530 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15531 } else {
15532 char buf1[INET6_ADDRSTRLEN];
15533 char buf2[INET6_ADDRSTRLEN];

15535 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15536 ipif->ipif_ill->ill_name,
15537 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15538 inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15539 buf2, sizeof (buf2))));
15540 }
15541 #endif /* DEBUG */
15542 return (ipif);
15543 }

15545 /*
15546 * Pick a source address based on the destination ill and an optional setsrc
15547 * address.
15548 * The result is stored in srcp. If generation is set, then put the source
15549 * generation number there before we look for the source address (to avoid
15550 * missing changes in the set of source addresses.
15551 * If flagsp is set, then us it to pass back ipif_flags.
15552 *
15553 * If the caller wants to cache the returned source address and detect when
15554 * that might be stale, the caller should pass in a generation argument,
15555 * which the caller can later compare against ips_src_generation
15556 *
15557 * The precedence order for selecting an IPv4 source address is:
15558 * - RTF_SETSRC on the offlink ire always wins.
15559 * - If usrsrc is set, swap the ill to be the usesrc one.
15560 * - If IPMP is used on the ill, select a random address from the most
15561 * preferred ones below:
15562 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15563 * 2. Not deprecated, not ALL_ZONES
15564 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15565 * 4. Not deprecated, ALL_ZONES
15566 * 5. If onlink destination, same subnet and deprecated
15567 * 6. Deprecated.
15568 *
15569 * We have lower preference for ALL_ZONES IP addresses,
15570 * as they pose problems with unlabeled destinations.
15571 *

new/usr/src/uts/common/inet/ip/ip_if.c 237

15572 * Note that when multiple IP addresses match e.g., #1 we pick
15573 * the first one if IPMP is not in use. With IPMP we randomize.
15574 */
15575 int
15576 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15577 ipaddr_t multicast_ifaddr,
15578 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15579 uint32_t *generation, uint64_t *flagsp)
15580 {
15581 ipif_t *ipif;
15582 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */

15584 if (flagsp != NULL)
15585 *flagsp = 0;

15587 /*
15588 * Need to grab the generation number before we check to
15589 * avoid a race with a change to the set of local addresses.
15590 * No lock needed since the thread which updates the set of local
15591 * addresses use ipif/ill locks and exit those (hence a store memory
15592 * barrier) before doing the atomic increase of ips_src_generation.
15593 */
15594 if (generation != NULL) {
15595 *generation = ipst->ips_src_generation;
15596 }

15598 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15599 *srcp = multicast_ifaddr;
15600 return (0);
15601 }

15603 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15604 if (setsrc != INADDR_ANY) {
15605 *srcp = setsrc;
15606 return (0);
15607 }
15608 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready);
15609 if (ipif == NULL) {
15610 if (notready)
15611 return (ENETDOWN);
15612 else
15613 return (EADDRNOTAVAIL);
15614 }
15615 *srcp = ipif->ipif_lcl_addr;
15616 if (flagsp != NULL)
15617 *flagsp = ipif->ipif_flags;
15618 ipif_refrele(ipif);
15619 return (0);
15620 }

15622 /* ARGSUSED */
15623 int
15624 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15625 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15626 {
15627 /*
15628 * ill_phyint_reinit merged the v4 and v6 into a single
15629 * ipsq. We might not have been able to complete the
15630 * operation in ipif_set_values, if we could not become
15631 * exclusive. If so restart it here.
15632 */
15633 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15634 }

15636 /*
15637 * Can operate on either a module or a driver queue.

new/usr/src/uts/common/inet/ip/ip_if.c 238

15638 * Returns an error if not a module queue.
15639 */
15640 /* ARGSUSED */
15641 int
15642 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15643 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15644 {
15645 queue_t *q1 = q;
15646 char *cp;
15647 char interf_name[LIFNAMSIZ];
15648 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;

15650 if (q->q_next == NULL) {
15651 ip1dbg((
15652 "if_unitsel: IF_UNITSEL: no q_next\n"));
15653 return (EINVAL);
15654 }

15656 if (((ill_t *)(q->q_ptr))->ill_name[0] != ’\0’)
15657 return (EALREADY);

15659 do {
15660 q1 = q1->q_next;
15661 } while (q1->q_next);
15662 cp = q1->q_qinfo->qi_minfo->mi_idname;
15663 (void) sprintf(interf_name, "%s%d", cp, ppa);

15665 /*
15666 * Here we are not going to delay the ioack until after
15667 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15668 * original ioctl message before sending the requests.
15669 */
15670 return (ipif_set_values(q, mp, interf_name, &ppa));
15671 }

15673 /* ARGSUSED */
15674 int
15675 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15676 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15677 {
15678 return (ENXIO);
15679 }

15681 /*
15682 * Create any IRE_BROADCAST entries for ‘ipif’, and store those entries in
15683 * ‘irep’. Returns a pointer to the next free ‘irep’ entry
15684 * A mirror exists in ipif_delete_bcast_ires().
15685 *
15686 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15687 * done in ire_add.
15688 */
15689 static ire_t **
15690 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15691 {
15692 ipaddr_t addr;
15693 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15694 ipaddr_t subnetmask = ipif->ipif_net_mask;
15695 ill_t *ill = ipif->ipif_ill;
15696 zoneid_t zoneid = ipif->ipif_zoneid;

15698 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));

15700 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15701 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));

15703 if (ipif->ipif_lcl_addr == INADDR_ANY ||

new/usr/src/uts/common/inet/ip/ip_if.c 239

15704 (ipif->ipif_flags & IPIF_NOLOCAL))
15705 netmask = htonl(IN_CLASSA_NET); /* fallback */

15707 irep = ire_create_bcast(ill, 0, zoneid, irep);
15708 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);

15710 /*
15711 * For backward compatibility, we create net broadcast IREs based on
15712 * the old "IP address class system", since some old machines only
15713 * respond to these class derived net broadcast. However, we must not
15714 * create these net broadcast IREs if the subnetmask is shorter than
15715 * the IP address class based derived netmask. Otherwise, we may
15716 * create a net broadcast address which is the same as an IP address
15717 * on the subnet -- and then TCP will refuse to talk to that address.
15718 */
15719 if (netmask < subnetmask) {
15720 addr = netmask & ipif->ipif_subnet;
15721 irep = ire_create_bcast(ill, addr, zoneid, irep);
15722 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15723 }

15725 /*
15726 * Don’t create IRE_BROADCAST IREs for the interface if the subnetmask
15727 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15728 * created. Creating these broadcast IREs will only create confusion
15729 * as ‘addr’ will be the same as the IP address.
15730 */
15731 if (subnetmask != 0xFFFFFFFF) {
15732 addr = ipif->ipif_subnet;
15733 irep = ire_create_bcast(ill, addr, zoneid, irep);
15734 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15735 }

15737 return (irep);
15738 }

15740 /*
15741 * Mirror of ipif_create_bcast_ires()
15742 */
15743 static void
15744 ipif_delete_bcast_ires(ipif_t *ipif)
15745 {
15746 ipaddr_t addr;
15747 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15748 ipaddr_t subnetmask = ipif->ipif_net_mask;
15749 ill_t *ill = ipif->ipif_ill;
15750 zoneid_t zoneid = ipif->ipif_zoneid;
15751 ire_t *ire;

15753 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15754 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));

15756 if (ipif->ipif_lcl_addr == INADDR_ANY ||
15757 (ipif->ipif_flags & IPIF_NOLOCAL))
15758 netmask = htonl(IN_CLASSA_NET); /* fallback */

15760 ire = ire_lookup_bcast(ill, 0, zoneid);
15761 ASSERT(ire != NULL);
15762 ire_delete(ire); ire_refrele(ire);
15763 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15764 ASSERT(ire != NULL);
15765 ire_delete(ire); ire_refrele(ire);

15767 /*
15768 * For backward compatibility, we create net broadcast IREs based on
15769 * the old "IP address class system", since some old machines only

new/usr/src/uts/common/inet/ip/ip_if.c 240

15770 * respond to these class derived net broadcast. However, we must not
15771 * create these net broadcast IREs if the subnetmask is shorter than
15772 * the IP address class based derived netmask. Otherwise, we may
15773 * create a net broadcast address which is the same as an IP address
15774 * on the subnet -- and then TCP will refuse to talk to that address.
15775 */
15776 if (netmask < subnetmask) {
15777 addr = netmask & ipif->ipif_subnet;
15778 ire = ire_lookup_bcast(ill, addr, zoneid);
15779 ASSERT(ire != NULL);
15780 ire_delete(ire); ire_refrele(ire);
15781 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15782 ASSERT(ire != NULL);
15783 ire_delete(ire); ire_refrele(ire);
15784 }

15786 /*
15787 * Don’t create IRE_BROADCAST IREs for the interface if the subnetmask
15788 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15789 * created. Creating these broadcast IREs will only create confusion
15790 * as ‘addr’ will be the same as the IP address.
15791 */
15792 if (subnetmask != 0xFFFFFFFF) {
15793 addr = ipif->ipif_subnet;
15794 ire = ire_lookup_bcast(ill, addr, zoneid);
15795 ASSERT(ire != NULL);
15796 ire_delete(ire); ire_refrele(ire);
15797 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15798 ASSERT(ire != NULL);
15799 ire_delete(ire); ire_refrele(ire);
15800 }
15801 }

15803 /*
15804 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15805 * from lifr_flags and the name from lifr_name.
15806 * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15807 * since ipif_lookup_on_name uses the _isv6 flags when matching.
15808 * Returns EINPROGRESS when mp has been consumed by queueing it on
15809 * ipx_pending_mp and the ioctl will complete in ip_rput.
15810 *
15811 * Can operate on either a module or a driver queue.
15812 * Returns an error if not a module queue.
15813 */
15814 /* ARGSUSED */
15815 int
15816 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15817 ip_ioctl_cmd_t *ipip, void *if_req)
15818 {
15819 ill_t *ill = q->q_ptr;
15820 phyint_t *phyi;
15821 ip_stack_t *ipst;
15822 struct lifreq *lifr = if_req;
15823 uint64_t new_flags;

15825 ASSERT(ipif != NULL);
15826 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));

15828 if (q->q_next == NULL) {
15829 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15830 return (EINVAL);
15831 }

15833 /*
15834 * If we are not writer on ’q’ then this interface exists already
15835 * and previous lookups (ip_extract_lifreq()) found this ipif --

new/usr/src/uts/common/inet/ip/ip_if.c 241

15836 * so return EALREADY.
15837 */
15838 if (ill != ipif->ipif_ill)
15839 return (EALREADY);

15841 if (ill->ill_name[0] != ’\0’)
15842 return (EALREADY);

15844 /*
15845 * If there’s another ill already with the requested name, ensure
15846 * that it’s of the same type. Otherwise, ill_phyint_reinit() will
15847 * fuse together two unrelated ills, which will cause chaos.
15848 */
15849 ipst = ill->ill_ipst;
15850 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15851 lifr->lifr_name, NULL);
15852 if (phyi != NULL) {
15853 ill_t *ill_mate = phyi->phyint_illv4;

15855 if (ill_mate == NULL)
15856 ill_mate = phyi->phyint_illv6;
15857 ASSERT(ill_mate != NULL);

15859 if (ill_mate->ill_media->ip_m_mac_type !=
15860 ill->ill_media->ip_m_mac_type) {
15861 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15862 "use the same ill name on differing media\n"));
15863 return (EINVAL);
15864 }
15865 }

15867 /*
15868 * We start off as IFF_IPV4 in ipif_allocate and become
15869 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value.
15870 * The only flags that we read from user space are IFF_IPV4,
15871 * IFF_IPV6, and IFF_BROADCAST.
15872 *
15873 * This ill has not been inserted into the global list.
15874 * So we are still single threaded and don’t need any lock
15875 *
15876 * Saniy check the flags.
15877 */

15879 if ((lifr->lifr_flags & IFF_BROADCAST) &&
15880 ((lifr->lifr_flags & IFF_IPV6) ||
15881 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15882 ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15883 "or IPv6 i.e., no broadcast \n"));
15884 return (EINVAL);
15885 }

15887 new_flags =
15888 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);

15890 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15891 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15892 "IFF_IPV4 or IFF_IPV6\n"));
15893 return (EINVAL);
15894 }

15896 /*
15897 * We always start off as IPv4, so only need to check for IPv6.
15898 */
15899 if ((new_flags & IFF_IPV6) != 0) {
15900 ill->ill_flags |= ILLF_IPV6;
15901 ill->ill_flags &= ~ILLF_IPV4;

new/usr/src/uts/common/inet/ip/ip_if.c 242

15903 if (lifr->lifr_flags & IFF_NOLINKLOCAL)
15904 ill->ill_flags |= ILLF_NOLINKLOCAL;
15905 }

15907 if ((new_flags & IFF_BROADCAST) != 0)
15908 ipif->ipif_flags |= IPIF_BROADCAST;
15909 else
15910 ipif->ipif_flags &= ~IPIF_BROADCAST;

15912 /* We started off as V4. */
15913 if (ill->ill_flags & ILLF_IPV6) {
15914 ill->ill_phyint->phyint_illv6 = ill;
15915 ill->ill_phyint->phyint_illv4 = NULL;
15916 }

15918 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15919 }

15921 /* ARGSUSED */
15922 int
15923 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15924 ip_ioctl_cmd_t *ipip, void *if_req)
15925 {
15926 /*
15927 * ill_phyint_reinit merged the v4 and v6 into a single
15928 * ipsq. We might not have been able to complete the
15929 * slifname in ipif_set_values, if we could not become
15930 * exclusive. If so restart it here
15931 */
15932 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15933 }

15935 /*
15936 * Return a pointer to the ipif which matches the index, IP version type and
15937 * zoneid.
15938 */
15939 ipif_t *
15940 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15941 ip_stack_t *ipst)
15942 {
15943 ill_t *ill;
15944 ipif_t *ipif = NULL;

15946 ill = ill_lookup_on_ifindex(index, isv6, ipst);
15947 if (ill != NULL) {
15948 mutex_enter(&ill->ill_lock);
15949 for (ipif = ill->ill_ipif; ipif != NULL;
15950 ipif = ipif->ipif_next) {
15951 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15952 zoneid == ipif->ipif_zoneid ||
15953 ipif->ipif_zoneid == ALL_ZONES)) {
15954 ipif_refhold_locked(ipif);
15955 break;
15956 }
15957 }
15958 mutex_exit(&ill->ill_lock);
15959 ill_refrele(ill);
15960 }
15961 return (ipif);
15962 }

15964 /*
15965 * Change an existing physical interface’s index. If the new index
15966 * is acceptable we update the index and the phyint_list_avl_by_index tree.
15967 * Finally, we update other systems which may have a dependence on the

new/usr/src/uts/common/inet/ip/ip_if.c 243

15968 * index value.
15969 */
15970 /* ARGSUSED */
15971 int
15972 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15973 ip_ioctl_cmd_t *ipip, void *ifreq)
15974 {
15975 ill_t *ill;
15976 phyint_t *phyi;
15977 struct ifreq *ifr = (struct ifreq *)ifreq;
15978 struct lifreq *lifr = (struct lifreq *)ifreq;
15979 uint_t old_index, index;
15980 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
15981 avl_index_t where;

15983 if (ipip->ipi_cmd_type == IF_CMD)
15984 index = ifr->ifr_index;
15985 else
15986 index = lifr->lifr_index;

15988 /*
15989 * Only allow on physical interface. Also, index zero is illegal.
15990 */
15991 ill = ipif->ipif_ill;
15992 phyi = ill->ill_phyint;
15993 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) {
15994 return (EINVAL);
15995 }

15997 /* If the index is not changing, no work to do */
15998 if (phyi->phyint_ifindex == index)
15999 return (0);

16001 /*
16002 * Use phyint_exists() to determine if the new interface index
16003 * is already in use. If the index is unused then we need to
16004 * change the phyint’s position in the phyint_list_avl_by_index
16005 * tree. If we do not do this, subsequent lookups (using the new
16006 * index value) will not find the phyint.
16007 */
16008 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16009 if (phyint_exists(index, ipst)) {
16010 rw_exit(&ipst->ips_ill_g_lock);
16011 return (EEXIST);
16012 }

16014 /*
16015 * The new index is unused. Set it in the phyint. However we must not
16016 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
16017 * changes. The event must be bound to old ifindex value.
16018 */
16019 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
16020 &index, sizeof (index));

16022 old_index = phyi->phyint_ifindex;
16023 phyi->phyint_ifindex = index;

16025 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
16026 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16027 &index, &where);
16028 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16029 phyi, where);
16030 rw_exit(&ipst->ips_ill_g_lock);

16032 /* Update SCTP’s ILL list */
16033 sctp_ill_reindex(ill, old_index);

new/usr/src/uts/common/inet/ip/ip_if.c 244

16035 /* Send the routing sockets message */
16036 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
16037 if (ILL_OTHER(ill))
16038 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);

16040 /* Perhaps ilgs should use this ill */
16041 update_conn_ill(NULL, ill->ill_ipst);
16042 return (0);
16043 }

16045 /* ARGSUSED */
16046 int
16047 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16048 ip_ioctl_cmd_t *ipip, void *ifreq)
16049 {
16050 struct ifreq *ifr = (struct ifreq *)ifreq;
16051 struct lifreq *lifr = (struct lifreq *)ifreq;

16053 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
16054 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16055 /* Get the interface index */
16056 if (ipip->ipi_cmd_type == IF_CMD) {
16057 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16058 } else {
16059 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16060 }
16061 return (0);
16062 }

16064 /* ARGSUSED */
16065 int
16066 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16067 ip_ioctl_cmd_t *ipip, void *ifreq)
16068 {
16069 struct lifreq *lifr = (struct lifreq *)ifreq;

16071 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
16072 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16073 /* Get the interface zone */
16074 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16075 lifr->lifr_zoneid = ipif->ipif_zoneid;
16076 return (0);
16077 }

16079 /*
16080 * Set the zoneid of an interface.
16081 */
16082 /* ARGSUSED */
16083 int
16084 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16085 ip_ioctl_cmd_t *ipip, void *ifreq)
16086 {
16087 struct lifreq *lifr = (struct lifreq *)ifreq;
16088 int err = 0;
16089 boolean_t need_up = B_FALSE;
16090 zone_t *zptr;
16091 zone_status_t status;
16092 zoneid_t zoneid;

16094 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16095 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
16096 if (!is_system_labeled())
16097 return (ENOTSUP);
16098 zoneid = GLOBAL_ZONEID;
16099 }

new/usr/src/uts/common/inet/ip/ip_if.c 245

16101 /* cannot assign instance zero to a non-global zone */
16102 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
16103 return (ENOTSUP);

16105 /*
16106 * Cannot assign to a zone that doesn’t exist or is shutting down. In
16107 * the event of a race with the zone shutdown processing, since IP
16108 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
16109 * interface will be cleaned up even if the zone is shut down
16110 * immediately after the status check. If the interface can’t be brought
16111 * down right away, and the zone is shut down before the restart
16112 * function is called, we resolve the possible races by rechecking the
16113 * zone status in the restart function.
16114 */
16115 if ((zptr = zone_find_by_id(zoneid)) == NULL)
16116 return (EINVAL);
16117 status = zone_status_get(zptr);
16118 zone_rele(zptr);

16120 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
16121 return (EINVAL);

16123 if (ipif->ipif_flags & IPIF_UP) {
16124 /*
16125 * If the interface is already marked up,
16126 * we call ipif_down which will take care
16127 * of ditching any IREs that have been set
16128 * up based on the old interface address.
16129 */
16130 err = ipif_logical_down(ipif, q, mp);
16131 if (err == EINPROGRESS)
16132 return (err);
16133 (void) ipif_down_tail(ipif);
16134 need_up = B_TRUE;
16135 }

16137 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
16138 return (err);
16139 }

16141 static int
16142 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
16143 queue_t *q, mblk_t *mp, boolean_t need_up)
16144 {
16145 int err = 0;
16146 ip_stack_t *ipst;

16148 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
16149 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

16151 if (CONN_Q(q))
16152 ipst = CONNQ_TO_IPST(q);
16153 else
16154 ipst = ILLQ_TO_IPST(q);

16156 /*
16157 * For exclusive stacks we don’t allow a different zoneid than
16158 * global.
16159 */
16160 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
16161 zoneid != GLOBAL_ZONEID)
16162 return (EINVAL);

16164 /* Set the new zone id. */
16165 ipif->ipif_zoneid = zoneid;

new/usr/src/uts/common/inet/ip/ip_if.c 246

16167 /* Update sctp list */
16168 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);

16170 /* The default multicast interface might have changed */
16171 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);

16173 if (need_up) {
16174 /*
16175 * Now bring the interface back up. If this
16176 * is the only IPIF for the ILL, ipif_up
16177 * will have to re-bind to the device, so
16178 * we may get back EINPROGRESS, in which
16179 * case, this IOCTL will get completed in
16180 * ip_rput_dlpi when we see the DL_BIND_ACK.
16181 */
16182 err = ipif_up(ipif, q, mp);
16183 }
16184 return (err);
16185 }

16187 /* ARGSUSED */
16188 int
16189 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16190 ip_ioctl_cmd_t *ipip, void *if_req)
16191 {
16192 struct lifreq *lifr = (struct lifreq *)if_req;
16193 zoneid_t zoneid;
16194 zone_t *zptr;
16195 zone_status_t status;

16197 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16198 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
16199 zoneid = GLOBAL_ZONEID;

16201 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
16202 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

16204 /*
16205 * We recheck the zone status to resolve the following race condition:
16206 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
16207 * 2) hme0:1 is up and can’t be brought down right away;
16208 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
16209 * 3) zone "myzone" is halted; the zone status switches to
16210 * ’shutting_down’ and the zones framework sends SIOCGLIFCONF to list
16211 * the interfaces to remove - hme0:1 is not returned because it’s not
16212 * yet in "myzone", so it won’t be removed;
16213 * 4) the restart function for SIOCSLIFZONE is called; without the
16214 * status check here, we would have hme0:1 in "myzone" after it’s been
16215 * destroyed.
16216 * Note that if the status check fails, we need to bring the interface
16217 * back to its state prior to ip_sioctl_slifzone(), hence the call to
16218 * ipif_up_done[_v6]().
16219 */
16220 status = ZONE_IS_UNINITIALIZED;
16221 if ((zptr = zone_find_by_id(zoneid)) != NULL) {
16222 status = zone_status_get(zptr);
16223 zone_rele(zptr);
16224 }
16225 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
16226 if (ipif->ipif_isv6) {
16227 (void) ipif_up_done_v6(ipif);
16228 } else {
16229 (void) ipif_up_done(ipif);
16230 }
16231 return (EINVAL);

new/usr/src/uts/common/inet/ip/ip_if.c 247

16232 }

16234 (void) ipif_down_tail(ipif);

16236 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
16237 B_TRUE));
16238 }

16240 /*
16241 * Return the number of addresses on ‘ill’ with one or more of the values
16242 * in ‘set’ set and all of the values in ‘clear’ clear.
16243 */
16244 static uint_t
16245 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
16246 {
16247 ipif_t *ipif;
16248 uint_t cnt = 0;

16250 ASSERT(IAM_WRITER_ILL(ill));

16252 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
16253 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
16254 cnt++;

16256 return (cnt);
16257 }

16259 /*
16260 * Return the number of migratable addresses on ‘ill’ that are under
16261 * application control.
16262 */
16263 uint_t
16264 ill_appaddr_cnt(const ill_t *ill)
16265 {
16266 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
16267 IPIF_NOFAILOVER));
16268 }

16270 /*
16271 * Return the number of point-to-point addresses on ‘ill’.
16272 */
16273 uint_t
16274 ill_ptpaddr_cnt(const ill_t *ill)
16275 {
16276 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
16277 }

16279 /* ARGSUSED */
16280 int
16281 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16282 ip_ioctl_cmd_t *ipip, void *ifreq)
16283 {
16284 struct lifreq *lifr = ifreq;

16286 ASSERT(q->q_next == NULL);
16287 ASSERT(CONN_Q(q));

16289 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
16290 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16291 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
16292 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));

16294 return (0);
16295 }

16297 /* Find the previous ILL in this usesrc group */

new/usr/src/uts/common/inet/ip/ip_if.c 248

16298 static ill_t *
16299 ill_prev_usesrc(ill_t *uill)
16300 {
16301 ill_t *ill;

16303 for (ill = uill->ill_usesrc_grp_next;
16304 ASSERT(ill), ill->ill_usesrc_grp_next != uill;
16305 ill = ill->ill_usesrc_grp_next)
16306 /* do nothing */;
16307 return (ill);
16308 }

16310 /*
16311 * Release all members of the usesrc group. This routine is called
16312 * from ill_delete when the interface being unplumbed is the
16313 * group head.
16314 *
16315 * This silently clears the usesrc that ifconfig setup.
16316 * An alternative would be to keep that ifindex, and drop packets on the floor
16317 * since no source address can be selected.
16318 * Even if we keep the current semantics, don’t need a lock and a linked list.
16319 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
16320 * the one that is being removed. Issue is how we return the usesrc users
16321 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
16322 * ill_usesrc_ifindex matching a target ill. We could also do that with an
16323 * ill walk, but the walker would need to insert in the ioctl response.
16324 */
16325 static void
16326 ill_disband_usesrc_group(ill_t *uill)
16327 {
16328 ill_t *next_ill, *tmp_ill;
16329 ip_stack_t *ipst = uill->ill_ipst;

16331 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16332 next_ill = uill->ill_usesrc_grp_next;

16334 do {
16335 ASSERT(next_ill != NULL);
16336 tmp_ill = next_ill->ill_usesrc_grp_next;
16337 ASSERT(tmp_ill != NULL);
16338 next_ill->ill_usesrc_grp_next = NULL;
16339 next_ill->ill_usesrc_ifindex = 0;
16340 next_ill = tmp_ill;
16341 } while (next_ill->ill_usesrc_ifindex != 0);
16342 uill->ill_usesrc_grp_next = NULL;
16343 }

16345 /*
16346 * Remove the client usesrc ILL from the list and relink to a new list
16347 */
16348 int
16349 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
16350 {
16351 ill_t *ill, *tmp_ill;
16352 ip_stack_t *ipst = ucill->ill_ipst;

16354 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
16355 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));

16357 /*
16358 * Check if the usesrc client ILL passed in is not already
16359 * in use as a usesrc ILL i.e one whose source address is
16360 * in use OR a usesrc ILL is not already in use as a usesrc
16361 * client ILL
16362 */
16363 if ((ucill->ill_usesrc_ifindex == 0) ||

new/usr/src/uts/common/inet/ip/ip_if.c 249

16364 (uill->ill_usesrc_ifindex != 0)) {
16365 return (-1);
16366 }

16368 ill = ill_prev_usesrc(ucill);
16369 ASSERT(ill->ill_usesrc_grp_next != NULL);

16371 /* Remove from the current list */
16372 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
16373 /* Only two elements in the list */
16374 ASSERT(ill->ill_usesrc_ifindex == 0);
16375 ill->ill_usesrc_grp_next = NULL;
16376 } else {
16377 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
16378 }

16380 if (ifindex == 0) {
16381 ucill->ill_usesrc_ifindex = 0;
16382 ucill->ill_usesrc_grp_next = NULL;
16383 return (0);
16384 }

16386 ucill->ill_usesrc_ifindex = ifindex;
16387 tmp_ill = uill->ill_usesrc_grp_next;
16388 uill->ill_usesrc_grp_next = ucill;
16389 ucill->ill_usesrc_grp_next =
16390 (tmp_ill != NULL) ? tmp_ill : uill;
16391 return (0);
16392 }

16394 /*
16395 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
16396 * ip.c for locking details.
16397 */
16398 /* ARGSUSED */
16399 int
16400 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16401 ip_ioctl_cmd_t *ipip, void *ifreq)
16402 {
16403 struct lifreq *lifr = (struct lifreq *)ifreq;
16404 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
16405 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
16406 int err = 0, ret;
16407 uint_t ifindex;
16408 ipsq_t *ipsq = NULL;
16409 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

16411 ASSERT(IAM_WRITER_IPIF(ipif));
16412 ASSERT(q->q_next == NULL);
16413 ASSERT(CONN_Q(q));

16415 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;

16417 ifindex = lifr->lifr_index;
16418 if (ifindex == 0) {
16419 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
16420 /* non usesrc group interface, nothing to reset */
16421 return (0);
16422 }
16423 ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
16424 /* valid reset request */
16425 reset_flg = B_TRUE;
16426 }

16428 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
16429 if (usesrc_ill == NULL)

new/usr/src/uts/common/inet/ip/ip_if.c 250

16430 return (ENXIO);
16431 if (usesrc_ill == ipif->ipif_ill) {
16432 ill_refrele(usesrc_ill);
16433 return (EINVAL);
16434 }

16436 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
16437 NEW_OP, B_TRUE);
16438 if (ipsq == NULL) {
16439 err = EINPROGRESS;
16440 /* Operation enqueued on the ipsq of the usesrc ILL */
16441 goto done;
16442 }

16444 /* USESRC isn’t currently supported with IPMP */
16445 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
16446 err = ENOTSUP;
16447 goto done;
16448 }

16450 /*
16451 * USESRC isn’t compatible with the STANDBY flag. (STANDBY is only
16452 * used by IPMP underlying interfaces, but someone might think it’s
16453 * more general and try to use it independently with VNI.)
16454 */
16455 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
16456 err = ENOTSUP;
16457 goto done;
16458 }

16460 /*
16461 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16462 * already a client then return EINVAL
16463 */
16464 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16465 err = EINVAL;
16466 goto done;
16467 }

16469 /*
16470 * If the ill_usesrc_ifindex field is already set to what it needs to
16471 * be then this is a duplicate operation.
16472 */
16473 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16474 err = 0;
16475 goto done;
16476 }

16478 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16479 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16480 usesrc_ill->ill_isv6));

16482 /*
16483 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16484 * and the ill_usesrc_ifindex fields
16485 */
16486 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);

16488 if (reset_flg) {
16489 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16490 if (ret != 0) {
16491 err = EINVAL;
16492 }
16493 rw_exit(&ipst->ips_ill_g_usesrc_lock);
16494 goto done;
16495 }

new/usr/src/uts/common/inet/ip/ip_if.c 251

16497 /*
16498 * Four possibilities to consider:
16499 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16500 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn’t
16501 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn’t
16502 * 4. Both are part of their respective usesrc groups
16503 */
16504 if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16505 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16506 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16507 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16508 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16509 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16510 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16511 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16512 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16513 /* Insert at head of list */
16514 usesrc_cli_ill->ill_usesrc_grp_next =
16515 usesrc_ill->ill_usesrc_grp_next;
16516 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16517 } else {
16518 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16519 ifindex);
16520 if (ret != 0)
16521 err = EINVAL;
16522 }
16523 rw_exit(&ipst->ips_ill_g_usesrc_lock);

16525 done:
16526 if (ipsq != NULL)
16527 ipsq_exit(ipsq);
16528 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16529 ill_refrele(usesrc_ill);

16531 /* Let conn_ixa caching know that source address selection changed */
16532 ip_update_source_selection(ipst);

16534 return (err);
16535 }

16537 /* ARGSUSED */
16538 int
16539 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16540 ip_ioctl_cmd_t *ipip, void *if_req)
16541 {
16542 struct lifreq *lifr = (struct lifreq *)if_req;
16543 ill_t *ill = ipif->ipif_ill;

16545 /*
16546 * Need a lock since IFF_UP can be set even when there are
16547 * references to the ipif.
16548 */
16549 mutex_enter(&ill->ill_lock);
16550 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0)
16551 lifr->lifr_dadstate = DAD_IN_PROGRESS;
16552 else
16553 lifr->lifr_dadstate = DAD_DONE;
16554 mutex_exit(&ill->ill_lock);
16555 return (0);
16556 }

16558 /*
16559 * comparison function used by avl.
16560 */
16561 static int

new/usr/src/uts/common/inet/ip/ip_if.c 252

16562 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16563 {

16565 uint_t index;

16567 ASSERT(phyip != NULL && index_ptr != NULL);

16569 index = *((uint_t *)index_ptr);
16570 /*
16571 * let the phyint with the lowest index be on top.
16572 */
16573 if (((phyint_t *)phyip)->phyint_ifindex < index)
16574 return (1);
16575 if (((phyint_t *)phyip)->phyint_ifindex > index)
16576 return (-1);
16577 return (0);
16578 }

16580 /*
16581 * comparison function used by avl.
16582 */
16583 static int
16584 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16585 {
16586 ill_t *ill;
16587 int res = 0;

16589 ASSERT(phyip != NULL && name_ptr != NULL);

16591 if (((phyint_t *)phyip)->phyint_illv4)
16592 ill = ((phyint_t *)phyip)->phyint_illv4;
16593 else
16594 ill = ((phyint_t *)phyip)->phyint_illv6;
16595 ASSERT(ill != NULL);

16597 res = strcmp(ill->ill_name, (char *)name_ptr);
16598 if (res > 0)
16599 return (1);
16600 else if (res < 0)
16601 return (-1);
16602 return (0);
16603 }

16605 /*
16606 * This function is called on the unplumb path via ill_glist_delete() when
16607 * there are no ills left on the phyint and thus the phyint can be freed.
16608 */
16609 static void
16610 phyint_free(phyint_t *phyi)
16611 {
16612 ip_stack_t *ipst = PHYINT_TO_IPST(phyi);

16614 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);

16616 /*
16617 * If this phyint was an IPMP meta-interface, blow away the group.
16618 * This is safe to do because all of the illgrps have already been
16619 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16620 * If we’re cleaning up as a result of failed initialization,
16621 * phyint_grp may be NULL.
16622 */
16623 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16624 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16625 ipmp_grp_destroy(phyi->phyint_grp);
16626 phyi->phyint_grp = NULL;
16627 rw_exit(&ipst->ips_ipmp_lock);

new/usr/src/uts/common/inet/ip/ip_if.c 253

16628 }

16630 /*
16631 * If this interface was under IPMP, take it out of the group.
16632 */
16633 if (phyi->phyint_grp != NULL)
16634 ipmp_phyint_leave_grp(phyi);

16636 /*
16637 * Delete the phyint and disassociate its ipsq. The ipsq itself
16638 * will be freed in ipsq_exit().
16639 */
16640 phyi->phyint_ipsq->ipsq_phyint = NULL;
16641 phyi->phyint_name[0] = ’\0’;

16643 mi_free(phyi);
16644 }

16646 /*
16647 * Attach the ill to the phyint structure which can be shared by both
16648 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16649 * function is called from ipif_set_values and ill_lookup_on_name (for
16650 * loopback) where we know the name of the ill. We lookup the ill and if
16651 * there is one present already with the name use that phyint. Otherwise
16652 * reuse the one allocated by ill_init.
16653 */
16654 static void
16655 ill_phyint_reinit(ill_t *ill)
16656 {
16657 boolean_t isv6 = ill->ill_isv6;
16658 phyint_t *phyi_old;
16659 phyint_t *phyi;
16660 avl_index_t where = 0;
16661 ill_t *ill_other = NULL;
16662 ip_stack_t *ipst = ill->ill_ipst;

16664 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));

16666 phyi_old = ill->ill_phyint;
16667 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16668 phyi_old->phyint_illv6 == NULL));
16669 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16670 phyi_old->phyint_illv4 == NULL));
16671 ASSERT(phyi_old->phyint_ifindex == 0);

16673 /*
16674 * Now that our ill has a name, set it in the phyint.
16675 */
16676 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);

16678 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16679 ill->ill_name, &where);

16681 /*
16682 * 1. We grabbed the ill_g_lock before inserting this ill into
16683 * the global list of ills. So no other thread could have located
16684 * this ill and hence the ipsq of this ill is guaranteed to be empty.
16685 * 2. Now locate the other protocol instance of this ill.
16686 * 3. Now grab both ill locks in the right order, and the phyint lock of
16687 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16688 * of neither ill can change.
16689 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16690 * other ill.
16691 * 5. Release all locks.
16692 */

new/usr/src/uts/common/inet/ip/ip_if.c 254

16694 /*
16695 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16696 * we are initializing IPv4.
16697 */
16698 if (phyi != NULL) {
16699 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16700 ASSERT(ill_other->ill_phyint != NULL);
16701 ASSERT((isv6 && !ill_other->ill_isv6) ||
16702 (!isv6 && ill_other->ill_isv6));
16703 GRAB_ILL_LOCKS(ill, ill_other);
16704 /*
16705 * We are potentially throwing away phyint_flags which
16706 * could be different from the one that we obtain from
16707 * ill_other->ill_phyint. But it is okay as we are assuming
16708 * that the state maintained within IP is correct.
16709 */
16710 mutex_enter(&phyi->phyint_lock);
16711 if (isv6) {
16712 ASSERT(phyi->phyint_illv6 == NULL);
16713 phyi->phyint_illv6 = ill;
16714 } else {
16715 ASSERT(phyi->phyint_illv4 == NULL);
16716 phyi->phyint_illv4 = ill;
16717 }

16719 /*
16720 * Delete the old phyint and make its ipsq eligible
16721 * to be freed in ipsq_exit().
16722 */
16723 phyi_old->phyint_illv4 = NULL;
16724 phyi_old->phyint_illv6 = NULL;
16725 phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16726 phyi_old->phyint_name[0] = ’\0’;
16727 mi_free(phyi_old);
16728 } else {
16729 mutex_enter(&ill->ill_lock);
16730 /*
16731 * We don’t need to acquire any lock, since
16732 * the ill is not yet visible globally and we
16733 * have not yet released the ill_g_lock.
16734 */
16735 phyi = phyi_old;
16736 mutex_enter(&phyi->phyint_lock);
16737 /* XXX We need a recovery strategy here. */
16738 if (!phyint_assign_ifindex(phyi, ipst))
16739 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");

16741 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16742 (void *)phyi, where);

16744 (void) avl_find(&ipst->ips_phyint_g_list->
16745 phyint_list_avl_by_index,
16746 &phyi->phyint_ifindex, &where);
16747 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16748 (void *)phyi, where);
16749 }

16751 /*
16752 * Reassigning ill_phyint automatically reassigns the ipsq also.
16753 * pending mp is not affected because that is per ill basis.
16754 */
16755 ill->ill_phyint = phyi;

16757 /*
16758 * Now that the phyint’s ifindex has been assigned, complete the
16759 * remaining

new/usr/src/uts/common/inet/ip/ip_if.c 255

16760 */
16761 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16762 if (ill->ill_isv6) {
16763 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16764 ill->ill_phyint->phyint_ifindex;
16765 ill->ill_mcast_type = ipst->ips_mld_max_version;
16766 } else {
16767 ill->ill_mcast_type = ipst->ips_igmp_max_version;
16768 }

16770 /*
16771 * Generate an event within the hooks framework to indicate that
16772 * a new interface has just been added to IP. For this event to
16773 * be generated, the network interface must, at least, have an
16774 * ifindex assigned to it. (We don’t generate the event for
16775 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16776 *
16777 * This needs to be run inside the ill_g_lock perimeter to ensure
16778 * that the ordering of delivered events to listeners matches the
16779 * order of them in the kernel.
16780 */
16781 if (!IS_LOOPBACK(ill)) {
16782 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16783 ill->ill_name_length);
16784 }
16785 RELEASE_ILL_LOCKS(ill, ill_other);
16786 mutex_exit(&phyi->phyint_lock);
16787 }

16789 /*
16790 * Notify any downstream modules of the name of this interface.
16791 * An M_IOCTL is used even though we don’t expect a successful reply.
16792 * Any reply message from the driver (presumably an M_IOCNAK) will
16793 * eventually get discarded somewhere upstream. The message format is
16794 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16795 * to IP.
16796 */
16797 static void
16798 ip_ifname_notify(ill_t *ill, queue_t *q)
16799 {
16800 mblk_t *mp1, *mp2;
16801 struct iocblk *iocp;
16802 struct lifreq *lifr;

16804 mp1 = mkiocb(SIOCSLIFNAME);
16805 if (mp1 == NULL)
16806 return;
16807 mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16808 if (mp2 == NULL) {
16809 freeb(mp1);
16810 return;
16811 }

16813 mp1->b_cont = mp2;
16814 iocp = (struct iocblk *)mp1->b_rptr;
16815 iocp->ioc_count = sizeof (struct lifreq);

16817 lifr = (struct lifreq *)mp2->b_rptr;
16818 mp2->b_wptr += sizeof (struct lifreq);
16819 bzero(lifr, sizeof (struct lifreq));

16821 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16822 lifr->lifr_ppa = ill->ill_ppa;
16823 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));

16825 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",

new/usr/src/uts/common/inet/ip/ip_if.c 256

16826 char *, "SIOCSLIFNAME", ill_t *, ill);
16827 putnext(q, mp1);
16828 }

16830 static int
16831 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16832 {
16833 int err;
16834 ip_stack_t *ipst = ill->ill_ipst;
16835 phyint_t *phyi = ill->ill_phyint;

16837 /*
16838 * Now that ill_name is set, the configuration for the IPMP
16839 * meta-interface can be performed.
16840 */
16841 if (IS_IPMP(ill)) {
16842 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16843 /*
16844 * If phyi->phyint_grp is NULL, then this is the first IPMP
16845 * meta-interface and we need to create the IPMP group.
16846 */
16847 if (phyi->phyint_grp == NULL) {
16848 /*
16849 * If someone has renamed another IPMP group to have
16850 * the same name as our interface, bail.
16851 */
16852 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16853 rw_exit(&ipst->ips_ipmp_lock);
16854 return (EEXIST);
16855 }
16856 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16857 if (phyi->phyint_grp == NULL) {
16858 rw_exit(&ipst->ips_ipmp_lock);
16859 return (ENOMEM);
16860 }
16861 }
16862 rw_exit(&ipst->ips_ipmp_lock);
16863 }

16865 /* Tell downstream modules where they are. */
16866 ip_ifname_notify(ill, q);

16868 /*
16869 * ill_dl_phys returns EINPROGRESS in the usual case.
16870 * Error cases are ENOMEM ...
16871 */
16872 err = ill_dl_phys(ill, ipif, mp, q);

16874 if (ill->ill_isv6) {
16875 mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16876 if (ipst->ips_mld_slowtimeout_id == 0) {
16877 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16878 (void *)ipst,
16879 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16880 }
16881 mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16882 } else {
16883 mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16884 if (ipst->ips_igmp_slowtimeout_id == 0) {
16885 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16886 (void *)ipst,
16887 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16888 }
16889 mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16890 }

new/usr/src/uts/common/inet/ip/ip_if.c 257

16892 return (err);
16893 }

16895 /*
16896 * Common routine for ppa and ifname setting. Should be called exclusive.
16897 *
16898 * Returns EINPROGRESS when mp has been consumed by queueing it on
16899 * ipx_pending_mp and the ioctl will complete in ip_rput.
16900 *
16901 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16902 * the new name and new ppa in lifr_name and lifr_ppa respectively.
16903 * For SLIFNAME, we pass these values back to the userland.
16904 */
16905 static int
16906 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16907 {
16908 ill_t *ill;
16909 ipif_t *ipif;
16910 ipsq_t *ipsq;
16911 char *ppa_ptr;
16912 char *old_ptr;
16913 char old_char;
16914 int error;
16915 ip_stack_t *ipst;

16917 ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16918 ASSERT(q->q_next != NULL);
16919 ASSERT(interf_name != NULL);

16921 ill = (ill_t *)q->q_ptr;
16922 ipst = ill->ill_ipst;

16924 ASSERT(ill->ill_ipst != NULL);
16925 ASSERT(ill->ill_name[0] == ’\0’);
16926 ASSERT(IAM_WRITER_ILL(ill));
16927 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16928 ASSERT(ill->ill_ppa == UINT_MAX);

16930 ill->ill_defend_start = ill->ill_defend_count = 0;
16931 /* The ppa is sent down by ifconfig or is chosen */
16932 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16933 return (EINVAL);
16934 }

16936 /*
16937 * make sure ppa passed in is same as ppa in the name.
16938 * This check is not made when ppa == UINT_MAX in that case ppa
16939 * in the name could be anything. System will choose a ppa and
16940 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16941 */
16942 if (*new_ppa_ptr != UINT_MAX) {
16943 /* stoi changes the pointer */
16944 old_ptr = ppa_ptr;
16945 /*
16946 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16947 * (they don’t have an externally visible ppa). We assign one
16948 * here so that we can manage the interface. Note that in
16949 * the past this value was always 0 for DLPI 1 drivers.
16950 */
16951 if (*new_ppa_ptr == 0)
16952 *new_ppa_ptr = stoi(&old_ptr);
16953 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16954 return (EINVAL);
16955 }
16956 /*
16957 * terminate string before ppa

new/usr/src/uts/common/inet/ip/ip_if.c 258

16958 * save char at that location.
16959 */
16960 old_char = ppa_ptr[0];
16961 ppa_ptr[0] = ’\0’;

16963 ill->ill_ppa = *new_ppa_ptr;
16964 /*
16965 * Finish as much work now as possible before calling ill_glist_insert
16966 * which makes the ill globally visible and also merges it with the
16967 * other protocol instance of this phyint. The remaining work is
16968 * done after entering the ipsq which may happen sometime later.
16969 */
16970 ipif = ill->ill_ipif;

16972 /* We didn’t do this when we allocated ipif in ip_ll_subnet_defaults */
16973 ipif_assign_seqid(ipif);

16975 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16976 ill->ill_flags |= ILLF_IPV4;

16978 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */
16979 ASSERT((ipif->ipif_flags & IPIF_UP) == 0);

16981 if (ill->ill_flags & ILLF_IPV6) {

16983 ill->ill_isv6 = B_TRUE;
16984 ill_set_inputfn(ill);
16985 if (ill->ill_rq != NULL) {
16986 ill->ill_rq->q_qinfo = &iprinitv6;
16987 }

16989 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16990 ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16991 ipif->ipif_v6subnet = ipv6_all_zeros;
16992 ipif->ipif_v6net_mask = ipv6_all_zeros;
16993 ipif->ipif_v6brd_addr = ipv6_all_zeros;
16994 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16995 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16996 /*
16997 * point-to-point or Non-mulicast capable
16998 * interfaces won’t do NUD unless explicitly
16999 * configured to do so.
17000 */
17001 if (ipif->ipif_flags & IPIF_POINTOPOINT ||
17002 !(ill->ill_flags & ILLF_MULTICAST)) {
17003 ill->ill_flags |= ILLF_NONUD;
17004 }
17005 /* Make sure IPv4 specific flag is not set on IPv6 if */
17006 if (ill->ill_flags & ILLF_NOARP) {
17007 /*
17008 * Note: xresolv interfaces will eventually need
17009 * NOARP set here as well, but that will require
17010 * those external resolvers to have some
17011 * knowledge of that flag and act appropriately.
17012 * Not to be changed at present.
17013 */
17014 ill->ill_flags &= ~ILLF_NOARP;
17015 }
17016 /*
17017 * Set the ILLF_ROUTER flag according to the global
17018 * IPv6 forwarding policy.
17019 */
17020 if (ipst->ips_ipv6_forwarding != 0)
17021 ill->ill_flags |= ILLF_ROUTER;
17022 } else if (ill->ill_flags & ILLF_IPV4) {
17023 ill->ill_isv6 = B_FALSE;

new/usr/src/uts/common/inet/ip/ip_if.c 259

17024 ill_set_inputfn(ill);
17025 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
17026 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
17027 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
17028 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
17029 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
17030 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
17031 /*
17032 * Set the ILLF_ROUTER flag according to the global
17033 * IPv4 forwarding policy.
17034 */
17035 if (ipst->ips_ip_forwarding != 0)
17036 ill->ill_flags |= ILLF_ROUTER;
17037 }

17039 ASSERT(ill->ill_phyint != NULL);

17041 /*
17042 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
17043 * be completed in ill_glist_insert -> ill_phyint_reinit
17044 */
17045 if (!ill_allocate_mibs(ill))
17046 return (ENOMEM);

17048 /*
17049 * Pick a default sap until we get the DL_INFO_ACK back from
17050 * the driver.
17051 */
17052 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
17053 ill->ill_media->ip_m_ipv4sap;

17055 ill->ill_ifname_pending = 1;
17056 ill->ill_ifname_pending_err = 0;

17058 /*
17059 * When the first ipif comes up in ipif_up_done(), multicast groups
17060 * that were joined while this ill was not bound to the DLPI link need
17061 * to be recovered by ill_recover_multicast().
17062 */
17063 ill->ill_need_recover_multicast = 1;

17065 ill_refhold(ill);
17066 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17067 if ((error = ill_glist_insert(ill, interf_name,
17068 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
17069 ill->ill_ppa = UINT_MAX;
17070 ill->ill_name[0] = ’\0’;
17071 /*
17072 * undo null termination done above.
17073 */
17074 ppa_ptr[0] = old_char;
17075 rw_exit(&ipst->ips_ill_g_lock);
17076 ill_refrele(ill);
17077 return (error);
17078 }

17080 ASSERT(ill->ill_name_length <= LIFNAMSIZ);

17082 /*
17083 * When we return the buffer pointed to by interf_name should contain
17084 * the same name as in ill_name.
17085 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
17086 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
17087 * so copy full name and update the ppa ptr.
17088 * When ppa passed in != UINT_MAX all values are correct just undo
17089 * null termination, this saves a bcopy.

new/usr/src/uts/common/inet/ip/ip_if.c 260

17090 */
17091 if (*new_ppa_ptr == UINT_MAX) {
17092 bcopy(ill->ill_name, interf_name, ill->ill_name_length);
17093 *new_ppa_ptr = ill->ill_ppa;
17094 } else {
17095 /*
17096 * undo null termination done above.
17097 */
17098 ppa_ptr[0] = old_char;
17099 }

17101 /* Let SCTP know about this ILL */
17102 sctp_update_ill(ill, SCTP_ILL_INSERT);

17104 /*
17105 * ill_glist_insert has made the ill visible globally, and
17106 * ill_phyint_reinit could have changed the ipsq. At this point,
17107 * we need to hold the ips_ill_g_lock across the call to enter the
17108 * ipsq to enforce atomicity and prevent reordering. In the event
17109 * the ipsq has changed, and if the new ipsq is currently busy,
17110 * we need to make sure that this half-completed ioctl is ahead of
17111 * any subsequent ioctl. We achieve this by not dropping the
17112 * ips_ill_g_lock which prevents any ill lookup itself thereby
17113 * ensuring that new ioctls can’t start.
17114 */
17115 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
17116 B_TRUE);

17118 rw_exit(&ipst->ips_ill_g_lock);
17119 ill_refrele(ill);
17120 if (ipsq == NULL)
17121 return (EINPROGRESS);

17123 /*
17124 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
17125 */
17126 if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
17127 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
17128 else
17129 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);

17131 error = ipif_set_values_tail(ill, ipif, mp, q);
17132 ipsq_exit(ipsq);
17133 if (error != 0 && error != EINPROGRESS) {
17134 /*
17135 * restore previous values
17136 */
17137 ill->ill_isv6 = B_FALSE;
17138 ill_set_inputfn(ill);
17139 }
17140 return (error);
17141 }

17143 void
17144 ipif_init(ip_stack_t *ipst)
17145 {
17146 int i;

17148 for (i = 0; i < MAX_G_HEADS; i++) {
17149 ipst->ips_ill_g_heads[i].ill_g_list_head =
17150 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17151 ipst->ips_ill_g_heads[i].ill_g_list_tail =
17152 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17153 }

17155 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,

new/usr/src/uts/common/inet/ip/ip_if.c 261

17156 ill_phyint_compare_index,
17157 sizeof (phyint_t),
17158 offsetof(struct phyint, phyint_avl_by_index));
17159 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17160 ill_phyint_compare_name,
17161 sizeof (phyint_t),
17162 offsetof(struct phyint, phyint_avl_by_name));
17163 }

17165 /*
17166 * Save enough information so that we can recreate the IRE if
17167 * the interface goes down and then up.
17168 */
17169 void
17170 ill_save_ire(ill_t *ill, ire_t *ire)
17171 {
17172 mblk_t *save_mp;

17174 save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
17175 if (save_mp != NULL) {
17176 ifrt_t *ifrt;

17178 save_mp->b_wptr += sizeof (ifrt_t);
17179 ifrt = (ifrt_t *)save_mp->b_rptr;
17180 bzero(ifrt, sizeof (ifrt_t));
17181 ifrt->ifrt_type = ire->ire_type;
17182 if (ire->ire_ipversion == IPV4_VERSION) {
17183 ASSERT(!ill->ill_isv6);
17184 ifrt->ifrt_addr = ire->ire_addr;
17185 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
17186 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
17187 ifrt->ifrt_mask = ire->ire_mask;
17188 } else {
17189 ASSERT(ill->ill_isv6);
17190 ifrt->ifrt_v6addr = ire->ire_addr_v6;
17191 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */
17192 mutex_enter(&ire->ire_lock);
17193 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
17194 mutex_exit(&ire->ire_lock);
17195 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
17196 ifrt->ifrt_v6mask = ire->ire_mask_v6;
17197 }
17198 ifrt->ifrt_flags = ire->ire_flags;
17199 ifrt->ifrt_zoneid = ire->ire_zoneid;
17200 mutex_enter(&ill->ill_saved_ire_lock);
17201 save_mp->b_cont = ill->ill_saved_ire_mp;
17202 ill->ill_saved_ire_mp = save_mp;
17203 ill->ill_saved_ire_cnt++;
17204 mutex_exit(&ill->ill_saved_ire_lock);
17205 }
17206 }

17208 /*
17209 * Remove one entry from ill_saved_ire_mp.
17210 */
17211 void
17212 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
17213 {
17214 mblk_t **mpp;
17215 mblk_t *mp;
17216 ifrt_t *ifrt;

17218 /* Remove from ill_saved_ire_mp list if it is there */
17219 mutex_enter(&ill->ill_saved_ire_lock);
17220 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
17221 mpp = &(*mpp)->b_cont) {

new/usr/src/uts/common/inet/ip/ip_if.c 262

17222 in6_addr_t gw_addr_v6;

17224 /*
17225 * On a given ill, the tuple of address, gateway, mask,
17226 * ire_type, and zoneid is unique for each saved IRE.
17227 */
17228 mp = *mpp;
17229 ifrt = (ifrt_t *)mp->b_rptr;
17230 /* ire_gateway_addr_v6 can change - need lock */
17231 mutex_enter(&ire->ire_lock);
17232 gw_addr_v6 = ire->ire_gateway_addr_v6;
17233 mutex_exit(&ire->ire_lock);

17235 if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
17236 ifrt->ifrt_type != ire->ire_type)
17237 continue;

17239 if (ill->ill_isv6 ?
17240 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
17241 &ire->ire_addr_v6) &&
17242 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
17243 &gw_addr_v6) &&
17244 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
17245 &ire->ire_mask_v6)) :
17246 (ifrt->ifrt_addr == ire->ire_addr &&
17247 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
17248 ifrt->ifrt_mask == ire->ire_mask)) {
17249 *mpp = mp->b_cont;
17250 ill->ill_saved_ire_cnt--;
17251 freeb(mp);
17252 break;
17253 }
17254 }
17255 mutex_exit(&ill->ill_saved_ire_lock);
17256 }

17258 /*
17259 * IP multirouting broadcast routes handling
17260 * Append CGTP broadcast IREs to regular ones created
17261 * at ifconfig time.
17262 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
17263 * the destination and the gateway are broadcast addresses.
17264 * The caller has verified that the destination is an IRE_BROADCAST and that
17265 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
17266 * we create a MULTIRT IRE_BROADCAST.
17267 * Note that the IRE_HOST created by ire_rt_add doesn’t get found by anything
17268 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
17269 */
17270 static void
17271 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
17272 {
17273 ire_t *ire_prim;

17275 ASSERT(ire != NULL);

17277 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17278 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
17279 NULL);
17280 if (ire_prim != NULL) {
17281 /*
17282 * We are in the special case of broadcasts for
17283 * CGTP. We add an IRE_BROADCAST that holds
17284 * the RTF_MULTIRT flag, the destination
17285 * address and the low level
17286 * info of ire_prim. In other words, CGTP
17287 * broadcast is added to the redundant ipif.

new/usr/src/uts/common/inet/ip/ip_if.c 263

17288 */
17289 ill_t *ill_prim;
17290 ire_t *bcast_ire;

17292 ill_prim = ire_prim->ire_ill;

17294 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
17295 (void *)ire_prim, (void *)ill_prim));

17297 bcast_ire = ire_create(
17298 (uchar_t *)&ire->ire_addr,
17299 (uchar_t *)&ip_g_all_ones,
17300 (uchar_t *)&ire->ire_gateway_addr,
17301 IRE_BROADCAST,
17302 ill_prim,
17303 GLOBAL_ZONEID, /* CGTP is only for the global zone */
17304 ire->ire_flags | RTF_KERNEL,
17305 NULL,
17306 ipst);

17308 /*
17309 * Here we assume that ire_add does head insertion so that
17310 * the added IRE_BROADCAST comes before the existing IRE_HOST.
17311 */
17312 if (bcast_ire != NULL) {
17313 if (ire->ire_flags & RTF_SETSRC) {
17314 bcast_ire->ire_setsrc_addr =
17315 ire->ire_setsrc_addr;
17316 }
17317 bcast_ire = ire_add(bcast_ire);
17318 if (bcast_ire != NULL) {
17319 ip2dbg(("ip_cgtp_filter_bcast_add: "
17320 "added bcast_ire %p\n",
17321 (void *)bcast_ire));

17323 ill_save_ire(ill_prim, bcast_ire);
17324 ire_refrele(bcast_ire);
17325 }
17326 }
17327 ire_refrele(ire_prim);
17328 }
17329 }

17331 /*
17332 * IP multirouting broadcast routes handling
17333 * Remove the broadcast ire.
17334 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
17335 * the destination and the gateway are broadcast addresses.
17336 * The caller has only verified that RTF_MULTIRT was set. We check
17337 * that the destination is broadcast and that the gateway is a broadcast
17338 * address, and if so delete the IRE added by ip_cgtp_bcast_add().
17339 */
17340 static void
17341 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
17342 {
17343 ASSERT(ire != NULL);

17345 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
17346 ire_t *ire_prim;

17348 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17349 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
17350 ipst, NULL);
17351 if (ire_prim != NULL) {
17352 ill_t *ill_prim;
17353 ire_t *bcast_ire;

new/usr/src/uts/common/inet/ip/ip_if.c 264

17355 ill_prim = ire_prim->ire_ill;

17357 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17358 "ire_prim %p, ill_prim %p\n",
17359 (void *)ire_prim, (void *)ill_prim));

17361 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
17362 ire->ire_gateway_addr, IRE_BROADCAST,
17363 ill_prim, ALL_ZONES, NULL,
17364 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
17365 MATCH_IRE_MASK, 0, ipst, NULL);

17367 if (bcast_ire != NULL) {
17368 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17369 "looked up bcast_ire %p\n",
17370 (void *)bcast_ire));
17371 ill_remove_saved_ire(bcast_ire->ire_ill,
17372 bcast_ire);
17373 ire_delete(bcast_ire);
17374 ire_refrele(bcast_ire);
17375 }
17376 ire_refrele(ire_prim);
17377 }
17378 }
17379 }

17381 /*
17382 * Derive an interface id from the link layer address.
17383 * Knows about IEEE 802 and IEEE EUI-64 mappings.
17384 */
17385 static void
17386 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17387 {
17388 char *addr;

17390 /*
17391 * Note that some IPv6 interfaces get plumbed over links that claim to
17392 * be DL_ETHER, but don’t actually have Ethernet MAC addresses (e.g.
17393 * PPP links). The ETHERADDRL check here ensures that we only set the
17394 * interface ID on IPv6 interfaces above links that actually have real
17395 * Ethernet addresses.
17396 */
17397 if (ill->ill_phys_addr_length == ETHERADDRL) {
17398 /* Form EUI-64 like address */
17399 addr = (char *)&v6addr->s6_addr32[2];
17400 bcopy(ill->ill_phys_addr, addr, 3);
17401 addr[0] ^= 0x2; /* Toggle Universal/Local bit */
17402 addr[3] = (char)0xff;
17403 addr[4] = (char)0xfe;
17404 bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
17405 }
17406 }

17408 /* ARGSUSED */
17409 static void
17410 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17411 {
17412 }

17414 typedef struct ipmp_ifcookie {
17415 uint32_t ic_hostid;
17416 char ic_ifname[LIFNAMSIZ];
17417 char ic_zonename[ZONENAME_MAX];
17418 } ipmp_ifcookie_t;

new/usr/src/uts/common/inet/ip/ip_if.c 265

17420 /*
17421 * Construct a pseudo-random interface ID for the IPMP interface that’s both
17422 * predictable and (almost) guaranteed to be unique.
17423 */
17424 static void
17425 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17426 {
17427 zone_t *zp;
17428 uint8_t *addr;
17429 uchar_t hash[16];
17430 ulong_t hostid;
17431 MD5_CTX ctx;
17432 ipmp_ifcookie_t ic = { 0 };

17434 ASSERT(IS_IPMP(ill));

17436 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
17437 ic.ic_hostid = htonl((uint32_t)hostid);

17439 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);

17441 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
17442 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
17443 zone_rele(zp);
17444 }

17446 MD5Init(&ctx);
17447 MD5Update(&ctx, &ic, sizeof (ic));
17448 MD5Final(hash, &ctx);

17450 /*
17451 * Map the hash to an interface ID per the basic approach in RFC3041.
17452 */
17453 addr = &v6addr->s6_addr8[8];
17454 bcopy(hash + 8, addr, sizeof (uint64_t));
17455 addr[0] &= ~0x2; /* set local bit */
17456 }

17458 /*
17459 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
17460 */
17461 static void
17462 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
17463 {
17464 phyint_t *phyi = ill->ill_phyint;

17466 /*
17467 * Check PHYI_MULTI_BCAST and length of physical
17468 * address to determine if we use the mapping or the
17469 * broadcast address.
17470 */
17471 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17472 ill->ill_phys_addr_length != ETHERADDRL) {
17473 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17474 return;
17475 }
17476 m_physaddr[0] = 0x33;
17477 m_physaddr[1] = 0x33;
17478 m_physaddr[2] = m_ip6addr[12];
17479 m_physaddr[3] = m_ip6addr[13];
17480 m_physaddr[4] = m_ip6addr[14];
17481 m_physaddr[5] = m_ip6addr[15];
17482 }

17484 /*
17485 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.

new/usr/src/uts/common/inet/ip/ip_if.c 266

17486 */
17487 static void
17488 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17489 {
17490 phyint_t *phyi = ill->ill_phyint;

17492 /*
17493 * Check PHYI_MULTI_BCAST and length of physical
17494 * address to determine if we use the mapping or the
17495 * broadcast address.
17496 */
17497 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17498 ill->ill_phys_addr_length != ETHERADDRL) {
17499 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17500 return;
17501 }
17502 m_physaddr[0] = 0x01;
17503 m_physaddr[1] = 0x00;
17504 m_physaddr[2] = 0x5e;
17505 m_physaddr[3] = m_ipaddr[1] & 0x7f;
17506 m_physaddr[4] = m_ipaddr[2];
17507 m_physaddr[5] = m_ipaddr[3];
17508 }

17510 /* ARGSUSED */
17511 static void
17512 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17513 {
17514 /*
17515 * for the MULTI_BCAST case and other cases when we want to
17516 * use the link-layer broadcast address for multicast.
17517 */
17518 uint8_t *bphys_addr;
17519 dl_unitdata_req_t *dlur;

17521 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17522 if (ill->ill_sap_length < 0) {
17523 bphys_addr = (uchar_t *)dlur +
17524 dlur->dl_dest_addr_offset;
17525 } else {
17526 bphys_addr = (uchar_t *)dlur +
17527 dlur->dl_dest_addr_offset + ill->ill_sap_length;
17528 }

17530 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17531 }

17533 /*
17534 * Derive IPoIB interface id from the link layer address.
17535 */
17536 static void
17537 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17538 {
17539 char *addr;

17541 ASSERT(ill->ill_phys_addr_length == 20);
17542 addr = (char *)&v6addr->s6_addr32[2];
17543 bcopy(ill->ill_phys_addr + 12, addr, 8);
17544 /*
17545 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17546 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17547 * rules. In these cases, the IBA considers these GUIDs to be in
17548 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17549 * required; vendors are required not to assign global EUI-64’s
17550 * that differ only in u/l bit values, thus guaranteeing uniqueness
17551 * of the interface identifier. Whether the GUID is in modified

new/usr/src/uts/common/inet/ip/ip_if.c 267

17552 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17553 * bit set to 1.
17554 */
17555 addr[0] |= 2; /* Set Universal/Local bit to 1 */
17556 }

17558 /*
17559 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17560 * Note on mapping from multicast IP addresses to IPoIB multicast link
17561 * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17562 * The format of an IPoIB multicast address is:
17563 *
17564 * 4 byte QPN Scope Sign. Pkey
17565 * +--+
17566 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17567 * +--+
17568 *
17569 * The Scope and Pkey components are properties of the IBA port and
17570 * network interface. They can be ascertained from the broadcast address.
17571 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17572 */
17573 static void
17574 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17575 {
17576 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17577 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17578 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17579 uint8_t *bphys_addr;
17580 dl_unitdata_req_t *dlur;

17582 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);

17584 /*
17585 * RFC 4391: IPv4 MGID is 28-bit long.
17586 */
17587 m_physaddr[16] = m_ipaddr[0] & 0x0f;
17588 m_physaddr[17] = m_ipaddr[1];
17589 m_physaddr[18] = m_ipaddr[2];
17590 m_physaddr[19] = m_ipaddr[3];

17593 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17594 if (ill->ill_sap_length < 0) {
17595 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17596 } else {
17597 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17598 ill->ill_sap_length;
17599 }
17600 /*
17601 * Now fill in the IBA scope/Pkey values from the broadcast address.
17602 */
17603 m_physaddr[5] = bphys_addr[5];
17604 m_physaddr[8] = bphys_addr[8];
17605 m_physaddr[9] = bphys_addr[9];
17606 }

17608 static void
17609 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17610 {
17611 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17612 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17613 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17614 uint8_t *bphys_addr;
17615 dl_unitdata_req_t *dlur;

17617 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);

new/usr/src/uts/common/inet/ip/ip_if.c 268

17619 /*
17620 * RFC 4391: IPv4 MGID is 80-bit long.
17621 */
17622 bcopy(&m_ipaddr[6], &m_physaddr[10], 10);

17624 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17625 if (ill->ill_sap_length < 0) {
17626 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17627 } else {
17628 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17629 ill->ill_sap_length;
17630 }
17631 /*
17632 * Now fill in the IBA scope/Pkey values from the broadcast address.
17633 */
17634 m_physaddr[5] = bphys_addr[5];
17635 m_physaddr[8] = bphys_addr[8];
17636 m_physaddr[9] = bphys_addr[9];
17637 }

17639 /*
17640 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17641 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the
17642 * IPv6 interface id. This is a suggested mechanism described in section 3.7
17643 * of RFC4213.
17644 */
17645 static void
17646 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17647 {
17648 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17649 v6addr->s6_addr32[2] = 0;
17650 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17651 }

17653 /*
17654 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17655 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface
17656 * id.
17657 */
17658 static void
17659 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17660 {
17661 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;

17663 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17664 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17665 }

17667 static void
17668 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17669 {
17670 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17671 }

17673 static void
17674 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17675 {
17676 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17677 }

17679 static void
17680 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17681 {
17682 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17683 }

new/usr/src/uts/common/inet/ip/ip_if.c 269

17685 static void
17686 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17687 {
17688 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17689 }

17691 /*
17692 * Lookup an ill and verify that the zoneid has an ipif on that ill.
17693 * Returns an held ill, or NULL.
17694 */
17695 ill_t *
17696 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17697 ip_stack_t *ipst)
17698 {
17699 ill_t *ill;
17700 ipif_t *ipif;

17702 ill = ill_lookup_on_ifindex(index, isv6, ipst);
17703 if (ill == NULL)
17704 return (NULL);

17706 mutex_enter(&ill->ill_lock);
17707 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17708 if (IPIF_IS_CONDEMNED(ipif))
17709 continue;
17710 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17711 ipif->ipif_zoneid != ALL_ZONES)
17712 continue;

17714 mutex_exit(&ill->ill_lock);
17715 return (ill);
17716 }
17717 mutex_exit(&ill->ill_lock);
17718 ill_refrele(ill);
17719 return (NULL);
17720 }

17722 /*
17723 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17724 * If a pointer to an ipif_t is returned then the caller will need to do
17725 * an ill_refrele().
17726 */
17727 ipif_t *
17728 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17729 ip_stack_t *ipst)
17730 {
17731 ipif_t *ipif;
17732 ill_t *ill;

17734 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17735 if (ill == NULL)
17736 return (NULL);

17738 mutex_enter(&ill->ill_lock);
17739 if (ill->ill_state_flags & ILL_CONDEMNED) {
17740 mutex_exit(&ill->ill_lock);
17741 ill_refrele(ill);
17742 return (NULL);
17743 }

17745 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17746 if (!IPIF_CAN_LOOKUP(ipif))
17747 continue;
17748 if (lifidx == ipif->ipif_id) {
17749 ipif_refhold_locked(ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 270

17750 break;
17751 }
17752 }

17754 mutex_exit(&ill->ill_lock);
17755 ill_refrele(ill);
17756 return (ipif);
17757 }

17759 /*
17760 * Set ill_inputfn based on the current know state.
17761 * This needs to be called when any of the factors taken into
17762 * account changes.
17763 */
17764 void
17765 ill_set_inputfn(ill_t *ill)
17766 {
17767 ip_stack_t *ipst = ill->ill_ipst;

17769 if (ill->ill_isv6) {
17770 if (is_system_labeled())
17771 ill->ill_inputfn = ill_input_full_v6;
17772 else
17773 ill->ill_inputfn = ill_input_short_v6;
17774 } else {
17775 if (is_system_labeled())
17776 ill->ill_inputfn = ill_input_full_v4;
17777 else if (ill->ill_dhcpinit != 0)
17778 ill->ill_inputfn = ill_input_full_v4;
17779 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17780 != NULL)
17781 ill->ill_inputfn = ill_input_full_v4;
17782 else if (ipst->ips_ip_cgtp_filter &&
17783 ipst->ips_ip_cgtp_filter_ops != NULL)
17784 ill->ill_inputfn = ill_input_full_v4;
17785 else
17786 ill->ill_inputfn = ill_input_short_v4;
17787 }
17788 }

17790 /*
17791 * Re-evaluate ill_inputfn for all the IPv4 ills.
17792 * Used when RSVP and CGTP comes and goes.
17793 */
17794 void
17795 ill_set_inputfn_all(ip_stack_t *ipst)
17796 {
17797 ill_walk_context_t ctx;
17798 ill_t *ill;

17800 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17801 ill = ILL_START_WALK_V4(&ctx, ipst);
17802 for (; ill != NULL; ill = ill_next(&ctx, ill))
17803 ill_set_inputfn(ill);

17805 rw_exit(&ipst->ips_ill_g_lock);
17806 }

17808 /*
17809 * Set the physical address information for ‘ill’ to the contents of the
17810 * dl_notify_ind_t pointed to by ‘mp’. Must be called as writer, and will be
17811 * asynchronous if ‘ill’ cannot immediately be quiesced -- in which case
17812 * EINPROGRESS will be returned.
17813 */
17814 int
17815 ill_set_phys_addr(ill_t *ill, mblk_t *mp)

new/usr/src/uts/common/inet/ip/ip_if.c 271

17816 {
17817 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17818 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr;

17820 ASSERT(IAM_WRITER_IPSQ(ipsq));

17822 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17823 dlindp->dl_data != DL_CURR_DEST_ADDR &&
17824 dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17825 /* Changing DL_IPV6_TOKEN is not yet supported */
17826 return (0);
17827 }

17829 /*
17830 * We need to store up to two copies of ‘mp’ in ‘ill’. Due to the
17831 * design of ipsq_pending_mp_add(), we can’t pass them as separate
17832 * arguments to ill_set_phys_addr_tail(). Instead, chain them
17833 * together here, then pull ’em apart in ill_set_phys_addr_tail().
17834 */
17835 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17836 freemsg(mp);
17837 return (ENOMEM);
17838 }

17840 ipsq_current_start(ipsq, ill->ill_ipif, 0);

17842 /*
17843 * Since we’ll only do a logical down, we can’t rely on ipif_down
17844 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset
17845 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this
17846 * case, to quiesce ire’s and nce’s for ill_is_quiescent.
17847 */
17848 mutex_enter(&ill->ill_lock);
17849 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17850 /* no more ire/nce addition allowed */
17851 mutex_exit(&ill->ill_lock);

17853 /*
17854 * If we can quiesce the ill, then set the address. If not, then
17855 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17856 */
17857 ill_down_ipifs(ill, B_TRUE);
17858 mutex_enter(&ill->ill_lock);
17859 if (!ill_is_quiescent(ill)) {
17860 /* call cannot fail since ‘conn_t *’ argument is NULL */
17861 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17862 mp, ILL_DOWN);
17863 mutex_exit(&ill->ill_lock);
17864 return (EINPROGRESS);
17865 }
17866 mutex_exit(&ill->ill_lock);

17868 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17869 return (0);
17870 }

17872 /*
17873 * When the allowed-ips link property is set on the datalink, IP receives a
17874 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips()
17875 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then
17876 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the
17877 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[]
17878 * array.
17879 */
17880 void
17881 ill_set_allowed_ips(ill_t *ill, mblk_t *mp)

new/usr/src/uts/common/inet/ip/ip_if.c 272

17882 {
17883 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17884 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr;
17885 mac_protect_t *mrp;
17886 int i;

17888 ASSERT(IAM_WRITER_IPSQ(ipsq));
17889 mrp = (mac_protect_t *)&dlip[1];

17891 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */
17892 kmem_free(ill->ill_allowed_ips,
17893 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17894 ill->ill_allowed_ips_cnt = 0;
17895 ill->ill_allowed_ips = NULL;
17896 mutex_enter(&ill->ill_phyint->phyint_lock);
17897 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT;
17898 mutex_exit(&ill->ill_phyint->phyint_lock);
17899 return;
17900 }

17902 if (ill->ill_allowed_ips != NULL) {
17903 kmem_free(ill->ill_allowed_ips,
17904 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17905 }
17906 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt;
17907 ill->ill_allowed_ips = kmem_alloc(
17908 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP);
17909 for (i = 0; i < mrp->mp_ipaddrcnt; i++)
17910 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr;

17912 mutex_enter(&ill->ill_phyint->phyint_lock);
17913 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT;
17914 mutex_exit(&ill->ill_phyint->phyint_lock);
17915 }

17917 /*
17918 * Once the ill associated with ‘q’ has quiesced, set its physical address
17919 * information to the values in ‘addrmp’. Note that two copies of ‘addrmp’
17920 * are passed (linked by b_cont), since we sometimes need to save two distinct
17921 * copies in the ill_t, and our context doesn’t permit sleeping or allocation
17922 * failure (we’ll free the other copy if it’s not needed). Since the ill_t
17923 * is quiesced, we know any stale nce’s with the old address information have
17924 * already been removed, so we don’t need to call nce_flush().
17925 */
17926 /* ARGSUSED */
17927 static void
17928 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17929 {
17930 ill_t *ill = q->q_ptr;
17931 mblk_t *addrmp2 = unlinkb(addrmp);
17932 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17933 uint_t addrlen, addroff;
17934 int status;

17936 ASSERT(IAM_WRITER_IPSQ(ipsq));

17938 addroff = dlindp->dl_addr_offset;
17939 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);

17941 switch (dlindp->dl_data) {
17942 case DL_IPV6_LINK_LAYER_ADDR:
17943 ill_set_ndmp(ill, addrmp, addroff, addrlen);
17944 freemsg(addrmp2);
17945 break;

17947 case DL_CURR_DEST_ADDR:

new/usr/src/uts/common/inet/ip/ip_if.c 273

17948 freemsg(ill->ill_dest_addr_mp);
17949 ill->ill_dest_addr = addrmp->b_rptr + addroff;
17950 ill->ill_dest_addr_mp = addrmp;
17951 if (ill->ill_isv6) {
17952 ill_setdesttoken(ill);
17953 ipif_setdestlinklocal(ill->ill_ipif);
17954 }
17955 freemsg(addrmp2);
17956 break;

17958 case DL_CURR_PHYS_ADDR:
17959 freemsg(ill->ill_phys_addr_mp);
17960 ill->ill_phys_addr = addrmp->b_rptr + addroff;
17961 ill->ill_phys_addr_mp = addrmp;
17962 ill->ill_phys_addr_length = addrlen;
17963 if (ill->ill_isv6)
17964 ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17965 else
17966 freemsg(addrmp2);
17967 if (ill->ill_isv6) {
17968 ill_setdefaulttoken(ill);
17969 ipif_setlinklocal(ill->ill_ipif);
17970 }
17971 break;
17972 default:
17973 ASSERT(0);
17974 }

17976 /*
17977 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires
17978 * as we bring the ipifs up again.
17979 */
17980 mutex_enter(&ill->ill_lock);
17981 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17982 mutex_exit(&ill->ill_lock);
17983 /*
17984 * If there are ipifs to bring up, ill_up_ipifs() will return
17985 * EINPROGRESS, and ipsq_current_finish() will be called by
17986 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17987 * brought up.
17988 */
17989 status = ill_up_ipifs(ill, q, addrmp);
17990 if (status != EINPROGRESS)
17991 ipsq_current_finish(ipsq);
17992 }

17994 /*
17995 * Helper routine for setting the ill_nd_lla fields.
17996 */
17997 void
17998 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17999 {
18000 freemsg(ill->ill_nd_lla_mp);
18001 ill->ill_nd_lla = ndmp->b_rptr + addroff;
18002 ill->ill_nd_lla_mp = ndmp;
18003 ill->ill_nd_lla_len = addrlen;
18004 }

18006 /*
18007 * Replumb the ill.
18008 */
18009 int
18010 ill_replumb(ill_t *ill, mblk_t *mp)
18011 {
18012 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;

new/usr/src/uts/common/inet/ip/ip_if.c 274

18014 ASSERT(IAM_WRITER_IPSQ(ipsq));

18016 ipsq_current_start(ipsq, ill->ill_ipif, 0);

18018 /*
18019 * If we can quiesce the ill, then continue. If not, then
18020 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
18021 */
18022 ill_down_ipifs(ill, B_FALSE);

18024 mutex_enter(&ill->ill_lock);
18025 if (!ill_is_quiescent(ill)) {
18026 /* call cannot fail since ‘conn_t *’ argument is NULL */
18027 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
18028 mp, ILL_DOWN);
18029 mutex_exit(&ill->ill_lock);
18030 return (EINPROGRESS);
18031 }
18032 mutex_exit(&ill->ill_lock);

18034 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
18035 return (0);
18036 }

18038 /* ARGSUSED */
18039 static void
18040 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
18041 {
18042 ill_t *ill = q->q_ptr;
18043 int err;
18044 conn_t *connp = NULL;

18046 ASSERT(IAM_WRITER_IPSQ(ipsq));
18047 freemsg(ill->ill_replumb_mp);
18048 ill->ill_replumb_mp = copyb(mp);

18050 if (ill->ill_replumb_mp == NULL) {
18051 /* out of memory */
18052 ipsq_current_finish(ipsq);
18053 return;
18054 }

18056 mutex_enter(&ill->ill_lock);
18057 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
18058 ill->ill_rq, ill->ill_replumb_mp, 0);
18059 mutex_exit(&ill->ill_lock);

18061 if (!ill->ill_up_ipifs) {
18062 /* already closing */
18063 ipsq_current_finish(ipsq);
18064 return;
18065 }
18066 ill->ill_replumbing = 1;
18067 err = ill_down_ipifs_tail(ill);

18069 /*
18070 * Successfully quiesced and brought down the interface, now we send
18071 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
18072 * DL_NOTE_REPLUMB message.
18073 */
18074 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
18075 DL_NOTIFY_CONF);
18076 ASSERT(mp != NULL);
18077 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
18078 DL_NOTE_REPLUMB_DONE;
18079 ill_dlpi_send(ill, mp);

new/usr/src/uts/common/inet/ip/ip_if.c 275

18081 /*
18082 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
18083 * streams have to be unbound. When all the DLPI exchanges are done,
18084 * ipsq_current_finish() will be called by arp_bringup_done(). The
18085 * remainder of ipif bringup via ill_up_ipifs() will also be done in
18086 * arp_bringup_done().
18087 */
18088 ASSERT(ill->ill_replumb_mp != NULL);
18089 if (err == EINPROGRESS)
18090 return;
18091 else
18092 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
18093 ASSERT(connp == NULL);
18094 if (err == 0 && ill->ill_replumb_mp != NULL &&
18095 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
18096 return;
18097 }
18098 ipsq_current_finish(ipsq);
18099 }

18101 /*
18102 * Issue ioctl ‘cmd’ on ‘lh’; caller provides the initial payload in ‘buf’
18103 * which is ‘bufsize’ bytes. On success, zero is returned and ‘buf’ updated
18104 * as per the ioctl. On failure, an errno is returned.
18105 */
18106 static int
18107 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
18108 {
18109 int rval;
18110 struct strioctl iocb;

18112 iocb.ic_cmd = cmd;
18113 iocb.ic_timout = 15;
18114 iocb.ic_len = bufsize;
18115 iocb.ic_dp = buf;

18117 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
18118 }

18120 /*
18121 * Issue an SIOCGLIFCONF for address family ‘af’ and store the result into a
18122 * dynamically-allocated ‘lifcp’ that will be ‘bufsizep’ bytes on success.
18123 */
18124 static int
18125 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
18126 uint_t *bufsizep, cred_t *cr)
18127 {
18128 int err;
18129 struct lifnum lifn;

18131 bzero(&lifn, sizeof (lifn));
18132 lifn.lifn_family = af;
18133 lifn.lifn_flags = LIFC_UNDER_IPMP;

18135 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
18136 return (err);

18138 /*
18139 * Pad the interface count to account for additional interfaces that
18140 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
18141 */
18142 lifn.lifn_count += 4;
18143 bzero(lifcp, sizeof (*lifcp));
18144 lifcp->lifc_flags = LIFC_UNDER_IPMP;
18145 lifcp->lifc_family = af;

new/usr/src/uts/common/inet/ip/ip_if.c 276

18146 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
18147 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);

18149 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
18150 if (err != 0) {
18151 kmem_free(lifcp->lifc_buf, *bufsizep);
18152 return (err);
18153 }

18155 return (0);
18156 }

18158 /*
18159 * Helper for ip_interface_cleanup() that removes the loopback interface.
18160 */
18161 static void
18162 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18163 {
18164 int err;
18165 struct lifreq lifr;

18167 bzero(&lifr, sizeof (lifr));
18168 (void) strcpy(lifr.lifr_name, ipif_loopback_name);

18170 /*
18171 * Attempt to remove the interface. It may legitimately not exist
18172 * (e.g. the zone administrator unplumbed it), so ignore ENXIO.
18173 */
18174 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
18175 if (err != 0 && err != ENXIO) {
18176 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
18177 "error %d\n", isv6 ? "v6" : "v4", err));
18178 }
18179 }

18181 /*
18182 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
18183 * groups and that IPMP data addresses are down. These conditions must be met
18184 * so that IPMP interfaces can be I_PUNLINK’d, as per ip_sioctl_plink_ipmp().
18185 */
18186 static void
18187 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18188 {
18189 int af = isv6 ? AF_INET6 : AF_INET;
18190 int i, nifs;
18191 int err;
18192 uint_t bufsize;
18193 uint_t lifrsize = sizeof (struct lifreq);
18194 struct lifconf lifc;
18195 struct lifreq *lifrp;

18197 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
18198 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
18199 "(error %d); any IPMP interfaces cannot be shutdown", err);
18200 return;
18201 }

18203 nifs = lifc.lifc_len / lifrsize;
18204 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
18205 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18206 if (err != 0) {
18207 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
18208 "flags: error %d", lifrp->lifr_name, err);
18209 continue;
18210 }

new/usr/src/uts/common/inet/ip/ip_if.c 277

18212 if (lifrp->lifr_flags & IFF_IPMP) {
18213 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
18214 continue;

18216 lifrp->lifr_flags &= ~IFF_UP;
18217 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
18218 if (err != 0) {
18219 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18220 "bring down (error %d); IPMP interface may "
18221 "not be shutdown", lifrp->lifr_name, err);
18222 }

18224 /*
18225 * Check if IFF_DUPLICATE is still set -- and if so,
18226 * reset the address to clear it.
18227 */
18228 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18229 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
18230 continue;

18232 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
18233 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
18234 lifrp, lifrsize, cr)) != 0) {
18235 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18236 "reset DAD (error %d); IPMP interface may "
18237 "not be shutdown", lifrp->lifr_name, err);
18238 }
18239 continue;
18240 }

18242 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) {
18243 lifrp->lifr_groupname[0] = ’\0’;
18244 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp,
18245 lifrsize, cr)) != 0) {
18246 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18247 "leave IPMP group (error %d); associated "
18248 "IPMP interface may not be shutdown",
18249 lifrp->lifr_name, err);
18250 continue;
18251 }
18252 }
18253 }

18255 kmem_free(lifc.lifc_buf, bufsize);
18256 }

18258 #define UDPDEV "/devices/pseudo/udp@0:udp"
18259 #define UDP6DEV "/devices/pseudo/udp6@0:udp6"

18261 /*
18262 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
18263 * Non-loopback interfaces are either I_LINK’d or I_PLINK’d; the former go away
18264 * when the user-level processes in the zone are killed and the latter are
18265 * cleaned up by str_stack_shutdown().
18266 */
18267 void
18268 ip_interface_cleanup(ip_stack_t *ipst)
18269 {
18270 ldi_handle_t lh;
18271 ldi_ident_t li;
18272 cred_t *cr;
18273 int err;
18274 int i;
18275 char *devs[] = { UDP6DEV, UDPDEV };
18276 netstackid_t stackid = ipst->ips_netstack->netstack_stackid;

new/usr/src/uts/common/inet/ip/ip_if.c 278

18278 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
18279 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
18280 " error %d", err);
18281 return;
18282 }

18284 cr = zone_get_kcred(netstackid_to_zoneid(stackid));
18285 ASSERT(cr != NULL);

18287 /*
18288 * NOTE: loop executes exactly twice and is hardcoded to know that the
18289 * first iteration is IPv6. (Unrolling yields repetitious code, hence
18290 * the loop.)
18291 */
18292 for (i = 0; i < 2; i++) {
18293 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
18294 if (err != 0) {
18295 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
18296 " error %d", devs[i], err);
18297 continue;
18298 }

18300 ip_loopback_removeif(lh, i == 0, cr);
18301 ip_ipmp_cleanup(lh, i == 0, cr);

18303 (void) ldi_close(lh, FREAD|FWRITE, cr);
18304 }

18306 ldi_ident_release(li);
18307 crfree(cr);
18308 }

18310 /*
18311 * This needs to be in-sync with nic_event_t definition
18312 */
18313 static const char *
18314 ill_hook_event2str(nic_event_t event)
18315 {
18316 switch (event) {
18317 case NE_PLUMB:
18318 return ("PLUMB");
18319 case NE_UNPLUMB:
18320 return ("UNPLUMB");
18321 case NE_UP:
18322 return ("UP");
18323 case NE_DOWN:
18324 return ("DOWN");
18325 case NE_ADDRESS_CHANGE:
18326 return ("ADDRESS_CHANGE");
18327 case NE_LIF_UP:
18328 return ("LIF_UP");
18329 case NE_LIF_DOWN:
18330 return ("LIF_DOWN");
18331 case NE_IFINDEX_CHANGE:
18332 return ("IFINDEX_CHANGE");
18333 default:
18334 return ("UNKNOWN");
18335 }
18336 }

18338 void
18339 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
18340 nic_event_data_t data, size_t datalen)
18341 {
18342 ip_stack_t *ipst = ill->ill_ipst;
18343 hook_nic_event_int_t *info;

new/usr/src/uts/common/inet/ip/ip_if.c 279

18344 const char *str = NULL;

18346 /* create a new nic event info */
18347 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
18348 goto fail;

18350 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
18351 info->hnei_event.hne_lif = lif;
18352 info->hnei_event.hne_event = event;
18353 info->hnei_event.hne_protocol = ill->ill_isv6 ?
18354 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18355 info->hnei_event.hne_data = NULL;
18356 info->hnei_event.hne_datalen = 0;
18357 info->hnei_stackid = ipst->ips_netstack->netstack_stackid;

18359 if (data != NULL && datalen != 0) {
18360 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
18361 if (info->hnei_event.hne_data == NULL)
18362 goto fail;
18363 bcopy(data, info->hnei_event.hne_data, datalen);
18364 info->hnei_event.hne_datalen = datalen;
18365 }

18367 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
18368 DDI_NOSLEEP) == DDI_SUCCESS)
18369 return;

18371 fail:
18372 if (info != NULL) {
18373 if (info->hnei_event.hne_data != NULL) {
18374 kmem_free(info->hnei_event.hne_data,
18375 info->hnei_event.hne_datalen);
18376 }
18377 kmem_free(info, sizeof (hook_nic_event_t));
18378 }
18379 str = ill_hook_event2str(event);
18380 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
18381 "information for %s (ENOMEM)\n", str, ill->ill_name));
18382 }

18384 static int
18385 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
18386 {
18387 int err = 0;
18388 const in_addr_t *addr = NULL;
18389 nce_t *nce = NULL;
18390 ill_t *ill = ipif->ipif_ill;
18391 ill_t *bound_ill;
18392 boolean_t added_ipif = B_FALSE;
18393 uint16_t state;
18394 uint16_t flags;

18396 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
18397 ill_t *, ill, ipif_t *, ipif);
18398 if (ipif->ipif_lcl_addr != INADDR_ANY) {
18399 addr = &ipif->ipif_lcl_addr;
18400 }

18402 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
18403 if (res_act != Res_act_initial)
18404 return (EINVAL);
18405 }

18407 if (addr != NULL) {
18408 ipmp_illgrp_t *illg = ill->ill_grp;

new/usr/src/uts/common/inet/ip/ip_if.c 280

18410 /* add unicast nce for the local addr */

18412 if (IS_IPMP(ill)) {
18413 /*
18414 * If we’re here via ipif_up(), then the ipif
18415 * won’t be bound yet -- add it to the group,
18416 * which will bind it if possible. (We would
18417 * add it in ipif_up(), but deleting on failure
18418 * there is gruesome.) If we’re here via
18419 * ipmp_ill_bind_ipif(), then the ipif has
18420 * already been added to the group and we
18421 * just need to use the binding.
18422 */
18423 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
18424 bound_ill = ipmp_illgrp_add_ipif(illg, ipif);
18425 if (bound_ill == NULL) {
18426 /*
18427 * We couldn’t bind the ipif to an ill
18428 * yet, so we have nothing to publish.
18429 * Mark the address as ready and return.
18430 */
18431 ipif->ipif_addr_ready = 1;
18432 return (0);
18433 }
18434 added_ipif = B_TRUE;
18435 }
18436 } else {
18437 bound_ill = ill;
18438 }

18440 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
18441 NCE_F_NONUD);
18442 /*
18443 * If this is an initial bring-up (or the ipif was never
18444 * completely brought up), do DAD. Otherwise, we’re here
18445 * because IPMP has rebound an address to this ill: send
18446 * unsolicited advertisements (ARP announcements) to
18447 * inform others.
18448 */
18449 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
18450 state = ND_UNCHANGED; /* compute in nce_add_common() */
18451 } else {
18452 state = ND_REACHABLE;
18453 flags |= NCE_F_UNSOL_ADV;
18454 }

18456 retry:
18457 err = nce_lookup_then_add_v4(ill,
18458 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
18459 addr, flags, state, &nce);

18461 /*
18462 * note that we may encounter EEXIST if we are moving
18463 * the nce as a result of a rebind operation.
18464 */
18465 switch (err) {
18466 case 0:
18467 ipif->ipif_added_nce = 1;
18468 nce->nce_ipif_cnt++;
18469 break;
18470 case EEXIST:
18471 ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
18472 ill->ill_name));
18473 if (!NCE_MYADDR(nce->nce_common)) {
18474 /*
18475 * A leftover nce from before this address

new/usr/src/uts/common/inet/ip/ip_if.c 281

18476 * existed
18477 */
18478 ncec_delete(nce->nce_common);
18479 nce_refrele(nce);
18480 nce = NULL;
18481 goto retry;
18482 }
18483 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
18484 nce_refrele(nce);
18485 nce = NULL;
18486 ip1dbg(("ipif_arp_up: NCE already exists "
18487 "for %s:%u\n", ill->ill_name,
18488 ipif->ipif_id));
18489 goto arp_up_done;
18490 }
18491 /*
18492 * Duplicate local addresses are permissible for
18493 * IPIF_POINTOPOINT interfaces which will get marked
18494 * IPIF_UNNUMBERED later in
18495 * ip_addr_availability_check().
18496 *
18497 * The nce_ipif_cnt field tracks the number of
18498 * ipifs that have nce_addr as their local address.
18499 */
18500 ipif->ipif_addr_ready = 1;
18501 ipif->ipif_added_nce = 1;
18502 nce->nce_ipif_cnt++;
18503 err = 0;
18504 break;
18505 default:
18506 ASSERT(nce == NULL);
18507 goto arp_up_done;
18508 }
18509 if (arp_no_defense) {
18510 if ((ipif->ipif_flags & IPIF_UP) &&
18511 !ipif->ipif_addr_ready)
18512 ipif_up_notify(ipif);
18513 ipif->ipif_addr_ready = 1;
18514 }
18515 } else {
18516 /* zero address. nothing to publish */
18517 ipif->ipif_addr_ready = 1;
18518 }
18519 if (nce != NULL)
18520 nce_refrele(nce);
18521 arp_up_done:
18522 if (added_ipif && err != 0)
18523 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18524 return (err);
18525 }

18527 int
18528 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18529 {
18530 int err = 0;
18531 ill_t *ill = ipif->ipif_ill;
18532 boolean_t first_interface, wait_for_dlpi = B_FALSE;

