
new/usr/src/cmd/cmd-inet/usr.sbin/ipadm/ipadm.c 1

**
 57122 Wed Jun 13 12:04:11 2012
new/usr/src/cmd/cmd-inet/usr.sbin/ipadm/ipadm.c
%B
**
______unchanged_portion_omitted_

634 /*
635 * Properties to be displayed is in ‘statep->sps_proplist’. If it is NULL,
636 * for all the properties for the specified object, relevant information, will
636 * for all the properties for the specified object, relavant information, will
637 * be displayed. Otherwise, for the selected property set, display relevant
638 * information
639 */
640 static void
641 show_properties(void *arg, int prop_class)
642 {
643 show_prop_state_t *statep = arg;
644 nvlist_t *nvl = statep->sps_proplist;
645 uint_t proto = statep->sps_proto;
646 nvpair_t *curr_nvp;
647 char *buf, *name;
648 ipadm_status_t status;

650 /* allocate sufficient buffer to hold a property value */
651 if ((buf = malloc(MAXPROPVALLEN)) == NULL)
652 die("insufficient memory");
653 statep->sps_propval = buf;

655 /* if no properties were specified, display all the properties */
656 if (nvl == NULL) {
657 (void) ipadm_walk_proptbl(proto, prop_class, show_property,
658 statep);
659 } else {
660 for (curr_nvp = nvlist_next_nvpair(nvl, NULL); curr_nvp;
661 curr_nvp = nvlist_next_nvpair(nvl, curr_nvp)) {
662 name = nvpair_name(curr_nvp);
663 status = ipadm_walk_prop(name, proto, prop_class,
664 show_property, statep);
665 if (status == IPADM_PROP_UNKNOWN)
666 (void) show_property(statep, name, proto);
667 }
668 }

670 free(buf);
671 }

______unchanged_portion_omitted_

856 /*
857 * Display information for all or specific protocol properties, either for a
858 * given protocol or for supported protocols (IP/IPv4/IPv6/TCP/UDP/SCTP/DCCP)
858 * given protocol or for supported protocols (IP/IPv4/IPv6/TCP/UDP/SCTP)
859 */
860 static void
861 do_show_prop(int argc, char **argv, const char *use)
862 {
863 char option;
864 nvlist_t *proplist = NULL;
865 char *fields_str = NULL;
866 char *protostr;
867 show_prop_state_t state;
868 ofmt_handle_t ofmt;
869 ofmt_status_t oferr;
870 uint_t ofmtflags = 0;
871 uint_t proto;
872 boolean_t p_arg = _B_FALSE;

new/usr/src/cmd/cmd-inet/usr.sbin/ipadm/ipadm.c 2

874 opterr = 0;
875 bzero(&state, sizeof (state));
876 state.sps_propval = NULL;
877 state.sps_parsable = _B_FALSE;
878 state.sps_modprop = _B_TRUE;
879 state.sps_status = state.sps_retstatus = IPADM_SUCCESS;
880 while ((option = getopt_long(argc, argv, ":p:co:", show_prop_longopts,
881 NULL)) != -1) {
882 switch (option) {
883 case ’p’:
884 if (p_arg)
885 die("-p must be specified once only");
886 p_arg = _B_TRUE;
887 if (ipadm_str2nvlist(optarg, &proplist,
888 IPADM_NORVAL) != 0)
889 die("invalid protocol properties specified");
890 break;
891 case ’c’:
892 state.sps_parsable = _B_TRUE;
893 break;
894 case ’o’:
895 fields_str = optarg;
896 break;
897 default:
898 die_opterr(optopt, option, use);
899 break;
900 }
901 }
902 if (optind == argc - 1) {
903 protostr = argv[optind];
904 if ((proto = ipadm_str2proto(protostr)) == MOD_PROTO_NONE)
905 die("invalid protocol ’%s’ specified", protostr);
906 state.sps_proto = proto;
907 } else if (optind != argc) {
908 die("Usage: %s", use);
909 } else {
910 if (p_arg)
911 die("protocol must be specified when "
912 "property name is used");
913 state.sps_proto = MOD_PROTO_NONE;
914 }

916 state.sps_proplist = proplist;

918 if (state.sps_parsable)
919 ofmtflags |= OFMT_PARSABLE;
920 else
921 ofmtflags |= OFMT_WRAP;
922 oferr = ofmt_open(fields_str, modprop_fields, ofmtflags, 0, &ofmt);
923 ipadm_ofmt_check(oferr, state.sps_parsable, ofmt);
924 state.sps_ofmt = ofmt;

926 /* handles all the errors */
927 show_properties(&state, IPADMPROP_CLASS_MODULE);

929 nvlist_free(proplist);
930 ofmt_close(ofmt);

932 if (state.sps_retstatus != IPADM_SUCCESS) {
933 ipadm_close(iph);
934 exit(EXIT_FAILURE);
935 }
936 }

______unchanged_portion_omitted_

new/usr/src/cmd/mdb/common/modules/ip/ip.c 1

**
 93952 Wed Jun 13 12:04:13 2012
new/usr/src/cmd/mdb/common/modules/ip/ip.c
%B
**
______unchanged_portion_omitted_

342 /*
343 * Generic network stack walker initialization function. It is used by all
344 * other network stack walkers.
344 * other netwrok stack walkers.
345 */
346 int
347 ns_walk_init(mdb_walk_state_t *wsp)
348 {
349 if (mdb_layered_walk("netstack", wsp) == -1) {
350 mdb_warn("can’t walk ’netstack’");
351 return (WALK_ERR);
352 }
353 return (WALK_NEXT);
354 }

______unchanged_portion_omitted_

376 /*
377 * DCCP network stack walker stepping function.
378 */
379 int
380 dccp_stacks_walk_step(mdb_walk_state_t *wsp)
381 {
382 return (ns_walk_step(wsp, NS_DCCP));
383 }

385 /*
386 #endif /* ! codereview */
387 * IP network stack walker stepping function.
388 */
389 int
390 ip_stacks_walk_step(mdb_walk_state_t *wsp)
391 {
392 return (ns_walk_step(wsp, NS_IP));
393 }

395 /*
396 * TCP network stack walker stepping function.
397 */
398 int
399 tcp_stacks_walk_step(mdb_walk_state_t *wsp)
400 {
401 return (ns_walk_step(wsp, NS_TCP));
402 }

404 /*
405 * SCTP network stack walker stepping function.
406 */
407 int
408 sctp_stacks_walk_step(mdb_walk_state_t *wsp)
409 {
410 return (ns_walk_step(wsp, NS_SCTP));
411 }

413 /*
414 * UDP network stack walker stepping function.
415 */
416 int
417 udp_stacks_walk_step(mdb_walk_state_t *wsp)
418 {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 2

419 return (ns_walk_step(wsp, NS_UDP));
420 }

422 /*
423 * Initialization function for the per CPU TCP stats counter walker of a given
424 * TCP stack.
425 */
426 int
427 tcps_sc_walk_init(mdb_walk_state_t *wsp)
428 {
429 tcp_stack_t tcps;

431 if (wsp->walk_addr == NULL)
432 return (WALK_ERR);

434 if (mdb_vread(&tcps, sizeof (tcps), wsp->walk_addr) == -1) {
435 mdb_warn("failed to read tcp_stack_t at %p", wsp->walk_addr);
436 return (WALK_ERR);
437 }
438 if (tcps.tcps_sc_cnt == 0)
439 return (WALK_DONE);

441 /*
442 * Store the tcp_stack_t pointer in walk_data. The stepping function
443 * used it to calculate if the end of the counter has reached.
444 */
445 wsp->walk_data = (void *)wsp->walk_addr;
446 wsp->walk_addr = (uintptr_t)tcps.tcps_sc;
447 return (WALK_NEXT);
448 }

450 /*
451 * Stepping function for the per CPU TCP stats counterwalker.
452 */
453 int
454 tcps_sc_walk_step(mdb_walk_state_t *wsp)
455 {
456 int status;
457 tcp_stack_t tcps;
458 tcp_stats_cpu_t *stats;
459 char *next, *end;

461 if (mdb_vread(&tcps, sizeof (tcps), (uintptr_t)wsp->walk_data) == -1) {
462 mdb_warn("failed to read tcp_stack_t at %p", wsp->walk_addr);
463 return (WALK_ERR);
464 }
465 if (mdb_vread(&stats, sizeof (stats), wsp->walk_addr) == -1) {
466 mdb_warn("failed ot read tcp_stats_cpu_t at %p",
467 wsp->walk_addr);
468 return (WALK_ERR);
469 }
470 status = wsp->walk_callback((uintptr_t)stats, &stats, wsp->walk_cbdata);
471 if (status != WALK_NEXT)
472 return (status);

474 next = (char *)wsp->walk_addr + sizeof (tcp_stats_cpu_t *);
475 end = (char *)tcps.tcps_sc + tcps.tcps_sc_cnt *
476 sizeof (tcp_stats_cpu_t *);
477 if (next >= end)
478 return (WALK_DONE);
479 wsp->walk_addr = (uintptr_t)next;
480 return (WALK_NEXT);
481 }

483 int
484 th_hash_walk_init(mdb_walk_state_t *wsp)

new/usr/src/cmd/mdb/common/modules/ip/ip.c 3

485 {
486 GElf_Sym sym;
487 list_node_t *next;

489 if (wsp->walk_addr == NULL) {
490 if (mdb_lookup_by_obj("ip", "ip_thread_list", &sym) == 0) {
491 wsp->walk_addr = sym.st_value;
492 } else {
493 mdb_warn("unable to locate ip_thread_list\n");
494 return (WALK_ERR);
495 }
496 }

498 if (mdb_vread(&next, sizeof (next),
499 wsp->walk_addr + offsetof(list_t, list_head) +
500 offsetof(list_node_t, list_next)) == -1 ||
501 next == NULL) {
502 mdb_warn("non-DEBUG image; cannot walk th_hash list\n");
503 return (WALK_ERR);
504 }

506 if (mdb_layered_walk("list", wsp) == -1) {
507 mdb_warn("can’t walk ’list’");
508 return (WALK_ERR);
509 } else {
510 return (WALK_NEXT);
511 }
512 }

514 int
515 th_hash_walk_step(mdb_walk_state_t *wsp)
516 {
517 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
518 wsp->walk_cbdata));
519 }

521 /*
522 * Called with walk_addr being the address of ips_ill_g_heads
523 */
524 int
525 illif_stack_walk_init(mdb_walk_state_t *wsp)
526 {
527 illif_walk_data_t *iw;

529 if (wsp->walk_addr == NULL) {
530 mdb_warn("illif_stack supports only local walks\n");
531 return (WALK_ERR);
532 }

534 iw = mdb_alloc(sizeof (illif_walk_data_t), UM_SLEEP);

536 if (mdb_vread(iw->ill_g_heads, MAX_G_HEADS * sizeof (ill_g_head_t),
537 wsp->walk_addr) == -1) {
538 mdb_warn("failed to read ’ips_ill_g_heads’ at %p",
539 wsp->walk_addr);
540 mdb_free(iw, sizeof (illif_walk_data_t));
541 return (WALK_ERR);
542 }

544 iw->ill_list = 0;
545 wsp->walk_addr = (uintptr_t)iw->ill_g_heads[0].ill_g_list_head;
546 wsp->walk_data = iw;

548 return (WALK_NEXT);
549 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 4

551 int
552 illif_stack_walk_step(mdb_walk_state_t *wsp)
553 {
554 uintptr_t addr = wsp->walk_addr;
555 illif_walk_data_t *iw = wsp->walk_data;
556 int list = iw->ill_list;

558 if (mdb_vread(&iw->ill_if, sizeof (ill_if_t), addr) == -1) {
559 mdb_warn("failed to read ill_if_t at %p", addr);
560 return (WALK_ERR);
561 }

563 wsp->walk_addr = (uintptr_t)iw->ill_if.illif_next;

565 if (wsp->walk_addr ==
566 (uintptr_t)iw->ill_g_heads[list].ill_g_list_head) {

568 if (++list >= MAX_G_HEADS)
569 return (WALK_DONE);

571 iw->ill_list = list;
572 wsp->walk_addr =
573 (uintptr_t)iw->ill_g_heads[list].ill_g_list_head;
574 return (WALK_NEXT);
575 }

577 return (wsp->walk_callback(addr, iw, wsp->walk_cbdata));
578 }

580 void
581 illif_stack_walk_fini(mdb_walk_state_t *wsp)
582 {
583 mdb_free(wsp->walk_data, sizeof (illif_walk_data_t));
584 }

586 typedef struct illif_cbdata {
587 uint_t ill_flags;
588 uintptr_t ill_addr;
589 int ill_printlist; /* list to be printed (MAX_G_HEADS for all) */
590 boolean_t ill_printed;
591 } illif_cbdata_t;

593 static int
594 illif_cb(uintptr_t addr, const illif_walk_data_t *iw, illif_cbdata_t *id)
595 {
596 const char *version;

598 if (id->ill_printlist < MAX_G_HEADS &&
599 id->ill_printlist != iw->ill_list)
600 return (WALK_NEXT);

602 if (id->ill_flags & DCMD_ADDRSPEC && id->ill_addr != addr)
603 return (WALK_NEXT);

605 if (id->ill_flags & DCMD_PIPE_OUT) {
606 mdb_printf("%p\n", addr);
607 return (WALK_NEXT);
608 }

610 switch (iw->ill_list) {
611 case IP_V4_G_HEAD: version = "v4"; break;
612 case IP_V6_G_HEAD: version = "v6"; break;
613 default: version = "??"; break;
614 }

616 mdb_printf("%?p %2s %?p %10d %?p %s\n",

new/usr/src/cmd/mdb/common/modules/ip/ip.c 5

617 addr, version, addr + offsetof(ill_if_t, illif_avl_by_ppa),
618 iw->ill_if.illif_avl_by_ppa.avl_numnodes,
619 iw->ill_if.illif_ppa_arena, iw->ill_if.illif_name);

621 id->ill_printed = TRUE;

623 return (WALK_NEXT);
624 }

626 int
627 ip_stacks_common_walk_init(mdb_walk_state_t *wsp)
628 {
629 if (mdb_layered_walk("ip_stacks", wsp) == -1) {
630 mdb_warn("can’t walk ’ip_stacks’");
631 return (WALK_ERR);
632 }

634 return (WALK_NEXT);
635 }

637 int
638 illif_walk_step(mdb_walk_state_t *wsp)
639 {
640 uintptr_t kaddr;

642 kaddr = wsp->walk_addr + OFFSETOF(ip_stack_t, ips_ill_g_heads);

644 if (mdb_vread(&kaddr, sizeof (kaddr), kaddr) == -1) {
645 mdb_warn("can’t read ips_ip_cache_table at %p", kaddr);
646 return (WALK_ERR);
647 }

649 if (mdb_pwalk("illif_stack", wsp->walk_callback,
650 wsp->walk_cbdata, kaddr) == -1) {
651 mdb_warn("couldn’t walk ’illif_stack’ for ips_ill_g_heads %p",
652 kaddr);
653 return (WALK_ERR);
654 }
655 return (WALK_NEXT);
656 }

658 int
659 illif(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
660 {
661 illif_cbdata_t id;
662 ill_if_t ill_if;
663 const char *opt_P = NULL;
664 int printlist = MAX_G_HEADS;

666 if (mdb_getopts(argc, argv,
667 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
668 return (DCMD_USAGE);

670 if (opt_P != NULL) {
671 if (strcmp("v4", opt_P) == 0) {
672 printlist = IP_V4_G_HEAD;
673 } else if (strcmp("v6", opt_P) == 0) {
674 printlist = IP_V6_G_HEAD;
675 } else {
676 mdb_warn("invalid protocol ’%s’\n", opt_P);
677 return (DCMD_USAGE);
678 }
679 }

681 if (DCMD_HDRSPEC(flags) && (flags & DCMD_PIPE_OUT) == 0) {
682 mdb_printf("%<u>%?s %2s %?s %10s %?s %-10s%</u>\n",

new/usr/src/cmd/mdb/common/modules/ip/ip.c 6

683 "ADDR", "IP", "AVLADDR", "NUMNODES", "ARENA", "NAME");
684 }

686 id.ill_flags = flags;
687 id.ill_addr = addr;
688 id.ill_printlist = printlist;
689 id.ill_printed = FALSE;

691 if (mdb_walk("illif", (mdb_walk_cb_t)illif_cb, &id) == -1) {
692 mdb_warn("can’t walk ill_if_t structures");
693 return (DCMD_ERR);
694 }

696 if (!(flags & DCMD_ADDRSPEC) || opt_P != NULL || id.ill_printed)
697 return (DCMD_OK);

699 /*
700 * If an address is specified and the walk doesn’t find it,
701 * print it anyway.
702 */
703 if (mdb_vread(&ill_if, sizeof (ill_if_t), addr) == -1) {
704 mdb_warn("failed to read ill_if_t at %p", addr);
705 return (DCMD_ERR);
706 }

708 mdb_printf("%?p %2s %?p %10d %?p %s\n",
709 addr, "??", addr + offsetof(ill_if_t, illif_avl_by_ppa),
710 ill_if.illif_avl_by_ppa.avl_numnodes,
711 ill_if.illif_ppa_arena, ill_if.illif_name);

713 return (DCMD_OK);
714 }

716 static void
717 illif_help(void)
718 {
719 mdb_printf("Options:\n");
720 mdb_printf("\t-P v4 | v6"
721 "\tfilter interface structures for the specified protocol\n");
722 }

724 int
725 nce_walk_init(mdb_walk_state_t *wsp)
726 {
727 if (mdb_layered_walk("nce_cache", wsp) == -1) {
728 mdb_warn("can’t walk ’nce_cache’");
729 return (WALK_ERR);
730 }

732 return (WALK_NEXT);
733 }

735 int
736 nce_walk_step(mdb_walk_state_t *wsp)
737 {
738 nce_t nce;

740 if (mdb_vread(&nce, sizeof (nce), wsp->walk_addr) == -1) {
741 mdb_warn("can’t read nce at %p", wsp->walk_addr);
742 return (WALK_ERR);
743 }

745 return (wsp->walk_callback(wsp->walk_addr, &nce, wsp->walk_cbdata));
746 }

748 static int

new/usr/src/cmd/mdb/common/modules/ip/ip.c 7

749 nce_format(uintptr_t addr, const nce_t *ncep, void *nce_cb_arg)
750 {
751 nce_cbdata_t *nce_cb = nce_cb_arg;
752 ill_t ill;
753 char ill_name[LIFNAMSIZ];
754 ncec_t ncec;

756 if (mdb_vread(&ncec, sizeof (ncec),
757 (uintptr_t)ncep->nce_common) == -1) {
758 mdb_warn("can’t read ncec at %p", ncep->nce_common);
759 return (WALK_NEXT);
760 }
761 if (nce_cb->nce_ipversion != 0 &&
762 ncec.ncec_ipversion != nce_cb->nce_ipversion)
763 return (WALK_NEXT);

765 if (mdb_vread(&ill, sizeof (ill), (uintptr_t)ncep->nce_ill) == -1) {
766 mdb_snprintf(ill_name, sizeof (ill_name), "--");
767 } else {
768 (void) mdb_readstr(ill_name,
769 MIN(LIFNAMSIZ, ill.ill_name_length),
770 (uintptr_t)ill.ill_name);
771 }

773 if (nce_cb->nce_ill_name[0] != ’\0’ &&
774 strncmp(nce_cb->nce_ill_name, ill_name, LIFNAMSIZ) != 0)
775 return (WALK_NEXT);

777 if (ncec.ncec_ipversion == IPV6_VERSION) {

779 mdb_printf("%?p %5s %-18s %?p %6d %N\n",
780 addr, ill_name,
781 nce_l2_addr(ncep, &ill),
782 ncep->nce_fp_mp,
783 ncep->nce_refcnt,
784 &ncep->nce_addr);

786 } else {
787 struct in_addr nceaddr;

789 IN6_V4MAPPED_TO_INADDR(&ncep->nce_addr, &nceaddr);
790 mdb_printf("%?p %5s %-18s %?p %6d %I\n",
791 addr, ill_name,
792 nce_l2_addr(ncep, &ill),
793 ncep->nce_fp_mp,
794 ncep->nce_refcnt,
795 nceaddr.s_addr);
796 }

798 return (WALK_NEXT);
799 }

801 int
802 dce_walk_init(mdb_walk_state_t *wsp)
803 {
804 wsp->walk_data = (void *)wsp->walk_addr;

806 if (mdb_layered_walk("dce_cache", wsp) == -1) {
807 mdb_warn("can’t walk ’dce_cache’");
808 return (WALK_ERR);
809 }

811 return (WALK_NEXT);
812 }

814 int

new/usr/src/cmd/mdb/common/modules/ip/ip.c 8

815 dce_walk_step(mdb_walk_state_t *wsp)
816 {
817 dce_t dce;

819 if (mdb_vread(&dce, sizeof (dce), wsp->walk_addr) == -1) {
820 mdb_warn("can’t read dce at %p", wsp->walk_addr);
821 return (WALK_ERR);
822 }

824 /* If ip_stack_t is specified, skip DCEs that don’t belong to it. */
825 if ((wsp->walk_data != NULL) && (wsp->walk_data != dce.dce_ipst))
826 return (WALK_NEXT);

828 return (wsp->walk_callback(wsp->walk_addr, &dce, wsp->walk_cbdata));
829 }

831 int
832 ire_walk_init(mdb_walk_state_t *wsp)
833 {
834 wsp->walk_data = (void *)wsp->walk_addr;

836 if (mdb_layered_walk("ire_cache", wsp) == -1) {
837 mdb_warn("can’t walk ’ire_cache’");
838 return (WALK_ERR);
839 }

841 return (WALK_NEXT);
842 }

844 int
845 ire_walk_step(mdb_walk_state_t *wsp)
846 {
847 ire_t ire;

849 if (mdb_vread(&ire, sizeof (ire), wsp->walk_addr) == -1) {
850 mdb_warn("can’t read ire at %p", wsp->walk_addr);
851 return (WALK_ERR);
852 }

854 /* If ip_stack_t is specified, skip IREs that don’t belong to it. */
855 if ((wsp->walk_data != NULL) && (wsp->walk_data != ire.ire_ipst))
856 return (WALK_NEXT);

858 return (wsp->walk_callback(wsp->walk_addr, &ire, wsp->walk_cbdata));
859 }

861 /* ARGSUSED */
862 int
863 ire_next_walk_init(mdb_walk_state_t *wsp)
864 {
865 return (WALK_NEXT);
866 }

868 int
869 ire_next_walk_step(mdb_walk_state_t *wsp)
870 {
871 ire_t ire;
872 int status;

875 if (wsp->walk_addr == NULL)
876 return (WALK_DONE);

878 if (mdb_vread(&ire, sizeof (ire), wsp->walk_addr) == -1) {
879 mdb_warn("can’t read ire at %p", wsp->walk_addr);
880 return (WALK_ERR);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 9

881 }
882 status = wsp->walk_callback(wsp->walk_addr, &ire,
883 wsp->walk_cbdata);

885 if (status != WALK_NEXT)
886 return (status);

888 wsp->walk_addr = (uintptr_t)ire.ire_next;
889 return (status);
890 }

892 static int
893 ire_format(uintptr_t addr, const void *ire_arg, void *ire_cb_arg)
894 {
895 const ire_t *irep = ire_arg;
896 ire_cbdata_t *ire_cb = ire_cb_arg;
897 boolean_t verbose = ire_cb->verbose;
898 ill_t ill;
899 char ill_name[LIFNAMSIZ];
900 boolean_t condemned = irep->ire_generation == IRE_GENERATION_CONDEMNED;

902 static const mdb_bitmask_t tmasks[] = {
903 { "BROADCAST", IRE_BROADCAST, IRE_BROADCAST },
904 { "DEFAULT", IRE_DEFAULT, IRE_DEFAULT },
905 { "LOCAL", IRE_LOCAL, IRE_LOCAL },
906 { "LOOPBACK", IRE_LOOPBACK, IRE_LOOPBACK },
907 { "PREFIX", IRE_PREFIX, IRE_PREFIX },
908 { "MULTICAST", IRE_MULTICAST, IRE_MULTICAST },
909 { "NOROUTE", IRE_NOROUTE, IRE_NOROUTE },
910 { "IF_NORESOLVER", IRE_IF_NORESOLVER, IRE_IF_NORESOLVER },
911 { "IF_RESOLVER", IRE_IF_RESOLVER, IRE_IF_RESOLVER },
912 { "IF_CLONE", IRE_IF_CLONE, IRE_IF_CLONE },
913 { "HOST", IRE_HOST, IRE_HOST },
914 { NULL, 0, 0 }
915 };

917 static const mdb_bitmask_t fmasks[] = {
918 { "UP", RTF_UP, RTF_UP },
919 { "GATEWAY", RTF_GATEWAY, RTF_GATEWAY },
920 { "HOST", RTF_HOST, RTF_HOST },
921 { "REJECT", RTF_REJECT, RTF_REJECT },
922 { "DYNAMIC", RTF_DYNAMIC, RTF_DYNAMIC },
923 { "MODIFIED", RTF_MODIFIED, RTF_MODIFIED },
924 { "DONE", RTF_DONE, RTF_DONE },
925 { "MASK", RTF_MASK, RTF_MASK },
926 { "CLONING", RTF_CLONING, RTF_CLONING },
927 { "XRESOLVE", RTF_XRESOLVE, RTF_XRESOLVE },
928 { "LLINFO", RTF_LLINFO, RTF_LLINFO },
929 { "STATIC", RTF_STATIC, RTF_STATIC },
930 { "BLACKHOLE", RTF_BLACKHOLE, RTF_BLACKHOLE },
931 { "PRIVATE", RTF_PRIVATE, RTF_PRIVATE },
932 { "PROTO2", RTF_PROTO2, RTF_PROTO2 },
933 { "PROTO1", RTF_PROTO1, RTF_PROTO1 },
934 { "MULTIRT", RTF_MULTIRT, RTF_MULTIRT },
935 { "SETSRC", RTF_SETSRC, RTF_SETSRC },
936 { "INDIRECT", RTF_INDIRECT, RTF_INDIRECT },
937 { NULL, 0, 0 }
938 };

940 if (ire_cb->ire_ipversion != 0 &&
941 irep->ire_ipversion != ire_cb->ire_ipversion)
942 return (WALK_NEXT);

944 if (mdb_vread(&ill, sizeof (ill), (uintptr_t)irep->ire_ill) == -1) {
945 mdb_snprintf(ill_name, sizeof (ill_name), "--");
946 } else {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 10

947 (void) mdb_readstr(ill_name,
948 MIN(LIFNAMSIZ, ill.ill_name_length),
949 (uintptr_t)ill.ill_name);
950 }

952 if (irep->ire_ipversion == IPV6_VERSION && verbose) {

954 mdb_printf("%%?p%%3s %40N <%hb%s>\n"
955 "%?s %40N\n"
956 "%?s %40d %4d <%hb> %s\n",
957 addr, condemned ? "(C)" : "", &irep->ire_setsrc_addr_v6,
958 irep->ire_type, tmasks,
959 (irep->ire_testhidden ? ", HIDDEN" : ""),
960 "", &irep->ire_addr_v6,
961 "", ips_to_stackid((uintptr_t)irep->ire_ipst),
962 irep->ire_zoneid,
963 irep->ire_flags, fmasks, ill_name);

965 } else if (irep->ire_ipversion == IPV6_VERSION) {

967 mdb_printf("%?p%3s %30N %30N %5d %4d %s\n",
968 addr, condemned ? "(C)" : "", &irep->ire_setsrc_addr_v6,
969 &irep->ire_addr_v6,
970 ips_to_stackid((uintptr_t)irep->ire_ipst),
971 irep->ire_zoneid, ill_name);

973 } else if (verbose) {

975 mdb_printf("%%?p%%3s %40I <%hb%s>\n"
976 "%?s %40I\n"
977 "%?s %40d %4d <%hb> %s\n",
978 addr, condemned ? "(C)" : "", irep->ire_setsrc_addr,
979 irep->ire_type, tmasks,
980 (irep->ire_testhidden ? ", HIDDEN" : ""),
981 "", irep->ire_addr,
982 "", ips_to_stackid((uintptr_t)irep->ire_ipst),
983 irep->ire_zoneid, irep->ire_flags, fmasks, ill_name);

985 } else {

987 mdb_printf("%?p%3s %30I %30I %5d %4d %s\n", addr,
988 condemned ? "(C)" : "", irep->ire_setsrc_addr,
989 irep->ire_addr, ips_to_stackid((uintptr_t)irep->ire_ipst),
990 irep->ire_zoneid, ill_name);
991 }

993 return (WALK_NEXT);
994 }

996 /*
997 * There are faster ways to do this. Given the interactive nature of this
998 * use I don’t think its worth much effort.
999 */

1000 static unsigned short
1001 ipcksum(void *p, int len)
1002 {
1003 int32_t sum = 0;

1005 while (len > 1) {
1006 /* alignment */
1007 sum += *(uint16_t *)p;
1008 p = (char *)p + sizeof (uint16_t);
1009 if (sum & 0x80000000)
1010 sum = (sum & 0xFFFF) + (sum >> 16);
1011 len -= 2;
1012 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 11

1014 if (len)
1015 sum += (uint16_t)*(unsigned char *)p;

1017 while (sum >> 16)
1018 sum = (sum & 0xFFFF) + (sum >> 16);

1020 return (~sum);
1021 }

1023 static const mdb_bitmask_t tcp_flags[] = {
1024 { "SYN", TH_SYN, TH_SYN },
1025 { "ACK", TH_ACK, TH_ACK },
1026 { "FIN", TH_FIN, TH_FIN },
1027 { "RST", TH_RST, TH_RST },
1028 { "PSH", TH_PUSH, TH_PUSH },
1029 { "ECE", TH_ECE, TH_ECE },
1030 { "CWR", TH_CWR, TH_CWR },
1031 { NULL, 0, 0 }
1032 };

1034 /* TCP option length */
1035 #define TCPOPT_HEADER_LEN 2
1036 #define TCPOPT_MAXSEG_LEN 4
1037 #define TCPOPT_WS_LEN 3
1038 #define TCPOPT_TSTAMP_LEN 10
1039 #define TCPOPT_SACK_OK_LEN 2

1041 static void
1042 tcphdr_print_options(uint8_t *opts, uint32_t opts_len)
1043 {
1044 uint8_t *endp;
1045 uint32_t len, val;

1047 mdb_printf("%Options:%");
1048 endp = opts + opts_len;
1049 while (opts < endp) {
1050 len = endp - opts;
1051 switch (*opts) {
1052 case TCPOPT_EOL:
1053 mdb_printf(" EOL");
1054 opts++;
1055 break;

1057 case TCPOPT_NOP:
1058 mdb_printf(" NOP");
1059 opts++;
1060 break;

1062 case TCPOPT_MAXSEG: {
1063 uint16_t mss;

1065 if (len < TCPOPT_MAXSEG_LEN ||
1066 opts[1] != TCPOPT_MAXSEG_LEN) {
1067 mdb_printf(" <Truncated MSS>\n");
1068 return;
1069 }
1070 mdb_nhconvert(&mss, opts + TCPOPT_HEADER_LEN,
1071 sizeof (mss));
1072 mdb_printf(" MSS=%u", mss);
1073 opts += TCPOPT_MAXSEG_LEN;
1074 break;
1075 }

1077 case TCPOPT_WSCALE:
1078 if (len < TCPOPT_WS_LEN || opts[1] != TCPOPT_WS_LEN) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 12

1079 mdb_printf(" <Truncated WS>\n");
1080 return;
1081 }
1082 mdb_printf(" WS=%u", opts[2]);
1083 opts += TCPOPT_WS_LEN;
1084 break;

1086 case TCPOPT_TSTAMP: {
1087 if (len < TCPOPT_TSTAMP_LEN ||
1088 opts[1] != TCPOPT_TSTAMP_LEN) {
1089 mdb_printf(" <Truncated TS>\n");
1090 return;
1091 }

1093 opts += TCPOPT_HEADER_LEN;
1094 mdb_nhconvert(&val, opts, sizeof (val));
1095 mdb_printf(" TS_VAL=%u,", val);

1097 opts += sizeof (val);
1098 mdb_nhconvert(&val, opts, sizeof (val));
1099 mdb_printf("TS_ECHO=%u", val);

1101 opts += sizeof (val);
1102 break;
1103 }

1105 case TCPOPT_SACK_PERMITTED:
1106 if (len < TCPOPT_SACK_OK_LEN ||
1107 opts[1] != TCPOPT_SACK_OK_LEN) {
1108 mdb_printf(" <Truncated SACK_OK>\n");
1109 return;
1110 }
1111 mdb_printf(" SACK_OK");
1112 opts += TCPOPT_SACK_OK_LEN;
1113 break;

1115 case TCPOPT_SACK: {
1116 uint32_t sack_len;

1118 if (len <= TCPOPT_HEADER_LEN || len < opts[1] ||
1119 opts[1] <= TCPOPT_HEADER_LEN) {
1120 mdb_printf(" <Truncated SACK>\n");
1121 return;
1122 }
1123 sack_len = opts[1] - TCPOPT_HEADER_LEN;
1124 opts += TCPOPT_HEADER_LEN;

1126 mdb_printf(" SACK=");
1127 while (sack_len > 0) {
1128 if (opts + 2 * sizeof (val) > endp) {
1129 mdb_printf("<Truncated SACK>\n");
1130 opts = endp;
1131 break;
1132 }

1134 mdb_nhconvert(&val, opts, sizeof (val));
1135 mdb_printf("<%u,", val);
1136 opts += sizeof (val);
1137 mdb_nhconvert(&val, opts, sizeof (val));
1138 mdb_printf("%u>", val);
1139 opts += sizeof (val);

1141 sack_len -= 2 * sizeof (val);
1142 }
1143 break;
1144 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 13

1146 default:
1147 mdb_printf(" Opts=<val=%u,len=%u>", *opts,
1148 opts[1]);
1149 opts += opts[1];
1150 break;
1151 }
1152 }
1153 mdb_printf("\n");
1154 }

1156 static void
1157 tcphdr_print(struct tcphdr *tcph)
1158 {
1159 in_port_t sport, dport;
1160 tcp_seq seq, ack;
1161 uint16_t win, urp;

1163 mdb_printf("%TCP header%\n");

1165 mdb_nhconvert(&sport, &tcph->th_sport, sizeof (sport));
1166 mdb_nhconvert(&dport, &tcph->th_dport, sizeof (dport));
1167 mdb_nhconvert(&seq, &tcph->th_seq, sizeof (seq));
1168 mdb_nhconvert(&ack, &tcph->th_ack, sizeof (ack));
1169 mdb_nhconvert(&win, &tcph->th_win, sizeof (win));
1170 mdb_nhconvert(&urp, &tcph->th_urp, sizeof (urp));

1172 mdb_printf("%<u>%6s %6s %10s %10s %4s %5s %5s %5s %-15s%</u>\n",
1173 "SPORT", "DPORT", "SEQ", "ACK", "HLEN", "WIN", "CSUM", "URP",
1174 "FLAGS");
1175 mdb_printf("%6hu %6hu %10u %10u %4d %5hu %5hu %5hu <%b>\n",
1176 sport, dport, seq, ack, tcph->th_off << 2, win,
1177 tcph->th_sum, urp, tcph->th_flags, tcp_flags);
1178 mdb_printf("0x%04x 0x%04x 0x%08x 0x%08x\n\n",
1179 sport, dport, seq, ack);
1180 }

1182 /* ARGSUSED */
1183 static int
1184 tcphdr(uintptr_t addr, uint_t flags, int ac, const mdb_arg_t *av)
1185 {
1186 struct tcphdr tcph;
1187 uint32_t opt_len;

1189 if (!(flags & DCMD_ADDRSPEC))
1190 return (DCMD_USAGE);

1192 if (mdb_vread(&tcph, sizeof (tcph), addr) == -1) {
1193 mdb_warn("failed to read TCP header at %p", addr);
1194 return (DCMD_ERR);
1195 }
1196 tcphdr_print(&tcph);

1198 /* If there are options, print them out also. */
1199 opt_len = (tcph.th_off << 2) - TCP_MIN_HEADER_LENGTH;
1200 if (opt_len > 0) {
1201 uint8_t *opts, *opt_buf;

1203 opt_buf = mdb_alloc(opt_len, UM_SLEEP);
1204 opts = (uint8_t *)addr + sizeof (tcph);
1205 if (mdb_vread(opt_buf, opt_len, (uintptr_t)opts) == -1) {
1206 mdb_warn("failed to read TCP options at %p", opts);
1207 return (DCMD_ERR);
1208 }
1209 tcphdr_print_options(opt_buf, opt_len);
1210 mdb_free(opt_buf, opt_len);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 14

1211 }

1213 return (DCMD_OK);
1214 }

1216 static void
1217 udphdr_print(struct udphdr *udph)
1218 {
1219 in_port_t sport, dport;
1220 uint16_t hlen;

1222 mdb_printf("%UDP header%\n");

1224 mdb_nhconvert(&sport, &udph->uh_sport, sizeof (sport));
1225 mdb_nhconvert(&dport, &udph->uh_dport, sizeof (dport));
1226 mdb_nhconvert(&hlen, &udph->uh_ulen, sizeof (hlen));

1228 mdb_printf("%<u>%14s %14s %5s %6s%</u>\n",
1229 "SPORT", "DPORT", "LEN", "CSUM");
1230 mdb_printf("%5hu (0x%04x) %5hu (0x%04x) %5hu 0x%04hx\n\n", sport, sport,
1231 dport, dport, hlen, udph->uh_sum);
1232 }

1234 /* ARGSUSED */
1235 static int
1236 udphdr(uintptr_t addr, uint_t flags, int ac, const mdb_arg_t *av)
1237 {
1238 struct udphdr udph;

1240 if (!(flags & DCMD_ADDRSPEC))
1241 return (DCMD_USAGE);

1243 if (mdb_vread(&udph, sizeof (udph), addr) == -1) {
1244 mdb_warn("failed to read UDP header at %p", addr);
1245 return (DCMD_ERR);
1246 }
1247 udphdr_print(&udph);
1248 return (DCMD_OK);
1249 }

1251 static void
1252 sctphdr_print(sctp_hdr_t *sctph)
1253 {
1254 in_port_t sport, dport;

1256 mdb_printf("%SCTP header%\n");
1257 mdb_nhconvert(&sport, &sctph->sh_sport, sizeof (sport));
1258 mdb_nhconvert(&dport, &sctph->sh_dport, sizeof (dport));

1260 mdb_printf("%<u>%14s %14s %10s %10s%</u>\n",
1261 "SPORT", "DPORT", "VTAG", "CHKSUM");
1262 mdb_printf("%5hu (0x%04x) %5hu (0x%04x) %10u 0x%08x\n\n", sport, sport,
1263 dport, dport, sctph->sh_verf, sctph->sh_chksum);
1264 }

1266 /* ARGSUSED */
1267 static int
1268 sctphdr(uintptr_t addr, uint_t flags, int ac, const mdb_arg_t *av)
1269 {
1270 sctp_hdr_t sctph;

1272 if (!(flags & DCMD_ADDRSPEC))
1273 return (DCMD_USAGE);

1275 if (mdb_vread(&sctph, sizeof (sctph), addr) == -1) {
1276 mdb_warn("failed to read SCTP header at %p", addr);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 15

1277 return (DCMD_ERR);
1278 }

1280 sctphdr_print(&sctph);
1281 return (DCMD_OK);
1282 }

1284 static int
1285 transport_hdr(int proto, uintptr_t addr)
1286 {
1287 mdb_printf("\n");
1288 switch (proto) {
1289 case IPPROTO_TCP: {
1290 struct tcphdr tcph;

1292 if (mdb_vread(&tcph, sizeof (tcph), addr) == -1) {
1293 mdb_warn("failed to read TCP header at %p", addr);
1294 return (DCMD_ERR);
1295 }
1296 tcphdr_print(&tcph);
1297 break;
1298 }
1299 case IPPROTO_UDP: {
1300 struct udphdr udph;

1302 if (mdb_vread(&udph, sizeof (udph), addr) == -1) {
1303 mdb_warn("failed to read UDP header at %p", addr);
1304 return (DCMD_ERR);
1305 }
1306 udphdr_print(&udph);
1307 break;
1308 }
1309 case IPPROTO_SCTP: {
1310 sctp_hdr_t sctph;

1312 if (mdb_vread(&sctph, sizeof (sctph), addr) == -1) {
1313 mdb_warn("failed to read SCTP header at %p", addr);
1314 return (DCMD_ERR);
1315 }
1316 sctphdr_print(&sctph);
1317 break;
1318 }
1319 default:
1320 break;
1321 }

1323 return (DCMD_OK);
1324 }

1326 static const mdb_bitmask_t ip_flags[] = {
1327 { "DF", IPH_DF, IPH_DF },
1328 { "MF", IPH_MF, IPH_MF },
1329 { NULL, 0, 0 }
1330 };

1332 /* ARGSUSED */
1333 static int
1334 iphdr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1335 {
1336 uint_t verbose = FALSE, force = FALSE;
1337 ipha_t iph[1];
1338 uint16_t ver, totlen, hdrlen, ipid, off, csum;
1339 uintptr_t nxt_proto;
1340 char exp_csum[8];

1342 if (mdb_getopts(argc, argv,

new/usr/src/cmd/mdb/common/modules/ip/ip.c 16

1343 ’v’, MDB_OPT_SETBITS, TRUE, &verbose,
1344 ’f’, MDB_OPT_SETBITS, TRUE, &force, NULL) != argc)
1345 return (DCMD_USAGE);

1347 if (mdb_vread(iph, sizeof (*iph), addr) == -1) {
1348 mdb_warn("failed to read IPv4 header at %p", addr);
1349 return (DCMD_ERR);
1350 }

1352 ver = (iph->ipha_version_and_hdr_length & 0xf0) >> 4;
1353 if (ver != IPV4_VERSION) {
1354 if (ver == IPV6_VERSION) {
1355 return (ip6hdr(addr, flags, argc, argv));
1356 } else if (!force) {
1357 mdb_warn("unknown IP version: %d\n", ver);
1358 return (DCMD_ERR);
1359 }
1360 }

1362 mdb_printf("%IPv4 header%\n");
1363 mdb_printf("%-34s %-34s\n"
1364 "%<u>%-4s %-4s %-5s %-5s %-6s %-5s %-5s %-6s %-8s %-6s%</u>\n",
1365 "SRC", "DST",
1366 "HLEN", "TOS", "LEN", "ID", "OFFSET", "TTL", "PROTO", "CHKSUM",
1367 "EXP-CSUM", "FLGS");

1369 hdrlen = (iph->ipha_version_and_hdr_length & 0x0f) << 2;
1370 mdb_nhconvert(&totlen, &iph->ipha_length, sizeof (totlen));
1371 mdb_nhconvert(&ipid, &iph->ipha_ident, sizeof (ipid));
1372 mdb_nhconvert(&off, &iph->ipha_fragment_offset_and_flags, sizeof (off));
1373 if (hdrlen == IP_SIMPLE_HDR_LENGTH) {
1374 if ((csum = ipcksum(iph, sizeof (*iph))) != 0)
1375 csum = ~(~csum + ~iph->ipha_hdr_checksum);
1376 else
1377 csum = iph->ipha_hdr_checksum;
1378 mdb_snprintf(exp_csum, 8, "%u", csum);
1379 } else {
1380 mdb_snprintf(exp_csum, 8, "<n/a>");
1381 }

1383 mdb_printf("%-34I %-34I%\n"
1384 "%-4d %-4d %-5hu %-5hu %-6hu %-5hu %-5hu %-6u %-8s <%5hb>\n",
1385 iph->ipha_src, iph->ipha_dst,
1386 hdrlen, iph->ipha_type_of_service, totlen, ipid,
1387 (off << 3) & 0xffff, iph->ipha_ttl, iph->ipha_protocol,
1388 iph->ipha_hdr_checksum, exp_csum, off, ip_flags);

1390 if (verbose) {
1391 nxt_proto = addr + hdrlen;
1392 return (transport_hdr(iph->ipha_protocol, nxt_proto));
1393 } else {
1394 return (DCMD_OK);
1395 }
1396 }

1398 /* ARGSUSED */
1399 static int
1400 ip6hdr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1401 {
1402 uint_t verbose = FALSE, force = FALSE;
1403 ip6_t iph[1];
1404 int ver, class, flow;
1405 uint16_t plen;
1406 uintptr_t nxt_proto;

1408 if (mdb_getopts(argc, argv,

new/usr/src/cmd/mdb/common/modules/ip/ip.c 17

1409 ’v’, MDB_OPT_SETBITS, TRUE, &verbose,
1410 ’f’, MDB_OPT_SETBITS, TRUE, &force, NULL) != argc)
1411 return (DCMD_USAGE);

1413 if (mdb_vread(iph, sizeof (*iph), addr) == -1) {
1414 mdb_warn("failed to read IPv6 header at %p", addr);
1415 return (DCMD_ERR);
1416 }

1418 ver = (iph->ip6_vfc & 0xf0) >> 4;
1419 if (ver != IPV6_VERSION) {
1420 if (ver == IPV4_VERSION) {
1421 return (iphdr(addr, flags, argc, argv));
1422 } else if (!force) {
1423 mdb_warn("unknown IP version: %d\n", ver);
1424 return (DCMD_ERR);
1425 }
1426 }

1428 mdb_printf("%IPv6 header%\n");
1429 mdb_printf("%<u>%-26s %-26s %4s %7s %5s %3s %3s%</u>\n",
1430 "SRC", "DST", "TCLS", "FLOW-ID", "PLEN", "NXT", "HOP");

1432 class = (iph->ip6_vcf & IPV6_FLOWINFO_TCLASS) >> 20;
1433 mdb_nhconvert(&class, &class, sizeof (class));
1434 flow = iph->ip6_vcf & IPV6_FLOWINFO_FLOWLABEL;
1435 mdb_nhconvert(&flow, &flow, sizeof (flow));
1436 mdb_nhconvert(&plen, &iph->ip6_plen, sizeof (plen));

1438 mdb_printf("%-26N %-26N %4d %7d %5hu %3d %3d\n",
1439 &iph->ip6_src, &iph->ip6_dst,
1440 class, flow, plen, iph->ip6_nxt, iph->ip6_hlim);

1442 if (verbose) {
1443 nxt_proto = addr + sizeof (ip6_t);
1444 return (transport_hdr(iph->ip6_nxt, nxt_proto));
1445 } else {
1446 return (DCMD_OK);
1447 }
1448 }

1450 int
1451 nce(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1452 {
1453 nce_t nce;
1454 nce_cbdata_t nce_cb;
1455 int ipversion = 0;
1456 const char *opt_P = NULL, *opt_ill;

1458 if (mdb_getopts(argc, argv,
1459 ’i’, MDB_OPT_STR, &opt_ill,
1460 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
1461 return (DCMD_USAGE);

1463 if (opt_P != NULL) {
1464 if (strcmp("v4", opt_P) == 0) {
1465 ipversion = IPV4_VERSION;
1466 } else if (strcmp("v6", opt_P) == 0) {
1467 ipversion = IPV6_VERSION;
1468 } else {
1469 mdb_warn("invalid protocol ’%s’\n", opt_P);
1470 return (DCMD_USAGE);
1471 }
1472 }

1474 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 18

1475 mdb_printf("%<u>%?s %5s %18s %?s %s %s %</u>\n",
1476 "ADDR", "INTF", "LLADDR", "FP_MP", "REFCNT",
1477 "NCE_ADDR");
1478 }

1480 bzero(&nce_cb, sizeof (nce_cb));
1481 if (opt_ill != NULL) {
1482 strcpy(nce_cb.nce_ill_name, opt_ill);
1483 }
1484 nce_cb.nce_ipversion = ipversion;

1486 if (flags & DCMD_ADDRSPEC) {
1487 (void) mdb_vread(&nce, sizeof (nce_t), addr);
1488 (void) nce_format(addr, &nce, &nce_cb);
1489 } else if (mdb_walk("nce", (mdb_walk_cb_t)nce_format, &nce_cb) == -1) {
1490 mdb_warn("failed to walk ire table");
1491 return (DCMD_ERR);
1492 }

1494 return (DCMD_OK);
1495 }

1497 /* ARGSUSED */
1498 static int
1499 dce_format(uintptr_t addr, const dce_t *dcep, void *dce_cb_arg)
1500 {
1501 static const mdb_bitmask_t dmasks[] = {
1502 { "D", DCEF_DEFAULT, DCEF_DEFAULT },
1503 { "P", DCEF_PMTU, DCEF_PMTU },
1504 { "U", DCEF_UINFO, DCEF_UINFO },
1505 { "S", DCEF_TOO_SMALL_PMTU, DCEF_TOO_SMALL_PMTU },
1506 { NULL, 0, 0 }
1507 };
1508 char flagsbuf[2 * A_CNT(dmasks)];
1509 int ipversion = *(int *)dce_cb_arg;
1510 boolean_t condemned = dcep->dce_generation == DCE_GENERATION_CONDEMNED;

1512 if (ipversion != 0 && ipversion != dcep->dce_ipversion)
1513 return (WALK_NEXT);

1515 mdb_snprintf(flagsbuf, sizeof (flagsbuf), "%b", dcep->dce_flags,
1516 dmasks);

1518 switch (dcep->dce_ipversion) {
1519 case IPV4_VERSION:
1520 mdb_printf("%<u>%?p%3s %8s %8d %30I %</u>\n", addr, condemned ?
1521 "(C)" : "", flagsbuf, dcep->dce_pmtu, &dcep->dce_v4addr);
1522 break;
1523 case IPV6_VERSION:
1524 mdb_printf("%<u>%?p%3s %8s %8d %30N %</u>\n", addr, condemned ?
1525 "(C)" : "", flagsbuf, dcep->dce_pmtu, &dcep->dce_v6addr);
1526 break;
1527 default:
1528 mdb_printf("%<u>%?p%3s %8s %8d %30s %</u>\n", addr, condemned ?
1529 "(C)" : "", flagsbuf, dcep->dce_pmtu, "");
1530 }

1532 return (WALK_NEXT);
1533 }

1535 int
1536 dce(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1537 {
1538 dce_t dce;
1539 const char *opt_P = NULL;
1540 const char *zone_name = NULL;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 19

1541 ip_stack_t *ipst = NULL;
1542 int ipversion = 0;

1544 if (mdb_getopts(argc, argv,
1545 ’s’, MDB_OPT_STR, &zone_name,
1546 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
1547 return (DCMD_USAGE);

1549 /* Follow the specified zone name to find a ip_stack_t*. */
1550 if (zone_name != NULL) {
1551 ipst = zone_to_ips(zone_name);
1552 if (ipst == NULL)
1553 return (DCMD_USAGE);
1554 }

1556 if (opt_P != NULL) {
1557 if (strcmp("v4", opt_P) == 0) {
1558 ipversion = IPV4_VERSION;
1559 } else if (strcmp("v6", opt_P) == 0) {
1560 ipversion = IPV6_VERSION;
1561 } else {
1562 mdb_warn("invalid protocol ’%s’\n", opt_P);
1563 return (DCMD_USAGE);
1564 }
1565 }

1567 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
1568 mdb_printf("%<u>%?s%3s %8s %8s %30s %</u>\n",
1569 "ADDR", "", "FLAGS", "PMTU", "DST_ADDR");
1570 }

1572 if (flags & DCMD_ADDRSPEC) {
1573 (void) mdb_vread(&dce, sizeof (dce_t), addr);
1574 (void) dce_format(addr, &dce, &ipversion);
1575 } else if (mdb_pwalk("dce", (mdb_walk_cb_t)dce_format, &ipversion,
1576 (uintptr_t)ipst) == -1) {
1577 mdb_warn("failed to walk dce cache");
1578 return (DCMD_ERR);
1579 }

1581 return (DCMD_OK);
1582 }

1584 int
1585 ire(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1586 {
1587 uint_t verbose = FALSE;
1588 ire_t ire;
1589 ire_cbdata_t ire_cb;
1590 int ipversion = 0;
1591 const char *opt_P = NULL;
1592 const char *zone_name = NULL;
1593 ip_stack_t *ipst = NULL;

1595 if (mdb_getopts(argc, argv,
1596 ’v’, MDB_OPT_SETBITS, TRUE, &verbose,
1597 ’s’, MDB_OPT_STR, &zone_name,
1598 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
1599 return (DCMD_USAGE);

1601 /* Follow the specified zone name to find a ip_stack_t*. */
1602 if (zone_name != NULL) {
1603 ipst = zone_to_ips(zone_name);
1604 if (ipst == NULL)
1605 return (DCMD_USAGE);
1606 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 20

1608 if (opt_P != NULL) {
1609 if (strcmp("v4", opt_P) == 0) {
1610 ipversion = IPV4_VERSION;
1611 } else if (strcmp("v6", opt_P) == 0) {
1612 ipversion = IPV6_VERSION;
1613 } else {
1614 mdb_warn("invalid protocol ’%s’\n", opt_P);
1615 return (DCMD_USAGE);
1616 }
1617 }

1619 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {

1621 if (verbose) {
1622 mdb_printf("%?s %40s %-20s%\n"
1623 "%?s %40s %-20s%\n"
1624 "%<u>%?s %40s %4s %-20s %s%</u>\n",
1625 "ADDR", "SRC", "TYPE",
1626 "", "DST", "MARKS",
1627 "", "STACK", "ZONE", "FLAGS", "INTF");
1628 } else {
1629 mdb_printf("%<u>%?s %30s %30s %5s %4s %s%</u>\n",
1630 "ADDR", "SRC", "DST", "STACK", "ZONE", "INTF");
1631 }
1632 }

1634 ire_cb.verbose = (verbose == TRUE);
1635 ire_cb.ire_ipversion = ipversion;

1637 if (flags & DCMD_ADDRSPEC) {
1638 (void) mdb_vread(&ire, sizeof (ire_t), addr);
1639 (void) ire_format(addr, &ire, &ire_cb);
1640 } else if (mdb_pwalk("ire", (mdb_walk_cb_t)ire_format, &ire_cb,
1641 (uintptr_t)ipst) == -1) {
1642 mdb_warn("failed to walk ire table");
1643 return (DCMD_ERR);
1644 }

1646 return (DCMD_OK);
1647 }

1649 static size_t
1650 mi_osize(const queue_t *q)
1651 {
1652 /*
1653 * The code in common/inet/mi.c allocates an extra word to store the
1654 * size of the allocation. An mi_o_s is thus a size_t plus an mi_o_s.
1655 */
1656 struct mi_block {
1657 size_t mi_nbytes;
1658 struct mi_o_s mi_o;
1659 } m;

1661 if (mdb_vread(&m, sizeof (m), (uintptr_t)q->q_ptr -
1662 sizeof (m)) == sizeof (m))
1663 return (m.mi_nbytes - sizeof (m));

1665 return (0);
1666 }

1668 static void
1669 ip_ill_qinfo(const queue_t *q, char *buf, size_t nbytes)
1670 {
1671 char name[32];
1672 ill_t ill;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 21

1674 if (mdb_vread(&ill, sizeof (ill),
1675 (uintptr_t)q->q_ptr) == sizeof (ill) &&
1676 mdb_readstr(name, sizeof (name), (uintptr_t)ill.ill_name) > 0)
1677 (void) mdb_snprintf(buf, nbytes, "if: %s", name);
1678 }

1680 void
1681 ip_qinfo(const queue_t *q, char *buf, size_t nbytes)
1682 {
1683 size_t size = mi_osize(q);

1685 if (size == sizeof (ill_t))
1686 ip_ill_qinfo(q, buf, nbytes);
1687 }

1689 uintptr_t
1690 ip_rnext(const queue_t *q)
1691 {
1692 size_t size = mi_osize(q);
1693 ill_t ill;

1695 if (size == sizeof (ill_t) && mdb_vread(&ill, sizeof (ill),
1696 (uintptr_t)q->q_ptr) == sizeof (ill))
1697 return ((uintptr_t)ill.ill_rq);

1699 return (NULL);
1700 }

1702 uintptr_t
1703 ip_wnext(const queue_t *q)
1704 {
1705 size_t size = mi_osize(q);
1706 ill_t ill;

1708 if (size == sizeof (ill_t) && mdb_vread(&ill, sizeof (ill),
1709 (uintptr_t)q->q_ptr) == sizeof (ill))
1710 return ((uintptr_t)ill.ill_wq);

1712 return (NULL);
1713 }

1715 /*
1716 * Print the core fields in an squeue_t. With the "-v" argument,
1717 * provide more verbose output.
1718 */
1719 static int
1720 squeue(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1721 {
1722 unsigned int i;
1723 unsigned int verbose = FALSE;
1724 const int SQUEUE_STATEDELT = (int)(sizeof (uintptr_t) + 9);
1725 boolean_t arm;
1726 squeue_t squeue;

1728 if (!(flags & DCMD_ADDRSPEC)) {
1729 if (mdb_walk_dcmd("genunix‘squeue_cache", "ip‘squeue",
1730 argc, argv) == -1) {
1731 mdb_warn("failed to walk squeue cache");
1732 return (DCMD_ERR);
1733 }
1734 return (DCMD_OK);
1735 }

1737 if (mdb_getopts(argc, argv, ’v’, MDB_OPT_SETBITS, TRUE, &verbose, NULL)
1738 != argc)

new/usr/src/cmd/mdb/common/modules/ip/ip.c 22

1739 return (DCMD_USAGE);

1741 if (!DCMD_HDRSPEC(flags) && verbose)
1742 mdb_printf("\n\n");

1744 if (DCMD_HDRSPEC(flags) || verbose) {
1745 mdb_printf("%?s %-5s %-3s %?s %?s %?s\n",
1746 "ADDR", "STATE", "CPU",
1747 "FIRST", "LAST", "WORKER");
1748 }

1750 if (mdb_vread(&squeue, sizeof (squeue_t), addr) == -1) {
1751 mdb_warn("cannot read squeue_t at %p", addr);
1752 return (DCMD_ERR);
1753 }

1755 mdb_printf("%0?p %05x %3d %0?p %0?p %0?p\n",
1756 addr, squeue.sq_state, squeue.sq_bind,
1757 squeue.sq_first, squeue.sq_last, squeue.sq_worker);

1759 if (!verbose)
1760 return (DCMD_OK);

1762 arm = B_TRUE;
1763 for (i = 0; squeue_states[i].bit_name != NULL; i++) {
1764 if (((squeue.sq_state) & (1 << i)) == 0)
1765 continue;

1767 if (arm) {
1768 mdb_printf("%*s|\n", SQUEUE_STATEDELT, "");
1769 mdb_printf("%*s+--> ", SQUEUE_STATEDELT, "");
1770 arm = B_FALSE;
1771 } else
1772 mdb_printf("%*s ", SQUEUE_STATEDELT, "");

1774 mdb_printf("%-12s %s\n", squeue_states[i].bit_name,
1775 squeue_states[i].bit_descr);
1776 }

1778 return (DCMD_OK);
1779 }

1781 static void
1782 ip_squeue_help(void)
1783 {
1784 mdb_printf("Print the core information for a given NCA squeue_t.\n\n");
1785 mdb_printf("Options:\n");
1786 mdb_printf("\t-v\tbe verbose (more descriptive)\n");
1787 }

1789 /*
1790 * This is called by ::th_trace (via a callback) when walking the th_hash
1791 * list. It calls modent to find the entries.
1792 */
1793 /* ARGSUSED */
1794 static int
1795 modent_summary(uintptr_t addr, const void *data, void *private)
1796 {
1797 th_walk_data_t *thw = private;
1798 const struct mod_hash_entry *mhe = data;
1799 th_trace_t th;

1801 if (mdb_vread(&th, sizeof (th), (uintptr_t)mhe->mhe_val) == -1) {
1802 mdb_warn("failed to read th_trace_t %p", mhe->mhe_val);
1803 return (WALK_ERR);
1804 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 23

1806 if (th.th_refcnt == 0 && thw->thw_non_zero_only)
1807 return (WALK_NEXT);

1809 if (!thw->thw_match) {
1810 mdb_printf("%?p %?p %?p %8d %?p\n", thw->thw_ipst, mhe->mhe_key,
1811 mhe->mhe_val, th.th_refcnt, th.th_id);
1812 } else if (thw->thw_matchkey == (uintptr_t)mhe->mhe_key) {
1813 int i, j, k;
1814 tr_buf_t *tr;

1816 mdb_printf("Object %p in IP stack %p:\n", mhe->mhe_key,
1817 thw->thw_ipst);
1818 i = th.th_trace_lastref;
1819 mdb_printf("\tThread %p refcnt %d:\n", th.th_id,
1820 th.th_refcnt);
1821 for (j = TR_BUF_MAX; j > 0; j--) {
1822 tr = th.th_trbuf + i;
1823 if (tr->tr_depth == 0 || tr->tr_depth > TR_STACK_DEPTH)
1824 break;
1825 mdb_printf("\t T%+ld:\n", tr->tr_time -
1826 thw->thw_lbolt);
1827 for (k = 0; k < tr->tr_depth; k++)
1828 mdb_printf("\t\t%a\n", tr->tr_stack[k]);
1829 if (--i < 0)
1830 i = TR_BUF_MAX - 1;
1831 }
1832 }
1833 return (WALK_NEXT);
1834 }

1836 /*
1837 * This is called by ::th_trace (via a callback) when walking the th_hash
1838 * list. It calls modent to find the entries.
1839 */
1840 /* ARGSUSED */
1841 static int
1842 th_hash_summary(uintptr_t addr, const void *data, void *private)
1843 {
1844 const th_hash_t *thh = data;
1845 th_walk_data_t *thw = private;

1847 thw->thw_ipst = (uintptr_t)thh->thh_ipst;
1848 return (mdb_pwalk("modent", modent_summary, private,
1849 (uintptr_t)thh->thh_hash));
1850 }

1852 /*
1853 * Print or summarize the th_trace_t structures.
1854 */
1855 static int
1856 th_trace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1857 {
1858 th_walk_data_t thw;

1860 (void) memset(&thw, 0, sizeof (thw));

1862 if (mdb_getopts(argc, argv,
1863 ’n’, MDB_OPT_SETBITS, TRUE, &thw.thw_non_zero_only,
1864 NULL) != argc)
1865 return (DCMD_USAGE);

1867 if (!(flags & DCMD_ADDRSPEC)) {
1868 /*
1869 * No address specified. Walk all of the th_hash_t in the
1870 * system, and summarize the th_trace_t entries in each.

new/usr/src/cmd/mdb/common/modules/ip/ip.c 24

1871 */
1872 mdb_printf("%?s %?s %?s %8s %?s\n",
1873 "IPSTACK", "OBJECT", "TRACE", "REFCNT", "THREAD");
1874 thw.thw_match = B_FALSE;
1875 } else {
1876 thw.thw_match = B_TRUE;
1877 thw.thw_matchkey = addr;

1879 if ((thw.thw_lbolt = (clock_t)mdb_get_lbolt()) == -1) {
1880 mdb_warn("failed to read lbolt");
1881 return (DCMD_ERR);
1882 }
1883 }
1884 if (mdb_pwalk("th_hash", th_hash_summary, &thw, NULL) == -1) {
1885 mdb_warn("can’t walk th_hash entries");
1886 return (DCMD_ERR);
1887 }
1888 return (DCMD_OK);
1889 }

1891 static void
1892 th_trace_help(void)
1893 {
1894 mdb_printf("If given an address of an ill_t, ipif_t, ire_t, or ncec_t, "
1895 "print the\n"
1896 "corresponding th_trace_t structure in detail. Otherwise, if no "
1897 "address is\n"
1898 "given, then summarize all th_trace_t structures.\n\n");
1899 mdb_printf("Options:\n"
1900 "\t-n\tdisplay only entries with non-zero th_refcnt\n");
1901 }

1903 static const mdb_dcmd_t dcmds[] = {
1904 { "conn_status", ":",
1905 "display connection structures from ipcl hash tables",
1906 conn_status, conn_status_help },
1907 { "srcid_status", ":",
1908 "display connection structures from ipcl hash tables",
1909 srcid_status },
1910 { "ill", "?[-v] [-P v4 | v6] [-s exclusive-ip-zone-name]",
1911 "display ill_t structures", ill, ill_help },
1912 { "illif", "?[-P v4 | v6]",
1913 "display or filter IP Lower Level InterFace structures", illif,
1914 illif_help },
1915 { "iphdr", ":[-vf]", "display an IPv4 header", iphdr },
1916 { "ip6hdr", ":[-vf]", "display an IPv6 header", ip6hdr },
1917 { "ipif", "?[-v] [-P v4 | v6]", "display ipif structures",
1918 ipif, ipif_help },
1919 { "ire", "?[-v] [-P v4|v6] [-s exclusive-ip-zone-name]",
1920 "display Internet Route Entry structures", ire },
1921 { "nce", "?[-P v4|v6] [-i <interface>]",
1922 "display interface-specific Neighbor Cache structures", nce },
1923 { "ncec", "?[-P v4 | v6]", "display Neighbor Cache Entry structures",
1924 ncec },
1925 { "dce", "?[-P v4|v6] [-s exclusive-ip-zone-name]",
1926 "display Destination Cache Entry structures", dce },
1927 { "squeue", ":[-v]", "print core squeue_t info", squeue,
1928 ip_squeue_help },
1929 { "tcphdr", ":", "display a TCP header", tcphdr },
1930 { "udphdr", ":", "display an UDP header", udphdr },
1931 { "sctphdr", ":", "display an SCTP header", sctphdr },
1932 { "th_trace", "?[-n]", "display th_trace_t structures", th_trace,
1933 th_trace_help },
1934 { NULL }
1935 };

new/usr/src/cmd/mdb/common/modules/ip/ip.c 25

1937 static const mdb_walker_t walkers[] = {
1938 { "conn_status", "walk list of conn_t structures",
1939 ip_stacks_common_walk_init, conn_status_walk_step, NULL },
1940 { "illif", "walk list of ill interface types for all stacks",
1941 ip_stacks_common_walk_init, illif_walk_step, NULL },
1942 { "illif_stack", "walk list of ill interface types",
1943 illif_stack_walk_init, illif_stack_walk_step,
1944 illif_stack_walk_fini },
1945 { "ill", "walk active ill_t structures for all stacks",
1946 ill_walk_init, ill_walk_step, NULL },
1947 { "ipif", "walk list of ipif structures for all stacks",
1948 ipif_walk_init, ipif_walk_step, NULL },
1949 { "ipif_list", "walk the linked list of ipif structures "
1950 "for a given ill",
1951 ip_list_walk_init, ip_list_walk_step,
1952 ip_list_walk_fini, &ipif_walk_arg },
1953 { "srcid", "walk list of srcid_map structures for all stacks",
1954 ip_stacks_common_walk_init, srcid_walk_step, NULL },
1955 { "srcid_list", "walk list of srcid_map structures for a stack",
1956 ip_list_walk_init, ip_list_walk_step, ip_list_walk_fini,
1957 &srcid_walk_arg },
1958 { "ire", "walk active ire_t structures",
1959 ire_walk_init, ire_walk_step, NULL },
1960 { "ire_next", "walk ire_t structures in the ctable",
1961 ire_next_walk_init, ire_next_walk_step, NULL },
1962 { "nce", "walk active nce_t structures",
1963 nce_walk_init, nce_walk_step, NULL },
1964 { "dce", "walk active dce_t structures",
1965 dce_walk_init, dce_walk_step, NULL },
1966 { "dccp_stacks", "walk all the dccp_stack_t",
1967 ns_walk_init, dccp_stacks_walk_step, NULL },
1968 #endif /* ! codereview */
1969 { "ip_stacks", "walk all the ip_stack_t",
1970 ns_walk_init, ip_stacks_walk_step, NULL },
1971 { "tcp_stacks", "walk all the tcp_stack_t",
1972 ns_walk_init, tcp_stacks_walk_step, NULL },
1973 { "sctp_stacks", "walk all the sctp_stack_t",
1974 ns_walk_init, sctp_stacks_walk_step, NULL },
1975 { "udp_stacks", "walk all the udp_stack_t",
1976 ns_walk_init, udp_stacks_walk_step, NULL },
1977 { "th_hash", "walk all the th_hash_t entries",
1978 th_hash_walk_init, th_hash_walk_step, NULL },
1979 { "ncec", "walk list of ncec structures for all stacks",
1980 ip_stacks_common_walk_init, ncec_walk_step, NULL },
1981 { "ncec_stack", "walk list of ncec structures",
1982 ncec_stack_walk_init, ncec_stack_walk_step,
1983 ncec_stack_walk_fini},
1984 { "udp_hash", "walk list of conn_t structures in ips_ipcl_udp_fanout",
1985 ipcl_hash_walk_init, ipcl_hash_walk_step,
1986 ipcl_hash_walk_fini, &udp_hash_arg},
1987 { "conn_hash", "walk list of conn_t structures in ips_ipcl_conn_fanout",
1988 ipcl_hash_walk_init, ipcl_hash_walk_step,
1989 ipcl_hash_walk_fini, &conn_hash_arg},
1990 { "bind_hash", "walk list of conn_t structures in ips_ipcl_bind_fanout",
1991 ipcl_hash_walk_init, ipcl_hash_walk_step,
1992 ipcl_hash_walk_fini, &bind_hash_arg},
1993 { "proto_hash", "walk list of conn_t structures in "
1994 "ips_ipcl_proto_fanout",
1995 ipcl_hash_walk_init, ipcl_hash_walk_step,
1996 ipcl_hash_walk_fini, &proto_hash_arg},
1997 { "proto_v6_hash", "walk list of conn_t structures in "
1998 "ips_ipcl_proto_fanout_v6",
1999 ipcl_hash_walk_init, ipcl_hash_walk_step,
2000 ipcl_hash_walk_fini, &proto_v6_hash_arg},
2001 { "ilb_stacks", "walk all ilb_stack_t",
2002 ns_walk_init, ilb_stacks_walk_step, NULL },

new/usr/src/cmd/mdb/common/modules/ip/ip.c 26

2003 { "ilb_rules", "walk ilb rules in a given ilb_stack_t",
2004 ilb_rules_walk_init, ilb_rules_walk_step, NULL },
2005 { "ilb_servers", "walk server in a given ilb_rule_t",
2006 ilb_servers_walk_init, ilb_servers_walk_step, NULL },
2007 { "ilb_nat_src", "walk NAT source table of a given ilb_stack_t",
2008 ilb_nat_src_walk_init, ilb_nat_src_walk_step,
2009 ilb_common_walk_fini },
2010 { "ilb_conns", "walk NAT table of a given ilb_stack_t",
2011 ilb_conn_walk_init, ilb_conn_walk_step, ilb_common_walk_fini },
2012 { "ilb_stickys", "walk sticky table of a given ilb_stack_t",
2013 ilb_sticky_walk_init, ilb_sticky_walk_step,
2014 ilb_common_walk_fini },
2015 { "tcps_sc", "walk all the per CPU stats counters of a tcp_stack_t",
2016 tcps_sc_walk_init, tcps_sc_walk_step, NULL },
2017 { NULL }
2018 };

2020 static const mdb_qops_t ip_qops = { ip_qinfo, ip_rnext, ip_wnext };
2021 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };

2023 const mdb_modinfo_t *
2024 _mdb_init(void)
2025 {
2026 GElf_Sym sym;

2028 if (mdb_lookup_by_obj("ip", "ipwinit", &sym) == 0)
2029 mdb_qops_install(&ip_qops, (uintptr_t)sym.st_value);

2031 return (&modinfo);
2032 }

2034 void
2035 _mdb_fini(void)
2036 {
2037 GElf_Sym sym;

2039 if (mdb_lookup_by_obj("ip", "ipwinit", &sym) == 0)
2040 mdb_qops_remove(&ip_qops, (uintptr_t)sym.st_value);
2041 }

2043 static char *
2044 ncec_state(int ncec_state)
2045 {
2046 switch (ncec_state) {
2047 case ND_UNCHANGED:
2048 return ("unchanged");
2049 case ND_INCOMPLETE:
2050 return ("incomplete");
2051 case ND_REACHABLE:
2052 return ("reachable");
2053 case ND_STALE:
2054 return ("stale");
2055 case ND_DELAY:
2056 return ("delay");
2057 case ND_PROBE:
2058 return ("probe");
2059 case ND_UNREACHABLE:
2060 return ("unreach");
2061 case ND_INITIAL:
2062 return ("initial");
2063 default:
2064 return ("??");
2065 }
2066 }

2068 static char *

new/usr/src/cmd/mdb/common/modules/ip/ip.c 27

2069 ncec_l2_addr(const ncec_t *ncec, const ill_t *ill)
2070 {
2071 uchar_t *h;
2072 static char addr_buf[L2MAXADDRSTRLEN];

2074 if (ncec->ncec_lladdr == NULL) {
2075 return ("None");
2076 }

2078 if (ill->ill_net_type == IRE_IF_RESOLVER) {

2080 if (ill->ill_phys_addr_length == 0)
2081 return ("None");
2082 h = mdb_zalloc(ill->ill_phys_addr_length, UM_SLEEP);
2083 if (mdb_vread(h, ill->ill_phys_addr_length,
2084 (uintptr_t)ncec->ncec_lladdr) == -1) {
2085 mdb_warn("failed to read hwaddr at %p",
2086 ncec->ncec_lladdr);
2087 return ("Unknown");
2088 }
2089 mdb_mac_addr(h, ill->ill_phys_addr_length,
2090 addr_buf, sizeof (addr_buf));
2091 } else {
2092 return ("None");
2093 }
2094 mdb_free(h, ill->ill_phys_addr_length);
2095 return (addr_buf);
2096 }

2098 static char *
2099 nce_l2_addr(const nce_t *nce, const ill_t *ill)
2100 {
2101 uchar_t *h;
2102 static char addr_buf[L2MAXADDRSTRLEN];
2103 mblk_t mp;
2104 size_t mblen;

2106 if (nce->nce_dlur_mp == NULL)
2107 return ("None");

2109 if (ill->ill_net_type == IRE_IF_RESOLVER) {
2110 if (mdb_vread(&mp, sizeof (mblk_t),
2111 (uintptr_t)nce->nce_dlur_mp) == -1) {
2112 mdb_warn("failed to read nce_dlur_mp at %p",
2113 nce->nce_dlur_mp);
2114 return ("None");
2115 }
2116 if (ill->ill_phys_addr_length == 0)
2117 return ("None");
2118 mblen = mp.b_wptr - mp.b_rptr;
2119 if (mblen > (sizeof (dl_unitdata_req_t) + MAX_SAP_LEN) ||
2120 ill->ill_phys_addr_length > MAX_SAP_LEN ||
2121 (NCE_LL_ADDR_OFFSET(ill) +
2122 ill->ill_phys_addr_length) > mblen) {
2123 return ("Unknown");
2124 }
2125 h = mdb_zalloc(mblen, UM_SLEEP);
2126 if (mdb_vread(h, mblen, (uintptr_t)(mp.b_rptr)) == -1) {
2127 mdb_warn("failed to read hwaddr at %p",
2128 mp.b_rptr + NCE_LL_ADDR_OFFSET(ill));
2129 return ("Unknown");
2130 }
2131 mdb_mac_addr(h + NCE_LL_ADDR_OFFSET(ill),
2132 ill->ill_phys_addr_length, addr_buf, sizeof (addr_buf));
2133 } else {
2134 return ("None");

new/usr/src/cmd/mdb/common/modules/ip/ip.c 28

2135 }
2136 mdb_free(h, mblen);
2137 return (addr_buf);
2138 }

2140 static void
2141 ncec_header(uint_t flags)
2142 {
2143 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {

2145 mdb_printf("%<u>%?s %-20s %-10s %-8s %-5s %s%</u>\n",
2146 "ADDR", "HW_ADDR", "STATE", "FLAGS", "ILL", "IP ADDR");
2147 }
2148 }

2150 int
2151 ncec(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2152 {
2153 ncec_t ncec;
2154 ncec_cbdata_t id;
2155 int ipversion = 0;
2156 const char *opt_P = NULL;

2158 if (mdb_getopts(argc, argv,
2159 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
2160 return (DCMD_USAGE);

2162 if (opt_P != NULL) {
2163 if (strcmp("v4", opt_P) == 0) {
2164 ipversion = IPV4_VERSION;
2165 } else if (strcmp("v6", opt_P) == 0) {
2166 ipversion = IPV6_VERSION;
2167 } else {
2168 mdb_warn("invalid protocol ’%s’\n", opt_P);
2169 return (DCMD_USAGE);
2170 }
2171 }

2173 if (flags & DCMD_ADDRSPEC) {

2175 if (mdb_vread(&ncec, sizeof (ncec_t), addr) == -1) {
2176 mdb_warn("failed to read ncec at %p\n", addr);
2177 return (DCMD_ERR);
2178 }
2179 if (ipversion != 0 && ncec.ncec_ipversion != ipversion) {
2180 mdb_printf("IP Version mismatch\n");
2181 return (DCMD_ERR);
2182 }
2183 ncec_header(flags);
2184 return (ncec_format(addr, &ncec, ipversion));

2186 } else {
2187 id.ncec_addr = addr;
2188 id.ncec_ipversion = ipversion;
2189 ncec_header(flags);
2190 if (mdb_walk("ncec", (mdb_walk_cb_t)ncec_cb, &id) == -1) {
2191 mdb_warn("failed to walk ncec table\n");
2192 return (DCMD_ERR);
2193 }
2194 }
2195 return (DCMD_OK);
2196 }

2198 static int
2199 ncec_format(uintptr_t addr, const ncec_t *ncec, int ipversion)
2200 {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 29

2201 static const mdb_bitmask_t ncec_flags[] = {
2202 { "P", NCE_F_NONUD, NCE_F_NONUD },
2203 { "R", NCE_F_ISROUTER, NCE_F_ISROUTER },
2204 { "N", NCE_F_NONUD, NCE_F_NONUD },
2205 { "A", NCE_F_ANYCAST, NCE_F_ANYCAST },
2206 { "C", NCE_F_CONDEMNED, NCE_F_CONDEMNED },
2207 { "U", NCE_F_UNSOL_ADV, NCE_F_UNSOL_ADV },
2208 { "B", NCE_F_BCAST, NCE_F_BCAST },
2209 { NULL, 0, 0 }
2210 };
2211 #define NCE_MAX_FLAGS (sizeof (ncec_flags) / sizeof (mdb_bitmask_t))
2212 struct in_addr nceaddr;
2213 ill_t ill;
2214 char ill_name[LIFNAMSIZ];
2215 char flagsbuf[NCE_MAX_FLAGS];

2217 if (mdb_vread(&ill, sizeof (ill), (uintptr_t)ncec->ncec_ill) == -1) {
2218 mdb_warn("failed to read ncec_ill at %p",
2219 ncec->ncec_ill);
2220 return (DCMD_ERR);
2221 }

2223 (void) mdb_readstr(ill_name, MIN(LIFNAMSIZ, ill.ill_name_length),
2224 (uintptr_t)ill.ill_name);

2226 mdb_snprintf(flagsbuf, sizeof (flagsbuf), "%hb",
2227 ncec->ncec_flags, ncec_flags);

2229 if (ipversion != 0 && ncec->ncec_ipversion != ipversion)
2230 return (DCMD_OK);

2232 if (ncec->ncec_ipversion == IPV4_VERSION) {
2233 IN6_V4MAPPED_TO_INADDR(&ncec->ncec_addr, &nceaddr);
2234 mdb_printf("%?p %-20s %-10s "
2235 "%-8s "
2236 "%-5s %I\n",
2237 addr, ncec_l2_addr(ncec, &ill),
2238 ncec_state(ncec->ncec_state),
2239 flagsbuf,
2240 ill_name, nceaddr.s_addr);
2241 } else {
2242 mdb_printf("%?p %-20s %-10s %-8s %-5s %N\n",
2243 addr, ncec_l2_addr(ncec, &ill),
2244 ncec_state(ncec->ncec_state),
2245 flagsbuf,
2246 ill_name, &ncec->ncec_addr);
2247 }