18534 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18535 ill_t *, ill, ipif_t *, ipif);

18537 /*
18538 * need to bring up ARP or setup mcast mapping only
18539 * when the first interface is coming UP.
18540 */
18541 first_interface = (ill->ill_ipif_up_count == 0 &&

new/usr/src/uts/common/inet/ip/ip_if.c 282

18542 ill->ill_ipif_dup_count == 0 && !was_dup);

18544 if (res_act == Res_act_initial && first_interface) {
18545 /*
18546 * Send ATTACH + BIND
18547 */
18548 err = arp_ll_up(ill);
18549 if (err != EINPROGRESS && err != 0)
18550 return (err);

18552 /*
18553 * Add NCE for local address. Start DAD.
18554 * we’ll wait to hear that DAD has finished
18555 * before using the interface.
18556 */
18557 if (err == EINPROGRESS)
18558 wait_for_dlpi = B_TRUE;
18559 }

18561 if (!wait_for_dlpi)
18562 (void) ipif_arp_up_done_tail(ipif, res_act);

18564 return (!wait_for_dlpi ? 0 : EINPROGRESS);
18565 }

18567 /*
18568 * Finish processing of "arp_up" after all the DLPI message
18569 * exchanges have completed between arp and the driver.
18570 */
18571 void
18572 arp_bringup_done(ill_t *ill, int err)
18573 {
18574 mblk_t *mp1;
18575 ipif_t *ipif;
18576 conn_t *connp = NULL;
18577 ipsq_t *ipsq;
18578 queue_t *q;

18580 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));

18582 ASSERT(IAM_WRITER_ILL(ill));

18584 ipsq = ill->ill_phyint->phyint_ipsq;
18585 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18586 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18587 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18588 if (mp1 == NULL) /* bringup was aborted by the user */
18589 return;

18591 /*
18592 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18593 * must have an associated conn_t. Otherwise, we’re bringing this
18594 * interface back up as part of handling an asynchronous event (e.g.,
18595 * physical address change).
18596 */
18597 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18598 ASSERT(connp != NULL);
18599 q = CONNP_TO_WQ(connp);
18600 } else {
18601 ASSERT(connp == NULL);
18602 q = ill->ill_rq;
18603 }
18604 if (err == 0) {
18605 if (ipif->ipif_isv6) {
18606 if ((err = ipif_up_done_v6(ipif)) != 0)
18607 ip0dbg(("arp_bringup_done: init failed\n"));

new/usr/src/uts/common/inet/ip/ip_if.c 283

18608 } else {
18609 err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18610 if (err != 0 ||
18611 (err = ipif_up_done(ipif)) != 0) {
18612 ip0dbg(("arp_bringup_done: "
18613 "init failed err %x\n", err));
18614 (void) ipif_arp_down(ipif);
18615 }

18617 }
18618 } else {
18619 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18620 }

18622 if ((err == 0) && (ill->ill_up_ipifs)) {
18623 err = ill_up_ipifs(ill, q, mp1);
18624 if (err == EINPROGRESS)
18625 return;
18626 }

18628 /*
18629 * If we have a moved ipif to bring up, and everything has succeeded
18630 * to this point, bring it up on the IPMP ill. Otherwise, leave it
18631 * down -- the admin can try to bring it up by hand if need be.
18632 */
18633 if (ill->ill_move_ipif != NULL) {
18634 ipif = ill->ill_move_ipif;
18635 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18636 ipif->ipif_ill->ill_name));
18637 ill->ill_move_ipif = NULL;
18638 if (err == 0) {
18639 err = ipif_up(ipif, q, mp1);
18640 if (err == EINPROGRESS)
18641 return;
18642 }
18643 }

18645 /*
18646 * The operation must complete without EINPROGRESS since
18647 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18648 * Otherwise, the operation will be stuck forever in the ipsq.
18649 */
18650 ASSERT(err != EINPROGRESS);
18651 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18652 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18653 int, ipsq->ipsq_xop->ipx_current_ioctl,
18654 ill_t *, ill, ipif_t *, ipif);
18655 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18656 } else {
18657 ipsq_current_finish(ipsq);
18658 }
18659 }

18661 /*
18662 * Finish processing of arp replumb after all the DLPI message
18663 * exchanges have completed between arp and the driver.
18664 */
18665 void
18666 arp_replumb_done(ill_t *ill, int err)
18667 {
18668 mblk_t *mp1;
18669 ipif_t *ipif;
18670 conn_t *connp = NULL;
18671 ipsq_t *ipsq;
18672 queue_t *q;

new/usr/src/uts/common/inet/ip/ip_if.c 284

18674 ASSERT(IAM_WRITER_ILL(ill));

18676 ipsq = ill->ill_phyint->phyint_ipsq;
18677 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18678 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18679 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18680 if (mp1 == NULL) {
18681 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18682 ipsq->ipsq_xop->ipx_current_ioctl));
18683 /* bringup was aborted by the user */
18684 return;
18685 }
18686 /*
18687 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18688 * must have an associated conn_t. Otherwise, we’re bringing this
18689 * interface back up as part of handling an asynchronous event (e.g.,
18690 * physical address change).
18691 */
18692 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18693 ASSERT(connp != NULL);
18694 q = CONNP_TO_WQ(connp);
18695 } else {
18696 ASSERT(connp == NULL);
18697 q = ill->ill_rq;
18698 }
18699 if ((err == 0) && (ill->ill_up_ipifs)) {
18700 err = ill_up_ipifs(ill, q, mp1);
18701 if (err == EINPROGRESS)
18702 return;
18703 }
18704 /*
18705 * The operation must complete without EINPROGRESS since
18706 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18707 * Otherwise, the operation will be stuck forever in the ipsq.
18708 */
18709 ASSERT(err != EINPROGRESS);
18710 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18711 DTRACE_PROBE4(ipif__ioctl, char *,
18712 "arp_replumb_done finish",
18713 int, ipsq->ipsq_xop->ipx_current_ioctl,
18714 ill_t *, ill, ipif_t *, ipif);
18715 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18716 } else {
18717 ipsq_current_finish(ipsq);
18718 }
18719 }

18721 void
18722 ipif_up_notify(ipif_t *ipif)
18723 {
18724 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18725 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18726 sctp_update_ipif(ipif, SCTP_IPIF_UP);
18727 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18728 NE_LIF_UP, NULL, 0);
18729 }

18731 /*
18732 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18733 * this assumes the context is cv_wait’able. Hence it shouldnt’ be used on
18734 * TPI end points with STREAMS modules pushed above. This is assured by not
18735 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl
18736 * never ends up on an ipsq, otherwise we may end up processing the ioctl
18737 * while unwinding from the ispq and that could be a thread from the bottom.
18738 */
18739 /* ARGSUSED */

new/usr/src/uts/common/inet/ip/ip_if.c 285

18740 int
18741 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18742 ip_ioctl_cmd_t *ipip, void *arg)
18743 {
18744 mblk_t *cmd_mp = mp->b_cont->b_cont;
18745 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18746 int ret = 0;
18747 int i;
18748 size_t size;
18749 ip_stack_t *ipst;
18750 zoneid_t zoneid;
18751 ilb_stack_t *ilbs;

18753 ipst = CONNQ_TO_IPST(q);
18754 ilbs = ipst->ips_netstack->netstack_ilb;
18755 zoneid = Q_TO_CONN(q)->conn_zoneid;

18757 switch (command) {
18758 case ILB_CREATE_RULE: {
18759 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;

18761 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18762 ret = EINVAL;
18763 break;
18764 }

18766 ret = ilb_rule_add(ilbs, zoneid, cmd);
18767 break;
18768 }
18769 case ILB_DESTROY_RULE:
18770 case ILB_ENABLE_RULE:
18771 case ILB_DISABLE_RULE: {
18772 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;

18774 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18775 ret = EINVAL;
18776 break;
18777 }

18779 if (cmd->flags & ILB_RULE_ALLRULES) {
18780 if (command == ILB_DESTROY_RULE) {
18781 ilb_rule_del_all(ilbs, zoneid);
18782 break;
18783 } else if (command == ILB_ENABLE_RULE) {
18784 ilb_rule_enable_all(ilbs, zoneid);
18785 break;
18786 } else if (command == ILB_DISABLE_RULE) {
18787 ilb_rule_disable_all(ilbs, zoneid);
18788 break;
18789 }
18790 } else {
18791 if (command == ILB_DESTROY_RULE) {
18792 ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18793 } else if (command == ILB_ENABLE_RULE) {
18794 ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18795 NULL);
18796 } else if (command == ILB_DISABLE_RULE) {
18797 ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18798 NULL);
18799 }
18800 }
18801 break;
18802 }
18803 case ILB_NUM_RULES: {
18804 ilb_num_rules_cmd_t *cmd;

new/usr/src/uts/common/inet/ip/ip_if.c 286

18806 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18807 ret = EINVAL;
18808 break;
18809 }
18810 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18811 ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18812 break;
18813 }
18814 case ILB_RULE_NAMES: {
18815 ilb_rule_names_cmd_t *cmd;

18817 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18818 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18819 cmd->num_names == 0) {
18820 ret = EINVAL;
18821 break;
18822 }
18823 size = cmd->num_names * ILB_RULE_NAMESZ;
18824 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18825 size != cmd_mp->b_wptr) {
18826 ret = EINVAL;
18827 break;
18828 }
18829 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18830 break;
18831 }
18832 case ILB_NUM_SERVERS: {
18833 ilb_num_servers_cmd_t *cmd;

18835 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18836 ret = EINVAL;
18837 break;
18838 }
18839 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18840 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18841 &(cmd->num));
18842 break;
18843 }
18844 case ILB_LIST_RULE: {
18845 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;

18847 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18848 ret = EINVAL;
18849 break;
18850 }
18851 ret = ilb_rule_list(ilbs, zoneid, cmd);
18852 break;
18853 }
18854 case ILB_LIST_SERVERS: {
18855 ilb_servers_info_cmd_t *cmd;

18857 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18858 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18859 cmd->num_servers == 0) {
18860 ret = EINVAL;
18861 break;
18862 }
18863 size = cmd->num_servers * sizeof (ilb_server_info_t);
18864 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18865 size != cmd_mp->b_wptr) {
18866 ret = EINVAL;
18867 break;
18868 }

18870 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18871 &cmd->num_servers);

new/usr/src/uts/common/inet/ip/ip_if.c 287

18872 break;
18873 }
18874 case ILB_ADD_SERVERS: {
18875 ilb_servers_info_cmd_t *cmd;
18876 ilb_rule_t *rule;

18878 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18879 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18880 ret = EINVAL;
18881 break;
18882 }
18883 size = cmd->num_servers * sizeof (ilb_server_info_t);
18884 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18885 size != cmd_mp->b_wptr) {
18886 ret = EINVAL;
18887 break;
18888 }
18889 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18890 if (rule == NULL) {
18891 ASSERT(ret != 0);
18892 break;
18893 }
18894 for (i = 0; i < cmd->num_servers; i++) {
18895 ilb_server_info_t *s;

18897 s = &cmd->servers[i];
18898 s->err = ilb_server_add(ilbs, rule, s);
18899 }
18900 ILB_RULE_REFRELE(rule);
18901 break;
18902 }
18903 case ILB_DEL_SERVERS:
18904 case ILB_ENABLE_SERVERS:
18905 case ILB_DISABLE_SERVERS: {
18906 ilb_servers_cmd_t *cmd;
18907 ilb_rule_t *rule;
18908 int (*f)();

18910 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18911 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18912 ret = EINVAL;
18913 break;
18914 }
18915 size = cmd->num_servers * sizeof (ilb_server_arg_t);
18916 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18917 size != cmd_mp->b_wptr) {
18918 ret = EINVAL;
18919 break;
18920 }

18922 if (command == ILB_DEL_SERVERS)
18923 f = ilb_server_del;
18924 else if (command == ILB_ENABLE_SERVERS)
18925 f = ilb_server_enable;
18926 else if (command == ILB_DISABLE_SERVERS)
18927 f = ilb_server_disable;

18929 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18930 if (rule == NULL) {
18931 ASSERT(ret != 0);
18932 break;
18933 }

18935 for (i = 0; i < cmd->num_servers; i++) {
18936 ilb_server_arg_t *s;

new/usr/src/uts/common/inet/ip/ip_if.c 288

18938 s = &cmd->servers[i];
18939 s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18940 }
18941 ILB_RULE_REFRELE(rule);
18942 break;
18943 }
18944 case ILB_LIST_NAT_TABLE: {
18945 ilb_list_nat_cmd_t *cmd;

18947 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18948 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18949 ret = EINVAL;
18950 break;
18951 }
18952 size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18953 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18954 size != cmd_mp->b_wptr) {
18955 ret = EINVAL;
18956 break;
18957 }

18959 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18960 &cmd->flags);
18961 break;
18962 }
18963 case ILB_LIST_STICKY_TABLE: {
18964 ilb_list_sticky_cmd_t *cmd;

18966 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18967 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18968 ret = EINVAL;
18969 break;
18970 }
18971 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18972 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18973 size != cmd_mp->b_wptr) {
18974 ret = EINVAL;
18975 break;
18976 }

18978 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18979 &cmd->num_sticky, &cmd->flags);
18980 break;
18981 }
18982 default:
18983 ret = EINVAL;
18984 break;
18985 }
18986 done:
18987 return (ret);
18988 }

18990 /* Remove all cache entries for this logical interface */
18991 void
18992 ipif_nce_down(ipif_t *ipif)
18993 {
18994 ill_t *ill = ipif->ipif_ill;
18995 nce_t *nce;

18997 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18998 ill_t *, ill, ipif_t *, ipif);
18999 if (ipif->ipif_added_nce) {
19000 if (ipif->ipif_isv6)
19001 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
19002 else
19003 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);

new/usr/src/uts/common/inet/ip/ip_if.c 289

19004 if (nce != NULL) {
19005 if (--nce->nce_ipif_cnt == 0)
19006 ncec_delete(nce->nce_common);
19007 ipif->ipif_added_nce = 0;
19008 nce_refrele(nce);
19009 } else {
19010 /*
19011 * nce may already be NULL because it was already
19012 * flushed, e.g., due to a call to nce_flush
19013 */
19014 ipif->ipif_added_nce = 0;
19015 }
19016 }
19017 /*
19018 * Make IPMP aware of the deleted data address.
19019 */
19020 if (IS_IPMP(ill))
19021 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);

19023 /*
19024 * Remove all other nces dependent on this ill when the last ipif
19025 * is going away.
19026 */
19027 if (ill->ill_ipif_up_count == 0) {
19028 ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
19029 (uchar_t *)ill, ill->ill_ipst);
19030 if (IS_UNDER_IPMP(ill))
19031 nce_flush(ill, B_TRUE);
19032 }
19033 }

19035 /*
19036 * find the first interface that uses usill for its source address.
19037 */
19038 ill_t *
19039 ill_lookup_usesrc(ill_t *usill)
19040 {
19041 ip_stack_t *ipst = usill->ill_ipst;
19042 ill_t *ill;

19044 ASSERT(usill != NULL);

19046 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
19047 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
19048 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19049 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
19050 ill = ill->ill_usesrc_grp_next) {
19051 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
19052 !ILL_IS_CONDEMNED(ill)) {
19053 ill_refhold(ill);
19054 break;
19055 }
19056 }
19057 rw_exit(&ipst->ips_ill_g_lock);
19058 rw_exit(&ipst->ips_ill_g_usesrc_lock);
19059 return (ill);
19060 }

19062 /*
19063 * This comment applies to both ip_sioctl_get_ifhwaddr and
19064 * ip_sioctl_get_lifhwaddr as the basic function of these two functions
19065 * is the same.
19066 *
19067 * The goal here is to find an IP interface that corresponds to the name
19068 * provided by the caller in the ifreq/lifreq structure held in the mblk_t
19069 * chain and to fill out a sockaddr/sockaddr_storage structure with the

new/usr/src/uts/common/inet/ip/ip_if.c 290

19070 * mac address.
19071 *
19072 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number
19073 * of different reasons:
19074 * ENXIO - the device name is not known to IP.
19075 * EADDRNOTAVAIL - the device has no hardware address. This is indicated
19076 * by ill_phys_addr not pointing to an actual address.
19077 * EPFNOSUPPORT - this will indicate that a request is being made for a
19078 * mac address that will not fit in the data structure supplier (struct
19079 * sockaddr).
19080 *
19081 */
19082 /* ARGSUSED */
19083 int
19084 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19085 ip_ioctl_cmd_t *ipip, void *if_req)
19086 {
19087 struct sockaddr *sock;
19088 struct ifreq *ifr;
19089 mblk_t *mp1;
19090 ill_t *ill;

19092 ASSERT(ipif != NULL);
19093 ill = ipif->ipif_ill;

19095 if (ill->ill_phys_addr == NULL) {
19096 return (EADDRNOTAVAIL);
19097 }
19098 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) {
19099 return (EPFNOSUPPORT);
19100 }

19102 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name));

19104 /* Existence of mp1 has been checked in ip_wput_nondata */
19105 mp1 = mp->b_cont->b_cont;
19106 ifr = (struct ifreq *)mp1->b_rptr;

19108 sock = &ifr->ifr_addr;
19109 /*
19110 * The "family" field in the returned structure is set to a value
19111 * that represents the type of device to which the address belongs.
19112 * The value returned may differ to that on Linux but it will still
19113 * represent the correct symbol on Solaris.
19114 */
19115 sock->sa_family = arp_hw_type(ill->ill_mactype);
19116 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length);

19118 return (0);
19119 }

19121 /*
19122 * The expection of applications using SIOCGIFHWADDR is that data will
19123 * be returned in the sa_data field of the sockaddr structure. With
19124 * SIOCGLIFHWADDR, we’re breaking new ground as there is no Linux
19125 * equivalent. In light of this, struct sockaddr_dl is used as it
19126 * offers more space for address storage in sll_data.
19127 */
19128 /* ARGSUSED */
19129 int
19130 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19131 ip_ioctl_cmd_t *ipip, void *if_req)
19132 {
19133 struct sockaddr_dl *sock;
19134 struct lifreq *lifr;
19135 mblk_t *mp1;

new/usr/src/uts/common/inet/ip/ip_if.c 291

19136 ill_t *ill;

19138 ASSERT(ipif != NULL);
19139 ill = ipif->ipif_ill;

19141 if (ill->ill_phys_addr == NULL) {
19142 return (EADDRNOTAVAIL);
19143 }
19144 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) {
19145 return (EPFNOSUPPORT);
19146 }

19148 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name));

19150 /* Existence of mp1 has been checked in ip_wput_nondata */
19151 mp1 = mp->b_cont->b_cont;
19152 lifr = (struct lifreq *)mp1->b_rptr;

19154 /*
19155 * sockaddr_ll is used here because it is also the structure used in
19156 * responding to the same ioctl in sockpfp. The only other choice is
19157 * sockaddr_dl which contains fields that are not required here
19158 * because its purpose is different.
19159 */
19160 lifr->lifr_type = ill->ill_type;
19161 sock = (struct sockaddr_dl *)&lifr->lifr_addr;
19162 sock->sdl_family = AF_LINK;
19163 sock->sdl_index = ill->ill_phyint->phyint_ifindex;
19164 sock->sdl_type = ill->ill_mactype;
19165 sock->sdl_nlen = 0;
19166 sock->sdl_slen = 0;
19167 sock->sdl_alen = ill->ill_phys_addr_length;
19168 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length);

19170 return (0);
19171 }

new/usr/src/uts/common/inet/ip/ip_input.c 1

**
 89772 Sat Aug 18 10:37:16 2012
new/usr/src/uts/common/inet/ip/ip_input.c
dccp: ips_ipcl_dccp_fanout
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
24 *
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 */
27 /* Copyright (c) 1990 Mentat Inc. */

29 #include <sys/types.h>
30 #include <sys/stream.h>
31 #include <sys/dlpi.h>
32 #include <sys/stropts.h>
33 #include <sys/sysmacros.h>
34 #include <sys/strsubr.h>
35 #include <sys/strlog.h>
36 #include <sys/strsun.h>
37 #include <sys/zone.h>
38 #define _SUN_TPI_VERSION 2
39 #include <sys/tihdr.h>
40 #include <sys/xti_inet.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/cmn_err.h>
44 #include <sys/debug.h>
45 #include <sys/kobj.h>
46 #include <sys/modctl.h>
47 #include <sys/atomic.h>
48 #include <sys/policy.h>
49 #include <sys/priv.h>

51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/kmem.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/vtrace.h>
57 #include <sys/isa_defs.h>
58 #include <sys/mac.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/route.h>

new/usr/src/uts/common/inet/ip/ip_input.c 2

62 #include <sys/sockio.h>
63 #include <netinet/in.h>
64 #include <net/if_dl.h>

66 #include <inet/common.h>
67 #include <inet/mi.h>
68 #include <inet/mib2.h>
69 #include <inet/nd.h>
70 #include <inet/arp.h>
71 #include <inet/snmpcom.h>
72 #include <inet/kstatcom.h>

74 #include <netinet/igmp_var.h>
75 #include <netinet/ip6.h>
76 #include <netinet/icmp6.h>
77 #include <netinet/sctp.h>

79 #include <inet/ip.h>
80 #include <inet/ip_impl.h>
81 #include <inet/ip6.h>
82 #include <inet/ip6_asp.h>
83 #include <inet/optcom.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/ip_multi.h>
87 #include <inet/ip_if.h>
88 #include <inet/ip_ire.h>
89 #include <inet/ip_ftable.h>
90 #include <inet/ip_rts.h>
91 #include <inet/ip_ndp.h>
92 #include <inet/ip_listutils.h>
93 #include <netinet/igmp.h>
94 #include <netinet/ip_mroute.h>
95 #include <inet/ipp_common.h>

97 #include <net/pfkeyv2.h>
98 #include <inet/sadb.h>
99 #include <inet/ipsec_impl.h>
100 #include <inet/ipdrop.h>
101 #include <inet/ip_netinfo.h>
102 #include <inet/ilb_ip.h>
103 #include <sys/squeue_impl.h>
104 #include <sys/squeue.h>

106 #include <sys/ethernet.h>
107 #include <net/if_types.h>
108 #include <sys/cpuvar.h>

110 #include <ipp/ipp.h>
111 #include <ipp/ipp_impl.h>
112 #include <ipp/ipgpc/ipgpc.h>

114 #include <sys/pattr.h>
115 #include <inet/ipclassifier.h>
116 #include <inet/sctp_ip.h>
117 #include <inet/sctp/sctp_impl.h>
118 #include <inet/udp_impl.h>
119 #include <inet/dccp_impl.h>
120 #endif /* ! codereview */
121 #include <sys/sunddi.h>

123 #include <sys/tsol/label.h>
124 #include <sys/tsol/tnet.h>

126 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */

new/usr/src/uts/common/inet/ip/ip_input.c 3

128 #ifdef DEBUG
129 extern boolean_t skip_sctp_cksum;
130 #endif

132 static void ip_input_local_v4(ire_t *, mblk_t *, ipha_t *,
133 ip_recv_attr_t *);

135 static void ip_input_broadcast_v4(ire_t *, mblk_t *, ipha_t *,
136 ip_recv_attr_t *);
137 static void ip_input_multicast_v4(ire_t *, mblk_t *, ipha_t *,
138 ip_recv_attr_t *);

140 #pragma inline(ip_input_common_v4, ip_input_local_v4, ip_forward_xmit_v4)

142 /*
143 * Direct read side procedure capable of dealing with chains. GLDv3 based
144 * drivers call this function directly with mblk chains while STREAMS
145 * read side procedure ip_rput() calls this for single packet with ip_ring
146 * set to NULL to process one packet at a time.
147 *
148 * The ill will always be valid if this function is called directly from
149 * the driver.
150 *
151 * If ip_input() is called from GLDv3:
152 *
153 * - This must be a non-VLAN IP stream.
154 * - ’mp’ is either an untagged or a special priority-tagged packet.
155 * - Any VLAN tag that was in the MAC header has been stripped.
156 *
157 * If the IP header in packet is not 32-bit aligned, every message in the
158 * chain will be aligned before further operations. This is required on SPARC
159 * platform.
160 */
161 void
162 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain,
163 struct mac_header_info_s *mhip)
164 {
165 (void) ip_input_common_v4(ill, ip_ring, mp_chain, mhip, NULL, NULL,
166 NULL);
167 }

169 /*
170 * ip_accept_tcp() - This function is called by the squeue when it retrieves
171 * a chain of packets in the poll mode. The packets have gone through the
172 * data link processing but not IP processing. For performance and latency
173 * reasons, the squeue wants to process the chain in line instead of feeding
174 * it back via ip_input path.
175 *
176 * We set up the ip_recv_attr_t with IRAF_TARGET_SQP to that ip_fanout_v4
177 * will pass back any TCP packets matching the target sqp to
178 * ip_input_common_v4 using ira_target_sqp_mp. Other packets are handled by
179 * ip_input_v4 and ip_fanout_v4 as normal.
180 * The TCP packets that match the target squeue are returned to the caller
181 * as a b_next chain after each packet has been prepend with an mblk
182 * from ip_recv_attr_to_mblk.
183 */
184 mblk_t *
185 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp,
186 mblk_t *mp_chain, mblk_t **last, uint_t *cnt)
187 {
188 return (ip_input_common_v4(ill, ip_ring, mp_chain, NULL, target_sqp,
189 last, cnt));
190 }

192 /*
193 * Used by ip_input and ip_accept_tcp

new/usr/src/uts/common/inet/ip/ip_input.c 4

194 * The last three arguments are only used by ip_accept_tcp, and mhip is
195 * only used by ip_input.
196 */
197 mblk_t *
198 ip_input_common_v4(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain,
199 struct mac_header_info_s *mhip, squeue_t *target_sqp,
200 mblk_t **last, uint_t *cnt)
201 {
202 mblk_t *mp;
203 ipha_t *ipha;
204 ip_recv_attr_t iras; /* Receive attributes */
205 rtc_t rtc;
206 iaflags_t chain_flags = 0; /* Fixed for chain */
207 mblk_t *ahead = NULL; /* Accepted head */
208 mblk_t *atail = NULL; /* Accepted tail */
209 uint_t acnt = 0; /* Accepted count */

211 ASSERT(mp_chain != NULL);
212 ASSERT(ill != NULL);

214 /* These ones do not change as we loop over packets */
215 iras.ira_ill = iras.ira_rill = ill;
216 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
217 iras.ira_rifindex = iras.ira_ruifindex;
218 iras.ira_sqp = NULL;
219 iras.ira_ring = ip_ring;
220 /* For ECMP and outbound transmit ring selection */
221 iras.ira_xmit_hint = ILL_RING_TO_XMIT_HINT(ip_ring);

223 iras.ira_target_sqp = target_sqp;
224 iras.ira_target_sqp_mp = NULL;
225 if (target_sqp != NULL)
226 chain_flags |= IRAF_TARGET_SQP;

228 /*
229 * We try to have a mhip pointer when possible, but
230 * it might be NULL in some cases. In those cases we
231 * have to assume unicast.
232 */
233 iras.ira_mhip = mhip;
234 iras.ira_flags = 0;
235 if (mhip != NULL) {
236 switch (mhip->mhi_dsttype) {
237 case MAC_ADDRTYPE_MULTICAST :
238 chain_flags |= IRAF_L2DST_MULTICAST;
239 break;
240 case MAC_ADDRTYPE_BROADCAST :
241 chain_flags |= IRAF_L2DST_BROADCAST;
242 break;
243 }
244 }

246 /*
247 * Initialize the one-element route cache.
248 *
249 * We do ire caching from one iteration to
250 * another. In the event the packet chain contains
251 * all packets from the same dst, this caching saves
252 * an ire_route_recursive for each of the succeeding
253 * packets in a packet chain.
254 */
255 rtc.rtc_ire = NULL;
256 rtc.rtc_ipaddr = INADDR_ANY;

258 /* Loop over b_next */
259 for (mp = mp_chain; mp != NULL; mp = mp_chain) {

new/usr/src/uts/common/inet/ip/ip_input.c 5

260 mp_chain = mp->b_next;
261 mp->b_next = NULL;

263 ASSERT(DB_TYPE(mp) == M_DATA);

266 /*
267 * if db_ref > 1 then copymsg and free original. Packet
268 * may be changed and we do not want the other entity
269 * who has a reference to this message to trip over the
270 * changes. This is a blind change because trying to
271 * catch all places that might change the packet is too
272 * difficult.
273 *
274 * This corresponds to the fast path case, where we have
275 * a chain of M_DATA mblks. We check the db_ref count
276 * of only the 1st data block in the mblk chain. There
277 * doesn’t seem to be a reason why a device driver would
278 * send up data with varying db_ref counts in the mblk
279 * chain. In any case the Fast path is a private
280 * interface, and our drivers don’t do such a thing.
281 * Given the above assumption, there is no need to walk
282 * down the entire mblk chain (which could have a
283 * potential performance problem)
284 *
285 * The "(DB_REF(mp) > 1)" check was moved from ip_rput()
286 * to here because of exclusive ip stacks and vnics.
287 * Packets transmitted from exclusive stack over vnic
288 * can have db_ref > 1 and when it gets looped back to
289 * another vnic in a different zone, you have ip_input()
290 * getting dblks with db_ref > 1. So if someone
291 * complains of TCP performance under this scenario,
292 * take a serious look here on the impact of copymsg().
293 */
294 if (DB_REF(mp) > 1) {
295 if ((mp = ip_fix_dbref(mp, &iras)) == NULL) {
296 /* mhip might point into 1st packet in chain */
297 iras.ira_mhip = NULL;
298 continue;
299 }
300 }

302 /*
303 * IP header ptr not aligned?
304 * OR IP header not complete in first mblk
305 */
306 ipha = (ipha_t *)mp->b_rptr;
307 if (!OK_32PTR(ipha) || MBLKL(mp) < IP_SIMPLE_HDR_LENGTH) {
308 mp = ip_check_and_align_header(mp, IP_SIMPLE_HDR_LENGTH,
309 &iras);
310 if (mp == NULL) {
311 /* mhip might point into 1st packet in chain */
312 iras.ira_mhip = NULL;
313 continue;
314 }
315 ipha = (ipha_t *)mp->b_rptr;
316 }

318 /* Protect against a mix of Ethertypes and IP versions */
319 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
320 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
321 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
322 freemsg(mp);
323 /* mhip might point into 1st packet in the chain. */
324 iras.ira_mhip = NULL;
325 continue;

new/usr/src/uts/common/inet/ip/ip_input.c 6

326 }

328 /*
329 * Check for Martian addrs; we have to explicitly
330 * test for for zero dst since this is also used as
331 * an indication that the rtc is not used.
332 */
333 if (ipha->ipha_dst == INADDR_ANY) {
334 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors);
335 ip_drop_input("ipIfStatsInAddrErrors", mp, ill);
336 freemsg(mp);
337 /* mhip might point into 1st packet in the chain. */
338 iras.ira_mhip = NULL;
339 continue;
340 }

342 /*
343 * Keep L2SRC from a previous packet in chain since mhip
344 * might point into an earlier packet in the chain.
345 * Keep IRAF_VERIFIED_SRC to avoid redoing broadcast
346 * source check in forwarding path.
347 */
348 chain_flags |= (iras.ira_flags &
349 (IRAF_L2SRC_SET|IRAF_VERIFIED_SRC));

351 iras.ira_flags = IRAF_IS_IPV4 | IRAF_VERIFY_IP_CKSUM |
352 IRAF_VERIFY_ULP_CKSUM | chain_flags;
353 iras.ira_free_flags = 0;
354 iras.ira_cred = NULL;
355 iras.ira_cpid = NOPID;
356 iras.ira_tsl = NULL;
357 iras.ira_zoneid = ALL_ZONES; /* Default for forwarding */

359 /*
360 * We must count all incoming packets, even if they end
361 * up being dropped later on. Defer counting bytes until
362 * we have the whole IP header in first mblk.
363 */
364 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives);

366 iras.ira_pktlen = ntohs(ipha->ipha_length);
367 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets,
368 iras.ira_pktlen);

370 /*
371 * Call one of:
372 * ill_input_full_v4
373 * ill_input_short_v4
374 * The former is used in unusual cases. See ill_set_inputfn().
375 */
376 (*ill->ill_inputfn)(mp, ipha, &ipha->ipha_dst, &iras, &rtc);

378 /* Any references to clean up? No hold on ira_ill */
379 if (iras.ira_flags & (IRAF_IPSEC_SECURE|IRAF_SYSTEM_LABELED))
380 ira_cleanup(&iras, B_FALSE);

382 if (iras.ira_target_sqp_mp != NULL) {
383 /* Better be called from ip_accept_tcp */
384 ASSERT(target_sqp != NULL);

386 /* Found one packet to accept */
387 mp = iras.ira_target_sqp_mp;
388 iras.ira_target_sqp_mp = NULL;
389 ASSERT(ip_recv_attr_is_mblk(mp));

391 if (atail != NULL)

new/usr/src/uts/common/inet/ip/ip_input.c 7

392 atail->b_next = mp;
393 else
394 ahead = mp;
395 atail = mp;
396 acnt++;
397 mp = NULL;
398 }
399 /* mhip might point into 1st packet in the chain. */
400 iras.ira_mhip = NULL;
401 }
402 /* Any remaining references to the route cache? */
403 if (rtc.rtc_ire != NULL) {
404 ASSERT(rtc.rtc_ipaddr != INADDR_ANY);
405 ire_refrele(rtc.rtc_ire);
406 }

408 if (ahead != NULL) {
409 /* Better be called from ip_accept_tcp */
410 ASSERT(target_sqp != NULL);
411 *last = atail;
412 *cnt = acnt;
413 return (ahead);
414 }

416 return (NULL);
417 }

419 /*
420 * This input function is used when
421 * - is_system_labeled()
422 * - CGTP filtering
423 * - DHCP unicast before we have an IP address configured
424 * - there is an listener for IPPROTO_RSVP
425 */
426 void
427 ill_input_full_v4(mblk_t *mp, void *iph_arg, void *nexthop_arg,
428 ip_recv_attr_t *ira, rtc_t *rtc)
429 {
430 ipha_t *ipha = (ipha_t *)iph_arg;
431 ipaddr_t nexthop = *(ipaddr_t *)nexthop_arg;
432 ill_t *ill = ira->ira_ill;
433 ip_stack_t *ipst = ill->ill_ipst;
434 int cgtp_flt_pkt;

436 ASSERT(ira->ira_tsl == NULL);

438 /*
439 * Attach any necessary label information to
440 * this packet
441 */
442 if (is_system_labeled()) {
443 ira->ira_flags |= IRAF_SYSTEM_LABELED;

445 /*
446 * This updates ira_cred, ira_tsl and ira_free_flags based
447 * on the label.
448 */
449 if (!tsol_get_pkt_label(mp, IPV4_VERSION, ira)) {
450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
451 ip_drop_input("ipIfStatsInDiscards", mp, ill);
452 freemsg(mp);
453 return;
454 }
455 /* Note that ira_tsl can be NULL here. */

457 /* tsol_get_pkt_label sometimes does pullupmsg */

new/usr/src/uts/common/inet/ip/ip_input.c 8

458 ipha = (ipha_t *)mp->b_rptr;
459 }

461 /*
462 * Invoke the CGTP (multirouting) filtering module to process
463 * the incoming packet. Packets identified as duplicates
464 * must be discarded. Filtering is active only if the
465 * the ip_cgtp_filter ndd variable is non-zero.
466 */
467 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP;
468 if (ipst->ips_ip_cgtp_filter &&
469 ipst->ips_ip_cgtp_filter_ops != NULL) {
470 netstackid_t stackid;

472 stackid = ipst->ips_netstack->netstack_stackid;
473 /*
474 * CGTP and IPMP are mutually exclusive so
475 * phyint_ifindex is fine here.
476 */
477 cgtp_flt_pkt =
478 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid,
479 ill->ill_phyint->phyint_ifindex, mp);
480 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) {
481 ip_drop_input("CGTP_IP_PKT_DUPLICATE", mp, ill);
482 freemsg(mp);
483 return;
484 }
485 }

487 /*
488 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP
489 * server to unicast DHCP packets to a DHCP client using the
490 * IP address it is offering to the client. This can be
491 * disabled through the "broadcast bit", but not all DHCP
492 * servers honor that bit. Therefore, to interoperate with as
493 * many DHCP servers as possible, the DHCP client allows the
494 * server to unicast, but we treat those packets as broadcast
495 * here. Note that we don’t rewrite the packet itself since
496 * (a) that would mess up the checksums and (b) the DHCP
497 * client conn is bound to INADDR_ANY so ip_fanout_udp() will
498 * hand it the packet regardless.
499 */
500 if (ill->ill_dhcpinit != 0 &&
501 ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION &&
502 ipha->ipha_protocol == IPPROTO_UDP) {
503 udpha_t *udpha;

505 ipha = ip_pullup(mp, sizeof (ipha_t) + sizeof (udpha_t), ira);
506 if (ipha == NULL) {
507 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
508 ip_drop_input("ipIfStatsInDiscards - dhcp", mp, ill);
509 freemsg(mp);
510 return;
511 }
512 /* Reload since pullupmsg() can change b_rptr. */
513 udpha = (udpha_t *)&ipha[1];

515 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) {
516 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill,
517 mblk_t *, mp);
518 /*
519 * This assumes that we deliver to all conns for
520 * multicast and broadcast packets.
521 */
522 nexthop = INADDR_BROADCAST;
523 ira->ira_flags |= IRAF_DHCP_UNICAST;

new/usr/src/uts/common/inet/ip/ip_input.c 9

524 }
525 }

527 /*
528 * If rsvpd is running, let RSVP daemon handle its processing
529 * and forwarding of RSVP multicast/unicast packets.
530 * If rsvpd is not running but mrouted is running, RSVP
531 * multicast packets are forwarded as multicast traffic
532 * and RSVP unicast packets are forwarded by unicast router.
533 * If neither rsvpd nor mrouted is running, RSVP multicast
534 * packets are not forwarded, but the unicast packets are
535 * forwarded like unicast traffic.
536 */
537 if (ipha->ipha_protocol == IPPROTO_RSVP &&
538 ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head != NULL) {
539 /* RSVP packet and rsvpd running. Treat as ours */
540 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(nexthop)));
541 /*
542 * We use a multicast address to get the packet to
543 * ire_recv_multicast_v4. There will not be a membership
544 * check since we set IRAF_RSVP
545 */
546 nexthop = htonl(INADDR_UNSPEC_GROUP);
547 ira->ira_flags |= IRAF_RSVP;
548 }

550 ill_input_short_v4(mp, ipha, &nexthop, ira, rtc);
551 }

553 /*
554 * This is the tail-end of the full receive side packet handling.
555 * It can be used directly when the configuration is simple.
556 */
557 void
558 ill_input_short_v4(mblk_t *mp, void *iph_arg, void *nexthop_arg,
559 ip_recv_attr_t *ira, rtc_t *rtc)
560 {
561 ire_t *ire;
562 uint_t opt_len;
563 ill_t *ill = ira->ira_ill;
564 ip_stack_t *ipst = ill->ill_ipst;
565 uint_t pkt_len;
566 ssize_t len;
567 ipha_t *ipha = (ipha_t *)iph_arg;
568 ipaddr_t nexthop = *(ipaddr_t *)nexthop_arg;
569 ilb_stack_t *ilbs = ipst->ips_netstack->netstack_ilb;
570 uint_t irr_flags;
571 #define rptr ((uchar_t *)ipha)

573 ASSERT(DB_TYPE(mp) == M_DATA);

575 /*
576 * The following test for loopback is faster than
577 * IP_LOOPBACK_ADDR(), because it avoids any bitwise
578 * operations.
579 * Note that these addresses are always in network byte order
580 */
581 if (((*(uchar_t *)&ipha->ipha_dst) == IN_LOOPBACKNET) ||
582 ((*(uchar_t *)&ipha->ipha_src) == IN_LOOPBACKNET)) {
583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors);
584 ip_drop_input("ipIfStatsInAddrErrors", mp, ill);
585 freemsg(mp);
586 return;
587 }

589 len = mp->b_wptr - rptr;

new/usr/src/uts/common/inet/ip/ip_input.c 10

590 pkt_len = ira->ira_pktlen;

592 /* multiple mblk or too short */
593 len -= pkt_len;
594 if (len != 0) {
595 mp = ip_check_length(mp, rptr, len, pkt_len,
596 IP_SIMPLE_HDR_LENGTH, ira);
597 if (mp == NULL)
598 return;
599 ipha = (ipha_t *)mp->b_rptr;
600 }

602 DTRACE_IP7(receive, mblk_t *, mp, conn_t *, NULL, void_ip_t *,
603 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL,
604 int, 0);

606 /*
607 * The event for packets being received from a ’physical’
608 * interface is placed after validation of the source and/or
609 * destination address as being local so that packets can be
610 * redirected to loopback addresses using ipnat.
611 */
612 DTRACE_PROBE4(ip4__physical__in__start,
613 ill_t *, ill, ill_t *, NULL,
614 ipha_t *, ipha, mblk_t *, mp);

616 if (HOOKS4_INTERESTED_PHYSICAL_IN(ipst)) {
617 int ll_multicast = 0;
618 int error;
619 ipaddr_t orig_dst = ipha->ipha_dst;

621 if (ira->ira_flags & IRAF_L2DST_MULTICAST)
622 ll_multicast = HPE_MULTICAST;
623 else if (ira->ira_flags & IRAF_L2DST_BROADCAST)
624 ll_multicast = HPE_BROADCAST;

626 FW_HOOKS(ipst->ips_ip4_physical_in_event,
627 ipst->ips_ipv4firewall_physical_in,
628 ill, NULL, ipha, mp, mp, ll_multicast, ipst, error);

630 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp);

632 if (mp == NULL)
633 return;
634 /* The length could have changed */
635 ipha = (ipha_t *)mp->b_rptr;
636 ira->ira_pktlen = ntohs(ipha->ipha_length);
637 pkt_len = ira->ira_pktlen;

639 /*
640 * In case the destination changed we override any previous
641 * change to nexthop.
642 */
643 if (orig_dst != ipha->ipha_dst)
644 nexthop = ipha->ipha_dst;
645 if (nexthop == INADDR_ANY) {
646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors);
647 ip_drop_input("ipIfStatsInAddrErrors", mp, ill);
648 freemsg(mp);
649 return;
650 }
651 }

653 if (ipst->ips_ip4_observe.he_interested) {
654 zoneid_t dzone;

new/usr/src/uts/common/inet/ip/ip_input.c 11

656 /*
657 * On the inbound path the src zone will be unknown as
658 * this packet has come from the wire.
659 */
660 dzone = ip_get_zoneid_v4(nexthop, mp, ira, ALL_ZONES);
661 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, ill, ipst);
662 }

664 /*
665 * If there is a good HW IP header checksum we clear the need
666 * look at the IP header checksum.
667 */
668 if ((DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM) &&
669 ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
670 /* Header checksum was ok. Clear the flag */
671 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
672 ira->ira_flags &= ~IRAF_VERIFY_IP_CKSUM;
673 }

675 /*
676 * Here we check to see if we machine is setup as
677 * L3 loadbalancer and if the incoming packet is for a VIP
678 *
679 * Check the following:
680 * - there is at least a rule
681 * - protocol of the packet is supported
682 */
683 if (ilb_has_rules(ilbs) && ILB_SUPP_L4(ipha->ipha_protocol)) {
684 ipaddr_t lb_dst;
685 int lb_ret;

687 /* For convenience, we pull up the mblk. */
688 if (mp->b_cont != NULL) {
689 if (pullupmsg(mp, -1) == 0) {
690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
691 ip_drop_input("ipIfStatsInDiscards - pullupmsg",
692 mp, ill);
693 freemsg(mp);
694 return;
695 }
696 ipha = (ipha_t *)mp->b_rptr;
697 }

699 /*
700 * We just drop all fragments going to any VIP, at
701 * least for now....
702 */
703 if (ntohs(ipha->ipha_fragment_offset_and_flags) &
704 (IPH_MF | IPH_OFFSET)) {
705 if (!ilb_rule_match_vip_v4(ilbs, nexthop, NULL)) {
706 goto after_ilb;
707 }

709 ILB_KSTAT_UPDATE(ilbs, ip_frag_in, 1);
710 ILB_KSTAT_UPDATE(ilbs, ip_frag_dropped, 1);
711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
712 ip_drop_input("ILB fragment", mp, ill);
713 freemsg(mp);
714 return;
715 }
716 lb_ret = ilb_check_v4(ilbs, ill, mp, ipha, ipha->ipha_protocol,
717 (uint8_t *)ipha + IPH_HDR_LENGTH(ipha), &lb_dst);

719 if (lb_ret == ILB_DROPPED) {
720 /* Is this the right counter to increase? */
721 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);

new/usr/src/uts/common/inet/ip/ip_input.c 12

722 ip_drop_input("ILB_DROPPED", mp, ill);
723 freemsg(mp);
724 return;
725 }
726 if (lb_ret == ILB_BALANCED) {
727 /* Set the dst to that of the chosen server */
728 nexthop = lb_dst;
729 DB_CKSUMFLAGS(mp) = 0;
730 }
731 }

733 after_ilb:
734 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION;
735 ira->ira_ip_hdr_length = IP_SIMPLE_HDR_LENGTH;
736 if (opt_len != 0) {
737 int error = 0;

739 ira->ira_ip_hdr_length += (opt_len << 2);
740 ira->ira_flags |= IRAF_IPV4_OPTIONS;

742 /* IP Options present! Validate the length. */
743 mp = ip_check_optlen(mp, ipha, opt_len, pkt_len, ira);
744 if (mp == NULL)
745 return;

747 /* Might have changed */
748 ipha = (ipha_t *)mp->b_rptr;

750 /* Verify IP header checksum before parsing the options */
751 if ((ira->ira_flags & IRAF_VERIFY_IP_CKSUM) &&
752 ip_csum_hdr(ipha)) {
753 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
754 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);
755 freemsg(mp);
756 return;
757 }
758 ira->ira_flags &= ~IRAF_VERIFY_IP_CKSUM;

760 /*
761 * Go off to ip_input_options which returns the next hop
762 * destination address, which may have been affected
763 * by source routing.
764 */
765 IP_STAT(ipst, ip_opt);

767 nexthop = ip_input_options(ipha, nexthop, mp, ira, &error);
768 if (error != 0) {
769 /*
770 * An ICMP error has been sent and the packet has
771 * been dropped.
772 */
773 return;
774 }
775 }

777 if (ill->ill_flags & ILLF_ROUTER)
778 irr_flags = IRR_ALLOCATE;
779 else
780 irr_flags = IRR_NONE;

782 /* Can not use route cache with TX since the labels can differ */
783 if (ira->ira_flags & IRAF_SYSTEM_LABELED) {
784 if (CLASSD(nexthop)) {
785 ire = ire_multicast(ill);
786 } else {
787 /* Match destination and label */

new/usr/src/uts/common/inet/ip/ip_input.c 13

788 ire = ire_route_recursive_v4(nexthop, 0, NULL,
789 ALL_ZONES, ira->ira_tsl, MATCH_IRE_SECATTR,
790 irr_flags, ira->ira_xmit_hint, ipst, NULL, NULL,
791 NULL);
792 }
793 /* Update the route cache so we do the ire_refrele */
794 ASSERT(ire != NULL);
795 if (rtc->rtc_ire != NULL)
796 ire_refrele(rtc->rtc_ire);
797 rtc->rtc_ire = ire;
798 rtc->rtc_ipaddr = nexthop;
799 } else if (nexthop == rtc->rtc_ipaddr && rtc->rtc_ire != NULL) {
800 /* Use the route cache */
801 ire = rtc->rtc_ire;
802 } else {
803 /* Update the route cache */
804 if (CLASSD(nexthop)) {
805 ire = ire_multicast(ill);
806 } else {
807 /* Just match the destination */
808 ire = ire_route_recursive_dstonly_v4(nexthop, irr_flags,
809 ira->ira_xmit_hint, ipst);
810 }
811 ASSERT(ire != NULL);
812 if (rtc->rtc_ire != NULL)
813 ire_refrele(rtc->rtc_ire);
814 rtc->rtc_ire = ire;
815 rtc->rtc_ipaddr = nexthop;
816 }

818 ire->ire_ib_pkt_count++;

820 /*
821 * Based on ire_type and ire_flags call one of:
822 * ire_recv_local_v4 - for IRE_LOCAL
823 * ire_recv_loopback_v4 - for IRE_LOOPBACK
824 * ire_recv_multirt_v4 - if RTF_MULTIRT
825 * ire_recv_noroute_v4 - if RTF_REJECT or RTF_BLACHOLE
826 * ire_recv_multicast_v4 - for IRE_MULTICAST
827 * ire_recv_broadcast_v4 - for IRE_BROADCAST
828 * ire_recv_noaccept_v4 - for ire_noaccept ones
829 * ire_recv_forward_v4 - for the rest.
830 */
831 (*ire->ire_recvfn)(ire, mp, ipha, ira);
832 }
833 #undef rptr

835 /*
836 * ire_recvfn for IREs that need forwarding
837 */
838 void
839 ire_recv_forward_v4(ire_t *ire, mblk_t *mp, void *iph_arg, ip_recv_attr_t *ira)
840 {
841 ipha_t *ipha = (ipha_t *)iph_arg;
842 ill_t *ill = ira->ira_ill;
843 ip_stack_t *ipst = ill->ill_ipst;
844 ill_t *dst_ill;
845 nce_t *nce;
846 ipaddr_t src = ipha->ipha_src;
847 uint32_t added_tx_len;
848 uint32_t mtu, iremtu;

850 if (ira->ira_flags & (IRAF_L2DST_MULTICAST|IRAF_L2DST_BROADCAST)) {
851 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
852 ip_drop_input("l2 multicast not forwarded", mp, ill);
853 freemsg(mp);

new/usr/src/uts/common/inet/ip/ip_input.c 14

854 return;
855 }

857 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) {
858 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
859 ip_drop_input("ipIfStatsForwProhibits", mp, ill);
860 freemsg(mp);
861 return;
862 }

864 /*
865 * Either ire_nce_capable or ire_dep_parent would be set for the IRE
866 * when it is found by ire_route_recursive, but that some other thread
867 * could have changed the routes with the effect of clearing
868 * ire_dep_parent. In that case we’d end up dropping the packet, or
869 * finding a new nce below.
870 * Get, allocate, or update the nce.
871 * We get a refhold on ire_nce_cache as a result of this to avoid races
872 * where ire_nce_cache is deleted.
873 *
874 * This ensures that we don’t forward if the interface is down since
875 * ipif_down removes all the nces.
876 */
877 mutex_enter(&ire->ire_lock);
878 nce = ire->ire_nce_cache;
879 if (nce == NULL) {
880 /* Not yet set up - try to set one up */
881 mutex_exit(&ire->ire_lock);
882 (void) ire_revalidate_nce(ire);
883 mutex_enter(&ire->ire_lock);
884 nce = ire->ire_nce_cache;
885 if (nce == NULL) {
886 mutex_exit(&ire->ire_lock);
887 /* The ire_dep_parent chain went bad, or no memory */
888 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
889 ip_drop_input("No ire_dep_parent", mp, ill);
890 freemsg(mp);
891 return;
892 }
893 }
894 nce_refhold(nce);
895 mutex_exit(&ire->ire_lock);

897 if (nce->nce_is_condemned) {
898 nce_t *nce1;

900 nce1 = ire_handle_condemned_nce(nce, ire, ipha, NULL, B_FALSE);
901 nce_refrele(nce);
902 if (nce1 == NULL) {
903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
904 ip_drop_input("No nce", mp, ill);
905 freemsg(mp);
906 return;
907 }
908 nce = nce1;
909 }
910 dst_ill = nce->nce_ill;

912 /*
913 * Unless we are forwarding, drop the packet.
914 * We have to let source routed packets through if they go out
915 * the same interface i.e., they are ’ping -l’ packets.
916 */
917 if (!(dst_ill->ill_flags & ILLF_ROUTER) &&
918 !(ip_source_routed(ipha, ipst) && dst_ill == ill)) {
919 if (ip_source_routed(ipha, ipst)) {

new/usr/src/uts/common/inet/ip/ip_input.c 15

920 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
921 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
922 nce_refrele(nce);
923 return;
924 }
925 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
926 ip_drop_input("ipIfStatsForwProhibits", mp, ill);
927 freemsg(mp);
928 nce_refrele(nce);
929 return;
930 }

932 if (ire->ire_zoneid != GLOBAL_ZONEID && ire->ire_zoneid != ALL_ZONES) {
933 ipaddr_t dst = ipha->ipha_dst;

935 ire->ire_ib_pkt_count--;
936 /*
937 * Should only use IREs that are visible from the
938 * global zone for forwarding.
939 * Take a source route into account the same way as ip_input
940 * did.
941 */
942 if (ira->ira_flags & IRAF_IPV4_OPTIONS) {
943 int error = 0;

945 dst = ip_input_options(ipha, dst, mp, ira, &error);
946 ASSERT(error == 0); /* ip_input checked */
947 }
948 ire = ire_route_recursive_v4(dst, 0, NULL, GLOBAL_ZONEID,
949 ira->ira_tsl, MATCH_IRE_SECATTR,
950 (ill->ill_flags & ILLF_ROUTER) ? IRR_ALLOCATE : IRR_NONE,
951 ira->ira_xmit_hint, ipst, NULL, NULL, NULL);
952 ire->ire_ib_pkt_count++;
953 (*ire->ire_recvfn)(ire, mp, ipha, ira);
954 ire_refrele(ire);
955 nce_refrele(nce);
956 return;
957 }

959 /*
960 * ipIfStatsHCInForwDatagrams should only be increment if there
961 * will be an attempt to forward the packet, which is why we
962 * increment after the above condition has been checked.
963 */
964 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams);

966 /* Initiate Read side IPPF processing */
967 if (IPP_ENABLED(IPP_FWD_IN, ipst)) {
968 /* ip_process translates an IS_UNDER_IPMP */
969 mp = ip_process(IPP_FWD_IN, mp, ill, ill);
970 if (mp == NULL) {
971 /* ip_drop_packet and MIB done */
972 ip2dbg(("ire_recv_forward_v4: pkt dropped/deferred "
973 "during IPPF processing\n"));
974 nce_refrele(nce);
975 return;
976 }
977 }

979 DTRACE_PROBE4(ip4__forwarding__start,
980 ill_t *, ill, ill_t *, dst_ill, ipha_t *, ipha, mblk_t *, mp);

982 if (HOOKS4_INTERESTED_FORWARDING(ipst)) {
983 int error;

985 FW_HOOKS(ipst->ips_ip4_forwarding_event,

new/usr/src/uts/common/inet/ip/ip_input.c 16

986 ipst->ips_ipv4firewall_forwarding,
987 ill, dst_ill, ipha, mp, mp, 0, ipst, error);

989 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp);

991 if (mp == NULL) {
992 nce_refrele(nce);
993 return;
994 }
995 /*
996 * Even if the destination was changed by the filter we use the
997 * forwarding decision that was made based on the address
998 * in ip_input.
999 */

1001 /* Might have changed */
1002 ipha = (ipha_t *)mp->b_rptr;
1003 ira->ira_pktlen = ntohs(ipha->ipha_length);
1004 }

1006 /* Packet is being forwarded. Turning off hwcksum flag. */
1007 DB_CKSUMFLAGS(mp) = 0;

1009 /*
1010 * Martian Address Filtering [RFC 1812, Section 5.3.7]
1011 * The loopback address check for both src and dst has already
1012 * been checked in ip_input
1013 * In the future one can envision adding RPF checks using number 3.
1014 * If we already checked the same source address we can skip this.
1015 */
1016 if (!(ira->ira_flags & IRAF_VERIFIED_SRC) ||
1017 src != ira->ira_verified_src) {
1018 switch (ipst->ips_src_check) {
1019 case 0:
1020 break;
1021 case 2:
1022 if (ip_type_v4(src, ipst) == IRE_BROADCAST) {
1023 BUMP_MIB(ill->ill_ip_mib,
1024 ipIfStatsForwProhibits);
1025 BUMP_MIB(ill->ill_ip_mib,
1026 ipIfStatsInAddrErrors);
1027 ip_drop_input("ipIfStatsInAddrErrors", mp, ill);
1028 freemsg(mp);
1029 nce_refrele(nce);
1030 return;
1031 }
1032 /* FALLTHRU */

1034 case 1:
1035 if (CLASSD(src)) {
1036 BUMP_MIB(ill->ill_ip_mib,
1037 ipIfStatsForwProhibits);
1038 BUMP_MIB(ill->ill_ip_mib,
1039 ipIfStatsInAddrErrors);
1040 ip_drop_input("ipIfStatsInAddrErrors", mp, ill);
1041 freemsg(mp);
1042 nce_refrele(nce);
1043 return;
1044 }
1045 break;
1046 }
1047 /* Remember for next packet */
1048 ira->ira_flags |= IRAF_VERIFIED_SRC;
1049 ira->ira_verified_src = src;
1050 }

new/usr/src/uts/common/inet/ip/ip_input.c 17

1052 /*
1053 * Check if packet is going out the same link on which it arrived.
1054 * Means we might need to send a redirect.
1055 */
1056 if (IS_ON_SAME_LAN(dst_ill, ill) && ipst->ips_ip_g_send_redirects) {
1057 ip_send_potential_redirect_v4(mp, ipha, ire, ira);
1058 }

1060 added_tx_len = 0;
1061 if (ira->ira_flags & IRAF_SYSTEM_LABELED) {
1062 mblk_t *mp1;
1063 uint32_t old_pkt_len = ira->ira_pktlen;

1065 /* Verify IP header checksum before adding/removing options */
1066 if ((ira->ira_flags & IRAF_VERIFY_IP_CKSUM) &&
1067 ip_csum_hdr(ipha)) {
1068 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
1069 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);
1070 freemsg(mp);
1071 nce_refrele(nce);
1072 return;
1073 }
1074 ira->ira_flags &= ~IRAF_VERIFY_IP_CKSUM;

1076 /*
1077 * Check if it can be forwarded and add/remove
1078 * CIPSO options as needed.
1079 */
1080 if ((mp1 = tsol_ip_forward(ire, mp, ira)) == NULL) {
1081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
1082 ip_drop_input("tsol_ip_forward", mp, ill);
1083 freemsg(mp);
1084 nce_refrele(nce);
1085 return;
1086 }
1087 /*
1088 * Size may have changed. Remember amount added in case
1089 * IP needs to send an ICMP too big.
1090 */
1091 mp = mp1;
1092 ipha = (ipha_t *)mp->b_rptr;
1093 ira->ira_pktlen = ntohs(ipha->ipha_length);
1094 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
1095 if (ira->ira_pktlen > old_pkt_len)
1096 added_tx_len = ira->ira_pktlen - old_pkt_len;

1098 /* Options can have been added or removed */
1099 if (ira->ira_ip_hdr_length != IP_SIMPLE_HDR_LENGTH)
1100 ira->ira_flags |= IRAF_IPV4_OPTIONS;
1101 else
1102 ira->ira_flags &= ~IRAF_IPV4_OPTIONS;
1103 }

1105 mtu = dst_ill->ill_mtu;
1106 if ((iremtu = ire->ire_metrics.iulp_mtu) != 0 && iremtu < mtu)
1107 mtu = iremtu;
1108 ip_forward_xmit_v4(nce, ill, mp, ipha, ira, mtu, added_tx_len);
1109 nce_refrele(nce);
1110 }

1112 /*
1113 * Used for sending out unicast and multicast packets that are
1114 * forwarded.
1115 */
1116 void
1117 ip_forward_xmit_v4(nce_t *nce, ill_t *ill, mblk_t *mp, ipha_t *ipha,

new/usr/src/uts/common/inet/ip/ip_input.c 18

1118 ip_recv_attr_t *ira, uint32_t mtu, uint32_t added_tx_len)
1119 {
1120 ill_t *dst_ill = nce->nce_ill;
1121 uint32_t pkt_len;
1122 uint32_t sum;
1123 iaflags_t iraflags = ira->ira_flags;
1124 ip_stack_t *ipst = ill->ill_ipst;
1125 iaflags_t ixaflags;

1127 if (ipha->ipha_ttl <= 1) {
1128 /* Perhaps the checksum was bad */
1129 if ((iraflags & IRAF_VERIFY_IP_CKSUM) && ip_csum_hdr(ipha)) {
1130 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
1131 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);
1132 freemsg(mp);
1133 return;
1134 }
1135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1136 ip_drop_input("ICMP_TTL_EXCEEDED", mp, ill);
1137 icmp_time_exceeded(mp, ICMP_TTL_EXCEEDED, ira);
1138 return;
1139 }
1140 ipha->ipha_ttl--;
1141 /* Adjust the checksum to reflect the ttl decrement. */
1142 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
1143 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));

1145 /* Check if there are options to update */
1146 if (iraflags & IRAF_IPV4_OPTIONS) {
1147 ASSERT(ipha->ipha_version_and_hdr_length !=
1148 IP_SIMPLE_HDR_VERSION);
1149 ASSERT(!(iraflags & IRAF_VERIFY_IP_CKSUM));

1151 if (!ip_forward_options(mp, ipha, dst_ill, ira)) {
1152 /* ipIfStatsForwProhibits and ip_drop_input done */
1153 return;
1154 }

1156 ipha->ipha_hdr_checksum = 0;
1157 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1158 }

1160 /* Initiate Write side IPPF processing before any fragmentation */
1161 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) {
1162 /* ip_process translates an IS_UNDER_IPMP */
1163 mp = ip_process(IPP_FWD_OUT, mp, dst_ill, dst_ill);
1164 if (mp == NULL) {
1165 /* ip_drop_packet and MIB done */
1166 ip2dbg(("ire_recv_forward_v4: pkt dropped/deferred" \
1167 " during IPPF processing\n"));
1168 return;
1169 }
1170 }

1172 pkt_len = ira->ira_pktlen;

1174 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams);

1176 ixaflags = IXAF_IS_IPV4 | IXAF_NO_DEV_FLOW_CTL;

1178 if (pkt_len > mtu) {
1179 /*
1180 * It needs fragging on its way out. If we haven’t
1181 * verified the header checksum yet we do it now since
1182 * are going to put a surely good checksum in the
1183 * outgoing header, we have to make sure that it

new/usr/src/uts/common/inet/ip/ip_input.c 19

1184 * was good coming in.
1185 */
1186 if ((iraflags & IRAF_VERIFY_IP_CKSUM) && ip_csum_hdr(ipha)) {
1187 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
1188 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);
1189 freemsg(mp);
1190 return;
1191 }
1192 if (ipha->ipha_fragment_offset_and_flags & IPH_DF_HTONS) {
1193 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutFragFails);
1194 ip_drop_output("ipIfStatsOutFragFails", mp, dst_ill);
1195 if (iraflags & IRAF_SYSTEM_LABELED) {
1196 /*
1197 * Remove any CIPSO option added by
1198 * tsol_ip_forward, and make sure we report
1199 * a path MTU so that there
1200 * is room to add such a CIPSO option for future
1201 * packets.
1202 */
1203 mtu = tsol_pmtu_adjust(mp, mtu, added_tx_len,
1204 AF_INET);
1205 }

1207 icmp_frag_needed(mp, mtu, ira);
1208 return;
1209 }

1211 (void) ip_fragment_v4(mp, nce, ixaflags, pkt_len, mtu,
1212 ira->ira_xmit_hint, GLOBAL_ZONEID, 0, ip_xmit, NULL);
1213 return;
1214 }

1216 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
1217 if (iraflags & IRAF_LOOPBACK_COPY) {
1218 /*
1219 * IXAF_NO_LOOP_ZONEID is not set hence 7th arg
1220 * is don’t care
1221 */
1222 (void) ip_postfrag_loopcheck(mp, nce,
1223 ixaflags | IXAF_LOOPBACK_COPY,
1224 pkt_len, ira->ira_xmit_hint, GLOBAL_ZONEID, 0, NULL);
1225 } else {
1226 (void) ip_xmit(mp, nce, ixaflags, pkt_len, ira->ira_xmit_hint,
1227 GLOBAL_ZONEID, 0, NULL);
1228 }
1229 }

1231 /*
1232 * ire_recvfn for RTF_REJECT and RTF_BLACKHOLE routes, including IRE_NOROUTE,
1233 * which is what ire_route_recursive returns when there is no matching ire.
1234 * Send ICMP unreachable unless blackhole.
1235 */
1236 void
1237 ire_recv_noroute_v4(ire_t *ire, mblk_t *mp, void *iph_arg, ip_recv_attr_t *ira)
1238 {
1239 ipha_t *ipha = (ipha_t *)iph_arg;
1240 ill_t *ill = ira->ira_ill;
1241 ip_stack_t *ipst = ill->ill_ipst;

1243 /* Would we have forwarded this packet if we had a route? */
1244 if (ira->ira_flags & (IRAF_L2DST_MULTICAST|IRAF_L2DST_BROADCAST)) {
1245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
1246 ip_drop_input("l2 multicast not forwarded", mp, ill);
1247 freemsg(mp);
1248 return;
1249 }

new/usr/src/uts/common/inet/ip/ip_input.c 20

1251 if (!(ill->ill_flags & ILLF_ROUTER)) {
1252 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
1253 ip_drop_input("ipIfStatsForwProhibits", mp, ill);
1254 freemsg(mp);
1255 return;
1256 }
1257 /*
1258 * If we had a route this could have been forwarded. Count as such.
1259 *
1260 * ipIfStatsHCInForwDatagrams should only be increment if there
1261 * will be an attempt to forward the packet, which is why we
1262 * increment after the above condition has been checked.
1263 */
1264 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams);

1266 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInNoRoutes);

1268 ip_rts_change(RTM_MISS, ipha->ipha_dst, 0, 0, 0, 0, 0, 0, RTA_DST,
1269 ipst);

1271 if (ire->ire_flags & RTF_BLACKHOLE) {
1272 ip_drop_input("ipIfStatsInNoRoutes RTF_BLACKHOLE", mp, ill);
1273 freemsg(mp);
1274 } else {
1275 ip_drop_input("ipIfStatsInNoRoutes RTF_REJECT", mp, ill);

1277 if (ip_source_routed(ipha, ipst)) {
1278 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
1279 } else {
1280 icmp_unreachable(mp, ICMP_HOST_UNREACHABLE, ira);
1281 }
1282 }
1283 }

1285 /*
1286 * ire_recvfn for IRE_LOCALs marked with ire_noaccept. Such IREs are used for
1287 * VRRP when in noaccept mode.
1288 * We silently drop the packet. ARP handles packets even if noaccept is set.
1289 */
1290 /* ARGSUSED */
1291 void
1292 ire_recv_noaccept_v4(ire_t *ire, mblk_t *mp, void *iph_arg,
1293 ip_recv_attr_t *ira)
1294 {
1295 ill_t *ill = ira->ira_ill;

1297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1298 ip_drop_input("ipIfStatsInDiscards - noaccept", mp, ill);
1299 freemsg(mp);
1300 }

1302 /*
1303 * ire_recvfn for IRE_BROADCAST.
1304 */
1305 void
1306 ire_recv_broadcast_v4(ire_t *ire, mblk_t *mp, void *iph_arg,
1307 ip_recv_attr_t *ira)
1308 {
1309 ipha_t *ipha = (ipha_t *)iph_arg;
1310 ill_t *ill = ira->ira_ill;
1311 ill_t *dst_ill = ire->ire_ill;
1312 ip_stack_t *ipst = ill->ill_ipst;
1313 ire_t *alt_ire;
1314 nce_t *nce;
1315 ipaddr_t ipha_dst;

new/usr/src/uts/common/inet/ip/ip_input.c 21

1317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts);

1319 /* Tag for higher-level protocols */
1320 ira->ira_flags |= IRAF_BROADCAST;

1322 /*
1323 * Whether local or directed broadcast forwarding: don’t allow
1324 * for TCP.
1325 */
1326 if (ipha->ipha_protocol == IPPROTO_TCP) {
1327 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1328 ip_drop_input("ipIfStatsInDiscards", mp, ill);
1329 freemsg(mp);
1330 return;
1331 }

1333 /*
1334 * So that we don’t end up with dups, only one ill an IPMP group is
1335 * nominated to receive broadcast traffic.
1336 * If we have no cast_ill we are liberal and accept everything.
1337 */
1338 if (IS_UNDER_IPMP(ill)) {
1339 /* For an under ill_grp can change under lock */
1340 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
1341 if (!ill->ill_nom_cast && ill->ill_grp != NULL &&
1342 ill->ill_grp->ig_cast_ill != NULL) {
1343 rw_exit(&ipst->ips_ill_g_lock);
1344 /* No MIB since this is normal operation */
1345 ip_drop_input("not nom_cast", mp, ill);
1346 freemsg(mp);
1347 return;
1348 }
1349 rw_exit(&ipst->ips_ill_g_lock);

1351 ira->ira_ruifindex = ill_get_upper_ifindex(ill);
1352 }

1354 /*
1355 * After reassembly and IPsec we will need to duplicate the
1356 * broadcast packet for all matching zones on the ill.
1357 */
1358 ira->ira_zoneid = ALL_ZONES;

1360 /*
1361 * Check for directed broadcast i.e. ire->ire_ill is different than
1362 * the incoming ill.
1363 * The same broadcast address can be assigned to multiple interfaces
1364 * so have to check explicitly for that case by looking up the alt_ire
1365 */
1366 if (dst_ill == ill && !(ire->ire_flags & RTF_MULTIRT)) {
1367 /* Reassemble on the ill on which the packet arrived */
1368 ip_input_local_v4(ire, mp, ipha, ira);
1369 /* Restore */
1370 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
1371 return;
1372 }

1374 /* Is there an IRE_BROADCAST on the incoming ill? */
1375 ipha_dst = ((ira->ira_flags & IRAF_DHCP_UNICAST) ? INADDR_BROADCAST :
1376 ipha->ipha_dst);
1377 alt_ire = ire_ftable_lookup_v4(ipha_dst, 0, 0, IRE_BROADCAST, ill,
1378 ALL_ZONES, ira->ira_tsl,
1379 MATCH_IRE_TYPE|MATCH_IRE_ILL|MATCH_IRE_SECATTR, 0, ipst, NULL);
1380 if (alt_ire != NULL) {
1381 /* Not a directed broadcast */

new/usr/src/uts/common/inet/ip/ip_input.c 22

1382 /*
1383 * In the special case of multirouted broadcast
1384 * packets, we unconditionally need to "gateway"
1385 * them to the appropriate interface here so that reassembly
1386 * works. We know that the IRE_BROADCAST on cgtp0 doesn’t
1387 * have RTF_MULTIRT set so we look for such an IRE in the
1388 * bucket.
1389 */
1390 if (alt_ire->ire_flags & RTF_MULTIRT) {
1391 irb_t *irb;
1392 ire_t *ire1;

1394 irb = ire->ire_bucket;
1395 irb_refhold(irb);
1396 for (ire1 = irb->irb_ire; ire1 != NULL;
1397 ire1 = ire1->ire_next) {
1398 if (IRE_IS_CONDEMNED(ire1))
1399 continue;
1400 if (!(ire1->ire_type & IRE_BROADCAST) ||
1401 (ire1->ire_flags & RTF_MULTIRT))
1402 continue;
1403 ill = ire1->ire_ill;
1404 ill_refhold(ill);
1405 break;
1406 }
1407 irb_refrele(irb);
1408 if (ire1 != NULL) {
1409 ill_t *orig_ill = ira->ira_ill;

1411 ire_refrele(alt_ire);
1412 /* Reassemble on the new ill */
1413 ira->ira_ill = ill;
1414 ip_input_local_v4(ire, mp, ipha, ira);
1415 ill_refrele(ill);
1416 /* Restore */
1417 ira->ira_ill = orig_ill;
1418 ira->ira_ruifindex =
1419 orig_ill->ill_phyint->phyint_ifindex;
1420 return;
1421 }
1422 }
1423 ire_refrele(alt_ire);
1424 /* Reassemble on the ill on which the packet arrived */
1425 ip_input_local_v4(ire, mp, ipha, ira);
1426 goto done;
1427 }

1429 /*
1430 * This is a directed broadcast
1431 *
1432 * If directed broadcast is allowed, then forward the packet out
1433 * the destination interface with IXAF_LOOPBACK_COPY set. That will
1434 * result in ip_input() receiving a copy of the packet on the
1435 * appropriate ill. (We could optimize this to avoid the extra trip
1436 * via ip_input(), but since directed broadcasts are normally disabled
1437 * it doesn’t make sense to optimize it.)
1438 */
1439 if (!ipst->ips_ip_g_forward_directed_bcast ||
1440 (ira->ira_flags & (IRAF_L2DST_MULTICAST|IRAF_L2DST_BROADCAST))) {
1441 ip_drop_input("directed broadcast not allowed", mp, ill);
1442 freemsg(mp);
1443 goto done;
1444 }
1445 if ((ira->ira_flags & IRAF_VERIFY_IP_CKSUM) && ip_csum_hdr(ipha)) {
1446 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
1447 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);

new/usr/src/uts/common/inet/ip/ip_input.c 23

1448 freemsg(mp);
1449 goto done;
1450 }

1452 /*
1453 * Clear the indication that this may have hardware
1454 * checksum as we are not using it for forwarding.
1455 */
1456 DB_CKSUMFLAGS(mp) = 0;

1458 /*
1459 * Adjust ttl to 2 (1+1 - the forward engine will decrement it by one.
1460 */
1461 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1;
1462 ipha->ipha_hdr_checksum = 0;
1463 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);

1465 /*
1466 * We use ip_forward_xmit to do any fragmentation.
1467 * and loopback copy on the outbound interface.
1468 *
1469 * Make it so that IXAF_LOOPBACK_COPY to be set on transmit side.
1470 */
1471 ira->ira_flags |= IRAF_LOOPBACK_COPY;

1473 nce = arp_nce_init(dst_ill, ipha->ipha_dst, IRE_BROADCAST);
1474 if (nce == NULL) {
1475 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards);
1476 ip_drop_output("No nce", mp, dst_ill);
1477 freemsg(mp);
1478 goto done;
1479 }

1481 ip_forward_xmit_v4(nce, ill, mp, ipha, ira, dst_ill->ill_mc_mtu, 0);
1482 nce_refrele(nce);
1483 done:
1484 /* Restore */
1485 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
1486 }

1488 /*
1489 * ire_recvfn for IRE_MULTICAST.
1490 */
1491 void
1492 ire_recv_multicast_v4(ire_t *ire, mblk_t *mp, void *iph_arg,
1493 ip_recv_attr_t *ira)
1494 {
1495 ipha_t *ipha = (ipha_t *)iph_arg;
1496 ill_t *ill = ira->ira_ill;
1497 ip_stack_t *ipst = ill->ill_ipst;

1499 ASSERT(ire->ire_ill == ira->ira_ill);

1501 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts);
1502 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, ira->ira_pktlen);

1504 /* RSVP hook */
1505 if (ira->ira_flags & IRAF_RSVP)
1506 goto forus;

1508 /* Tag for higher-level protocols */
1509 ira->ira_flags |= IRAF_MULTICAST;

1511 /*
1512 * So that we don’t end up with dups, only one ill an IPMP group is
1513 * nominated to receive multicast traffic.

new/usr/src/uts/common/inet/ip/ip_input.c 24

1514 * If we have no cast_ill we are liberal and accept everything.
1515 */
1516 if (IS_UNDER_IPMP(ill)) {
1517 ip_stack_t *ipst = ill->ill_ipst;

1519 /* For an under ill_grp can change under lock */
1520 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
1521 if (!ill->ill_nom_cast && ill->ill_grp != NULL &&
1522 ill->ill_grp->ig_cast_ill != NULL) {
1523 rw_exit(&ipst->ips_ill_g_lock);
1524 ip_drop_input("not on cast ill", mp, ill);
1525 freemsg(mp);
1526 return;
1527 }
1528 rw_exit(&ipst->ips_ill_g_lock);
1529 /*
1530 * We switch to the upper ill so that mrouter and hasmembers
1531 * can operate on upper here and in ip_input_multicast.
1532 */
1533 ill = ipmp_ill_hold_ipmp_ill(ill);
1534 if (ill != NULL) {
1535 ASSERT(ill != ira->ira_ill);
1536 ASSERT(ire->ire_ill == ira->ira_ill);
1537 ira->ira_ill = ill;
1538 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
1539 } else {
1540 ill = ira->ira_ill;
1541 }
1542 }

1544 /*
1545 * Check if we are a multicast router - send ip_mforward a copy of
1546 * the packet.
1547 * Due to mroute_decap tunnels we consider forwarding packets even if
1548 * mrouted has not joined the allmulti group on this interface.
1549 */
1550 if (ipst->ips_ip_g_mrouter) {
1551 int retval;

1553 /*
1554 * Clear the indication that this may have hardware
1555 * checksum as we are not using it for forwarding.
1556 */
1557 DB_CKSUMFLAGS(mp) = 0;

1559 /*
1560 * ip_mforward helps us make these distinctions: If received
1561 * on tunnel and not IGMP, then drop.
1562 * If IGMP packet, then don’t check membership
1563 * If received on a phyint and IGMP or PIM, then
1564 * don’t check membership
1565 */
1566 retval = ip_mforward(mp, ira);
1567 /* ip_mforward updates mib variables if needed */

1569 switch (retval) {
1570 case 0:
1571 /*
1572 * pkt is okay and arrived on phyint.
1573 *
1574 * If we are running as a multicast router
1575 * we need to see all IGMP and/or PIM packets.
1576 */
1577 if ((ipha->ipha_protocol == IPPROTO_IGMP) ||
1578 (ipha->ipha_protocol == IPPROTO_PIM)) {
1579 goto forus;

new/usr/src/uts/common/inet/ip/ip_input.c 25

1580 }
1581 break;
1582 case -1:
1583 /* pkt is mal-formed, toss it */
1584 freemsg(mp);
1585 goto done;
1586 case 1:
1587 /*
1588 * pkt is okay and arrived on a tunnel
1589 *
1590 * If we are running a multicast router
1591 * we need to see all igmp packets.
1592 */
1593 if (ipha->ipha_protocol == IPPROTO_IGMP) {
1594 goto forus;
1595 }
1596 ip_drop_input("Multicast on tunnel ignored", mp, ill);
1597 freemsg(mp);
1598 goto done;
1599 }
1600 }

1602 /*
1603 * Check if we have members on this ill. This is not necessary for
1604 * correctness because even if the NIC/GLD had a leaky filter, we
1605 * filter before passing to each conn_t.
1606 */
1607 if (!ill_hasmembers_v4(ill, ipha->ipha_dst)) {
1608 /*
1609 * Nobody interested
1610 *
1611 * This might just be caused by the fact that
1612 * multiple IP Multicast addresses map to the same
1613 * link layer multicast - no need to increment counter!
1614 */
1615 ip_drop_input("Multicast with no members", mp, ill);
1616 freemsg(mp);
1617 goto done;
1618 }
1619 forus:
1620 ip2dbg(("ire_recv_multicast_v4: multicast for us: 0x%x\n",
1621 ntohl(ipha->ipha_dst)));

1623 /*
1624 * After reassembly and IPsec we will need to duplicate the
1625 * multicast packet for all matching zones on the ill.
1626 */
1627 ira->ira_zoneid = ALL_ZONES;

1629 /* Reassemble on the ill on which the packet arrived */
1630 ip_input_local_v4(ire, mp, ipha, ira);
1631 done:
1632 if (ill != ire->ire_ill) {
1633 ill_refrele(ill);
1634 ira->ira_ill = ire->ire_ill;
1635 ira->ira_ruifindex = ira->ira_ill->ill_phyint->phyint_ifindex;
1636 }
1637 }

1639 /*
1640 * ire_recvfn for IRE_OFFLINK with RTF_MULTIRT.
1641 * Drop packets since we don’t forward out multirt routes.
1642 */
1643 /* ARGSUSED */
1644 void
1645 ire_recv_multirt_v4(ire_t *ire, mblk_t *mp, void *iph_arg, ip_recv_attr_t *ira)

new/usr/src/uts/common/inet/ip/ip_input.c 26

1646 {
1647 ill_t *ill = ira->ira_ill;

1649 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInNoRoutes);
1650 ip_drop_input("Not forwarding out MULTIRT", mp, ill);
1651 freemsg(mp);
1652 }

1654 /*
1655 * ire_recvfn for IRE_LOOPBACK. This is only used when a FW_HOOK
1656 * has rewritten the packet to have a loopback destination address (We
1657 * filter out packet with a loopback destination from arriving over the wire).
1658 * We don’t know what zone to use, thus we always use the GLOBAL_ZONEID.
1659 */
1660 void
1661 ire_recv_loopback_v4(ire_t *ire, mblk_t *mp, void *iph_arg, ip_recv_attr_t *ira)
1662 {
1663 ipha_t *ipha = (ipha_t *)iph_arg;
1664 ill_t *ill = ira->ira_ill;
1665 ill_t *ire_ill = ire->ire_ill;

1667 ira->ira_zoneid = GLOBAL_ZONEID;

1669 /* Switch to the lo0 ill for further processing */
1670 if (ire_ill != ill) {
1671 /*
1672 * Update ira_ill to be the ILL on which the IP address
1673 * is hosted.
1674 * No need to hold the ill since we have a hold on the ire
1675 */
1676 ASSERT(ira->ira_ill == ira->ira_rill);
1677 ira->ira_ill = ire_ill;

1679 ip_input_local_v4(ire, mp, ipha, ira);

1681 /* Restore */
1682 ASSERT(ira->ira_ill == ire_ill);
1683 ira->ira_ill = ill;
1684 return;

1686 }
1687 ip_input_local_v4(ire, mp, ipha, ira);
1688 }

1690 /*
1691 * ire_recvfn for IRE_LOCAL.
1692 */
1693 void
1694 ire_recv_local_v4(ire_t *ire, mblk_t *mp, void *iph_arg, ip_recv_attr_t *ira)
1695 {
1696 ipha_t *ipha = (ipha_t *)iph_arg;
1697 ill_t *ill = ira->ira_ill;
1698 ill_t *ire_ill = ire->ire_ill;

1700 /* Make a note for DAD that this address is in use */
1701 ire->ire_last_used_time = LBOLT_FASTPATH;

1703 /* Only target the IRE_LOCAL with the right zoneid. */
1704 ira->ira_zoneid = ire->ire_zoneid;

1706 /*
1707 * If the packet arrived on the wrong ill, we check that
1708 * this is ok.
1709 * If it is, then we ensure that we do the reassembly on
1710 * the ill on which the address is hosted. We keep ira_rill as
1711 * the one on which the packet arrived, so that IP_PKTINFO and

new/usr/src/uts/common/inet/ip/ip_input.c 27

1712 * friends can report this.
1713 */
1714 if (ire_ill != ill) {
1715 ire_t *new_ire;

1717 new_ire = ip_check_multihome(&ipha->ipha_dst, ire, ill);
1718 if (new_ire == NULL) {
1719 /* Drop packet */
1720 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
1721 ip_drop_input("ipIfStatsInForwProhibits", mp, ill);
1722 freemsg(mp);
1723 return;
1724 }
1725 /*
1726 * Update ira_ill to be the ILL on which the IP address
1727 * is hosted. No need to hold the ill since we have a
1728 * hold on the ire. Note that we do the switch even if
1729 * new_ire == ire (for IPMP, ire would be the one corresponding
1730 * to the IPMP ill).
1731 */
1732 ASSERT(ira->ira_ill == ira->ira_rill);
1733 ira->ira_ill = new_ire->ire_ill;

1735 /* ira_ruifindex tracks the upper for ira_rill */
1736 if (IS_UNDER_IPMP(ill))
1737 ira->ira_ruifindex = ill_get_upper_ifindex(ill);

1739 ip_input_local_v4(new_ire, mp, ipha, ira);

1741 /* Restore */
1742 ASSERT(ira->ira_ill == new_ire->ire_ill);
1743 ira->ira_ill = ill;
1744 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;

1746 if (new_ire != ire)
1747 ire_refrele(new_ire);
1748 return;
1749 }

1751 ip_input_local_v4(ire, mp, ipha, ira);
1752 }

1754 /*
1755 * Common function for packets arriving for the host. Handles
1756 * checksum verification, reassembly checks, etc.
1757 */
1758 static void
1759 ip_input_local_v4(ire_t *ire, mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
1760 {
1761 ill_t *ill = ira->ira_ill;
1762 iaflags_t iraflags = ira->ira_flags;

1764 /*
1765 * Verify IP header checksum. If the packet was AH or ESP then
1766 * this flag has already been cleared. Likewise if the packet
1767 * had a hardware checksum.
1768 */
1769 if ((iraflags & IRAF_VERIFY_IP_CKSUM) && ip_csum_hdr(ipha)) {
1770 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
1771 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);
1772 freemsg(mp);
1773 return;
1774 }

1776 if (iraflags & IRAF_IPV4_OPTIONS) {
1777 if (!ip_input_local_options(mp, ipha, ira)) {

new/usr/src/uts/common/inet/ip/ip_input.c 28

1778 /* Error has been sent and mp consumed */
1779 return;
1780 }
1781 /*
1782 * Some old hardware does partial checksum by including the
1783 * whole IP header, so the partial checksum value might have
1784 * become invalid if any option in the packet have been
1785 * updated. Always clear partial checksum flag here.
1786 */
1787 DB_CKSUMFLAGS(mp) &= ~HCK_PARTIALCKSUM;
1788 }

1790 /*
1791 * Is packet part of fragmented IP packet?
1792 * We compare against defined values in network byte order
1793 */
1794 if (ipha->ipha_fragment_offset_and_flags &
1795 (IPH_MF_HTONS | IPH_OFFSET_HTONS)) {
1796 /*
1797 * Make sure we have ira_l2src before we loose the original
1798 * mblk
1799 */
1800 if (!(ira->ira_flags & IRAF_L2SRC_SET))
1801 ip_setl2src(mp, ira, ira->ira_rill);

1803 mp = ip_input_fragment(mp, ipha, ira);
1804 if (mp == NULL)
1805 return;
1806 /* Completed reassembly */
1807 ipha = (ipha_t *)mp->b_rptr;
1808 }

1810 /*
1811 * For broadcast and multicast we need some extra work before
1812 * we call ip_fanout_v4(), since in the case of shared-IP zones
1813 * we need to pretend that a packet arrived for each zoneid.
1814 */
1815 if (iraflags & IRAF_MULTIBROADCAST) {
1816 if (iraflags & IRAF_BROADCAST)
1817 ip_input_broadcast_v4(ire, mp, ipha, ira);
1818 else
1819 ip_input_multicast_v4(ire, mp, ipha, ira);
1820 return;
1821 }
1822 ip_fanout_v4(mp, ipha, ira);
1823 }

1826 /*
1827 * Handle multiple zones which match the same broadcast address
1828 * and ill by delivering a packet to each of them.
1829 * Walk the bucket and look for different ire_zoneid but otherwise
1830 * the same IRE (same ill/addr/mask/type).
1831 * Note that ire_add() tracks IREs that are identical in all
1832 * fields (addr/mask/type/gw/ill/zoneid) within a single IRE by
1833 * increasing ire_identical_cnt. Thus we don’t need to be concerned
1834 * about those.
1835 */
1836 static void
1837 ip_input_broadcast_v4(ire_t *ire, mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
1838 {
1839 ill_t *ill = ira->ira_ill;
1840 ip_stack_t *ipst = ill->ill_ipst;
1841 netstack_t *ns = ipst->ips_netstack;
1842 irb_t *irb;
1843 ire_t *ire1;

new/usr/src/uts/common/inet/ip/ip_input.c 29

1844 mblk_t *mp1;
1845 ipha_t *ipha1;
1846 uint_t ira_pktlen = ira->ira_pktlen;
1847 uint16_t ira_ip_hdr_length = ira->ira_ip_hdr_length;

1849 irb = ire->ire_bucket;

1851 /*
1852 * If we don’t have more than one shared-IP zone, or if
1853 * there can’t be more than one IRE_BROADCAST for this
1854 * IP address, then just set the zoneid and proceed.
1855 */
1856 if (ns->netstack_numzones == 1 || irb->irb_ire_cnt == 1) {
1857 ira->ira_zoneid = ire->ire_zoneid;

1859 ip_fanout_v4(mp, ipha, ira);
1860 return;
1861 }
1862 irb_refhold(irb);
1863 for (ire1 = irb->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
1864 /* We do the main IRE after the end of the loop */
1865 if (ire1 == ire)
1866 continue;

1868 /*
1869 * Only IREs for the same IP address should be in the same
1870 * bucket.
1871 * But could have IRE_HOSTs in the case of CGTP.
1872 */
1873 ASSERT(ire1->ire_addr == ire->ire_addr);
1874 if (!(ire1->ire_type & IRE_BROADCAST))
1875 continue;

1877 if (IRE_IS_CONDEMNED(ire1))
1878 continue;

1880 mp1 = copymsg(mp);
1881 if (mp1 == NULL) {
1882 /* Failed to deliver to one zone */
1883 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1884 ip_drop_input("ipIfStatsInDiscards", mp, ill);
1885 continue;
1886 }
1887 ira->ira_zoneid = ire1->ire_zoneid;
1888 ipha1 = (ipha_t *)mp1->b_rptr;
1889 ip_fanout_v4(mp1, ipha1, ira);
1890 /*
1891 * IPsec might have modified ira_pktlen and ira_ip_hdr_length
1892 * so we restore them for a potential next iteration
1893 */
1894 ira->ira_pktlen = ira_pktlen;
1895 ira->ira_ip_hdr_length = ira_ip_hdr_length;
1896 }
1897 irb_refrele(irb);
1898 /* Do the main ire */
1899 ira->ira_zoneid = ire->ire_zoneid;
1900 ip_fanout_v4(mp, ipha, ira);
1901 }

1903 /*
1904 * Handle multiple zones which want to receive the same multicast packets
1905 * on this ill by delivering a packet to each of them.
1906 *
1907 * Note that for packets delivered to transports we could instead do this
1908 * as part of the fanout code, but since we need to handle icmp_inbound
1909 * it is simpler to have multicast work the same as broadcast.

new/usr/src/uts/common/inet/ip/ip_input.c 30

1910 *
1911 * The ip_fanout matching for multicast matches based on ilm independent of
1912 * zoneid since the zoneid restriction is applied when joining a multicast
1913 * group.
1914 */
1915 /* ARGSUSED */
1916 static void
1917 ip_input_multicast_v4(ire_t *ire, mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
1918 {
1919 ill_t *ill = ira->ira_ill;
1920 iaflags_t iraflags = ira->ira_flags;
1921 ip_stack_t *ipst = ill->ill_ipst;
1922 netstack_t *ns = ipst->ips_netstack;
1923 zoneid_t zoneid;
1924 mblk_t *mp1;
1925 ipha_t *ipha1;
1926 uint_t ira_pktlen = ira->ira_pktlen;
1927 uint16_t ira_ip_hdr_length = ira->ira_ip_hdr_length;

1929 /* ire_recv_multicast has switched to the upper ill for IPMP */
1930 ASSERT(!IS_UNDER_IPMP(ill));

1932 /*
1933 * If we don’t have more than one shared-IP zone, or if
1934 * there are no members in anything but the global zone,
1935 * then just set the zoneid and proceed.
1936 */
1937 if (ns->netstack_numzones == 1 ||
1938 !ill_hasmembers_otherzones_v4(ill, ipha->ipha_dst,
1939 GLOBAL_ZONEID)) {
1940 ira->ira_zoneid = GLOBAL_ZONEID;

1942 /* If sender didn’t want this zone to receive it, drop */
1943 if ((iraflags & IRAF_NO_LOOP_ZONEID_SET) &&
1944 ira->ira_no_loop_zoneid == ira->ira_zoneid) {
1945 ip_drop_input("Multicast but wrong zoneid", mp, ill);
1946 freemsg(mp);
1947 return;
1948 }
1949 ip_fanout_v4(mp, ipha, ira);
1950 return;
1951 }

1953 /*
1954 * Here we loop over all zoneids that have members in the group
1955 * and deliver a packet to ip_fanout for each zoneid.
1956 *
1957 * First find any members in the lowest numeric zoneid by looking for
1958 * first zoneid larger than -1 (ALL_ZONES).
1959 * We terminate the loop when we receive -1 (ALL_ZONES).
1960 */
1961 zoneid = ill_hasmembers_nextzone_v4(ill, ipha->ipha_dst, ALL_ZONES);
1962 for (; zoneid != ALL_ZONES;
1963 zoneid = ill_hasmembers_nextzone_v4(ill, ipha->ipha_dst, zoneid)) {
1964 /*
1965 * Avoid an extra copymsg/freemsg by skipping global zone here
1966 * and doing that at the end.
1967 */
1968 if (zoneid == GLOBAL_ZONEID)
1969 continue;

1971 ira->ira_zoneid = zoneid;

1973 /* If sender didn’t want this zone to receive it, skip */
1974 if ((iraflags & IRAF_NO_LOOP_ZONEID_SET) &&
1975 ira->ira_no_loop_zoneid == ira->ira_zoneid)

new/usr/src/uts/common/inet/ip/ip_input.c 31

1976 continue;

1978 mp1 = copymsg(mp);
1979 if (mp1 == NULL) {
1980 /* Failed to deliver to one zone */
1981 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1982 ip_drop_input("ipIfStatsInDiscards", mp, ill);
1983 continue;
1984 }
1985 ipha1 = (ipha_t *)mp1->b_rptr;
1986 ip_fanout_v4(mp1, ipha1, ira);
1987 /*
1988 * IPsec might have modified ira_pktlen and ira_ip_hdr_length
1989 * so we restore them for a potential next iteration
1990 */
1991 ira->ira_pktlen = ira_pktlen;
1992 ira->ira_ip_hdr_length = ira_ip_hdr_length;
1993 }

1995 /* Do the main ire */
1996 ira->ira_zoneid = GLOBAL_ZONEID;
1997 /* If sender didn’t want this zone to receive it, drop */
1998 if ((iraflags & IRAF_NO_LOOP_ZONEID_SET) &&
1999 ira->ira_no_loop_zoneid == ira->ira_zoneid) {
2000 ip_drop_input("Multicast but wrong zoneid", mp, ill);
2001 freemsg(mp);
2002 } else {
2003 ip_fanout_v4(mp, ipha, ira);
2004 }
2005 }

2008 /*
2009 * Determine the zoneid and IRAF_TX_* flags if trusted extensions
2010 * is in use. Updates ira_zoneid and ira_flags as a result.
2011 */
2012 static void
2013 ip_fanout_tx_v4(mblk_t *mp, ipha_t *ipha, uint8_t protocol,
2014 uint_t ip_hdr_length, ip_recv_attr_t *ira)
2015 {
2016 uint16_t *up;
2017 uint16_t lport;
2018 zoneid_t zoneid;

2020 ASSERT(ira->ira_flags & IRAF_SYSTEM_LABELED);

2022 /*
2023 * If the packet is unlabeled we might allow read-down
2024 * for MAC_EXEMPT. Below we clear this if it is a multi-level
2025 * port (MLP).
2026 * Note that ira_tsl can be NULL here.
2027 */
2028 if (ira->ira_tsl != NULL && ira->ira_tsl->tsl_flags & TSLF_UNLABELED)
2029 ira->ira_flags |= IRAF_TX_MAC_EXEMPTABLE;

2031 if (ira->ira_zoneid != ALL_ZONES)
2032 return;

2034 ira->ira_flags |= IRAF_TX_SHARED_ADDR;

2036 up = (uint16_t *)((uchar_t *)ipha + ip_hdr_length);
2037 switch (protocol) {
2038 case IPPROTO_TCP:
2039 case IPPROTO_SCTP:
2040 case IPPROTO_UDP:
2041 /* Caller ensures this */

new/usr/src/uts/common/inet/ip/ip_input.c 32

2042 ASSERT(((uchar_t *)ipha) + ip_hdr_length +4 <= mp->b_wptr);

2044 /*
2045 * Only these transports support MLP.
2046 * We know their destination port numbers is in
2047 * the same place in the header.
2048 */
2049 lport = up[1];

2051 /*
2052 * No need to handle exclusive-stack zones
2053 * since ALL_ZONES only applies to the shared IP instance.
2054 */
2055 zoneid = tsol_mlp_findzone(protocol, lport);
2056 /*
2057 * If no shared MLP is found, tsol_mlp_findzone returns
2058 * ALL_ZONES. In that case, we assume it’s SLP, and
2059 * search for the zone based on the packet label.
2060 *
2061 * If there is such a zone, we prefer to find a
2062 * connection in it. Otherwise, we look for a
2063 * MAC-exempt connection in any zone whose label
2064 * dominates the default label on the packet.
2065 */
2066 if (zoneid == ALL_ZONES)
2067 zoneid = tsol_attr_to_zoneid(ira);
2068 else
2069 ira->ira_flags &= ~IRAF_TX_MAC_EXEMPTABLE;
2070 break;
2071 default:
2072 /* Handle shared address for other protocols */
2073 zoneid = tsol_attr_to_zoneid(ira);
2074 break;
2075 }
2076 ira->ira_zoneid = zoneid;
2077 }

2079 /*
2080 * Increment checksum failure statistics
2081 */
2082 static void
2083 ip_input_cksum_err_v4(uint8_t protocol, uint16_t hck_flags, ill_t *ill)
2084 {
2085 ip_stack_t *ipst = ill->ill_ipst;

2087 switch (protocol) {
2088 case IPPROTO_TCP:
2089 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs);

2091 if (hck_flags & HCK_FULLCKSUM)
2092 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err);
2093 else if (hck_flags & HCK_PARTIALCKSUM)
2094 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err);
2095 else
2096 IP_STAT(ipst, ip_tcp_in_sw_cksum_err);
2097 break;
2098 case IPPROTO_UDP:
2099 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs);
2100 if (hck_flags & HCK_FULLCKSUM)
2101 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err);
2102 else if (hck_flags & HCK_PARTIALCKSUM)
2103 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err);
2104 else
2105 IP_STAT(ipst, ip_udp_in_sw_cksum_err);
2106 break;
2107 case IPPROTO_ICMP:

new/usr/src/uts/common/inet/ip/ip_input.c 33

2108 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs);
2109 break;
2110 default:
2111 ASSERT(0);
2112 break;
2113 }
2114 }

2116 /* Calculate the IPv4 pseudo-header checksum */
2117 uint32_t
2118 ip_input_cksum_pseudo_v4(ipha_t *ipha, ip_recv_attr_t *ira)
2119 {
2120 uint_t ulp_len;
2121 uint32_t cksum;
2122 uint8_t protocol = ira->ira_protocol;
2123 uint16_t ip_hdr_length = ira->ira_ip_hdr_length;

2125 #define iphs ((uint16_t *)ipha)

2127 switch (protocol) {
2128 case IPPROTO_TCP:
2129 ulp_len = ira->ira_pktlen - ip_hdr_length;

2131 /* Protocol and length */
2132 cksum = htons(ulp_len) + IP_TCP_CSUM_COMP;
2133 /* IP addresses */
2134 cksum += iphs[6] + iphs[7] + iphs[8] + iphs[9];
2135 break;

2137 case IPPROTO_UDP: {
2138 udpha_t *udpha;

2140 udpha = (udpha_t *)((uchar_t *)ipha + ip_hdr_length);

2142 /* Protocol and length */
2143 cksum = udpha->uha_length + IP_UDP_CSUM_COMP;
2144 /* IP addresses */
2145 cksum += iphs[6] + iphs[7] + iphs[8] + iphs[9];
2146 break;
2147 }

2149 default:
2150 cksum = 0;
2151 break;
2152 }
2153 #undef iphs
2154 return (cksum);
2155 }

2158 /*
2159 * Software verification of the ULP checksums.
2160 * Returns B_TRUE if ok.
2161 * Increments statistics of failed.
2162 */
2163 static boolean_t
2164 ip_input_sw_cksum_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
2165 {
2166 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2167 uint32_t cksum;
2168 uint8_t protocol = ira->ira_protocol;
2169 uint16_t ip_hdr_length = ira->ira_ip_hdr_length;

2171 IP_STAT(ipst, ip_in_sw_cksum);

2173 ASSERT(protocol == IPPROTO_TCP || protocol == IPPROTO_UDP);

new/usr/src/uts/common/inet/ip/ip_input.c 34

2175 cksum = ip_input_cksum_pseudo_v4(ipha, ira);
2176 cksum = IP_CSUM(mp, ip_hdr_length, cksum);
2177 if (cksum == 0)
2178 return (B_TRUE);

2180 ip_input_cksum_err_v4(protocol, 0, ira->ira_ill);
2181 return (B_FALSE);
2182 }

2184 /*
2185 * Verify the ULP checksums.
2186 * Returns B_TRUE if ok, or if the ULP doesn’t have a well-defined checksum
2187 * algorithm.
2188 * Increments statistics if failed.
2189 */
2190 static boolean_t
2191 ip_input_cksum_v4(iaflags_t iraflags, mblk_t *mp, ipha_t *ipha,
2192 ip_recv_attr_t *ira)
2193 {
2194 ill_t *ill = ira->ira_rill;
2195 uint16_t hck_flags;
2196 uint32_t cksum;
2197 mblk_t *mp1;
2198 int32_t len;
2199 uint8_t protocol = ira->ira_protocol;
2200 uint16_t ip_hdr_length = ira->ira_ip_hdr_length;

2203 switch (protocol) {
2204 case IPPROTO_TCP:
2205 break;

2207 case IPPROTO_UDP: {
2208 udpha_t *udpha;

2210 udpha = (udpha_t *)((uchar_t *)ipha + ip_hdr_length);
2211 if (udpha->uha_checksum == 0) {
2212 /* Packet doesn’t have a UDP checksum */
2213 return (B_TRUE);
2214 }
2215 break;
2216 }
2217 case IPPROTO_SCTP: {
2218 sctp_hdr_t *sctph;
2219 uint32_t pktsum;

2221 sctph = (sctp_hdr_t *)((uchar_t *)ipha + ip_hdr_length);
2222 #ifdef DEBUG
2223 if (skip_sctp_cksum)
2224 return (B_TRUE);
2225 #endif
2226 pktsum = sctph->sh_chksum;
2227 sctph->sh_chksum = 0;
2228 cksum = sctp_cksum(mp, ip_hdr_length);
2229 sctph->sh_chksum = pktsum;
2230 if (cksum == pktsum)
2231 return (B_TRUE);

2233 /*
2234 * Defer until later whether a bad checksum is ok
2235 * in order to allow RAW sockets to use Adler checksum
2236 * with SCTP.
2237 */
2238 ira->ira_flags |= IRAF_SCTP_CSUM_ERR;
2239 return (B_TRUE);

new/usr/src/uts/common/inet/ip/ip_input.c 35

2240 }

2242 default:
2243 /* No ULP checksum to verify. */
2244 return (B_TRUE);
2245 }
2246 /*
2247 * Revert to software checksum calculation if the interface
2248 * isn’t capable of checksum offload.
2249 * We clear DB_CKSUMFLAGS when going through IPsec in ip_fanout.
2250 * Note: IRAF_NO_HW_CKSUM is not currently used.
2251 */
2252 ASSERT(!IS_IPMP(ill));
2253 if ((iraflags & IRAF_NO_HW_CKSUM) || !ILL_HCKSUM_CAPABLE(ill) ||
2254 !dohwcksum) {
2255 return (ip_input_sw_cksum_v4(mp, ipha, ira));
2256 }

2258 /*
2259 * We apply this for all ULP protocols. Does the HW know to
2260 * not set the flags for SCTP and other protocols.
2261 */

2263 hck_flags = DB_CKSUMFLAGS(mp);

2265 if (hck_flags & HCK_FULLCKSUM_OK) {
2266 /*
2267 * Hardware has already verified the checksum.
2268 */
2269 return (B_TRUE);
2270 }

2272 if (hck_flags & HCK_FULLCKSUM) {
2273 /*
2274 * Full checksum has been computed by the hardware
2275 * and has been attached. If the driver wants us to
2276 * verify the correctness of the attached value, in
2277 * order to protect against faulty hardware, compare
2278 * it against -0 (0xFFFF) to see if it’s valid.
2279 */
2280 cksum = DB_CKSUM16(mp);
2281 if (cksum == 0xFFFF)
2282 return (B_TRUE);
2283 ip_input_cksum_err_v4(protocol, hck_flags, ira->ira_ill);
2284 return (B_FALSE);
2285 }

2287 mp1 = mp->b_cont;
2288 if ((hck_flags & HCK_PARTIALCKSUM) &&
2289 (mp1 == NULL || mp1->b_cont == NULL) &&
2290 ip_hdr_length >= DB_CKSUMSTART(mp) &&
2291 ((len = ip_hdr_length - DB_CKSUMSTART(mp)) & 1) == 0) {
2292 uint32_t adj;
2293 uchar_t *cksum_start;

2295 cksum = ip_input_cksum_pseudo_v4(ipha, ira);

2297 cksum_start = ((uchar_t *)ipha + DB_CKSUMSTART(mp));

2299 /*
2300 * Partial checksum has been calculated by hardware
2301 * and attached to the packet; in addition, any
2302 * prepended extraneous data is even byte aligned,
2303 * and there are at most two mblks associated with
2304 * the packet. If any such data exists, we adjust
2305 * the checksum; also take care any postpended data.

new/usr/src/uts/common/inet/ip/ip_input.c 36

2306 */
2307 IP_ADJCKSUM_PARTIAL(cksum_start, mp, mp1, len, adj);
2308 /*
2309 * One’s complement subtract extraneous checksum
2310 */
2311 cksum += DB_CKSUM16(mp);
2312 if (adj >= cksum)
2313 cksum = ~(adj - cksum) & 0xFFFF;
2314 else
2315 cksum -= adj;
2316 cksum = (cksum & 0xFFFF) + ((int)cksum >> 16);
2317 cksum = (cksum & 0xFFFF) + ((int)cksum >> 16);
2318 if (!(~cksum & 0xFFFF))
2319 return (B_TRUE);

2321 ip_input_cksum_err_v4(protocol, hck_flags, ira->ira_ill);
2322 return (B_FALSE);
2323 }
2324 return (ip_input_sw_cksum_v4(mp, ipha, ira));
2325 }

2328 /*
2329 * Handle fanout of received packets.
2330 * Unicast packets that are looped back (from ire_send_local_v4) and packets
2331 * from the wire are differentiated by checking IRAF_VERIFY_ULP_CKSUM.
2332 *
2333 * IPQoS Notes
2334 * Before sending it to the client, invoke IPPF processing. Policy processing
2335 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled.
2336 */
2337 void
2338 ip_fanout_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
2339 {
2340 ill_t *ill = ira->ira_ill;
2341 iaflags_t iraflags = ira->ira_flags;
2342 ip_stack_t *ipst = ill->ill_ipst;
2343 uint8_t protocol = ipha->ipha_protocol;
2344 conn_t *connp;
2345 #define rptr ((uchar_t *)ipha)
2346 uint_t ip_hdr_length;
2347 uint_t min_ulp_header_length;
2348 int offset;
2349 ssize_t len;
2350 netstack_t *ns = ipst->ips_netstack;
2351 ipsec_stack_t *ipss = ns->netstack_ipsec;
2352 ill_t *rill = ira->ira_rill;

2354 ASSERT(ira->ira_pktlen == ntohs(ipha->ipha_length));

2356 ip_hdr_length = ira->ira_ip_hdr_length;
2357 ira->ira_protocol = protocol;

2359 /*
2360 * Time for IPP once we’ve done reassembly and IPsec.
2361 * We skip this for loopback packets since we don’t do IPQoS
2362 * on loopback.
2363 */
2364 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) &&
2365 !(iraflags & IRAF_LOOPBACK) &&
2366 (protocol != IPPROTO_ESP || protocol != IPPROTO_AH)) {
2367 /*
2368 * Use the interface on which the packet arrived - not where
2369 * the IP address is hosted.
2370 */
2371 /* ip_process translates an IS_UNDER_IPMP */

new/usr/src/uts/common/inet/ip/ip_input.c 37

2372 mp = ip_process(IPP_LOCAL_IN, mp, rill, ill);
2373 if (mp == NULL) {
2374 /* ip_drop_packet and MIB done */
2375 return;
2376 }
2377 }

2379 /* Determine the minimum required size of the upper-layer header */
2380 /* Need to do this for at least the set of ULPs that TX handles. */
2381 switch (protocol) {
2382 case IPPROTO_TCP:
2383 min_ulp_header_length = TCP_MIN_HEADER_LENGTH;
2384 break;
2385 case IPPROTO_SCTP:
2386 min_ulp_header_length = SCTP_COMMON_HDR_LENGTH;
2387 break;
2388 case IPPROTO_UDP:
2389 min_ulp_header_length = UDPH_SIZE;
2390 break;
2391 case IPPROTO_ICMP:
2392 min_ulp_header_length = ICMPH_SIZE;
2393 break;
2394 case IPPROTO_DCCP:
2395 min_ulp_header_length = DCCP_MIN_HEADER_LENGTH;
2396 break;
2397 #endif /* ! codereview */
2398 default:
2399 min_ulp_header_length = 0;
2400 break;
2401 }
2402 /* Make sure we have the min ULP header length */
2403 len = mp->b_wptr - rptr;
2404 if (len < ip_hdr_length + min_ulp_header_length) {
2405 if (ira->ira_pktlen < ip_hdr_length + min_ulp_header_length) {
2406 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2407 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2408 freemsg(mp);
2409 return;
2410 }
2411 IP_STAT(ipst, ip_recv_pullup);
2412 ipha = ip_pullup(mp, ip_hdr_length + min_ulp_header_length,
2413 ira);
2414 if (ipha == NULL)
2415 goto discard;
2416 len = mp->b_wptr - rptr;
2417 }

2419 /*
2420 * If trusted extensions then determine the zoneid and TX specific
2421 * ira_flags.
2422 */
2423 if (iraflags & IRAF_SYSTEM_LABELED) {
2424 /* This can update ira->ira_flags and ira->ira_zoneid */
2425 ip_fanout_tx_v4(mp, ipha, protocol, ip_hdr_length, ira);
2426 iraflags = ira->ira_flags;
2427 }

2430 /* Verify ULP checksum. Handles TCP, UDP, and SCTP */
2431 if (iraflags & IRAF_VERIFY_ULP_CKSUM) {
2432 if (!ip_input_cksum_v4(iraflags, mp, ipha, ira)) {
2433 /* Bad checksum. Stats are already incremented */
2434 ip_drop_input("Bad ULP checksum", mp, ill);
2435 freemsg(mp);
2436 return;
2437 }

new/usr/src/uts/common/inet/ip/ip_input.c 38

2438 /* IRAF_SCTP_CSUM_ERR could have been set */
2439 iraflags = ira->ira_flags;
2440 }
2441 switch (protocol) {
2442 case IPPROTO_TCP:
2443 /* For TCP, discard broadcast and multicast packets. */
2444 if (iraflags & IRAF_MULTIBROADCAST)
2445 goto discard;

2447 /* First mblk contains IP+TCP headers per above check */
2448 ASSERT(len >= ip_hdr_length + TCP_MIN_HEADER_LENGTH);

2450 /* TCP options present? */
2451 offset = ((uchar_t *)ipha)[ip_hdr_length + 12] >> 4;
2452 if (offset != 5) {
2453 if (offset < 5)
2454 goto discard;

2456 /*
2457 * There must be TCP options.
2458 * Make sure we can grab them.
2459 */
2460 offset <<= 2;
2461 offset += ip_hdr_length;
2462 if (len < offset) {
2463 if (ira->ira_pktlen < offset) {
2464 BUMP_MIB(ill->ill_ip_mib,
2465 ipIfStatsInTruncatedPkts);
2466 ip_drop_input(
2467 "ipIfStatsInTruncatedPkts",
2468 mp, ill);
2469 freemsg(mp);
2470 return;
2471 }
2472 IP_STAT(ipst, ip_recv_pullup);
2473 ipha = ip_pullup(mp, offset, ira);
2474 if (ipha == NULL)
2475 goto discard;
2476 len = mp->b_wptr - rptr;
2477 }
2478 }

2480 /*
2481 * Pass up a squeue hint to tcp.
2482 * If ira_sqp is already set (this is loopback) we leave it
2483 * alone.
2484 */
2485 if (ira->ira_sqp == NULL) {
2486 ira->ira_sqp = ip_squeue_get(ira->ira_ring);
2487 }

2489 /* Look for AF_INET or AF_INET6 that matches */
2490 connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_length,
2491 ira, ipst);
2492 if (connp == NULL) {
2493 /* Send the TH_RST */
2494 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2495 tcp_xmit_listeners_reset(mp, ira, ipst, NULL);
2496 return;
2497 }
2498 if (connp->conn_incoming_ifindex != 0 &&
2499 connp->conn_incoming_ifindex != ira->ira_ruifindex) {
2500 CONN_DEC_REF(connp);

2502 /* Send the TH_RST */
2503 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);

new/usr/src/uts/common/inet/ip/ip_input.c 39

2504 tcp_xmit_listeners_reset(mp, ira, ipst, NULL);
2505 return;
2506 }
2507 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2508 (iraflags & IRAF_IPSEC_SECURE)) {
2509 mp = ipsec_check_inbound_policy(mp, connp,
2510 ipha, NULL, ira);
2511 if (mp == NULL) {
2512 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2513 /* Note that mp is NULL */
2514 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2515 CONN_DEC_REF(connp);
2516 return;
2517 }
2518 }
2519 /* Found a client; up it goes */
2520 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2521 ira->ira_ill = ira->ira_rill = NULL;
2522 if (!IPCL_IS_TCP(connp)) {
2523 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2524 (connp->conn_recv)(connp, mp, NULL, ira);
2525 CONN_DEC_REF(connp);
2526 ira->ira_ill = ill;
2527 ira->ira_rill = rill;
2528 return;
2529 }

2531 /*
2532 * We do different processing whether called from
2533 * ip_accept_tcp and we match the target, don’t match
2534 * the target, and when we are called by ip_input.
2535 */
2536 if (iraflags & IRAF_TARGET_SQP) {
2537 if (ira->ira_target_sqp == connp->conn_sqp) {
2538 mblk_t *attrmp;

2540 attrmp = ip_recv_attr_to_mblk(ira);
2541 if (attrmp == NULL) {
2542 BUMP_MIB(ill->ill_ip_mib,
2543 ipIfStatsInDiscards);
2544 ip_drop_input("ipIfStatsInDiscards",
2545 mp, ill);
2546 freemsg(mp);
2547 CONN_DEC_REF(connp);
2548 } else {
2549 SET_SQUEUE(attrmp, connp->conn_recv,
2550 connp);
2551 attrmp->b_cont = mp;
2552 ASSERT(ira->ira_target_sqp_mp == NULL);
2553 ira->ira_target_sqp_mp = attrmp;
2554 /*
2555 * Conn ref release when drained from
2556 * the squeue.
2557 */
2558 }
2559 } else {
2560 SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2561 connp->conn_recv, connp, ira, SQ_FILL,
2562 SQTAG_IP_TCP_INPUT);
2563 }
2564 } else {
2565 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv,
2566 connp, ira, ip_squeue_flag, SQTAG_IP_TCP_INPUT);
2567 }
2568 ira->ira_ill = ill;
2569 ira->ira_rill = rill;

new/usr/src/uts/common/inet/ip/ip_input.c 40

2570 return;

2572 case IPPROTO_SCTP: {
2573 sctp_hdr_t *sctph;
2574 in6_addr_t map_src, map_dst;
2575 uint32_t ports; /* Source and destination ports */
2576 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp;

2578 /* For SCTP, discard broadcast and multicast packets. */
2579 if (iraflags & IRAF_MULTIBROADCAST)
2580 goto discard;

2582 /*
2583 * Since there is no SCTP h/w cksum support yet, just
2584 * clear the flag.
2585 */
2586 DB_CKSUMFLAGS(mp) = 0;

2588 /* Length ensured above */
2589 ASSERT(MBLKL(mp) >= ip_hdr_length + SCTP_COMMON_HDR_LENGTH);
2590 sctph = (sctp_hdr_t *)(rptr + ip_hdr_length);

2592 /* get the ports */
2593 ports = *(uint32_t *)&sctph->sh_sport;

2595 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst);
2596 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src);
2597 if (iraflags & IRAF_SCTP_CSUM_ERR) {
2598 /*
2599 * No potential sctp checksum errors go to the Sun
2600 * sctp stack however they might be Adler-32 summed
2601 * packets a userland stack bound to a raw IP socket
2602 * could reasonably use. Note though that Adler-32 is
2603 * a long deprecated algorithm and customer sctp
2604 * networks should eventually migrate to CRC-32 at
2605 * which time this facility should be removed.
2606 */
2607 ip_fanout_sctp_raw(mp, ipha, NULL, ports, ira);
2608 return;
2609 }
2610 connp = sctp_fanout(&map_src, &map_dst, ports, ira, mp,
2611 sctps, sctph);
2612 if (connp == NULL) {
2613 /* Check for raw socket or OOTB handling */
2614 ip_fanout_sctp_raw(mp, ipha, NULL, ports, ira);
2615 return;
2616 }
2617 if (connp->conn_incoming_ifindex != 0 &&
2618 connp->conn_incoming_ifindex != ira->ira_ruifindex) {
2619 CONN_DEC_REF(connp);
2620 /* Check for raw socket or OOTB handling */
2621 ip_fanout_sctp_raw(mp, ipha, NULL, ports, ira);
2622 return;
2623 }

2625 /* Found a client; up it goes */
2626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2627 sctp_input(connp, ipha, NULL, mp, ira);
2628 /* sctp_input does a rele of the sctp_t */
2629 return;
2630 }

2632 case IPPROTO_UDP:
2633 /* First mblk contains IP+UDP headers as checked above */
2634 ASSERT(MBLKL(mp) >= ip_hdr_length + UDPH_SIZE);

new/usr/src/uts/common/inet/ip/ip_input.c 41

2636 if (iraflags & IRAF_MULTIBROADCAST) {
2637 uint16_t *up; /* Pointer to ports in ULP header */

2639 up = (uint16_t *)((uchar_t *)ipha + ip_hdr_length);
2640 ip_fanout_udp_multi_v4(mp, ipha, up[1], up[0], ira);
2641 return;
2642 }

2644 /* Look for AF_INET or AF_INET6 that matches */
2645 connp = ipcl_classify_v4(mp, IPPROTO_UDP, ip_hdr_length,
2646 ira, ipst);
2647 if (connp == NULL) {
2648 no_udp_match:
2649 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].
2650 connf_head != NULL) {
2651 ASSERT(ira->ira_protocol == IPPROTO_UDP);
2652 ip_fanout_proto_v4(mp, ipha, ira);
2653 } else {
2654 ip_fanout_send_icmp_v4(mp,
2655 ICMP_DEST_UNREACHABLE,
2656 ICMP_PORT_UNREACHABLE, ira);
2657 }
2658 return;

2660 }
2661 if (connp->conn_incoming_ifindex != 0 &&
2662 connp->conn_incoming_ifindex != ira->ira_ruifindex) {
2663 CONN_DEC_REF(connp);
2664 goto no_udp_match;
2665 }
2666 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
2667 !canputnext(connp->conn_rq)) {
2668 CONN_DEC_REF(connp);
2669 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
2670 ip_drop_input("udpIfStatsInOverflows", mp, ill);
2671 freemsg(mp);
2672 return;
2673 }
2674 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2675 (iraflags & IRAF_IPSEC_SECURE)) {
2676 mp = ipsec_check_inbound_policy(mp, connp,
2677 ipha, NULL, ira);
2678 if (mp == NULL) {
2679 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2680 /* Note that mp is NULL */
2681 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2682 CONN_DEC_REF(connp);
2683 return;
2684 }
2685 }
2686 /*
2687 * Remove 0-spi if it’s 0, or move everything behind
2688 * the UDP header over it and forward to ESP via
2689 * ip_fanout_v4().
2690 */
2691 if (connp->conn_udp->udp_nat_t_endpoint) {
2692 if (iraflags & IRAF_IPSEC_SECURE) {
2693 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
2694 DROPPER(ipss, ipds_esp_nat_t_ipsec),
2695 &ipss->ipsec_dropper);
2696 CONN_DEC_REF(connp);
2697 return;
2698 }

2700 mp = zero_spi_check(mp, ira);
2701 if (mp == NULL) {

new/usr/src/uts/common/inet/ip/ip_input.c 42

2702 /*
2703 * Packet was consumed - probably sent to
2704 * ip_fanout_v4.
2705 */
2706 CONN_DEC_REF(connp);
2707 return;
2708 }
2709 /* Else continue like a normal UDP packet. */
2710 ipha = (ipha_t *)mp->b_rptr;
2711 protocol = ipha->ipha_protocol;
2712 ira->ira_protocol = protocol;
2713 }
2714 /* Found a client; up it goes */
2715 IP_STAT(ipst, ip_udp_fannorm);
2716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2717 ira->ira_ill = ira->ira_rill = NULL;
2718 (connp->conn_recv)(connp, mp, NULL, ira);
2719 CONN_DEC_REF(connp);
2720 ira->ira_ill = ill;
2721 ira->ira_rill = rill;
2722 return;
2723 case IPPROTO_DCCP:
2724 /* For DCCP, discard broadcast and multicast packets */
2725 if (iraflags & IRAF_MULTIBROADCAST) {
2726 goto discard;
2727 }

2729 /* First mblk contains IP+DCCP headers per above check */
2730 ASSERT(len >= ip_hdr_length + DCCP_MIN_HEADER_LENGTH);

2732 /* Squeue hint */
2733 if (ira->ira_sqp == NULL) {
2734 ira->ira_sqp = ip_squeue_get(ira->ira_ring);
2735 }

2737 connp = ipcl_classify_v4(mp, IPPROTO_DCCP, ip_hdr_length,
2738 ira, ipst);
2739 if (connp == NULL) {
2740 cmn_err(CE_NOTE, "ip_input.c: ip_fanout_v4 connp not fou
2741 /* Send the reset packet */
2742 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2743 dccp_xmit_listeners_reset(mp, ira, ipst, NULL);
2744 return;
2745 }

2747 if (connp->conn_incoming_ifindex != 0 &&
2748 connp->conn_incoming_ifindex != ira->ira_ruifindex) {
2749 cmn_err(CE_NOTE, "ip_input.c: ip_fanout_v4 ifindex probl
2750 /* Send the reset packet */
2751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2752 dccp_xmit_listeners_reset(mp, ira, ipst, NULL);
2753 return;
2754 }

2756 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2757 (iraflags & IRAF_IPSEC_SECURE)) {
2758 mp = ipsec_check_inbound_policy(mp, connp,
2759 ipha, NULL, ira);
2760 if (mp == NULL) {
2761 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2762 /* Note that mp is NULL */
2763 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2764 CONN_DEC_REF(connp);
2765 return;
2766 }
2767 }

new/usr/src/uts/common/inet/ip/ip_input.c 43

2769 /* Found a client; up it goes */
2770 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2771 ira->ira_ill = ira->ira_rill = NULL;

2773 /* XXX SOCK_RAW for DCCP? */

2775 if (iraflags & IRAF_TARGET_SQP) {
2776 cmn_err(CE_NOTE, "IRAF_TARGET_SQP");
2777 } else {
2778 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv,
2779 connp, ira, ip_squeue_flag, SQTAG_IP_DCCP_INPUT);
2780 }

2782 ira->ira_ill = ill;
2783 ira->ira_rill = rill;
2784 return;

2786 #endif /* ! codereview */
2787 default:
2788 break;
2789 }

2791 /*
2792 * Clear hardware checksumming flag as it is currently only
2793 * used by TCP and UDP.
2794 */
2795 DB_CKSUMFLAGS(mp) = 0;

2797 switch (protocol) {
2798 case IPPROTO_ICMP:
2799 /*
2800 * We need to accomodate icmp messages coming in clear
2801 * until we get everything secure from the wire. If
2802 * icmp_accept_clear_messages is zero we check with
2803 * the global policy and act accordingly. If it is
2804 * non-zero, we accept the message without any checks.
2805 * But *this does not mean* that this will be delivered
2806 * to RAW socket clients. By accepting we might send
2807 * replies back, change our MTU value etc.,
2808 * but delivery to the ULP/clients depends on their
2809 * policy dispositions.
2810 */
2811 if (ipst->ips_icmp_accept_clear_messages == 0) {
2812 mp = ipsec_check_global_policy(mp, NULL,
2813 ipha, NULL, ira, ns);
2814 if (mp == NULL)
2815 return;
2816 }

2818 /*
2819 * On a labeled system, we have to check whether the zone
2820 * itself is permitted to receive raw traffic.
2821 */
2822 if (ira->ira_flags & IRAF_SYSTEM_LABELED) {
2823 if (!tsol_can_accept_raw(mp, ira, B_FALSE)) {
2824 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
2825 ip_drop_input("tsol_can_accept_raw", mp, ill);
2826 freemsg(mp);
2827 return;
2828 }
2829 }

2831 /*
2832 * ICMP header checksum, including checksum field,
2833 * should be zero.

new/usr/src/uts/common/inet/ip/ip_input.c 44

2834 */
2835 if (IP_CSUM(mp, ip_hdr_length, 0)) {
2836 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs);
2837 ip_drop_input("icmpInCksumErrs", mp, ill);
2838 freemsg(mp);
2839 return;
2840 }
2841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2842 mp = icmp_inbound_v4(mp, ira);
2843 if (mp == NULL) {
2844 /* No need to pass to RAW sockets */
2845 return;
2846 }
2847 break;

2849 case IPPROTO_IGMP:
2850 /*
2851 * If we are not willing to accept IGMP packets in clear,
2852 * then check with global policy.
2853 */
2854 if (ipst->ips_igmp_accept_clear_messages == 0) {
2855 mp = ipsec_check_global_policy(mp, NULL,
2856 ipha, NULL, ira, ns);
2857 if (mp == NULL)
2858 return;
2859 }
2860 if ((ira->ira_flags & IRAF_SYSTEM_LABELED) &&
2861 !tsol_can_accept_raw(mp, ira, B_TRUE)) {
2862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2863 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2864 freemsg(mp);
2865 return;
2866 }
2867 /*
2868 * Validate checksum
2869 */
2870 if (IP_CSUM(mp, ip_hdr_length, 0)) {
2871 ++ipst->ips_igmpstat.igps_rcv_badsum;
2872 ip_drop_input("igps_rcv_badsum", mp, ill);
2873 freemsg(mp);
2874 return;
2875 }

2877 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2878 mp = igmp_input(mp, ira);
2879 if (mp == NULL) {
2880 /* Bad packet - discarded by igmp_input */
2881 return;
2882 }
2883 break;
2884 case IPPROTO_PIM:
2885 /*
2886 * If we are not willing to accept PIM packets in clear,
2887 * then check with global policy.
2888 */
2889 if (ipst->ips_pim_accept_clear_messages == 0) {
2890 mp = ipsec_check_global_policy(mp, NULL,
2891 ipha, NULL, ira, ns);
2892 if (mp == NULL)
2893 return;
2894 }
2895 if ((ira->ira_flags & IRAF_SYSTEM_LABELED) &&
2896 !tsol_can_accept_raw(mp, ira, B_TRUE)) {
2897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2898 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2899 freemsg(mp);

new/usr/src/uts/common/inet/ip/ip_input.c 45

2900 return;
2901 }
2902 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);

2904 /* Checksum is verified in pim_input */
2905 mp = pim_input(mp, ira);
2906 if (mp == NULL) {
2907 /* Bad packet - discarded by pim_input */
2908 return;
2909 }
2910 break;
2911 case IPPROTO_AH:
2912 case IPPROTO_ESP: {
2913 /*
2914 * Fast path for AH/ESP.
2915 */
2916 netstack_t *ns = ipst->ips_netstack;
2917 ipsec_stack_t *ipss = ns->netstack_ipsec;

2919 IP_STAT(ipst, ipsec_proto_ahesp);

2921 if (!ipsec_loaded(ipss)) {
2922 ip_proto_not_sup(mp, ira);
2923 return;
2924 }

2926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2927 /* select inbound SA and have IPsec process the pkt */
2928 if (protocol == IPPROTO_ESP) {
2929 esph_t *esph;
2930 boolean_t esp_in_udp_sa;
2931 boolean_t esp_in_udp_packet;

2933 mp = ipsec_inbound_esp_sa(mp, ira, &esph);
2934 if (mp == NULL)
2935 return;

2937 ASSERT(esph != NULL);
2938 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2939 ASSERT(ira->ira_ipsec_esp_sa != NULL);
2940 ASSERT(ira->ira_ipsec_esp_sa->ipsa_input_func != NULL);

2942 esp_in_udp_sa = ((ira->ira_ipsec_esp_sa->ipsa_flags &
2943 IPSA_F_NATT) != 0);
2944 esp_in_udp_packet =
2945 (ira->ira_flags & IRAF_ESP_UDP_PORTS) != 0;

2947 /*
2948 * The following is a fancy, but quick, way of saying:
2949 * ESP-in-UDP SA and Raw ESP packet --> drop
2950 * OR
2951 * ESP SA and ESP-in-UDP packet --> drop
2952 */
2953 if (esp_in_udp_sa != esp_in_udp_packet) {
2954 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2955 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
2956 DROPPER(ipss, ipds_esp_no_sa),
2957 &ipss->ipsec_dropper);
2958 return;
2959 }
2960 mp = ira->ira_ipsec_esp_sa->ipsa_input_func(mp, esph,
2961 ira);
2962 } else {
2963 ah_t *ah;

2965 mp = ipsec_inbound_ah_sa(mp, ira, &ah);

new/usr/src/uts/common/inet/ip/ip_input.c 46

2966 if (mp == NULL)
2967 return;

2969 ASSERT(ah != NULL);
2970 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2971 ASSERT(ira->ira_ipsec_ah_sa != NULL);
2972 ASSERT(ira->ira_ipsec_ah_sa->ipsa_input_func != NULL);
2973 mp = ira->ira_ipsec_ah_sa->ipsa_input_func(mp, ah,
2974 ira);
2975 }

2977 if (mp == NULL) {
2978 /*
2979 * Either it failed or is pending. In the former case
2980 * ipIfStatsInDiscards was increased.
2981 */
2982 return;
2983 }
2984 /* we’re done with IPsec processing, send it up */
2985 ip_input_post_ipsec(mp, ira);
2986 return;
2987 }
2988 case IPPROTO_ENCAP: {
2989 ipha_t *inner_ipha;

2991 /*
2992 * Handle self-encapsulated packets (IP-in-IP where
2993 * the inner addresses == the outer addresses).
2994 */
2995 if ((uchar_t *)ipha + ip_hdr_length + sizeof (ipha_t) >
2996 mp->b_wptr) {
2997 if (ira->ira_pktlen <
2998 ip_hdr_length + sizeof (ipha_t)) {
2999 BUMP_MIB(ill->ill_ip_mib,
3000 ipIfStatsInTruncatedPkts);
3001 ip_drop_input("ipIfStatsInTruncatedPkts",
3002 mp, ill);
3003 freemsg(mp);
3004 return;
3005 }
3006 ipha = ip_pullup(mp, (uchar_t *)ipha + ip_hdr_length +
3007 sizeof (ipha_t) - mp->b_rptr, ira);
3008 if (ipha == NULL) {
3009 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3010 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3011 freemsg(mp);
3012 return;
3013 }
3014 }
3015 inner_ipha = (ipha_t *)((uchar_t *)ipha + ip_hdr_length);
3016 /*
3017 * Check the sanity of the inner IP header.
3018 */
3019 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) {
3020 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3021 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3022 freemsg(mp);
3023 return;
3024 }
3025 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) {
3026 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3027 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3028 freemsg(mp);
3029 return;
3030 }
3031 if (inner_ipha->ipha_src != ipha->ipha_src ||

new/usr/src/uts/common/inet/ip/ip_input.c 47

3032 inner_ipha->ipha_dst != ipha->ipha_dst) {
3033 /* We fallthru to iptun fanout below */
3034 goto iptun;
3035 }

3037 /*
3038 * Self-encapsulated tunnel packet. Remove
3039 * the outer IP header and fanout again.
3040 * We also need to make sure that the inner
3041 * header is pulled up until options.
3042 */
3043 mp->b_rptr = (uchar_t *)inner_ipha;
3044 ipha = inner_ipha;
3045 ip_hdr_length = IPH_HDR_LENGTH(ipha);
3046 if ((uchar_t *)ipha + ip_hdr_length > mp->b_wptr) {
3047 if (ira->ira_pktlen <
3048 (uchar_t *)ipha + ip_hdr_length - mp->b_rptr) {
3049 BUMP_MIB(ill->ill_ip_mib,
3050 ipIfStatsInTruncatedPkts);
3051 ip_drop_input("ipIfStatsInTruncatedPkts",
3052 mp, ill);
3053 freemsg(mp);
3054 return;
3055 }
3056 ipha = ip_pullup(mp,
3057 (uchar_t *)ipha + ip_hdr_length - mp->b_rptr, ira);
3058 if (ipha == NULL) {
3059 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3060 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3061 freemsg(mp);
3062 return;
3063 }
3064 }
3065 if (ip_hdr_length > sizeof (ipha_t)) {
3066 /* We got options on the inner packet. */
3067 ipaddr_t dst = ipha->ipha_dst;
3068 int error = 0;

3070 dst = ip_input_options(ipha, dst, mp, ira, &error);
3071 if (error != 0) {
3072 /*
3073 * An ICMP error has been sent and the packet
3074 * has been dropped.
3075 */
3076 return;
3077 }
3078 if (dst != ipha->ipha_dst) {
3079 /*
3080 * Someone put a source-route in
3081 * the inside header of a self-
3082 * encapsulated packet. Drop it
3083 * with extreme prejudice and let
3084 * the sender know.
3085 */
3086 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
3087 mp, ill);
3088 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
3089 ira);
3090 return;
3091 }
3092 }
3093 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
3094 /*
3095 * This means that somebody is sending
3096 * Self-encapsualted packets without AH/ESP.
3097 *

new/usr/src/uts/common/inet/ip/ip_input.c 48

3098 * Send this packet to find a tunnel endpoint.
3099 * if I can’t find one, an ICMP
3100 * PROTOCOL_UNREACHABLE will get sent.
3101 */
3102 protocol = ipha->ipha_protocol;
3103 ira->ira_protocol = protocol;
3104 goto iptun;
3105 }

3107 /* Update based on removed IP header */
3108 ira->ira_ip_hdr_length = ip_hdr_length;
3109 ira->ira_pktlen = ntohs(ipha->ipha_length);

3111 if (ira->ira_flags & IRAF_IPSEC_DECAPS) {
3112 /*
3113 * This packet is self-encapsulated multiple
3114 * times. We don’t want to recurse infinitely.
3115 * To keep it simple, drop the packet.
3116 */
3117 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3118 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3119 freemsg(mp);
3120 return;
3121 }
3122 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
3123 ira->ira_flags |= IRAF_IPSEC_DECAPS;

3125 ip_input_post_ipsec(mp, ira);
3126 return;
3127 }

3129 iptun: /* IPPROTO_ENCAPS that is not self-encapsulated */
3130 case IPPROTO_IPV6:
3131 /* iptun will verify trusted label */
3132 connp = ipcl_classify_v4(mp, protocol, ip_hdr_length,
3133 ira, ipst);
3134 if (connp != NULL) {
3135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
3136 ira->ira_ill = ira->ira_rill = NULL;
3137 (connp->conn_recv)(connp, mp, NULL, ira);
3138 CONN_DEC_REF(connp);
3139 ira->ira_ill = ill;
3140 ira->ira_rill = rill;
3141 return;
3142 }
3143 /* FALLTHRU */
3144 default:
3145 /*
3146 * On a labeled system, we have to check whether the zone
3147 * itself is permitted to receive raw traffic.
3148 */
3149 if (ira->ira_flags & IRAF_SYSTEM_LABELED) {
3150 if (!tsol_can_accept_raw(mp, ira, B_FALSE)) {
3151 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3152 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3153 freemsg(mp);
3154 return;
3155 }
3156 }
3157 break;
3158 }

3160 /*
3161 * The above input functions may have returned the pulled up message.
3162 * So ipha need to be reinitialized.
3163 */

new/usr/src/uts/common/inet/ip/ip_input.c 49

3164 ipha = (ipha_t *)mp->b_rptr;
3165 ira->ira_protocol = protocol = ipha->ipha_protocol;
3166 if (ipst->ips_ipcl_proto_fanout_v4[protocol].connf_head == NULL) {
3167 /*
3168 * No user-level listener for these packets packets.
3169 * Check for IPPROTO_ENCAP...
3170 */
3171 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) {
3172 /*
3173 * Check policy here,
3174 * THEN ship off to ip_mroute_decap().
3175 *
3176 * BTW, If I match a configured IP-in-IP
3177 * tunnel above, this path will not be reached, and
3178 * ip_mroute_decap will never be called.
3179 */
3180 mp = ipsec_check_global_policy(mp, connp,
3181 ipha, NULL, ira, ns);
3182 if (mp != NULL) {
3183 ip_mroute_decap(mp, ira);
3184 } /* Else we already freed everything! */
3185 } else {
3186 ip_proto_not_sup(mp, ira);
3187 }
3188 return;
3189 }

3191 /*
3192 * Handle fanout to raw sockets. There
3193 * can be more than one stream bound to a particular
3194 * protocol. When this is the case, each one gets a copy
3195 * of any incoming packets.
3196 */
3197 ASSERT(ira->ira_protocol == ipha->ipha_protocol);
3198 ip_fanout_proto_v4(mp, ipha, ira);
3199 return;

3201 discard:
3202 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3203 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3204 freemsg(mp);
3205 #undef rptr
3206 }

new/usr/src/uts/common/inet/ip/ip_output.c 1

**
 74252 Sat Aug 18 10:37:16 2012
new/usr/src/uts/common/inet/ip/ip_output.c
dccp: reset packet
**
______unchanged_portion_omitted_

1606 /*
1607 * Calculate a checksum ignoring any hardware capabilities
1608 *
1609 * Returns B_FALSE if the packet was too short for the checksum. Caller
1610 * should free and do stats.
1611 */
1612 static boolean_t
1613 ip_output_sw_cksum_v4(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa)
1614 {
1615 ip_stack_t *ipst = ixa->ixa_ipst;
1616 uint_t pktlen = ixa->ixa_pktlen;
1617 uint16_t *cksump;
1618 uint32_t cksum;
1619 uint8_t protocol = ixa->ixa_protocol;
1620 uint16_t ip_hdr_length = ixa->ixa_ip_hdr_length;
1621 ipaddr_t dst = ipha->ipha_dst;
1622 ipaddr_t src = ipha->ipha_src;

1624 /* Just in case it contained garbage */
1625 DB_CKSUMFLAGS(mp) &= ~HCK_FLAGS;

1627 /*
1628 * Calculate ULP checksum
1629 */
1630 if (protocol == IPPROTO_TCP) {
1631 cksump = IPH_TCPH_CHECKSUMP(ipha, ip_hdr_length);
1632 cksum = IP_TCP_CSUM_COMP;
1633 } else if (protocol == IPPROTO_UDP) {
1634 cksump = IPH_UDPH_CHECKSUMP(ipha, ip_hdr_length);
1635 cksum = IP_UDP_CSUM_COMP;
1636 } else if (protocol == IPPROTO_SCTP) {
1637 sctp_hdr_t *sctph;

1639 ASSERT(MBLKL(mp) >= (ip_hdr_length + sizeof (*sctph)));
1640 sctph = (sctp_hdr_t *)(mp->b_rptr + ip_hdr_length);
1641 /*
1642 * Zero out the checksum field to ensure proper
1643 * checksum calculation.
1644 */
1645 sctph->sh_chksum = 0;
1646 #ifdef DEBUG
1647 if (!skip_sctp_cksum)
1648 #endif
1649 sctph->sh_chksum = sctp_cksum(mp, ip_hdr_length);
1650 goto ip_hdr_cksum;
1651 } else if (protocol == IPPROTO_DCCP) {
1652 cksump = IPH_DCCPH_CHECKSUMP(ipha, ip_hdr_length);
1653 cksum = IP_DCCP_CSUM_COMP;
1654 #endif /* ! codereview */
1655 } else {
1656 goto ip_hdr_cksum;
1657 }

1659 /* ULP puts the checksum field is in the first mblk */
1660 ASSERT(((uchar_t *)cksump) + sizeof (uint16_t) <= mp->b_wptr);

1662 /*
1663 * We accumulate the pseudo header checksum in cksum.
1664 * This is pretty hairy code, so watch close. One

new/usr/src/uts/common/inet/ip/ip_output.c 2

1665 * thing to keep in mind is that UDP and TCP have
1666 * stored their respective datagram lengths in their
1667 * checksum fields. This lines things up real nice.
1668 */
1669 cksum += (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);

1671 cksum = IP_CSUM(mp, ip_hdr_length, cksum);
1672 /*
1673 * For UDP/IPv4 a zero means that the packets wasn’t checksummed.
1674 * Change to 0xffff
1675 */
1676 if (protocol == IPPROTO_UDP && cksum == 0)
1677 *cksump = ~cksum;
1678 else
1679 *cksump = cksum;

1681 IP_STAT(ipst, ip_out_sw_cksum);
1682 IP_STAT_UPDATE(ipst, ip_out_sw_cksum_bytes, pktlen);

1684 ip_hdr_cksum:
1685 /* Calculate IPv4 header checksum */
1686 ipha->ipha_hdr_checksum = 0;
1687 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1688 return (B_TRUE);
1689 }

1691 /*
1692 * Calculate the ULP checksum - try to use hardware.
1693 * In the case of MULTIRT, broadcast or multicast the
1694 * IXAF_NO_HW_CKSUM is set in which case we use software.
1695 *
1696 * If the hardware supports IP header checksum offload; then clear the
1697 * contents of IP header checksum field as expected by NIC.
1698 * Do this only if we offloaded either full or partial sum.
1699 *
1700 * Returns B_FALSE if the packet was too short for the checksum. Caller
1701 * should free and do stats.
1702 */
1703 static boolean_t
1704 ip_output_cksum_v4(iaflags_t ixaflags, mblk_t *mp, ipha_t *ipha,
1705 ip_xmit_attr_t *ixa, ill_t *ill)
1706 {
1707 uint_t pktlen = ixa->ixa_pktlen;
1708 uint16_t *cksump;
1709 uint16_t hck_flags;
1710 uint32_t cksum;
1711 uint8_t protocol = ixa->ixa_protocol;
1712 uint16_t ip_hdr_length = ixa->ixa_ip_hdr_length;

1714 if ((ixaflags & IXAF_NO_HW_CKSUM) || !ILL_HCKSUM_CAPABLE(ill) ||
1715 !dohwcksum) {
1716 return (ip_output_sw_cksum_v4(mp, ipha, ixa));
1717 }

1719 /*
1720 * Calculate ULP checksum. Note that we don’t use cksump and cksum
1721 * if the ill has FULL support.
1722 */
1723 if (protocol == IPPROTO_TCP) {
1724 cksump = IPH_TCPH_CHECKSUMP(ipha, ip_hdr_length);
1725 cksum = IP_TCP_CSUM_COMP; /* Pseudo-header cksum */
1726 } else if (protocol == IPPROTO_UDP) {
1727 cksump = IPH_UDPH_CHECKSUMP(ipha, ip_hdr_length);
1728 cksum = IP_UDP_CSUM_COMP; /* Pseudo-header cksum */
1729 } else if (protocol == IPPROTO_SCTP) {
1730 sctp_hdr_t *sctph;

new/usr/src/uts/common/inet/ip/ip_output.c 3

1732 ASSERT(MBLKL(mp) >= (ip_hdr_length + sizeof (*sctph)));
1733 sctph = (sctp_hdr_t *)(mp->b_rptr + ip_hdr_length);
1734 /*
1735 * Zero out the checksum field to ensure proper
1736 * checksum calculation.
1737 */
1738 sctph->sh_chksum = 0;
1739 #ifdef DEBUG
1740 if (!skip_sctp_cksum)
1741 #endif
1742 sctph->sh_chksum = sctp_cksum(mp, ip_hdr_length);
1743 goto ip_hdr_cksum;
1744 } else if (protocol == IPPROTO_DCCP) {
1745 cksump = IPH_DCCPH_CHECKSUMP(ipha, ip_hdr_length);
1746 cksum = IP_DCCP_CSUM_COMP;
1747 #endif /* ! codereview */
1748 } else {
1749 ip_hdr_cksum:
1750 /* Calculate IPv4 header checksum */
1751 ipha->ipha_hdr_checksum = 0;
1752 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1753 return (B_TRUE);
1754 }

1756 /* ULP puts the checksum field is in the first mblk */
1757 ASSERT(((uchar_t *)cksump) + sizeof (uint16_t) <= mp->b_wptr);

1759 /*
1760 * Underlying interface supports hardware checksum offload for
1761 * the payload; leave the payload checksum for the hardware to
1762 * calculate. N.B: We only need to set up checksum info on the
1763 * first mblk.
1764 */
1765 hck_flags = ill->ill_hcksum_capab->ill_hcksum_txflags;

1767 DB_CKSUMFLAGS(mp) &= ~HCK_FLAGS;
1768 if (hck_flags & HCKSUM_INET_FULL_V4) {
1769 /*
1770 * Hardware calculates pseudo-header, header and the
1771 * payload checksums, so clear the checksum field in
1772 * the protocol header.
1773 */
1774 *cksump = 0;
1775 DB_CKSUMFLAGS(mp) |= HCK_FULLCKSUM;

1777 ipha->ipha_hdr_checksum = 0;
1778 if (hck_flags & HCKSUM_IPHDRCKSUM) {
1779 DB_CKSUMFLAGS(mp) |= HCK_IPV4_HDRCKSUM;
1780 } else {
1781 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1782 }
1783 return (B_TRUE);
1784 }
1785 if ((hck_flags) & HCKSUM_INET_PARTIAL) {
1786 ipaddr_t dst = ipha->ipha_dst;
1787 ipaddr_t src = ipha->ipha_src;
1788 /*
1789 * Partial checksum offload has been enabled. Fill
1790 * the checksum field in the protocol header with the
1791 * pseudo-header checksum value.
1792 *
1793 * We accumulate the pseudo header checksum in cksum.
1794 * This is pretty hairy code, so watch close. One
1795 * thing to keep in mind is that UDP and TCP have
1796 * stored their respective datagram lengths in their

new/usr/src/uts/common/inet/ip/ip_output.c 4

1797 * checksum fields. This lines things up real nice.
1798 */
1799 cksum += (dst >> 16) + (dst & 0xFFFF) +
1800 (src >> 16) + (src & 0xFFFF);
1801 cksum += *(cksump);
1802 cksum = (cksum & 0xFFFF) + (cksum >> 16);
1803 *(cksump) = (cksum & 0xFFFF) + (cksum >> 16);

1805 /*
1806 * Offsets are relative to beginning of IP header.
1807 */
1808 DB_CKSUMSTART(mp) = ip_hdr_length;
1809 DB_CKSUMSTUFF(mp) = (uint8_t *)cksump - (uint8_t *)ipha;
1810 DB_CKSUMEND(mp) = pktlen;
1811 DB_CKSUMFLAGS(mp) |= HCK_PARTIALCKSUM;

1813 ipha->ipha_hdr_checksum = 0;
1814 if (hck_flags & HCKSUM_IPHDRCKSUM) {
1815 DB_CKSUMFLAGS(mp) |= HCK_IPV4_HDRCKSUM;
1816 } else {
1817 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1818 }
1819 return (B_TRUE);
1820 }
1821 /* Hardware capabilities include neither full nor partial IPv4 */
1822 return (ip_output_sw_cksum_v4(mp, ipha, ixa));
1823 }

1825 /*
1826 * ire_sendfn for offlink and onlink destinations.
1827 * Also called from the multicast, broadcast, multirt send functions.
1828 *
1829 * Assumes that the caller has a hold on the ire.
1830 *
1831 * This function doesn’t care if the IRE just became condemned since that
1832 * can happen at any time.
1833 */
1834 /* ARGSUSED */
1835 int
1836 ire_send_wire_v4(ire_t *ire, mblk_t *mp, void *iph_arg,
1837 ip_xmit_attr_t *ixa, uint32_t *identp)
1838 {
1839 ip_stack_t *ipst = ixa->ixa_ipst;
1840 ipha_t *ipha = (ipha_t *)iph_arg;
1841 iaflags_t ixaflags = ixa->ixa_flags;
1842 ill_t *ill;

1844 ASSERT(ixa->ixa_nce != NULL);
1845 ill = ixa->ixa_nce->nce_ill;

1847 if (ixaflags & IXAF_DONTROUTE)
1848 ipha->ipha_ttl = 1;

1850 /*
1851 * Assign an ident value for this packet. There could be other
1852 * threads targeting the same destination, so we have to arrange
1853 * for a atomic increment. Note that we use a 32-bit atomic add
1854 * because it has better performance than its 16-bit sibling.
1855 *
1856 * Normally ixa_extra_ident is 0, but in the case of LSO it will
1857 * be the number of TCP segments that the driver/hardware will
1858 * extraly construct.
1859 *
1860 * If running in cluster mode and if the source address
1861 * belongs to a replicated service then vector through
1862 * cl_inet_ipident vector to allocate ip identifier

new/usr/src/uts/common/inet/ip/ip_output.c 5

1863 * NOTE: This is a contract private interface with the
1864 * clustering group.
1865 */
1866 if (cl_inet_ipident != NULL) {
1867 ipaddr_t src = ipha->ipha_src;
1868 ipaddr_t dst = ipha->ipha_dst;
1869 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid;

1871 ASSERT(cl_inet_isclusterwide != NULL);
1872 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP,
1873 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) {
1874 /*
1875 * Note: not correct with LSO since we can’t allocate
1876 * ixa_extra_ident+1 consecutive values.
1877 */
1878 ipha->ipha_ident = (*cl_inet_ipident)(stack_id,
1879 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src,
1880 (uint8_t *)(uintptr_t)dst, NULL);
1881 } else {
1882 ipha->ipha_ident = atomic_add_32_nv(identp,
1883 ixa->ixa_extra_ident + 1);
1884 }
1885 } else {
1886 ipha->ipha_ident = atomic_add_32_nv(identp,
1887 ixa->ixa_extra_ident + 1);
1888 }
1889 #ifndef _BIG_ENDIAN
1890 ipha->ipha_ident = htons(ipha->ipha_ident);
1891 #endif

1893 /*
1894 * This might set b_band, thus the IPsec and fragmentation
1895 * code in IP ensures that b_band is updated in the first mblk.
1896 */
1897 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
1898 /* ip_process translates an IS_UNDER_IPMP */
1899 mp = ip_process(IPP_LOCAL_OUT, mp, ill, ill);
1900 if (mp == NULL) {
1901 /* ip_drop_packet and MIB done */
1902 return (0); /* Might just be delayed */
1903 }
1904 }

1906 /*
1907 * Verify any IPv4 options.
1908 *
1909 * The presense of IP options also forces the network stack to
1910 * calculate the checksum in software. This is because:
1911 *
1912 * Wrap around: certain partial-checksum NICs (eri, ce) limit
1913 * the size of "start offset" width to 6-bit. This effectively
1914 * sets the largest value of the offset to 64-bytes, starting
1915 * from the MAC header. When the cumulative MAC and IP headers
1916 * exceed such limit, the offset will wrap around. This causes
1917 * the checksum to be calculated at the wrong place.
1918 *
1919 * IPv4 source routing: none of the full-checksum capable NICs
1920 * is capable of correctly handling the IPv4 source-routing
1921 * option for purposes of calculating the pseudo-header; the
1922 * actual destination is different from the destination in the
1923 * header which is that of the next-hop. (This case may not be
1924 * true for NICs which can parse IPv6 extension headers, but
1925 * we choose to simplify the implementation by not offloading
1926 * checksum when they are present.)
1927 */
1928 if (!IS_SIMPLE_IPH(ipha)) {

new/usr/src/uts/common/inet/ip/ip_output.c 6

1929 ixaflags = ixa->ixa_flags |= IXAF_NO_HW_CKSUM;
1930 /* An IS_UNDER_IPMP ill is ok here */
1931 if (ip_output_options(mp, ipha, ixa, ill)) {
1932 /* Packet has been consumed and ICMP error sent */
1933 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1934 return (EINVAL);
1935 }
1936 }

1938 /*
1939 * To handle IPsec/iptun’s labeling needs we need to tag packets
1940 * while we still have ixa_tsl
1941 */
1942 if (is_system_labeled() && ixa->ixa_tsl != NULL &&
1943 (ill->ill_mactype == DL_6TO4 || ill->ill_mactype == DL_IPV4 ||
1944 ill->ill_mactype == DL_IPV6)) {
1945 cred_t *newcr;

1947 newcr = copycred_from_tslabel(ixa->ixa_cred, ixa->ixa_tsl,
1948 KM_NOSLEEP);
1949 if (newcr == NULL) {
1950 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1951 ip_drop_output("ipIfStatsOutDiscards - newcr",
1952 mp, ill);
1953 freemsg(mp);
1954 return (ENOBUFS);
1955 }
1956 mblk_setcred(mp, newcr, NOPID);
1957 crfree(newcr); /* mblk_setcred did its own crhold */
1958 }

1960 if (ixa->ixa_pktlen > ixa->ixa_fragsize ||
1961 (ixaflags & IXAF_IPSEC_SECURE)) {
1962 uint32_t pktlen;

1964 pktlen = ixa->ixa_pktlen;
1965 if (ixaflags & IXAF_IPSEC_SECURE)
1966 pktlen += ipsec_out_extra_length(ixa);

1968 if (pktlen > IP_MAXPACKET)
1969 return (EMSGSIZE);

1971 if (ixaflags & IXAF_SET_ULP_CKSUM) {
1972 /*
1973 * Compute ULP checksum and IP header checksum
1974 * using software
1975 */
1976 if (!ip_output_sw_cksum_v4(mp, ipha, ixa)) {
1977 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1978 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
1979 freemsg(mp);
1980 return (EINVAL);
1981 }
1982 } else {
1983 /* Calculate IPv4 header checksum */
1984 ipha->ipha_hdr_checksum = 0;
1985 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1986 }

1988 /*
1989 * If this packet would generate a icmp_frag_needed
1990 * message, we need to handle it before we do the IPsec
1991 * processing. Otherwise, we need to strip the IPsec
1992 * headers before we send up the message to the ULPs
1993 * which becomes messy and difficult.
1994 *

new/usr/src/uts/common/inet/ip/ip_output.c 7

1995 * We check using IXAF_DONTFRAG. The DF bit in the header
1996 * is not inspected - it will be copied to any generated
1997 * fragments.
1998 */
1999 if ((pktlen > ixa->ixa_fragsize) &&
2000 (ixaflags & IXAF_DONTFRAG)) {
2001 /* Generate ICMP and return error */
2002 ip_recv_attr_t iras;

2004 DTRACE_PROBE4(ip4__fragsize__fail, uint_t, pktlen,
2005 uint_t, ixa->ixa_fragsize, uint_t, ixa->ixa_pktlen,
2006 uint_t, ixa->ixa_pmtu);

2008 bzero(&iras, sizeof (iras));
2009 /* Map ixa to ira including IPsec policies */
2010 ipsec_out_to_in(ixa, ill, &iras);

2012 ip_drop_output("ICMP_FRAG_NEEDED", mp, ill);
2013 icmp_frag_needed(mp, ixa->ixa_fragsize, &iras);
2014 /* We moved any IPsec refs from ixa to iras */
2015 ira_cleanup(&iras, B_FALSE);
2016 return (EMSGSIZE);
2017 }
2018 DTRACE_PROBE4(ip4__fragsize__ok, uint_t, pktlen,
2019 uint_t, ixa->ixa_fragsize, uint_t, ixa->ixa_pktlen,
2020 uint_t, ixa->ixa_pmtu);

2022 if (ixaflags & IXAF_IPSEC_SECURE) {
2023 /*
2024 * Pass in sufficient information so that
2025 * IPsec can determine whether to fragment, and
2026 * which function to call after fragmentation.
2027 */
2028 return (ipsec_out_process(mp, ixa));
2029 }
2030 return (ip_fragment_v4(mp, ixa->ixa_nce, ixaflags,
2031 ixa->ixa_pktlen, ixa->ixa_fragsize, ixa->ixa_xmit_hint,
2032 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
2033 ixa->ixa_postfragfn, &ixa->ixa_cookie));
2034 }
2035 if (ixaflags & IXAF_SET_ULP_CKSUM) {
2036 /* Compute ULP checksum and IP header checksum */
2037 /* An IS_UNDER_IPMP ill is ok here */
2038 if (!ip_output_cksum_v4(ixaflags, mp, ipha, ixa, ill)) {
2039 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2040 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
2041 freemsg(mp);
2042 return (EINVAL);
2043 }
2044 } else {
2045 /* Calculate IPv4 header checksum */
2046 ipha->ipha_hdr_checksum = 0;
2047 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
2048 }
2049 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixaflags,
2050 ixa->ixa_pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
2051 ixa->ixa_no_loop_zoneid, &ixa->ixa_cookie));
2052 }

2054 /*
2055 * Send mp into ip_input
2056 * Common for IPv4 and IPv6
2057 */
2058 void
2059 ip_postfrag_loopback(mblk_t *mp, nce_t *nce, iaflags_t ixaflags,
2060 uint_t pkt_len, zoneid_t nolzid)

new/usr/src/uts/common/inet/ip/ip_output.c 8

2061 {
2062 rtc_t rtc;
2063 ill_t *ill = nce->nce_ill;
2064 ip_recv_attr_t iras; /* NOTE: No bzero for performance */
2065 ncec_t *ncec;

2067 ncec = nce->nce_common;
2068 iras.ira_flags = IRAF_VERIFY_IP_CKSUM | IRAF_VERIFY_ULP_CKSUM |
2069 IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK;
2070 if (ncec->ncec_flags & NCE_F_BCAST)
2071 iras.ira_flags |= IRAF_L2DST_BROADCAST;
2072 else if (ncec->ncec_flags & NCE_F_MCAST)
2073 iras.ira_flags |= IRAF_L2DST_MULTICAST;

2075 iras.ira_free_flags = 0;
2076 iras.ira_cred = NULL;
2077 iras.ira_cpid = NOPID;
2078 iras.ira_tsl = NULL;
2079 iras.ira_zoneid = ALL_ZONES;
2080 iras.ira_pktlen = pkt_len;
2081 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, iras.ira_pktlen);
2082 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives);

2084 if (ixaflags & IXAF_IS_IPV4)
2085 iras.ira_flags |= IRAF_IS_IPV4;

2087 iras.ira_ill = iras.ira_rill = ill;
2088 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2089 iras.ira_rifindex = iras.ira_ruifindex;
2090 iras.ira_mhip = NULL;

2092 iras.ira_flags |= ixaflags & IAF_MASK;
2093 iras.ira_no_loop_zoneid = nolzid;

2095 /* Broadcast and multicast doesn’t care about the squeue */
2096 iras.ira_sqp = NULL;

2098 rtc.rtc_ire = NULL;
2099 if (ixaflags & IXAF_IS_IPV4) {
2100 ipha_t *ipha = (ipha_t *)mp->b_rptr;

2102 rtc.rtc_ipaddr = INADDR_ANY;

2104 (*ill->ill_inputfn)(mp, ipha, &ipha->ipha_dst, &iras, &rtc);
2105 if (rtc.rtc_ire != NULL) {
2106 ASSERT(rtc.rtc_ipaddr != INADDR_ANY);
2107 ire_refrele(rtc.rtc_ire);
2108 }
2109 } else {
2110 ip6_t *ip6h = (ip6_t *)mp->b_rptr;

2112 rtc.rtc_ip6addr = ipv6_all_zeros;

2114 (*ill->ill_inputfn)(mp, ip6h, &ip6h->ip6_dst, &iras, &rtc);
2115 if (rtc.rtc_ire != NULL) {
2116 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&rtc.rtc_ip6addr));
2117 ire_refrele(rtc.rtc_ire);
2118 }
2119 }
2120 /* Any references to clean up? No hold on ira */
2121 if (iras.ira_flags & (IRAF_IPSEC_SECURE|IRAF_SYSTEM_LABELED))
2122 ira_cleanup(&iras, B_FALSE);
2123 }

2125 /*
2126 * Post fragmentation function for IRE_MULTICAST and IRE_BROADCAST which

new/usr/src/uts/common/inet/ip/ip_output.c 9

2127 * looks at the IXAF_LOOPBACK_COPY flag.
2128 * Common for IPv4 and IPv6.
2129 *
2130 * If the loopback copy fails (due to no memory) but we send the packet out
2131 * on the wire we return no failure. Only in the case we supress the wire
2132 * sending do we take the loopback failure into account.
2133 *
2134 * Note that we do not perform DTRACE_IP7 and FW_HOOKS for the looped back copy.
2135 * Those operations are performed on this packet in ip_xmit() and it would
2136 * be odd to do it twice for the same packet.
2137 */
2138 int
2139 ip_postfrag_loopcheck(mblk_t *mp, nce_t *nce, iaflags_t ixaflags,
2140 uint_t pkt_len, uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid,
2141 uintptr_t *ixacookie)
2142 {
2143 ill_t *ill = nce->nce_ill;
2144 int error = 0;

2146 /*
2147 * Check for IXAF_LOOPBACK_COPY - send a copy to ip as if the driver
2148 * had looped it back
2149 */
2150 if (ixaflags & IXAF_LOOPBACK_COPY) {
2151 mblk_t *mp1;

2153 mp1 = copymsg(mp);
2154 if (mp1 == NULL) {
2155 /* Failed to deliver the loopback copy. */
2156 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2157 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
2158 error = ENOBUFS;
2159 } else {
2160 ip_postfrag_loopback(mp1, nce, ixaflags, pkt_len,
2161 nolzid);
2162 }
2163 }

2165 /*
2166 * If TTL = 0 then only do the loopback to this host i.e. we are
2167 * done. We are also done if this was the
2168 * loopback interface since it is sufficient
2169 * to loopback one copy of a multicast packet.
2170 */
2171 if (ixaflags & IXAF_IS_IPV4) {
2172 ipha_t *ipha = (ipha_t *)mp->b_rptr;

2174 if (ipha->ipha_ttl == 0) {
2175 ip_drop_output("multicast ipha_ttl not sent to wire",
2176 mp, ill);
2177 freemsg(mp);
2178 return (error);
2179 }
2180 } else {
2181 ip6_t *ip6h = (ip6_t *)mp->b_rptr;

2183 if (ip6h->ip6_hops == 0) {
2184 ip_drop_output("multicast ipha_ttl not sent to wire",
2185 mp, ill);
2186 freemsg(mp);
2187 return (error);
2188 }
2189 }
2190 if (nce->nce_ill->ill_wq == NULL) {
2191 /* Loopback interface */
2192 ip_drop_output("multicast on lo0 not sent to wire", mp, ill);

new/usr/src/uts/common/inet/ip/ip_output.c 10

2193 freemsg(mp);
2194 return (error);
2195 }

2197 return (ip_xmit(mp, nce, ixaflags, pkt_len, xmit_hint, szone, 0,
2198 ixacookie));
2199 }

2201 /*
2202 * Post fragmentation function for RTF_MULTIRT routes.
2203 * Since IRE_BROADCASTs can have RTF_MULTIRT, this function
2204 * checks IXAF_LOOPBACK_COPY.
2205 *
2206 * If no packet is sent due to failures then we return an errno, but if at
2207 * least one succeeded we return zero.
2208 */
2209 int
2210 ip_postfrag_multirt_v4(mblk_t *mp, nce_t *nce, iaflags_t ixaflags,
2211 uint_t pkt_len, uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid,
2212 uintptr_t *ixacookie)
2213 {
2214 irb_t *irb;
2215 ipha_t *ipha = (ipha_t *)mp->b_rptr;
2216 ire_t *ire;
2217 ire_t *ire1;
2218 mblk_t *mp1;
2219 nce_t *nce1;
2220 ill_t *ill = nce->nce_ill;
2221 ill_t *ill1;
2222 ip_stack_t *ipst = ill->ill_ipst;
2223 int error = 0;
2224 int num_sent = 0;
2225 int err;
2226 uint_t ire_type;
2227 ipaddr_t nexthop;

2229 ASSERT(ixaflags & IXAF_IS_IPV4);

2231 /* Check for IXAF_LOOPBACK_COPY */
2232 if (ixaflags & IXAF_LOOPBACK_COPY) {
2233 mblk_t *mp1;

2235 mp1 = copymsg(mp);
2236 if (mp1 == NULL) {
2237 /* Failed to deliver the loopback copy. */
2238 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2239 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
2240 error = ENOBUFS;
2241 } else {
2242 ip_postfrag_loopback(mp1, nce, ixaflags, pkt_len,
2243 nolzid);
2244 }
2245 }

2247 /*
2248 * Loop over RTF_MULTIRT for ipha_dst in the same bucket. Send
2249 * a copy to each one.
2250 * Use the nce (nexthop) and ipha_dst to find the ire.
2251 *
2252 * MULTIRT is not designed to work with shared-IP zones thus we don’t
2253 * need to pass a zoneid or a label to the IRE lookup.
2254 */
2255 if (V4_PART_OF_V6(nce->nce_addr) == ipha->ipha_dst) {
2256 /* Broadcast and multicast case */
2257 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 0,
2258 NULL, ALL_ZONES, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);

new/usr/src/uts/common/inet/ip/ip_output.c 11

2259 } else {
2260 ipaddr_t v4addr = V4_PART_OF_V6(nce->nce_addr);

2262 /* Unicast case */
2263 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, v4addr, 0,
2264 NULL, ALL_ZONES, NULL, MATCH_IRE_GW, 0, ipst, NULL);
2265 }

2267 if (ire == NULL ||
2268 (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2269 !(ire->ire_flags & RTF_MULTIRT)) {
2270 /* Drop */
2271 ip_drop_output("ip_postfrag_multirt didn’t find route",
2272 mp, nce->nce_ill);
2273 if (ire != NULL)
2274 ire_refrele(ire);
2275 return (ENETUNREACH);
2276 }

2278 irb = ire->ire_bucket;
2279 irb_refhold(irb);
2280 for (ire1 = irb->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
2281 /*
2282 * For broadcast we can have a mixture of IRE_BROADCAST and
2283 * IRE_HOST due to the manually added IRE_HOSTs that are used
2284 * to trigger the creation of the special CGTP broadcast routes.
2285 * Thus we have to skip if ire_type doesn’t match the original.
2286 */
2287 if (IRE_IS_CONDEMNED(ire1) ||
2288 !(ire1->ire_flags & RTF_MULTIRT) ||
2289 ire1->ire_type != ire->ire_type)
2290 continue;

2292 /* Do the ire argument one after the loop */
2293 if (ire1 == ire)
2294 continue;

2296 ill1 = ire_nexthop_ill(ire1);
2297 if (ill1 == NULL) {
2298 /*
2299 * This ire might not have been picked by
2300 * ire_route_recursive, in which case ire_dep might
2301 * not have been setup yet.
2302 * We kick ire_route_recursive to try to resolve
2303 * starting at ire1.
2304 */
2305 ire_t *ire2;
2306 uint_t match_flags = MATCH_IRE_DSTONLY;

2308 if (ire1->ire_ill != NULL)
2309 match_flags |= MATCH_IRE_ILL;
2310 ire2 = ire_route_recursive_impl_v4(ire1,
2311 ire1->ire_addr, ire1->ire_type, ire1->ire_ill,
2312 ire1->ire_zoneid, NULL, match_flags,
2313 IRR_ALLOCATE, 0, ipst, NULL, NULL, NULL);
2314 if (ire2 != NULL)
2315 ire_refrele(ire2);
2316 ill1 = ire_nexthop_ill(ire1);
2317 }

2319 if (ill1 == NULL) {
2320 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2321 ip_drop_output("ipIfStatsOutDiscards - no ill",
2322 mp, ill);
2323 error = ENETUNREACH;
2324 continue;

new/usr/src/uts/common/inet/ip/ip_output.c 12

2325 }

2327 /* Pick the addr and type to use for arp_nce_init */
2328 if (nce->nce_common->ncec_flags & NCE_F_BCAST) {
2329 ire_type = IRE_BROADCAST;
2330 nexthop = ire1->ire_gateway_addr;
2331 } else if (nce->nce_common->ncec_flags & NCE_F_MCAST) {
2332 ire_type = IRE_MULTICAST;
2333 nexthop = ipha->ipha_dst;
2334 } else {
2335 ire_type = ire1->ire_type; /* Doesn’t matter */
2336 nexthop = ire1->ire_gateway_addr;
2337 }

2339 /* If IPMP meta or under, then we just drop */
2340 if (ill1->ill_grp != NULL) {
2341 BUMP_MIB(ill1->ill_ip_mib, ipIfStatsOutDiscards);
2342 ip_drop_output("ipIfStatsOutDiscards - IPMP",
2343 mp, ill1);
2344 ill_refrele(ill1);
2345 error = ENETUNREACH;
2346 continue;
2347 }

2349 nce1 = arp_nce_init(ill1, nexthop, ire_type);
2350 if (nce1 == NULL) {
2351 BUMP_MIB(ill1->ill_ip_mib, ipIfStatsOutDiscards);
2352 ip_drop_output("ipIfStatsOutDiscards - no nce",
2353 mp, ill1);
2354 ill_refrele(ill1);
2355 error = ENETUNREACH;
2356 continue;
2357 }
2358 mp1 = copymsg(mp);
2359 if (mp1 == NULL) {
2360 BUMP_MIB(ill1->ill_ip_mib, ipIfStatsOutDiscards);
2361 ip_drop_output("ipIfStatsOutDiscards", mp, ill1);
2362 nce_refrele(nce1);
2363 ill_refrele(ill1);
2364 error = ENOBUFS;
2365 continue;
2366 }
2367 /* Preserve HW checksum for this copy */
2368 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
2369 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
2370 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
2371 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
2372 DB_LSOMSS(mp1) = DB_LSOMSS(mp);

2374 ire1->ire_ob_pkt_count++;
2375 err = ip_xmit(mp1, nce1, ixaflags, pkt_len, xmit_hint, szone,
2376 0, ixacookie);
2377 if (err == 0)
2378 num_sent++;
2379 else
2380 error = err;
2381 nce_refrele(nce1);
2382 ill_refrele(ill1);
2383 }
2384 irb_refrele(irb);
2385 ire_refrele(ire);
2386 /* Finally, the main one */
2387 err = ip_xmit(mp, nce, ixaflags, pkt_len, xmit_hint, szone, 0,
2388 ixacookie);
2389 if (err == 0)
2390 num_sent++;

new/usr/src/uts/common/inet/ip/ip_output.c 13

2391 else
2392 error = err;
2393 if (num_sent > 0)
2394 return (0);
2395 else
2396 return (error);
2397 }

2399 /*
2400 * Verify local connectivity. This check is called by ULP fusion code.
2401 * The generation number on an IRE_LOCAL or IRE_LOOPBACK only changes if
2402 * the interface is brought down and back up. So we simply fail the local
2403 * process. The caller, TCP Fusion, should unfuse the connection.
2404 */
2405 boolean_t
2406 ip_output_verify_local(ip_xmit_attr_t *ixa)
2407 {
2408 ire_t *ire = ixa->ixa_ire;

2410 if (!(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)))
2411 return (B_FALSE);

2413 return (ixa->ixa_ire->ire_generation == ixa->ixa_ire_generation);
2414 }

2416 /*
2417 * Local process for ULP loopback, TCP Fusion. Handle both IPv4 and IPv6.
2418 *
2419 * The caller must call ip_output_verify_local() first. This function handles
2420 * IPobs, FW_HOOKS, and/or IPsec cases sequentially.
2421 */
2422 mblk_t *
2423 ip_output_process_local(mblk_t *mp, ip_xmit_attr_t *ixa, boolean_t hooks_out,
2424 boolean_t hooks_in, conn_t *peer_connp)
2425 {
2426 ill_t *ill = ixa->ixa_ire->ire_ill;
2427 ipha_t *ipha = NULL;
2428 ip6_t *ip6h = NULL;
2429 ip_stack_t *ipst = ixa->ixa_ipst;
2430 iaflags_t ixaflags = ixa->ixa_flags;
2431 ip_recv_attr_t iras;
2432 int error;

2434 ASSERT(mp != NULL);

2436 if (ixaflags & IXAF_IS_IPV4) {
2437 ipha = (ipha_t *)mp->b_rptr;

2439 /*
2440 * If a callback is enabled then we need to know the
2441 * source and destination zoneids for the packet. We already
2442 * have those handy.
2443 */
2444 if (ipst->ips_ip4_observe.he_interested) {
2445 zoneid_t szone, dzone;
2446 zoneid_t stackzoneid;

2448 stackzoneid = netstackid_to_zoneid(
2449 ipst->ips_netstack->netstack_stackid);

2451 if (stackzoneid == GLOBAL_ZONEID) {
2452 /* Shared-IP zone */
2453 dzone = ixa->ixa_ire->ire_zoneid;
2454 szone = ixa->ixa_zoneid;
2455 } else {
2456 szone = dzone = stackzoneid;

new/usr/src/uts/common/inet/ip/ip_output.c 14

2457 }
2458 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill,
2459 ipst);
2460 }
2461 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,
2462 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *,
2463 NULL, int, 1);

2465 /* FW_HOOKS: LOOPBACK_OUT */
2466 if (hooks_out) {
2467 DTRACE_PROBE4(ip4__loopback__out__start, ill_t *, NULL,
2468 ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
2469 FW_HOOKS(ipst->ips_ip4_loopback_out_event,
2470 ipst->ips_ipv4firewall_loopback_out,
2471 NULL, ill, ipha, mp, mp, 0, ipst, error);
2472 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp);
2473 }
2474 if (mp == NULL)
2475 return (NULL);

2477 /* FW_HOOKS: LOOPBACK_IN */
2478 if (hooks_in) {
2479 DTRACE_PROBE4(ip4__loopback__in__start, ill_t *, ill,
2480 ill_t *, NULL, ipha_t *, ipha, mblk_t *, mp);
2481 FW_HOOKS(ipst->ips_ip4_loopback_in_event,
2482 ipst->ips_ipv4firewall_loopback_in,
2483 ill, NULL, ipha, mp, mp, 0, ipst, error);
2484 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp);
2485 }
2486 if (mp == NULL)
2487 return (NULL);

2489 DTRACE_IP7(receive, mblk_t *, mp, conn_t *, NULL, void_ip_t *,
2490 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *,
2491 NULL, int, 1);

2493 /* Inbound IPsec polocies */
2494 if (peer_connp != NULL) {
2495 /* Map ixa to ira including IPsec policies. */
2496 ipsec_out_to_in(ixa, ill, &iras);
2497 mp = ipsec_check_inbound_policy(mp, peer_connp, ipha,
2498 NULL, &iras);
2499 }
2500 } else {
2501 ip6h = (ip6_t *)mp->b_rptr;

2503 /*
2504 * If a callback is enabled then we need to know the
2505 * source and destination zoneids for the packet. We already
2506 * have those handy.
2507 */
2508 if (ipst->ips_ip6_observe.he_interested) {
2509 zoneid_t szone, dzone;
2510 zoneid_t stackzoneid;

2512 stackzoneid = netstackid_to_zoneid(
2513 ipst->ips_netstack->netstack_stackid);

2515 if (stackzoneid == GLOBAL_ZONEID) {
2516 /* Shared-IP zone */
2517 dzone = ixa->ixa_ire->ire_zoneid;
2518 szone = ixa->ixa_zoneid;
2519 } else {
2520 szone = dzone = stackzoneid;
2521 }
2522 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill,

new/usr/src/uts/common/inet/ip/ip_output.c 15

2523 ipst);
2524 }
2525 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,
2526 ip6h, __dtrace_ipsr_ill_t *, ill, ipha_t *, NULL, ip6_t *,
2527 ip6h, int, 1);

2529 /* FW_HOOKS: LOOPBACK_OUT */
2530 if (hooks_out) {
2531 DTRACE_PROBE4(ip6__loopback__out__start, ill_t *, NULL,
2532 ill_t *, ill, ip6_t *, ip6h, mblk_t *, mp);
2533 FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
2534 ipst->ips_ipv6firewall_loopback_out,
2535 NULL, ill, ip6h, mp, mp, 0, ipst, error);
2536 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp);
2537 }
2538 if (mp == NULL)
2539 return (NULL);

2541 /* FW_HOOKS: LOOPBACK_IN */
2542 if (hooks_in) {
2543 DTRACE_PROBE4(ip6__loopback__in__start, ill_t *, ill,
2544 ill_t *, NULL, ip6_t *, ip6h, mblk_t *, mp);
2545 FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
2546 ipst->ips_ipv6firewall_loopback_in,
2547 ill, NULL, ip6h, mp, mp, 0, ipst, error);
2548 DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp);
2549 }
2550 if (mp == NULL)
2551 return (NULL);

2553 DTRACE_IP7(receive, mblk_t *, mp, conn_t *, NULL, void_ip_t *,
2554 ip6h, __dtrace_ipsr_ill_t *, ill, ipha_t *, NULL, ip6_t *,
2555 ip6h, int, 1);

2557 /* Inbound IPsec polocies */
2558 if (peer_connp != NULL) {
2559 /* Map ixa to ira including IPsec policies. */
2560 ipsec_out_to_in(ixa, ill, &iras);
2561 mp = ipsec_check_inbound_policy(mp, peer_connp, NULL,
2562 ip6h, &iras);
2563 }
2564 }

2566 if (mp == NULL) {
2567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2568 ip_drop_input("ipIfStatsInDiscards", NULL, ill);
2569 }

2571 return (mp);
2572 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 1

**
 90251 Sat Aug 18 10:37:17 2012
new/usr/src/uts/common/inet/ip/ipclassifier.c
dccp: conn_t
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 /*
26 * IP PACKET CLASSIFIER
27 *
28 * The IP packet classifier provides mapping between IP packets and persistent
29 * connection state for connection-oriented protocols. It also provides
30 * interface for managing connection states.
31 *
32 * The connection state is kept in conn_t data structure and contains, among
33 * other things:
34 *
35 * o local/remote address and ports
36 * o Transport protocol
37 * o squeue for the connection (for TCP only)
38 * o reference counter
39 * o Connection state
40 * o hash table linkage
41 * o interface/ire information
42 * o credentials
43 * o ipsec policy
44 * o send and receive functions.
45 * o mutex lock.
46 *
47 * Connections use a reference counting scheme. They are freed when the
48 * reference counter drops to zero. A reference is incremented when connection
49 * is placed in a list or table, when incoming packet for the connection arrives
50 * and when connection is processed via squeue (squeue processing may be
51 * asynchronous and the reference protects the connection from being destroyed
52 * before its processing is finished).
53 *
54 * conn_recv is used to pass up packets to the ULP.
55 * For TCP conn_recv changes. It is tcp_input_listener_unbound initially for
56 * a listener, and changes to tcp_input_listener as the listener has picked a
57 * good squeue. For other cases it is set to tcp_input_data.
58 *
59 * conn_recvicmp is used to pass up ICMP errors to the ULP.
60 *
61 * Classifier uses several hash tables:

new/usr/src/uts/common/inet/ip/ipclassifier.c 2

62 *
63 * ipcl_conn_fanout: contains all TCP connections in CONNECTED state
64 * ipcl_bind_fanout: contains all connections in BOUND state
65 * ipcl_proto_fanout: IPv4 protocol fanout
66 * ipcl_proto_fanout_v6: IPv6 protocol fanout
67 * ipcl_udp_fanout: contains all UDP connections
68 * ipcl_iptun_fanout: contains all IP tunnel connections
69 * ipcl_globalhash_fanout: contains all connections
70 *‘ ipcl_dccp_conn_fanout: contains all DCCP connections in CONNECTED state
71 * ipcl_dccp_bind_fanout: contains all DCCP connections in BOUND state
72 #endif /* ! codereview */
73 *
74 * The ipcl_globalhash_fanout is used for any walkers (like snmp and Clustering)
75 * which need to view all existing connections.
76 *
77 * All tables are protected by per-bucket locks. When both per-bucket lock and
78 * connection lock need to be held, the per-bucket lock should be acquired
79 * first, followed by the connection lock.
80 *
81 * All functions doing search in one of these tables increment a reference
82 * counter on the connection found (if any). This reference should be dropped
83 * when the caller has finished processing the connection.
84 *
85 *
86 * INTERFACES:
87 * ===========
88 *
89 * Connection Lookup:
90 * ------------------
91 *
92 * conn_t *ipcl_classify_v4(mp, protocol, hdr_len, ira, ip_stack)
93 * conn_t *ipcl_classify_v6(mp, protocol, hdr_len, ira, ip_stack)
94 *
95 * Finds connection for an incoming IPv4 or IPv6 packet. Returns NULL if
96 * it can’t find any associated connection. If the connection is found, its
97 * reference counter is incremented.
98 *
99 * mp: mblock, containing packet header. The full header should fit
100 * into a single mblock. It should also contain at least full IP
101 * and TCP or UDP header.
102 *
103 * protocol: Either IPPROTO_TCP or IPPROTO_UDP.
104 *
105 * hdr_len: The size of IP header. It is used to find TCP or UDP header in
106 * the packet.
107 *
108 * ira->ira_zoneid: The zone in which the returned connection must be; the
109 * zoneid corresponding to the ire_zoneid on the IRE located for
110 * the packet’s destination address.
111 *
112 * ira->ira_flags: Contains the IRAF_TX_MAC_EXEMPTABLE and
113 * IRAF_TX_SHARED_ADDR flags
114 *
115 * For TCP connections, the lookup order is as follows:
116 * 5-tuple {src, dst, protocol, local port, remote port}
117 * lookup in ipcl_conn_fanout table.
118 * 3-tuple {dst, remote port, protocol} lookup in
119 * ipcl_bind_fanout table.
120 *
121 * For UDP connections, a 5-tuple {src, dst, protocol, local port,
122 * remote port} lookup is done on ipcl_udp_fanout. Note that,
123 * these interfaces do not handle cases where a packets belongs
124 * to multiple UDP clients, which is handled in IP itself.
125 *
126 * If the destination IRE is ALL_ZONES (indicated by zoneid), then we must
127 * determine which actual zone gets the segment. This is used only in a

new/usr/src/uts/common/inet/ip/ipclassifier.c 3

128 * labeled environment. The matching rules are:
129 *
130 * - If it’s not a multilevel port, then the label on the packet selects
131 * the zone. Unlabeled packets are delivered to the global zone.
132 *
133 * - If it’s a multilevel port, then only the zone registered to receive
134 * packets on that port matches.
135 *
136 * Also, in a labeled environment, packet labels need to be checked. For fully
137 * bound TCP connections, we can assume that the packet label was checked
138 * during connection establishment, and doesn’t need to be checked on each
139 * packet. For others, though, we need to check for strict equality or, for
140 * multilevel ports, membership in the range or set. This part currently does
141 * a tnrh lookup on each packet, but could be optimized to use cached results
142 * if that were necessary. (SCTP doesn’t come through here, but if it did,
143 * we would apply the same rules as TCP.)
144 *
145 * An implication of the above is that fully-bound TCP sockets must always use
146 * distinct 4-tuples; they can’t be discriminated by label alone.
147 *
148 * Note that we cannot trust labels on packets sent to fully-bound UDP sockets,
149 * as there’s no connection set-up handshake and no shared state.
150 *
151 * Labels on looped-back packets within a single zone do not need to be
152 * checked, as all processes in the same zone have the same label.
153 *
154 * Finally, for unlabeled packets received by a labeled system, special rules
155 * apply. We consider only the MLP if there is one. Otherwise, we prefer a
156 * socket in the zone whose label matches the default label of the sender, if
157 * any. In any event, the receiving socket must have SO_MAC_EXEMPT set and the
158 * receiver’s label must dominate the sender’s default label.
159 *
160 * conn_t *ipcl_tcp_lookup_reversed_ipv4(ipha_t *, tcpha_t *, int, ip_stack);
161 * conn_t *ipcl_tcp_lookup_reversed_ipv6(ip6_t *, tcpha_t *, int, uint_t,
162 * ip_stack);
163 *
164 * Lookup routine to find a exact match for {src, dst, local port,
165 * remote port) for TCP connections in ipcl_conn_fanout. The address and
166 * ports are read from the IP and TCP header respectively.
167 *
168 * conn_t *ipcl_lookup_listener_v4(lport, laddr, protocol,
169 * zoneid, ip_stack);
170 * conn_t *ipcl_lookup_listener_v6(lport, laddr, protocol, ifindex,
171 * zoneid, ip_stack);
172 *
173 * Lookup routine to find a listener with the tuple {lport, laddr,
174 * protocol} in the ipcl_bind_fanout table. For IPv6, an additional
175 * parameter interface index is also compared.
176 *
177 * void ipcl_walk(func, arg, ip_stack)
178 *
179 * Apply ’func’ to every connection available. The ’func’ is called as
180 * (*func)(connp, arg). The walk is non-atomic so connections may be
181 * created and destroyed during the walk. The CONN_CONDEMNED and
182 * CONN_INCIPIENT flags ensure that connections which are newly created
183 * or being destroyed are not selected by the walker.
184 *
185 * Table Updates
186 * -------------
187 *
188 * int ipcl_conn_insert(connp);
189 * int ipcl_conn_insert_v4(connp);
190 * int ipcl_conn_insert_v6(connp);
191 *
192 * Insert ’connp’ in the ipcl_conn_fanout.
193 * Arguements :

new/usr/src/uts/common/inet/ip/ipclassifier.c 4

194 * connp conn_t to be inserted
195 *
196 * Return value :
197 * 0 if connp was inserted
198 * EADDRINUSE if the connection with the same tuple
199 * already exists.
200 *
201 * int ipcl_bind_insert(connp);
202 * int ipcl_bind_insert_v4(connp);
203 * int ipcl_bind_insert_v6(connp);
204 *
205 * Insert ’connp’ in ipcl_bind_fanout.
206 * Arguements :
207 * connp conn_t to be inserted
208 *
209 *
210 * void ipcl_hash_remove(connp);
211 *
212 * Removes the ’connp’ from the connection fanout table.
213 *
214 * Connection Creation/Destruction
215 * -------------------------------
216 *
217 * conn_t *ipcl_conn_create(type, sleep, netstack_t *)
218 *
219 * Creates a new conn based on the type flag, inserts it into
220 * globalhash table.
221 *
222 * type: This flag determines the type of conn_t which needs to be
223 * created i.e., which kmem_cache it comes from.
224 * IPCL_TCPCONN indicates a TCP connection
225 * IPCL_SCTPCONN indicates a SCTP connection
226 * IPCL_UDPCONN indicates a UDP conn_t.
227 * IPCL_RAWIPCONN indicates a RAWIP/ICMP conn_t.
228 * IPCL_RTSCONN indicates a RTS conn_t.
229 * IPCL_DCCPCONN indicates a DCCP conn_t.
230 #endif /* ! codereview */
231 * IPCL_IPCCONN indicates all other connections.
232 *
233 * void ipcl_conn_destroy(connp)
234 *
235 * Destroys the connection state, removes it from the global
236 * connection hash table and frees its memory.
237 */

239 #include <sys/types.h>
240 #include <sys/stream.h>
241 #include <sys/stropts.h>
242 #include <sys/sysmacros.h>
243 #include <sys/strsubr.h>
244 #include <sys/strsun.h>
245 #define _SUN_TPI_VERSION 2
246 #include <sys/ddi.h>
247 #include <sys/cmn_err.h>
248 #include <sys/debug.h>

250 #include <sys/systm.h>
251 #include <sys/param.h>
252 #include <sys/kmem.h>
253 #include <sys/isa_defs.h>
254 #include <inet/common.h>
255 #include <netinet/ip6.h>
256 #include <netinet/icmp6.h>