2249 return (DCMD_OK);
2250 }

2252 static uintptr_t
2253 ncec_get_next_hash_tbl(uintptr_t start, int *index, struct ndp_g_s ndp)
2254 {
2255 uintptr_t addr = start;
2256 int i = *index;

2258 while (addr == NULL) {

2260 if (++i >= NCE_TABLE_SIZE)
2261 break;
2262 addr = (uintptr_t)ndp.nce_hash_tbl[i];
2263 }
2264 *index = i;
2265 return (addr);
2266 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 30

2268 static int
2269 ncec_walk_step(mdb_walk_state_t *wsp)
2270 {
2271 uintptr_t kaddr4, kaddr6;

2273 kaddr4 = wsp->walk_addr + OFFSETOF(ip_stack_t, ips_ndp4);
2274 kaddr6 = wsp->walk_addr + OFFSETOF(ip_stack_t, ips_ndp6);

2276 if (mdb_vread(&kaddr4, sizeof (kaddr4), kaddr4) == -1) {
2277 mdb_warn("can’t read ips_ip_cache_table at %p", kaddr4);
2278 return (WALK_ERR);
2279 }
2280 if (mdb_vread(&kaddr6, sizeof (kaddr6), kaddr6) == -1) {
2281 mdb_warn("can’t read ips_ip_cache_table at %p", kaddr6);
2282 return (WALK_ERR);
2283 }
2284 if (mdb_pwalk("ncec_stack", wsp->walk_callback, wsp->walk_cbdata,
2285 kaddr4) == -1) {
2286 mdb_warn("couldn’t walk ’ncec_stack’ for ips_ndp4 %p",
2287 kaddr4);
2288 return (WALK_ERR);
2289 }
2290 if (mdb_pwalk("ncec_stack", wsp->walk_callback,
2291 wsp->walk_cbdata, kaddr6) == -1) {
2292 mdb_warn("couldn’t walk ’ncec_stack’ for ips_ndp6 %p",
2293 kaddr6);
2294 return (WALK_ERR);
2295 }
2296 return (WALK_NEXT);
2297 }

2299 static uintptr_t
2300 ipcl_hash_get_next_connf_tbl(ipcl_hash_walk_data_t *iw)
2301 {
2302 struct connf_s connf;
2303 uintptr_t addr = NULL, next;
2304 int index = iw->connf_tbl_index;

2306 do {
2307 next = iw->hash_tbl + index * sizeof (struct connf_s);
2308 if (++index >= iw->hash_tbl_size) {
2309 addr = NULL;
2310 break;
2311 }
2312 if (mdb_vread(&connf, sizeof (struct connf_s), next) == -1) {
2313 mdb_warn("failed to read conn_t at %p", next);
2314 return (NULL);
2315 }
2316 addr = (uintptr_t)connf.connf_head;
2317 } while (addr == NULL);
2318 iw->connf_tbl_index = index;
2319 return (addr);
2320 }

2322 static int
2323 ipcl_hash_walk_init(mdb_walk_state_t *wsp)
2324 {
2325 const hash_walk_arg_t *arg = wsp->walk_arg;
2326 ipcl_hash_walk_data_t *iw;
2327 uintptr_t tbladdr;
2328 uintptr_t sizeaddr;

2330 iw = mdb_alloc(sizeof (ipcl_hash_walk_data_t), UM_SLEEP);
2331 iw->conn = mdb_alloc(sizeof (conn_t), UM_SLEEP);
2332 tbladdr = wsp->walk_addr + arg->tbl_off;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 31

2333 sizeaddr = wsp->walk_addr + arg->size_off;

2335 if (mdb_vread(&iw->hash_tbl, sizeof (uintptr_t), tbladdr) == -1) {
2336 mdb_warn("can’t read fanout table addr at %p", tbladdr);
2337 mdb_free(iw->conn, sizeof (conn_t));
2338 mdb_free(iw, sizeof (ipcl_hash_walk_data_t));
2339 return (WALK_ERR);
2340 }
2341 if (arg->tbl_off == OFFSETOF(ip_stack_t, ips_ipcl_proto_fanout_v4) ||
2342 arg->tbl_off == OFFSETOF(ip_stack_t, ips_ipcl_proto_fanout_v6)) {
2343 iw->hash_tbl_size = IPPROTO_MAX;
2344 } else {
2345 if (mdb_vread(&iw->hash_tbl_size, sizeof (int),
2346 sizeaddr) == -1) {
2347 mdb_warn("can’t read fanout table size addr at %p",
2348 sizeaddr);
2349 mdb_free(iw->conn, sizeof (conn_t));
2350 mdb_free(iw, sizeof (ipcl_hash_walk_data_t));
2351 return (WALK_ERR);
2352 }
2353 }
2354 iw->connf_tbl_index = 0;
2355 wsp->walk_addr = ipcl_hash_get_next_connf_tbl(iw);
2356 wsp->walk_data = iw;

2358 if (wsp->walk_addr != NULL)
2359 return (WALK_NEXT);
2360 else
2361 return (WALK_DONE);
2362 }

2364 static int
2365 ipcl_hash_walk_step(mdb_walk_state_t *wsp)
2366 {
2367 uintptr_t addr = wsp->walk_addr;
2368 ipcl_hash_walk_data_t *iw = wsp->walk_data;
2369 conn_t *conn = iw->conn;
2370 int ret = WALK_DONE;

2372 while (addr != NULL) {
2373 if (mdb_vread(conn, sizeof (conn_t), addr) == -1) {
2374 mdb_warn("failed to read conn_t at %p", addr);
2375 return (WALK_ERR);
2376 }
2377 ret = wsp->walk_callback(addr, iw, wsp->walk_cbdata);
2378 if (ret != WALK_NEXT)
2379 break;
2380 addr = (uintptr_t)conn->conn_next;
2381 }
2382 if (ret == WALK_NEXT) {
2383 wsp->walk_addr = ipcl_hash_get_next_connf_tbl(iw);

2385 if (wsp->walk_addr != NULL)
2386 return (WALK_NEXT);
2387 else
2388 return (WALK_DONE);
2389 }

2391 return (ret);
2392 }

2394 static void
2395 ipcl_hash_walk_fini(mdb_walk_state_t *wsp)
2396 {
2397 ipcl_hash_walk_data_t *iw = wsp->walk_data;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 32

2399 mdb_free(iw->conn, sizeof (conn_t));
2400 mdb_free(iw, sizeof (ipcl_hash_walk_data_t));
2401 }

2403 /*
2404 * Called with walk_addr being the address of ips_ndp{4,6}
2405 */
2406 static int
2407 ncec_stack_walk_init(mdb_walk_state_t *wsp)
2408 {
2409 ncec_walk_data_t *nw;

2411 if (wsp->walk_addr == NULL) {
2412 mdb_warn("ncec_stack requires ndp_g_s address\n");
2413 return (WALK_ERR);
2414 }

2416 nw = mdb_alloc(sizeof (ncec_walk_data_t), UM_SLEEP);

2418 if (mdb_vread(&nw->ncec_ip_ndp, sizeof (struct ndp_g_s),
2419 wsp->walk_addr) == -1) {
2420 mdb_warn("failed to read ’ip_ndp’ at %p",
2421 wsp->walk_addr);
2422 mdb_free(nw, sizeof (ncec_walk_data_t));
2423 return (WALK_ERR);
2424 }

2426 /*
2427 * ncec_get_next_hash_tbl() starts at ++i , so initialize index to -1
2428 */
2429 nw->ncec_hash_tbl_index = -1;
2430 wsp->walk_addr = ncec_get_next_hash_tbl(NULL,
2431 &nw->ncec_hash_tbl_index, nw->ncec_ip_ndp);
2432 wsp->walk_data = nw;

2434 return (WALK_NEXT);
2435 }

2437 static int
2438 ncec_stack_walk_step(mdb_walk_state_t *wsp)
2439 {
2440 uintptr_t addr = wsp->walk_addr;
2441 ncec_walk_data_t *nw = wsp->walk_data;

2443 if (addr == NULL)
2444 return (WALK_DONE);

2446 if (mdb_vread(&nw->ncec, sizeof (ncec_t), addr) == -1) {
2447 mdb_warn("failed to read ncec_t at %p", addr);
2448 return (WALK_ERR);
2449 }

2451 wsp->walk_addr = (uintptr_t)nw->ncec.ncec_next;

2453 wsp->walk_addr = ncec_get_next_hash_tbl(wsp->walk_addr,
2454 &nw->ncec_hash_tbl_index, nw->ncec_ip_ndp);

2456 return (wsp->walk_callback(addr, nw, wsp->walk_cbdata));
2457 }

2459 static void
2460 ncec_stack_walk_fini(mdb_walk_state_t *wsp)
2461 {
2462 mdb_free(wsp->walk_data, sizeof (ncec_walk_data_t));
2463 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 33

2465 /* ARGSUSED */
2466 static int
2467 ncec_cb(uintptr_t addr, const ncec_walk_data_t *iw, ncec_cbdata_t *id)
2468 {
2469 ncec_t ncec;

2471 if (mdb_vread(&ncec, sizeof (ncec_t), addr) == -1) {
2472 mdb_warn("failed to read ncec at %p", addr);
2473 return (WALK_NEXT);
2474 }
2475 (void) ncec_format(addr, &ncec, id->ncec_ipversion);
2476 return (WALK_NEXT);
2477 }

2479 static int
2480 ill_walk_init(mdb_walk_state_t *wsp)
2481 {
2482 if (mdb_layered_walk("illif", wsp) == -1) {
2483 mdb_warn("can’t walk ’illif’");
2484 return (WALK_ERR);
2485 }
2486 return (WALK_NEXT);
2487 }

2489 static int
2490 ill_walk_step(mdb_walk_state_t *wsp)
2491 {
2492 ill_if_t ill_if;

2494 if (mdb_vread(&ill_if, sizeof (ill_if_t), wsp->walk_addr) == -1) {
2495 mdb_warn("can’t read ill_if_t at %p", wsp->walk_addr);
2496 return (WALK_ERR);
2497 }
2498 wsp->walk_addr = (uintptr_t)(wsp->walk_addr +
2499 offsetof(ill_if_t, illif_avl_by_ppa));
2500 if (mdb_pwalk("avl", wsp->walk_callback, wsp->walk_cbdata,
2501 wsp->walk_addr) == -1) {
2502 mdb_warn("can’t walk ’avl’");
2503 return (WALK_ERR);
2504 }

2506 return (WALK_NEXT);
2507 }

2509 /* ARGSUSED */
2510 static int
2511 ill_cb(uintptr_t addr, const ill_walk_data_t *iw, ill_cbdata_t *id)
2512 {
2513 ill_t ill;

2515 if (mdb_vread(&ill, sizeof (ill_t), (uintptr_t)addr) == -1) {
2516 mdb_warn("failed to read ill at %p", addr);
2517 return (WALK_NEXT);
2518 }

2520 /* If ip_stack_t is specified, skip ILLs that don’t belong to it. */
2521 if (id->ill_ipst != NULL && ill.ill_ipst != id->ill_ipst)
2522 return (WALK_NEXT);

2524 return (ill_format((uintptr_t)addr, &ill, id));
2525 }

2527 static void
2528 ill_header(boolean_t verbose)
2529 {
2530 if (verbose) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 34

2531 mdb_printf("%-?s %-8s %3s %-10s %-?s %-?s %-10s%</u>\n",
2532 "ADDR", "NAME", "VER", "TYPE", "WQ", "IPST", "FLAGS");
2533 mdb_printf("%-?s %4s%4s %-?s\n",
2534 "PHYINT", "CNT", "", "GROUP");
2535 mdb_printf("%<u>%80s%</u>\n", "");
2536 } else {
2537 mdb_printf("%<u>%-?s %-8s %-3s %-10s %4s %-?s %-10s%</u>\n",
2538 "ADDR", "NAME", "VER", "TYPE", "CNT", "WQ", "FLAGS");
2539 }
2540 }

2542 static int
2543 ill_format(uintptr_t addr, const void *illptr, void *ill_cb_arg)
2544 {
2545 ill_t *ill = (ill_t *)illptr;
2546 ill_cbdata_t *illcb = ill_cb_arg;
2547 boolean_t verbose = illcb->verbose;
2548 phyint_t phyi;
2549 static const mdb_bitmask_t fmasks[] = {
2550 { "R", PHYI_RUNNING, PHYI_RUNNING },
2551 { "P", PHYI_PROMISC, PHYI_PROMISC },
2552 { "V", PHYI_VIRTUAL, PHYI_VIRTUAL },
2553 { "I", PHYI_IPMP, PHYI_IPMP },
2554 { "f", PHYI_FAILED, PHYI_FAILED },
2555 { "S", PHYI_STANDBY, PHYI_STANDBY },
2556 { "i", PHYI_INACTIVE, PHYI_INACTIVE },
2557 { "O", PHYI_OFFLINE, PHYI_OFFLINE },
2558 { "T", ILLF_NOTRAILERS, ILLF_NOTRAILERS },
2559 { "A", ILLF_NOARP, ILLF_NOARP },
2560 { "M", ILLF_MULTICAST, ILLF_MULTICAST },
2561 { "F", ILLF_ROUTER, ILLF_ROUTER },
2562 { "D", ILLF_NONUD, ILLF_NONUD },
2563 { "X", ILLF_NORTEXCH, ILLF_NORTEXCH },
2564 { NULL, 0, 0 }
2565 };
2566 static const mdb_bitmask_t v_fmasks[] = {
2567 { "RUNNING", PHYI_RUNNING, PHYI_RUNNING },
2568 { "PROMISC", PHYI_PROMISC, PHYI_PROMISC },
2569 { "VIRTUAL", PHYI_VIRTUAL, PHYI_VIRTUAL },
2570 { "IPMP", PHYI_IPMP, PHYI_IPMP },
2571 { "FAILED", PHYI_FAILED, PHYI_FAILED },
2572 { "STANDBY", PHYI_STANDBY, PHYI_STANDBY },
2573 { "INACTIVE", PHYI_INACTIVE, PHYI_INACTIVE },
2574 { "OFFLINE", PHYI_OFFLINE, PHYI_OFFLINE },
2575 { "NOTRAILER", ILLF_NOTRAILERS, ILLF_NOTRAILERS },
2576 { "NOARP", ILLF_NOARP, ILLF_NOARP },
2577 { "MULTICAST", ILLF_MULTICAST, ILLF_MULTICAST },
2578 { "ROUTER", ILLF_ROUTER, ILLF_ROUTER },
2579 { "NONUD", ILLF_NONUD, ILLF_NONUD },
2580 { "NORTEXCH", ILLF_NORTEXCH, ILLF_NORTEXCH },
2581 { NULL, 0, 0 }
2582 };
2583 char ill_name[LIFNAMSIZ];
2584 int cnt;
2585 char *typebuf;
2586 char sbuf[DEFCOLS];
2587 int ipver = illcb->ill_ipversion;

2589 if (ipver != 0) {
2590 if ((ipver == IPV4_VERSION && ill->ill_isv6) ||
2591 (ipver == IPV6_VERSION && !ill->ill_isv6)) {
2592 return (WALK_NEXT);
2593 }
2594 }
2595 if (mdb_vread(&phyi, sizeof (phyint_t),
2596 (uintptr_t)ill->ill_phyint) == -1) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 35

2597 mdb_warn("failed to read ill_phyint at %p",
2598 (uintptr_t)ill->ill_phyint);
2599 return (WALK_NEXT);
2600 }
2601 (void) mdb_readstr(ill_name, MIN(LIFNAMSIZ, ill->ill_name_length),
2602 (uintptr_t)ill->ill_name);

2604 switch (ill->ill_type) {
2605 case 0:
2606 typebuf = "LOOPBACK";
2607 break;
2608 case IFT_ETHER:
2609 typebuf = "ETHER";
2610 break;
2611 case IFT_OTHER:
2612 typebuf = "OTHER";
2613 break;
2614 default:
2615 typebuf = NULL;
2616 break;
2617 }
2618 cnt = ill->ill_refcnt + ill->ill_ire_cnt + ill->ill_nce_cnt +
2619 ill->ill_ilm_cnt + ill->ill_ncec_cnt;
2620 mdb_printf("%-?p %-8s %-3s ",
2621 addr, ill_name, ill->ill_isv6 ? "v6" : "v4");
2622 if (typebuf != NULL)
2623 mdb_printf("%-10s ", typebuf);
2624 else
2625 mdb_printf("%-10x ", ill->ill_type);
2626 if (verbose) {
2627 mdb_printf("%-?p %-?p %-llb\n",
2628 ill->ill_wq, ill->ill_ipst,
2629 ill->ill_flags | phyi.phyint_flags, v_fmasks);
2630 mdb_printf("%-?p %4d%4s %-?p\n",
2631 ill->ill_phyint, cnt, "", ill->ill_grp);
2632 mdb_snprintf(sbuf, sizeof (sbuf), "%*s %3s",
2633 sizeof (uintptr_t) * 2, "", "");
2634 mdb_printf("%s|\n%s+--> %3d %-18s "
2635 "references from active threads\n",
2636 sbuf, sbuf, ill->ill_refcnt, "ill_refcnt");
2637 mdb_printf("%*s %7d %-18s ires referencing this ill\n",
2638 strlen(sbuf), "", ill->ill_ire_cnt, "ill_ire_cnt");
2639 mdb_printf("%*s %7d %-18s nces referencing this ill\n",
2640 strlen(sbuf), "", ill->ill_nce_cnt, "ill_nce_cnt");
2641 mdb_printf("%*s %7d %-18s ncecs referencing this ill\n",
2642 strlen(sbuf), "", ill->ill_ncec_cnt, "ill_ncec_cnt");
2643 mdb_printf("%*s %7d %-18s ilms referencing this ill\n",
2644 strlen(sbuf), "", ill->ill_ilm_cnt, "ill_ilm_cnt");
2645 } else {
2646 mdb_printf("%4d %-?p %-llb\n",
2647 cnt, ill->ill_wq,
2648 ill->ill_flags | phyi.phyint_flags, fmasks);
2649 }
2650 return (WALK_NEXT);
2651 }

2653 static int
2654 ill(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2655 {
2656 ill_t ill_data;
2657 ill_cbdata_t id;
2658 int ipversion = 0;
2659 const char *zone_name = NULL;
2660 const char *opt_P = NULL;
2661 uint_t verbose = FALSE;
2662 ip_stack_t *ipst = NULL;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 36

2664 if (mdb_getopts(argc, argv,
2665 ’v’, MDB_OPT_SETBITS, TRUE, &verbose,
2666 ’s’, MDB_OPT_STR, &zone_name,
2667 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
2668 return (DCMD_USAGE);

2670 /* Follow the specified zone name to find a ip_stack_t*. */
2671 if (zone_name != NULL) {
2672 ipst = zone_to_ips(zone_name);
2673 if (ipst == NULL)
2674 return (DCMD_USAGE);
2675 }

2677 if (opt_P != NULL) {
2678 if (strcmp("v4", opt_P) == 0) {
2679 ipversion = IPV4_VERSION;
2680 } else if (strcmp("v6", opt_P) == 0) {
2681 ipversion = IPV6_VERSION;
2682 } else {
2683 mdb_warn("invalid protocol ’%s’\n", opt_P);
2684 return (DCMD_USAGE);
2685 }
2686 }

2688 id.verbose = verbose;
2689 id.ill_addr = addr;
2690 id.ill_ipversion = ipversion;
2691 id.ill_ipst = ipst;

2693 ill_header(verbose);
2694 if (flags & DCMD_ADDRSPEC) {
2695 if (mdb_vread(&ill_data, sizeof (ill_t), addr) == -1) {
2696 mdb_warn("failed to read ill at %p\n", addr);
2697 return (DCMD_ERR);
2698 }
2699 (void) ill_format(addr, &ill_data, &id);
2700 } else {
2701 if (mdb_walk("ill", (mdb_walk_cb_t)ill_cb, &id) == -1) {
2702 mdb_warn("failed to walk ills\n");
2703 return (DCMD_ERR);
2704 }
2705 }
2706 return (DCMD_OK);
2707 }

2709 static void
2710 ill_help(void)
2711 {
2712 mdb_printf("Prints the following fields: ill ptr, name, "
2713 "IP version, count, ill type and ill flags.\n"
2714 "The count field is a sum of individual refcnts and is expanded "
2715 "with the -v option.\n\n");
2716 mdb_printf("Options:\n");
2717 mdb_printf("\t-P v4 | v6"
2718 "\tfilter ill structures for the specified protocol\n");
2719 }

2721 static int
2722 ip_list_walk_init(mdb_walk_state_t *wsp)
2723 {
2724 const ip_list_walk_arg_t *arg = wsp->walk_arg;
2725 ip_list_walk_data_t *iw;
2726 uintptr_t addr = (uintptr_t)(wsp->walk_addr + arg->off);

2728 if (wsp->walk_addr == NULL) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 37

2729 mdb_warn("only local walks supported\n");
2730 return (WALK_ERR);
2731 }
2732 if (mdb_vread(&wsp->walk_addr, sizeof (uintptr_t),
2733 addr) == -1) {
2734 mdb_warn("failed to read list head at %p", addr);
2735 return (WALK_ERR);
2736 }
2737 iw = mdb_alloc(sizeof (ip_list_walk_data_t), UM_SLEEP);
2738 iw->nextoff = arg->nextp_off;
2739 wsp->walk_data = iw;

2741 return (WALK_NEXT);
2742 }

2744 static int
2745 ip_list_walk_step(mdb_walk_state_t *wsp)
2746 {
2747 ip_list_walk_data_t *iw = wsp->walk_data;
2748 uintptr_t addr = wsp->walk_addr;

2750 if (addr == NULL)
2751 return (WALK_DONE);
2752 wsp->walk_addr = addr + iw->nextoff;
2753 if (mdb_vread(&wsp->walk_addr, sizeof (uintptr_t),
2754 wsp->walk_addr) == -1) {
2755 mdb_warn("failed to read list node at %p", addr);
2756 return (WALK_ERR);
2757 }
2758 return (wsp->walk_callback(addr, iw, wsp->walk_cbdata));
2759 }

2761 static void
2762 ip_list_walk_fini(mdb_walk_state_t *wsp)
2763 {
2764 mdb_free(wsp->walk_data, sizeof (ip_list_walk_data_t));
2765 }

2767 static int
2768 ipif_walk_init(mdb_walk_state_t *wsp)
2769 {
2770 if (mdb_layered_walk("ill", wsp) == -1) {
2771 mdb_warn("can’t walk ’ills’");
2772 return (WALK_ERR);
2773 }
2774 return (WALK_NEXT);
2775 }

2777 static int
2778 ipif_walk_step(mdb_walk_state_t *wsp)
2779 {
2780 if (mdb_pwalk("ipif_list", wsp->walk_callback, wsp->walk_cbdata,
2781 wsp->walk_addr) == -1) {
2782 mdb_warn("can’t walk ’ipif_list’");
2783 return (WALK_ERR);
2784 }

2786 return (WALK_NEXT);
2787 }

2789 /* ARGSUSED */
2790 static int
2791 ipif_cb(uintptr_t addr, const ipif_walk_data_t *iw, ipif_cbdata_t *id)
2792 {
2793 ipif_t ipif;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 38

2795 if (mdb_vread(&ipif, sizeof (ipif_t), (uintptr_t)addr) == -1) {
2796 mdb_warn("failed to read ipif at %p", addr);
2797 return (WALK_NEXT);
2798 }
2799 if (mdb_vread(&id->ill, sizeof (ill_t),
2800 (uintptr_t)ipif.ipif_ill) == -1) {
2801 mdb_warn("failed to read ill at %p", ipif.ipif_ill);
2802 return (WALK_NEXT);
2803 }
2804 (void) ipif_format((uintptr_t)addr, &ipif, id);
2805 return (WALK_NEXT);
2806 }

2808 static void
2809 ipif_header(boolean_t verbose)
2810 {
2811 if (verbose) {
2812 mdb_printf("%-?s %-10s %-3s %-?s %-8s %-30s\n",
2813 "ADDR", "NAME", "CNT", "ILL", "STFLAGS", "FLAGS");
2814 mdb_printf("%s\n%s\n",
2815 "LCLADDR", "BROADCAST");
2816 mdb_printf("%<u>%80s%</u>\n", "");
2817 } else {
2818 mdb_printf("%-?s %-10s %6s %-?s %-8s %-30s\n",
2819 "ADDR", "NAME", "CNT", "ILL", "STFLAGS", "FLAGS");
2820 mdb_printf("%s\n%<u>%80s%</u>\n", "LCLADDR", "");
2821 }
2822 }

2824 #ifdef _BIG_ENDIAN
2825 #define ip_ntohl_32(x) ((x) & 0xffffffff)
2826 #else
2827 #define ip_ntohl_32(x) (((uint32_t)(x) << 24) | \
2828 (((uint32_t)(x) << 8) & 0xff0000) | \
2829 (((uint32_t)(x) >> 8) & 0xff00) | \
2830 ((uint32_t)(x) >> 24))
2831 #endif

2833 int
2834 mask_to_prefixlen(int af, const in6_addr_t *addr)
2835 {
2836 int len = 0;
2837 int i;
2838 uint_t mask = 0;

2840 if (af == AF_INET6) {
2841 for (i = 0; i < 4; i++) {
2842 if (addr->s6_addr32[i] == 0xffffffff) {
2843 len += 32;
2844 } else {
2845 mask = addr->s6_addr32[i];
2846 break;
2847 }
2848 }
2849 } else {
2850 mask = V4_PART_OF_V6((*addr));
2851 }
2852 if (mask > 0)
2853 len += (33 - mdb_ffs(ip_ntohl_32(mask)));
2854 return (len);
2855 }

2857 static int
2858 ipif_format(uintptr_t addr, const void *ipifptr, void *ipif_cb_arg)
2859 {
2860 const ipif_t *ipif = ipifptr;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 39

2861 ipif_cbdata_t *ipifcb = ipif_cb_arg;
2862 boolean_t verbose = ipifcb->verbose;
2863 char ill_name[LIFNAMSIZ];
2864 char buf[LIFNAMSIZ];
2865 int cnt;
2866 static const mdb_bitmask_t sfmasks[] = {
2867 { "CO", IPIF_CONDEMNED, IPIF_CONDEMNED},
2868 { "CH", IPIF_CHANGING, IPIF_CHANGING},
2869 { "SL", IPIF_SET_LINKLOCAL, IPIF_SET_LINKLOCAL},
2870 { NULL, 0, 0 }
2871 };
2872 static const mdb_bitmask_t fmasks[] = {
2873 { "UP", IPIF_UP, IPIF_UP },
2874 { "UNN", IPIF_UNNUMBERED, IPIF_UNNUMBERED},
2875 { "DHCP", IPIF_DHCPRUNNING, IPIF_DHCPRUNNING},
2876 { "PRIV", IPIF_PRIVATE, IPIF_PRIVATE},
2877 { "NOXMT", IPIF_NOXMIT, IPIF_NOXMIT},
2878 { "NOLCL", IPIF_NOLOCAL, IPIF_NOLOCAL},
2879 { "DEPR", IPIF_DEPRECATED, IPIF_DEPRECATED},
2880 { "PREF", IPIF_PREFERRED, IPIF_PREFERRED},
2881 { "TEMP", IPIF_TEMPORARY, IPIF_TEMPORARY},
2882 { "ACONF", IPIF_ADDRCONF, IPIF_ADDRCONF},
2883 { "ANY", IPIF_ANYCAST, IPIF_ANYCAST},
2884 { "NFAIL", IPIF_NOFAILOVER, IPIF_NOFAILOVER},
2885 { NULL, 0, 0 }
2886 };
2887 char flagsbuf[2 * A_CNT(fmasks)];
2888 char bitfields[A_CNT(fmasks)];
2889 char sflagsbuf[A_CNT(sfmasks)];
2890 char sbuf[DEFCOLS], addrstr[INET6_ADDRSTRLEN];
2891 int ipver = ipifcb->ipif_ipversion;
2892 int af;

2894 if (ipver != 0) {
2895 if ((ipver == IPV4_VERSION && ipifcb->ill.ill_isv6) ||
2896 (ipver == IPV6_VERSION && !ipifcb->ill.ill_isv6)) {
2897 return (WALK_NEXT);
2898 }
2899 }
2900 if ((mdb_readstr(ill_name, MIN(LIFNAMSIZ,
2901 ipifcb->ill.ill_name_length),
2902 (uintptr_t)ipifcb->ill.ill_name)) == -1) {
2903 mdb_warn("failed to read ill_name of ill %p\n", ipifcb->ill);
2904 return (WALK_NEXT);
2905 }
2906 if (ipif->ipif_id != 0) {
2907 mdb_snprintf(buf, LIFNAMSIZ, "%s:%d",
2908 ill_name, ipif->ipif_id);
2909 } else {
2910 mdb_snprintf(buf, LIFNAMSIZ, "%s", ill_name);
2911 }
2912 mdb_snprintf(bitfields, sizeof (bitfields), "%s",
2913 ipif->ipif_addr_ready ? ",ADR" : "",
2914 ipif->ipif_was_up ? ",WU" : "",
2915 ipif->ipif_was_dup ? ",WD" : "");
2916 mdb_snprintf(flagsbuf, sizeof (flagsbuf), "%llb%s",
2917 ipif->ipif_flags, fmasks, bitfields);
2918 mdb_snprintf(sflagsbuf, sizeof (sflagsbuf), "%b",
2919 ipif->ipif_state_flags, sfmasks);

2921 cnt = ipif->ipif_refcnt;

2923 if (ipifcb->ill.ill_isv6) {
2924 mdb_snprintf(addrstr, sizeof (addrstr), "%N",
2925 &ipif->ipif_v6lcl_addr);
2926 af = AF_INET6;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 40

2927 } else {
2928 mdb_snprintf(addrstr, sizeof (addrstr), "%I",
2929 V4_PART_OF_V6((ipif->ipif_v6lcl_addr)));
2930 af = AF_INET;
2931 }

2933 if (verbose) {
2934 mdb_printf("%-?p %-10s %3d %-?p %-8s %-30s\n",
2935 addr, buf, cnt, ipif->ipif_ill,
2936 sflagsbuf, flagsbuf);
2937 mdb_snprintf(sbuf, sizeof (sbuf), "%*s %12s",
2938 sizeof (uintptr_t) * 2, "", "");
2939 mdb_printf("%s |\n%s +---> %4d %-15s "
2940 "Active consistent reader cnt\n",
2941 sbuf, sbuf, ipif->ipif_refcnt, "ipif_refcnt");
2942 mdb_printf("%-s/%d\n",
2943 addrstr, mask_to_prefixlen(af, &ipif->ipif_v6net_mask));
2944 if (ipifcb->ill.ill_isv6) {
2945 mdb_printf("%-N\n", &ipif->ipif_v6brd_addr);
2946 } else {
2947 mdb_printf("%-I\n",
2948 V4_PART_OF_V6((ipif->ipif_v6brd_addr)));
2949 }
2950 } else {
2951 mdb_printf("%-?p %-10s %6d %-?p %-8s %-30s\n",
2952 addr, buf, cnt, ipif->ipif_ill,
2953 sflagsbuf, flagsbuf);
2954 mdb_printf("%-s/%d\n",
2955 addrstr, mask_to_prefixlen(af, &ipif->ipif_v6net_mask));
2956 }

2958 return (WALK_NEXT);
2959 }

2961 static int
2962 ipif(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2963 {
2964 ipif_t ipif;
2965 ipif_cbdata_t id;
2966 int ipversion = 0;
2967 const char *opt_P = NULL;
2968 uint_t verbose = FALSE;

2970 if (mdb_getopts(argc, argv,
2971 ’v’, MDB_OPT_SETBITS, TRUE, &verbose,
2972 ’P’, MDB_OPT_STR, &opt_P, NULL) != argc)
2973 return (DCMD_USAGE);

2975 if (opt_P != NULL) {
2976 if (strcmp("v4", opt_P) == 0) {
2977 ipversion = IPV4_VERSION;
2978 } else if (strcmp("v6", opt_P) == 0) {
2979 ipversion = IPV6_VERSION;
2980 } else {
2981 mdb_warn("invalid protocol ’%s’\n", opt_P);
2982 return (DCMD_USAGE);
2983 }
2984 }

2986 id.verbose = verbose;
2987 id.ipif_ipversion = ipversion;

2989 if (flags & DCMD_ADDRSPEC) {
2990 if (mdb_vread(&ipif, sizeof (ipif_t), addr) == -1) {
2991 mdb_warn("failed to read ipif at %p\n", addr);
2992 return (DCMD_ERR);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 41

2993 }
2994 ipif_header(verbose);
2995 if (mdb_vread(&id.ill, sizeof (ill_t),
2996 (uintptr_t)ipif.ipif_ill) == -1) {
2997 mdb_warn("failed to read ill at %p", ipif.ipif_ill);
2998 return (WALK_NEXT);
2999 }
3000 return (ipif_format(addr, &ipif, &id));
3001 } else {
3002 ipif_header(verbose);
3003 if (mdb_walk("ipif", (mdb_walk_cb_t)ipif_cb, &id) == -1) {
3004 mdb_warn("failed to walk ipifs\n");
3005 return (DCMD_ERR);
3006 }
3007 }
3008 return (DCMD_OK);
3009 }

3011 static void
3012 ipif_help(void)
3013 {
3014 mdb_printf("Prints the following fields: ipif ptr, name, "
3015 "count, ill ptr, state flags and ipif flags.\n"
3016 "The count field is a sum of individual refcnts and is expanded "
3017 "with the -v option.\n"
3018 "The flags field shows the following:"
3019 "\n\tUNN -> UNNUMBERED, DHCP -> DHCPRUNNING, PRIV -> PRIVATE, "
3020 "\n\tNOXMT -> NOXMIT, NOLCL -> NOLOCAL, DEPR -> DEPRECATED, "
3021 "\n\tPREF -> PREFERRED, TEMP -> TEMPORARY, ACONF -> ADDRCONF, "
3022 "\n\tANY -> ANYCAST, NFAIL -> NOFAILOVER, "
3023 "\n\tADR -> ipif_addr_ready, MU -> ipif_multicast_up, "
3024 "\n\tWU -> ipif_was_up, WD -> ipif_was_dup, "
3025 "JA -> ipif_joined_allhosts.\n\n");
3026 mdb_printf("Options:\n");
3027 mdb_printf("\t-P v4 | v6"
3028 "\tfilter ipif structures on ills for the specified protocol\n");
3029 }

3031 static int
3032 conn_status_walk_fanout(uintptr_t addr, mdb_walk_state_t *wsp,
3033 const char *walkname)
3034 {
3035 if (mdb_pwalk(walkname, wsp->walk_callback, wsp->walk_cbdata,
3036 addr) == -1) {
3037 mdb_warn("couldn’t walk ’%s’ at %p", walkname, addr);
3038 return (WALK_ERR);
3039 }
3040 return (WALK_NEXT);
3041 }

3043 static int
3044 conn_status_walk_step(mdb_walk_state_t *wsp)
3045 {
3046 uintptr_t addr = wsp->walk_addr;

3048 (void) conn_status_walk_fanout(addr, wsp, "udp_hash");
3049 (void) conn_status_walk_fanout(addr, wsp, "conn_hash");
3050 (void) conn_status_walk_fanout(addr, wsp, "bind_hash");
3051 (void) conn_status_walk_fanout(addr, wsp, "proto_hash");
3052 (void) conn_status_walk_fanout(addr, wsp, "proto_v6_hash");
3053 return (WALK_NEXT);
3054 }

3056 /* ARGSUSED */
3057 static int
3058 conn_status_cb(uintptr_t addr, const void *walk_data,

new/usr/src/cmd/mdb/common/modules/ip/ip.c 42

3059 void *private)
3060 {
3061 netstack_t nss;
3062 char src_addrstr[INET6_ADDRSTRLEN];
3063 char rem_addrstr[INET6_ADDRSTRLEN];
3064 const ipcl_hash_walk_data_t *iw = walk_data;
3065 conn_t *conn = iw->conn;

3067 if (mdb_vread(conn, sizeof (conn_t), addr) == -1) {
3068 mdb_warn("failed to read conn_t at %p", addr);
3069 return (WALK_ERR);
3070 }
3071 if (mdb_vread(&nss, sizeof (nss),
3072 (uintptr_t)conn->conn_netstack) == -1) {
3073 mdb_warn("failed to read netstack_t %p",
3074 conn->conn_netstack);
3075 return (WALK_ERR);
3076 }
3077 mdb_printf("%-?p %-?p %?d %?d\n", addr, conn->conn_wq,
3078 nss.netstack_stackid, conn->conn_zoneid);

3080 if (conn->conn_family == AF_INET6) {
3081 mdb_snprintf(src_addrstr, sizeof (rem_addrstr), "%N",
3082 &conn->conn_laddr_v6);
3083 mdb_snprintf(rem_addrstr, sizeof (rem_addrstr), "%N",
3084 &conn->conn_faddr_v6);
3085 } else {
3086 mdb_snprintf(src_addrstr, sizeof (src_addrstr), "%I",
3087 V4_PART_OF_V6((conn->conn_laddr_v6)));
3088 mdb_snprintf(rem_addrstr, sizeof (rem_addrstr), "%I",
3089 V4_PART_OF_V6((conn->conn_faddr_v6)));
3090 }
3091 mdb_printf("%s:%-5d\n%s:%-5d\n",
3092 src_addrstr, conn->conn_lport, rem_addrstr, conn->conn_fport);
3093 return (WALK_NEXT);
3094 }

3096 static void
3097 conn_header(void)
3098 {
3099 mdb_printf("%-?s %-?s %?s %?s\n%s\n%s\n",
3100 "ADDR", "WQ", "STACK", "ZONE", "SRC:PORT", "DEST:PORT");
3101 mdb_printf("%<u>%80s%</u>\n", "");
3102 }

3104 /*ARGSUSED*/
3105 static int
3106 conn_status(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3107 {
3108 conn_header();
3109 if (flags & DCMD_ADDRSPEC) {
3110 (void) conn_status_cb(addr, NULL, NULL);
3111 } else {
3112 if (mdb_walk("conn_status", (mdb_walk_cb_t)conn_status_cb,
3113 NULL) == -1) {
3114 mdb_warn("failed to walk conn_fanout");
3115 return (DCMD_ERR);
3116 }
3117 }
3118 return (DCMD_OK);
3119 }

3121 static void
3122 conn_status_help(void)
3123 {
3124 mdb_printf("Prints conn_t structures from the following hash tables: "

new/usr/src/cmd/mdb/common/modules/ip/ip.c 43

3125 "\n\tips_ipcl_udp_fanout\n\tips_ipcl_bind_fanout"
3126 "\n\tips_ipcl_conn_fanout\n\tips_ipcl_proto_fanout_v4"
3127 "\n\tips_ipcl_proto_fanout_v6\n");
3128 }

3130 static int
3131 srcid_walk_step(mdb_walk_state_t *wsp)
3132 {
3133 if (mdb_pwalk("srcid_list", wsp->walk_callback, wsp->walk_cbdata,
3134 wsp->walk_addr) == -1) {
3135 mdb_warn("can’t walk ’srcid_list’");
3136 return (WALK_ERR);
3137 }
3138 return (WALK_NEXT);
3139 }

3141 /* ARGSUSED */
3142 static int
3143 srcid_status_cb(uintptr_t addr, const void *walk_data,
3144 void *private)
3145 {
3146 srcid_map_t smp;

3148 if (mdb_vread(&smp, sizeof (srcid_map_t), addr) == -1) {
3149 mdb_warn("failed to read srcid_map at %p", addr);
3150 return (WALK_ERR);
3151 }
3152 mdb_printf("%-?p %3d %4d %6d %N\n",
3153 addr, smp.sm_srcid, smp.sm_zoneid, smp.sm_refcnt,
3154 &smp.sm_addr);
3155 return (WALK_NEXT);
3156 }

3158 static void
3159 srcid_header(void)
3160 {
3161 mdb_printf("%-?s %3s %4s %6s %s\n",
3162 "ADDR", "ID", "ZONE", "REFCNT", "IPADDR");
3163 mdb_printf("%<u>%80s%</u>\n", "");
3164 }

3166 /*ARGSUSED*/
3167 static int
3168 srcid_status(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3169 {
3170 srcid_header();
3171 if (flags & DCMD_ADDRSPEC) {
3172 (void) srcid_status_cb(addr, NULL, NULL);
3173 } else {
3174 if (mdb_walk("srcid", (mdb_walk_cb_t)srcid_status_cb,
3175 NULL) == -1) {
3176 mdb_warn("failed to walk srcid_map");
3177 return (DCMD_ERR);
3178 }
3179 }
3180 return (DCMD_OK);
3181 }

3183 static int
3184 ilb_stacks_walk_step(mdb_walk_state_t *wsp)
3185 {
3186 return (ns_walk_step(wsp, NS_ILB));
3187 }

3189 static int
3190 ilb_rules_walk_init(mdb_walk_state_t *wsp)

new/usr/src/cmd/mdb/common/modules/ip/ip.c 44

3191 {
3192 ilb_stack_t ilbs;

3194 if (wsp->walk_addr == NULL)
3195 return (WALK_ERR);

3197 if (mdb_vread(&ilbs, sizeof (ilbs), wsp->walk_addr) == -1) {
3198 mdb_warn("failed to read ilb_stack_t at %p", wsp->walk_addr);
3199 return (WALK_ERR);
3200 }
3201 if ((wsp->walk_addr = (uintptr_t)ilbs.ilbs_rule_head) != NULL)
3202 return (WALK_NEXT);
3203 else
3204 return (WALK_DONE);
3205 }

3207 static int
3208 ilb_rules_walk_step(mdb_walk_state_t *wsp)
3209 {
3210 ilb_rule_t rule;
3211 int status;

3213 if (mdb_vread(&rule, sizeof (rule), wsp->walk_addr) == -1) {
3214 mdb_warn("failed to read ilb_rule_t at %p", wsp->walk_addr);
3215 return (WALK_ERR);
3216 }
3217 status = wsp->walk_callback(wsp->walk_addr, &rule, wsp->walk_cbdata);
3218 if (status != WALK_NEXT)
3219 return (status);
3220 if ((wsp->walk_addr = (uintptr_t)rule.ir_next) == NULL)
3221 return (WALK_DONE);
3222 else
3223 return (WALK_NEXT);
3224 }

3226 static int
3227 ilb_servers_walk_init(mdb_walk_state_t *wsp)
3228 {
3229 ilb_rule_t rule;

3231 if (wsp->walk_addr == NULL)
3232 return (WALK_ERR);

3234 if (mdb_vread(&rule, sizeof (rule), wsp->walk_addr) == -1) {
3235 mdb_warn("failed to read ilb_rule_t at %p", wsp->walk_addr);
3236 return (WALK_ERR);
3237 }
3238 if ((wsp->walk_addr = (uintptr_t)rule.ir_servers) != NULL)
3239 return (WALK_NEXT);
3240 else
3241 return (WALK_DONE);
3242 }

3244 static int
3245 ilb_servers_walk_step(mdb_walk_state_t *wsp)
3246 {
3247 ilb_server_t server;
3248 int status;

3250 if (mdb_vread(&server, sizeof (server), wsp->walk_addr) == -1) {
3251 mdb_warn("failed to read ilb_server_t at %p", wsp->walk_addr);
3252 return (WALK_ERR);
3253 }
3254 status = wsp->walk_callback(wsp->walk_addr, &server, wsp->walk_cbdata);
3255 if (status != WALK_NEXT)
3256 return (status);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 45

3257 if ((wsp->walk_addr = (uintptr_t)server.iser_next) == NULL)
3258 return (WALK_DONE);
3259 else
3260 return (WALK_NEXT);
3261 }

3263 /*
3264 * Helper structure for ilb_nat_src walker. It stores the current index of the
3265 * nat src table.
3266 */
3267 typedef struct {
3268 ilb_stack_t ilbs;
3269 int idx;
3270 } ilb_walk_t;

3272 /* Copy from list.c */
3273 #define list_object(a, node) ((void *)(((char *)node) - (a)->list_offset))

3275 static int
3276 ilb_nat_src_walk_init(mdb_walk_state_t *wsp)
3277 {
3278 int i;
3279 ilb_walk_t *ns_walk;
3280 ilb_nat_src_entry_t *entry = NULL;

3282 if (wsp->walk_addr == NULL)
3283 return (WALK_ERR);

3285 ns_walk = mdb_alloc(sizeof (ilb_walk_t), UM_SLEEP);
3286 if (mdb_vread(&ns_walk->ilbs, sizeof (ns_walk->ilbs),
3287 wsp->walk_addr) == -1) {
3288 mdb_warn("failed to read ilb_stack_t at %p", wsp->walk_addr);
3289 mdb_free(ns_walk, sizeof (ilb_walk_t));
3290 return (WALK_ERR);
3291 }

3293 if (ns_walk->ilbs.ilbs_nat_src == NULL) {
3294 mdb_free(ns_walk, sizeof (ilb_walk_t));
3295 return (WALK_DONE);
3296 }

3298 wsp->walk_data = ns_walk;
3299 for (i = 0; i < ns_walk->ilbs.ilbs_nat_src_hash_size; i++) {
3300 list_t head;
3301 char *khead;

3303 /* Read in the nsh_head in the i-th element of the array. */
3304 khead = (char *)ns_walk->ilbs.ilbs_nat_src + i *
3305 sizeof (ilb_nat_src_hash_t);
3306 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3307 mdb_warn("failed to read ilbs_nat_src at %p\n", khead);
3308 return (WALK_ERR);
3309 }

3311 /*
3312 * Note that list_next points to a kernel address and we need
3313 * to compare list_next with the kernel address of the list
3314 * head. So we need to calculate the address manually.
3315 */
3316 if ((char *)head.list_head.list_next != khead +
3317 offsetof(list_t, list_head)) {
3318 entry = list_object(&head, head.list_head.list_next);
3319 break;
3320 }
3321 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 46

3323 if (entry == NULL)
3324 return (WALK_DONE);

3326 wsp->walk_addr = (uintptr_t)entry;
3327 ns_walk->idx = i;
3328 return (WALK_NEXT);
3329 }

3331 static int
3332 ilb_nat_src_walk_step(mdb_walk_state_t *wsp)
3333 {
3334 int status;
3335 ilb_nat_src_entry_t entry, *next_entry;
3336 ilb_walk_t *ns_walk;
3337 ilb_stack_t *ilbs;
3338 list_t head;
3339 char *khead;
3340 int i;

3342 if (mdb_vread(&entry, sizeof (ilb_nat_src_entry_t),
3343 wsp->walk_addr) == -1) {
3344 mdb_warn("failed to read ilb_nat_src_entry_t at %p",
3345 wsp->walk_addr);
3346 return (WALK_ERR);
3347 }
3348 status = wsp->walk_callback(wsp->walk_addr, &entry, wsp->walk_cbdata);
3349 if (status != WALK_NEXT)
3350 return (status);

3352 ns_walk = (ilb_walk_t *)wsp->walk_data;
3353 ilbs = &ns_walk->ilbs;
3354 i = ns_walk->idx;

3356 /* Read in the nsh_head in the i-th element of the array. */
3357 khead = (char *)ilbs->ilbs_nat_src + i * sizeof (ilb_nat_src_hash_t);
3358 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3359 mdb_warn("failed to read ilbs_nat_src at %p\n", khead);
3360 return (WALK_ERR);
3361 }

3363 /*
3364 * Check if there is still entry in the current list.
3365 *
3366 * Note that list_next points to a kernel address and we need to
3367 * compare list_next with the kernel address of the list head.
3368 * So we need to calculate the address manually.
3369 */
3370 if ((char *)entry.nse_link.list_next != khead + offsetof(list_t,
3371 list_head)) {
3372 wsp->walk_addr = (uintptr_t)list_object(&head,
3373 entry.nse_link.list_next);
3374 return (WALK_NEXT);
3375 }

3377 /* Start with the next bucket in the array. */
3378 next_entry = NULL;
3379 for (i++; i < ilbs->ilbs_nat_src_hash_size; i++) {
3380 khead = (char *)ilbs->ilbs_nat_src + i *
3381 sizeof (ilb_nat_src_hash_t);
3382 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3383 mdb_warn("failed to read ilbs_nat_src at %p\n", khead);
3384 return (WALK_ERR);
3385 }

3387 if ((char *)head.list_head.list_next != khead +
3388 offsetof(list_t, list_head)) {

new/usr/src/cmd/mdb/common/modules/ip/ip.c 47

3389 next_entry = list_object(&head,
3390 head.list_head.list_next);
3391 break;
3392 }
3393 }

3395 if (next_entry == NULL)
3396 return (WALK_DONE);

3398 wsp->walk_addr = (uintptr_t)next_entry;
3399 ns_walk->idx = i;
3400 return (WALK_NEXT);
3401 }

3403 static void
3404 ilb_common_walk_fini(mdb_walk_state_t *wsp)
3405 {
3406 ilb_walk_t *walk;

3408 walk = (ilb_walk_t *)wsp->walk_data;
3409 if (walk == NULL)
3410 return;
3411 mdb_free(walk, sizeof (ilb_walk_t *));
3412 }

3414 static int
3415 ilb_conn_walk_init(mdb_walk_state_t *wsp)
3416 {
3417 int i;
3418 ilb_walk_t *conn_walk;
3419 ilb_conn_hash_t head;

3421 if (wsp->walk_addr == NULL)
3422 return (WALK_ERR);

3424 conn_walk = mdb_alloc(sizeof (ilb_walk_t), UM_SLEEP);
3425 if (mdb_vread(&conn_walk->ilbs, sizeof (conn_walk->ilbs),
3426 wsp->walk_addr) == -1) {
3427 mdb_warn("failed to read ilb_stack_t at %p", wsp->walk_addr);
3428 mdb_free(conn_walk, sizeof (ilb_walk_t));
3429 return (WALK_ERR);
3430 }

3432 if (conn_walk->ilbs.ilbs_c2s_conn_hash == NULL) {
3433 mdb_free(conn_walk, sizeof (ilb_walk_t));
3434 return (WALK_DONE);
3435 }

3437 wsp->walk_data = conn_walk;
3438 for (i = 0; i < conn_walk->ilbs.ilbs_conn_hash_size; i++) {
3439 char *khead;

3441 /* Read in the nsh_head in the i-th element of the array. */
3442 khead = (char *)conn_walk->ilbs.ilbs_c2s_conn_hash + i *
3443 sizeof (ilb_conn_hash_t);
3444 if (mdb_vread(&head, sizeof (ilb_conn_hash_t),
3445 (uintptr_t)khead) == -1) {
3446 mdb_warn("failed to read ilbs_c2s_conn_hash at %p\n",
3447 khead);
3448 return (WALK_ERR);
3449 }

3451 if (head.ilb_connp != NULL)
3452 break;
3453 }

new/usr/src/cmd/mdb/common/modules/ip/ip.c 48

3455 if (head.ilb_connp == NULL)
3456 return (WALK_DONE);

3458 wsp->walk_addr = (uintptr_t)head.ilb_connp;
3459 conn_walk->idx = i;
3460 return (WALK_NEXT);
3461 }

3463 static int
3464 ilb_conn_walk_step(mdb_walk_state_t *wsp)
3465 {
3466 int status;
3467 ilb_conn_t conn;
3468 ilb_walk_t *conn_walk;
3469 ilb_stack_t *ilbs;
3470 ilb_conn_hash_t head;
3471 char *khead;
3472 int i;

3474 if (mdb_vread(&conn, sizeof (ilb_conn_t), wsp->walk_addr) == -1) {
3475 mdb_warn("failed to read ilb_conn_t at %p", wsp->walk_addr);
3476 return (WALK_ERR);
3477 }

3479 status = wsp->walk_callback(wsp->walk_addr, &conn, wsp->walk_cbdata);
3480 if (status != WALK_NEXT)
3481 return (status);

3483 conn_walk = (ilb_walk_t *)wsp->walk_data;
3484 ilbs = &conn_walk->ilbs;
3485 i = conn_walk->idx;

3487 /* Check if there is still entry in the current list. */
3488 if (conn.conn_c2s_next != NULL) {
3489 wsp->walk_addr = (uintptr_t)conn.conn_c2s_next;
3490 return (WALK_NEXT);
3491 }

3493 /* Start with the next bucket in the array. */
3494 for (i++; i < ilbs->ilbs_conn_hash_size; i++) {
3495 khead = (char *)ilbs->ilbs_c2s_conn_hash + i *
3496 sizeof (ilb_conn_hash_t);
3497 if (mdb_vread(&head, sizeof (ilb_conn_hash_t),
3498 (uintptr_t)khead) == -1) {
3499 mdb_warn("failed to read ilbs_c2s_conn_hash at %p\n",
3500 khead);
3501 return (WALK_ERR);
3502 }

3504 if (head.ilb_connp != NULL)
3505 break;
3506 }

3508 if (head.ilb_connp == NULL)
3509 return (WALK_DONE);

3511 wsp->walk_addr = (uintptr_t)head.ilb_connp;
3512 conn_walk->idx = i;
3513 return (WALK_NEXT);
3514 }

3516 static int
3517 ilb_sticky_walk_init(mdb_walk_state_t *wsp)
3518 {
3519 int i;
3520 ilb_walk_t *sticky_walk;

new/usr/src/cmd/mdb/common/modules/ip/ip.c 49

3521 ilb_sticky_t *st = NULL;

3523 if (wsp->walk_addr == NULL)
3524 return (WALK_ERR);

3526 sticky_walk = mdb_alloc(sizeof (ilb_walk_t), UM_SLEEP);
3527 if (mdb_vread(&sticky_walk->ilbs, sizeof (sticky_walk->ilbs),
3528 wsp->walk_addr) == -1) {
3529 mdb_warn("failed to read ilb_stack_t at %p", wsp->walk_addr);
3530 mdb_free(sticky_walk, sizeof (ilb_walk_t));
3531 return (WALK_ERR);
3532 }

3534 if (sticky_walk->ilbs.ilbs_sticky_hash == NULL) {
3535 mdb_free(sticky_walk, sizeof (ilb_walk_t));
3536 return (WALK_DONE);
3537 }

3539 wsp->walk_data = sticky_walk;
3540 for (i = 0; i < sticky_walk->ilbs.ilbs_sticky_hash_size; i++) {
3541 list_t head;
3542 char *khead;

3544 /* Read in the nsh_head in the i-th element of the array. */
3545 khead = (char *)sticky_walk->ilbs.ilbs_sticky_hash + i *
3546 sizeof (ilb_sticky_hash_t);
3547 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3548 mdb_warn("failed to read ilbs_sticky_hash at %p\n",
3549 khead);
3550 return (WALK_ERR);
3551 }

3553 /*
3554 * Note that list_next points to a kernel address and we need
3555 * to compare list_next with the kernel address of the list
3556 * head. So we need to calculate the address manually.
3557 */
3558 if ((char *)head.list_head.list_next != khead +
3559 offsetof(list_t, list_head)) {
3560 st = list_object(&head, head.list_head.list_next);
3561 break;
3562 }
3563 }

3565 if (st == NULL)
3566 return (WALK_DONE);

3568 wsp->walk_addr = (uintptr_t)st;
3569 sticky_walk->idx = i;
3570 return (WALK_NEXT);
3571 }

3573 static int
3574 ilb_sticky_walk_step(mdb_walk_state_t *wsp)
3575 {
3576 int status;
3577 ilb_sticky_t st, *st_next;
3578 ilb_walk_t *sticky_walk;
3579 ilb_stack_t *ilbs;
3580 list_t head;
3581 char *khead;
3582 int i;

3584 if (mdb_vread(&st, sizeof (ilb_sticky_t), wsp->walk_addr) == -1) {
3585 mdb_warn("failed to read ilb_sticky_t at %p", wsp->walk_addr);
3586 return (WALK_ERR);

new/usr/src/cmd/mdb/common/modules/ip/ip.c 50

3587 }

3589 status = wsp->walk_callback(wsp->walk_addr, &st, wsp->walk_cbdata);
3590 if (status != WALK_NEXT)
3591 return (status);

3593 sticky_walk = (ilb_walk_t *)wsp->walk_data;
3594 ilbs = &sticky_walk->ilbs;
3595 i = sticky_walk->idx;

3597 /* Read in the nsh_head in the i-th element of the array. */
3598 khead = (char *)ilbs->ilbs_sticky_hash + i * sizeof (ilb_sticky_hash_t);
3599 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3600 mdb_warn("failed to read ilbs_sticky_hash at %p\n", khead);
3601 return (WALK_ERR);
3602 }

3604 /*
3605 * Check if there is still entry in the current list.
3606 *
3607 * Note that list_next points to a kernel address and we need to
3608 * compare list_next with the kernel address of the list head.
3609 * So we need to calculate the address manually.
3610 */
3611 if ((char *)st.list.list_next != khead + offsetof(list_t,
3612 list_head)) {
3613 wsp->walk_addr = (uintptr_t)list_object(&head,
3614 st.list.list_next);
3615 return (WALK_NEXT);
3616 }

3618 /* Start with the next bucket in the array. */
3619 st_next = NULL;
3620 for (i++; i < ilbs->ilbs_nat_src_hash_size; i++) {
3621 khead = (char *)ilbs->ilbs_sticky_hash + i *
3622 sizeof (ilb_sticky_hash_t);
3623 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3624 mdb_warn("failed to read ilbs_sticky_hash at %p\n",
3625 khead);
3626 return (WALK_ERR);
3627 }

3629 if ((char *)head.list_head.list_next != khead +
3630 offsetof(list_t, list_head)) {
3631 st_next = list_object(&head,
3632 head.list_head.list_next);
3633 break;
3634 }
3635 }

3637 if (st_next == NULL)
3638 return (WALK_DONE);

3640 wsp->walk_addr = (uintptr_t)st_next;
3641 sticky_walk->idx = i;
3642 return (WALK_NEXT);
3643 }

new/usr/src/lib/libipadm/common/ipadm_prop.c 1

**
 55005 Wed Jun 13 12:04:19 2012
new/usr/src/lib/libipadm/common/ipadm_prop.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 /*
26 * This file contains routines that are used to modify/retrieve protocol or
27 * interface property values. It also holds all the supported properties for
28 * both IP interface and protocols in ‘ipadm_prop_desc_t’. Following protocols
29 * are supported: IP, IPv4, IPv6, TCP, SCTP, UDP, ICMP and DCCP.
29 * are supported: IP, IPv4, IPv6, TCP, SCTP, UDP and ICMP.
30 *
31 * This file also contains walkers, which walks through the property table and
32 * calls the callback function, of the form ‘ipadm_prop_wfunc_t’ , for every
33 * property in the table.
34 */

36 #include <unistd.h>
37 #include <errno.h>
38 #include <ctype.h>
39 #include <fcntl.h>
40 #include <strings.h>
41 #include <stdlib.h>
42 #include <netinet/in.h>
43 #include <arpa/inet.h>
44 #include <sys/sockio.h>
45 #include <assert.h>
46 #include <libdllink.h>
47 #include <zone.h>
48 #include "libipadm_impl.h"
49 #include <inet/tunables.h>

51 #define IPADM_NONESTR "none"
52 #define DEF_METRIC_VAL 0 /* default metric value */

54 #define A_CNT(arr) (sizeof (arr) / sizeof (arr[0]))

56 static ipadm_status_t i_ipadm_validate_if(ipadm_handle_t, const char *,
57 uint_t, uint_t);

59 /*
60 * Callback functions to retrieve property values from the kernel. These

new/usr/src/lib/libipadm/common/ipadm_prop.c 2

61 * functions, when required, translate the values from the kernel to a format
62 * suitable for printing. For example: boolean values will be translated
63 * to on/off. They also retrieve DEFAULT, PERM and POSSIBLE values for
64 * a given property.
65 */
66 static ipadm_pd_getf_t i_ipadm_get_prop, i_ipadm_get_ifprop_flags,
67 i_ipadm_get_mtu, i_ipadm_get_metric,
68 i_ipadm_get_usesrc, i_ipadm_get_forwarding,
69 i_ipadm_get_ecnsack, i_ipadm_get_hostmodel;

71 /*
72 * Callback function to set property values. These functions translate the
73 * values to a format suitable for kernel consumption, allocates the necessary
74 * ioctl buffers and then invokes ioctl().
75 */
76 static ipadm_pd_setf_t i_ipadm_set_prop, i_ipadm_set_mtu,
77 i_ipadm_set_ifprop_flags,
78 i_ipadm_set_metric, i_ipadm_set_usesrc,
79 i_ipadm_set_forwarding, i_ipadm_set_eprivport,
80 i_ipadm_set_ecnsack, i_ipadm_set_hostmodel;

82 /* array of protocols we support */
83 static int protocols[] = { MOD_PROTO_IP, MOD_PROTO_RAWIP,
84 MOD_PROTO_TCP, MOD_PROTO_UDP,
85 MOD_PROTO_SCTP, MOD_PROTO_DCCP };
85 MOD_PROTO_SCTP };

87 /*
88 * Supported IP protocol properties.
89 */
90 static ipadm_prop_desc_t ipadm_ip_prop_table[] = {
91 { "arp", IPADMPROP_CLASS_IF, MOD_PROTO_IPV4, 0,
92 i_ipadm_set_ifprop_flags, i_ipadm_get_onoff,
93 i_ipadm_get_ifprop_flags },

95 { "forwarding", IPADMPROP_CLASS_MODIF, MOD_PROTO_IPV4, 0,
96 i_ipadm_set_forwarding, i_ipadm_get_onoff,
97 i_ipadm_get_forwarding },

99 { "metric", IPADMPROP_CLASS_IF, MOD_PROTO_IPV4, 0,
100 i_ipadm_set_metric, NULL, i_ipadm_get_metric },

102 { "mtu", IPADMPROP_CLASS_IF, MOD_PROTO_IPV4, 0,
103 i_ipadm_set_mtu, i_ipadm_get_mtu, i_ipadm_get_mtu },

105 { "exchange_routes", IPADMPROP_CLASS_IF, MOD_PROTO_IPV4, 0,
106 i_ipadm_set_ifprop_flags, i_ipadm_get_onoff,
107 i_ipadm_get_ifprop_flags },

109 { "usesrc", IPADMPROP_CLASS_IF, MOD_PROTO_IPV4, 0,
110 i_ipadm_set_usesrc, NULL, i_ipadm_get_usesrc },

112 { "ttl", IPADMPROP_CLASS_MODULE, MOD_PROTO_IPV4, 0,
113 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

115 { "forwarding", IPADMPROP_CLASS_MODIF, MOD_PROTO_IPV6, 0,
116 i_ipadm_set_forwarding, i_ipadm_get_onoff,
117 i_ipadm_get_forwarding },

119 { "hoplimit", IPADMPROP_CLASS_MODULE, MOD_PROTO_IPV6, 0,
120 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

122 { "metric", IPADMPROP_CLASS_IF, MOD_PROTO_IPV6, 0,
123 i_ipadm_set_metric, NULL, i_ipadm_get_metric },

125 { "mtu", IPADMPROP_CLASS_IF, MOD_PROTO_IPV6, 0,

new/usr/src/lib/libipadm/common/ipadm_prop.c 3

126 i_ipadm_set_mtu, i_ipadm_get_mtu, i_ipadm_get_mtu },

128 { "nud", IPADMPROP_CLASS_IF, MOD_PROTO_IPV6, 0,
129 i_ipadm_set_ifprop_flags, i_ipadm_get_onoff,
130 i_ipadm_get_ifprop_flags },

132 { "exchange_routes", IPADMPROP_CLASS_IF, MOD_PROTO_IPV6, 0,
133 i_ipadm_set_ifprop_flags, i_ipadm_get_onoff,
134 i_ipadm_get_ifprop_flags },

136 { "usesrc", IPADMPROP_CLASS_IF, MOD_PROTO_IPV6, 0,
137 i_ipadm_set_usesrc, NULL, i_ipadm_get_usesrc },

139 { "hostmodel", IPADMPROP_CLASS_MODULE, MOD_PROTO_IPV6, 0,
140 i_ipadm_set_hostmodel, i_ipadm_get_hostmodel,
141 i_ipadm_get_hostmodel },

143 { "hostmodel", IPADMPROP_CLASS_MODULE, MOD_PROTO_IPV4, 0,
144 i_ipadm_set_hostmodel, i_ipadm_get_hostmodel,
145 i_ipadm_get_hostmodel },

147 { NULL, 0, 0, 0, NULL, NULL, NULL }
148 };

______unchanged_portion_omitted_

242 /* Supported DCCP protocol properties */
243 static ipadm_prop_desc_t ipadm_dccp_prop_table[] = {
244 { "extra_priv_ports", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP,
245 IPADMPROP_MULVAL, i_ipadm_set_eprivport, i_ipadm_get_prop,
246 i_ipadm_get_prop },

248 { "largest_anon_port", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP, 0,
249 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

251 { "recv_maxbuf", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP, 0,
252 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

254 { "send_maxbuf", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP, 0,
255 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

257 { "smallest_anon_port", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP, 0,
258 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

260 { "smallest_nonpriv_port", IPADMPROP_CLASS_MODULE, MOD_PROTO_DCCP, 0,
261 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop },

263 { NULL, 0, 0, 0, NULL, NULL, NULL }
264 };

266 #endif /* ! codereview */
267 /*
268 * A dummy private property structure, used while handling private
269 * protocol properties (properties not yet supported by libipadm).
270 */
271 static ipadm_prop_desc_t ipadm_privprop =\
272 { NULL, IPADMPROP_CLASS_MODULE, MOD_PROTO_NONE, 0,
273 i_ipadm_set_prop, i_ipadm_get_prop, i_ipadm_get_prop };

275 /*
276 * Returns the property description table, for the given protocol
277 */
278 static ipadm_prop_desc_t *
279 i_ipadm_get_propdesc_table(uint_t proto)
280 {
281 switch (proto) {
282 case MOD_PROTO_IP:

new/usr/src/lib/libipadm/common/ipadm_prop.c 4

283 case MOD_PROTO_IPV4:
284 case MOD_PROTO_IPV6:
285 return (ipadm_ip_prop_table);
286 case MOD_PROTO_RAWIP:
287 return (ipadm_icmp_prop_table);
288 case MOD_PROTO_TCP:
289 return (ipadm_tcp_prop_table);
290 case MOD_PROTO_UDP:
291 return (ipadm_udp_prop_table);
292 case MOD_PROTO_SCTP:
293 return (ipadm_sctp_prop_table);
294 case MOD_PROTO_DCCP:
295 return (ipadm_dccp_prop_table);
296 #endif /* ! codereview */
297 }

299 return (NULL);
300 }

302 static ipadm_prop_desc_t *
303 i_ipadm_get_prop_desc(const char *pname, uint_t proto, int *errp)
304 {
305 int err = 0;
306 boolean_t matched_name = B_FALSE;
307 ipadm_prop_desc_t *ipdp = NULL, *ipdtbl;

309 if ((ipdtbl = i_ipadm_get_propdesc_table(proto)) == NULL) {
310 err = EINVAL;
311 goto ret;
312 }
313 for (ipdp = ipdtbl; ipdp->ipd_name != NULL; ipdp++) {
314 if (strcmp(pname, ipdp->ipd_name) == 0) {
315 matched_name = B_TRUE;
316 if (ipdp->ipd_proto == proto)
317 break;
318 }
319 }
320 if (ipdp->ipd_name == NULL) {
321 err = ENOENT;
322 /* if we matched name, but failed protocol check */
323 if (matched_name)
324 err = EPROTO;
325 ipdp = NULL;
326 }
327 ret:
328 if (errp != NULL)
329 *errp = err;
330 return (ipdp);
331 }

333 char *
334 ipadm_proto2str(uint_t proto)
335 {
336 switch (proto) {
337 case MOD_PROTO_IP:
338 return ("ip");
339 case MOD_PROTO_IPV4:
340 return ("ipv4");
341 case MOD_PROTO_IPV6:
342 return ("ipv6");
343 case MOD_PROTO_RAWIP:
344 return ("icmp");
345 case MOD_PROTO_TCP:
346 return ("tcp");
347 case MOD_PROTO_UDP:
348 return ("udp");

new/usr/src/lib/libipadm/common/ipadm_prop.c 5

349 case MOD_PROTO_SCTP:
350 return ("sctp");
351 case MOD_PROTO_DCCP:
352 return ("dccp");
353 #endif /* ! codereview */
354 }

356 return (NULL);
357 }

359 uint_t
360 ipadm_str2proto(const char *protostr)
361 {
362 if (protostr == NULL)
363 return (MOD_PROTO_NONE);
364 if (strcmp(protostr, "tcp") == 0)
365 return (MOD_PROTO_TCP);
366 else if (strcmp(protostr, "udp") == 0)
367 return (MOD_PROTO_UDP);
368 else if (strcmp(protostr, "ip") == 0)
369 return (MOD_PROTO_IP);
370 else if (strcmp(protostr, "ipv4") == 0)
371 return (MOD_PROTO_IPV4);
372 else if (strcmp(protostr, "ipv6") == 0)
373 return (MOD_PROTO_IPV6);
374 else if (strcmp(protostr, "icmp") == 0)
375 return (MOD_PROTO_RAWIP);
376 else if (strcmp(protostr, "sctp") == 0)
377 return (MOD_PROTO_SCTP);
378 else if (strcmp(protostr, "arp") == 0)
379 return (MOD_PROTO_IP);
380 else if (strcmp(protostr, "dccp") == 0)
381 return (MOD_PROTO_DCCP);
382 #endif /* ! codereview */

384 return (MOD_PROTO_NONE);
385 }

387 /* ARGSUSED */
388 static ipadm_status_t
389 i_ipadm_set_mtu(ipadm_handle_t iph, const void *arg,
390 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
391 {
392 struct lifreq lifr;
393 char *endp;
394 uint_t mtu;
395 int s;
396 const char *ifname = arg;
397 char val[MAXPROPVALLEN];

399 /* to reset MTU first retrieve the default MTU and then set it */
400 if (flags & IPADM_OPT_DEFAULT) {
401 ipadm_status_t status;
402 uint_t size = MAXPROPVALLEN;

404 status = i_ipadm_get_prop(iph, arg, pdp, val, &size,
405 proto, MOD_PROP_DEFAULT);
406 if (status != IPADM_SUCCESS)
407 return (status);
408 pval = val;
409 }

411 errno = 0;
412 mtu = (uint_t)strtol(pval, &endp, 10);
413 if (errno != 0 || *endp != ’\0’)
414 return (IPADM_INVALID_ARG);

new/usr/src/lib/libipadm/common/ipadm_prop.c 6

416 bzero(&lifr, sizeof (lifr));
417 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
418 lifr.lifr_mtu = mtu;

420 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);
421 if (ioctl(s, SIOCSLIFMTU, (caddr_t)&lifr) < 0)
422 return (ipadm_errno2status(errno));

424 return (IPADM_SUCCESS);
425 }

427 /* ARGSUSED */
428 static ipadm_status_t
429 i_ipadm_set_metric(ipadm_handle_t iph, const void *arg,
430 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
431 {
432 struct lifreq lifr;
433 char *endp;
434 int metric;
435 const char *ifname = arg;
436 int s;

438 /* if we are resetting, set the value to its default value */
439 if (flags & IPADM_OPT_DEFAULT) {
440 metric = DEF_METRIC_VAL;
441 } else {
442 errno = 0;
443 metric = (uint_t)strtol(pval, &endp, 10);
444 if (errno != 0 || *endp != ’\0’)
445 return (IPADM_INVALID_ARG);
446 }

448 bzero(&lifr, sizeof (lifr));
449 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
450 lifr.lifr_metric = metric;

452 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);

454 if (ioctl(s, SIOCSLIFMETRIC, (caddr_t)&lifr) < 0)
455 return (ipadm_errno2status(errno));

457 return (IPADM_SUCCESS);
458 }

460 /* ARGSUSED */
461 static ipadm_status_t
462 i_ipadm_set_usesrc(ipadm_handle_t iph, const void *arg,
463 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
464 {
465 struct lifreq lifr;
466 const char *ifname = arg;
467 int s;
468 uint_t ifindex = 0;

470 /* if we are resetting, set the value to its default value */
471 if (flags & IPADM_OPT_DEFAULT)
472 pval = IPADM_NONESTR;

474 /*
475 * cannot specify logical interface name. We can also filter out other
476 * bogus interface names here itself through i_ipadm_validate_ifname().
477 */
478 if (strcmp(pval, IPADM_NONESTR) != 0 &&
479 !i_ipadm_validate_ifname(iph, pval))
480 return (IPADM_INVALID_ARG);

new/usr/src/lib/libipadm/common/ipadm_prop.c 7

482 bzero(&lifr, sizeof (lifr));
483 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));

485 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);

487 if (strcmp(pval, IPADM_NONESTR) != 0) {
488 if ((ifindex = if_nametoindex(pval)) == 0)
489 return (ipadm_errno2status(errno));
490 lifr.lifr_index = ifindex;
491 } else {
492 if (ioctl(s, SIOCGLIFUSESRC, (caddr_t)&lifr) < 0)
493 return (ipadm_errno2status(errno));
494 lifr.lifr_index = 0;
495 }
496 if (ioctl(s, SIOCSLIFUSESRC, (caddr_t)&lifr) < 0)
497 return (ipadm_errno2status(errno));

499 return (IPADM_SUCCESS);
500 }

502 static struct hostmodel_strval {
503 char *esm_str;
504 ip_hostmodel_t esm_val;
505 } esm_arr[] = {
506 {"weak", IP_WEAK_ES},
507 {"src-priority", IP_SRC_PRI_ES},
508 {"strong", IP_STRONG_ES},
509 {"custom", IP_MAXVAL_ES}
510 };

512 static ip_hostmodel_t
513 i_ipadm_hostmodel_str2val(const char *pval)
514 {
515 int i;

517 for (i = 0; i < A_CNT(esm_arr); i++) {
518 if (esm_arr[i].esm_str != NULL &&
519 strcmp(pval, esm_arr[i].esm_str) == 0) {
520 return (esm_arr[i].esm_val);
521 }
522 }
523 return (IP_MAXVAL_ES);
524 }

526 static char *
527 i_ipadm_hostmodel_val2str(ip_hostmodel_t pval)
528 {
529 int i;

531 for (i = 0; i < A_CNT(esm_arr); i++) {
532 if (esm_arr[i].esm_val == pval)
533 return (esm_arr[i].esm_str);
534 }
535 return (NULL);
536 }

538 /* ARGSUSED */
539 static ipadm_status_t
540 i_ipadm_set_hostmodel(ipadm_handle_t iph, const void *arg,
541 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
542 {
543 ip_hostmodel_t hostmodel;
544 char val[11]; /* covers uint32_max as a string */

546 if ((flags & IPADM_OPT_DEFAULT) == 0) {

new/usr/src/lib/libipadm/common/ipadm_prop.c 8

547 hostmodel = i_ipadm_hostmodel_str2val(pval);
548 if (hostmodel == IP_MAXVAL_ES)
549 return (IPADM_INVALID_ARG);
550 (void) snprintf(val, sizeof (val), "%d", hostmodel);
551 pval = val;
552 }
553 return (i_ipadm_set_prop(iph, NULL, pdp, pval, proto, flags));
554 }

556 /* ARGSUSED */
557 static ipadm_status_t
558 i_ipadm_get_hostmodel(ipadm_handle_t iph, const void *arg,
559 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
560 uint_t valtype)
561 {
562 ip_hostmodel_t hostmodel;
563 char *cp;
564 size_t nbytes;
565 ipadm_status_t status;

567 switch (valtype) {
568 case MOD_PROP_PERM:
569 nbytes = snprintf(buf, *bufsize, "%d", MOD_PROP_PERM_RW);
570 break;
571 case MOD_PROP_DEFAULT:
572 nbytes = snprintf(buf, *bufsize, "weak");
573 break;
574 case MOD_PROP_ACTIVE:
575 status = i_ipadm_get_prop(iph, arg, pdp, buf, bufsize, proto,
576 valtype);
577 if (status != IPADM_SUCCESS)
578 return (status);
579 bcopy(buf, &hostmodel, sizeof (hostmodel));
580 cp = i_ipadm_hostmodel_val2str(hostmodel);
581 nbytes = snprintf(buf, *bufsize, "%s",
582 (cp != NULL ? cp : "?"));
583 break;
584 case MOD_PROP_POSSIBLE:
585 nbytes = snprintf(buf, *bufsize, "strong,src-priority,weak");
586 break;
587 default:
588 return (IPADM_INVALID_ARG);
589 }
590 if (nbytes >= *bufsize) {
591 /* insufficient buffer space */
592 *bufsize = nbytes + 1;
593 return (IPADM_NO_BUFS);
594 }
595 return (IPADM_SUCCESS);
596 }

598 /* ARGSUSED */
599 static ipadm_status_t
600 i_ipadm_set_ifprop_flags(ipadm_handle_t iph, const void *arg,
601 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
602 {
603 ipadm_status_t status = IPADM_SUCCESS;
604 const char *ifname = arg;
605 uint64_t on_flags = 0, off_flags = 0;
606 boolean_t on = B_FALSE;
607 sa_family_t af = (proto == MOD_PROTO_IPV6 ? AF_INET6 : AF_INET);

609 /* if we are resetting, set the value to its default value */
610 if (flags & IPADM_OPT_DEFAULT) {
611 if (strcmp(pdp->ipd_name, "exchange_routes") == 0 ||
612 strcmp(pdp->ipd_name, "arp") == 0 ||

new/usr/src/lib/libipadm/common/ipadm_prop.c 9

613 strcmp(pdp->ipd_name, "nud") == 0) {
614 pval = IPADM_ONSTR;
615 } else if (strcmp(pdp->ipd_name, "forwarding") == 0) {
616 pval = IPADM_OFFSTR;
617 } else {
618 return (IPADM_PROP_UNKNOWN);
619 }
620 }

622 if (strcmp(pval, IPADM_ONSTR) == 0)
623 on = B_TRUE;
624 else if (strcmp(pval, IPADM_OFFSTR) == 0)
625 on = B_FALSE;
626 else
627 return (IPADM_INVALID_ARG);

629 if (strcmp(pdp->ipd_name, "exchange_routes") == 0) {
630 if (on)
631 off_flags = IFF_NORTEXCH;
632 else
633 on_flags = IFF_NORTEXCH;
634 } else if (strcmp(pdp->ipd_name, "arp") == 0) {
635 if (on)
636 off_flags = IFF_NOARP;
637 else
638 on_flags = IFF_NOARP;
639 } else if (strcmp(pdp->ipd_name, "nud") == 0) {
640 if (on)
641 off_flags = IFF_NONUD;
642 else
643 on_flags = IFF_NONUD;
644 } else if (strcmp(pdp->ipd_name, "forwarding") == 0) {
645 if (on)
646 on_flags = IFF_ROUTER;
647 else
648 off_flags = IFF_ROUTER;
649 }

651 if (on_flags || off_flags) {
652 status = i_ipadm_set_flags(iph, ifname, af, on_flags,
653 off_flags);
654 }
655 return (status);
656 }

658 /* ARGSUSED */
659 static ipadm_status_t
660 i_ipadm_set_eprivport(ipadm_handle_t iph, const void *arg,
661 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
662 {
663 nvlist_t *portsnvl = NULL;
664 nvpair_t *nvp;
665 ipadm_status_t status = IPADM_SUCCESS;
666 int err;
667 uint_t count = 0;

669 if (flags & IPADM_OPT_DEFAULT) {
670 assert(pval == NULL);
671 return (i_ipadm_set_prop(iph, arg, pdp, pval, proto, flags));
672 }

674 if ((err = ipadm_str2nvlist(pval, &portsnvl, IPADM_NORVAL)) != 0)
675 return (ipadm_errno2status(err));

677 /* count the number of ports */
678 for (nvp = nvlist_next_nvpair(portsnvl, NULL); nvp != NULL;

new/usr/src/lib/libipadm/common/ipadm_prop.c 10

679 nvp = nvlist_next_nvpair(portsnvl, nvp)) {
680 ++count;
681 }

683 if (iph->iph_flags & IPH_INIT) {
684 flags |= IPADM_OPT_APPEND;
685 } else if (count > 1) {
686 /*
687 * We allow only one port to be added, removed or
688 * assigned at a time.
689 *
690 * However on reboot, while initializing protocol
691 * properties, extra_priv_ports might have multiple
692 * values. Only in that case we allow setting multiple
693 * values.
694 */
695 nvlist_free(portsnvl);
696 return (IPADM_INVALID_ARG);
697 }

699 for (nvp = nvlist_next_nvpair(portsnvl, NULL); nvp != NULL;
700 nvp = nvlist_next_nvpair(portsnvl, nvp)) {
701 status = i_ipadm_set_prop(iph, arg, pdp, nvpair_name(nvp),
702 proto, flags);
703 if (status != IPADM_SUCCESS)
704 break;
705 }
706 nvlist_free(portsnvl);
707 return (status);
708 }

710 /* ARGSUSED */
711 static ipadm_status_t
712 i_ipadm_set_forwarding(ipadm_handle_t iph, const void *arg,
713 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
714 {
715 const char *ifname = arg;
716 ipadm_status_t status;

718 /*
719 * if interface name is provided, then set forwarding using the
720 * IFF_ROUTER flag
721 */
722 if (ifname != NULL) {
723 status = i_ipadm_set_ifprop_flags(iph, ifname, pdp, pval,
724 proto, flags);
725 } else {
726 char *val = NULL;

728 /*
729 * if the caller is IPH_LEGACY, ‘pval’ already contains
730 * numeric values.
731 */
732 if (!(flags & IPADM_OPT_DEFAULT) &&
733 !(iph->iph_flags & IPH_LEGACY)) {

735 if (strcmp(pval, IPADM_ONSTR) == 0)
736 val = "1";
737 else if (strcmp(pval, IPADM_OFFSTR) == 0)
738 val = "0";
739 else
740 return (IPADM_INVALID_ARG);
741 pval = val;
742 }

744 status = i_ipadm_set_prop(iph, ifname, pdp, pval, proto, flags);

new/usr/src/lib/libipadm/common/ipadm_prop.c 11

745 }

747 return (status);
748 }

750 /* ARGSUSED */
751 static ipadm_status_t
752 i_ipadm_set_ecnsack(ipadm_handle_t iph, const void *arg,
753 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
754 {
755 uint_t i;
756 char val[MAXPROPVALLEN];

758 /* if IPH_LEGACY is set, ‘pval’ already contains numeric values */
759 if (!(flags & IPADM_OPT_DEFAULT) && !(iph->iph_flags & IPH_LEGACY)) {
760 for (i = 0; ecn_sack_vals[i] != NULL; i++) {
761 if (strcmp(pval, ecn_sack_vals[i]) == 0)
762 break;
763 }
764 if (ecn_sack_vals[i] == NULL)
765 return (IPADM_INVALID_ARG);
766 (void) snprintf(val, MAXPROPVALLEN, "%d", i);
767 pval = val;
768 }

770 return (i_ipadm_set_prop(iph, arg, pdp, pval, proto, flags));
771 }

773 /* ARGSUSED */
774 ipadm_status_t
775 i_ipadm_get_ecnsack(ipadm_handle_t iph, const void *arg,
776 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
777 uint_t valtype)
778 {
779 ipadm_status_t status = IPADM_SUCCESS;
780 uint_t i, nbytes = 0;

782 switch (valtype) {
783 case MOD_PROP_POSSIBLE:
784 for (i = 0; ecn_sack_vals[i] != NULL; i++) {
785 if (i == 0)
786 nbytes += snprintf(buf + nbytes,
787 *bufsize - nbytes, "%s", ecn_sack_vals[i]);
788 else
789 nbytes += snprintf(buf + nbytes,
790 *bufsize - nbytes, ",%s", ecn_sack_vals[i]);
791 if (nbytes >= *bufsize)
792 break;
793 }
794 break;
795 case MOD_PROP_PERM:
796 case MOD_PROP_DEFAULT:
797 case MOD_PROP_ACTIVE:
798 status = i_ipadm_get_prop(iph, arg, pdp, buf, bufsize, proto,
799 valtype);

801 /*
802 * If IPH_LEGACY is set, do not convert the value returned
803 * from kernel,
804 */
805 if (iph->iph_flags & IPH_LEGACY)
806 break;

808 /*
809 * For current and default value, convert the value returned
810 * from kernel to more discrete representation.

new/usr/src/lib/libipadm/common/ipadm_prop.c 12

811 */
812 if (status == IPADM_SUCCESS && (valtype == MOD_PROP_ACTIVE ||
813 valtype == MOD_PROP_DEFAULT)) {
814 i = atoi(buf);
815 assert(i < 3);
816 nbytes = snprintf(buf, *bufsize, "%s",
817 ecn_sack_vals[i]);
818 }
819 break;
820 default:
821 return (IPADM_INVALID_ARG);
822 }
823 if (nbytes >= *bufsize) {
824 /* insufficient buffer space */
825 *bufsize = nbytes + 1;
826 return (IPADM_NO_BUFS);
827 }

829 return (status);
830 }

832 /* ARGSUSED */
833 static ipadm_status_t
834 i_ipadm_get_forwarding(ipadm_handle_t iph, const void *arg,
835 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
836 uint_t valtype)
837 {
838 const char *ifname = arg;
839 ipadm_status_t status = IPADM_SUCCESS;

841 /*
842 * if interface name is provided, then get forwarding status using
843 * SIOCGLIFFLAGS
844 */
845 if (ifname != NULL) {
846 status = i_ipadm_get_ifprop_flags(iph, ifname, pdp,
847 buf, bufsize, pdp->ipd_proto, valtype);
848 } else {
849 status = i_ipadm_get_prop(iph, ifname, pdp, buf,
850 bufsize, proto, valtype);
851 /*
852 * If IPH_LEGACY is set, do not convert the value returned
853 * from kernel,
854 */
855 if (iph->iph_flags & IPH_LEGACY)
856 goto ret;
857 if (status == IPADM_SUCCESS && (valtype == MOD_PROP_ACTIVE ||
858 valtype == MOD_PROP_DEFAULT)) {
859 uint_t val = atoi(buf);

861 (void) snprintf(buf, *bufsize,
862 (val == 1 ? IPADM_ONSTR : IPADM_OFFSTR));
863 }
864 }

866 ret:
867 return (status);
868 }

870 /* ARGSUSED */
871 static ipadm_status_t
872 i_ipadm_get_mtu(ipadm_handle_t iph, const void *arg,
873 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
874 uint_t valtype)
875 {
876 struct lifreq lifr;

new/usr/src/lib/libipadm/common/ipadm_prop.c 13

877 const char *ifname = arg;
878 size_t nbytes;
879 int s;

881 switch (valtype) {
882 case MOD_PROP_PERM:
883 nbytes = snprintf(buf, *bufsize, "%d", MOD_PROP_PERM_RW);
884 break;
885 case MOD_PROP_DEFAULT:
886 case MOD_PROP_POSSIBLE:
887 return (i_ipadm_get_prop(iph, arg, pdp, buf, bufsize,
888 proto, valtype));
889 case MOD_PROP_ACTIVE:
890 bzero(&lifr, sizeof (lifr));
891 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
892 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);

894 if (ioctl(s, SIOCGLIFMTU, (caddr_t)&lifr) < 0)
895 return (ipadm_errno2status(errno));
896 nbytes = snprintf(buf, *bufsize, "%u", lifr.lifr_mtu);
897 break;
898 default:
899 return (IPADM_INVALID_ARG);
900 }
901 if (nbytes >= *bufsize) {
902 /* insufficient buffer space */
903 *bufsize = nbytes + 1;
904 return (IPADM_NO_BUFS);
905 }
906 return (IPADM_SUCCESS);
907 }

909 /* ARGSUSED */
910 static ipadm_status_t
911 i_ipadm_get_metric(ipadm_handle_t iph, const void *arg,
912 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
913 uint_t valtype)
914 {
915 struct lifreq lifr;
916 const char *ifname = arg;
917 size_t nbytes;
918 int s, val;

920 switch (valtype) {
921 case MOD_PROP_PERM:
922 val = MOD_PROP_PERM_RW;
923 break;
924 case MOD_PROP_DEFAULT:
925 val = DEF_METRIC_VAL;
926 break;
927 case MOD_PROP_ACTIVE:
928 bzero(&lifr, sizeof (lifr));
929 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));

931 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);
932 if (ioctl(s, SIOCGLIFMETRIC, (caddr_t)&lifr) < 0)
933 return (ipadm_errno2status(errno));
934 val = lifr.lifr_metric;
935 break;
936 default:
937 return (IPADM_INVALID_ARG);
938 }
939 nbytes = snprintf(buf, *bufsize, "%d", val);
940 if (nbytes >= *bufsize) {
941 /* insufficient buffer space */
942 *bufsize = nbytes + 1;

new/usr/src/lib/libipadm/common/ipadm_prop.c 14

943 return (IPADM_NO_BUFS);
944 }

946 return (IPADM_SUCCESS);
947 }

949 /* ARGSUSED */
950 static ipadm_status_t
951 i_ipadm_get_usesrc(ipadm_handle_t iph, const void *arg,
952 ipadm_prop_desc_t *ipd, char *buf, uint_t *bufsize, uint_t proto,
953 uint_t valtype)
954 {
955 struct lifreq lifr;
956 const char *ifname = arg;
957 int s;
958 char if_name[IF_NAMESIZE];
959 size_t nbytes;

961 switch (valtype) {
962 case MOD_PROP_PERM:
963 nbytes = snprintf(buf, *bufsize, "%d", MOD_PROP_PERM_RW);
964 break;
965 case MOD_PROP_DEFAULT:
966 nbytes = snprintf(buf, *bufsize, "%s", IPADM_NONESTR);
967 break;
968 case MOD_PROP_ACTIVE:
969 bzero(&lifr, sizeof (lifr));
970 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));

972 s = (proto == MOD_PROTO_IPV6 ? iph->iph_sock6 : iph->iph_sock);
973 if (ioctl(s, SIOCGLIFUSESRC, (caddr_t)&lifr) < 0)
974 return (ipadm_errno2status(errno));
975 if (lifr.lifr_index == 0) {
976 /* no src address was set, so print ’none’ */
977 (void) strlcpy(if_name, IPADM_NONESTR,
978 sizeof (if_name));
979 } else if (if_indextoname(lifr.lifr_index, if_name) == NULL) {
980 return (ipadm_errno2status(errno));
981 }
982 nbytes = snprintf(buf, *bufsize, "%s", if_name);
983 break;
984 default:
985 return (IPADM_INVALID_ARG);
986 }
987 if (nbytes >= *bufsize) {
988 /* insufficient buffer space */
989 *bufsize = nbytes + 1;
990 return (IPADM_NO_BUFS);
991 }
992 return (IPADM_SUCCESS);
993 }

995 /* ARGSUSED */
996 static ipadm_status_t
997 i_ipadm_get_ifprop_flags(ipadm_handle_t iph, const void *arg,
998 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
999 uint_t valtype)

1000 {
1001 uint64_t intf_flags;
1002 char *val;
1003 size_t nbytes;
1004 const char *ifname = arg;
1005 sa_family_t af;
1006 ipadm_status_t status = IPADM_SUCCESS;

1008 switch (valtype) {

new/usr/src/lib/libipadm/common/ipadm_prop.c 15

1009 case MOD_PROP_PERM:
1010 nbytes = snprintf(buf, *bufsize, "%d", MOD_PROP_PERM_RW);
1011 break;
1012 case MOD_PROP_DEFAULT:
1013 if (strcmp(pdp->ipd_name, "exchange_routes") == 0 ||
1014 strcmp(pdp->ipd_name, "arp") == 0 ||
1015 strcmp(pdp->ipd_name, "nud") == 0) {
1016 val = IPADM_ONSTR;
1017 } else if (strcmp(pdp->ipd_name, "forwarding") == 0) {
1018 val = IPADM_OFFSTR;
1019 } else {
1020 return (IPADM_PROP_UNKNOWN);
1021 }
1022 nbytes = snprintf(buf, *bufsize, "%s", val);
1023 break;
1024 case MOD_PROP_ACTIVE:
1025 af = (proto == MOD_PROTO_IPV6 ? AF_INET6 : AF_INET);
1026 status = i_ipadm_get_flags(iph, ifname, af, &intf_flags);
1027 if (status != IPADM_SUCCESS)
1028 return (status);

1030 val = IPADM_OFFSTR;
1031 if (strcmp(pdp->ipd_name, "exchange_routes") == 0) {
1032 if (!(intf_flags & IFF_NORTEXCH))
1033 val = IPADM_ONSTR;
1034 } else if (strcmp(pdp->ipd_name, "forwarding") == 0) {
1035 if (intf_flags & IFF_ROUTER)
1036 val = IPADM_ONSTR;
1037 } else if (strcmp(pdp->ipd_name, "arp") == 0) {
1038 if (!(intf_flags & IFF_NOARP))
1039 val = IPADM_ONSTR;
1040 } else if (strcmp(pdp->ipd_name, "nud") == 0) {
1041 if (!(intf_flags & IFF_NONUD))
1042 val = IPADM_ONSTR;
1043 }
1044 nbytes = snprintf(buf, *bufsize, "%s", val);
1045 break;
1046 default:
1047 return (IPADM_INVALID_ARG);
1048 }
1049 if (nbytes >= *bufsize) {
1050 /* insufficient buffer space */
1051 *bufsize = nbytes + 1;
1052 status = IPADM_NO_BUFS;
1053 }

1055 return (status);
1056 }

1058 static void
1059 i_ipadm_perm2str(char *buf, uint_t *bufsize)
1060 {
1061 uint_t perm = atoi(buf);

1063 (void) snprintf(buf, *bufsize, "%c%c",
1064 ((perm & MOD_PROP_PERM_READ) != 0) ? ’r’ : ’-’,
1065 ((perm & MOD_PROP_PERM_WRITE) != 0) ? ’w’ : ’-’);
1066 }

1068 /* ARGSUSED */
1069 static ipadm_status_t
1070 i_ipadm_get_prop(ipadm_handle_t iph, const void *arg,
1071 ipadm_prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
1072 uint_t valtype)
1073 {
1074 ipadm_status_t status = IPADM_SUCCESS;

new/usr/src/lib/libipadm/common/ipadm_prop.c 16

1075 const char *ifname = arg;
1076 mod_ioc_prop_t *mip;
1077 char *pname = pdp->ipd_name;
1078 uint_t iocsize;

1080 /* allocate sufficient ioctl buffer to retrieve value */
1081 iocsize = sizeof (mod_ioc_prop_t) + *bufsize - 1;
1082 if ((mip = calloc(1, iocsize)) == NULL)
1083 return (IPADM_NO_BUFS);

1085 mip->mpr_version = MOD_PROP_VERSION;
1086 mip->mpr_flags = valtype;
1087 mip->mpr_proto = proto;
1088 if (ifname != NULL) {
1089 (void) strlcpy(mip->mpr_ifname, ifname,
1090 sizeof (mip->mpr_ifname));
1091 }
1092 (void) strlcpy(mip->mpr_name, pname, sizeof (mip->mpr_name));
1093 mip->mpr_valsize = *bufsize;

1095 if (i_ipadm_strioctl(iph->iph_sock, SIOCGETPROP, (char *)mip,
1096 iocsize) < 0) {
1097 if (errno == ENOENT)
1098 status = IPADM_PROP_UNKNOWN;
1099 else
1100 status = ipadm_errno2status(errno);
1101 } else {
1102 bcopy(mip->mpr_val, buf, *bufsize);
1103 }

1105 free(mip);
1106 return (status);
1107 }

1109 /*
1110 * Populates the ipmgmt_prop_arg_t based on the class of property.
1111 *
1112 * For private protocol properties, while persisting information in ipadm
1113 * data store, to ensure there is no collision of namespace between ipadm
1114 * private nvpair names (which also starts with ’_’, see ipadm_ipmgmt.h)
1115 * and private protocol property names, we will prepend IPADM_PRIV_PROP_PREFIX
1116 * to property names.
1117 */
1118 static void
1119 i_ipadm_populate_proparg(ipmgmt_prop_arg_t *pargp, ipadm_prop_desc_t *pdp,
1120 const char *pval, const void *object)
1121 {
1122 const struct ipadm_addrobj_s *ipaddr;
1123 uint_t class = pdp->ipd_class;
1124 uint_t proto = pdp->ipd_proto;

1126 (void) strlcpy(pargp->ia_pname, pdp->ipd_name,
1127 sizeof (pargp->ia_pname));
1128 if (pval != NULL)
1129 (void) strlcpy(pargp->ia_pval, pval, sizeof (pargp->ia_pval));

1131 switch (class) {
1132 case IPADMPROP_CLASS_MODULE:
1133 /* if it’s a private property then add the prefix. */
1134 if (pdp->ipd_name[0] == ’_’) {
1135 (void) snprintf(pargp->ia_pname,
1136 sizeof (pargp->ia_pname), "_%s", pdp->ipd_name);
1137 }
1138 (void) strlcpy(pargp->ia_module, object,
1139 sizeof (pargp->ia_module));
1140 break;

new/usr/src/lib/libipadm/common/ipadm_prop.c 17

1141 case IPADMPROP_CLASS_MODIF:
1142 /* check if object is protostr or an ifname */
1143 if (ipadm_str2proto(object) != MOD_PROTO_NONE) {
1144 (void) strlcpy(pargp->ia_module, object,
1145 sizeof (pargp->ia_module));
1146 break;
1147 }
1148 /* it’s an interface property, fall through */
1149 /* FALLTHRU */
1150 case IPADMPROP_CLASS_IF:
1151 (void) strlcpy(pargp->ia_ifname, object,
1152 sizeof (pargp->ia_ifname));
1153 (void) strlcpy(pargp->ia_module, ipadm_proto2str(proto),
1154 sizeof (pargp->ia_module));
1155 break;
1156 case IPADMPROP_CLASS_ADDR:
1157 ipaddr = object;
1158 (void) strlcpy(pargp->ia_ifname, ipaddr->ipadm_ifname,
1159 sizeof (pargp->ia_ifname));
1160 (void) strlcpy(pargp->ia_aobjname, ipaddr->ipadm_aobjname,
1161 sizeof (pargp->ia_aobjname));
1162 break;
1163 }
1164 }

1166 /*
1167 * Common function to retrieve property value for a given interface ‘ifname’ or
1168 * for a given protocol ‘proto’. The property name is in ‘pname’.
1169 *
1170 * ‘valtype’ determines the type of value that will be retrieved.
1171 * IPADM_OPT_ACTIVE - current value of the property (active config)
1172 * IPADM_OPT_PERSIST - value of the property from persistent store
1173 * IPADM_OPT_DEFAULT - default hard coded value (boot-time value)
1174 * IPADM_OPT_PERM - read/write permissions for the value
1175 * IPADM_OPT_POSSIBLE - range of values
1176 */
1177 static ipadm_status_t
1178 i_ipadm_getprop_common(ipadm_handle_t iph, const char *ifname,
1179 const char *pname, char *buf, uint_t *bufsize, uint_t proto,
1180 uint_t valtype)
1181 {
1182 ipadm_status_t status = IPADM_SUCCESS;
1183 ipadm_prop_desc_t *pdp;
1184 char priv_propname[MAXPROPNAMELEN];
1185 boolean_t is_if = (ifname != NULL);
1186 int err = 0;

1188 pdp = i_ipadm_get_prop_desc(pname, proto, &err);
1189 if (err == EPROTO)
1190 return (IPADM_BAD_PROTOCOL);
1191 /* there are no private interface properties */
1192 if (is_if && err == ENOENT)
1193 return (IPADM_PROP_UNKNOWN);

1195 if (pdp != NULL) {
1196 /*
1197 * check whether the property can be
1198 * applied on an interface
1199 */
1200 if (is_if && !(pdp->ipd_class & IPADMPROP_CLASS_IF))
1201 return (IPADM_INVALID_ARG);
1202 /*
1203 * check whether the property can be
1204 * applied on a module
1205 */
1206 if (!is_if && !(pdp->ipd_class & IPADMPROP_CLASS_MODULE))

new/usr/src/lib/libipadm/common/ipadm_prop.c 18

1207 return (IPADM_INVALID_ARG);

1209 } else {
1210 /* private protocol properties, pass it to kernel directly */
1211 pdp = &ipadm_privprop;
1212 (void) strlcpy(priv_propname, pname, sizeof (priv_propname));
1213 pdp->ipd_name = priv_propname;
1214 }

1216 switch (valtype) {
1217 case IPADM_OPT_PERM:
1218 status = pdp->ipd_get(iph, ifname, pdp, buf, bufsize, proto,
1219 MOD_PROP_PERM);
1220 if (status == IPADM_SUCCESS)
1221 i_ipadm_perm2str(buf, bufsize);
1222 break;
1223 case IPADM_OPT_ACTIVE:
1224 status = pdp->ipd_get(iph, ifname, pdp, buf, bufsize, proto,
1225 MOD_PROP_ACTIVE);
1226 break;
1227 case IPADM_OPT_DEFAULT:
1228 status = pdp->ipd_get(iph, ifname, pdp, buf, bufsize, proto,
1229 MOD_PROP_DEFAULT);
1230 break;
1231 case IPADM_OPT_POSSIBLE:
1232 if (pdp->ipd_get_range != NULL) {
1233 status = pdp->ipd_get_range(iph, ifname, pdp, buf,
1234 bufsize, proto, MOD_PROP_POSSIBLE);
1235 break;
1236 }
1237 buf[0] = ’\0’;
1238 break;
1239 case IPADM_OPT_PERSIST:
1240 /* retrieve from database */
1241 if (is_if)
1242 status = i_ipadm_get_persist_propval(iph, pdp, buf,
1243 bufsize, ifname);
1244 else
1245 status = i_ipadm_get_persist_propval(iph, pdp, buf,
1246 bufsize, ipadm_proto2str(proto));
1247 break;
1248 default:
1249 status = IPADM_INVALID_ARG;
1250 break;
1251 }
1252 return (status);
1253 }

1255 /*
1256 * Get protocol property of the specified protocol.
1257 */
1258 ipadm_status_t
1259 ipadm_get_prop(ipadm_handle_t iph, const char *pname, char *buf,
1260 uint_t *bufsize, uint_t proto, uint_t valtype)
1261 {
1262 /*
1263 * validate the arguments of the function.
1264 */
1265 if (iph == NULL || pname == NULL || buf == NULL ||
1266 bufsize == NULL || *bufsize == 0) {
1267 return (IPADM_INVALID_ARG);
1268 }
1269 /*
1270 * Do we support this proto, if not return error.
1271 */
1272 if (ipadm_proto2str(proto) == NULL)

new/usr/src/lib/libipadm/common/ipadm_prop.c 19

1273 return (IPADM_NOTSUP);

1275 return (i_ipadm_getprop_common(iph, NULL, pname, buf, bufsize,
1276 proto, valtype));
1277 }

1279 /*
1280 * Get interface property of the specified interface.
1281 */
1282 ipadm_status_t
1283 ipadm_get_ifprop(ipadm_handle_t iph, const char *ifname, const char *pname,
1284 char *buf, uint_t *bufsize, uint_t proto, uint_t valtype)
1285 {
1286 /* validate the arguments of the function. */
1287 if (iph == NULL || pname == NULL || buf == NULL ||
1288 bufsize == NULL || *bufsize == 0) {
1289 return (IPADM_INVALID_ARG);
1290 }

1292 /* Do we support this proto, if not return error. */
1293 if (ipadm_proto2str(proto) == NULL)
1294 return (IPADM_NOTSUP);

1296 /*
1297 * check if interface name is provided for interface property and
1298 * is valid.
1299 */
1300 if (!i_ipadm_validate_ifname(iph, ifname))
1301 return (IPADM_INVALID_ARG);

1303 return (i_ipadm_getprop_common(iph, ifname, pname, buf, bufsize,
1304 proto, valtype));
1305 }

1307 /*
1308 * Allocates sufficient ioctl buffers and copies property name and the
1309 * value, among other things. If the flag IPADM_OPT_DEFAULT is set, then
1310 * ‘pval’ will be NULL and it instructs the kernel to reset the current
1311 * value to property’s default value.
1312 */
1313 static ipadm_status_t
1314 i_ipadm_set_prop(ipadm_handle_t iph, const void *arg,
1315 ipadm_prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
1316 {
1317 ipadm_status_t status = IPADM_SUCCESS;
1318 const char *ifname = arg;
1319 mod_ioc_prop_t *mip;
1320 char *pname = pdp->ipd_name;
1321 uint_t valsize, iocsize;
1322 uint_t iocflags = 0;

1324 if (flags & IPADM_OPT_DEFAULT) {
1325 iocflags |= MOD_PROP_DEFAULT;
1326 } else if (flags & IPADM_OPT_ACTIVE) {
1327 iocflags |= MOD_PROP_ACTIVE;
1328 if (flags & IPADM_OPT_APPEND)
1329 iocflags |= MOD_PROP_APPEND;
1330 else if (flags & IPADM_OPT_REMOVE)
1331 iocflags |= MOD_PROP_REMOVE;
1332 }

1334 if (pval != NULL) {
1335 valsize = strlen(pval);
1336 iocsize = sizeof (mod_ioc_prop_t) + valsize - 1;
1337 } else {
1338 valsize = 0;

new/usr/src/lib/libipadm/common/ipadm_prop.c 20

1339 iocsize = sizeof (mod_ioc_prop_t);
1340 }

1342 if ((mip = calloc(1, iocsize)) == NULL)
1343 return (IPADM_NO_BUFS);

1345 mip->mpr_version = MOD_PROP_VERSION;
1346 mip->mpr_flags = iocflags;
1347 mip->mpr_proto = proto;
1348 if (ifname != NULL) {
1349 (void) strlcpy(mip->mpr_ifname, ifname,
1350 sizeof (mip->mpr_ifname));
1351 }

1353 (void) strlcpy(mip->mpr_name, pname, sizeof (mip->mpr_name));
1354 mip->mpr_valsize = valsize;
1355 if (pval != NULL)
1356 bcopy(pval, mip->mpr_val, valsize);

1358 if (i_ipadm_strioctl(iph->iph_sock, SIOCSETPROP, (char *)mip,
1359 iocsize) < 0) {
1360 if (errno == ENOENT)
1361 status = IPADM_PROP_UNKNOWN;
1362 else
1363 status = ipadm_errno2status(errno);
1364 }
1365 free(mip);
1366 return (status);
1367 }

1369 /*
1370 * Common function for modifying both protocol/interface property.
1371 *
1372 * If:
1373 * IPADM_OPT_PERSIST is set then the value is persisted.
1374 * IPADM_OPT_DEFAULT is set then the default value for the property will
1375 * be applied.
1376 */
1377 static ipadm_status_t
1378 i_ipadm_setprop_common(ipadm_handle_t iph, const char *ifname,
1379 const char *pname, const char *buf, uint_t proto, uint_t pflags)
1380 {
1381 ipadm_status_t status = IPADM_SUCCESS;
1382 boolean_t persist = (pflags & IPADM_OPT_PERSIST);
1383 boolean_t reset = (pflags & IPADM_OPT_DEFAULT);
1384 ipadm_prop_desc_t *pdp;
1385 boolean_t is_if = (ifname != NULL);
1386 char priv_propname[MAXPROPNAMELEN];
1387 int err = 0;

1389 /* Check that property value is within the allowed size */
1390 if (!reset && strnlen(buf, MAXPROPVALLEN) >= MAXPROPVALLEN)
1391 return (IPADM_INVALID_ARG);

1393 pdp = i_ipadm_get_prop_desc(pname, proto, &err);
1394 if (err == EPROTO)
1395 return (IPADM_BAD_PROTOCOL);
1396 /* there are no private interface properties */
1397 if (is_if && err == ENOENT)
1398 return (IPADM_PROP_UNKNOWN);

1400 if (pdp != NULL) {
1401 /* do some sanity checks */
1402 if (is_if) {
1403 if (!(pdp->ipd_class & IPADMPROP_CLASS_IF))
1404 return (IPADM_INVALID_ARG);

new/usr/src/lib/libipadm/common/ipadm_prop.c 21

1405 } else {
1406 if (!(pdp->ipd_class & IPADMPROP_CLASS_MODULE))
1407 return (IPADM_INVALID_ARG);
1408 }
1409 /*
1410 * if the property is not multi-valued and IPADM_OPT_APPEND or
1411 * IPADM_OPT_REMOVE is specified, return IPADM_INVALID_ARG.
1412 */
1413 if (!(pdp->ipd_flags & IPADMPROP_MULVAL) && (pflags &
1414 (IPADM_OPT_APPEND|IPADM_OPT_REMOVE))) {
1415 return (IPADM_INVALID_ARG);
1416 }
1417 } else {
1418 /* private protocol property, pass it to kernel directly */
1419 pdp = &ipadm_privprop;
1420 (void) strlcpy(priv_propname, pname, sizeof (priv_propname));
1421 pdp->ipd_name = priv_propname;
1422 }

1424 status = pdp->ipd_set(iph, ifname, pdp, buf, proto, pflags);
1425 if (status != IPADM_SUCCESS)
1426 return (status);

1428 if (persist) {
1429 if (is_if)
1430 status = i_ipadm_persist_propval(iph, pdp, buf, ifname,
1431 pflags);
1432 else
1433 status = i_ipadm_persist_propval(iph, pdp, buf,
1434 ipadm_proto2str(proto), pflags);
1435 }
1436 return (status);
1437 }

1439 /*
1440 * Sets the property value of the specified interface
1441 */
1442 ipadm_status_t
1443 ipadm_set_ifprop(ipadm_handle_t iph, const char *ifname, const char *pname,
1444 const char *buf, uint_t proto, uint_t pflags)
1445 {
1446 boolean_t reset = (pflags & IPADM_OPT_DEFAULT);
1447 ipadm_status_t status;

1449 /* check for solaris.network.interface.config authorization */
1450 if (!ipadm_check_auth())
1451 return (IPADM_EAUTH);
1452 /*
1453 * validate the arguments of the function.
1454 */
1455 if (iph == NULL || pname == NULL || (!reset && buf == NULL) ||
1456 pflags == 0 || pflags == IPADM_OPT_PERSIST ||
1457 (pflags & ~(IPADM_COMMON_OPT_MASK|IPADM_OPT_DEFAULT))) {
1458 return (IPADM_INVALID_ARG);
1459 }

1461 /*
1462 * Do we support this protocol, if not return error.
1463 */
1464 if (ipadm_proto2str(proto) == NULL)
1465 return (IPADM_NOTSUP);

1467 /*
1468 * Validate the interface and check if a persistent
1469 * operation is performed on a temporary object.
1470 */

new/usr/src/lib/libipadm/common/ipadm_prop.c 22

1471 status = i_ipadm_validate_if(iph, ifname, proto, pflags);
1472 if (status != IPADM_SUCCESS)
1473 return (status);

1475 return (i_ipadm_setprop_common(iph, ifname, pname, buf, proto,
1476 pflags));
1477 }

1479 /*
1480 * Sets the property value of the specified protocol.
1481 */
1482 ipadm_status_t
1483 ipadm_set_prop(ipadm_handle_t iph, const char *pname, const char *buf,
1484 uint_t proto, uint_t pflags)
1485 {
1486 boolean_t reset = (pflags & IPADM_OPT_DEFAULT);

1488 /* check for solaris.network.interface.config authorization */
1489 if (!ipadm_check_auth())
1490 return (IPADM_EAUTH);
1491 /*
1492 * validate the arguments of the function.
1493 */
1494 if (iph == NULL || pname == NULL ||(!reset && buf == NULL) ||
1495 pflags == 0 || pflags == IPADM_OPT_PERSIST ||
1496 (pflags & ~(IPADM_COMMON_OPT_MASK|IPADM_OPT_DEFAULT|
1497 IPADM_OPT_APPEND|IPADM_OPT_REMOVE))) {
1498 return (IPADM_INVALID_ARG);
1499 }

1501 /*
1502 * Do we support this proto, if not return error.
1503 */
1504 if (ipadm_proto2str(proto) == NULL)
1505 return (IPADM_NOTSUP);

1507 return (i_ipadm_setprop_common(iph, NULL, pname, buf, proto,
1508 pflags));
1509 }

1511 /* helper function for ipadm_walk_proptbl */
1512 static void
1513 i_ipadm_walk_proptbl(ipadm_prop_desc_t *pdtbl, uint_t proto, uint_t class,
1514 ipadm_prop_wfunc_t *func, void *arg)
1515 {
1516 ipadm_prop_desc_t *pdp;

1518 for (pdp = pdtbl; pdp->ipd_name != NULL; pdp++) {
1519 if (!(pdp->ipd_class & class))
1520 continue;

1522 if (proto != MOD_PROTO_NONE && !(pdp->ipd_proto & proto))
1523 continue;

1525 /*
1526 * we found a class specific match, call the
1527 * user callback function.
1528 */
1529 if (func(arg, pdp->ipd_name, pdp->ipd_proto) == B_FALSE)
1530 break;
1531 }
1532 }

1534 /*
1535 * Walks through all the properties, for a given protocol and property class
1536 * (protocol or interface).

new/usr/src/lib/libipadm/common/ipadm_prop.c 23

1537 *
1538 * Further if proto == MOD_PROTO_NONE, then it walks through all the supported
1539 * protocol property tables.
1540 */
1541 ipadm_status_t
1542 ipadm_walk_proptbl(uint_t proto, uint_t class, ipadm_prop_wfunc_t *func,
1543 void *arg)
1544 {
1545 ipadm_prop_desc_t *pdtbl;
1546 ipadm_status_t status = IPADM_SUCCESS;
1547 int i;
1548 int count = A_CNT(protocols);

1550 if (func == NULL)
1551 return (IPADM_INVALID_ARG);

1553 switch (class) {
1554 case IPADMPROP_CLASS_ADDR:
1555 pdtbl = ipadm_addrprop_table;
1556 break;
1557 case IPADMPROP_CLASS_IF:
1558 case IPADMPROP_CLASS_MODULE:
1559 pdtbl = i_ipadm_get_propdesc_table(proto);
1560 if (pdtbl == NULL && proto != MOD_PROTO_NONE)
1561 return (IPADM_INVALID_ARG);
1562 break;
1563 default:
1564 return (IPADM_INVALID_ARG);
1565 }

1567 if (pdtbl != NULL) {
1568 /*
1569 * proto will be MOD_PROTO_NONE in the case of
1570 * IPADMPROP_CLASS_ADDR.
1571 */
1572 i_ipadm_walk_proptbl(pdtbl, proto, class, func, arg);
1573 } else {
1574 /* Walk thru all the protocol tables, we support */
1575 for (i = 0; i < count; i++) {
1576 pdtbl = i_ipadm_get_propdesc_table(protocols[i]);
1577 i_ipadm_walk_proptbl(pdtbl, protocols[i], class, func,
1578 arg);
1579 }
1580 }
1581 return (status);
1582 }

1584 /*
1585 * Given a property name, walks through all the instances of a property name.
1586 * Some properties have two instances one for v4 interfaces and another for v6
1587 * interfaces. For example: MTU. MTU can have different values for v4 and v6.
1588 * Therefore there are two properties for ’MTU’.
1589 *
1590 * This function invokes ‘func’ for every instance of property ‘pname’
1591 */
1592 ipadm_status_t
1593 ipadm_walk_prop(const char *pname, uint_t proto, uint_t class,
1594 ipadm_prop_wfunc_t *func, void *arg)
1595 {
1596 ipadm_prop_desc_t *pdtbl, *pdp;
1597 ipadm_status_t status = IPADM_SUCCESS;
1598 boolean_t matched = B_FALSE;

1600 if (pname == NULL || func == NULL)
1601 return (IPADM_INVALID_ARG);

new/usr/src/lib/libipadm/common/ipadm_prop.c 24

1603 switch (class) {
1604 case IPADMPROP_CLASS_ADDR:
1605 pdtbl = ipadm_addrprop_table;
1606 break;
1607 case IPADMPROP_CLASS_IF:
1608 case IPADMPROP_CLASS_MODULE:
1609 pdtbl = i_ipadm_get_propdesc_table(proto);
1610 break;
1611 default:
1612 return (IPADM_INVALID_ARG);
1613 }

1615 if (pdtbl == NULL)
1616 return (IPADM_INVALID_ARG);

1618 for (pdp = pdtbl; pdp->ipd_name != NULL; pdp++) {
1619 if (strcmp(pname, pdp->ipd_name) != 0)
1620 continue;
1621 if (!(pdp->ipd_proto & proto))
1622 continue;
1623 matched = B_TRUE;
1624 /* we found a match, call the callback function */
1625 if (func(arg, pdp->ipd_name, pdp->ipd_proto) == B_FALSE)
1626 break;
1627 }
1628 if (!matched)
1629 status = IPADM_PROP_UNKNOWN;
1630 return (status);
1631 }

1633 /* ARGSUSED */
1634 ipadm_status_t
1635 i_ipadm_get_onoff(ipadm_handle_t iph, const void *arg, ipadm_prop_desc_t *dp,
1636 char *buf, uint_t *bufsize, uint_t proto, uint_t valtype)
1637 {
1638 (void) snprintf(buf, *bufsize, "%s,%s", IPADM_ONSTR, IPADM_OFFSTR);
1639 return (IPADM_SUCCESS);
1640 }

1642 /*
1643 * Makes a door call to ipmgmtd to retrieve the persisted property value
1644 */
1645 ipadm_status_t
1646 i_ipadm_get_persist_propval(ipadm_handle_t iph, ipadm_prop_desc_t *pdp,
1647 char *gbuf, uint_t *gbufsize, const void *object)
1648 {
1649 ipmgmt_prop_arg_t parg;
1650 ipmgmt_getprop_rval_t rval, *rvalp;
1651 size_t nbytes;
1652 int err = 0;

1654 bzero(&parg, sizeof (parg));
1655 parg.ia_cmd = IPMGMT_CMD_GETPROP;
1656 i_ipadm_populate_proparg(&parg, pdp, NULL, object);

1658 rvalp = &rval;
1659 err = ipadm_door_call(iph, &parg, sizeof (parg), (void **)&rvalp,
1660 sizeof (rval), B_FALSE);
1661 if (err == 0) {
1662 /* assert that rvalp was not reallocated */
1663 assert(rvalp == &rval);

1665 /* ‘ir_pval’ contains the property value */
1666 nbytes = snprintf(gbuf, *gbufsize, "%s", rvalp->ir_pval);
1667 if (nbytes >= *gbufsize) {
1668 /* insufficient buffer space */

new/usr/src/lib/libipadm/common/ipadm_prop.c 25

1669 *gbufsize = nbytes + 1;
1670 err = ENOBUFS;
1671 }
1672 }
1673 return (ipadm_errno2status(err));
1674 }

1676 /*
1677 * Persists the property value for a given property in the data store
1678 */
1679 ipadm_status_t
1680 i_ipadm_persist_propval(ipadm_handle_t iph, ipadm_prop_desc_t *pdp,
1681 const char *pval, const void *object, uint_t flags)
1682 {
1683 ipmgmt_prop_arg_t parg;
1684 int err = 0;

1686 bzero(&parg, sizeof (parg));
1687 i_ipadm_populate_proparg(&parg, pdp, pval, object);
1688 /*
1689 * Check if value to be persisted need to be appended or removed. This
1690 * is required for multi-valued property.
1691 */
1692 if (flags & IPADM_OPT_APPEND)
1693 parg.ia_flags |= IPMGMT_APPEND;
1694 if (flags & IPADM_OPT_REMOVE)
1695 parg.ia_flags |= IPMGMT_REMOVE;

1697 if (flags & (IPADM_OPT_DEFAULT|IPADM_OPT_REMOVE))
1698 parg.ia_cmd = IPMGMT_CMD_RESETPROP;
1699 else
1700 parg.ia_cmd = IPMGMT_CMD_SETPROP;

1702 err = ipadm_door_call(iph, &parg, sizeof (parg), NULL, 0, B_FALSE);

1704 /*
1705 * its fine if there were no entry in the DB to delete. The user
1706 * might be changing property value, which was not changed
1707 * persistently.
1708 */
1709 if (err == ENOENT)
1710 err = 0;
1711 return (ipadm_errno2status(err));
1712 }

1714 /*
1715 * This is called from ipadm_set_ifprop() to validate the set operation.
1716 * It does the following steps:
1717 * 1. Validates the interface name.
1718 * 2. Fails if it is an IPMP meta-interface or an underlying interface.
1719 * 3. In case of a persistent operation, verifies that the
1720 * interface is persistent.
1721 */
1722 static ipadm_status_t
1723 i_ipadm_validate_if(ipadm_handle_t iph, const char *ifname,
1724 uint_t proto, uint_t flags)
1725 {
1726 sa_family_t af, other_af;
1727 ipadm_status_t status;
1728 boolean_t p_exists;
1729 boolean_t af_exists, other_af_exists, a_exists;

1731 /* Check if the interface name is valid. */
1732 if (!i_ipadm_validate_ifname(iph, ifname))
1733 return (IPADM_INVALID_ARG);

new/usr/src/lib/libipadm/common/ipadm_prop.c 26

1735 af = (proto == MOD_PROTO_IPV6 ? AF_INET6 : AF_INET);
1736 /*
1737 * Setting properties on an IPMP meta-interface or underlying
1738 * interface is not supported.
1739 */
1740 if (i_ipadm_is_ipmp(iph, ifname) || i_ipadm_is_under_ipmp(iph, ifname))
1741 return (IPADM_NOTSUP);

1743 /* Check if interface exists in the persistent configuration. */
1744 status = i_ipadm_if_pexists(iph, ifname, af, &p_exists);
1745 if (status != IPADM_SUCCESS)
1746 return (status);

1748 /* Check if interface exists in the active configuration. */
1749 af_exists = ipadm_if_enabled(iph, ifname, af);
1750 other_af = (af == AF_INET ? AF_INET6 : AF_INET);
1751 other_af_exists = ipadm_if_enabled(iph, ifname, other_af);
1752 a_exists = (af_exists || other_af_exists);
1753 if (!a_exists && p_exists)
1754 return (IPADM_OP_DISABLE_OBJ);
1755 if (!af_exists)
1756 return (IPADM_ENXIO);

1758 /*
1759 * If a persistent operation is requested, check if the underlying
1760 * IP interface is persistent.
1761 */
1762 if ((flags & IPADM_OPT_PERSIST) && !p_exists)
1763 return (IPADM_TEMPORARY_OBJ);
1764 return (IPADM_SUCCESS);
1765 }

1767 /*
1768 * Private protocol properties namespace scheme:
1769 *
1770 * PSARC 2010/080 identified the private protocol property names to be the
1771 * leading protocol names. For e.g. tcp_strong_iss, ip_strict_src_multihoming,
1772 * et al,. However to be consistent with private data-link property names,
1773 * which starts with ’_’, private protocol property names will start with ’_’.
1774 * For e.g. _strong_iss, _strict_src_multihoming, et al,.
1775 */

1777 /* maps new private protocol property name to the old private property name */
1778 typedef struct ipadm_oname2nname_map {
1779 char *iom_oname;
1780 char *iom_nname;
1781 uint_t iom_proto;
1782 } ipadm_oname2nname_map_t;

1784 /*
1785 * IP is a special case. It isn’t straight forward to derive the legacy name
1786 * from the new name and vice versa. No set standard was followed in naming
1787 * the properties and hence we need a table to capture the mapping.
1788 */
1789 static ipadm_oname2nname_map_t name_map[] = {
1790 { "arp_probe_delay", "_arp_probe_delay",
1791 MOD_PROTO_IP },
1792 { "arp_fastprobe_delay", "_arp_fastprobe_delay",
1793 MOD_PROTO_IP },
1794 { "arp_probe_interval", "_arp_probe_interval",
1795 MOD_PROTO_IP },
1796 { "arp_fastprobe_interval", "_arp_fastprobe_interval",
1797 MOD_PROTO_IP },
1798 { "arp_probe_count", "_arp_probe_count",
1799 MOD_PROTO_IP },
1800 { "arp_fastprobe_count", "_arp_fastprobe_count",

new/usr/src/lib/libipadm/common/ipadm_prop.c 27

1801 MOD_PROTO_IP },
1802 { "arp_defend_interval", "_arp_defend_interval",
1803 MOD_PROTO_IP },
1804 { "arp_defend_rate", "_arp_defend_rate",
1805 MOD_PROTO_IP },
1806 { "arp_defend_period", "_arp_defend_period",
1807 MOD_PROTO_IP },
1808 { "ndp_defend_interval", "_ndp_defend_interval",
1809 MOD_PROTO_IP },
1810 { "ndp_defend_rate", "_ndp_defend_rate",
1811 MOD_PROTO_IP },
1812 { "ndp_defend_period", "_ndp_defend_period",
1813 MOD_PROTO_IP },
1814 { "igmp_max_version", "_igmp_max_version",
1815 MOD_PROTO_IP },
1816 { "mld_max_version", "_mld_max_version",
1817 MOD_PROTO_IP },
1818 { "ipsec_override_persocket_policy", "_ipsec_override_persocket_policy",
1819 MOD_PROTO_IP },
1820 { "ipsec_policy_log_interval", "_ipsec_policy_log_interval",
1821 MOD_PROTO_IP },
1822 { "icmp_accept_clear_messages", "_icmp_accept_clear_messages",
1823 MOD_PROTO_IP },
1824 { "igmp_accept_clear_messages", "_igmp_accept_clear_messages",
1825 MOD_PROTO_IP },
1826 { "pim_accept_clear_messages", "_pim_accept_clear_messages",
1827 MOD_PROTO_IP },
1828 { "ip_respond_to_echo_multicast", "_respond_to_echo_multicast",
1829 MOD_PROTO_IPV4 },
1830 { "ip_send_redirects", "_send_redirects",
1831 MOD_PROTO_IPV4 },
1832 { "ip_forward_src_routed", "_forward_src_routed",
1833 MOD_PROTO_IPV4 },
1834 { "ip_icmp_return_data_bytes", "_icmp_return_data_bytes",
1835 MOD_PROTO_IPV4 },
1836 { "ip_ignore_redirect", "_ignore_redirect",
1837 MOD_PROTO_IPV4 },
1838 { "ip_strict_dst_multihoming", "_strict_dst_multihoming",
1839 MOD_PROTO_IPV4 },
1840 { "ip_reasm_timeout", "_reasm_timeout",
1841 MOD_PROTO_IPV4 },
1842 { "ip_strict_src_multihoming", "_strict_src_multihoming",
1843 MOD_PROTO_IPV4 },
1844 { "ipv4_dad_announce_interval", "_dad_announce_interval",
1845 MOD_PROTO_IPV4 },
1846 { "ipv4_icmp_return_pmtu", "_icmp_return_pmtu",
1847 MOD_PROTO_IPV4 },
1848 { "ipv6_dad_announce_interval", "_dad_announce_interval",
1849 MOD_PROTO_IPV6 },
1850 { "ipv6_icmp_return_pmtu", "_icmp_return_pmtu",
1851 MOD_PROTO_IPV6 },
1852 { NULL, NULL, MOD_PROTO_NONE }
1853 };

1855 /*
1856 * Following API returns a new property name in ‘nname’ for the given legacy
1857 * property name in ‘oname’.
1858 */
1859 int
1860 ipadm_legacy2new_propname(const char *oname, char *nname, uint_t nnamelen,
1861 uint_t *proto)
1862 {
1863 const char *str;
1864 ipadm_oname2nname_map_t *ionmp;

1866 /* if it’s a public property, there is nothing to return */

new/usr/src/lib/libipadm/common/ipadm_prop.c 28

1867 if (i_ipadm_get_prop_desc(oname, *proto, NULL) != NULL)
1868 return (-1);

1870 /*
1871 * we didn’t find the ‘oname’ in the table, check if the property
1872 * name begins with a leading protocol.
1873 */
1874 str = oname;
1875 switch (*proto) {
1876 case MOD_PROTO_TCP:
1877 if (strstr(oname, "tcp_") == oname)
1878 str += strlen("tcp");
1879 break;
1880 case MOD_PROTO_SCTP:
1881 if (strstr(oname, "sctp_") == oname)
1882 str += strlen("sctp");
1883 break;
1884 case MOD_PROTO_UDP:
1885 if (strstr(oname, "udp_") == oname)
1886 str += strlen("udp");
1887 break;
1888 case MOD_PROTO_RAWIP:
1889 if (strstr(oname, "icmp_") == oname)
1890 str += strlen("icmp");
1891 break;
1892 case MOD_PROTO_IP:
1893 case MOD_PROTO_IPV4:
1894 case MOD_PROTO_IPV6:
1895 if (strstr(oname, "ip6_") == oname) {
1896 *proto = MOD_PROTO_IPV6;
1897 str += strlen("ip6");
1898 } else {
1899 for (ionmp = name_map; ionmp->iom_oname != NULL;
1900 ionmp++) {
1901 if (strcmp(oname, ionmp->iom_oname) == 0) {
1902 str = ionmp->iom_nname;
1903 *proto = ionmp->iom_proto;
1904 break;
1905 }
1906 }
1907 if (ionmp->iom_oname != NULL)
1908 break;

1910 if (strstr(oname, "ip_") == oname) {
1911 *proto = MOD_PROTO_IP;
1912 str += strlen("ip");
1913 }
1914 }
1915 break;
1916 default:
1917 return (-1);
1918 }
1919 (void) snprintf(nname, nnamelen, "%s", str);
1920 return (0);
1921 }

1923 /*
1924 * Following API is required for ndd.c alone. To maintain backward
1925 * compatibility with ndd output, we need to print the legacy name
1926 * for the new name.
1927 */
1928 int
1929 ipadm_new2legacy_propname(const char *oname, char *nname,
1930 uint_t nnamelen, uint_t proto)
1931 {
1932 char *prefix;

new/usr/src/lib/libipadm/common/ipadm_prop.c 29

1933 ipadm_oname2nname_map_t *ionmp;

1935 /* if it’s a public property, there is nothing to prepend */
1936 if (i_ipadm_get_prop_desc(oname, proto, NULL) != NULL)
1937 return (-1);

1939 switch (proto) {
1940 case MOD_PROTO_TCP:
1941 prefix = "tcp";
1942 break;
1943 case MOD_PROTO_SCTP:
1944 prefix = "sctp";
1945 break;
1946 case MOD_PROTO_UDP:
1947 prefix = "udp";
1948 break;
1949 case MOD_PROTO_RAWIP:
1950 prefix = "icmp";
1951 break;
1952 case MOD_PROTO_IP:
1953 case MOD_PROTO_IPV4:
1954 case MOD_PROTO_IPV6:
1955 /* handle special case for IP */
1956 for (ionmp = name_map; ionmp->iom_oname != NULL; ionmp++) {
1957 if (strcmp(oname, ionmp->iom_nname) == 0 &&
1958 ionmp->iom_proto == proto) {
1959 (void) strlcpy(nname, ionmp->iom_oname,
1960 nnamelen);
1961 return (0);
1962 }
1963 }
1964 if (proto == MOD_PROTO_IPV6)
1965 prefix = "ip6";
1966 else
1967 prefix = "ip";
1968 break;
1969 default:
1970 return (-1);
1971 }
1972 (void) snprintf(nname, nnamelen, "%s%s", prefix, oname);
1973 return (0);
1974 }

new/usr/src/pkg/manifests/system-kernel.mf 1

**
 45632 Wed Jun 13 12:04:20 2012
new/usr/src/pkg/manifests/system-kernel.mf
%B
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # The default for payload-bearing actions in this package is to appear in the
28 # global zone only. See the include file for greater detail, as well as
29 # information about overriding the defaults.
30 #
31 <include global_zone_only_component>
32 <include system-kernel.man1m.inc>
33 <include system-kernel.man2.inc>
34 <include system-kernel.man4.inc>
35 <include system-kernel.man5.inc>
36 <include system-kernel.man7.inc>
37 <include system-kernel.man7d.inc>
38 <include system-kernel.man7fs.inc>
39 <include system-kernel.man7m.inc>
40 <include system-kernel.man7p.inc>
41 <include system-kernel.man9.inc>
42 <include system-kernel.man9e.inc>
43 <include system-kernel.man9f.inc>
44 <include system-kernel.man9p.inc>
45 <include system-kernel.man9s.inc>
46 set name=pkg.fmri value=pkg:/system/kernel@$(PKGVERS)
47 set name=pkg.description \
48 value="core kernel software for a specific instruction-set architecture"
49 set name=pkg.summary value="Core Solaris Kernel"
50 set name=info.classification value=org.opensolaris.category.2008:System/Core
51 set name=variant.arch value=$(ARCH)
52 dir path=boot group=sys
53 $(i386_ONLY)dir path=boot/acpi group=sys
54 $(i386_ONLY)dir path=boot/acpi/tables group=sys
55 dir path=boot/solaris group=sys
56 dir path=boot/solaris/bin group=sys
57 dir path=etc group=sys
58 dir path=etc/crypto group=sys
59 dir path=etc/sock2path.d group=sys
60 dir path=kernel group=sys
61 $(i386_ONLY)dir path=kernel/$(ARCH64) group=sys

new/usr/src/pkg/manifests/system-kernel.mf 2

62 dir path=kernel/crypto group=sys
63 dir path=kernel/crypto/$(ARCH64) group=sys
64 dir path=kernel/dacf group=sys
65 dir path=kernel/dacf/$(ARCH64) group=sys
66 dir path=kernel/drv group=sys
67 dir path=kernel/drv/$(ARCH64) group=sys
68 dir path=kernel/exec group=sys
69 dir path=kernel/exec/$(ARCH64) group=sys
70 dir path=kernel/fs group=sys
71 dir path=kernel/fs/$(ARCH64) group=sys
72 dir path=kernel/ipp group=sys
73 dir path=kernel/ipp/$(ARCH64) group=sys
74 dir path=kernel/kiconv group=sys
75 dir path=kernel/kiconv/$(ARCH64) group=sys
76 dir path=kernel/mac group=sys
77 dir path=kernel/mac/$(ARCH64) group=sys
78 dir path=kernel/misc group=sys
79 dir path=kernel/misc/$(ARCH64) group=sys
80 dir path=kernel/misc/scsi_vhci group=sys
81 dir path=kernel/misc/scsi_vhci/$(ARCH64) group=sys
82 dir path=kernel/sched group=sys
83 dir path=kernel/sched/$(ARCH64) group=sys
84 dir path=kernel/socketmod group=sys
85 dir path=kernel/socketmod/$(ARCH64) group=sys
86 dir path=kernel/strmod group=sys
87 dir path=kernel/strmod/$(ARCH64) group=sys
88 dir path=kernel/sys group=sys
89 dir path=kernel/sys/$(ARCH64) group=sys
90 dir path=lib
91 dir path=lib/svc
92 dir path=lib/svc/manifest group=sys
93 dir path=lib/svc/manifest/system group=sys
94 dir path=lib/svc/method
95 dir path=usr/share/man
96 dir path=usr/share/man/man1m
97 dir path=usr/share/man/man2
98 dir path=usr/share/man/man3
99 dir path=usr/share/man/man4
100 dir path=usr/share/man/man5
101 dir path=usr/share/man/man7d
102 dir path=usr/share/man/man7fs
103 dir path=usr/share/man/man7m
104 dir path=usr/share/man/man7p
105 dir path=usr/share/man/man9
106 dir path=usr/share/man/man9e
107 dir path=usr/share/man/man9f
108 dir path=usr/share/man/man9p
109 dir path=usr/share/man/man9s
110 $(i386_ONLY)driver name=acpi_drv perms="* 0666 root sys"
111 driver name=aggr perms="* 0666 root sys"
112 driver name=arp perms="arp 0666 root sys"
113 driver name=bl perms="* 0666 root sys"
114 driver name=bridge clone_perms="bridge 0666 root sys" \
115 policy="read_priv_set=net_rawaccess write_priv_set=net_rawaccess"
116 $(sparc_ONLY)driver name=bscbus alias=SUNW,bscbus
117 $(i386_ONLY)driver name=bscbus alias=SVI0101
118 $(sparc_ONLY)driver name=bscv alias=SUNW,bscv perms="* 0644 root sys"
119 $(i386_ONLY)driver name=bscv
120 driver name=clone
121 driver name=cn perms="* 0620 root tty"
122 driver name=conskbd perms="kbd 0666 root sys"
123 driver name=consms perms="mouse 0666 root sys"
124 driver name=cpuid perms="self 0644 root sys"
125 $(i386_ONLY)driver name=cpunex alias=cpus
126 driver name=crypto perms="crypto 0666 root sys"
127 driver name=cryptoadm perms="cryptoadm 0644 root sys"

new/usr/src/pkg/manifests/system-kernel.mf 3

128 $(sparc_ONLY)driver name=dad alias=ide-disk perms="* 0640 root sys"
129 driver name=dccp perms="dccp 0666 root sys"
130 driver name=dccp6 perms="dccp6 0666 root sys"
131 #endif /* ! codereview */
132 driver name=devinfo perms="devinfo 0640 root sys" \
133 perms="devinfo,ro 0444 root sys"
134 driver name=dld perms="* 0666 root sys"
135 driver name=dlpistub perms="* 0666 root sys"
136 $(sparc_ONLY)driver name=i8042 alias=8042
137 $(i386_ONLY)driver name=i8042
138 driver name=icmp perms="icmp 0666 root sys" \
139 policy="read_priv_set=net_icmpaccess write_priv_set=net_icmpaccess"
140 driver name=icmp6 perms="icmp6 0666 root sys" \
141 policy="read_priv_set=net_icmpaccess write_priv_set=net_icmpaccess"
142 $(i386_ONLY)driver name=intel_nb5000 \
143 alias=pci8086,25c0 \
144 alias=pci8086,25d0 \
145 alias=pci8086,25d4 \
146 alias=pci8086,25d8 \
147 alias=pci8086,3600 \
148 alias=pci8086,4000 \
149 alias=pci8086,4001 \
150 alias=pci8086,4003 \
151 alias=pci8086,65c0
152 $(i386_ONLY)driver name=intel_nhm \
153 alias=pci8086,3423 \
154 alias=pci8086,372a
155 $(i386_ONLY)driver name=intel_nhmex alias=pci8086,3438
156 driver name=ip perms="ip 0666 root sys" \
157 policy="read_priv_set=net_rawaccess write_priv_set=net_rawaccess"
158 driver name=ip6 perms="ip6 0666 root sys" \
159 policy="read_priv_set=net_rawaccess write_priv_set=net_rawaccess"
160 driver name=ipnet perms="lo0 0666 root sys" \
161 policy="read_priv_set=net_observability write_priv_set=net_observability"
162 driver name=ippctl
163 driver name=ipsecah perms="ipsecah 0666 root sys" \
164 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
165 driver name=ipsecesp perms="ipsecesp 0666 root sys" \
166 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
167 driver name=iptun
168 driver name=iwscn
169 driver name=kb8042 alias=pnpPNP,303
170 driver name=keysock perms="keysock 0666 root sys" \
171 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
172 driver name=kmdb
173 driver name=kssl perms="* 0666 root sys"
174 driver name=llc1 clone_perms="llc1 0666 root sys"
175 driver name=lofi perms="* 0600 root sys" perms="ctl 0644 root sys"
176 driver name=log perms="conslog 0666 root sys" perms="log 0640 root sys"
177 $(i386_ONLY)driver name=mc-amd \
178 alias=pci1022,1100 \
179 alias=pci1022,1101 \
180 alias=pci1022,1102
181 driver name=mm perms="allkmem 0600 root sys" perms="kmem 0640 root sys" \
182 perms="mem 0640 root sys" perms="null 0666 root sys" \
183 perms="zero 0666 root sys" \
184 policy="allkmem read_priv_set=all write_priv_set=all" \
185 policy="kmem read_priv_set=none write_priv_set=all" \
186 policy="mem read_priv_set=none write_priv_set=all"
187 driver name=mouse8042 alias=pnpPNP,f03
188 $(i386_ONLY)driver name=mpt class=scsi \
189 alias=pci1000,30 \
190 alias=pci1000,50 \
191 alias=pci1000,54 \
192 alias=pci1000,56 \
193 alias=pci1000,58 \

new/usr/src/pkg/manifests/system-kernel.mf 4

194 alias=pci1000,62 \
195 alias=pciex1000,56 \
196 alias=pciex1000,58 \
197 alias=pciex1000,62
198 driver name=nulldriver \
199 alias=scsa,nodev \
200 alias=scsa,probe
201 driver name=openeepr perms="openprom 0640 root sys" policy=write_priv_set=all
202 driver name=options
203 $(sparc_ONLY)driver name=pci_pci class=pci \
204 alias=pci1011,1 \
205 alias=pci1011,21 \
206 alias=pci1011,24 \
207 alias=pci1011,25 \
208 alias=pci1011,26 \
209 alias=pci1014,22 \
210 alias=pciclass,060400
211 $(i386_ONLY)driver name=pci_pci class=pci \
212 alias=pci1011,1 \
213 alias=pci1011,21 \
214 alias=pci1014,22 \
215 alias=pciclass,060400 \
216 alias=pciclass,060401
217 $(sparc_ONLY)driver name=pcieb \
218 alias=pciex108e,9010 \
219 alias=pciex108e,9020 \
220 alias=pciex10b5,8114 \
221 alias=pciex10b5,8516 \
222 alias=pciex10b5,8517 \
223 alias=pciex10b5,8518 \
224 alias=pciex10b5,8532 \
225 alias=pciex10b5,8533 \
226 alias=pciex10b5,8548 \
227 alias=pciexclass,060400
228 $(i386_ONLY)driver name=pcieb \
229 alias=pciexclass,060400 \
230 alias=pciexclass,060401
231 $(sparc_ONLY)driver name=pcieb_bcm alias=pciex1166,103
232 driver name=physmem perms="* 0600 root sys"
233 driver name=poll perms="* 0666 root sys"
234 $(sparc_ONLY)driver name=power alias=ali1535d+-power
235 $(i386_ONLY)driver name=power
236 driver name=pseudo alias=zconsnex
237 driver name=ptc perms="* 0666 root sys"
238 driver name=ptsl perms="* 0666 root sys"
239 $(sparc_ONLY)driver name=ramdisk alias=SUNW,ramdisk perms="* 0600 root sys" \
240 perms="ctl 0644 root sys"
241 $(i386_ONLY)driver name=ramdisk perms="* 0600 root sys" \
242 perms="ctl 0644 root sys"
243 driver name=random perms="* 0644 root sys" policy=write_priv_set=sys_devices
244 driver name=rts perms="rts 0666 root sys"
245 driver name=sad perms="admin 0666 root sys" perms="user 0666 root sys"
246 driver name=scsi_vhci class=scsi-self-identifying perms="* 0666 root sys" \
247 policy="devctl write_priv_set=sys_devices"
248 $(sparc_ONLY)driver name=sd perms="* 0640 root sys" \
249 alias=ide-cdrom \
250 alias=scsiclass,00 \
251 alias=scsiclass,05
252 $(i386_ONLY)driver name=sd perms="* 0640 root sys" \
253 alias=scsiclass,00 \
254 alias=scsiclass,05
255 driver name=sgen perms="* 0600 root sys" \
256 alias=scsa,08.bfcp \
257 alias=scsa,08.bvhci
258 driver name=simnet clone_perms="simnet 0666 root sys" perms="* 0666 root sys"
259 $(i386_ONLY)driver name=smbios perms="smbios 0444 root sys"

new/usr/src/pkg/manifests/system-kernel.mf 5

260 driver name=softmac
261 driver name=spdsock perms="spdsock 0666 root sys" \
262 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
263 driver name=st alias=scsiclass,01 perms="* 0666 root sys"
264 driver name=sy perms="tty 0666 root tty"
265 driver name=sysevent perms="* 0600 root sys"
266 driver name=sysmsg perms="msglog 0600 root sys" perms="sysmsg 0600 root sys"
267 driver name=tcp perms="tcp 0666 root sys"
268 driver name=tcp6 perms="tcp6 0666 root sys"
269 driver name=tl perms="* 0666 root sys" clone_perms="ticlts 0666 root sys" \
270 clone_perms="ticots 0666 root sys" clone_perms="ticotsord 0666 root sys"
271 $(sparc_ONLY)driver name=ttymux alias=multiplexer
272 $(i386_ONLY)driver name=tzmon
273 $(sparc_ONLY)driver name=uata \
274 alias=pci1095,646 \
275 alias=pci1095,649 \
276 alias=pci1095,680 \
277 alias=pci10b9,5229 \
278 alias=pci10b9,5288 class=dada class=scsi
279 $(i386_ONLY)driver name=ucode perms="* 0644 root sys"
280 driver name=udp perms="udp 0666 root sys"
281 driver name=udp6 perms="udp6 0666 root sys"
282 $(i386_ONLY)driver name=vgatext \
283 alias=pciclass,000100 \
284 alias=pciclass,030000 \
285 alias=pciclass,030001 \
286 alias=pnpPNP,900
287 driver name=vnic clone_perms="vnic 0666 root sys" perms="* 0666 root sys"
288 driver name=wc perms="* 0600 root sys"
289 $(i386_ONLY)file path=boot/solaris/bin/create_diskmap group=sys mode=0555
290 file path=boot/solaris/bin/create_ramdisk group=sys mode=0555
291 file path=boot/solaris/bin/extract_boot_filelist group=sys mode=0555
292 $(i386_ONLY)file path=boot/solaris/bin/mbr group=sys mode=0555
293 $(i386_ONLY)file path=boot/solaris/bin/symdef group=sys mode=0555
294 $(i386_ONLY)file path=boot/solaris/bin/update_grub group=sys mode=0555
295 file path=boot/solaris/filelist.ramdisk group=sys
296 file path=boot/solaris/filelist.safe group=sys
297 file path=etc/crypto/kcf.conf group=sys \
298 original_name=SUNWckr:etc/crypto/kcf.conf preserve=true
299 file path=etc/name_to_sysnum group=sys \
300 original_name=SUNWckr:etc/name_to_sysnum preserve=renameold
301 file path=etc/sock2path.d/system%2Fkernel group=sys
302 file path=etc/system group=sys original_name=SUNWckr:etc/system preserve=true
303 $(i386_ONLY)file path=kernel/$(ARCH64)/genunix group=sys mode=0755
304 file path=kernel/crypto/$(ARCH64)/aes group=sys mode=0755
305 file path=kernel/crypto/$(ARCH64)/arcfour group=sys mode=0755
306 file path=kernel/crypto/$(ARCH64)/blowfish group=sys mode=0755
307 file path=kernel/crypto/$(ARCH64)/des group=sys mode=0755
308 file path=kernel/crypto/$(ARCH64)/ecc group=sys mode=0755
309 file path=kernel/crypto/$(ARCH64)/md4 group=sys mode=0755
310 file path=kernel/crypto/$(ARCH64)/md5 group=sys mode=0755
311 file path=kernel/crypto/$(ARCH64)/rsa group=sys mode=0755
312 file path=kernel/crypto/$(ARCH64)/sha1 group=sys mode=0755
313 file path=kernel/crypto/$(ARCH64)/sha2 group=sys mode=0755
314 file path=kernel/crypto/$(ARCH64)/swrand group=sys mode=0755
315 $(i386_ONLY)file path=kernel/crypto/aes group=sys mode=0755
316 $(i386_ONLY)file path=kernel/crypto/arcfour group=sys mode=0755
317 $(i386_ONLY)file path=kernel/crypto/blowfish group=sys mode=0755
318 $(i386_ONLY)file path=kernel/crypto/des group=sys mode=0755
319 $(i386_ONLY)file path=kernel/crypto/ecc group=sys mode=0755
320 $(i386_ONLY)file path=kernel/crypto/md4 group=sys mode=0755
321 $(i386_ONLY)file path=kernel/crypto/md5 group=sys mode=0755
322 $(i386_ONLY)file path=kernel/crypto/rsa group=sys mode=0755
323 $(i386_ONLY)file path=kernel/crypto/sha1 group=sys mode=0755
324 $(i386_ONLY)file path=kernel/crypto/sha2 group=sys mode=0755
325 $(i386_ONLY)file path=kernel/crypto/swrand group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 6

326 $(sparc_ONLY)file path=kernel/dacf/$(ARCH64)/consconfig_dacf group=sys \
327 mode=0755
328 file path=kernel/dacf/$(ARCH64)/net_dacf group=sys mode=0755
329 $(i386_ONLY)file path=kernel/dacf/net_dacf group=sys mode=0755
330 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/acpi_drv group=sys
331 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/acpi_toshiba group=sys
332 file path=kernel/drv/$(ARCH64)/aggr group=sys
333 file path=kernel/drv/$(ARCH64)/arp group=sys
334 file path=kernel/drv/$(ARCH64)/bl group=sys
335 file path=kernel/drv/$(ARCH64)/bridge group=sys
336 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/bscbus group=sys
337 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/bscv group=sys
338 file path=kernel/drv/$(ARCH64)/clone group=sys
339 file path=kernel/drv/$(ARCH64)/cn group=sys
340 file path=kernel/drv/$(ARCH64)/conskbd group=sys
341 file path=kernel/drv/$(ARCH64)/consms group=sys
342 file path=kernel/drv/$(ARCH64)/cpuid group=sys
343 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/cpunex group=sys
344 file path=kernel/drv/$(ARCH64)/crypto group=sys
345 file path=kernel/drv/$(ARCH64)/cryptoadm group=sys
346 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/dad group=sys
347 file path=kernel/drv/$(ARCH64)/dccp group=sys
348 file path=kernel/drv/$(ARCH64)/dccp6 group=sys
349 #endif /* ! codereview */
350 file path=kernel/drv/$(ARCH64)/devinfo group=sys
351 file path=kernel/drv/$(ARCH64)/dld group=sys
352 file path=kernel/drv/$(ARCH64)/dlpistub group=sys
353 file path=kernel/drv/$(ARCH64)/i8042 group=sys
354 file path=kernel/drv/$(ARCH64)/icmp group=sys
355 file path=kernel/drv/$(ARCH64)/icmp6 group=sys
356 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/intel_nb5000 group=sys
357 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/intel_nhm group=sys
358 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/intel_nhmex group=sys
359 file path=kernel/drv/$(ARCH64)/ip group=sys
360 file path=kernel/drv/$(ARCH64)/ip6 group=sys
361 file path=kernel/drv/$(ARCH64)/ipnet group=sys
362 file path=kernel/drv/$(ARCH64)/ippctl group=sys
363 file path=kernel/drv/$(ARCH64)/ipsecah group=sys
364 file path=kernel/drv/$(ARCH64)/ipsecesp group=sys
365 file path=kernel/drv/$(ARCH64)/iptun group=sys
366 file path=kernel/drv/$(ARCH64)/iwscn group=sys
367 file path=kernel/drv/$(ARCH64)/kb8042 group=sys
368 file path=kernel/drv/$(ARCH64)/keysock group=sys
369 file path=kernel/drv/$(ARCH64)/kmdb group=sys
370 file path=kernel/drv/$(ARCH64)/kssl group=sys
371 file path=kernel/drv/$(ARCH64)/llc1 group=sys
372 file path=kernel/drv/$(ARCH64)/lofi group=sys
373 file path=kernel/drv/$(ARCH64)/log group=sys
374 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/mc-amd group=sys
375 file path=kernel/drv/$(ARCH64)/mm group=sys
376 file path=kernel/drv/$(ARCH64)/mouse8042 group=sys
377 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/mpt group=sys
378 file path=kernel/drv/$(ARCH64)/nulldriver group=sys
379 file path=kernel/drv/$(ARCH64)/openeepr group=sys
380 file path=kernel/drv/$(ARCH64)/options group=sys
381 file path=kernel/drv/$(ARCH64)/pci_pci group=sys
382 file path=kernel/drv/$(ARCH64)/pcieb group=sys
383 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/pcieb_bcm group=sys
384 file path=kernel/drv/$(ARCH64)/physmem group=sys
385 file path=kernel/drv/$(ARCH64)/poll group=sys
386 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/power group=sys
387 file path=kernel/drv/$(ARCH64)/pseudo group=sys
388 file path=kernel/drv/$(ARCH64)/ptc group=sys
389 file path=kernel/drv/$(ARCH64)/ptsl group=sys
390 file path=kernel/drv/$(ARCH64)/ramdisk group=sys
391 file path=kernel/drv/$(ARCH64)/random group=sys

new/usr/src/pkg/manifests/system-kernel.mf 7

392 file path=kernel/drv/$(ARCH64)/rts group=sys
393 file path=kernel/drv/$(ARCH64)/sad group=sys
394 file path=kernel/drv/$(ARCH64)/scsi_vhci group=sys
395 file path=kernel/drv/$(ARCH64)/sd group=sys
396 file path=kernel/drv/$(ARCH64)/sgen group=sys
397 file path=kernel/drv/$(ARCH64)/simnet group=sys
398 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/smbios group=sys
399 file path=kernel/drv/$(ARCH64)/softmac group=sys
400 file path=kernel/drv/$(ARCH64)/spdsock group=sys
401 file path=kernel/drv/$(ARCH64)/st group=sys
402 file path=kernel/drv/$(ARCH64)/sy group=sys
403 file path=kernel/drv/$(ARCH64)/sysevent group=sys
404 file path=kernel/drv/$(ARCH64)/sysmsg group=sys
405 file path=kernel/drv/$(ARCH64)/tcp group=sys
406 file path=kernel/drv/$(ARCH64)/tcp6 group=sys
407 file path=kernel/drv/$(ARCH64)/tl group=sys
408 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/ttymux group=sys
409 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/tzmon group=sys
410 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/uata group=sys
411 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/ucode group=sys
412 file path=kernel/drv/$(ARCH64)/udp group=sys
413 file path=kernel/drv/$(ARCH64)/udp6 group=sys
414 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/vgatext group=sys
415 file path=kernel/drv/$(ARCH64)/vnic group=sys
416 file path=kernel/drv/$(ARCH64)/wc group=sys
417 $(i386_ONLY)file path=kernel/drv/acpi_drv group=sys
418 $(i386_ONLY)file path=kernel/drv/acpi_drv.conf group=sys
419 $(i386_ONLY)file path=kernel/drv/acpi_toshiba group=sys
420 $(i386_ONLY)file path=kernel/drv/aggr group=sys
421 file path=kernel/drv/aggr.conf group=sys
422 $(i386_ONLY)file path=kernel/drv/arp group=sys
423 file path=kernel/drv/arp.conf group=sys
424 $(i386_ONLY)file path=kernel/drv/bl group=sys
425 file path=kernel/drv/bl.conf group=sys
426 $(i386_ONLY)file path=kernel/drv/bridge group=sys
427 file path=kernel/drv/bridge.conf group=sys
428 $(i386_ONLY)file path=kernel/drv/bscbus group=sys
429 $(i386_ONLY)file path=kernel/drv/bscbus.conf group=sys
430 $(i386_ONLY)file path=kernel/drv/bscv group=sys
431 $(i386_ONLY)file path=kernel/drv/bscv.conf group=sys
432 $(i386_ONLY)file path=kernel/drv/clone group=sys
433 file path=kernel/drv/clone.conf group=sys
434 $(i386_ONLY)file path=kernel/drv/cn group=sys
435 file path=kernel/drv/cn.conf group=sys
436 $(i386_ONLY)file path=kernel/drv/conskbd group=sys
437 file path=kernel/drv/conskbd.conf group=sys
438 $(i386_ONLY)file path=kernel/drv/consms group=sys
439 file path=kernel/drv/consms.conf group=sys
440 $(i386_ONLY)file path=kernel/drv/cpuid group=sys
441 file path=kernel/drv/cpuid.conf group=sys
442 $(i386_ONLY)file path=kernel/drv/cpunex group=sys
443 $(i386_ONLY)file path=kernel/drv/crypto group=sys
444 file path=kernel/drv/crypto.conf group=sys
445 $(i386_ONLY)file path=kernel/drv/cryptoadm group=sys
446 file path=kernel/drv/cryptoadm.conf group=sys
447 $(sparc_ONLY)file path=kernel/drv/dad.conf group=sys
448 $(i386_ONLY)file path=kernel/drv/dccp group=sys
449 file path=kernel/drv/dccp.conf group=sys
450 $(i386_ONLY)file path=kernel/drv/dccp6 group=sys
451 file path=kernel/drv/dccp6.conf group=sys
452 #endif /* ! codereview */
453 $(i386_ONLY)file path=kernel/drv/devinfo group=sys
454 file path=kernel/drv/devinfo.conf group=sys
455 $(i386_ONLY)file path=kernel/drv/dld group=sys
456 file path=kernel/drv/dld.conf group=sys
457 $(i386_ONLY)file path=kernel/drv/dlpistub group=sys

new/usr/src/pkg/manifests/system-kernel.mf 8

458 file path=kernel/drv/dlpistub.conf group=sys
459 $(i386_ONLY)file path=kernel/drv/i8042 group=sys
460 $(i386_ONLY)file path=kernel/drv/icmp group=sys
461 file path=kernel/drv/icmp.conf group=sys
462 $(i386_ONLY)file path=kernel/drv/icmp6 group=sys
463 file path=kernel/drv/icmp6.conf group=sys
464 $(i386_ONLY)file path=kernel/drv/intel_nb5000 group=sys
465 $(i386_ONLY)file path=kernel/drv/intel_nb5000.conf group=sys
466 $(i386_ONLY)file path=kernel/drv/intel_nhm group=sys
467 $(i386_ONLY)file path=kernel/drv/intel_nhm.conf group=sys
468 $(i386_ONLY)file path=kernel/drv/intel_nhmex group=sys
469 $(i386_ONLY)file path=kernel/drv/intel_nhmex.conf group=sys
470 $(i386_ONLY)file path=kernel/drv/ip group=sys
471 file path=kernel/drv/ip.conf group=sys
472 $(i386_ONLY)file path=kernel/drv/ip6 group=sys
473 file path=kernel/drv/ip6.conf group=sys
474 $(i386_ONLY)file path=kernel/drv/ipnet group=sys
475 file path=kernel/drv/ipnet.conf group=sys
476 $(i386_ONLY)file path=kernel/drv/ippctl group=sys
477 file path=kernel/drv/ippctl.conf group=sys
478 $(i386_ONLY)file path=kernel/drv/ipsecah group=sys
479 file path=kernel/drv/ipsecah.conf group=sys
480 $(i386_ONLY)file path=kernel/drv/ipsecesp group=sys
481 file path=kernel/drv/ipsecesp.conf group=sys
482 $(i386_ONLY)file path=kernel/drv/iptun group=sys
483 file path=kernel/drv/iptun.conf group=sys
484 $(i386_ONLY)file path=kernel/drv/iwscn group=sys
485 file path=kernel/drv/iwscn.conf group=sys
486 $(i386_ONLY)file path=kernel/drv/kb8042 group=sys
487 $(i386_ONLY)file path=kernel/drv/keysock group=sys
488 file path=kernel/drv/keysock.conf group=sys
489 $(i386_ONLY)file path=kernel/drv/kmdb group=sys
490 file path=kernel/drv/kmdb.conf group=sys
491 $(i386_ONLY)file path=kernel/drv/kssl group=sys
492 file path=kernel/drv/kssl.conf group=sys
493 $(i386_ONLY)file path=kernel/drv/llc1 group=sys
494 file path=kernel/drv/llc1.conf group=sys
495 $(i386_ONLY)file path=kernel/drv/lofi group=sys
496 file path=kernel/drv/lofi.conf group=sys
497 $(i386_ONLY)file path=kernel/drv/log group=sys
498 file path=kernel/drv/log.conf group=sys \
499 original_name=SUNWckr:kernel/drv/log.conf preserve=true
500 $(i386_ONLY)file path=kernel/drv/mc-amd group=sys
501 $(i386_ONLY)file path=kernel/drv/mc-amd.conf group=sys
502 $(i386_ONLY)file path=kernel/drv/mm group=sys
503 file path=kernel/drv/mm.conf group=sys
504 $(i386_ONLY)file path=kernel/drv/mouse8042 group=sys
505 $(i386_ONLY)file path=kernel/drv/mpt group=sys
506 $(i386_ONLY)file path=kernel/drv/mpt.conf group=sys \
507 original_name=SUNWckr:kernel/drv/mpt.conf preserve=true
508 $(i386_ONLY)file path=kernel/drv/nulldriver group=sys
509 $(i386_ONLY)file path=kernel/drv/openeepr group=sys
510 file path=kernel/drv/openeepr.conf group=sys
511 $(i386_ONLY)file path=kernel/drv/options group=sys
512 file path=kernel/drv/options.conf group=sys
513 $(i386_ONLY)file path=kernel/drv/pci_pci group=sys
514 $(i386_ONLY)file path=kernel/drv/pcieb group=sys
515 file path=kernel/drv/pcieb.conf group=sys
516 $(i386_ONLY)file path=kernel/drv/physmem group=sys
517 file path=kernel/drv/physmem.conf group=sys
518 $(i386_ONLY)file path=kernel/drv/poll group=sys
519 file path=kernel/drv/poll.conf group=sys
520 $(i386_ONLY)file path=kernel/drv/power group=sys
521 $(i386_ONLY)file path=kernel/drv/power.conf group=sys
522 $(i386_ONLY)file path=kernel/drv/pseudo group=sys
523 file path=kernel/drv/pseudo.conf group=sys

new/usr/src/pkg/manifests/system-kernel.mf 9

524 $(i386_ONLY)file path=kernel/drv/ptc group=sys
525 file path=kernel/drv/ptc.conf group=sys
526 $(i386_ONLY)file path=kernel/drv/ptsl group=sys
527 file path=kernel/drv/ptsl.conf group=sys
528 $(i386_ONLY)file path=kernel/drv/ramdisk group=sys
529 file path=kernel/drv/ramdisk.conf group=sys
530 $(i386_ONLY)file path=kernel/drv/random group=sys
531 file path=kernel/drv/random.conf group=sys
532 $(i386_ONLY)file path=kernel/drv/rts group=sys
533 file path=kernel/drv/rts.conf group=sys
534 $(i386_ONLY)file path=kernel/drv/sad group=sys
535 file path=kernel/drv/sad.conf group=sys
536 $(i386_ONLY)file path=kernel/drv/scsi_vhci group=sys
537 file path=kernel/drv/scsi_vhci.conf group=sys \
538 original_name=SUNWckr:kernel/drv/scsi_vhci.conf preserve=true
539 $(sparc_ONLY)file path=kernel/drv/sd.conf group=sys \
540 original_name=SUNWckr:kernel/drv/sd.conf preserve=true
541 $(i386_ONLY)file path=kernel/drv/sgen group=sys
542 file path=kernel/drv/sgen.conf group=sys \
543 original_name=SUNWckr:kernel/drv/sgen.conf preserve=true
544 $(i386_ONLY)file path=kernel/drv/simnet group=sys
545 file path=kernel/drv/simnet.conf group=sys
546 $(i386_ONLY)file path=kernel/drv/smbios group=sys
547 $(i386_ONLY)file path=kernel/drv/smbios.conf group=sys
548 $(i386_ONLY)file path=kernel/drv/softmac group=sys
549 file path=kernel/drv/softmac.conf group=sys
550 $(i386_ONLY)file path=kernel/drv/spdsock group=sys
551 file path=kernel/drv/spdsock.conf group=sys
552 $(i386_ONLY)file path=kernel/drv/st group=sys
553 file path=kernel/drv/st.conf group=sys \
554 original_name=SUNWckr:kernel/drv/st.conf preserve=true
555 $(i386_ONLY)file path=kernel/drv/sy group=sys
556 file path=kernel/drv/sy.conf group=sys
557 $(i386_ONLY)file path=kernel/drv/sysevent group=sys
558 file path=kernel/drv/sysevent.conf group=sys
559 $(i386_ONLY)file path=kernel/drv/sysmsg group=sys
560 file path=kernel/drv/sysmsg.conf group=sys
561 $(i386_ONLY)file path=kernel/drv/tcp group=sys
562 file path=kernel/drv/tcp.conf group=sys
563 $(i386_ONLY)file path=kernel/drv/tcp6 group=sys
564 file path=kernel/drv/tcp6.conf group=sys
565 $(i386_ONLY)file path=kernel/drv/tl group=sys
566 file path=kernel/drv/tl.conf group=sys
567 $(i386_ONLY)file path=kernel/drv/tzmon group=sys
568 $(i386_ONLY)file path=kernel/drv/tzmon.conf group=sys
569 $(sparc_ONLY)file path=kernel/drv/uata.conf group=sys \
570 original_name=SUNWckr:kernel/drv/uata.conf preserve=true
571 $(i386_ONLY)file path=kernel/drv/ucode group=sys
572 $(i386_ONLY)file path=kernel/drv/ucode.conf group=sys
573 $(i386_ONLY)file path=kernel/drv/udp group=sys
574 file path=kernel/drv/udp.conf group=sys
575 $(i386_ONLY)file path=kernel/drv/udp6 group=sys
576 file path=kernel/drv/udp6.conf group=sys
577 $(i386_ONLY)file path=kernel/drv/vgatext group=sys
578 $(i386_ONLY)file path=kernel/drv/vnic group=sys
579 file path=kernel/drv/vnic.conf group=sys
580 $(i386_ONLY)file path=kernel/drv/wc group=sys
581 file path=kernel/drv/wc.conf group=sys
582 $(sparc_ONLY)file path=kernel/exec/$(ARCH64)/aoutexec group=sys mode=0755
583 file path=kernel/exec/$(ARCH64)/elfexec group=sys mode=0755
584 file path=kernel/exec/$(ARCH64)/intpexec group=sys mode=0755
585 $(i386_ONLY)file path=kernel/exec/elfexec group=sys mode=0755
586 $(i386_ONLY)file path=kernel/exec/intpexec group=sys mode=0755
587 file path=kernel/fs/$(ARCH64)/autofs group=sys mode=0755
588 file path=kernel/fs/$(ARCH64)/cachefs group=sys mode=0755
589 file path=kernel/fs/$(ARCH64)/ctfs group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 10