258 #include <inet/ip.h>
259 #include <inet/ip_if.h>

new/usr/src/uts/common/inet/ip/ipclassifier.c 5

260 #include <inet/ip_ire.h>
261 #include <inet/ip6.h>
262 #include <inet/ip_ndp.h>
263 #include <inet/ip_impl.h>
264 #include <inet/udp_impl.h>
265 #include <inet/dccp_impl.h>
266 #endif /* ! codereview */
267 #include <inet/sctp_ip.h>
268 #include <inet/sctp/sctp_impl.h>
269 #include <inet/rawip_impl.h>
270 #include <inet/rts_impl.h>
271 #include <inet/iptun/iptun_impl.h>

273 #include <sys/cpuvar.h>

275 #include <inet/ipclassifier.h>
276 #include <inet/tcp.h>
277 #include <inet/ipsec_impl.h>

279 #include <sys/tsol/tnet.h>
280 #include <sys/sockio.h>

282 /* Old value for compatibility. Setable in /etc/system */
283 uint_t tcp_conn_hash_size = 0;

285 /* New value. Zero means choose automatically. Setable in /etc/system */
286 uint_t ipcl_conn_hash_size = 0;
287 uint_t ipcl_conn_hash_memfactor = 8192;
288 uint_t ipcl_conn_hash_maxsize = 82500;

290 /* bind/udp fanout table size */
291 uint_t ipcl_bind_fanout_size = 512;
292 uint_t ipcl_udp_fanout_size = 16384;

294 /* Fanout table sizes for dccp */
295 uint_t ipcl_dccp_conn_fanout_size = 512;
296 uint_t ipcl_dccp_bind_fanout_size = 512;

298 #endif /* ! codereview */
299 /* Raw socket fanout size. Must be a power of 2. */
300 uint_t ipcl_raw_fanout_size = 256;

302 /*
303 * The IPCL_IPTUN_HASH() function works best with a prime table size. We
304 * expect that most large deployments would have hundreds of tunnels, and
305 * thousands in the extreme case.
306 */
307 uint_t ipcl_iptun_fanout_size = 6143;

309 /*
310 * Power of 2^N Primes useful for hashing for N of 0-28,
311 * these primes are the nearest prime <= 2^N - 2^(N-2).
312 */

314 #define P2Ps() {0, 0, 0, 5, 11, 23, 47, 89, 191, 383, 761, 1531, 3067, \
315 6143, 12281, 24571, 49139, 98299, 196597, 393209, \
316 786431, 1572853, 3145721, 6291449, 12582893, 25165813, \
317 50331599, 100663291, 201326557, 0}

319 /*
320 * wrapper structure to ensure that conn and what follows it (tcp_t, etc)
321 * are aligned on cache lines.
322 */
323 typedef union itc_s {
324 conn_t itc_conn;
325 char itcu_filler[CACHE_ALIGN(conn_s)];

new/usr/src/uts/common/inet/ip/ipclassifier.c 6

326 } itc_t;

328 struct kmem_cache *tcp_conn_cache;
329 struct kmem_cache *ip_conn_cache;
330 extern struct kmem_cache *sctp_conn_cache;
331 struct kmem_cache *udp_conn_cache;
332 struct kmem_cache *rawip_conn_cache;
333 struct kmem_cache *rts_conn_cache;
334 struct kmem_cache *dccp_conn_cache;
335 #endif /* ! codereview */

337 extern void tcp_timermp_free(tcp_t *);
338 extern mblk_t *tcp_timermp_alloc(int);

340 static int ip_conn_constructor(void *, void *, int);
341 static void ip_conn_destructor(void *, void *);

343 static int tcp_conn_constructor(void *, void *, int);
344 static void tcp_conn_destructor(void *, void *);

346 static int udp_conn_constructor(void *, void *, int);
347 static void udp_conn_destructor(void *, void *);

349 static int rawip_conn_constructor(void *, void *, int);
350 static void rawip_conn_destructor(void *, void *);

352 static int rts_conn_constructor(void *, void *, int);
353 static void rts_conn_destructor(void *, void *);

355 static int dccp_conn_constructor(void *, void *, int);
356 static void dccp_conn_destructor(void *, void *);

358 #endif /* ! codereview */
359 /*
360 * Global (for all stack instances) init routine
361 */
362 void
363 ipcl_g_init(void)
364 {
365 ip_conn_cache = kmem_cache_create("ip_conn_cache",
366 sizeof (conn_t), CACHE_ALIGN_SIZE,
367 ip_conn_constructor, ip_conn_destructor,
368 NULL, NULL, NULL, 0);

370 tcp_conn_cache = kmem_cache_create("tcp_conn_cache",
371 sizeof (itc_t) + sizeof (tcp_t), CACHE_ALIGN_SIZE,
372 tcp_conn_constructor, tcp_conn_destructor,
373 tcp_conn_reclaim, NULL, NULL, 0);

375 udp_conn_cache = kmem_cache_create("udp_conn_cache",
376 sizeof (itc_t) + sizeof (udp_t), CACHE_ALIGN_SIZE,
377 udp_conn_constructor, udp_conn_destructor,
378 NULL, NULL, NULL, 0);

380 rawip_conn_cache = kmem_cache_create("rawip_conn_cache",
381 sizeof (itc_t) + sizeof (icmp_t), CACHE_ALIGN_SIZE,
382 rawip_conn_constructor, rawip_conn_destructor,
383 NULL, NULL, NULL, 0);

385 rts_conn_cache = kmem_cache_create("rts_conn_cache",
386 sizeof (itc_t) + sizeof (rts_t), CACHE_ALIGN_SIZE,
387 rts_conn_constructor, rts_conn_destructor,
388 NULL, NULL, NULL, 0);

390 /* XXX:DCCP reclaim */
391 dccp_conn_cache = kmem_cache_create("dccp_conn_cache",

new/usr/src/uts/common/inet/ip/ipclassifier.c 7

392 sizeof (itc_t) + sizeof (dccp_t), CACHE_ALIGN_SIZE,
393 dccp_conn_constructor, dccp_conn_destructor,
394 NULL, NULL, NULL, 0);
395 #endif /* ! codereview */
396 }

398 /*
399 * ipclassifier intialization routine, sets up hash tables.
400 */
401 void
402 ipcl_init(ip_stack_t *ipst)
403 {
404 int i;
405 int sizes[] = P2Ps();

407 /*
408 * Calculate size of conn fanout table from /etc/system settings
409 */
410 if (ipcl_conn_hash_size != 0) {
411 ipst->ips_ipcl_conn_fanout_size = ipcl_conn_hash_size;
412 } else if (tcp_conn_hash_size != 0) {
413 ipst->ips_ipcl_conn_fanout_size = tcp_conn_hash_size;
414 } else {
415 extern pgcnt_t freemem;

417 ipst->ips_ipcl_conn_fanout_size =
418 (freemem * PAGESIZE) / ipcl_conn_hash_memfactor;

420 if (ipst->ips_ipcl_conn_fanout_size > ipcl_conn_hash_maxsize) {
421 ipst->ips_ipcl_conn_fanout_size =
422 ipcl_conn_hash_maxsize;
423 }
424 }

426 for (i = 9; i < sizeof (sizes) / sizeof (*sizes) - 1; i++) {
427 if (sizes[i] >= ipst->ips_ipcl_conn_fanout_size) {
428 break;
429 }
430 }
431 if ((ipst->ips_ipcl_conn_fanout_size = sizes[i]) == 0) {
432 /* Out of range, use the 2^16 value */
433 ipst->ips_ipcl_conn_fanout_size = sizes[16];
434 }

436 /* Take values from /etc/system */
437 ipst->ips_ipcl_bind_fanout_size = ipcl_bind_fanout_size;
438 ipst->ips_ipcl_dccp_conn_fanout_size = ipcl_dccp_conn_fanout_size;
439 ipst->ips_ipcl_dccp_bind_fanout_size = ipcl_dccp_bind_fanout_size;
440 #endif /* ! codereview */
441 ipst->ips_ipcl_udp_fanout_size = ipcl_udp_fanout_size;
442 ipst->ips_ipcl_raw_fanout_size = ipcl_raw_fanout_size;
443 ipst->ips_ipcl_iptun_fanout_size = ipcl_iptun_fanout_size;

445 ASSERT(ipst->ips_ipcl_conn_fanout == NULL);

447 ipst->ips_ipcl_conn_fanout = kmem_zalloc(
448 ipst->ips_ipcl_conn_fanout_size * sizeof (connf_t), KM_SLEEP);

450 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
451 mutex_init(&ipst->ips_ipcl_conn_fanout[i].connf_lock, NULL,
452 MUTEX_DEFAULT, NULL);
453 }

455 ipst->ips_ipcl_bind_fanout = kmem_zalloc(
456 ipst->ips_ipcl_bind_fanout_size * sizeof (connf_t), KM_SLEEP);

new/usr/src/uts/common/inet/ip/ipclassifier.c 8

458 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
459 mutex_init(&ipst->ips_ipcl_bind_fanout[i].connf_lock, NULL,
460 MUTEX_DEFAULT, NULL);
461 }

463 ipst->ips_ipcl_proto_fanout_v4 = kmem_zalloc(IPPROTO_MAX *
464 sizeof (connf_t), KM_SLEEP);
465 for (i = 0; i < IPPROTO_MAX; i++) {
466 mutex_init(&ipst->ips_ipcl_proto_fanout_v4[i].connf_lock, NULL,
467 MUTEX_DEFAULT, NULL);
468 }

470 ipst->ips_ipcl_proto_fanout_v6 = kmem_zalloc(IPPROTO_MAX *
471 sizeof (connf_t), KM_SLEEP);
472 for (i = 0; i < IPPROTO_MAX; i++) {
473 mutex_init(&ipst->ips_ipcl_proto_fanout_v6[i].connf_lock, NULL,
474 MUTEX_DEFAULT, NULL);
475 }

477 ipst->ips_rts_clients = kmem_zalloc(sizeof (connf_t), KM_SLEEP);
478 mutex_init(&ipst->ips_rts_clients->connf_lock,
479 NULL, MUTEX_DEFAULT, NULL);

481 ipst->ips_ipcl_udp_fanout = kmem_zalloc(
482 ipst->ips_ipcl_udp_fanout_size * sizeof (connf_t), KM_SLEEP);
483 for (i = 0; i < ipst->ips_ipcl_udp_fanout_size; i++) {
484 mutex_init(&ipst->ips_ipcl_udp_fanout[i].connf_lock, NULL,
485 MUTEX_DEFAULT, NULL);
486 }

488 ipst->ips_ipcl_iptun_fanout = kmem_zalloc(
489 ipst->ips_ipcl_iptun_fanout_size * sizeof (connf_t), KM_SLEEP);
490 for (i = 0; i < ipst->ips_ipcl_iptun_fanout_size; i++) {
491 mutex_init(&ipst->ips_ipcl_iptun_fanout[i].connf_lock, NULL,
492 MUTEX_DEFAULT, NULL);
493 }

495 ipst->ips_ipcl_raw_fanout = kmem_zalloc(
496 ipst->ips_ipcl_raw_fanout_size * sizeof (connf_t), KM_SLEEP);
497 for (i = 0; i < ipst->ips_ipcl_raw_fanout_size; i++) {
498 mutex_init(&ipst->ips_ipcl_raw_fanout[i].connf_lock, NULL,
499 MUTEX_DEFAULT, NULL);
500 }

502 ipst->ips_ipcl_globalhash_fanout = kmem_zalloc(
503 sizeof (connf_t) * CONN_G_HASH_SIZE, KM_SLEEP);
504 for (i = 0; i < CONN_G_HASH_SIZE; i++) {
505 mutex_init(&ipst->ips_ipcl_globalhash_fanout[i].connf_lock,
506 NULL, MUTEX_DEFAULT, NULL);
507 }

509 ipst->ips_ipcl_dccp_conn_fanout = kmem_zalloc(
510 ipst->ips_ipcl_dccp_conn_fanout_size * sizeof (connf_t), KM_SLEEP);
511 for (i = 0; i < ipst->ips_ipcl_dccp_conn_fanout_size; i++) {
512 mutex_init(&ipst->ips_ipcl_dccp_conn_fanout[i].connf_lock, NULL,
513 MUTEX_DEFAULT, NULL);
514 }

516 ipst->ips_ipcl_dccp_bind_fanout = kmem_zalloc(
517 ipst->ips_ipcl_dccp_bind_fanout_size * sizeof (connf_t), KM_SLEEP);
518 for (i = 0; i < ipst->ips_ipcl_dccp_bind_fanout_size; i++) {
519 mutex_init(&ipst->ips_ipcl_dccp_bind_fanout[i].connf_lock, NULL,
520 MUTEX_DEFAULT, NULL);
521 }
522 #endif /* ! codereview */
523 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 9

525 void
526 ipcl_g_destroy(void)
527 {
528 kmem_cache_destroy(ip_conn_cache);
529 kmem_cache_destroy(tcp_conn_cache);
530 kmem_cache_destroy(udp_conn_cache);
531 kmem_cache_destroy(rawip_conn_cache);
532 kmem_cache_destroy(rts_conn_cache);
533 kmem_cache_destroy(dccp_conn_cache);
534 #endif /* ! codereview */
535 }

537 /*
538 * All user-level and kernel use of the stack must be gone
539 * by now.
540 */
541 void
542 ipcl_destroy(ip_stack_t *ipst)
543 {
544 int i;

546 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
547 ASSERT(ipst->ips_ipcl_conn_fanout[i].connf_head == NULL);
548 mutex_destroy(&ipst->ips_ipcl_conn_fanout[i].connf_lock);
549 }
550 kmem_free(ipst->ips_ipcl_conn_fanout, ipst->ips_ipcl_conn_fanout_size *
551 sizeof (connf_t));
552 ipst->ips_ipcl_conn_fanout = NULL;

554 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
555 ASSERT(ipst->ips_ipcl_bind_fanout[i].connf_head == NULL);
556 mutex_destroy(&ipst->ips_ipcl_bind_fanout[i].connf_lock);
557 }
558 kmem_free(ipst->ips_ipcl_bind_fanout, ipst->ips_ipcl_bind_fanout_size *
559 sizeof (connf_t));
560 ipst->ips_ipcl_bind_fanout = NULL;

562 for (i = 0; i < IPPROTO_MAX; i++) {
563 ASSERT(ipst->ips_ipcl_proto_fanout_v4[i].connf_head == NULL);
564 mutex_destroy(&ipst->ips_ipcl_proto_fanout_v4[i].connf_lock);
565 }
566 kmem_free(ipst->ips_ipcl_proto_fanout_v4,
567 IPPROTO_MAX * sizeof (connf_t));
568 ipst->ips_ipcl_proto_fanout_v4 = NULL;

570 for (i = 0; i < IPPROTO_MAX; i++) {
571 ASSERT(ipst->ips_ipcl_proto_fanout_v6[i].connf_head == NULL);
572 mutex_destroy(&ipst->ips_ipcl_proto_fanout_v6[i].connf_lock);
573 }
574 kmem_free(ipst->ips_ipcl_proto_fanout_v6,
575 IPPROTO_MAX * sizeof (connf_t));
576 ipst->ips_ipcl_proto_fanout_v6 = NULL;

578 for (i = 0; i < ipst->ips_ipcl_udp_fanout_size; i++) {
579 ASSERT(ipst->ips_ipcl_udp_fanout[i].connf_head == NULL);
580 mutex_destroy(&ipst->ips_ipcl_udp_fanout[i].connf_lock);
581 }
582 kmem_free(ipst->ips_ipcl_udp_fanout, ipst->ips_ipcl_udp_fanout_size *
583 sizeof (connf_t));
584 ipst->ips_ipcl_udp_fanout = NULL;

586 for (i = 0; i < ipst->ips_ipcl_iptun_fanout_size; i++) {
587 ASSERT(ipst->ips_ipcl_iptun_fanout[i].connf_head == NULL);
588 mutex_destroy(&ipst->ips_ipcl_iptun_fanout[i].connf_lock);
589 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 10

590 kmem_free(ipst->ips_ipcl_iptun_fanout,
591 ipst->ips_ipcl_iptun_fanout_size * sizeof (connf_t));
592 ipst->ips_ipcl_iptun_fanout = NULL;

594 for (i = 0; i < ipst->ips_ipcl_raw_fanout_size; i++) {
595 ASSERT(ipst->ips_ipcl_raw_fanout[i].connf_head == NULL);
596 mutex_destroy(&ipst->ips_ipcl_raw_fanout[i].connf_lock);
597 }
598 kmem_free(ipst->ips_ipcl_raw_fanout, ipst->ips_ipcl_raw_fanout_size *
599 sizeof (connf_t));
600 ipst->ips_ipcl_raw_fanout = NULL;

602 for (i = 0; i < CONN_G_HASH_SIZE; i++) {
603 ASSERT(ipst->ips_ipcl_globalhash_fanout[i].connf_head == NULL);
604 mutex_destroy(&ipst->ips_ipcl_globalhash_fanout[i].connf_lock);
605 }
606 kmem_free(ipst->ips_ipcl_globalhash_fanout,
607 sizeof (connf_t) * CONN_G_HASH_SIZE);
608 ipst->ips_ipcl_globalhash_fanout = NULL;

610 for (i = 0; i < ipst->ips_ipcl_dccp_conn_fanout_size; i++) {
611 ASSERT(ipst->ips_ipcl_dccp_conn_fanout[i].connf_head == NULL);
612 mutex_destroy(&ipst->ips_ipcl_dccp_conn_fanout[i].connf_lock);
613 }
614 kmem_free(ipst->ips_ipcl_dccp_conn_fanout,
615 ipst->ips_ipcl_dccp_conn_fanout_size * sizeof (connf_t));
616 ipst->ips_ipcl_dccp_conn_fanout = NULL;

618 for (i = 0; i < ipst->ips_ipcl_dccp_bind_fanout_size; i++) {
619 ASSERT(ipst->ips_ipcl_dccp_bind_fanout[i].connf_head == NULL);
620 mutex_destroy(&ipst->ips_ipcl_dccp_bind_fanout[i].connf_lock);
621 }
622 kmem_free(ipst->ips_ipcl_dccp_bind_fanout,
623 ipst->ips_ipcl_dccp_bind_fanout_size * sizeof (connf_t));
624 ipst->ips_ipcl_dccp_bind_fanout = NULL;

626 #endif /* ! codereview */
627 ASSERT(ipst->ips_rts_clients->connf_head == NULL);
628 mutex_destroy(&ipst->ips_rts_clients->connf_lock);
629 kmem_free(ipst->ips_rts_clients, sizeof (connf_t));
630 ipst->ips_rts_clients = NULL;
631 }

633 /*
634 * conn creation routine. initialize the conn, sets the reference
635 * and inserts it in the global hash table.
636 */
637 conn_t *
638 ipcl_conn_create(uint32_t type, int sleep, netstack_t *ns)
639 {
640 conn_t *connp;
641 struct kmem_cache *conn_cache;

643 switch (type) {
644 case IPCL_SCTPCONN:
645 if ((connp = kmem_cache_alloc(sctp_conn_cache, sleep)) == NULL)
646 return (NULL);
647 sctp_conn_init(connp);
648 netstack_hold(ns);
649 connp->conn_netstack = ns;
650 connp->conn_ixa->ixa_ipst = ns->netstack_ip;
651 connp->conn_ixa->ixa_conn_id = (long)connp;
652 ipcl_globalhash_insert(connp);
653 return (connp);

655 case IPCL_TCPCONN:

new/usr/src/uts/common/inet/ip/ipclassifier.c 11

656 conn_cache = tcp_conn_cache;
657 break;

659 case IPCL_UDPCONN:
660 conn_cache = udp_conn_cache;
661 break;

663 case IPCL_RAWIPCONN:
664 conn_cache = rawip_conn_cache;
665 break;

667 case IPCL_RTSCONN:
668 conn_cache = rts_conn_cache;
669 break;

671 case IPCL_IPCCONN:
672 conn_cache = ip_conn_cache;
673 break;

675 case IPCL_DCCPCONN:
676 conn_cache = dccp_conn_cache;
677 break;

679 #endif /* ! codereview */
680 default:
681 connp = NULL;
682 ASSERT(0);
683 }

685 if ((connp = kmem_cache_alloc(conn_cache, sleep)) == NULL)
686 return (NULL);

688 connp->conn_ref = 1;
689 netstack_hold(ns);
690 connp->conn_netstack = ns;
691 connp->conn_ixa->ixa_ipst = ns->netstack_ip;
692 connp->conn_ixa->ixa_conn_id = (long)connp;
693 ipcl_globalhash_insert(connp);
694 return (connp);
695 }

697 void
698 ipcl_conn_destroy(conn_t *connp)
699 {
700 mblk_t *mp;
701 netstack_t *ns = connp->conn_netstack;

703 ASSERT(!MUTEX_HELD(&connp->conn_lock));
704 ASSERT(connp->conn_ref == 0);
705 ASSERT(connp->conn_ioctlref == 0);

707 DTRACE_PROBE1(conn__destroy, conn_t *, connp);

709 if (connp->conn_cred != NULL) {
710 crfree(connp->conn_cred);
711 connp->conn_cred = NULL;
712 /* ixa_cred done in ipcl_conn_cleanup below */
713 }

715 if (connp->conn_ht_iphc != NULL) {
716 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
717 connp->conn_ht_iphc = NULL;
718 connp->conn_ht_iphc_allocated = 0;
719 connp->conn_ht_iphc_len = 0;
720 connp->conn_ht_ulp = NULL;
721 connp->conn_ht_ulp_len = 0;

new/usr/src/uts/common/inet/ip/ipclassifier.c 12

722 }
723 ip_pkt_free(&connp->conn_xmit_ipp);

725 ipcl_globalhash_remove(connp);

727 if (connp->conn_latch != NULL) {
728 IPLATCH_REFRELE(connp->conn_latch);
729 connp->conn_latch = NULL;
730 }
731 if (connp->conn_latch_in_policy != NULL) {
732 IPPOL_REFRELE(connp->conn_latch_in_policy);
733 connp->conn_latch_in_policy = NULL;
734 }
735 if (connp->conn_latch_in_action != NULL) {
736 IPACT_REFRELE(connp->conn_latch_in_action);
737 connp->conn_latch_in_action = NULL;
738 }
739 if (connp->conn_policy != NULL) {
740 IPPH_REFRELE(connp->conn_policy, ns);
741 connp->conn_policy = NULL;
742 }

744 if (connp->conn_ipsec_opt_mp != NULL) {
745 freemsg(connp->conn_ipsec_opt_mp);
746 connp->conn_ipsec_opt_mp = NULL;
747 }

749 if (connp->conn_flags & IPCL_TCPCONN) {
750 tcp_t *tcp = connp->conn_tcp;

752 tcp_free(tcp);
753 mp = tcp->tcp_timercache;

755 tcp->tcp_tcps = NULL;

757 /*
758 * tcp_rsrv_mp can be NULL if tcp_get_conn() fails to allocate
759 * the mblk.
760 */
761 if (tcp->tcp_rsrv_mp != NULL) {
762 freeb(tcp->tcp_rsrv_mp);
763 tcp->tcp_rsrv_mp = NULL;
764 mutex_destroy(&tcp->tcp_rsrv_mp_lock);
765 }

767 ipcl_conn_cleanup(connp);
768 connp->conn_flags = IPCL_TCPCONN;
769 if (ns != NULL) {
770 ASSERT(tcp->tcp_tcps == NULL);
771 connp->conn_netstack = NULL;
772 connp->conn_ixa->ixa_ipst = NULL;
773 netstack_rele(ns);
774 }

776 bzero(tcp, sizeof (tcp_t));

778 tcp->tcp_timercache = mp;
779 tcp->tcp_connp = connp;
780 kmem_cache_free(tcp_conn_cache, connp);
781 return;
782 }

784 if (connp->conn_flags & IPCL_SCTPCONN) {
785 ASSERT(ns != NULL);
786 sctp_free(connp);
787 return;

new/usr/src/uts/common/inet/ip/ipclassifier.c 13

788 }

790 if (connp->conn_flags & IPCL_DCCPCONN) {
791 dccp_t *dccp = connp->conn_dccp;

793 cmn_err(CE_NOTE, "ipclassifier: conn_flags DCCP cache_free");

795 dccp_free(dccp);
796 mp = dccp->dccp_timercache;

798 dccp->dccp_dccps = NULL;

800 ipcl_conn_cleanup(connp);
801 connp->conn_flags = IPCL_DCCPCONN;
802 if (ns != NULL) {
803 ASSERT(dccp->dccps == NULL);
804 connp->conn_netstack = NULL;
805 connp->conn_ixa->ixa_ipst = NULL;
806 netstack_rele(ns);
807 }

809 bzero(dccp, sizeof (dccp_t));

811 dccp->dccp_timercache = mp;
812 dccp->dccp_connp = connp;
813 kmem_cache_free(dccp_conn_cache, connp);
814 return;
815 }

817 #endif /* ! codereview */
818 ipcl_conn_cleanup(connp);
819 if (ns != NULL) {
820 connp->conn_netstack = NULL;
821 connp->conn_ixa->ixa_ipst = NULL;
822 netstack_rele(ns);
823 }

825 /* leave conn_priv aka conn_udp, conn_icmp, etc in place. */
826 if (connp->conn_flags & IPCL_UDPCONN) {
827 connp->conn_flags = IPCL_UDPCONN;
828 kmem_cache_free(udp_conn_cache, connp);
829 } else if (connp->conn_flags & IPCL_RAWIPCONN) {
830 connp->conn_flags = IPCL_RAWIPCONN;
831 connp->conn_proto = IPPROTO_ICMP;
832 connp->conn_ixa->ixa_protocol = connp->conn_proto;
833 kmem_cache_free(rawip_conn_cache, connp);
834 } else if (connp->conn_flags & IPCL_RTSCONN) {
835 connp->conn_flags = IPCL_RTSCONN;
836 kmem_cache_free(rts_conn_cache, connp);
837 } else {
838 connp->conn_flags = IPCL_IPCCONN;
839 ASSERT(connp->conn_flags & IPCL_IPCCONN);
840 ASSERT(connp->conn_priv == NULL);
841 kmem_cache_free(ip_conn_cache, connp);
842 }
843 }

845 /*
846 * Running in cluster mode - deregister listener information
847 */
848 static void
849 ipcl_conn_unlisten(conn_t *connp)
850 {
851 ASSERT((connp->conn_flags & IPCL_CL_LISTENER) != 0);
852 ASSERT(connp->conn_lport != 0);

new/usr/src/uts/common/inet/ip/ipclassifier.c 14

854 if (cl_inet_unlisten != NULL) {
855 sa_family_t addr_family;
856 uint8_t *laddrp;

858 if (connp->conn_ipversion == IPV6_VERSION) {
859 addr_family = AF_INET6;
860 laddrp = (uint8_t *)&connp->conn_bound_addr_v6;
861 } else {
862 addr_family = AF_INET;
863 laddrp = (uint8_t *)&connp->conn_bound_addr_v4;
864 }
865 (*cl_inet_unlisten)(connp->conn_netstack->netstack_stackid,
866 IPPROTO_TCP, addr_family, laddrp, connp->conn_lport, NULL);
867 }
868 connp->conn_flags &= ~IPCL_CL_LISTENER;
869 }

871 /*
872 * We set the IPCL_REMOVED flag (instead of clearing the flag indicating
873 * which table the conn belonged to). So for debugging we can see which hash
874 * table this connection was in.
875 */
876 #define IPCL_HASH_REMOVE(connp) { \
877 connf_t *connfp = (connp)->conn_fanout; \
878 ASSERT(!MUTEX_HELD(&((connp)->conn_lock))); \
879 if (connfp != NULL) { \
880 mutex_enter(&connfp->connf_lock); \
881 if ((connp)->conn_next != NULL) \
882 (connp)->conn_next->conn_prev = \
883 (connp)->conn_prev; \
884 if ((connp)->conn_prev != NULL) \
885 (connp)->conn_prev->conn_next = \
886 (connp)->conn_next; \
887 else \
888 connfp->connf_head = (connp)->conn_next; \
889 (connp)->conn_fanout = NULL; \
890 (connp)->conn_next = NULL; \
891 (connp)->conn_prev = NULL; \
892 (connp)->conn_flags |= IPCL_REMOVED; \
893 if (((connp)->conn_flags & IPCL_CL_LISTENER) != 0) \
894 ipcl_conn_unlisten((connp)); \
895 CONN_DEC_REF((connp)); \
896 mutex_exit(&connfp->connf_lock); \
897 } \
898 }

900 void
901 ipcl_hash_remove(conn_t *connp)
902 {
903 uint8_t protocol = connp->conn_proto;

905 IPCL_HASH_REMOVE(connp);
906 if (protocol == IPPROTO_RSVP)
907 ill_set_inputfn_all(connp->conn_netstack->netstack_ip);
908 }

910 /*
911 * The whole purpose of this function is allow removal of
912 * a conn_t from the connected hash for timewait reclaim.
913 * This is essentially a TW reclaim fastpath where timewait
914 * collector checks under fanout lock (so no one else can
915 * get access to the conn_t) that refcnt is 2 i.e. one for
916 * TCP and one for the classifier hash list. If ref count
917 * is indeed 2, we can just remove the conn under lock and
918 * avoid cleaning up the conn under squeue. This gives us
919 * improved performance.

new/usr/src/uts/common/inet/ip/ipclassifier.c 15

920 */
921 void
922 ipcl_hash_remove_locked(conn_t *connp, connf_t *connfp)
923 {
924 ASSERT(MUTEX_HELD(&connfp->connf_lock));
925 ASSERT(MUTEX_HELD(&connp->conn_lock));
926 ASSERT((connp->conn_flags & IPCL_CL_LISTENER) == 0);

928 if ((connp)->conn_next != NULL) {
929 (connp)->conn_next->conn_prev = (connp)->conn_prev;
930 }
931 if ((connp)->conn_prev != NULL) {
932 (connp)->conn_prev->conn_next = (connp)->conn_next;
933 } else {
934 connfp->connf_head = (connp)->conn_next;
935 }
936 (connp)->conn_fanout = NULL;
937 (connp)->conn_next = NULL;
938 (connp)->conn_prev = NULL;
939 (connp)->conn_flags |= IPCL_REMOVED;
940 ASSERT((connp)->conn_ref == 2);
941 (connp)->conn_ref--;
942 }

944 #define IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp) { \
945 ASSERT((connp)->conn_fanout == NULL); \
946 ASSERT((connp)->conn_next == NULL); \
947 ASSERT((connp)->conn_prev == NULL); \
948 if ((connfp)->connf_head != NULL) { \
949 (connfp)->connf_head->conn_prev = (connp); \
950 (connp)->conn_next = (connfp)->connf_head; \
951 } \
952 (connp)->conn_fanout = (connfp); \
953 (connfp)->connf_head = (connp); \
954 (connp)->conn_flags = ((connp)->conn_flags & ~IPCL_REMOVED) | \
955 IPCL_CONNECTED; \
956 CONN_INC_REF(connp); \
957 }

959 #define IPCL_HASH_INSERT_CONNECTED(connfp, connp) { \
960 IPCL_HASH_REMOVE((connp)); \
961 mutex_enter(&(connfp)->connf_lock); \
962 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp); \
963 mutex_exit(&(connfp)->connf_lock); \
964 }

966 #define IPCL_HASH_INSERT_BOUND(connfp, connp) { \
967 conn_t *pconnp = NULL, *nconnp; \
968 IPCL_HASH_REMOVE((connp)); \
969 mutex_enter(&(connfp)->connf_lock); \
970 nconnp = (connfp)->connf_head; \
971 while (nconnp != NULL && \
972 !_IPCL_V4_MATCH_ANY(nconnp->conn_laddr_v6)) { \
973 pconnp = nconnp; \
974 nconnp = nconnp->conn_next; \
975 } \
976 if (pconnp != NULL) { \
977 pconnp->conn_next = (connp); \
978 (connp)->conn_prev = pconnp; \
979 } else { \
980 (connfp)->connf_head = (connp); \
981 } \
982 if (nconnp != NULL) { \
983 (connp)->conn_next = nconnp; \
984 nconnp->conn_prev = (connp); \
985 } \

new/usr/src/uts/common/inet/ip/ipclassifier.c 16

986 (connp)->conn_fanout = (connfp); \
987 (connp)->conn_flags = ((connp)->conn_flags & ~IPCL_REMOVED) | \
988 IPCL_BOUND; \
989 CONN_INC_REF(connp); \
990 mutex_exit(&(connfp)->connf_lock); \
991 }

993 #define IPCL_HASH_INSERT_WILDCARD(connfp, connp) { \
994 conn_t **list, *prev, *next; \
995 boolean_t isv4mapped = \
996 IN6_IS_ADDR_V4MAPPED(&(connp)->conn_laddr_v6); \
997 IPCL_HASH_REMOVE((connp)); \
998 mutex_enter(&(connfp)->connf_lock); \
999 list = &(connfp)->connf_head; \

1000 prev = NULL; \
1001 while ((next = *list) != NULL) { \
1002 if (isv4mapped && \
1003 IN6_IS_ADDR_UNSPECIFIED(&next->conn_laddr_v6) && \
1004 connp->conn_zoneid == next->conn_zoneid) { \
1005 (connp)->conn_next = next; \
1006 if (prev != NULL) \
1007 prev = next->conn_prev; \
1008 next->conn_prev = (connp); \
1009 break; \
1010 } \
1011 list = &next->conn_next; \
1012 prev = next; \
1013 } \
1014 (connp)->conn_prev = prev; \
1015 *list = (connp); \
1016 (connp)->conn_fanout = (connfp); \
1017 (connp)->conn_flags = ((connp)->conn_flags & ~IPCL_REMOVED) | \
1018 IPCL_BOUND; \
1019 CONN_INC_REF((connp)); \
1020 mutex_exit(&(connfp)->connf_lock); \
1021 }

1023 void
1024 ipcl_hash_insert_wildcard(connf_t *connfp, conn_t *connp)
1025 {
1026 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1027 }

1029 /*
1030 * Because the classifier is used to classify inbound packets, the destination
1031 * address is meant to be our local tunnel address (tunnel source), and the
1032 * source the remote tunnel address (tunnel destination).
1033 *
1034 * Note that conn_proto can’t be used for fanout since the upper protocol
1035 * can be both 41 and 4 when IPv6 and IPv4 are over the same tunnel.
1036 */
1037 conn_t *
1038 ipcl_iptun_classify_v4(ipaddr_t *src, ipaddr_t *dst, ip_stack_t *ipst)
1039 {
1040 connf_t *connfp;
1041 conn_t *connp;

1043 /* first look for IPv4 tunnel links */
1044 connfp = &ipst->ips_ipcl_iptun_fanout[IPCL_IPTUN_HASH(*dst, *src)];
1045 mutex_enter(&connfp->connf_lock);
1046 for (connp = connfp->connf_head; connp != NULL;
1047 connp = connp->conn_next) {
1048 if (IPCL_IPTUN_MATCH(connp, *dst, *src))
1049 break;
1050 }
1051 if (connp != NULL)

new/usr/src/uts/common/inet/ip/ipclassifier.c 17

1052 goto done;

1054 mutex_exit(&connfp->connf_lock);

1056 /* We didn’t find an IPv4 tunnel, try a 6to4 tunnel */
1057 connfp = &ipst->ips_ipcl_iptun_fanout[IPCL_IPTUN_HASH(*dst,
1058 INADDR_ANY)];
1059 mutex_enter(&connfp->connf_lock);
1060 for (connp = connfp->connf_head; connp != NULL;
1061 connp = connp->conn_next) {
1062 if (IPCL_IPTUN_MATCH(connp, *dst, INADDR_ANY))
1063 break;
1064 }
1065 done:
1066 if (connp != NULL)
1067 CONN_INC_REF(connp);
1068 mutex_exit(&connfp->connf_lock);
1069 return (connp);
1070 }

1072 conn_t *
1073 ipcl_iptun_classify_v6(in6_addr_t *src, in6_addr_t *dst, ip_stack_t *ipst)
1074 {
1075 connf_t *connfp;
1076 conn_t *connp;

1078 /* Look for an IPv6 tunnel link */
1079 connfp = &ipst->ips_ipcl_iptun_fanout[IPCL_IPTUN_HASH_V6(dst, src)];
1080 mutex_enter(&connfp->connf_lock);
1081 for (connp = connfp->connf_head; connp != NULL;
1082 connp = connp->conn_next) {
1083 if (IPCL_IPTUN_MATCH_V6(connp, dst, src)) {
1084 CONN_INC_REF(connp);
1085 break;
1086 }
1087 }
1088 mutex_exit(&connfp->connf_lock);
1089 return (connp);
1090 }

1092 /*
1093 * This function is used only for inserting SCTP raw socket now.
1094 * This may change later.
1095 *
1096 * Note that only one raw socket can be bound to a port. The param
1097 * lport is in network byte order.
1098 */
1099 static int
1100 ipcl_sctp_hash_insert(conn_t *connp, in_port_t lport)
1101 {
1102 connf_t *connfp;
1103 conn_t *oconnp;
1104 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;

1106 connfp = &ipst->ips_ipcl_raw_fanout[IPCL_RAW_HASH(ntohs(lport), ipst)];

1108 /* Check for existing raw socket already bound to the port. */
1109 mutex_enter(&connfp->connf_lock);
1110 for (oconnp = connfp->connf_head; oconnp != NULL;
1111 oconnp = oconnp->conn_next) {
1112 if (oconnp->conn_lport == lport &&
1113 oconnp->conn_zoneid == connp->conn_zoneid &&
1114 oconnp->conn_family == connp->conn_family &&
1115 ((IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6) ||
1116 IN6_IS_ADDR_UNSPECIFIED(&oconnp->conn_laddr_v6) ||
1117 IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_laddr_v6) ||

new/usr/src/uts/common/inet/ip/ipclassifier.c 18

1118 IN6_IS_ADDR_V4MAPPED_ANY(&oconnp->conn_laddr_v6)) ||
1119 IN6_ARE_ADDR_EQUAL(&oconnp->conn_laddr_v6,
1120 &connp->conn_laddr_v6))) {
1121 break;
1122 }
1123 }
1124 mutex_exit(&connfp->connf_lock);
1125 if (oconnp != NULL)
1126 return (EADDRNOTAVAIL);

1128 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) ||
1129 IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
1130 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6) ||
1131 IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_laddr_v6)) {
1132 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1133 } else {
1134 IPCL_HASH_INSERT_BOUND(connfp, connp);
1135 }
1136 } else {
1137 IPCL_HASH_INSERT_CONNECTED(connfp, connp);
1138 }
1139 return (0);
1140 }

1142 static int
1143 ipcl_iptun_hash_insert(conn_t *connp, ip_stack_t *ipst)
1144 {
1145 connf_t *connfp;
1146 conn_t *tconnp;
1147 ipaddr_t laddr = connp->conn_laddr_v4;
1148 ipaddr_t faddr = connp->conn_faddr_v4;

1150 connfp = &ipst->ips_ipcl_iptun_fanout[IPCL_IPTUN_HASH(laddr, faddr)];
1151 mutex_enter(&connfp->connf_lock);
1152 for (tconnp = connfp->connf_head; tconnp != NULL;
1153 tconnp = tconnp->conn_next) {
1154 if (IPCL_IPTUN_MATCH(tconnp, laddr, faddr)) {
1155 /* A tunnel is already bound to these addresses. */
1156 mutex_exit(&connfp->connf_lock);
1157 return (EADDRINUSE);
1158 }
1159 }
1160 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);
1161 mutex_exit(&connfp->connf_lock);
1162 return (0);
1163 }

1165 static int
1166 ipcl_iptun_hash_insert_v6(conn_t *connp, ip_stack_t *ipst)
1167 {
1168 connf_t *connfp;
1169 conn_t *tconnp;
1170 in6_addr_t *laddr = &connp->conn_laddr_v6;
1171 in6_addr_t *faddr = &connp->conn_faddr_v6;

1173 connfp = &ipst->ips_ipcl_iptun_fanout[IPCL_IPTUN_HASH_V6(laddr, faddr)];
1174 mutex_enter(&connfp->connf_lock);
1175 for (tconnp = connfp->connf_head; tconnp != NULL;
1176 tconnp = tconnp->conn_next) {
1177 if (IPCL_IPTUN_MATCH_V6(tconnp, laddr, faddr)) {
1178 /* A tunnel is already bound to these addresses. */
1179 mutex_exit(&connfp->connf_lock);
1180 return (EADDRINUSE);
1181 }
1182 }
1183 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);

new/usr/src/uts/common/inet/ip/ipclassifier.c 19

1184 mutex_exit(&connfp->connf_lock);
1185 return (0);
1186 }

1188 /*
1189 * Check for a MAC exemption conflict on a labeled system. Note that for
1190 * protocols that use port numbers (UDP, TCP, SCTP), we do this check up in the
1191 * transport layer. This check is for binding all other protocols.
1192 *
1193 * Returns true if there’s a conflict.
1194 */
1195 static boolean_t
1196 check_exempt_conflict_v4(conn_t *connp, ip_stack_t *ipst)
1197 {
1198 connf_t *connfp;
1199 conn_t *tconn;

1201 connfp = &ipst->ips_ipcl_proto_fanout_v4[connp->conn_proto];
1202 mutex_enter(&connfp->connf_lock);
1203 for (tconn = connfp->connf_head; tconn != NULL;
1204 tconn = tconn->conn_next) {
1205 /* We don’t allow v4 fallback for v6 raw socket */
1206 if (connp->conn_family != tconn->conn_family)
1207 continue;
1208 /* If neither is exempt, then there’s no conflict */
1209 if ((connp->conn_mac_mode == CONN_MAC_DEFAULT) &&
1210 (tconn->conn_mac_mode == CONN_MAC_DEFAULT))
1211 continue;
1212 /* We are only concerned about sockets for a different zone */
1213 if (connp->conn_zoneid == tconn->conn_zoneid)
1214 continue;
1215 /* If both are bound to different specific addrs, ok */
1216 if (connp->conn_laddr_v4 != INADDR_ANY &&
1217 tconn->conn_laddr_v4 != INADDR_ANY &&
1218 connp->conn_laddr_v4 != tconn->conn_laddr_v4)
1219 continue;
1220 /* These two conflict; fail */
1221 break;
1222 }
1223 mutex_exit(&connfp->connf_lock);
1224 return (tconn != NULL);
1225 }

1227 static boolean_t
1228 check_exempt_conflict_v6(conn_t *connp, ip_stack_t *ipst)
1229 {
1230 connf_t *connfp;
1231 conn_t *tconn;

1233 connfp = &ipst->ips_ipcl_proto_fanout_v6[connp->conn_proto];
1234 mutex_enter(&connfp->connf_lock);
1235 for (tconn = connfp->connf_head; tconn != NULL;
1236 tconn = tconn->conn_next) {
1237 /* We don’t allow v4 fallback for v6 raw socket */
1238 if (connp->conn_family != tconn->conn_family)
1239 continue;
1240 /* If neither is exempt, then there’s no conflict */
1241 if ((connp->conn_mac_mode == CONN_MAC_DEFAULT) &&
1242 (tconn->conn_mac_mode == CONN_MAC_DEFAULT))
1243 continue;
1244 /* We are only concerned about sockets for a different zone */
1245 if (connp->conn_zoneid == tconn->conn_zoneid)
1246 continue;
1247 /* If both are bound to different addrs, ok */
1248 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6) &&
1249 !IN6_IS_ADDR_UNSPECIFIED(&tconn->conn_laddr_v6) &&

new/usr/src/uts/common/inet/ip/ipclassifier.c 20

1250 !IN6_ARE_ADDR_EQUAL(&connp->conn_laddr_v6,
1251 &tconn->conn_laddr_v6))
1252 continue;
1253 /* These two conflict; fail */
1254 break;
1255 }
1256 mutex_exit(&connfp->connf_lock);
1257 return (tconn != NULL);
1258 }

1260 /*
1261 * (v4, v6) bind hash insertion routines
1262 * The caller has already setup the conn (conn_proto, conn_laddr_v6, conn_lport)
1263 */

1265 int
1266 ipcl_bind_insert(conn_t *connp)
1267 {
1268 if (connp->conn_ipversion == IPV6_VERSION)
1269 return (ipcl_bind_insert_v6(connp));
1270 else
1271 return (ipcl_bind_insert_v4(connp));
1272 }

1274 int
1275 ipcl_bind_insert_v4(conn_t *connp)
1276 {
1277 connf_t *connfp;
1278 int ret = 0;
1279 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
1280 uint16_t lport = connp->conn_lport;
1281 uint8_t protocol = connp->conn_proto;

1283 if (IPCL_IS_IPTUN(connp))
1284 return (ipcl_iptun_hash_insert(connp, ipst));

1286 switch (protocol) {
1287 default:
1288 if (is_system_labeled() &&
1289 check_exempt_conflict_v4(connp, ipst))
1290 return (EADDRINUSE);
1291 /* FALLTHROUGH */
1292 case IPPROTO_UDP:
1293 if (protocol == IPPROTO_UDP) {
1294 connfp = &ipst->ips_ipcl_udp_fanout[
1295 IPCL_UDP_HASH(lport, ipst)];
1296 } else {
1297 connfp = &ipst->ips_ipcl_proto_fanout_v4[protocol];
1298 }

1300 if (connp->conn_faddr_v4 != INADDR_ANY) {
1301 IPCL_HASH_INSERT_CONNECTED(connfp, connp);
1302 } else if (connp->conn_laddr_v4 != INADDR_ANY) {
1303 IPCL_HASH_INSERT_BOUND(connfp, connp);
1304 } else {
1305 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1306 }
1307 if (protocol == IPPROTO_RSVP)
1308 ill_set_inputfn_all(ipst);
1309 break;

1311 case IPPROTO_TCP:
1312 /* Insert it in the Bind Hash */
1313 ASSERT(connp->conn_zoneid != ALL_ZONES);
1314 connfp = &ipst->ips_ipcl_bind_fanout[
1315 IPCL_BIND_HASH(lport, ipst)];

new/usr/src/uts/common/inet/ip/ipclassifier.c 21

1316 if (connp->conn_laddr_v4 != INADDR_ANY) {
1317 IPCL_HASH_INSERT_BOUND(connfp, connp);
1318 } else {
1319 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1320 }
1321 if (cl_inet_listen != NULL) {
1322 ASSERT(connp->conn_ipversion == IPV4_VERSION);
1323 connp->conn_flags |= IPCL_CL_LISTENER;
1324 (*cl_inet_listen)(
1325 connp->conn_netstack->netstack_stackid,
1326 IPPROTO_TCP, AF_INET,
1327 (uint8_t *)&connp->conn_bound_addr_v4, lport, NULL);
1328 }
1329 break;

1331 case IPPROTO_SCTP:
1332 ret = ipcl_sctp_hash_insert(connp, lport);
1333 break;

1335 case IPPROTO_DCCP:
1336 cmn_err(CE_NOTE, "ipclassifier.c: ipcl_bind_insert_v4");
1337 ASSERT(connp->conn_zoneid != ALL_ZONES);
1338 connfp = &ipst->ips_ipcl_dccp_bind_fanout[
1339 IPCL_DCCP_BIND_HASH(lport, ipst)];
1340 if (connp->conn_laddr_v4 != INADDR_ANY) {
1341 IPCL_HASH_INSERT_BOUND(connfp, connp);
1342 } else {
1343 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1344 }
1345 break;
1346 #endif /* ! codereview */
1347 }

1350 #endif /* ! codereview */
1351 return (ret);
1352 }

1354 int
1355 ipcl_bind_insert_v6(conn_t *connp)
1356 {
1357 connf_t *connfp;
1358 int ret = 0;
1359 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
1360 uint16_t lport = connp->conn_lport;
1361 uint8_t protocol = connp->conn_proto;

1363 if (IPCL_IS_IPTUN(connp)) {
1364 return (ipcl_iptun_hash_insert_v6(connp, ipst));
1365 }

1367 switch (protocol) {
1368 default:
1369 if (is_system_labeled() &&
1370 check_exempt_conflict_v6(connp, ipst))
1371 return (EADDRINUSE);
1372 /* FALLTHROUGH */
1373 case IPPROTO_UDP:
1374 if (protocol == IPPROTO_UDP) {
1375 connfp = &ipst->ips_ipcl_udp_fanout[
1376 IPCL_UDP_HASH(lport, ipst)];
1377 } else {
1378 connfp = &ipst->ips_ipcl_proto_fanout_v6[protocol];
1379 }

1381 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) {

new/usr/src/uts/common/inet/ip/ipclassifier.c 22

1382 IPCL_HASH_INSERT_CONNECTED(connfp, connp);
1383 } else if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1384 IPCL_HASH_INSERT_BOUND(connfp, connp);
1385 } else {
1386 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1387 }
1388 break;

1390 case IPPROTO_TCP:
1391 /* Insert it in the Bind Hash */
1392 ASSERT(connp->conn_zoneid != ALL_ZONES);
1393 connfp = &ipst->ips_ipcl_bind_fanout[
1394 IPCL_BIND_HASH(lport, ipst)];
1395 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1396 IPCL_HASH_INSERT_BOUND(connfp, connp);
1397 } else {
1398 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1399 }
1400 if (cl_inet_listen != NULL) {
1401 sa_family_t addr_family;
1402 uint8_t *laddrp;

1404 if (connp->conn_ipversion == IPV6_VERSION) {
1405 addr_family = AF_INET6;
1406 laddrp =
1407 (uint8_t *)&connp->conn_bound_addr_v6;
1408 } else {
1409 addr_family = AF_INET;
1410 laddrp = (uint8_t *)&connp->conn_bound_addr_v4;
1411 }
1412 connp->conn_flags |= IPCL_CL_LISTENER;
1413 (*cl_inet_listen)(
1414 connp->conn_netstack->netstack_stackid,
1415 IPPROTO_TCP, addr_family, laddrp, lport, NULL);
1416 }
1417 break;

1419 case IPPROTO_SCTP:
1420 ret = ipcl_sctp_hash_insert(connp, lport);
1421 break;

1423 case IPPROTO_DCCP:
1424 cmn_err(CE_NOTE, "ipclassifier.c: ipcl_bind_insert_v6");
1425 ASSERT(connp->conn_zoneid != ALL_ZONES);
1426 connfp = &ipst->ips_ipcl_dccp_bind_fanout[
1427 IPCL_DCCP_BIND_HASH(lport, ipst)];
1428 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1429 IPCL_HASH_INSERT_BOUND(connfp, connp);
1430 } else {
1431 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1432 }
1433 break;
1434 #endif /* ! codereview */
1435 }

1437 return (ret);
1438 }

1440 /*
1441 * ipcl_conn_hash insertion routines.
1442 * The caller has already set conn_proto and the addresses/ports in the conn_t.
1443 */

1445 int
1446 ipcl_conn_insert(conn_t *connp)
1447 {

new/usr/src/uts/common/inet/ip/ipclassifier.c 23

1448 if (connp->conn_ipversion == IPV6_VERSION)
1449 return (ipcl_conn_insert_v6(connp));
1450 else
1451 return (ipcl_conn_insert_v4(connp));
1452 }

1454 int
1455 ipcl_conn_insert_v4(conn_t *connp)
1456 {
1457 connf_t *connfp;
1458 conn_t *tconnp;
1459 int ret = 0;
1460 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
1461 uint16_t lport = connp->conn_lport;
1462 uint8_t protocol = connp->conn_proto;

1464 if (IPCL_IS_IPTUN(connp))
1465 return (ipcl_iptun_hash_insert(connp, ipst));

1467 switch (protocol) {
1468 case IPPROTO_TCP:
1469 /*
1470 * For TCP, we check whether the connection tuple already
1471 * exists before allowing the connection to proceed. We
1472 * also allow indexing on the zoneid. This is to allow
1473 * multiple shared stack zones to have the same tcp
1474 * connection tuple. In practice this only happens for
1475 * INADDR_LOOPBACK as it’s the only local address which
1476 * doesn’t have to be unique.
1477 */
1478 connfp = &ipst->ips_ipcl_conn_fanout[
1479 IPCL_CONN_HASH(connp->conn_faddr_v4,
1480 connp->conn_ports, ipst)];
1481 mutex_enter(&connfp->connf_lock);
1482 for (tconnp = connfp->connf_head; tconnp != NULL;
1483 tconnp = tconnp->conn_next) {
1484 if (IPCL_CONN_MATCH(tconnp, connp->conn_proto,
1485 connp->conn_faddr_v4, connp->conn_laddr_v4,
1486 connp->conn_ports) &&
1487 IPCL_ZONE_MATCH(tconnp, connp->conn_zoneid)) {
1488 /* Already have a conn. bail out */
1489 mutex_exit(&connfp->connf_lock);
1490 return (EADDRINUSE);
1491 }
1492 }
1493 if (connp->conn_fanout != NULL) {
1494 /*
1495 * Probably a XTI/TLI application trying to do a
1496 * rebind. Let it happen.
1497 */
1498 mutex_exit(&connfp->connf_lock);
1499 IPCL_HASH_REMOVE(connp);
1500 mutex_enter(&connfp->connf_lock);
1501 }

1503 ASSERT(connp->conn_recv != NULL);
1504 ASSERT(connp->conn_recvicmp != NULL);

1506 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);
1507 mutex_exit(&connfp->connf_lock);
1508 break;

1510 case IPPROTO_SCTP:
1511 /*
1512 * The raw socket may have already been bound, remove it
1513 * from the hash first.

new/usr/src/uts/common/inet/ip/ipclassifier.c 24

1514 */
1515 IPCL_HASH_REMOVE(connp);
1516 ret = ipcl_sctp_hash_insert(connp, lport);
1517 break;

1519 case IPPROTO_DCCP:
1520 cmn_err(CE_NOTE, "ipclassifier.c: ipcl_conn_insert_v4");
1521 connfp = &ipst->ips_ipcl_dccp_conn_fanout[IPCL_DCCP_CONN_HASH(
1522 connp->conn_faddr_v4, connp->conn_ports, ipst)];
1523 mutex_enter(&connfp->connf_lock);
1524 for (tconnp = connfp->connf_head; tconnp != NULL;
1525 tconnp = tconnp->conn_next) {
1526 if (IPCL_CONN_MATCH(tconnp, connp->conn_proto,
1527 connp->conn_faddr_v4, connp->conn_laddr_v4,
1528 connp->conn_ports) &&
1529 IPCL_ZONE_MATCH(tconnp, connp->conn_zoneid)) {
1530 /* Already have a conn. bail out */
1531 mutex_exit(&connfp->connf_lock);
1532 return (EADDRINUSE);
1533 }
1534 }

1536 /* XXX:DCCP XTI/TLI application? */

1538 ASSERT(connp->conn_recv != NULL);
1539 ASSERT(connp->conn_recvicmp != NULL);

1541 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);
1542 mutex_exit(&connfp->connf_lock);
1543 break;

1545 #endif /* ! codereview */
1546 default:
1547 /*
1548 * Check for conflicts among MAC exempt bindings. For
1549 * transports with port numbers, this is done by the upper
1550 * level per-transport binding logic. For all others, it’s
1551 * done here.
1552 */
1553 if (is_system_labeled() &&
1554 check_exempt_conflict_v4(connp, ipst))
1555 return (EADDRINUSE);
1556 /* FALLTHROUGH */

1558 case IPPROTO_UDP:
1559 if (protocol == IPPROTO_UDP) {
1560 connfp = &ipst->ips_ipcl_udp_fanout[
1561 IPCL_UDP_HASH(lport, ipst)];
1562 } else {
1563 connfp = &ipst->ips_ipcl_proto_fanout_v4[protocol];
1564 }

1566 if (connp->conn_faddr_v4 != INADDR_ANY) {
1567 IPCL_HASH_INSERT_CONNECTED(connfp, connp);
1568 } else if (connp->conn_laddr_v4 != INADDR_ANY) {
1569 IPCL_HASH_INSERT_BOUND(connfp, connp);
1570 } else {
1571 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1572 }
1573 break;
1574 }

1576 return (ret);
1577 }

1579 int

new/usr/src/uts/common/inet/ip/ipclassifier.c 25

1580 ipcl_conn_insert_v6(conn_t *connp)
1581 {
1582 connf_t *connfp;
1583 conn_t *tconnp;
1584 int ret = 0;
1585 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
1586 uint16_t lport = connp->conn_lport;
1587 uint8_t protocol = connp->conn_proto;
1588 uint_t ifindex = connp->conn_bound_if;

1590 if (IPCL_IS_IPTUN(connp))
1591 return (ipcl_iptun_hash_insert_v6(connp, ipst));

1593 switch (protocol) {
1594 case IPPROTO_TCP:

1596 /*
1597 * For tcp, we check whether the connection tuple already
1598 * exists before allowing the connection to proceed. We
1599 * also allow indexing on the zoneid. This is to allow
1600 * multiple shared stack zones to have the same tcp
1601 * connection tuple. In practice this only happens for
1602 * ipv6_loopback as it’s the only local address which
1603 * doesn’t have to be unique.
1604 */
1605 connfp = &ipst->ips_ipcl_conn_fanout[
1606 IPCL_CONN_HASH_V6(connp->conn_faddr_v6, connp->conn_ports,
1607 ipst)];
1608 mutex_enter(&connfp->connf_lock);
1609 for (tconnp = connfp->connf_head; tconnp != NULL;
1610 tconnp = tconnp->conn_next) {
1611 /* NOTE: need to match zoneid. Bug in onnv-gate */
1612 if (IPCL_CONN_MATCH_V6(tconnp, connp->conn_proto,
1613 connp->conn_faddr_v6, connp->conn_laddr_v6,
1614 connp->conn_ports) &&
1615 (tconnp->conn_bound_if == 0 ||
1616 tconnp->conn_bound_if == ifindex) &&
1617 IPCL_ZONE_MATCH(tconnp, connp->conn_zoneid)) {
1618 /* Already have a conn. bail out */
1619 mutex_exit(&connfp->connf_lock);
1620 return (EADDRINUSE);
1621 }
1622 }
1623 if (connp->conn_fanout != NULL) {
1624 /*
1625 * Probably a XTI/TLI application trying to do a
1626 * rebind. Let it happen.
1627 */
1628 mutex_exit(&connfp->connf_lock);
1629 IPCL_HASH_REMOVE(connp);
1630 mutex_enter(&connfp->connf_lock);
1631 }
1632 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);
1633 mutex_exit(&connfp->connf_lock);
1634 break;

1636 case IPPROTO_SCTP:
1637 IPCL_HASH_REMOVE(connp);
1638 ret = ipcl_sctp_hash_insert(connp, lport);
1639 break;

1641 case IPPROTO_DCCP:
1642 cmn_err(CE_NOTE, "ipclassifier.c: ipcl_conn_insert_v6");
1643 connfp = &ipst->ips_ipcl_dccp_conn_fanout[
1644 IPCL_DCCP_CONN_HASH_V6(connp->conn_faddr_v6,
1645 connp->conn_ports, ipst)];

new/usr/src/uts/common/inet/ip/ipclassifier.c 26

1646 mutex_enter(&connfp->connf_lock);
1647 for (tconnp = connfp->connf_head; tconnp != NULL;
1648 tconnp = tconnp->conn_next) {
1649 /* NOTE: need to match zoneid. Bug in onnv-gate */
1650 if (IPCL_CONN_MATCH_V6(tconnp, connp->conn_proto,
1651 connp->conn_faddr_v6, connp->conn_laddr_v6,
1652 connp->conn_ports) &&
1653 (tconnp->conn_bound_if == 0 ||
1654 tconnp->conn_bound_if == ifindex) &&
1655 IPCL_ZONE_MATCH(tconnp, connp->conn_zoneid)) {
1656 /* Already have a conn. bail out */
1657 mutex_exit(&connfp->connf_lock);
1658 return (EADDRINUSE);
1659 }
1660 }

1662 /* XXX:DCCP XTI/TLI? */
1663 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);
1664 mutex_exit(&connfp->connf_lock);
1665 break;

1667 #endif /* ! codereview */
1668 default:
1669 if (is_system_labeled() &&
1670 check_exempt_conflict_v6(connp, ipst))
1671 return (EADDRINUSE);
1672 /* FALLTHROUGH */
1673 case IPPROTO_UDP:
1674 if (protocol == IPPROTO_UDP) {
1675 connfp = &ipst->ips_ipcl_udp_fanout[
1676 IPCL_UDP_HASH(lport, ipst)];
1677 } else {
1678 connfp = &ipst->ips_ipcl_proto_fanout_v6[protocol];
1679 }

1681 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) {
1682 IPCL_HASH_INSERT_CONNECTED(connfp, connp);
1683 } else if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1684 IPCL_HASH_INSERT_BOUND(connfp, connp);
1685 } else {
1686 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1687 }
1688 break;
1689 }

1691 return (ret);
1692 }

1694 /*
1695 * v4 packet classifying function. looks up the fanout table to
1696 * find the conn, the packet belongs to. returns the conn with
1697 * the reference held, null otherwise.
1698 *
1699 * If zoneid is ALL_ZONES, then the search rules described in the "Connection
1700 * Lookup" comment block are applied. Labels are also checked as described
1701 * above. If the packet is from the inside (looped back), and is from the same
1702 * zone, then label checks are omitted.
1703 */
1704 conn_t *
1705 ipcl_classify_v4(mblk_t *mp, uint8_t protocol, uint_t hdr_len,
1706 ip_recv_attr_t *ira, ip_stack_t *ipst)
1707 {
1708 ipha_t *ipha;
1709 connf_t *connfp, *bind_connfp;
1710 uint16_t lport;
1711 uint16_t fport;

new/usr/src/uts/common/inet/ip/ipclassifier.c 27

1712 uint32_t ports;
1713 conn_t *connp;
1714 uint16_t *up;
1715 zoneid_t zoneid = ira->ira_zoneid;

1717 ipha = (ipha_t *)mp->b_rptr;
1718 up = (uint16_t *)((uchar_t *)ipha + hdr_len + TCP_PORTS_OFFSET);

1720 switch (protocol) {
1721 case IPPROTO_TCP:
1722 ports = *(uint32_t *)up;
1723 connfp =
1724 &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH(ipha->ipha_src,
1725 ports, ipst)];
1726 mutex_enter(&connfp->connf_lock);
1727 for (connp = connfp->connf_head; connp != NULL;
1728 connp = connp->conn_next) {
1729 if (IPCL_CONN_MATCH(connp, protocol,
1730 ipha->ipha_src, ipha->ipha_dst, ports) &&
1731 (connp->conn_zoneid == zoneid ||
1732 connp->conn_allzones ||
1733 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1734 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
1735 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
1736 break;
1737 }

1739 if (connp != NULL) {
1740 /*
1741 * We have a fully-bound TCP connection.
1742 *
1743 * For labeled systems, there’s no need to check the
1744 * label here. It’s known to be good as we checked
1745 * before allowing the connection to become bound.
1746 */
1747 CONN_INC_REF(connp);
1748 mutex_exit(&connfp->connf_lock);
1749 return (connp);
1750 }

1752 mutex_exit(&connfp->connf_lock);
1753 lport = up[1];
1754 bind_connfp =
1755 &ipst->ips_ipcl_bind_fanout[IPCL_BIND_HASH(lport, ipst)];
1756 mutex_enter(&bind_connfp->connf_lock);
1757 for (connp = bind_connfp->connf_head; connp != NULL;
1758 connp = connp->conn_next) {
1759 if (IPCL_BIND_MATCH(connp, protocol, ipha->ipha_dst,
1760 lport) &&
1761 (connp->conn_zoneid == zoneid ||
1762 connp->conn_allzones ||
1763 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1764 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
1765 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
1766 break;
1767 }

1769 /*
1770 * If the matching connection is SLP on a private address, then
1771 * the label on the packet must match the local zone’s label.
1772 * Otherwise, it must be in the label range defined by tnrh.
1773 * This is ensured by tsol_receive_local.
1774 *
1775 * Note that we don’t check tsol_receive_local for
1776 * the connected case.
1777 */

new/usr/src/uts/common/inet/ip/ipclassifier.c 28

1778 if (connp != NULL && (ira->ira_flags & IRAF_SYSTEM_LABELED) &&
1779 !tsol_receive_local(mp, &ipha->ipha_dst, IPV4_VERSION,
1780 ira, connp)) {
1781 DTRACE_PROBE3(tx__ip__log__info__classify__tcp,
1782 char *, "connp(1) could not receive mp(2)",
1783 conn_t *, connp, mblk_t *, mp);
1784 connp = NULL;
1785 }

1787 if (connp != NULL) {
1788 /* Have a listener at least */
1789 CONN_INC_REF(connp);
1790 mutex_exit(&bind_connfp->connf_lock);
1791 return (connp);
1792 }

1794 mutex_exit(&bind_connfp->connf_lock);
1795 break;

1797 case IPPROTO_UDP:
1798 lport = up[1];
1799 fport = up[0];
1800 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
1801 mutex_enter(&connfp->connf_lock);
1802 for (connp = connfp->connf_head; connp != NULL;
1803 connp = connp->conn_next) {
1804 if (IPCL_UDP_MATCH(connp, lport, ipha->ipha_dst,
1805 fport, ipha->ipha_src) &&
1806 (connp->conn_zoneid == zoneid ||
1807 connp->conn_allzones ||
1808 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1809 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE))))
1810 break;
1811 }

1813 if (connp != NULL && (ira->ira_flags & IRAF_SYSTEM_LABELED) &&
1814 !tsol_receive_local(mp, &ipha->ipha_dst, IPV4_VERSION,
1815 ira, connp)) {
1816 DTRACE_PROBE3(tx__ip__log__info__classify__udp,
1817 char *, "connp(1) could not receive mp(2)",
1818 conn_t *, connp, mblk_t *, mp);
1819 connp = NULL;
1820 }

1822 if (connp != NULL) {
1823 CONN_INC_REF(connp);
1824 mutex_exit(&connfp->connf_lock);
1825 return (connp);
1826 }

1828 /*
1829 * We shouldn’t come here for multicast/broadcast packets
1830 */
1831 mutex_exit(&connfp->connf_lock);

1833 break;

1835 case IPPROTO_DCCP:
1836 ports = *(uint32_t *)up;

1838 /*
1839 * Search for fully-bound connection.
1840 */
1841 connfp = &ipst->ips_ipcl_dccp_conn_fanout[IPCL_DCCP_CONN_HASH(
1842 ipha->ipha_src, ports, ipst)];
1843 mutex_enter(&connfp->connf_lock);

new/usr/src/uts/common/inet/ip/ipclassifier.c 29

1844 for (connp = connfp->connf_head; connp != NULL;
1845 connp = connp->conn_next) {
1846 /* XXX:DCCP */
1847 if (IPCL_CONN_MATCH(connp, protocol,
1848 ipha->ipha_src, ipha->ipha_dst, ports)) {
1849 /* XXX */
1850 cmn_err(CE_NOTE, "ipclassifier.c: fully bound co
1851 break;
1852 }
1853 }

1855 if (connp != NULL) {
1856 /*
1857 * We have a fully-bound DCCP connection.
1858 */
1859 CONN_INC_REF(connp);
1860 mutex_exit(&connfp->connf_lock);
1861 return (connp);
1862 }

1864 mutex_exit(&connfp->connf_lock);
1865 lport = up[1];

1867 /*
1868 * Fully-bound connection was not found, search for listener.
1869 */
1870 bind_connfp = &ipst->ips_ipcl_dccp_bind_fanout[
1871 IPCL_DCCP_BIND_HASH(lport, ipst)];
1872 mutex_enter(&bind_connfp->connf_lock);
1873 for (connp = bind_connfp->connf_head; connp != NULL;
1874 connp = connp->conn_next) {
1875 if (IPCL_BIND_MATCH(connp, protocol, ipha->ipha_dst,
1876 lport) &&
1877 (connp->conn_zoneid == zoneid ||
1878 connp->conn_allzones ||
1879 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1880 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
1881 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
1882 break;
1883 }

1885 if (connp != NULL) {
1886 cmn_err(CE_NOTE, "ipclassifier.c: half-bound bind listen
1887 /* Have a listener at least */
1888 CONN_INC_REF(connp);
1889 mutex_exit(&bind_connfp->connf_lock);
1890 return (connp);
1891 }

1893 mutex_exit(&bind_connfp->connf_lock);
1894 break;

1896 #endif /* ! codereview */
1897 case IPPROTO_ENCAP:
1898 case IPPROTO_IPV6:
1899 return (ipcl_iptun_classify_v4(&ipha->ipha_src,
1900 &ipha->ipha_dst, ipst));
1901 }

1903 return (NULL);
1904 }

1906 conn_t *
1907 ipcl_classify_v6(mblk_t *mp, uint8_t protocol, uint_t hdr_len,
1908 ip_recv_attr_t *ira, ip_stack_t *ipst)
1909 {

new/usr/src/uts/common/inet/ip/ipclassifier.c 30

1910 ip6_t *ip6h;
1911 connf_t *connfp, *bind_connfp;
1912 uint16_t lport;
1913 uint16_t fport;
1914 tcpha_t *tcpha;
1915 uint32_t ports;
1916 conn_t *connp;
1917 uint16_t *up;
1918 zoneid_t zoneid = ira->ira_zoneid;

1920 ip6h = (ip6_t *)mp->b_rptr;

1922 switch (protocol) {
1923 case IPPROTO_TCP:
1924 tcpha = (tcpha_t *)&mp->b_rptr[hdr_len];
1925 up = &tcpha->tha_lport;
1926 ports = *(uint32_t *)up;

1928 connfp =
1929 &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH_V6(ip6h->ip6_src,
1930 ports, ipst)];
1931 mutex_enter(&connfp->connf_lock);
1932 for (connp = connfp->connf_head; connp != NULL;
1933 connp = connp->conn_next) {
1934 if (IPCL_CONN_MATCH_V6(connp, protocol,
1935 ip6h->ip6_src, ip6h->ip6_dst, ports) &&
1936 (connp->conn_zoneid == zoneid ||
1937 connp->conn_allzones ||
1938 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1939 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
1940 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
1941 break;
1942 }

1944 if (connp != NULL) {
1945 /*
1946 * We have a fully-bound TCP connection.
1947 *
1948 * For labeled systems, there’s no need to check the
1949 * label here. It’s known to be good as we checked
1950 * before allowing the connection to become bound.
1951 */
1952 CONN_INC_REF(connp);
1953 mutex_exit(&connfp->connf_lock);
1954 return (connp);
1955 }

1957 mutex_exit(&connfp->connf_lock);

1959 lport = up[1];
1960 bind_connfp =
1961 &ipst->ips_ipcl_bind_fanout[IPCL_BIND_HASH(lport, ipst)];
1962 mutex_enter(&bind_connfp->connf_lock);
1963 for (connp = bind_connfp->connf_head; connp != NULL;
1964 connp = connp->conn_next) {
1965 if (IPCL_BIND_MATCH_V6(connp, protocol,
1966 ip6h->ip6_dst, lport) &&
1967 (connp->conn_zoneid == zoneid ||
1968 connp->conn_allzones ||
1969 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1970 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
1971 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
1972 break;
1973 }

1975 if (connp != NULL && (ira->ira_flags & IRAF_SYSTEM_LABELED) &&

new/usr/src/uts/common/inet/ip/ipclassifier.c 31

1976 !tsol_receive_local(mp, &ip6h->ip6_dst, IPV6_VERSION,
1977 ira, connp)) {
1978 DTRACE_PROBE3(tx__ip__log__info__classify__tcp6,
1979 char *, "connp(1) could not receive mp(2)",
1980 conn_t *, connp, mblk_t *, mp);
1981 connp = NULL;
1982 }

1984 if (connp != NULL) {
1985 /* Have a listner at least */
1986 CONN_INC_REF(connp);
1987 mutex_exit(&bind_connfp->connf_lock);
1988 return (connp);
1989 }

1991 mutex_exit(&bind_connfp->connf_lock);
1992 break;

1994 case IPPROTO_UDP:
1995 up = (uint16_t *)&mp->b_rptr[hdr_len];
1996 lport = up[1];
1997 fport = up[0];
1998 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
1999 mutex_enter(&connfp->connf_lock);
2000 for (connp = connfp->connf_head; connp != NULL;
2001 connp = connp->conn_next) {
2002 if (IPCL_UDP_MATCH_V6(connp, lport, ip6h->ip6_dst,
2003 fport, ip6h->ip6_src) &&
2004 (connp->conn_zoneid == zoneid ||
2005 connp->conn_allzones ||
2006 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
2007 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
2008 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
2009 break;
2010 }

2012 if (connp != NULL && (ira->ira_flags & IRAF_SYSTEM_LABELED) &&
2013 !tsol_receive_local(mp, &ip6h->ip6_dst, IPV6_VERSION,
2014 ira, connp)) {
2015 DTRACE_PROBE3(tx__ip__log__info__classify__udp6,
2016 char *, "connp(1) could not receive mp(2)",
2017 conn_t *, connp, mblk_t *, mp);
2018 connp = NULL;
2019 }

2021 if (connp != NULL) {
2022 CONN_INC_REF(connp);
2023 mutex_exit(&connfp->connf_lock);
2024 return (connp);
2025 }

2027 /*
2028 * We shouldn’t come here for multicast/broadcast packets
2029 */
2030 mutex_exit(&connfp->connf_lock);
2031 break;
2032 case IPPROTO_ENCAP:
2033 case IPPROTO_IPV6:
2034 return (ipcl_iptun_classify_v6(&ip6h->ip6_src,
2035 &ip6h->ip6_dst, ipst));
2036 }

2038 return (NULL);
2039 }

2041 /*

new/usr/src/uts/common/inet/ip/ipclassifier.c 32

2042 * wrapper around ipcl_classify_(v4,v6) routines.
2043 */
2044 conn_t *
2045 ipcl_classify(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
2046 {
2047 if (ira->ira_flags & IRAF_IS_IPV4) {
2048 return (ipcl_classify_v4(mp, ira->ira_protocol,
2049 ira->ira_ip_hdr_length, ira, ipst));
2050 } else {
2051 return (ipcl_classify_v6(mp, ira->ira_protocol,
2052 ira->ira_ip_hdr_length, ira, ipst));
2053 }
2054 }

2056 /*
2057 * Only used to classify SCTP RAW sockets
2058 */
2059 conn_t *
2060 ipcl_classify_raw(mblk_t *mp, uint8_t protocol, uint32_t ports,
2061 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, ip_stack_t *ipst)
2062 {
2063 connf_t *connfp;
2064 conn_t *connp;
2065 in_port_t lport;
2066 int ipversion;
2067 const void *dst;
2068 zoneid_t zoneid = ira->ira_zoneid;

2070 lport = ((uint16_t *)&ports)[1];
2071 if (ira->ira_flags & IRAF_IS_IPV4) {
2072 dst = (const void *)&ipha->ipha_dst;
2073 ipversion = IPV4_VERSION;
2074 } else {
2075 dst = (const void *)&ip6h->ip6_dst;
2076 ipversion = IPV6_VERSION;
2077 }

2079 connfp = &ipst->ips_ipcl_raw_fanout[IPCL_RAW_HASH(ntohs(lport), ipst)];
2080 mutex_enter(&connfp->connf_lock);
2081 for (connp = connfp->connf_head; connp != NULL;
2082 connp = connp->conn_next) {
2083 /* We don’t allow v4 fallback for v6 raw socket. */
2084 if (ipversion != connp->conn_ipversion)
2085 continue;
2086 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
2087 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
2088 if (ipversion == IPV4_VERSION) {
2089 if (!IPCL_CONN_MATCH(connp, protocol,
2090 ipha->ipha_src, ipha->ipha_dst, ports))
2091 continue;
2092 } else {
2093 if (!IPCL_CONN_MATCH_V6(connp, protocol,
2094 ip6h->ip6_src, ip6h->ip6_dst, ports))
2095 continue;
2096 }
2097 } else {
2098 if (ipversion == IPV4_VERSION) {
2099 if (!IPCL_BIND_MATCH(connp, protocol,
2100 ipha->ipha_dst, lport))
2101 continue;
2102 } else {
2103 if (!IPCL_BIND_MATCH_V6(connp, protocol,
2104 ip6h->ip6_dst, lport))
2105 continue;
2106 }
2107 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 33

2109 if (connp->conn_zoneid == zoneid ||
2110 connp->conn_allzones ||
2111 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
2112 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
2113 (ira->ira_flags & IRAF_TX_SHARED_ADDR)))
2114 break;
2115 }

2117 if (connp != NULL && (ira->ira_flags & IRAF_SYSTEM_LABELED) &&
2118 !tsol_receive_local(mp, dst, ipversion, ira, connp)) {
2119 DTRACE_PROBE3(tx__ip__log__info__classify__rawip,
2120 char *, "connp(1) could not receive mp(2)",
2121 conn_t *, connp, mblk_t *, mp);
2122 connp = NULL;
2123 }

2125 if (connp != NULL)
2126 goto found;
2127 mutex_exit(&connfp->connf_lock);

2129 /* Try to look for a wildcard SCTP RAW socket match. */
2130 connfp = &ipst->ips_ipcl_raw_fanout[IPCL_RAW_HASH(0, ipst)];
2131 mutex_enter(&connfp->connf_lock);
2132 for (connp = connfp->connf_head; connp != NULL;
2133 connp = connp->conn_next) {
2134 /* We don’t allow v4 fallback for v6 raw socket. */
2135 if (ipversion != connp->conn_ipversion)
2136 continue;
2137 if (!IPCL_ZONE_MATCH(connp, zoneid))
2138 continue;

2140 if (ipversion == IPV4_VERSION) {
2141 if (IPCL_RAW_MATCH(connp, protocol, ipha->ipha_dst))
2142 break;
2143 } else {
2144 if (IPCL_RAW_MATCH_V6(connp, protocol, ip6h->ip6_dst)) {
2145 break;
2146 }
2147 }
2148 }

2150 if (connp != NULL)
2151 goto found;

2153 mutex_exit(&connfp->connf_lock);
2154 return (NULL);

2156 found:
2157 ASSERT(connp != NULL);
2158 CONN_INC_REF(connp);
2159 mutex_exit(&connfp->connf_lock);
2160 return (connp);
2161 }

2163 /* ARGSUSED */
2164 static int
2165 tcp_conn_constructor(void *buf, void *cdrarg, int kmflags)
2166 {
2167 itc_t *itc = (itc_t *)buf;
2168 conn_t *connp = &itc->itc_conn;
2169 tcp_t *tcp = (tcp_t *)&itc[1];

2171 bzero(connp, sizeof (conn_t));
2172 bzero(tcp, sizeof (tcp_t));

new/usr/src/uts/common/inet/ip/ipclassifier.c 34

2174 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2175 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2176 cv_init(&connp->conn_sq_cv, NULL, CV_DEFAULT, NULL);
2177 tcp->tcp_timercache = tcp_timermp_alloc(kmflags);
2178 if (tcp->tcp_timercache == NULL)
2179 return (ENOMEM);
2180 connp->conn_tcp = tcp;
2181 connp->conn_flags = IPCL_TCPCONN;
2182 connp->conn_proto = IPPROTO_TCP;
2183 tcp->tcp_connp = connp;
2184 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);

2186 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2187 if (connp->conn_ixa == NULL) {
2188 tcp_timermp_free(tcp);
2189 return (ENOMEM);
2190 }
2191 connp->conn_ixa->ixa_refcnt = 1;
2192 connp->conn_ixa->ixa_protocol = connp->conn_proto;
2193 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);
2194 return (0);
2195 }

2197 /* ARGSUSED */
2198 static void
2199 tcp_conn_destructor(void *buf, void *cdrarg)
2200 {
2201 itc_t *itc = (itc_t *)buf;
2202 conn_t *connp = &itc->itc_conn;
2203 tcp_t *tcp = (tcp_t *)&itc[1];

2205 ASSERT(connp->conn_flags & IPCL_TCPCONN);
2206 ASSERT(tcp->tcp_connp == connp);
2207 ASSERT(connp->conn_tcp == tcp);
2208 tcp_timermp_free(tcp);
2209 mutex_destroy(&connp->conn_lock);
2210 cv_destroy(&connp->conn_cv);
2211 cv_destroy(&connp->conn_sq_cv);
2212 rw_destroy(&connp->conn_ilg_lock);

2214 /* Can be NULL if constructor failed */
2215 if (connp->conn_ixa != NULL) {
2216 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2217 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2218 ASSERT(connp->conn_ixa->ixa_nce == NULL);
2219 ixa_refrele(connp->conn_ixa);
2220 }
2221 }

2223 /* ARGSUSED */
2224 static int
2225 ip_conn_constructor(void *buf, void *cdrarg, int kmflags)
2226 {
2227 itc_t *itc = (itc_t *)buf;
2228 conn_t *connp = &itc->itc_conn;

2230 bzero(connp, sizeof (conn_t));
2231 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2232 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2233 connp->conn_flags = IPCL_IPCCONN;
2234 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);

2236 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2237 if (connp->conn_ixa == NULL)
2238 return (ENOMEM);
2239 connp->conn_ixa->ixa_refcnt = 1;

new/usr/src/uts/common/inet/ip/ipclassifier.c 35

2240 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);
2241 return (0);
2242 }

2244 /* ARGSUSED */
2245 static void
2246 ip_conn_destructor(void *buf, void *cdrarg)
2247 {
2248 itc_t *itc = (itc_t *)buf;
2249 conn_t *connp = &itc->itc_conn;

2251 ASSERT(connp->conn_flags & IPCL_IPCCONN);
2252 ASSERT(connp->conn_priv == NULL);
2253 mutex_destroy(&connp->conn_lock);
2254 cv_destroy(&connp->conn_cv);
2255 rw_destroy(&connp->conn_ilg_lock);

2257 /* Can be NULL if constructor failed */
2258 if (connp->conn_ixa != NULL) {
2259 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2260 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2261 ASSERT(connp->conn_ixa->ixa_nce == NULL);
2262 ixa_refrele(connp->conn_ixa);
2263 }
2264 }

2266 /* ARGSUSED */
2267 static int
2268 udp_conn_constructor(void *buf, void *cdrarg, int kmflags)
2269 {
2270 itc_t *itc = (itc_t *)buf;
2271 conn_t *connp = &itc->itc_conn;
2272 udp_t *udp = (udp_t *)&itc[1];

2274 bzero(connp, sizeof (conn_t));
2275 bzero(udp, sizeof (udp_t));

2277 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2278 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2279 connp->conn_udp = udp;
2280 connp->conn_flags = IPCL_UDPCONN;
2281 connp->conn_proto = IPPROTO_UDP;
2282 udp->udp_connp = connp;
2283 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);
2284 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2285 if (connp->conn_ixa == NULL)
2286 return (ENOMEM);
2287 connp->conn_ixa->ixa_refcnt = 1;
2288 connp->conn_ixa->ixa_protocol = connp->conn_proto;
2289 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);
2290 return (0);
2291 }

2293 /* ARGSUSED */
2294 static void
2295 udp_conn_destructor(void *buf, void *cdrarg)
2296 {
2297 itc_t *itc = (itc_t *)buf;
2298 conn_t *connp = &itc->itc_conn;
2299 udp_t *udp = (udp_t *)&itc[1];

2301 ASSERT(connp->conn_flags & IPCL_UDPCONN);
2302 ASSERT(udp->udp_connp == connp);
2303 ASSERT(connp->conn_udp == udp);
2304 mutex_destroy(&connp->conn_lock);
2305 cv_destroy(&connp->conn_cv);

new/usr/src/uts/common/inet/ip/ipclassifier.c 36

2306 rw_destroy(&connp->conn_ilg_lock);

2308 /* Can be NULL if constructor failed */
2309 if (connp->conn_ixa != NULL) {
2310 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2311 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2312 ASSERT(connp->conn_ixa->ixa_nce == NULL);
2313 ixa_refrele(connp->conn_ixa);
2314 }
2315 }

2317 /* ARGSUSED */
2318 static int
2319 rawip_conn_constructor(void *buf, void *cdrarg, int kmflags)
2320 {
2321 itc_t *itc = (itc_t *)buf;
2322 conn_t *connp = &itc->itc_conn;
2323 icmp_t *icmp = (icmp_t *)&itc[1];

2325 bzero(connp, sizeof (conn_t));
2326 bzero(icmp, sizeof (icmp_t));

2328 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2329 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2330 connp->conn_icmp = icmp;
2331 connp->conn_flags = IPCL_RAWIPCONN;
2332 connp->conn_proto = IPPROTO_ICMP;
2333 icmp->icmp_connp = connp;
2334 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);
2335 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2336 if (connp->conn_ixa == NULL)
2337 return (ENOMEM);
2338 connp->conn_ixa->ixa_refcnt = 1;
2339 connp->conn_ixa->ixa_protocol = connp->conn_proto;
2340 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);
2341 return (0);
2342 }

2344 /* ARGSUSED */
2345 static void
2346 rawip_conn_destructor(void *buf, void *cdrarg)
2347 {
2348 itc_t *itc = (itc_t *)buf;
2349 conn_t *connp = &itc->itc_conn;
2350 icmp_t *icmp = (icmp_t *)&itc[1];

2352 ASSERT(connp->conn_flags & IPCL_RAWIPCONN);
2353 ASSERT(icmp->icmp_connp == connp);
2354 ASSERT(connp->conn_icmp == icmp);
2355 mutex_destroy(&connp->conn_lock);
2356 cv_destroy(&connp->conn_cv);
2357 rw_destroy(&connp->conn_ilg_lock);

2359 /* Can be NULL if constructor failed */
2360 if (connp->conn_ixa != NULL) {
2361 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2362 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2363 ASSERT(connp->conn_ixa->ixa_nce == NULL);
2364 ixa_refrele(connp->conn_ixa);
2365 }
2366 }

2368 /* ARGSUSED */
2369 static int
2370 rts_conn_constructor(void *buf, void *cdrarg, int kmflags)
2371 {

new/usr/src/uts/common/inet/ip/ipclassifier.c 37

2372 itc_t *itc = (itc_t *)buf;
2373 conn_t *connp = &itc->itc_conn;
2374 rts_t *rts = (rts_t *)&itc[1];

2376 bzero(connp, sizeof (conn_t));
2377 bzero(rts, sizeof (rts_t));

2379 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2380 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2381 connp->conn_rts = rts;
2382 connp->conn_flags = IPCL_RTSCONN;
2383 rts->rts_connp = connp;
2384 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);
2385 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2386 if (connp->conn_ixa == NULL)
2387 return (ENOMEM);
2388 connp->conn_ixa->ixa_refcnt = 1;
2389 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);
2390 return (0);
2391 }

2393 /* ARGSUSED */
2394 static void
2395 rts_conn_destructor(void *buf, void *cdrarg)
2396 {
2397 itc_t *itc = (itc_t *)buf;
2398 conn_t *connp = &itc->itc_conn;
2399 rts_t *rts = (rts_t *)&itc[1];

2401 ASSERT(connp->conn_flags & IPCL_RTSCONN);
2402 ASSERT(rts->rts_connp == connp);
2403 ASSERT(connp->conn_rts == rts);
2404 mutex_destroy(&connp->conn_lock);
2405 cv_destroy(&connp->conn_cv);
2406 rw_destroy(&connp->conn_ilg_lock);

2408 /* Can be NULL if constructor failed */
2409 if (connp->conn_ixa != NULL) {
2410 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2411 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2412 ASSERT(connp->conn_ixa->ixa_nce == NULL);
2413 ixa_refrele(connp->conn_ixa);
2414 }
2415 }

2417 /* ARGSUSED */
2418 static int
2419 dccp_conn_constructor(void *buf, void *cdrarg, int kmflags)
2420 {
2421 itc_t *itc = (itc_t *)buf;
2422 conn_t *connp = &itc->itc_conn;
2423 dccp_t *dccp = (dccp_t *)&itc[1];

2425 bzero(connp, sizeof (conn_t));
2426 bzero(dccp, sizeof (dccp_t));

2428 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2429 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2430 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);

2432 dccp->dccp_timercache = dccp_timermp_alloc(kmflags);
2433 if (dccp->dccp_timercache == NULL) {
2434 return (ENOMEM);
2435 }

2437 connp->conn_dccp = dccp;

new/usr/src/uts/common/inet/ip/ipclassifier.c 38

2438 connp->conn_flags = IPCL_DCCPCONN;
2439 connp->conn_proto = IPPROTO_DCCP;
2440 dccp->dccp_connp = connp;

2442 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2443 if (connp->conn_ixa == NULL) {
2444 return (NULL);
2445 }

2447 connp->conn_ixa->ixa_refcnt = 1;
2448 connp->conn_ixa->ixa_protocol = connp->conn_proto;
2449 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);

2451 return (0);
2452 }

2454 /* ARGSUSED */
2455 static void
2456 dccp_conn_destructor(void *buf, void *cdrarg)
2457 {
2458 itc_t *itc = (itc_t *)buf;
2459 conn_t *connp = &itc->itc_conn;
2460 dccp_t *dccp = (dccp_t *)&itc[1];

2462 ASSERT(connp->conn_flags & IPCL_DCCPCONN);
2463 ASSERT(dccp->dccp_connp == connp);
2464 ASSERT(connp->conn_dccp == dccp);

2466 dccp_timermp_free(dccp);

2468 mutex_destroy(&connp->conn_lock);
2469 cv_destroy(&connp->conn_cv);
2470 rw_destroy(&connp->conn_ilg_lock);

2472 if (connp->conn_ixa != NULL) {
2473 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2474 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2475 ASSERT(connp->conn_ixa->ixa_nce == NULL);

2477 ixa_refrele(connp->conn_ixa);
2478 }
2479 }

2481 #endif /* ! codereview */
2482 /*
2483 * Called as part of ipcl_conn_destroy to assert and clear any pointers
2484 * in the conn_t.
2485 *
2486 * Below we list all the pointers in the conn_t as a documentation aid.
2487 * The ones that we can not ASSERT to be NULL are #ifdef’ed out.
2488 * If you add any pointers to the conn_t please add an ASSERT here
2489 * and #ifdef it out if it can’t be actually asserted to be NULL.
2490 * In any case, we bzero most of the conn_t at the end of the function.
2491 */
2492 void
2493 ipcl_conn_cleanup(conn_t *connp)
2494 {
2495 ip_xmit_attr_t *ixa;

2497 ASSERT(connp->conn_latch == NULL);
2498 ASSERT(connp->conn_latch_in_policy == NULL);
2499 ASSERT(connp->conn_latch_in_action == NULL);
2500 #ifdef notdef
2501 ASSERT(connp->conn_rq == NULL);
2502 ASSERT(connp->conn_wq == NULL);
2503 #endif

new/usr/src/uts/common/inet/ip/ipclassifier.c 39

2504 ASSERT(connp->conn_cred == NULL);
2505 ASSERT(connp->conn_g_fanout == NULL);
2506 ASSERT(connp->conn_g_next == NULL);
2507 ASSERT(connp->conn_g_prev == NULL);
2508 ASSERT(connp->conn_policy == NULL);
2509 ASSERT(connp->conn_fanout == NULL);
2510 ASSERT(connp->conn_next == NULL);
2511 ASSERT(connp->conn_prev == NULL);
2512 ASSERT(connp->conn_oper_pending_ill == NULL);
2513 ASSERT(connp->conn_ilg == NULL);
2514 ASSERT(connp->conn_drain_next == NULL);
2515 ASSERT(connp->conn_drain_prev == NULL);
2516 #ifdef notdef
2517 /* conn_idl is not cleared when removed from idl list */
2518 ASSERT(connp->conn_idl == NULL);
2519 #endif
2520 ASSERT(connp->conn_ipsec_opt_mp == NULL);
2521 #ifdef notdef
2522 /* conn_netstack is cleared by the caller; needed by ixa_cleanup */
2523 ASSERT(connp->conn_netstack == NULL);
2524 #endif

2526 ASSERT(connp->conn_helper_info == NULL);
2527 ASSERT(connp->conn_ixa != NULL);
2528 ixa = connp->conn_ixa;
2529 ASSERT(ixa->ixa_refcnt == 1);
2530 /* Need to preserve ixa_protocol */
2531 ixa_cleanup(ixa);
2532 ixa->ixa_flags = 0;

2534 /* Clear out the conn_t fields that are not preserved */
2535 bzero(&connp->conn_start_clr,
2536 sizeof (conn_t) -
2537 ((uchar_t *)&connp->conn_start_clr - (uchar_t *)connp));
2538 }

2540 /*
2541 * All conns are inserted in a global multi-list for the benefit of
2542 * walkers. The walk is guaranteed to walk all open conns at the time
2543 * of the start of the walk exactly once. This property is needed to
2544 * achieve some cleanups during unplumb of interfaces. This is achieved
2545 * as follows.
2546 *
2547 * ipcl_conn_create and ipcl_conn_destroy are the only functions that
2548 * call the insert and delete functions below at creation and deletion
2549 * time respectively. The conn never moves or changes its position in this
2550 * multi-list during its lifetime. CONN_CONDEMNED ensures that the refcnt
2551 * won’t increase due to walkers, once the conn deletion has started. Note
2552 * that we can’t remove the conn from the global list and then wait for
2553 * the refcnt to drop to zero, since walkers would then see a truncated
2554 * list. CONN_INCIPIENT ensures that walkers don’t start looking at
2555 * conns until ip_open is ready to make them globally visible.
2556 * The global round robin multi-list locks are held only to get the
2557 * next member/insertion/deletion and contention should be negligible
2558 * if the multi-list is much greater than the number of cpus.
2559 */
2560 void
2561 ipcl_globalhash_insert(conn_t *connp)
2562 {
2563 int index;
2564 struct connf_s *connfp;
2565 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;

2567 /*
2568 * No need for atomic here. Approximate even distribution
2569 * in the global lists is sufficient.

new/usr/src/uts/common/inet/ip/ipclassifier.c 40

2570 */
2571 ipst->ips_conn_g_index++;
2572 index = ipst->ips_conn_g_index & (CONN_G_HASH_SIZE - 1);

2574 connp->conn_g_prev = NULL;
2575 /*
2576 * Mark as INCIPIENT, so that walkers will ignore this
2577 * for now, till ip_open is ready to make it visible globally.
2578 */
2579 connp->conn_state_flags |= CONN_INCIPIENT;