590 file path=kernel/fs/$(ARCH64)/dcfs group=sys mode=0755
591 file path=kernel/fs/$(ARCH64)/dev group=sys mode=0755
592 file path=kernel/fs/$(ARCH64)/devfs group=sys mode=0755
593 file path=kernel/fs/$(ARCH64)/fifofs group=sys mode=0755
594 file path=kernel/fs/$(ARCH64)/hsfs group=sys mode=0755
595 file path=kernel/fs/$(ARCH64)/lofs group=sys mode=0755
596 file path=kernel/fs/$(ARCH64)/mntfs group=sys mode=0755
597 file path=kernel/fs/$(ARCH64)/namefs group=sys mode=0755
598 file path=kernel/fs/$(ARCH64)/objfs group=sys mode=0755
599 file path=kernel/fs/$(ARCH64)/procfs group=sys mode=0755
600 file path=kernel/fs/$(ARCH64)/sharefs group=sys mode=0755
601 file path=kernel/fs/$(ARCH64)/sockfs group=sys mode=0755
602 file path=kernel/fs/$(ARCH64)/specfs group=sys mode=0755
603 file path=kernel/fs/$(ARCH64)/tmpfs group=sys mode=0755
604 file path=kernel/fs/$(ARCH64)/ufs group=sys mode=0755
605 $(i386_ONLY)file path=kernel/fs/autofs group=sys mode=0755
606 $(i386_ONLY)file path=kernel/fs/cachefs group=sys mode=0755
607 $(i386_ONLY)file path=kernel/fs/ctfs group=sys mode=0755
608 $(i386_ONLY)file path=kernel/fs/dcfs group=sys mode=0755
609 $(i386_ONLY)file path=kernel/fs/dev group=sys mode=0755
610 $(i386_ONLY)file path=kernel/fs/devfs group=sys mode=0755
611 $(i386_ONLY)file path=kernel/fs/fifofs group=sys mode=0755
612 $(i386_ONLY)file path=kernel/fs/hsfs group=sys mode=0755
613 $(i386_ONLY)file path=kernel/fs/lofs group=sys mode=0755
614 $(i386_ONLY)file path=kernel/fs/mntfs group=sys mode=0755
615 $(i386_ONLY)file path=kernel/fs/namefs group=sys mode=0755
616 $(i386_ONLY)file path=kernel/fs/objfs group=sys mode=0755
617 $(i386_ONLY)file path=kernel/fs/procfs group=sys mode=0755
618 $(i386_ONLY)file path=kernel/fs/sharefs group=sys mode=0755
619 $(i386_ONLY)file path=kernel/fs/sockfs group=sys mode=0755
620 $(i386_ONLY)file path=kernel/fs/specfs group=sys mode=0755
621 $(i386_ONLY)file path=kernel/fs/tmpfs group=sys mode=0755
622 $(i386_ONLY)file path=kernel/fs/ufs group=sys mode=0755
623 $(i386_ONLY)file path=kernel/genunix group=sys mode=0755
624 file path=kernel/ipp/$(ARCH64)/ipgpc group=sys mode=0755
625 $(i386_ONLY)file path=kernel/ipp/ipgpc group=sys mode=0755
626 file path=kernel/kiconv/$(ARCH64)/kiconv_emea group=sys mode=0755
627 file path=kernel/kiconv/$(ARCH64)/kiconv_ja group=sys mode=0755
628 file path=kernel/kiconv/$(ARCH64)/kiconv_ko group=sys mode=0755
629 file path=kernel/kiconv/$(ARCH64)/kiconv_sc group=sys mode=0755
630 file path=kernel/kiconv/$(ARCH64)/kiconv_tc group=sys mode=0755
631 $(i386_ONLY)file path=kernel/kiconv/kiconv_emea group=sys mode=0755
632 $(i386_ONLY)file path=kernel/kiconv/kiconv_ja group=sys mode=0755
633 $(i386_ONLY)file path=kernel/kiconv/kiconv_ko group=sys mode=0755
634 $(i386_ONLY)file path=kernel/kiconv/kiconv_sc group=sys mode=0755
635 $(i386_ONLY)file path=kernel/kiconv/kiconv_tc group=sys mode=0755
636 file path=kernel/mac/$(ARCH64)/mac_6to4 group=sys mode=0755
637 file path=kernel/mac/$(ARCH64)/mac_ether group=sys mode=0755
638 file path=kernel/mac/$(ARCH64)/mac_ib group=sys mode=0755
639 file path=kernel/mac/$(ARCH64)/mac_ipv4 group=sys mode=0755
640 file path=kernel/mac/$(ARCH64)/mac_ipv6 group=sys mode=0755
641 file path=kernel/mac/$(ARCH64)/mac_wifi group=sys mode=0755
642 $(i386_ONLY)file path=kernel/mac/mac_6to4 group=sys mode=0755
643 $(i386_ONLY)file path=kernel/mac/mac_ether group=sys mode=0755
644 $(i386_ONLY)file path=kernel/mac/mac_ib group=sys mode=0755
645 $(i386_ONLY)file path=kernel/mac/mac_ipv4 group=sys mode=0755
646 $(i386_ONLY)file path=kernel/mac/mac_ipv6 group=sys mode=0755
647 $(i386_ONLY)file path=kernel/mac/mac_wifi group=sys mode=0755
648 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/acpica group=sys mode=0755
649 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/agpmaster group=sys mode=0755
650 file path=kernel/misc/$(ARCH64)/bignum group=sys mode=0755
651 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/bootdev group=sys mode=0755
652 file path=kernel/misc/$(ARCH64)/busra group=sys mode=0755
653 file path=kernel/misc/$(ARCH64)/cardbus group=sys mode=0755
654 file path=kernel/misc/$(ARCH64)/cmlb group=sys mode=0755
655 file path=kernel/misc/$(ARCH64)/consconfig group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 11

656 file path=kernel/misc/$(ARCH64)/ctf group=sys mode=0755
657 $(sparc_ONLY)file path=kernel/misc/$(ARCH64)/dada group=sys mode=0755
658 file path=kernel/misc/$(ARCH64)/dls group=sys mode=0755
659 file path=kernel/misc/$(ARCH64)/fssnap_if group=sys mode=0755
660 file path=kernel/misc/$(ARCH64)/gld group=sys mode=0755
661 file path=kernel/misc/$(ARCH64)/hook group=sys mode=0755
662 file path=kernel/misc/$(ARCH64)/hpcsvc group=sys mode=0755
663 file path=kernel/misc/$(ARCH64)/idmap group=sys mode=0755
664 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/iommulib group=sys mode=0755
665 file path=kernel/misc/$(ARCH64)/ipc group=sys mode=0755
666 file path=kernel/misc/$(ARCH64)/kbtrans group=sys mode=0755
667 file path=kernel/misc/$(ARCH64)/kcf group=sys mode=0755
668 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/kmdbmod group=sys mode=0755
669 file path=kernel/misc/$(ARCH64)/ksocket group=sys mode=0755
670 file path=kernel/misc/$(ARCH64)/mac group=sys mode=0755
671 file path=kernel/misc/$(ARCH64)/mii group=sys mode=0755
672 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/net80211 group=sys mode=0755
673 file path=kernel/misc/$(ARCH64)/neti group=sys mode=0755
674 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/pci_autoconfig group=sys mode=0755
675 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/pcicfg group=sys mode=0755
676 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/pcie group=sys mode=0755
677 file path=kernel/misc/$(ARCH64)/pcihp group=sys mode=0755
678 file path=kernel/misc/$(ARCH64)/pcmcia group=sys mode=0755
679 file path=kernel/misc/$(ARCH64)/rpcsec group=sys mode=0755
680 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/sata group=sys mode=0755
681 file path=kernel/misc/$(ARCH64)/scsi group=sys mode=0755
682 file path=kernel/misc/$(ARCH64)/strplumb group=sys mode=0755
683 $(sparc_ONLY)file path=kernel/misc/$(ARCH64)/swapgeneric group=sys mode=0755
684 file path=kernel/misc/$(ARCH64)/tem group=sys mode=0755
685 file path=kernel/misc/$(ARCH64)/tlimod group=sys mode=0755
686 $(i386_ONLY)file path=kernel/misc/acpica group=sys mode=0755
687 $(i386_ONLY)file path=kernel/misc/agpmaster group=sys mode=0755
688 $(i386_ONLY)file path=kernel/misc/bignum group=sys mode=0755
689 $(i386_ONLY)file path=kernel/misc/bootdev group=sys mode=0755
690 $(i386_ONLY)file path=kernel/misc/busra group=sys mode=0755
691 $(i386_ONLY)file path=kernel/misc/cardbus group=sys mode=0755
692 $(i386_ONLY)file path=kernel/misc/cmlb group=sys mode=0755
693 $(i386_ONLY)file path=kernel/misc/consconfig group=sys mode=0755
694 $(i386_ONLY)file path=kernel/misc/ctf group=sys mode=0755
695 $(i386_ONLY)file path=kernel/misc/dls group=sys mode=0755
696 $(i386_ONLY)file path=kernel/misc/fssnap_if group=sys mode=0755
697 $(i386_ONLY)file path=kernel/misc/gld group=sys mode=0755
698 $(i386_ONLY)file path=kernel/misc/hook group=sys mode=0755
699 $(i386_ONLY)file path=kernel/misc/hpcsvc group=sys mode=0755
700 $(i386_ONLY)file path=kernel/misc/idmap group=sys mode=0755
701 $(i386_ONLY)file path=kernel/misc/iommulib group=sys mode=0755
702 $(i386_ONLY)file path=kernel/misc/ipc group=sys mode=0755
703 $(i386_ONLY)file path=kernel/misc/kbtrans group=sys mode=0755
704 $(i386_ONLY)file path=kernel/misc/kcf group=sys mode=0755
705 $(i386_ONLY)file path=kernel/misc/kmdbmod group=sys mode=0755
706 $(i386_ONLY)file path=kernel/misc/ksocket group=sys mode=0755
707 $(i386_ONLY)file path=kernel/misc/mac group=sys mode=0755
708 $(i386_ONLY)file path=kernel/misc/mii group=sys mode=0755
709 $(i386_ONLY)file path=kernel/misc/net80211 group=sys mode=0755
710 $(i386_ONLY)file path=kernel/misc/neti group=sys mode=0755
711 $(i386_ONLY)file path=kernel/misc/pci_autoconfig group=sys mode=0755
712 $(i386_ONLY)file path=kernel/misc/pcicfg group=sys mode=0755
713 $(i386_ONLY)file path=kernel/misc/pcie group=sys mode=0755
714 $(i386_ONLY)file path=kernel/misc/pcihp group=sys mode=0755
715 $(i386_ONLY)file path=kernel/misc/pcmcia group=sys mode=0755
716 $(i386_ONLY)file path=kernel/misc/rpcsec group=sys mode=0755
717 $(i386_ONLY)file path=kernel/misc/sata group=sys mode=0755
718 $(i386_ONLY)file path=kernel/misc/scsi group=sys mode=0755
719 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_asym_emc group=sys \
720 mode=0755
721 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_asym_lsi group=sys \

new/usr/src/pkg/manifests/system-kernel.mf 12

722 mode=0755
723 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_asym_sun group=sys \
724 mode=0755
725 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_sym group=sys mode=0755
726 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_sym_emc group=sys \
727 mode=0755
728 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_sym_hds group=sys \
729 mode=0755
730 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_tape group=sys mode=0755
731 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_tpgs group=sys mode=0755
732 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_tpgs_tape group=sys \
733 mode=0755
734 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_asym_emc group=sys \
735 mode=0755
736 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_asym_lsi group=sys \
737 mode=0755
738 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_asym_sun group=sys \
739 mode=0755
740 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_sym group=sys \
741 mode=0755
742 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_sym_emc group=sys \
743 mode=0755
744 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_sym_hds group=sys \
745 mode=0755
746 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_tape group=sys \
747 mode=0755
748 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_tpgs group=sys \
749 mode=0755
750 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_tpgs_tape group=sys \
751 mode=0755
752 $(i386_ONLY)file path=kernel/misc/strplumb group=sys mode=0755
753 $(i386_ONLY)file path=kernel/misc/tem group=sys mode=0755
754 $(i386_ONLY)file path=kernel/misc/tlimod group=sys mode=0755
755 file path=kernel/sched/$(ARCH64)/SDC group=sys mode=0755
756 file path=kernel/sched/$(ARCH64)/TS group=sys mode=0755
757 file path=kernel/sched/$(ARCH64)/TS_DPTBL group=sys mode=0755
758 $(i386_ONLY)file path=kernel/sched/SDC group=sys mode=0755
759 $(i386_ONLY)file path=kernel/sched/TS group=sys mode=0755
760 $(i386_ONLY)file path=kernel/sched/TS_DPTBL group=sys mode=0755
761 file path=kernel/socketmod/$(ARCH64)/ksslf group=sys mode=0755
762 file path=kernel/socketmod/$(ARCH64)/socksctp group=sys mode=0755
763 file path=kernel/socketmod/$(ARCH64)/trill group=sys mode=0755
764 $(i386_ONLY)file path=kernel/socketmod/ksslf group=sys mode=0755
765 $(i386_ONLY)file path=kernel/socketmod/socksctp group=sys mode=0755
766 $(i386_ONLY)file path=kernel/socketmod/trill group=sys mode=0755
767 file path=kernel/strmod/$(ARCH64)/bufmod group=sys mode=0755
768 file path=kernel/strmod/$(ARCH64)/connld group=sys mode=0755
769 file path=kernel/strmod/$(ARCH64)/dedump group=sys mode=0755
770 file path=kernel/strmod/$(ARCH64)/drcompat group=sys mode=0755
771 file path=kernel/strmod/$(ARCH64)/ldterm group=sys mode=0755
772 $(sparc_ONLY)file path=kernel/strmod/$(ARCH64)/ms group=sys mode=0755
773 file path=kernel/strmod/$(ARCH64)/pckt group=sys mode=0755
774 file path=kernel/strmod/$(ARCH64)/pfmod group=sys mode=0755
775 file path=kernel/strmod/$(ARCH64)/pipemod group=sys mode=0755
776 file path=kernel/strmod/$(ARCH64)/ptem group=sys mode=0755
777 file path=kernel/strmod/$(ARCH64)/redirmod group=sys mode=0755
778 file path=kernel/strmod/$(ARCH64)/rpcmod group=sys mode=0755
779 file path=kernel/strmod/$(ARCH64)/timod group=sys mode=0755
780 file path=kernel/strmod/$(ARCH64)/tirdwr group=sys mode=0755
781 file path=kernel/strmod/$(ARCH64)/ttcompat group=sys mode=0755
782 $(sparc_ONLY)file path=kernel/strmod/$(ARCH64)/vuid3ps2 group=sys mode=0755
783 $(i386_ONLY)file path=kernel/strmod/bufmod group=sys mode=0755
784 $(i386_ONLY)file path=kernel/strmod/connld group=sys mode=0755
785 $(i386_ONLY)file path=kernel/strmod/dedump group=sys mode=0755
786 $(i386_ONLY)file path=kernel/strmod/drcompat group=sys mode=0755
787 $(i386_ONLY)file path=kernel/strmod/ldterm group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 13

788 $(i386_ONLY)file path=kernel/strmod/pckt group=sys mode=0755
789 $(i386_ONLY)file path=kernel/strmod/pfmod group=sys mode=0755
790 $(i386_ONLY)file path=kernel/strmod/pipemod group=sys mode=0755
791 $(i386_ONLY)file path=kernel/strmod/ptem group=sys mode=0755
792 $(i386_ONLY)file path=kernel/strmod/redirmod group=sys mode=0755
793 $(i386_ONLY)file path=kernel/strmod/rpcmod group=sys mode=0755
794 $(i386_ONLY)file path=kernel/strmod/timod group=sys mode=0755
795 $(i386_ONLY)file path=kernel/strmod/tirdwr group=sys mode=0755
796 $(i386_ONLY)file path=kernel/strmod/ttcompat group=sys mode=0755
797 file path=kernel/sys/$(ARCH64)/c2audit group=sys mode=0755
798 file path=kernel/sys/$(ARCH64)/doorfs group=sys mode=0755
799 file path=kernel/sys/$(ARCH64)/inst_sync group=sys mode=0755
800 file path=kernel/sys/$(ARCH64)/kaio group=sys mode=0755
801 file path=kernel/sys/$(ARCH64)/msgsys group=sys mode=0755
802 file path=kernel/sys/$(ARCH64)/pipe group=sys mode=0755
803 file path=kernel/sys/$(ARCH64)/portfs group=sys mode=0755
804 file path=kernel/sys/$(ARCH64)/pset group=sys mode=0755
805 file path=kernel/sys/$(ARCH64)/semsys group=sys mode=0755
806 file path=kernel/sys/$(ARCH64)/shmsys group=sys mode=0755
807 $(i386_ONLY)file path=kernel/sys/c2audit group=sys mode=0755
808 $(i386_ONLY)file path=kernel/sys/doorfs group=sys mode=0755
809 $(i386_ONLY)file path=kernel/sys/inst_sync group=sys mode=0755
810 $(i386_ONLY)file path=kernel/sys/kaio group=sys mode=0755
811 $(i386_ONLY)file path=kernel/sys/msgsys group=sys mode=0755
812 $(i386_ONLY)file path=kernel/sys/pipe group=sys mode=0755
813 $(i386_ONLY)file path=kernel/sys/portfs group=sys mode=0755
814 $(i386_ONLY)file path=kernel/sys/pset group=sys mode=0755
815 $(i386_ONLY)file path=kernel/sys/semsys group=sys mode=0755
816 $(i386_ONLY)file path=kernel/sys/shmsys group=sys mode=0755
817 file path=lib/svc/manifest/system/dumpadm.xml group=sys mode=0444
818 file path=lib/svc/manifest/system/intrd.xml group=sys mode=0444
819 file path=lib/svc/manifest/system/scheduler.xml group=sys mode=0444
820 file path=lib/svc/method/svc-dumpadm mode=0555
821 file path=lib/svc/method/svc-intrd mode=0555
822 file path=lib/svc/method/svc-scheduler mode=0555
823 $(sparc_ONLY)file path=usr/share/man/man1m/monitor.1m
824 $(sparc_ONLY)file path=usr/share/man/man1m/obpsym.1m
825 # On SPARC driver/bscv is Serverblade1 specific, and in system/kernel/platform
826 # We keep the manual page generic
827 $(sparc_ONLY)file path=usr/share/man/man7d/dad.7d
828 $(i386_ONLY)file path=usr/share/man/man7d/smbios.7d
829 # Sadly vuid mouse support is in different packages on different platforms
830 # While kstat(7D) is in SUNWcs, the structures are general
831 hardlink path=kernel/misc/$(ARCH64)/md5 \
832 target=../../../kernel/crypto/$(ARCH64)/md5
833 hardlink path=kernel/misc/$(ARCH64)/sha1 \
834 target=../../../kernel/crypto/$(ARCH64)/sha1
835 hardlink path=kernel/misc/$(ARCH64)/sha2 \
836 target=../../../kernel/crypto/$(ARCH64)/sha2
837 $(i386_ONLY)hardlink path=kernel/misc/md5 target=../../kernel/crypto/md5
838 $(i386_ONLY)hardlink path=kernel/misc/sha1 target=../../kernel/crypto/sha1
839 $(i386_ONLY)hardlink path=kernel/misc/sha2 target=../../kernel/crypto/sha2
840 hardlink path=kernel/socketmod/$(ARCH64)/dccp \
841 target=../../../kernel/drv/$(ARCH64)/dccp
842 #endif /* ! codereview */
843 hardlink path=kernel/socketmod/$(ARCH64)/icmp \
844 target=../../../kernel/drv/$(ARCH64)/icmp
845 hardlink path=kernel/socketmod/$(ARCH64)/rts \
846 target=../../../kernel/drv/$(ARCH64)/rts
847 hardlink path=kernel/socketmod/$(ARCH64)/tcp \
848 target=../../../kernel/drv/$(ARCH64)/tcp
849 hardlink path=kernel/socketmod/$(ARCH64)/udp \
850 target=../../../kernel/drv/$(ARCH64)/udp
851 $(i386_ONLY)hardlink path=kernel/socketmod/dccp target=../../kernel/drv/dccp
852 #endif /* ! codereview */
853 $(i386_ONLY)hardlink path=kernel/socketmod/icmp target=../../kernel/drv/icmp

new/usr/src/pkg/manifests/system-kernel.mf 14

854 $(i386_ONLY)hardlink path=kernel/socketmod/rts target=../../kernel/drv/rts
855 $(i386_ONLY)hardlink path=kernel/socketmod/tcp target=../../kernel/drv/tcp
856 $(i386_ONLY)hardlink path=kernel/socketmod/udp target=../../kernel/drv/udp
857 hardlink path=kernel/strmod/$(ARCH64)/arp \
858 target=../../../kernel/drv/$(ARCH64)/arp
859 hardlink path=kernel/strmod/$(ARCH64)/dccp \
860 target=../../../kernel/drv/$(ARCH64)/dccp
861 #endif /* ! codereview */
862 hardlink path=kernel/strmod/$(ARCH64)/icmp \
863 target=../../../kernel/drv/$(ARCH64)/icmp
864 hardlink path=kernel/strmod/$(ARCH64)/ip \
865 target=../../../kernel/drv/$(ARCH64)/ip
866 hardlink path=kernel/strmod/$(ARCH64)/ipsecah \
867 target=../../../kernel/drv/$(ARCH64)/ipsecah
868 hardlink path=kernel/strmod/$(ARCH64)/ipsecesp \
869 target=../../../kernel/drv/$(ARCH64)/ipsecesp
870 hardlink path=kernel/strmod/$(ARCH64)/keysock \
871 target=../../../kernel/drv/$(ARCH64)/keysock
872 hardlink path=kernel/strmod/$(ARCH64)/tcp \
873 target=../../../kernel/drv/$(ARCH64)/tcp
874 hardlink path=kernel/strmod/$(ARCH64)/udp \
875 target=../../../kernel/drv/$(ARCH64)/udp
876 $(i386_ONLY)hardlink path=kernel/strmod/arp target=../../kernel/drv/arp
877 $(i386_ONLY)hardlink path=kernel/strmod/dccp target=../../kernel/drv/dccp
878 #endif /* ! codereview */
879 $(i386_ONLY)hardlink path=kernel/strmod/icmp target=../../kernel/drv/icmp
880 $(i386_ONLY)hardlink path=kernel/strmod/ip target=../../kernel/drv/ip
881 $(i386_ONLY)hardlink path=kernel/strmod/ipsecah \
882 target=../../kernel/drv/ipsecah
883 $(i386_ONLY)hardlink path=kernel/strmod/ipsecesp \
884 target=../../kernel/drv/ipsecesp
885 $(i386_ONLY)hardlink path=kernel/strmod/keysock \
886 target=../../kernel/drv/keysock
887 $(i386_ONLY)hardlink path=kernel/strmod/tcp target=../../kernel/drv/tcp
888 $(i386_ONLY)hardlink path=kernel/strmod/udp target=../../kernel/drv/udp
889 hardlink path=kernel/sys/$(ARCH64)/autofs \
890 target=../../../kernel/fs/$(ARCH64)/autofs
891 hardlink path=kernel/sys/$(ARCH64)/rpcmod \
892 target=../../../kernel/strmod/$(ARCH64)/rpcmod
893 $(i386_ONLY)hardlink path=kernel/sys/autofs target=../../kernel/fs/autofs
894 $(i386_ONLY)hardlink path=kernel/sys/rpcmod target=../../kernel/strmod/rpcmod
895 legacy pkg=SUNWckr \
896 desc="core kernel software for a specific instruction-set architecture" \
897 name="Core Solaris Kernel (Root)"
898 license cr_Sun license=cr_Sun
899 license lic_CDDL license=lic_CDDL
900 license usr/src/cmd/mdb/common/libstand/THIRDPARTYLICENSE \
901 license=usr/src/cmd/mdb/common/libstand/THIRDPARTYLICENSE
902 license usr/src/common/bzip2/LICENSE license=usr/src/common/bzip2/LICENSE
903 license usr/src/common/crypto/THIRDPARTYLICENSE.cryptogams \
904 license=usr/src/common/crypto/THIRDPARTYLICENSE.cryptogams
905 $(i386_ONLY)license usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.gladman \
906 license=usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.gladman
907 $(i386_ONLY)license usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.openssl \
908 license=usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.openssl
909 license usr/src/common/crypto/ecc/THIRDPARTYLICENSE \
910 license=usr/src/common/crypto/ecc/THIRDPARTYLICENSE
911 $(i386_ONLY)license usr/src/common/crypto/md5/amd64/THIRDPARTYLICENSE \
912 license=usr/src/common/crypto/md5/amd64/THIRDPARTYLICENSE
913 license usr/src/common/mpi/THIRDPARTYLICENSE \
914 license=usr/src/common/mpi/THIRDPARTYLICENSE
915 license usr/src/uts/common/inet/ip/THIRDPARTYLICENSE.rts \
916 license=usr/src/uts/common/inet/ip/THIRDPARTYLICENSE.rts
917 license usr/src/uts/common/inet/tcp/THIRDPARTYLICENSE \
918 license=usr/src/uts/common/inet/tcp/THIRDPARTYLICENSE
919 license usr/src/uts/common/io/THIRDPARTYLICENSE.etheraddr \

new/usr/src/pkg/manifests/system-kernel.mf 15

920 license=usr/src/uts/common/io/THIRDPARTYLICENSE.etheraddr
921 license usr/src/uts/common/sys/THIRDPARTYLICENSE.icu \
922 license=usr/src/uts/common/sys/THIRDPARTYLICENSE.icu
923 license usr/src/uts/common/sys/THIRDPARTYLICENSE.unicode \
924 license=usr/src/uts/common/sys/THIRDPARTYLICENSE.unicode
925 $(i386_ONLY)license usr/src/uts/intel/io/acpica/THIRDPARTYLICENSE \
926 license=usr/src/uts/intel/io/acpica/THIRDPARTYLICENSE
927 $(i386_ONLY)link path=boot/solaris/bin/root_archive \
928 target=../../../usr/sbin/root_archive
929 link path=dev/dld target=../devices/pseudo/dld@0:ctl
930 link path=kernel/misc/$(ARCH64)/des \
931 target=../../../kernel/crypto/$(ARCH64)/des
932 $(i386_ONLY)link path=kernel/misc/des target=../../kernel/crypto/des

new/usr/src/uts/common/Makefile.files 1

**
 42921 Wed Jun 13 12:04:22 2012
new/usr/src/uts/common/Makefile.files
%B
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
28 #

30 #
31 # This Makefile defines all file modules for the directory uts/common
32 # and its children. These are the source files which may be considered
33 # common to all SunOS systems.

35 i386_CORE_OBJS += \
36 atomic.o \
37 avintr.o \
38 pic.o

40 sparc_CORE_OBJS +=

42 COMMON_CORE_OBJS += \
43 beep.o \
44 bitset.o \
45 bp_map.o \
46 brand.o \
47 cpucaps.o \
48 cmt.o \
49 cmt_policy.o \
50 cpu.o \
51 cpu_event.o \
52 cpu_intr.o \
53 cpu_pm.o \
54 cpupart.o \
55 cap_util.o \
56 disp.o \
57 group.o \
58 kstat_fr.o \
59 iscsiboot_prop.o \
60 lgrp.o \
61 lgrp_topo.o \

new/usr/src/uts/common/Makefile.files 2

62 mmapobj.o \
63 mutex.o \
64 page_lock.o \
65 page_retire.o \
66 panic.o \
67 param.o \
68 pg.o \
69 pghw.o \
70 putnext.o \
71 rctl_proc.o \
72 rwlock.o \
73 seg_kmem.o \
74 softint.o \
75 string.o \
76 strtol.o \
77 strtoul.o \
78 strtoll.o \
79 strtoull.o \
80 thread_intr.o \
81 vm_page.o \
82 vm_pagelist.o \
83 zlib_obj.o \
84 clock_tick.o

86 CORE_OBJS += $(COMMON_CORE_OBJS) $($(MACH)_CORE_OBJS)

88 ZLIB_OBJS = zutil.o zmod.o zmod_subr.o \
89 adler32.o crc32.o deflate.o inffast.o \
90 inflate.o inftrees.o trees.o

92 GENUNIX_OBJS += \
93 access.o \
94 acl.o \
95 acl_common.o \
96 adjtime.o \
97 alarm.o \
98 aio_subr.o \
99 auditsys.o \
100 audit_core.o \
101 audit_zone.o \
102 audit_memory.o \
103 autoconf.o \
104 avl.o \
105 bdev_dsort.o \
106 bio.o \
107 bitmap.o \
108 blabel.o \
109 brandsys.o \
110 bz2blocksort.o \
111 bz2compress.o \
112 bz2decompress.o \
113 bz2randtable.o \
114 bz2bzlib.o \
115 bz2crctable.o \
116 bz2huffman.o \
117 callb.o \
118 callout.o \
119 chdir.o \
120 chmod.o \
121 chown.o \
122 cladm.o \
123 class.o \
124 clock.o \
125 clock_highres.o \
126 clock_realtime.o\
127 close.o \

new/usr/src/uts/common/Makefile.files 3

128 compress.o \
129 condvar.o \
130 conf.o \
131 console.o \
132 contract.o \
133 copyops.o \
134 core.o \
135 corectl.o \
136 cred.o \
137 cs_stubs.o \
138 dacf.o \
139 dacf_clnt.o \
140 damap.o \
141 cyclic.o \
142 ddi.o \
143 ddifm.o \
144 ddi_hp_impl.o \
145 ddi_hp_ndi.o \
146 ddi_intr.o \
147 ddi_intr_impl.o \
148 ddi_intr_irm.o \
149 ddi_nodeid.o \
150 ddi_timer.o \
151 devcfg.o \
152 devcache.o \
153 device.o \
154 devid.o \
155 devid_cache.o \
156 devid_scsi.o \
157 devid_smp.o \
158 devpolicy.o \
159 disp_lock.o \
160 dnlc.o \
161 driver.o \
162 dumpsubr.o \
163 driver_lyr.o \
164 dtrace_subr.o \
165 errorq.o \
166 etheraddr.o \
167 evchannels.o \
168 exacct.o \
169 exacct_core.o \
170 exec.o \
171 exit.o \
172 fbio.o \
173 fcntl.o \
174 fdbuffer.o \
175 fdsync.o \
176 fem.o \
177 ffs.o \
178 fio.o \
179 flock.o \
180 fm.o \
181 fork.o \
182 vpm.o \
183 fs_reparse.o \
184 fs_subr.o \
185 fsflush.o \
186 ftrace.o \
187 getcwd.o \
188 getdents.o \
189 getloadavg.o \
190 getpagesizes.o \
191 getpid.o \
192 gfs.o \
193 rusagesys.o \

new/usr/src/uts/common/Makefile.files 4

194 gid.o \
195 groups.o \
196 grow.o \
197 hat_refmod.o \
198 id32.o \
199 id_space.o \
200 inet_ntop.o \
201 instance.o \
202 ioctl.o \
203 ip_cksum.o \
204 issetugid.o \
205 ippconf.o \
206 kcpc.o \
207 kdi.o \
208 kiconv.o \
209 klpd.o \
210 kmem.o \
211 ksyms_snapshot.o \
212 l_strplumb.o \
213 labelsys.o \
214 link.o \
215 list.o \
216 lockstat_subr.o \
217 log_sysevent.o \
218 logsubr.o \
219 lookup.o \
220 lseek.o \
221 ltos.o \
222 lwp.o \
223 lwp_create.o \
224 lwp_info.o \
225 lwp_self.o \
226 lwp_sobj.o \
227 lwp_timer.o \
228 lwpsys.o \
229 main.o \
230 mmapobjsys.o \
231 memcntl.o \
232 memstr.o \
233 lgrpsys.o \
234 mkdir.o \
235 mknod.o \
236 mount.o \
237 move.o \
238 msacct.o \
239 multidata.o \
240 nbmlock.o \
241 ndifm.o \
242 nice.o \
243 netstack.o \
244 ntptime.o \
245 nvpair.o \
246 nvpair_alloc_system.o \
247 nvpair_alloc_fixed.o \
248 octet.o \
249 open.o \
250 p_online.o \
251 pathconf.o \
252 pathname.o \
253 pause.o \
254 serializer.o \
255 pci_intr_lib.o \
256 pci_cap.o \
257 pcifm.o \
258 pgrp.o \
259 pgrpsys.o \

new/usr/src/uts/common/Makefile.files 5

260 pid.o \
261 pkp_hash.o \
262 policy.o \
263 poll.o \
264 pool.o \
265 pool_pset.o \
266 port_subr.o \
267 ppriv.o \
268 printf.o \
269 priocntl.o \
270 priv.o \
271 priv_const.o \
272 proc.o \
273 procset.o \
274 processor_bind.o \
275 processor_info.o \
276 profil.o \
277 project.o \
278 qsort.o \
279 rctl.o \
280 rctlsys.o \
281 readlink.o \
282 refstr.o \
283 rename.o \
284 resolvepath.o \
285 retire_store.o \
286 process.o \
287 rlimit.o \
288 rmap.o \
289 rw.o \
290 rwstlock.o \
291 sad_conf.o \
292 sid.o \
293 sidsys.o \
294 sched.o \
295 schedctl.o \
296 sctp_crc32.o \
297 seg_dev.o \
298 seg_kp.o \
299 seg_kpm.o \
300 seg_map.o \
301 seg_vn.o \
302 seg_spt.o \
303 semaphore.o \
304 sendfile.o \
305 session.o \
306 share.o \
307 shuttle.o \
308 sig.o \
309 sigaction.o \
310 sigaltstack.o \
311 signotify.o \
312 sigpending.o \
313 sigprocmask.o \
314 sigqueue.o \
315 sigsendset.o \
316 sigsuspend.o \
317 sigtimedwait.o \
318 sleepq.o \
319 sock_conf.o \
320 space.o \
321 sscanf.o \
322 stat.o \
323 statfs.o \
324 statvfs.o \
325 stol.o \

new/usr/src/uts/common/Makefile.files 6

326 str_conf.o \
327 strcalls.o \
328 stream.o \
329 streamio.o \
330 strext.o \
331 strsubr.o \
332 strsun.o \
333 subr.o \
334 sunddi.o \
335 sunmdi.o \
336 sunndi.o \
337 sunpci.o \
338 sunpm.o \
339 sundlpi.o \
340 suntpi.o \
341 swap_subr.o \
342 swap_vnops.o \
343 symlink.o \
344 sync.o \
345 sysclass.o \
346 sysconfig.o \
347 sysent.o \
348 sysfs.o \
349 systeminfo.o \
350 task.o \
351 taskq.o \
352 tasksys.o \
353 time.o \
354 timer.o \
355 times.o \
356 timers.o \
357 thread.o \
358 tlabel.o \
359 tnf_res.o \
360 turnstile.o \
361 tty_common.o \
362 u8_textprep.o \
363 uadmin.o \
364 uconv.o \
365 ucredsys.o \
366 uid.o \
367 umask.o \
368 umount.o \
369 uname.o \
370 unix_bb.o \
371 unlink.o \
372 urw.o \
373 utime.o \
374 utssys.o \
375 uucopy.o \
376 vfs.o \
377 vfs_conf.o \
378 vmem.o \
379 vm_anon.o \
380 vm_as.o \
381 vm_meter.o \
382 vm_pageout.o \
383 vm_pvn.o \
384 vm_rm.o \
385 vm_seg.o \
386 vm_subr.o \
387 vm_swap.o \
388 vm_usage.o \
389 vnode.o \
390 vuid_queue.o \
391 vuid_store.o \

new/usr/src/uts/common/Makefile.files 7

392 waitq.o \
393 watchpoint.o \
394 yield.o \
395 scsi_confdata.o \
396 xattr.o \
397 xattr_common.o \
398 xdr_mblk.o \
399 xdr_mem.o \
400 xdr.o \
401 xdr_array.o \
402 xdr_refer.o \
403 xhat.o \
404 zone.o

406 #
407 # Stubs for the stand-alone linker/loader
408 #
409 sparc_GENSTUBS_OBJS = \
410 kobj_stubs.o

412 i386_GENSTUBS_OBJS =

414 COMMON_GENSTUBS_OBJS =

416 GENSTUBS_OBJS += $(COMMON_GENSTUBS_OBJS) $($(MACH)_GENSTUBS_OBJS)

418 #
419 # DTrace and DTrace Providers
420 #
421 DTRACE_OBJS += dtrace.o dtrace_isa.o dtrace_asm.o

423 SDT_OBJS += sdt_subr.o

425 PROFILE_OBJS += profile.o

427 SYSTRACE_OBJS += systrace.o

429 LOCKSTAT_OBJS += lockstat.o

431 FASTTRAP_OBJS += fasttrap.o fasttrap_isa.o

433 DCPC_OBJS += dcpc.o

435 #
436 # Driver (pseudo-driver) Modules
437 #
438 IPP_OBJS += ippctl.o

440 AUDIO_OBJS += audio_client.o audio_ddi.o audio_engine.o \
441 audio_fltdata.o audio_format.o audio_ctrl.o \
442 audio_grc3.o audio_output.o audio_input.o \
443 audio_oss.o audio_sun.o

445 AUDIOEMU10K_OBJS += audioemu10k.o

447 AUDIOENS_OBJS += audioens.o

449 AUDIOVIA823X_OBJS += audiovia823x.o

451 AUDIOVIA97_OBJS += audiovia97.o

453 AUDIO1575_OBJS += audio1575.o

455 AUDIO810_OBJS += audio810.o

457 AUDIOCMI_OBJS += audiocmi.o

new/usr/src/uts/common/Makefile.files 8

459 AUDIOCMIHD_OBJS += audiocmihd.o

461 AUDIOHD_OBJS += audiohd.o

463 AUDIOIXP_OBJS += audioixp.o

465 AUDIOLS_OBJS += audiols.o

467 AUDIOP16X_OBJS += audiop16x.o

469 AUDIOPCI_OBJS += audiopci.o

471 AUDIOSOLO_OBJS += audiosolo.o

473 AUDIOTS_OBJS += audiots.o

475 AC97_OBJS += ac97.o ac97_ad.o ac97_alc.o ac97_cmi.o

477 BLKDEV_OBJS += blkdev.o

479 CARDBUS_OBJS += cardbus.o cardbus_hp.o cardbus_cfg.o

481 CONSKBD_OBJS += conskbd.o

483 CONSMS_OBJS += consms.o

485 OLDPTY_OBJS += tty_ptyconf.o

487 PTC_OBJS += tty_pty.o

489 PTSL_OBJS += tty_pts.o

491 PTM_OBJS += ptm.o

493 MII_OBJS += mii.o mii_cicada.o mii_natsemi.o mii_intel.o mii_qualsemi.o \
494 mii_marvell.o mii_realtek.o mii_other.o

496 PTS_OBJS += pts.o

498 PTY_OBJS += ptms_conf.o

500 SAD_OBJS += sad.o

502 MD4_OBJS += md4.o md4_mod.o

504 MD5_OBJS += md5.o md5_mod.o

506 SHA1_OBJS += sha1.o sha1_mod.o

508 SHA2_OBJS += sha2.o sha2_mod.o

510 IPGPC_OBJS += classifierddi.o classifier.o filters.o trie.o table.o \
511 ba_table.o

513 DSCPMK_OBJS += dscpmk.o dscpmkddi.o

515 DLCOSMK_OBJS += dlcosmk.o dlcosmkddi.o

517 FLOWACCT_OBJS += flowacctddi.o flowacct.o

519 TOKENMT_OBJS += tokenmt.o tokenmtddi.o

521 TSWTCL_OBJS += tswtcl.o tswtclddi.o

523 ARP_OBJS += arpddi.o

new/usr/src/uts/common/Makefile.files 9

525 ICMP_OBJS += icmpddi.o

527 ICMP6_OBJS += icmp6ddi.o

529 RTS_OBJS += rtsddi.o

531 IP_ICMP_OBJS = icmp.o icmp_opt_data.o
532 IP_RTS_OBJS = rts.o rts_opt_data.o
533 IP_TCP_OBJS = tcp.o tcp_fusion.o tcp_opt_data.o tcp_sack.o tcp_stats.o \
534 tcp_misc.o tcp_timers.o tcp_time_wait.o tcp_tpi.o tcp_output.o \
535 tcp_input.o tcp_socket.o tcp_bind.o tcp_cluster.o tcp_tunables.o
536 IP_UDP_OBJS = udp.o udp_opt_data.o udp_tunables.o udp_stats.o
537 IP_SCTP_OBJS = sctp.o sctp_opt_data.o sctp_output.o \
538 sctp_init.o sctp_input.o sctp_cookie.o \
539 sctp_conn.o sctp_error.o sctp_snmp.o \
540 sctp_tunables.o sctp_shutdown.o sctp_common.o \
541 sctp_timer.o sctp_heartbeat.o sctp_hash.o \
542 sctp_bind.o sctp_notify.o sctp_asconf.o \
543 sctp_addr.o tn_ipopt.o tnet.o ip_netinfo.o \
544 sctp_misc.o
545 IP_ILB_OBJS = ilb.o ilb_nat.o ilb_conn.o ilb_alg_hash.o ilb_alg_rr.o
546 IP_DCCP_OBJS = dccp.o dccp_bind.o dccp_input.o dccp_opt_data.o dccp_output.o \
547 dccp_stats.o dccp_socket.o dccp_tpi.o dccp_tunables.o
548 #endif /* ! codereview */

550 IP_OBJS += igmp.o ipmp.o ip.o ip6.o ip6_asp.o ip6_if.o ip6_ire.o \
551 ip6_rts.o ip_if.o ip_ire.o ip_listutils.o ip_mroute.o \
552 ip_multi.o ip2mac.o ip_ndp.o ip_rts.o ip_srcid.o \
553 ipddi.o ipdrop.o mi.o nd.o tunables.o optcom.o snmpcom.o \
554 ipsec_loader.o spd.o ipclassifier.o inet_common.o ip_squeue.o \
555 squeue.o ip_sadb.o ip_ftable.o proto_set.o radix.o ip_dummy.o \
556 ip_helper_stream.o ip_tunables.o \
557 ip_output.o ip_input.o ip6_input.o ip6_output.o ip_arp.o \
558 conn_opt.o ip_attr.o ip_dce.o \
559 $(IP_ICMP_OBJS) \
560 $(IP_RTS_OBJS) \
561 $(IP_TCP_OBJS) \
562 $(IP_UDP_OBJS) \
563 $(IP_SCTP_OBJS) \
564 $(IP_ILB_OBJS) \
565 $(IP_DCCP_OBJS)
546 $(IP_ILB_OBJS)

567 IP6_OBJS += ip6ddi.o

569 HOOK_OBJS += hook.o

571 NETI_OBJS += neti_impl.o neti_mod.o neti_stack.o

573 KEYSOCK_OBJS += keysockddi.o keysock.o keysock_opt_data.o

575 IPNET_OBJS += ipnet.o ipnet_bpf.o

577 SPDSOCK_OBJS += spdsockddi.o spdsock.o spdsock_opt_data.o

579 IPSECESP_OBJS += ipsecespddi.o ipsecesp.o

581 IPSECAH_OBJS += ipsecahddi.o ipsecah.o sadb.o

583 SPPP_OBJS += sppp.o sppp_dlpi.o sppp_mod.o s_common.o

585 SPPPTUN_OBJS += sppptun.o sppptun_mod.o

587 SPPPASYN_OBJS += spppasyn.o spppasyn_mod.o

new/usr/src/uts/common/Makefile.files 10

589 SPPPCOMP_OBJS += spppcomp.o spppcomp_mod.o deflate.o bsd-comp.o vjcompress.o \
590 zlib.o

592 TCP_OBJS += tcpddi.o

594 TCP6_OBJS += tcp6ddi.o

596 NCA_OBJS += ncaddi.o

598 SDP_SOCK_MOD_OBJS += sockmod_sdp.o socksdp.o socksdpsubr.o

600 SCTP_SOCK_MOD_OBJS += sockmod_sctp.o socksctp.o socksctpsubr.o

602 PFP_SOCK_MOD_OBJS += sockmod_pfp.o

604 RDS_SOCK_MOD_OBJS += sockmod_rds.o

606 RDS_OBJS += rdsddi.o rdssubr.o rds_opt.o rds_ioctl.o

608 RDSIB_OBJS += rdsib.o rdsib_ib.o rdsib_cm.o rdsib_ep.o rdsib_buf.o \
609 rdsib_debug.o rdsib_sc.o

611 RDSV3_OBJS += af_rds.o rdsv3_ddi.o bind.o loop.o threads.o connection.o \
612 transport.o cong.o sysctl.o message.o rds_recv.o send.o \
613 stats.o info.o page.o rdma_transport.o ib_ring.o ib_rdma.o \
614 ib_recv.o ib.o ib_send.o ib_sysctl.o ib_stats.o ib_cm.o \
615 rdsv3_sc.o rdsv3_debug.o rdsv3_impl.o rdma.o rdsv3_af_thr.o

617 ISER_OBJS += iser.o iser_cm.o iser_cq.o iser_ib.o iser_idm.o \
618 iser_resource.o iser_xfer.o

620 UDP_OBJS += udpddi.o

622 UDP6_OBJS += udp6ddi.o

624 DCCP_OBJS += dccpddi.o

626 DCCP6_OBJS += dccp6ddi.o

628 #endif /* ! codereview */
629 SY_OBJS += gentty.o

631 TCO_OBJS += ticots.o

633 TCOO_OBJS += ticotsord.o

635 TCL_OBJS += ticlts.o

637 TL_OBJS += tl.o

639 DUMP_OBJS += dump.o

641 BPF_OBJS += bpf.o bpf_filter.o bpf_mod.o bpf_dlt.o bpf_mac.o

643 CLONE_OBJS += clone.o

645 CN_OBJS += cons.o

647 DLD_OBJS += dld_drv.o dld_proto.o dld_str.o dld_flow.o

649 DLS_OBJS += dls.o dls_link.o dls_mod.o dls_stat.o dls_mgmt.o

651 GLD_OBJS += gld.o gldutil.o

653 MAC_OBJS += mac.o mac_bcast.o mac_client.o mac_datapath_setup.o mac_flow.o
654 mac_hio.o mac_mod.o mac_ndd.o mac_provider.o mac_sched.o \

new/usr/src/uts/common/Makefile.files 11

655 mac_protect.o mac_soft_ring.o mac_stat.o mac_util.o

657 MAC_6TO4_OBJS += mac_6to4.o

659 MAC_ETHER_OBJS += mac_ether.o

661 MAC_IPV4_OBJS += mac_ipv4.o

663 MAC_IPV6_OBJS += mac_ipv6.o

665 MAC_WIFI_OBJS += mac_wifi.o

667 MAC_IB_OBJS += mac_ib.o

669 IPTUN_OBJS += iptun_dev.o iptun_ctl.o iptun.o

671 AGGR_OBJS += aggr_dev.o aggr_ctl.o aggr_grp.o aggr_port.o \
672 aggr_send.o aggr_recv.o aggr_lacp.o

674 SOFTMAC_OBJS += softmac_main.o softmac_ctl.o softmac_capab.o \
675 softmac_dev.o softmac_stat.o softmac_pkt.o softmac_fp.o

677 NET80211_OBJS += net80211.o net80211_proto.o net80211_input.o \
678 net80211_output.o net80211_node.o net80211_crypto.o \
679 net80211_crypto_none.o net80211_crypto_wep.o net80211_ioctl.o \
680 net80211_crypto_tkip.o net80211_crypto_ccmp.o \
681 net80211_ht.o

683 VNIC_OBJS += vnic_ctl.o vnic_dev.o

685 SIMNET_OBJS += simnet.o

687 IB_OBJS += ibnex.o ibnex_ioctl.o ibnex_hca.o

689 IBCM_OBJS += ibcm_impl.o ibcm_sm.o ibcm_ti.o ibcm_utils.o ibcm_path.o \
690 ibcm_arp.o ibcm_arp_link.o

692 IBDM_OBJS += ibdm.o

694 IBDMA_OBJS += ibdma.o

696 IBMF_OBJS += ibmf.o ibmf_impl.o ibmf_dr.o ibmf_wqe.o ibmf_ud_dest.o ibmf_mod.
697 ibmf_send.o ibmf_recv.o ibmf_handlers.o ibmf_trans.o \
698 ibmf_timers.o ibmf_msg.o ibmf_utils.o ibmf_rmpp.o \
699 ibmf_saa.o ibmf_saa_impl.o ibmf_saa_utils.o ibmf_saa_events.o

701 IBTL_OBJS += ibtl_impl.o ibtl_util.o ibtl_mem.o ibtl_handlers.o ibtl_qp.o \
702 ibtl_cq.o ibtl_wr.o ibtl_hca.o ibtl_chan.o ibtl_cm.o \
703 ibtl_mcg.o ibtl_ibnex.o ibtl_srq.o ibtl_part.o

705 TAVOR_OBJS += tavor.o tavor_agents.o tavor_cfg.o tavor_ci.o tavor_cmd.o \
706 tavor_cq.o tavor_event.o tavor_ioctl.o tavor_misc.o \
707 tavor_mr.o tavor_qp.o tavor_qpmod.o tavor_rsrc.o \
708 tavor_srq.o tavor_stats.o tavor_umap.o tavor_wr.o

710 HERMON_OBJS += hermon.o hermon_agents.o hermon_cfg.o hermon_ci.o hermon_cmd.o \
711 hermon_cq.o hermon_event.o hermon_ioctl.o hermon_misc.o \
712 hermon_mr.o hermon_qp.o hermon_qpmod.o hermon_rsrc.o \
713 hermon_srq.o hermon_stats.o hermon_umap.o hermon_wr.o \
714 hermon_fcoib.o hermon_fm.o

716 DAPLT_OBJS += daplt.o

718 SOL_OFS_OBJS += sol_cma.o sol_ib_cma.o sol_uobj.o \
719 sol_ofs_debug_util.o sol_ofs_gen_util.o \
720 sol_kverbs.o

new/usr/src/uts/common/Makefile.files 12

722 SOL_UCMA_OBJS += sol_ucma.o

724 SOL_UVERBS_OBJS += sol_uverbs.o sol_uverbs_comp.o sol_uverbs_event.o \
725 sol_uverbs_hca.o sol_uverbs_qp.o

727 SOL_UMAD_OBJS += sol_umad.o

729 KSTAT_OBJS += kstat.o

731 KSYMS_OBJS += ksyms.o

733 INSTANCE_OBJS += inst_sync.o

735 IWSCN_OBJS += iwscons.o

737 LOFI_OBJS += lofi.o LzmaDec.o

739 FSSNAP_OBJS += fssnap.o

741 FSSNAPIF_OBJS += fssnap_if.o

743 MM_OBJS += mem.o

745 PHYSMEM_OBJS += physmem.o

747 OPTIONS_OBJS += options.o

749 WINLOCK_OBJS += winlockio.o

751 PM_OBJS += pm.o
752 SRN_OBJS += srn.o

754 PSEUDO_OBJS += pseudonex.o

756 RAMDISK_OBJS += ramdisk.o

758 LLC1_OBJS += llc1.o

760 USBKBM_OBJS += usbkbm.o

762 USBWCM_OBJS += usbwcm.o

764 BOFI_OBJS += bofi.o

766 HID_OBJS += hid.o

768 HWA_RC_OBJS += hwarc.o

770 USBSKEL_OBJS += usbskel.o

772 USBVC_OBJS += usbvc.o usbvc_v4l2.o

774 HIDPARSER_OBJS += hidparser.o

776 USB_AC_OBJS += usb_ac.o

778 USB_AS_OBJS += usb_as.o

780 USB_AH_OBJS += usb_ah.o

782 USBMS_OBJS += usbms.o

784 USBPRN_OBJS += usbprn.o

786 UGEN_OBJS += ugen.o

new/usr/src/uts/common/Makefile.files 13

788 USBSER_OBJS += usbser.o usbser_rseq.o

790 USBSACM_OBJS += usbsacm.o

792 USBSER_KEYSPAN_OBJS += usbser_keyspan.o keyspan_dsd.o keyspan_pipe.o

794 USBS49_FW_OBJS += keyspan_49fw.o

796 USBSPRL_OBJS += usbser_pl2303.o pl2303_dsd.o

798 WUSB_CA_OBJS += wusb_ca.o

800 USBFTDI_OBJS += usbser_uftdi.o uftdi_dsd.o

802 USBECM_OBJS += usbecm.o

804 WC_OBJS += wscons.o vcons.o

806 VCONS_CONF_OBJS += vcons_conf.o

808 SCSI_OBJS += scsi_capabilities.o scsi_confsubr.o scsi_control.o \
809 scsi_data.o scsi_fm.o scsi_hba.o scsi_reset_notify.o \
810 scsi_resource.o scsi_subr.o scsi_transport.o scsi_watch.o \
811 smp_transport.o

813 SCSI_VHCI_OBJS += scsi_vhci.o mpapi_impl.o scsi_vhci_tpgs.o

815 SCSI_VHCI_F_SYM_OBJS += sym.o

817 SCSI_VHCI_F_TPGS_OBJS += tpgs.o

819 SCSI_VHCI_F_ASYM_SUN_OBJS += asym_sun.o

821 SCSI_VHCI_F_SYM_HDS_OBJS += sym_hds.o

823 SCSI_VHCI_F_TAPE_OBJS += tape.o

825 SCSI_VHCI_F_TPGS_TAPE_OBJS += tpgs_tape.o

827 SGEN_OBJS += sgen.o

829 SMP_OBJS += smp.o

831 SATA_OBJS += sata.o

833 USBA_OBJS += hcdi.o usba.o usbai.o hubdi.o parser.o genconsole.o \
834 usbai_pipe_mgmt.o usbai_req.o usbai_util.o usbai_register.o \
835 usba_devdb.o usba10_calls.o usba_ugen.o whcdi.o wa.o
836 USBA_WITHOUT_WUSB_OBJS += hcdi.o usba.o usbai.o hubdi.o parser.o gencons
837 usbai_pipe_mgmt.o usbai_req.o usbai_util.o usbai_register.o \
838 usba_devdb.o usba10_calls.o usba_ugen.o

840 USBA10_OBJS += usba10.o

842 RSM_OBJS += rsm.o rsmka_pathmanager.o rsmka_util.o

844 RSMOPS_OBJS += rsmops.o

846 S1394_OBJS += t1394.o t1394_errmsg.o s1394.o s1394_addr.o s1394_asynch.o \
847 s1394_bus_reset.o s1394_cmp.o s1394_csr.o s1394_dev_disc.o \
848 s1394_fa.o s1394_fcp.o \
849 s1394_hotplug.o s1394_isoch.o s1394_misc.o h1394.o nx1394.o

851 HCI1394_OBJS += hci1394.o hci1394_async.o hci1394_attach.o hci1394_buf.o \
852 hci1394_csr.o hci1394_detach.o hci1394_extern.o \

new/usr/src/uts/common/Makefile.files 14

853 hci1394_ioctl.o hci1394_isoch.o hci1394_isr.o \
854 hci1394_ixl_comp.o hci1394_ixl_isr.o hci1394_ixl_misc.o \
855 hci1394_ixl_update.o hci1394_misc.o hci1394_ohci.o \
856 hci1394_q.o hci1394_s1394if.o hci1394_tlabel.o \
857 hci1394_tlist.o hci1394_vendor.o

859 AV1394_OBJS += av1394.o av1394_as.o av1394_async.o av1394_cfgrom.o \
860 av1394_cmp.o av1394_fcp.o av1394_isoch.o av1394_isoch_chan.o \
861 av1394_isoch_recv.o av1394_isoch_xmit.o av1394_list.o \
862 av1394_queue.o

864 DCAM1394_OBJS += dcam.o dcam_frame.o dcam_param.o dcam_reg.o \
865 dcam_ring_buff.o

867 SCSA1394_OBJS += hba.o sbp2_driver.o sbp2_bus.o

869 SBP2_OBJS += cfgrom.o sbp2.o

871 PMODEM_OBJS += pmodem.o pmodem_cis.o cis.o cis_callout.o cis_handlers.o cis_para

873 DSW_OBJS += dsw.o dsw_dev.o ii_tree.o

875 NCALL_OBJS += ncall.o \
876 ncall_stub.o

878 RDC_OBJS += rdc.o \
879 rdc_dev.o \
880 rdc_io.o \
881 rdc_clnt.o \
882 rdc_prot_xdr.o \
883 rdc_svc.o \
884 rdc_bitmap.o \
885 rdc_health.o \
886 rdc_subr.o \
887 rdc_diskq.o

889 RDCSRV_OBJS += rdcsrv.o

891 RDCSTUB_OBJS += rdc_stub.o

893 SDBC_OBJS += sd_bcache.o \
894 sd_bio.o \
895 sd_conf.o \
896 sd_ft.o \
897 sd_hash.o \
898 sd_io.o \
899 sd_misc.o \
900 sd_pcu.o \
901 sd_tdaemon.o \
902 sd_trace.o \
903 sd_iob_impl0.o \
904 sd_iob_impl1.o \
905 sd_iob_impl2.o \
906 sd_iob_impl3.o \
907 sd_iob_impl4.o \
908 sd_iob_impl5.o \
909 sd_iob_impl6.o \
910 sd_iob_impl7.o \
911 safestore.o \
912 safestore_ram.o

914 NSCTL_OBJS += nsctl.o \
915 nsc_cache.o \
916 nsc_disk.o \
917 nsc_dev.o \
918 nsc_freeze.o \

new/usr/src/uts/common/Makefile.files 15

919 nsc_gen.o \
920 nsc_mem.o \
921 nsc_ncallio.o \
922 nsc_power.o \
923 nsc_resv.o \
924 nsc_rmspin.o \
925 nsc_solaris.o \
926 nsc_trap.o \
927 nsc_list.o
928 UNISTAT_OBJS += spuni.o \
929 spcs_s_k.o

931 NSKERN_OBJS += nsc_ddi.o \
932 nsc_proc.o \
933 nsc_raw.o \
934 nsc_thread.o \
935 nskernd.o

937 SV_OBJS += sv.o

939 PMCS_OBJS += pmcs_attach.o pmcs_ds.o pmcs_intr.o pmcs_nvram.o pmcs_sata.o \
940 pmcs_scsa.o pmcs_smhba.o pmcs_subr.o pmcs_fwlog.o

942 PMCS8001FW_C_OBJS += pmcs_fw_hdr.o
943 PMCS8001FW_OBJS += $(PMCS8001FW_C_OBJS) SPCBoot.o ila.o firmware.o

945 #
946 # Build up defines and paths.

948 ST_OBJS += st.o st_conf.o

950 EMLXS_OBJS += emlxs_clock.o emlxs_dfc.o emlxs_dhchap.o emlxs_diag.o \
951 emlxs_download.o emlxs_dump.o emlxs_els.o emlxs_event.o \
952 emlxs_fcf.o emlxs_fcp.o emlxs_fct.o emlxs_hba.o emlxs_ip.o \
953 emlxs_mbox.o emlxs_mem.o emlxs_msg.o emlxs_node.o \
954 emlxs_pkt.o emlxs_sli3.o emlxs_sli4.o emlxs_solaris.o \
955 emlxs_thread.o

957 EMLXS_FW_OBJS += emlxs_fw.o

959 OCE_OBJS += oce_buf.o oce_fm.o oce_gld.o oce_hw.o oce_intr.o oce_main.o \
960 oce_mbx.o oce_mq.o oce_queue.o oce_rx.o oce_stat.o oce_tx.o \
961 oce_utils.o

963 FCT_OBJS += discovery.o fct.o

965 QLT_OBJS += 2400.o 2500.o 8100.o qlt.o qlt_dma.o

967 SRPT_OBJS += srpt_mod.o srpt_ch.o srpt_cm.o srpt_ioc.o srpt_stp.o

969 FCOE_OBJS += fcoe.o fcoe_eth.o fcoe_fc.o

971 FCOET_OBJS += fcoet.o fcoet_eth.o fcoet_fc.o

973 FCOEI_OBJS += fcoei.o fcoei_eth.o fcoei_lv.o

975 ISCSIT_SHARED_OBJS += \
976 iscsit_common.o

978 ISCSIT_OBJS += $(ISCSIT_SHARED_OBJS) \
979 iscsit.o iscsit_tgt.o iscsit_sess.o iscsit_login.o \
980 iscsit_text.o iscsit_isns.o iscsit_radiusauth.o \
981 iscsit_radiuspacket.o iscsit_auth.o iscsit_authclient.o

983 PPPT_OBJS += alua_ic_if.o pppt.o pppt_msg.o pppt_tgt.o

new/usr/src/uts/common/Makefile.files 16

985 STMF_OBJS += lun_map.o stmf.o

987 STMF_SBD_OBJS += sbd.o sbd_scsi.o sbd_pgr.o sbd_zvol.o

989 SYSMSG_OBJS += sysmsg.o

991 SES_OBJS += ses.o ses_sen.o ses_safte.o ses_ses.o

993 TNF_OBJS += tnf_buf.o tnf_trace.o tnf_writer.o trace_init.o \
994 trace_funcs.o tnf_probe.o tnf.o

996 LOGINDMUX_OBJS += logindmux.o

998 DEVINFO_OBJS += devinfo.o

1000 DEVPOLL_OBJS += devpoll.o

1002 DEVPOOL_OBJS += devpool.o

1004 I8042_OBJS += i8042.o

1006 KB8042_OBJS += \
1007 at_keyprocess.o \
1008 kb8042.o \
1009 kb8042_keytables.o

1011 MOUSE8042_OBJS += mouse8042.o

1013 FDC_OBJS += fdc.o

1015 ASY_OBJS += asy.o

1017 ECPP_OBJS += ecpp.o

1019 VUIDM3P_OBJS += vuidmice.o vuidm3p.o

1021 VUIDM4P_OBJS += vuidmice.o vuidm4p.o

1023 VUIDM5P_OBJS += vuidmice.o vuidm5p.o

1025 VUIDPS2_OBJS += vuidmice.o vuidps2.o

1027 HPCSVC_OBJS += hpcsvc.o

1029 PCIE_MISC_OBJS += pcie.o pcie_fault.o pcie_hp.o pciehpc.o pcishpc.o pcie_pwr.o p

1031 PCIHPNEXUS_OBJS += pcihp.o

1033 OPENEEPR_OBJS += openprom.o

1035 RANDOM_OBJS += random.o

1037 PSHOT_OBJS += pshot.o

1039 GEN_DRV_OBJS += gen_drv.o

1041 TCLIENT_OBJS += tclient.o

1043 TPHCI_OBJS += tphci.o

1045 TVHCI_OBJS += tvhci.o

1047 EMUL64_OBJS += emul64.o emul64_bsd.o

1049 FCP_OBJS += fcp.o

new/usr/src/uts/common/Makefile.files 17

1051 FCIP_OBJS += fcip.o

1053 FCSM_OBJS += fcsm.o

1055 FCTL_OBJS += fctl.o

1057 FP_OBJS += fp.o

1059 QLC_OBJS += ql_api.o ql_debug.o ql_hba_fru.o ql_init.o ql_iocb.o ql_ioctl.o \
1060 ql_isr.o ql_mbx.o ql_nx.o ql_xioctl.o ql_fw_table.o

1062 QLC_FW_2200_OBJS += ql_fw_2200.o

1064 QLC_FW_2300_OBJS += ql_fw_2300.o

1066 QLC_FW_2400_OBJS += ql_fw_2400.o

1068 QLC_FW_2500_OBJS += ql_fw_2500.o

1070 QLC_FW_6322_OBJS += ql_fw_6322.o

1072 QLC_FW_8100_OBJS += ql_fw_8100.o

1074 QLGE_OBJS += qlge.o qlge_dbg.o qlge_flash.o qlge_fm.o qlge_gld.o qlge_mpi.o

1076 ZCONS_OBJS += zcons.o

1078 NV_SATA_OBJS += nv_sata.o

1080 SI3124_OBJS += si3124.o

1082 AHCI_OBJS += ahci.o

1084 PCIIDE_OBJS += pci-ide.o

1086 PCEPP_OBJS += pcepp.o

1088 CPC_OBJS += cpc.o

1090 CPUID_OBJS += cpuid_drv.o

1092 SYSEVENT_OBJS += sysevent.o

1094 BL_OBJS += bl.o

1096 DRM_OBJS += drm_sunmod.o drm_kstat.o drm_agpsupport.o \
1097 drm_auth.o drm_bufs.o drm_context.o drm_dma.o \
1098 drm_drawable.o drm_drv.o drm_fops.o drm_ioctl.o drm_irq.o \
1099 drm_lock.o drm_memory.o drm_msg.o drm_pci.o drm_scatter.o \
1100 drm_cache.o drm_gem.o drm_mm.o ati_pcigart.o

1102 FM_OBJS += devfm.o devfm_machdep.o

1104 RTLS_OBJS += rtls.o

1106 #
1107 # exec modules
1108 #
1109 AOUTEXEC_OBJS +=aout.o

1111 ELFEXEC_OBJS += elf.o elf_notes.o old_notes.o

1113 INTPEXEC_OBJS +=intp.o

1115 SHBINEXEC_OBJS +=shbin.o

new/usr/src/uts/common/Makefile.files 18

1117 JAVAEXEC_OBJS +=java.o

1119 #
1120 # file system modules
1121 #
1122 AUTOFS_OBJS += auto_vfsops.o auto_vnops.o auto_subr.o auto_xdr.o auto_sys.o

1124 CACHEFS_OBJS += cachefs_cnode.o cachefs_cod.o \
1125 cachefs_dir.o cachefs_dlog.o cachefs_filegrp.o \
1126 cachefs_fscache.o cachefs_ioctl.o cachefs_log.o \
1127 cachefs_module.o \
1128 cachefs_noopc.o cachefs_resource.o \
1129 cachefs_strict.o \
1130 cachefs_subr.o cachefs_vfsops.o \
1131 cachefs_vnops.o

1133 DCFS_OBJS += dc_vnops.o

1135 DEVFS_OBJS += devfs_subr.o devfs_vfsops.o devfs_vnops.o

1137 DEV_OBJS += sdev_subr.o sdev_vfsops.o sdev_vnops.o \
1138 sdev_ptsops.o sdev_zvolops.o sdev_comm.o \
1139 sdev_profile.o sdev_ncache.o sdev_netops.o \
1140 sdev_ipnetops.o \
1141 sdev_vtops.o

1143 CTFS_OBJS += ctfs_all.o ctfs_cdir.o ctfs_ctl.o ctfs_event.o \
1144 ctfs_latest.o ctfs_root.o ctfs_sym.o ctfs_tdir.o ctfs_tmpl.o

1146 OBJFS_OBJS += objfs_vfs.o objfs_root.o objfs_common.o \
1147 objfs_odir.o objfs_data.o

1149 FDFS_OBJS += fdops.o

1151 FIFO_OBJS += fifosubr.o fifovnops.o

1153 PIPE_OBJS += pipe.o

1155 HSFS_OBJS += hsfs_node.o hsfs_subr.o hsfs_vfsops.o hsfs_vnops.o \
1156 hsfs_susp.o hsfs_rrip.o hsfs_susp_subr.o

1158 LOFS_OBJS += lofs_subr.o lofs_vfsops.o lofs_vnops.o

1160 NAMEFS_OBJS += namevfs.o namevno.o

1162 NFS_OBJS += nfs_client.o nfs_common.o nfs_dump.o \
1163 nfs_subr.o nfs_vfsops.o nfs_vnops.o \
1164 nfs_xdr.o nfs_sys.o nfs_strerror.o \
1165 nfs3_vfsops.o nfs3_vnops.o nfs3_xdr.o \
1166 nfs_acl_vnops.o nfs_acl_xdr.o nfs4_vfsops.o \
1167 nfs4_vnops.o nfs4_xdr.o nfs4_idmap.o \
1168 nfs4_shadow.o nfs4_subr.o \
1169 nfs4_attr.o nfs4_rnode.o nfs4_client.o \
1170 nfs4_acache.o nfs4_common.o nfs4_client_state.o \
1171 nfs4_callback.o nfs4_recovery.o nfs4_client_secinfo.o \
1172 nfs4_client_debug.o nfs_stats.o \
1173 nfs4_acl.o nfs4_stub_vnops.o nfs_cmd.o

1175 NFSSRV_OBJS += nfs_server.o nfs_srv.o nfs3_srv.o \
1176 nfs_acl_srv.o nfs_auth.o nfs_auth_xdr.o \
1177 nfs_export.o nfs_log.o nfs_log_xdr.o \
1178 nfs4_srv.o nfs4_state.o nfs4_srv_attr.o \
1179 nfs4_srv_ns.o nfs4_db.o nfs4_srv_deleg.o \
1180 nfs4_deleg_ops.o nfs4_srv_readdir.o nfs4_dispatch.o

1182 SMBSRV_SHARED_OBJS += \

new/usr/src/uts/common/Makefile.files 19

1183 smb_inet.o \
1184 smb_match.o \
1185 smb_msgbuf.o \
1186 smb_oem.o \
1187 smb_string.o \
1188 smb_utf8.o \
1189 smb_door_legacy.o \
1190 smb_xdr.o \
1191 smb_token.o \
1192 smb_token_xdr.o \
1193 smb_sid.o \
1194 smb_native.o \
1195 smb_netbios_util.o

1197 SMBSRV_OBJS += $(SMBSRV_SHARED_OBJS) \
1198 smb_acl.o \
1199 smb_alloc.o \
1200 smb_close.o \
1201 smb_common_open.o \
1202 smb_common_transact.o \
1203 smb_create.o \
1204 smb_delete.o \
1205 smb_directory.o \
1206 smb_dispatch.o \
1207 smb_echo.o \
1208 smb_fem.o \
1209 smb_find.o \
1210 smb_flush.o \
1211 smb_fsinfo.o \
1212 smb_fsops.o \
1213 smb_init.o \
1214 smb_kdoor.o \
1215 smb_kshare.o \
1216 smb_kutil.o \
1217 smb_lock.o \
1218 smb_lock_byte_range.o \
1219 smb_locking_andx.o \
1220 smb_logoff_andx.o \
1221 smb_mangle_name.o \
1222 smb_mbuf_marshaling.o \
1223 smb_mbuf_util.o \
1224 smb_negotiate.o \
1225 smb_net.o \
1226 smb_node.o \
1227 smb_nt_cancel.o \
1228 smb_nt_create_andx.o \
1229 smb_nt_transact_create.o \
1230 smb_nt_transact_ioctl.o \
1231 smb_nt_transact_notify_change.o \
1232 smb_nt_transact_quota.o \
1233 smb_nt_transact_security.o \
1234 smb_odir.o \
1235 smb_ofile.o \
1236 smb_open_andx.o \
1237 smb_opipe.o \
1238 smb_oplock.o \
1239 smb_pathname.o \
1240 smb_print.o \
1241 smb_process_exit.o \
1242 smb_query_fileinfo.o \
1243 smb_read.o \
1244 smb_rename.o \
1245 smb_sd.o \
1246 smb_seek.o \
1247 smb_server.o \
1248 smb_session.o \

new/usr/src/uts/common/Makefile.files 20

1249 smb_session_setup_andx.o \
1250 smb_set_fileinfo.o \
1251 smb_signing.o \
1252 smb_tree.o \
1253 smb_trans2_create_directory.o \
1254 smb_trans2_dfs.o \
1255 smb_trans2_find.o \
1256 smb_tree_connect.o \
1257 smb_unlock_byte_range.o \
1258 smb_user.o \
1259 smb_vfs.o \
1260 smb_vops.o \
1261 smb_vss.o \
1262 smb_write.o \
1263 smb_write_raw.o

1265 PCFS_OBJS += pc_alloc.o pc_dir.o pc_node.o pc_subr.o \
1266 pc_vfsops.o pc_vnops.o

1268 PROC_OBJS += prcontrol.o prioctl.o prsubr.o prusrio.o \
1269 prvfsops.o prvnops.o

1271 MNTFS_OBJS += mntvfsops.o mntvnops.o

1273 SHAREFS_OBJS += sharetab.o sharefs_vfsops.o sharefs_vnops.o

1275 SPEC_OBJS += specsubr.o specvfsops.o specvnops.o

1277 SOCK_OBJS += socksubr.o sockvfsops.o sockparams.o \
1278 socksyscalls.o socktpi.o sockstr.o \
1279 sockcommon_vnops.o sockcommon_subr.o \
1280 sockcommon_sops.o sockcommon.o \
1281 sock_notsupp.o socknotify.o \
1282 nl7c.o nl7curi.o nl7chttp.o nl7clogd.o \
1283 nl7cnca.o sodirect.o sockfilter.o

1285 TMPFS_OBJS += tmp_dir.o tmp_subr.o tmp_tnode.o tmp_vfsops.o \
1286 tmp_vnops.o

1288 UDFS_OBJS += udf_alloc.o udf_bmap.o udf_dir.o \
1289 udf_inode.o udf_subr.o udf_vfsops.o \
1290 udf_vnops.o

1292 UFS_OBJS += ufs_alloc.o ufs_bmap.o ufs_dir.o ufs_xattr.o \
1293 ufs_inode.o ufs_subr.o ufs_tables.o ufs_vfsops.o \
1294 ufs_vnops.o quota.o quotacalls.o quota_ufs.o \
1295 ufs_filio.o ufs_lockfs.o ufs_thread.o ufs_trans.o \
1296 ufs_acl.o ufs_panic.o ufs_directio.o ufs_log.o \
1297 ufs_extvnops.o ufs_snap.o lufs.o lufs_thread.o \
1298 lufs_log.o lufs_map.o lufs_top.o lufs_debug.o
1299 VSCAN_OBJS += vscan_drv.o vscan_svc.o vscan_door.o

1301 NSMB_OBJS += smb_conn.o smb_dev.o smb_iod.o smb_pass.o \
1302 smb_rq.o smb_sign.o smb_smb.o smb_subrs.o \
1303 smb_time.o smb_tran.o smb_trantcp.o smb_usr.o \
1304 subr_mchain.o

1306 SMBFS_COMMON_OBJS += smbfs_ntacl.o
1307 SMBFS_OBJS += smbfs_vfsops.o smbfs_vnops.o smbfs_node.o \
1308 smbfs_acl.o smbfs_client.o smbfs_smb.o \
1309 smbfs_subr.o smbfs_subr2.o \
1310 smbfs_rwlock.o smbfs_xattr.o \
1311 $(SMBFS_COMMON_OBJS)

1314 #

new/usr/src/uts/common/Makefile.files 21

1315 # LVM modules
1316 #
1317 MD_OBJS += md.o md_error.o md_ioctl.o md_mddb.o md_names.o \
1318 md_med.o md_rename.o md_subr.o

1320 MD_COMMON_OBJS = md_convert.o md_crc.o md_revchk.o

1322 MD_DERIVED_OBJS = metamed_xdr.o meta_basic_xdr.o

1324 SOFTPART_OBJS += sp.o sp_ioctl.o

1326 STRIPE_OBJS += stripe.o stripe_ioctl.o

1328 HOTSPARES_OBJS += hotspares.o

1330 RAID_OBJS += raid.o raid_ioctl.o raid_replay.o raid_resync.o raid_hotspare.o

1332 MIRROR_OBJS += mirror.o mirror_ioctl.o mirror_resync.o

1334 NOTIFY_OBJS += md_notify.o

1336 TRANS_OBJS += mdtrans.o trans_ioctl.o trans_log.o

1338 ZFS_COMMON_OBJS += \
1339 arc.o \
1340 bplist.o \
1341 bpobj.o \
1342 dbuf.o \
1343 ddt.o \
1344 ddt_zap.o \
1345 dmu.o \
1346 dmu_diff.o \
1347 dmu_send.o \
1348 dmu_object.o \
1349 dmu_objset.o \
1350 dmu_traverse.o \
1351 dmu_tx.o \
1352 dnode.o \
1353 dnode_sync.o \
1354 dsl_dir.o \
1355 dsl_dataset.o \
1356 dsl_deadlist.o \
1357 dsl_pool.o \
1358 dsl_synctask.o \
1359 dmu_zfetch.o \
1360 dsl_deleg.o \
1361 dsl_prop.o \
1362 dsl_scan.o \
1363 gzip.o \
1364 lzjb.o \
1365 metaslab.o \
1366 refcount.o \
1367 sa.o \
1368 sha256.o \
1369 spa.o \
1370 spa_config.o \
1371 spa_errlog.o \
1372 spa_history.o \
1373 spa_misc.o \
1374 space_map.o \
1375 txg.o \
1376 uberblock.o \
1377 unique.o \
1378 vdev.o \
1379 vdev_cache.o \
1380 vdev_file.o \

new/usr/src/uts/common/Makefile.files 22

1381 vdev_label.o \
1382 vdev_mirror.o \
1383 vdev_missing.o \
1384 vdev_queue.o \
1385 vdev_raidz.o \
1386 vdev_root.o \
1387 zap.o \
1388 zap_leaf.o \
1389 zap_micro.o \
1390 zfs_byteswap.o \
1391 zfs_debug.o \
1392 zfs_fm.o \
1393 zfs_fuid.o \
1394 zfs_sa.o \
1395 zfs_znode.o \
1396 zil.o \
1397 zio.o \
1398 zio_checksum.o \
1399 zio_compress.o \
1400 zio_inject.o \
1401 zle.o \
1402 zrlock.o

1404 ZFS_SHARED_OBJS += \
1405 zfs_namecheck.o \
1406 zfs_deleg.o \
1407 zfs_prop.o \
1408 zfs_comutil.o \
1409 zfs_fletcher.o \
1410 zpool_prop.o \
1411 zprop_common.o

1413 ZFS_OBJS += \
1414 $(ZFS_COMMON_OBJS) \
1415 $(ZFS_SHARED_OBJS) \
1416 vdev_disk.o \
1417 zfs_acl.o \
1418 zfs_ctldir.o \
1419 zfs_dir.o \
1420 zfs_ioctl.o \
1421 zfs_log.o \
1422 zfs_onexit.o \
1423 zfs_replay.o \
1424 zfs_rlock.o \
1425 rrwlock.o \
1426 zfs_vfsops.o \
1427 zfs_vnops.o \
1428 zvol.o

1430 ZUT_OBJS += \
1431 zut.o

1433 #
1434 # streams modules
1435 #
1436 BUFMOD_OBJS += bufmod.o

1438 CONNLD_OBJS += connld.o

1440 DEDUMP_OBJS += dedump.o

1442 DRCOMPAT_OBJS += drcompat.o

1444 LDLINUX_OBJS += ldlinux.o

1446 LDTERM_OBJS += ldterm.o uwidth.o

new/usr/src/uts/common/Makefile.files 23

1448 PCKT_OBJS += pckt.o

1450 PFMOD_OBJS += pfmod.o

1452 PTEM_OBJS += ptem.o

1454 REDIRMOD_OBJS += strredirm.o

1456 TIMOD_OBJS += timod.o

1458 TIRDWR_OBJS += tirdwr.o

1460 TTCOMPAT_OBJS +=ttcompat.o

1462 LOG_OBJS += log.o

1464 PIPEMOD_OBJS += pipemod.o

1466 RPCMOD_OBJS += rpcmod.o clnt_cots.o clnt_clts.o \
1467 clnt_gen.o clnt_perr.o mt_rpcinit.o rpc_calmsg.o \
1468 rpc_prot.o rpc_sztypes.o rpc_subr.o rpcb_prot.o \
1469 svc.o svc_clts.o svc_gen.o svc_cots.o \
1470 rpcsys.o xdr_sizeof.o clnt_rdma.o svc_rdma.o \
1471 xdr_rdma.o rdma_subr.o xdrrdma_sizeof.o

1473 TLIMOD_OBJS += tlimod.o t_kalloc.o t_kbind.o t_kclose.o \
1474 t_kconnect.o t_kfree.o t_kgtstate.o t_kopen.o \
1475 t_krcvudat.o t_ksndudat.o t_kspoll.o t_kunbind.o \
1476 t_kutil.o

1478 RLMOD_OBJS += rlmod.o

1480 TELMOD_OBJS += telmod.o

1482 CRYPTMOD_OBJS += cryptmod.o

1484 KB_OBJS += kbd.o keytables.o

1486 #
1487 # ID mapping module
1488 #
1489 IDMAP_OBJS += idmap_mod.o idmap_kapi.o idmap_xdr.o idmap_cache.o

1491 #
1492 # scheduling class modules
1493 #
1494 SDC_OBJS += sysdc.o

1496 RT_OBJS += rt.o
1497 RT_DPTBL_OBJS += rt_dptbl.o

1499 TS_OBJS += ts.o
1500 TS_DPTBL_OBJS += ts_dptbl.o

1502 IA_OBJS += ia.o

1504 FSS_OBJS += fss.o

1506 FX_OBJS += fx.o
1507 FX_DPTBL_OBJS += fx_dptbl.o

1509 #
1510 # Inter-Process Communication (IPC) modules
1511 #
1512 IPC_OBJS += ipc.o

new/usr/src/uts/common/Makefile.files 24

1514 IPCMSG_OBJS += msg.o

1516 IPCSEM_OBJS += sem.o

1518 IPCSHM_OBJS += shm.o

1520 #
1521 # bignum module
1522 #
1523 COMMON_BIGNUM_OBJS += bignum_mod.o bignumimpl.o

1525 BIGNUM_OBJS += $(COMMON_BIGNUM_OBJS) $(BIGNUM_PSR_OBJS)

1527 #
1528 # kernel cryptographic framework
1529 #
1530 KCF_OBJS += kcf.o kcf_callprov.o kcf_cbufcall.o kcf_cipher.o kcf_crypto.o \
1531 kcf_cryptoadm.o kcf_ctxops.o kcf_digest.o kcf_dual.o \
1532 kcf_keys.o kcf_mac.o kcf_mech_tabs.o kcf_miscapi.o \
1533 kcf_object.o kcf_policy.o kcf_prov_lib.o kcf_prov_tabs.o \
1534 kcf_sched.o kcf_session.o kcf_sign.o kcf_spi.o kcf_verify.o \
1535 kcf_random.o modes.o ecb.o cbc.o ctr.o ccm.o gcm.o \
1536 fips_random.o

1538 CRYPTOADM_OBJS += cryptoadm.o

1540 CRYPTO_OBJS += crypto.o

1542 DPROV_OBJS += dprov.o

1544 DCA_OBJS += dca.o dca_3des.o dca_debug.o dca_dsa.o dca_kstat.o dca_rng.o \
1545 dca_rsa.o

1547 AESPROV_OBJS += aes.o aes_impl.o aes_modes.o

1549 ARCFOURPROV_OBJS += arcfour.o arcfour_crypt.o

1551 BLOWFISHPROV_OBJS += blowfish.o blowfish_impl.o

1553 ECCPROV_OBJS += ecc.o ec.o ec2_163.o ec2_mont.o ecdecode.o ecl_mult.o \
1554 ecp_384.o ecp_jac.o ec2_193.o ecl.o ecp_192.o ecp_521.o \
1555 ecp_jm.o ec2_233.o ecl_curve.o ecp_224.o ecp_aff.o \
1556 ecp_mont.o ec2_aff.o ec_naf.o ecl_gf.o ecp_256.o mp_gf2m.o \
1557 mpi.o mplogic.o mpmontg.o mpprime.o oid.o \
1558 secitem.o ec2_test.o ecp_test.o

1560 RSAPROV_OBJS += rsa.o rsa_impl.o pkcs1.o

1562 SWRANDPROV_OBJS += swrand.o

1564 #
1565 # kernel SSL
1566 #
1567 KSSL_OBJS += kssl.o ksslioctl.o

1569 KSSL_SOCKFIL_MOD_OBJS += ksslfilter.o ksslapi.o ksslrec.o

1571 #
1572 # misc. modules
1573 #

1575 C2AUDIT_OBJS += adr.o audit.o audit_event.o audit_io.o \
1576 audit_path.o audit_start.o audit_syscalls.o audit_token.o \
1577 audit_mem.o

new/usr/src/uts/common/Makefile.files 25

1579 PCIC_OBJS += pcic.o

1581 RPCSEC_OBJS += secmod.o sec_clnt.o sec_svc.o sec_gen.o \
1582 auth_des.o auth_kern.o auth_none.o auth_loopb.o\
1583 authdesprt.o authdesubr.o authu_prot.o \
1584 key_call.o key_prot.o svc_authu.o svcauthdes.o

1586 RPCSEC_GSS_OBJS += rpcsec_gssmod.o rpcsec_gss.o rpcsec_gss_misc.o \
1587 rpcsec_gss_utils.o svc_rpcsec_gss.o

1589 CONSCONFIG_OBJS += consconfig.o

1591 CONSCONFIG_DACF_OBJS += consconfig_dacf.o consplat.o

1593 TEM_OBJS += tem.o tem_safe.o 6x10.o 7x14.o 12x22.o

1595 KBTRANS_OBJS += \
1596 kbtrans.o \
1597 kbtrans_keytables.o \
1598 kbtrans_polled.o \
1599 kbtrans_streams.o \
1600 usb_keytables.o

1602 KGSSD_OBJS += gssd_clnt_stubs.o gssd_handle.o gssd_prot.o \
1603 gss_display_name.o gss_release_name.o gss_import_name.o \
1604 gss_release_buffer.o gss_release_oid_set.o gen_oids.o gssdmod.o

1606 KGSSD_DERIVED_OBJS = gssd_xdr.o

1608 KGSS_DUMMY_OBJS += dmech.o

1610 KSOCKET_OBJS += ksocket.o ksocket_mod.o

1612 CRYPTO= cksumtypes.o decrypt.o encrypt.o encrypt_length.o etypes.o \
1613 nfold.o verify_checksum.o prng.o block_size.o make_checksum.o\
1614 checksum_length.o hmac.o default_state.o mandatory_sumtype.o

1616 # crypto/des
1617 CRYPTO_DES= f_cbc.o f_cksum.o f_parity.o weak_key.o d3_cbc.o ef_crypto.o

1619 CRYPTO_DK= checksum.o derive.o dk_decrypt.o dk_encrypt.o

1621 CRYPTO_ARCFOUR= k5_arcfour.o

1623 # crypto/enc_provider
1624 CRYPTO_ENC= des.o des3.o arcfour_provider.o aes_provider.o

1626 # crypto/hash_provider
1627 CRYPTO_HASH= hash_kef_generic.o hash_kmd5.o hash_crc32.o hash_ksha1.o

1629 # crypto/keyhash_provider
1630 CRYPTO_KEYHASH= descbc.o k5_kmd5des.o k_hmac_md5.o

1632 # crypto/crc32
1633 CRYPTO_CRC32= crc32.o

1635 # crypto/old
1636 CRYPTO_OLD= old_decrypt.o old_encrypt.o

1638 # crypto/raw
1639 CRYPTO_RAW= raw_decrypt.o raw_encrypt.o

1641 K5_KRB= kfree.o copy_key.o \
1642 parse.o init_ctx.o \
1643 ser_adata.o ser_addr.o \
1644 ser_auth.o ser_cksum.o \

new/usr/src/uts/common/Makefile.files 26

1645 ser_key.o ser_princ.o \
1646 serialize.o unparse.o \
1647 ser_actx.o

1649 K5_OS= timeofday.o toffset.o \
1650 init_os_ctx.o c_ustime.o

1652 SEAL=
1653 # EXPORT DELETE START
1654 SEAL= seal.o unseal.o
1655 # EXPORT DELETE END

1657 MECH= delete_sec_context.o \
1658 import_sec_context.o \
1659 gssapi_krb5.o \
1660 k5seal.o k5unseal.o k5sealv3.o \
1661 ser_sctx.o \
1662 sign.o \
1663 util_crypt.o \
1664 util_validate.o util_ordering.o \
1665 util_seqnum.o util_set.o util_seed.o \
1666 wrap_size_limit.o verify.o

1670 MECH_GEN= util_token.o

1673 KGSS_KRB5_OBJS += krb5mech.o \
1674 $(MECH) $(SEAL) $(MECH_GEN) \
1675 $(CRYPTO) $(CRYPTO_DES) $(CRYPTO_DK) $(CRYPTO_ARCFOUR) \
1676 $(CRYPTO_ENC) $(CRYPTO_HASH) \
1677 $(CRYPTO_KEYHASH) $(CRYPTO_CRC32) \
1678 $(CRYPTO_OLD) \
1679 $(CRYPTO_RAW) $(K5_KRB) $(K5_OS)

1681 DES_OBJS += des_crypt.o des_impl.o des_ks.o des_soft.o

1683 DLBOOT_OBJS += bootparam_xdr.o nfs_dlinet.o scan.o

1685 KRTLD_OBJS += kobj_bootflags.o getoptstr.o \
1686 kobj.o kobj_kdi.o kobj_lm.o kobj_subr.o

1688 MOD_OBJS += modctl.o modsubr.o modsysfile.o modconf.o modhash.o

1690 STRPLUMB_OBJS += strplumb.o

1692 CPR_OBJS += cpr_driver.o cpr_dump.o \
1693 cpr_main.o cpr_misc.o cpr_mod.o cpr_stat.o \
1694 cpr_uthread.o

1696 PROF_OBJS += prf.o

1698 SE_OBJS += se_driver.o

1700 SYSACCT_OBJS += acct.o

1702 ACCTCTL_OBJS += acctctl.o

1704 EXACCTSYS_OBJS += exacctsys.o

1706 KAIO_OBJS += aio.o

1708 PCMCIA_OBJS += pcmcia.o cs.o cis.o cis_callout.o cis_handlers.o cis_params.o

1710 BUSRA_OBJS += busra.o

new/usr/src/uts/common/Makefile.files 27

1712 PCS_OBJS += pcs.o

1714 PCAN_OBJS += pcan.o

1716 PCATA_OBJS += pcide.o pcdisk.o pclabel.o pcata.o

1718 PCSER_OBJS += pcser.o pcser_cis.o

1720 PCWL_OBJS += pcwl.o

1722 PSET_OBJS += pset.o

1724 OHCI_OBJS += ohci.o ohci_hub.o ohci_polled.o

1726 UHCI_OBJS += uhci.o uhciutil.o uhcitgt.o uhcihub.o uhcipolled.o

1728 EHCI_OBJS += ehci.o ehci_hub.o ehci_xfer.o ehci_intr.o ehci_util.o ehci_polled.o

1730 HUBD_OBJS += hubd.o

1732 USB_MID_OBJS += usb_mid.o

1734 USB_IA_OBJS += usb_ia.o

1736 UWBA_OBJS += uwba.o uwbai.o

1738 SCSA2USB_OBJS += scsa2usb.o usb_ms_bulkonly.o usb_ms_cbi.o

1740 HWAHC_OBJS += hwahc.o hwahc_util.o

1742 WUSB_DF_OBJS += wusb_df.o
1743 WUSB_FWMOD_OBJS += wusb_fwmod.o

1745 IPF_OBJS += ip_fil_solaris.o fil.o solaris.o ip_state.o ip_frag.o ip_nat.o \
1746 ip_proxy.o ip_auth.o ip_pool.o ip_htable.o ip_lookup.o \
1747 ip_log.o misc.o ip_compat.o ip_nat6.o drand48.o

1749 IBD_OBJS += ibd.o ibd_cm.o

1751 EIBNX_OBJS += enx_main.o enx_hdlrs.o enx_ibt.o enx_log.o enx_fip.o \
1752 enx_misc.o enx_q.o enx_ctl.o

1754 EOIB_OBJS += eib_adm.o eib_chan.o eib_cmn.o eib_ctl.o eib_data.o \
1755 eib_fip.o eib_ibt.o eib_log.o eib_mac.o eib_main.o \
1756 eib_rsrc.o eib_svc.o eib_vnic.o

1758 DLPISTUB_OBJS += dlpistub.o

1760 SDP_OBJS += sdpddi.o

1762 TRILL_OBJS += trill.o

1764 CTF_OBJS += ctf_create.o ctf_decl.o ctf_error.o ctf_hash.o ctf_labels.o \
1765 ctf_lookup.o ctf_open.o ctf_types.o ctf_util.o ctf_subr.o ctf_mod.o

1767 SMBIOS_OBJS += smb_error.o smb_info.o smb_open.o smb_subr.o smb_dev.o

1769 RPCIB_OBJS += rpcib.o

1771 KMDB_OBJS += kdrv.o

1773 AFE_OBJS += afe.o

1775 BGE_OBJS += bge_main2.o bge_chip2.o bge_kstats.o bge_log.o bge_ndd.o \
1776 bge_atomic.o bge_mii.o bge_send.o bge_recv2.o bge_mii_5906.o

new/usr/src/uts/common/Makefile.files 28

1778 DMFE_OBJS += dmfe_log.o dmfe_main.o dmfe_mii.o

1780 EFE_OBJS += efe.o

1782 ELXL_OBJS += elxl.o

1784 HME_OBJS += hme.o

1786 IXGB_OBJS += ixgb.o ixgb_atomic.o ixgb_chip.o ixgb_gld.o ixgb_kstats.o \
1787 ixgb_log.o ixgb_ndd.o ixgb_rx.o ixgb_tx.o ixgb_xmii.o

1789 NGE_OBJS += nge_main.o nge_atomic.o nge_chip.o nge_ndd.o nge_kstats.o \
1790 nge_log.o nge_rx.o nge_tx.o nge_xmii.o

1792 PCN_OBJS += pcn.o

1794 RGE_OBJS += rge_main.o rge_chip.o rge_ndd.o rge_kstats.o rge_log.o rge_rxtx.o

1796 URTW_OBJS += urtw.o

1798 ARN_OBJS += arn_hw.o arn_eeprom.o arn_mac.o arn_calib.o arn_ani.o arn_phy.o arn_
1799 arn_main.o arn_recv.o arn_xmit.o arn_rc.o

1801 ATH_OBJS += ath_aux.o ath_main.o ath_osdep.o ath_rate.o

1803 ATU_OBJS += atu.o

1805 IPW_OBJS += ipw2100_hw.o ipw2100.o

1807 IWI_OBJS += ipw2200_hw.o ipw2200.o

1809 IWH_OBJS += iwh.o

1811 IWK_OBJS += iwk2.o

1813 IWP_OBJS += iwp.o

1815 MWL_OBJS += mwl.o

1817 MWLFW_OBJS += mwlfw_mode.o

1819 WPI_OBJS += wpi.o

1821 RAL_OBJS += rt2560.o ral_rate.o

1823 RUM_OBJS += rum.o

1825 RWD_OBJS += rt2661.o

1827 RWN_OBJS += rt2860.o

1829 UATH_OBJS += uath.o

1831 UATHFW_OBJS += uathfw_mod.o

1833 URAL_OBJS += ural.o

1835 RTW_OBJS += rtw.o smc93cx6.o rtwphy.o rtwphyio.o

1837 ZYD_OBJS += zyd.o zyd_usb.o zyd_hw.o zyd_fw.o

1839 MXFE_OBJS += mxfe.o

1841 MPTSAS_OBJS += mptsas.o mptsas_impl.o mptsas_init.o mptsas_raid.o mptsas_smhba.o

new/usr/src/uts/common/Makefile.files 29

1843 SFE_OBJS += sfe.o sfe_util.o

1845 BFE_OBJS += bfe.o

1847 BRIDGE_OBJS += bridge.o

1849 IDM_SHARED_OBJS += base64.o

1851 IDM_OBJS += $(IDM_SHARED_OBJS) \
1852 idm.o idm_impl.o idm_text.o idm_conn_sm.o idm_so.o

1854 VR_OBJS += vr.o

1856 ATGE_OBJS += atge_main.o atge_l1e.o atge_mii.o atge_l1.o

1858 YGE_OBJS = yge.o

1860 #
1861 # Build up defines and paths.
1862 #
1863 LINT_DEFS += -Dunix

1865 #
1866 # This duality can be removed when the native and target compilers
1867 # are the same (or at least recognize the same command line syntax!)
1868 # It is a bug in the current compilation system that the assember
1869 # can’t process the -Y I, flag.
1870 #
1871 NATIVE_INC_PATH += $(INC_PATH) $(CCYFLAG)$(UTSBASE)/common
1872 AS_INC_PATH += $(INC_PATH) -I$(UTSBASE)/common
1873 INCLUDE_PATH += $(INC_PATH) $(CCYFLAG)$(UTSBASE)/common

1875 PCIEB_OBJS += pcieb.o

1877 # Chelsio N110 10G NIC driver module
1878 #
1879 CH_OBJS = ch.o glue.o pe.o sge.o

1881 CH_COM_OBJS = ch_mac.o ch_subr.o cspi.o espi.o ixf1010.o mc3.o mc4.o mc5.o \
1882 mv88e1xxx.o mv88x201x.o my3126.o pm3393.o tp.o ulp.o \
1883 vsc7321.o vsc7326.o xpak.o

1885 #
1886 # PCI strings file
1887 #
1888 PCI_STRING_OBJS = pci_strings.o

1890 NET_DACF_OBJS += net_dacf.o

1892 #
1893 # Xframe 10G NIC driver module
1894 #
1895 XGE_OBJS = xge.o xgell.o

1897 XGE_HAL_OBJS = xgehal-channel.o xgehal-fifo.o xgehal-ring.o xgehal-config.o \
1898 xgehal-driver.o xgehal-mm.o xgehal-stats.o xgehal-device.o \
1899 xge-queue.o xgehal-mgmt.o xgehal-mgmtaux.o

1901 #
1902 # e1000g module
1903 #
1904 E1000G_OBJS += e1000_80003es2lan.o e1000_82540.o e1000_82541.o e1000_82542.o \
1905 e1000_82543.o e1000_82571.o e1000_api.o e1000_ich8lan.o \
1906 e1000_mac.o e1000_manage.o e1000_nvm.o e1000_osdep.o \
1907 e1000_phy.o e1000g_debug.o e1000g_main.o e1000g_alloc.o \
1908 e1000g_tx.o e1000g_rx.o e1000g_stat.o

new/usr/src/uts/common/Makefile.files 30

1910 #
1911 # Intel 82575 1G NIC driver module
1912 #
1913 IGB_OBJS = igb_82575.o igb_api.o igb_mac.o igb_manage.o \
1914 igb_nvm.o igb_osdep.o igb_phy.o igb_buf.o \
1915 igb_debug.o igb_gld.o igb_log.o igb_main.o \
1916 igb_rx.o igb_stat.o igb_tx.o

1918 #
1919 # Intel Pro/100 NIC driver module
1920 #
1921 IPRB_OBJS = iprb.o

1923 #
1924 # Intel 10GbE PCIE NIC driver module
1925 #
1926 IXGBE_OBJS = ixgbe_82598.o ixgbe_82599.o ixgbe_api.o \
1927 ixgbe_common.o ixgbe_phy.o \
1928 ixgbe_buf.o ixgbe_debug.o ixgbe_gld.o \
1929 ixgbe_log.o ixgbe_main.o \
1930 ixgbe_osdep.o ixgbe_rx.o ixgbe_stat.o \
1931 ixgbe_tx.o

1933 #
1934 # NIU 10G/1G driver module
1935 #
1936 NXGE_OBJS = nxge_mac.o nxge_ipp.o nxge_rxdma.o \
1937 nxge_txdma.o nxge_txc.o nxge_main.o \
1938 nxge_hw.o nxge_fzc.o nxge_virtual.o \
1939 nxge_send.o nxge_classify.o nxge_fflp.o \
1940 nxge_fflp_hash.o nxge_ndd.o nxge_kstats.o \
1941 nxge_zcp.o nxge_fm.o nxge_espc.o nxge_hv.o \
1942 nxge_hio.o nxge_hio_guest.o nxge_intr.o

1944 NXGE_NPI_OBJS = \
1945 npi.o npi_mac.o npi_ipp.o \
1946 npi_txdma.o npi_rxdma.o npi_txc.o \
1947 npi_zcp.o npi_espc.o npi_fflp.o \
1948 npi_vir.o

1950 NXGE_HCALL_OBJS = \
1951 nxge_hcall.o

1953 #
1954 # kiconv modules
1955 #
1956 KICONV_EMEA_OBJS += kiconv_emea.o

1958 KICONV_JA_OBJS += kiconv_ja.o

1960 KICONV_KO_OBJS += kiconv_cck_common.o kiconv_ko.o

1962 KICONV_SC_OBJS += kiconv_cck_common.o kiconv_sc.o

1964 KICONV_TC_OBJS += kiconv_cck_common.o kiconv_tc.o

1966 #
1967 # AAC module
1968 #
1969 AAC_OBJS = aac.o aac_ioctl.o

1971 #
1972 # sdcard modules
1973 #
1974 SDA_OBJS = sda_cmd.o sda_host.o sda_init.o sda_mem.o sda_mod.o sda_slot.o

new/usr/src/uts/common/Makefile.files 31

1975 SDHOST_OBJS = sdhost.o

1977 #
1978 # hxge 10G driver module
1979 #
1980 HXGE_OBJS = hxge_main.o hxge_vmac.o hxge_send.o \
1981 hxge_txdma.o hxge_rxdma.o hxge_virtual.o \
1982 hxge_fm.o hxge_fzc.o hxge_hw.o hxge_kstats.o \
1983 hxge_ndd.o hxge_pfc.o \
1984 hpi.o hpi_vmac.o hpi_rxdma.o hpi_txdma.o \
1985 hpi_vir.o hpi_pfc.o

1987 #
1988 # MEGARAID_SAS module
1989 #
1990 MEGA_SAS_OBJS = megaraid_sas.o

1992 #
1993 # MR_SAS module
1994 #
1995 MR_SAS_OBJS = mr_sas.o

1997 #
1998 # ISCSI_INITIATOR module
1999 #
2000 ISCSI_INITIATOR_OBJS = chap.o iscsi_io.o iscsi_thread.o \
2001 iscsi_ioctl.o iscsid.o iscsi.o \
2002 iscsi_login.o isns_client.o iscsiAuthClient.o \
2003 iscsi_lun.o iscsiAuthClientGlue.o \
2004 iscsi_net.o nvfile.o iscsi_cmd.o \
2005 iscsi_queue.o persistent.o iscsi_conn.o \
2006 iscsi_sess.o radius_auth.o iscsi_crc.o \
2007 iscsi_stats.o radius_packet.o iscsi_doorclt.o \
2008 iscsi_targetparam.o utils.o kifconf.o

2010 #
2011 # ntxn 10Gb/1Gb NIC driver module
2012 #
2013 NTXN_OBJS = unm_nic_init.o unm_gem.o unm_nic_hw.o unm_ndd.o \
2014 unm_nic_main.o unm_nic_isr.o unm_nic_ctx.o niu.o

2016 #
2017 # Myricom 10Gb NIC driver module
2018 #
2019 MYRI10GE_OBJS = myri10ge.o myri10ge_lro.o

2021 # nulldriver module
2022 #
2023 NULLDRIVER_OBJS = nulldriver.o

2025 TPM_OBJS = tpm.o tpm_hcall.o

new/usr/src/uts/common/Makefile.rules 1

**
 72399 Wed Jun 13 12:04:24 2012
new/usr/src/uts/common/Makefile.rules
%B
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
28 #

30 #
31 # uts/common/Makefile.rules
32 #
33 # This Makefile defines all the file build rules for the directory
34 # uts/common and its children. These are the source files which may
35 # be considered common to all SunOS systems.
36 #
37 # The following two-level ordering must be maintained in this file.
38 # Lines are sorted first in order of decreasing specificity based on
39 # the first directory component. That is, sun4u rules come before
40 # sparc rules come before common rules.
41 #
42 # Lines whose initial directory components are equal are sorted
43 # alphabetically by the remaining components.

45 #
46 # Section 1a: C objects build rules
47 #
48 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/aes/%.c
49 $(COMPILE.c) -o $@ $<
50 $(CTFCONVERT_O)

52 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/arcfour/%.c
53 $(COMPILE.c) -o $@ $<
54 $(CTFCONVERT_O)

56 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/blowfish/%.c
57 $(COMPILE.c) -o $@ $<
58 $(CTFCONVERT_O)

60 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/ecc/%.c
61 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 2

62 $(CTFCONVERT_O)

64 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/modes/%.c
65 $(COMPILE.c) -o $@ $<
66 $(CTFCONVERT_O)

68 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/padding/%.c
69 $(COMPILE.c) -o $@ $<
70 $(CTFCONVERT_O)

72 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/rng/%.c
73 $(COMPILE.c) -o $@ $<
74 $(CTFCONVERT_O)

76 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/rsa/%.c
77 $(COMPILE.c) -o $@ $<
78 $(CTFCONVERT_O)

80 $(OBJS_DIR)/%.o: $(COMMONBASE)/bignum/%.c
81 $(COMPILE.c) -o $@ $<
82 $(CTFCONVERT_O)

84 $(OBJS_DIR)/%.o: $(UTSBASE)/common/bignum/%.c
85 $(COMPILE.c) -o $@ $<
86 $(CTFCONVERT_O)

88 $(OBJS_DIR)/%.o: $(COMMONBASE)/mpi/%.c
89 $(COMPILE.c) -o $@ $<
90 $(CTFCONVERT_O)

92 $(OBJS_DIR)/%.o: $(COMMONBASE)/acl/%.c
93 $(COMPILE.c) -o $@ $<
94 $(CTFCONVERT_O)

96 $(OBJS_DIR)/%.o: $(COMMONBASE)/avl/%.c
97 $(COMPILE.c) -o $@ $<
98 $(CTFCONVERT_O)

100 $(OBJS_DIR)/%.o: $(COMMONBASE)/ucode/%.c
101 $(COMPILE.c) -o $@ $<
102 $(CTFCONVERT_O)

104 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/sn1/%.c
105 $(COMPILE.c) -o $@ $<
106 $(CTFCONVERT_O)

108 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/solaris10/%.c
109 $(COMPILE.c) -o $@ $<
110 $(CTFCONVERT_O)

112 $(OBJS_DIR)/%.o: $(UTSBASE)/common/c2/%.c
113 $(COMPILE.c) -o $@ $<
114 $(CTFCONVERT_O)

116 $(OBJS_DIR)/%.o: $(UTSBASE)/common/conf/%.c
117 $(COMPILE.c) -o $@ $<
118 $(CTFCONVERT_O)

120 $(OBJS_DIR)/%.o: $(UTSBASE)/common/contract/%.c
121 $(COMPILE.c) -o $@ $<
122 $(CTFCONVERT_O)

124 $(OBJS_DIR)/%.o: $(UTSBASE)/common/cpr/%.c
125 $(COMPILE.c) -o $@ $<
126 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 3

128 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ctf/%.c
129 $(COMPILE.c) -o $@ $<
130 $(CTFCONVERT_O)

132 $(OBJS_DIR)/%.o: $(COMMONBASE)/ctf/%.c
133 $(COMPILE.c) -o $@ $<
134 $(CTFCONVERT_O)

136 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/des/%.c
137 $(COMPILE.c) -o $@ $<
138 $(CTFCONVERT_O)

140 $(OBJS_DIR)/%.o: $(COMMONBASE)/smbios/%.c
141 $(COMPILE.c) -o $@ $<
142 $(CTFCONVERT_O)

144 $(OBJS_DIR)/%.o: $(UTSBASE)/common/des/%.c
145 $(COMPILE.c) -o $@ $<
146 $(CTFCONVERT_O)

148 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/api/%.c
149 $(COMPILE.c) -o $@ $<
150 $(CTFCONVERT_O)

152 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/core/%.c
153 $(COMPILE.c) -o $@ $<
154 $(CTFCONVERT_O)

156 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/io/%.c
157 $(COMPILE.c) -o $@ $<
158 $(CTFCONVERT_O)

160 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/spi/%.c
161 $(COMPILE.c) -o $@ $<
162 $(CTFCONVERT_O)

164 $(OBJS_DIR)/%.o: $(COMMONBASE)/pci/%.c
165 $(COMPILE.c) -o $@ $<
166 $(CTFCONVERT_O)

168 $(OBJS_DIR)/%.o: $(COMMONBASE)/devid/%.c
169 $(COMPILE.c) -o $@ $<
170 $(CTFCONVERT_O)

172 $(OBJS_DIR)/%.o: $(UTSBASE)/common/disp/%.c
173 $(COMPILE.c) -o $@ $<
174 $(CTFCONVERT_O)

176 $(OBJS_DIR)/%.o: $(UTSBASE)/common/dtrace/%.c
177 $(COMPILE.c) -o $@ $<
178 $(CTFCONVERT_O)

180 $(OBJS_DIR)/%.o: $(COMMONBASE)/exacct/%.c
181 $(COMPILE.c) -o $@ $<
182 $(CTFCONVERT_O)

184 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/aout/%.c
185 $(COMPILE.c) -o $@ $<
186 $(CTFCONVERT_O)

188 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/elf/%.c
189 $(COMPILE.c) -o $@ $<
190 $(CTFCONVERT_O)

192 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/intp/%.c
193 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 4

194 $(CTFCONVERT_O)

196 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/shbin/%.c
197 $(COMPILE.c) -o $@ $<
198 $(CTFCONVERT_O)

200 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/java/%.c
201 $(COMPILE.c) -o $@ $<
202 $(CTFCONVERT_O)

204 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/%.c
205 $(COMPILE.c) -o $@ $<
206 $(CTFCONVERT_O)

208 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/autofs/%.c
209 $(COMPILE.c) -o $@ $<
210 $(CTFCONVERT_O)

212 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/cachefs/%.c
213 $(COMPILE.c) -o $@ $<
214 $(CTFCONVERT_O)

216 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/dcfs/%.c
217 $(COMPILE.c) -o $@ $<
218 $(CTFCONVERT_O)

220 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/devfs/%.c
221 $(COMPILE.c) -o $@ $<
222 $(CTFCONVERT_O)

224 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/ctfs/%.c
225 $(COMPILE.c) -o $@ $<
226 $(CTFCONVERT_O)

228 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/doorfs/%.c
229 $(COMPILE.c) -o $@ $<
230 $(CTFCONVERT_O)

232 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/dev/%.c
233 $(COMPILE.c) -o $@ $<
234 $(CTFCONVERT_O)

236 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/fd/%.c
237 $(COMPILE.c) -o $@ $<
238 $(CTFCONVERT_O)

240 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/fifofs/%.c
241 $(COMPILE.c) -o $@ $<
242 $(CTFCONVERT_O)

244 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/hsfs/%.c
245 $(COMPILE.c) -o $@ $<
246 $(CTFCONVERT_O)

248 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/lofs/%.c
249 $(COMPILE.c) -o $@ $<
250 $(CTFCONVERT_O)

252 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/mntfs/%.c
253 $(COMPILE.c) -o $@ $<
254 $(CTFCONVERT_O)

256 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/namefs/%.c
257 $(COMPILE.c) -o $@ $<
258 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 5

260 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/nfs/%.c
261 $(COMPILE.c) -o $@ $<
262 $(CTFCONVERT_O)

264 $(OBJS_DIR)/%.o: $(COMMONBASE)/smbsrv/%.c
265 $(COMPILE.c) -o $@ $<
266 $(CTFCONVERT_O)

268 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/smbsrv/%.c
269 $(COMPILE.c) -o $@ $<
270 $(CTFCONVERT_O)

272 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/objfs/%.c
273 $(COMPILE.c) -o $@ $<
274 $(CTFCONVERT_O)

276 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/pcfs/%.c
277 $(COMPILE.c) -o $@ $<
278 $(CTFCONVERT_O)

280 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/portfs/%.c
281 $(COMPILE.c) -o $@ $<
282 $(CTFCONVERT_O)

284 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/proc/%.c
285 $(COMPILE.c) -o $@ $<
286 $(CTFCONVERT_O)

288 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/sharefs/%.c
289 $(COMPILE.c) -o $@ $<
290 $(CTFCONVERT_O)

292 $(OBJS_DIR)/%.o: $(COMMONBASE)/smbclnt/%.c
293 $(COMPILE.c) -o $@ $<
294 $(CTFCONVERT_O)

296 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/smbclnt/netsmb/%.c
297 $(COMPILE.c) -o $@ $<
298 $(CTFCONVERT_O)

300 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/smbclnt/smbfs/%.c
301 $(COMPILE.c) -o $@ $<
302 $(CTFCONVERT_O)

304 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/sockfs/%.c
305 $(COMPILE.c) -o $@ $<
306 $(CTFCONVERT_O)

308 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/specfs/%.c
309 $(COMPILE.c) -o $@ $<
310 $(CTFCONVERT_O)

312 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/swapfs/%.c
313 $(COMPILE.c) -o $@ $<
314 $(CTFCONVERT_O)

316 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/tmpfs/%.c
317 $(COMPILE.c) -o $@ $<
318 $(CTFCONVERT_O)

320 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/udfs/%.c
321 $(COMPILE.c) -o $@ $<
322 $(CTFCONVERT_O)

324 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/ufs/%.c
325 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 6

326 $(CTFCONVERT_O)

328 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vscan/%.c
329 $(COMPILE.c) -o $@ $<
330 $(CTFCONVERT_O)

332 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/zfs/%.c
333 $(COMPILE.c) -o $@ $<
334 $(CTFCONVERT_O)

336 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/zut/%.c
337 $(COMPILE.c) -o $@ $<
338 $(CTFCONVERT_O)

340 $(OBJS_DIR)/%.o: $(COMMONBASE)/xattr/%.c
341 $(COMPILE.c) -o $@ $<
342 $(CTFCONVERT_O)

344 $(OBJS_DIR)/%.o: $(COMMONBASE)/zfs/%.c
345 $(COMPILE.c) -o $@ $<
346 $(CTFCONVERT_O)

348 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/pmcs/%.c
349 $(COMPILE.c) -o $@ $<
350 $(CTFCONVERT_O)

352 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/pmcs/%.bin
353 $(COMPILE.b) -o $@ $<
354 $(CTFCONVERT_O)

356 $(OBJS_DIR)/%.o: $(COMMONBASE)/fsreparse/%.c
357 $(COMPILE.c) -o $@ $<
358 $(CTFCONVERT_O)

360 KMECHKRB5_BASE=$(UTSBASE)/common/gssapi/mechs/krb5

362 KGSSDFLAGS=-I $(UTSBASE)/common/gssapi/include

364 # Note, KRB5_DEFS can be assigned various preprocessor flags,
365 # typically -D defines on the make invocation. The standard compiler
366 # flags will not be overwritten.
367 KGSSDFLAGS += $(KRB5_DEFS)

369 $(OBJS_DIR)/%.o: $(UTSBASE)/common/gssapi/%.c
370 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
371 $(CTFCONVERT_O)

373 $(OBJS_DIR)/%.o: $(UTSBASE)/common/gssapi/mechs/dummy/%.c
374 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
375 $(CTFCONVERT_O)

377 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/%.c
378 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
379 $(CTFCONVERT_O)

381 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/%.c
382 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
383 $(CTFCONVERT_O)

385 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/des/%.c
386 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
387 $(CTFCONVERT_O)

389 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/arcfour/%.c
390 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
391 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 7

393 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/dk/%.c
394 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
395 $(CTFCONVERT_O)

397 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/enc_provider/%.c
398 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
399 $(CTFCONVERT_O)

401 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/hash_provider/%.c
402 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
403 $(CTFCONVERT_O)

405 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/keyhash_provider/%.c
406 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
407 $(CTFCONVERT_O)

409 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/raw/%.c
410 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
411 $(CTFCONVERT_O)

413 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/old/%.c
414 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
415 $(CTFCONVERT_O)

417 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/krb5/krb/%.c
418 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
419 $(CTFCONVERT_O)

421 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/krb5/os/%.c
422 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
423 $(CTFCONVERT_O)

425 $(OBJS_DIR)/ser_sctx.o := CPPFLAGS += -DPROVIDE_KERNEL_IMPORT=1

427 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/mech/%.c
428 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
429 $(CTFCONVERT_O)

431 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/profile/%.c
432 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
433 $(CTFCONVERT_O)

435 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ncall/%.c
436 $(COMPILE.c) -o $@ $<
437 $(CTFCONVERT_O)

439 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/dsw/%.c
440 $(COMPILE.c) -o $@ $<
441 $(CTFCONVERT_O)

443 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/nsctl/%.c
444 $(COMPILE.c) -o $@ $<
445 $(CTFCONVERT_O)

447 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/rdc/%.c
448 $(COMPILE.c) -o $@ $<
449 $(CTFCONVERT_O)

451 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/sdbc/%.c
452 $(COMPILE.c) -o $@ $<
453 $(CTFCONVERT_O)

455 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/solaris/%.c
456 $(COMPILE.c) -o $@ $<
457 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 8

459 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/sv/%.c
460 $(COMPILE.c) -o $@ $<
461 $(CTFCONVERT_O)

463 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/unistat/%.c
464 $(COMPILE.c) -o $@ $<
465 $(CTFCONVERT_O)

467 $(OBJS_DIR)/%.o: $(UTSBASE)/common/idmap/%.c
468 $(COMPILE.c) -o $@ $<
469 $(CTFCONVERT_O)

471 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/%.c
472 $(COMPILE.c) -o $@ $<
473 $(CTFCONVERT_O)

475 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/arp/%.c
476 $(COMPILE.c) -o $@ $<
477 $(CTFCONVERT_O)

479 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/dccp/%.c
480 $(COMPILE.c) -o $@ $<
481 $(CTFCONVERT_O)

483 #endif /* ! codereview */
484 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ip/%.c
485 $(COMPILE.c) -o $@ $<
486 $(CTFCONVERT_O)

488 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ipnet/%.c
489 $(COMPILE.c) -o $@ $<
490 $(CTFCONVERT_O)

492 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/iptun/%.c
493 $(COMPILE.c) -o $@ $<
494 $(CTFCONVERT_O)

496 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/kssl/%.c
497 $(COMPILE.c) -o $@ $<
498 $(CTFCONVERT_O)

500 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/sctp/%.c
501 $(COMPILE.c) -o $@ $<
502 $(CTFCONVERT_O)

504 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/tcp/%.c
505 $(COMPILE.c) -o $@ $<
506 $(CTFCONVERT_O)

508 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ilb/%.c
509 $(COMPILE.c) -o $@ $<
510 $(CTFCONVERT_O)

512 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ipf/%.c
513 $(COMPILE.c) -o $@ $<
514 $(CTFCONVERT_O)

516 $(OBJS_DIR)/%.o: $(COMMONBASE)/net/patricia/%.c
517 $(COMPILE.c) -o $@ $<
518 $(CTFCONVERT_O)

520 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/udp/%.c
521 $(COMPILE.c) -o $@ $<
522 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 9

524 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/nca/%.c
525 $(COMPILE.c) -o $@ $<
526 $(CTFCONVERT_O)

528 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/sockmods/%.c
529 $(COMPILE.c) -o $@ $<
530 $(CTFCONVERT_O)

532 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/dlpistub/%.c
533 $(COMPILE.c) -o $@ $<
534 $(CTFCONVERT_O)

536 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/%.c
537 $(COMPILE.c) -o $@ $<
538 $(CTFCONVERT_O)

540 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/%.c
541 $(COMPILE.c) -o $@ $<
542 $(CTFCONVERT_O)

544 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/adapters/%.c
545 $(COMPILE.c) -o $@ $<
546 $(CTFCONVERT_O)

548 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/targets/av1394/%.c
549 $(COMPILE.c) -o $@ $<
550 $(CTFCONVERT_O)

552 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/targets/dcam1394/%.c
553 $(COMPILE.c) -o $@ $<
554 $(CTFCONVERT_O)

556 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/targets/scsa1394/%.c
557 $(COMPILE.c) -o $@ $<
558 $(CTFCONVERT_O)

560 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sbp2/%.c
561 $(COMPILE.c) -o $@ $<
562 $(CTFCONVERT_O)

564 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/aac/%.c
565 $(COMPILE.c) -o $@ $<
566 $(CTFCONVERT_O)

568 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/afe/%.c
569 $(COMPILE.c) -o $@ $<
570 $(CTFCONVERT_O)

572 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/atge/%.c
573 $(COMPILE.c) -o $@ $<
574 $(CTFCONVERT_O)

576 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/arn/%.c
577 $(COMPILE.c) -o $@ $<
578 $(CTFCONVERT_O)

580 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ath/%.c
581 $(COMPILE.c) -o $@ $<
582 $(CTFCONVERT_O)

584 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/atu/%.c
585 $(COMPILE.c) -o $@ $<
586 $(CTFCONVERT_O)

588 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/impl/%.c
589 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 10

590 $(CTFCONVERT_O)

592 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/ac97/%.c
593 $(COMPILE.c) -o $@ $<
594 $(CTFCONVERT_O)

596 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audioens/%.c
597 $(COMPILE.c) -o $@ $<
598 $(CTFCONVERT_O)

600 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audioemu10k/%.c
601 $(COMPILE.c) -o $@ $<
602 $(CTFCONVERT_O)

604 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audio1575/%.c
605 $(COMPILE.c) -o $@ $<
606 $(CTFCONVERT_O)

608 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audio810/%.c
609 $(COMPILE.c) -o $@ $<
610 $(CTFCONVERT_O)

612 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiocmi/%.c
613 $(COMPILE.c) -o $@ $<
614 $(CTFCONVERT_O)

616 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiocmihd/%.c
617 $(COMPILE.c) -o $@ $<
618 $(CTFCONVERT_O)

620 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiohd/%.c
621 $(COMPILE.c) -o $@ $<
622 $(CTFCONVERT_O)

624 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audioixp/%.c
625 $(COMPILE.c) -o $@ $<
626 $(CTFCONVERT_O)

628 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiols/%.c
629 $(COMPILE.c) -o $@ $<
630 $(CTFCONVERT_O)

632 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiopci/%.c
633 $(COMPILE.c) -o $@ $<
634 $(CTFCONVERT_O)

636 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiop16x/%.c
637 $(COMPILE.c) -o $@ $<
638 $(CTFCONVERT_O)

640 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiosolo/%.c
641 $(COMPILE.c) -o $@ $<
642 $(CTFCONVERT_O)

644 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiots/%.c
645 $(COMPILE.c) -o $@ $<
646 $(CTFCONVERT_O)

648 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiovia823x/%.c
649 $(COMPILE.c) -o $@ $<
650 $(CTFCONVERT_O)

652 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiovia97/%.c
653 $(COMPILE.c) -o $@ $<
654 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 11

656 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/bfe/%.c
657 $(COMPILE.c) -o $@ $<
658 $(CTFCONVERT_O)

660 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/bge/%.c
661 $(COMPILE.c) -o $@ $<
662 $(CTFCONVERT_O)

664 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/blkdev/%.c
665 $(COMPILE.c) -o $@ $<
666 $(CTFCONVERT_O)

668 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/bpf/%.c
669 $(COMPILE.c) -o $@ $<
670 $(CTFCONVERT_O)

672 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/cardbus/%.c
673 $(COMPILE.c) -o $@ $<
674 $(CTFCONVERT_O)

676 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/stmf/%.c
677 $(COMPILE.c) -o $@ $<
678 $(CTFCONVERT_O)

680 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/fct/%.c
681 $(COMPILE.c) -o $@ $<
682 $(CTFCONVERT_O)

684 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/qlt/%.c
685 $(COMPILE.c) -o $@ $<
686 $(CTFCONVERT_O)

688 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/srpt/%.c
689 $(COMPILE.c) -o $@ $<
690 $(CTFCONVERT_O)

692 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/fcoet/%.c
693 $(COMPILE.c) -o $@ $<
694 $(CTFCONVERT_O)

696 $(OBJS_DIR)/%.o: $(COMMONBASE)/iscsit/%.c
697 $(COMPILE.c) -o $@ $<
698 $(CTFCONVERT_O)

700 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/iscsit/%.c
701 $(COMPILE.c) -o $@ $<
702 $(CTFCONVERT_O)

704 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/pppt/%.c
705 $(COMPILE.c) -o $@ $<
706 $(CTFCONVERT_O)

708 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/lu/stmf_sbd/%.c
709 $(COMPILE.c) -o $@ $<
710 $(CTFCONVERT_O)

712 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/dld/%.c
713 $(COMPILE.c) -o $@ $<
714 $(CTFCONVERT_O)

716 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/dls/%.c
717 $(COMPILE.c) -o $@ $<
718 $(CTFCONVERT_O)

720 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/dmfe/%.c
721 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 12

722 $(CTFCONVERT_O)

724 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/drm/%.c
725 $(COMPILE.c) -o $@ $<
726 $(CTFCONVERT_O)

728 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/efe/%.c
729 $(COMPILE.c) -o $@ $<
730 $(CTFCONVERT_O)

732 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/elxl/%.c
733 $(COMPILE.c) -o $@ $<
734 $(CTFCONVERT_O)

736 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fcoe/%.c
737 $(COMPILE.c) -o $@ $<
738 $(CTFCONVERT_O)

740 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hme/%.c
741 $(COMPILE.c) -o $@ $<
742 $(CTFCONVERT_O)

744 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pciex/%.c
745 $(COMPILE.c) -o $@ $<
746 $(CTFCONVERT_O)

748 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hotplug/hpcsvc/%.c
749 $(COMPILE.c) -o $@ $<
750 $(CTFCONVERT_O)

752 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pciex/hotplug/%.c
753 $(COMPILE.c) -o $@ $<
754 $(CTFCONVERT_O)

756 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hotplug/pcihp/%.c
757 $(COMPILE.c) -o $@ $<
758 $(CTFCONVERT_O)

760 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/rds/%.c
761 $(COMPILE.c) -o $@ $<
762 $(CTFCONVERT_O)

764 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/rdsv3/%.c
765 $(COMPILE.c) -o $@ $<
766 $(CTFCONVERT_O)

768 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/iser/%.c
769 $(COMPILE.c) -o $@ $<
770 $(CTFCONVERT_O)

772 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/ibd/%.c
773 $(COMPILE.c) -o $@ $<
774 $(CTFCONVERT_O)

776 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/eoib/%.c
777 $(COMPILE.c) -o $@ $<
778 $(CTFCONVERT_O)

780 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_ofs/%.c
781 $(COMPILE.c) -o $@ $<
782 $(CTFCONVERT_O)

784 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_ucma/%.c
785 $(COMPILE.c) -o $@ $<
786 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 13

788 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_umad/%.c
789 $(COMPILE.c) -o $@ $<
790 $(CTFCONVERT_O)

792 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_uverbs/%.
793 $(COMPILE.c) -o $@ $<
794 $(CTFCONVERT_O)

796 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/sdp/%.c
797 $(COMPILE.c) -o $@ $<
798 $(CTFCONVERT_O)

800 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibcm/%.c
801 $(COMPILE.c) -o $@ $<
802 $(CTFCONVERT_O)

804 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibdm/%.c
805 $(COMPILE.c) -o $@ $<
806 $(CTFCONVERT_O)

808 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibdma/%.c
809 $(COMPILE.c) -o $@ $<
810 $(CTFCONVERT_O)

812 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibmf/%.c
813 $(COMPILE.c) -o $@ $<
814 $(CTFCONVERT_O)

816 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/ibnex/%.c
817 $(COMPILE.c) -o $@ $<
818 $(CTFCONVERT_O)

820 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/ibtl/%.c
821 $(COMPILE.c) -o $@ $<
822 $(CTFCONVERT_O)

824 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/adapters/tavor/%.c
825 $(COMPILE.c) -o $@ $<
826 $(CTFCONVERT_O)

828 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/adapters/hermon/%.c
829 $(COMPILE.c) -o $@ $<
830 $(CTFCONVERT_O)

832 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/daplt/%.c
833 $(COMPILE.c) -o $@ $<
834 $(CTFCONVERT_O)

836 $(OBJS_DIR)/%.o: $(COMMONBASE)/iscsi/%.c
837 $(COMPILE.c) -o $@ $<
838 $(CTFCONVERT_O)

840 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/idm/%.c
841 $(COMPILE.c) -o $@ $<
842 $(CTFCONVERT_O)

844 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ipw/%.c
845 $(COMPILE.c) -o $@ $<
846 $(CTFCONVERT_O)

848 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwh/%.c
849 $(COMPILE.c) -o $@ $<
850 $(CTFCONVERT_O)

852 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwi/%.c
853 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 14

854 $(CTFCONVERT_O)

856 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwk/%.c
857 $(COMPILE.c) -o $@ $<
858 $(CTFCONVERT_O)

860 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwp/%.c
861 $(COMPILE.c) -o $@ $<
862 $(CTFCONVERT_O)

864 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/kb8042/%.c
865 $(COMPILE.c) -o $@ $<
866 $(CTFCONVERT_O)

868 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/kbtrans/%.c
869 $(COMPILE.c) -o $@ $<
870 $(CTFCONVERT_O)

872 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ksocket/%.c
873 $(COMPILE.c) -o $@ $<
874 $(CTFCONVERT_O)

876 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/aggr/%.c
877 $(COMPILE.c) -o $@ $<
878 $(CTFCONVERT_O)

880 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lp/%.c
881 $(COMPILE.c) -o $@ $<
882 $(CTFCONVERT_O)

884 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/hotspares/%.c
885 $(COMPILE.c) -o $@ $<
886 $(CTFCONVERT_O)

888 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/md/%.c
889 $(COMPILE.c) -o $@ $<
890 $(CTFCONVERT_O)

892 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/mirror/%.c
893 $(COMPILE.c) -o $@ $<
894 $(CTFCONVERT_O)

896 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/notify/%.c
897 $(COMPILE.c) -o $@ $<
898 $(CTFCONVERT_O)

900 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/raid/%.c
901 $(COMPILE.c) -o $@ $<
902 $(CTFCONVERT_O)

904 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/softpart/%.c
905 $(COMPILE.c) -o $@ $<
906 $(CTFCONVERT_O)

908 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/stripe/%.c
909 $(COMPILE.c) -o $@ $<
910 $(CTFCONVERT_O)

912 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/trans/%.c
913 $(COMPILE.c) -o $@ $<
914 $(CTFCONVERT_O)

916 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mac/%.c
917 $(COMPILE.c) -o $@ $<
918 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 15

920 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mac/plugins/%.c
921 $(COMPILE.c) -o $@ $<
922 $(CTFCONVERT_O)

924 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mega_sas/%.c
925 $(COMPILE.c) -o $@ $<
926 $(CTFCONVERT_O)

928 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mii/%.c
929 $(COMPILE.c) -o $@ $<
930 $(CTFCONVERT_O)

932 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mr_sas/%.c
933 $(COMPILE.c) -o $@ $<
934 $(CTFCONVERT_O)

936 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/mpt_sas/%.c
937 $(COMPILE.c) -o $@ $<
938 $(CTFCONVERT_O)

940 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mxfe/%.c
941 $(COMPILE.c) -o $@ $<
942 $(CTFCONVERT_O)

944 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mwl/%.c
945 $(COMPILE.c) -o $@ $<
946 $(CTFCONVERT_O)

948 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mwl/mwl_fw/%.c
949 $(COMPILE.c) -o $@ $<
950 $(CTFCONVERT_O)

952 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/net80211/%.c
953 $(COMPILE.c) -o $@ $<
954 $(CTFCONVERT_O)

956 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nge/%.c
957 $(COMPILE.c) -o $@ $<
958 $(CTFCONVERT_O)

960 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nxge/%.c
961 $(COMPILE.c) -o $@ $<
962 $(CTFCONVERT_O)

964 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nxge/npi/%.c
965 $(COMPILE.c) -o $@ $<
966 $(CTFCONVERT_O)

968 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nxge/%.s
969 $(COMPILE.s) -o $@ $<

971 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pci-ide/%.c
972 $(COMPILE.c) -o $@ $<
973 $(CTFCONVERT_O)

975 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcmcia/%.c
976 $(COMPILE.c) -o $@ $<
977 $(CTFCONVERT_O)

979 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcan/%.c
980 $(COMPILE.c) -o $@ $<
981 $(CTFCONVERT_O)

983 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcn/%.c
984 $(COMPILE.c) -o $@ $<
985 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 16

987 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcwl/%.c
988 $(COMPILE.c) -o $@ $<
989 $(CTFCONVERT_O)

991 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ppp/sppp/%.c
992 $(COMPILE.c) -o $@ $<
993 $(CTFCONVERT_O)

995 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ppp/spppasyn/%.c
996 $(COMPILE.c) -o $@ $<
997 $(CTFCONVERT_O)

999 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ppp/sppptun/%.c
1000 $(COMPILE.c) -o $@ $<
1001 $(CTFCONVERT_O)

1003 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ral/%.c
1004 $(COMPILE.c) -o $@ $<
1005 $(CTFCONVERT_O)

1007 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rge/%.c
1008 $(COMPILE.c) -o $@ $<
1009 $(CTFCONVERT_O)

1011 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rtls/%.c
1012 $(COMPILE.c) -o $@ $<
1013 $(CTFCONVERT_O)

1015 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rsm/%.c
1016 $(COMPILE.c) -o $@ $<
1017 $(CTFCONVERT_O)

1019 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rtw/%.c
1020 $(COMPILE.c) -o $@ $<
1021 $(CTFCONVERT_O)

1023 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rum/%.c
1024 $(COMPILE.c) -o $@ $<
1025 $(CTFCONVERT_O)

1027 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rwd/%.c
1028 $(COMPILE.c) -o $@ $<
1029 $(CTFCONVERT_O)

1031 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rwn/%.c
1032 $(COMPILE.c) -o $@ $<
1033 $(CTFCONVERT_O)

1035 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/adapters/ahci/%.c
1036 $(COMPILE.c) -o $@ $<
1037 $(CTFCONVERT_O)

1039 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/adapters/nv_sata/%.c
1040 $(COMPILE.c) -o $@ $<
1041 $(CTFCONVERT_O)

1043 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/adapters/si3124/%.c
1044 $(COMPILE.c) -o $@ $<
1045 $(CTFCONVERT_O)

1047 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/impl/%.c
1048 $(COMPILE.c) -o $@ $<
1049 $(CTFCONVERT_O)

1051 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/conf/%.c

new/usr/src/uts/common/Makefile.rules 17

1052 $(COMPILE.c) -o $@ $<
1053 $(CTFCONVERT_O)

1055 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/impl/%.c
1056 $(COMPILE.c) -o $@ $<
1057 $(CTFCONVERT_O)

1059 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/targets/%.c
1060 $(COMPILE.c) -o $@ $<
1061 $(CTFCONVERT_O)

1063 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/%.c
1064 $(COMPILE.c) -o $@ $<
1065 $(CTFCONVERT_O)

1067 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/blk2scsa/%.c
1068 $(COMPILE.c) -o $@ $<
1069 $(CTFCONVERT_O)

1071 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/%.c
1072 $(COMPILE.c) -o $@ $<
1073 $(CTFCONVERT_O)

1075 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/fop
1076 $(COMPILE.c) -o $@ $<
1077 $(CTFCONVERT_O)

1079 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/ulp/%.c
1080 $(COMPILE.c) -o $@ $<
1081 $(CTFCONVERT_O)

1083 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/impl/%.c
1084 $(COMPILE.c) -o $@ $<
1085 $(CTFCONVERT_O)

1087 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/qlc/%.c
1088 $(COMPILE.c) -o $@ $<
1089 $(CTFCONVERT_O)

1091 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/qlge/%.c
1092 $(COMPILE.c) -o $@ $<
1093 $(CTFCONVERT_O)

1095 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/emlxs/%.c
1096 $(COMPILE.c) -o $@ $<
1097 $(CTFCONVERT_O)

1099 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/oce/%.c
1100 $(COMPILE.c) -o $@ $<
1101 $(CTFCONVERT_O)

1103 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/fcoei/%.c
1104 $(COMPILE.c) -o $@ $<
1105 $(CTFCONVERT_O)

1107 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sdcard/adapters/sdhost/%.c
1108 $(COMPILE.c) -o $@ $<
1109 $(CTFCONVERT_O)

1111 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sdcard/impl/%.c
1112 $(COMPILE.c) -o $@ $<
1113 $(CTFCONVERT_O)

1115 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sdcard/targets/sdcard/%.c
1116 $(COMPILE.c) -o $@ $<
1117 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 18

1119 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sfe/%.c
1120 $(COMPILE.c) -o $@ $<
1121 $(CTFCONVERT_O)

1123 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/simnet/%.c
1124 $(COMPILE.c) -o $@ $<
1125 $(CTFCONVERT_O)

1127 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/softmac/%.c
1128 $(COMPILE.c) -o $@ $<
1129 $(CTFCONVERT_O)

1131 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/uath/%.c
1132 $(COMPILE.c) -o $@ $<
1133 $(CTFCONVERT_O)

1135 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/uath/uath_fw/%.c
1136 $(COMPILE.c) -o $@ $<
1137 $(CTFCONVERT_O)

1139 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ural/%.c
1140 $(COMPILE.c) -o $@ $<
1141 $(CTFCONVERT_O)

1143 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/urtw/%.c
1144 $(COMPILE.c) -o $@ $<
1145 $(CTFCONVERT_O)

1147 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/audio/usb_ac/%.
1148 $(COMPILE.c) -o $@ $<
1149 $(CTFCONVERT_O)

1151 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/audio/usb_as/%.
1152 $(COMPILE.c) -o $@ $<
1153 $(CTFCONVERT_O)

1155 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/audio/usb_ah/%.
1156 $(COMPILE.c) -o $@ $<
1157 $(CTFCONVERT_O)

1159 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbskel/%.c
1160 $(COMPILE.c) -o $@ $<
1161 $(CTFCONVERT_O)

1163 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/video/usbvc/%.c
1164 $(COMPILE.c) -o $@ $<
1165 $(CTFCONVERT_O)

1167 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hwarc/%.c
1168 $(COMPILE.c) -o $@ $<
1169 $(CTFCONVERT_O)

1171 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hid/%.c
1172 $(COMPILE.c) -o $@ $<
1173 $(CTFCONVERT_O)

1175 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hidparser/%.c
1176 $(COMPILE.c) -o $@ $<
1177 $(CTFCONVERT_O)

1179 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/printer/%.c
1180 $(COMPILE.c) -o $@ $<
1181 $(CTFCONVERT_O)

1183 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbkbm/%.c

new/usr/src/uts/common/Makefile.rules 19

1184 $(COMPILE.c) -o $@ $<
1185 $(CTFCONVERT_O)

1187 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbms/%.c
1188 $(COMPILE.c) -o $@ $<
1189 $(CTFCONVERT_O)

1191 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbinput/usbwcm
1192 $(COMPILE.c) -o $@ $<
1193 $(CTFCONVERT_O)

1195 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/ugen/%.c
1196 $(COMPILE.c) -o $@ $<
1197 $(CTFCONVERT_O)

1199 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/%.c
1200 $(COMPILE.c) -o $@ $<
1201 $(CTFCONVERT_O)

1203 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbsacm/
1204 $(COMPILE.c) -o $@ $<
1205 $(CTFCONVERT_O)

1207 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbftdi/
1208 $(COMPILE.c) -o $@ $<
1209 $(CTFCONVERT_O)

1211 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbser_k
1212 $(COMPILE.c) -o $@ $<
1213 $(CTFCONVERT_O)

1215 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbsprl/
1216 $(COMPILE.c) -o $@ $<
1217 $(CTFCONVERT_O)

1219 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/wusb_df/%.c
1220 $(COMPILE.c) -o $@ $<
1221 $(CTFCONVERT_O)

1223 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hwa1480_fw/%.c
1224 $(COMPILE.c) -o $@ $<
1225 $(CTFCONVERT_O)

1227 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/wusb_ca/%.c
1228 $(COMPILE.c) -o $@ $<
1229 $(CTFCONVERT_O)

1231 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbecm/%.c
1232 $(COMPILE.c) -o $@ $<
1233 $(CTFCONVERT_O)

1235 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hcd/openhci/%.c
1236 $(COMPILE.c) -o $@ $<
1237 $(CTFCONVERT_O)

1239 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hcd/ehci/%.c
1240 $(COMPILE.c) -o $@ $<
1241 $(CTFCONVERT_O)

1243 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hcd/uhci/%.c
1244 $(COMPILE.c) -I../../common -o $@ $<
1245 $(CTFCONVERT_O)

1247 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hubd/%.c
1248 $(COMPILE.c) -o $@ $<
1249 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 20

1251 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/scsa2usb/%.c
1252 $(COMPILE.c) -o $@ $<
1253 $(CTFCONVERT_O)

1255 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usb_mid/%.c
1256 $(COMPILE.c) -o $@ $<
1257 $(CTFCONVERT_O)

1259 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usb_ia/%.c
1260 $(COMPILE.c) -o $@ $<
1261 $(CTFCONVERT_O)

1263 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usba/%.c
1264 $(COMPILE.c) -o $@ $<
1265 $(CTFCONVERT_O)

1267 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usba10/%.c
1268 $(COMPILE.c) -o $@ $<
1269 $(CTFCONVERT_O)

1271 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hwa/hwahc/%.c
1272 $(COMPILE.c) -o $@ $<
1273 $(CTFCONVERT_O)

1275 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/uwb/uwba/%.c
1276 $(COMPILE.c) -o $@ $<
1277 $(CTFCONVERT_O)

1279 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vuidmice/%.c
1280 $(COMPILE.c) -o $@ $<
1281 $(CTFCONVERT_O)

1283 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vnic/%.c
1284 $(COMPILE.c) -o $@ $<
1285 $(CTFCONVERT_O)

1287 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/wpi/%.c
1288 $(COMPILE.c) -o $@ $<
1289 $(CTFCONVERT_O)

1291 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/zyd/%.c
1292 $(COMPILE.c) -o $@ $<
1293 $(CTFCONVERT_O)

1295 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/chxge/com/%.c
1296 $(COMPILE.c) -o $@ $<
1297 $(CTFCONVERT_O)

1299 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/chxge/%.c
1300 $(COMPILE.c) -o $@ $<
1301 $(CTFCONVERT_O)

1303 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ixgb/%.c
1304 $(COMPILE.c) -o $@ $<
1305 $(CTFCONVERT_O)

1307 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/xge/drv/%.c
1308 $(COMPILE.c) -o $@ $<
1309 $(CTFCONVERT_O)

1311 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/xge/hal/xgehal/%.c
1312 $(COMPILE.c) -o $@ $<
1313 $(CTFCONVERT_O)

1315 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/e1000g/%.c

new/usr/src/uts/common/Makefile.rules 21

1316 $(COMPILE.c) -o $@ $<
1317 $(CTFCONVERT_O)

1319 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/igb/%.c
1320 $(COMPILE.c) -o $@ $<
1321 $(CTFCONVERT_O)

1323 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iprb/%.c
1324 $(COMPILE.c) -o $@ $<
1325 $(CTFCONVERT_O)

1327 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ixgbe/%.c
1328 $(COMPILE.c) -o $@ $<
1329 $(CTFCONVERT_O)

1331 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ntxn/%.c
1332 $(COMPILE.c) -o $@ $<
1333 $(CTFCONVERT_O)

1335 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/myri10ge/drv/%.c
1336 $(COMPILE.c) -o $@ $<
1337 $(CTFCONVERT_O)

1339 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/%.c
1340 $(COMPILE.c) -o $@ $<
1341 $(CTFCONVERT_O)

1343 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/ipgpc/%.c
1344 $(COMPILE.c) -o $@ $<
1345 $(CTFCONVERT_O)

1347 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/dlcosmk/%.c
1348 $(COMPILE.c) -o $@ $<
1349 $(CTFCONVERT_O)

1351 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/flowacct/%.c
1352 $(COMPILE.c) -o $@ $<
1353 $(CTFCONVERT_O)

1355 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/dscpmk/%.c
1356 $(COMPILE.c) -o $@ $<
1357 $(CTFCONVERT_O)

1359 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/meters/%.c
1360 $(COMPILE.c) -o $@ $<
1361 $(CTFCONVERT_O)

1363 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_emea/%.c
1364 $(COMPILE.c) -o $@ $<
1365 $(CTFCONVERT_O)

1367 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_ja/%.c
1368 $(COMPILE.c) -o $@ $<
1369 $(CTFCONVERT_O)

1371 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_ko/%.c
1372 $(COMPILE.c) -o $@ $<
1373 $(CTFCONVERT_O)

1375 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_sc/%.c
1376 $(COMPILE.c) -o $@ $<
1377 $(CTFCONVERT_O)

1379 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_tc/%.c
1380 $(COMPILE.c) -o $@ $<
1381 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 22

1383 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kmdb/%.c
1384 $(COMPILE.c) -o $@ $<
1385 $(CTFCONVERT_O)

1387 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ktli/%.c
1388 $(COMPILE.c) -o $@ $<
1389 $(CTFCONVERT_O)

1391 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/iscsi/%.c
1392 $(COMPILE.c) -o $@ $<
1393 $(CTFCONVERT_O)

1395 $(OBJS_DIR)/%.o: $(COMMONBASE)/iscsi/%.c
1396 $(COMPILE.c) -o $@ $<
1397 $(CTFCONVERT_O)

1399 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/kifconf/%.c
1400 $(COMPILE.c) -o $@ $<
1401 $(CTFCONVERT_O)

1403 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vr/%.c
1404 $(COMPILE.c) -o $@ $<
1405 $(CTFCONVERT_O)

1407 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/yge/%.c
1408 $(COMPILE.c) -o $@ $<
1409 $(CTFCONVERT_O)

1411 #
1412 # krtld must refer to its own bzero/bcopy until the kernel is fully linked
1413 #
1414 $(OBJS_DIR)/bootrd.o := CPPFLAGS += -DKOBJ_OVERRIDES
1415 $(OBJS_DIR)/doreloc.o := CPPFLAGS += -DKOBJ_OVERRIDES
1416 $(OBJS_DIR)/kobj.o := CPPFLAGS += -DKOBJ_OVERRIDES
1417 $(OBJS_DIR)/kobj_boot.o := CPPFLAGS += -DKOBJ_OVERRIDES
1418 $(OBJS_DIR)/kobj_bootflags.o := CPPFLAGS += -DKOBJ_OVERRIDES
1419 $(OBJS_DIR)/kobj_convrelstr.o := CPPFLAGS += -DKOBJ_OVERRIDES
1420 $(OBJS_DIR)/kobj_isa.o := CPPFLAGS += -DKOBJ_OVERRIDES
1421 $(OBJS_DIR)/kobj_kdi.o := CPPFLAGS += -DKOBJ_OVERRIDES
1422 $(OBJS_DIR)/kobj_lm.o := CPPFLAGS += -DKOBJ_OVERRIDES
1423 $(OBJS_DIR)/kobj_reloc.o := CPPFLAGS += -DKOBJ_OVERRIDES
1424 $(OBJS_DIR)/kobj_stubs.o := CPPFLAGS += -DKOBJ_OVERRIDES
1425 $(OBJS_DIR)/kobj_subr.o := CPPFLAGS += -DKOBJ_OVERRIDES

1427 $(OBJS_DIR)/%.o: $(UTSBASE)/common/krtld/%.c
1428 $(COMPILE.c) -o $@ $<
1429 $(CTFCONVERT_O)

1431 $(OBJS_DIR)/%.o: $(COMMONBASE)/list/%.c
1432 $(COMPILE.c) -o $@ $<
1433 $(CTFCONVERT_O)

1435 $(OBJS_DIR)/%.o: $(COMMONBASE)/lvm/%.c
1436 $(COMPILE.c) -o $@ $<
1437 $(CTFCONVERT_O)

1439 $(OBJS_DIR)/%.o: $(COMMONBASE)/lzma/%.c
1440 $(COMPILE.c) -o $@ $<
1441 $(CTFCONVERT_O)

1443 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/md4/%.c
1444 $(COMPILE.c) -o $@ $<
1445 $(CTFCONVERT_O)

1447 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/md5/%.c

new/usr/src/uts/common/Makefile.rules 23

1448 $(COMPILE.c) -o $@ $<
1449 $(CTFCONVERT_O)

1451 $(OBJS_DIR)/%.o: $(COMMONBASE)/net/dhcp/%.c
1452 $(COMPILE.c) -o $@ $<
1453 $(CTFCONVERT_O)

1455 $(OBJS_DIR)/%.o: $(COMMONBASE)/nvpair/%.c
1456 $(COMPILE.c) -o $@ $<
1457 $(CTFCONVERT_O)

1459 $(OBJS_DIR)/%.o: $(UTSBASE)/common/os/%.c
1460 $(COMPILE.c) -o $@ $<
1461 $(CTFCONVERT_O)

1463 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/cis/%.c
1464 $(COMPILE.c) -o $@ $<
1465 $(CTFCONVERT_O)

1467 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/cs/%.c
1468 $(COMPILE.c) -o $@ $<
1469 $(CTFCONVERT_O)

1471 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/nexus/%.c
1472 $(COMPILE.c) -o $@ $<
1473 $(CTFCONVERT_O)

1475 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/pcs/%.c
1476 $(COMPILE.c) -o $@ $<
1477 $(CTFCONVERT_O)

1479 $(OBJS_DIR)/%.o: $(UTSBASE)/common/rpc/%.c
1480 $(COMPILE.c) -o $@ $<
1481 $(CTFCONVERT_O)

1483 $(OBJS_DIR)/%.o: $(UTSBASE)/common/rpc/sec/%.c
1484 $(COMPILE.c) -o $@ $<
1485 $(CTFCONVERT_O)

1487 $(OBJS_DIR)/%.o: $(UTSBASE)/common/rpc/sec_gss/%.c
1488 $(COMPILE.c) -o $@ $<
1489 $(CTFCONVERT_O)

1491 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/sha1/%.c
1492 $(COMPILE.c) -o $@ $<
1493 $(CTFCONVERT_O)

1495 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/sha2/%.c
1496 $(COMPILE.c) -o $@ $<
1497 $(CTFCONVERT_O)

1499 $(OBJS_DIR)/%.o: $(UTSBASE)/common/syscall/%.c
1500 $(COMPILE.c) -o $@ $<
1501 $(CTFCONVERT_O)

1503 $(OBJS_DIR)/%.o: $(UTSBASE)/common/tnf/%.c
1504 $(COMPILE.c) -o $@ $<
1505 $(CTFCONVERT_O)

1507 $(OBJS_DIR)/%.o: $(COMMONBASE)/tsol/%.c
1508 $(COMPILE.c) -o $@ $<
1509 $(CTFCONVERT_O)

1511 $(OBJS_DIR)/%.o: $(COMMONBASE)/util/%.c
1512 $(COMPILE.c) -o $@ $<
1513 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 24

1515 $(OBJS_DIR)/%.o: $(COMMONBASE)/unicode/%.c
1516 $(COMPILE.c) -o $@ $<
1517 $(CTFCONVERT_O)

1519 $(OBJS_DIR)/%.o: $(UTSBASE)/common/vm/%.c
1520 $(COMPILE.c) -o $@ $<
1521 $(CTFCONVERT_O)

1523 $(OBJS_DIR)/%.o: $(UTSBASE)/common/zmod/%.c
1524 $(COMPILE.c) -o $@ $<
1525 $(CTFCONVERT_O)

1527 $(OBJS_DIR)/zlib_obj.o: $(ZLIB_OBJS:%=$(OBJS_DIR)/%)
1528 $(LD) -r -Breduce -M$(UTSBASE)/common/zmod/mapfile -o $@ \
1529 $(ZLIB_OBJS:%=$(OBJS_DIR)/%)
1530 $(CTFMERGE) -t -f -L VERSION -o $@ $(ZLIB_OBJS:%=$(OBJS_DIR)/%)

1532 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hxge/%.c
1533 $(COMPILE.c) -o $@ $<
1534 $(CTFCONVERT_O)

1536 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/tpm/%.c
1537 $(COMPILE.c) -o $@ $<
1538 $(CTFCONVERT_O)

1540 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/tpm/%.s
1541 $(COMPILE.s) -o $@ $<

1543 $(OBJS_DIR)/bz2%.o: $(COMMONBASE)/bzip2/%.c
1544 $(COMPILE.c) -o $@ -I$(COMMONBASE)/bzip2 $<
1545 $(CTFCONVERT_O)

1547 BZ2LINT = -erroff=%all -I$(UTSBASE)/common/bzip2

1549 $(LINTS_DIR)/bz2%.ln: $(COMMONBASE)/bzip2/%.c
1550 @($(LHEAD) $(LINT.c) -C $(LINTS_DIR)/‘basename $@ .ln‘ $(BZ2LINT) $< $(

1552 #
1553 # SVM
1554 #

1556 MD_XDR_CSRC = $(UTSBASE)/common/io/lvm/md
1557 MD_XDR_XSRC = $(UTSBASE)/common/sys/lvm
1558 RPCGENFLAGS += -C -M -D_KERNEL -DSYSV

1560 $(MD_XDR_CSRC)/meta_basic_xdr.c: $(MD_XDR_XSRC)/meta_basic.x
1561 $(RPCGEN) $(RPCGENFLAGS) -c -i 100 $(MD_XDR_XSRC)/meta_basic.x | \
1562 nawk ’{sub(/^#include "(\.\.\/\.\.\/)/,"#include \"\.\.\/\.\.\/\.\.\/\.\
1563 nawk ’{sub(/meta_basic.h/, "md_basic.h"); print $$0}’ >$@

1565 $(MD_XDR_CSRC)/metamed_xdr.c: $(MD_XDR_XSRC)/metamed.x
1566 $(RPCGEN) $(RPCGENFLAGS) -c -i 100 $(MD_XDR_XSRC)/metamed.x | \
1567 nawk ’{sub(/^#include "(\.\.\/\.\.\/)/,"#include \"\.\.\/\.\.\/\.\.\/\.\
1568 nawk ’{sub(/metamed.h/, "mdmed.h"); print $$0}’ >$@