2581 connfp = &ipst->ips_ipcl_globalhash_fanout[index];
2582 /* Insert at the head of the list */
2583 mutex_enter(&connfp->connf_lock);
2584 connp->conn_g_next = connfp->connf_head;
2585 if (connp->conn_g_next != NULL)
2586 connp->conn_g_next->conn_g_prev = connp;
2587 connfp->connf_head = connp;

2589 /* The fanout bucket this conn points to */
2590 connp->conn_g_fanout = connfp;

2592 mutex_exit(&connfp->connf_lock);
2593 }

2595 void
2596 ipcl_globalhash_remove(conn_t *connp)
2597 {
2598 struct connf_s *connfp;

2600 /*
2601 * We were never inserted in the global multi list.
2602 * IPCL_NONE variety is never inserted in the global multilist
2603 * since it is presumed to not need any cleanup and is transient.
2604 */
2605 if (connp->conn_g_fanout == NULL)
2606 return;

2608 connfp = connp->conn_g_fanout;
2609 mutex_enter(&connfp->connf_lock);
2610 if (connp->conn_g_prev != NULL)
2611 connp->conn_g_prev->conn_g_next = connp->conn_g_next;
2612 else
2613 connfp->connf_head = connp->conn_g_next;
2614 if (connp->conn_g_next != NULL)
2615 connp->conn_g_next->conn_g_prev = connp->conn_g_prev;
2616 mutex_exit(&connfp->connf_lock);

2618 /* Better to stumble on a null pointer than to corrupt memory */
2619 connp->conn_g_next = NULL;
2620 connp->conn_g_prev = NULL;
2621 connp->conn_g_fanout = NULL;
2622 }

2624 /*
2625 * Walk the list of all conn_t’s in the system, calling the function provided
2626 * With the specified argument for each.
2627 * Applies to both IPv4 and IPv6.
2628 *
2629 * CONNs may hold pointers to ills (conn_dhcpinit_ill and
2630 * conn_oper_pending_ill). To guard against stale pointers
2631 * ipcl_walk() is called to cleanup the conn_t’s, typically when an interface is
2632 * unplumbed or removed. New conn_t’s that are created while we are walking
2633 * may be missed by this walk, because they are not necessarily inserted
2634 * at the tail of the list. They are new conn_t’s and thus don’t have any
2635 * stale pointers. The CONN_CLOSING flag ensures that no new reference

new/usr/src/uts/common/inet/ip/ipclassifier.c 41

2636 * is created to the struct that is going away.
2637 */
2638 void
2639 ipcl_walk(pfv_t func, void *arg, ip_stack_t *ipst)
2640 {
2641 int i;
2642 conn_t *connp;
2643 conn_t *prev_connp;

2645 for (i = 0; i < CONN_G_HASH_SIZE; i++) {
2646 mutex_enter(&ipst->ips_ipcl_globalhash_fanout[i].connf_lock);
2647 prev_connp = NULL;
2648 connp = ipst->ips_ipcl_globalhash_fanout[i].connf_head;
2649 while (connp != NULL) {
2650 mutex_enter(&connp->conn_lock);
2651 if (connp->conn_state_flags &
2652 (CONN_CONDEMNED | CONN_INCIPIENT)) {
2653 mutex_exit(&connp->conn_lock);
2654 connp = connp->conn_g_next;
2655 continue;
2656 }
2657 CONN_INC_REF_LOCKED(connp);
2658 mutex_exit(&connp->conn_lock);
2659 mutex_exit(
2660 &ipst->ips_ipcl_globalhash_fanout[i].connf_lock);
2661 (*func)(connp, arg);
2662 if (prev_connp != NULL)
2663 CONN_DEC_REF(prev_connp);
2664 mutex_enter(
2665 &ipst->ips_ipcl_globalhash_fanout[i].connf_lock);
2666 prev_connp = connp;
2667 connp = connp->conn_g_next;
2668 }
2669 mutex_exit(&ipst->ips_ipcl_globalhash_fanout[i].connf_lock);
2670 if (prev_connp != NULL)
2671 CONN_DEC_REF(prev_connp);
2672 }
2673 }

2675 /*
2676 * Search for a peer TCP/IPv4 loopback conn by doing a reverse lookup on
2677 * the {src, dst, lport, fport} quadruplet. Returns with conn reference
2678 * held; caller must call CONN_DEC_REF. Only checks for connected entries
2679 * (peer tcp in ESTABLISHED state).
2680 */
2681 conn_t *
2682 ipcl_conn_tcp_lookup_reversed_ipv4(conn_t *connp, ipha_t *ipha, tcpha_t *tcpha,
2683 ip_stack_t *ipst)
2684 {
2685 uint32_t ports;
2686 uint16_t *pports = (uint16_t *)&ports;
2687 connf_t *connfp;
2688 conn_t *tconnp;
2689 boolean_t zone_chk;

2691 /*
2692 * If either the source of destination address is loopback, then
2693 * both endpoints must be in the same Zone. Otherwise, both of
2694 * the addresses are system-wide unique (tcp is in ESTABLISHED
2695 * state) and the endpoints may reside in different Zones.
2696 */
2697 zone_chk = (ipha->ipha_src == htonl(INADDR_LOOPBACK) ||
2698 ipha->ipha_dst == htonl(INADDR_LOOPBACK));

2700 pports[0] = tcpha->tha_fport;
2701 pports[1] = tcpha->tha_lport;

new/usr/src/uts/common/inet/ip/ipclassifier.c 42

2703 connfp = &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH(ipha->ipha_dst,
2704 ports, ipst)];

2706 mutex_enter(&connfp->connf_lock);
2707 for (tconnp = connfp->connf_head; tconnp != NULL;
2708 tconnp = tconnp->conn_next) {

2710 if (IPCL_CONN_MATCH(tconnp, IPPROTO_TCP,
2711 ipha->ipha_dst, ipha->ipha_src, ports) &&
2712 tconnp->conn_tcp->tcp_state == TCPS_ESTABLISHED &&
2713 (!zone_chk || tconnp->conn_zoneid == connp->conn_zoneid)) {

2715 ASSERT(tconnp != connp);
2716 CONN_INC_REF(tconnp);
2717 mutex_exit(&connfp->connf_lock);
2718 return (tconnp);
2719 }
2720 }
2721 mutex_exit(&connfp->connf_lock);
2722 return (NULL);
2723 }

2725 /*
2726 * Search for a peer TCP/IPv6 loopback conn by doing a reverse lookup on
2727 * the {src, dst, lport, fport} quadruplet. Returns with conn reference
2728 * held; caller must call CONN_DEC_REF. Only checks for connected entries
2729 * (peer tcp in ESTABLISHED state).
2730 */
2731 conn_t *
2732 ipcl_conn_tcp_lookup_reversed_ipv6(conn_t *connp, ip6_t *ip6h, tcpha_t *tcpha,
2733 ip_stack_t *ipst)
2734 {
2735 uint32_t ports;
2736 uint16_t *pports = (uint16_t *)&ports;
2737 connf_t *connfp;
2738 conn_t *tconnp;
2739 boolean_t zone_chk;

2741 /*
2742 * If either the source of destination address is loopback, then
2743 * both endpoints must be in the same Zone. Otherwise, both of
2744 * the addresses are system-wide unique (tcp is in ESTABLISHED
2745 * state) and the endpoints may reside in different Zones. We
2746 * don’t do Zone check for link local address(es) because the
2747 * current Zone implementation treats each link local address as
2748 * being unique per system node, i.e. they belong to global Zone.
2749 */
2750 zone_chk = (IN6_IS_ADDR_LOOPBACK(&ip6h->ip6_src) ||
2751 IN6_IS_ADDR_LOOPBACK(&ip6h->ip6_dst));

2753 pports[0] = tcpha->tha_fport;
2754 pports[1] = tcpha->tha_lport;

2756 connfp = &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH_V6(ip6h->ip6_dst,
2757 ports, ipst)];

2759 mutex_enter(&connfp->connf_lock);
2760 for (tconnp = connfp->connf_head; tconnp != NULL;
2761 tconnp = tconnp->conn_next) {

2763 /* We skip conn_bound_if check here as this is loopback tcp */
2764 if (IPCL_CONN_MATCH_V6(tconnp, IPPROTO_TCP,
2765 ip6h->ip6_dst, ip6h->ip6_src, ports) &&
2766 tconnp->conn_tcp->tcp_state == TCPS_ESTABLISHED &&
2767 (!zone_chk || tconnp->conn_zoneid == connp->conn_zoneid)) {

new/usr/src/uts/common/inet/ip/ipclassifier.c 43

2769 ASSERT(tconnp != connp);
2770 CONN_INC_REF(tconnp);
2771 mutex_exit(&connfp->connf_lock);
2772 return (tconnp);
2773 }
2774 }
2775 mutex_exit(&connfp->connf_lock);
2776 return (NULL);
2777 }

2779 /*
2780 * Find an exact {src, dst, lport, fport} match for a bounced datagram.
2781 * Returns with conn reference held. Caller must call CONN_DEC_REF.
2782 * Only checks for connected entries i.e. no INADDR_ANY checks.
2783 */
2784 conn_t *
2785 ipcl_tcp_lookup_reversed_ipv4(ipha_t *ipha, tcpha_t *tcpha, int min_state,
2786 ip_stack_t *ipst)
2787 {
2788 uint32_t ports;
2789 uint16_t *pports;
2790 connf_t *connfp;
2791 conn_t *tconnp;

2793 pports = (uint16_t *)&ports;
2794 pports[0] = tcpha->tha_fport;
2795 pports[1] = tcpha->tha_lport;

2797 connfp = &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH(ipha->ipha_dst,
2798 ports, ipst)];

2800 mutex_enter(&connfp->connf_lock);
2801 for (tconnp = connfp->connf_head; tconnp != NULL;
2802 tconnp = tconnp->conn_next) {

2804 if (IPCL_CONN_MATCH(tconnp, IPPROTO_TCP,
2805 ipha->ipha_dst, ipha->ipha_src, ports) &&
2806 tconnp->conn_tcp->tcp_state >= min_state) {

2808 CONN_INC_REF(tconnp);
2809 mutex_exit(&connfp->connf_lock);
2810 return (tconnp);
2811 }
2812 }
2813 mutex_exit(&connfp->connf_lock);
2814 return (NULL);
2815 }

2817 /*
2818 * Find an exact {src, dst, lport, fport} match for a bounced datagram.
2819 * Returns with conn reference held. Caller must call CONN_DEC_REF.
2820 * Only checks for connected entries i.e. no INADDR_ANY checks.
2821 * Match on ifindex in addition to addresses.
2822 */
2823 conn_t *
2824 ipcl_tcp_lookup_reversed_ipv6(ip6_t *ip6h, tcpha_t *tcpha, int min_state,
2825 uint_t ifindex, ip_stack_t *ipst)
2826 {
2827 tcp_t *tcp;
2828 uint32_t ports;
2829 uint16_t *pports;
2830 connf_t *connfp;
2831 conn_t *tconnp;

2833 pports = (uint16_t *)&ports;

new/usr/src/uts/common/inet/ip/ipclassifier.c 44

2834 pports[0] = tcpha->tha_fport;
2835 pports[1] = tcpha->tha_lport;

2837 connfp = &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH_V6(ip6h->ip6_dst,
2838 ports, ipst)];

2840 mutex_enter(&connfp->connf_lock);
2841 for (tconnp = connfp->connf_head; tconnp != NULL;
2842 tconnp = tconnp->conn_next) {

2844 tcp = tconnp->conn_tcp;
2845 if (IPCL_CONN_MATCH_V6(tconnp, IPPROTO_TCP,
2846 ip6h->ip6_dst, ip6h->ip6_src, ports) &&
2847 tcp->tcp_state >= min_state &&
2848 (tconnp->conn_bound_if == 0 ||
2849 tconnp->conn_bound_if == ifindex)) {

2851 CONN_INC_REF(tconnp);
2852 mutex_exit(&connfp->connf_lock);
2853 return (tconnp);
2854 }
2855 }
2856 mutex_exit(&connfp->connf_lock);
2857 return (NULL);
2858 }

2860 /*
2861 * Same as ipcl_tcp_lookup_reversed_ipv4.
2862 */
2863 conn_t *
2864 ipcl_dccp_lookup_reversed_ipv4(ipha_t *ipha, dccpha_t *dccpha, int min_state,
2865 ip_stack_t *ipst)
2866 {
2867 conn_t *tconnp;
2868 connf_t *connfp;
2869 uint16_t *pports;
2870 uint32_t ports;

2872 pports = (uint16_t *)&ports;
2873 pports[0] = dccpha->dha_fport;
2874 pports[1] = dccpha->dha_lport;

2876 connfp = &ipst->ips_ipcl_dccp_conn_fanout[IPCL_DCCP_CONN_HASH(
2877 ipha->ipha_dst, ports, ipst)];

2879 mutex_enter(&connfp->connf_lock);
2880 for (tconnp = connfp->connf_head; tconnp != NULL;
2881 tconnp = tconnp->conn_next) {
2882 if (IPCL_CONN_MATCH(tconnp, IPPROTO_DCCP,
2883 ipha->ipha_dst, ipha->ipha_src, ports) &&
2884 tconnp->conn_dccp->dccp_state >= min_state) {
2885 CONN_INC_REF(tconnp);
2886 mutex_exit(&connfp->connf_lock);
2887 return (tconnp);
2888 }
2889 }
2890 mutex_exit(&connfp->connf_lock);

2892 return (NULL);
2893 }

2895 /*
2896 * Same as ipcl_tcp_lookup_reversed_ipv6.
2897 */
2898 conn_t *
2899 ipcl_dccp_lookup_reversed_ipv6(ip6_t *ip6h, dccpha_t *dccpha, int min_state,

new/usr/src/uts/common/inet/ip/ipclassifier.c 45

2900 uint_t ifindex, ip_stack_t *ipst)
2901 {
2902 conn_t *tconnp;
2903 tcp_t *tcp;
2904 connf_t *connfp;
2905 uint32_t ports;
2906 uint16_t *pports;

2908 pports = (uint16_t *)&ports;
2909 pports[0] = dccpha->dha_fport;
2910 pports[1] = dccpha->dha_lport;
2911 /*
2912 connfp = &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH_V6(ip6h->ip6_dst,
2913 ports, ipst)];

2915 mutex_enter(&connfp->connf_lock);
2916 for (tconnp = connfp->connf_head; tconnp != NULL;
2917 tconnp = tconnp->conn_next) {

2919 tcp = tconnp->conn_tcp;
2920 if (IPCL_CONN_MATCH_V6(tconnp, IPPROTO_TCP,
2921 ip6h->ip6_dst, ip6h->ip6_src, ports) &&
2922 tcp->tcp_state >= min_state &&
2923 (tconnp->conn_bound_if == 0 ||
2924 tconnp->conn_bound_if == ifindex)) {

2926 CONN_INC_REF(tconnp);
2927 mutex_exit(&connfp->connf_lock);
2928 return (tconnp);
2929 }
2930 }
2931 mutex_exit(&connfp->connf_lock);
2932 */
2933 return (NULL);
2934 }

2936 /*
2937 #endif /* ! codereview */
2938 * Finds a TCP/IPv4 listening connection; called by tcp_disconnect to locate
2939 * a listener when changing state.
2940 */
2941 conn_t *
2942 ipcl_lookup_listener_v4(uint16_t lport, ipaddr_t laddr, zoneid_t zoneid,
2943 ip_stack_t *ipst)
2944 {
2945 connf_t *bind_connfp;
2946 conn_t *connp;
2947 tcp_t *tcp;

2949 /*
2950 * Avoid false matches for packets sent to an IP destination of
2951 * all zeros.
2952 */
2953 if (laddr == 0)
2954 return (NULL);

2956 ASSERT(zoneid != ALL_ZONES);

2958 bind_connfp = &ipst->ips_ipcl_bind_fanout[IPCL_BIND_HASH(lport, ipst)];
2959 mutex_enter(&bind_connfp->connf_lock);
2960 for (connp = bind_connfp->connf_head; connp != NULL;
2961 connp = connp->conn_next) {
2962 tcp = connp->conn_tcp;
2963 if (IPCL_BIND_MATCH(connp, IPPROTO_TCP, laddr, lport) &&
2964 IPCL_ZONE_MATCH(connp, zoneid) &&
2965 (tcp->tcp_listener == NULL)) {

new/usr/src/uts/common/inet/ip/ipclassifier.c 46

2966 CONN_INC_REF(connp);
2967 mutex_exit(&bind_connfp->connf_lock);
2968 return (connp);
2969 }
2970 }
2971 mutex_exit(&bind_connfp->connf_lock);
2972 return (NULL);
2973 }

2975 /*
2976 * Finds a TCP/IPv6 listening connection; called by tcp_disconnect to locate
2977 * a listener when changing state.
2978 */
2979 conn_t *
2980 ipcl_lookup_listener_v6(uint16_t lport, in6_addr_t *laddr, uint_t ifindex,
2981 zoneid_t zoneid, ip_stack_t *ipst)
2982 {
2983 connf_t *bind_connfp;
2984 conn_t *connp = NULL;
2985 tcp_t *tcp;

2987 /*
2988 * Avoid false matches for packets sent to an IP destination of
2989 * all zeros.
2990 */
2991 if (IN6_IS_ADDR_UNSPECIFIED(laddr))
2992 return (NULL);

2994 ASSERT(zoneid != ALL_ZONES);

2996 bind_connfp = &ipst->ips_ipcl_bind_fanout[IPCL_BIND_HASH(lport, ipst)];
2997 mutex_enter(&bind_connfp->connf_lock);
2998 for (connp = bind_connfp->connf_head; connp != NULL;
2999 connp = connp->conn_next) {
3000 tcp = connp->conn_tcp;
3001 if (IPCL_BIND_MATCH_V6(connp, IPPROTO_TCP, *laddr, lport) &&
3002 IPCL_ZONE_MATCH(connp, zoneid) &&
3003 (connp->conn_bound_if == 0 ||
3004 connp->conn_bound_if == ifindex) &&
3005 tcp->tcp_listener == NULL) {
3006 CONN_INC_REF(connp);
3007 mutex_exit(&bind_connfp->connf_lock);
3008 return (connp);
3009 }
3010 }
3011 mutex_exit(&bind_connfp->connf_lock);
3012 return (NULL);
3013 }

3015 /*
3016 * ipcl_get_next_conn
3017 * get the next entry in the conn global list
3018 * and put a reference on the next_conn.
3019 * decrement the reference on the current conn.
3020 *
3021 * This is an iterator based walker function that also provides for
3022 * some selection by the caller. It walks through the conn_hash bucket
3023 * searching for the next valid connp in the list, and selects connections
3024 * that are neither closed nor condemned. It also REFHOLDS the conn
3025 * thus ensuring that the conn exists when the caller uses the conn.
3026 */
3027 conn_t *
3028 ipcl_get_next_conn(connf_t *connfp, conn_t *connp, uint32_t conn_flags)
3029 {
3030 conn_t *next_connp;

new/usr/src/uts/common/inet/ip/ipclassifier.c 47

3032 if (connfp == NULL)
3033 return (NULL);

3035 mutex_enter(&connfp->connf_lock);

3037 next_connp = (connp == NULL) ?
3038 connfp->connf_head : connp->conn_g_next;

3040 while (next_connp != NULL) {
3041 mutex_enter(&next_connp->conn_lock);
3042 if (!(next_connp->conn_flags & conn_flags) ||
3043 (next_connp->conn_state_flags &
3044 (CONN_CONDEMNED | CONN_INCIPIENT))) {
3045 /*
3046 * This conn has been condemned or
3047 * is closing, or the flags don’t match
3048 */
3049 mutex_exit(&next_connp->conn_lock);
3050 next_connp = next_connp->conn_g_next;
3051 continue;
3052 }
3053 CONN_INC_REF_LOCKED(next_connp);
3054 mutex_exit(&next_connp->conn_lock);
3055 break;
3056 }

3058 mutex_exit(&connfp->connf_lock);

3060 if (connp != NULL)
3061 CONN_DEC_REF(connp);

3063 return (next_connp);
3064 }

3066 #ifdef CONN_DEBUG
3067 /*
3068 * Trace of the last NBUF refhold/refrele
3069 */
3070 int
3071 conn_trace_ref(conn_t *connp)
3072 {
3073 int last;
3074 conn_trace_t *ctb;

3076 ASSERT(MUTEX_HELD(&connp->conn_lock));
3077 last = connp->conn_trace_last;
3078 last++;
3079 if (last == CONN_TRACE_MAX)
3080 last = 0;

3082 ctb = &connp->conn_trace_buf[last];
3083 ctb->ctb_depth = getpcstack(ctb->ctb_stack, CONN_STACK_DEPTH);
3084 connp->conn_trace_last = last;
3085 return (1);
3086 }

3088 int
3089 conn_untrace_ref(conn_t *connp)
3090 {
3091 int last;
3092 conn_trace_t *ctb;

3094 ASSERT(MUTEX_HELD(&connp->conn_lock));
3095 last = connp->conn_trace_last;
3096 last++;
3097 if (last == CONN_TRACE_MAX)

new/usr/src/uts/common/inet/ip/ipclassifier.c 48

3098 last = 0;

3100 ctb = &connp->conn_trace_buf[last];
3101 ctb->ctb_depth = getpcstack(ctb->ctb_stack, CONN_STACK_DEPTH);
3102 connp->conn_trace_last = last;
3103 return (1);
3104 }
3105 #endif

new/usr/src/uts/common/inet/ip_impl.h 1

**
 6502 Sat Aug 18 10:37:17 2012
new/usr/src/uts/common/inet/ip_impl.h
dccp: reset packet
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _INET_IP_IMPL_H
27 #define _INET_IP_IMPL_H

29 /*
30 * IP implementation private declarations. These interfaces are
31 * used to build the IP module and are not meant to be accessed
32 * by any modules except IP itself. They are undocumented and are
33 * subject to change without notice.
34 */

36 #ifdef __cplusplus
37 extern "C" {
38 #endif

40 #ifdef _KERNEL

42 #include <sys/sdt.h>
43 #include <sys/dld.h>
44 #include <inet/tunables.h>

46 #define IP_MOD_ID 5701

48 #define INET_NAME "ip"

50 #ifdef _BIG_ENDIAN
51 #define IP_HDR_CSUM_TTL_ADJUST 256
52 #define IP_TCP_CSUM_COMP IPPROTO_TCP
53 #define IP_UDP_CSUM_COMP IPPROTO_UDP
54 #define IP_ICMPV6_CSUM_COMP IPPROTO_ICMPV6
55 #define IP_DCCP_CSUM_COMP IPPROTO_DCCP
56 #endif /* ! codereview */
57 #else
58 #define IP_HDR_CSUM_TTL_ADJUST 1
59 #define IP_TCP_CSUM_COMP (IPPROTO_TCP << 8)
60 #define IP_UDP_CSUM_COMP (IPPROTO_UDP << 8)
61 #define IP_ICMPV6_CSUM_COMP (IPPROTO_ICMPV6 << 8)

new/usr/src/uts/common/inet/ip_impl.h 2

62 #define IP_DCCP_CSUM_COMP (IPPROTO_DCCP << 8)
63 #endif /* ! codereview */
64 #endif

66 #define TCP_CHECKSUM_OFFSET 16
67 #define TCP_CHECKSUM_SIZE 2

69 #define UDP_CHECKSUM_OFFSET 6
70 #define UDP_CHECKSUM_SIZE 2

72 #define ICMPV6_CHECKSUM_OFFSET 2
73 #define ICMPV6_CHECKSUM_SIZE 2

75 #define DCCP_CHECKSUM_OFFSET 6
76 #define DCCP_CHECKSUM_SIZE 2

78 #endif /* ! codereview */
79 #define IPH_TCPH_CHECKSUMP(ipha, hlen) \
80 ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + TCP_CHECKSUM_OFFSET)))

82 #define IPH_UDPH_CHECKSUMP(ipha, hlen) \
83 ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + UDP_CHECKSUM_OFFSET)))

85 #define IPH_ICMPV6_CHECKSUMP(ipha, hlen) \
86 ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + ICMPV6_CHECKSUM_OFFSET)))

88 #define IPH_DCCPH_CHECKSUMP(ipha, hlen) \
89 ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + DCCP_CHECKSUM_OFFSET)))

91 #endif /* ! codereview */
92 #define ILL_HCKSUM_CAPABLE(ill) \
93 (((ill)->ill_capabilities & ILL_CAPAB_HCKSUM) != 0)

95 /*
96 * Macro to adjust a given checksum value depending on any prepended
97 * or postpended data on the packet. It expects the start offset to
98 * begin at an even boundary and that the packet consists of at most
99 * two mblks.
100 */
101 #define IP_ADJCKSUM_PARTIAL(cksum_start, mp, mp1, len, adj) { \
102 /* \
103 * Prepended extraneous data; adjust checksum. \
104 */ \
105 if ((len) > 0) \
106 (adj) = IP_BCSUM_PARTIAL(cksum_start, len, 0); \
107 else \
108 (adj) = 0; \
109 /* \
110 * len is now the total length of mblk(s) \
111 */ \
112 (len) = MBLKL(mp); \
113 if ((mp1) == NULL) \
114 (mp1) = (mp); \
115 else \
116 (len) += MBLKL(mp1); \
117 /* \
118 * Postpended extraneous data; adjust checksum. \
119 */ \
120 if (((len) = (DB_CKSUMEND(mp) - len)) > 0) { \
121 uint32_t _pad; \
122 \
123 _pad = IP_BCSUM_PARTIAL((mp1)->b_wptr, len, 0); \
124 /* \
125 * If the postpended extraneous data was odd \
126 * byte aligned, swap resulting checksum bytes. \
127 */ \

new/usr/src/uts/common/inet/ip_impl.h 3

128 if ((uintptr_t)(mp1)->b_wptr & 1) \
129 (adj) += ((_pad << 8) & 0xFFFF) | (_pad >> 8); \
130 else \
131 (adj) += _pad; \
132 (adj) = ((adj) & 0xFFFF) + ((int)(adj) >> 16); \
133 } \
134 }

136 #define IS_SIMPLE_IPH(ipha) \
137 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION)

139 /*
140 * Currently supported flags for LSO.
141 */
142 #define LSO_BASIC_TCP_IPV4 DLD_LSO_BASIC_TCP_IPV4
143 #define LSO_BASIC_TCP_IPV6 DLD_LSO_BASIC_TCP_IPV6

145 #define ILL_LSO_CAPABLE(ill) \
146 (((ill)->ill_capabilities & ILL_CAPAB_LSO) != 0)

148 #define ILL_LSO_USABLE(ill) \
149 (ILL_LSO_CAPABLE(ill) && \
150 ill->ill_lso_capab != NULL)

152 #define ILL_LSO_TCP_IPV4_USABLE(ill) \
153 (ILL_LSO_USABLE(ill) && \
154 ill->ill_lso_capab->ill_lso_flags & LSO_BASIC_TCP_IPV4)

156 #define ILL_LSO_TCP_IPV6_USABLE(ill) \
157 (ILL_LSO_USABLE(ill) && \
158 ill->ill_lso_capab->ill_lso_flags & LSO_BASIC_TCP_IPV6)

160 #define ILL_ZCOPY_CAPABLE(ill) \
161 (((ill)->ill_capabilities & ILL_CAPAB_ZEROCOPY) != 0)

163 #define ILL_ZCOPY_USABLE(ill) \
164 (ILL_ZCOPY_CAPABLE(ill) && (ill->ill_zerocopy_capab != NULL) && \
165 (ill->ill_zerocopy_capab->ill_zerocopy_flags != 0))

168 /* Macro that follows definitions of flags for mac_tx() (see mac_client.h) */
169 #define IP_DROP_ON_NO_DESC 0x01 /* Equivalent to MAC_DROP_ON_NO_DESC */

171 #define ILL_DIRECT_CAPABLE(ill) \
172 (((ill)->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0)

174 /* This macro is used by the mac layer */
175 #define MBLK_RX_FANOUT_SLOWPATH(mp, ipha) \
176 (DB_TYPE(mp) != M_DATA || DB_REF(mp) != 1 || !OK_32PTR(ipha) || \
177 (((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH) >= (mp)->b_wptr))

179 /*
180 * In non-global zone exclusive IP stacks, data structures such as IRE
181 * entries pretend that they’re in the global zone. The following
182 * macro evaluates to the real zoneid instead of a pretend
183 * GLOBAL_ZONEID.
184 */
185 #define IP_REAL_ZONEID(zoneid, ipst) \
186 (((zoneid) == GLOBAL_ZONEID) ? \
187 netstackid_to_zoneid((ipst)->ips_netstack->netstack_stackid) : \
188 (zoneid))

190 extern void ill_flow_enable(void *, ip_mac_tx_cookie_t);
191 extern zoneid_t ip_get_zoneid_v4(ipaddr_t, mblk_t *, ip_recv_attr_t *,
192 zoneid_t);
193 extern zoneid_t ip_get_zoneid_v6(in6_addr_t *, mblk_t *, const ill_t *,

new/usr/src/uts/common/inet/ip_impl.h 4

194 ip_recv_attr_t *, zoneid_t);
195 extern void conn_ire_revalidate(conn_t *, void *);
196 extern void ip_ire_unbind_walker(ire_t *, void *);
197 extern void ip_ire_rebind_walker(ire_t *, void *);

199 /*
200 * flag passed in by IP based protocols to get a private ip stream with
201 * no conn_t. Note this flag has the same value as SO_FALLBACK
202 */
203 #define IP_HELPER_STR SO_FALLBACK

205 #define IP_MOD_MINPSZ 1
206 #define IP_MOD_MAXPSZ INFPSZ
207 #define IP_MOD_HIWAT 65536
208 #define IP_MOD_LOWAT 1024

210 #define DEV_IP "/devices/pseudo/ip@0:ip"
211 #define DEV_IP6 "/devices/pseudo/ip6@0:ip6"

213 #endif /* _KERNEL */

215 #ifdef __cplusplus
216 }
217 #endif

219 #endif /* _INET_IP_IMPL_H */

new/usr/src/uts/common/inet/ip_stack.h 1

**
 13785 Sat Aug 18 10:37:17 2012
new/usr/src/uts/common/inet/ip_stack.h
dccp: ips_ipcl_dccp_fanout
**
______unchanged_portion_omitted_

143 /*
144 * IP stack instances
145 */
146 struct ip_stack {
147 netstack_t *ips_netstack; /* Common netstack */

149 uint_t ips_src_generation; /* Both IPv4 and IPv6 */

151 struct mod_prop_info_s *ips_propinfo_tbl; /* ip tunables table */

153 mib2_ipIfStatsEntry_t ips_ip_mib; /* SNMP fixed size info */
154 mib2_icmp_t ips_icmp_mib;
155 /*
156 * IPv6 mibs when the interface (ill) is not known.
157 * When the ill is known the per-interface mib in the ill is used.
158 */
159 mib2_ipIfStatsEntry_t ips_ip6_mib;
160 mib2_ipv6IfIcmpEntry_t ips_icmp6_mib;

162 struct igmpstat ips_igmpstat;

164 kstat_t *ips_ip_mibkp; /* kstat exporting ip_mib data */
165 kstat_t *ips_icmp_mibkp; /* kstat exporting icmp_mib data */
166 kstat_t *ips_ip_kstat;
167 ip_stat_t ips_ip_statistics;
168 kstat_t *ips_ip6_kstat;
169 ip6_stat_t ips_ip6_statistics;

171 /* ip.c */
172 kmutex_t ips_igmp_timer_lock;
173 kmutex_t ips_mld_timer_lock;
174 kmutex_t ips_ip_mi_lock;
175 kmutex_t ips_ip_addr_avail_lock;
176 krwlock_t ips_ill_g_lock;

178 krwlock_t ips_ill_g_usesrc_lock;

180 /* Taskq dispatcher for capability operations */
181 kmutex_t ips_capab_taskq_lock;
182 kcondvar_t ips_capab_taskq_cv;
183 mblk_t *ips_capab_taskq_head;
184 mblk_t *ips_capab_taskq_tail;
185 kthread_t *ips_capab_taskq_thread;
186 boolean_t ips_capab_taskq_quit;

188 /* ipclassifier.c - keep in ip_stack_t */
189 /* ipclassifier hash tables */
190 struct connf_s *ips_rts_clients;
191 struct connf_s *ips_ipcl_conn_fanout;
192 struct connf_s *ips_ipcl_bind_fanout;
193 struct connf_s *ips_ipcl_proto_fanout_v4;
194 struct connf_s *ips_ipcl_proto_fanout_v6;
195 struct connf_s *ips_ipcl_udp_fanout;
196 struct connf_s *ips_ipcl_raw_fanout; /* RAW SCTP sockets */
197 struct connf_s *ips_ipcl_iptun_fanout;
198 struct connf_s *ips_ipcl_dccp_conn_fanout;
199 struct connf_s *ips_ipcl_dccp_bind_fanout;
200 #endif /* ! codereview */
201 uint_t ips_ipcl_conn_fanout_size;

new/usr/src/uts/common/inet/ip_stack.h 2

202 uint_t ips_ipcl_bind_fanout_size;
203 uint_t ips_ipcl_udp_fanout_size;
204 uint_t ips_ipcl_raw_fanout_size;
205 uint_t ips_ipcl_iptun_fanout_size;
206 uint_t ips_ipcl_dccp_conn_fanout_size;
207 uint_t ips_ipcl_dccp_bind_fanout_size;
208 #endif /* ! codereview */
209 struct connf_s *ips_ipcl_globalhash_fanout;
210 int ips_conn_g_index;

212 /* ip.c */
213 /* Following protected by igmp_timer_lock */
214 int ips_igmp_time_to_next; /* Time since last timeout */
215 int ips_igmp_timer_scheduled_last;
216 int ips_igmp_deferred_next;
217 timeout_id_t ips_igmp_timeout_id;
218 boolean_t ips_igmp_timer_setter_active;

220 /* Following protected by mld_timer_lock */
221 int ips_mld_time_to_next; /* Time since last timeout */
222 int ips_mld_timer_scheduled_last;
223 int ips_mld_deferred_next;
224 timeout_id_t ips_mld_timeout_id;
225 boolean_t ips_mld_timer_setter_active;

227 /* Protected by igmp_slowtimeout_lock */
228 timeout_id_t ips_igmp_slowtimeout_id;
229 kmutex_t ips_igmp_slowtimeout_lock;

231 /* Protected by mld_slowtimeout_lock */
232 timeout_id_t ips_mld_slowtimeout_id;
233 kmutex_t ips_mld_slowtimeout_lock;

235 /* IPv4 forwarding table */
236 struct radix_node_head *ips_ip_ftable;

238 #define IPV6_ABITS 128
239 #define IP6_MASK_TABLE_SIZE (IPV6_ABITS + 1) /* 129 ptrs */
240 struct irb *ips_ip_forwarding_table_v6[IP6_MASK_TABLE_SIZE];

242 /*
243 * ire_ft_init_lock is used while initializing ip_forwarding_table
244 * dynamically in ire_add.
245 */
246 kmutex_t ips_ire_ft_init_lock;

248 /*
249 * This is the IPv6 counterpart of RADIX_NODE_HEAD_LOCK. It is used
250 * to prevent adds and deletes while we are doing a ftable_lookup
251 * and extracting the ire_generation.
252 */
253 krwlock_t ips_ip6_ire_head_lock;

255 uint32_t ips_ip6_ftable_hash_size;

257 ire_stats_t ips_ire_stats_v4; /* IPv4 ire statistics */
258 ire_stats_t ips_ire_stats_v6; /* IPv6 ire statistics */

260 /* Count how many condemned objects for kmem_cache callbacks */
261 uint32_t ips_num_ire_condemned;
262 uint32_t ips_num_nce_condemned;
263 uint32_t ips_num_dce_condemned;

265 struct ire_s *ips_ire_reject_v4; /* For unreachable dests */
266 struct ire_s *ips_ire_reject_v6; /* For unreachable dests */
267 struct ire_s *ips_ire_blackhole_v4; /* For temporary failures */

new/usr/src/uts/common/inet/ip_stack.h 3

268 struct ire_s *ips_ire_blackhole_v6; /* For temporary failures */

270 /* ips_ire_dep_lock protects ire_dep_* relationship between IREs */
271 krwlock_t ips_ire_dep_lock;

273 /* Destination Cache Entries */
274 struct dce_s *ips_dce_default;
275 uint_t ips_dce_hashsize;
276 struct dcb_s *ips_dce_hash_v4;
277 struct dcb_s *ips_dce_hash_v6;

279 /* pending binds */
280 mblk_t *ips_ip6_asp_pending_ops;
281 mblk_t *ips_ip6_asp_pending_ops_tail;

283 /* Synchronize updates with table usage */
284 mblk_t *ips_ip6_asp_pending_update; /* pending table updates */

286 boolean_t ips_ip6_asp_uip; /* table update in progress */
287 kmutex_t ips_ip6_asp_lock; /* protect all the above */
288 uint32_t ips_ip6_asp_refcnt; /* outstanding references */

290 struct ip6_asp *ips_ip6_asp_table;
291 /* The number of policy entries in the table */
292 uint_t ips_ip6_asp_table_count;

294 struct conn_s *ips_ip_g_mrouter;

296 /* Time since last icmp_pkt_err */
297 clock_t ips_icmp_pkt_err_last;
298 /* Number of packets sent in burst */
299 uint_t ips_icmp_pkt_err_sent;

301 /* Protected by ip_mi_lock */
302 void *ips_ip_g_head; /* IP Instance Data List Head */
303 void *ips_arp_g_head; /* ARP Instance Data List Head */

305 /* Multirouting stuff */
306 /* Interval (in ms) between consecutive ’bad MTU’ warnings */
307 hrtime_t ips_ip_multirt_log_interval;
308 /* Time since last warning issued. */
309 hrtime_t ips_multirt_bad_mtu_last_time;

311 /*
312 * CGTP hooks. Enabling and disabling of hooks is controlled by an
313 * IP tunable ’ips_ip_cgtp_filter’.
314 */
315 struct cgtp_filter_ops *ips_ip_cgtp_filter_ops;

317 struct ipsq_s *ips_ipsq_g_head;
318 uint_t ips_ill_index; /* Used to assign interface indicies */
319 /* When set search for unused index */
320 boolean_t ips_ill_index_wrap;

322 uint_t ips_loopback_packets;

324 /* NDP/NCE structures for IPv4 and IPv6 */
325 struct ndp_g_s *ips_ndp4;
326 struct ndp_g_s *ips_ndp6;

328 /* ip_mroute stuff */
329 kmutex_t ips_ip_g_mrouter_mutex;

331 struct mrtstat *ips_mrtstat; /* Stats for netstat */
332 int ips_saved_ip_forwarding;

new/usr/src/uts/common/inet/ip_stack.h 4

334 /* numvifs is only a hint about the max interface being used. */
335 ushort_t ips_numvifs;
336 kmutex_t ips_numvifs_mutex;

338 struct vif *ips_vifs;
339 struct mfcb *ips_mfcs; /* kernel routing table */
340 struct tbf *ips_tbfs;
341 /*
342 * One-back cache used to locate a tunnel’s vif,
343 * given a datagram’s src ip address.
344 */
345 ipaddr_t ips_last_encap_src;
346 struct vif *ips_last_encap_vif;
347 kmutex_t ips_last_encap_lock; /* Protects the above */

349 /*
350 * reg_vif_num is protected by numvifs_mutex
351 */
352 /* Whether or not special PIM assert processing is enabled. */
353 ushort_t ips_reg_vif_num; /* Index to Register vif */
354 int ips_pim_assert;

356 union ill_g_head_u *ips_ill_g_heads; /* ILL List Head */

358 kstat_t *ips_loopback_ksp;

360 /* Array of conn drain lists */
361 struct idl_tx_list_s *ips_idl_tx_list;
362 uint_t ips_conn_drain_list_cnt; /* Count of conn_drain_list */

364 /*
365 * ID used to assign next free one.
366 * Increases by one. Once it wraps we search for an unused ID.
367 */
368 uint_t ips_ip_src_id;
369 boolean_t ips_srcid_wrapped;

371 struct srcid_map *ips_srcid_head;
372 krwlock_t ips_srcid_lock;

374 uint64_t ips_ipif_g_seqid; /* Used only for sctp_addr.c */
375 union phyint_list_u *ips_phyint_g_list; /* start of phyint list */

377 /* ip_netinfo.c */
378 hook_family_t ips_ipv4root;
379 hook_family_t ips_ipv6root;
380 hook_family_t ips_arproot;

382 net_handle_t ips_ipv4_net_data;
383 net_handle_t ips_ipv6_net_data;
384 net_handle_t ips_arp_net_data;

386 /*
387 * Hooks for firewalling
388 */
389 hook_event_t ips_ip4_physical_in_event;
390 hook_event_t ips_ip4_physical_out_event;
391 hook_event_t ips_ip4_forwarding_event;
392 hook_event_t ips_ip4_loopback_in_event;
393 hook_event_t ips_ip4_loopback_out_event;

395 hook_event_t ips_ip6_physical_in_event;
396 hook_event_t ips_ip6_physical_out_event;
397 hook_event_t ips_ip6_forwarding_event;
398 hook_event_t ips_ip6_loopback_in_event;
399 hook_event_t ips_ip6_loopback_out_event;

new/usr/src/uts/common/inet/ip_stack.h 5

401 hook_event_t ips_arp_physical_in_event;
402 hook_event_t ips_arp_physical_out_event;
403 hook_event_t ips_arp_nic_events;

405 hook_event_token_t ips_ipv4firewall_physical_in;
406 hook_event_token_t ips_ipv4firewall_physical_out;
407 hook_event_token_t ips_ipv4firewall_forwarding;
408 hook_event_token_t ips_ipv4firewall_loopback_in;
409 hook_event_token_t ips_ipv4firewall_loopback_out;

411 hook_event_token_t ips_ipv6firewall_physical_in;
412 hook_event_token_t ips_ipv6firewall_physical_out;
413 hook_event_token_t ips_ipv6firewall_forwarding;
414 hook_event_token_t ips_ipv6firewall_loopback_in;
415 hook_event_token_t ips_ipv6firewall_loopback_out;

417 hook_event_t ips_ip4_nic_events;
418 hook_event_t ips_ip6_nic_events;
419 hook_event_token_t ips_ipv4nicevents;
420 hook_event_token_t ips_ipv6nicevents;

422 hook_event_token_t ips_arp_physical_in;
423 hook_event_token_t ips_arp_physical_out;
424 hook_event_token_t ips_arpnicevents;

426 net_handle_t ips_ip4_observe_pr;
427 net_handle_t ips_ip6_observe_pr;
428 hook_event_t ips_ip4_observe;
429 hook_event_t ips_ip6_observe;
430 hook_event_token_t ips_ipv4observing;
431 hook_event_token_t ips_ipv6observing;

433 struct __ldi_ident *ips_ldi_ident;

435 /* ipmp.c */
436 krwlock_t ips_ipmp_lock;
437 mod_hash_t *ips_ipmp_grp_hash;

439 };
440 typedef struct ip_stack ip_stack_t;

442 /* Finding an ip_stack_t */
443 #define CONNQ_TO_IPST(_q) (Q_TO_CONN(_q)->conn_netstack->netstack_ip)
444 #define ILLQ_TO_IPST(_q) (((ill_t *)(_q)->q_ptr)->ill_ipst)
445 #define PHYINT_TO_IPST(phyi) ((phyi)->phyint_ipsq->ipsq_ipst)

447 #else /* _KERNEL */
448 typedef int ip_stack_t;
449 #endif /* _KERNEL */

451 #ifdef __cplusplus
452 }
453 #endif

455 #endif /* _INET_IP_STACK_H */

new/usr/src/uts/common/inet/ipclassifier.h 1

**
 27289 Sat Aug 18 10:37:18 2012
new/usr/src/uts/common/inet/ipclassifier.h
dccp: conn_t
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _INET_IPCLASSIFIER_H
27 #define _INET_IPCLASSIFIER_H

29 #ifdef __cplusplus
30 extern "C" {
31 #endif

33 #include <inet/common.h>
34 #include <inet/ip.h>
35 #include <inet/mi.h>
36 #include <inet/tcp.h>
37 #include <inet/dccp.h>
38 #endif /* ! codereview */
39 #include <inet/ip6.h>
40 #include <netinet/in.h> /* for IPPROTO_* constants */
41 #include <sys/sdt.h>
42 #include <sys/socket_proto.h>
43 #include <sys/sunddi.h>
44 #include <sys/sunldi.h>

46 typedef void (*edesc_rpf)(void *, mblk_t *, void *, ip_recv_attr_t *);
47 struct icmph_s;
48 struct icmp6_hdr;
49 typedef boolean_t (*edesc_vpf)(conn_t *, void *, struct icmph_s *,
50 struct icmp6_hdr *, ip_recv_attr_t *);

52 /*
53 * ==============================
54 * = The CONNECTION =
55 * ==============================
56 */

58 /*
59 * The connection structure contains the common information/flags/ref needed.
60 * Implementation will keep the connection struct, the layers (with their
61 * respective data for event i.e. tcp_t if event was tcp_input_data) all in one

new/usr/src/uts/common/inet/ipclassifier.h 2

62 * contiguous memory location.
63 */

65 /* Conn Flags */
66 /* Unused 0x00020000 */
67 /* Unused 0x00040000 */
68 #define IPCL_FULLY_BOUND 0x00080000 /* Bound to correct squeue */
69 /* Unused 0x00100000 */
70 /* Unused 0x00200000 */
71 /* Unused 0x00400000 */
72 #define IPCL_CL_LISTENER 0x00800000 /* Cluster listener */
73 /* Unused 0x01000000 */
74 /* Unused 0x02000000 */
75 /* Unused 0x04000000 */
76 /* Unused 0x08000000 */
77 /* Unused 0x10000000 */
78 /* Unused 0x20000000 */
79 #define IPCL_CONNECTED 0x40000000 /* Conn in connected table */
80 #define IPCL_BOUND 0x80000000 /* Conn in bind table */

82 /* Flags identifying the type of conn */
83 #define IPCL_TCPCONN 0x00000001 /* From tcp_conn_cache */
84 #define IPCL_SCTPCONN 0x00000002 /* From sctp_conn_cache */
85 #define IPCL_IPCCONN 0x00000004 /* From ip_conn_cache */
86 #define IPCL_UDPCONN 0x00000008 /* From udp_conn_cache */
87 #define IPCL_RAWIPCONN 0x00000010 /* From rawip_conn_cache */
88 #define IPCL_RTSCONN 0x00000020 /* From rts_conn_cache */
89 #define IPCL_DCCPCONN 0x00000040 /* From dccp_conn_cache */
37 /* Unused 0x00000040 */
90 #define IPCL_IPTUN 0x00000080 /* iptun module above us */

92 #define IPCL_NONSTR 0x00001000 /* A non-STREAMS socket */
93 /* Unused 0x10000000 */

95 #define IPCL_REMOVED 0x00000100
96 #define IPCL_REUSED 0x00000200

98 #define IPCL_IS_CONNECTED(connp) \
99 ((connp)->conn_flags & IPCL_CONNECTED)

101 #define IPCL_IS_BOUND(connp) \
102 ((connp)->conn_flags & IPCL_BOUND)

104 /*
105 * Can’t use conn_proto since we need to tell difference
106 * between a real TCP socket and a SOCK_RAW, IPPROTO_TCP.
107 */
108 #define IPCL_IS_TCP(connp) \
109 ((connp)->conn_flags & IPCL_TCPCONN)

111 #define IPCL_IS_SCTP(connp) \
112 ((connp)->conn_flags & IPCL_SCTPCONN)

114 #define IPCL_IS_UDP(connp) \
115 ((connp)->conn_flags & IPCL_UDPCONN)

117 #define IPCL_IS_RAWIP(connp) \
118 ((connp)->conn_flags & IPCL_RAWIPCONN)

120 #define IPCL_IS_RTS(connp) \
121 ((connp)->conn_flags & IPCL_RTSCONN)

123 #define IPCL_IS_IPTUN(connp) \
124 ((connp)->conn_flags & IPCL_IPTUN)

126 #define IPCL_IS_DCCP(connp) \

new/usr/src/uts/common/inet/ipclassifier.h 3

127 ((connp)->conn_flags & IPCL_DCCPCONN)

129 #endif /* ! codereview */
130 #define IPCL_IS_NONSTR(connp) ((connp)->conn_flags & IPCL_NONSTR)

132 typedef struct connf_s connf_t;

134 typedef struct
135 {
136 int ctb_depth;
137 #define CONN_STACK_DEPTH 15
138 pc_t ctb_stack[CONN_STACK_DEPTH];
139 } conn_trace_t;

141 typedef struct ip_helper_minor_info_s {
142 dev_t ip_minfo_dev; /* Device */
143 vmem_t *ip_minfo_arena; /* Arena */
144 } ip_helper_minfo_t;

146 /*
147 * ip helper stream info
148 */
149 typedef struct ip_helper_stream_info_s {
150 ldi_handle_t iphs_handle;
151 queue_t *iphs_rq;
152 queue_t *iphs_wq;
153 ip_helper_minfo_t *iphs_minfo;
154 } ip_helper_stream_info_t;

156 /*
157 * Mandatory Access Control mode, in conn_t’s conn_mac_mode field.
158 * CONN_MAC_DEFAULT: strict enforcement of MAC.
159 * CONN_MAC_AWARE: allows communications between unlabeled systems
160 * and privileged daemons
161 * CONN_MAC_IMPLICIT: allows communications without explicit labels
162 * on the wire with privileged daemons.
163 *
164 * CONN_MAC_IMPLICIT is intended specifically for labeled IPsec key management
165 * in networks which don’t pass CIPSO-labeled packets.
166 */
167 #define CONN_MAC_DEFAULT 0
168 #define CONN_MAC_AWARE 1
169 #define CONN_MAC_IMPLICIT 2

171 /*
172 * conn receive ancillary definition.
173 *
174 * These are the set of socket options that make the receive side
175 * potentially pass up ancillary data items.
176 * We have a union with an integer so that we can quickly check whether
177 * any ancillary data items need to be added.
178 */
179 typedef struct crb_s {
180 union {
181 uint32_t crbu_all;
182 struct {
183 uint32_t
184 crbb_recvdstaddr : 1, /* IP_RECVDSTADDR option */
185 crbb_recvopts : 1, /* IP_RECVOPTS option */
186 crbb_recvif : 1, /* IP_RECVIF option */
187 crbb_recvslla : 1, /* IP_RECVSLLA option */

189 crbb_recvttl : 1, /* IP_RECVTTL option */
190 crbb_ip_recvpktinfo : 1, /* IP*_RECVPKTINFO option */
191 crbb_ipv6_recvhoplimit : 1, /* IPV6_RECVHOPLIMIT option */
192 crbb_ipv6_recvhopopts : 1, /* IPV6_RECVHOPOPTS option */

new/usr/src/uts/common/inet/ipclassifier.h 4

194 crbb_ipv6_recvdstopts : 1, /* IPV6_RECVDSTOPTS option */
195 crbb_ipv6_recvrthdr : 1, /* IPV6_RECVRTHDR option */
196 crbb_old_ipv6_recvdstopts : 1, /* old form of IPV6_DSTOPTS */
197 crbb_ipv6_recvrthdrdstopts : 1, /* IPV6_RECVRTHDRDSTOPTS */

199 crbb_ipv6_recvtclass : 1, /* IPV6_RECVTCLASS */
200 crbb_recvucred : 1, /* IP_RECVUCRED option */
201 crbb_timestamp : 1; /* SO_TIMESTAMP "socket" option */

203 } crbb;
204 } crbu;
205 } crb_t;

207 #define crb_all crbu.crbu_all
208 #define crb_recvdstaddr crbu.crbb.crbb_recvdstaddr
209 #define crb_recvopts crbu.crbb.crbb_recvopts
210 #define crb_recvif crbu.crbb.crbb_recvif
211 #define crb_recvslla crbu.crbb.crbb_recvslla
212 #define crb_recvttl crbu.crbb.crbb_recvttl
213 #define crb_ip_recvpktinfo crbu.crbb.crbb_ip_recvpktinfo
214 #define crb_ipv6_recvhoplimit crbu.crbb.crbb_ipv6_recvhoplimit
215 #define crb_ipv6_recvhopopts crbu.crbb.crbb_ipv6_recvhopopts
216 #define crb_ipv6_recvdstopts crbu.crbb.crbb_ipv6_recvdstopts
217 #define crb_ipv6_recvrthdr crbu.crbb.crbb_ipv6_recvrthdr
218 #define crb_old_ipv6_recvdstopts crbu.crbb.crbb_old_ipv6_recvdstopts
219 #define crb_ipv6_recvrthdrdstopts crbu.crbb.crbb_ipv6_recvrthdrdstopts
220 #define crb_ipv6_recvtclass crbu.crbb.crbb_ipv6_recvtclass
221 #define crb_recvucred crbu.crbb.crbb_recvucred
222 #define crb_timestamp crbu.crbb.crbb_timestamp

224 /*
225 * The initial fields in the conn_t are setup by the kmem_cache constructor,
226 * and are preserved when it is freed. Fields after that are bzero’ed when
227 * the conn_t is freed.
228 *
229 * Much of the conn_t is protected by conn_lock.
230 *
231 * conn_lock is also used by some ULPs (like UDP and RAWIP) to protect
232 * their state.
233 */
234 struct conn_s {
235 kmutex_t conn_lock;
236 uint32_t conn_ref; /* Reference counter */
237 uint32_t conn_flags; /* Conn Flags */

239 union {
240 tcp_t *cp_tcp; /* Pointer to the tcp struct */
241 struct udp_s *cp_udp; /* Pointer to the udp struct */
242 struct icmp_s *cp_icmp; /* Pointer to rawip struct */
243 struct rts_s *cp_rts; /* Pointer to rts struct */
244 struct iptun_s *cp_iptun; /* Pointer to iptun_t */
245 struct sctp_s *cp_sctp; /* For IPCL_SCTPCONN */
246 struct dccp_s *cp_dccp; /* Pointer to dccp struct */
247 #endif /* ! codereview */
248 void *cp_priv;
249 } conn_proto_priv;
250 #define conn_tcp conn_proto_priv.cp_tcp
251 #define conn_udp conn_proto_priv.cp_udp
252 #define conn_icmp conn_proto_priv.cp_icmp
253 #define conn_rts conn_proto_priv.cp_rts
254 #define conn_iptun conn_proto_priv.cp_iptun
255 #define conn_sctp conn_proto_priv.cp_sctp
256 #define conn_dccp conn_proto_priv.cp_dccp
257 #endif /* ! codereview */
258 #define conn_priv conn_proto_priv.cp_priv

new/usr/src/uts/common/inet/ipclassifier.h 5

260 kcondvar_t conn_cv;
261 uint8_t conn_proto; /* protocol type */

263 edesc_rpf conn_recv; /* Pointer to recv routine */
264 edesc_rpf conn_recvicmp; /* For ICMP error */
265 edesc_vpf conn_verifyicmp; /* Verify ICMP error */

267 ip_xmit_attr_t *conn_ixa; /* Options if no ancil data */

269 /* Fields after this are bzero’ed when the conn_t is freed. */
270 #define conn_start_clr conn_recv_ancillary

272 /* Options for receive-side ancillary data */
273 crb_t conn_recv_ancillary;

275 squeue_t *conn_sqp; /* Squeue for processing */
276 uint_t conn_state_flags; /* IP state flags */

278 int conn_lingertime; /* linger time (in seconds) */

280 unsigned int
281 conn_on_sqp : 1, /* Conn is being processed */
282 conn_linger : 1, /* SO_LINGER state */
283 conn_useloopback : 1, /* SO_USELOOPBACK state */
284 conn_broadcast : 1, /* SO_BROADCAST state */

286 conn_reuseaddr : 1, /* SO_REUSEADDR state */
287 conn_keepalive : 1, /* SO_KEEPALIVE state */
288 conn_multi_router : 1, /* Wants all multicast pkts */
289 conn_unspec_src : 1, /* IP_UNSPEC_SRC */

291 conn_policy_cached : 1, /* Is policy cached/latched ? */
292 conn_in_enforce_policy : 1, /* Enforce Policy on inbound */
293 conn_out_enforce_policy : 1, /* Enforce Policy on outbound */
294 conn_debug : 1, /* SO_DEBUG */

296 conn_ipv6_v6only : 1, /* IPV6_V6ONLY */
297 conn_oobinline : 1, /* SO_OOBINLINE state */
298 conn_dgram_errind : 1, /* SO_DGRAM_ERRIND state */
299 conn_exclbind : 1, /* SO_EXCLBIND state */

301 conn_mdt_ok : 1, /* MDT is permitted */
302 conn_allzones : 1, /* SO_ALLZONES */
303 conn_ipv6_recvpathmtu : 1, /* IPV6_RECVPATHMTU */
304 conn_mcbc_bind : 1, /* Bound to multi/broadcast */

306 conn_pad_to_bit_31 : 12;

308 boolean_t conn_blocked; /* conn is flow-controlled */

310 squeue_t *conn_initial_sqp; /* Squeue at open time */
311 squeue_t *conn_final_sqp; /* Squeue after connect */
312 ill_t *conn_dhcpinit_ill; /* IP_DHCPINIT_IF */
313 ipsec_latch_t *conn_latch; /* latched IDS */
314 struct ipsec_policy_s *conn_latch_in_policy; /* latched policy (in) */
315 struct ipsec_action_s *conn_latch_in_action; /* latched action (in) */
316 uint_t conn_bound_if; /* IP*_BOUND_IF */
317 queue_t *conn_rq; /* Read queue */
318 queue_t *conn_wq; /* Write queue */
319 dev_t conn_dev; /* Minor number */
320 vmem_t *conn_minor_arena; /* Minor arena */
321 ip_helper_stream_info_t *conn_helper_info;

323 cred_t *conn_cred; /* Credentials */
324 pid_t conn_cpid; /* pid from open/connect */

new/usr/src/uts/common/inet/ipclassifier.h 6

325 uint64_t conn_open_time; /* time when this was opened */

327 connf_t *conn_g_fanout; /* Global Hash bucket head */
328 struct conn_s *conn_g_next; /* Global Hash chain next */
329 struct conn_s *conn_g_prev; /* Global Hash chain prev */
330 struct ipsec_policy_head_s *conn_policy; /* Configured policy */
331 in6_addr_t conn_bound_addr_v6; /* Address in bind() */
332 #define conn_bound_addr_v4 V4_PART_OF_V6(conn_bound_addr_v6)
333 connf_t *conn_fanout; /* Hash bucket we’re part of */
334 struct conn_s *conn_next; /* Hash chain next */
335 struct conn_s *conn_prev; /* Hash chain prev */

337 struct {
338 in6_addr_t connua_laddr; /* Local address - match */
339 in6_addr_t connua_faddr; /* Remote address */
340 } connua_v6addr;
341 #define conn_laddr_v4 V4_PART_OF_V6(connua_v6addr.connua_laddr)
342 #define conn_faddr_v4 V4_PART_OF_V6(connua_v6addr.connua_faddr)
343 #define conn_laddr_v6 connua_v6addr.connua_laddr
344 #define conn_faddr_v6 connua_v6addr.connua_faddr
345 in6_addr_t conn_saddr_v6; /* Local address - source */
346 #define conn_saddr_v4 V4_PART_OF_V6(conn_saddr_v6)

348 union {
349 /* Used for classifier match performance */
350 uint32_t connu_ports2;
351 struct {
352 in_port_t connu_fport; /* Remote port */
353 in_port_t connu_lport; /* Local port */
354 } connu_ports;
355 } u_port;
356 #define conn_fport u_port.connu_ports.connu_fport
357 #define conn_lport u_port.connu_ports.connu_lport
358 #define conn_ports u_port.connu_ports2

360 uint_t conn_incoming_ifindex; /* IP{,V6}_BOUND_IF, scopeid */
361 ill_t *conn_oper_pending_ill; /* pending shared ioctl */

363 krwlock_t conn_ilg_lock; /* Protects conn_ilg_* */
364 ilg_t *conn_ilg; /* Group memberships */

366 kcondvar_t conn_refcv; /* For conn_oper_pending_ill */

368 struct conn_s *conn_drain_next; /* Next conn in drain list */
369 struct conn_s *conn_drain_prev; /* Prev conn in drain list */
370 idl_t *conn_idl; /* Ptr to the drain list head */
371 mblk_t *conn_ipsec_opt_mp; /* ipsec option mblk */
372 zoneid_t conn_zoneid; /* zone connection is in */
373 int conn_rtaware; /* RT_AWARE sockopt value */
374 kcondvar_t conn_sq_cv; /* For non-STREAMS socket IO */
375 sock_upcalls_t *conn_upcalls; /* Upcalls to sockfs */
376 sock_upper_handle_t conn_upper_handle; /* Upper handle: sonode * */

378 unsigned int
379 conn_mlp_type : 2, /* mlp_type_t; tsol/tndb.h */
380 conn_anon_mlp : 1, /* user wants anon MLP */
381 conn_anon_port : 1, /* user bound anonymously */

383 conn_mac_mode : 2, /* normal/loose/implicit MAC */
384 conn_anon_priv_bind : 1, /* *_ANON_PRIV_BIND state */
385 conn_zone_is_global : 1, /* GLOBAL_ZONEID */
386 conn_isvrrp : 1, /* VRRP control socket */
387 conn_spare : 23;

389 boolean_t conn_flow_cntrld;
390 netstack_t *conn_netstack; /* Corresponds to a netstack_hold */

new/usr/src/uts/common/inet/ipclassifier.h 7

392 /*
393 * IP format that packets received for this struct should use.
394 * Value can be IP4_VERSION or IPV6_VERSION.
395 * The sending version is encoded using IXAF_IS_IPV4.
396 */
397 ushort_t conn_ipversion;

399 /* Written to only once at the time of opening the endpoint */
400 sa_family_t conn_family; /* Family from socket() call */
401 uint_t conn_so_type; /* Type from socket() call */

403 uint_t conn_sndbuf; /* SO_SNDBUF state */
404 uint_t conn_rcvbuf; /* SO_RCVBUF state */
405 uint_t conn_wroff; /* Current write offset */

407 uint_t conn_sndlowat; /* Send buffer low water mark */
408 uint_t conn_rcvlowat; /* Recv buffer low water mark */

410 uint8_t conn_default_ttl; /* Default TTL/hoplimit */

412 uint32_t conn_flowinfo; /* Connected flow id and tclass */

414 /*
415 * The most recent address for sendto. Initially set to zero
416 * which is always different than then the destination address
417 * since the send interprets zero as the loopback address.
418 */
419 in6_addr_t conn_v6lastdst;
420 #define conn_v4lastdst V4_PART_OF_V6(conn_v6lastdst)
421 ushort_t conn_lastipversion;
422 in_port_t conn_lastdstport;
423 uint32_t conn_lastflowinfo; /* IPv6-only */
424 uint_t conn_lastscopeid; /* IPv6-only */
425 uint_t conn_lastsrcid; /* Only for AF_INET6 */
426 /*
427 * When we are not connected conn_saddr might be unspecified.
428 * We track the source that was used with conn_v6lastdst here.
429 */
430 in6_addr_t conn_v6lastsrc;
431 #define conn_v4lastsrc V4_PART_OF_V6(conn_v6lastsrc)

433 /* Templates for transmitting packets */
434 ip_pkt_t conn_xmit_ipp; /* Options if no ancil data */

436 /*
437 * Header template - conn_ht_ulp is a pointer into conn_ht_iphc.
438 * Note that ixa_ip_hdr_length indicates the offset of ht_ulp in
439 * ht_iphc
440 *
441 * The header template is maintained for connected endpoints (and
442 * updated when sticky options are changed) and also for the lastdst.
443 * There is no conflict between those usages since SOCK_DGRAM and
444 * SOCK_RAW can not be used to specify a destination address (with
445 * sendto/sendmsg) if the socket has been connected.
446 */
447 uint8_t *conn_ht_iphc; /* Start of IP header */
448 uint_t conn_ht_iphc_allocated; /* Allocated buffer size */
449 uint_t conn_ht_iphc_len; /* IP+ULP size */
450 uint8_t *conn_ht_ulp; /* Upper-layer header */
451 uint_t conn_ht_ulp_len; /* ULP header len */

453 /* Checksum to compensate for source routed packets. Host byte order */
454 uint32_t conn_sum;

456 uint32_t conn_ioctlref; /* ioctl ref count */

new/usr/src/uts/common/inet/ipclassifier.h 8

457 #ifdef CONN_DEBUG
458 #define CONN_TRACE_MAX 10
459 int conn_trace_last; /* ndx of last used tracebuf */
460 conn_trace_t conn_trace_buf[CONN_TRACE_MAX];
461 #endif
462 };

464 /*
465 * connf_t - connection fanout data.
466 *
467 * The hash tables and their linkage (conn_t.{hashnextp, hashprevp} are
468 * protected by the per-bucket lock. Each conn_t inserted in the list
469 * points back at the connf_t that heads the bucket.
470 */
471 struct connf_s {
472 struct conn_s *connf_head;
473 kmutex_t connf_lock;
474 };

476 #define CONN_INC_REF(connp) { \
477 mutex_enter(&(connp)->conn_lock); \
478 DTRACE_PROBE1(conn__inc__ref, conn_t *, connp); \
479 ASSERT(conn_trace_ref(connp)); \
480 (connp)->conn_ref++; \
481 ASSERT((connp)->conn_ref != 0); \
482 mutex_exit(&(connp)->conn_lock); \
483 }

485 #define CONN_INC_REF_LOCKED(connp) { \
486 DTRACE_PROBE1(conn__inc__ref, conn_t *, connp); \
487 ASSERT(MUTEX_HELD(&(connp)->conn_lock)); \
488 ASSERT(conn_trace_ref(connp)); \
489 (connp)->conn_ref++; \
490 ASSERT((connp)->conn_ref != 0); \
491 }

493 #define CONN_DEC_REF(connp) { \
494 mutex_enter(&(connp)->conn_lock); \
495 DTRACE_PROBE1(conn__dec__ref, conn_t *, connp); \
496 /* \
497 * The squeue framework always does a CONN_DEC_REF after return \
498 * from TCP. Hence the refcnt must be at least 2 if conn_on_sqp \
499 * is B_TRUE and conn_ref is being decremented. This is to \
500 * account for the mblk being currently processed. \
501 */ \
502 if ((connp)->conn_ref == 0 || \
503 ((connp)->conn_ref == 1 && (connp)->conn_on_sqp)) \
504 cmn_err(CE_PANIC, "CONN_DEC_REF: connp(%p) has ref " \
505 "= %d\n", (void *)(connp), (connp)->conn_ref); \
506 ASSERT(conn_untrace_ref(connp)); \
507 (connp)->conn_ref--; \
508 if ((connp)->conn_ref == 0) { \
509 /* Refcnt can’t increase again, safe to drop lock */ \
510 mutex_exit(&(connp)->conn_lock); \
511 ipcl_conn_destroy(connp); \
512 } else { \
513 cv_broadcast(&(connp)->conn_cv); \
514 mutex_exit(&(connp)->conn_lock); \
515 } \
516 }

518 /*
519 * For use with subsystems within ip which use ALL_ZONES as a wildcard
520 */
521 #define IPCL_ZONEID(connp) \
522 ((connp)->conn_allzones ? ALL_ZONES : (connp)->conn_zoneid)

new/usr/src/uts/common/inet/ipclassifier.h 9

524 /*
525 * For matching between a conn_t and a zoneid.
526 */
527 #define IPCL_ZONE_MATCH(connp, zoneid) \
528 (((connp)->conn_allzones) || \
529 ((zoneid) == ALL_ZONES) || \
530 (connp)->conn_zoneid == (zoneid))

532 /*
533 * On a labeled system, we must treat bindings to ports
534 * on shared IP addresses by sockets with MAC exemption
535 * privilege as being in all zones, as there’s
536 * otherwise no way to identify the right receiver.
537 */

539 #define IPCL_CONNS_MAC(conn1, conn2) \
540 (((conn1)->conn_mac_mode != CONN_MAC_DEFAULT) || \
541 ((conn2)->conn_mac_mode != CONN_MAC_DEFAULT))

543 #define IPCL_BIND_ZONE_MATCH(conn1, conn2) \
544 (IPCL_CONNS_MAC(conn1, conn2) || \
545 IPCL_ZONE_MATCH(conn1, conn2->conn_zoneid) || \
546 IPCL_ZONE_MATCH(conn2, conn1->conn_zoneid))

549 #define _IPCL_V4_MATCH(v6addr, v4addr) \
550 (V4_PART_OF_V6((v6addr)) == (v4addr) && IN6_IS_ADDR_V4MAPPED(&(v6addr)))

552 #define _IPCL_V4_MATCH_ANY(addr) \
553 (IN6_IS_ADDR_V4MAPPED_ANY(&(addr)) || IN6_IS_ADDR_UNSPECIFIED(&(addr)))

556 /*
557 * IPCL_PROTO_MATCH() and IPCL_PROTO_MATCH_V6() only matches conns with
558 * the specified ira_zoneid or conn_allzones by calling conn_wantpacket.
559 */
560 #define IPCL_PROTO_MATCH(connp, ira, ipha) \
561 ((((connp)->conn_laddr_v4 == INADDR_ANY) || \
562 (((connp)->conn_laddr_v4 == ((ipha)->ipha_dst)) && \
563 (((connp)->conn_faddr_v4 == INADDR_ANY) || \
564 ((connp)->conn_faddr_v4 == ((ipha)->ipha_src))))) && \
565 conn_wantpacket((connp), (ira), (ipha)))

567 #define IPCL_PROTO_MATCH_V6(connp, ira, ip6h) \
568 ((IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_laddr_v6) || \
569 (IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, &((ip6h)->ip6_dst)) && \
570 (IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_faddr_v6) || \
571 IN6_ARE_ADDR_EQUAL(&(connp)->conn_faddr_v6, &((ip6h)->ip6_src))))) && \
572 (conn_wantpacket_v6((connp), (ira), (ip6h))))

574 #define IPCL_CONN_HASH(src, ports, ipst) \
575 ((unsigned)(ntohl((src)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \
576 ((ports) >> 8) ^ (ports)) % (ipst)->ips_ipcl_conn_fanout_size)

578 #define IPCL_CONN_HASH_V6(src, ports, ipst) \
579 IPCL_CONN_HASH(V4_PART_OF_V6((src)), (ports), (ipst))

581 #define IPCL_CONN_MATCH(connp, proto, src, dst, ports) \
582 ((connp)->conn_proto == (proto) && \
583 (connp)->conn_ports == (ports) && \
584 _IPCL_V4_MATCH((connp)->conn_faddr_v6, (src)) && \
585 _IPCL_V4_MATCH((connp)->conn_laddr_v6, (dst)) && \
586 !(connp)->conn_ipv6_v6only)

588 #define IPCL_CONN_MATCH_V6(connp, proto, src, dst, ports) \

new/usr/src/uts/common/inet/ipclassifier.h 10

589 ((connp)->conn_proto == (proto) && \
590 (connp)->conn_ports == (ports) && \
591 IN6_ARE_ADDR_EQUAL(&(connp)->conn_faddr_v6, &(src)) && \
592 IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, &(dst)))

594 #define IPCL_PORT_HASH(port, size) \
595 ((((port) >> 8) ^ (port)) & ((size) - 1))

597 #define IPCL_BIND_HASH(lport, ipst) \
598 ((unsigned)(((lport) >> 8) ^ (lport)) % \
599 (ipst)->ips_ipcl_bind_fanout_size)

601 #define IPCL_BIND_MATCH(connp, proto, laddr, lport) \
602 ((connp)->conn_proto == (proto) && \
603 (connp)->conn_lport == (lport) && \
604 (_IPCL_V4_MATCH_ANY((connp)->conn_laddr_v6) || \
605 _IPCL_V4_MATCH((connp)->conn_laddr_v6, (laddr))) && \
606 !(connp)->conn_ipv6_v6only)

608 #define IPCL_BIND_MATCH_V6(connp, proto, laddr, lport) \
609 ((connp)->conn_proto == (proto) && \
610 (connp)->conn_lport == (lport) && \
611 (IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, &(laddr)) || \
612 IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_laddr_v6)))

614 /*
615 * We compare conn_laddr since it captures both connected and a bind to
616 * a multicast or broadcast address.
617 * The caller needs to match the zoneid and also call conn_wantpacket
618 * for multicast, broadcast, or when conn_incoming_ifindex is set.
619 */
620 #define IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr) \
621 (((connp)->conn_lport == (lport)) && \
622 ((_IPCL_V4_MATCH_ANY((connp)->conn_laddr_v6) || \
623 (_IPCL_V4_MATCH((connp)->conn_laddr_v6, (laddr)) && \
624 (_IPCL_V4_MATCH_ANY((connp)->conn_faddr_v6) || \
625 (_IPCL_V4_MATCH((connp)->conn_faddr_v6, (faddr)) && \
626 (connp)->conn_fport == (fport)))))) && \
627 !(connp)->conn_ipv6_v6only)

629 /*
630 * We compare conn_laddr since it captures both connected and a bind to
631 * a multicast or broadcast address.
632 * The caller needs to match the zoneid and also call conn_wantpacket_v6
633 * for multicast or when conn_incoming_ifindex is set.
634 */
635 #define IPCL_UDP_MATCH_V6(connp, lport, laddr, fport, faddr) \
636 (((connp)->conn_lport == (lport)) && \
637 (IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_laddr_v6) || \
638 (IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, &(laddr)) && \
639 (IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_faddr_v6) || \
640 (IN6_ARE_ADDR_EQUAL(&(connp)->conn_faddr_v6, &(faddr)) && \
641 (connp)->conn_fport == (fport))))))

643 #define IPCL_IPTUN_HASH(laddr, faddr) \
644 ((ntohl(laddr) ^ ((ntohl(faddr) << 24) | (ntohl(faddr) >> 8))) % \
645 ipcl_iptun_fanout_size)

647 #define IPCL_IPTUN_HASH_V6(laddr, faddr) \
648 IPCL_IPTUN_HASH((laddr)->s6_addr32[0] ^ (laddr)->s6_addr32[1] ^ \
649 (faddr)->s6_addr32[2] ^ (faddr)->s6_addr32[3], \
650 (faddr)->s6_addr32[0] ^ (faddr)->s6_addr32[1] ^ \
651 (laddr)->s6_addr32[2] ^ (laddr)->s6_addr32[3])

653 #define IPCL_IPTUN_MATCH(connp, laddr, faddr) \
654 (_IPCL_V4_MATCH((connp)->conn_laddr_v6, (laddr)) && \

new/usr/src/uts/common/inet/ipclassifier.h 11

655 _IPCL_V4_MATCH((connp)->conn_faddr_v6, (faddr)))

657 #define IPCL_IPTUN_MATCH_V6(connp, laddr, faddr) \
658 (IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, (laddr)) && \
659 IN6_ARE_ADDR_EQUAL(&(connp)->conn_faddr_v6, (faddr)))

661 #define IPCL_UDP_HASH(lport, ipst) \
662 IPCL_PORT_HASH(lport, (ipst)->ips_ipcl_udp_fanout_size)

664 #define IPCL_DCCP_CONN_HASH(src, ports, ipst) \
665 ((unsigned)(ntohl((src)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \
666 ((ports) >> 8) ^ (ports)) % (ipst)->ips_ipcl_dccp_conn_fanout_size)

668 #define IPCL_DCCP_CONN_HASH_V6(src, ports, ipst) \
669 IPCL_DCCP_CONN_HASH(V4_PART_OF_V6((src)), (ports), (ipst))

671 #define IPCL_DCCP_BIND_HASH(lport, ipst) \
672 ((unsigned)(((lport) >> 8) ^ (lport)) % \
673 (ipst)->ips_ipcl_dccp_bind_fanout_size)

676 #endif /* ! codereview */
677 #define CONN_G_HASH_SIZE 1024

679 /* Raw socket hash function. */
680 #define IPCL_RAW_HASH(lport, ipst) \
681 IPCL_PORT_HASH(lport, (ipst)->ips_ipcl_raw_fanout_size)

683 /*
684 * This is similar to IPCL_BIND_MATCH except that the local port check
685 * is changed to a wildcard port check.
686 * We compare conn_laddr since it captures both connected and a bind to
687 * a multicast or broadcast address.
688 */
689 #define IPCL_RAW_MATCH(connp, proto, laddr) \
690 ((connp)->conn_proto == (proto) && \
691 (connp)->conn_lport == 0 && \
692 (_IPCL_V4_MATCH_ANY((connp)->conn_laddr_v6) || \
693 _IPCL_V4_MATCH((connp)->conn_laddr_v6, (laddr))))

695 #define IPCL_RAW_MATCH_V6(connp, proto, laddr) \
696 ((connp)->conn_proto == (proto) && \
697 (connp)->conn_lport == 0 && \
698 (IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_laddr_v6) || \
699 IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, &(laddr))))

701 /* Function prototypes */
702 extern void ipcl_g_init(void);
703 extern void ipcl_init(ip_stack_t *);
704 extern void ipcl_g_destroy(void);
705 extern void ipcl_destroy(ip_stack_t *);
706 extern conn_t *ipcl_conn_create(uint32_t, int, netstack_t *);
707 extern void ipcl_conn_destroy(conn_t *);

709 void ipcl_hash_insert_wildcard(connf_t *, conn_t *);
710 void ipcl_hash_remove(conn_t *);
711 void ipcl_hash_remove_locked(conn_t *connp, connf_t *connfp);

713 extern int ipcl_bind_insert(conn_t *);
714 extern int ipcl_bind_insert_v4(conn_t *);
715 extern int ipcl_bind_insert_v6(conn_t *);
716 extern int ipcl_conn_insert(conn_t *);
717 extern int ipcl_conn_insert_v4(conn_t *);
718 extern int ipcl_conn_insert_v6(conn_t *);
719 extern conn_t *ipcl_get_next_conn(connf_t *, conn_t *, uint32_t);

new/usr/src/uts/common/inet/ipclassifier.h 12

721 conn_t *ipcl_classify_v4(mblk_t *, uint8_t, uint_t, ip_recv_attr_t *,
722 ip_stack_t *);
723 conn_t *ipcl_classify_v6(mblk_t *, uint8_t, uint_t, ip_recv_attr_t *,
724 ip_stack_t *);
725 conn_t *ipcl_classify(mblk_t *, ip_recv_attr_t *, ip_stack_t *);
726 conn_t *ipcl_classify_raw(mblk_t *, uint8_t, uint32_t, ipha_t *,
727 ip6_t *, ip_recv_attr_t *, ip_stack_t *);
728 conn_t *ipcl_iptun_classify_v4(ipaddr_t *, ipaddr_t *, ip_stack_t *);
729 conn_t *ipcl_iptun_classify_v6(in6_addr_t *, in6_addr_t *, ip_stack_t *);
730 void ipcl_globalhash_insert(conn_t *);
731 void ipcl_globalhash_remove(conn_t *);
732 void ipcl_walk(pfv_t, void *, ip_stack_t *);
733 conn_t *ipcl_tcp_lookup_reversed_ipv4(ipha_t *, tcpha_t *, int, ip_stack_t *);
734 conn_t *ipcl_tcp_lookup_reversed_ipv6(ip6_t *, tcpha_t *, int, uint_t,
735 ip_stack_t *);
736 /*
737 conn_t *ipcl_dccp_lookup_reversed_ipv4(ipha_t *, dccpha_t *, int, ip_stack_t *)
738 conn_t *ipcl_dccp_lookup_reversed_ipv6(ip6_t *, dccpha_t *, int, uint_t,
739 ip_stack_t *);
740 */
741 #endif /* ! codereview */
742 conn_t *ipcl_lookup_listener_v4(uint16_t, ipaddr_t, zoneid_t, ip_stack_t *);
743 conn_t *ipcl_lookup_listener_v6(uint16_t, in6_addr_t *, uint_t, zoneid_t,
744 ip_stack_t *);
745 int conn_trace_ref(conn_t *);
746 int conn_untrace_ref(conn_t *);
747 void ipcl_conn_cleanup(conn_t *);
748 extern uint_t conn_recvancillary_size(conn_t *, crb_t, ip_recv_attr_t *,
749 mblk_t *, ip_pkt_t *);
750 extern void conn_recvancillary_add(conn_t *, crb_t, ip_recv_attr_t *,
751 ip_pkt_t *, uchar_t *, uint_t);
752 conn_t *ipcl_conn_tcp_lookup_reversed_ipv4(conn_t *, ipha_t *, tcpha_t *,
753 ip_stack_t *);
754 conn_t *ipcl_conn_tcp_lookup_reversed_ipv6(conn_t *, ip6_t *, tcpha_t *,
755 ip_stack_t *);

757 extern int ip_create_helper_stream(conn_t *, ldi_ident_t);
758 extern void ip_free_helper_stream(conn_t *);
759 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int,
760 cred_t *, boolean_t);

762 #ifdef __cplusplus
763 }
764 #endif

766 #endif /* _INET_IPCLASSIFIER_H */

new/usr/src/uts/common/inet/kstatcom.h 1

**
 12863 Sat Aug 18 10:37:18 2012
new/usr/src/uts/common/inet/kstatcom.h
dccp: stats
**
______unchanged_portion_omitted_

470 typedef struct dccp_named_kstat {
471 kstat_named_t activeOpens;
472 kstat_named_t passiveOpens;
473 kstat_named_t inSegs;
474 kstat_named_t outSegs;
475 } dccp_named_kstat_t;
476 #endif /* ! codereview */

478 #define NUM_OF_FIELDS(S) (sizeof (S) / sizeof (kstat_named_t))

480 #ifdef __cplusplus
481 }
482 #endif

484 #endif /* _INET_KSTATCOM_H */

new/usr/src/uts/common/inet/mib2.h 1

**
 63821 Sat Aug 18 10:37:18 2012
new/usr/src/uts/common/inet/mib2.h
dccp: MIB-II
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
22 */
23 /* Copyright (c) 1990 Mentat Inc. */

25 #ifndef _INET_MIB2_H
26 #define _INET_MIB2_H

28 #include <netinet/in.h> /* For in6_addr_t */
29 #include <sys/tsol/label.h> /* For brange_t */
30 #include <sys/tsol/label_macro.h> /* For brange_t */

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 /*
37 * The IPv6 parts of this are derived from:
38 * RFC 2465
39 * RFC 2466
40 * RFC 2452
41 * RFC 2454
42 */

44 /*
45 * SNMP set/get via M_PROTO T_OPTMGMT_REQ. Structure is that used
46 * for [gs]etsockopt() calls. get uses T_CURRENT, set uses T_NEOGTIATE
47 * MGMT_flags value. The following definition of opthdr is taken from
48 * socket.h:
49 *
50 * An option specification consists of an opthdr, followed by the value of
51 * the option. An options buffer contains one or more options. The len
52 * field of opthdr specifies the length of the option value in bytes. This
53 * length must be a multiple of sizeof(long) (use OPTLEN macro).
54 *
55 * struct opthdr {
56 * long level; protocol level affected
57 * long name; option to modify
58 * long len; length of option value
59 * };
60 *
61 * #define OPTLEN(x) ((((x) + sizeof(long) - 1) / sizeof(long)) * sizeof(long))

new/usr/src/uts/common/inet/mib2.h 2

62 * #define OPTVAL(opt) ((char *)(opt + 1))
63 *
64 * For get requests (T_CURRENT), any MIB2_xxx value can be used (only
65 * "get all" is supported, so all modules get a copy of the request to
66 * return everything it knows. In general, we use MIB2_IP. There is
67 * one exception: in general, IP will not report information related to
68 * ire_testhidden and IRE_IF_CLONE routes (e.g., in the MIB2_IP_ROUTE
69 * table). However, using the special value EXPER_IP_AND_ALL_IRES will cause
70 * all information to be reported. This special value should only be
71 * used by IPMP-aware low-level utilities (e.g. in.mpathd).
72 *
73 * IMPORTANT: some fields are grouped in a different structure than
74 * suggested by MIB-II, e.g., checksum error counts. The original MIB-2
75 * field name has been retained. Field names beginning with "mi" are not
76 * defined in the MIB but contain important & useful information maintained
77 * by the corresponding module.
78 */
79 #ifndef IPPROTO_MAX
80 #define IPPROTO_MAX 256
81 #endif

83 #define MIB2_SYSTEM (IPPROTO_MAX+1)
84 #define MIB2_INTERFACES (IPPROTO_MAX+2)
85 #define MIB2_AT (IPPROTO_MAX+3)
86 #define MIB2_IP (IPPROTO_MAX+4)
87 #define MIB2_ICMP (IPPROTO_MAX+5)
88 #define MIB2_TCP (IPPROTO_MAX+6)
89 #define MIB2_UDP (IPPROTO_MAX+7)
90 #define MIB2_EGP (IPPROTO_MAX+8)
91 #define MIB2_CMOT (IPPROTO_MAX+9)
92 #define MIB2_TRANSMISSION (IPPROTO_MAX+10)
93 #define MIB2_SNMP (IPPROTO_MAX+11)
94 #define MIB2_IP6 (IPPROTO_MAX+12)
95 #define MIB2_ICMP6 (IPPROTO_MAX+13)
96 #define MIB2_TCP6 (IPPROTO_MAX+14)
97 #define MIB2_UDP6 (IPPROTO_MAX+15)
98 #define MIB2_SCTP (IPPROTO_MAX+16)
99 #define MIB2_DCCP (IPPROTO_MAX+17)
100 #define MIB2_DCCP6 (IPPROTO_MAX+18)
101 #endif /* ! codereview */

103 /*
104 * Define range of levels for use with MIB2_*
105 */
106 #define MIB2_RANGE_START (IPPROTO_MAX+1)
107 #define MIB2_RANGE_END (IPPROTO_MAX+18)
99 #define MIB2_RANGE_END (IPPROTO_MAX+16)

110 #define EXPER 1024 /* experimental - not part of mib */
111 #define EXPER_IGMP (EXPER+1)
112 #define EXPER_DVMRP (EXPER+2)
113 #define EXPER_RAWIP (EXPER+3)
114 #define EXPER_IP_AND_ALL_IRES (EXPER+4)

116 /*
117 * Define range of levels for experimental use
118 */
119 #define EXPER_RANGE_START (EXPER+1)
120 #define EXPER_RANGE_END (EXPER+4)

122 #define BUMP_MIB(s, x) { \
123 extern void __dtrace_probe___mib_##x(int, void *); \
124 void *stataddr = &((s)->x); \
125 __dtrace_probe___mib_##x(1, stataddr); \
126 (s)->x++; \

new/usr/src/uts/common/inet/mib2.h 3

127 }
______unchanged_portion_omitted_

1788 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1789 #pragma pack()
1790 #endif

1792 /*
1793 * the DCCP group
1794 */
1795 #define MIB2_DCCP_CONN 18
1796 #define MIB2_DCCP6_CONN 19

1798 #define MIB2_DCCP_closed 1
1799 #define MIB2_DCCP_listen 2

1801 /* Pack data to make struct size the same for 32- and 64-bits */
1802 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1803 #pragma pack(4)
1804 #endif

1806 typedef struct mib2_dccp {

1808 /* # of direct transitions CLOSED -> ACK-SENT { dccp 5 } */
1809 Counter dccpActiveOpens;
1810 /* # of direct transitions LISTEN -> ACK-RCVD { dccp 6 } */
1811 Counter dccpPassiveOpens;
1812 /* # of direct SIN-SENT/RCVD -> CLOSED/LISTEN { dccp 7 } */
1813 Counter dccpAttemptFails;
1814 /* # of direct ESTABLISHED/CLOSE-WAIT -> CLOSED { dccp 8 } */
1815 Counter dccpEstabResets;
1816 /* # of connections ESTABLISHED or CLOSE-WAIT { dccp 9 } */
1817 Gauge dccpCurrEstab;
1818 /* total # of segments recv’d { dccp 10 } */
1819 Counter dccpInSegs;
1820 /* total # of segments sent { dccp 11 } */
1821 Counter dccpOutSegs;
1822 /* total # of segments retransmitted { dccp 12 } */
1823 Counter dccpRetransSegs;

1825 Counter dccpTimRetrans;
1826 /* total # of retransmit timeouts dropping the connection */
1827 Counter dccpTimRetransDrop;
1828 /* total # of keepalive timeouts */
1829 Counter dccpTimKeepalive;
1830 /* total # of keepalive timeouts sending a probe */
1831 Counter dccpTimKeepaliveProbe;
1832 /* total # of keepalive timeouts dropping the connection */
1833 Counter dccpTimKeepaliveDrop;

1835 Counter dccpOutDataSegs;
1836 Counter dccpOutDataBytes;

1838 int dccpEntrySize;
1839 int dccp6EntrySize;

1841 int dccpConnTableSize;
1842 int dccp6ConnTableSize;

1844 Counter64 dccpHCInDatagrams;
1845 /* total # of segments recv’d { tcp 17 } */
1846 Counter64 dccpHCInSegs;
1847 /* total # of segments sent { tcp 18 } */
1848 Counter64 dccpHCOutSegs;
1849 } mib2_dccp_t;
1850 #define MIB_FIRST_NEW_ELM_mib2_dccp_t dccpHCInDatagrams

new/usr/src/uts/common/inet/mib2.h 4

1852 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1853 #pragma pack()
1854 #endif

1856 /* Pack data to make struct size the same for 32- and 64-bits */
1857 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1858 #pragma pack(4)
1859 #endif

1861 typedef struct mib2_dccpConnEntry {
1862 int dccpConnState;
1863 IpAddress dccpConnLocalAddress;
1864 int dccpConnLocalPort;
1865 IpAddress dccpConnRemAddress;
1866 int dccpConnRemPort;

1868 struct dccpConnEntryInfo_s {
1869 /* current rto (retransmit timeout) */
1870 Gauge ce_rto;
1871 /* current max segment size */
1872 Gauge ce_mss;
1873 /* actual internal state */
1874 int ce_state;
1875 } dccpConnEntryInfo;

1877 uint32_t dccpConnCreationProcess;
1878 uint64_t dccpConnCreationTime;
1879 } mib2_dccpConnEntry_t;
1880 #define MIB_FIRST_NEW_ELM_mib2_dccpConnEntry_t dccpConnCreationProcess

1882 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1883 #pragma pack()
1884 #endif

1886 /* Pack data to make struct size the same for 32- and 64-bits */
1887 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1888 #pragma pack(4)
1889 #endif

1891 typedef struct mib2_dccp6ConnEntry {
1892 Ip6Address dccp6ConnLocalAddress;
1893 int dccp6ConnLocalPort;
1894 Ip6Address dccp6ConnRemAddress;
1895 int dccp6ConnRemPort;
1896 /* Interface index or zero { ipv6DccpConnEntry 5 } */
1897 DeviceIndex dccp6ConnIfIndex;
1898 /* State of dccp6 connection { ipv6DccpConnEntry 6 } RW */
1899 int dccp6ConnState;

1901 struct dccp6ConnEntryInfo_s {
1902 /* current rto (retransmit timeout) */
1903 Gauge ce_rto;
1904 /* current max segment size */
1905 Gauge ce_mss;
1906 /* actual internal state */
1907 int ce_state;
1908 } dccp6ConnEntryInfo;

1910 /* PID of the processes that created this connection */
1911 uint32_t dccp6ConnCreationProcess;
1912 /* System uptime when the connection was created */
1913 uint64_t dccp6ConnCreationTime;
1914 } mib2_dccp6ConnEntry_t;
1915 #define MIB_FIRST_NEW_ELM_mib2_dccp6ConnEntry_t dccp6ConnCreationProcess

new/usr/src/uts/common/inet/mib2.h 5

1917 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1918 #pragma pack()
1919 #endif
1920 #endif /* ! codereview */

1922 #ifdef __cplusplus
1923 }
1924 #endif

1926 #endif /* _INET_MIB2_H */

new/usr/src/uts/common/inet/sctp/sctp_impl.h 1

**
 46352 Sat Aug 18 10:37:19 2012
new/usr/src/uts/common/inet/sctp/sctp_impl.h
sctp: align to cache line
**
______unchanged_portion_omitted_

428 /*
429 * Bind hash array size and hash function. The size must be a power
430 * of 2 and lport must be in host byte order.
431 */
432 #define SCTP_BIND_FANOUT_SIZE 2048
433 #define SCTP_BIND_HASH(lport) (((lport) * 31) & (SCTP_BIND_FANOUT_SIZE - 1))

435 /* options that SCTP negotiates during association establishment */
436 #define SCTP_PRSCTP_OPTION 0x01

438 /*
439 * Listener hash array size and hash function. The size must be a power
440 * of 2 and lport must be in host byte order.
441 */
442 #define SCTP_LISTEN_FANOUT_SIZE 512
443 #define SCTP_LISTEN_HASH(lport) (((lport) * 31) & (SCTP_LISTEN_FANOUT_SIZE - 1))

445 typedef struct sctp_tf_s {
446 struct sctp_s *tf_sctp;
447 kmutex_t tf_lock;
448 #define SF_CACHEL_PAD 64
449 uchar_t tf_pad[SF_CACHEL_PAD - (sizeof (struct sctp_s *) +
450 sizeof (kmutex_t))];
451 #endif /* ! codereview */
452 } sctp_tf_t;

454 /* Round up the value to the nearest mss. */
455 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss))

457 extern sin_t sctp_sin_null; /* Zero address for quick clears */
458 extern sin6_t sctp_sin6_null; /* Zero address for quick clears */

460 #define SCTP_IS_DETACHED(sctp) ((sctp)->sctp_detached)

462 /* Data structure used to track received TSNs */
463 typedef struct sctp_set_s {
464 struct sctp_set_s *next;
465 struct sctp_set_s *prev;
466 uint32_t begin;
467 uint32_t end;
468 } sctp_set_t;

470 /* Data structure used to track TSNs for PR-SCTP */
471 typedef struct sctp_ftsn_set_s {
472 struct sctp_ftsn_set_s *next;
473 ftsn_entry_t ftsn_entries;
474 } sctp_ftsn_set_t;

476 /* Data structure used to track incoming SCTP streams */
477 typedef struct sctp_instr_s {
478 mblk_t *istr_msgs;
479 int istr_nmsgs;
480 uint16_t nextseq;
481 struct sctp_s *sctp;
482 mblk_t *istr_reass;
483 } sctp_instr_t;