1570 #
1571 # Section 1b: Lint ‘objects’
1572 #
1573 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/aes/%.c
1574 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1576 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/arcfour/%.c
1577 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1579 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/blowfish/%.c

new/usr/src/uts/common/Makefile.rules 25

1580 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1582 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/ecc/%.c
1583 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1585 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/modes/%.c
1586 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1588 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/padding/%.c
1589 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1591 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/rng/%.c
1592 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1594 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/rsa/%.c
1595 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1597 $(LINTS_DIR)/%.ln: $(COMMONBASE)/bignum/%.c
1598 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1600 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/bignum/%.c
1601 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1603 $(LINTS_DIR)/%.ln: $(COMMONBASE)/mpi/%.c
1604 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1606 $(LINTS_DIR)/%.ln: $(COMMONBASE)/acl/%.c
1607 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1609 $(LINTS_DIR)/%.ln: $(COMMONBASE)/avl/%.c
1610 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1612 $(LINTS_DIR)/%.ln: $(COMMONBASE)/ucode/%.c
1613 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1615 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/sn1/%.c
1616 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1618 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/solaris10/%.c
1619 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1621 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/c2/%.c
1622 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1624 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/conf/%.c
1625 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1627 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/contract/%.c
1628 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1630 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/cpr/%.c
1631 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1633 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ctf/%.c
1634 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1636 $(LINTS_DIR)/%.ln: $(COMMONBASE)/ctf/%.c
1637 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1639 $(LINTS_DIR)/%.ln: $(COMMONBASE)/pci/%.c
1640 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1642 $(LINTS_DIR)/%.ln: $(COMMONBASE)/devid/%.c
1643 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1645 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/des/%.c

new/usr/src/uts/common/Makefile.rules 26

1646 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1648 $(LINTS_DIR)/%.ln: $(COMMONBASE)/smbios/%.c
1649 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1651 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ncall/%.c
1652 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1654 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/dsw/%.c
1655 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1657 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/nsctl/%.c
1658 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1660 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/rdc/%.c
1661 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1663 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/sdbc/%.c
1664 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1666 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/solaris/%.c
1667 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1669 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/sv/%.c
1670 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1672 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/unistat/%.c
1673 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1675 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/des/%.c
1676 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1678 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/api/%.c
1679 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1681 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/core/%.c
1682 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1684 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/io/%.c
1685 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1687 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/spi/%.c
1688 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1690 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/disp/%.c
1691 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1693 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/dtrace/%.c
1694 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1696 $(LINTS_DIR)/%.ln: $(COMMONBASE)/exacct/%.c
1697 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1699 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/aout/%.c
1700 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1702 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/elf/%.c
1703 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1705 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/intp/%.c
1706 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1708 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/shbin/%.c
1709 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1711 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/java/%.c

new/usr/src/uts/common/Makefile.rules 27

1712 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1714 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/%.c
1715 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1717 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/autofs/%.c
1718 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1720 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/cachefs/%.c
1721 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1723 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/ctfs/%.c
1724 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1726 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/doorfs/%.c
1727 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1729 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/dcfs/%.c
1730 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1732 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/devfs/%.c
1733 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1735 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/dev/%.c
1736 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1738 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/fd/%.c
1739 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1741 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/fifofs/%.c
1742 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1744 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/hsfs/%.c
1745 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1747 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/lofs/%.c
1748 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1750 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/mntfs/%.c
1751 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1753 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/namefs/%.c
1754 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1756 $(LINTS_DIR)/%.ln: $(COMMONBASE)/smbsrv/%.c
1757 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1759 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/smbsrv/%.c
1760 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1762 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/nfs/%.c
1763 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1765 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/objfs/%.c
1766 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1768 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/pcfs/%.c
1769 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1771 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/portfs/%.c
1772 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1774 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/proc/%.c
1775 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1777 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/sharefs/%.c

new/usr/src/uts/common/Makefile.rules 28

1778 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1780 $(LINTS_DIR)/%.ln: $(COMMONBASE)/smbclnt/%.c
1781 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1783 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/smbclnt/netsmb/%.c
1784 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1786 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/smbclnt/smbfs/%.c
1787 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1789 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/sockfs/%.c
1790 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1792 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/specfs/%.c
1793 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1795 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/swapfs/%.c
1796 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1798 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/tmpfs/%.c
1799 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1801 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/udfs/%.c
1802 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1804 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/ufs/%.c
1805 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1807 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/ufs_log/%.c
1808 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1810 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vscan/%.c
1811 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1813 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/zfs/%.c
1814 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1816 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/zut/%.c
1817 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1819 $(LINTS_DIR)/%.ln: $(COMMONBASE)/xattr/%.c
1820 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1822 $(LINTS_DIR)/%.ln: $(COMMONBASE)/zfs/%.c
1823 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1825 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/gssapi/%.c
1826 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1828 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/gssapi/mechs/dummy/%.c
1829 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1831 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/%.c
1832 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1834 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/%.c
1835 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1837 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/des/%.c
1838 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1840 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/dk/%.c
1841 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1843 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/os/%.c

new/usr/src/uts/common/Makefile.rules 29

1844 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1846 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/arcfour/%.c
1847 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1849 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/enc_provider/%.c
1850 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1852 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/hash_provider/%.c
1853 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1855 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/keyhash_provider/%.c
1856 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1858 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/raw/%.c
1859 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1861 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/old/%.c
1862 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1864 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/krb5/krb/%.c
1865 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1867 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/krb5/os/%.c
1868 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1870 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/mech/%.c
1871 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1873 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/idmap/%.c
1874 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1876 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/%.c
1877 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1879 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/sockmods/%.c
1880 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1882 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/arp/%.c
1883 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1885 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/dccp/%.c
1886 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1888 #endif /* ! codereview */
1889 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ip/%.c
1890 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1892 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ipnet/%.c
1893 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1895 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/iptun/%.c
1896 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1898 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ipf/%.c
1899 @($(LHEAD) $(LINT.c) $(IPFFLAGS) $< $(LTAIL))

1901 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/kssl/%.c
1902 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1904 $(LINTS_DIR)/%.ln: $(COMMONBASE)/net/patricia/%.c
1905 @($(LHEAD) $(LINT.c) $(IPFFLAGS) $< $(LTAIL))

1907 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/udp/%.c
1908 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 30

1910 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/sctp/%.c
1911 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1913 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/tcp/%.c
1914 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1916 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ilb/%.c
1917 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1919 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/nca/%.c
1920 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1922 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/dlpistub/%.c
1923 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1925 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/%.c
1926 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1928 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/%.c
1929 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1931 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/adapters/%.c
1932 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1934 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/targets/av1394/%.c
1935 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1937 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/targets/dcam1394/%.c
1938 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1940 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/targets/scsa1394/%.c
1941 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1943 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sbp2/%.c
1944 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1946 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/aac/%.c
1947 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1949 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/afe/%.c
1950 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1952 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/atge/%.c
1953 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1955 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/arn/%.c
1956 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1958 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ath/%.c
1959 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1961 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/atu/%.c
1962 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1964 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/impl/%.c
1965 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1967 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/ac97/%.c
1968 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1970 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audio1575/%.c
1971 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1973 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audio810/%.c
1974 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 31

1976 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiocmi/%.c
1977 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1979 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiocmihd/%.c
1980 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1982 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audioens/%.c
1983 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1985 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audioemu10k/%.c
1986 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1988 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiohd/%.c
1989 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1991 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audioixp/%.c
1992 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1994 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiols/%.c
1995 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1997 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiopci/%.c
1998 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2000 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiop16x/%.c
2001 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2003 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiosolo/%.c
2004 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2006 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiots/%.c
2007 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2009 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiovia823x/%.c
2010 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2012 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiovia97/%.c
2013 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2015 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/bfe/%.c
2016 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2018 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/bpf/%.c
2019 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2021 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/bge/%.c
2022 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2024 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/blkdev/%.c
2025 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2027 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/cardbus/%.c
2028 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2030 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/lu/stmf_sbd/%.c
2031 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2033 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/fct/%.c
2034 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2036 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/qlt/%.c
2037 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2039 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/srpt/%.c
2040 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 32

2042 $(LINTS_DIR)/%.ln: $(COMMONBASE)/iscsit/%.c
2043 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2045 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/fcoet/%.c
2046 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2048 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/iscsit/%.c
2049 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2051 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/pppt/%.c
2052 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2054 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/stmf/%.c
2055 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2057 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/dld/%.c
2058 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2060 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/dls/%.c
2061 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2063 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/dmfe/%.c
2064 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2066 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/drm/%.c
2067 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2069 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/efe/%.c
2070 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2072 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/elxl/%.c
2073 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2075 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fcoe/%.c
2076 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2078 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hme/%.c
2079 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2081 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pciex/%.c
2082 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2084 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hotplug/hpcsvc/%.c
2085 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2087 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pciex/hotplug/%.c
2088 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2090 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hotplug/pcihp/%.c
2091 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2093 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/rds/%.c
2094 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2096 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/rdsv3/%.c
2097 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2099 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/iser/%.c
2100 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2102 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/ibd/%.c
2103 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2105 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/eoib/%.c
2106 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 33

2108 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_ofs/%.c
2109 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2111 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_ucma/%.c
2112 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2114 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_umad/%.c
2115 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2117 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_uverbs/%.
2118 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2120 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/sdp/%.c
2121 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2123 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibcm/%.c
2124 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2126 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibdm/%.c
2127 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2129 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibdma/%.c
2130 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2132 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibmf/%.c
2133 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2135 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/ibnex/%.c
2136 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2138 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/ibtl/%.c
2139 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2141 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/adapters/tavor/%.c
2142 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2144 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/adapters/hermon/%.c
2145 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2147 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/daplt/%.c
2148 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2150 $(LINTS_DIR)/%.ln: $(COMMONBASE)/iscsi/%.c
2151 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2153 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/idm/%.c
2154 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2156 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ipw/%.c
2157 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2159 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwh/%.c
2160 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2162 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwi/%.c
2163 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2165 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwk/%.c
2166 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2168 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwp/%.c
2169 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2171 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/kb8042/%.c
2172 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 34

2174 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/kbtrans/%.c
2175 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2177 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ksocket/%.c
2178 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2180 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/aggr/%.c
2181 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2183 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lp/%.c
2184 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2186 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/hotspares/%.c
2187 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2189 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/md/%.c
2190 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2192 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/mirror/%.c
2193 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2195 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/raid/%.c
2196 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2198 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/softpart/%.c
2199 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2201 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/stripe/%.c
2202 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2204 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/notify/%.c
2205 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2207 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/trans/%.c
2208 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2210 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mac/%.c
2211 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2213 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mac/plugins/%.c
2214 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2216 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mega_sas/%.c
2217 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2219 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mii/%.c
2220 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2222 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mr_sas/%.c
2223 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2225 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/mpt_sas/%.c
2226 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2228 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mxfe/%.c
2229 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2231 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mwl/%.c
2232 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2234 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mwl/mwl_fw/%.c
2235 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2237 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/net80211/%.c
2238 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 35

2240 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nge/%.c
2241 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2243 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nxge/%.c
2244 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2246 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nxge/%.s
2247 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2249 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nxge/npi/%.c
2250 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2252 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pci-ide/%.c
2253 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2255 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcmcia/%.c
2256 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2258 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcan/%.c
2259 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2261 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcn/%.c
2262 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2264 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcwl/%.c
2265 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2267 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ppp/sppp/%.c
2268 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2270 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ppp/spppasyn/%.c
2271 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2273 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ppp/sppptun/%.c
2274 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2276 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ral/%.c
2277 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2279 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rge/%.c
2280 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2282 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rtls/%.c
2283 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2285 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rsm/%.c
2286 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2288 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rtw/%.c
2289 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2291 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rum/%.c
2292 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2294 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rwd/%.c
2295 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2297 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rwn/%.c
2298 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2300 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/adapters/ahci/%.c
2301 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2303 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/adapters/nv_sata/%.c
2304 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 36

2306 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/adapters/si3124/%.c
2307 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2309 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/impl/%.c
2310 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2312 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/%.c
2313 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2315 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/blk2scsa/%.c
2316 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2318 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/pmcs/%.c
2319 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2321 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/%.c
2322 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2324 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/fop
2325 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2327 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/ulp/%.c
2328 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2330 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/impl/%.c
2331 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2333 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/qlc/%.c
2334 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2336 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/qlge/%.c
2337 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2339 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/emlxs/%.c
2340 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2342 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/oce/%.c
2343 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2345 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/fcoei/%.c
2346 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2348 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/conf/%.c
2349 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2351 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/impl/%.c
2352 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2354 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/targets/%.c
2355 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2357 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sdcard/adapters/sdhost/%.c
2358 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2360 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sdcard/impl/%.c
2361 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2363 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sdcard/targets/sdcard/%.c
2364 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2366 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sfe/%.c
2367 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2369 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/simnet/%.c
2370 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 37

2372 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/softmac/%.c
2373 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2375 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/uath/%.c
2376 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2378 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/uath/uath_fw/%.c
2379 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2381 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ural/%.c
2382 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2384 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/urtw/%.c
2385 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2387 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/audio/usb_ac/%.
2388 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2390 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/audio/usb_as/%.
2391 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2393 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/audio/usb_ah/%.
2394 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2396 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbskel/%.c
2397 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2399 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/video/usbvc/%.c
2400 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2402 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hwarc/%.c
2403 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2405 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hid/%.c
2406 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2408 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hidparser/%.c
2409 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2411 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbkbm/%.c
2412 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2414 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbms/%.c
2415 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2417 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbinput/usbwcm
2418 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2420 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/ugen/%.c
2421 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2423 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/printer/%.c
2424 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2426 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/%.c
2427 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2429 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbsacm/
2430 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2432 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbftdi/
2433 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2435 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbser_k
2436 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 38

2438 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbsprl/
2439 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2441 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/wusb_df/%.c
2442 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2444 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hwa1480_fw/%.c
2445 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2447 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/wusb_ca/%.c
2448 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2450 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbecm/%.c
2451 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2453 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hcd/openhci/%.c
2454 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2456 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hcd/ehci/%.c
2457 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2459 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hcd/uhci/%.c
2460 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2462 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hubd/%.c
2463 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2465 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/scsa2usb/%.c
2466 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2468 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usb_mid/%.c
2469 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2471 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usb_ia/%.c
2472 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2474 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usba/%.c
2475 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2477 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usba10/%.c
2478 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2480 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/uwb/uwba/%.c
2481 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2483 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hwa/hwahc/%.c
2484 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2486 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vuidmice/%.c
2487 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2489 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vnic/%.c
2490 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2492 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/wpi/%.c
2493 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2495 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/zyd/%.c
2496 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2498 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/chxge/com/%.c
2499 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2501 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/chxge/%.c
2502 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 39

2504 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ixgb/%.c
2505 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2507 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/xge/drv/%.c
2508 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2510 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/xge/hal/xgehal/%.c
2511 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2513 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/e1000g/%.c
2514 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2516 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/igb/%.c
2517 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2519 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iprb/%.c
2520 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2522 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ixgbe/%.c
2523 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2525 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ntxn/%.c
2526 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2528 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/myri10ge/drv/%.c
2529 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2531 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/%.c
2532 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2534 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/ipgpc/%.c
2535 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2537 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/dlcosmk/%.c
2538 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2540 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/flowacct/%.c
2541 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2543 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/dscpmk/%.c
2544 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2546 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/meters/%.c
2547 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2549 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_emea/%.c
2550 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2552 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_ja/%.c
2553 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2555 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_ko/%.c
2556 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2558 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_sc/%.c
2559 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2561 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_tc/%.c
2562 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2564 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kmdb/%.c
2565 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2567 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/krtld/%.c
2568 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 40

2570 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ktli/%.c
2571 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2573 $(LINTS_DIR)/%.ln: $(COMMONBASE)/list/%.c
2574 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2576 $(LINTS_DIR)/%.ln: $(COMMONBASE)/lvm/%.c
2577 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2579 $(LINTS_DIR)/%.ln: $(COMMONBASE)/lzma/%.c
2580 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2582 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/md4/%.c
2583 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2585 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/md5/%.c
2586 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2588 $(LINTS_DIR)/%.ln: $(COMMONBASE)/net/dhcp/%.c
2589 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2591 $(LINTS_DIR)/%.ln: $(COMMONBASE)/nvpair/%.c
2592 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2594 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/os/%.c
2595 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2597 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/%.c
2598 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2600 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/cs/%.c
2601 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2603 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/cis/%.c
2604 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2606 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/nexus/%.c
2607 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2609 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/pcs/%.c
2610 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2612 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/%.c
2613 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2615 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/sec/%.c
2616 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2618 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/sec_gss/%.c
2619 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2621 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/sha1/%.c
2622 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2624 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/sha2/%.c
2625 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2627 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/syscall/%.c
2628 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2630 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/tnf/%.c
2631 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2633 $(LINTS_DIR)/%.ln: $(COMMONBASE)/tsol/%.c
2634 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/Makefile.rules 41

2636 $(LINTS_DIR)/%.ln: $(COMMONBASE)/util/%.c
2637 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2639 $(LINTS_DIR)/%.ln: $(COMMONBASE)/unicode/%.c
2640 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2642 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/vm/%.c
2643 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2645 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/iscsi/%.c
2646 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2648 $(LINTS_DIR)/%.ln: $(COMMONBASE)/iscsi/%.c
2649 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2651 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/kifconf/%.c
2652 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2654 ZMODLINTFLAGS = -erroff=E_CONSTANT_CONDITION

2656 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/zmod/%.c
2657 @($(LHEAD) $(LINT.c) $(ZMODLINTFLAGS) $< $(LTAIL))

2659 $(LINTS_DIR)/zlib_obj.ln: $(ZLIB_OBJS:%.o=$(LINTS_DIR)/%.ln) \
2660 $(UTSBASE)/common/zmod/zlib_lint.c
2661 @($(LHEAD) $(LINT.c) -C $(LINTS_DIR)/zlib_obj \
2662 $(UTSBASE)/common/zmod/zlib_lint.c $(LTAIL))

2664 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hxge/%.c
2665 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2667 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/tpm/%.c
2668 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2670 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/tpm/%.s
2671 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2673 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vr/%.c
2674 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2676 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/yge/%.c
2677 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2679 $(LINTS_DIR)/%.ln: $(COMMONBASE)/fsreparse/%.c
2680 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/inet/dccp/dccp.c 1

**
 19475 Wed Jun 13 12:04:29 2012
new/usr/src/uts/common/inet/dccp/dccp.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Copyright 2012 David Hoeppner. All rights reserved.
25 */

27 /*
28 * This file implements the Data Congestion Control Protocol (DCCP).
29 */

31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/stropts.h>
34 #include <sys/strlog.h>
35 #include <sys/strsun.h>
36 #define _SUN_TPI_VERSION 2
37 #include <sys/tihdr.h>
38 #include <sys/socket.h>
39 #include <sys/socketvar.h>
40 #include <sys/sockio.h>
41 #include <sys/vtrace.h>
42 #include <sys/sdt.h>
43 #include <sys/debug.h>
44 #include <sys/isa_defs.h>
45 #include <sys/tsol/label.h>
46 #include <sys/tsol/tnet.h>
47 #include <inet/kstatcom.h>
48 #include <inet/snmpcom.h>

50 #include <sys/cmn_err.h>

52 #include "dccp_impl.h"
53 #include "dccp_stack.h"

55 /* Setable in /etc/system */
56 uint_t dccp_bind_fanout_size = DCCP_BIND_FANOUT_SIZE;

58 static void dccp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
59 ixa_notify_arg_t);

61 /* Functions to register netstack */

new/usr/src/uts/common/inet/dccp/dccp.c 2

62 static void *dccp_stack_init(netstackid_t, netstack_t *);
63 static void dccp_stack_fini(netstackid_t, void *);

65 static int dccp_openv4(queue_t *, dev_t *, int, int, cred_t *);
66 static int dccp_openv6(queue_t *, dev_t *, int, int, cred_t *);

68 /* Write service routine */
69 static void dccp_wsrv(queue_t *);

71 /* Connection related functions */
72 static int dccp_connect_ipv4(dccp_t *, ipaddr_t *, in_port_t, uint_t);
73 static int dccp_connect_ipv6(dccp_t *, in6_addr_t *, in_port_t, uint32_t,
74 uint_t, uint32_t);

76 struct module_info dccp_rinfo = {
77 DCCP_MOD_ID, DCCP_MOD_NAME, 0, INFPSZ, DCCP_RECV_HIWATER,
78 DCCP_RECV_LOWATER
79 };

81 static struct module_info dccp_winfo = {
82 DCCP_MOD_ID, DCCP_MOD_NAME, 0, INFPSZ, 127, 16
83 };

85 /*
86 * Queue information structure with DCCP entry points.
87 */
88 struct qinit dccp_rinitv4 = {
89 NULL, (pfi_t)dccp_rsrv, dccp_openv4, dccp_tpi_close, NULL, &dccp_rinfo
90 };

92 struct qinit dccp_rinitv6 = {
93 NULL, (pfi_t)dccp_rsrv, dccp_openv6, dccp_tpi_close, NULL, &dccp_rinfo
94 };

96 struct qinit dccp_winit = {
97 (pfi_t)dccp_wput, (pfi_t)dccp_wsrv, NULL, NULL, NULL, &dccp_winfo
98 };

100 /* AF_INET /dev/dccp */
101 struct streamtab dccpinfov4 = {
102 &dccp_rinitv4, &dccp_winit
103 };

105 /* AF_INET6 /dev/dccp6 */
106 struct streamtab dccpinfov6 = {
107 &dccp_rinitv6, &dccp_winit
108 };

110 /*
111 * Tunables.
112 */
113 extern mod_prop_info_t dccp_propinfo_tbl[];
114 extern int dccp_propinfo_count;

116 /*
117 * Register DCCP netstack.
118 */
119 void
120 dccp_ddi_g_init(void)
121 {
122 netstack_register(NS_DCCP, dccp_stack_init, NULL, dccp_stack_fini);
123 }

125 #define INET_NAME "ip"

127 /*

new/usr/src/uts/common/inet/dccp/dccp.c 3

128 * Initialize the DCCP stack instance.
129 */
130 static void *
131 dccp_stack_init(netstackid_t stackid, netstack_t *ns)
132 {
133 dccp_stack_t *dccps;
134 major_t major;
135 size_t arrsz;
136 int error;
137 int i;

139 dccps = kmem_zalloc(sizeof (*dccps), KM_SLEEP);
140 if (dccps == NULL) {
141 return (NULL);
142 }
143 dccps->dccps_netstack = ns;

145 /* Ports */
146 mutex_init(&dccps->dccps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
147 dccps->dccps_num_epriv_ports = DCCP_NUM_EPRIV_PORTS;
148 dccps->dccps_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
149 dccps->dccps_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
150 dccps->dccps_min_anonpriv_port = 512;

152 dccps->dccps_bind_fanout_size = dccp_bind_fanout_size;

154 /* Bind fanout */
155 dccps->dccps_bind_fanout = kmem_zalloc(dccps->dccps_bind_fanout_size *
156 sizeof (dccp_df_t), KM_SLEEP);
157 for (i = 0; i < dccps->dccps_bind_fanout_size; i++) {
158 mutex_init(&dccps->dccps_bind_fanout[i].df_lock, NULL,
159 MUTEX_DEFAULT, NULL);
160 }

162 /* Tunable properties */
163 arrsz = dccp_propinfo_count * sizeof (mod_prop_info_t);
164 dccps->dccps_propinfo_tbl = kmem_alloc(arrsz, KM_SLEEP);
165 if (dccps->dccps_propinfo_tbl == NULL) {
166 kmem_free(dccps, sizeof (*dccps));
167 return (NULL);
168 }
169 bcopy(dccp_propinfo_tbl, dccps->dccps_propinfo_tbl, arrsz);

171 /* Allocate per netstack cpu stats */
172 mutex_enter(&cpu_lock);
173 dccps->dccps_sc_cnt = MAX(ncpus, boot_ncpus);
174 mutex_exit(&cpu_lock);

176 dccps->dccps_sc = kmem_zalloc(max_ncpus * sizeof (dccp_stats_cpu_t *),
177 KM_SLEEP);
178 for (i = 0; i < dccps->dccps_sc_cnt; i++) {
179 dccps->dccps_sc[i] = kmem_zalloc(sizeof (dccp_stats_cpu_t),
180 KM_SLEEP);
181 }

183 /* Driver major number */
184 major = mod_name_to_major(INET_NAME);
185 error = ldi_ident_from_major(major, &dccps->dccps_ldi_ident);
186 ASSERT(error == 0);

188 return (dccps);
189 }

191 /*
192 * Destroy the DCCP stack instance.
193 */

new/usr/src/uts/common/inet/dccp/dccp.c 4

194 void
195 dccp_ddi_g_destroy(void)
196 {
197 cmn_err(CE_NOTE, "dccp.c: dccp_ddi_g_destroy\n");

199 netstack_unregister(NS_DCCP);
200 }

202 static void
203 dccp_stack_fini(netstackid_t stackid, void *arg)
204 {
205 dccp_stack_t *dccps = (dccp_stack_t *)arg;
206 int i;

208 /* Cpu stats */
209 for (i = 0; i < dccps->dccps_sc_cnt; i++) {
210 kmem_free(dccps->dccps_sc[i], sizeof (dccp_stats_cpu_t));
211 }
212 kmem_free(dccps->dccps_sc, max_ncpus * sizeof (dccp_stats_cpu_t *));

214 /* Tunable properties */
215 kmem_free(dccps->dccps_propinfo_tbl,
216 dccp_propinfo_count * sizeof (mod_prop_info_t));
217 dccps->dccps_propinfo_tbl = NULL;

219 /* Bind fanout */
220 for (i = 0; i < dccps->dccps_bind_fanout_size; i++) {
221 ASSERT(dccps->dccps_bind_fanout[i].df_dccp == NULL);
222 mutex_destroy(&dccps->dccps_bind_fanout[i].df_lock);
223 }
224 kmem_free(dccps->dccps_bind_fanout, dccps->dccps_bind_fanout_size *
225 sizeof (dccp_df_t));
226 dccps->dccps_bind_fanout = NULL;

228 kmem_free(dccps, sizeof (*dccps));
229 }

231 /* /dev/dccp */
232 static int
233 dccp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
234 {
235 cmn_err(CE_NOTE, "dccp.c: dccp_openv4\n");

237 return (ENOTSUP);
238 }

240 /* /dev/dccp6 */
241 static int
242 dccp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
243 {
244 cmn_err(CE_NOTE, "dccp.c: dccp_openv6\n");

246 return (ENOTSUP);
247 }

249 /*
250 * IXA notify
251 */
252 static void
253 dccp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
254 ixa_notify_arg_t narg)
255 {
256 cmn_err(CE_NOTE, "dccp.c: dccp_notify");
257 }

259 /*

new/usr/src/uts/common/inet/dccp/dccp.c 5

260 * Build the template headers.
261 */
262 int
263 dccp_build_hdrs(dccp_t *dccp)
264 {
265 dccp_stack_t *dccps = dccp->dccp_dccps;
266 conn_t *connp = dccp->dccp_connp;
267 dccpha_t *dccpha;
268 uint32_t cksum;
269 char buf[DCCP_MAX_HDR_LENGTH];
270 uint_t buflen;
271 uint_t ulplen = 12;
272 uint_t extralen = 0;
273 int error;

275 cmn_err(CE_NOTE, "dccp.c: dccp_build_hdrs");

277 buflen = connp->conn_ht_ulp_len;
278 if (buflen != 0) {
279 cmn_err(CE_NOTE, "buflen != 0");
280 bcopy(connp->conn_ht_ulp, buf, buflen);
281 extralen -= buflen - ulplen;
282 ulplen = buflen;
283 }

285 mutex_enter(&connp->conn_lock);
286 error = conn_build_hdr_template(connp, ulplen, extralen,
287 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
288 mutex_exit(&connp->conn_lock);
289 if (error != 0) {
290 cmn_err(CE_NOTE, "conn_build_hdr_template failed");
291 return (error);
292 }

294 dccpha = (dccpha_t *)connp->conn_ht_ulp;
295 dccp->dccp_dccpha = dccpha;

297 if (buflen != 0) {
298 bcopy(buf, connp->conn_ht_ulp, buflen);
299 } else {
300 dccpha->dha_sum = 0;
301 dccpha->dha_lport = connp->conn_lport;
302 dccpha->dha_fport = connp->conn_fport;
303 }

305 cksum = sizeof (dccpha_t) + connp->conn_sum;
306 cksum = (cksum >> 16) + (cksum & 0xFFFF);
307 dccpha->dha_sum = htons(cksum);
308 dccpha->dha_offset = 7;
309 dccpha->dha_x = 1;

311 return (0);
312 }

314 /*
315 * DCCP write service routine.
316 */
317 static void
318 dccp_wsrv(queue_t *q)
319 {
320 /* XXX:DCCP */
321 }

323 /*
324 * Common create function for streams and sockets.
325 */

new/usr/src/uts/common/inet/dccp/dccp.c 6

326 conn_t *
327 dccp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
328 int *errorp)
329 {
330 conn_t *connp;
331 dccp_t *dccp;
332 dccp_stack_t *dccps;
333 netstack_t *ns;
334 squeue_t *sqp;
335 zoneid_t zoneid;

337 cmn_err(CE_NOTE, "dccp.c: dccp_create_common\n");

339 ASSERT(errorp != NULL);

341 *errorp = secpolicy_basic_net_access(credp);
342 if (*errorp != 0) {
343 return (NULL);
344 }

346 /*
347 * Find the right netstack
348 */
349 ns = netstack_find_by_cred(credp);
350 ASSERT(ns != NULL);
351 dccps = ns->netstack_dccp;
352 ASSERT(dccps != NULL);

354 /*
355 * XXX
356 */
357 if (ns->netstack_stackid != GLOBAL_NETSTACKID) {
358 zoneid = GLOBAL_ZONEID;
359 } else {
360 zoneid = crgetzoneid(credp);
361 }

363 sqp = IP_SQUEUE_GET((uint_t)gethrtime());
364 connp = (conn_t *)dccp_get_conn(sqp, dccps);
365 netstack_rele(dccps->dccps_netstack);
366 if (connp == NULL) {
367 *errorp = ENOSR;
368 return (NULL);
369 }
370 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);

372 connp->conn_sqp = sqp;
373 connp->conn_initial_sqp = connp->conn_sqp;
374 connp->conn_ixa->ixa_sqp = connp->conn_sqp;
375 dccp = connp->conn_dccp;

377 /* Setting flags for ip output */
378 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
379 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;

381 ASSERT(connp->conn_proto == IPPROTO_DCCP);
382 ASSERT(connp->conn_dccp == dccp);
383 ASSERT(dccp->dccp_connp == connp);

385 if (isv6) {
386 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
387 connp->conn_ipversion = IPV6_VERSION;
388 connp->conn_family = AF_INET6;
389 /* XXX mms, ttl */
390 } else {
391 connp->conn_ipversion = IPV4_VERSION;

new/usr/src/uts/common/inet/dccp/dccp.c 7

392 connp->conn_family = AF_INET;
393 /* XXX mms, ttl */
394 }
395 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;

397 crhold(credp);
398 connp->conn_cred = credp;
399 connp->conn_cpid = curproc->p_pid;
400 connp->conn_open_time = ddi_get_lbolt64();

402 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
403 connp->conn_ixa->ixa_cred = credp;
404 connp->conn_ixa->ixa_cpid = connp->conn_cpid;

406 connp->conn_zoneid = zoneid;
407 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
408 connp->conn_ixa->ixa_zoneid = zoneid;
409 connp->conn_mlp_type = mlptSingle;

412 dccp->dccp_dccps = dccps;
413 dccp->dccp_state = DCCPS_CLOSED;

415 ASSERT(connp->conn_netstack == dccps->dccps_netstack);
416 ASSERT(dccp->dccp_dccps == dccps);

418 /* XXX rcvbuf, sndbuf etc */

420 SOCK_CONNID_INIT(dccp->dccp_connid);
421 dccp_init_values(dccp, NULL);

423 return (connp);
424 }

426 /*
427 * Common close function for streams and sockets.
428 */
429 void
430 dccp_close_common(conn_t *connp)
431 {
432 dccp_t *dccp = connp->conn_dccp;
433 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;

435 ASSERT(connp->conn_ref >= 2);

437 mutex_enter(&connp->conn_lock);
438 connp->conn_state_flags |= CONN_CLOSING;
439 if (connp->conn_oper_pending_ill != NULL) {
440 conn_ioctl_cleanup_reqd = B_TRUE;
441 }

443 CONN_INC_REF_LOCKED(connp);
444 mutex_exit(&connp->conn_lock);

446 //ipcl_conn_destroy(connp);
447 }

449 /*
450 * Common bind function.
451 */
452 int
453 dccp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
454 boolean_t bind_to_req_port_only)
455 {
456 dccp_t *dccp = connp->conn_dccp;
457 int error;

new/usr/src/uts/common/inet/dccp/dccp.c 8

459 cmn_err(CE_NOTE, "dccp.c: dccp_do_bind");

461 if (dccp->dccp_state >= DCCPS_BOUND) {
462 if (connp->conn_debug) {
463 (void) strlog(DCCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
464 "dccp_bind: bad state, %d", dccp->dccp_state);
465 }
466 return (-TOUTSTATE);
467 }

469 error = dccp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
470 if (error != 0) {
471 return (error);
472 }

474 ASSERT(dccp->dccp_state == DCCPS_LISTEN);
475 /* XXX dccp_conn_req_max = 0 */

477 return (0);
478 }

480 /*
481 * Common unbind function.
482 */
483 int
484 dccp_do_unbind(conn_t *connp)
485 {
486 dccp_t *dccp = connp->conn_dccp;

488 cmn_err(CE_NOTE, "dccp.c: dccp_do_unbind");

490 switch (dccp->dccp_state) {
491 case DCCPS_BOUND:
492 case DCCPS_LISTEN:
493 break;
494 default:
495 return (-TOUTSTATE);
496 }

498 /* XXX:DCCP */

500 return (0);
501 }

503 /*
504 * Common listen function.
505 */
506 int
507 dccp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
508 int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
509 {
510 dccp_t *dccp = connp->conn_dccp;
511 dccp_stack_t *dccps = dccp->dccp_dccps;
512 int32_t oldstate;
513 int error;

515 cmn_err(CE_NOTE, "dccp.c: dccp_do_listen");

517 /* All Solaris components should pass a cred for this operation */
518 ASSERT(cr != NULL);

520 if (dccp->dccp_state >= DCCPS_BOUND) {

522 if ((dccp->dccp_state == DCCPS_BOUND ||
523 dccp->dccp_state == DCCPS_LISTEN) && backlog > 0) {

new/usr/src/uts/common/inet/dccp/dccp.c 9

524 goto do_listen;
525 }
526 cmn_err(CE_NOTE, "DCCPS_BOUND, bad state");

528 if (connp->conn_debug) {
529 (void) strlog(DCCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
530 "dccp_listen: bad state, %d", dccp->dccp_state);
531 }
532 return (-TOUTSTATE);
533 } else {
534 if (sa == NULL) {
535 sin6_t addr;
536 sin6_t *sin6;
537 sin_t *sin;

539 ASSERT(IPCL_IS_NONSTR(connp));

541 if (connp->conn_family == AF_INET) {
542 len = sizeof (sin_t);
543 sin = (sin_t *)&addr;
544 *sin = sin_null;
545 sin->sin_family = AF_INET;
546 } else {
547 ASSERT(connp->conn_family == AF_INET6);

549 len = sizeof (sin6_t);
550 sin6 = (sin6_t *)&addr;
551 *sin6 = sin6_null;
552 sin6->sin6_family = AF_INET6;
553 }

555 sa = (struct sockaddr *)&addr;
556 }

558 error = dccp_bind_check(connp, sa, len, cr,
559 bind_to_req_port_only);
560 if (error != 0) {
561 cmn_err(CE_NOTE, "dccp_bind_check failed");
562 return (error);
563 }
564 /* Fall through and do the fanout insertion */
565 }

567 do_listen:
568 ASSERT(dccp->dccp_state == DCCPS_BOUND ||
569 dccp->dccp_state == DCCPS_LISTEN);

571 /* XXX backlog */

573 connp->conn_recv = dccp_input_listener_unbound;

575 /* Insert into the classifier table */
576 error = ip_laddr_fanout_insert(connp);
577 if (error != 0) {
578 /* Error - undo the bind */
579 oldstate = dccp->dccp_state;
580 dccp->dccp_state = DCCPS_CLOSED;

582 connp->conn_bound_addr_v6 = ipv6_all_zeros;

584 connp->conn_laddr_v6 = ipv6_all_zeros;
585 connp->conn_saddr_v6 = ipv6_all_zeros;
586 connp->conn_ports = 0;

588 if (connp->conn_anon_port) {
589 zone_t *zone;

new/usr/src/uts/common/inet/dccp/dccp.c 10

591 zone = crgetzone(cr);
592 connp->conn_anon_port = B_FALSE;
593 (void) tsol_mlp_anon(zone, connp->conn_mlp_type,
594 connp->conn_proto, connp->conn_lport, B_FALSE);
595 }
596 connp->conn_mlp_type = mlptSingle;

598 /* XXX dccp_bind_hash_remove */

600 return (error);
601 } else {
602 /* XXX connection limits */
603 }

605 return (error);
606 }

608 /*
609 * Common connect function.
610 */
611 int
612 dccp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
613 cred_t *cr, pid_t pid)
614 {
615 dccp_t *dccp = connp->conn_dccp;
616 dccp_stack_t *dccps = dccp->dccp_dccps;
617 ip_xmit_attr_t *ixa = connp->conn_ixa;
618 sin_t *sin = (sin_t *)sa;
619 sin6_t *sin6 = (sin6_t *)sa;
620 ipaddr_t *dstaddrp;
621 in_port_t dstport;
622 int32_t oldstate;
623 uint_t srcid;
624 int error;

626 cmn_err(CE_NOTE, "dccp.c: dccp_do_connect");

628 oldstate = dccp->dccp_state;

630 switch (len) {
631 case sizeof (sin_t):
632 sin = (sin_t *)sa;
633 if (sin->sin_port == 0) {
634 return (-TBADADDR);
635 }
636 if (connp->conn_ipv6_v6only) {
637 return (EAFNOSUPPORT);
638 }
639 break;

641 case sizeof (sin6_t):
642 sin6 = (sin6_t *)sa;
643 if (sin6->sin6_port == 0) {
644 return (-TBADADDR);
645 }
646 break;

648 default:
649 return (EINVAL);
650 }

652 if (connp->conn_family == AF_INET6 &&
653 connp->conn_ipversion == IPV6_VERSION &&
654 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
655 if (connp->conn_ipv6_v6only) {

new/usr/src/uts/common/inet/dccp/dccp.c 11

656 return (EADDRNOTAVAIL);
657 }

659 connp->conn_ipversion = IPV4_VERSION;
660 }

662 switch (dccp->dccp_state) {
663 case DCCPS_LISTEN:
664 if (IPCL_IS_NONSTR(connp)) {
665 return (EOPNOTSUPP);
666 }

668 case DCCPS_CLOSED:
669 /* XXX */
670 break;

672 default:
673 return (-TOUTSTATE);
674 }

676 if (connp->conn_cred != cr) {
677 crhold(cr);
678 crfree(connp->conn_cred);
679 connp->conn_cred = cr;
680 }
681 connp->conn_cpid = pid;

683 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
684 ixa->ixa_cred = cr;
685 ixa->ixa_cpid = pid;

687 if (is_system_labeled()) {
688 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
689 }

691 if (connp->conn_family == AF_INET6) {
692 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
693 error = dccp_connect_ipv6(dccp, &sin6->sin6_addr,
694 sin6->sin6_port, sin6->sin6_flowinfo,
695 sin6->__sin6_src_id, sin6->sin6_scope_id);
696 } else {
697 /* XXX */
698 }
699 } else {
700 dstaddrp = &sin->sin_addr.s_addr;
701 dstport = sin->sin_port;
702 srcid = 0;
703 error = dccp_connect_ipv4(dccp, dstaddrp, dstport, srcid);
704 }

706 if (error != 0) {
707 goto connect_failed;
708 }

710 /* XXX cluster */

712 //DCCPS_BUMP_MIB(dccps, dccpActiveOpens);

714 return (0);

716 connect_failed:
717 cmn_err(CE_NOTE, "dccp_do_connect failed");

719 connp->conn_faddr_v6 = ipv6_all_zeros;
720 connp->conn_fport = 0;
721 dccp->dccp_state = oldstate;

new/usr/src/uts/common/inet/dccp/dccp.c 12

723 return (error);
724 }

726 /*
727 * Init values of a connection.
728 */
729 void
730 dccp_init_values(dccp_t *dccp, dccp_t *parent)
731 {
732 conn_t *connp = dccp->dccp_connp;
733 dccp_stack_t *dccps = dccp->dccp_dccps;

735 connp->conn_mlp_type = mlptSingle;
736 }

738 void *
739 dccp_get_conn(void *arg, dccp_stack_t *dccps)
740 {
741 dccp_t *dccp = NULL;
742 conn_t *connp;
743 squeue_t *sqp = (squeue_t *)arg;
744 netstack_t *ns;

746 /* XXX timewait */

748 connp = ipcl_conn_create(IPCL_DCCPCONN, KM_NOSLEEP,
749 dccps->dccps_netstack);
750 if (connp == NULL) {
751 return (NULL);
752 }

754 dccp = connp->conn_dccp;
755 dccp->dccp_dccps = dccps;

757 connp->conn_recv = dccp_input_data;
758 connp->conn_recvicmp = dccp_icmp_input;
759 connp->conn_verifyicmp = dccp_verifyicmp;

761 connp->conn_ixa->ixa_notify = dccp_notify;
762 connp->conn_ixa->ixa_notify_cookie = dccp;

764 return ((void *)connp);
765 }

767 /*
768 * IPv4 connect.
769 */
770 static int
771 dccp_connect_ipv4(dccp_t *dccp, ipaddr_t *dstaddrp, in_port_t dstport,
772 uint_t srcid)
773 {
774 conn_t *connp = dccp->dccp_connp;
775 dccp_stack_t *dccps = dccp->dccp_dccps;
776 ipaddr_t dstaddr = *dstaddrp;
777 uint16_t lport;
778 int error;

780 cmn_err(CE_NOTE, "dccp.c: dccp_connect_ipv4");

782 ASSERT(connp->conn_ipversion == IPV4_VERSION);

784 if (dstaddr == INADDR_ANY) {
785 dstaddr = htonl(INADDR_LOOPBACK);
786 *dstaddrp = dstaddr;
787 }

new/usr/src/uts/common/inet/dccp/dccp.c 13

789 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
790 ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
791 IPCL_ZONEID(connp), dccps->dccps_netstack);
792 connp->conn_saddr_v6 = connp->conn_laddr_v6;
793 }

795 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
796 connp->conn_fport = dstport;

798 if (dccp->dccp_state == DCCPS_CLOSED) {
799 lport = dccp_update_next_port(dccps->dccps_next_port_to_try,
800 dccp, B_TRUE);
801 lport = dccp_bindi(dccp, lport, &connp->conn_laddr_v6, 0,
802 B_TRUE, B_FALSE, B_FALSE);

804 if (lport == 0) {
805 return (-TNOADDR);
806 }
807 }

809 error = dccp_set_destination(dccp);
810 if (error != 0) {
811 return (error);
812 }

814 /*
815 * Don’t connect to oneself.
816 */
817 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
818 connp->conn_fport == connp->conn_lport) {
819 return (-TBADADDR);
820 }

822 /* XXX state */

824 return (ipcl_conn_insert_v4(connp));
825 }

827 /*
828 * IPv6 connect.
829 */
830 static int
831 dccp_connect_ipv6(dccp_t *dccp, in6_addr_t *dstaddrp, in_port_t dstport,
832 uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
833 {
834 cmn_err(CE_NOTE, "dccp.c: dccp_connect_ipv6");

836 return (0);
837 }

839 /*
840 * Set the ports via conn_connect and build the template
841 * headers.
842 */
843 int
844 dccp_set_destination(dccp_t *dccp)
845 {
846 conn_t *connp = dccp->dccp_connp;
847 dccp_stack_t *dccps = dccp->dccp_dccps;
848 iulp_t uinfo;
849 uint32_t flags;
850 int error;

852 flags = IPDF_LSO | IPDF_ZCOPY;
853 flags |= IPDF_UNIQUE_DCE;

new/usr/src/uts/common/inet/dccp/dccp.c 14

855 mutex_enter(&connp->conn_lock);
856 error = conn_connect(connp, &uinfo, flags);
857 mutex_exit(&connp->conn_lock);
858 if (error != 0) {
859 cmn_err(CE_NOTE, "conn_connect failed");
860 return (error);
861 }

863 error = dccp_build_hdrs(dccp);
864 if (error != 0) {
865 cmn_err(CE_NOTE, "dccp_build_hdrs failed");
866 return (error);
867 }

869 /* XXX */

871 mutex_enter(&connp->conn_lock);
872 connp->conn_state_flags &= ~CONN_INCIPIENT;
873 mutex_exit(&connp->conn_lock);

875 return (0);
876 }
877 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp.conf 1

**
 913 Wed Jun 13 12:04:29 2012
new/usr/src/uts/common/inet/dccp/dccp.conf
%B
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License, Version 1.0 only
6 # (the "License"). You may not use this file except in compliance
7 # with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright (c) 1992, by Sun Microsystems, Inc.
24 #

26 name="dccp" parent="pseudo" instance=0;
27 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp6.conf 1

**
 914 Wed Jun 13 12:04:30 2012
new/usr/src/uts/common/inet/dccp/dccp6.conf
%B
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License, Version 1.0 only
6 # (the "License"). You may not use this file except in compliance
7 # with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright (c) 1992, by Sun Microsystems, Inc.
24 #

26 name="dccp6" parent="pseudo" instance=0;
27 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp6ddi.c 1

**
 1578 Wed Jun 13 12:04:31 2012
new/usr/src/uts/common/inet/dccp/dccp6ddi.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <sys/types.h>
27 #include <sys/conf.h>
28 #include <sys/modctl.h>
29 #include <inet/common.h>
30 #include <inet/ip.h>

32 #define INET_NAME "dccp6"
33 #define INET_DEVSTRTAB dccpinfov6
34 #define INET_DEVDESC "DCCP6 STREAMS driver"
35 #define INET_DEVMINOR 0
36 #define INET_DEVMTFLAGS (D_MP|_D_DIRECT)

38 #include "../inetddi.c"

40 int
41 _init(void)
42 {
43 /*
44 * device initialization happens when the actual code containing
45 * module (/kernel/drv/ip) is loaded, and driven from ip_ddi_init()
46 */
47 return (mod_install(&modlinkage));
48 }

50 int
51 _fini(void)
52 {
53 return (mod_remove(&modlinkage));
54 }

56 int
57 _info(struct modinfo *modinfop)
58 {
59 return (mod_info(&modlinkage, modinfop));
60 }
61 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_bind.c 1

**
 10340 Wed Jun 13 12:04:32 2012
new/usr/src/uts/common/inet/dccp/dccp_bind.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * This file contains function related to binding.
33 */

35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/strsun.h>
38 #include <sys/strsubr.h>
39 #include <sys/stropts.h>
40 #include <sys/strlog.h>
41 #define _SUN_TPI_VERSION 2
42 #include <sys/tihdr.h>
43 #include <sys/suntpi.h>
44 #include <sys/xti_inet.h>
45 #include <sys/squeue_impl.h>
46 #include <sys/squeue.h>
47 #include <sys/tsol/tnet.h>

49 #include <inet/common.h>
50 #include <inet/ip.h>
51 #include <inet/proto_set.h>

53 #include <sys/cmn_err.h>

55 #include "dccp_impl.h"

57 /* Setable in /etc/system */
58 static uint32_t dccp_random_anon_port = 1;

60 static int dccp_bind_select_lport(dccp_t *, in_port_t *, boolean_t,
61 cred_t *);

new/usr/src/uts/common/inet/dccp/dccp_bind.c 2

63 void
64 dccp_bind_hash_insert(dccp_df_t *tbf, dccp_t *dccp, int caller_holds_lock)
65 {
66 conn_t *connp = dccp->dccp_connp;
67 conn_t *connext;
68 dccp_t **dccpp;
69 dccp_t *dccpnext;
70 dccp_t *dccphash;

72 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bind_hash_insert");

74 /* XXX:DCCP */

76 dccpp = &tbf->df_dccp;
77 if (!caller_holds_lock) {
78 mutex_enter(&tbf->df_lock);
79 } else {
80 ASSERT(MUTEX_HELD(&tbf->df_lock));
81 }
82 dccphash = dccpp[0];
83 dccpnext = NULL;

85 if (dccphash != NULL) {
86 /* XXX:DCCP */
87 }

89 insert:
90 dccp->dccp_bind_hash_port = dccpnext;
91 dccp->dccp_bind_hash = dccphash;
92 dccp->dccp_ptpbhn = dccpp;
93 dccpp[0] = dccp;

95 if (!caller_holds_lock) {
96 mutex_exit(&tbf->df_lock);
97 }
98 }

100 void
101 dccp_bind_hash_remove(dccp_t *dccp)
102 {
103 }

105 /*
106 * Check for a valid address and get a local port.
107 */
108 int
109 dccp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
110 boolean_t bind_to_req_port_only)
111 {
112 dccp_t *dccp = connp->conn_dccp;
113 ip_stack_t *ips = connp->conn_netstack->netstack_ip;
114 ip_xmit_attr_t *ixa = connp->conn_ixa;
115 sin_t *sin;
116 sin6_t *sin6;
117 ipaddr_t v4addr;
118 in6_addr_t v6addr;
119 ip_laddr_t laddr_type = IPVL_UNICAST_UP;
120 zoneid_t zoneid = IPCL_ZONEID(connp);
121 in_port_t requested_port;
122 uint_t scopeid = 0;
123 int error;

125 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bind_check");

127 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);

new/usr/src/uts/common/inet/dccp/dccp_bind.c 3

129 /*
130 * We should be in a pre-listen state.
131 */
132 if (dccp->dccp_state == DCCPS_LISTEN) {
133 return (0);
134 } else if (dccp->dccp_state > DCCPS_LISTEN) {
135 if (connp->conn_debug) {
136 (void) strlog(DCCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
137 "dccp_bind: bad state, %d", dccp->dccp_state);
138 }
139 return (-TOUTSTATE);
140 }

142 /*
143 * Check for a valid address parameter. Then validate the
144 * addresses and copy them and the required port in.
145 */
146 ASSERT(sa != NULL && len != 0);
147 if (!OK_32PTR((char *)sa)) {
148 if (connp->conn_debug) {
149 (void) strlog(DCCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
150 "dccp_bind: bad address parameter, "
151 "address %p, len %d", (void *)sa, len);
152 }
153 return (-TPROTO);
154 }

156 error = proto_verify_ip_addr(connp->conn_family, sa, len);
157 if (error != 0) {
158 return (error);
159 }

161 switch (len) {
162 case sizeof (sin_t):
163 sin = (sin_t *)sa;
164 v4addr = sin->sin_addr.s_addr;
165 requested_port = ntohs(sin->sin_port);
166 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
167 if (v4addr != INADDR_ANY) {
168 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ips,
169 B_FALSE);
170 }
171 break;

173 case sizeof (sin6_t):
174 sin6 = (sin6_t *)sa;
175 v6addr = sin6->sin6_addr;
176 requested_port = ntohs(sin6->sin6_port);
177 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) {
178 if (connp->conn_ipv6_v6only) {
179 return (EADDRNOTAVAIL);
180 }

182 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr);
183 if (v4addr != INADDR_ANY) {
184 laddr_type = ip_laddr_verify_v4(v4addr, zoneid,
185 ips, B_FALSE);
186 }
187 } else {
188 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) {
189 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) {
190 scopeid = sin6->sin6_scope_id;
191 laddr_type = ip_laddr_verify_v6(&v6addr,
192 zoneid, ips, B_FALSE, scopeid);
193 }

new/usr/src/uts/common/inet/dccp/dccp_bind.c 4

194 }
195 }
196 break;

198 default:
199 if (connp->conn_debug) {
200 (void) strlog(DCCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
201 "dccp_bind: bad address length, %d", len);
202 }
203 return (EAFNOSUPPORT);
204 }

206 if (laddr_type == IPVL_BAD) {
207 return (EADDRNOTAVAIL);
208 }

210 connp->conn_bound_addr_v6 = v6addr;
211 if (scopeid != 0) {
212 ixa->ixa_flags |= IXAF_SCOPEID_SET;
213 ixa->ixa_scopeid = scopeid;
214 connp->conn_incoming_ifindex = scopeid;
215 } else {
216 ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
217 connp->conn_incoming_ifindex = connp->conn_bound_if;
218 }

220 connp->conn_laddr_v6 = v6addr;
221 connp->conn_saddr_v6 = v6addr;

223 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;

225 error = dccp_bind_select_lport(dccp, &requested_port,
226 bind_to_req_port_only, cr);
227 if (error != 0) {
228 connp->conn_laddr_v6 = ipv6_all_zeros;
229 connp->conn_saddr_v6 = ipv6_all_zeros;
230 connp->conn_bound_addr_v6 = ipv6_all_zeros;
231 }

233 return (error);
234 }

236 /*
237 * Bind to a local port.
238 */
239 static int
240 dccp_bind_select_lport(dccp_t *dccp, in_port_t *requested_port_ptr,
241 boolean_t bind_to_req_port_only, cred_t *cr)
242 {
243 dccp_stack_t *dccps = dccp->dccp_dccps;
244 conn_t *connp = dccp->dccp_connp;
245 zone_t *zone;
246 in_port_t allocated_port;
247 in_port_t requested_port = *requested_port_ptr;
248 in6_addr_t v6addr = connp->conn_laddr_v6;
249 boolean_t user_specified;

251 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bind_select_lport");

253 ASSERT(cr != NULL);

255 if (requested_port == 0) {
256 requested_port =
257 dccp_update_next_port(dccps->dccps_next_port_to_try,
258 dccp, B_TRUE);
259 if (requested_port == 0) {

new/usr/src/uts/common/inet/dccp/dccp_bind.c 5

260 return (-TNOADDR);
261 }
262 user_specified = B_FALSE;

264 } else {
265 int i;
266 boolean_t priv = B_FALSE;

268 if (requested_port < dccps->dccps_smallest_nonpriv_port) {
269 priv = B_TRUE;
270 } else {
271 for (i = 0; i < dccps->dccps_num_epriv_ports; i++) {
272 if (requested_port ==
273 dccps->dccps_epriv_ports[i]) {
274 priv = B_TRUE;
275 break;
276 }
277 }
278 }

280 if (priv) {
281 if (secpolicy_net_privaddr(cr, requested_port,
282 IPPROTO_DCCP) != 0) {
283 if (connp->conn_debug) {
284 (void) strlog(DCCP_MOD_ID, 0, 1,
285 SL_ERROR|SL_TRACE,
286 "tcp_bind: no priv for port %d",
287 requested_port);
288 }
289 return (-TACCES);
290 }
291 }

293 user_specified = B_TRUE;
294 //connp = dccp->dccp_connp;

296 /* XXX */
297 }

299 allocated_port = dccp_bindi(dccp, requested_port, &v6addr,
300 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only,
301 user_specified);

303 if (allocated_port == 0) {
304 /* XXX */
305 if (bind_to_req_port_only) {
306 if (connp->conn_debug) {
307 (void) strlog(DCCP_MOD_ID, 0, 1,
308 SL_ERROR|SL_TRACE,
309 "dccp_bind: requested addr busy");
310 }
311 return (-TADDRBUSY);
312 } else {
313 if (connp->conn_debug) {
314 (void) strlog(DCCP_MOD_ID, 0, 1,
315 SL_ERROR|SL_TRACE,
316 "dccp_bind: out of ports?");
317 }
318 return (-TNOADDR);
319 }
320 }

322 *requested_port_ptr = allocated_port;
323 return (0);
324 }

new/usr/src/uts/common/inet/dccp/dccp_bind.c 6

326 in_port_t
327 dccp_bindi(dccp_t *dccp, in_port_t port, const in6_addr_t *laddr,
328 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
329 boolean_t user_specified)
330 {
331 dccp_stack_t *dccps = dccp->dccp_dccps;
332 conn_t *connp = dccp->dccp_connp;
333 int count = 0;
334 int loopmax;

336 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bindi");

338 if (bind_to_req_port_only) {
339 loopmax = 1;
340 } else {
341 if (connp->conn_anon_priv_bind) {
342 loopmax = IPPORT_RESERVED -
343 dccps->dccps_min_anonpriv_port;
344 } else {
345 loopmax = (dccps->dccps_largest_anon_port -
346 dccps->dccps_smallest_anon_port + 1);
347 }
348 }

350 do {
351 conn_t *lconnp;
352 dccp_t *ldccp;
353 dccp_df_t *ldf;
354 uint16_t lport;

356 lport = htons(port);

358 dccp_bind_hash_remove(dccp);
359 ldf = &dccps->dccps_bind_fanout[DCCP_BIND_HASH(lport,
360 dccps->dccps_bind_fanout_size)];
361 mutex_enter(&ldf->df_lock);
362 for (ldccp = ldf->df_dccp; ldccp != NULL;
363 ldccp = ldccp->dccp_bind_hash) {
364 if (lport == ldccp->dccp_connp->conn_lport) {
365 break;
366 }
367 }

369 if (ldccp != NULL) {
370 mutex_exit(&ldf->df_lock);
371 } else {
372 dccp->dccp_state = DCCPS_BOUND;

374 connp->conn_lport = htons(port);

376 ASSERT(&dccps->dccps_bind_fanout[DCCP_BIND_HASH(
377 connp->conn_lport,
378 dccps->dccps_bind_fanout_size)] == ldf);
379 dccp_bind_hash_insert(ldf, dccp, 1);

381 mutex_exit(&ldf->df_lock);

383 if (user_specified) {
384 return (port);
385 }

387 if (!connp->conn_anon_priv_bind) {
388 dccps->dccps_next_port_to_try = port + 1;
389 }

391 return (port);

new/usr/src/uts/common/inet/dccp/dccp_bind.c 7

392 }

394 if (port == 0) {
395 break;
396 }

398 } while (++count < loopmax);

400 cmn_err(CE_NOTE, "dccp_bind.c: dccp_bindi exit");

402 return (0);
403 }

405 in_port_t
406 dccp_update_next_port(in_port_t port, const dccp_t *dccp, boolean_t random)
407 {
408 dccp_stack_t *dccps = dccp->dccp_dccps;
409 boolean_t restart = B_FALSE;
410 int i;

412 cmn_err(CE_NOTE, "dccp_bind.c: dccp_update_next_port");

414 if (random && dccp_random_anon_port != 0) {
415 (void) random_get_pseudo_bytes((uint8_t *)&port,
416 sizeof (in_port_t));

418 if (port < dccps->dccps_smallest_anon_port) {
419 port = dccps->dccps_smallest_anon_port +
420 port % (dccps->dccps_largest_anon_port -
421 dccps->dccps_smallest_anon_port);
422 }
423 }

425 retry:
426 if (port < dccps->dccps_smallest_anon_port) {
427 port = (in_port_t)dccps->dccps_smallest_anon_port;
428 }

430 if (port > dccps->dccps_largest_anon_port) {
431 if (restart) {
432 return (0);
433 }
434 restart = B_TRUE;
435 port = (in_port_t)dccps->dccps_smallest_anon_port;
436 }

438 if (port < dccps->dccps_smallest_nonpriv_port) {
439 port = (in_port_t)dccps->dccps_smallest_nonpriv_port;
440 }

442 for (i = 0; i < dccps->dccps_num_epriv_ports; i++) {
443 if (port == dccps->dccps_epriv_ports[i]) {
444 port++;
445 goto retry;
446 }
447 }

449 return (port);
450 }
451 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_impl.h 1

**
 7135 Wed Jun 13 12:04:32 2012
new/usr/src/uts/common/inet/dccp/dccp_impl.h
%B
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _INET_DCCP_IMPL_H
17 #define _INET_DCCP_IMPL_H

19 #include <sys/int_types.h>
20 #include <sys/netstack.h>
21 #include <sys/socket.h>
22 #include <sys/socket_proto.h>

24 #include <netinet/in.h>
25 #include <netinet/ip6.h>
26 #include <netinet/dccp.h>

28 #include <inet/common.h>
29 #include <inet/ip.h>
30 #include <inet/ip6.h>
31 #include <inet/optcom.h>
32 #include <inet/tunables.h>

34 #include "dccp_stack.h"

36 #ifdef __cplusplus
37 extern "C" {
38 #endif

40 #ifdef _KERNEL

42 #define DCCP_MOD_ID 5999 /* XXX */

44 #define DCCP_XMIT_LOWATER (4 * 1024)
45 #define DCCP_XMIT_HIWATER 49152
46 #define DCCP_RECV_LOWATER (2 * 1024)
47 #define DCCP_RECV_HIWATER 128000

49 /*
50 * Bind hash array size and hash function.
51 */
52 #define DCCP_BIND_FANOUT_SIZE 128
53 #define DCCP_BIND_HASH(lport, size) ((ntohs((uint16_t)lport)) & (size - 1))

56 #define DCCP_HDR_LENGTH(dccph) (dccph_t *)dccph->dh_offset
57 #define DCCP_MAX_HDR_LENGTH 1020
58 #define DCCP_MIN_HEADER_LENGTH 12

60 /* Packet types (RFC 4340, Section 5.1.) */
61 #define DCCP_PKT_REQUEST 0

new/usr/src/uts/common/inet/dccp/dccp_impl.h 2

62 #define DCCP_PKT_RESPONSE 1
63 #define DCCP_PKT_DATA 2
64 #define DCCP_PKT_ACK 3
65 #define DCCP_PKT_DATAACK 4
66 #define DCCP_PKT_CLOSEREQ 5
67 #define DCCP_PKT_CLOSE 6
68 #define DCCP_PKT_RESET 7
69 #define DCCP_PKT_SYNC 8
70 #define DCCP_PKT_SYNCACK 9

72 /* Generic protocol header (RFC 4340, Section 5.1.) */
73 typedef struct dccphdr_s {
74 uint8_t dh_lport[2];
75 uint8_t dh_fport[2];
76 uint8_t dh_offset;
77 uint8_t dh_ccval:4,
78 dh_cscov:4;
79 uint8_t db_sum[2];
80 uint8_t dh_reserved:3,
81 dh_type:4,
82 dh_x:1;
83 uint8_t dh_res_seq;
84 uint8_t dh_seq[2];
85 } dccph_t;

88 /* Generic protocol header aligned (RFC 4340, Section 5.1.) */
89 typedef struct dccphdra_s {
90 in_port_t dha_lport; /* Source port */
91 in_port_t dha_fport; /* Destination port */
92 uint8_t dha_offset; /* Data offset */
93 uint8_t dha_ccval:4, /* */
94 dha_cscov:4; /* */
95 uint16_t dha_sum; /* Checksum */
96 uint8_t dha_x:1, /* Reserved */
97 dha_type:4, /* Packet type */
98 dha_reserved:3; /* Header type */
99 uint8_t dha_res_seq;
100 uint16_t dha_seq; /* Partial sequence number */
101 } dccpha_t;

103 typedef struct dccphdra_ext_s {
104 uint32_t dha_ext_seq;
105 } dccpha_ext_t;

107 /* Acknowledgement number */
108 typedef struct dccphdra_ack {
109 uint16_t dha_ack_reserved;
110 uint16_t dha_ack_high;
111 uint32_t dha_ack_low;
112 } dccpha_ack_t;

114 typedef struct dccphdra_srv {
115 uint32_t dha_srv_code;
116 } dccpha_srv_t;

118 typedef struct dccphdra_reset {
119 uint8_t dha_reset_code;
120 uint8_t dha_reset_data[3];
121 } dccpha_reset_t;

123 /* Internal DCCP structure */
124 typedef struct dccp_s {

126 conn_t *dccp_connp; /* Backpointer to conn_t */
127 dccp_stack_t *dccp_dccps; /* Backpointer to dccp_stack_t *

new/usr/src/uts/common/inet/dccp/dccp_impl.h 3

129 uint32_t dccp_state;

131 /* Bind related */
132 struct dccp_s *dccp_bind_hash; /* Bind hash chain */
133 struct dccp_s *dccp_bind_hash_port; /* Bound to the same port */
134 struct dccp_s **dccp_ptpbhn;

136 struct dccphdra_s *dccp_dccpha; /* Template header */

138 mblk_t *dccp_xmit_head;

140 sock_connid_t dccp_connid;
141 } dccp_t;

143 #define dccps_smallest_nonpriv_port dccps_propinfo_tbl[0].prop_cur_uval
144 #define dccps_smallest_anon_port dccps_propinfo_tbl[1].prop_cur_uval
145 #define dccps_largest_anon_port dccps_propinfo_tbl[2].prop_cur_uval

147 #define dccps_dbg dccps_propinfo_tbl[4].prop_cur_uval
148 #define dccps_rst_sent_rate_enabled dccps_propinfo_tbl[5].prop_cur_uval
149 #define dccps_rst_sent_rate dccps_propinfo_tbl[6].prop_cur_uval

151 typedef struct dccp_df_s {
152 struct dccp_s *df_dccp;
153 kmutex_t df_lock;
154 uchar_t df_pad[TF_CACHEL_PAD - (sizeof (dccp_t *) +
155 sizeof (kmutex_t))];
156 } dccp_df_t;

158 extern struct qinit dccp_rinitv4, dccp_rinitv6;

160 extern optdb_obj_t dccp_opt_obj;
161 extern uint_t dccp_max_optsize;

163 /*
164 * Functions in dccp.c
165 */
166 extern int dccp_build_hdrs(dccp_t *);
167 extern conn_t *dccp_create_common(cred_t *, boolean_t, boolean_t, int *);
168 extern void dccp_close_common(conn_t *);
169 extern int dccp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
170 boolean_t);
171 extern int dccp_do_unbind(conn_t *);
172 extern int dccp_do_listen(conn_t *, struct sockaddr *, socklen_t, int,
173 cred_t *, boolean_t);
174 extern int dccp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
175 cred_t *, pid_t);
176 extern void dccp_init_values(dccp_t *, dccp_t *);
177 extern void *dccp_get_conn(void *, dccp_stack_t *);
178 extern int dccp_set_destination(dccp_t *dccp);

180 /*
181 * Bind related functions in dccp_bind.c
182 */
183 extern void dccp_bind_hash_insert(dccp_df_t *, dccp_t *, int);
184 extern void dccp_bind_hash_remove(dccp_t *);
185 extern int dccp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *
186 boolean_t);
187 extern in_port_t dccp_bindi(dccp_t *, in_port_t, const in6_addr_t *, int,
188 boolean_t, boolean_t, boolean_t);
189 extern in_port_t dccp_update_next_port(in_port_t, const dccp_t *, boolean_t);

191 /*
192 * MIB-II and kstat related functions.
193 */

new/usr/src/uts/common/inet/dccp/dccp_impl.h 4

194 extern mblk_t *dccp_snmp_get(queue_t *, mblk_t *);

196 /*
197 * Socket related functions in dccp_socket.c
198 */
199 extern sock_lower_handle_t dccp_create(int, int, int, sock_downcalls_t **,
200 uint_t *, int *, int, cred_t *);
201 extern int dccp_fallback(sock_lower_handle_t, queue_t *, boolean_t,
202 so_proto_quiesced_cb_t, sock_quiesce_arg_t *);

204 /*
205 * Input path related functions in dccp_input.c
206 */
207 extern void dccp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
208 extern void dccp_input_data(void *, mblk_t *, void *, ip_recv_attr_t *);
209 extern void dccp_rsrv(queue_t *);
210 extern void dccp_input_listener_unbound(void *, mblk_t *, void *,
211 ip_recv_attr_t *);
212 extern boolean_t dccp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *,
213 ip_recv_attr_t *);
214 /*
215 * Output path related functions in dccp_output.c
216 */
217 extern void dccp_wput(queue_t *, mblk_t *);
218 extern void dccp_xmit_listeners_reset(mblk_t *, ip_recv_attr_t *,
219 ip_stack_t *, conn_t *);
220 extern void dccp_send_synack(void *, mblk_t *, void *, ip_recv_attr_t *);
221 extern mblk_t *dccp_xmit_mp(dccp_t *, mblk_t *, int32_t, int32_t *,
222 mblk_t **, uint32_t, boolean_t, uint32_t *, boolean_t);
223 extern mblk_t *dccp_generate_packet(conn_t *, mblk_t *);
224 /*
225 * Options related functions in dccp_opt_data.c
226 */
227 extern int dccp_opt_get(conn_t *, int, int, uchar_t *);
228 extern int dccp_opt_set(conn_t *, uint_t, int, int, uint_t, uchar_t *,
229 uint_t *, uchar_t *, void *, cred_t *);

231 /*
232 * dccp_tpi.c
233 */
234 extern void dccp_err_ack(dccp_t *, mblk_t *, int, int);
235 extern void dccp_tpi_connect(dccp_t *, mblk_t *);
236 extern int dccp_tpi_close(queue_t *, int);
237 extern int dccp_tpi_opt_get(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);
238 extern int dccp_tpi_opt_set(queue_t *, uint_t, int, int, uint_t, uchar_t *,
239 uint_t *, uchar_t *, void *, cred_t *);

241 #endif /* _KERNEL */

243 #ifdef __cplusplus
244 }
245 #endif

247 #endif /* _INET_DCCP_IMPL_H */
248 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_input.c 1

**
 8662 Wed Jun 13 12:04:33 2012
new/usr/src/uts/common/inet/dccp/dccp_input.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #define _SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/squeue_impl.h>
42 #include <sys/squeue.h>
43 #include <sys/tsol/tnet.h>

45 #include <inet/common.h>
46 #include <inet/ip.h>

48 #include <sys/cmn_err.h>

50 #include "dccp_impl.h"

52 static mblk_t *dccp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
53 ip_recv_attr_t *);
54 static mblk_t *dccp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
55 ip_recv_attr_t *);
56 static void dccp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);

58 void
59 dccp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
60 {
61 cmn_err(CE_NOTE, "dccp_input.c: dccp_input_data");

new/usr/src/uts/common/inet/dccp/dccp_input.c 2

62 }

64 void
65 dccp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
66 {
67 cmn_err(CE_NOTE, "dccp_input.c: dccp_icmp_input");
68 }

70 void
71 dccp_rsrv(queue_t *q)
72 {
73 cmn_err(CE_NOTE, "dccp_input.c: dccp_rsrv");
74 }

76 static mblk_t *
77 dccp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
78 ip_recv_attr_t *ira)
79 {
80 return (NULL);
81 }

83 static mblk_t *
84 dccp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
85 ip_recv_attr_t *ira)
86 {
87 dccp_t *ldccp = lconnp->conn_dccp;
88 dccp_t *dccp = connp->conn_dccp;
89 dccp_stack_t *dccps = dccp->dccp_dccps;
90 ipha_t *ipha;
91 mblk_t *tpi_mp;
92 sin_t sin;

94 ASSERT(ira->ira_flags & IRAF_IS_IPV4);
95 ipha = (ipha_t *)mp->b_rptr;

97 connp->conn_ipversion = IPV4_VERSION;
98 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
99 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
100 connp->conn_saddr_v6 = connp->conn_laddr_v6;

102 sin = sin_null;
103 sin.sin_addr.s_addr = connp->conn_faddr_v4;
104 sin.sin_port = connp->conn_fport;
105 sin.sin_family = AF_INET;

107 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
108 cmn_err(CE_NOTE, "ancillary");

110 sin_t sind;

112 sind = sin_null;
113 sind.sin_addr.s_addr = connp->conn_laddr_v4;
114 sind.sin_port = connp->conn_lport;
115 sind.sin_family = AF_INET;

117 tpi_mp = mi_tpi_extconn_ind(NULL,
118 (char *)&sind, sizeof (sin_t), (char *)&dccp,
119 (t_scalar_t)sizeof (intptr_t), (char *)&sind,
120 sizeof (sin_t), (t_scalar_t) 1); /* XXX */

122 } else {
123 tpi_mp = mi_tpi_conn_ind(NULL,
124 (char *)&sin, sizeof (sin_t),
125 (char *)&dccp, (t_scalar_t)sizeof (intptr_t),
126 (t_scalar_t) 1); /* XXX */
127 }

new/usr/src/uts/common/inet/dccp/dccp_input.c 3

129 return (tpi_mp);
130 }

132 static void
133 dccp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
134 {
135 conn_t *lconnp = (conn_t *)arg;
136 conn_t *econnp;
137 dccp_t *listener = lconnp->conn_dccp;
138 dccp_t *eager;
139 dccp_stack_t *dccps = listener->dccp_dccps;
140 ip_stack_t *ipst = dccps->dccps_netstack->netstack_ip;
141 dccpha_t *dccpha;
142 squeue_t *new_sqp;
143 mblk_t *tpi_mp;
144 mblk_t *mp1;
145 uint_t ip_hdr_len;
146 uint_t type;
147 int error;

149 cmn_err(CE_NOTE, "dccp_input.c: dccp_input_listener");

151 ip_hdr_len = ira->ira_ip_hdr_length;
152 dccpha = (dccpha_t *)&mp->b_rptr[ip_hdr_len];
153 type = (uint_t)dccpha->dha_type;

155 if (type != DCCP_PKT_REQUEST) {
156 cmn_err(CE_NOTE, "not request pkt");

158 /* XXX do something with a reset packet sent? */
159 freemsg(mp);
160 return;
161 }

163 /* XXX memory pressure */

165 /* XXX request defense */

167 /* XXX number of connections per listener */

169 ASSERT(ira->ira_sqp != NULL);
170 new_sqp = ira->ira_sqp;

172 econnp = (conn_t *)dccp_get_conn(arg2, dccps);
173 if (econnp == NULL) {
174 cmn_err(CE_NOTE, "econnp not found (eager)");
175 goto error2;
176 }

178 ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
179 econnp->conn_sqp = new_sqp;
180 econnp->conn_initial_sqp = new_sqp;
181 econnp->conn_ixa->ixa_sqp = new_sqp;

183 econnp->conn_fport = dccpha->dha_lport;
184 econnp->conn_lport = dccpha->dha_fport;

186 error = conn_inherit_parent(lconnp, econnp);
187 if (error != 0) {
188 cmn_err(CE_NOTE, "conn_inherit_parent failed");
189 goto error3;
190 }

192 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;

new/usr/src/uts/common/inet/dccp/dccp_input.c 4

195 ASSERT(OK_32PTR(mp->b_rptr));
196 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
197 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);

199 if (lconnp->conn_family == AF_INET) {
200 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
201 tpi_mp = dccp_conn_create_v4(lconnp, econnp, mp, ira);
202 } else {
203 tpi_mp = dccp_conn_create_v6(lconnp, econnp, mp, ira);
204 }

206 if (tpi_mp == NULL) {
207 cmn_err(CE_NOTE, "tpi_mo == NULL");
208 goto error3;
209 }

211 eager = econnp->conn_dccp;
212 SOCK_CONNID_INIT(eager->dccp_connid);

214 dccp_init_values(eager, listener);

216 ASSERT((econnp->conn_ixa->ixa_flags &
217 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
218 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
219 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
220 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));

222 if (ira->ira_cred != NULL) {
223 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
224 }

226 if (IPCL_IS_NONSTR(lconnp)) {
227 econnp->conn_flags |= IPCL_NONSTR;
228 }

230 /* XXX dccps is right? */
231 dccp_bind_hash_insert(&dccps->dccps_bind_fanout[
232 DCCP_BIND_HASH(econnp->conn_lport, dccps->dccps_bind_fanout_size)],

234 SOCK_CONNID_BUMP(eager->dccp_connid);

236 error = dccp_set_destination(eager);
237 if (error != 0) {
238 cmn_err(CE_NOTE, "dccp_set_destination failed.");
239 dccp_bind_hash_remove(eager);
240 goto error3;
241 }

243 CONN_INC_REF(lconnp);

245 /*
246 mp1 = dccp_xmit_mp(eager, eager->dccp_xmit_head, 0,
247 NULL, NULL, 0, B_FALSE, NULL, B_FALSE);
248 */
249 mp1 = dccp_generate_packet(lconnp, mp);
250 if (mp1 == NULL) {
251 cmn_err(CE_NOTE, "dccp_xmit_mp failed");

253 CONN_INC_REF(econnp);
254 goto error;
255 }

257 CONN_INC_REF(econnp);

259 error = ipcl_conn_insert(econnp);

new/usr/src/uts/common/inet/dccp/dccp_input.c 5

260 if (error != 0) {
261 cmn_err(CE_NOTE, "ipcl_conn_insert(econnp) failed");
262 goto error;
263 }

265 freemsg(mp);

267 if (econnp->conn_sqp == lconnp->conn_sqp) {
268 (void) conn_ip_output(mp1, econnp->conn_ixa);
269 CONN_DEC_REF(econnp);
270 } else {
271 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, dccp_send_synack,
272 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); /* XXX */
273 }

275 return;
276 error:
277 error2:
278 error3:
279 freemsg(mp);
280 }

282 void
283 dccp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
284 ip_recv_attr_t *ira)
285 {
286 conn_t *connp = (conn_t *)arg;
287 squeue_t *sqp = (squeue_t *)arg2;
288 squeue_t *new_sqp;
289 uint32_t conn_flags;

291 cmn_err(CE_NOTE, "dccp_input.c: dccp_input_listener_unbound");

293 ASSERT(ira->ira_sqp != NULL);
294 new_sqp = ira->ira_sqp;

296 if (connp->conn_fanout == NULL) {
297 goto done;
298 }

300 /*
301 * Bind to correct squeue.
302 */
303 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
304 cmn_err(CE_NOTE, "not fully bound");

306 mutex_enter(&connp->conn_fanout->connf_lock);
307 mutex_enter(&connp->conn_lock);

309 if (connp->conn_ref != 4 ||
310 connp->conn_dccp->dccp_state != DCCPS_LISTEN) {
311 mutex_exit(&connp->conn_lock);
312 mutex_exit(&connp->conn_fanout->connf_lock);
313 goto done;
314 }

316 if (connp->conn_sqp != new_sqp) {
317 while (connp->conn_sqp != new_sqp) {
318 (void) casptr(&connp->conn_sqp, sqp, new_sqp);
319 }
320 connp->conn_ixa->ixa_sqp = new_sqp;
321 }

323 do {
324 conn_flags = connp->conn_flags;
325 conn_flags |= IPCL_FULLY_BOUND;

new/usr/src/uts/common/inet/dccp/dccp_input.c 6

326 (void) cas32(&connp->conn_flags, connp->conn_flags,
327 conn_flags);
328 } while (!(connp->conn_flags & IPCL_FULLY_BOUND));

330 mutex_exit(&connp->conn_lock);
331 mutex_exit(&connp->conn_fanout->connf_lock);

333 connp->conn_recv = dccp_input_listener;
334 }

336 done:
337 if (connp->conn_sqp != sqp) {
338 CONN_INC_REF(connp);
339 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
340 ira, SQ_FILL, SQTAG_DCCP_CONN_REQ_UNBOUND);
341 } else {
342 dccp_input_listener(connp, mp, sqp, ira);
343 }
344 }

346 boolean_t
347 dccp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
348 ip_recv_attr_t *ira)
349 {
350 cmn_err(CE_NOTE, "dccp_input.c: dccp_verifyicmp");

352 return (B_TRUE);
353 }
354 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_ip.h 1

**
 807 Wed Jun 13 12:04:34 2012
new/usr/src/uts/common/inet/dccp/dccp_ip.h
%B
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _INET_DCCP_DCCP_IP_H
17 #define _INET_DCCP_DCCP_IP_H

19 #include <netinet/dccp.h>
20 #include <inet/dccp/dccp_stack.h>

22 #ifdef __cplusplus
23 extern "C" {
24 #endif

26 /*
27 * DCCP functions for IP
28 */
29 extern void dccp_ddi_g_init(void);
30 extern void dccp_ddi_g_destroy(void);

33 #ifdef __cplusplus
34 }
35 #endif

37 #endif /* _INET_DCCP_DCCP_IP_H */
38 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_opt_data.c 1

**
 3415 Wed Jun 13 12:04:35 2012
new/usr/src/uts/common/inet/dccp/dccp_opt_data.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * This file contains functions related to getting and setting options
33 * thought the getsockopt and setsockopt socket functions.
34 */

36 #include <sys/types.h>
37 #include <sys/stream.h>
38 #define _SUN_TPI_VERSION 2
39 #include <sys/tihdr.h>
40 #include <sys/xti_xtiopt.h>
41 #include <sys/xti_inet.h>
42 #include <sys/policy.h>

44 #include <inet/common.h>
45 #include <inet/ip.h>
46 #include <inet/optcom.h>
47 #include <netinet/ip.h>

49 #include <sys/cmn_err.h>

51 #include "dccp_impl.h"

53 static int dccp_opt_default(queue_t *, int, int, uchar_t *);

55 /*
56 * Supported options.
57 */
58 opdes_t dccp_opt_arr[] = {
59 { SO_DEBUG, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
60 };

new/usr/src/uts/common/inet/dccp/dccp_opt_data.c 2

62 /*
63 * Supported levels.
64 */
65 optlevel_t dccp_valid_levels_arr[] = {
66 SOL_SOCKET,
67 };

69 #define DCCP_OPT_ARR_CNT A_CNT(dccp_opt_arr)
70 #define DCCP_VALID_LEVELS_CNT A_CNT(dccp_valid_levels_arr)

72 uint_t dccp_max_optsize;

74 /*
75 * Options database object.
76 */
77 optdb_obj_t dccp_opt_obj = {
78 dccp_opt_default,
79 dccp_tpi_opt_get,
80 dccp_tpi_opt_set,
81 DCCP_OPT_ARR_CNT,
82 dccp_opt_arr,
83 DCCP_VALID_LEVELS_CNT,
84 dccp_valid_levels_arr,
85 };

87 /*
88 * Default value for certain options.
89 */
90 int
91 dccp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
92 {
93 dccp_stack_t *dccps = Q_TO_DCCP(q)->dccp_dccps;
94 int32_t *il = (int32_t *)ptr;

96 return (sizeof (int));
97 }

99 int
100 dccp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
101 {
102 dccp_t *dccp = connp->conn_dccp;
103 conn_opt_arg_t coas;
104 int retval;

106 coas.coa_connp = connp;
107 coas.coa_ixa = connp->conn_ixa;
108 coas.coa_ipp = &connp->conn_xmit_ipp;
109 coas.coa_ancillary = B_FALSE;
110 coas.coa_changed = 0;

112 switch (level) {
113 case SOL_SOCKET:
114 break;
115 case IPPROTO_TCP:
116 break;
117 case IPPROTO_IP:
118 break;
119 case IPPROTO_IPV6:
120 break;
121 }

123 mutex_enter(&connp->conn_lock);
124 retval = conn_opt_get(&coas, level, name, ptr);
125 mutex_exit(&connp->conn_lock);

127 return (retval);

new/usr/src/uts/common/inet/dccp/dccp_opt_data.c 3

128 }

130 /* ARGSUSED */
131 int
132 dccp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
133 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
134 void *thisdg_attrs, cred_t *cr)
135 {
136 dccp_t *dccp = connp->conn_dccp;
137 dccp_stack_t *dccps = dccp->dccp_dccps;
138 conn_opt_arg_t coas;
139 int *i1 = (int *)invalp;
140 int error;

142 coas.coa_connp = connp;
143 coas.coa_ancillary = B_FALSE;
144 coas.coa_changed = 0;

146 error = conn_opt_set(&coas, level, name, inlen, invalp,
147 B_FALSE, cr);
148 if (error !=0) {
149 *outlenp = 0;
150 return (error);
151 }

153 return (0);
154 }
155 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_output.c 1

**
 9965 Wed Jun 13 12:04:35 2012
new/usr/src/uts/common/inet/dccp/dccp_output.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * Functions related to the output path.
33 */

35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/strsun.h>
38 #include <sys/strsubr.h>
39 #include <sys/stropts.h>
40 #include <sys/strlog.h>
41 #define _SUN_TPI_VERSION 2
42 #include <sys/tihdr.h>
43 #include <sys/suntpi.h>
44 #include <sys/xti_inet.h>
45 #include <sys/squeue_impl.h>
46 #include <sys/squeue.h>
47 #include <sys/tsol/tnet.h>

49 #include <inet/common.h>
50 #include <inet/ip.h>

52 #include <sys/cmn_err.h>

54 #include "dccp_impl.h"
55 #include "dccp_stack.h"

57 static void dccp_xmit_early_reset(char *, mblk_t *, uint32_t, uint32_t,
58 int, ip_recv_attr_t *, ip_stack_t *, conn_t *);
59 static boolean_t dccp_send_rst_chk(dccp_stack_t *);

61 /*

new/usr/src/uts/common/inet/dccp/dccp_output.c 2

62 * STREAMS
63 */
64 void
65 dccp_wput(queue_t *q, mblk_t *mp)
66 {
67 cmn_err(CE_NOTE, "dccp_output.c: dccp_wput\n");
68 }

70 /*
71 * Send a reset as response to an incoming packet or
72 * reset a connection.
73 */
74 void
75 dccp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst,
76 conn_t *connp)
77 {
78 dccpha_t *dccpha;
79 uint32_t seg_seq;
80 uint32_t seg_ack;
81 uint32_t seq_len;
82 uint_t ip_hdr_len = ira->ira_ip_hdr_length;
83 uchar_t *rptr;

85 cmn_err(CE_NOTE, "dccp_output.c: dccp_xmit_listeners_reset");

87 rptr = mp->b_rptr;

89 dccpha = (dccpha_t *)&rptr[ip_hdr_len];

91 //seg_seq = ntonl(dccpha->dha_seq);
92 //seg_ack = htonl(dccpha->dha_ack);

94 seq_len = msgdsize(mp) - (ip_hdr_len);

96 dccp_xmit_early_reset("no dccp, reset", mp, 0,
97 0, 0, ira, ipst, connp);
98 }

100 /*
101 * RFC 4340, Section 8.1.3
102 */
103 static void
104 dccp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl
105 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp)
106 {
107 dccpha_t *dccpha;
108 dccpha_t *nmp_dccpha;
109 dccpha_ack_t *nmp_dccpha_ack;
110 dccpha_reset_t *dccpha_reset;
111 dccpha_reset_t *nmp_dccpha_reset;
112 dccpha_ext_t *dccpha_ext;
113 dccpha_ext_t *nmp_dccpha_ext;
114 netstack_t *ns = ipst->ips_netstack;
115 dccp_stack_t *dccps = ns->netstack_dccp;
116 ip6_t *ip6h;
117 ipha_t *ipha;
118 ipha_t *nmp_ipha;
119 ip_xmit_attr_t ixas;
120 ip_xmit_attr_t *ixa;
121 in6_addr_t v6addr;
122 ipaddr_t v4addr;
123 mblk_t *nmp;
124 uint64_t pkt_ack;
125 uint_t ip_hdr_len = ira->ira_ip_hdr_length;
126 ushort_t port;
127 ushort_t len;

new/usr/src/uts/common/inet/dccp/dccp_output.c 3

129 cmn_err(CE_NOTE, "dccp_output.c: dccp_xmit_early_reset");

131 if (!dccp_send_rst_chk(dccps)) {
132 cmn_err(CE_NOTE, "dccp_output.c: not sending reset packet");
133 DCCP_STAT(dccps, dccp_rst_unsent);
134 freemsg(mp);
135 return;
136 }

138 bzero(&ixas, sizeof (ixas));
139 ixa = &ixas;

141 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE;
142 ixa->ixa_protocol = IPPROTO_DCCP;
143 ixa->ixa_zoneid = ira->ira_zoneid;
144 ixa->ixa_ifindex = 0;
145 ixa->ixa_ipst = ipst;
146 ixa->ixa_cred = kcred;
147 ixa->ixa_cpid = NOPID;

149 if (str && dccps->dccps_dbg) {
150 (void) strlog(DCCP_MOD_ID, 0, 1, SL_TRACE,
151 "dccp_xmit_early_reset: ’%s’, seq 0x%x, ack 0x%x, "
152 "flags 0x%x",
153 str, seq, ack, ctl);
154 }

156 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
157 ipha = (ipha_t *)mp->b_rptr;

159 } else {
160 /* XXX */
161 }

163 /*
164 * Allocate a new DCCP reset message
165 */
166 len = ip_hdr_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t) + sizeof (d
167 nmp = allocb(len, BPRI_MED);
168 if (nmp == NULL) {
169 cmn_err(CE_NOTE, "alloc failed");
170 return;
171 }
172 bcopy(mp->b_rptr, nmp->b_wptr, ip_hdr_len + sizeof (dccpha_t));

174 nmp_dccpha = (dccpha_t *)&nmp->b_rptr[ip_hdr_len];
175 nmp_dccpha->dha_offset = 7;

177 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
178 nmp_ipha = (ipha_t *)nmp->b_rptr;

180 nmp_ipha->ipha_length = htons(len);
181 nmp_ipha->ipha_src = ipha->ipha_dst;
182 nmp_ipha->ipha_dst = ipha->ipha_src;

184 ixa->ixa_flags |= IXAF_IS_IPV4;
185 ixa->ixa_ip_hdr_length = ip_hdr_len;
186 } else {
187 cmn_err(CE_NOTE, "not v4");
188 }

190 dccpha = (dccpha_t *)&mp->b_rptr[ip_hdr_len];

192 nmp->b_wptr = &nmp->b_rptr[len];

new/usr/src/uts/common/inet/dccp/dccp_output.c 4

194 ixa->ixa_pktlen = len; // ?

196 nmp_dccpha->dha_fport = dccpha->dha_lport;
197 nmp_dccpha->dha_lport = dccpha->dha_fport;
198 nmp_dccpha->dha_type = DCCP_PKT_RESET;
199 nmp_dccpha->dha_x = 1;
200 nmp_dccpha->dha_res_seq = 0;
201 nmp_dccpha->dha_seq = 0;

203 nmp_dccpha->dha_sum = htons(sizeof (dccpha_t) + sizeof (dccpha_ext_t) +

205 dccpha_ext = (dccpha_ext_t *)&mp->b_rptr[ip_hdr_len + sizeof (dccpha_t)]
206 nmp_dccpha_ext = (dccpha_ext_t *)&nmp->b_rptr[ip_hdr_len + sizeof (dccph
207 nmp_dccpha_ext->dha_ext_seq = 0;

209 len = ip_hdr_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t);
210 nmp_dccpha_ack = (dccpha_ack_t *)&nmp->b_rptr[len];
211 nmp_dccpha_ack->dha_ack_high = dccpha->dha_seq;
212 nmp_dccpha_ack->dha_ack_low = dccpha_ext->dha_ext_seq;

214 len = ip_hdr_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t) + sizeof (d
215 nmp_dccpha_reset = (dccpha_reset_t *)&nmp->b_rptr[len];
216 nmp_dccpha_reset->dha_reset_code = 7;
217 nmp_dccpha_reset->dha_reset_data[0] = 0;
218 nmp_dccpha_reset->dha_reset_data[1] = 0;
219 nmp_dccpha_reset->dha_reset_data[2] = 0;

221 (void) ip_output_simple(nmp, ixa);

223 ixa_cleanup(ixa);
224 }

226 /*
227 *
228 */
229 static boolean_t
230 dccp_send_rst_chk(dccp_stack_t *dccps)
231 {
232 int64_t now;

234 if (dccps->dccps_rst_sent_rate_enabled != 0) {
235 now = ddi_get_lbolt64();
236 if (TICK_TO_MSEC(now - dccps->dccps_last_rst_intrvl) >
237 1 * SECONDS) {
238 dccps->dccps_last_rst_intrvl = now;
239 dccps->dccps_rst_cnt = 1;
240 } else if (++dccps->dccps_rst_cnt > dccps->dccps_rst_sent_rate)
241 return (B_FALSE);
242 }
243 }

245 return (B_TRUE);
246 }

248 void
249 dccp_send_synack(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
250 {
251 cmn_err(CE_NOTE, "dccp_output.c: dccp_send_synack");
252 }

254 mblk_t *
255 dccp_xmit_mp(dccp_t *dccp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
256 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
257 boolean_t rexmit)
258 {
259 conn_t *connp = dccp->dccp_connp;

new/usr/src/uts/common/inet/dccp/dccp_output.c 5

260 dccp_stack_t *dccps = dccp->dccp_dccps;
261 dccpha_t *dccpha;
262 dccpha_ext_t *dccpha_ext;
263 dccpha_ack_t *dccpha_ack;
264 dccpha_srv_t *dccpha_srv;
265 ip_xmit_attr_t *ixa = connp->conn_ixa;
266 mblk_t *mp1;
267 uchar_t *rptr;
268 ushort_t len;
269 int data_length;

271 cmn_err(CE_NOTE, "dccp_output.c: dccp_xmit_mp");

273 // dccpha_t already in iphc_len?
274 len = connp->conn_ht_iphc_len + sizeof (dccpha_ext_t) + sizeof (dccpha_a

276 //mp1 = dccp_generate_packet(connp, mp);
277 mp1 = allocb(len, BPRI_MED);
278 if (mp1 == NULL) {
279 cmn_err(CE_NOTE, "allocb failed");
280 return (NULL);
281 }

283 data_length = 0;

285 rptr = mp1->b_rptr;
286 mp1->b_wptr = &mp1->b_rptr[len];
287 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
288 dccpha = (dccpha_t *)&rptr[ixa->ixa_ip_hdr_length];
289 dccpha->dha_type = DCCP_PKT_RESPONSE;
290 dccpha->dha_offset = 8;
291 dccpha->dha_x = 1;
292 dccpha->dha_ccval = 0;
293 dccpha->dha_cscov = 0;
294 dccpha->dha_reserved = 0;
295 dccpha->dha_res_seq = 0;
296 dccpha->dha_seq = 0;

298 dccpha_ext = (dccpha_ext_t *)&rptr[ixa->ixa_ip_hdr_length + sizeof (dccp
299 dccpha_ext->dha_ext_seq = 0;

301 dccpha_ack = (dccpha_ack_t *)&rptr[ixa->ixa_ip_hdr_length + sizeof (dccp
302 dccpha_ack->dha_ack_reserved = 0;
303 dccpha_ack->dha_ack_high = 0;
304 dccpha_ack->dha_ack_low = 0;

306 dccpha_srv = (dccpha_srv_t *)&rptr[ixa->ixa_ip_hdr_length + sizeof (dccp
307 dccpha_srv->dha_srv_code = 0;

309 return (mp1);
310 }

312 mblk_t *
313 dccp_generate_packet(conn_t *connp, mblk_t *mp)
314 {
315 dccpha_t *dccpha;
316 dccpha_ext_t *dccpha_ext;
317 dccpha_ack_t *dccpha_ack;
318 mblk_t *mp1;
319 uint16_t ack_high;
320 uint32_t ack_low;
321 // uint_t ip_hdr_len = ira->ira_ip_hdr_length;
322 ip_xmit_attr_t *ixa = connp->conn_ixa;
323 uint_t ip_hdr_len;
324 uint_t len;
325 uchar_t *rptr;

new/usr/src/uts/common/inet/dccp/dccp_output.c 6

327 cmn_err(CE_NOTE, "dccp_output.c: dccp_generate_packet");

329 ip_hdr_len = ixa->ixa_ip_hdr_length;

331 if (mp == NULL) {
332 cmn_err(CE_NOTE, "NULL pointer mp");
333 return (NULL);
334 }

336 dccpha = (dccpha_t *)&mp->b_rptr[ip_hdr_len];
337 dccpha_ext = (dccpha_ext_t *)&mp->b_rptr[ip_hdr_len + sizeof (dccpha_t)]

339 ack_high = dccpha->dha_seq;
340 ack_low = dccpha_ext->dha_ext_seq;

342 len = connp->conn_ht_iphc_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t
343 //len = ip_hdr_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t) + sizeof
344 mp1 = allocb(len, BPRI_MED);
345 if (mp1 == NULL) {
346 cmn_err(CE_NOTE, "allocb failed");
347 return (NULL);
348 }

350 rptr = mp1->b_rptr;
351 mp1->b_wptr = &mp1->b_rptr[len];

353 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
354 dccpha = (dccpha_t *)&rptr[ixa->ixa_ip_hdr_length];
355 //dccpha = (dccpha_t *)&mp1->b_rptr[ip_hdr_len];

357 dccpha->dha_type = DCCP_PKT_RESPONSE;
358 dccpha->dha_offset = 8;
359 dccpha->dha_x = 1;
360 dccpha->dha_ccval = 0;
361 dccpha->dha_cscov = 0;
362 dccpha->dha_reserved = 0;
363 dccpha->dha_res_seq = 0;
364 dccpha->dha_seq = 1;
365 dccpha->dha_sum = htons(len);

367 dccpha_ext = (dccpha_ext_t *)&mp1->b_rptr[ip_hdr_len + sizeof (dccpha_t)
368 dccpha_ext->dha_ext_seq = 1;

370 dccpha_ack = (dccpha_ack_t *)&mp1->b_rptr[ip_hdr_len + sizeof (dccpha_t)
371 dccpha_ack->dha_ack_high = ack_high;
372 dccpha_ack->dha_ack_low = ack_low;

374 return (mp1);
375 }
376 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_socket.c 1

**
 13439 Wed Jun 13 12:04:36 2012
new/usr/src/uts/common/inet/dccp/dccp_socket.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * This file contains function related to the socket interface.
33 */

35 #include <sys/types.h>
36 #include <sys/strlog.h>
37 #include <sys/policy.h>
38 #include <sys/sockio.h>
39 #include <sys/strsubr.h>
40 #include <sys/strsun.h>
41 #define _SUN_TPI_VERSION 2
42 #include <sys/tihdr.h>
43 #include <sys/squeue_impl.h>
44 #include <sys/squeue.h>
45 #include <sys/socketvar.h>

47 #include <inet/common.h>
48 #include <inet/proto_set.h>
49 #include <inet/ip.h>

51 #include <sys/cmn_err.h>

53 #include "dccp_impl.h"
54 #include "dccp_stack.h"

56 static void dccp_activate(sock_lower_handle_t, sock_upper_handle_t,
57 sock_upcalls_t *, int, cred_t *);
58 static int dccp_accept(sock_lower_handle_t, sock_lower_handle_t,
59 sock_upper_handle_t, cred_t *);
60 static int dccp_bind(sock_lower_handle_t, struct sockaddr *,
61 socklen_t, cred_t *);

new/usr/src/uts/common/inet/dccp/dccp_socket.c 2

62 static int dccp_listen(sock_lower_handle_t, int, cred_t *);
63 static int dccp_connect(sock_lower_handle_t, const struct sockaddr *,
64 socklen_t, sock_connid_t *, cred_t *);
65 static int dccp_getpeername(sock_lower_handle_t, struct sockaddr *,
66 socklen_t *, cred_t *);
67 static int dccp_getsockname(sock_lower_handle_t, struct sockaddr *,
68 socklen_t *, cred_t *);
69 static int dccp_getsockopt(sock_lower_handle_t, int, int, void *,
70 socklen_t *, cred_t *);
71 static int dccp_setsockopt(sock_lower_handle_t, int, int, const void *,
72 socklen_t, cred_t *);
73 static int dccp_sendmsg(sock_lower_handle_t, mblk_t *, struct nmsghdr *,
74 cred_t *);
75 static int dccp_shutdown(sock_lower_handle_t, int, cred_t *);
76 static void dccp_clr_flowctrl(sock_lower_handle_t);
77 static int dccp_ioctl(sock_lower_handle_t, int, intptr_t, int, int32_t *,
78 cred_t *);
79 static int dccp_close(sock_lower_handle_t, int, cred_t *);

81 sock_downcalls_t sock_dccp_downcalls = {
82 dccp_activate,
83 dccp_accept,
84 dccp_bind,
85 dccp_listen,
86 dccp_connect,
87 dccp_getpeername,
88 dccp_getsockname,
89 dccp_getsockopt,
90 dccp_setsockopt,
91 dccp_sendmsg,
92 NULL,
93 NULL,
94 NULL,
95 dccp_shutdown,
96 dccp_clr_flowctrl,
97 dccp_ioctl,
98 dccp_close,
99 };

101 /* ARGSUSED */
102 static void
103 dccp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
104 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
105 {
106 conn_t *connp = (conn_t *)proto_handle;
107 struct sock_proto_props sopp;
108 //extern struct module_info tcp_rinfo;

110 cmn_err(CE_NOTE, "dccp_socket.c: dccp_activate");

112 ASSERT(cr != NULL);

114 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
115 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
116 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;

119 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
120 sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
121 sopp.sopp_maxpsz = INFPSZ;
122 sopp.sopp_maxblk = INFPSZ;
123 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
124 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
125 sopp.sopp_maxaddrlen = sizeof (sin6_t);
126 /*
127 sopp.sopp_minpsz = (dccp_rinfo.mi_minpsz == 1) ? 0 :

new/usr/src/uts/common/inet/dccp/dccp_socket.c 3

128 dccp_rinfo.mi_minpsz;
129 */
130 connp->conn_upcalls = sock_upcalls;
131 connp->conn_upper_handle = sock_handle;

133 /* XXX */
134 (*connp->conn_upcalls->su_set_proto_props)(connp->conn_upper_handle,
135 &sopp);
136 }

138 /*ARGSUSED*/
139 static int
140 dccp_accept(sock_lower_handle_t lproto_handle,
141 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
142 cred_t *cr)
143 {
144 cmn_err(CE_NOTE, "dccp_socket.c: dccp_accept");

146 return (ENOTSUP);
147 }

149 static int
150 dccp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
151 socklen_t len, cred_t *cr)
152 {
153 conn_t *connp = (conn_t *)proto_handle;
154 int error;

156 cmn_err(CE_NOTE, "dccp_socket.c: dccp_bind");

158 ASSERT(cr != NULL);
159 ASSERT(connp->conn_upper_handle != NULL);

161 error = squeue_synch_enter(connp, NULL);
162 if (error != 0) {
163 /* Failed to enter */
164 return (ENOSR);
165 }

167 /* Binding to NULL address means unbind */
168 if (sa == NULL) {
169 if (connp->conn_dccp->dccp_state < DCCPS_LISTEN) {
170 error = dccp_do_unbind(connp);
171 } else {
172 error = EINVAL;
173 }
174 } else {
175 error = dccp_do_bind(connp, sa, len, cr, B_TRUE);
176 }

178 squeue_synch_exit(connp);

180 if (error < 0) {
181 if (error == -TOUTSTATE) {
182 error = EINVAL;
183 } else {
184 error = proto_tlitosyserr(-error);
185 }
186 }

188 return (error);
189 }

191 /* ARGSUSED */
192 static int
193 dccp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)

new/usr/src/uts/common/inet/dccp/dccp_socket.c 4

194 {
195 conn_t *connp = (conn_t *)proto_handle;
196 dccp_t *dccp = connp->conn_dccp;
197 int error;

199 cmn_err(CE_NOTE, "dccp_socket.c: dccp_listen");

201 ASSERT(connp->conn_upper_handle != NULL);
202 ASSERT(cr != NULL);

204 error = squeue_synch_enter(connp, NULL);
205 if (error != 0) {
206 /* Failed to enter */
207 return (ENOBUFS);
208 }

210 error = dccp_do_listen(connp, NULL, 0, backlog, cr, B_FALSE);
211 if (error == 0) {
212 /* XXX:DCCP */
213 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
214 SOCK_OPCTL_ENAB_ACCEPT,
215 (uintptr_t)(10));
216 } else if (error < 0) {
217 if (error == -TOUTSTATE) {
218 error = EINVAL;
219 } else {
220 error = proto_tlitosyserr(-error);
221 }
222 }

224 squeue_synch_exit(connp);

226 return (error);
227 }

229 static int
230 dccp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
231 socklen_t len, sock_connid_t *id, cred_t *cr)
232 {
233 conn_t *connp = (conn_t *)proto_handle;
234 int error;

236 cmn_err(CE_NOTE, "dccp_socket.c: dccp_connect");

238 ASSERT(connp->conn_upper_handle != NULL);
239 ASSERT(cr != NULL);

241 error = proto_verify_ip_addr(connp->conn_family, sa, len);
242 if (error != 0) {
243 return (error);
244 }

246 error = squeue_synch_enter(connp, NULL);
247 if (error != 0) {
248 /* Failed to enter */
249 return (ENOSR);
250 }

252 error = dccp_do_connect(connp, sa, len, cr, curproc->p_pid);
253 if (error == 0) {
254 *id = connp->conn_dccp->dccp_connid;
255 } else if (error < 0) {
256 if (error == -TOUTSTATE) {
257 switch (connp->conn_dccp->dccp_state) {
258 /* XXX */
259 case DCCPS_LISTEN:

new/usr/src/uts/common/inet/dccp/dccp_socket.c 5

260 error = EOPNOTSUPP;
261 break;
262 default:
263 error = EINVAL;
264 break;
265 }
266 } else {
267 error = proto_tlitosyserr(-error);
268 }
269 }

271 squeue_synch_exit(connp);

273 cmn_err(CE_NOTE, "dccp_connect.c: exit %d", error);
274 return ((error == 0) ? EINPROGRESS : error);
275 }

277 /* ARGSUSED3 */
278 static int
279 dccp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
280 socklen_t *addrlenp, cred_t *cr)
281 {
282 conn_t *connp = (conn_t *)proto_handle;
283 dccp_t *dccp = connp->conn_dccp;

285 cmn_err(CE_NOTE, "dccp_socket.c: dccp_getpeername");

287 ASSERT(cr != NULL);

289 ASSERT(dccp != NULL);
290 /* XXX:DCCP */

292 return (conn_getpeername(connp, addr, addrlenp));
293 }

295 /* ARGSUSED3 */
296 static int
297 dccp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
298 socklen_t *addrlenp, cred_t *cr)
299 {
300 conn_t *connp = (conn_t *)proto_handle;
301 int error;

303 cmn_err(CE_NOTE, "dccp_socket.c: dccp_getsockname");

305 ASSERT(cr != NULL);

307 /* XXX UDP has locks here, TCP not */
308 mutex_enter(&connp->conn_lock);
309 error = conn_getsockname(connp, addr, addrlenp);
310 mutex_exit(&connp->conn_lock);

312 return (error);
313 }

315 static int
316 dccp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
317 void *optvalp, socklen_t *optlen, cred_t *cr)
318 {
319 conn_t *connp = (conn_t *)proto_handle;
320 t_uscalar_t max_optbuf_len;
321 void *optvalp_buf;
322 int len;
323 int error;

325 cmn_err(CE_NOTE, "dccp_socket.c: dccp_getsockopt");

new/usr/src/uts/common/inet/dccp/dccp_socket.c 6

327 ASSERT(connp->conn_upper_handle != NULL);

329 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
330 dccp_opt_obj.odb_opt_des_arr,
331 dccp_opt_obj.odb_opt_arr_cnt,
332 B_FALSE, B_TRUE, cr);
333 if (error != 0) {
334 if (error < 0) {
335 error = proto_tlitosyserr(-error);
336 }
337 return (error);
338 }

340 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
341 if (optvalp_buf == NULL) {
342 return (ENOMEM);
343 }

345 error = squeue_synch_enter(connp, NULL);
346 if (error == ENOMEM) {
347 kmem_free(optvalp_buf, max_optbuf_len);
348 return (ENOMEM);
349 }

351 len = dccp_opt_get(connp, level, option_name, optvalp_buf);
352 squeue_synch_exit(connp);

354 if (len == -1) {
355 kmem_free(optvalp_buf, max_optbuf_len);
356 return (EINVAL);
357 }

359 t_uscalar_t size = MIN(len, *optlen);

361 bcopy(optvalp_buf, optvalp, size);
362 bcopy(&size, optlen, sizeof (size));

364 kmem_free(optvalp_buf, max_optbuf_len);

366 return (0);
367 }

369 static int
370 dccp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
371 const void *optvalp, socklen_t optlen, cred_t *cr)
372 {
373 conn_t *connp = (conn_t *)proto_handle;
374 int error;

376 cmn_err(CE_NOTE, "dccp_socket.c: dccp_setsockopt");

378 ASSERT(connp->conn_upper_handle != NULL);

380 error = squeue_synch_enter(connp, NULL);
381 if (error = ENOMEM) {
382 return (ENOMEM);
383 }

385 error = proto_opt_check(level, option_name, optlen, NULL,
386 dccp_opt_obj.odb_opt_des_arr,
387 dccp_opt_obj.odb_opt_arr_cnt,
388 B_TRUE, B_FALSE, cr);
389 if (error != 0) {
390 if (error < 0) {
391 error = proto_tlitosyserr(-error);

new/usr/src/uts/common/inet/dccp/dccp_socket.c 7

392 }
393 squeue_synch_exit(connp);
394 return (error);
395 }

397 error = dccp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
398 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
399 NULL, cr);
400 squeue_synch_exit(connp);

402 ASSERT(error >= 0);

404 return (error);
405 }

407 /* ARGSUSED */
408 static int
409 dccp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
410 cred_t *cr)
411 {
412 conn_t *connp = (conn_t *)proto_handle;
413 dccp_t *dccp;
414 uint32_t msize;
415 int32_t dccpstate;

417 cmn_err(CE_NOTE, "dccp_socket.c: dccp_sendmsg");

419 /* All Solaris components should pass a cred for this operation. */
420 ASSERT(cr != NULL);

422 ASSERT(connp->conn_ref >= 2);
423 ASSERT(connp->conn_upper_handle != NULL);

425 if (msg->msg_controllen != 0) {
426 freemsg(mp);
427 return (EOPNOTSUPP);
428 }

430 switch (DB_TYPE(mp)) {
431 case M_DATA:
432 dccp = connp->conn_dccp;
433 ASSERT(dccp != NULL);

435 dccpstate = dccp->dccp_state;

437 /* XXX */

439 return (0);

441 default:
442 ASSERT(0);
443 }

445 freemsg(mp);

447 return (0);
448 }

450 /* ARGSUSED */
451 static int
452 dccp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
453 {
454 conn_t *connp = (conn_t *)proto_handle;
455 dccp_t *dccp = connp->conn_dccp;

457 cmn_err(CE_NOTE, "dccp_socket.c: dccp_shutdown");

new/usr/src/uts/common/inet/dccp/dccp_socket.c 8

459 /* All Solaris components should pass a cred for this operation. */
460 ASSERT(cr != NULL);

462 ASSERT(connp->conn_upper_handle != NULL);

465 return (ENOTSUP);
466 }

468 static void
469 dccp_clr_flowctrl(sock_lower_handle_t proto_handle)
470 {
471 conn_t *connp = (conn_t *)proto_handle;
472 dccp_t *dccp = connp->conn_dccp;
473 mblk_t *mp;
474 int error;

476 ASSERT(connp->conn_upper_handle != NULL);

478 cmn_err(CE_NOTE, "dccp_socket.c: dccp_clr_flowctrl");

480 error = squeue_synch_enter(connp, mp);

482 squeue_synch_exit(connp);
483 }

485 /* ARGSUSED */
486 static int
487 dccp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
488 int mode, int32_t *rvalp, cred_t *cr)
489 {
490 conn_t *connp = (conn_t *)proto_handle;
491 int error;

493 cmn_err(CE_NOTE, "dccp_socket.c: dccp_ioctl");

495 ASSERT(connp->conn_upper_handle != NULL);

497 /* All Solaris components should pass a cred for this operation. */
498 ASSERT(cr != NULL);

500 return (ENOTSUP);
501 }

503 /* ARGSUSED */
504 static int
505 dccp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
506 {
507 conn_t *connp = (conn_t *)proto_handle;

509 cmn_err(CE_NOTE, "dccp_socket.c: dccp_close\n");

511 ASSERT(connp->conn_upper_handle != NULL);

513 /* All Solaris components should pass a cred for this operation. */

515 ASSERT(cr != NULL);

517 dccp_close_common(connp);

519 ip_free_helper_stream(connp);

521 CONN_DEC_REF(connp);

523 return (EINPROGRESS);

new/usr/src/uts/common/inet/dccp/dccp_socket.c 9

524 }

527 /*
528 * Socket create function.
529 */
530 sock_lower_handle_t
531 dccp_create(int family, int type, int proto, sock_downcalls_t **sockdowncalls,
532 uint_t *smodep, int *errorp, int flags, cred_t *credp)
533 {
534 conn_t *connp;
535 boolean_t isv6;

537 /* XXX (type != SOCK_STREAM */
538 if ((family != AF_INET && family != AF_INET6) ||
539 (proto != 0 && proto != IPPROTO_DCCP)) {
540 *errorp = EPROTONOSUPPORT;
541 return (NULL);
542 }

544 cmn_err(CE_NOTE, "dccp_socket: dccp_create\n");

546 isv6 = family == AF_INET6 ? B_TRUE: B_FALSE;
547 connp = dccp_create_common(credp, isv6, B_TRUE, errorp);
548 if (connp == NULL) {
549 return (NULL);
550 }

552 /*
553 * Increment ref for DCCP connection.
554 */
555 mutex_enter(&connp->conn_lock);
556 CONN_INC_REF_LOCKED(connp);
557 ASSERT(connp->conn_ref == 2);
558 connp->conn_state_flags &= ~CONN_INCIPIENT;
559 connp->conn_flags |= IPCL_NONSTR;
560 mutex_exit(&connp->conn_lock);

562 ASSERT(errorp != NULL);
563 *errorp = 0;
564 *sockdowncalls = &sock_dccp_downcalls;
565 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
566 SM_SENDFILESUPP;

568 return ((sock_lower_handle_t)connp);
569 }

571 int
572 dccp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
573 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb,
574 sock_quiesce_arg_t *arg)
575 {
576 cmn_err(CE_NOTE, "dccp_socket: dccp_fallback\n");

578 return (0);
579 }
580 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_stack.h 1

**
 1677 Wed Jun 13 12:04:40 2012
new/usr/src/uts/common/inet/dccp/dccp_stack.h
%B
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _INET_DCCP_DCCP_STACK_H
17 #define _INET_DCCP_DCCP_STACK_H

19 #include <sys/netstack.h>
20 #include <sys/cpuvar.h>

22 #ifdef __cplusplus
23 extern "C" {
24 #endif

26 typedef struct dccp_stat_counter_s {
27 uint64_t dccp_rst_unsent;
28 } dccp_stat_counter_t;

30 typedef struct {
31 uint64_t dccp_stats_cnt;
32 dccp_stat_counter_t dccp_sc_stats;
33 } dccp_stats_cpu_t;

35 #define DCCP_STAT(dccps, x) \
36 ((dccps)->dccps_sc[CPU->cpu_seqid]->dccp_sc_stats.x++)

38 /*
39 * DCCP stack instances
40 */
41 typedef struct dccp_stack {
42 netstack_t *dccps_netstack; /* Common netstack */

44 uint_t dccps_bind_fanout_size;
45 struct dccp_df_s *dccps_bind_fanout;

47 /* Ports */
48 #define DCCP_NUM_EPRIV_PORTS 64
49 int dccps_num_epriv_ports;
50 in_port_t dccps_epriv_ports[DCCP_NUM_EPRIV_PORTS];
51 kmutex_t dccps_epriv_port_lock;

53 uint_t dccps_next_port_to_try;

55 in_port_t dccps_min_anonpriv_port;

57 /* Reset rate control */
58 int64_t dccps_last_rst_intrvl;
59 uint32_t dccps_rst_cnt;

61 /* Tunables table */

new/usr/src/uts/common/inet/dccp/dccp_stack.h 2

62 struct mod_prop_info_s *dccps_propinfo_tbl;

64 ldi_ident_t dccps_ldi_ident;

66 /* Cpu stats counter */
67 dccp_stats_cpu_t **dccps_sc;
68 int dccps_sc_cnt;
69 } dccp_stack_t;

71 #ifdef __cplusplus
72 }
73 #endif

75 #endif /* _INET_DCCP_DCCP_STACK_H */
76 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_stats.c 1

**
 3624 Wed Jun 13 12:04:40 2012
new/usr/src/uts/common/inet/dccp/dccp_stats.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2012 David Hoeppner. All rights reserved.
29 */

31 /*
32 * Functions related to MIB-II and kstat.
33 */

35 #include <sys/types.h>
36 #include <sys/tihdr.h>
37 #include <sys/policy.h>
38 #include <sys/tsol/tnet.h>

40 #include <inet/common.h>
41 #include <inet/ip.h>
42 #include <inet/kstatcom.h>
43 #include <inet/snmpcom.h>

45 #include <sys/cmn_err.h>

47 #include "dccp_impl.h"

49 static int dccp_snmp_state(dccp_t *);

51 static int
52 dccp_snmp_state(dccp_t *dccp)
53 {
54 if (dccp == NULL) {
55 return (0);
56 }

58 switch(dccp->dccp_state) {
59 case DCCPS_CLOSED:
60 return (MIB2_DCCP_closed);
61 default:

new/usr/src/uts/common/inet/dccp/dccp_stats.c 2

62 return (0);
63 }
64 }

66 /*
67 * Get the MIB-II stats.
68 */
69 mblk_t *
70 dccp_snmp_get(queue_t *q, mblk_t *mpctl)
71 {
72 conn_t *connp = Q_TO_CONN(q);
73 connf_t *connfp;
74 ip_stack_t *ips;
75 dccp_stack_t *dccps;
76 struct opthdr *optp;
77 mblk_t *mp2ctl;
78 mblk_t *mpdata;
79 mblk_t *mp_conn_ctl = NULL;
80 mblk_t *mp_conn_tail;
81 mblk_t *mp_attr_ctl = NULL;
82 mblk_t *mp_attr_tail;
83 size_t dccp_mib_size;
84 size_t dce_size;
85 zoneid_t zoneid;
86 int i;
87 mib2_dccpConnEntry_t dce;

89 mp2ctl = copymsg(mpctl);

91 if (mpctl == NULL ||
92 (mpdata = mpctl->b_cont) == NULL ||
93 (mp_conn_ctl = copymsg(mpctl)) == NULL ||
94 (mp_attr_ctl = copymsg(mpctl)) == NULL) {
95 freemsg(mp_conn_ctl);
96 freemsg(mp_attr_ctl);
97 freemsg(mpctl);
98 freemsg(mp2ctl);
99 return (NULL);
100 }

102 ips = connp->conn_netstack->netstack_ip;
103 dccps = connp->conn_netstack->netstack_dccp;
104 dce_size = sizeof (mib2_dccpConnEntry_t);
105 zoneid = Q_TO_CONN(q)->conn_zoneid;

107 for (i = 0; i < CONN_G_HASH_SIZE; i++) {
108 ips = dccps->dccps_netstack->netstack_ip;

110 connfp = &ips->ips_ipcl_globalhash_fanout[i];
111 connp = NULL;

113 while ((connp = ipcl_get_next_conn(connfp, connp,
114 IPCL_DCCPCONN)) != NULL) {
115 dccp_t *dccp;

117 if (connp->conn_zoneid != zoneid) {
118 continue;
119 }

121 dccp = connp->conn_dccp;

123 dce.dccpConnState = dccp_snmp_state(dccp);

125 if (connp->conn_ipversion == IPV4_VERSION ||
126 (dccp->dccp_state <= DCCPS_LISTEN)) {
127 dce.dccpConnRemAddress =

new/usr/src/uts/common/inet/dccp/dccp_stats.c 3

128 connp->conn_faddr_v4;
129 dce.dccpConnLocalAddress =
130 connp->conn_laddr_v4;
131 }

133 dce.dccpConnLocalPort = ntohs(connp->conn_lport);
134 dce.dccpConnRemPort = ntohs(connp->conn_fport);

136 dce.dccpConnCreationProcess = (connp->conn_cpid < 0) ?
137 MIB2_UNKNOWN_PROCESS : connp->conn_cpid;
138 dce.dccpConnCreationTime = connp->conn_open_time;

140 (void) snmp_append_data2(mp_conn_ctl->b_cont,
141 &mp_conn_tail, (char *)&dce, dce_size);
142 }
143 }

145 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
146 sizeof (struct T_optmgmt_ack)];
147 optp->level = MIB2_DCCP;
148 optp->name = MIB2_DCCP_CONN;
149 optp->len = msgdsize(mp_conn_ctl->b_cont);
150 qreply(q, mp_conn_ctl);

152 return (mp2ctl);
153 }
154 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_tpi.c 1

**
 2671 Wed Jun 13 12:04:41 2012
new/usr/src/uts/common/inet/dccp/dccp_tpi.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Functions related to TPI.
24 */

26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsun.h>
29 #include <sys/strsubr.h>
30 #include <sys/stropts.h>
31 #include <sys/strlog.h>
32 #define _SUN_TPI_VERSION 2
33 #include <sys/tihdr.h>
34 #include <sys/suntpi.h>
35 #include <sys/xti_inet.h>
36 #include <sys/squeue_impl.h>
37 #include <sys/squeue.h>
38 #include <sys/tsol/tnet.h>

40 #include <inet/common.h>
41 #include <inet/ip.h>

43 #include <sys/cmn_err.h>

45 #include "dccp_impl.h"

47 /*
48 * Helper function to generate TPI errors acks.
49 */
50 void
51 dccp_err_ack(dccp_t *dccp, mblk_t *mp, int t_error, int sys_error)
52 {
53 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) {
54 putnext(dccp->dccp_connp->conn_rq, mp);
55 }
56 }

58 void
59 dccp_tpi_connect(dccp_t *dccp, mblk_t *mp)
60 {
61 struct T_conn_req *tcr;

new/usr/src/uts/common/inet/dccp/dccp_tpi.c 2

62 conn_t *connp = dccp->dccp_connp;
63 sin_t *sin;
64 sin6_t *sin6;
65 cred_t *cr;
66 pid_t cpid;
67 int error;

69 cmn_err(CE_NOTE, "dccp_tpi.c: dccp_tpi_connect");

71 cr = msg_getcred(mp, &cpid);
72 ASSERT(cr != NULL);
73 if (cr == NULL) {
74 dccp_err_ack(dccp, mp, TSYSERR, EINVAL);
75 return;
76 }

78 tcr = (struct T_conn_req *)mp->b_rptr;

80 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
81 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
82 dccp_err_ack(dccp, mp, TPROTO, 0);
83 return;
84 }

86 }

88 int
89 dccp_tpi_close(queue_t *q, int flags)
90 {
91 return (0);
92 }

94 /*
95 * Options related functions.
96 */
97 int
98 dccp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
99 {
100 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
101 }

103 /* ARGSUSED */
104 int
105 dccp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
106 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
107 void *thisdg_attrs, cred_t *cr)
108 {
109 conn_t *connp = Q_TO_CONN(q);

111 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
112 outlenp, outvalp, thisdg_attrs, cr));
113 }
114 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccp_tunables.c 1

**
 1647 Wed Jun 13 12:04:42 2012
new/usr/src/uts/common/inet/dccp/dccp_tunables.c
%B
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 /*
17 * This file contains tunable properties for DCCP.
18 */
19 #include <inet/ip.h>
20 #include <inet/ip6.h>
21 #include <inet/dccp/dccp_impl.h>
22 #include <sys/sunddi.h>

24 mod_prop_info_t dccp_propinfo_tbl[] = {
25 /* tunable - 0 */
26 { "smallest_nonpriv_port", MOD_PROTO_DCCP,
27 mod_set_uint32, mod_get_uint32,
28 {1024, (32 * 1024), 1024}, {1024} },

30 { "smallest_anon_port", MOD_PROTO_DCCP,
31 mod_set_uint32, mod_get_uint32,
32 {1024, ULP_MAX_PORT, 32*1024}, {32*1024} },

34 { "largest_anon_port", MOD_PROTO_DCCP,
35 mod_set_uint32, mod_get_uint32,
36 {1024, ULP_MAX_PORT, ULP_MAX_PORT}, {ULP_MAX_PORT} },

38 { "_xmit_lowat", MOD_PROTO_DCCP,
39 mod_set_uint32, mod_get_uint32,
40 {0, (1<<30), DCCP_XMIT_LOWATER},
41 {DCCP_XMIT_LOWATER} },

43 { "_debug", MOD_PROTO_DCCP,
44 mod_set_uint32, mod_get_uint32,
45 {0, 10, 0}, {0} },

47 { "_rst_sent_rate_enabled", MOD_PROTO_DCCP,
48 mod_set_boolean, mod_get_boolean,
49 {B_TRUE}, {B_TRUE} },

51 { "_rst_sent_rate", MOD_PROTO_DCCP,
52 mod_set_uint32, mod_get_uint32,
53 {0, UINT32_MAX, 40}, {40} },

55 /* tunable - 10 */

57 { NULL, 0, NULL, NULL, {0}, {0} }
58 };

60 int dccp_propinfo_count = A_CNT(dccp_propinfo_tbl);
61 #endif /* ! codereview */

new/usr/src/uts/common/inet/dccp/dccpddi.c 1

**
 1439 Wed Jun 13 12:04:42 2012
new/usr/src/uts/common/inet/dccp/dccpddi.c
%B
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #include <sys/types.h>
17 #include <sys/conf.h>
18 #include <sys/modctl.h>
19 #include <inet/common.h>
20 #include <inet/ip.h>
21 #include <sys/strsubr.h>
22 #include <sys/socketvar.h>

24 #include "dccp_impl.h"

26 #define INET_NAME "dccp"
27 #define INET_MODDESC "DCCP dummy STREAMS module"
28 #define INET_DEVDESC "DCCP STREAMS driver"
29 #define INET_SOCKDESC "DCCP socket module"
30 #define INET_MODSTRTAB dummymodinfo
31 #define INET_DEVSTRTAB dccpinfov4
32 #define INET_MODMTFLAGS D_MP
33 #define INET_SOCK_PROTO_CREATE_FUNC (*dccp_create)
34 #define INET_SOCK_PROTO_FB_FUNC (*dccp_fallback)
35 #define INET_SOCK_FALLBACK_DEV_V4 "/dev/dccp"
36 #define INET_SOCK_FALLBACK_DEV_V6 "/dev/dccp6"
37 #define INET_DEVMINOR 0
38 #define INET_MODMTFLAGS D_MP
39 #define INET_DEVMTFLAGS (D_MP|_D_DIRECT)

41 #include "../inetddi.c"

43 int
44 _init(void)
45 {
46 return (mod_install(&modlinkage));
47 }

49 int
50 _fini(void)
51 {
52 return (mod_remove(&modlinkage));
53 }

55 int
56 _info(struct modinfo *modinfop)
57 {
58 return (mod_info(&modlinkage, modinfop));
59 }
60 #endif /* ! codereview */

new/usr/src/uts/common/inet/ip.h 1

**
 140153 Wed Jun 13 12:04:43 2012
new/usr/src/uts/common/inet/ip.h
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 1990 Mentat Inc.
25 */

27 #ifndef _INET_IP_H
28 #define _INET_IP_H

30 #ifdef __cplusplus
31 extern "C" {
32 #endif

34 #include <sys/isa_defs.h>
35 #include <sys/types.h>
36 #include <inet/mib2.h>
37 #include <inet/nd.h>
38 #include <sys/atomic.h>
39 #include <net/if_dl.h>
40 #include <net/if.h>
41 #include <netinet/ip.h>
42 #include <netinet/igmp.h>
43 #include <sys/neti.h>
44 #include <sys/hook.h>
45 #include <sys/hook_event.h>
46 #include <sys/hook_impl.h>
47 #include <inet/ip_stack.h>

49 #ifdef _KERNEL
50 #include <netinet/ip6.h>
51 #include <sys/avl.h>
52 #include <sys/list.h>
53 #include <sys/vmem.h>
54 #include <sys/squeue.h>
55 #include <net/route.h>
56 #include <sys/systm.h>
57 #include <net/radix.h>
58 #include <sys/modhash.h>

60 #ifdef DEBUG
61 #define CONN_DEBUG

new/usr/src/uts/common/inet/ip.h 2

62 #endif

64 #define IP_DEBUG
65 /*
66 * The mt-streams(9F) flags for the IP module; put here so that other
67 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set
68 * of flags.
69 */
70 #define IP_DEVMTFLAGS D_MP
71 #endif /* _KERNEL */

73 #define IP_MOD_NAME "ip"
74 #define IP_DEV_NAME "/dev/ip"
75 #define IP6_DEV_NAME "/dev/ip6"

77 #define UDP_MOD_NAME "udp"
78 #define UDP_DEV_NAME "/dev/udp"
79 #define UDP6_DEV_NAME "/dev/udp6"

81 #define TCP_MOD_NAME "tcp"
82 #define TCP_DEV_NAME "/dev/tcp"
83 #define TCP6_DEV_NAME "/dev/tcp6"

85 #define SCTP_MOD_NAME "sctp"

87 #define DCCP_MOD_NAME "dccp"
88 #define DCCP_DEV_NAME "/dev/dccp"
89 #define DCCP6_DEV_NAME "/dev/dccp6"

91 #endif /* ! codereview */
92 #ifndef _IPADDR_T
93 #define _IPADDR_T
94 typedef uint32_t ipaddr_t;
95 #endif

97 /* Number of bits in an address */
98 #define IP_ABITS 32
99 #define IPV4_ABITS IP_ABITS
100 #define IPV6_ABITS 128
101 #define IP_MAX_HW_LEN 40

103 #define IP_HOST_MASK (ipaddr_t)0xffffffffU

105 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF)
106 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum)
107 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum)

109 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64)
110 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t))

112 #define IPV4_ADDR_LEN 4
113 #define IP_ADDR_LEN IPV4_ADDR_LEN
114 #define IP_ARP_PROTO_TYPE 0x0800

116 #define IPV4_VERSION 4
117 #define IP_VERSION IPV4_VERSION
118 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5
119 #define IP_SIMPLE_HDR_LENGTH 20
120 #define IP_MAX_HDR_LENGTH 60

122 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH)

124 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */

126 /*
127 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the

new/usr/src/uts/common/inet/ip.h 3

128 * 2 files should be cleaned up to remove all redundant definitions.
129 */
130 #define IP_MAXPACKET 65535
131 #define IP_SIMPLE_HDR_VERSION \
132 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS)

134 #define UDPH_SIZE 8

136 /*
137 * Constants and type definitions to support IP IOCTL commands
138 */
139 #define IP_IOCTL ((’i’<<8)|’p’)
140 #define IP_IOC_IRE_DELETE 4
141 #define IP_IOC_IRE_DELETE_NO_REPLY 5
142 #define IP_IOC_RTS_REQUEST 7

144 /* Common definitions used by IP IOCTL data structures */
145 typedef struct ipllcmd_s {
146 uint_t ipllc_cmd;
147 uint_t ipllc_name_offset;
148 uint_t ipllc_name_length;
149 } ipllc_t;

151 /* IP IRE Delete Command Structure. */
152 typedef struct ipid_s {
153 ipllc_t ipid_ipllc;
154 uint_t ipid_ire_type;
155 uint_t ipid_addr_offset;
156 uint_t ipid_addr_length;
157 uint_t ipid_mask_offset;
158 uint_t ipid_mask_length;
159 } ipid_t;

161 #define ipid_cmd ipid_ipllc.ipllc_cmd

163 #ifdef _KERNEL
164 /*
165 * Temporary state for ip options parser.
166 */
167 typedef struct ipoptp_s
168 {
169 uint8_t *ipoptp_next; /* next option to look at */
170 uint8_t *ipoptp_end; /* end of options */
171 uint8_t *ipoptp_cur; /* start of current option */
172 uint8_t ipoptp_len; /* length of current option */
173 uint32_t ipoptp_flags;
174 } ipoptp_t;

176 /*
177 * Flag(s) for ipoptp_flags
178 */
179 #define IPOPTP_ERROR 0x00000001
180 #endif /* _KERNEL */

182 /* Controls forwarding of IP packets, set via ipadm(1M)/ndd(1M) */
183 #define IP_FORWARD_NEVER 0
184 #define IP_FORWARD_ALWAYS 1

186 #define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_forwarding == IP_FORWARD_ALWAYS)

188 #define IPH_HDR_LENGTH(ipha) \
189 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2)

191 #define IPH_HDR_VERSION(ipha) \
192 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4)

new/usr/src/uts/common/inet/ip.h 4

194 #ifdef _KERNEL
195 /*
196 * IP reassembly macros. We hide starting and ending offsets in b_next and
197 * b_prev of messages on the reassembly queue. The messages are chained using
198 * b_cont. These macros are used in ip_reassemble() so we don’t have to see
199 * the ugly casts and assignments.
200 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent
201 * them.
202 */
203 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next))
204 #define IP_REASS_SET_START(mp, u) \
205 ((mp)->b_next = (mblk_t *)(uintptr_t)(u))
206 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev))
207 #define IP_REASS_SET_END(mp, u) \
208 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u))

210 #define IP_REASS_COMPLETE 0x1
211 #define IP_REASS_PARTIAL 0x2
212 #define IP_REASS_FAILED 0x4

214 /*
215 * Test to determine whether this is a module instance of IP or a
216 * driver instance of IP.
217 */
218 #define CONN_Q(q) (WR(q)->q_next == NULL)

220 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr)
221 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp)
222 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp)
223 #define Q_TO_ICMP(q) (Q_TO_CONN((q))->conn_icmp)
224 #define Q_TO_RTS(q) (Q_TO_CONN((q))->conn_rts)
225 #define Q_TO_DCCP(q) (Q_TO_CONN((q))->conn_dccp)
226 #endif /* ! codereview */

228 #define CONNP_TO_WQ(connp) ((connp)->conn_wq)
229 #define CONNP_TO_RQ(connp) ((connp)->conn_rq)

231 #define GRAB_CONN_LOCK(q) { \
232 if (q != NULL && CONN_Q(q)) \
233 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \
234 }

236 #define RELEASE_CONN_LOCK(q) { \
237 if (q != NULL && CONN_Q(q)) \
238 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \
239 }

241 /*
242 * Ref counter macros for ioctls. This provides a guard for TCP to stop
243 * tcp_close from removing the rq/wq whilst an ioctl is still in flight on the
244 * stream. The ioctl could have been queued on e.g. an ipsq. tcp_close will wait
245 * until the ioctlref count is zero before proceeding.
246 * Ideally conn_oper_pending_ill would be used for this purpose. However, in the
247 * case where an ioctl is aborted or interrupted, it can be cleared prematurely.
248 * There are also some race possibilities between ip and the stream head which
249 * can also end up with conn_oper_pending_ill being cleared prematurely. So, to
250 * avoid these situations, we use a dedicated ref counter for ioctls which is
251 * used in addition to and in parallel with the normal conn_ref count.
252 */
253 #define CONN_INC_IOCTLREF_LOCKED(connp) { \
254 ASSERT(MUTEX_HELD(&(connp)->conn_lock)); \
255 DTRACE_PROBE1(conn__inc__ioctlref, conn_t *, (connp)); \
256 (connp)->conn_ioctlref++; \
257 mutex_exit(&(connp)->conn_lock); \
258 }

new/usr/src/uts/common/inet/ip.h 5

260 #define CONN_INC_IOCTLREF(connp) { \
261 mutex_enter(&(connp)->conn_lock); \
262 CONN_INC_IOCTLREF_LOCKED(connp); \
263 }

265 #define CONN_DEC_IOCTLREF(connp) { \
266 mutex_enter(&(connp)->conn_lock); \
267 DTRACE_PROBE1(conn__dec__ioctlref, conn_t *, (connp)); \
268 /* Make sure conn_ioctlref will not underflow. */ \
269 ASSERT((connp)->conn_ioctlref != 0); \
270 if ((--(connp)->conn_ioctlref == 0) && \
271 ((connp)->conn_state_flags & CONN_CLOSING)) { \
272 cv_broadcast(&(connp)->conn_cv); \
273 } \
274 mutex_exit(&(connp)->conn_lock); \
275 }

278 /*
279 * Complete the pending operation. Usually an ioctl. Can also
280 * be a bind or option management request that got enqueued
281 * in an ipsq_t. Called on completion of the operation.
282 */
283 #define CONN_OPER_PENDING_DONE(connp) { \
284 mutex_enter(&(connp)->conn_lock); \
285 (connp)->conn_oper_pending_ill = NULL; \
286 cv_broadcast(&(connp)->conn_refcv); \
287 mutex_exit(&(connp)->conn_lock); \
288 CONN_DEC_REF(connp); \
289 }

291 /*
292 * Values for squeue switch:
293 */
294 #define IP_SQUEUE_ENTER_NODRAIN 1
295 #define IP_SQUEUE_ENTER 2
296 #define IP_SQUEUE_FILL 3

298 extern int ip_squeue_flag;

300 /* IP Fragmentation Reassembly Header */
301 typedef struct ipf_s {
302 struct ipf_s *ipf_hash_next;
303 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */
304 uint32_t ipf_ident; /* Ident to match. */
305 uint8_t ipf_protocol; /* Protocol to match. */
306 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */
307 time_t ipf_timestamp; /* Reassembly start time. */
308 mblk_t *ipf_mp; /* mblk we live in. */
309 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */
310 int ipf_hole_cnt; /* Number of holes (hard-case). */
311 int ipf_end; /* Tail end offset (0 -> hard-case). */
312 uint_t ipf_gen; /* Frag queue generation */
313 size_t ipf_count; /* Count of bytes used by frag */
314 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */
315 in6_addr_t ipf_v6src; /* IPv6 source address */
316 in6_addr_t ipf_v6dst; /* IPv6 dest address */
317 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */
318 uint8_t ipf_ecn; /* ECN info for the fragments */
319 uint8_t ipf_num_dups; /* Number of times dup frags recvd */
320 uint16_t ipf_checksum_flags; /* Hardware checksum flags */
321 uint32_t ipf_checksum; /* Partial checksum of fragment data */
322 } ipf_t;

324 /*
325 * IPv4 Fragments

new/usr/src/uts/common/inet/ip.h 6

326 */
327 #define IS_V4_FRAGMENT(ipha_fragment_offset_and_flags) \
328 (((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) || \
329 ((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0))

331 #define ipf_src V4_PART_OF_V6(ipf_v6src)
332 #define ipf_dst V4_PART_OF_V6(ipf_v6dst)

334 #endif /* _KERNEL */

336 /* ICMP types */
337 #define ICMP_ECHO_REPLY 0
338 #define ICMP_DEST_UNREACHABLE 3
339 #define ICMP_SOURCE_QUENCH 4
340 #define ICMP_REDIRECT 5
341 #define ICMP_ECHO_REQUEST 8
342 #define ICMP_ROUTER_ADVERTISEMENT 9
343 #define ICMP_ROUTER_SOLICITATION 10
344 #define ICMP_TIME_EXCEEDED 11
345 #define ICMP_PARAM_PROBLEM 12
346 #define ICMP_TIME_STAMP_REQUEST 13
347 #define ICMP_TIME_STAMP_REPLY 14
348 #define ICMP_INFO_REQUEST 15
349 #define ICMP_INFO_REPLY 16
350 #define ICMP_ADDRESS_MASK_REQUEST 17
351 #define ICMP_ADDRESS_MASK_REPLY 18

353 /* Evaluates to true if the ICMP type is an ICMP error */
354 #define ICMP_IS_ERROR(type) (\
355 (type) == ICMP_DEST_UNREACHABLE || \
356 (type) == ICMP_SOURCE_QUENCH || \
357 (type) == ICMP_TIME_EXCEEDED || \
358 (type) == ICMP_PARAM_PROBLEM)

360 /* ICMP_TIME_EXCEEDED codes */
361 #define ICMP_TTL_EXCEEDED 0
362 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1

364 /* ICMP_DEST_UNREACHABLE codes */
365 #define ICMP_NET_UNREACHABLE 0
366 #define ICMP_HOST_UNREACHABLE 1
367 #define ICMP_PROTOCOL_UNREACHABLE 2
368 #define ICMP_PORT_UNREACHABLE 3
369 #define ICMP_FRAGMENTATION_NEEDED 4
370 #define ICMP_SOURCE_ROUTE_FAILED 5
371 #define ICMP_DEST_NET_UNKNOWN 6
372 #define ICMP_DEST_HOST_UNKNOWN 7
373 #define ICMP_SRC_HOST_ISOLATED 8
374 #define ICMP_DEST_NET_UNREACH_ADMIN 9
375 #define ICMP_DEST_HOST_UNREACH_ADMIN 10
376 #define ICMP_DEST_NET_UNREACH_TOS 11
377 #define ICMP_DEST_HOST_UNREACH_TOS 12

379 /* ICMP Header Structure */
380 typedef struct icmph_s {
381 uint8_t icmph_type;
382 uint8_t icmph_code;
383 uint16_t icmph_checksum;
384 union {
385 struct { /* ECHO request/response structure */
386 uint16_t u_echo_ident;
387 uint16_t u_echo_seqnum;
388 } u_echo;
389 struct { /* Destination unreachable structure */
390 uint16_t u_du_zero;
391 uint16_t u_du_mtu;

new/usr/src/uts/common/inet/ip.h 7

392 } u_du;
393 struct { /* Parameter problem structure */
394 uint8_t u_pp_ptr;
395 uint8_t u_pp_rsvd[3];
396 } u_pp;
397 struct { /* Redirect structure */
398 ipaddr_t u_rd_gateway;
399 } u_rd;
400 } icmph_u;
401 } icmph_t;

403 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident
404 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum
405 #define icmph_du_zero icmph_u.u_du.u_du_zero
406 #define icmph_du_mtu icmph_u.u_du.u_du_mtu
407 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr
408 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway

410 #define ICMPH_SIZE 8

412 /*
413 * Minimum length of transport layer header included in an ICMP error
414 * message for it to be considered valid.
415 */
416 #define ICMP_MIN_TP_HDR_LEN 8

418 /* Aligned IP header */
419 typedef struct ipha_s {
420 uint8_t ipha_version_and_hdr_length;
421 uint8_t ipha_type_of_service;
422 uint16_t ipha_length;
423 uint16_t ipha_ident;
424 uint16_t ipha_fragment_offset_and_flags;
425 uint8_t ipha_ttl;
426 uint8_t ipha_protocol;
427 uint16_t ipha_hdr_checksum;
428 ipaddr_t ipha_src;
429 ipaddr_t ipha_dst;
430 } ipha_t;

432 /*
433 * IP Flags
434 *
435 * Some of these constant names are copied for the DTrace IP provider in
436 * usr/src/lib/libdtrace/common/{ip.d.in, ip.sed.in}, which should be kept
437 * in sync.
438 */
439 #define IPH_DF 0x4000 /* Don’t fragment */
440 #define IPH_MF 0x2000 /* More fragments to come */
441 #define IPH_OFFSET 0x1FFF /* Where the offset lives */

443 /* Byte-order specific values */
444 #ifdef _BIG_ENDIAN
445 #define IPH_DF_HTONS 0x4000 /* Don’t fragment */
446 #define IPH_MF_HTONS 0x2000 /* More fragments to come */
447 #define IPH_OFFSET_HTONS 0x1FFF /* Where the offset lives */
448 #else
449 #define IPH_DF_HTONS 0x0040 /* Don’t fragment */
450 #define IPH_MF_HTONS 0x0020 /* More fragments to come */
451 #define IPH_OFFSET_HTONS 0xFF1F /* Where the offset lives */
452 #endif

454 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */
455 #define IPH_ECN_NECT 0x0 /* Not ECN-Capable Transport */
456 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */
457 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */

new/usr/src/uts/common/inet/ip.h 8

458 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */

460 struct ill_s;

462 typedef void ip_v6intfid_func_t(struct ill_s *, in6_addr_t *);
463 typedef void ip_v6mapinfo_func_t(struct ill_s *, uchar_t *, uchar_t *);
464 typedef void ip_v4mapinfo_func_t(struct ill_s *, uchar_t *, uchar_t *);

466 /* IP Mac info structure */
467 typedef struct ip_m_s {
468 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */
469 int ip_m_type; /* From <net/if_types.h> */
470 t_uscalar_t ip_m_ipv4sap;
471 t_uscalar_t ip_m_ipv6sap;
472 ip_v4mapinfo_func_t *ip_m_v4mapping;
473 ip_v6mapinfo_func_t *ip_m_v6mapping;
474 ip_v6intfid_func_t *ip_m_v6intfid;
475 ip_v6intfid_func_t *ip_m_v6destintfid;
476 } ip_m_t;

478 /*
479 * The following functions attempt to reduce the link layer dependency
480 * of the IP stack. The current set of link specific operations are:
481 * a. map from IPv4 class D (224.0/4) multicast address range or the
482 * IPv6 multicast address range (ff00::/8) to the link layer multicast
483 * address.
484 * b. derive the default IPv6 interface identifier from the interface.
485 * c. derive the default IPv6 destination interface identifier from
486 * the interface (point-to-point only).
487 */
488 extern void ip_mcast_mapping(struct ill_s *, uchar_t *, uchar_t *);
489 /* ip_m_v6*intfid return void and are never NULL */
490 #define MEDIA_V6INTFID(ip_m, ill, v6ptr) (ip_m)->ip_m_v6intfid(ill, v6ptr)
491 #define MEDIA_V6DESTINTFID(ip_m, ill, v6ptr) \
492 (ip_m)->ip_m_v6destintfid(ill, v6ptr)

494 /* Router entry types */
495 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */
496 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */
497 #define IRE_LOCAL 0x0004 /* Route entry for local address */
498 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */
499 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */
500 #ifndef _KERNEL
501 /* Keep so user-level still compiles */
502 #define IRE_CACHE 0x0020 /* Cached Route entry */
503 #endif
504 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */
505 /* net without any address mapping. */
506 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */
507 /* net with resolver. */
508 #define IRE_HOST 0x0100 /* Host route entry */
509 /* Keep so user-level still compiles */
510 #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */
511 #define IRE_IF_CLONE 0x0400 /* Per host clone of IRE_IF */
512 #define IRE_MULTICAST 0x0800 /* Special - not in table */
513 #define IRE_NOROUTE 0x1000 /* Special - not in table */

515 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER)

517 #define IRE_IF_ALL (IRE_IF_NORESOLVER | IRE_IF_RESOLVER | \
518 IRE_IF_CLONE)
519 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST)
520 #define IRE_OFFLINK IRE_OFFSUBNET
521 /*
522 * Note that we view IRE_NOROUTE as ONLINK since we can "send" to them without
523 * going through a router; the result of sending will be an error/icmp error.

new/usr/src/uts/common/inet/ip.h 9

524 */
525 #define IRE_ONLINK (IRE_IF_ALL|IRE_LOCAL|IRE_LOOPBACK| \
526 IRE_BROADCAST|IRE_MULTICAST|IRE_NOROUTE)

528 /* Arguments to ire_flush_cache() */
529 #define IRE_FLUSH_DELETE 0
530 #define IRE_FLUSH_ADD 1
531 #define IRE_FLUSH_GWCHANGE 2

533 /*
534 * Flags to ire_route_recursive
535 */
536 #define IRR_NONE 0
537 #define IRR_ALLOCATE 1 /* OK to allocate IRE_IF_CLONE */
538 #define IRR_INCOMPLETE 2 /* OK to return incomplete chain */

540 /*
541 * Open/close synchronization flags.
542 * These are kept in a separate field in the conn and the synchronization
543 * depends on the atomic 32 bit access to that field.
544 */
545 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */
546 #define CONN_CONDEMNED 0x02 /* conn is closing, no more refs */
547 #define CONN_INCIPIENT 0x04 /* conn not yet visible, no refs */
548 #define CONN_QUIESCED 0x08 /* conn is now quiescent */
549 #define CONN_UPDATE_ILL 0x10 /* conn_update_ill in progress */

551 /*
552 * Flags for dce_flags field. Specifies which information has been set.
553 * dce_ident is always present, but the other ones are identified by the flags.
554 */
555 #define DCEF_DEFAULT 0x0001 /* Default DCE - no pmtu or uinfo */
556 #define DCEF_PMTU 0x0002 /* Different than interface MTU */
557 #define DCEF_UINFO 0x0004 /* dce_uinfo set */
558 #define DCEF_TOO_SMALL_PMTU 0x0008 /* Smaller than IPv4/IPv6 MIN */

560 #ifdef _KERNEL
561 /*
562 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2)
563 */
564 #define MAX_FILTER_SIZE 64

566 typedef struct slist_s {
567 int sl_numsrc;
568 in6_addr_t sl_addr[MAX_FILTER_SIZE];
569 } slist_t;

571 /*
572 * Following struct is used to maintain retransmission state for
573 * a multicast group. One rtx_state_t struct is an in-line field
574 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are
575 * alloc’d as needed.
576 */
577 typedef struct rtx_state_s {
578 uint_t rtx_timer; /* retrans timer */
579 int rtx_cnt; /* retrans count */
580 int rtx_fmode_cnt; /* retrans count for fmode change */
581 slist_t *rtx_allow;
582 slist_t *rtx_block;
583 } rtx_state_t;

585 /*
586 * Used to construct list of multicast address records that will be
587 * sent in a single listener report.
588 */
589 typedef struct mrec_s {

new/usr/src/uts/common/inet/ip.h 10

590 struct mrec_s *mrec_next;
591 uint8_t mrec_type;
592 uint8_t mrec_auxlen; /* currently unused */
593 in6_addr_t mrec_group;
594 slist_t mrec_srcs;
595 } mrec_t;

597 /* Group membership list per upper conn */

599 /*
600 * We record the multicast information from the socket option in
601 * ilg_ifaddr/ilg_ifindex. This allows rejoining the group in the case when
602 * the ifaddr (or ifindex) disappears and later reappears, potentially on
603 * a different ill. The IPv6 multicast socket options and ioctls all specify
604 * the interface using an ifindex. For IPv4 some socket options/ioctls use
605 * the interface address and others use the index. We record here the method
606 * that was actually used (and leave the other of ilg_ifaddr or ilg_ifindex)
607 * at zero so that we can rejoin the way the application intended.
608 *
609 * We track the ill on which we will or already have joined an ilm using
610 * ilg_ill. When we have succeeded joining the ilm and have a refhold on it
611 * then we set ilg_ilm. Thus intentionally there is a window where ilg_ill is
612 * set and ilg_ilm is not set. This allows clearing ilg_ill as a signal that
613 * the ill is being unplumbed and the ilm should be discarded.
614 *
615 * ilg records the state of multicast memberships of a socket end point.
616 * ilm records the state of multicast memberships with the driver and is
617 * maintained per interface.
618 *
619 * The ilg state is protected by conn_ilg_lock.
620 * The ilg will not be freed until ilg_refcnt drops to zero.
621 */
622 typedef struct ilg_s {
623 struct ilg_s *ilg_next;
624 struct ilg_s **ilg_ptpn;
625 struct conn_s *ilg_connp; /* Back pointer to get lock */
626 in6_addr_t ilg_v6group;
627 ipaddr_t ilg_ifaddr; /* For some IPv4 cases */
628 uint_t ilg_ifindex; /* IPv6 and some other IPv4 cases */
629 struct ill_s *ilg_ill; /* Where ilm is joined. No refhold */
630 struct ilm_s *ilg_ilm; /* With ilm_refhold */
631 uint_t ilg_refcnt;
632 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
633 slist_t *ilg_filter;
634 boolean_t ilg_condemned; /* Conceptually deleted */
635 } ilg_t;

637 /*
638 * Multicast address list entry for ill.
639 * ilm_ill is used by IPv4 and IPv6
640 *
641 * The ilm state (and other multicast state on the ill) is protected by
642 * ill_mcast_lock. Operations that change state on both an ilg and ilm
643 * in addition use ill_mcast_serializer to ensure that we can’t have
644 * interleaving between e.g., add and delete operations for the same conn_t,
645 * group, and ill. The ill_mcast_serializer is also used to ensure that
646 * multicast group joins do not occur on an interface that is in the process
647 * of joining an IPMP group.
648 *
649 * The comment below (and for other netstack_t references) refers
650 * to the fact that we only do netstack_hold in particular cases,
651 * such as the references from open endpoints (ill_t and conn_t’s
652 * pointers). Internally within IP we rely on IP’s ability to cleanup e.g.
653 * ire_t’s when an ill goes away.
654 */
655 typedef struct ilm_s {

new/usr/src/uts/common/inet/ip.h 11

656 in6_addr_t ilm_v6addr;
657 int ilm_refcnt;
658 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */
659 struct ilm_s *ilm_next; /* Linked list for each ill */
660 uint_t ilm_state; /* state of the membership */
661 struct ill_s *ilm_ill; /* Back pointer to ill - ill_ilm_cnt */
662 zoneid_t ilm_zoneid;
663 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */
664 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
665 slist_t *ilm_filter; /* source filter list */
666 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */
667 rtx_state_t ilm_rtx; /* SCR retransmission state */
668 ipaddr_t ilm_ifaddr; /* For IPv4 netstat */
669 ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */
670 } ilm_t;

672 #define ilm_addr V4_PART_OF_V6(ilm_v6addr)

674 /*
675 * Soft reference to an IPsec SA.
676 *
677 * On relative terms, conn’s can be persistent (living as long as the
678 * processes which create them), while SA’s are ephemeral (dying when
679 * they hit their time-based or byte-based lifetimes).
680 *
681 * We could hold a hard reference to an SA from an ipsec_latch_t,
682 * but this would cause expired SA’s to linger for a potentially
683 * unbounded time.
684 *
685 * Instead, we remember the hash bucket number and bucket generation
686 * in addition to the pointer. The bucket generation is incremented on
687 * each deletion.
688 */
689 typedef struct ipsa_ref_s
690 {
691 struct ipsa_s *ipsr_sa;
692 struct isaf_s *ipsr_bucket;
693 uint64_t ipsr_gen;
694 } ipsa_ref_t;

696 /*
697 * IPsec "latching" state.
698 *
699 * In the presence of IPsec policy, fully-bound conn’s bind a connection
700 * to more than just the 5-tuple, but also a specific IPsec action and
701 * identity-pair.
702 * The identity pair is accessed from both the receive and transmit side
703 * hence it is maintained in the ipsec_latch_t structure. conn_latch and
704 * ixa_ipsec_latch points to it.
705 * The policy and actions are stored in conn_latch_in_policy and
706 * conn_latch_in_action for the inbound side, and in ixa_ipsec_policy and
707 * ixa_ipsec_action for the transmit side.
708 *
709 * As an optimization, we also cache soft references to IPsec SA’s in
710 * ip_xmit_attr_t so that we can fast-path around most of the work needed for
711 * outbound IPsec SA selection.
712 */
713 typedef struct ipsec_latch_s
714 {
715 kmutex_t ipl_lock;
716 uint32_t ipl_refcnt;

718 struct ipsid_s *ipl_local_cid;
719 struct ipsid_s *ipl_remote_cid;
720 unsigned int
721 ipl_ids_latched : 1,

new/usr/src/uts/common/inet/ip.h 12

723 ipl_pad_to_bit_31 : 31;
724 } ipsec_latch_t;

726 #define IPLATCH_REFHOLD(ipl) { \
727 atomic_add_32(&(ipl)->ipl_refcnt, 1); \
728 ASSERT((ipl)->ipl_refcnt != 0); \
729 }

731 #define IPLATCH_REFRELE(ipl) { \
732 ASSERT((ipl)->ipl_refcnt != 0); \
733 membar_exit(); \
734 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \
735 iplatch_free(ipl); \
736 }

738 /*
739 * peer identity structure.
740 */
741 typedef struct conn_s conn_t;

743 /*
744 * This is used to match an inbound/outbound datagram with policy.
745 */
746 typedef struct ipsec_selector {
747 in6_addr_t ips_local_addr_v6;
748 in6_addr_t ips_remote_addr_v6;
749 uint16_t ips_local_port;
750 uint16_t ips_remote_port;
751 uint8_t ips_icmp_type;
752 uint8_t ips_icmp_code;
753 uint8_t ips_protocol;
754 uint8_t ips_isv4 : 1,
755 ips_is_icmp_inv_acq: 1;
756 } ipsec_selector_t;

758 /*
759 * Note that we put v4 addresses in the *first* 32-bit word of the
760 * selector rather than the last to simplify the prefix match/mask code
761 * in spd.c
762 */
763 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0]
764 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0]

766 /* Values used in IP by IPSEC Code */
767 #define IPSEC_OUTBOUND B_TRUE
768 #define IPSEC_INBOUND B_FALSE

770 /*
771 * There are two variants in policy failures. The packet may come in
772 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not
773 * have the desired level of protection (IPSEC_POLICY_MISMATCH).
774 */
775 #define IPSEC_POLICY_NOT_NEEDED 0
776 #define IPSEC_POLICY_MISMATCH 1
777 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2
778 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3
779 #define IPSEC_POLICY_SE_NOT_NEEDED 4
780 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */

782 /*
783 * Check with IPSEC inbound policy if
784 *
785 * 1) per-socket policy is present - indicated by conn_in_enforce_policy.
786 * 2) Or if we have not cached policy on the conn and the global policy is
787 * non-empty.

new/usr/src/uts/common/inet/ip.h 13

788 */
789 #define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \
790 ((connp)->conn_in_enforce_policy || \
791 (!((connp)->conn_policy_cached) && \
792 (ipss)->ipsec_inbound_v4_policy_present))

794 #define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \
795 ((connp)->conn_in_enforce_policy || \
796 (!(connp)->conn_policy_cached && \
797 (ipss)->ipsec_inbound_v6_policy_present))

799 #define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \
800 ((connp)->conn_out_enforce_policy || \
801 (!((connp)->conn_policy_cached) && \
802 (ipss)->ipsec_outbound_v4_policy_present))

804 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \
805 ((connp)->conn_out_enforce_policy || \
806 (!(connp)->conn_policy_cached && \
807 (ipss)->ipsec_outbound_v6_policy_present))

809 /*
810 * Information cached in IRE for upper layer protocol (ULP).
811 */
812 typedef struct iulp_s {
813 boolean_t iulp_set; /* Is any metric set? */
814 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */
815 clock_t iulp_rtt; /* Guestimate in millisecs. */
816 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */
817 uint32_t iulp_spipe; /* Send pipe size. */
818 uint32_t iulp_rpipe; /* Receive pipe size. */
819 uint32_t iulp_rtomax; /* Max round trip timeout. */
820 uint32_t iulp_sack; /* Use SACK option (TCP)? */
821 uint32_t iulp_mtu; /* Setable with routing sockets */

823 uint32_t
824 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */
825 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */
826 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */
827 iulp_pmtud_ok : 1, /* Enable PMTUd? */

829 /* These three are passed out by ip_set_destination */
830 iulp_localnet: 1, /* IRE_ONLINK */
831 iulp_loopback: 1, /* IRE_LOOPBACK */
832 iulp_local: 1, /* IRE_LOCAL */

834 iulp_not_used : 25;
835 } iulp_t;

837 /*
838 * The conn drain list structure (idl_t), protected by idl_lock. Each conn_t
839 * inserted in the list points back at this idl_t using conn_idl, and is
840 * chained by conn_drain_next and conn_drain_prev, which are also protected by
841 * idl_lock. When flow control is relieved, either ip_wsrv() (STREAMS) or
842 * ill_flow_enable() (non-STREAMS) will call conn_drain().
843 *
844 * The conn drain list, idl_t, itself is part of tx cookie list structure.
845 * A tx cookie list points to a blocked Tx ring and contains the list of
846 * all conn’s that are blocked due to the flow-controlled Tx ring (via
847 * the idl drain list). Note that a link can have multiple Tx rings. The
848 * drain list will store the conn’s blocked due to Tx ring being flow
849 * controlled.
850 */

852 typedef uintptr_t ip_mac_tx_cookie_t;
853 typedef struct idl_s idl_t;

new/usr/src/uts/common/inet/ip.h 14

854 typedef struct idl_tx_list_s idl_tx_list_t;

856 struct idl_tx_list_s {
857 ip_mac_tx_cookie_t txl_cookie;
858 kmutex_t txl_lock; /* Lock for this list */
859 idl_t *txl_drain_list;
860 int txl_drain_index;
861 };

863 struct idl_s {
864 conn_t *idl_conn; /* Head of drain list */
865 kmutex_t idl_lock; /* Lock for this list */
866 idl_tx_list_t *idl_itl;
867 };

869 /*
870 * Interface route structure which holds the necessary information to recreate
871 * routes that are tied to an interface i.e. have ire_ill set.
872 *
873 * These routes which were initially created via a routing socket or via the
874 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be
875 * traditional interface routes. When an ill comes back up after being
876 * down, this information will be used to recreate the routes. These
877 * are part of an mblk_t chain that hangs off of the ILL (ill_saved_ire_mp).
878 */
879 typedef struct ifrt_s {
880 ushort_t ifrt_type; /* Type of IRE */
881 in6_addr_t ifrt_v6addr; /* Address IRE represents. */
882 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFLINK */
883 in6_addr_t ifrt_v6setsrc_addr; /* Src addr if RTF_SETSRC */
884 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */
885 uint32_t ifrt_flags; /* flags related to route */
886 iulp_t ifrt_metrics; /* Routing socket metrics */
887 zoneid_t ifrt_zoneid; /* zoneid for route */
888 } ifrt_t;

890 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr)
891 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr)
892 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask)
893 #define ifrt_setsrc_addr V4_PART_OF_V6(ifrt_v6setsrc_addr)

895 /* Number of IP addresses that can be hosted on a physical interface */
896 #define MAX_ADDRS_PER_IF 8192
897 /*
898 * Number of Source addresses to be considered for source address
899 * selection. Used by ipif_select_source_v4/v6.
900 */
901 #define MAX_IPIF_SELECT_SOURCE 50

903 #ifdef IP_DEBUG
904 /*
905 * Trace refholds and refreles for debugging.
906 */
907 #define TR_STACK_DEPTH 14
908 typedef struct tr_buf_s {
909 int tr_depth;
910 clock_t tr_time;
911 pc_t tr_stack[TR_STACK_DEPTH];
912 } tr_buf_t;

914 typedef struct th_trace_s {
915 int th_refcnt;
916 uint_t th_trace_lastref;
917 kthread_t *th_id;
918 #define TR_BUF_MAX 38
919 tr_buf_t th_trbuf[TR_BUF_MAX];

new/usr/src/uts/common/inet/ip.h 15

920 } th_trace_t;

922 typedef struct th_hash_s {
923 list_node_t thh_link;
924 mod_hash_t *thh_hash;
925 ip_stack_t *thh_ipst;
926 } th_hash_t;
927 #endif

929 /* The following are ipif_state_flags */
930 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */
931 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */
932 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */

934 /* IP interface structure, one per local address */
935 typedef struct ipif_s {
936 struct ipif_s *ipif_next;
937 struct ill_s *ipif_ill; /* Back pointer to our ill */
938 int ipif_id; /* Logical unit number */
939 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */
940 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */
941 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */
942 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */
943 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */
944 uint64_t ipif_flags; /* Interface flags. */
945 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */

947 /*
948 * The packet count in the ipif contain the sum of the
949 * packet counts in dead IRE_LOCAL/LOOPBACK for this ipif.
950 */
951 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */

953 /* Exclusive bit fields, protected by ipsq_t */
954 unsigned int
955 ipif_was_up : 1, /* ipif was up before */
956 ipif_addr_ready : 1, /* DAD is done */
957 ipif_was_dup : 1, /* DAD had failed */
958 ipif_added_nce : 1, /* nce added for local address */

960 ipif_pad_to_31 : 28;

962 ilm_t *ipif_allhosts_ilm; /* For all-nodes join */
963 ilm_t *ipif_solmulti_ilm; /* For IPv6 solicited multicast join */

965 uint_t ipif_seqid; /* unique index across all ills */
966 uint_t ipif_state_flags; /* See IPIF_* flag defs above */
967 uint_t ipif_refcnt; /* active consistent reader cnt */

969 zoneid_t ipif_zoneid; /* zone ID number */
970 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */
971 boolean_t ipif_trace_disable; /* True when alloc fails */
972 /*
973 * For an IPMP interface, ipif_bound_ill tracks the ill whose hardware
974 * information this ipif is associated with via ARP/NDP. We can use
975 * an ill pointer (rather than an index) because only ills that are
976 * part of a group will be pointed to, and an ill cannot disappear
977 * while it’s in a group.
978 */
979 struct ill_s *ipif_bound_ill;
980 struct ipif_s *ipif_bound_next; /* bound ipif chain */
981 boolean_t ipif_bound; /* B_TRUE if we successfully bound */

983 struct ire_s *ipif_ire_local; /* Our IRE_LOCAL or LOOPBACK */
984 struct ire_s *ipif_ire_if; /* Our IRE_INTERFACE */
985 } ipif_t;

new/usr/src/uts/common/inet/ip.h 16

987 /*
988 * The following table lists the protection levels of the various members
989 * of the ipif_t. The following notation is used.
990 *
991 * Write once - Written to only once at the time of bringing up
992 * the interface and can be safely read after the bringup without any lock.
993 *
994 * ipsq - Need to execute in the ipsq to perform the indicated access.
995 *
996 * ill_lock - Need to hold this mutex to perform the indicated access.
997 *
998 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or
999 * write access respectively.