485 /* Reassembly data structure (per-stream) */
486 typedef struct sctp_reass_s {

new/usr/src/uts/common/inet/sctp/sctp_impl.h 2

487 uint16_t sr_ssn;
488 uint16_t sr_needed;
489 uint16_t sr_got;
490 uint16_t sr_msglen; /* len of consecutive fragments */
491 /* from the begining (B-bit) */
492 mblk_t *sr_tail;
493 boolean_t sr_hasBchunk; /* If the fragment list begins with */
494 /* a B-bit set chunk */
495 uint32_t sr_nexttsn; /* TSN of the next fragment we */
496 /* are expecting */
497 boolean_t sr_partial_delivered;
498 } sctp_reass_t;

500 /* debugging */
501 #undef dprint
502 #ifdef DEBUG
503 extern int sctpdebug;
504 #define dprint(level, args) { if (sctpdebug > (level)) printf args; }
505 #else
506 #define dprint(level, args) {}
507 #endif

510 /* Peer address tracking */

512 /*
513 * States for peer addresses
514 *
515 * SCTP_FADDRS_UNCONFIRMED: we have not communicated with this peer address
516 * before, mark it as unconfirmed so that we will not send data to it.
517 * All addresses initially are in unconfirmed state and required
518 * validation. SCTP sends a heartbeat to each of them and when it gets
519 * back a heartbeat ACK, the address will be marked as alive. This
520 * validation fixes a security issue with multihoming. If an attacker
521 * establishes an association with us and tells us that it has addresses
522 * belonging to another host A, this will prevent A from communicating
523 * with us. This is fixed by peer address validation. In the above case,
524 * A will respond with an abort.
525 *
526 * SCTP_FADDRS_ALIVE: this peer address is alive and we can communicate with
527 * it with no problem.
528 *
529 * SCTP_FADDRS_DOWN: we have exceeded the retransmission limit to this
530 * peer address. Once an address is marked down, we will only send
531 * a heartbeat to it every hb_interval in case it becomes alive now.
532 *
533 * SCTP_FADDRS_UNREACH: there is no suitable source address to send to
534 * this peer address. For example, the peer address is v6 but we only
535 * have v4 addresses. It is marked unreachable until there is an
536 * address configuration change. At that time, mark these addresses
537 * as unconfirmed and try again to see if those unreachable addresses
538 * are OK as we may have more source addresses.
539 */
540 typedef enum {
541 SCTP_FADDRS_UNREACH,
542 SCTP_FADDRS_DOWN,
543 SCTP_FADDRS_ALIVE,
544 SCTP_FADDRS_UNCONFIRMED
545 } faddr_state_t;

547 typedef struct sctp_faddr_s {
548 struct sctp_faddr_s *sf_next;
549 faddr_state_t sf_state;

551 in6_addr_t sf_faddr;
552 in6_addr_t sf_saddr;

new/usr/src/uts/common/inet/sctp/sctp_impl.h 3

554 int64_t sf_hb_expiry; /* time to retransmit heartbeat */
555 uint32_t sf_hb_interval; /* the heartbeat interval */

557 int sf_rto; /* RTO in tick */
558 int sf_srtt; /* Smoothed RTT in tick */
559 int sf_rttvar; /* RTT variance in tick */
560 uint32_t sf_rtt_updates;
561 int sf_strikes;
562 int sf_max_retr;
563 uint32_t sf_pmss;
564 uint32_t sf_cwnd;
565 uint32_t sf_ssthresh;
566 uint32_t sf_suna; /* sent - unack’ed */
567 uint32_t sf_pba; /* partial bytes acked */
568 uint32_t sf_acked;
569 int64_t sf_lastactive;
570 mblk_t *sf_timer_mp; /* retransmission timer control */
571 uint32_t
572 sf_hb_pending : 1,
573 sf_timer_running : 1,
574 sf_df : 1,
575 sf_pmtu_discovered : 1,

577 sf_rc_timer_running : 1,
578 sf_isv4 : 1,
579 sf_hb_enabled : 1;

581 mblk_t *sf_rc_timer_mp; /* reliable control chunk timer */
582 ip_xmit_attr_t *sf_ixa; /* Transmit attributes */
583 uint32_t sf_T3expire; /* # of times T3 timer expired */

585 uint64_t sf_hb_secret; /* per addr "secret" in heartbeat */
586 uint32_t sf_rxt_unacked; /* # unack’ed retransmitted bytes */
587 } sctp_faddr_t;

589 /* Flags to indicate supported address type in the PARM_SUP_ADDRS. */
590 #define PARM_SUPP_V6 0x1
591 #define PARM_SUPP_V4 0x2

593 /*
594 * Set heartbeat interval plus jitter. The jitter is supposed to be random,
595 * up to +/- 50% of the RTO. We use gethrtime() here for performance reason
596 * as the jitter does not really need to be "very" random.
597 */
598 #define SET_HB_INTVL(fp) \
599 ((fp)->sf_hb_interval + (fp)->sf_rto + ((fp)->sf_rto >> 1) - \
600 (uint_t)gethrtime() % (fp)->sf_rto)

602 #define SCTP_IPIF_HASH 16

604 typedef struct sctp_ipif_hash_s {
605 list_t sctp_ipif_list;
606 int ipif_count;
607 krwlock_t ipif_hash_lock;
608 } sctp_ipif_hash_t;

611 /*
612 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is
613 * either sctp_slow_start_initial or sctp_slow_start_after idle
614 * depending on the caller.
615 */
616 #define SET_CWND(fp, mss, def_max_init_cwnd) \
617 { \
618 (fp)->sf_cwnd = MIN(def_max_init_cwnd * (mss), \

new/usr/src/uts/common/inet/sctp/sctp_impl.h 4

619 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
620 }

623 struct sctp_s;

625 /*
626 * Control structure for each open SCTP stream,
627 * defined only within the kernel or for a kmem user.
628 * NOTE: sctp_reinit_values MUST have a line for each field in this structure!
629 */
630 #if (defined(_KERNEL) || defined(_KMEMUSER))

632 typedef struct sctp_s {

634 /*
635 * The following is shared with (and duplicated) in IP, so if you
636 * make changes, make sure you also change things in ip_sctp.c.
637 */
638 struct sctp_s *sctp_conn_hash_next;
639 struct sctp_s *sctp_conn_hash_prev;

641 struct sctp_s *sctp_listen_hash_next;
642 struct sctp_s *sctp_listen_hash_prev;

644 sctp_tf_t *sctp_listen_tfp; /* Ptr to tf */
645 sctp_tf_t *sctp_conn_tfp; /* Ptr to tf */

647 /* Global list of sctp */
648 list_node_t sctp_list;

650 sctp_faddr_t *sctp_faddrs;
651 int sctp_nfaddrs;
652 sctp_ipif_hash_t sctp_saddrs[SCTP_IPIF_HASH];
653 int sctp_nsaddrs;

655 kmutex_t sctp_lock;
656 kcondvar_t sctp_cv;
657 boolean_t sctp_running;

659 #define sctp_ulpd sctp_connp->conn_upper_handle
660 #define sctp_upcalls sctp_connp->conn_upcalls

662 #define sctp_ulp_newconn sctp_upcalls->su_newconn
663 #define sctp_ulp_connected sctp_upcalls->su_connected
664 #define sctp_ulp_disconnected sctp_upcalls->su_disconnected
665 #define sctp_ulp_opctl sctp_upcalls->su_opctl
666 #define sctp_ulp_recv sctp_upcalls->su_recv
667 #define sctp_ulp_txq_full sctp_upcalls->su_txq_full
668 #define sctp_ulp_prop sctp_upcalls->su_set_proto_props

670 int32_t sctp_state;

672 conn_t *sctp_connp; /* conn_t stuff */
673 sctp_stack_t *sctp_sctps;

675 /* Peer address tracking */
676 sctp_faddr_t *sctp_lastfaddr; /* last faddr in list */
677 sctp_faddr_t *sctp_primary; /* primary faddr */
678 sctp_faddr_t *sctp_current; /* current faddr */
679 sctp_faddr_t *sctp_lastdata; /* last data seen from this */

681 /* Outbound data tracking */
682 mblk_t *sctp_xmit_head;
683 mblk_t *sctp_xmit_tail;
684 mblk_t *sctp_xmit_unsent;

new/usr/src/uts/common/inet/sctp/sctp_impl.h 5

685 mblk_t *sctp_xmit_unsent_tail;
686 mblk_t *sctp_xmit_unacked;

688 int32_t sctp_unacked; /* # of unacked bytes */
689 int32_t sctp_unsent; /* # of unsent bytes in hand */

691 uint32_t sctp_ltsn; /* Local instance TSN */
692 uint32_t sctp_lastack_rxd; /* Last rx’d cumtsn */
693 uint32_t sctp_recovery_tsn; /* Exit from fast recovery */
694 uint32_t sctp_adv_pap; /* Adv. Peer Ack Point */

696 uint16_t sctp_num_ostr;
697 uint16_t *sctp_ostrcntrs;

699 mblk_t *sctp_pad_mp; /* pad unaligned data chunks */

701 /* sendmsg() default parameters */
702 uint16_t sctp_def_stream; /* default stream id */
703 uint16_t sctp_def_flags; /* default xmit flags */
704 uint32_t sctp_def_ppid; /* default payload id */
705 uint32_t sctp_def_context; /* default context */
706 uint32_t sctp_def_timetolive; /* default msg TTL */

708 /* Inbound data tracking */
709 sctp_set_t *sctp_sack_info; /* Sack tracking */
710 mblk_t *sctp_ack_mp; /* Delayed ACK timer block */
711 sctp_instr_t *sctp_instr; /* Instream trackers */
712 mblk_t *sctp_uo_frags; /* Un-ordered msg. fragments */
713 uint32_t sctp_ftsn; /* Peer’s TSN */
714 uint32_t sctp_lastacked; /* last cumtsn SACKd */
715 uint16_t sctp_num_istr; /* No. of instreams */
716 int32_t sctp_istr_nmsgs; /* No. of chunks in instreams */
717 int32_t sctp_sack_gaps; /* No. of received gaps */
718 int32_t sctp_sack_toggle; /* SACK every other pkt */

720 /* RTT calculation */
721 uint32_t sctp_rtt_tsn;
722 int64_t sctp_out_time;

724 /* Stats can be reset by snmp users kstat, netstat and snmp agents */
725 uint64_t sctp_opkts; /* sent pkts */
726 uint64_t sctp_obchunks; /* sent control chunks */
727 uint64_t sctp_odchunks; /* sent ordered data chunks */
728 uint64_t sctp_oudchunks; /* sent unord data chunks */
729 uint64_t sctp_rxtchunks; /* retransmitted chunks */
730 uint64_t sctp_ipkts; /* recv pkts */
731 uint64_t sctp_ibchunks; /* recv control chunks */
732 uint64_t sctp_idchunks; /* recv ordered data chunks */
733 uint64_t sctp_iudchunks; /* recv unord data chunks */
734 uint64_t sctp_fragdmsgs;
735 uint64_t sctp_reassmsgs;
736 uint32_t sctp_T1expire; /* # of times T1timer expired */
737 uint32_t sctp_T2expire; /* # of times T2timer expired */
738 uint32_t sctp_T3expire; /* # of times T3timer expired */
739 uint32_t sctp_assoc_start_time; /* time when assoc was est. */

741 uint32_t sctp_frwnd; /* Peer RWND */
742 uint32_t sctp_cwnd_max;

744 /* Inbound flow control */
745 int32_t sctp_rwnd; /* Current receive window */
746 int32_t sctp_arwnd; /* Last advertised window */
747 int32_t sctp_rxqueued; /* No. of bytes in RX q’s */
748 int32_t sctp_ulp_rxqueued; /* Data in ULP */

750 /* Pre-initialized composite headers */

new/usr/src/uts/common/inet/sctp/sctp_impl.h 6

751 uchar_t *sctp_iphc; /* v4 sctp/ip hdr template buffer */
752 uchar_t *sctp_iphc6; /* v6 sctp/ip hdr template buffer */

754 int32_t sctp_iphc_len; /* actual allocated v4 buffer size */
755 int32_t sctp_iphc6_len; /* actual allocated v6 buffer size */

757 int32_t sctp_hdr_len; /* len of combined SCTP/IP v4 hdr */
758 int32_t sctp_hdr6_len; /* len of combined SCTP/IP v6 hdr */

760 ipha_t *sctp_ipha; /* IPv4 header in the buffer */
761 ip6_t *sctp_ip6h; /* IPv6 header in the buffer */

763 int32_t sctp_ip_hdr_len; /* Byte len of our current v4 hdr */
764 int32_t sctp_ip_hdr6_len; /* Byte len of our current v6 hdr */

766 sctp_hdr_t *sctp_sctph; /* sctp header in combined v4 hdr */
767 sctp_hdr_t *sctp_sctph6; /* sctp header in combined v6 hdr */

769 uint32_t sctp_lvtag; /* local SCTP instance verf tag */
770 uint32_t sctp_fvtag; /* Peer’s SCTP verf tag */

772 /* Path MTU Discovery */
773 int64_t sctp_last_mtu_probe;
774 clock_t sctp_mtu_probe_intvl;
775 uint32_t sctp_mss; /* Max send size (not TCP MSS!) */

777 /* structs sctp_bits, sctp_events are for clearing all bits at once */
778 struct {
779 uint32_t

781 sctp_understands_asconf : 1, /* Peer handles ASCONF chunks */
782 sctp_cchunk_pend : 1, /* Control chunk in flight. */
783 sctp_lingering : 1, /* Lingering in close */
784 sctp_loopback: 1, /* src and dst are the same machine */

786 sctp_force_sack : 1,
787 sctp_ack_timer_running: 1, /* Delayed ACK timer running */
788 sctp_hwcksum : 1, /* The NIC is capable of hwcksum */
789 sctp_understands_addip : 1,

791 sctp_bound_to_all : 1,
792 sctp_cansleep : 1, /* itf routines can sleep */
793 sctp_detached : 1, /* If we’re detached from a stream */
794 sctp_send_adaptation : 1, /* send adaptation layer ind */

796 sctp_recv_adaptation : 1, /* recv adaptation layer ind */
797 sctp_ndelay : 1, /* turn off Nagle */
798 sctp_condemned : 1, /* this sctp is about to disappear */
799 sctp_chk_fast_rexmit : 1, /* check for fast rexmit message */

801 sctp_prsctp_aware : 1, /* is peer PR-SCTP aware? */
802 sctp_linklocal : 1, /* is linklocal assoc. */
803 sctp_rexmitting : 1, /* SCTP is retransmitting */
804 sctp_zero_win_probe : 1, /* doing zero win probe */

806 sctp_txq_full : 1, /* the tx queue is full */
807 sctp_ulp_discon_done : 1, /* ulp_disconnecting done */
808 sctp_flowctrld : 1, /* upper layer flow controlled */
809 sctp_dummy : 5;
810 } sctp_bits;
811 struct {
812 uint32_t

814 sctp_recvsndrcvinfo : 1,
815 sctp_recvassocevnt : 1,
816 sctp_recvpathevnt : 1,

new/usr/src/uts/common/inet/sctp/sctp_impl.h 7

817 sctp_recvsendfailevnt : 1,

819 sctp_recvpeererr : 1,
820 sctp_recvshutdownevnt : 1,
821 sctp_recvpdevnt : 1,
822 sctp_recvalevnt : 1;
823 } sctp_events;
824 #define sctp_priv_stream sctp_bits.sctp_priv_stream
825 #define sctp_understands_asconf sctp_bits.sctp_understands_asconf
826 #define sctp_cchunk_pend sctp_bits.sctp_cchunk_pend
827 #define sctp_lingering sctp_bits.sctp_lingering
828 #define sctp_loopback sctp_bits.sctp_loopback
829 #define sctp_force_sack sctp_bits.sctp_force_sack
830 #define sctp_ack_timer_running sctp_bits.sctp_ack_timer_running
831 #define sctp_hwcksum sctp_bits.sctp_hwcksum
832 #define sctp_understands_addip sctp_bits.sctp_understands_addip
833 #define sctp_bound_to_all sctp_bits.sctp_bound_to_all
834 #define sctp_cansleep sctp_bits.sctp_cansleep
835 #define sctp_detached sctp_bits.sctp_detached
836 #define sctp_send_adaptation sctp_bits.sctp_send_adaptation
837 #define sctp_recv_adaptation sctp_bits.sctp_recv_adaptation
838 #define sctp_ndelay sctp_bits.sctp_ndelay
839 #define sctp_condemned sctp_bits.sctp_condemned
840 #define sctp_chk_fast_rexmit sctp_bits.sctp_chk_fast_rexmit
841 #define sctp_prsctp_aware sctp_bits.sctp_prsctp_aware
842 #define sctp_linklocal sctp_bits.sctp_linklocal
843 #define sctp_rexmitting sctp_bits.sctp_rexmitting
844 #define sctp_zero_win_probe sctp_bits.sctp_zero_win_probe
845 #define sctp_txq_full sctp_bits.sctp_txq_full
846 #define sctp_ulp_discon_done sctp_bits.sctp_ulp_discon_done
847 #define sctp_flowctrld sctp_bits.sctp_flowctrld

849 #define sctp_recvsndrcvinfo sctp_events.sctp_recvsndrcvinfo
850 #define sctp_recvassocevnt sctp_events.sctp_recvassocevnt
851 #define sctp_recvpathevnt sctp_events.sctp_recvpathevnt
852 #define sctp_recvsendfailevnt sctp_events.sctp_recvsendfailevnt
853 #define sctp_recvpeererr sctp_events.sctp_recvpeererr
854 #define sctp_recvshutdownevnt sctp_events.sctp_recvshutdownevnt
855 #define sctp_recvpdevnt sctp_events.sctp_recvpdevnt
856 #define sctp_recvalevnt sctp_events.sctp_recvalevnt

858 /* Retransmit info */
859 mblk_t *sctp_cookie_mp; /* cookie chunk, if rxt needed */
860 int32_t sctp_strikes; /* Total number of assoc strikes */
861 int32_t sctp_max_init_rxt;
862 int32_t sctp_pa_max_rxt; /* Max per-assoc retransmit cnt */
863 int32_t sctp_pp_max_rxt; /* Max per-path retransmit cnt */
864 uint32_t sctp_rto_max;
865 uint32_t sctp_rto_max_init;
866 uint32_t sctp_rto_min;
867 uint32_t sctp_rto_initial;

869 int64_t sctp_last_secret_update;
870 uint8_t sctp_secret[SCTP_SECRET_LEN]; /* for cookie auth */
871 uint8_t sctp_old_secret[SCTP_SECRET_LEN];
872 uint32_t sctp_cookie_lifetime; /* cookie lifetime in tick */

874 /* Bind hash tables */
875 kmutex_t *sctp_bind_lockp; /* Ptr to tf_lock */
876 struct sctp_s *sctp_bind_hash;
877 struct sctp_s **sctp_ptpbhn;

879 /* Shutdown / cleanup */
880 sctp_faddr_t *sctp_shutdown_faddr; /* rotate faddr during shutd */
881 int32_t sctp_client_errno; /* How the client screwed up */
882 kmutex_t sctp_reflock; /* Protects sctp_refcnt & timer mp */

new/usr/src/uts/common/inet/sctp/sctp_impl.h 8

883 ushort_t sctp_refcnt; /* No. of pending upstream msg */
884 mblk_t *sctp_timer_mp; /* List of fired timers. */

886 mblk_t *sctp_heartbeat_mp; /* Timer block for heartbeats */
887 uint32_t sctp_hb_interval; /* Default hb_interval */

889 int32_t sctp_autoclose; /* Auto disconnect in ticks */
890 int64_t sctp_active; /* Last time data/sack on this conn */
891 uint32_t sctp_tx_adaptation_code; /* TX adaptation code */
892 uint32_t sctp_rx_adaptation_code; /* RX adaptation code */

894 /* Reliable control chunks */
895 mblk_t *sctp_cxmit_list; /* Xmit list for control chunks */
896 uint32_t sctp_lcsn; /* Our serial number */
897 uint32_t sctp_fcsn; /* Peer serial number */

899 /* Per association receive queue */
900 kmutex_t sctp_recvq_lock;
901 mblk_t *sctp_recvq;
902 mblk_t *sctp_recvq_tail;
903 taskq_t *sctp_recvq_tq;

905 /* IPv6 ancillary data */
906 uint_t sctp_recvifindex; /* last rcvd IPV6_RCVPKTINFO */
907 uint_t sctp_recvhops; /* " IPV6_RECVHOPLIMIT */
908 uint_t sctp_recvtclass; /* " IPV6_RECVTCLASS */
909 ip6_hbh_t *sctp_hopopts; /* " IPV6_RECVHOPOPTS */
910 ip6_dest_t *sctp_dstopts; /* " IPV6_RECVDSTOPTS */
911 ip6_dest_t *sctp_rthdrdstopts; /* " IPV6_RECVRTHDRDSTOPTS */
912 ip6_rthdr_t *sctp_rthdr; /* " IPV6_RECVRTHDR */
913 uint_t sctp_hopoptslen;
914 uint_t sctp_dstoptslen;
915 uint_t sctp_rthdrdstoptslen;
916 uint_t sctp_rthdrlen;

918 /* Stats */
919 uint64_t sctp_msgcount;
920 uint64_t sctp_prsctpdrop;

922 uint_t sctp_v4label_len; /* length of cached v4 label */
923 uint_t sctp_v6label_len; /* length of cached v6 label */
924 uint32_t sctp_rxt_nxttsn; /* Next TSN to be rexmitted */
925 uint32_t sctp_rxt_maxtsn; /* Max TSN sent at time out */

927 int sctp_pd_point; /* Partial delivery point */
928 mblk_t *sctp_err_chunks; /* Error chunks */
929 uint32_t sctp_err_len; /* Total error chunks length */

931 /* additional source data for per endpoint association statistics */
932 uint64_t sctp_outseqtsns; /* TSN rx > expected TSN */
933 uint64_t sctp_osacks; /* total sacks sent */
934 uint64_t sctp_isacks; /* total sacks received */
935 uint64_t sctp_idupchunks; /* rx dups, ord or unord */
936 uint64_t sctp_gapcnt; /* total gap acks rx */
937 /*
938 * Add the current data from the counters which are reset by snmp
939 * to these cumulative counters to use in per endpoint statistics.
940 */
941 uint64_t sctp_cum_obchunks; /* sent control chunks */
942 uint64_t sctp_cum_odchunks; /* sent ordered data chunks */
943 uint64_t sctp_cum_oudchunks; /* sent unord data chunks */
944 uint64_t sctp_cum_rxtchunks; /* retransmitted chunks */
945 uint64_t sctp_cum_ibchunks; /* recv control chunks */
946 uint64_t sctp_cum_idchunks; /* recv ordered data chunks */
947 uint64_t sctp_cum_iudchunks; /* recv unord data chunks */

new/usr/src/uts/common/inet/sctp/sctp_impl.h 9

949 /*
950 * When non-zero, this is the maximum observed RTO since assoc stats
951 * were last requested. When zero, no RTO update has occurred since
952 * the previous user request for stats on this endpoint.
953 */
954 int sctp_maxrto;
955 /*
956 * The stored value of sctp_maxrto passed to user during the previous
957 * user request for stats on this endpoint.
958 */
959 int sctp_prev_maxrto;

961 /* For association counting. */
962 sctp_listen_cnt_t *sctp_listen_cnt;
963 } sctp_t;

965 #define SCTP_TXQ_LEN(sctp) ((sctp)->sctp_unsent + (sctp)->sctp_unacked)
966 #define SCTP_TXQ_UPDATE(sctp) \
967 if ((sctp)->sctp_txq_full && SCTP_TXQ_LEN(sctp) <= \
968 (sctp)->sctp_connp->conn_sndlowat) { \
969 (sctp)->sctp_txq_full = 0; \
970 (sctp)->sctp_ulp_txq_full((sctp)->sctp_ulpd, \
971 B_FALSE); \
972 }

974 #endif /* (defined(_KERNEL) || defined(_KMEMUSER)) */

976 extern void sctp_ack_timer(sctp_t *);
977 extern size_t sctp_adaptation_code_param(sctp_t *, uchar_t *);
978 extern void sctp_adaptation_event(sctp_t *);
979 extern void sctp_add_err(sctp_t *, uint16_t, void *, size_t,
980 sctp_faddr_t *);
981 extern int sctp_add_faddr(sctp_t *, in6_addr_t *, int, boolean_t);
982 extern boolean_t sctp_add_ftsn_set(sctp_ftsn_set_t **, sctp_faddr_t *, mblk_t *,
983 uint_t *, uint32_t *);
984 extern void sctp_add_recvq(sctp_t *, mblk_t *, boolean_t,
985 ip_recv_attr_t *);
986 extern void sctp_add_unrec_parm(sctp_parm_hdr_t *, mblk_t **, boolean_t);
987 extern size_t sctp_addr_params(sctp_t *, int, uchar_t *, boolean_t);
988 extern mblk_t *sctp_add_proto_hdr(sctp_t *, sctp_faddr_t *, mblk_t *, int,
989 int *);
990 extern void sctp_addr_req(sctp_t *, mblk_t *);
991 extern sctp_t *sctp_addrlist2sctp(mblk_t *, sctp_hdr_t *, sctp_chunk_hdr_t *,
992 zoneid_t, sctp_stack_t *);
993 extern void sctp_check_adv_ack_pt(sctp_t *, mblk_t *, mblk_t *);
994 extern void sctp_assoc_event(sctp_t *, uint16_t, uint16_t,
995 sctp_chunk_hdr_t *);

997 extern void sctp_bind_hash_insert(sctp_tf_t *, sctp_t *, int);
998 extern void sctp_bind_hash_remove(sctp_t *);
999 extern int sctp_bindi(sctp_t *, in_port_t, boolean_t, int, in_port_t *);
1000 extern int sctp_bind_add(sctp_t *, const void *, uint32_t, boolean_t,
1001 in_port_t);
1002 extern int sctp_bind_del(sctp_t *, const void *, uint32_t, boolean_t);
1003 extern int sctp_build_hdrs(sctp_t *, int);

1005 extern int sctp_check_abandoned_msg(sctp_t *, mblk_t *);
1006 extern void sctp_clean_death(sctp_t *, int);
1007 extern void sctp_close_eager(sctp_t *);
1008 extern int sctp_compare_faddrsets(sctp_faddr_t *, sctp_faddr_t *);
1009 extern void sctp_congest_reset(sctp_t *);
1010 extern void sctp_conn_hash_insert(sctp_tf_t *, sctp_t *, int);
1011 extern void sctp_conn_hash_remove(sctp_t *);
1012 extern void sctp_conn_init(conn_t *);
1013 extern sctp_t *sctp_conn_match(in6_addr_t **, uint32_t, in6_addr_t *,
1014 uint32_t, zoneid_t, iaflags_t, sctp_stack_t *);

new/usr/src/uts/common/inet/sctp/sctp_impl.h 10

1015 extern void sctp_conn_reclaim(void *);
1016 extern sctp_t *sctp_conn_request(sctp_t *, mblk_t *, uint_t, uint_t,
1017 sctp_init_chunk_t *, ip_recv_attr_t *);
1018 extern uint32_t sctp_cumack(sctp_t *, uint32_t, mblk_t **);
1019 extern sctp_t *sctp_create_eager(sctp_t *);

1021 extern void sctp_dispatch_rput(queue_t *, sctp_t *, sctp_hdr_t *, mblk_t *,
1022 uint_t, uint_t, in6_addr_t);
1023 extern char *sctp_display(sctp_t *, char *);
1024 extern void sctp_display_all(sctp_stack_t *);

1026 extern void sctp_error_event(sctp_t *, sctp_chunk_hdr_t *, boolean_t);

1028 extern void sctp_faddr_alive(sctp_t *, sctp_faddr_t *);
1029 extern int sctp_faddr_dead(sctp_t *, sctp_faddr_t *, int);
1030 extern void sctp_faddr_fini(void);
1031 extern void sctp_faddr_init(void);
1032 extern void sctp_fast_rexmit(sctp_t *);
1033 extern void sctp_fill_sack(sctp_t *, unsigned char *, int);
1034 extern uint32_t sctp_find_listener_conf(sctp_stack_t *, in_port_t);
1035 extern void sctp_free_faddr_timers(sctp_t *);
1036 extern void sctp_free_ftsn_set(sctp_ftsn_set_t *);
1037 extern void sctp_free_msg(mblk_t *);
1038 extern void sctp_free_reass(sctp_instr_t *);
1039 extern void sctp_free_set(sctp_set_t *);
1040 extern void sctp_ftsn_sets_fini(void);
1041 extern void sctp_ftsn_sets_init(void);

1043 extern int sctp_get_addrlist(sctp_t *, const void *, uint32_t *,
1044 uchar_t **, int *, size_t *);
1045 extern int sctp_get_addrparams(sctp_t *, sctp_t *, mblk_t *,
1046 sctp_chunk_hdr_t *, uint_t *);
1047 extern void sctp_get_dest(sctp_t *, sctp_faddr_t *);
1048 extern void sctp_get_faddr_list(sctp_t *, uchar_t *, size_t);
1049 extern mblk_t *sctp_get_first_sent(sctp_t *);
1050 extern mblk_t *sctp_get_msg_to_send(sctp_t *, mblk_t **, mblk_t *, int *,
1051 int32_t, uint32_t, sctp_faddr_t *);
1052 extern void sctp_get_saddr_list(sctp_t *, uchar_t *, size_t);

1054 extern int sctp_handle_error(sctp_t *, sctp_hdr_t *, sctp_chunk_hdr_t *,
1055 mblk_t *, ip_recv_attr_t *);
1056 extern void sctp_hash_destroy(sctp_stack_t *);
1057 extern void sctp_hash_init(sctp_stack_t *);
1058 extern void sctp_heartbeat_timer(sctp_t *);

1060 extern void sctp_icmp_error(sctp_t *, mblk_t *);
1061 extern void sctp_inc_taskq(sctp_stack_t *);
1062 extern void sctp_info_req(sctp_t *, mblk_t *);
1063 extern mblk_t *sctp_init_mp(sctp_t *, sctp_faddr_t *);
1064 extern boolean_t sctp_initialize_params(sctp_t *, sctp_init_chunk_t *,
1065 sctp_init_chunk_t *);
1066 extern uint32_t sctp_init2vtag(sctp_chunk_hdr_t *);
1067 extern void sctp_intf_event(sctp_t *, in6_addr_t, int, int);
1068 extern void sctp_input_data(sctp_t *, mblk_t *, ip_recv_attr_t *);
1069 extern void sctp_instream_cleanup(sctp_t *, boolean_t);
1070 extern boolean_t sctp_is_a_faddr_clean(sctp_t *);

1072 extern void *sctp_kstat_init(netstackid_t);
1073 extern void sctp_kstat_fini(netstackid_t, kstat_t *);
1074 extern void *sctp_kstat2_init(netstackid_t);
1075 extern void sctp_kstat2_fini(netstackid_t, kstat_t *);

1077 extern ssize_t sctp_link_abort(mblk_t *, uint16_t, char *, size_t, int,
1078 boolean_t);
1079 extern void sctp_listen_hash_insert(sctp_tf_t *, sctp_t *);
1080 extern void sctp_listen_hash_remove(sctp_t *);

new/usr/src/uts/common/inet/sctp/sctp_impl.h 11

1081 extern void sctp_listener_conf_cleanup(sctp_stack_t *);
1082 extern sctp_t *sctp_lookup(sctp_t *, in6_addr_t *, sctp_tf_t *, uint32_t *,
1083 int);
1084 extern sctp_faddr_t *sctp_lookup_faddr(sctp_t *, in6_addr_t *);

1086 extern mblk_t *sctp_make_err(sctp_t *, uint16_t, void *, size_t);
1087 extern mblk_t *sctp_make_ftsn_chunk(sctp_t *, sctp_faddr_t *,
1088 sctp_ftsn_set_t *, uint_t, uint32_t);
1089 extern void sctp_make_ftsns(sctp_t *, mblk_t *, mblk_t *, mblk_t **,
1090 sctp_faddr_t *, uint32_t *);
1091 extern mblk_t *sctp_make_mp(sctp_t *, sctp_faddr_t *, int);
1092 extern mblk_t *sctp_make_sack(sctp_t *, sctp_faddr_t *, mblk_t *);
1093 extern void sctp_maxpsz_set(sctp_t *);
1094 extern void sctp_move_faddr_timers(queue_t *, sctp_t *);

1096 extern sctp_parm_hdr_t *sctp_next_parm(sctp_parm_hdr_t *, ssize_t *);

1098 extern void sctp_ootb_shutdown_ack(mblk_t *, uint_t, ip_recv_attr_t *,
1099 ip_stack_t *);
1100 extern size_t sctp_options_param(const sctp_t *, void *, int);
1101 extern size_t sctp_options_param_len(const sctp_t *, int);
1102 extern void sctp_output(sctp_t *, uint_t);

1104 extern void sctp_partial_delivery_event(sctp_t *);
1105 extern int sctp_process_cookie(sctp_t *, sctp_chunk_hdr_t *, mblk_t *,
1106 sctp_init_chunk_t **, sctp_hdr_t *, int *, in6_addr_t *,
1107 ip_recv_attr_t *);
1108 extern void sctp_process_err(sctp_t *);
1109 extern void sctp_process_heartbeat(sctp_t *, sctp_chunk_hdr_t *);
1110 extern void sctp_process_timer(sctp_t *);

1112 extern void sctp_redo_faddr_srcs(sctp_t *);
1113 extern void sctp_regift_xmitlist(sctp_t *);
1114 extern void sctp_return_heartbeat(sctp_t *, sctp_chunk_hdr_t *, mblk_t *);
1115 extern void sctp_rexmit(sctp_t *, sctp_faddr_t *);
1116 extern mblk_t *sctp_rexmit_packet(sctp_t *, mblk_t **, mblk_t **,
1117 sctp_faddr_t *, uint_t *);
1118 extern void sctp_rexmit_timer(sctp_t *, sctp_faddr_t *);
1119 extern sctp_faddr_t *sctp_rotate_faddr(sctp_t *, sctp_faddr_t *);

1121 extern boolean_t sctp_sack(sctp_t *, mblk_t *);
1122 extern int sctp_secure_restart_check(mblk_t *, sctp_chunk_hdr_t *,
1123 uint32_t, int, sctp_stack_t *, ip_recv_attr_t *);
1124 extern void sctp_send_abort(sctp_t *, uint32_t, uint16_t, char *, size_t,
1125 mblk_t *, int, boolean_t, ip_recv_attr_t *);
1126 extern void sctp_ootb_send_abort(uint32_t, uint16_t, char *, size_t,
1127 const mblk_t *, int, boolean_t, ip_recv_attr_t *,
1128 ip_stack_t *);
1129 extern void sctp_send_cookie_ack(sctp_t *);
1130 extern void sctp_send_cookie_echo(sctp_t *, sctp_chunk_hdr_t *, mblk_t *,
1131 ip_recv_attr_t *);
1132 extern void sctp_send_initack(sctp_t *, sctp_hdr_t *, sctp_chunk_hdr_t *,
1133 mblk_t *, ip_recv_attr_t *);
1134 extern void sctp_send_shutdown(sctp_t *, int);
1135 extern void sctp_send_heartbeat(sctp_t *, sctp_faddr_t *);
1136 extern void sctp_sendfail_event(sctp_t *, mblk_t *, int, boolean_t);
1137 extern void sctp_set_faddr_current(sctp_t *, sctp_faddr_t *);
1138 extern int sctp_set_hdraddrs(sctp_t *);
1139 extern void sctp_set_saddr(sctp_t *, sctp_faddr_t *);
1140 extern void sctp_sets_init(void);
1141 extern void sctp_sets_fini(void);
1142 extern void sctp_shutdown_event(sctp_t *);
1143 extern void sctp_stop_faddr_timers(sctp_t *);
1144 extern int sctp_shutdown_received(sctp_t *, sctp_chunk_hdr_t *, boolean_t,
1145 boolean_t, sctp_faddr_t *);
1146 extern void sctp_shutdown_complete(sctp_t *);

new/usr/src/uts/common/inet/sctp/sctp_impl.h 12

1147 extern void sctp_set_if_mtu(sctp_t *);
1148 extern void sctp_set_iplen(sctp_t *, mblk_t *, ip_xmit_attr_t *);
1149 extern void sctp_set_ulp_prop(sctp_t *);
1150 extern void sctp_ss_rexmit(sctp_t *);
1151 extern void sctp_stack_cpu_add(sctp_stack_t *, processorid_t);
1152 extern size_t sctp_supaddr_param_len(sctp_t *);
1153 extern size_t sctp_supaddr_param(sctp_t *, uchar_t *);

1155 extern void sctp_timer(sctp_t *, mblk_t *, clock_t);
1156 extern mblk_t *sctp_timer_alloc(sctp_t *, pfv_t, int);
1157 extern void sctp_timer_call(sctp_t *sctp, mblk_t *);
1158 extern void sctp_timer_free(mblk_t *);
1159 extern void sctp_timer_stop(mblk_t *);
1160 extern void sctp_unlink_faddr(sctp_t *, sctp_faddr_t *);

1162 extern void sctp_update_dce(sctp_t *sctp);
1163 extern in_port_t sctp_update_next_port(in_port_t, zone_t *zone, sctp_stack_t *);
1164 extern void sctp_update_rtt(sctp_t *, sctp_faddr_t *, clock_t);
1165 extern void sctp_user_abort(sctp_t *, mblk_t *);

1167 extern void sctp_validate_peer(sctp_t *);

1169 extern int sctp_xmit_list_clean(sctp_t *, ssize_t);

1171 extern void sctp_zap_addrs(sctp_t *);
1172 extern void sctp_zap_faddrs(sctp_t *, int);
1173 extern sctp_chunk_hdr_t *sctp_first_chunk(uchar_t *, ssize_t);
1174 extern void sctp_send_shutdown_ack(sctp_t *, sctp_faddr_t *, boolean_t);

1176 /* Contract private interface between SCTP and Clustering - PSARC/2005/602 */

1178 extern void (*cl_sctp_listen)(sa_family_t, uchar_t *, uint_t, in_port_t);
1179 extern void (*cl_sctp_unlisten)(sa_family_t, uchar_t *, uint_t, in_port_t);
1180 extern void (*cl_sctp_connect)(sa_family_t, uchar_t *, uint_t, in_port_t,
1181 uchar_t *, uint_t, in_port_t, boolean_t, cl_sctp_handle_t);
1182 extern void (*cl_sctp_disconnect)(sa_family_t, cl_sctp_handle_t);
1183 extern void (*cl_sctp_assoc_change)(sa_family_t, uchar_t *, size_t, uint_t,
1184 uchar_t *, size_t, uint_t, int, cl_sctp_handle_t);
1185 extern void (*cl_sctp_check_addrs)(sa_family_t, in_port_t, uchar_t **,
1186 size_t, uint_t *, boolean_t);

1188 #define RUN_SCTP(sctp) \
1189 { \
1190 mutex_enter(&(sctp)->sctp_lock); \
1191 while ((sctp)->sctp_running) \
1192 cv_wait(&(sctp)->sctp_cv, &(sctp)->sctp_lock); \
1193 (sctp)->sctp_running = B_TRUE; \
1194 mutex_exit(&(sctp)->sctp_lock); \
1195 }

1197 /* Wake up recvq taskq */
1198 #define WAKE_SCTP(sctp) \
1199 { \
1200 mutex_enter(&(sctp)->sctp_lock); \
1201 if ((sctp)->sctp_timer_mp != NULL) \
1202 sctp_process_timer(sctp); \
1203 (sctp)->sctp_running = B_FALSE; \
1204 cv_broadcast(&(sctp)->sctp_cv); \
1205 mutex_exit(&(sctp)->sctp_lock); \
1206 }

1208 #ifdef __cplusplus
1209 }
1210 #endif

1212 #endif /* _INET_SCTP_SCTP_IMPL_H */

new/usr/src/uts/common/inet/tcp/tcp.c 1

**
 129612 Sat Aug 18 10:37:20 2012
new/usr/src/uts/common/inet/tcp/tcp.c
tcp: conn_mlp_type will be set later in tcp_init_values
**
______unchanged_portion_omitted_

2594 conn_t *
2595 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2596 int *errorp)
2597 {
2598 tcp_t *tcp = NULL;
2599 conn_t *connp;
2600 zoneid_t zoneid;
2601 tcp_stack_t *tcps;
2602 squeue_t *sqp;

2604 ASSERT(errorp != NULL);
2605 /*
2606 * Find the proper zoneid and netstack.
2607 */
2608 /*
2609 * Special case for install: miniroot needs to be able to
2610 * access files via NFS as though it were always in the
2611 * global zone.
2612 */
2613 if (credp == kcred && nfs_global_client_only != 0) {
2614 zoneid = GLOBAL_ZONEID;
2615 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2616 netstack_tcp;
2617 ASSERT(tcps != NULL);
2618 } else {
2619 netstack_t *ns;
2620 int err;

2622 if ((err = secpolicy_basic_net_access(credp)) != 0) {
2623 *errorp = err;
2624 return (NULL);
2625 }

2627 ns = netstack_find_by_cred(credp);
2628 ASSERT(ns != NULL);
2629 tcps = ns->netstack_tcp;
2630 ASSERT(tcps != NULL);

2632 /*
2633 * For exclusive stacks we set the zoneid to zero
2634 * to make TCP operate as if in the global zone.
2635 */
2636 if (tcps->tcps_netstack->netstack_stackid !=
2637 GLOBAL_NETSTACKID)
2638 zoneid = GLOBAL_ZONEID;
2639 else
2640 zoneid = crgetzoneid(credp);
2641 }

2643 sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2644 connp = (conn_t *)tcp_get_conn(sqp, tcps);
2645 /*
2646 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2647 * so we drop it by one.
2648 */
2649 netstack_rele(tcps->tcps_netstack);
2650 if (connp == NULL) {
2651 *errorp = ENOSR;
2652 return (NULL);

new/usr/src/uts/common/inet/tcp/tcp.c 2

2653 }
2654 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);

2656 connp->conn_sqp = sqp;
2657 connp->conn_initial_sqp = connp->conn_sqp;
2658 connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2659 tcp = connp->conn_tcp;

2661 /*
2662 * Besides asking IP to set the checksum for us, have conn_ip_output
2663 * to do the following checks when necessary:
2664 *
2665 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2666 * IXAF_VERIFY_PMTU: verify PMTU changes
2667 * IXAF_VERIFY_LSO: verify LSO capability changes
2668 */
2669 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2670 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;

2672 if (!tcps->tcps_dev_flow_ctl)
2673 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;

2675 if (isv6) {
2676 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2677 connp->conn_ipversion = IPV6_VERSION;
2678 connp->conn_family = AF_INET6;
2679 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2680 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2681 } else {
2682 connp->conn_ipversion = IPV4_VERSION;
2683 connp->conn_family = AF_INET;
2684 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2685 connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2686 }
2687 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;

2689 crhold(credp);
2690 connp->conn_cred = credp;
2691 connp->conn_cpid = curproc->p_pid;
2692 connp->conn_open_time = ddi_get_lbolt64();

2694 /* Cache things in the ixa without any refhold */
2695 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2696 connp->conn_ixa->ixa_cred = credp;
2697 connp->conn_ixa->ixa_cpid = connp->conn_cpid;

2699 connp->conn_zoneid = zoneid;
2700 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2701 connp->conn_ixa->ixa_zoneid = zoneid;
2702 connp->conn_mlp_type = mlptSingle;
2702 ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2703 ASSERT(tcp->tcp_tcps == tcps);

2705 /*
2706 * If the caller has the process-wide flag set, then default to MAC
2707 * exempt mode. This allows read-down to unlabeled hosts.
2708 */
2709 if (getpflags(NET_MAC_AWARE, credp) != 0)
2710 connp->conn_mac_mode = CONN_MAC_AWARE;

2712 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);

2714 if (issocket) {
2715 tcp->tcp_issocket = 1;
2716 }

new/usr/src/uts/common/inet/tcp/tcp.c 3

2718 connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2719 connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2720 connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2721 connp->conn_so_type = SOCK_STREAM;
2722 connp->conn_wroff = connp->conn_ht_iphc_allocated +
2723 tcps->tcps_wroff_xtra;

2725 SOCK_CONNID_INIT(tcp->tcp_connid);
2726 /* DTrace ignores this - it isn’t a tcp:::state-change */
2727 tcp->tcp_state = TCPS_IDLE;
2728 tcp_init_values(tcp, NULL);
2729 return (connp);
2730 }
______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 1

**
 30240 Sat Aug 18 10:37:20 2012
new/usr/src/uts/common/inet/tcp/tcp_opt_data.c
tcp: maybe related to 721fffe3
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
24 */

26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #define _SUN_TPI_VERSION 2
29 #include <sys/tihdr.h>
30 #include <sys/socket.h>
31 #include <sys/xti_xtiopt.h>
32 #include <sys/xti_inet.h>
33 #include <sys/policy.h>

35 #include <inet/common.h>
36 #include <netinet/ip6.h>
37 #include <inet/ip.h>

39 #include <netinet/in.h>
40 #include <netinet/tcp.h>
41 #include <inet/optcom.h>
42 #include <inet/proto_set.h>
43 #include <inet/tcp_impl.h>

45 static int tcp_opt_default(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);

47 #endif /* ! codereview */
48 /*
49 * Table of all known options handled on a TCP protocol stack.
50 *
51 * Note: This table contains options processed by both TCP and IP levels
52 * and is the superset of options that can be performed on a TCP over IP
53 * stack.
54 */
55 opdes_t tcp_opt_arr[] = {

57 { SO_LINGER, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0,
58 sizeof (struct linger), 0 },

60 { SO_DEBUG, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
61 { SO_KEEPALIVE, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 2

62 { SO_DONTROUTE, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
63 { SO_USELOOPBACK, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
64 },
65 { SO_BROADCAST, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
66 { SO_REUSEADDR, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
67 { SO_OOBINLINE, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
68 { SO_TYPE, SOL_SOCKET, OA_R, OA_R, OP_NP, 0, sizeof (int), 0 },
69 { SO_SNDBUF, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
70 { SO_RCVBUF, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
71 { SO_SNDTIMEO, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0,
72 sizeof (struct timeval), 0 },
73 { SO_RCVTIMEO, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0,
74 sizeof (struct timeval), 0 },
75 { SO_DGRAM_ERRIND, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
76 },
77 { SO_SND_COPYAVOID, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
78 { SO_ANON_MLP, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
79 0 },
80 { SO_MAC_EXEMPT, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
81 0 },
82 { SO_MAC_IMPLICIT, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
83 0 },
84 { SO_ALLZONES, SOL_SOCKET, OA_R, OA_RW, OP_CONFIG, 0, sizeof (int),
85 0 },
86 { SO_EXCLBIND, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

88 { SO_DOMAIN, SOL_SOCKET, OA_R, OA_R, OP_NP, 0, sizeof (int), 0 },

90 { SO_PROTOTYPE, SOL_SOCKET, OA_R, OA_R, OP_NP, 0, sizeof (int), 0 },

92 { TCP_NODELAY, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
93 },
94 { TCP_MAXSEG, IPPROTO_TCP, OA_R, OA_R, OP_NP, 0, sizeof (uint_t),
95 536 },

97 { TCP_NOTIFY_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
98 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

100 { TCP_ABORT_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
101 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

103 { TCP_CONN_NOTIFY_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
104 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

106 { TCP_CONN_ABORT_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
107 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

109 { TCP_RECVDSTADDR, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
110 0 },

112 { TCP_ANONPRIVBIND, IPPROTO_TCP, OA_R, OA_RW, OP_PRIVPORT, 0,
113 sizeof (int), 0 },

115 { TCP_EXCLBIND, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
116 },

118 { TCP_INIT_CWND, IPPROTO_TCP, OA_RW, OA_RW, OP_CONFIG, 0,
119 sizeof (int), 0 },

121 { TCP_KEEPALIVE_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0,
122 sizeof (int), 0 },

124 { TCP_KEEPIDLE, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

126 { TCP_KEEPCNT, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 3

128 { TCP_KEEPINTVL, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

130 { TCP_KEEPALIVE_ABORT_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0,
131 sizeof (int), 0 },

133 { TCP_CORK, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

135 { TCP_RTO_INITIAL, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (uint32_t), 0 },

137 { TCP_RTO_MIN, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (uint32_t), 0 },

139 { TCP_RTO_MAX, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (uint32_t), 0 },

141 { TCP_LINGER2, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

143 { IP_OPTIONS, IPPROTO_IP, OA_RW, OA_RW, OP_NP,
144 (OP_VARLEN|OP_NODEFAULT),
145 IP_MAX_OPT_LENGTH + IP_ADDR_LEN, -1 /* not initialized */ },
146 { T_IP_OPTIONS, IPPROTO_IP, OA_RW, OA_RW, OP_NP,
147 (OP_VARLEN|OP_NODEFAULT),
148 IP_MAX_OPT_LENGTH + IP_ADDR_LEN, -1 /* not initialized */ },

150 { IP_TOS, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
151 { T_IP_TOS, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
152 { IP_TTL, IPPROTO_IP, OA_RW, OA_RW, OP_NP, OP_DEF_FN,
153 sizeof (int), -1 /* not initialized */ },

155 { IP_SEC_OPT, IPPROTO_IP, OA_RW, OA_RW, OP_NP, OP_NODEFAULT,
156 sizeof (ipsec_req_t), -1 /* not initialized */ },

158 { IP_BOUND_IF, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0,
159 sizeof (int), 0 /* no ifindex */ },

161 { IP_UNSPEC_SRC, IPPROTO_IP, OA_R, OA_RW, OP_RAW, 0,
162 sizeof (int), 0 },

164 { IPV6_UNICAST_HOPS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, OP_DEF_FN,
165 sizeof (int), -1 /* not initialized */ },

167 { IPV6_BOUND_IF, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
168 sizeof (int), 0 /* no ifindex */ },

170 { IP_DONTFRAG, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

172 { IP_NEXTHOP, IPPROTO_IP, OA_R, OA_RW, OP_CONFIG, 0,
173 sizeof (in_addr_t), -1 /* not initialized */ },

175 { IPV6_UNSPEC_SRC, IPPROTO_IPV6, OA_R, OA_RW, OP_RAW, 0,
176 sizeof (int), 0 },

178 { IPV6_PKTINFO, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
179 (OP_NODEFAULT|OP_VARLEN),
180 sizeof (struct in6_pktinfo), -1 /* not initialized */ },
181 { IPV6_NEXTHOP, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
182 OP_NODEFAULT,
183 sizeof (sin6_t), -1 /* not initialized */ },
184 { IPV6_HOPOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
185 (OP_VARLEN|OP_NODEFAULT), 255*8,
186 -1 /* not initialized */ },
187 { IPV6_DSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
188 (OP_VARLEN|OP_NODEFAULT), 255*8,
189 -1 /* not initialized */ },
190 { IPV6_RTHDRDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
191 (OP_VARLEN|OP_NODEFAULT), 255*8,
192 -1 /* not initialized */ },
193 { IPV6_RTHDR, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 4

194 (OP_VARLEN|OP_NODEFAULT), 255*8,
195 -1 /* not initialized */ },
196 { IPV6_TCLASS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
197 OP_NODEFAULT,
198 sizeof (int), -1 /* not initialized */ },
199 { IPV6_PATHMTU, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
200 OP_NODEFAULT,
201 sizeof (struct ip6_mtuinfo), -1 /* not initialized */ },
202 { IPV6_DONTFRAG, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
203 sizeof (int), 0 },
204 { IPV6_USE_MIN_MTU, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
205 sizeof (int), 0 },
206 { IPV6_V6ONLY, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
207 sizeof (int), 0 },

209 /* Enable receipt of ancillary data */
210 { IPV6_RECVPKTINFO, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
211 sizeof (int), 0 },
212 { IPV6_RECVHOPLIMIT, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
213 sizeof (int), 0 },
214 { IPV6_RECVHOPOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
215 sizeof (int), 0 },
216 { _OLD_IPV6_RECVDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
217 sizeof (int), 0 },
218 { IPV6_RECVDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
219 sizeof (int), 0 },
220 { IPV6_RECVRTHDR, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
221 sizeof (int), 0 },
222 { IPV6_RECVRTHDRDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
223 sizeof (int), 0 },
224 { IPV6_RECVTCLASS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
225 sizeof (int), 0 },

227 { IPV6_SEC_OPT, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, OP_NODEFAULT,
228 sizeof (ipsec_req_t), -1 /* not initialized */ },
229 { IPV6_SRC_PREFERENCES, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
230 sizeof (uint32_t), IPV6_PREFER_SRC_DEFAULT },
231 };

233 /*
234 * Table of all supported levels
235 * Note: Some levels (e.g. XTI_GENERIC) may be valid but may not have
236 * any supported options so we need this info separately.
237 *
238 * This is needed only for topmost tpi providers and is used only by
239 * XTI interfaces.
240 */
241 optlevel_t tcp_valid_levels_arr[] = {
242 XTI_GENERIC,
243 SOL_SOCKET,
244 IPPROTO_TCP,
245 IPPROTO_IP,
246 IPPROTO_IPV6
247 };

250 #define TCP_OPT_ARR_CNT A_CNT(tcp_opt_arr)
251 #define TCP_VALID_LEVELS_CNT A_CNT(tcp_valid_levels_arr)

253 uint_t tcp_max_optsize; /* initialized when TCP driver is loaded */

255 /*
256 * Initialize option database object for TCP
257 *
258 * This object represents database of options to search passed to
259 * {sock,tpi}optcom_req() interface routine to take care of option

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 5

260 * management and associated methods.
261 */

263 optdb_obj_t tcp_opt_obj = {
264 tcp_opt_default, /* TCP default value function pointer */
265 tcp_tpi_opt_get, /* TCP get function pointer */
266 tcp_tpi_opt_set, /* TCP set function pointer */
267 TCP_OPT_ARR_CNT, /* TCP option database count of entries */
268 tcp_opt_arr, /* TCP option database */
269 TCP_VALID_LEVELS_CNT, /* TCP valid level count of entries */
270 tcp_valid_levels_arr /* TCP valid level array */
271 };

273 /* Maximum TCP initial cwin (start/restart). */
274 #define TCP_MAX_INIT_CWND 16

276 static int tcp_max_init_cwnd = TCP_MAX_INIT_CWND;

278 /*
279 * Some TCP options can be "set" by requesting them in the option
280 * buffer. This is needed for XTI feature test though we do not
281 * allow it in general. We interpret that this mechanism is more
282 * applicable to OSI protocols and need not be allowed in general.
283 * This routine filters out options for which it is not allowed (most)
284 * and lets through those (few) for which it is. [The XTI interface
285 * test suite specifics will imply that any XTI_GENERIC level XTI_* if
286 * ever implemented will have to be allowed here].
287 */
288 static boolean_t
289 tcp_allow_connopt_set(int level, int name)
290 {

292 switch (level) {
293 case IPPROTO_TCP:
294 switch (name) {
295 case TCP_NODELAY:
296 return (B_TRUE);
297 default:
298 return (B_FALSE);
299 }
300 /*NOTREACHED*/
301 default:
302 return (B_FALSE);
303 }
304 /*NOTREACHED*/
305 }

307 /*
308 * This routine gets default values of certain options whose default
309 * values are maintained by protocol specific code
310 */
311 /* ARGSUSED */
312 int
313 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
314 {
315 int32_t *i1 = (int32_t *)ptr;
316 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps;

318 switch (level) {
319 case IPPROTO_TCP:
320 switch (name) {
321 case TCP_NOTIFY_THRESHOLD:
322 *i1 = tcps->tcps_ip_notify_interval;
323 break;
324 case TCP_ABORT_THRESHOLD:
325 *i1 = tcps->tcps_ip_abort_interval;

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 6

326 break;
327 case TCP_CONN_NOTIFY_THRESHOLD:
328 *i1 = tcps->tcps_ip_notify_cinterval;
329 break;
330 case TCP_CONN_ABORT_THRESHOLD:
331 *i1 = tcps->tcps_ip_abort_cinterval;
332 break;
333 default:
334 return (-1);
335 }
336 break;
337 case IPPROTO_IP:
338 switch (name) {
339 case IP_TTL:
340 *i1 = tcps->tcps_ipv4_ttl;
341 break;
342 default:
343 return (-1);
344 }
345 break;
346 case IPPROTO_IPV6:
347 switch (name) {
348 case IPV6_UNICAST_HOPS:
349 *i1 = tcps->tcps_ipv6_hoplimit;
350 break;
351 default:
352 return (-1);
353 }
354 break;
355 default:
356 return (-1);
357 }
358 return (sizeof (int));
359 }

361 /*
362 * TCP routine to get the values of options.
363 */
364 int
365 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
366 {
367 int *i1 = (int *)ptr;
368 tcp_t *tcp = connp->conn_tcp;
369 conn_opt_arg_t coas;
370 int retval;

372 coas.coa_connp = connp;
373 coas.coa_ixa = connp->conn_ixa;
374 coas.coa_ipp = &connp->conn_xmit_ipp;
375 coas.coa_ancillary = B_FALSE;
376 coas.coa_changed = 0;

378 switch (level) {
379 case SOL_SOCKET:
380 switch (name) {
381 case SO_SND_COPYAVOID:
382 *i1 = tcp->tcp_snd_zcopy_on ?
383 SO_SND_COPYAVOID : 0;
384 return (sizeof (int));
385 case SO_ACCEPTCONN:
386 *i1 = (tcp->tcp_state == TCPS_LISTEN);
387 return (sizeof (int));
388 }
389 break;
390 case IPPROTO_TCP:
391 switch (name) {

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 7

392 case TCP_NODELAY:
393 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
394 return (sizeof (int));
395 case TCP_MAXSEG:
396 *i1 = tcp->tcp_mss;
397 return (sizeof (int));
398 case TCP_NOTIFY_THRESHOLD:
399 *i1 = (int)tcp->tcp_first_timer_threshold;
400 return (sizeof (int));
401 case TCP_ABORT_THRESHOLD:
402 *i1 = tcp->tcp_second_timer_threshold;
403 return (sizeof (int));
404 case TCP_CONN_NOTIFY_THRESHOLD:
405 *i1 = tcp->tcp_first_ctimer_threshold;
406 return (sizeof (int));
407 case TCP_CONN_ABORT_THRESHOLD:
408 *i1 = tcp->tcp_second_ctimer_threshold;
409 return (sizeof (int));
410 case TCP_INIT_CWND:
411 *i1 = tcp->tcp_init_cwnd;
412 return (sizeof (int));
413 case TCP_KEEPALIVE_THRESHOLD:
414 *i1 = tcp->tcp_ka_interval;
415 return (sizeof (int));

417 /*
418 * TCP_KEEPIDLE expects value in seconds, but
419 * tcp_ka_interval is in milliseconds.
420 */
421 case TCP_KEEPIDLE:
422 *i1 = tcp->tcp_ka_interval / 1000;
423 return (sizeof (int));
424 case TCP_KEEPCNT:
425 *i1 = tcp->tcp_ka_cnt;
426 return (sizeof (int));

428 /*
429 * TCP_KEEPINTVL expects value in seconds, but
430 * tcp_ka_rinterval is in milliseconds.
431 */
432 case TCP_KEEPINTVL:
433 *i1 = tcp->tcp_ka_rinterval / 1000;
434 return (sizeof (int));
435 case TCP_KEEPALIVE_ABORT_THRESHOLD:
436 *i1 = tcp->tcp_ka_abort_thres;
437 return (sizeof (int));
438 case TCP_CORK:
439 *i1 = tcp->tcp_cork;
440 return (sizeof (int));
441 case TCP_RTO_INITIAL:
442 *i1 = tcp->tcp_rto_initial;
443 return (sizeof (uint32_t));
444 case TCP_RTO_MIN:
445 *i1 = tcp->tcp_rto_min;
446 return (sizeof (uint32_t));
447 case TCP_RTO_MAX:
448 *i1 = tcp->tcp_rto_max;
449 return (sizeof (uint32_t));
450 case TCP_LINGER2:
451 *i1 = tcp->tcp_fin_wait_2_flush_interval / SECONDS;
452 return (sizeof (int));
453 }
454 break;
455 case IPPROTO_IP:
456 if (connp->conn_family != AF_INET)
457 return (-1);

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 8

458 switch (name) {
459 case IP_OPTIONS:
460 case T_IP_OPTIONS:
461 /* Caller ensures enough space */
462 return (ip_opt_get_user(connp, ptr));
463 default:
464 break;
465 }
466 break;

468 case IPPROTO_IPV6:
469 /*
470 * IPPROTO_IPV6 options are only supported for sockets
471 * that are using IPv6 on the wire.
472 */
473 if (connp->conn_ipversion != IPV6_VERSION) {
474 return (-1);
475 }
476 switch (name) {
477 case IPV6_PATHMTU:
478 if (tcp->tcp_state < TCPS_ESTABLISHED)
479 return (-1);
480 break;
481 }
482 break;
483 }
484 mutex_enter(&connp->conn_lock);
485 retval = conn_opt_get(&coas, level, name, ptr);
486 mutex_exit(&connp->conn_lock);
487 return (retval);
488 }

490 /*
491 * We declare as ’int’ rather than ’void’ to satisfy pfi_t arg requirements.
492 * Parameters are assumed to be verified by the caller.
493 */
494 /* ARGSUSED */
495 int
496 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
497 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
498 void *thisdg_attrs, cred_t *cr)
499 {
500 tcp_t *tcp = connp->conn_tcp;
501 int *i1 = (int *)invalp;
502 boolean_t onoff = (*i1 == 0) ? 0 : 1;
503 boolean_t checkonly;
504 int reterr;
505 tcp_stack_t *tcps = tcp->tcp_tcps;
506 conn_opt_arg_t coas;
507 uint32_t val = *((uint32_t *)invalp);

509 coas.coa_connp = connp;
510 coas.coa_ixa = connp->conn_ixa;
511 coas.coa_ipp = &connp->conn_xmit_ipp;
512 coas.coa_ancillary = B_FALSE;
513 coas.coa_changed = 0;

515 switch (optset_context) {
516 case SETFN_OPTCOM_CHECKONLY:
517 checkonly = B_TRUE;
518 /*
519 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
520 * inlen != 0 implies value supplied and
521 * we have to "pretend" to set it.
522 * inlen == 0 implies that there is no
523 * value part in T_CHECK request and just validation

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 9

524 * done elsewhere should be enough, we just return here.
525 */
526 if (inlen == 0) {
527 *outlenp = 0;
528 return (0);
529 }
530 break;
531 case SETFN_OPTCOM_NEGOTIATE:
532 checkonly = B_FALSE;
533 break;
534 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
535 case SETFN_CONN_NEGOTIATE:
536 checkonly = B_FALSE;
537 /*
538 * Negotiating local and "association-related" options
539 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
540 * primitives is allowed by XTI, but we choose
541 * to not implement this style negotiation for Internet
542 * protocols (We interpret it is a must for OSI world but
543 * optional for Internet protocols) for all options.
544 * [Will do only for the few options that enable test
545 * suites that our XTI implementation of this feature
546 * works for transports that do allow it]
547 */
548 if (!tcp_allow_connopt_set(level, name)) {
549 *outlenp = 0;
550 return (EINVAL);
551 }
552 break;
553 default:
554 /*
555 * We should never get here
556 */
557 *outlenp = 0;
558 return (EINVAL);
559 }

561 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
562 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));

564 /*
565 * For TCP, we should have no ancillary data sent down
566 * (sendmsg isn’t supported for SOCK_STREAM), so thisdg_attrs
567 * has to be zero.
568 */
569 ASSERT(thisdg_attrs == NULL);

571 /*
572 * For fixed length options, no sanity check
573 * of passed in length is done. It is assumed *_optcom_req()
574 * routines do the right thing.
575 */
576 switch (level) {
577 case SOL_SOCKET:
578 switch (name) {
579 case SO_KEEPALIVE:
580 if (checkonly) {
581 /* check only case */
582 break;
583 }

585 if (!onoff) {
586 if (connp->conn_keepalive) {
587 if (tcp->tcp_ka_tid != 0) {
588 (void) TCP_TIMER_CANCEL(tcp,
589 tcp->tcp_ka_tid);

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 10

590 tcp->tcp_ka_tid = 0;
591 }
592 connp->conn_keepalive = 0;
593 }
594 break;
595 }
596 if (!connp->conn_keepalive) {
597 /* Crank up the keepalive timer */
598 tcp->tcp_ka_last_intrvl = 0;
599 tcp->tcp_ka_tid = TCP_TIMER(tcp,
600 tcp_keepalive_timer, tcp->tcp_ka_interval);
601 connp->conn_keepalive = 1;
602 }
603 break;
604 case SO_SNDBUF: {
605 if (*i1 > tcps->tcps_max_buf) {
606 *outlenp = 0;
607 return (ENOBUFS);
608 }
609 if (checkonly)
610 break;

612 connp->conn_sndbuf = *i1;
613 if (tcps->tcps_snd_lowat_fraction != 0) {
614 connp->conn_sndlowat = connp->conn_sndbuf /
615 tcps->tcps_snd_lowat_fraction;
616 }
617 (void) tcp_maxpsz_set(tcp, B_TRUE);
618 /*
619 * If we are flow-controlled, recheck the condition.
620 * There are apps that increase SO_SNDBUF size when
621 * flow-controlled (EWOULDBLOCK), and expect the flow
622 * control condition to be lifted right away.
623 */
624 mutex_enter(&tcp->tcp_non_sq_lock);
625 if (tcp->tcp_flow_stopped &&
626 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) {
627 tcp_clrqfull(tcp);
628 }
629 mutex_exit(&tcp->tcp_non_sq_lock);
630 *outlenp = inlen;
631 return (0);
632 }
633 case SO_RCVBUF:
634 if (*i1 > tcps->tcps_max_buf) {
635 *outlenp = 0;
636 return (ENOBUFS);
637 }
638 /* Silently ignore zero */
639 if (!checkonly && *i1 != 0) {
640 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
641 (void) tcp_rwnd_set(tcp, *i1);
642 }
643 /*
644 * XXX should we return the rwnd here
645 * and tcp_opt_get ?
646 */
647 *outlenp = inlen;
648 return (0);
649 case SO_SND_COPYAVOID:
650 if (!checkonly) {
651 if (tcp->tcp_loopback ||
652 (onoff != 1) || !tcp_zcopy_check(tcp)) {
653 *outlenp = 0;
654 return (EOPNOTSUPP);
655 }

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 11

656 tcp->tcp_snd_zcopy_aware = 1;
657 }
658 *outlenp = inlen;
659 return (0);
660 }
661 break;
662 case IPPROTO_TCP:
663 switch (name) {
664 case TCP_NODELAY:
665 if (!checkonly)
666 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
667 break;
668 case TCP_NOTIFY_THRESHOLD:
669 if (!checkonly)
670 tcp->tcp_first_timer_threshold = *i1;
671 break;
672 case TCP_ABORT_THRESHOLD:
673 if (!checkonly)
674 tcp->tcp_second_timer_threshold = *i1;
675 break;
676 case TCP_CONN_NOTIFY_THRESHOLD:
677 if (!checkonly)
678 tcp->tcp_first_ctimer_threshold = *i1;
679 break;
680 case TCP_CONN_ABORT_THRESHOLD:
681 if (!checkonly)
682 tcp->tcp_second_ctimer_threshold = *i1;
683 break;
684 case TCP_RECVDSTADDR:
685 if (tcp->tcp_state > TCPS_LISTEN) {
686 *outlenp = 0;
687 return (EOPNOTSUPP);
688 }
689 /* Setting done in conn_opt_set */
690 break;
691 case TCP_INIT_CWND:
692 if (checkonly)
693 break;

695 /*
696 * Only allow socket with network configuration
697 * privilege to set the initial cwnd to be larger
698 * than allowed by RFC 3390.
699 */
700 if (val > MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
701 if ((reterr = secpolicy_ip_config(cr, B_TRUE))
702 != 0) {
703 *outlenp = 0;
704 return (reterr);
705 }
706 if (val > tcp_max_init_cwnd) {
707 *outlenp = 0;
708 return (EINVAL);
709 }
710 }

712 tcp->tcp_init_cwnd = val;

714 /*
715 * If the socket is connected, AND no outbound data
716 * has been sent, reset the actual cwnd values.
717 */
718 if (tcp->tcp_state == TCPS_ESTABLISHED &&
719 tcp->tcp_iss == tcp->tcp_snxt - 1) {
720 tcp->tcp_cwnd =
721 MIN(tcp->tcp_rwnd, val * tcp->tcp_mss);

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 12

722 }
723 break;

725 /*
726 * TCP_KEEPIDLE is in seconds but TCP_KEEPALIVE_THRESHOLD
727 * is in milliseconds. TCP_KEEPIDLE is introduced for
728 * compatibility with other Unix flavors.
729 * We can fall through TCP_KEEPALIVE_THRESHOLD logic after
730 * converting the input to milliseconds.
731 */
732 case TCP_KEEPIDLE:
733 *i1 *= 1000;
734 /* FALLTHRU */

736 case TCP_KEEPALIVE_THRESHOLD:
737 if (checkonly)
738 break;

740 if (*i1 < tcps->tcps_keepalive_interval_low ||
741 *i1 > tcps->tcps_keepalive_interval_high) {
742 *outlenp = 0;
743 return (EINVAL);
744 }
745 if (*i1 != tcp->tcp_ka_interval) {
746 tcp->tcp_ka_interval = *i1;
747 /*
748 * Check if we need to restart the
749 * keepalive timer.
750 */
751 if (tcp->tcp_ka_tid != 0) {
752 ASSERT(connp->conn_keepalive);
753 (void) TCP_TIMER_CANCEL(tcp,
754 tcp->tcp_ka_tid);
755 tcp->tcp_ka_last_intrvl = 0;
756 tcp->tcp_ka_tid = TCP_TIMER(tcp,
757 tcp_keepalive_timer,
758 tcp->tcp_ka_interval);
759 }
760 }
761 break;

763 /*
764 * tcp_ka_abort_thres = tcp_ka_rinterval * tcp_ka_cnt.
765 * So setting TCP_KEEPCNT or TCP_KEEPINTVL can affect all the
766 * three members - tcp_ka_abort_thres, tcp_ka_rinterval and
767 * tcp_ka_cnt.
768 */
769 case TCP_KEEPCNT:
770 if (checkonly)
771 break;

773 if (*i1 == 0) {
774 return (EINVAL);
775 } else if (tcp->tcp_ka_rinterval == 0) {
776 if ((tcp->tcp_ka_abort_thres / *i1) <
777 tcp->tcp_rto_min ||
778 (tcp->tcp_ka_abort_thres / *i1) >
779 tcp->tcp_rto_max)
780 return (EINVAL);

782 tcp->tcp_ka_rinterval =
783 tcp->tcp_ka_abort_thres / *i1;
784 } else {
785 if ((*i1 * tcp->tcp_ka_rinterval) <
786 tcps->tcps_keepalive_abort_interval_low ||
787 (*i1 * tcp->tcp_ka_rinterval) >

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 13

788 tcps->tcps_keepalive_abort_interval_high)
789 return (EINVAL);
790 tcp->tcp_ka_abort_thres =
791 (*i1 * tcp->tcp_ka_rinterval);
792 }
793 tcp->tcp_ka_cnt = *i1;
794 break;
795 case TCP_KEEPINTVL:
796 /*
797 * TCP_KEEPINTVL is specified in seconds, but
798 * tcp_ka_rinterval is in milliseconds.
799 */

801 if (checkonly)
802 break;

804 if ((*i1 * 1000) < tcp->tcp_rto_min ||
805 (*i1 * 1000) > tcp->tcp_rto_max)
806 return (EINVAL);

808 if (tcp->tcp_ka_cnt == 0) {
809 tcp->tcp_ka_cnt =
810 tcp->tcp_ka_abort_thres / (*i1 * 1000);
811 } else {
812 if ((*i1 * tcp->tcp_ka_cnt * 1000) <
813 tcps->tcps_keepalive_abort_interval_low ||
814 (*i1 * tcp->tcp_ka_cnt * 1000) >
815 tcps->tcps_keepalive_abort_interval_high)
816 return (EINVAL);
817 tcp->tcp_ka_abort_thres =
818 (*i1 * tcp->tcp_ka_cnt * 1000);
819 }
820 tcp->tcp_ka_rinterval = *i1 * 1000;
821 break;
822 case TCP_KEEPALIVE_ABORT_THRESHOLD:
823 if (!checkonly) {
824 if (*i1 <
825 tcps->tcps_keepalive_abort_interval_low ||
826 *i1 >
827 tcps->tcps_keepalive_abort_interval_high) {
828 *outlenp = 0;
829 return (EINVAL);
830 }
831 tcp->tcp_ka_abort_thres = *i1;
832 tcp->tcp_ka_cnt = 0;
833 tcp->tcp_ka_rinterval = 0;
834 }
835 break;
836 case TCP_CORK:
837 if (!checkonly) {
838 /*
839 * if tcp->tcp_cork was set and is now
840 * being unset, we have to make sure that
841 * the remaining data gets sent out. Also
842 * unset tcp->tcp_cork so that tcp_wput_data()
843 * can send data even if it is less than mss
844 */
845 if (tcp->tcp_cork && onoff == 0 &&
846 tcp->tcp_unsent > 0) {
847 tcp->tcp_cork = B_FALSE;
848 tcp_wput_data(tcp, NULL, B_FALSE);
849 }
850 tcp->tcp_cork = onoff;
851 }
852 break;
853 case TCP_RTO_INITIAL: {

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 14

854 clock_t rto;

856 if (checkonly || val == 0)
857 break;

859 /*
860 * Sanity checks
861 *
862 * The initial RTO should be bounded by the minimum
863 * and maximum RTO. And it should also be smaller
864 * than the connect attempt abort timeout. Otherwise,
865 * the connection won’t be aborted in a period
866 * reasonably close to that timeout.
867 */
868 if (val < tcp->tcp_rto_min || val > tcp->tcp_rto_max ||
869 val > tcp->tcp_second_ctimer_threshold ||
870 val < tcps->tcps_rexmit_interval_initial_low ||
871 val > tcps->tcps_rexmit_interval_initial_high) {
872 *outlenp = 0;
873 return (EINVAL);
874 }
875 tcp->tcp_rto_initial = val;

877 /*
878 * If TCP has not sent anything, need to re-calculate
879 * tcp_rto. Otherwise, this option change does not
880 * really affect anything.
881 */
882 if (tcp->tcp_state >= TCPS_SYN_SENT)
883 break;

885 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
886 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
887 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
888 tcps->tcps_rexmit_interval_extra +
889 (tcp->tcp_rtt_sa >> 5) +
890 tcps->tcps_conn_grace_period;
891 TCP_SET_RTO(tcp, rto);
892 break;
893 }
894 case TCP_RTO_MIN:
895 if (checkonly || val == 0)
896 break;

898 if (val < tcps->tcps_rexmit_interval_min_low ||
899 val > tcps->tcps_rexmit_interval_min_high ||
900 val > tcp->tcp_rto_max) {
901 *outlenp = 0;
902 return (EINVAL);
903 }
904 tcp->tcp_rto_min = val;
905 if (tcp->tcp_rto < val)
906 tcp->tcp_rto = val;
907 break;
908 case TCP_RTO_MAX:
909 if (checkonly || val == 0)
910 break;

912 /*
913 * Sanity checks
914 *
915 * The maximum RTO should not be larger than the
916 * connection abort timeout. Otherwise, the
917 * connection won’t be aborted in a period reasonably
918 * close to that timeout.
919 */

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 15

920 if (val < tcps->tcps_rexmit_interval_max_low ||
921 val > tcps->tcps_rexmit_interval_max_high ||
922 val < tcp->tcp_rto_min ||
923 val > tcp->tcp_second_timer_threshold) {
924 *outlenp = 0;
925 return (EINVAL);
926 }
927 tcp->tcp_rto_max = val;
928 if (tcp->tcp_rto > val)
929 tcp->tcp_rto = val;
930 break;
931 case TCP_LINGER2:
932 if (checkonly || *i1 == 0)
933 break;

935 /*
936 * Note that the option value’s unit is second. And
937 * the value should be bigger than the private
938 * parameter tcp_fin_wait_2_flush_interval’s lower
939 * bound and smaller than the current value of that
940 * parameter. It should be smaller than the current
941 * value to avoid an app setting TCP_LINGER2 to a big
942 * value, causing resource to be held up too long in
943 * FIN-WAIT-2 state.
944 */
945 if (*i1 < 0 ||
946 tcps->tcps_fin_wait_2_flush_interval_low/SECONDS >
947 *i1 ||
948 tcps->tcps_fin_wait_2_flush_interval/SECONDS <
949 *i1) {
950 *outlenp = 0;
951 return (EINVAL);
952 }
953 tcp->tcp_fin_wait_2_flush_interval = *i1 * SECONDS;
954 break;
955 default:
956 break;
957 }
958 break;
959 case IPPROTO_IP:
960 if (connp->conn_family != AF_INET) {
961 *outlenp = 0;
962 return (EINVAL);
963 }
964 switch (name) {
965 case IP_SEC_OPT:
966 /*
967 * We should not allow policy setting after
968 * we start listening for connections.
969 */
970 if (tcp->tcp_state == TCPS_LISTEN) {
971 return (EINVAL);
972 }
973 break;
974 }
975 break;
976 case IPPROTO_IPV6:
977 /*
978 * IPPROTO_IPV6 options are only supported for sockets
979 * that are using IPv6 on the wire.
980 */
981 if (connp->conn_ipversion != IPV6_VERSION) {
982 *outlenp = 0;
983 return (EINVAL);
984 }

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 16

986 switch (name) {
987 case IPV6_RECVPKTINFO:
988 if (!checkonly) {
989 /* Force it to be sent up with the next msg */
990 tcp->tcp_recvifindex = 0;
991 }
992 break;
993 case IPV6_RECVTCLASS:
994 if (!checkonly) {
995 /* Force it to be sent up with the next msg */
996 tcp->tcp_recvtclass = 0xffffffffU;
997 }
998 break;
999 case IPV6_RECVHOPLIMIT:

1000 if (!checkonly) {
1001 /* Force it to be sent up with the next msg */
1002 tcp->tcp_recvhops = 0xffffffffU;
1003 }
1004 break;
1005 case IPV6_PKTINFO:
1006 /* This is an extra check for TCP */
1007 if (inlen == sizeof (struct in6_pktinfo)) {
1008 struct in6_pktinfo *pkti;

1010 pkti = (struct in6_pktinfo *)invalp;
1011 /*
1012 * RFC 3542 states that ipi6_addr must be
1013 * the unspecified address when setting the
1014 * IPV6_PKTINFO sticky socket option on a
1015 * TCP socket.
1016 */
1017 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
1018 return (EINVAL);
1019 }
1020 break;
1021 case IPV6_SEC_OPT:
1022 /*
1023 * We should not allow policy setting after
1024 * we start listening for connections.
1025 */
1026 if (tcp->tcp_state == TCPS_LISTEN) {
1027 return (EINVAL);
1028 }
1029 break;
1030 }
1031 break;
1032 }
1033 reterr = conn_opt_set(&coas, level, name, inlen, invalp,
1034 checkonly, cr);
1035 if (reterr != 0) {
1036 *outlenp = 0;
1037 return (reterr);
1038 }

1040 /*
1041 * Common case of OK return with outval same as inval
1042 */
1043 if (invalp != outvalp) {
1044 /* don’t trust bcopy for identical src/dst */
1045 (void) bcopy(invalp, outvalp, inlen);
1046 }
1047 *outlenp = inlen;

1049 if (coas.coa_changed & COA_HEADER_CHANGED) {
1050 /* If we are connected we rebuilt the headers */
1051 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 17

1052 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
1053 reterr = tcp_build_hdrs(tcp);
1054 if (reterr != 0)
1055 return (reterr);
1056 }
1057 }
1058 if (coas.coa_changed & COA_ROUTE_CHANGED) {
1059 in6_addr_t nexthop;

1061 /*
1062 * If we are connected we re-cache the information.
1063 * We ignore errors to preserve BSD behavior.
1064 * Note that we don’t redo IPsec policy lookup here
1065 * since the final destination (or source) didn’t change.
1066 */
1067 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa,
1068 &connp->conn_faddr_v6, &nexthop);

1070 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
1071 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
1072 (void) ip_attr_connect(connp, connp->conn_ixa,
1073 &connp->conn_laddr_v6, &connp->conn_faddr_v6,
1074 &nexthop, connp->conn_fport, NULL, NULL,
1075 IPDF_VERIFY_DST);
1076 }
1077 }
1078 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) {
1079 connp->conn_wq->q_hiwat = connp->conn_sndbuf;
1080 }
1081 if (coas.coa_changed & COA_WROFF_CHANGED) {
1082 connp->conn_wroff = connp->conn_ht_iphc_allocated +
1083 tcps->tcps_wroff_xtra;
1084 (void) proto_set_tx_wroff(connp->conn_rq, connp,
1085 connp->conn_wroff);
1086 }
1087 if (coas.coa_changed & COA_OOBINLINE_CHANGED) {
1088 if (IPCL_IS_NONSTR(connp))
1089 proto_set_rx_oob_opt(connp, onoff);
1090 }
1091 return (0);
1092 }

new/usr/src/uts/common/inet/tcp/tcp_socket.c 1

**
 31920 Sat Aug 18 10:37:21 2012
new/usr/src/uts/common/inet/tcp/tcp_socket.c
tcp: maybe related to 721fffe3
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 /* This file contains all TCP kernel socket related functions. */

28 #include <sys/types.h>
29 #include <sys/strlog.h>
30 #include <sys/policy.h>
31 #include <sys/sockio.h>
32 #include <sys/strsubr.h>
33 #include <sys/strsun.h>
34 #include <sys/squeue_impl.h>
35 #include <sys/squeue.h>
36 #define _SUN_TPI_VERSION 2
37 #include <sys/tihdr.h>
38 #include <sys/timod.h>
39 #include <sys/tpicommon.h>
40 #include <sys/socketvar.h>

42 #include <inet/common.h>
43 #include <inet/proto_set.h>
44 #include <inet/ip.h>
45 #include <inet/tcp.h>
46 #include <inet/tcp_impl.h>

48 static void tcp_activate(sock_lower_handle_t, sock_upper_handle_t,
49 sock_upcalls_t *, int, cred_t *);
50 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
51 sock_upper_handle_t, cred_t *);
52 static int tcp_bind(sock_lower_handle_t, struct sockaddr *,
53 socklen_t, cred_t *);
54 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
55 static int tcp_connect(sock_lower_handle_t, const struct sockaddr *,
56 socklen_t, sock_connid_t *, cred_t *);
57 static int tcp_getpeername(sock_lower_handle_t, struct sockaddr *,
58 socklen_t *, cred_t *);
59 static int tcp_getsockname(sock_lower_handle_t, struct sockaddr *,
60 socklen_t *, cred_t *);
61 #endif /* ! codereview */

new/usr/src/uts/common/inet/tcp/tcp_socket.c 2

62 static int tcp_getsockopt(sock_lower_handle_t, int, int, void *,
63 socklen_t *, cred_t *);
64 static int tcp_setsockopt(sock_lower_handle_t, int, int, const void *,
65 socklen_t, cred_t *);
66 static int tcp_sendmsg(sock_lower_handle_t, mblk_t *, struct nmsghdr *,
67 cred_t *);
57 cred_t *cr);
68 static int tcp_shutdown(sock_lower_handle_t, int, cred_t *);
69 static void tcp_clr_flowctrl(sock_lower_handle_t);
70 static int tcp_ioctl(sock_lower_handle_t, int, intptr_t, int, int32_t *,
71 cred_t *);
72 static int tcp_close(sock_lower_handle_t, int, cred_t *);

74 sock_downcalls_t sock_tcp_downcalls = {
75 tcp_activate,
76 tcp_accept,
77 tcp_bind,
78 tcp_listen,
79 tcp_connect,
80 tcp_getpeername,
81 tcp_getsockname,
82 tcp_getsockopt,
83 tcp_setsockopt,
84 tcp_sendmsg,
85 NULL,
86 NULL,
87 NULL,
88 tcp_shutdown,
89 tcp_clr_flowctrl,
90 tcp_ioctl,
91 tcp_close,
92 };

______unchanged_portion_omitted_

276 static int
277 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
278 socklen_t len, sock_connid_t *id, cred_t *cr)
279 {
280 conn_t *connp = (conn_t *)proto_handle;
281 int error;

283 ASSERT(connp->conn_upper_handle != NULL);

285 /* All Solaris components should pass a cred for this operation. */
286 ASSERT(cr != NULL);

288 error = proto_verify_ip_addr(connp->conn_family, sa, len);
289 if (error != 0) {
290 return (error);
291 }

293 error = squeue_synch_enter(connp, NULL);
294 if (error != 0) {
295 /* failed to enter */
296 return (ENOSR);
297 }

299 /*
300 * TCP supports quick connect, so no need to do an implicit bind
301 */
302 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
303 if (error == 0) {
304 *id = connp->conn_tcp->tcp_connid;
305 } else if (error < 0) {
306 if (error == -TOUTSTATE) {
307 switch (connp->conn_tcp->tcp_state) {

new/usr/src/uts/common/inet/tcp/tcp_socket.c 3

308 case TCPS_SYN_SENT:
309 error = EALREADY;
310 break;
311 case TCPS_ESTABLISHED:
312 error = EISCONN;
313 break;
314 case TCPS_LISTEN:
315 error = EOPNOTSUPP;
316 break;
317 default:
318 error = EINVAL;
319 break;
320 }
321 } else {
322 error = proto_tlitosyserr(-error);
323 }
324 }

326 if (connp->conn_tcp->tcp_loopback) {
327 struct sock_proto_props sopp;

329 sopp.sopp_flags = SOCKOPT_LOOPBACK;
330 sopp.sopp_loopback = B_TRUE;

332 (*connp->conn_upcalls->su_set_proto_props)(
333 connp->conn_upper_handle, &sopp);
334 }
325 done:
335 squeue_synch_exit(connp);

337 return ((error == 0) ? EINPROGRESS : error);
338 }

______unchanged_portion_omitted_

752 /* ARGSUSED */
753 sock_lower_handle_t
754 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
755 uint_t *smodep, int *errorp, int flags, cred_t *credp)
756 {
757 conn_t *connp;
758 boolean_t isv6 = family == AF_INET6;

760 #endif /* ! codereview */
761 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
762 (proto != 0 && proto != IPPROTO_TCP)) {
763 *errorp = EPROTONOSUPPORT;
764 return (NULL);
765 }

767 connp = tcp_create_common(credp, isv6, B_TRUE, errorp);
768 if (connp == NULL) {
769 return (NULL);
770 }

772 /*
773 * Put the ref for TCP. Ref for IP was already put
774 * by ipcl_conn_create. Also make the conn_t globally
775 * visible to walkers.
750 * by ipcl_conn_create. Also Make the conn_t globally
751 * visible to walkers
776 */
777 mutex_enter(&connp->conn_lock);
778 CONN_INC_REF_LOCKED(connp);
779 ASSERT(connp->conn_ref == 2);
780 connp->conn_state_flags &= ~CONN_INCIPIENT;

new/usr/src/uts/common/inet/tcp/tcp_socket.c 4

782 connp->conn_flags |= IPCL_NONSTR;
783 mutex_exit(&connp->conn_lock);

785 ASSERT(errorp != NULL);
786 *errorp = 0;
787 *sock_downcalls = &sock_tcp_downcalls;
788 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
789 SM_SENDFILESUPP;

791 return ((sock_lower_handle_t)connp);
792 }

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tcp_impl.h 1

**
 28387 Sat Aug 18 10:37:21 2012
new/usr/src/uts/common/inet/tcp_impl.h
tcp: maybe related to 721fffe3
**
______unchanged_portion_omitted_

339 /* Increment and decrement the number of connections in tcp_stack_t. */
340 #define TCPS_CONN_INC(tcps) \
341 atomic_inc_64(\
342 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt)

344 #define TCPS_CONN_DEC(tcps) \
345 atomic_dec_64(\
346 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt)

348 /*
349 * When the system is under memory pressure, stack variable tcps_reclaim is
350 * true, we shorten the connection timeout abort interval to tcp_early_abort
351 * seconds. Defined in tcp.c.
352 */
353 extern uint32_t tcp_early_abort;

355 /*
356 * To reach to an eager in Q0 which can be dropped due to an incoming
357 * new SYN request when Q0 is full, a new doubly linked list is
358 * introduced. This list allows to select an eager from Q0 in O(1) time.
359 * This is needed to avoid spending too much time walking through the
360 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
361 * this new list has to be a member of Q0.
362 * This list is headed by listener’s tcp_t. When the list is empty,
363 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
364 * of listener’s tcp_t point to listener’s tcp_t itself.
365 *
366 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
367 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
368 * These macros do not affect the eager’s membership to Q0.
369 */
370 #define MAKE_DROPPABLE(listener, eager) \
371 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \
372 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
373 = (eager); \
374 (eager)->tcp_eager_prev_drop_q0 = (listener); \
375 (eager)->tcp_eager_next_drop_q0 = \
376 (listener)->tcp_eager_next_drop_q0; \
377 (listener)->tcp_eager_next_drop_q0 = (eager); \
378 }

380 #define MAKE_UNDROPPABLE(eager) \
381 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \
382 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \
383 = (eager)->tcp_eager_prev_drop_q0; \
384 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \
385 = (eager)->tcp_eager_next_drop_q0; \
386 (eager)->tcp_eager_prev_drop_q0 = NULL; \
387 (eager)->tcp_eager_next_drop_q0 = NULL; \
388 }

390 /*
391 * The format argument to pass to tcp_display().
392 * DISP_PORT_ONLY means that the returned string has only port info.
393 * DISP_ADDR_AND_PORT means that the returned string also contains the
394 * remote and local IP address.
395 */
396 #define DISP_PORT_ONLY 1
397 #define DISP_ADDR_AND_PORT 2

new/usr/src/uts/common/inet/tcp_impl.h 2

399 #define IP_ADDR_CACHE_SIZE 2048
400 #define IP_ADDR_CACHE_HASH(faddr) \
401 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))

403 /* TCP cwnd burst factor. */
404 #define TCP_CWND_INFINITE 65535
405 #define TCP_CWND_SS 3
406 #define TCP_CWND_NORMAL 5

408 /*
409 * TCP reassembly macros. We hide starting and ending sequence numbers in
410 * b_next and b_prev of messages on the reassembly queue. The messages are
411 * chained using b_cont. These macros are used in tcp_reass() so we don’t
412 * have to see the ugly casts and assignments.
413 */
414 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next))
415 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \
416 (mblk_t *)(uintptr_t)(u))
417 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev))
418 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \
419 (mblk_t *)(uintptr_t)(u))

421 #define tcps_time_wait_interval tcps_propinfo_tbl[0].prop_cur_uval
422 #define tcps_conn_req_max_q tcps_propinfo_tbl[1].prop_cur_uval
423 #define tcps_conn_req_max_q0 tcps_propinfo_tbl[2].prop_cur_uval
424 #define tcps_conn_req_min tcps_propinfo_tbl[3].prop_cur_uval
425 #define tcps_conn_grace_period tcps_propinfo_tbl[4].prop_cur_uval
426 #define tcps_cwnd_max_ tcps_propinfo_tbl[5].prop_cur_uval
427 #define tcps_dbg tcps_propinfo_tbl[6].prop_cur_uval
428 #define tcps_smallest_nonpriv_port tcps_propinfo_tbl[7].prop_cur_uval
429 #define tcps_ip_abort_cinterval tcps_propinfo_tbl[8].prop_cur_uval
430 #define tcps_ip_abort_linterval tcps_propinfo_tbl[9].prop_cur_uval
431 #define tcps_ip_abort_interval tcps_propinfo_tbl[10].prop_cur_uval
432 #define tcps_ip_notify_cinterval tcps_propinfo_tbl[11].prop_cur_uval
433 #define tcps_ip_notify_interval tcps_propinfo_tbl[12].prop_cur_uval
434 #define tcps_ipv4_ttl tcps_propinfo_tbl[13].prop_cur_uval
435 #define tcps_keepalive_interval_high tcps_propinfo_tbl[14].prop_max_uval
436 #define tcps_keepalive_interval tcps_propinfo_tbl[14].prop_cur_uval
437 #define tcps_keepalive_interval_low tcps_propinfo_tbl[14].prop_min_uval
438 #define tcps_maxpsz_multiplier tcps_propinfo_tbl[15].prop_cur_uval
439 #define tcps_mss_def_ipv4 tcps_propinfo_tbl[16].prop_cur_uval
440 #define tcps_mss_max_ipv4 tcps_propinfo_tbl[17].prop_cur_uval
441 #define tcps_mss_min tcps_propinfo_tbl[18].prop_cur_uval
442 #define tcps_naglim_def tcps_propinfo_tbl[19].prop_cur_uval
443 #define tcps_rexmit_interval_initial_high \
444 tcps_propinfo_tbl[20].prop_max_uval
445 #define tcps_rexmit_interval_initial tcps_propinfo_tbl[20].prop_cur_uval
446 #define tcps_rexmit_interval_initial_low \
447 tcps_propinfo_tbl[20].prop_min_uval
448 #define tcps_rexmit_interval_max_high tcps_propinfo_tbl[21].prop_max_uval
449 #define tcps_rexmit_interval_max tcps_propinfo_tbl[21].prop_cur_uval
450 #define tcps_rexmit_interval_max_low tcps_propinfo_tbl[21].prop_min_uval
451 #define tcps_rexmit_interval_min_high tcps_propinfo_tbl[22].prop_max_uval
452 #define tcps_rexmit_interval_min tcps_propinfo_tbl[22].prop_cur_uval
453 #define tcps_rexmit_interval_min_low tcps_propinfo_tbl[22].prop_min_uval
454 #define tcps_deferred_ack_interval tcps_propinfo_tbl[23].prop_cur_uval
455 #define tcps_snd_lowat_fraction tcps_propinfo_tbl[24].prop_cur_uval
456 #define tcps_dupack_fast_retransmit tcps_propinfo_tbl[25].prop_cur_uval
457 #define tcps_ignore_path_mtu tcps_propinfo_tbl[26].prop_cur_bval
458 #define tcps_smallest_anon_port tcps_propinfo_tbl[27].prop_cur_uval
459 #define tcps_largest_anon_port tcps_propinfo_tbl[28].prop_cur_uval
460 #define tcps_xmit_hiwat tcps_propinfo_tbl[29].prop_cur_uval
461 #define tcps_xmit_lowat tcps_propinfo_tbl[30].prop_cur_uval
462 #define tcps_recv_hiwat tcps_propinfo_tbl[31].prop_cur_uval
463 #define tcps_recv_hiwat_minmss tcps_propinfo_tbl[32].prop_cur_uval

new/usr/src/uts/common/inet/tcp_impl.h 3

464 #define tcps_fin_wait_2_flush_interval_high \
465 tcps_propinfo_tbl[33].prop_max_uval
466 #define tcps_fin_wait_2_flush_interval tcps_propinfo_tbl[33].prop_cur_uval
467 #define tcps_fin_wait_2_flush_interval_low \
468 tcps_propinfo_tbl[33].prop_min_uval
469 #define tcps_max_buf tcps_propinfo_tbl[34].prop_cur_uval
470 #define tcps_strong_iss tcps_propinfo_tbl[35].prop_cur_uval
471 #define tcps_rtt_updates tcps_propinfo_tbl[36].prop_cur_uval
472 #define tcps_wscale_always tcps_propinfo_tbl[37].prop_cur_bval
473 #define tcps_tstamp_always tcps_propinfo_tbl[38].prop_cur_bval
474 #define tcps_tstamp_if_wscale tcps_propinfo_tbl[39].prop_cur_bval
475 #define tcps_rexmit_interval_extra tcps_propinfo_tbl[40].prop_cur_uval
476 #define tcps_deferred_acks_max tcps_propinfo_tbl[41].prop_cur_uval
477 #define tcps_slow_start_after_idle tcps_propinfo_tbl[42].prop_cur_uval
478 #define tcps_slow_start_initial tcps_propinfo_tbl[43].prop_cur_uval
479 #define tcps_sack_permitted tcps_propinfo_tbl[44].prop_cur_uval
480 #define tcps_ipv6_hoplimit tcps_propinfo_tbl[45].prop_cur_uval
481 #define tcps_mss_def_ipv6 tcps_propinfo_tbl[46].prop_cur_uval
482 #define tcps_mss_max_ipv6 tcps_propinfo_tbl[47].prop_cur_uval
483 #define tcps_rev_src_routes tcps_propinfo_tbl[48].prop_cur_bval
484 #define tcps_local_dack_interval tcps_propinfo_tbl[49].prop_cur_uval
485 #define tcps_local_dacks_max tcps_propinfo_tbl[50].prop_cur_uval
486 #define tcps_ecn_permitted tcps_propinfo_tbl[51].prop_cur_uval
487 #define tcps_rst_sent_rate_enabled tcps_propinfo_tbl[52].prop_cur_bval
488 #define tcps_rst_sent_rate tcps_propinfo_tbl[53].prop_cur_uval
489 #define tcps_push_timer_interval tcps_propinfo_tbl[54].prop_cur_uval
490 #define tcps_use_smss_as_mss_opt tcps_propinfo_tbl[55].prop_cur_bval
491 #define tcps_keepalive_abort_interval_high \
492 tcps_propinfo_tbl[56].prop_max_uval
493 #define tcps_keepalive_abort_interval \
494 tcps_propinfo_tbl[56].prop_cur_uval
495 #define tcps_keepalive_abort_interval_low \
496 tcps_propinfo_tbl[56].prop_min_uval
497 #define tcps_wroff_xtra tcps_propinfo_tbl[57].prop_cur_uval
498 #define tcps_dev_flow_ctl tcps_propinfo_tbl[58].prop_cur_bval
499 #define tcps_reass_timeout tcps_propinfo_tbl[59].prop_cur_uval
500 #define tcps_iss_incr tcps_propinfo_tbl[65].prop_cur_uval

502 extern struct qinit tcp_rinitv4, tcp_rinitv6;
503 extern boolean_t do_tcp_fusion;

505 /*
506 * Object to represent database of options to search passed to
507 * {sock,tpi}optcom_req() interface routine to take care of option
508 * management and associated methods.
509 */
510 extern optdb_obj_t tcp_opt_obj;
511 extern uint_t tcp_max_optsize;

513 extern int tcp_squeue_flag;

515 extern uint_t tcp_free_list_max_cnt;

517 /*
518 * Functions in tcp.c.
519 */
520 extern void tcp_acceptor_hash_insert(t_uscalar_t, tcp_t *);
521 extern tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t, tcp_stack_t *);
522 extern void tcp_acceptor_hash_remove(tcp_t *);
523 extern mblk_t *tcp_ack_mp(tcp_t *);
524 extern int tcp_build_hdrs(tcp_t *);
525 extern void tcp_cleanup(tcp_t *);
526 extern int tcp_clean_death(tcp_t *, int);
527 extern void tcp_clean_death_wrapper(void *, mblk_t *, void *,
528 ip_recv_attr_t *);
529 extern void tcp_close_common(conn_t *, int);

new/usr/src/uts/common/inet/tcp_impl.h 4

530 extern void tcp_close_detached(tcp_t *);
531 extern void tcp_close_mpp(mblk_t **);
532 extern void tcp_closei_local(tcp_t *);
533 extern sock_lower_handle_t tcp_create(int, int, int, sock_downcalls_t **,
534 uint_t *, int *, int, cred_t *);
535 extern conn_t *tcp_create_common(cred_t *, boolean_t, boolean_t, int *);
536 extern void tcp_disconnect(tcp_t *, mblk_t *);
537 extern char *tcp_display(tcp_t *, char *, char);
538 extern int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
539 boolean_t);
540 extern int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
541 cred_t *, pid_t);
542 extern int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int,
543 cred_t *, boolean_t);
544 extern int tcp_do_unbind(conn_t *);
545 extern boolean_t tcp_eager_blowoff(tcp_t *, t_scalar_t);
546 extern void tcp_eager_cleanup(tcp_t *, boolean_t);
547 extern void tcp_eager_kill(void *, mblk_t *, void *, ip_recv_attr_t *);
548 extern void tcp_eager_unlink(tcp_t *);
549 extern int tcp_getpeername(sock_lower_handle_t, struct sockaddr *,
550 socklen_t *, cred_t *);
551 extern int tcp_getsockname(sock_lower_handle_t, struct sockaddr *,
552 socklen_t *, cred_t *);
549 extern void tcp_init_values(tcp_t *, tcp_t *);
550 extern void tcp_ipsec_cleanup(tcp_t *);
551 extern int tcp_maxpsz_set(tcp_t *, boolean_t);
552 extern void tcp_mss_set(tcp_t *, uint32_t);
553 extern void tcp_reinput(conn_t *, mblk_t *, ip_recv_attr_t *, ip_stack_t *);
554 extern void tcp_rsrv(queue_t *);
555 extern uint_t tcp_rwnd_reopen(tcp_t *);
556 extern int tcp_rwnd_set(tcp_t *, uint32_t);
557 extern int tcp_set_destination(tcp_t *);
558 extern void tcp_set_ws_value(tcp_t *);
559 extern void tcp_stop_lingering(tcp_t *);
560 extern void tcp_update_pmtu(tcp_t *, boolean_t);
561 extern mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t);
562 extern boolean_t tcp_zcopy_check(tcp_t *);
563 extern void tcp_zcopy_notify(tcp_t *);
564 extern void tcp_get_proto_props(tcp_t *, struct sock_proto_props *);

566 /*
567 * Bind related functions in tcp_bind.c
568 */
569 extern int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t,
570 cred_t *, boolean_t);
571 extern void tcp_bind_hash_insert(tf_t *, tcp_t *, int);
572 extern void tcp_bind_hash_remove(tcp_t *);
573 extern in_port_t tcp_bindi(tcp_t *, in_port_t, const in6_addr_t *,
574 int, boolean_t, boolean_t, boolean_t);
575 extern in_port_t tcp_update_next_port(in_port_t, const tcp_t *,
576 boolean_t);

578 /*
579 * Fusion related functions in tcp_fusion.c.
580 */
581 extern void tcp_fuse(tcp_t *, uchar_t *, tcpha_t *);
582 extern void tcp_unfuse(tcp_t *);
583 extern boolean_t tcp_fuse_output(tcp_t *, mblk_t *, uint32_t);
584 extern void tcp_fuse_output_urg(tcp_t *, mblk_t *);
585 extern boolean_t tcp_fuse_rcv_drain(queue_t *, tcp_t *, mblk_t **);
586 extern size_t tcp_fuse_set_rcv_hiwat(tcp_t *, size_t);
587 extern int tcp_fuse_maxpsz(tcp_t *);
588 extern void tcp_fuse_backenable(tcp_t *);
589 extern void tcp_iss_key_init(uint8_t *, int, tcp_stack_t *);

591 /*

new/usr/src/uts/common/inet/tcp_impl.h 5

592 * Output related functions in tcp_output.c.
593 */
594 extern void tcp_close_output(void *, mblk_t *, void *, ip_recv_attr_t *);
595 extern void tcp_output(void *, mblk_t *, void *, ip_recv_attr_t *);
596 extern void tcp_output_urgent(void *, mblk_t *, void *, ip_recv_attr_t *);
597 extern void tcp_rexmit_after_error(tcp_t *);
598 extern void tcp_sack_rexmit(tcp_t *, uint_t *);
599 extern void tcp_send_data(tcp_t *, mblk_t *);
600 extern void tcp_send_synack(void *, mblk_t *, void *, ip_recv_attr_t *);
601 extern void tcp_shutdown_output(void *, mblk_t *, void *, ip_recv_attr_t *);
602 extern void tcp_ss_rexmit(tcp_t *);
603 extern void tcp_update_xmit_tail(tcp_t *, uint32_t);
604 extern void tcp_wput(queue_t *, mblk_t *);
605 extern void tcp_wput_data(tcp_t *, mblk_t *, boolean_t);
606 extern void tcp_wput_sock(queue_t *, mblk_t *);
607 extern void tcp_wput_fallback(queue_t *, mblk_t *);
608 extern void tcp_xmit_ctl(char *, tcp_t *, uint32_t, uint32_t, int);
609 extern void tcp_xmit_listeners_reset(mblk_t *, ip_recv_attr_t *,
610 ip_stack_t *i, conn_t *);
611 extern mblk_t *tcp_xmit_mp(tcp_t *, mblk_t *, int32_t, int32_t *,
612 mblk_t **, uint32_t, boolean_t, uint32_t *, boolean_t);

614 /*
615 * Input related functions in tcp_input.c.
616 */
617 extern void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
618 extern void tcp_input_data(void *, mblk_t *, void *, ip_recv_attr_t *);
619 extern void tcp_input_listener_unbound(void *, mblk_t *, void *,
620 ip_recv_attr_t *);
621 extern boolean_t tcp_paws_check(tcp_t *, tcpha_t *, tcp_opt_t *);
622 extern uint_t tcp_rcv_drain(tcp_t *);
623 extern void tcp_rcv_enqueue(tcp_t *, mblk_t *, uint_t, cred_t *);
624 extern boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *,
625 ip_recv_attr_t *);

627 /*
628 * Kernel socket related functions in tcp_socket.c.
629 */
630 extern int tcp_fallback(sock_lower_handle_t, queue_t *, boolean_t,
631 so_proto_quiesced_cb_t, sock_quiesce_arg_t *);
632 extern boolean_t tcp_newconn_notify(tcp_t *, ip_recv_attr_t *);

634 /*
635 * Timer related functions in tcp_timers.c.
636 */
637 extern void tcp_ack_timer(void *);
638 extern void tcp_close_linger_timeout(void *);
639 extern void tcp_keepalive_timer(void *);
640 extern void tcp_push_timer(void *);
641 extern void tcp_reass_timer(void *);
642 extern mblk_t *tcp_timermp_alloc(int);
643 extern void tcp_timermp_free(tcp_t *);
644 extern timeout_id_t tcp_timeout(conn_t *, void (*)(void *), hrtime_t);
645 extern clock_t tcp_timeout_cancel(conn_t *, timeout_id_t);
646 extern void tcp_timer(void *arg);
647 extern void tcp_timers_stop(tcp_t *);

649 /*
650 * TCP TPI related functions in tcp_tpi.c.
651 */
652 extern void tcp_addr_req(tcp_t *, mblk_t *);
653 extern void tcp_capability_req(tcp_t *, mblk_t *);
654 extern boolean_t tcp_conn_con(tcp_t *, uchar_t *, mblk_t *,
655 mblk_t **, ip_recv_attr_t *);
656 extern void tcp_err_ack(tcp_t *, mblk_t *, int, int);
657 extern void tcp_err_ack_prim(tcp_t *, mblk_t *, int, int, int);

new/usr/src/uts/common/inet/tcp_impl.h 6

658 extern void tcp_info_req(tcp_t *, mblk_t *);
659 extern void tcp_send_conn_ind(void *, mblk_t *, void *);
660 extern void tcp_send_pending(void *, mblk_t *, void *, ip_recv_attr_t *);
661 extern void tcp_tpi_accept(queue_t *, mblk_t *);
662 extern void tcp_tpi_bind(tcp_t *, mblk_t *);
663 extern int tcp_tpi_close(queue_t *, int);
664 extern int tcp_tpi_close_accept(queue_t *);
665 extern void tcp_tpi_connect(tcp_t *, mblk_t *);
666 extern int tcp_tpi_opt_get(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);
667 extern int tcp_tpi_opt_set(queue_t *, uint_t, int, int, uint_t, uchar_t *,
668 uint_t *, uchar_t *, void *, cred_t *);
669 extern void tcp_tpi_unbind(tcp_t *, mblk_t *);
670 extern void tcp_tli_accept(tcp_t *, mblk_t *);
671 extern void tcp_use_pure_tpi(tcp_t *);
672 extern void tcp_do_capability_ack(tcp_t *, struct T_capability_ack *,
673 t_uscalar_t);

675 /*
676 * TCP option processing related functions in tcp_opt_data.c
677 */
682 extern int tcp_opt_default(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);
678 extern int tcp_opt_get(conn_t *, int, int, uchar_t *);
679 extern int tcp_opt_set(conn_t *, uint_t, int, int, uint_t, uchar_t *,
680 uint_t *, uchar_t *, void *, cred_t *);

682 /*
683 * TCP time wait processing related functions in tcp_time_wait.c.
684 */
685 extern void tcp_time_wait_append(tcp_t *);
686 extern void tcp_time_wait_collector(void *);
687 extern boolean_t tcp_time_wait_remove(tcp_t *, tcp_squeue_priv_t *);
688 extern void tcp_time_wait_processing(tcp_t *, mblk_t *, uint32_t,
689 uint32_t, int, tcpha_t *, ip_recv_attr_t *);

691 /*
692 * Misc functions in tcp_misc.c.
693 */
694 extern uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t);
695 extern void tcp_ioctl_abort_conn(queue_t *, mblk_t *);
696 extern void tcp_listener_conf_cleanup(tcp_stack_t *);
697 extern void tcp_stack_cpu_add(tcp_stack_t *, processorid_t);

699 #endif /* _KERNEL */

701 #ifdef __cplusplus
702 }

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tcp_stats.h 1

**
 7689 Sat Aug 18 10:37:21 2012
new/usr/src/uts/common/inet/tcp_stats.h
tcp: spelling
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 #ifndef _INET_TCP_STATS_H
27 #define _INET_TCP_STATS_H

29 /*
30 * TCP private kernel statistics declarations.
31 */

33 #ifdef __cplusplus
34 extern "C" {
35 #endif

37 #ifdef _KERNEL

39 /*
40 * TCP Statistics.
41 *
42 * How TCP statistics work.
43 *
44 * There are two types of statistics invoked by two macros.
45 *
46 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
47 * supposed to be used in non MT-hot paths of the code.
48 *
49 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
50 * supposed to be used for DEBUG purposes and may be used on a hot path.
51 * These counters are only available in a debugged kernel. They are grouped
51 * These counters are only available in a debugged kerel. They are grouped
52 * under the TCP_DEBUG_COUNTER C pre-processor condition.
53 *
54 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
55 * (use "kstat tcp" to get them).
56 *
57 * How to add new counters.
58 *
59 * 1) Add a field in the tcp_stat structure describing your counter.
60 * 2) Add a line in the template in tcp_kstat2_init() with the name

new/usr/src/uts/common/inet/tcp_stats.h 2

61 * of the counter.
62 * 3) Update tcp_clr_stats() and tcp_cp_stats() with the new counters.
63 * IMPORTANT!! - make sure that all the above functions are in sync !!
64 * 4) Use either TCP_STAT or TCP_DBGSTAT with the name.
65 *
66 * Please avoid using private counters which are not kstat-exported.
67 *
68 * Implementation note.
69 *
70 * Both the MIB2 and tcp_stat_t counters are kept per CPU in the array
71 * tcps_sc in tcp_stack_t. Each array element is a pointer to a
72 * tcp_stats_cpu_t struct. Once allocated, the tcp_stats_cpu_t struct is
73 * not freed until the tcp_stack_t is going away. So there is no need to
74 * acquire a lock before accessing the stats counters.
75 */

77 #ifndef TCP_DEBUG_COUNTER
78 #ifdef DEBUG
79 #define TCP_DEBUG_COUNTER 1
80 #else
81 #define TCP_DEBUG_COUNTER 0
82 #endif
83 #endif

85 /* Kstats */
86 typedef struct tcp_stat {
87 kstat_named_t tcp_time_wait_syn_success;
88 kstat_named_t tcp_clean_death_nondetached;
89 kstat_named_t tcp_eager_blowoff_q;
90 kstat_named_t tcp_eager_blowoff_q0;
91 kstat_named_t tcp_no_listener;
92 kstat_named_t tcp_listendrop;
93 kstat_named_t tcp_listendropq0;
94 kstat_named_t tcp_wsrv_called;
95 kstat_named_t tcp_flwctl_on;
96 kstat_named_t tcp_timer_fire_early;
97 kstat_named_t tcp_timer_fire_miss;
98 kstat_named_t tcp_zcopy_on;
99 kstat_named_t tcp_zcopy_off;
100 kstat_named_t tcp_zcopy_backoff;
101 kstat_named_t tcp_fusion_flowctl;
102 kstat_named_t tcp_fusion_backenabled;
103 kstat_named_t tcp_fusion_urg;
104 kstat_named_t tcp_fusion_putnext;
105 kstat_named_t tcp_fusion_unfusable;
106 kstat_named_t tcp_fusion_aborted;
107 kstat_named_t tcp_fusion_unqualified;
108 kstat_named_t tcp_fusion_rrw_busy;
109 kstat_named_t tcp_fusion_rrw_msgcnt;
110 kstat_named_t tcp_fusion_rrw_plugged;
111 kstat_named_t tcp_in_ack_unsent_drop;
112 kstat_named_t tcp_sock_fallback;
113 kstat_named_t tcp_lso_enabled;
114 kstat_named_t tcp_lso_disabled;
115 kstat_named_t tcp_lso_times;
116 kstat_named_t tcp_lso_pkt_out;
117 kstat_named_t tcp_listen_cnt_drop;
118 kstat_named_t tcp_listen_mem_drop;
119 kstat_named_t tcp_zwin_mem_drop;
120 kstat_named_t tcp_zwin_ack_syn;
121 kstat_named_t tcp_rst_unsent;
122 kstat_named_t tcp_reclaim_cnt;
123 kstat_named_t tcp_reass_timeout;
124 #ifdef TCP_DEBUG_COUNTER
125 kstat_named_t tcp_time_wait;
126 kstat_named_t tcp_rput_time_wait;

new/usr/src/uts/common/inet/tcp_stats.h 3

127 kstat_named_t tcp_detach_time_wait;
128 kstat_named_t tcp_timeout_calls;
129 kstat_named_t tcp_timeout_cached_alloc;
130 kstat_named_t tcp_timeout_cancel_reqs;
131 kstat_named_t tcp_timeout_canceled;
132 kstat_named_t tcp_timermp_freed;
133 kstat_named_t tcp_push_timer_cnt;
134 kstat_named_t tcp_ack_timer_cnt;
135 #endif
136 } tcp_stat_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tunables.c 1

**
 11287 Sat Aug 18 10:37:21 2012
new/usr/src/uts/common/inet/tunables.c
dccp: starting module template
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
24 */

26 #include <inet/tunables.h>
27 #include <sys/md5.h>
28 #include <inet/common.h>
29 #include <inet/ip.h>
30 #include <inet/ip6.h>
31 #include <netinet/icmp6.h>
32 #include <inet/ip_stack.h>
33 #include <inet/rawip_impl.h>
34 #include <inet/tcp_stack.h>
35 #include <inet/tcp_impl.h>
36 #include <inet/udp_impl.h>
37 #include <inet/dccp_stack.h>
38 #include <inet/dccp_impl.h>
39 #endif /* ! codereview */
40 #include <inet/sctp/sctp_stack.h>
41 #include <inet/sctp/sctp_impl.h>
42 #include <inet/tunables.h>

44 static int
45 prop_perm2const(mod_prop_info_t *pinfo)
46 {
47 if (pinfo->mpi_setf == NULL)
48 return (MOD_PROP_PERM_READ);
49 if (pinfo->mpi_getf == NULL)
50 return (MOD_PROP_PERM_WRITE);
51 return (MOD_PROP_PERM_RW);
52 }

54 /*
55 * Modifies the value of the property to default value or to the ‘pval’
56 * specified by the user.
57 */
58 /* ARGSUSED */
59 int
60 mod_set_boolean(void *cbarg, cred_t *cr, mod_prop_info_t *pinfo,
61 const char *ifname, const void* pval, uint_t flags)

new/usr/src/uts/common/inet/tunables.c 2

62 {
63 char *end;
64 unsigned long new_value;

66 if (flags & MOD_PROP_DEFAULT) {
67 pinfo->prop_cur_bval = pinfo->prop_def_bval;
68 return (0);
69 }

71 if (ddi_strtoul(pval, &end, 10, &new_value) != 0 || *end != ’\0’)
72 return (EINVAL);
73 if (new_value != B_TRUE && new_value != B_FALSE)
74 return (EINVAL);
75 pinfo->prop_cur_bval = new_value;
76 return (0);
77 }

79 /*
80 * Retrieves property permission, default value, current value or possible
81 * values for those properties whose value type is boolean_t.
82 */
83 /* ARGSUSED */
84 int
85 mod_get_boolean(void *cbarg, mod_prop_info_t *pinfo, const char *ifname,
86 void *pval, uint_t psize, uint_t flags)
87 {
88 boolean_t get_def = (flags & MOD_PROP_DEFAULT);
89 boolean_t get_perm = (flags & MOD_PROP_PERM);
90 boolean_t get_range = (flags & MOD_PROP_POSSIBLE);
91 size_t nbytes;

93 bzero(pval, psize);
94 if (get_perm)
95 nbytes = snprintf(pval, psize, "%u", prop_perm2const(pinfo));
96 else if (get_range)
97 nbytes = snprintf(pval, psize, "%u,%u", B_FALSE, B_TRUE);
98 else if (get_def)
99 nbytes = snprintf(pval, psize, "%u", pinfo->prop_def_bval);
100 else
101 nbytes = snprintf(pval, psize, "%u", pinfo->prop_cur_bval);
102 if (nbytes >= psize)
103 return (ENOBUFS);
104 return (0);
105 }

107 int
108 mod_uint32_value(const void *pval, mod_prop_info_t *pinfo, uint_t flags,
109 ulong_t *new_value)
110 {
111 char *end;

113 if (flags & MOD_PROP_DEFAULT) {
114 *new_value = pinfo->prop_def_uval;
115 return (0);
116 }

118 if (ddi_strtoul(pval, &end, 10, (ulong_t *)new_value) != 0 ||
119 *end != ’\0’)
120 return (EINVAL);
121 if (*new_value < pinfo->prop_min_uval ||
122 *new_value > pinfo->prop_max_uval) {
123 return (ERANGE);
124 }
125 return (0);
126 }

new/usr/src/uts/common/inet/tunables.c 3

128 /*
129 * Modifies the value of the property to default value or to the ‘pval’
130 * specified by the user.
131 */
132 /* ARGSUSED */
133 int
134 mod_set_uint32(void *cbarg, cred_t *cr, mod_prop_info_t *pinfo,
135 const char *ifname, const void *pval, uint_t flags)
136 {
137 unsigned long new_value;
138 int err;

140 if ((err = mod_uint32_value(pval, pinfo, flags, &new_value)) != 0)
141 return (err);
142 pinfo->prop_cur_uval = (uint32_t)new_value;
143 return (0);
144 }

146 /*
147 * Rounds up the value to make it multiple of 8.
148 */
149 /* ARGSUSED */
150 int
151 mod_set_aligned(void *cbarg, cred_t *cr, mod_prop_info_t *pinfo,
152 const char *ifname, const void* pval, uint_t flags)
153 {
154 int err;

156 if ((err = mod_set_uint32(cbarg, cr, pinfo, ifname, pval, flags)) != 0)
157 return (err);

159 /* if required, align the value to multiple of 8 */
160 if (pinfo->prop_cur_uval & 0x7) {
161 pinfo->prop_cur_uval &= ~0x7;
162 pinfo->prop_cur_uval += 0x8;
163 }

165 return (0);
166 }

168 /*
169 * Retrieves property permission, default value, current value or possible
170 * values for those properties whose value type is uint32_t.
171 */
172 /* ARGSUSED */
173 int
174 mod_get_uint32(void *cbarg, mod_prop_info_t *pinfo, const char *ifname,
175 void *pval, uint_t psize, uint_t flags)
176 {
177 boolean_t get_def = (flags & MOD_PROP_DEFAULT);
178 boolean_t get_perm = (flags & MOD_PROP_PERM);
179 boolean_t get_range = (flags & MOD_PROP_POSSIBLE);
180 size_t nbytes;

182 bzero(pval, psize);
183 if (get_perm)
184 nbytes = snprintf(pval, psize, "%u", prop_perm2const(pinfo));
185 else if (get_range)
186 nbytes = snprintf(pval, psize, "%u-%u",
187 pinfo->prop_min_uval, pinfo->prop_max_uval);
188 else if (get_def)
189 nbytes = snprintf(pval, psize, "%u", pinfo->prop_def_uval);
190 else
191 nbytes = snprintf(pval, psize, "%u", pinfo->prop_cur_uval);
192 if (nbytes >= psize)
193 return (ENOBUFS);

new/usr/src/uts/common/inet/tunables.c 4

194 return (0);
195 }

197 /*
198 * Implements /sbin/ndd -get /dev/ip ?, for all the modules. Needed for
199 * backward compatibility with /sbin/ndd.
200 */
201 /* ARGSUSED */
202 int
203 mod_get_allprop(void *cbarg, mod_prop_info_t *pinfo, const char *ifname,
204 void *val, uint_t psize, uint_t flags)
205 {
206 char *pval = val;
207 mod_prop_info_t *ptbl, *prop;
208 ip_stack_t *ipst;
209 tcp_stack_t *tcps;
210 sctp_stack_t *sctps;
211 dccp_stack_t *dccps;
212 #endif /* ! codereview */
213 udp_stack_t *us;
214 icmp_stack_t *is;
215 uint_t size;
216 size_t nbytes = 0, tbytes = 0;

218 bzero(pval, psize);
219 size = psize;

221 switch (pinfo->mpi_proto) {
222 case MOD_PROTO_IP:
223 case MOD_PROTO_IPV4:
224 case MOD_PROTO_IPV6:
225 ipst = (ip_stack_t *)cbarg;
226 ptbl = ipst->ips_propinfo_tbl;
227 break;
228 case MOD_PROTO_RAWIP:
229 is = (icmp_stack_t *)cbarg;
230 ptbl = is->is_propinfo_tbl;
231 break;
232 case MOD_PROTO_TCP:
233 tcps = (tcp_stack_t *)cbarg;
234 ptbl = tcps->tcps_propinfo_tbl;
235 break;
236 case MOD_PROTO_UDP:
237 us = (udp_stack_t *)cbarg;
238 ptbl = us->us_propinfo_tbl;
239 break;
240 case MOD_PROTO_SCTP:
241 sctps = (sctp_stack_t *)cbarg;
242 ptbl = sctps->sctps_propinfo_tbl;
243 break;
244 case MOD_PROTO_DCCP:
245 dccps = (dccp_stack_t *)cbarg;
246 ptbl = dccps->dccps_propinfo_tbl;
247 break;
248 #endif /* ! codereview */
249 default:
250 return (EINVAL);
251 }

253 for (prop = ptbl; prop->mpi_name != NULL; prop++) {
254 if (prop->mpi_name[0] == ’\0’ ||
255 strcmp(prop->mpi_name, "?") == 0) {
256 continue;
257 }
258 nbytes = snprintf(pval, size, "%s %d %d", prop->mpi_name,
259 prop->mpi_proto, prop_perm2const(prop));

new/usr/src/uts/common/inet/tunables.c 5

260 size -= nbytes + 1;
261 pval += nbytes + 1;
262 tbytes += nbytes + 1;
263 if (tbytes >= psize) {
264 /* Buffer overflow, stop copying information */
265 return (ENOBUFS);
266 }
267 }
268 return (0);
269 }

271 /*
272 * Hold a lock while changing *_epriv_ports to prevent multiple
273 * threads from changing it at the same time.
274 */
275 /* ARGSUSED */
276 int
277 mod_set_extra_privports(void *cbarg, cred_t *cr, mod_prop_info_t *pinfo,
278 const char *ifname, const void* val, uint_t flags)
279 {
280 uint_t proto = pinfo->mpi_proto;
281 tcp_stack_t *tcps;
282 sctp_stack_t *sctps;
283 udp_stack_t *us;
284 unsigned long new_value;
285 char *end;
286 kmutex_t *lock;
287 uint_t i, nports;
288 in_port_t *ports;
289 boolean_t def = (flags & MOD_PROP_DEFAULT);
290 const char *pval = val;

292 if (!def) {
293 if (ddi_strtoul(pval, &end, 10, &new_value) != 0 ||
294 *end != ’\0’) {
295 return (EINVAL);
296 }

298 if (new_value < pinfo->prop_min_uval ||
299 new_value > pinfo->prop_max_uval) {
300 return (ERANGE);
301 }
302 }

304 switch (proto) {
305 case MOD_PROTO_TCP:
306 tcps = (tcp_stack_t *)cbarg;
307 lock = &tcps->tcps_epriv_port_lock;
308 ports = tcps->tcps_g_epriv_ports;
309 nports = tcps->tcps_g_num_epriv_ports;
310 break;
311 case MOD_PROTO_UDP:
312 us = (udp_stack_t *)cbarg;
313 lock = &us->us_epriv_port_lock;
314 ports = us->us_epriv_ports;
315 nports = us->us_num_epriv_ports;
316 break;
317 case MOD_PROTO_SCTP:
318 sctps = (sctp_stack_t *)cbarg;
319 lock = &sctps->sctps_epriv_port_lock;
320 ports = sctps->sctps_g_epriv_ports;
321 nports = sctps->sctps_g_num_epriv_ports;
322 break;
323 default:
324 return (ENOTSUP);
325 }

new/usr/src/uts/common/inet/tunables.c 6

327 mutex_enter(lock);

329 /* if MOD_PROP_DEFAULT is set then reset the ports list to default */
330 if (def) {
331 for (i = 0; i < nports; i++)
332 ports[i] = 0;
333 ports[0] = ULP_DEF_EPRIV_PORT1;
334 ports[1] = ULP_DEF_EPRIV_PORT2;
335 mutex_exit(lock);
336 return (0);
337 }

339 /* Check if the value is already in the list */
340 for (i = 0; i < nports; i++) {
341 if (new_value == ports[i])
342 break;
343 }

345 if (flags & MOD_PROP_REMOVE) {
346 if (i == nports) {
347 mutex_exit(lock);
348 return (ESRCH);
349 }
350 /* Clear the value */
351 ports[i] = 0;
352 } else if (flags & MOD_PROP_APPEND) {
353 if (i != nports) {
354 mutex_exit(lock);
355 return (EEXIST);
356 }

358 /* Find an empty slot */
359 for (i = 0; i < nports; i++) {
360 if (ports[i] == 0)
361 break;
362 }
363 if (i == nports) {
364 mutex_exit(lock);
365 return (EOVERFLOW);
366 }
367 /* Set the new value */
368 ports[i] = (in_port_t)new_value;
369 } else {
370 /*
371 * If the user used ’assignment’ modifier.
372 * For eg:
373 * # ipadm set-prop -p extra_priv_ports=3001 tcp
374 *
375 * We clear all the ports and then just add 3001.
376 */
377 ASSERT(flags == MOD_PROP_ACTIVE);
378 for (i = 0; i < nports; i++)
379 ports[i] = 0;
380 ports[0] = (in_port_t)new_value;
381 }

383 mutex_exit(lock);
384 return (0);
385 }

387 /*
388 * Note: No locks are held when inspecting *_epriv_ports
389 * but instead the code relies on:
390 * - the fact that the address of the array and its size never changes
391 * - the atomic assignment of the elements of the array

new/usr/src/uts/common/inet/tunables.c 7

392 */
393 /* ARGSUSED */
394 int
395 mod_get_extra_privports(void *cbarg, mod_prop_info_t *pinfo, const char *ifname,
396 void *val, uint_t psize, uint_t flags)
397 {
398 uint_t proto = pinfo->mpi_proto;
399 tcp_stack_t *tcps;
400 sctp_stack_t *sctps;
401 udp_stack_t *us;
402 uint_t i, nports, size;
403 in_port_t *ports;
404 char *pval = val;
405 size_t nbytes = 0, tbytes = 0;
406 boolean_t get_def = (flags & MOD_PROP_DEFAULT);
407 boolean_t get_perm = (flags & MOD_PROP_PERM);
408 boolean_t get_range = (flags & MOD_PROP_POSSIBLE);

410 bzero(pval, psize);
411 size = psize;

413 if (get_def) {
414 tbytes = snprintf(pval, psize, "%u,%u", ULP_DEF_EPRIV_PORT1,
415 ULP_DEF_EPRIV_PORT2);
416 goto ret;
417 } else if (get_perm) {
418 tbytes = snprintf(pval, psize, "%u", MOD_PROP_PERM_RW);
419 goto ret;
420 }

422 switch (proto) {
423 case MOD_PROTO_TCP:
424 tcps = (tcp_stack_t *)cbarg;
425 ports = tcps->tcps_g_epriv_ports;
426 nports = tcps->tcps_g_num_epriv_ports;
427 break;
428 case MOD_PROTO_UDP:
429 us = (udp_stack_t *)cbarg;
430 ports = us->us_epriv_ports;
431 nports = us->us_num_epriv_ports;
432 break;
433 case MOD_PROTO_SCTP:
434 sctps = (sctp_stack_t *)cbarg;
435 ports = sctps->sctps_g_epriv_ports;
436 nports = sctps->sctps_g_num_epriv_ports;
437 break;
438 default:
439 return (ENOTSUP);
440 }

442 if (get_range) {
443 tbytes = snprintf(pval, psize, "%u-%u", pinfo->prop_min_uval,
444 pinfo->prop_max_uval);
445 goto ret;
446 }

448 for (i = 0; i < nports; i++) {
449 if (ports[i] != 0) {
450 if (psize == size)
451 nbytes = snprintf(pval, size, "%u", ports[i]);
452 else
453 nbytes = snprintf(pval, size, ",%u", ports[i]);
454 size -= nbytes;
455 pval += nbytes;
456 tbytes += nbytes;
457 if (tbytes >= psize)

new/usr/src/uts/common/inet/tunables.c 8

458 return (ENOBUFS);
459 }
460 }
461 return (0);
462 ret:
463 if (tbytes >= psize)
464 return (ENOBUFS);
465 return (0);
466 }

new/usr/src/uts/common/inet/tunables.h 1

**
 6181 Sat Aug 18 10:37:22 2012
new/usr/src/uts/common/inet/tunables.h
dccp: starting module template
**
______unchanged_portion_omitted_

59 #define MOD_PROP_VERSION 1

61 /* permission flags for properties */
62 #define MOD_PROP_PERM_READ 0x1
63 #define MOD_PROP_PERM_WRITE 0x2
64 #define MOD_PROP_PERM_RW (MOD_PROP_PERM_READ|MOD_PROP_PERM_WRITE)

66 /* mpr_flags values */
67 #define MOD_PROP_ACTIVE 0x01 /* current value of the property */
68 #define MOD_PROP_DEFAULT 0x02 /* default value of the property */
69 #define MOD_PROP_POSSIBLE 0x04 /* possible values for the property */
70 #define MOD_PROP_PERM 0x08 /* read/write permission for property */
71 #define MOD_PROP_APPEND 0x10 /* append to multi-valued property */
72 #define MOD_PROP_REMOVE 0x20 /* remove from multi-valued property */

74 /* mpr_proto values */
75 #define MOD_PROTO_NONE 0x00
76 #define MOD_PROTO_IPV4 0x01 /* property is applicable to IPV4 */
77 #define MOD_PROTO_IPV6 0x02 /* property is applicable to IPV6 */
78 #define MOD_PROTO_RAWIP 0x04 /* property is applicable to ICMP */
79 #define MOD_PROTO_TCP 0x08 /* property is applicable to TCP */
80 #define MOD_PROTO_UDP 0x10 /* property is applicable to UDP */
81 #define MOD_PROTO_SCTP 0x20 /* property is applicable to SCTP */
82 #define MOD_PROTO_DCCP 0x40 /* property is applicable to DCCP */
83 #endif /* ! codereview */

85 /* property is applicable to both IPV[4|6] */
86 #define MOD_PROTO_IP (MOD_PROTO_IPV4|MOD_PROTO_IPV6)

88 #ifdef _KERNEL

90 typedef struct mod_prop_info_s mod_prop_info_t;

92 /* set/get property callback functions */
93 typedef int mod_prop_setf_t(void *, cred_t *, mod_prop_info_t *,
94 const char *, const void *, uint_t);
95 typedef int mod_prop_getf_t(void *, mod_prop_info_t *, const char *,
96 void *val, uint_t, uint_t);

98 typedef struct mod_propval_uint32_s {
99 uint32_t mod_propval_umin;
100 uint32_t mod_propval_umax;
101 uint32_t mod_propval_ucur;
102 } mod_propval_uint32_t;

104 /*
105 * protocol property information
106 */
107 struct mod_prop_info_s {
108 char *mpi_name; /* property name */
109 uint_t mpi_proto; /* property protocol */
110 mod_prop_setf_t *mpi_setf; /* sets the property value */
111 mod_prop_getf_t *mpi_getf; /* gets the property value */
112 /*
113 * Holds the current value of the property. Whenever applicable
114 * holds the min/max value too.
115 */
116 union {
117 mod_propval_uint32_t mpi_uval;

new/usr/src/uts/common/inet/tunables.h 2

118 boolean_t mpi_bval;
119 uint64_t _pad[2];
120 } u;
121 /*
122 * Holds the default value of the property, that is value of
123 * the property at boot time.
124 */
125 union {
126 uint32_t mpi_def_uval;
127 boolean_t mpi_def_bval;
128 } u_def;
129 };

131 /* shortcuts to access current/default values */
132 #define prop_min_uval u.mpi_uval.mod_propval_umin
133 #define prop_max_uval u.mpi_uval.mod_propval_umax
134 #define prop_cur_uval u.mpi_uval.mod_propval_ucur
135 #define prop_cur_bval u.mpi_bval
136 #define prop_def_uval u_def.mpi_def_uval
137 #define prop_def_bval u_def.mpi_def_bval

139 #define MS 1L
140 #define SECONDS (1000 * MS)
141 #define MINUTES (60 * SECONDS)
142 #define HOURS (60 * MINUTES)
143 #define DAYS (24 * HOURS)

145 #define MB (1024 * 1024)

147 /* Largest TCP/UDP/SCTP port number */
148 #define ULP_MAX_PORT (64 * 1024 - 1)

150 /* extra privilege ports for upper layer protocols, tcp, sctp and udp */
151 #define ULP_DEF_EPRIV_PORT1 2049
152 #define ULP_DEF_EPRIV_PORT2 4045

154 /* generic function to set/get global module properties */
155 extern mod_prop_setf_t mod_set_boolean, mod_set_uint32,
156 mod_set_aligned, mod_set_extra_privports;

158 extern mod_prop_getf_t mod_get_boolean, mod_get_uint32,
159 mod_get_allprop, mod_get_extra_privports;

161 extern int mod_uint32_value(const void *, mod_prop_info_t *, uint_t,
162 unsigned long *);

164 #endif /* _KERNEL */

166 /*
167 * End-system model definitions that include the weak/strong end-system
168 * definitions in RFC 1122, Section 3.3.4.5. IP_WEAK_ES and IP_STRONG_ES
169 * conform to the corresponding RFC 1122 definitions. The IP_SRC_PRI_ES
170 * hostmodel is similar to IP_WEAK_ES with one additional enhancement: for
171 * a packet with source S2, destination D2, the route selection algorithm
172 * will first attempt to find a route for the destination that goes out
173 * through an interface where S2 is configured and marked UP. If such
174 * a route cannot be found, then the best-matching route for D2 will be
175 * selected, ignoring any mismatches between S2 and the interface addresses
176 * on the outgoing interface implied by the route.
177 */
178 typedef enum {
179 IP_WEAK_ES = 0,
180 IP_SRC_PRI_ES,
181 IP_STRONG_ES,
182 IP_MAXVAL_ES
183 } ip_hostmodel_t;

new/usr/src/uts/common/inet/tunables.h 3

185 #ifdef __cplusplus
186 }
187 #endif

189 #endif /* _INET_TUNABLES_H */

new/usr/src/uts/common/netinet/Makefile 1

**
 1543 Sat Aug 18 10:37:22 2012
new/usr/src/uts/common/netinet/Makefile
dccp: snoop, build system fixes
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 #ident "%Z%%M% %I% %E% SMI"
23 #
21 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # uts/common/netinet/Makefile
25 #
26 # include global definitions
27 include ../../../Makefile.master

29 HDRS= arp.h dccp.h dhcp.h dhcp6.h icmp6.h icmp_var.h if_ether.h igmp.h \
30 igmp_var.h in.h inetutil.h in_pcb.h in_systm.h in_var.h ip.h ip6.h \
31 ip_icmp.h ip_mroute.h ip_var.h pim.h sctp.h tcp.h tcp_debug.h \
32 tcp_fsm.h tcp_seq.h tcp_timer.h tcp_var.h tcpip.h udp.h udp_var.h
32 HDRS= arp.h dhcp.h dhcp6.h icmp6.h icmp_var.h if_ether.h igmp.h igmp_var.h \
33 in.h inetutil.h in_pcb.h in_systm.h in_var.h ip.h ip6.h ip_icmp.h \
34 ip_mroute.h ip_var.h pim.h sctp.h tcp.h tcp_debug.h tcp_fsm.h \
35 tcp_seq.h tcp_timer.h tcp_var.h tcpip.h udp.h udp_var.h

34 ROOTDIRS= $(ROOT)/usr/include/netinet

36 ROOTHDRS= $(HDRS:%=$(ROOT)/usr/include/netinet/%)

38 CHECKHDRS= $(HDRS:%.h=%.check)

40 $(ROOTDIRS)/%: %
41 $(INS.file)

43 .KEEP_STATE:

45 .PARALLEL: $(CHECKHDRS)

47 install_h: $(ROOTDIRS) $(ROOTHDRS)

49 $(ROOTDIRS):
50 $(INS.dir)

52 check: $(CHECKHDRS)

new/usr/src/uts/common/netinet/dccp.h 1

**
 1948 Sat Aug 18 10:37:22 2012
new/usr/src/uts/common/netinet/dccp.h
dccp: starting module template
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _NETINET_DCCP_H
17 #define _NETINET_DCCP_H

19 #ifdef __cplusplus
20 extern "C" {
21 #endif

23 /*
24 * DCCP header
25 */
26 struct dccphdr {
27 uint16_t dh_sport;
28 uint16_t dh_dport;
29 uint8_t dh_offset;
30 #ifdef _BIT_FIELDS_LTOH
31 uint8_t dh_cscov:4,
32 dh_ccval:4;
33 #else
34 uint8_t dh_ccval:4,
35 dh_cscov:4;
36 #endif
37 uint16_t dh_sum;
38 #ifdef _BIT_FIELDS_LTOH
39 uint8_t dh_x:1,
40 dh_type:4,
41 dh_reserved:3;
42 #else
43 uint8_t dh_reserved:3,
44 dh_type:4,
45 dh_x:1;
46 #endif
47 uint8_t dh_res_seq;
48 uint16_t dh_seq;
49 };

51 #define DCCPOPT_PADDING 0
52 #define DCCPOPT_MANDATORY 1
53 #define DCCPOPT_SLOW_RECEIVER 2
54 #define DCCPOPT_CHANGE_L 32
55 #define DCCPOPT_CONFIRM_L 33
56 #define DCCPOPT_CHANGE_R 34
57 #define DCCPOPT_CONFIRM_R 35
58 #define DCCPOPT_INIT_COOKIE 36
59 #define DCCPOPT_NDP_COUNT 37
60 #define DCCPOPT_ACK_VECTOR_1 38
61 #define DCCPOPT_ACK_VECTOR_2 39

new/usr/src/uts/common/netinet/dccp.h 2

62 #define DCCPOPT_DATA_DROPPED 40
63 #define DCCPOPT_TIMESTAMP 41
64 #define DCCPOPT_TIMESTAMP_ECHO 42
65 #define DCCPOPT_ELAPSED_TIME 43
66 #define DCCPOPT_DATA_CHECKSUM 44

68 /*
69 * Options for use with getsockopt and setsockopt.
70 */

72 #define DCCP_KEEPALIVE 0x08
73 #define DCCP_NOTIFY_THRESHOLD 0x10
74 #define DCCP_ABORT_THRESHOLD 0x11
75 #define DCCP_CONN_NOTIFY_THRESHOLD 0x12
76 #define DCCP_CONN_ABORT_THRESHOLD 0x13

78 #define DCCP_KEEPALIVE_THRESHOLD 0x16
79 #define DCCP_KEEPALIVE_ABORT_THRESHOLD 0x17

81 #define DCCP_KEEPIDLE 0x22
82 #define DCCP_KEEPCNT 0x23
83 #define DCCP_KEEPINTVL 0x24

85 #ifdef __cplusplus
86 }
87 #endif

89 #endif /* _NETINET_DCCP_H */
90 #endif /* ! codereview */

new/usr/src/uts/common/netinet/in.h 1

**
 44002 Sat Aug 18 10:37:23 2012
new/usr/src/uts/common/netinet/in.h
dccp: starting module template
**
______unchanged_portion_omitted_
128 #define s6_addr _S6_un._S6_u8

130 #ifdef _KERNEL
131 #define s6_addr8 _S6_un._S6_u8
132 #define s6_addr32 _S6_un._S6_u32
133 #endif

135 typedef struct in6_addr in6_addr_t;

137 #endif /* !defined(_XPG4_2) || defined(_XPG6) || defined(__EXTENSIONS__) */

139 #ifndef _SA_FAMILY_T
140 #define _SA_FAMILY_T
141 typedef uint16_t sa_family_t;
142 #endif

144 /*
145 * Protocols
146 *
147 * Some of these constant names are copied for the DTrace IP provider in
148 * usr/src/lib/libdtrace/common/{ip.d.in, ip.sed.in}, which should be kept
149 * in sync.
150 */
151 #define IPPROTO_IP 0 /* dummy for IP */
152 #define IPPROTO_HOPOPTS 0 /* Hop by hop header for IPv6 */
153 #define IPPROTO_ICMP 1 /* control message protocol */
154 #define IPPROTO_IGMP 2 /* group control protocol */
155 #define IPPROTO_GGP 3 /* gateway^2 (deprecated) */
156 #define IPPROTO_ENCAP 4 /* IP in IP encapsulation */
157 #define IPPROTO_TCP 6 /* tcp */
158 #define IPPROTO_EGP 8 /* exterior gateway protocol */
159 #define IPPROTO_PUP 12 /* pup */
160 #define IPPROTO_UDP 17 /* user datagram protocol */
161 #define IPPROTO_IDP 22 /* xns idp */
162 #define IPPROTO_DCCP 33 /* DCCP */
163 #endif /* ! codereview */
164 #define IPPROTO_IPV6 41 /* IPv6 encapsulated in IP */
165 #define IPPROTO_ROUTING 43 /* Routing header for IPv6 */
166 #define IPPROTO_FRAGMENT 44 /* Fragment header for IPv6 */
167 #define IPPROTO_RSVP 46 /* rsvp */
168 #define IPPROTO_ESP 50 /* IPsec Encap. Sec. Payload */
169 #define IPPROTO_AH 51 /* IPsec Authentication Hdr. */
170 #define IPPROTO_ICMPV6 58 /* ICMP for IPv6 */
171 #define IPPROTO_NONE 59 /* No next header for IPv6 */
172 #define IPPROTO_DSTOPTS 60 /* Destination options */
173 #define IPPROTO_HELLO 63 /* "hello" routing protocol */
174 #define IPPROTO_ND 77 /* UNOFFICIAL net disk proto */
175 #define IPPROTO_EON 80 /* ISO clnp */
176 #define IPPROTO_OSPF 89 /* OSPF */
177 #define IPPROTO_PIM 103 /* PIM routing protocol */
178 #define IPPROTO_SCTP 132 /* Stream Control */
179 /* Transmission Protocol */

181 #define IPPROTO_RAW 255 /* raw IP packet */
182 #define IPPROTO_MAX 256

184 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
185 #define PROTO_SDP 257 /* Sockets Direct Protocol */
186 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

new/usr/src/uts/common/netinet/in.h 2

188 /*
189 * Port/socket numbers: network standard functions
190 *
191 * Entries should exist here for each port number compiled into an ON
192 * component, such as snoop.
193 */
194 #define IPPORT_ECHO 7
195 #define IPPORT_DISCARD 9
196 #define IPPORT_SYSTAT 11
197 #define IPPORT_DAYTIME 13
198 #define IPPORT_NETSTAT 15
199 #define IPPORT_CHARGEN 19
200 #define IPPORT_FTP 21
201 #define IPPORT_TELNET 23
202 #define IPPORT_SMTP 25
203 #define IPPORT_TIMESERVER 37
204 #define IPPORT_NAMESERVER 42
205 #define IPPORT_WHOIS 43
206 #define IPPORT_DOMAIN 53
207 #define IPPORT_MDNS 5353
208 #define IPPORT_MTP 57

210 /*
211 * Port/socket numbers: host specific functions
212 */
213 #define IPPORT_BOOTPS 67
214 #define IPPORT_BOOTPC 68
215 #define IPPORT_TFTP 69
216 #define IPPORT_RJE 77
217 #define IPPORT_FINGER 79
218 #define IPPORT_HTTP 80
219 #define IPPORT_HTTP_ALT 8080
220 #define IPPORT_TTYLINK 87
221 #define IPPORT_SUPDUP 95
222 #define IPPORT_NTP 123
223 #define IPPORT_NETBIOS_NS 137
224 #define IPPORT_NETBIOS_DGM 138
225 #define IPPORT_NETBIOS_SSN 139
226 #define IPPORT_LDAP 389
227 #define IPPORT_SLP 427
228 #define IPPORT_MIP 434
229 #define IPPORT_SMB 445 /* a.k.a. microsoft-ds */

231 /*
232 * Internet Key Exchange (IKE) ports
233 */
234 #define IPPORT_IKE 500
235 #define IPPORT_IKE_NATT 4500

237 /*
238 * UNIX TCP sockets
239 */
240 #define IPPORT_EXECSERVER 512
241 #define IPPORT_LOGINSERVER 513
242 #define IPPORT_CMDSERVER 514
243 #define IPPORT_PRINTER 515
244 #define IPPORT_EFSSERVER 520

246 /*
247 * UNIX UDP sockets
248 */
249 #define IPPORT_BIFFUDP 512
250 #define IPPORT_WHOSERVER 513
251 #define IPPORT_SYSLOG 514
252 #define IPPORT_TALK 517
253 #define IPPORT_ROUTESERVER 520

new/usr/src/uts/common/netinet/in.h 3

254 #define IPPORT_RIPNG 521

256 /*
257 * DHCPv6 UDP ports
258 */
259 #define IPPORT_DHCPV6C 546
260 #define IPPORT_DHCPV6S 547

262 #define IPPORT_SOCKS 1080

264 /*
265 * Ports < IPPORT_RESERVED are reserved for
266 * privileged processes (e.g. root).
267 * Ports > IPPORT_USERRESERVED are reserved
268 * for servers, not necessarily privileged.
269 */
270 #define IPPORT_RESERVED 1024
271 #define IPPORT_USERRESERVED 5000

273 /*
274 * Link numbers
275 */
276 #define IMPLINK_IP 155
277 #define IMPLINK_LOWEXPER 156
278 #define IMPLINK_HIGHEXPER 158

280 /*
281 * IPv4 Internet address
282 * This definition contains obsolete fields for compatibility
283 * with SunOS 3.x and 4.2bsd. The presence of subnets renders
284 * divisions into fixed fields misleading at best. New code
285 * should use only the s_addr field.
286 */

288 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
289 #define _S_un_b S_un_b
290 #define _S_un_w S_un_w
291 #define _S_addr S_addr
292 #define _S_un S_un
293 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

295 struct in_addr {
296 union {
297 struct { uint8_t s_b1, s_b2, s_b3, s_b4; } _S_un_b;
298 struct { uint16_t s_w1, s_w2; } _S_un_w;
299 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
300 uint32_t _S_addr;
301 #else
302 in_addr_t _S_addr;
303 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */
304 } _S_un;
305 #define s_addr _S_un._S_addr /* should be used for all code */
306 #define s_host _S_un._S_un_b.s_b2 /* OBSOLETE: host on imp */
307 #define s_net _S_un._S_un_b.s_b1 /* OBSOLETE: network */
308 #define s_imp _S_un._S_un_w.s_w2 /* OBSOLETE: imp */
309 #define s_impno _S_un._S_un_b.s_b4 /* OBSOLETE: imp # */
310 #define s_lh _S_un._S_un_b.s_b3 /* OBSOLETE: logical host */
311 };

313 /*
314 * Definitions of bits in internet address integers.
315 * On subnets, the decomposition of addresses to host and net parts
316 * is done according to subnet mask, not the masks here.
317 *
318 * Note that with the introduction of CIDR, IN_CLASSA, IN_CLASSB,
319 * IN_CLASSC, IN_CLASSD and IN_CLASSE macros have become "de-facto

new/usr/src/uts/common/netinet/in.h 4

320 * obsolete". IN_MULTICAST macro should be used to test if a address
321 * is a multicast address.
322 */
323 #define IN_CLASSA(i) (((i) & 0x80000000U) == 0)
324 #define IN_CLASSA_NET 0xff000000U
325 #define IN_CLASSA_NSHIFT 24
326 #define IN_CLASSA_HOST 0x00ffffffU
327 #define IN_CLASSA_MAX 128

329 #define IN_CLASSB(i) (((i) & 0xc0000000U) == 0x80000000U)
330 #define IN_CLASSB_NET 0xffff0000U
331 #define IN_CLASSB_NSHIFT 16
332 #define IN_CLASSB_HOST 0x0000ffffU
333 #define IN_CLASSB_MAX 65536

335 #define IN_CLASSC(i) (((i) & 0xe0000000U) == 0xc0000000U)
336 #define IN_CLASSC_NET 0xffffff00U
337 #define IN_CLASSC_NSHIFT 8
338 #define IN_CLASSC_HOST 0x000000ffU

340 #define IN_CLASSD(i) (((i) & 0xf0000000U) == 0xe0000000U)
341 #define IN_CLASSD_NET 0xf0000000U /* These aren’t really */
342 #define IN_CLASSD_NSHIFT 28 /* net and host fields, but */
343 #define IN_CLASSD_HOST 0x0fffffffU /* routing needn’t know */

345 #define IN_CLASSE(i) (((i) & 0xf0000000U) == 0xf0000000U)
346 #define IN_CLASSE_NET 0xffffffffU

348 #define IN_MULTICAST(i) IN_CLASSD(i)

350 /*
351 * We have removed CLASS E checks from the kernel
352 * But we preserve these defines for userland in order
353 * to avoid compile breakage of some 3rd party piece of software
354 */
355 #ifndef _KERNEL
356 #define IN_EXPERIMENTAL(i) (((i) & 0xe0000000U) == 0xe0000000U)
357 #define IN_BADCLASS(i) (((i) & 0xf0000000U) == 0xf0000000U)
358 #endif

360 #define INADDR_ANY 0x00000000U
361 #define INADDR_LOOPBACK 0x7F000001U
362 #define INADDR_BROADCAST 0xffffffffU /* must be masked */
363 #define INADDR_NONE 0xffffffffU

365 #define INADDR_UNSPEC_GROUP 0xe0000000U /* 224.0.0.0 */
366 #define INADDR_ALLHOSTS_GROUP 0xe0000001U /* 224.0.0.1 */
367 #define INADDR_ALLRTRS_GROUP 0xe0000002U /* 224.0.0.2 */
368 #define INADDR_ALLRPTS_GROUP 0xe0000016U /* 224.0.0.22, IGMPv3 */
369 #define INADDR_MAX_LOCAL_GROUP 0xe00000ffU /* 224.0.0.255 */

371 /* Scoped IPv4 prefixes (in host byte-order) */
372 #define IN_AUTOCONF_NET 0xa9fe0000U /* 169.254/16 */
373 #define IN_AUTOCONF_MASK 0xffff0000U
374 #define IN_PRIVATE8_NET 0x0a000000U /* 10/8 */
375 #define IN_PRIVATE8_MASK 0xff000000U
376 #define IN_PRIVATE12_NET 0xac100000U /* 172.16/12 */
377 #define IN_PRIVATE12_MASK 0xfff00000U
378 #define IN_PRIVATE16_NET 0xc0a80000U /* 192.168/16 */
379 #define IN_PRIVATE16_MASK 0xffff0000U

381 /* RFC 3927 IPv4 link local address (i in host byte-order) */
382 #define IN_LINKLOCAL(i) (((i) & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET)

384 /* Well known 6to4 Relay Router Anycast address defined in RFC 3068 */
385 #if !defined(_XPG4_2) || !defined(__EXTENSIONS__)

new/usr/src/uts/common/netinet/in.h 5

386 #define INADDR_6TO4RRANYCAST 0xc0586301U /* 192.88.99.1 */
387 #endif /* !defined(_XPG4_2) || !defined(__EXTENSIONS__) */

389 #define IN_LOOPBACKNET 127 /* official! */

391 /*
392 * Define a macro to stuff the loopback address into an Internet address
393 */
394 #if !defined(_XPG4_2) || !defined(__EXTENSIONS__)
395 #define IN_SET_LOOPBACK_ADDR(a) \
396 { (a)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); \
397 (a)->sin_family = AF_INET; }
398 #endif /* !defined(_XPG4_2) || !defined(__EXTENSIONS__) */

400 /*
401 * IPv4 Socket address.
402 */
403 struct sockaddr_in {
404 sa_family_t sin_family;
405 in_port_t sin_port;
406 struct in_addr sin_addr;
407 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
408 char sin_zero[8];
409 #else
410 unsigned char sin_zero[8];
411 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */
412 };

414 #if !defined(_XPG4_2) || defined(_XPG6) || defined(__EXTENSIONS__)
415 /*
416 * IPv6 socket address.
417 */
418 struct sockaddr_in6 {
419 sa_family_t sin6_family;
420 in_port_t sin6_port;
421 uint32_t sin6_flowinfo;
422 struct in6_addr sin6_addr;
423 uint32_t sin6_scope_id; /* Depends on scope of sin6_addr */
424 uint32_t __sin6_src_id; /* Impl. specific - UDP replies */
425 };

427 /*
428 * Macros for accessing the traffic class and flow label fields from
429 * sin6_flowinfo.
430 * These are designed to be applied to a 32-bit value.
431 */
432 #ifdef _BIG_ENDIAN

434 /* masks */
435 #define IPV6_FLOWINFO_FLOWLABEL 0x000fffffU
436 #define IPV6_FLOWINFO_TCLASS 0x0ff00000U

438 #else /* _BIG_ENDIAN */

440 /* masks */
441 #define IPV6_FLOWINFO_FLOWLABEL 0xffff0f00U
442 #define IPV6_FLOWINFO_TCLASS 0x0000f00fU

444 #endif /* _BIG_ENDIAN */

446 /*
447 * Note: Macros IN6ADDR_ANY_INIT and IN6ADDR_LOOPBACK_INIT are for
448 * use as RHS of Static initializers of "struct in6_addr" (or in6_addr_t)
449 * only. They need to be different for User/Kernel versions because union
450 * component data structure is defined differently (it is identical at
451 * binary representation level).

new/usr/src/uts/common/netinet/in.h 6

452 *
453 * const struct in6_addr IN6ADDR_ANY_INIT;
454 * const struct in6_addr IN6ADDR_LOOPBACK_INIT;
455 */

458 #ifdef _KERNEL
459 #define IN6ADDR_ANY_INIT { 0, 0, 0, 0 }

461 #ifdef _BIG_ENDIAN
462 #define IN6ADDR_LOOPBACK_INIT { 0, 0, 0, 0x00000001U }
463 #else /* _BIG_ENDIAN */
464 #define IN6ADDR_LOOPBACK_INIT { 0, 0, 0, 0x01000000U }
465 #endif /* _BIG_ENDIAN */

467 #else

469 #define IN6ADDR_ANY_INIT { 0, 0, 0, 0, \
470 0, 0, 0, 0, \
471 0, 0, 0, 0, \
472 0, 0, 0, 0 }

474 #define IN6ADDR_LOOPBACK_INIT { 0, 0, 0, 0, \
475 0, 0, 0, 0, \
476 0, 0, 0, 0, \
477 0, 0, 0, 0x1U }
478 #endif /* _KERNEL */

480 /*
481 * RFC 2553 specifies the following macros. Their type is defined
482 * as "int" in the RFC but they only have boolean significance
483 * (zero or non-zero). For the purposes of our comment notation,
484 * we assume a hypothetical type "bool" defined as follows to
485 * write the prototypes assumed for macros in our comments better.
486 *
487 * typedef int bool;
488 */

490 /*
491 * IN6 macros used to test for special IPv6 addresses
492 * (Mostly from spec)
493 *
494 * bool IN6_IS_ADDR_UNSPECIFIED (const struct in6_addr *);
495 * bool IN6_IS_ADDR_LOOPBACK (const struct in6_addr *);
496 * bool IN6_IS_ADDR_MULTICAST (const struct in6_addr *);
497 * bool IN6_IS_ADDR_LINKLOCAL (const struct in6_addr *);
498 * bool IN6_IS_ADDR_SITELOCAL (const struct in6_addr *);
499 * bool IN6_IS_ADDR_V4MAPPED (const struct in6_addr *);
500 * bool IN6_IS_ADDR_V4MAPPED_ANY(const struct in6_addr *); -- Not from RFC2553
501 * bool IN6_IS_ADDR_V4COMPAT (const struct in6_addr *);
502 * bool IN6_IS_ADDR_MC_RESERVED (const struct in6_addr *); -- Not from RFC2553
503 * bool IN6_IS_ADDR_MC_NODELOCAL(const struct in6_addr *);
504 * bool IN6_IS_ADDR_MC_LINKLOCAL(const struct in6_addr *);
505 * bool IN6_IS_ADDR_MC_SITELOCAL(const struct in6_addr *);
506 * bool IN6_IS_ADDR_MC_ORGLOCAL (const struct in6_addr *);
507 * bool IN6_IS_ADDR_MC_GLOBAL (const struct in6_addr *);
508 * bool IN6_IS_ADDR_6TO4 (const struct in6_addr *); -- Not from RFC2553
509 * bool IN6_ARE_6TO4_PREFIX_EQUAL(const struct in6_addr *,
510 * const struct in6_addr *); -- Not from RFC2553
511 * bool IN6_IS_ADDR_LINKSCOPE (const struct in6addr *); -- Not from RFC2553
512 */

514 #define IN6_IS_ADDR_UNSPECIFIED(addr) \
515 (((addr)->_S6_un._S6_u32[3] == 0) && \
516 ((addr)->_S6_un._S6_u32[2] == 0) && \
517 ((addr)->_S6_un._S6_u32[1] == 0) && \

new/usr/src/uts/common/netinet/in.h 7

518 ((addr)->_S6_un._S6_u32[0] == 0))

520 #ifdef _BIG_ENDIAN
521 #define IN6_IS_ADDR_LOOPBACK(addr) \
522 (((addr)->_S6_un._S6_u32[3] == 0x00000001) && \
523 ((addr)->_S6_un._S6_u32[2] == 0) && \
524 ((addr)->_S6_un._S6_u32[1] == 0) && \
525 ((addr)->_S6_un._S6_u32[0] == 0))
526 #else /* _BIG_ENDIAN */
527 #define IN6_IS_ADDR_LOOPBACK(addr) \
528 (((addr)->_S6_un._S6_u32[3] == 0x01000000) && \
529 ((addr)->_S6_un._S6_u32[2] == 0) && \
530 ((addr)->_S6_un._S6_u32[1] == 0) && \
531 ((addr)->_S6_un._S6_u32[0] == 0))
532 #endif /* _BIG_ENDIAN */

534 #ifdef _BIG_ENDIAN
535 #define IN6_IS_ADDR_MULTICAST(addr) \
536 (((addr)->_S6_un._S6_u32[0] & 0xff000000) == 0xff000000)
537 #else /* _BIG_ENDIAN */
538 #define IN6_IS_ADDR_MULTICAST(addr) \
539 (((addr)->_S6_un._S6_u32[0] & 0x000000ff) == 0x000000ff)
540 #endif /* _BIG_ENDIAN */

542 #ifdef _BIG_ENDIAN
543 #define IN6_IS_ADDR_LINKLOCAL(addr) \
544 (((addr)->_S6_un._S6_u32[0] & 0xffc00000) == 0xfe800000)
545 #else /* _BIG_ENDIAN */
546 #define IN6_IS_ADDR_LINKLOCAL(addr) \
547 (((addr)->_S6_un._S6_u32[0] & 0x0000c0ff) == 0x000080fe)
548 #endif /* _BIG_ENDIAN */

550 #ifdef _BIG_ENDIAN
551 #define IN6_IS_ADDR_SITELOCAL(addr) \
552 (((addr)->_S6_un._S6_u32[0] & 0xffc00000) == 0xfec00000)
553 #else /* _BIG_ENDIAN */
554 #define IN6_IS_ADDR_SITELOCAL(addr) \
555 (((addr)->_S6_un._S6_u32[0] & 0x0000c0ff) == 0x0000c0fe)
556 #endif /* _BIG_ENDIAN */

558 #ifdef _BIG_ENDIAN
559 #define IN6_IS_ADDR_V4MAPPED(addr) \
560 (((addr)->_S6_un._S6_u32[2] == 0x0000ffff) && \
561 ((addr)->_S6_un._S6_u32[1] == 0) && \
562 ((addr)->_S6_un._S6_u32[0] == 0))
563 #else /* _BIG_ENDIAN */
564 #define IN6_IS_ADDR_V4MAPPED(addr) \
565 (((addr)->_S6_un._S6_u32[2] == 0xffff0000U) && \
566 ((addr)->_S6_un._S6_u32[1] == 0) && \
567 ((addr)->_S6_un._S6_u32[0] == 0))
568 #endif /* _BIG_ENDIAN */

570 /*
571 * IN6_IS_ADDR_V4MAPPED - A IPv4 mapped INADDR_ANY
572 * Note: This macro is currently NOT defined in RFC2553 specification
573 * and not a standard macro that portable applications should use.
574 */
575 #ifdef _BIG_ENDIAN
576 #define IN6_IS_ADDR_V4MAPPED_ANY(addr) \
577 (((addr)->_S6_un._S6_u32[3] == 0) && \
578 ((addr)->_S6_un._S6_u32[2] == 0x0000ffff) && \
579 ((addr)->_S6_un._S6_u32[1] == 0) && \
580 ((addr)->_S6_un._S6_u32[0] == 0))
581 #else /* _BIG_ENDIAN */
582 #define IN6_IS_ADDR_V4MAPPED_ANY(addr) \
583 (((addr)->_S6_un._S6_u32[3] == 0) && \

new/usr/src/uts/common/netinet/in.h 8

584 ((addr)->_S6_un._S6_u32[2] == 0xffff0000U) && \
585 ((addr)->_S6_un._S6_u32[1] == 0) && \
586 ((addr)->_S6_un._S6_u32[0] == 0))
587 #endif /* _BIG_ENDIAN */

589 /* Exclude loopback and unspecified address */
590 #ifdef _BIG_ENDIAN
591 #define IN6_IS_ADDR_V4COMPAT(addr) \
592 (((addr)->_S6_un._S6_u32[2] == 0) && \
593 ((addr)->_S6_un._S6_u32[1] == 0) && \
594 ((addr)->_S6_un._S6_u32[0] == 0) && \
595 !((addr)->_S6_un._S6_u32[3] == 0) && \
596 !((addr)->_S6_un._S6_u32[3] == 0x00000001))

598 #else /* _BIG_ENDIAN */
599 #define IN6_IS_ADDR_V4COMPAT(addr) \
600 (((addr)->_S6_un._S6_u32[2] == 0) && \
601 ((addr)->_S6_un._S6_u32[1] == 0) && \
602 ((addr)->_S6_un._S6_u32[0] == 0) && \
603 !((addr)->_S6_un._S6_u32[3] == 0) && \
604 !((addr)->_S6_un._S6_u32[3] == 0x01000000))
605 #endif /* _BIG_ENDIAN */

607 /*
608 * Note:
609 * IN6_IS_ADDR_MC_RESERVED macro is currently NOT defined in RFC2553
610 * specification and not a standard macro that portable applications
611 * should use.
612 */
613 #ifdef _BIG_ENDIAN
614 #define IN6_IS_ADDR_MC_RESERVED(addr) \
615 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff000000)

617 #else /* _BIG_ENDIAN */
618 #define IN6_IS_ADDR_MC_RESERVED(addr) \
619 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x000000ff)
620 #endif /* _BIG_ENDIAN */

622 #ifdef _BIG_ENDIAN
623 #define IN6_IS_ADDR_MC_NODELOCAL(addr) \
624 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff010000)
625 #else /* _BIG_ENDIAN */
626 #define IN6_IS_ADDR_MC_NODELOCAL(addr) \
627 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x000001ff)
628 #endif /* _BIG_ENDIAN */

630 #ifdef _BIG_ENDIAN
631 #define IN6_IS_ADDR_MC_LINKLOCAL(addr) \
632 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff020000)
633 #else /* _BIG_ENDIAN */
634 #define IN6_IS_ADDR_MC_LINKLOCAL(addr) \
635 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x000002ff)
636 #endif /* _BIG_ENDIAN */

638 #ifdef _BIG_ENDIAN
639 #define IN6_IS_ADDR_MC_SITELOCAL(addr) \
640 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff050000)
641 #else /* _BIG_ENDIAN */
642 #define IN6_IS_ADDR_MC_SITELOCAL(addr) \
643 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x000005ff)
644 #endif /* _BIG_ENDIAN */

646 #ifdef _BIG_ENDIAN
647 #define IN6_IS_ADDR_MC_ORGLOCAL(addr) \
648 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff080000)
649 #else /* _BIG_ENDIAN */

new/usr/src/uts/common/netinet/in.h 9

650 #define IN6_IS_ADDR_MC_ORGLOCAL(addr) \
651 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x000008ff)
652 #endif /* _BIG_ENDIAN */

654 #ifdef _BIG_ENDIAN
655 #define IN6_IS_ADDR_MC_GLOBAL(addr) \
656 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff0e0000)
657 #else /* _BIG_ENDIAN */
658 #define IN6_IS_ADDR_MC_GLOBAL(addr) \
659 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x00000eff)
660 #endif /* _BIG_ENDIAN */

662 /*
663 * The IN6_IS_ADDR_MC_SOLICITEDNODE macro is not defined in any standard or
664 * RFC, and shouldn’t be used by portable applications. It is used to see
665 * if an address is a solicited-node multicast address, which is prefixed
666 * with ff02:0:0:0:0:1:ff00::/104.
667 */
668 #ifdef _BIG_ENDIAN
669 #define IN6_IS_ADDR_MC_SOLICITEDNODE(addr) \
670 (((addr)->_S6_un._S6_u32[0] == 0xff020000) && \
671 ((addr)->_S6_un._S6_u32[1] == 0x00000000) && \
672 ((addr)->_S6_un._S6_u32[2] == 0x00000001) && \
673 (((addr)->_S6_un._S6_u32[3] & 0xff000000) == 0xff000000))
674 #else
675 #define IN6_IS_ADDR_MC_SOLICITEDNODE(addr) \
676 (((addr)->_S6_un._S6_u32[0] == 0x000002ff) && \
677 ((addr)->_S6_un._S6_u32[1] == 0x00000000) && \
678 ((addr)->_S6_un._S6_u32[2] == 0x01000000) && \
679 (((addr)->_S6_un._S6_u32[3] & 0x000000ff) == 0x000000ff))
680 #endif

682 /*
683 * Macros to a) test for 6to4 IPv6 address, and b) to test if two
684 * 6to4 addresses have the same /48 prefix, and, hence, are from the
685 * same 6to4 site.
686 */

688 #ifdef _BIG_ENDIAN
689 #define IN6_IS_ADDR_6TO4(addr) \
690 (((addr)->_S6_un._S6_u32[0] & 0xffff0000) == 0x20020000)
691 #else /* _BIG_ENDIAN */
692 #define IN6_IS_ADDR_6TO4(addr) \
693 (((addr)->_S6_un._S6_u32[0] & 0x0000ffff) == 0x00000220)
694 #endif /* _BIG_ENDIAN */

696 #define IN6_ARE_6TO4_PREFIX_EQUAL(addr1, addr2) \
697 (((addr1)->_S6_un._S6_u32[0] == (addr2)->_S6_un._S6_u32[0]) && \
698 ((addr1)->_S6_un._S6_u8[4] == (addr2)->_S6_un._S6_u8[4]) && \
699 ((addr1)->_S6_un._S6_u8[5] == (addr2)->_S6_un._S6_u8[5]))

701 /*
702 * IN6_IS_ADDR_LINKSCOPE
703 * Identifies an address as being either link-local, link-local multicast or
704 * node-local multicast. All types of addresses are considered to be unique
705 * within the scope of a given link.
706 */
707 #define IN6_IS_ADDR_LINKSCOPE(addr) \
708 (IN6_IS_ADDR_LINKLOCAL(addr) || IN6_IS_ADDR_MC_LINKLOCAL(addr) || \
709 IN6_IS_ADDR_MC_NODELOCAL(addr))

711 /*
712 * Useful utility macros for operations with IPv6 addresses
713 * Note: These macros are NOT defined in the RFC2553 or any other
714 * standard specification and are not standard macros that portable
715 * applications should use.

new/usr/src/uts/common/netinet/in.h 10

716 */

718 /*
719 * IN6_V4MAPPED_TO_INADDR
720 * IN6_V4MAPPED_TO_IPADDR
721 * Assign a IPv4-Mapped IPv6 address to an IPv4 address.
722 * Note: These macros are NOT defined in RFC2553 or any other standard
723 * specification and are not macros that portable applications should
724 * use.
725 *
726 * void IN6_V4MAPPED_TO_INADDR(const in6_addr_t *v6, struct in_addr *v4);
727 * void IN6_V4MAPPED_TO_IPADDR(const in6_addr_t *v6, ipaddr_t v4);
728 *
729 */
730 #define IN6_V4MAPPED_TO_INADDR(v6, v4) \
731 ((v4)->s_addr = (v6)->_S6_un._S6_u32[3])
732 #define IN6_V4MAPPED_TO_IPADDR(v6, v4) \
733 ((v4) = (v6)->_S6_un._S6_u32[3])

735 /*
736 * IN6_INADDR_TO_V4MAPPED
737 * IN6_IPADDR_TO_V4MAPPED
738 * Assign a IPv4 address address to an IPv6 address as a IPv4-mapped
739 * address.
740 * Note: These macros are NOT defined in RFC2553 or any other standard
741 * specification and are not macros that portable applications should
742 * use.
743 *
744 * void IN6_INADDR_TO_V4MAPPED(const struct in_addr *v4, in6_addr_t *v6);
745 * void IN6_IPADDR_TO_V4MAPPED(const ipaddr_t v4, in6_addr_t *v6);
746 *
747 */
748 #ifdef _BIG_ENDIAN
749 #define IN6_INADDR_TO_V4MAPPED(v4, v6) \
750 ((v6)->_S6_un._S6_u32[3] = (v4)->s_addr, \
751 (v6)->_S6_un._S6_u32[2] = 0x0000ffff, \
752 (v6)->_S6_un._S6_u32[1] = 0, \
753 (v6)->_S6_un._S6_u32[0] = 0)
754 #define IN6_IPADDR_TO_V4MAPPED(v4, v6) \
755 ((v6)->_S6_un._S6_u32[3] = (v4), \
756 (v6)->_S6_un._S6_u32[2] = 0x0000ffff, \
757 (v6)->_S6_un._S6_u32[1] = 0, \
758 (v6)->_S6_un._S6_u32[0] = 0)
759 #else /* _BIG_ENDIAN */
760 #define IN6_INADDR_TO_V4MAPPED(v4, v6) \
761 ((v6)->_S6_un._S6_u32[3] = (v4)->s_addr, \
762 (v6)->_S6_un._S6_u32[2] = 0xffff0000U, \
763 (v6)->_S6_un._S6_u32[1] = 0, \
764 (v6)->_S6_un._S6_u32[0] = 0)
765 #define IN6_IPADDR_TO_V4MAPPED(v4, v6) \
766 ((v6)->_S6_un._S6_u32[3] = (v4), \
767 (v6)->_S6_un._S6_u32[2] = 0xffff0000U, \
768 (v6)->_S6_un._S6_u32[1] = 0, \
769 (v6)->_S6_un._S6_u32[0] = 0)
770 #endif /* _BIG_ENDIAN */

772 /*
773 * IN6_6TO4_TO_V4ADDR
774 * Extract the embedded IPv4 address from the prefix to a 6to4 IPv6
775 * address.
776 * Note: This macro is NOT defined in RFC2553 or any other standard
777 * specification and is not a macro that portable applications should
778 * use.
779 * Note: we don’t use the IPADDR form of the macro because we need
780 * to do a bytewise copy; the V4ADDR in the 6to4 address is not
781 * 32-bit aligned.

new/usr/src/uts/common/netinet/in.h 11

782 *
783 * void IN6_6TO4_TO_V4ADDR(const in6_addr_t *v6, struct in_addr *v4);
784 *
785 */
786 #define IN6_6TO4_TO_V4ADDR(v6, v4) \
787 ((v4)->_S_un._S_un_b.s_b1 = (v6)->_S6_un._S6_u8[2], \
788 (v4)->_S_un._S_un_b.s_b2 = (v6)->_S6_un._S6_u8[3], \
789 (v4)->_S_un._S_un_b.s_b3 = (v6)->_S6_un._S6_u8[4], \
790 (v4)->_S_un._S_un_b.s_b4 = (v6)->_S6_un._S6_u8[5])

792 /*
793 * IN6_V4ADDR_TO_6TO4
794 * Given an IPv4 address and an IPv6 address for output, a 6to4 address
795 * will be created from the IPv4 Address.
796 * Note: This method for creating 6to4 addresses is not standardized
797 * outside of Solaris. The newly created 6to4 address will be of the form
798 * 2002:<V4ADDR>:<SUBNETID>::<HOSTID>, where SUBNETID will equal 0 and
799 * HOSTID will equal 1.
800 *
801 * void IN6_V4ADDR_TO_6TO4(const struct in_addr *v4, in6_addr_t *v6)
802 *
803 */
804 #ifdef _BIG_ENDIAN
805 #define IN6_V4ADDR_TO_6TO4(v4, v6) \
806 ((v6)->_S6_un._S6_u8[0] = 0x20, \
807 (v6)->_S6_un._S6_u8[1] = 0x02, \
808 (v6)->_S6_un._S6_u8[2] = (v4)->_S_un._S_un_b.s_b1, \
809 (v6)->_S6_un._S6_u8[3] = (v4)->_S_un._S_un_b.s_b2, \
810 (v6)->_S6_un._S6_u8[4] = (v4)->_S_un._S_un_b.s_b3, \
811 (v6)->_S6_un._S6_u8[5] = (v4)->_S_un._S_un_b.s_b4, \
812 (v6)->_S6_un._S6_u8[6] = 0, \
813 (v6)->_S6_un._S6_u8[7] = 0, \
814 (v6)->_S6_un._S6_u32[2] = 0, \
815 (v6)->_S6_un._S6_u32[3] = 0x00000001U)
816 #else
817 #define IN6_V4ADDR_TO_6TO4(v4, v6) \
818 ((v6)->_S6_un._S6_u8[0] = 0x20, \
819 (v6)->_S6_un._S6_u8[1] = 0x02, \
820 (v6)->_S6_un._S6_u8[2] = (v4)->_S_un._S_un_b.s_b1, \
821 (v6)->_S6_un._S6_u8[3] = (v4)->_S_un._S_un_b.s_b2, \
822 (v6)->_S6_un._S6_u8[4] = (v4)->_S_un._S_un_b.s_b3, \
823 (v6)->_S6_un._S6_u8[5] = (v4)->_S_un._S_un_b.s_b4, \
824 (v6)->_S6_un._S6_u8[6] = 0, \
825 (v6)->_S6_un._S6_u8[7] = 0, \
826 (v6)->_S6_un._S6_u32[2] = 0, \
827 (v6)->_S6_un._S6_u32[3] = 0x01000000U)
828 #endif /* _BIG_ENDIAN */

830 /*
831 * IN6_ARE_ADDR_EQUAL (defined in RFC2292)
832 * Compares if IPv6 addresses are equal.
833 * Note: Compares in order of high likelyhood of a miss so we minimize
834 * compares. (Current heuristic order, compare in reverse order of
835 * uint32_t units)
836 *
837 * bool IN6_ARE_ADDR_EQUAL(const struct in6_addr *,
838 * const struct in6_addr *);
839 */
840 #define IN6_ARE_ADDR_EQUAL(addr1, addr2) \
841 (((addr1)->_S6_un._S6_u32[3] == (addr2)->_S6_un._S6_u32[3]) && \
842 ((addr1)->_S6_un._S6_u32[2] == (addr2)->_S6_un._S6_u32[2]) && \
843 ((addr1)->_S6_un._S6_u32[1] == (addr2)->_S6_un._S6_u32[1]) && \
844 ((addr1)->_S6_un._S6_u32[0] == (addr2)->_S6_un._S6_u32[0]))

846 /*
847 * IN6_ARE_PREFIXEDADDR_EQUAL (not defined in RFCs)

new/usr/src/uts/common/netinet/in.h 12

848 * Compares if prefixed parts of IPv6 addresses are equal.
849 *
850 * uint32_t IN6_MASK_FROM_PREFIX(int, int);
851 * bool IN6_ARE_PREFIXEDADDR_EQUAL(const struct in6_addr *,
852 * const struct in6_addr *,
853 * int);
854 */
855 #define IN6_MASK_FROM_PREFIX(qoctet, prefix) \
856 ((((qoctet) + 1) * 32 < (prefix)) ? 0xFFFFFFFFu : \
857 ((((qoctet) * 32) >= (prefix)) ? 0x00000000u : \
858 0xFFFFFFFFu << (((qoctet) + 1) * 32 - (prefix))))

860 #define IN6_ARE_PREFIXEDADDR_EQUAL(addr1, addr2, prefix) \
861 (((ntohl((addr1)->_S6_un._S6_u32[0]) & \
862 IN6_MASK_FROM_PREFIX(0, prefix)) == \
863 (ntohl((addr2)->_S6_un._S6_u32[0]) & \
864 IN6_MASK_FROM_PREFIX(0, prefix))) && \
865 ((ntohl((addr1)->_S6_un._S6_u32[1]) & \
866 IN6_MASK_FROM_PREFIX(1, prefix)) == \
867 (ntohl((addr2)->_S6_un._S6_u32[1]) & \
868 IN6_MASK_FROM_PREFIX(1, prefix))) && \
869 ((ntohl((addr1)->_S6_un._S6_u32[2]) & \
870 IN6_MASK_FROM_PREFIX(2, prefix)) == \
871 (ntohl((addr2)->_S6_un._S6_u32[2]) & \
872 IN6_MASK_FROM_PREFIX(2, prefix))) && \
873 ((ntohl((addr1)->_S6_un._S6_u32[3]) & \
874 IN6_MASK_FROM_PREFIX(3, prefix)) == \
875 (ntohl((addr2)->_S6_un._S6_u32[3]) & \
876 IN6_MASK_FROM_PREFIX(3, prefix))))

878 #endif /* !defined(_XPG4_2) || defined(_XPG6) || defined(__EXTENSIONS__) */

881 /*
882 * Options for use with [gs]etsockopt at the IP level.
883 *
884 * Note: Some of the IP_ namespace has conflict with and
885 * and is exposed through <xti.h>. (It also requires exposing
886 * options not implemented). The options with potential
887 * for conflicts use #ifndef guards.
888 */
889 #ifndef IP_OPTIONS
890 #define IP_OPTIONS 1 /* set/get IP per-packet options */
891 #endif

893 #define IP_HDRINCL 2 /* int; header is included with data (raw) */

895 #ifndef IP_TOS
896 #define IP_TOS 3 /* int; IP type of service and precedence */
897 #endif

899 #ifndef IP_TTL
900 #define IP_TTL 4 /* int; IP time to live */
901 #endif

903 #define IP_RECVOPTS 0x5 /* int; receive all IP options w/datagram */
904 #define IP_RECVRETOPTS 0x6 /* int; receive IP options for response */
905 #define IP_RECVDSTADDR 0x7 /* int; receive IP dst addr w/datagram */
906 #define IP_RETOPTS 0x8 /* ip_opts; set/get IP per-packet options */
907 #define IP_RECVIF 0x9 /* int; receive the inbound interface index */
908 #define IP_RECVSLLA 0xa /* sockaddr_dl; get source link layer address */
909 #define IP_RECVTTL 0xb /* uint8_t; get TTL for inbound packet */

911 #define IP_MULTICAST_IF 0x10 /* set/get IP multicast interface */
912 #define IP_MULTICAST_TTL 0x11 /* set/get IP multicast timetolive */
913 #define IP_MULTICAST_LOOP 0x12 /* set/get IP multicast loopback */

new/usr/src/uts/common/netinet/in.h 13

914 #define IP_ADD_MEMBERSHIP 0x13 /* add an IP group membership */
915 #define IP_DROP_MEMBERSHIP 0x14 /* drop an IP group membership */
916 #define IP_BLOCK_SOURCE 0x15 /* block mcast pkts from source */
917 #define IP_UNBLOCK_SOURCE 0x16 /* unblock mcast pkts from source */
918 #define IP_ADD_SOURCE_MEMBERSHIP 0x17 /* add mcast group/source pair */
919 #define IP_DROP_SOURCE_MEMBERSHIP 0x18 /* drop mcast group/source pair */
920 #define IP_NEXTHOP 0x19 /* send directly to next hop */
921 /*
922 * IP_PKTINFO and IP_RECVPKTINFO have same value. Size of argument passed in
923 * is used to differentiate b/w the two.
924 */
925 #define IP_PKTINFO 0x1a /* specify src address and/or index */
926 #define IP_RECVPKTINFO 0x1a /* recv dest/matched addr and index */
927 #define IP_DONTFRAG 0x1b /* don’t fragment packets */

929 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
930 /*
931 * Different preferences that can be requested from IPSEC protocols.
932 */
933 #define IP_SEC_OPT 0x22 /* Used to set IPSEC options */
934 #define IPSEC_PREF_NEVER 0x01
935 #define IPSEC_PREF_REQUIRED 0x02
936 #define IPSEC_PREF_UNIQUE 0x04
937 /*
938 * This can be used with the setsockopt() call to set per socket security
939 * options. When the application uses per-socket API, we will reflect
940 * the request on both outbound and inbound packets.
941 */

943 typedef struct ipsec_req {
944 uint_t ipsr_ah_req; /* AH request */
945 uint_t ipsr_esp_req; /* ESP request */
946 uint_t ipsr_self_encap_req; /* Self-Encap request */
947 uint8_t ipsr_auth_alg; /* Auth algs for AH */
948 uint8_t ipsr_esp_alg; /* Encr algs for ESP */
949 uint8_t ipsr_esp_auth_alg; /* Auth algs for ESP */
950 } ipsec_req_t;

952 /*
953 * MCAST_* options are protocol-independent. The actual definitions
954 * are with the v6 options below; this comment is here to note the
955 * namespace usage.
956 *
957 * #define MCAST_JOIN_GROUP 0x29
958 * #define MCAST_LEAVE_GROUP 0x2a
959 * #define MCAST_BLOCK_SOURCE 0x2b
960 * #define MCAST_UNBLOCK_SOURCE 0x2c
961 * #define MCAST_JOIN_SOURCE_GROUP 0x2d
962 * #define MCAST_LEAVE_SOURCE_GROUP 0x2e
963 */
964 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

966 /*
967 * SunOS private (potentially not portable) IP_ option names
968 */
969 #define IP_BOUND_IF 0x41 /* bind socket to an ifindex */
970 #define IP_UNSPEC_SRC 0x42 /* use unspecified source address */
971 #define IP_BROADCAST_TTL 0x43 /* use specific TTL for broadcast */
972 /* can be reused 0x44 */
973 #define IP_DHCPINIT_IF 0x45 /* accept all unicast DHCP traffic */

975 /*
976 * Option values and names (when !_XPG5) shared with <xti_inet.h>
977 */
978 #ifndef IP_REUSEADDR
979 #define IP_REUSEADDR 0x104

new/usr/src/uts/common/netinet/in.h 14

980 #endif

982 #ifndef IP_DONTROUTE
983 #define IP_DONTROUTE 0x105
984 #endif

986 #ifndef IP_BROADCAST
987 #define IP_BROADCAST 0x106
988 #endif

990 /*
991 * The following option values are reserved by <xti_inet.h>
992 *
993 * T_IP_OPTIONS 0x107 - IP per-packet options
994 * T_IP_TOS 0x108 - IP per packet type of service
995 */

997 /*
998 * Default value constants for multicast attributes controlled by
999 * IP*_MULTICAST_LOOP and IP*_MULTICAST_{TTL,HOPS} options.

1000 */
1001 #define IP_DEFAULT_MULTICAST_TTL 1 /* normally limit m’casts to 1 hop */
1002 #define IP_DEFAULT_MULTICAST_LOOP 1 /* normally hear sends if a member */

1004 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
1005 /*
1006 * Argument structure for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP.
1007 */
1008 struct ip_mreq {
1009 struct in_addr imr_multiaddr; /* IP multicast address of group */
1010 struct in_addr imr_interface; /* local IP address of interface */
1011 };

1013 /*
1014 * Argument structure for IP_BLOCK_SOURCE, IP_UNBLOCK_SOURCE,
1015 * IP_ADD_SOURCE_MEMBERSHIP, and IP_DROP_SOURCE_MEMBERSHIP.
1016 */
1017 struct ip_mreq_source {
1018 struct in_addr imr_multiaddr; /* IP address of group */
1019 struct in_addr imr_sourceaddr; /* IP address of source */
1020 struct in_addr imr_interface; /* IP address of interface */
1021 };

1023 /*
1024 * Argument structure for IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP on
1025 * IPv6 addresses.
1026 */
1027 struct ipv6_mreq {
1028 struct in6_addr ipv6mr_multiaddr; /* IPv6 multicast addr */
1029 unsigned int ipv6mr_interface; /* interface index */
1030 };

1032 /*
1033 * Use #pragma pack() construct to force 32-bit alignment on amd64.
1034 * This is needed to keep the structure size and offsets consistent
1035 * between a 32-bit app and the 64-bit amd64 kernel in structures
1036 * where 64-bit alignment would create gaps (in this case, structures
1037 * which have a uint32_t followed by a struct sockaddr_storage).
1038 */
1039 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1040 #pragma pack(4)
1041 #endif

1043 /*
1044 * Argument structure for MCAST_JOIN_GROUP and MCAST_LEAVE_GROUP.
1045 */

new/usr/src/uts/common/netinet/in.h 15

1046 struct group_req {
1047 uint32_t gr_interface; /* interface index */
1048 struct sockaddr_storage gr_group; /* group address */
1049 };

1051 /*
1052 * Argument structure for MCAST_BLOCK_SOURCE, MCAST_UNBLOCK_SOURCE,
1053 * MCAST_JOIN_SOURCE_GROUP, MCAST_LEAVE_SOURCE_GROUP.
1054 */
1055 struct group_source_req {
1056 uint32_t gsr_interface; /* interface index */
1057 struct sockaddr_storage gsr_group; /* group address */
1058 struct sockaddr_storage gsr_source; /* source address */
1059 };

1061 /*
1062 * Argument for SIOC[GS]MSFILTER ioctls
1063 */
1064 struct group_filter {
1065 uint32_t gf_interface; /* interface index */
1066 struct sockaddr_storage gf_group; /* multicast address */
1067 uint32_t gf_fmode; /* filter mode */
1068 uint32_t gf_numsrc; /* number of sources */
1069 struct sockaddr_storage gf_slist[1]; /* source address */
1070 };

1072 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1073 #pragma pack()
1074 #endif

1076 #define GROUP_FILTER_SIZE(numsrc) \
1077 (sizeof (struct group_filter) - sizeof (struct sockaddr_storage) \
1078 + (numsrc) * sizeof (struct sockaddr_storage))

1080 /*
1081 * Argument for SIOC[GS]IPMSFILTER ioctls (IPv4-specific)
1082 */
1083 struct ip_msfilter {
1084 struct in_addr imsf_multiaddr; /* IP multicast address of group */
1085 struct in_addr imsf_interface; /* local IP address of interface */
1086 uint32_t imsf_fmode; /* filter mode */
1087 uint32_t imsf_numsrc; /* number of sources in src_list */
1088 struct in_addr imsf_slist[1]; /* start of source list */
1089 };

1091 #define IP_MSFILTER_SIZE(numsrc) \
1092 (sizeof (struct ip_msfilter) - sizeof (struct in_addr) \
1093 + (numsrc) * sizeof (struct in_addr))

1095 /*
1096 * Multicast source filter manipulation functions in libsocket;
1097 * defined in RFC 3678.
1098 */
1099 int setsourcefilter(int, uint32_t, struct sockaddr *, socklen_t, uint32_t,
1100 uint_t, struct sockaddr_storage *);

1102 int getsourcefilter(int, uint32_t, struct sockaddr *, socklen_t, uint32_t *,
1103 uint_t *, struct sockaddr_storage *);

1105 int setipv4sourcefilter(int, struct in_addr, struct in_addr, uint32_t,
1106 uint32_t, struct in_addr *);

1108 int getipv4sourcefilter(int, struct in_addr, struct in_addr, uint32_t *,
1109 uint32_t *, struct in_addr *);

1111 /*

new/usr/src/uts/common/netinet/in.h 16

1112 * Definitions needed for [gs]etsourcefilter(), [gs]etipv4sourcefilter()
1113 */
1114 #define MCAST_INCLUDE 1
1115 #define MCAST_EXCLUDE 2

1117 /*
1118 * Argument struct for IP_PKTINFO option
1119 */
1120 typedef struct in_pktinfo {
1121 unsigned int ipi_ifindex; /* send/recv interface index */
1122 struct in_addr ipi_spec_dst; /* matched source address */
1123 struct in_addr ipi_addr; /* src/dst address in IP hdr */
1124 } in_pktinfo_t;

1126 /*
1127 * Argument struct for IPV6_PKTINFO option
1128 */
1129 struct in6_pktinfo {
1130 struct in6_addr ipi6_addr; /* src/dst IPv6 address */
1131 unsigned int ipi6_ifindex; /* send/recv interface index */
1132 };

1134 /*
1135 * Argument struct for IPV6_MTUINFO option
1136 */
1137 struct ip6_mtuinfo {
1138 struct sockaddr_in6 ip6m_addr; /* dst address including zone ID */
1139 uint32_t ip6m_mtu; /* path MTU in host byte order */
1140 };

1142 /*
1143 * IPv6 routing header types
1144 */
1145 #define IPV6_RTHDR_TYPE_0 0

1147 extern socklen_t inet6_rth_space(int type, int segments);
1148 extern void *inet6_rth_init(void *bp, socklen_t bp_len, int type, int segments);
1149 extern int inet6_rth_add(void *bp, const struct in6_addr *addr);
1150 extern int inet6_rth_reverse(const void *in, void *out);
1151 extern int inet6_rth_segments(const void *bp);
1152 extern struct in6_addr *inet6_rth_getaddr(const void *bp, int index);

1154 extern int inet6_opt_init(void *extbuf, socklen_t extlen);
1155 extern int inet6_opt_append(void *extbuf, socklen_t extlen, int offset,
1156 uint8_t type, socklen_t len, uint_t align, void **databufp);
1157 extern int inet6_opt_finish(void *extbuf, socklen_t extlen, int offset);
1158 extern int inet6_opt_set_val(void *databuf, int offset, void *val,
1159 socklen_t vallen);
1160 extern int inet6_opt_next(void *extbuf, socklen_t extlen, int offset,
1161 uint8_t *typep, socklen_t *lenp, void **databufp);
1162 extern int inet6_opt_find(void *extbufp, socklen_t extlen, int offset,
1163 uint8_t type, socklen_t *lenp, void **databufp);
1164 extern int inet6_opt_get_val(void *databuf, int offset, void *val,
1165 socklen_t vallen);
1166 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

1168 /*
1169 * Argument structure for IP_ADD_PROXY_ADDR.
1170 * Note that this is an unstable, experimental interface. It may change
1171 * later. Don’t use it unless you know what it is.
1172 */
1173 typedef struct {
1174 struct in_addr in_prefix_addr;
1175 unsigned int in_prefix_len;
1176 } in_prefix_t;

new/usr/src/uts/common/netinet/in.h 17

1179 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
1180 /*
1181 * IPv6 options
1182 */
1183 #define IPV6_UNICAST_HOPS 0x5 /* hop limit value for unicast */
1184 /* packets. */
1185 /* argument type: uint_t */
1186 #define IPV6_MULTICAST_IF 0x6 /* outgoing interface for */
1187 /* multicast packets. */
1188 /* argument type: struct in6_addr */
1189 #define IPV6_MULTICAST_HOPS 0x7 /* hop limit value to use for */
1190 /* multicast packets. */
1191 /* argument type: uint_t */
1192 #define IPV6_MULTICAST_LOOP 0x8 /* enable/disable delivery of */
1193 /* multicast packets on same socket. */
1194 /* argument type: uint_t */
1195 #define IPV6_JOIN_GROUP 0x9 /* join an IPv6 multicast group. */
1196 /* argument type: struct ipv6_mreq */
1197 #define IPV6_LEAVE_GROUP 0xa /* leave an IPv6 multicast group */
1198 /* argument type: struct ipv6_mreq */
1199 /*
1200 * IPV6_ADD_MEMBERSHIP and IPV6_DROP_MEMBERSHIP are being kept
1201 * for backward compatibility. They have the same meaning as IPV6_JOIN_GROUP
1202 * and IPV6_LEAVE_GROUP respectively.
1203 */
1204 #define IPV6_ADD_MEMBERSHIP 0x9 /* join an IPv6 multicast group. */
1205 /* argument type: struct ipv6_mreq */
1206 #define IPV6_DROP_MEMBERSHIP 0xa /* leave an IPv6 multicast group */
1207 /* argument type: struct ipv6_mreq */

1209 #define IPV6_PKTINFO 0xb /* addr plus interface index */
1210 /* arg type: "struct in6_pktingo" - */
1211 #define IPV6_HOPLIMIT 0xc /* hoplimit for datagram */
1212 #define IPV6_NEXTHOP 0xd /* next hop address */
1213 #define IPV6_HOPOPTS 0xe /* hop by hop options */
1214 #define IPV6_DSTOPTS 0xf /* destination options - after */
1215 /* the routing header */
1216 #define IPV6_RTHDR 0x10 /* routing header */
1217 #define IPV6_RTHDRDSTOPTS 0x11 /* destination options - before */
1218 /* the routing header */
1219 #define IPV6_RECVPKTINFO 0x12 /* enable/disable IPV6_PKTINFO */
1220 #define IPV6_RECVHOPLIMIT 0x13 /* enable/disable IPV6_HOPLIMIT */
1221 #define IPV6_RECVHOPOPTS 0x14 /* enable/disable IPV6_HOPOPTS */

1223 /*
1224 * This options exists for backwards compatability and should no longer be
1225 * used. Use IPV6_RECVDSTOPTS instead.
1226 */
1227 #define _OLD_IPV6_RECVDSTOPTS 0x15

1229 #define IPV6_RECVRTHDR 0x16 /* enable/disable IPV6_RTHDR */

1231 /*
1232 * enable/disable IPV6_RTHDRDSTOPTS. Now obsolete. IPV6_RECVDSTOPTS enables
1233 * the receipt of both headers.
1234 */
1235 #define IPV6_RECVRTHDRDSTOPTS 0x17

1237 #define IPV6_CHECKSUM 0x18 /* Control checksum on raw sockets */
1238 #define IPV6_RECVTCLASS 0x19 /* enable/disable IPV6_CLASS */
1239 #define IPV6_USE_MIN_MTU 0x20 /* send packets with minimum MTU */
1240 #define IPV6_DONTFRAG 0x21 /* don’t fragment packets */
1241 #define IPV6_SEC_OPT 0x22 /* Used to set IPSEC options */
1242 #define IPV6_SRC_PREFERENCES 0x23 /* Control socket’s src addr select */
1243 #define IPV6_RECVPATHMTU 0x24 /* receive PMTU info */

new/usr/src/uts/common/netinet/in.h 18

1244 #define IPV6_PATHMTU 0x25 /* get the PMTU */
1245 #define IPV6_TCLASS 0x26 /* traffic class */
1246 #define IPV6_V6ONLY 0x27 /* v6 only socket option */

1248 /*
1249 * enable/disable receipt of both both IPV6_DSTOPTS headers.
1250 */
1251 #define IPV6_RECVDSTOPTS 0x28

1253 /*
1254 * protocol-independent multicast membership options.
1255 */
1256 #define MCAST_JOIN_GROUP 0x29 /* join group for all sources */
1257 #define MCAST_LEAVE_GROUP 0x2a /* leave group */
1258 #define MCAST_BLOCK_SOURCE 0x2b /* block specified source */
1259 #define MCAST_UNBLOCK_SOURCE 0x2c /* unblock specified source */
1260 #define MCAST_JOIN_SOURCE_GROUP 0x2d /* join group for specified source */
1261 #define MCAST_LEAVE_SOURCE_GROUP 0x2e /* leave source/group pair */

1263 /* 32Bit field for IPV6_SRC_PREFERENCES */
1264 #define IPV6_PREFER_SRC_HOME 0x00000001
1265 #define IPV6_PREFER_SRC_COA 0x00000002
1266 #define IPV6_PREFER_SRC_PUBLIC 0x00000004
1267 #define IPV6_PREFER_SRC_TMP 0x00000008
1268 #define IPV6_PREFER_SRC_NONCGA 0x00000010
1269 #define IPV6_PREFER_SRC_CGA 0x00000020

1271 #define IPV6_PREFER_SRC_MIPMASK (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)
1272 #define IPV6_PREFER_SRC_MIPDEFAULT IPV6_PREFER_SRC_HOME
1273 #define IPV6_PREFER_SRC_TMPMASK (IPV6_PREFER_SRC_PUBLIC | IPV6_PREFER_SRC_TMP)
1274 #define IPV6_PREFER_SRC_TMPDEFAULT IPV6_PREFER_SRC_PUBLIC
1275 #define IPV6_PREFER_SRC_CGAMASK (IPV6_PREFER_SRC_NONCGA | IPV6_PREFER_SRC_CGA)
1276 #define IPV6_PREFER_SRC_CGADEFAULT IPV6_PREFER_SRC_NONCGA

1278 #define IPV6_PREFER_SRC_MASK (IPV6_PREFER_SRC_MIPMASK |\
1279 IPV6_PREFER_SRC_TMPMASK | IPV6_PREFER_SRC_CGAMASK)

1281 #define IPV6_PREFER_SRC_DEFAULT (IPV6_PREFER_SRC_MIPDEFAULT |\
1282 IPV6_PREFER_SRC_TMPDEFAULT | IPV6_PREFER_SRC_CGADEFAULT)

1284 /*
1285 * SunOS private (potentially not portable) IPV6_ option names
1286 */
1287 #define IPV6_BOUND_IF 0x41 /* bind to an ifindex */
1288 #define IPV6_UNSPEC_SRC 0x42 /* source of packets set to */
1289 /* unspecified (all zeros) */

1291 /*
1292 * Miscellaneous IPv6 constants.
1293 */
1294 #define INET_ADDRSTRLEN 16 /* max len IPv4 addr in ascii dotted */
1295 /* decimal notation. */
1296 #define INET6_ADDRSTRLEN 46 /* max len of IPv6 addr in ascii */
1297 /* standard colon-hex notation. */
1298 #define IPV6_PAD1_OPT 0 /* pad byte in IPv6 extension hdrs */

1300 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

1302 /*
1303 * Extern declarations for pre-defined global const variables
1304 */
1305 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
1306 #ifndef _KERNEL
1307 #ifdef __STDC__
1308 extern const struct in6_addr in6addr_any;
1309 extern const struct in6_addr in6addr_loopback;

new/usr/src/uts/common/netinet/in.h 19

1310 #else
1311 extern struct in6_addr in6addr_any;
1312 extern struct in6_addr in6addr_loopback;
1313 #endif
1314 #endif
1315 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

1317 #ifdef __cplusplus
1318 }
1319 #endif

1321 #endif /* _NETINET_IN_H */

new/usr/src/uts/common/sys/netstack.h 1

**
 9019 Sat Aug 18 10:37:23 2012
new/usr/src/uts/common/sys/netstack.h
dccp: starting module template
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 #ifndef _SYS_NETSTACK_H
27 #define _SYS_NETSTACK_H

29 #include <sys/kstat.h>

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 /*
36 * This allows various pieces in and around IP to have a separate instance
37 * for each instance of IP. This is used to support zones that have an
38 * exclusive stack.
39 * Pieces of software far removed from IP (e.g., kernel software
40 * sitting on top of TCP or UDP) probably should not use the netstack
41 * support; if such software wants to support separate zones it
42 * can do that using the zones framework (zone_key_create() etc)
43 * whether there is a shared IP stack or and exclusive IP stack underneath.
44 */

46 /*
47 * Each netstack has an identifier. We reuse the zoneid allocation for
48 * this but have a separate typedef. Thus the shared stack (used by
49 * the global zone and other shared stack zones) have a zero ID, and
50 * the exclusive stacks have a netstackid that is the same as their zoneid.
51 */
52 typedef id_t netstackid_t;

54 #define GLOBAL_NETSTACKID 0

56 /*
57 * One for each module which uses netstack support.
58 * Used in netstack_register().
59 *
60 * The order of these is important for some modules both for
61 * the creation (which done in ascending order) and destruction (which is

new/usr/src/uts/common/sys/netstack.h 2

62 * done in in decending order).
63 */
64 #define NS_ALL -1 /* Match all */
65 #define NS_DLS 0
66 #define NS_IPTUN 1
67 #define NS_STR 2 /* autopush list etc */
68 #define NS_HOOK 3
69 #define NS_NETI 4
70 #define NS_ARP 5
71 #define NS_IP 6
72 #define NS_ICMP 7
73 #define NS_UDP 8
74 #define NS_TCP 9
75 #define NS_SCTP 10
76 #define NS_RTS 11
77 #define NS_IPSEC 12
78 #define NS_KEYSOCK 13
79 #define NS_SPDSOCK 14
80 #define NS_IPSECAH 15
81 #define NS_IPSECESP 16
82 #define NS_IPNET 17
83 #define NS_ILB 18
84 #define NS_DCCP 19
85 #define NS_MAX (NS_DCCP+1)
84 #define NS_MAX (NS_ILB+1)

87 /*
88 * State maintained for each module which tracks the state of
89 * the create, shutdown and destroy callbacks.
90 *
91 * Keeps track of pending actions to avoid holding locks when
92 * calling into the create/shutdown/destroy functions in the module.
93 */
94 #ifdef _KERNEL
95 typedef struct {
96 uint16_t nms_flags;
97 kcondvar_t nms_cv;
98 } nm_state_t;

100 /*
101 * nms_flags
102 */
103 #define NSS_CREATE_NEEDED 0x0001
104 #define NSS_CREATE_INPROGRESS 0x0002
105 #define NSS_CREATE_COMPLETED 0x0004
106 #define NSS_SHUTDOWN_NEEDED 0x0010
107 #define NSS_SHUTDOWN_INPROGRESS 0x0020
108 #define NSS_SHUTDOWN_COMPLETED 0x0040
109 #define NSS_DESTROY_NEEDED 0x0100
110 #define NSS_DESTROY_INPROGRESS 0x0200
111 #define NSS_DESTROY_COMPLETED 0x0400

113 #define NSS_CREATE_ALL \
114 (NSS_CREATE_NEEDED|NSS_CREATE_INPROGRESS|NSS_CREATE_COMPLETED)
115 #define NSS_SHUTDOWN_ALL \
116 (NSS_SHUTDOWN_NEEDED|NSS_SHUTDOWN_INPROGRESS|NSS_SHUTDOWN_COMPLETED)
117 #define NSS_DESTROY_ALL \
118 (NSS_DESTROY_NEEDED|NSS_DESTROY_INPROGRESS|NSS_DESTROY_COMPLETED)

120 #define NSS_ALL_INPROGRESS \
121 (NSS_CREATE_INPROGRESS|NSS_SHUTDOWN_INPROGRESS|NSS_DESTROY_INPROGRESS)
122 #else
123 /* User-level compile like IP Filter needs a netstack_t. Dummy */
124 typedef uint_t nm_state_t;
125 #endif /* _KERNEL */

new/usr/src/uts/common/sys/netstack.h 3

127 /*
128 * One for every netstack in the system.
129 * We use a union so that the compilar and lint can provide type checking -
130 * in principle we could have
131 * #define netstack_arp netstack_modules[NS_ARP]
132 * etc, but that would imply void * types hence no type checking by the
133 * compiler.
134 *
135 * All the fields in netstack_t except netstack_next are protected by
136 * netstack_lock. netstack_next is protected by netstack_g_lock.
137 */
138 struct netstack {
139 union {
140 void *nu_modules[NS_MAX];
141 struct {
142 struct dls_stack *nu_dls;
143 struct iptun_stack *nu_iptun;
144 struct str_stack *nu_str;
145 struct hook_stack *nu_hook;
146 struct neti_stack *nu_neti;
147 struct arp_stack *nu_arp;
148 struct ip_stack *nu_ip;
149 struct icmp_stack *nu_icmp;
150 struct udp_stack *nu_udp;
151 struct tcp_stack *nu_tcp;
152 struct sctp_stack *nu_sctp;
153 struct rts_stack *nu_rts;
154 struct ipsec_stack *nu_ipsec;
155 struct keysock_stack *nu_keysock;
156 struct spd_stack *nu_spdsock;
157 struct ipsecah_stack *nu_ipsecah;
158 struct ipsecesp_stack *nu_ipsecesp;
159 struct ipnet_stack *nu_ipnet;
160 struct ilb_stack *nu_ilb;
161 struct dccp_stack *nu_dccp;
162 #endif /* ! codereview */
163 } nu_s;
164 } netstack_u;
165 #define netstack_modules netstack_u.nu_modules
166 #define netstack_dls netstack_u.nu_s.nu_dls
167 #define netstack_iptun netstack_u.nu_s.nu_iptun
168 #define netstack_str netstack_u.nu_s.nu_str
169 #define netstack_hook netstack_u.nu_s.nu_hook
170 #define netstack_neti netstack_u.nu_s.nu_neti
171 #define netstack_arp netstack_u.nu_s.nu_arp
172 #define netstack_ip netstack_u.nu_s.nu_ip
173 #define netstack_icmp netstack_u.nu_s.nu_icmp
174 #define netstack_udp netstack_u.nu_s.nu_udp
175 #define netstack_tcp netstack_u.nu_s.nu_tcp
176 #define netstack_sctp netstack_u.nu_s.nu_sctp
177 #define netstack_rts netstack_u.nu_s.nu_rts
178 #define netstack_ipsec netstack_u.nu_s.nu_ipsec
179 #define netstack_keysock netstack_u.nu_s.nu_keysock
180 #define netstack_spdsock netstack_u.nu_s.nu_spdsock
181 #define netstack_ipsecah netstack_u.nu_s.nu_ipsecah
182 #define netstack_ipsecesp netstack_u.nu_s.nu_ipsecesp
183 #define netstack_ipnet netstack_u.nu_s.nu_ipnet
184 #define netstack_ilb netstack_u.nu_s.nu_ilb
185 #define netstack_dccp netstack_u.nu_s.nu_dccp
186 #endif /* ! codereview */

188 nm_state_t netstack_m_state[NS_MAX]; /* module state */

190 kmutex_t netstack_lock;
191 struct netstack *netstack_next;
192 netstackid_t netstack_stackid;

new/usr/src/uts/common/sys/netstack.h 4

193 int netstack_numzones; /* Number of zones using this */
194 int netstack_refcnt; /* Number of hold-rele */
195 int netstack_flags; /* See below */

197 #ifdef _KERNEL
198 /* Needed to ensure that we run the callback functions in order */
199 kcondvar_t netstack_cv;
200 #endif
201 };
202 typedef struct netstack netstack_t;

204 /* netstack_flags values */
205 #define NSF_UNINIT 0x01 /* Not initialized */
206 #define NSF_CLOSING 0x02 /* Going away */
207 #define NSF_ZONE_CREATE 0x04 /* create callbacks inprog */
208 #define NSF_ZONE_SHUTDOWN 0x08 /* shutdown callbacks */
209 #define NSF_ZONE_DESTROY 0x10 /* destroy callbacks */

211 #define NSF_ZONE_INPROGRESS \
212 (NSF_ZONE_CREATE|NSF_ZONE_SHUTDOWN|NSF_ZONE_DESTROY)

214 /*
215 * One for each of the NS_* values.
216 */
217 struct netstack_registry {
218 int nr_flags; /* 0 if nothing registered */
219 void *(*nr_create)(netstackid_t, netstack_t *);
220 void (*nr_shutdown)(netstackid_t, void *);
221 void (*nr_destroy)(netstackid_t, void *);
222 };

224 /* nr_flags values */
225 #define NRF_REGISTERED 0x01
226 #define NRF_DYING 0x02 /* No new creates */

228 /*
229 * To support kstat_create_netstack() using kstat_add_zone we need
230 * to track both
231 * - all zoneids that use the global/shared stack
232 * - all kstats that have been added for the shared stack
233 */

235 extern void netstack_init(void);
236 extern void netstack_hold(netstack_t *);
237 extern void netstack_rele(netstack_t *);
238 extern netstack_t *netstack_find_by_cred(const cred_t *);
239 extern netstack_t *netstack_find_by_stackid(netstackid_t);
240 extern netstack_t *netstack_find_by_zoneid(zoneid_t);

242 extern zoneid_t netstackid_to_zoneid(netstackid_t);
243 extern zoneid_t netstack_get_zoneid(netstack_t *);
244 extern netstackid_t zoneid_to_netstackid(zoneid_t);

246 extern netstack_t *netstack_get_current(void);

248 /*
249 * Register interest in changes to the set of netstacks.
250 * The createfn and destroyfn are required, but the shutdownfn can be
251 * NULL.
252 * Note that due to the current zsd implementation, when the create
253 * function is called the zone isn’t fully present, thus functions
254 * like zone_find_by_* will fail, hence the create function can not
255 * use many zones kernel functions including zcmn_err().
256 */
257 extern void netstack_register(int,
258 void *(*)(netstackid_t, netstack_t *),

new/usr/src/uts/common/sys/netstack.h 5

259 void (*)(netstackid_t, void *),
260 void (*)(netstackid_t, void *));
261 extern void netstack_unregister(int);
262 extern kstat_t *kstat_create_netstack(char *, int, char *, char *, uchar_t,
263 uint_t, uchar_t, netstackid_t);
264 extern void kstat_delete_netstack(kstat_t *, netstackid_t);

266 /*
267 * Simple support for walking all the netstacks.
268 * The caller of netstack_next() needs to call netstack_rele() when
269 * done with a netstack.
270 */
271 typedef int netstack_handle_t;

273 extern void netstack_next_init(netstack_handle_t *);
274 extern void netstack_next_fini(netstack_handle_t *);
275 extern netstack_t *netstack_next(netstack_handle_t *);

277 #ifdef __cplusplus
278 }
279 #endif

282 #endif /* _SYS_NETSTACK_H */

new/usr/src/uts/common/sys/sdt.h 1

**
 16746 Sat Aug 18 10:37:23 2012
new/usr/src/uts/common/sys/sdt.h
dccp: connect
**
______unchanged_portion_omitted_

141 #define DTRACE_SCHED(name) \
142 DTRACE_PROBE(__sched_##name);

144 #define DTRACE_SCHED1(name, type1, arg1) \
145 DTRACE_PROBE1(__sched_##name, type1, arg1);

147 #define DTRACE_SCHED2(name, type1, arg1, type2, arg2) \
148 DTRACE_PROBE2(__sched_##name, type1, arg1, type2, arg2);

150 #define DTRACE_SCHED3(name, type1, arg1, type2, arg2, type3, arg3) \
151 DTRACE_PROBE3(__sched_##name, type1, arg1, type2, arg2, type3, arg3);

153 #define DTRACE_SCHED4(name, type1, arg1, type2, arg2, \
154 type3, arg3, type4, arg4) \
155 DTRACE_PROBE4(__sched_##name, type1, arg1, type2, arg2, \
156 type3, arg3, type4, arg4);

158 #define DTRACE_PROC(name) \
159 DTRACE_PROBE(__proc_##name);

161 #define DTRACE_PROC1(name, type1, arg1) \
162 DTRACE_PROBE1(__proc_##name, type1, arg1);

164 #define DTRACE_PROC2(name, type1, arg1, type2, arg2) \
165 DTRACE_PROBE2(__proc_##name, type1, arg1, type2, arg2);

167 #define DTRACE_PROC3(name, type1, arg1, type2, arg2, type3, arg3) \
168 DTRACE_PROBE3(__proc_##name, type1, arg1, type2, arg2, type3, arg3);

170 #define DTRACE_PROC4(name, type1, arg1, type2, arg2, \
171 type3, arg3, type4, arg4) \
172 DTRACE_PROBE4(__proc_##name, type1, arg1, type2, arg2, \
173 type3, arg3, type4, arg4);

175 #define DTRACE_IO(name) \
176 DTRACE_PROBE(__io_##name);

178 #define DTRACE_IO1(name, type1, arg1) \
179 DTRACE_PROBE1(__io_##name, type1, arg1);

181 #define DTRACE_IO2(name, type1, arg1, type2, arg2) \
182 DTRACE_PROBE2(__io_##name, type1, arg1, type2, arg2);

184 #define DTRACE_IO3(name, type1, arg1, type2, arg2, type3, arg3) \
185 DTRACE_PROBE3(__io_##name, type1, arg1, type2, arg2, type3, arg3);

187 #define DTRACE_IO4(name, type1, arg1, type2, arg2, \
188 type3, arg3, type4, arg4) \
189 DTRACE_PROBE4(__io_##name, type1, arg1, type2, arg2, \
190 type3, arg3, type4, arg4);

192 #define DTRACE_ISCSI_2(name, type1, arg1, type2, arg2) \
193 DTRACE_PROBE2(__iscsi_##name, type1, arg1, type2, arg2);

195 #define DTRACE_ISCSI_3(name, type1, arg1, type2, arg2, type3, arg3) \
196 DTRACE_PROBE3(__iscsi_##name, type1, arg1, type2, arg2, type3, arg3);

198 #define DTRACE_ISCSI_4(name, type1, arg1, type2, arg2, \
199 type3, arg3, type4, arg4) \

new/usr/src/uts/common/sys/sdt.h 2

200 DTRACE_PROBE4(__iscsi_##name, type1, arg1, type2, arg2, \
201 type3, arg3, type4, arg4);

203 #define DTRACE_ISCSI_5(name, type1, arg1, type2, arg2, \
204 type3, arg3, type4, arg4, type5, arg5) \
205 DTRACE_PROBE5(__iscsi_##name, type1, arg1, type2, arg2, \
206 type3, arg3, type4, arg4, type5, arg5);

208 #define DTRACE_ISCSI_6(name, type1, arg1, type2, arg2, \
209 type3, arg3, type4, arg4, type5, arg5, type6, arg6) \
210 DTRACE_PROBE6(__iscsi_##name, type1, arg1, type2, arg2, \
211 type3, arg3, type4, arg4, type5, arg5, type6, arg6);

213 #define DTRACE_ISCSI_7(name, type1, arg1, type2, arg2, \
214 type3, arg3, type4, arg4, type5, arg5, type6, arg6, type7, arg7) \
215 DTRACE_PROBE7(__iscsi_##name, type1, arg1, type2, arg2, \
216 type3, arg3, type4, arg4, type5, arg5, type6, arg6, \
217 type7, arg7);

219 #define DTRACE_ISCSI_8(name, type1, arg1, type2, arg2, \
220 type3, arg3, type4, arg4, type5, arg5, type6, arg6, \
221 type7, arg7, type8, arg8) \
222 DTRACE_PROBE8(__iscsi_##name, type1, arg1, type2, arg2, \
223 type3, arg3, type4, arg4, type5, arg5, type6, arg6, \
224 type7, arg7, type8, arg8);

226 #define DTRACE_NFSV3_3(name, type1, arg1, type2, arg2, \
227 type3, arg3) \
228 DTRACE_PROBE3(__nfsv3_##name, type1, arg1, type2, arg2, \
229 type3, arg3);
230 #define DTRACE_NFSV3_4(name, type1, arg1, type2, arg2, \
231 type3, arg3, type4, arg4) \
232 DTRACE_PROBE4(__nfsv3_##name, type1, arg1, type2, arg2, \
233 type3, arg3, type4, arg4);

235 #define DTRACE_NFSV4_1(name, type1, arg1) \
236 DTRACE_PROBE1(__nfsv4_##name, type1, arg1);

238 #define DTRACE_NFSV4_2(name, type1, arg1, type2, arg2) \
239 DTRACE_PROBE2(__nfsv4_##name, type1, arg1, type2, arg2);

241 #define DTRACE_NFSV4_3(name, type1, arg1, type2, arg2, type3, arg3) \
242 DTRACE_PROBE3(__nfsv4_##name, type1, arg1, type2, arg2, type3, arg3);

244 #define DTRACE_SMB_1(name, type1, arg1) \
245 DTRACE_PROBE1(__smb_##name, type1, arg1);

247 #define DTRACE_SMB_2(name, type1, arg1, type2, arg2) \
248 DTRACE_PROBE2(__smb_##name, type1, arg1, type2, arg2);

250 #define DTRACE_IP(name) \
251 DTRACE_PROBE(__ip_##name);

253 #define DTRACE_IP1(name, type1, arg1) \
254 DTRACE_PROBE1(__ip_##name, type1, arg1);

256 #define DTRACE_IP2(name, type1, arg1, type2, arg2) \
257 DTRACE_PROBE2(__ip_##name, type1, arg1, type2, arg2);

259 #define DTRACE_IP3(name, type1, arg1, type2, arg2, type3, arg3) \
260 DTRACE_PROBE3(__ip_##name, type1, arg1, type2, arg2, type3, arg3);

262 #define DTRACE_IP4(name, type1, arg1, type2, arg2, \
263 type3, arg3, type4, arg4) \
264 DTRACE_PROBE4(__ip_##name, type1, arg1, type2, arg2, \
265 type3, arg3, type4, arg4);

new/usr/src/uts/common/sys/sdt.h 3

267 #define DTRACE_IP5(name, type1, arg1, type2, arg2, \
268 type3, arg3, type4, arg4, type5, arg5) \
269 DTRACE_PROBE5(__ip_##name, type1, arg1, type2, arg2, \
270 type3, arg3, type4, arg4, type5, arg5);

272 #define DTRACE_IP6(name, type1, arg1, type2, arg2, \
273 type3, arg3, type4, arg4, type5, arg5, type6, arg6) \
274 DTRACE_PROBE6(__ip_##name, type1, arg1, type2, arg2, \
275 type3, arg3, type4, arg4, type5, arg5, type6, arg6);

277 #define DTRACE_IP7(name, type1, arg1, type2, arg2, type3, arg3, \
278 type4, arg4, type5, arg5, type6, arg6, type7, arg7) \
279 DTRACE_PROBE7(__ip_##name, type1, arg1, type2, arg2, \
280 type3, arg3, type4, arg4, type5, arg5, type6, arg6, \
281 type7, arg7);

283 #define DTRACE_TCP(name) \
284 DTRACE_PROBE(__tcp_##name);

286 #define DTRACE_TCP1(name, type1, arg1) \
287 DTRACE_PROBE1(__tcp_##name, type1, arg1);

289 #define DTRACE_TCP2(name, type1, arg1, type2, arg2) \
290 DTRACE_PROBE2(__tcp_##name, type1, arg1, type2, arg2);

292 #define DTRACE_TCP3(name, type1, arg1, type2, arg2, type3, arg3) \
293 DTRACE_PROBE3(__tcp_##name, type1, arg1, type2, arg2, type3, arg3);

295 #define DTRACE_TCP4(name, type1, arg1, type2, arg2, \
296 type3, arg3, type4, arg4) \
297 DTRACE_PROBE4(__tcp_##name, type1, arg1, type2, arg2, \
298 type3, arg3, type4, arg4);

300 #define DTRACE_TCP5(name, type1, arg1, type2, arg2, \
301 type3, arg3, type4, arg4, type5, arg5) \
302 DTRACE_PROBE5(__tcp_##name, type1, arg1, type2, arg2, \
303 type3, arg3, type4, arg4, type5, arg5);

305 #define DTRACE_TCP6(name, type1, arg1, type2, arg2, \
306 type3, arg3, type4, arg4, type5, arg5, type6, arg6) \
307 DTRACE_PROBE6(__tcp_##name, type1, arg1, type2, arg2, \
308 type3, arg3, type4, arg4, type5, arg5, type6, arg6);

310 #define DTRACE_UDP(name) \
311 DTRACE_PROBE(__udp_##name);

313 #define DTRACE_UDP1(name, type1, arg1) \
314 DTRACE_PROBE1(__udp_##name, type1, arg1);

316 #define DTRACE_UDP2(name, type1, arg1, type2, arg2) \
317 DTRACE_PROBE2(__udp_##name, type1, arg1, type2, arg2);

319 #define DTRACE_UDP3(name, type1, arg1, type2, arg2, type3, arg3) \
320 DTRACE_PROBE3(__udp_##name, type1, arg1, type2, arg2, type3, arg3);

322 #define DTRACE_UDP4(name, type1, arg1, type2, arg2, \
323 type3, arg3, type4, arg4) \
324 DTRACE_PROBE4(__udp_##name, type1, arg1, type2, arg2, \
325 type3, arg3, type4, arg4);

327 #define DTRACE_UDP5(name, type1, arg1, type2, arg2, \
328 type3, arg3, type4, arg4, type5, arg5) \
329 DTRACE_PROBE5(__udp_##name, type1, arg1, type2, arg2, \
330 type3, arg3, type4, arg4, type5, arg5);

new/usr/src/uts/common/sys/sdt.h 4

332 #define DTRACE_DCCP(name) \
333 DTRACE_PROBE(__dccp_##name);

335 #define DTRACE_DCCP1(name, type1, arg1) \
336 DTRACE_PROBE1(__dccp_##name, type1, arg1);

338 #define DTRACE_DCCP2(name, type1, arg1, type2, arg2) \
339 DTRACE_PROBE2(__dccp_##name, type1, arg1, type2, arg2);

341 #define DTRACE_DCCP3(name, type1, arg1, type2, arg2, type3, arg3) \
342 DTRACE_PROBE3(__dccp_##name, type1, arg1, type2, arg2, type3, arg3);

344 #define DTRACE_DCCP4(name, type1, arg1, type2, arg2, \
345 type3, arg3, type4, arg4) \
346 DTRACE_PROBE4(__dccp_##name, type1, arg1, type2, arg2, \
347 type3, arg3, type4, arg4);

349 #define DTRACE_DCCP5(name, type1, arg1, type2, arg2, \
350 type3, arg3, type4, arg4, type5, arg5) \
351 DTRACE_PROBE5(__dccp_##name, type1, arg1, type2, arg2, \
352 type3, arg3, type4, arg4, type5, arg5);

354 #define DTRACE_DCCP6(name, type1, arg1, type2, arg2, \
355 type3, arg3, type4, arg4, type5, arg5, type6, arg6) \
356 DTRACE_PROBE6(__dccp_##name, type1, arg1, type2, arg2, \
357 type3, arg3, type4, arg4, type5, arg5, type6, arg6);

359 #endif /* ! codereview */

361 #define DTRACE_SYSEVENT2(name, type1, arg1, type2, arg2) \
362 DTRACE_PROBE2(__sysevent_##name, type1, arg1, type2, arg2);

364 #define DTRACE_XPV(name) \
365 DTRACE_PROBE(__xpv_##name);

367 #define DTRACE_XPV1(name, type1, arg1) \
368 DTRACE_PROBE1(__xpv_##name, type1, arg1);

370 #define DTRACE_XPV2(name, type1, arg1, type2, arg2) \
371 DTRACE_PROBE2(__xpv_##name, type1, arg1, type2, arg2);

373 #define DTRACE_XPV3(name, type1, arg1, type2, arg2, type3, arg3) \
374 DTRACE_PROBE3(__xpv_##name, type1, arg1, type2, arg2, type3, arg3);

376 #define DTRACE_XPV4(name, type1, arg1, type2, arg2, type3, arg3, \
377 type4, arg4) \
378 DTRACE_PROBE4(__xpv_##name, type1, arg1, type2, arg2, \
379 type3, arg3, type4, arg4);

381 #define DTRACE_FC_1(name, type1, arg1) \
382 DTRACE_PROBE1(__fc_##name, type1, arg1);

384 #define DTRACE_FC_2(name, type1, arg1, type2, arg2) \
385 DTRACE_PROBE2(__fc_##name, type1, arg1, type2, arg2);

387 #define DTRACE_FC_3(name, type1, arg1, type2, arg2, type3, arg3) \
388 DTRACE_PROBE3(__fc_##name, type1, arg1, type2, arg2, type3, arg3);

390 #define DTRACE_FC_4(name, type1, arg1, type2, arg2, type3, arg3, type4, arg4) \
391 DTRACE_PROBE4(__fc_##name, type1, arg1, type2, arg2, type3, arg3, \
392 type4, arg4);

394 #define DTRACE_FC_5(name, type1, arg1, type2, arg2, type3, arg3, \
395 type4, arg4, type5, arg5) \
396 DTRACE_PROBE5(__fc_##name, type1, arg1, type2, arg2, type3, arg3, \
397 type4, arg4, type5, arg5);

new/usr/src/uts/common/sys/sdt.h 5

399 #define DTRACE_SRP_1(name, type1, arg1) \
400 DTRACE_PROBE1(__srp_##name, type1, arg1);

402 #define DTRACE_SRP_2(name, type1, arg1, type2, arg2) \
403 DTRACE_PROBE2(__srp_##name, type1, arg1, type2, arg2);

405 #define DTRACE_SRP_3(name, type1, arg1, type2, arg2, type3, arg3) \
406 DTRACE_PROBE3(__srp_##name, type1, arg1, type2, arg2, type3, arg3);

408 #define DTRACE_SRP_4(name, type1, arg1, type2, arg2, type3, arg3, \
409 type4, arg4) \
410 DTRACE_PROBE4(__srp_##name, type1, arg1, type2, arg2, \
411 type3, arg3, type4, arg4);

413 #define DTRACE_SRP_5(name, type1, arg1, type2, arg2, type3, arg3, \
414 type4, arg4, type5, arg5) \
415 DTRACE_PROBE5(__srp_##name, type1, arg1, type2, arg2, \
416 type3, arg3, type4, arg4, type5, arg5);

418 #define DTRACE_SRP_6(name, type1, arg1, type2, arg2, type3, arg3, \
419 type4, arg4, type5, arg5, type6, arg6) \
420 DTRACE_PROBE6(__srp_##name, type1, arg1, type2, arg2, \
421 type3, arg3, type4, arg4, type5, arg5, type6, arg6);

423 #define DTRACE_SRP_7(name, type1, arg1, type2, arg2, type3, arg3, \
424 type4, arg4, type5, arg5, type6, arg6, type7, arg7) \
425 DTRACE_PROBE7(__srp_##name, type1, arg1, type2, arg2, \
426 type3, arg3, type4, arg4, type5, arg5, type6, arg6, type7, arg7);

428 #define DTRACE_SRP_8(name, type1, arg1, type2, arg2, type3, arg3, \
429 type4, arg4, type5, arg5, type6, arg6, type7, arg7, type8, arg8) \
430 DTRACE_PROBE8(__srp_##name, type1, arg1, type2, arg2, \
431 type3, arg3, type4, arg4, type5, arg5, type6, arg6, \
432 type7, arg7, type8, arg8);

434 #endif /* _KERNEL */

436 extern const char *sdt_prefix;

438 typedef struct sdt_probedesc {
439 char *sdpd_name; /* name of this probe */
440 unsigned long sdpd_offset; /* offset of call in text */
441 struct sdt_probedesc *sdpd_next; /* next static probe */
442 } sdt_probedesc_t;

444 #ifdef __cplusplus
445 }
446 #endif

448 #endif /* _SYS_SDT_H */

new/usr/src/uts/intel/Makefile.intel.shared 1

**
 16840 Sat Aug 18 10:37:24 2012
new/usr/src/uts/intel/Makefile.intel.shared
dccp: starting module template
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.

24 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.

26 #
27 # This makefile contains the common definitions for all intel
28 # implementation architecture independent modules.
29 #

31 #
32 # Machine type (implementation architecture):
33 #
34 PLATFORM = i86pc

36 #
37 # Everybody needs to know how to build modstubs.o and to locate unix.o.
38 # Note that unix.o must currently be selected from among the possible
39 # "implementation architectures". Note further, that unix.o is only
40 # used as an optional error check for undefines so (theoretically)
41 # any "implementation architectures" could be used. We choose i86pc
42 # because it is the reference port.
43 #
44 UNIX_DIR = $(UTSBASE)/i86pc/unix
45 GENLIB_DIR = $(UTSBASE)/intel/genunix
46 IPDRV_DIR = $(UTSBASE)/intel/ip
47 MODSTUBS_DIR = $(UNIX_DIR)
48 DSF_DIR = $(UTSBASE)/$(PLATFORM)/genassym
49 LINTS_DIR = $(OBJS_DIR)
50 LINT_LIB_DIR = $(UTSBASE)/intel/lint-libs/$(OBJS_DIR)

52 UNIX_O = $(UNIX_DIR)/$(OBJS_DIR)/unix.o
53 GENLIB = $(GENLIB_DIR)/$(OBJS_DIR)/libgenunix.so
54 MODSTUBS_O = $(MODSTUBS_DIR)/$(OBJS_DIR)/modstubs.o
55 LINT_LIB = $(UTSBASE)/i86pc/lint-libs/$(OBJS_DIR)/llib-lunix.ln
56 GEN_LINT_LIB = $(UTSBASE)/intel/lint-libs/$(OBJS_DIR)/llib-lgenunix.ln

58 #
59 # Include the makefiles which define build rule templates, the
60 # collection of files per module, and a few specific flags. Note
61 # that order is significant, just as with an include path. The

new/usr/src/uts/intel/Makefile.intel.shared 2

62 # first build rule template which matches the files name will be
63 # used. By including these in order from most machine dependent
64 # to most machine independent, we allow a machine dependent file
65 # to be used in preference over a machine independent version
66 # (Such as a machine specific optimization, which preserves the
67 # interfaces.)
68 #
69 include $(UTSTREE)/intel/Makefile.files
70 include $(UTSTREE)/common/Makefile.files

72 #
73 # ----- TRANSITIONAL SECTION --
74 #

76 #
77 # Not everything which *should* be a module is a module yet. The
78 # following is a list of such objects which are currently part of
79 # genunix but which might someday become kmods. This must be
80 # defined before we include Makefile.uts, or else genunix’s build
81 # won’t be as parallel as we might like.
82 #
83 NOT_YET_KMODS = $(OLDPTY_OBJS) $(PTY_OBJS) $(VCONS_CONF_OBJS) $(MOD_OBJS)

85 #
86 # ----- END OF TRANSITIONAL SECTION ---
87 #
88 # Include machine independent rules. Note that this does not imply
89 # that the resulting module from rules in Makefile.uts is machine
90 # independent. Only that the build rules are machine independent.
91 #
92 include $(UTSBASE)/Makefile.uts

94 #
95 # The following must be defined for all implementations:
96 #
97 MODSTUBS = $(UTSBASE)/intel/ia32/ml/modstubs.s

99 #
100 # Define supported builds
101 #
102 DEF_BUILDS = $(DEF_BUILDS64) $(DEF_BUILDS32)
103 ALL_BUILDS = $(ALL_BUILDS64) $(ALL_BUILDS32)

105 #
106 # x86 or amd64 inline templates
107 #
108 INLINES_32 = $(UTSBASE)/intel/ia32/ml/ia32.il
109 INLINES_64 = $(UTSBASE)/intel/amd64/ml/amd64.il
110 INLINES += $(INLINES_$(CLASS))

112 #
113 # kernel-specific optimizations; override default in Makefile.master
114 #

116 CFLAGS_XARCH_32 = $(i386_CFLAGS)
117 CFLAGS_XARCH_64 = $(amd64_CFLAGS)
118 CFLAGS_XARCH = $(CFLAGS_XARCH_$(CLASS))

120 COPTFLAG_32 = $(COPTFLAG)
121 COPTFLAG_64 = $(COPTFLAG64)
122 COPTIMIZE = $(COPTFLAG_$(CLASS))

124 CFLAGS = $(CFLAGS_XARCH)
125 CFLAGS += $(COPTIMIZE)
126 CFLAGS += $(INLINES) -D_ASM_INLINES
127 CFLAGS += $(CCMODE)

new/usr/src/uts/intel/Makefile.intel.shared 3

128 CFLAGS += $(SPACEFLAG)
129 CFLAGS += $(CCUNBOUND)
130 CFLAGS += $(CFLAGS_uts)
131 CFLAGS += -xstrconst

133 ASFLAGS_XARCH_32 = $(i386_ASFLAGS)
134 ASFLAGS_XARCH_64 = $(amd64_ASFLAGS)
135 ASFLAGS_XARCH = $(ASFLAGS_XARCH_$(CLASS))

137 ASFLAGS += $(ASFLAGS_XARCH)

139 #
140 # Define the base directory for installation.
141 #
142 BASE_INS_DIR = $(ROOT)

144 #
145 # Debugging level
146 #
147 # Special knowledge of which special debugging options affect which
148 # file is used to optimize the build if these flags are changed.
149 #
150 DEBUG_DEFS_OBJ32 =
151 DEBUG_DEFS_DBG32 = -DDEBUG
152 DEBUG_DEFS_OBJ64 =
153 DEBUG_DEFS_DBG64 = -DDEBUG
154 DEBUG_DEFS = $(DEBUG_DEFS_$(BUILD_TYPE))

156 DEBUG_COND_OBJ32 :sh = echo \\043
157 DEBUG_COND_DBG32 =
158 DEBUG_COND_OBJ64 :sh = echo \\043
159 DEBUG_COND_DBG64 =
160 IF_DEBUG_OBJ = $(DEBUG_COND_$(BUILD_TYPE))$(OBJS_DIR)/

162 $(IF_DEBUG_OBJ)syscall.o := DEBUG_DEFS += -DSYSCALLTRACE
163 $(IF_DEBUG_OBJ)clock.o := DEBUG_DEFS += -DKSLICE=1

165 #
166 # Collect the preprocessor definitions to be associated with *all*
167 # files.
168 #
169 ALL_DEFS = $(DEBUG_DEFS) $(OPTION_DEFS)

171 #
172 # The kernels modules which are "implementation architecture"
173 # specific for this machine are enumerated below. Note that most
174 # of these modules must exist (in one form or another) for each
175 # architecture.
176 #
177 # Common Drivers (usually pseudo drivers) (/kernel/drv)
178 # DRV_KMODS are built both 32-bit and 64-bit
179 # DRV_KMODS_32 are built only 32-bit
180 # DRV_KMODS_64 are built only 64-bit
181 #
182 DRV_KMODS += aac
183 DRV_KMODS += aggr
184 DRV_KMODS += ahci
185 DRV_KMODS += amd64_gart
186 DRV_KMODS += amr
187 DRV_KMODS += agpgart
188 DRV_KMODS += srn
189 DRV_KMODS += agptarget
190 DRV_KMODS += arn
191 DRV_KMODS += arp
192 DRV_KMODS += asy
193 DRV_KMODS += ata

new/usr/src/uts/intel/Makefile.intel.shared 4

194 DRV_KMODS += ath
195 DRV_KMODS += atu
196 DRV_KMODS += audio
197 DRV_KMODS += audio1575
198 DRV_KMODS += audio810
199 DRV_KMODS += audiocmi
200 DRV_KMODS += audiocmihd
201 DRV_KMODS += audioemu10k
202 DRV_KMODS += audioens
203 DRV_KMODS += audiohd
204 DRV_KMODS += audioixp
205 DRV_KMODS += audiols
206 DRV_KMODS += audiop16x
207 DRV_KMODS += audiopci
208 DRV_KMODS += audiosolo
209 DRV_KMODS += audiots
210 DRV_KMODS += audiovia823x
211 DRV_KMODS_32 += audiovia97
212 DRV_KMODS += bl
213 DRV_KMODS += blkdev
214 DRV_KMODS += bge
215 DRV_KMODS += bofi
216 DRV_KMODS += bpf
217 DRV_KMODS += bridge
218 DRV_KMODS += bscbus
219 DRV_KMODS += bscv
220 DRV_KMODS += chxge
221 DRV_KMODS += ntxn
222 DRV_KMODS += myri10ge
223 DRV_KMODS += clone
224 DRV_KMODS += cmdk
225 DRV_KMODS += cn
226 DRV_KMODS += conskbd
227 DRV_KMODS += consms
228 DRV_KMODS += cpuid
229 DRV_KMODS += cpunex
230 DRV_KMODS += crypto
231 DRV_KMODS += cryptoadm
232 DRV_KMODS += dca
233 DRV_KMODS += dccp
234 DRV_KMODS += dccp6
235 #endif /* ! codereview */
236 DRV_KMODS += devinfo
237 DRV_KMODS += dld
238 DRV_KMODS += dlpistub
239 DRV_KMODS_32 += dnet
240 DRV_KMODS += dump
241 DRV_KMODS += ecpp
242 DRV_KMODS += emlxs
243 DRV_KMODS += fd
244 DRV_KMODS += fdc
245 DRV_KMODS += fm
246 DRV_KMODS += fssnap
247 DRV_KMODS += hxge
248 DRV_KMODS += i8042
249 DRV_KMODS += i915
250 DRV_KMODS += icmp
251 DRV_KMODS += icmp6
252 DRV_KMODS += intel_nb5000
253 DRV_KMODS += intel_nhm
254 DRV_KMODS += ip
255 DRV_KMODS += ip6
256 DRV_KMODS += ipf
257 DRV_KMODS += ipnet
258 DRV_KMODS += ippctl
259 DRV_KMODS += ipsecah

new/usr/src/uts/intel/Makefile.intel.shared 5

260 DRV_KMODS += ipsecesp
261 DRV_KMODS += ipw
262 DRV_KMODS += iwh
263 DRV_KMODS += iwi
264 DRV_KMODS += iwk
265 DRV_KMODS += iwp
266 DRV_KMODS += iwscn
267 DRV_KMODS += kb8042
268 DRV_KMODS += keysock
269 DRV_KMODS += kssl
270 DRV_KMODS += kstat
271 DRV_KMODS += ksyms
272 DRV_KMODS += kmdb
273 DRV_KMODS += llc1
274 DRV_KMODS += lofi
275 DRV_KMODS += log
276 DRV_KMODS += logindmux
277 DRV_KMODS += mega_sas
278 DRV_KMODS += mc-amd
279 DRV_KMODS += mm
280 DRV_KMODS += mouse8042
281 DRV_KMODS += mpt_sas
282 DRV_KMODS += mr_sas
283 DRV_KMODS += mwl
284 DRV_KMODS += nca
285 DRV_KMODS += nsmb
286 DRV_KMODS += nulldriver
287 DRV_KMODS += nv_sata
288 DRV_KMODS += nxge
289 DRV_KMODS += oce
290 DRV_KMODS += openeepr
291 DRV_KMODS += pci_pci
292 DRV_KMODS += pcic
293 DRV_KMODS += pcieb
294 DRV_KMODS += physmem
295 DRV_KMODS += pcan
296 DRV_KMODS += pcwl
297 DRV_KMODS += pit_beep
298 DRV_KMODS += pm
299 DRV_KMODS += poll
300 DRV_KMODS += pool
301 DRV_KMODS += power
302 DRV_KMODS += pseudo
303 DRV_KMODS += ptc
304 DRV_KMODS += ptm
305 DRV_KMODS += pts
306 DRV_KMODS += ptsl
307 DRV_KMODS += qlge
308 DRV_KMODS += radeon
309 DRV_KMODS += ral
310 DRV_KMODS += ramdisk
311 DRV_KMODS += random
312 DRV_KMODS += rds
313 DRV_KMODS += rdsv3
314 DRV_KMODS += rpcib
315 DRV_KMODS += rsm
316 DRV_KMODS += rts
317 DRV_KMODS += rtw
318 DRV_KMODS += rum
319 DRV_KMODS += rwd
320 DRV_KMODS += rwn
321 DRV_KMODS += sad
322 DRV_KMODS += sd
323 DRV_KMODS += sdhost
324 DRV_KMODS += sgen
325 DRV_KMODS += si3124

new/usr/src/uts/intel/Makefile.intel.shared 6

326 DRV_KMODS += smbios
327 DRV_KMODS += softmac
328 DRV_KMODS += spdsock
329 DRV_KMODS += smbsrv
330 DRV_KMODS += smp
331 DRV_KMODS += sppp
332 DRV_KMODS += sppptun
333 DRV_KMODS += srpt
334 DRV_KMODS += st
335 DRV_KMODS += sy
336 DRV_KMODS += sysevent
337 DRV_KMODS += sysmsg
338 DRV_KMODS += tcp
339 DRV_KMODS += tcp6
340 DRV_KMODS += tl
341 DRV_KMODS += tnf
342 DRV_KMODS += tpm
343 DRV_KMODS += trill
344 DRV_KMODS += udp
345 DRV_KMODS += udp6
346 DRV_KMODS += ucode
347 DRV_KMODS += ural
348 DRV_KMODS += uath
349 DRV_KMODS += urtw
350 DRV_KMODS += vgatext
351 DRV_KMODS += heci
352 DRV_KMODS += vnic
353 DRV_KMODS += vscan
354 DRV_KMODS += wc
355 DRV_KMODS += winlock
356 DRV_KMODS += wpi
357 DRV_KMODS += xge
358 DRV_KMODS += yge
359 DRV_KMODS += zcons
360 DRV_KMODS += zyd
361 DRV_KMODS += simnet
362 DRV_KMODS += stmf
363 DRV_KMODS += stmf_sbd
364 DRV_KMODS += fct
365 DRV_KMODS += fcoe
366 DRV_KMODS += fcoet
367 DRV_KMODS += fcoei
368 DRV_KMODS += qlt
369 DRV_KMODS += iscsit
370 DRV_KMODS += pppt
371 DRV_KMODS += ncall nsctl sdbc nskern sv
372 DRV_KMODS += ii rdc rdcsrv rdcstub
373 DRV_KMODS += iptun

375 $(CLOSED_BUILD)CLOSED_DRV_KMODS += bmc
376 $(CLOSED_BUILD)CLOSED_DRV_KMODS += glm
377 $(CLOSED_BUILD)CLOSED_DRV_KMODS += intel_nhmex
378 $(CLOSED_BUILD)CLOSED_DRV_KMODS += cpqary3
379 $(CLOSED_BUILD)CLOSED_DRV_KMODS += marvell88sx
380 $(CLOSED_BUILD)CLOSED_DRV_KMODS += bcm_sata
381 $(CLOSED_BUILD)CLOSED_DRV_KMODS += memtest
382 $(CLOSED_BUILD)CLOSED_DRV_KMODS += mpt
383 $(CLOSED_BUILD)CLOSED_DRV_KMODS += atiatom
384 $(CLOSED_BUILD)CLOSED_DRV_KMODS += acpi_toshiba

386 #
387 # Common code drivers
388 #

390 DRV_KMODS += afe
391 DRV_KMODS += atge

new/usr/src/uts/intel/Makefile.intel.shared 7

392 DRV_KMODS += bfe
393 DRV_KMODS += dmfe
394 DRV_KMODS += e1000g
395 DRV_KMODS += efe
396 DRV_KMODS += elxl
397 DRV_KMODS += hme
398 DRV_KMODS += mxfe
399 DRV_KMODS += nge
400 DRV_KMODS += pcn
401 DRV_KMODS += rge
402 DRV_KMODS += rtls
403 DRV_KMODS += sfe
404 DRV_KMODS += amd8111s
405 DRV_KMODS += igb
406 DRV_KMODS += iprb
407 DRV_KMODS += ixgbe
408 DRV_KMODS += vr
409 $(CLOSED_BUILD)CLOSED_DRV_KMODS += ixgb

411 #
412 # DTrace and DTrace Providers
413 #
414 DRV_KMODS += dtrace
415 DRV_KMODS += fbt
416 DRV_KMODS += lockstat
417 DRV_KMODS += profile
418 DRV_KMODS += sdt
419 DRV_KMODS += systrace
420 DRV_KMODS += fasttrap
421 DRV_KMODS += dcpc

423 #
424 # I/O framework test drivers
425 #
426 DRV_KMODS += pshot
427 DRV_KMODS += gen_drv
428 DRV_KMODS += tvhci tphci tclient
429 DRV_KMODS += emul64

431 #
432 # Machine Specific Driver Modules (/kernel/drv):
433 #
434 DRV_KMODS += options
435 DRV_KMODS += scsi_vhci
436 DRV_KMODS += pmcs
437 DRV_KMODS += pmcs8001fw
438 DRV_KMODS += arcmsr
439 DRV_KMODS += fcp
440 DRV_KMODS += fcip
441 DRV_KMODS += fcsm
442 DRV_KMODS += fp
443 DRV_KMODS += qlc
444 DRV_KMODS += iscsi

446 #
447 # PCMCIA specific module(s)
448 #
449 DRV_KMODS += pcs
450 DRV_KMODS += pcata
451 MISC_KMODS += cardbus
452 $(CLOSED_BUILD)CLOSED_DRV_KMODS += pcser

454 #
455 # SCSI Enclosure Services driver
456 #
457 DRV_KMODS += ses

new/usr/src/uts/intel/Makefile.intel.shared 8

459 #
460 # USB specific modules
461 #
462 DRV_KMODS += hid
463 DRV_KMODS += hwarc hwahc
464 DRV_KMODS += hubd
465 DRV_KMODS += uhci
466 DRV_KMODS += ehci
467 DRV_KMODS += ohci
468 DRV_KMODS += usb_mid
469 DRV_KMODS += usb_ia
470 DRV_KMODS += scsa2usb
471 DRV_KMODS += usbprn
472 DRV_KMODS += ugen
473 DRV_KMODS += usbser
474 DRV_KMODS += usbsacm
475 DRV_KMODS += usbsksp
476 DRV_KMODS += usbsprl
477 DRV_KMODS += usb_ac
478 DRV_KMODS += usb_as
479 DRV_KMODS += usbskel
480 DRV_KMODS += usbvc
481 DRV_KMODS += usbftdi
482 DRV_KMODS += wusb_df
483 DRV_KMODS += wusb_ca
484 DRV_KMODS += usbecm

486 $(CLOSED_BUILD)CLOSED_DRV_KMODS += usbser_edge

488 #
489 # 1394 modules
490 #
491 MISC_KMODS += s1394 sbp2
492 DRV_KMODS += hci1394 scsa1394
493 DRV_KMODS += av1394
494 DRV_KMODS += dcam1394

496 #
497 # InfiniBand pseudo drivers
498 #
499 DRV_KMODS += ib ibp eibnx eoib rdsib sdp iser daplt hermon tavor sol_ucma
500 DRV_KMODS += sol_umad

502 #
503 # LVM modules
504 #
505 DRV_KMODS += md
506 MISC_KMODS += md_stripe md_hotspares md_mirror md_raid md_trans md_notify
507 MISC_KMODS += md_sp

509 #
510 # Brand modules
511 #
512 BRAND_KMODS += sn1_brand s10_brand

514 #
515 # Exec Class Modules (/kernel/exec):
516 #
517 EXEC_KMODS += elfexec intpexec shbinexec javaexec

519 #
520 # Scheduling Class Modules (/kernel/sched):
521 #
522 SCHED_KMODS += IA RT TS RT_DPTBL TS_DPTBL FSS FX FX_DPTBL SDC

new/usr/src/uts/intel/Makefile.intel.shared 9

524 #
525 # File System Modules (/kernel/fs):
526 #
527 FS_KMODS += autofs cachefs ctfs dcfs dev devfs fdfs fifofs hsfs lofs
528 FS_KMODS += mntfs namefs nfs objfs zfs zut
529 FS_KMODS += pcfs procfs sockfs specfs tmpfs udfs ufs sharefs
530 FS_KMODS += smbfs

532 #
533 # Streams Modules (/kernel/strmod):
534 #
535 STRMOD_KMODS += bufmod connld dedump ldterm pckt pfmod pipemod
536 STRMOD_KMODS += ptem redirmod rpcmod rlmod telmod timod
537 STRMOD_KMODS += spppasyn spppcomp
538 STRMOD_KMODS += tirdwr ttcompat
539 STRMOD_KMODS += usbkbm
540 STRMOD_KMODS += usbms
541 STRMOD_KMODS += usbwcm
542 STRMOD_KMODS += usb_ah
543 STRMOD_KMODS += drcompat
544 STRMOD_KMODS += cryptmod
545 STRMOD_KMODS += vuid2ps2
546 STRMOD_KMODS += vuid3ps2
547 STRMOD_KMODS += vuidm3p
548 STRMOD_KMODS += vuidm4p
549 STRMOD_KMODS += vuidm5p

551 #
552 # ’System’ Modules (/kernel/sys):
553 #
554 SYS_KMODS += c2audit
555 SYS_KMODS += doorfs
556 SYS_KMODS += exacctsys
557 SYS_KMODS += inst_sync
558 SYS_KMODS += kaio
559 SYS_KMODS += msgsys
560 SYS_KMODS += pipe
561 SYS_KMODS += portfs
562 SYS_KMODS += pset
563 SYS_KMODS += semsys
564 SYS_KMODS += shmsys
565 SYS_KMODS += sysacct
566 SYS_KMODS += acctctl

568 #
569 # ’Misc’ Modules (/kernel/misc)
570 # MISC_KMODS are built both 32-bit and 64-bit
571 # MISC_KMODS_32 are built only 32-bit
572 # MISC_KMODS_64 are built only 64-bit
573 #
574 MISC_KMODS += ac97
575 MISC_KMODS += acpica
576 MISC_KMODS += agpmaster
577 MISC_KMODS += bignum
578 MISC_KMODS += bootdev
579 MISC_KMODS += busra
580 MISC_KMODS += cmlb
581 MISC_KMODS += consconfig
582 MISC_KMODS += ctf
583 MISC_KMODS += dadk
584 MISC_KMODS += dcopy
585 MISC_KMODS += dls
586 MISC_KMODS += drm
587 MISC_KMODS += fssnap_if
588 MISC_KMODS += gda
589 MISC_KMODS += gld

new/usr/src/uts/intel/Makefile.intel.shared 10

590 MISC_KMODS += hidparser
591 MISC_KMODS += hook
592 MISC_KMODS += hpcsvc
593 MISC_KMODS += ibcm
594 MISC_KMODS += ibdm
595 MISC_KMODS += ibdma
596 MISC_KMODS += ibmf
597 MISC_KMODS += ibtl
598 MISC_KMODS += idm
599 MISC_KMODS += idmap
600 MISC_KMODS += iommulib
601 MISC_KMODS += ipc
602 MISC_KMODS += kbtrans
603 MISC_KMODS += kcf
604 MISC_KMODS += kgssapi
605 MISC_KMODS += kmech_dummy
606 MISC_KMODS += kmech_krb5
607 MISC_KMODS += ksocket
608 MISC_KMODS += mac
609 MISC_KMODS += mii
610 MISC_KMODS += mwlfw
611 MISC_KMODS += net80211
612 MISC_KMODS += nfs_dlboot
613 MISC_KMODS += nfssrv
614 MISC_KMODS += neti
615 MISC_KMODS += pci_autoconfig
616 MISC_KMODS += pcicfg
617 MISC_KMODS += pcihp
618 MISC_KMODS += pcmcia
619 MISC_KMODS += rpcsec
620 MISC_KMODS += rpcsec_gss
621 MISC_KMODS += rsmops
622 MISC_KMODS += sata
623 MISC_KMODS += scsi
624 MISC_KMODS += sda
625 MISC_KMODS += sol_ofs
626 MISC_KMODS += spuni
627 MISC_KMODS += strategy
628 MISC_KMODS += strplumb
629 MISC_KMODS += tem
630 MISC_KMODS += tlimod
631 MISC_KMODS += usba usba10 usbs49_fw
632 MISC_KMODS += scsi_vhci_f_sym_hds
633 MISC_KMODS += scsi_vhci_f_sym
634 MISC_KMODS += scsi_vhci_f_tpgs
635 MISC_KMODS += scsi_vhci_f_asym_sun
636 MISC_KMODS += scsi_vhci_f_tape
637 MISC_KMODS += scsi_vhci_f_tpgs_tape
638 MISC_KMODS += fctl
639 MISC_KMODS += emlxs_fw
640 MISC_KMODS += qlc_fw_2200
641 MISC_KMODS += qlc_fw_2300
642 MISC_KMODS += qlc_fw_2400
643 MISC_KMODS += qlc_fw_2500
644 MISC_KMODS += qlc_fw_6322
645 MISC_KMODS += qlc_fw_8100
646 MISC_KMODS += hwa1480_fw
647 MISC_KMODS += uathfw
648 MISC_KMODS += uwba

650 $(CLOSED_BUILD)CLOSED_MISC_KMODS += klmmod klmops
651 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_asym_lsi
652 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_asym_emc
653 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_sym_emc

655 #

new/usr/src/uts/intel/Makefile.intel.shared 11

656 # Software Cryptographic Providers (/kernel/crypto):
657 #
658 CRYPTO_KMODS += aes
659 CRYPTO_KMODS += arcfour
660 CRYPTO_KMODS += blowfish
661 CRYPTO_KMODS += des
662 CRYPTO_KMODS += ecc
663 CRYPTO_KMODS += md4
664 CRYPTO_KMODS += md5
665 CRYPTO_KMODS += rsa
666 CRYPTO_KMODS += sha1
667 CRYPTO_KMODS += sha2
668 CRYPTO_KMODS += swrand

670 #
671 # IP Policy Modules (/kernel/ipp)
672 #
673 IPP_KMODS += dlcosmk
674 IPP_KMODS += flowacct
675 IPP_KMODS += ipgpc
676 IPP_KMODS += dscpmk
677 IPP_KMODS += tokenmt
678 IPP_KMODS += tswtclmt

680 #
681 # generic-unix module (/kernel/genunix):
682 #
683 GENUNIX_KMODS += genunix

685 #
686 # SVVS Testing Modules (/kernel/strmod):
687 #
688 # These are streams and driver modules which are not to be
689 # delivered with a released system. However, during development
690 # it is convenient to build and install the SVVS kernel modules.
691 #
692 SVVS_KMODS += lmodb lmode lmodr lmodt svvslo tidg tivc tmux

694 $(CLOSED_BUILD)SVVS += svvs

696 #
697 # Modules eXcluded from the product:
698 #
699 $(CLOSED_BUILD)CLOSED_XMODS = \
700 adpu320 \
701 bnx \
702 bnxe \
703 lsimega \
704 sdpib

707 #
708 # ’Dacf’ Modules (/kernel/dacf):
709 #

711 #
712 # Performance Counter BackEnd modules (/usr/kernel/pcbe)
713 #
714 PCBE_KMODS += p123_pcbe p4_pcbe opteron_pcbe core_pcbe

716 #
717 # MAC-Type Plugin Modules (/kernel/mac)
718 #
719 MAC_KMODS += mac_6to4
720 MAC_KMODS += mac_ether
721 MAC_KMODS += mac_ipv4

new/usr/src/uts/intel/Makefile.intel.shared 12

722 MAC_KMODS += mac_ipv6
723 MAC_KMODS += mac_wifi
724 MAC_KMODS += mac_ib

726 #
727 # socketmod (kernel/socketmod)
728 #
729 SOCKET_KMODS += sockpfp
730 SOCKET_KMODS += socksctp
731 SOCKET_KMODS += socksdp
732 SOCKET_KMODS += sockrds
733 SOCKET_KMODS += ksslf

735 #
736 # kiconv modules (/kernel/kiconv):
737 #
738 KICONV_KMODS += kiconv_emea kiconv_ja kiconv_ko kiconv_sc kiconv_tc

740 #
741 # ’Dacf’ Modules (/kernel/dacf):
742 #
743 DACF_KMODS += net_dacf

new/usr/src/uts/intel/dccp/Makefile 1

**
 2348 Sat Aug 18 10:37:24 2012
new/usr/src/uts/intel/dccp/Makefile
dccp: starting with options
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # uts/intel/dccp/Makefile
23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #
27 # This makefile drives the production of the dccp driver kernel module.
28 #
29 # intel implementation architecture dependent
30 #

32 #
33 # Path to the base of the uts directory tree (usually /usr/src/uts).
34 #
35 UTSBASE = ../..

37 #
38 # Define the module and object file sets.
39 #
40 MODULE = dccp
41 OBJECTS = $(DCCP_OBJS:%=$(OBJS_DIR)/%)
42 LINTS = $(DCCP_OBJS:%.o=$(LINTS_DIR)/%.ln)
43 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
44 ROOTLINK = $(ROOT_STRMOD_DIR)/$(MODULE) $(ROOT_SOCK_DIR)/$(MODULE)
45 CONF_SRCDIR = $(UTSBASE)/common/inet/dccp

47 #
48 # Extra for $(MODULE).check target
49 #
50 # Need to remove ipddi.o since it has non-static defines for _init etc.
51 IP_CHECK_OBJS = $(IP_OBJS:ipddi.o=ip.o)
52 EXTRA_CHECK_OBJS = $(IP_CHECK_OBJS:%=../ip/$(OBJS_DIR)/%)

54 #
55 # Include common rules.
56 #
57 include $(UTSBASE)/intel/Makefile.intel

59 #
60 # Define targets
61 #

new/usr/src/uts/intel/dccp/Makefile 2

62 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
63 LINT_TARGET = $(MODULE).lint
64 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOTLINK) $(ROOT_CONFFILE)

66 #
67 # depends on ip and sockfs
68 #
69 LDFLAGS += -dy -Ndrv/ip -Nfs/sockfs

71 #
72 # Default build targets.
73 #
74 .KEEP_STATE:

76 def: $(DEF_DEPS)

78 all: $(ALL_DEPS)

80 clean: $(CLEAN_DEPS)

82 clobber: $(CLOBBER_DEPS)

84 lint: $(LINT_DEPS)

86 modlintlib: $(MODLINTLIB_DEPS)

88 clean.lint: $(CLEAN_LINT_DEPS)

90 install: $(INSTALL_DEPS)

92 $(ROOTLINK): $(ROOT_STRMOD_DIR) $(ROOT_SOCK_DIR) $(ROOTMODULE)
93 -$(RM) $@; ln $(ROOTMODULE) $@

95 #
96 # Include common targets.
97 #
98 include $(UTSBASE)/intel/Makefile.targ
99 #endif /* ! codereview */

new/usr/src/uts/intel/dccp6/Makefile 1

**
 2178 Sat Aug 18 10:37:25 2012
new/usr/src/uts/intel/dccp6/Makefile
dccp: clean up
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License, Version 1.0 only
6 # (the "License"). You may not use this file except in compliance
7 # with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # This makefile drives the production of the dccp6 driver kernel module.
27 #
28 # intel implementation architecture dependent
29 #

31 #
32 # Path to the base of the uts directory tree (usually /usr/src/uts).
33 #
34 UTSBASE = ../..

36 #
37 # Define the module and object file sets.
38 #
39 MODULE = dccp6
40 OBJECTS = $(TCP6_OBJS:%=$(OBJS_DIR)/%)
41 LINTS = $(TCP6_OBJS:%.o=$(LINTS_DIR)/%.ln)
42 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
43 CONF_SRCDIR = $(UTSBASE)/common/inet/dccp

45 #
46 # Extra for $(MODULE).check target
47 #
48 # Need to remove ipddi.o since it has non-static defines for _init etc.
49 IP_CHECK_OBJS = $(IP_OBJS:ipddi.o=ip.o)
50 EXTRA_CHECK_OBJS = $(IP_CHECK_OBJS:%=../ip/$(OBJS_DIR)/%)

52 #
53 # Include common rules.
54 #
55 include $(UTSBASE)/intel/Makefile.intel

57 #
58 # Define targets
59 #
60 ALL_TARGET = $(BINARY) $(SRC_CONFFILE)
61 LINT_TARGET = $(MODULE).lint

new/usr/src/uts/intel/dccp6/Makefile 2

62 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)

64 #
65 # depends on tcp ip and ip6
66 #
67 LDFLAGS += -dy -Ndrv/tcp -Ndrv/ip -Ndrv/ip6

69 #
70 # Default build targets.
71 #
72 .KEEP_STATE:

74 def: $(DEF_DEPS)

76 all: $(ALL_DEPS)

78 clean: $(CLEAN_DEPS)

80 clobber: $(CLOBBER_DEPS)

82 lint: $(LINT_DEPS)

84 modlintlib: $(MODLINTLIB_DEPS)

86 clean.lint: $(CLEAN_LINT_DEPS)

88 install: $(INSTALL_DEPS)

90 #
91 # Include common targets.
92 #
93 include $(UTSBASE)/intel/Makefile.targ
94 #endif /* ! codereview */

new/usr/src/uts/intel/ip/ip.global-objs.debug64 1

**
 6231 Sat Aug 18 10:37:25 2012
new/usr/src/uts/intel/ip/ip.global-objs.debug64
dccp: starting module template
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2011 Nexenta Systems, Inc. All rights reserved
24 #

26 arp_m_tbl
27 arp_mod_info
28 arp_netinfo
29 arp_no_defense
30 arpinfo
31 cb_inet_devops
32 cl_inet_bind
33 cl_inet_checkspi
34 cl_inet_connect2
35 cl_inet_deletespi
36 cl_inet_disconnect
37 cl_inet_getspi
38 cl_inet_idlesa
39 cl_inet_ipident
40 cl_inet_isclusterwide
41 cl_inet_listen
42 cl_inet_unbind
43 cl_inet_unlisten
44 cl_sctp_assoc_change
45 cl_sctp_check_addrs
46 cl_sctp_connect
47 cl_sctp_disconnect
48 cl_sctp_listen
49 cl_sctp_unlisten
50 conn_drain_nthreads
51 dccp_acceptor_rinit
52 dccp_acceptor_winit
53 dccp_bind_fanout_size
54 dccp_conn_cache
55 dccp_fallback_sock_winit
56 dccp_g_t_info_ack
57 dccp_g_t_info_ack_v6
58 dccp_max_optsize
59 dccp_opt_arr
60 dccp_opt_obj
61 dccp_propinfo_count

new/usr/src/uts/intel/ip/ip.global-objs.debug64 2

62 dccp_propinfo_tbl
63 dccp_random_anon_port
64 dccp_rinfo
65 dccp_rinitv4
66 dccp_rinitv6
67 dccp_sock_winit
68 dccp_squeue_flag
69 dccp_timercache
70 dccp_valid_levels_arr
71 dccp_winfo
72 dccp_winit
73 dccpinfov4
74 dccpinfov6
75 #endif /* ! codereview */
76 dce_cache
77 default_ip6_asp_table
78 do_tcp_fusion
79 do_tcpzcopy
80 dohwcksum
81 dummy_mod_info
82 dummymodinfo
83 dummyrmodinit
84 dummywmodinit
85 eventq_queue_in
86 eventq_queue_nic
87 eventq_queue_out
88 fsw
89 gcdb_hash
90 gcdb_hash_size
91 gcdb_lock
92 gcgrp4_hash
93 gcgrp6_hash
94 gcgrp_hash_size
95 gcgrp_lock
96 icmp_fallback_sock_winit
97 icmp_frag_size_table
98 icmp_g_t_info_ack
99 icmp_ipha
100 icmp_max_optsize
101 icmp_mod_info
102 icmp_opt_arr
103 icmp_opt_obj
104 icmp_propinfo_tbl
105 icmp_valid_levels_arr
106 icmpinfov4
107 icmpinfov6
108 icmprinitv4
109 icmprinitv6
110 icmpwinit
111 ilb_conn_cache
112 ilb_conn_cache_timeout
113 ilb_conn_hash_size
114 ilb_conn_tcp_expiry
115 ilb_conn_timer_size
116 ilb_conn_udp_expiry
117 ilb_kstat_instance
118 ilb_kmem_flags
119 ilb_nat_src_hash_size
120 ilb_nat_src_instance
121 ilb_rule_hash_size
122 ilb_sticky_cache
123 ilb_sticky_hash_size
124 ilb_sticky_expiry
125 ilb_sticky_timer_size
126 ilb_sticky_timeout
127 ill_no_arena

new/usr/src/uts/intel/ip/ip.global-objs.debug64 3

128 ill_null
129 inet_dev_info
130 inet_devops
131 ip6_ftable_hash_size
132 ip6opt_ls
133 ip_cgtp_filter_rev
134 ip_conn_cache
135 ip_debug
136 ip_g_all_ones
137 ip_helper_stream_info
138 ip_helper_stream_rinit
139 ip_helper_stream_winit
140 ip_ioctl_ftbl
141 ip_loopback_mtu_v6plus
142 ip_loopback_mtuplus
143 ip_m_tbl
144 ip_max_frag_dups
145 ip_min_frag_prune_time
146 ip_minor_arena_la
147 ip_minor_arena_sa
148 ip_misc_ioctl_count
149 ip_misc_ioctl_table
150 ip_mod_info
151 ip_modclose_ackwait_ms
152 ip_ndx_ioctl_count
153 ip_ndx_ioctl_table
154 ip_poll_normal_ms
155 ip_poll_normal_ticks
156 ip_propinfo_tbl
157 ip_propinfo_count
158 ip_rput_pullups
159 ip_six_byte_all_ones
160 ip_squeue_create_callback
161 ip_squeue_enter
162 ip_squeue_fanout
163 ip_squeue_flag
164 ip_squeue_worker_wait
165 ip_thread_data
166 ip_thread_list
167 ip_thread_rwlock
168 ipcl_bind_fanout_size
169 ipcl_conn_hash_maxsize
170 ipcl_conn_hash_memfactor
171 ipcl_conn_hash_size
172 ipcl_dccp_bind_fanout_size
173 ipcl_dccp_conn_fanout_size
174 #endif /* ! codereview */
175 ipcl_iptun_fanout_size
176 ipcl_raw_fanout_size
177 ipcl_udp_fanout_size
178 ipif_loopback_name
179 ipif_zero
180 ipinfov4
181 ipinfov6
182 iplrinit
183 iplwinit
184 ipmp_kstats
185 iprinitv4
186 iprinitv6
187 ipsec_action_cache
188 ipsec_hdr_pullup_needed
189 ipsec_pol_cache
190 ipsec_policy_failure_msgs
191 ipsec_sel_cache
192 ipsec_spd_hashsize
193 ipsec_weird_null_inbound_policy

new/usr/src/uts/intel/ip/ip.global-objs.debug64 4

194 ipv4info
195 ipv6_all_hosts_mcast
196 ipv6_all_ones
197 ipv6_all_rtrs_mcast
198 ipv6_all_v2rtrs_mcast
199 ipv6_all_zeros
200 ipv6_ll_template
201 ipv6_loopback
202 ipv6_solicited_node_mcast
203 ipv6_unspecified_group
204 ipv6info
205 ipwinit
206 ire_cache
207 ire_gw_secattr_cache
208 ire_null
209 ire_nv_arr
210 ire_nv_tbl
211 lcl_param_arr
212 mask_rnhead
213 max_keylen
214 modldrv
215 modlinkage
216 modlstrmod
217 multicast_encap_iphdr
218 nce_cache
219 ncec_cache
220 netdev_privs
221 prov_update_handle
222 radix_mask_cache
223 radix_node_cache
224 rawip_conn_cache
225 recvq_call
226 recvq_loop_cnt
227 req_arr
228 rinit_arp
229 rn_mkfreelist
230 rn_ones
231 rn_zeros
232 rt_entry_cache
233 rts_conn_cache
234 rts_g_t_info_ack
235 rts_max_optsize
236 rts_mod_info
237 rts_opt_arr
238 rts_opt_obj
239 rts_valid_levels_arr
240 rtsinfo
241 rtsrinit
242 rtswinit
243 sctp_asconf_default_dispatch
244 sctp_asconf_dispatch_tbl
245 sctp_conn_cache
246 sctp_conn_hash_size
247 sctp_do_reclaim
248 sctp_kmem_faddr_cache
249 sctp_kmem_ftsn_set_cache
250 sctp_kmem_set_cache
251 sctp_min_assoc_listener
252 sctp_opt_arr
253 sctp_opt_arr_size
254 sctp_pa_early_abort
255 sctp_pp_early_abort
256 sctp_propinfo_tbl
257 sctp_propinfo_count
258 sctp_recvq_tq_list_max
259 sctp_recvq_tq_task_min

new/usr/src/uts/intel/ip/ip.global-objs.debug64 5

260 sctp_recvq_tq_thr_max
261 sctp_recvq_tq_thr_min
262 sctp_sin6_null
263 sctpdebug
264 sin6_null
265 sin_null
266 skip_sctp_cksum
267 sock_dccp_downcalls
268 #endif /* ! codereview */
269 sock_rawip_downcalls
270 sock_rts_downcalls
271 sock_tcp_downcalls
272 sock_udp_downcalls
273 sqset_global_list
274 sqset_global_size
275 sqset_lock
276 squeue_cache
277 squeue_drain_ms
278 squeue_drain_ns
279 squeue_workerwait_ms
280 squeue_workerwait_tick
281 tcp_acceptor_rinit
282 tcp_acceptor_winit
283 tcp_conn_cache
284 tcp_conn_hash_size
285 tcp_do_reclaim
286 tcp_drop_ack_unsent_cnt
287 tcp_dummy_upcalls
288 tcp_early_abort
289 tcp_fallback_sock_winit
290 tcp_free_list_max_cnt
291 tcp_g_kstat
292 tcp_g_statistics
293 tcp_g_t_info_ack
294 tcp_g_t_info_ack_v6
295 tcp_icmp_source_quench
296 tcp_init_wnd_chk
297 tcp_max_init_cwnd
298 tcp_max_optsize
299 tcp_min_conn_listener
300 tcp_notsack_blk_cache
301 tcp_opt_arr
302 tcp_opt_obj
303 tcp_outbound_squeue_switch
304 tcp_propinfo_tbl
305 tcp_propinfo_count
306 tcp_random_anon_port
307 tcp_random_end_ptr
308 tcp_random_fptr
309 tcp_random_lock
310 tcp_random_rptr
311 tcp_random_state
312 tcp_randtbl
313 tcp_rinfo
314 tcp_rinitv4
315 tcp_rinitv6
316 tcp_sock_winit
317 tcp_squeue_flag
318 tcp_squeue_wput
319 tcp_static_maxpsz
320 tcp_timercache
321 tcp_tx_pull_len
322 tcp_valid_levels_arr
323 tcp_winfo
324 tcp_winit
325 tcpinfov4

new/usr/src/uts/intel/ip/ip.global-objs.debug64 6

326 tcpinfov6
327 tli_errs
328 tsol_strict_error
329 tun_spd_hashsize
330 udp_bind_fanout_size
331 udp_conn_cache
332 udp_fallback_sock_winit
333 udp_g_t_info_ack_ipv4
334 udp_g_t_info_ack_ipv6
335 udp_lrinit
336 udp_lwinit
337 udp_max_optsize
338 udp_mod_info
339 udp_opt_arr
340 udp_opt_obj
341 udp_propinfo_tbl
342 udp_propinfo_count
343 udp_random_anon_port
344 udp_rinitv4
345 udp_rinitv6
346 udp_valid_levels_arr
347 udp_winit
348 udpinfov4
349 udpinfov6
350 winit_arp
351 nxge_cksum_workaround

new/usr/src/uts/intel/ip/ip.global-objs.obj64 1

**
 6189 Sat Aug 18 10:37:25 2012
new/usr/src/uts/intel/ip/ip.global-objs.obj64
dccp: starting module template
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2011 Nexenta Systems, Inc. All rights reserved
24 #

26 arp_m_tbl
27 arp_mod_info
28 arp_netinfo
29 arp_no_defense
30 arpinfo
31 cb_inet_devops
32 cl_inet_bind
33 cl_inet_checkspi
34 cl_inet_connect2
35 cl_inet_deletespi
36 cl_inet_disconnect
37 cl_inet_getspi
38 cl_inet_idlesa
39 cl_inet_ipident
40 cl_inet_isclusterwide
41 cl_inet_listen
42 cl_inet_unbind
43 cl_inet_unlisten
44 cl_sctp_assoc_change
45 cl_sctp_check_addrs
46 cl_sctp_connect
47 cl_sctp_disconnect
48 cl_sctp_listen
49 cl_sctp_unlisten
50 conn_drain_nthreads
51 dccp_acceptor_rinit
52 dccp_acceptor_winit
53 dccp_bind_fanout_size
54 dccp_conn_cache
55 dccp_fallback_sock_winit
56 dccp_g_t_info_ack
57 dccp_g_t_info_ack_v6
58 dccp_max_optsize
59 dccp_opt_arr
60 dccp_opt_obj
61 dccp_propinfo_count

new/usr/src/uts/intel/ip/ip.global-objs.obj64 2

62 dccp_propinfo_tbl
63 dccp_random_anon_port
64 dccp_rinfo
65 dccp_rinitv4
66 dccp_rinitv6
67 dccp_sock_winit
68 dccp_squeue_flag
69 dccp_timercache
70 dccp_valid_levels_arr
71 dccp_winfo
72 dccp_winit
73 dccpinfov4
74 dccpinfov6
75 #endif /* ! codereview */
76 dce_cache
77 default_ip6_asp_table
78 do_tcp_fusion
79 do_tcpzcopy
80 dohwcksum
81 dummy_mod_info
82 dummymodinfo
83 dummyrmodinit
84 dummywmodinit
85 eventq_queue_in
86 eventq_queue_nic
87 eventq_queue_out
88 fsw
89 gcdb_hash
90 gcdb_hash_size
91 gcdb_lock
92 gcgrp4_hash
93 gcgrp6_hash
94 gcgrp_hash_size
95 gcgrp_lock
96 icmp_fallback_sock_winit
97 icmp_frag_size_table
98 icmp_g_t_info_ack
99 icmp_ipha
100 icmp_max_optsize
101 icmp_mod_info
102 icmp_opt_arr
103 icmp_opt_obj
104 icmp_propinfo_tbl
105 icmp_valid_levels_arr
106 icmpinfov4
107 icmpinfov6
108 icmprinitv4
109 icmprinitv6
110 icmpwinit
111 ilb_conn_cache
112 ilb_conn_cache_timeout
113 ilb_conn_hash_size
114 ilb_conn_tcp_expiry
115 ilb_conn_timer_size
116 ilb_conn_udp_expiry
117 ilb_kstat_instance
118 ilb_kmem_flags
119 ilb_nat_src_hash_size
120 ilb_nat_src_instance
121 ilb_rule_hash_size
122 ilb_sticky_cache
123 ilb_sticky_hash_size
124 ilb_sticky_expiry
125 ilb_sticky_timer_size
126 ilb_sticky_timeout
127 ill_no_arena

new/usr/src/uts/intel/ip/ip.global-objs.obj64 3

128 ill_null
129 inet_dev_info
130 inet_devops
131 ip6_ftable_hash_size
132 ip6opt_ls
133 ip_cgtp_filter_rev
134 ip_conn_cache
135 ip_debug
136 ip_g_all_ones
137 ip_helper_stream_info
138 ip_helper_stream_rinit
139 ip_helper_stream_winit
140 ip_ioctl_ftbl
141 ip_loopback_mtu_v6plus
142 ip_loopback_mtuplus
143 ip_m_tbl
144 ip_max_frag_dups
145 ip_min_frag_prune_time
146 ip_minor_arena_la
147 ip_minor_arena_sa
148 ip_misc_ioctl_count
149 ip_misc_ioctl_table
150 ip_mod_info
151 ip_modclose_ackwait_ms
152 ip_ndx_ioctl_count
153 ip_ndx_ioctl_table
154 ip_poll_normal_ms
155 ip_poll_normal_ticks
156 ip_propinfo_tbl
157 ip_propinfo_count
158 ip_rput_pullups
159 ip_six_byte_all_ones
160 ip_squeue_create_callback
161 ip_squeue_enter
162 ip_squeue_fanout
163 ip_squeue_flag
164 ip_squeue_worker_wait
165 ip_thread_data
166 ip_thread_list
167 ip_thread_rwlock
168 ipcl_bind_fanout_size
169 ipcl_conn_hash_maxsize
170 ipcl_conn_hash_memfactor
171 ipcl_conn_hash_size
172 ipcl_dccp_bind_fanout_size
173 ipcl_dccp_conn_fanout_size
174 #endif /* ! codereview */
175 ipcl_iptun_fanout_size
176 ipcl_raw_fanout_size
177 ipcl_udp_fanout_size
178 ipif_loopback_name
179 ipif_zero
180 ipinfov4
181 ipinfov6
182 iplrinit
183 iplwinit
184 ipmp_kstats
185 iprinitv4
186 iprinitv6
187 ipsec_action_cache
188 ipsec_hdr_pullup_needed
189 ipsec_pol_cache
190 ipsec_policy_failure_msgs
191 ipsec_sel_cache
192 ipsec_spd_hashsize
193 ipsec_weird_null_inbound_policy

new/usr/src/uts/intel/ip/ip.global-objs.obj64 4

194 ipv4info
195 ipv6_all_hosts_mcast
196 ipv6_all_ones
197 ipv6_all_rtrs_mcast
198 ipv6_all_v2rtrs_mcast
199 ipv6_all_zeros
200 ipv6_ll_template
201 ipv6_loopback
202 ipv6_solicited_node_mcast
203 ipv6_unspecified_group
204 ipv6info
205 ipwinit
206 ire_cache
207 ire_gw_secattr_cache
208 ire_null
209 ire_nv_arr
210 ire_nv_tbl
211 lcl_param_arr
212 mask_rnhead
213 max_keylen
214 modldrv
215 modlinkage
216 modlstrmod
217 multicast_encap_iphdr
218 nce_cache
219 ncec_cache
220 netdev_privs
221 prov_update_handle
222 radix_mask_cache
223 radix_node_cache
224 rawip_conn_cache
225 req_arr
226 rinit_arp
227 rn_mkfreelist
228 rn_ones
229 rn_zeros
230 rt_entry_cache
231 rts_conn_cache
232 rts_g_t_info_ack
233 rts_max_optsize
234 rts_mod_info
235 rts_opt_arr
236 rts_opt_obj
237 rts_valid_levels_arr
238 rtsinfo
239 rtsrinit
240 rtswinit
241 sctp_asconf_default_dispatch
242 sctp_asconf_dispatch_tbl
243 sctp_conn_cache
244 sctp_conn_hash_size
245 sctp_do_reclaim
246 sctp_kmem_faddr_cache
247 sctp_kmem_ftsn_set_cache
248 sctp_kmem_set_cache
249 sctp_min_assoc_listener
250 sctp_opt_arr
251 sctp_opt_arr_size
252 sctp_pa_early_abort
253 sctp_pp_early_abort
254 sctp_propinfo_tbl
255 sctp_propinfo_count
256 sctp_recvq_tq_list_max
257 sctp_recvq_tq_task_min
258 sctp_recvq_tq_thr_max
259 sctp_recvq_tq_thr_min

new/usr/src/uts/intel/ip/ip.global-objs.obj64 5

260 sctp_sin6_null
261 sctpdebug
262 sin6_null
263 sin_null
264 sock_dccp_downcalls
265 #endif /* ! codereview */
266 sock_rawip_downcalls
267 sock_rts_downcalls
268 sock_tcp_downcalls
269 sock_udp_downcalls
270 sqset_global_list
271 sqset_global_size
272 sqset_lock
273 squeue_cache
274 squeue_drain_ms
275 squeue_drain_ns
276 squeue_workerwait_ms
277 squeue_workerwait_tick
278 tcp_acceptor_rinit
279 tcp_acceptor_winit
280 tcp_conn_cache
281 tcp_conn_hash_size
282 tcp_do_reclaim
283 tcp_drop_ack_unsent_cnt
284 tcp_dummy_upcalls
285 tcp_early_abort
286 tcp_fallback_sock_winit
287 tcp_free_list_max_cnt
288 tcp_g_kstat
289 tcp_g_statistics
290 tcp_g_t_info_ack
291 tcp_g_t_info_ack_v6
292 tcp_icmp_source_quench
293 tcp_init_wnd_chk
294 tcp_max_init_cwnd
295 tcp_max_optsize
296 tcp_min_conn_listener
297 tcp_notsack_blk_cache
298 tcp_opt_arr
299 tcp_opt_obj
300 tcp_outbound_squeue_switch
301 tcp_propinfo_tbl
302 tcp_propinfo_count
303 tcp_random_anon_port
304 tcp_random_end_ptr
305 tcp_random_fptr
306 tcp_random_lock
307 tcp_random_rptr
308 tcp_random_state
309 tcp_randtbl
310 tcp_rinfo
311 tcp_rinitv4
312 tcp_rinitv6
313 tcp_sock_winit
314 tcp_squeue_flag
315 tcp_squeue_wput
316 tcp_static_maxpsz
317 tcp_timercache
318 tcp_tx_pull_len
319 tcp_valid_levels_arr
320 tcp_winfo
321 tcp_winit
322 tcpinfov4
323 tcpinfov6
324 tli_errs
325 tsol_strict_error

new/usr/src/uts/intel/ip/ip.global-objs.obj64 6

326 tun_spd_hashsize
327 udp_bind_fanout_size
328 udp_conn_cache
329 udp_fallback_sock_winit
330 udp_g_t_info_ack_ipv4
331 udp_g_t_info_ack_ipv6
332 udp_lrinit
333 udp_lwinit
334 udp_max_optsize
335 udp_mod_info
336 udp_opt_arr
337 udp_opt_obj
338 udp_propinfo_tbl
339 udp_propinfo_count
340 udp_random_anon_port
341 udp_rinitv4
342 udp_rinitv6
343 udp_valid_levels_arr
344 udp_winit
345 udpinfov4
346 udpinfov6
347 winit_arp
348 nxge_cksum_workaround