1000 *
1001 * down ill - Written to only when the ill is down (i.e all ipifs are down)
1002 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up)
1003 *
1004 * Table of ipif_t members and their protection
1005 *
1006 * ipif_next ipsq + ill_lock + ipsq OR ill_lock OR
1007 * ill_g_lock ill_g_lock
1008 * ipif_ill ipsq + down ipif write once
1009 * ipif_id ipsq + down ipif write once
1010 * ipif_v6lcl_addr ipsq + down ipif up ipif
1011 * ipif_v6subnet ipsq + down ipif up ipif
1012 * ipif_v6net_mask ipsq + down ipif up ipif
1013 *
1014 * ipif_v6brd_addr
1015 * ipif_v6pp_dst_addr
1016 * ipif_flags ill_lock ill_lock
1017 * ipif_ire_type ipsq + down ill up ill
1018 *
1019 * ipif_ib_pkt_count Approx
1020 *
1021 * bit fields ill_lock ill_lock
1022 *
1023 * ipif_allhosts_ilm ipsq ipsq
1024 * ipif_solmulti_ilm ipsq ipsq
1025 *
1026 * ipif_seqid ipsq Write once
1027 *
1028 * ipif_state_flags ill_lock ill_lock
1029 * ipif_refcnt ill_lock ill_lock
1030 * ipif_bound_ill ipsq + ipmp_lock ipsq OR ipmp_lock
1031 * ipif_bound_next ipsq ipsq
1032 * ipif_bound ipsq ipsq
1033 *
1034 * ipif_ire_local ipsq + ips_ill_g_lock ipsq OR ips_ill_g_lock
1035 * ipif_ire_if ipsq + ips_ill_g_lock ipsq OR ips_ill_g_lock
1036 */

1038 /*
1039 * Return values from ip_laddr_verify_{v4,v6}
1040 */
1041 typedef enum { IPVL_UNICAST_UP, IPVL_UNICAST_DOWN, IPVL_MCAST, IPVL_BCAST,
1042 IPVL_BAD} ip_laddr_t;

1045 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1))

1047 #ifdef DEBUG
1048 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif)
1049 #define ILL_TRACE_REF(ill) ill_trace_ref(ill)
1050 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif)
1051 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill)

new/usr/src/uts/common/inet/ip.h 17

1052 #else
1053 #define IPIF_TRACE_REF(ipif)
1054 #define ILL_TRACE_REF(ill)
1055 #define IPIF_UNTRACE_REF(ipif)
1056 #define ILL_UNTRACE_REF(ill)
1057 #endif

1059 /* IPv4 compatibility macros */
1060 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr)
1061 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet)
1062 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask)
1063 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr)
1064 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr)

1066 /* Macros for easy backreferences to the ill. */
1067 #define ipif_isv6 ipif_ill->ill_isv6

1069 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */

1071 /*
1072 * mode value for ip_ioctl_finish for finishing an ioctl
1073 */
1074 #define CONN_CLOSE 1 /* No mi_copy */
1075 #define COPYOUT 2 /* do an mi_copyout if needed */
1076 #define NO_COPYOUT 3 /* do an mi_copy_done */
1077 #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT)

1079 /*
1080 * The IP-MT design revolves around the serialization objects ipsq_t (IPSQ)
1081 * and ipxop_t (exclusive operation or "xop"). Becoming "writer" on an IPSQ
1082 * ensures that no other threads can become "writer" on any IPSQs sharing that
1083 * IPSQ’s xop until the writer thread is done.
1084 *
1085 * Each phyint points to one IPSQ that remains fixed over the phyint’s life.
1086 * Each IPSQ points to one xop that can change over the IPSQ’s life. If a
1087 * phyint is *not* in an IPMP group, then its IPSQ will refer to the IPSQ’s
1088 * "own" xop (ipsq_ownxop). If a phyint *is* part of an IPMP group, then its
1089 * IPSQ will refer to the "group" xop, which is shorthand for the xop of the
1090 * IPSQ of the IPMP meta-interface’s phyint. Thus, all phyints that are part
1091 * of the same IPMP group will have their IPSQ’s point to the group xop, and
1092 * thus becoming "writer" on any phyint in the group will prevent any other
1093 * writer on any other phyint in the group. All IPSQs sharing the same xop
1094 * are chained together through ipsq_next (in the degenerate common case,
1095 * ipsq_next simply refers to itself). Note that the group xop is guaranteed
1096 * to exist at least as long as there are members in the group, since the IPMP
1097 * meta-interface can only be destroyed if the group is empty.
1098 *
1099 * Incoming exclusive operation requests are enqueued on the IPSQ they arrived
1100 * on rather than the xop. This makes switching xop’s (as would happen when a
1101 * phyint leaves an IPMP group) simple, because after the phyint leaves the
1102 * group, any operations enqueued on its IPSQ can be safely processed with
1103 * respect to its new xop, and any operations enqueued on the IPSQs of its
1104 * former group can be processed with respect to their existing group xop.
1105 * Even so, switching xops is a subtle dance; see ipsq_dq() for details.
1106 *
1107 * An IPSQ’s "own" xop is embedded within the IPSQ itself since they have have
1108 * identical lifetimes, and because doing so simplifies pointer management.
1109 * While each phyint and IPSQ point to each other, it is not possible to free
1110 * the IPSQ when the phyint is freed, since we may still *inside* the IPSQ
1111 * when the phyint is being freed. Thus, ipsq_phyint is set to NULL when the
1112 * phyint is freed, and the IPSQ free is later done in ipsq_exit().
1113 *
1114 * ipsq_t synchronization: read write
1115 *
1116 * ipsq_xopq_mphead ipx_lock ipx_lock
1117 * ipsq_xopq_mptail ipx_lock ipx_lock

new/usr/src/uts/common/inet/ip.h 18

1118 * ipsq_xop_switch_mp ipsq_lock ipsq_lock
1119 * ipsq_phyint write once write once
1120 * ipsq_next RW_READER ill_g_lock RW_WRITER ill_g_lock
1121 * ipsq_xop ipsq_lock or ipsq ipsq_lock + ipsq
1122 * ipsq_swxop ipsq ipsq
1123 * ipsq_ownxop see ipxop_t see ipxop_t
1124 * ipsq_ipst write once write once
1125 *
1126 * ipxop_t synchronization: read write
1127 *
1128 * ipx_writer ipx_lock ipx_lock
1129 * ipx_xop_queued ipx_lock ipx_lock
1130 * ipx_mphead ipx_lock ipx_lock
1131 * ipx_mptail ipx_lock ipx_lock
1132 * ipx_ipsq write once write once
1133 * ips_ipsq_queued ipx_lock ipx_lock
1134 * ipx_waitfor ipsq or ipx_lock ipsq + ipx_lock
1135 * ipx_reentry_cnt ipsq or ipx_lock ipsq + ipx_lock
1136 * ipx_current_done ipsq ipsq
1137 * ipx_current_ioctl ipsq ipsq
1138 * ipx_current_ipif ipsq or ipx_lock ipsq + ipx_lock
1139 * ipx_pending_ipif ipsq or ipx_lock ipsq + ipx_lock
1140 * ipx_pending_mp ipsq or ipx_lock ipsq + ipx_lock
1141 * ipx_forced ipsq ipsq
1142 * ipx_depth ipsq ipsq
1143 * ipx_stack ipsq ipsq
1144 */
1145 typedef struct ipxop_s {
1146 kmutex_t ipx_lock; /* see above */
1147 kthread_t *ipx_writer; /* current owner */
1148 mblk_t *ipx_mphead; /* messages tied to this op */
1149 mblk_t *ipx_mptail;
1150 struct ipsq_s *ipx_ipsq; /* associated ipsq */
1151 boolean_t ipx_ipsq_queued; /* ipsq using xop has queued op */
1152 int ipx_waitfor; /* waiting; values encoded below */
1153 int ipx_reentry_cnt;
1154 boolean_t ipx_current_done; /* is the current operation done? */
1155 int ipx_current_ioctl; /* current ioctl, or 0 if no ioctl */
1156 ipif_t *ipx_current_ipif; /* ipif for current op */
1157 ipif_t *ipx_pending_ipif; /* ipif for ipx_pending_mp */
1158 mblk_t *ipx_pending_mp; /* current ioctl mp while waiting */
1159 boolean_t ipx_forced; /* debugging aid */
1160 #ifdef DEBUG
1161 int ipx_depth; /* debugging aid */
1162 #define IPX_STACK_DEPTH 15
1163 pc_t ipx_stack[IPX_STACK_DEPTH]; /* debugging aid */
1164 #endif
1165 } ipxop_t;

1167 typedef struct ipsq_s {
1168 kmutex_t ipsq_lock; /* see above */
1169 mblk_t *ipsq_switch_mp; /* op to handle right after switch */
1170 mblk_t *ipsq_xopq_mphead; /* list of excl ops (mostly ioctls) */
1171 mblk_t *ipsq_xopq_mptail;
1172 struct phyint *ipsq_phyint; /* associated phyint */
1173 struct ipsq_s *ipsq_next; /* next ipsq sharing ipsq_xop */
1174 struct ipxop_s *ipsq_xop; /* current xop synchronization info */
1175 struct ipxop_s *ipsq_swxop; /* switch xop to on ipsq_exit() */
1176 struct ipxop_s ipsq_ownxop; /* our own xop (may not be in-use) */
1177 ip_stack_t *ipsq_ipst; /* does not have a netstack_hold */
1178 } ipsq_t;

1180 /*
1181 * ipx_waitfor values:
1182 */
1183 enum {

new/usr/src/uts/common/inet/ip.h 19

1184 IPIF_DOWN = 1, /* ipif_down() waiting for refcnts to drop */
1185 ILL_DOWN, /* ill_down() waiting for refcnts to drop */
1186 IPIF_FREE, /* ipif_free() waiting for refcnts to drop */
1187 ILL_FREE /* ill unplumb waiting for refcnts to drop */
1188 };

1190 /* Operation types for ipsq_try_enter() */
1191 #define CUR_OP 0 /* request writer within current operation */
1192 #define NEW_OP 1 /* request writer for a new operation */
1193 #define SWITCH_OP 2 /* request writer once IPSQ XOP switches */

1195 /*
1196 * Kstats tracked on each IPMP meta-interface. Order here must match
1197 * ipmp_kstats[] in ip/ipmp.c.
1198 */
1199 enum {
1200 IPMP_KSTAT_OBYTES, IPMP_KSTAT_OBYTES64, IPMP_KSTAT_RBYTES,
1201 IPMP_KSTAT_RBYTES64, IPMP_KSTAT_OPACKETS, IPMP_KSTAT_OPACKETS64,
1202 IPMP_KSTAT_OERRORS, IPMP_KSTAT_IPACKETS, IPMP_KSTAT_IPACKETS64,
1203 IPMP_KSTAT_IERRORS, IPMP_KSTAT_MULTIRCV, IPMP_KSTAT_MULTIXMT,
1204 IPMP_KSTAT_BRDCSTRCV, IPMP_KSTAT_BRDCSTXMT, IPMP_KSTAT_LINK_UP,
1205 IPMP_KSTAT_MAX /* keep last */
1206 };

1208 /*
1209 * phyint represents state that is common to both IPv4 and IPv6 interfaces.
1210 * There is a separate ill_t representing IPv4 and IPv6 which has a
1211 * backpointer to the phyint structure for accessing common state.
1212 */
1213 typedef struct phyint {
1214 struct ill_s *phyint_illv4;
1215 struct ill_s *phyint_illv6;
1216 uint_t phyint_ifindex; /* SIOCSLIFINDEX */
1217 uint64_t phyint_flags;
1218 avl_node_t phyint_avl_by_index; /* avl tree by index */
1219 avl_node_t phyint_avl_by_name; /* avl tree by name */
1220 kmutex_t phyint_lock;
1221 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */
1222 struct ipmp_grp_s *phyint_grp; /* associated IPMP group */
1223 char phyint_name[LIFNAMSIZ]; /* physical interface name */
1224 uint64_t phyint_kstats0[IPMP_KSTAT_MAX]; /* baseline kstats */
1225 } phyint_t;

1227 #define CACHE_ALIGN_SIZE 64
1228 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\
1229 CACHE_ALIGN_SIZE)
1230 struct _phyint_list_s_ {
1231 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */
1232 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */
1233 };

1235 typedef union phyint_list_u {
1236 struct _phyint_list_s_ phyint_list_s;
1237 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)];
1238 } phyint_list_t;

1240 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index
1241 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name

1243 /*
1244 * Fragmentation hash bucket
1245 */
1246 typedef struct ipfb_s {
1247 struct ipf_s *ipfb_ipf; /* List of ... */
1248 size_t ipfb_count; /* Count of bytes used by frag(s) */
1249 kmutex_t ipfb_lock; /* Protect all ipf in list */

new/usr/src/uts/common/inet/ip.h 20

1250 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */
1251 } ipfb_t;

1253 /*
1254 * IRE bucket structure. Usually there is an array of such structures,
1255 * each pointing to a linked list of ires. irb_refcnt counts the number
1256 * of walkers of a given hash bucket. Usually the reference count is
1257 * bumped up if the walker wants no IRES to be DELETED while walking the
1258 * list. Bumping up does not PREVENT ADDITION. This allows walking a given
1259 * hash bucket without stumbling up on a free pointer.
1260 *
1261 * irb_t structures in ip_ftable are dynamically allocated and freed.
1262 * In order to identify the irb_t structures that can be safely kmem_free’d
1263 * we need to ensure that
1264 * - the irb_refcnt is quiescent, indicating no other walkers,
1265 * - no other threads or ire’s are holding references to the irb,
1266 * i.e., irb_nire == 0,
1267 * - there are no active ire’s in the bucket, i.e., irb_ire_cnt == 0
1268 */
1269 typedef struct irb {
1270 struct ire_s *irb_ire; /* First ire in this bucket */
1271 /* Should be first in this struct */
1272 krwlock_t irb_lock; /* Protect this bucket */
1273 uint_t irb_refcnt; /* Protected by irb_lock */
1274 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */
1275 #define IRB_MARK_CONDEMNED 0x0001 /* Contains some IRE_IS_CONDEMNED */
1276 #define IRB_MARK_DYNAMIC 0x0002 /* Dynamically allocated */
1277 /* Once IPv6 uses radix then IRB_MARK_DYNAMIC will be always be set */
1278 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */
1279 int irb_nire; /* Num of ftable ire’s that ref irb */
1280 ip_stack_t *irb_ipst; /* Does not have a netstack_hold */
1281 } irb_t;

1283 /*
1284 * This is the structure used to store the multicast physical addresses
1285 * that an interface has joined.
1286 * The refcnt keeps track of the number of multicast IP addresses mapping
1287 * to a physical multicast address.
1288 */
1289 typedef struct multiphysaddr_s {
1290 struct multiphysaddr_s *mpa_next;
1291 char mpa_addr[IP_MAX_HW_LEN];
1292 int mpa_refcnt;
1293 } multiphysaddr_t;

1295 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb))

1297 /* Forward declarations */
1298 struct dce_s;
1299 typedef struct dce_s dce_t;
1300 struct ire_s;
1301 typedef struct ire_s ire_t;
1302 struct ncec_s;
1303 typedef struct ncec_s ncec_t;
1304 struct nce_s;
1305 typedef struct nce_s nce_t;
1306 struct ip_recv_attr_s;
1307 typedef struct ip_recv_attr_s ip_recv_attr_t;
1308 struct ip_xmit_attr_s;
1309 typedef struct ip_xmit_attr_s ip_xmit_attr_t;

1311 struct tsol_ire_gw_secattr_s;
1312 typedef struct tsol_ire_gw_secattr_s tsol_ire_gw_secattr_t;

1314 /*
1315 * This is a structure for a one-element route cache that is passed

new/usr/src/uts/common/inet/ip.h 21

1316 * by reference between ip_input and ill_inputfn.
1317 */
1318 typedef struct {
1319 ire_t *rtc_ire;
1320 ipaddr_t rtc_ipaddr;
1321 in6_addr_t rtc_ip6addr;
1322 } rtc_t;

1324 /*
1325 * Note: Temporarily use 64 bits, and will probably go back to 32 bits after
1326 * more cleanup work is done.
1327 */
1328 typedef uint64_t iaflags_t;

1330 /* The ill input function pointer type */
1331 typedef void (*pfillinput_t)(mblk_t *, void *, void *, ip_recv_attr_t *,
1332 rtc_t *);

1334 /* The ire receive function pointer type */
1335 typedef void (*pfirerecv_t)(ire_t *, mblk_t *, void *, ip_recv_attr_t *);

1337 /* The ire send and postfrag function pointer types */
1338 typedef int (*pfiresend_t)(ire_t *, mblk_t *, void *,
1339 ip_xmit_attr_t *, uint32_t *);
1340 typedef int (*pfirepostfrag_t)(mblk_t *, nce_t *, iaflags_t, uint_t, uint32_t,
1341 zoneid_t, zoneid_t, uintptr_t *);

1344 #define IP_V4_G_HEAD 0
1345 #define IP_V6_G_HEAD 1

1347 #define MAX_G_HEADS 2

1349 /*
1350 * unpadded ill_if structure
1351 */
1352 struct _ill_if_s_ {
1353 union ill_if_u *illif_next;
1354 union ill_if_u *illif_prev;
1355 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */
1356 vmem_t *illif_ppa_arena; /* ppa index space */
1357 uint16_t illif_mcast_v1; /* hints for */
1358 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */
1359 int illif_name_len; /* name length */
1360 char illif_name[LIFNAMSIZ]; /* name of interface type */
1361 };

1363 /* cache aligned ill_if structure */
1364 typedef union ill_if_u {
1365 struct _ill_if_s_ ill_if_s;
1366 char illif_filler[CACHE_ALIGN(_ill_if_s_)];
1367 } ill_if_t;

1369 #define illif_next ill_if_s.illif_next
1370 #define illif_prev ill_if_s.illif_prev
1371 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa
1372 #define illif_ppa_arena ill_if_s.illif_ppa_arena
1373 #define illif_mcast_v1 ill_if_s.illif_mcast_v1
1374 #define illif_mcast_v2 ill_if_s.illif_mcast_v2
1375 #define illif_name ill_if_s.illif_name
1376 #define illif_name_len ill_if_s.illif_name_len

1378 typedef struct ill_walk_context_s {
1379 int ctx_current_list; /* current list being searched */
1380 int ctx_last_list; /* last list to search */
1381 } ill_walk_context_t;

new/usr/src/uts/common/inet/ip.h 22

1383 /*
1384 * ill_g_heads structure, one for IPV4 and one for IPV6
1385 */
1386 struct _ill_g_head_s_ {
1387 ill_if_t *ill_g_list_head;
1388 ill_if_t *ill_g_list_tail;
1389 };

1391 typedef union ill_g_head_u {
1392 struct _ill_g_head_s_ ill_g_head_s;
1393 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)];
1394 } ill_g_head_t;

1396 #define ill_g_list_head ill_g_head_s.ill_g_list_head
1397 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail

1399 #define IP_V4_ILL_G_LIST(ipst) \
1400 (ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head
1401 #define IP_V6_ILL_G_LIST(ipst) \
1402 (ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head
1403 #define IP_VX_ILL_G_LIST(i, ipst) \
1404 (ipst)->ips_ill_g_heads[i].ill_g_list_head

1406 #define ILL_START_WALK_V4(ctx_ptr, ipst) \
1407 ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst)
1408 #define ILL_START_WALK_V6(ctx_ptr, ipst) \
1409 ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst)
1410 #define ILL_START_WALK_ALL(ctx_ptr, ipst) \
1411 ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst)

1413 /*
1414 * Capabilities, possible flags for ill_capabilities.
1415 */
1416 #define ILL_CAPAB_LSO 0x04 /* Large Send Offload */
1417 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */
1418 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */
1419 #define ILL_CAPAB_DLD 0x20 /* DLD capabilities */
1420 #define ILL_CAPAB_DLD_POLL 0x40 /* Polling */
1421 #define ILL_CAPAB_DLD_DIRECT 0x80 /* Direct function call */

1423 /*
1424 * Per-ill Hardware Checksumming capbilities.
1425 */
1426 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t;

1428 /*
1429 * Per-ill Zero-copy capabilities.
1430 */
1431 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t;

1433 /*
1434 * DLD capbilities.
1435 */
1436 typedef struct ill_dld_capab_s ill_dld_capab_t;

1438 /*
1439 * Per-ill polling resource map.
1440 */
1441 typedef struct ill_rx_ring ill_rx_ring_t;

1443 /*
1444 * Per-ill Large Send Offload capabilities.
1445 */
1446 typedef struct ill_lso_capab_s ill_lso_capab_t;

new/usr/src/uts/common/inet/ip.h 23

1448 /* The following are ill_state_flags */
1449 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */
1450 #define ILL_CONDEMNED 0x02 /* No more new ref’s to the ILL */
1451 #define ILL_DL_UNBIND_IN_PROGRESS 0x04 /* UNBIND_REQ is sent */
1452 /*
1453 * ILL_DOWN_IN_PROGRESS is set to ensure the following:
1454 * - no packets are sent to the driver after the DL_UNBIND_REQ is sent,
1455 * - no longstanding references will be acquired on objects that are being
1456 * brought down.
1457 */
1458 #define ILL_DOWN_IN_PROGRESS 0x08

1460 /* Is this an ILL whose source address is used by other ILL’s ? */
1461 #define IS_USESRC_ILL(ill) \
1462 (((ill)->ill_usesrc_ifindex == 0) && \
1463 ((ill)->ill_usesrc_grp_next != NULL))

1465 /* Is this a client/consumer of the usesrc ILL ? */
1466 #define IS_USESRC_CLI_ILL(ill) \
1467 (((ill)->ill_usesrc_ifindex != 0) && \
1468 ((ill)->ill_usesrc_grp_next != NULL))

1470 /* Is this an virtual network interface (vni) ILL ? */
1471 #define IS_VNI(ill) \
1472 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \
1473 PHYI_VIRTUAL)

1475 /* Is this a loopback ILL? */
1476 #define IS_LOOPBACK(ill) \
1477 ((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK)

1479 /* Is this an IPMP meta-interface ILL? */
1480 #define IS_IPMP(ill) \
1481 ((ill)->ill_phyint->phyint_flags & PHYI_IPMP)

1483 /* Is this ILL under an IPMP meta-interface? (aka "in a group?") */
1484 #define IS_UNDER_IPMP(ill) \
1485 ((ill)->ill_grp != NULL && !IS_IPMP(ill))

1487 /* Is ill1 in the same illgrp as ill2? */
1488 #define IS_IN_SAME_ILLGRP(ill1, ill2) \
1489 ((ill1)->ill_grp != NULL && ((ill1)->ill_grp == (ill2)->ill_grp))

1491 /* Is ill1 on the same LAN as ill2? */
1492 #define IS_ON_SAME_LAN(ill1, ill2) \
1493 ((ill1) == (ill2) || IS_IN_SAME_ILLGRP(ill1, ill2))

1495 #define ILL_OTHER(ill) \
1496 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \
1497 (ill)->ill_phyint->phyint_illv6)

1499 /*
1500 * IPMP group ILL state structure -- up to two per IPMP group (V4 and V6).
1501 * Created when the V4 and/or V6 IPMP meta-interface is I_PLINK’d. It is
1502 * guaranteed to persist while there are interfaces of that type in the group.
1503 * In general, most fields are accessed outside of the IPSQ (e.g., in the
1504 * datapath), and thus use locks in addition to the IPSQ for protection.
1505 *
1506 * synchronization: read write
1507 *
1508 * ig_if ipsq or ill_g_lock ipsq and ill_g_lock
1509 * ig_actif ipsq or ipmp_lock ipsq and ipmp_lock
1510 * ig_nactif ipsq or ipmp_lock ipsq and ipmp_lock
1511 * ig_next_ill ipsq or ipmp_lock ipsq and ipmp_lock
1512 * ig_ipmp_ill write once write once
1513 * ig_cast_ill ipsq or ipmp_lock ipsq and ipmp_lock

new/usr/src/uts/common/inet/ip.h 24

1514 * ig_arpent ipsq ipsq
1515 * ig_mtu ipsq ipsq
1516 * ig_mc_mtu ipsq ipsq
1517 */
1518 typedef struct ipmp_illgrp_s {
1519 list_t ig_if; /* list of all interfaces */
1520 list_t ig_actif; /* list of active interfaces */
1521 uint_t ig_nactif; /* number of active interfaces */
1522 struct ill_s *ig_next_ill; /* next active interface to use */
1523 struct ill_s *ig_ipmp_ill; /* backpointer to IPMP meta-interface */
1524 struct ill_s *ig_cast_ill; /* nominated ill for multi/broadcast */
1525 list_t ig_arpent; /* list of ARP entries */
1526 uint_t ig_mtu; /* ig_ipmp_ill->ill_mtu */
1527 uint_t ig_mc_mtu; /* ig_ipmp_ill->ill_mc_mtu */
1528 } ipmp_illgrp_t;

1530 /*
1531 * IPMP group state structure -- one per IPMP group. Created when the
1532 * IPMP meta-interface is plumbed; it is guaranteed to persist while there
1533 * are interfaces in it.
1534 *
1535 * ipmp_grp_t synchronization: read write
1536 *
1537 * gr_name ipmp_lock ipmp_lock
1538 * gr_ifname write once write once
1539 * gr_mactype ipmp_lock ipmp_lock
1540 * gr_phyint write once write once
1541 * gr_nif ipmp_lock ipmp_lock
1542 * gr_nactif ipsq ipsq
1543 * gr_v4 ipmp_lock ipmp_lock
1544 * gr_v6 ipmp_lock ipmp_lock
1545 * gr_nv4 ipmp_lock ipmp_lock
1546 * gr_nv6 ipmp_lock ipmp_lock
1547 * gr_pendv4 ipmp_lock ipmp_lock
1548 * gr_pendv6 ipmp_lock ipmp_lock
1549 * gr_linkdownmp ipsq ipsq
1550 * gr_ksp ipmp_lock ipmp_lock
1551 * gr_kstats0 atomic atomic
1552 */
1553 typedef struct ipmp_grp_s {
1554 char gr_name[LIFGRNAMSIZ]; /* group name */
1555 char gr_ifname[LIFNAMSIZ]; /* interface name */
1556 t_uscalar_t gr_mactype; /* DLPI mactype of group */
1557 phyint_t *gr_phyint; /* IPMP group phyint */
1558 uint_t gr_nif; /* number of interfaces in group */
1559 uint_t gr_nactif; /* number of active interfaces */
1560 ipmp_illgrp_t *gr_v4; /* V4 group information */
1561 ipmp_illgrp_t *gr_v6; /* V6 group information */
1562 uint_t gr_nv4; /* number of ills in V4 group */
1563 uint_t gr_nv6; /* number of ills in V6 group */
1564 uint_t gr_pendv4; /* number of pending ills in V4 group */
1565 uint_t gr_pendv6; /* number of pending ills in V6 group */
1566 mblk_t *gr_linkdownmp; /* message used to bring link down */
1567 kstat_t *gr_ksp; /* group kstat pointer */
1568 uint64_t gr_kstats0[IPMP_KSTAT_MAX]; /* baseline group kstats */
1569 } ipmp_grp_t;

1571 /*
1572 * IPMP ARP entry -- one per SIOCS*ARP entry tied to the group. Used to keep
1573 * ARP up-to-date as the active set of interfaces in the group changes.
1574 */
1575 typedef struct ipmp_arpent_s {
1576 ipaddr_t ia_ipaddr; /* IP address for this entry */
1577 boolean_t ia_proxyarp; /* proxy ARP entry? */
1578 boolean_t ia_notified; /* ARP notified about this entry? */
1579 list_node_t ia_node; /* next ARP entry in list */

new/usr/src/uts/common/inet/ip.h 25

1580 uint16_t ia_flags; /* nce_flags for the address */
1581 size_t ia_lladdr_len;
1582 uchar_t *ia_lladdr;
1583 } ipmp_arpent_t;

1585 struct arl_s;

1587 /*
1588 * Per-ill capabilities.
1589 */
1590 struct ill_hcksum_capab_s {
1591 uint_t ill_hcksum_version; /* interface version */
1592 uint_t ill_hcksum_txflags; /* capabilities on transmit */
1593 };

1595 struct ill_zerocopy_capab_s {
1596 uint_t ill_zerocopy_version; /* interface version */
1597 uint_t ill_zerocopy_flags; /* capabilities */
1598 };

1600 struct ill_lso_capab_s {
1601 uint_t ill_lso_flags; /* capabilities */
1602 uint_t ill_lso_max; /* maximum size of payload */
1603 };

1605 /*
1606 * IP Lower level Structure.
1607 * Instance data structure in ip_open when there is a device below us.
1608 */
1609 typedef struct ill_s {
1610 pfillinput_t ill_inputfn; /* Fast input function selector */
1611 ill_if_t *ill_ifptr; /* pointer to interface type */
1612 queue_t *ill_rq; /* Read queue. */
1613 queue_t *ill_wq; /* Write queue. */

1615 int ill_error; /* Error value sent up by device. */

1617 ipif_t *ill_ipif; /* Interface chain for this ILL. */

1619 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */
1620 uint_t ill_max_frag; /* Max IDU from DLPI. */
1621 uint_t ill_current_frag; /* Current IDU from DLPI. */
1622 uint_t ill_mtu; /* User-specified MTU; SIOCSLIFMTU */
1623 uint_t ill_mc_mtu; /* MTU for multi/broadcast */
1624 uint_t ill_metric; /* BSD if metric, for compatibility. */
1625 char *ill_name; /* Our name. */
1626 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */
1627 uint_t ill_name_length; /* Name length, incl. terminator. */
1628 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */
1629 /*
1630 * Physical Point of Attachment num. If DLPI style 1 provider
1631 * then this is derived from the devname.
1632 */
1633 uint_t ill_ppa;
1634 t_uscalar_t ill_sap;
1635 t_scalar_t ill_sap_length; /* Including sign (for position) */
1636 uint_t ill_phys_addr_length; /* Excluding the sap. */
1637 uint_t ill_bcast_addr_length; /* Only set when the DL provider */
1638 /* supports broadcast. */
1639 t_uscalar_t ill_mactype;
1640 uint8_t *ill_frag_ptr; /* Reassembly state. */
1641 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */
1642 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */

1644 krwlock_t ill_mcast_lock; /* Protects multicast state */
1645 kmutex_t ill_mcast_serializer; /* Serialize across ilg and ilm state */

new/usr/src/uts/common/inet/ip.h 26

1646 ilm_t *ill_ilm; /* Multicast membership for ill */
1647 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */
1648 int ill_mcast_type; /* type of router which is querier */
1649 /* on this interface */
1650 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */
1651 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */
1652 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */
1653 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */

1655 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */
1656 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */

1658 /*
1659 * All non-NULL cells between ’ill_first_mp_to_free’ and
1660 * ’ill_last_mp_to_free’ are freed in ill_delete.
1661 */
1662 #define ill_first_mp_to_free ill_bcast_mp
1663 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */
1664 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */
1665 mblk_t *ill_promiscoff_mp; /* for ill_leave_allmulti() */
1666 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */
1667 mblk_t *ill_dest_addr_mp; /* mblk which holds ill_dest_addr */
1668 mblk_t *ill_replumb_mp; /* replumb mp from ill_replumb() */
1669 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */
1670 mblk_t *ill_mcast_deferred; /* b_next chain of IGMP/MLD packets */
1671 #define ill_last_mp_to_free ill_mcast_deferred

1673 cred_t *ill_credp; /* opener’s credentials */
1674 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */
1675 uint8_t *ill_dest_addr; /* ill_dest_addr_mp->b_rptr + off */

1677 uint_t ill_state_flags; /* see ILL_* flags above */

1679 /* Following bit fields protected by ipsq_t */
1680 uint_t
1681 ill_needs_attach : 1,
1682 ill_reserved : 1,
1683 ill_isv6 : 1,
1684 ill_dlpi_style_set : 1,

1686 ill_ifname_pending : 1,
1687 ill_logical_down : 1,
1688 ill_dl_up : 1,
1689 ill_up_ipifs : 1,

1691 ill_note_link : 1, /* supports link-up notification */
1692 ill_capab_reneg : 1, /* capability renegotiation to be done */
1693 ill_dld_capab_inprog : 1, /* direct dld capab call in prog */
1694 ill_need_recover_multicast : 1,

1696 ill_replumbing : 1,
1697 ill_arl_dlpi_pending : 1,
1698 ill_grp_pending : 1,

1700 ill_pad_to_bit_31 : 17;

1702 /* Following bit fields protected by ill_lock */
1703 uint_t
1704 ill_fragtimer_executing : 1,
1705 ill_fragtimer_needrestart : 1,
1706 ill_manual_token : 1, /* system won’t override ill_token */
1707 /*
1708 * ill_manual_linklocal : system will not change the
1709 * linklocal whenever ill_token changes.
1710 */
1711 ill_manual_linklocal : 1,

new/usr/src/uts/common/inet/ip.h 27

1713 ill_manual_dst_linklocal : 1, /* same for pt-pt dst linklocal */

1715 ill_pad_bit_31 : 27;

1717 /*
1718 * Used in SIOCSIFMUXID and SIOCGIFMUXID for ’ifconfig unplumb’.
1719 */
1720 int ill_muxid; /* muxid returned from plink */

1722 /* Used for IP frag reassembly throttling on a per ILL basis. */
1723 uint_t ill_ipf_gen; /* Generation of next fragment queue */
1724 uint_t ill_frag_count; /* Count of all reassembly mblk bytes */
1725 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */
1726 clock_t ill_last_frag_clean_time; /* time when frag’s were pruned */
1727 int ill_type; /* From <net/if_types.h> */
1728 uint_t ill_dlpi_multicast_state; /* See below IDS_* */
1729 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */

1731 /*
1732 * Capabilities related fields.
1733 */
1734 uint_t ill_dlpi_capab_state; /* State of capability query, IDCS_* */
1735 uint_t ill_capab_pending_cnt;
1736 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */
1737 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */
1738 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */
1739 ill_dld_capab_t *ill_dld_capab; /* DLD capabilities */
1740 ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */
1741 mblk_t *ill_capab_reset_mp; /* Preallocated mblk for capab reset */

1743 uint8_t ill_max_hops; /* Maximum hops for any logical interface */
1744 uint_t ill_user_mtu; /* User-specified MTU via SIOCSLIFLNKINFO */
1745 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */
1746 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */
1747 uint_t ill_max_buf; /* Max # of req to buffer for ND */
1748 in6_addr_t ill_token; /* IPv6 interface id */
1749 in6_addr_t ill_dest_token; /* Destination IPv6 interface id */
1750 uint_t ill_token_length;
1751 uint32_t ill_xmit_count; /* ndp max multicast xmits */
1752 mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */
1753 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */

1755 phyint_t *ill_phyint;
1756 uint64_t ill_flags;

1758 kmutex_t ill_lock; /* Please see table below */
1759 /*
1760 * The ill_nd_lla* fields handle the link layer address option
1761 * from neighbor discovery. This is used for external IPv6
1762 * address resolution.
1763 */
1764 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */
1765 uint8_t *ill_nd_lla; /* Link Layer Address */
1766 uint_t ill_nd_lla_len; /* Link Layer Address length */
1767 /*
1768 * We have 4 phys_addr_req’s sent down. This field keeps track
1769 * of which one is pending.
1770 */
1771 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */
1772 /*
1773 * Used to save errors that occur during plumbing
1774 */
1775 uint_t ill_ifname_pending_err;
1776 avl_node_t ill_avl_byppa; /* avl node based on ppa */
1777 list_t ill_nce; /* pointer to nce_s list */

new/usr/src/uts/common/inet/ip.h 28

1778 uint_t ill_refcnt; /* active refcnt by threads */
1779 uint_t ill_ire_cnt; /* ires associated with this ill */
1780 kcondvar_t ill_cv;
1781 uint_t ill_ncec_cnt; /* ncecs associated with this ill */
1782 uint_t ill_nce_cnt; /* nces associated with this ill */
1783 uint_t ill_waiters; /* threads waiting in ipsq_enter */
1784 /*
1785 * Contains the upper read queue pointer of the module immediately
1786 * beneath IP. This field allows IP to validate sub-capability
1787 * acknowledgments coming up from downstream.
1788 */
1789 queue_t *ill_lmod_rq; /* read queue pointer of module below */
1790 uint_t ill_lmod_cnt; /* number of modules beneath IP */
1791 ip_m_t *ill_media; /* media specific params/functions */
1792 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */
1793 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */
1794 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */
1795 boolean_t ill_trace_disable; /* True when alloc fails */
1796 zoneid_t ill_zoneid;
1797 ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */
1798 uint32_t ill_dhcpinit; /* IP_DHCPINIT_IFs for ill */
1799 void *ill_flownotify_mh; /* Tx flow ctl, mac cb handle */
1800 uint_t ill_ilm_cnt; /* ilms referencing this ill */
1801 uint_t ill_ipallmulti_cnt; /* ip_join_allmulti() calls */
1802 ilm_t *ill_ipallmulti_ilm;

1804 mblk_t *ill_saved_ire_mp; /* Allocated for each extra IRE */
1805 /* with ire_ill set so they can */
1806 /* survive the ill going down and up. */
1807 kmutex_t ill_saved_ire_lock; /* Protects ill_saved_ire_mp, cnt */
1808 uint_t ill_saved_ire_cnt; /* # entries */
1809 struct arl_ill_common_s *ill_common;
1810 ire_t *ill_ire_multicast; /* IRE_MULTICAST for ill */
1811 clock_t ill_defend_start; /* start of 1 hour period */
1812 uint_t ill_defend_count; /* # of announce/defends per ill */
1813 /*
1814 * IPMP fields.
1815 */
1816 ipmp_illgrp_t *ill_grp; /* IPMP group information */
1817 list_node_t ill_actnode; /* next active ill in group */
1818 list_node_t ill_grpnode; /* next ill in group */
1819 ipif_t *ill_src_ipif; /* source address selection rotor */
1820 ipif_t *ill_move_ipif; /* ipif awaiting move to new ill */
1821 boolean_t ill_nom_cast; /* nominated for mcast/bcast */
1822 uint_t ill_bound_cnt; /* # of data addresses bound to ill */
1823 ipif_t *ill_bound_ipif; /* ipif chain bound to ill */
1824 timeout_id_t ill_refresh_tid; /* ill refresh retry timeout id */

1826 uint32_t ill_mrouter_cnt; /* mrouter allmulti joins */
1827 uint32_t ill_allowed_ips_cnt;
1828 in6_addr_t *ill_allowed_ips;

1830 /* list of multicast physical addresses joined on this ill */
1831 multiphysaddr_t *ill_mphysaddr_list;
1832 } ill_t;

1834 /*
1835 * ILL_FREE_OK() means that there are no incoming pointer references
1836 * to the ill.
1837 */
1838 #define ILL_FREE_OK(ill) \
1839 ((ill)->ill_ire_cnt == 0 && (ill)->ill_ilm_cnt == 0 && \
1840 (ill)->ill_ncec_cnt == 0 && (ill)->ill_nce_cnt == 0)

1842 /*
1843 * An ipif/ill can be marked down only when the ire and ncec references

new/usr/src/uts/common/inet/ip.h 29

1844 * to that ipif/ill goes to zero. ILL_DOWN_OK() is a necessary condition
1845 * quiescence checks. See comments above IPIF_DOWN_OK for details
1846 * on why ires and nces are selectively considered for this macro.
1847 */
1848 #define ILL_DOWN_OK(ill) \
1849 (ill->ill_ire_cnt == 0 && ill->ill_ncec_cnt == 0 && \
1850 ill->ill_nce_cnt == 0)

1852 /*
1853 * The following table lists the protection levels of the various members
1854 * of the ill_t. Same notation as that used for ipif_t above is used.
1855 *
1856 * Write Read
1857 *
1858 * ill_ifptr ill_g_lock + s Write once
1859 * ill_rq ipsq Write once
1860 * ill_wq ipsq Write once
1861 *
1862 * ill_error ipsq None
1863 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq
1864 * ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq
1865 * ill_max_frag ill_lock ill_lock
1866 * ill_current_frag ill_lock ill_lock
1867 *
1868 * ill_name ill_g_lock + ipsq Write once
1869 * ill_name_length ill_g_lock + ipsq Write once
1870 * ill_ndd_name ipsq Write once
1871 * ill_net_type ipsq Write once
1872 * ill_ppa ill_g_lock + ipsq Write once
1873 * ill_sap ipsq + down ill Write once
1874 * ill_sap_length ipsq + down ill Write once
1875 * ill_phys_addr_length ipsq + down ill Write once
1876 *
1877 * ill_bcast_addr_length ipsq ipsq
1878 * ill_mactype ipsq ipsq
1879 * ill_frag_ptr ipsq ipsq
1880 *
1881 * ill_frag_timer_id ill_lock ill_lock
1882 * ill_frag_hash_tbl ipsq up ill
1883 * ill_ilm ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1884 * ill_global_timer ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1885 * ill_mcast_type ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1886 * ill_mcast_v1_time ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1887 * ill_mcast_v2_time ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1888 * ill_mcast_v1_tset ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1889 * ill_mcast_v2_tset ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1890 * ill_mcast_rv ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1891 * ill_mcast_qi ill_mcast_lock(WRITER) ill_mcast_lock(READER)
1892 *
1893 * ill_down_mp ipsq ipsq
1894 * ill_dlpi_deferred ill_lock ill_lock
1895 * ill_dlpi_pending ipsq + ill_lock ipsq or ill_lock or
1896 * absence of ipsq writer.
1897 * ill_phys_addr_mp ipsq + down ill only when ill is up
1898 * ill_mcast_deferred ill_lock ill_lock
1899 * ill_phys_addr ipsq + down ill only when ill is up
1900 * ill_dest_addr_mp ipsq + down ill only when ill is up
1901 * ill_dest_addr ipsq + down ill only when ill is up
1902 *
1903 * ill_state_flags ill_lock ill_lock
1904 * exclusive bit flags ipsq_t ipsq_t
1905 * shared bit flags ill_lock ill_lock
1906 *
1907 * ill_muxid ipsq Not atomic
1908 *
1909 * ill_ipf_gen Not atomic

new/usr/src/uts/common/inet/ip.h 30

1910 * ill_frag_count atomics atomics
1911 * ill_type ipsq + down ill only when ill is up
1912 * ill_dlpi_multicast_state ill_lock ill_lock
1913 * ill_dlpi_fastpath_state ill_lock ill_lock
1914 * ill_dlpi_capab_state ipsq ipsq
1915 * ill_max_hops ipsq Not atomic
1916 *
1917 * ill_mtu ill_lock None
1918 * ill_mc_mtu ill_lock None
1919 *
1920 * ill_user_mtu ipsq + ill_lock ill_lock
1921 * ill_reachable_time ipsq + ill_lock ill_lock
1922 * ill_reachable_retrans_time ipsq + ill_lock ill_lock
1923 * ill_max_buf ipsq + ill_lock ill_lock
1924 *
1925 * Next 2 fields need ill_lock because of the get ioctls. They should not
1926 * report partially updated results without executing in the ipsq.
1927 * ill_token ipsq + ill_lock ill_lock
1928 * ill_token_length ipsq + ill_lock ill_lock
1929 * ill_dest_token ipsq + down ill only when ill is up
1930 * ill_xmit_count ipsq + down ill write once
1931 * ill_ip6_mib ipsq + down ill only when ill is up
1932 * ill_icmp6_mib ipsq + down ill only when ill is up
1933 *
1934 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them
1935 * ill_flags ill_lock ill_lock
1936 * ill_nd_lla_mp ipsq + down ill only when ill is up
1937 * ill_nd_lla ipsq + down ill only when ill is up
1938 * ill_nd_lla_len ipsq + down ill only when ill is up
1939 * ill_phys_addr_pend ipsq + down ill only when ill is up
1940 * ill_ifname_pending_err ipsq ipsq
1941 * ill_avl_byppa ipsq, ill_g_lock write once
1942 *
1943 * ill_fastpath_list ill_lock ill_lock
1944 * ill_refcnt ill_lock ill_lock
1945 * ill_ire_cnt ill_lock ill_lock
1946 * ill_cv ill_lock ill_lock
1947 * ill_ncec_cnt ill_lock ill_lock
1948 * ill_nce_cnt ill_lock ill_lock
1949 * ill_ilm_cnt ill_lock ill_lock
1950 * ill_src_ipif ill_g_lock ill_g_lock
1951 * ill_trace ill_lock ill_lock
1952 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock
1953 * ill_dhcpinit atomics atomics
1954 * ill_flownotify_mh write once write once
1955 * ill_capab_pending_cnt ipsq ipsq
1956 * ill_ipallmulti_cnt ill_lock ill_lock
1957 * ill_ipallmulti_ilm ill_lock ill_lock
1958 * ill_saved_ire_mp ill_saved_ire_lock ill_saved_ire_lock
1959 * ill_saved_ire_cnt ill_saved_ire_lock ill_saved_ire_lock
1960 * ill_arl ??? ???
1961 * ill_ire_multicast ipsq + quiescent none
1962 * ill_bound_ipif ipsq ipsq
1963 * ill_actnode ipsq + ipmp_lock ipsq OR ipmp_lock
1964 * ill_grpnode ipsq + ill_g_lock ipsq OR ill_g_lock
1965 * ill_src_ipif ill_g_lock ill_g_lock
1966 * ill_move_ipif ipsq ipsq
1967 * ill_nom_cast ipsq ipsq OR advisory
1968 * ill_refresh_tid ill_lock ill_lock
1969 * ill_grp (for IPMP ill) write once write once
1970 * ill_grp (for underlying ill) ipsq + ill_g_lock ipsq OR ill_g_lock
1971 * ill_grp_pending ill_mcast_serializer ill_mcast_serializer
1972 * ill_mrouter_cnt atomics atomics
1973 * ill_mphysaddr_list ill_lock ill_lock
1974 *
1975 * NOTE: It’s OK to make heuristic decisions on an underlying interface

new/usr/src/uts/common/inet/ip.h 31

1976 * by using IS_UNDER_IPMP() or comparing ill_grp’s raw pointer value.
1977 */

1979 /*
1980 * For ioctl restart mechanism see ip_reprocess_ioctl()
1981 */
1982 struct ip_ioctl_cmd_s;

1984 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *,
1985 struct ip_ioctl_cmd_s *, void *);

1987 typedef struct ip_ioctl_cmd_s {
1988 int ipi_cmd;
1989 size_t ipi_copyin_size;
1990 uint_t ipi_flags;
1991 uint_t ipi_cmd_type;
1992 ifunc_t ipi_func;
1993 ifunc_t ipi_func_restart;
1994 } ip_ioctl_cmd_t;

1996 /*
1997 * ipi_cmd_type:
1998 *
1999 * IF_CMD 1 old style ifreq cmd
2000 * LIF_CMD 2 new style lifreq cmd
2001 * ARP_CMD 3 arpreq cmd
2002 * XARP_CMD 4 xarpreq cmd
2003 * MSFILT_CMD 5 multicast source filter cmd
2004 * MISC_CMD 6 misc cmd (not a more specific one above)
2005 */

2007 enum { IF_CMD = 1, LIF_CMD, ARP_CMD, XARP_CMD, MSFILT_CMD, MISC_CMD };

2009 #define IPI_DONTCARE 0 /* For ioctl encoded values that don’t matter */

2011 /* Flag values in ipi_flags */
2012 #define IPI_PRIV 0x1 /* Root only command */
2013 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */
2014 #define IPI_WR 0x4 /* Need to grab writer access */
2015 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */
2016 /* unused 0x10 */
2017 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */

2019 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[];
2020 extern ip_ioctl_cmd_t ip_misc_ioctl_table[];
2021 extern int ip_ndx_ioctl_count;
2022 extern int ip_misc_ioctl_count;

2024 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */
2025 typedef struct ipmx_s {
2026 char ipmx_name[LIFNAMSIZ]; /* if name */
2027 uint_t
2028 ipmx_arpdev_stream : 1, /* This is the arp stream */
2029 ipmx_notused : 31;
2030 } ipmx_t;

2032 /*
2033 * State for detecting if a driver supports certain features.
2034 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state.
2035 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state.
2036 */
2037 #define IDS_UNKNOWN 0 /* No DLPI request sent */
2038 #define IDS_INPROGRESS 1 /* DLPI request sent */
2039 #define IDS_OK 2 /* DLPI request completed successfully */
2040 #define IDS_FAILED 3 /* DLPI request failed */

new/usr/src/uts/common/inet/ip.h 32

2042 /* Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. */
2043 enum {
2044 IDCS_UNKNOWN,
2045 IDCS_PROBE_SENT,
2046 IDCS_OK,
2047 IDCS_RESET_SENT,
2048 IDCS_RENEG,
2049 IDCS_FAILED
2050 };

2052 /* Extended NDP Management Structure */
2053 typedef struct ipndp_s {
2054 ndgetf_t ip_ndp_getf;
2055 ndsetf_t ip_ndp_setf;
2056 caddr_t ip_ndp_data;
2057 char *ip_ndp_name;
2058 } ipndp_t;

2060 /* IXA Notification types */
2061 typedef enum {
2062 IXAN_LSO, /* LSO capability change */
2063 IXAN_PMTU, /* PMTU change */
2064 IXAN_ZCOPY /* ZEROCOPY capability change */
2065 } ixa_notify_type_t;

2067 typedef uint_t ixa_notify_arg_t;

2069 typedef void (*ixa_notify_t)(void *, ip_xmit_attr_t *ixa, ixa_notify_type_t,
2070 ixa_notify_arg_t);

2072 /*
2073 * Attribute flags that are common to the transmit and receive attributes
2074 */
2075 #define IAF_IS_IPV4 0x80000000 /* ipsec_*_v4 */
2076 #define IAF_TRUSTED_ICMP 0x40000000 /* ipsec_*_icmp_loopback */
2077 #define IAF_NO_LOOP_ZONEID_SET 0x20000000 /* Zone that shouldn’t have */
2078 /* a copy */
2079 #define IAF_LOOPBACK_COPY 0x10000000 /* For multi and broadcast */

2081 #define IAF_MASK 0xf0000000 /* Flags that are common */

2083 /*
2084 * Transmit side attributes used between the transport protocols and IP as
2085 * well as inside IP. It is also used to cache information in the conn_t i.e.
2086 * replaces conn_ire and the IPsec caching in the conn_t.
2087 */
2088 struct ip_xmit_attr_s {
2089 iaflags_t ixa_flags; /* IXAF_*. See below */

2091 uint32_t ixa_free_flags; /* IXA_FREE_*. See below */
2092 uint32_t ixa_refcnt; /* Using atomics */

2094 /*
2095 * Always initialized independently of ixa_flags settings.
2096 * Used by ip_xmit so we keep them up front for cache locality.
2097 */
2098 uint32_t ixa_xmit_hint; /* For ECMP and GLD TX ring fanout */
2099 uint_t ixa_pktlen; /* Always set. For frag and stats */
2100 zoneid_t ixa_zoneid; /* Assumed always set */

2102 /* Always set for conn_ip_output(); might be stale */
2103 /*
2104 * Since TCP keeps the conn_t around past the process going away
2105 * we need to use the "notr" (e.g, ire_refhold_notr) for ixa_ire,
2106 * ixa_nce, and ixa_dce.
2107 */

new/usr/src/uts/common/inet/ip.h 33

2108 ire_t *ixa_ire; /* Forwarding table entry */
2109 uint_t ixa_ire_generation;
2110 nce_t *ixa_nce; /* Neighbor cache entry */
2111 dce_t *ixa_dce; /* Destination cache entry */
2112 uint_t ixa_dce_generation;
2113 uint_t ixa_src_generation; /* If IXAF_VERIFY_SOURCE */

2115 uint32_t ixa_src_preferences; /* prefs for src addr select */
2116 uint32_t ixa_pmtu; /* IXAF_VERIFY_PMTU */

2118 /* Set by ULP if IXAF_VERIFY_PMTU; otherwise set by IP */
2119 uint32_t ixa_fragsize;

2121 int8_t ixa_use_min_mtu; /* IXAF_USE_MIN_MTU values */

2123 pfirepostfrag_t ixa_postfragfn; /* Set internally in IP */

2125 in6_addr_t ixa_nexthop_v6; /* IXAF_NEXTHOP_SET */
2126 #define ixa_nexthop_v4 V4_PART_OF_V6(ixa_nexthop_v6)

2128 zoneid_t ixa_no_loop_zoneid; /* IXAF_NO_LOOP_ZONEID_SET */

2130 uint_t ixa_scopeid; /* For IPv6 link-locals */

2132 uint_t ixa_broadcast_ttl; /* IXAF_BROACAST_TTL_SET */

2134 uint_t ixa_multicast_ttl; /* Assumed set for multicast */
2135 uint_t ixa_multicast_ifindex; /* Assumed set for multicast */
2136 ipaddr_t ixa_multicast_ifaddr; /* Assumed set for multicast */

2138 int ixa_raw_cksum_offset; /* If IXAF_SET_RAW_CKSUM */

2140 uint32_t ixa_ident; /* For IPv6 fragment header */

2142 uint64_t ixa_conn_id; /* Used by DTrace */
2143 /*
2144 * Cached LSO information.
2145 */
2146 ill_lso_capab_t ixa_lso_capab; /* Valid when IXAF_LSO_CAPAB */

2148 uint64_t ixa_ipsec_policy_gen; /* Generation from iph_gen */
2149 /*
2150 * The following IPsec fields are only initialized when
2151 * IXAF_IPSEC_SECURE is set. Otherwise they contain garbage.
2152 */
2153 ipsec_latch_t *ixa_ipsec_latch; /* Just the ids */
2154 struct ipsa_s *ixa_ipsec_ah_sa; /* Hard reference SA for AH */
2155 struct ipsa_s *ixa_ipsec_esp_sa; /* Hard reference SA for ESP */
2156 struct ipsec_policy_s *ixa_ipsec_policy; /* why are we here? */
2157 struct ipsec_action_s *ixa_ipsec_action; /* For reflected packets */
2158 ipsa_ref_t ixa_ipsec_ref[2]; /* Soft reference to SA */
2159 /* 0: ESP, 1: AH */

2161 /*
2162 * The selectors here are potentially different than the SPD rule’s
2163 * selectors, and we need to have both available for IKEv2.
2164 *
2165 * NOTE: "Source" and "Dest" are w.r.t. outbound datagrams. Ports can
2166 * be zero, and the protocol number is needed to make the ports
2167 * significant.
2168 */
2169 uint16_t ixa_ipsec_src_port; /* Source port number of d-gram. */
2170 uint16_t ixa_ipsec_dst_port; /* Destination port number of d-gram. */
2171 uint8_t ixa_ipsec_icmp_type; /* ICMP type of d-gram */
2172 uint8_t ixa_ipsec_icmp_code; /* ICMP code of d-gram */

new/usr/src/uts/common/inet/ip.h 34

2174 sa_family_t ixa_ipsec_inaf; /* Inner address family */
2175 #define IXA_MAX_ADDRLEN 4 /* Max addr len. (in 32-bit words) */
2176 uint32_t ixa_ipsec_insrc[IXA_MAX_ADDRLEN]; /* Inner src address */
2177 uint32_t ixa_ipsec_indst[IXA_MAX_ADDRLEN]; /* Inner dest address */
2178 uint8_t ixa_ipsec_insrcpfx; /* Inner source prefix */
2179 uint8_t ixa_ipsec_indstpfx; /* Inner destination prefix */

2181 uint8_t ixa_ipsec_proto; /* IP protocol number for d-gram. */

2183 /* Always initialized independently of ixa_flags settings */
2184 uint_t ixa_ifindex; /* Assumed always set */
2185 uint16_t ixa_ip_hdr_length; /* Points to ULP header */
2186 uint8_t ixa_protocol; /* Protocol number for ULP cksum */
2187 ts_label_t *ixa_tsl; /* Always set. NULL if not TX */
2188 ip_stack_t *ixa_ipst; /* Always set */
2189 uint32_t ixa_extra_ident; /* Set if LSO */
2190 cred_t *ixa_cred; /* For getpeerucred */
2191 pid_t ixa_cpid; /* For getpeerucred */

2193 #ifdef DEBUG
2194 kthread_t *ixa_curthread; /* For serialization assert */
2195 #endif
2196 squeue_t *ixa_sqp; /* Set from conn_sqp as a hint */
2197 uintptr_t ixa_cookie; /* cookie to use for tx flow control */

2199 /*
2200 * Must be set by ULP if any of IXAF_VERIFY_LSO, IXAF_VERIFY_PMTU,
2201 * or IXAF_VERIFY_ZCOPY is set.
2202 */
2203 ixa_notify_t ixa_notify; /* Registered upcall notify function */
2204 void *ixa_notify_cookie; /* ULP cookie for ixa_notify */
2205 };

2207 /*
2208 * Flags to indicate which transmit attributes are set.
2209 * Split into "xxx_SET" ones which indicate that the "xxx" field it set, and
2210 * single flags.
2211 */
2212 #define IXAF_REACH_CONF 0x00000001 /* Reachability confirmation */
2213 #define IXAF_BROADCAST_TTL_SET 0x00000002 /* ixa_broadcast_ttl valid */
2214 #define IXAF_SET_SOURCE 0x00000004 /* Replace if broadcast */
2215 #define IXAF_USE_MIN_MTU 0x00000008 /* IPV6_USE_MIN_MTU */

2217 #define IXAF_DONTFRAG 0x00000010 /* IP*_DONTFRAG */
2218 #define IXAF_VERIFY_PMTU 0x00000020 /* ixa_pmtu/ixa_fragsize set */
2219 #define IXAF_PMTU_DISCOVERY 0x00000040 /* Create/use PMTU state */
2220 #define IXAF_MULTICAST_LOOP 0x00000080 /* IP_MULTICAST_LOOP */

2222 #define IXAF_IPSEC_SECURE 0x00000100 /* Need IPsec processing */
2223 #define IXAF_UCRED_TSL 0x00000200 /* ixa_tsl from SCM_UCRED */
2224 #define IXAF_DONTROUTE 0x00000400 /* SO_DONTROUTE */
2225 #define IXAF_NO_IPSEC 0x00000800 /* Ignore policy */

2227 #define IXAF_PMTU_TOO_SMALL 0x00001000 /* PMTU too small */
2228 #define IXAF_SET_ULP_CKSUM 0x00002000 /* Calculate ULP checksum */
2229 #define IXAF_VERIFY_SOURCE 0x00004000 /* Check that source is ok */
2230 #define IXAF_NEXTHOP_SET 0x00008000 /* ixa_nexthop set */

2232 #define IXAF_PMTU_IPV4_DF 0x00010000 /* Set IPv4 DF */
2233 #define IXAF_NO_DEV_FLOW_CTL 0x00020000 /* Protocol needs no flow ctl */
2234 #define IXAF_NO_TTL_CHANGE 0x00040000 /* Internal to IP */
2235 #define IXAF_IPV6_ADD_FRAGHDR 0x00080000 /* Add fragment header */

2237 #define IXAF_IPSEC_TUNNEL 0x00100000 /* Tunnel mode */
2238 #define IXAF_NO_PFHOOK 0x00200000 /* Skip xmit pfhook */
2239 #define IXAF_NO_TRACE 0x00400000 /* When back from ARP/ND */

new/usr/src/uts/common/inet/ip.h 35

2240 #define IXAF_SCOPEID_SET 0x00800000 /* ixa_scopeid set */

2242 #define IXAF_MULTIRT_MULTICAST 0x01000000 /* MULTIRT for multicast */
2243 #define IXAF_NO_HW_CKSUM 0x02000000 /* Force software cksum */
2244 #define IXAF_SET_RAW_CKSUM 0x04000000 /* Use ixa_raw_cksum_offset */
2245 #define IXAF_IPSEC_GLOBAL_POLICY 0x08000000 /* Policy came from global */

2247 /* Note the following uses bits 0x10000000 through 0x80000000 */
2248 #define IXAF_IS_IPV4 IAF_IS_IPV4
2249 #define IXAF_TRUSTED_ICMP IAF_TRUSTED_ICMP
2250 #define IXAF_NO_LOOP_ZONEID_SET IAF_NO_LOOP_ZONEID_SET
2251 #define IXAF_LOOPBACK_COPY IAF_LOOPBACK_COPY

2253 /* Note: use the upper 32 bits */
2254 #define IXAF_VERIFY_LSO 0x100000000 /* Check LSO capability */
2255 #define IXAF_LSO_CAPAB 0x200000000 /* Capable of LSO */
2256 #define IXAF_VERIFY_ZCOPY 0x400000000 /* Check Zero Copy capability */
2257 #define IXAF_ZCOPY_CAPAB 0x800000000 /* Capable of ZEROCOPY */

2259 /*
2260 * The normal flags for sending packets e.g., icmp errors
2261 */
2262 #define IXAF_BASIC_SIMPLE_V4 \
2263 (IXAF_SET_ULP_CKSUM | IXAF_IS_IPV4 | IXAF_VERIFY_SOURCE)
2264 #define IXAF_BASIC_SIMPLE_V6 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE)

2266 /*
2267 * Normally these fields do not have a hold. But in some cases they do, for
2268 * instance when we’ve gone through ip_*_attr_to/from_mblk.
2269 * We use ixa_free_flags to indicate that they have a hold and need to be
2270 * released on cleanup.
2271 */
2272 #define IXA_FREE_CRED 0x00000001 /* ixa_cred needs to be rele */
2273 #define IXA_FREE_TSL 0x00000002 /* ixa_tsl needs to be rele */

2275 /*
2276 * Simplistic way to set the ixa_xmit_hint for locally generated traffic
2277 * and forwarded traffic. The shift amount are based on the size of the
2278 * structs to discard the low order bits which don’t have much if any variation
2279 * (coloring in kmem_cache_alloc might provide some variation).
2280 *
2281 * Basing the locally generated hint on the address of the conn_t means that
2282 * the packets from the same socket/connection do not get reordered.
2283 * Basing the hint for forwarded traffic on the ill_ring_t means that
2284 * packets from the same NIC+ring are likely to use the same outbound ring
2285 * hence we get low contention on the ring in the transmitting driver.
2286 */
2287 #define CONN_TO_XMIT_HINT(connp) ((uint32_t)(((uintptr_t)connp) >> 11))
2288 #define ILL_RING_TO_XMIT_HINT(ring) ((uint32_t)(((uintptr_t)ring) >> 7))

2290 /*
2291 * IP set Destination Flags used by function ip_set_destination,
2292 * ip_attr_connect, and conn_connect.
2293 */
2294 #define IPDF_ALLOW_MCBC 0x1 /* Allow multi/broadcast */
2295 #define IPDF_VERIFY_DST 0x2 /* Verify destination addr */
2296 #define IPDF_SELECT_SRC 0x4 /* Select source address */
2297 #define IPDF_LSO 0x8 /* Try LSO */
2298 #define IPDF_IPSEC 0x10 /* Set IPsec policy */
2299 #define IPDF_ZONE_IS_GLOBAL 0x20 /* From conn_zone_is_global */
2300 #define IPDF_ZCOPY 0x40 /* Try ZEROCOPY */
2301 #define IPDF_UNIQUE_DCE 0x80 /* Get a per-destination DCE */

2303 /*
2304 * Receive side attributes used between the transport protocols and IP as
2305 * well as inside IP.

new/usr/src/uts/common/inet/ip.h 36

2306 */
2307 struct ip_recv_attr_s {
2308 iaflags_t ira_flags; /* See below */

2310 uint32_t ira_free_flags; /* IRA_FREE_*. See below */

2312 /*
2313 * This is a hint for TCP SYN packets.
2314 * Always initialized independently of ira_flags settings
2315 */
2316 squeue_t *ira_sqp;
2317 ill_rx_ring_t *ira_ring; /* Internal to IP */

2319 /* For ip_accept_tcp when IRAF_TARGET_SQP is set */
2320 squeue_t *ira_target_sqp;
2321 mblk_t *ira_target_sqp_mp;

2323 /* Always initialized independently of ira_flags settings */
2324 uint32_t ira_xmit_hint; /* For ECMP and GLD TX ring fanout */
2325 zoneid_t ira_zoneid; /* ALL_ZONES unless local delivery */
2326 uint_t ira_pktlen; /* Always set. For frag and stats */
2327 uint16_t ira_ip_hdr_length; /* Points to ULP header */
2328 uint8_t ira_protocol; /* Protocol number for ULP cksum */
2329 uint_t ira_rifindex; /* Received ifindex */
2330 uint_t ira_ruifindex; /* Received upper ifindex */
2331 ts_label_t *ira_tsl; /* Always set. NULL if not TX */
2332 /*
2333 * ira_rill and ira_ill is set inside IP, but not when conn_recv is
2334 * called; ULPs should use ira_ruifindex instead.
2335 */
2336 ill_t *ira_rill; /* ill where packet came */
2337 ill_t *ira_ill; /* ill where IP address hosted */
2338 cred_t *ira_cred; /* For getpeerucred */
2339 pid_t ira_cpid; /* For getpeerucred */

2341 /* Used when IRAF_VERIFIED_SRC is set; this source was ok */
2342 ipaddr_t ira_verified_src;

2344 /*
2345 * The following IPsec fields are only initialized when
2346 * IRAF_IPSEC_SECURE is set. Otherwise they contain garbage.
2347 */
2348 struct ipsec_action_s *ira_ipsec_action; /* how we made it in.. */
2349 struct ipsa_s *ira_ipsec_ah_sa; /* SA for AH */
2350 struct ipsa_s *ira_ipsec_esp_sa; /* SA for ESP */

2352 ipaddr_t ira_mroute_tunnel; /* IRAF_MROUTE_TUNNEL_SET */

2354 zoneid_t ira_no_loop_zoneid; /* IRAF_NO_LOOP_ZONEID_SET */

2356 uint32_t ira_esp_udp_ports; /* IRAF_ESP_UDP_PORTS */

2358 /*
2359 * For IP_RECVSLLA and ip_ndp_conflict/find_solicitation.
2360 * Same size as max for sockaddr_dl
2361 */
2362 #define IRA_L2SRC_SIZE 244
2363 uint8_t ira_l2src[IRA_L2SRC_SIZE]; /* If IRAF_L2SRC_SET */

2365 /*
2366 * Local handle that we use to do lazy setting of ira_l2src.
2367 * We defer setting l2src until needed but we do before any
2368 * ip_input pullupmsg or copymsg.
2369 */
2370 struct mac_header_info_s *ira_mhip; /* Could be NULL */
2371 };

new/usr/src/uts/common/inet/ip.h 37

2373 /*
2374 * Flags to indicate which receive attributes are set.
2375 */
2376 #define IRAF_SYSTEM_LABELED 0x00000001 /* is_system_labeled() */
2377 #define IRAF_IPV4_OPTIONS 0x00000002 /* Performance */
2378 #define IRAF_MULTICAST 0x00000004 /* Was multicast at L3 */
2379 #define IRAF_BROADCAST 0x00000008 /* Was broadcast at L3 */
2380 #define IRAF_MULTIBROADCAST (IRAF_MULTICAST|IRAF_BROADCAST)

2382 #define IRAF_LOOPBACK 0x00000010 /* Looped back by IP */
2383 #define IRAF_VERIFY_IP_CKSUM 0x00000020 /* Need to verify IP */
2384 #define IRAF_VERIFY_ULP_CKSUM 0x00000040 /* Need to verify TCP,UDP,etc */
2385 #define IRAF_SCTP_CSUM_ERR 0x00000080 /* sctp pkt has failed chksum */

2387 #define IRAF_IPSEC_SECURE 0x00000100 /* Passed AH and/or ESP */
2388 #define IRAF_DHCP_UNICAST 0x00000200
2389 #define IRAF_IPSEC_DECAPS 0x00000400 /* Was packet decapsulated */
2390 /* from a matching inner packet? */
2391 #define IRAF_TARGET_SQP 0x00000800 /* ira_target_sqp is set */
2392 #define IRAF_VERIFIED_SRC 0x00001000 /* ira_verified_src set */
2393 #define IRAF_RSVP 0x00002000 /* RSVP packet for rsvpd */
2394 #define IRAF_MROUTE_TUNNEL_SET 0x00004000 /* From ip_mroute_decap */
2395 #define IRAF_PIM_REGISTER 0x00008000 /* From register_mforward */

2397 #define IRAF_TX_MAC_EXEMPTABLE 0x00010000 /* Allow MAC_EXEMPT readdown */
2398 #define IRAF_TX_SHARED_ADDR 0x00020000 /* Arrived on ALL_ZONES addr */
2399 #define IRAF_ESP_UDP_PORTS 0x00040000 /* NAT-traversal packet */
2400 #define IRAF_NO_HW_CKSUM 0x00080000 /* Force software cksum */

2402 #define IRAF_ICMP_ERROR 0x00100000 /* Send to conn_recvicmp */
2403 #define IRAF_ROUTER_ALERT 0x00200000 /* IPv6 router alert */
2404 #define IRAF_L2SRC_SET 0x00400000 /* ira_l2src has been set */
2405 #define IRAF_L2SRC_LOOPBACK 0x00800000 /* Came from us */

2407 #define IRAF_L2DST_MULTICAST 0x01000000 /* Multicast at L2 */
2408 #define IRAF_L2DST_BROADCAST 0x02000000 /* Broadcast at L2 */
2409 /* Unused 0x04000000 */
2410 /* Unused 0x08000000 */

2412 /* Below starts with 0x10000000 */
2413 #define IRAF_IS_IPV4 IAF_IS_IPV4
2414 #define IRAF_TRUSTED_ICMP IAF_TRUSTED_ICMP
2415 #define IRAF_NO_LOOP_ZONEID_SET IAF_NO_LOOP_ZONEID_SET
2416 #define IRAF_LOOPBACK_COPY IAF_LOOPBACK_COPY

2418 /*
2419 * Normally these fields do not have a hold. But in some cases they do, for
2420 * instance when we’ve gone through ip_*_attr_to/from_mblk.
2421 * We use ira_free_flags to indicate that they have a hold and need to be
2422 * released on cleanup.
2423 */
2424 #define IRA_FREE_CRED 0x00000001 /* ira_cred needs to be rele */
2425 #define IRA_FREE_TSL 0x00000002 /* ira_tsl needs to be rele */

2427 /*
2428 * Optional destination cache entry for path MTU information,
2429 * and ULP metrics.
2430 */
2431 struct dce_s {
2432 uint_t dce_generation; /* Changed since cached? */
2433 uint_t dce_flags; /* See below */
2434 uint_t dce_ipversion; /* IPv4/IPv6 version */
2435 uint32_t dce_pmtu; /* Path MTU if DCEF_PMTU */
2436 uint32_t dce_ident; /* Per destination IP ident. */
2437 iulp_t dce_uinfo; /* Metrics if DCEF_UINFO */

new/usr/src/uts/common/inet/ip.h 38

2439 struct dce_s *dce_next;
2440 struct dce_s **dce_ptpn;
2441 struct dcb_s *dce_bucket;

2443 union {
2444 in6_addr_t dceu_v6addr;
2445 ipaddr_t dceu_v4addr;
2446 } dce_u;
2447 #define dce_v4addr dce_u.dceu_v4addr
2448 #define dce_v6addr dce_u.dceu_v6addr
2449 /* Note that for IPv6+IPMP we use the ifindex for the upper interface */
2450 uint_t dce_ifindex; /* For IPv6 link-locals */

2452 kmutex_t dce_lock;
2453 uint_t dce_refcnt;
2454 uint64_t dce_last_change_time; /* Path MTU. In seconds */

2456 ip_stack_t *dce_ipst; /* Does not have a netstack_hold */
2457 };

2459 /*
2460 * Values for dce_generation.
2461 *
2462 * If a DCE has DCE_GENERATION_CONDEMNED, the last dce_refrele should delete
2463 * it.
2464 *
2465 * DCE_GENERATION_VERIFY is never stored in dce_generation but it is
2466 * stored in places that cache DCE (such as ixa_dce_generation).
2467 * It is used as a signal that the cache is stale and needs to be reverified.
2468 */
2469 #define DCE_GENERATION_CONDEMNED 0
2470 #define DCE_GENERATION_VERIFY 1
2471 #define DCE_GENERATION_INITIAL 2
2472 #define DCE_IS_CONDEMNED(dce) \
2473 ((dce)->dce_generation == DCE_GENERATION_CONDEMNED)

2476 /*
2477 * Values for ips_src_generation.
2478 *
2479 * SRC_GENERATION_VERIFY is never stored in ips_src_generation but it is
2480 * stored in places that cache IREs (ixa_src_generation). It is used as a
2481 * signal that the cache is stale and needs to be reverified.
2482 */
2483 #define SRC_GENERATION_VERIFY 0
2484 #define SRC_GENERATION_INITIAL 1

2486 /*
2487 * The kernel stores security attributes of all gateways in a database made
2488 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the
2489 * security-related credentials of the gateway. More than one gateways may
2490 * share entries in the database.
2491 *
2492 * The tsol_gc_t structure represents the gateway to credential association,
2493 * and refers to an entry in the database. One or more tsol_gc_t entities are
2494 * grouped together to form one or more tsol_gcgrp_t, each representing the
2495 * list of security attributes specific to the gateway. A gateway may be
2496 * associated with at most one credentials group.
2497 */
2498 struct tsol_gcgrp_s;

2500 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */

2502 /*
2503 * Gateway security credential record.

new/usr/src/uts/common/inet/ip.h 39

2504 */
2505 typedef struct tsol_gcdb_s {
2506 uint_t gcdb_refcnt; /* reference count */
2507 struct rtsa_s gcdb_attr; /* security attributes */
2508 #define gcdb_mask gcdb_attr.rtsa_mask
2509 #define gcdb_doi gcdb_attr.rtsa_doi
2510 #define gcdb_slrange gcdb_attr.rtsa_slrange
2511 } tsol_gcdb_t;

2513 /*
2514 * Gateway to credential association.
2515 */
2516 typedef struct tsol_gc_s {
2517 uint_t gc_refcnt; /* reference count */
2518 struct tsol_gcgrp_s *gc_grp; /* pointer to group */
2519 struct tsol_gc_s *gc_prev; /* previous in list */
2520 struct tsol_gc_s *gc_next; /* next in list */
2521 tsol_gcdb_t *gc_db; /* pointer to actual credentials */
2522 } tsol_gc_t;

2524 /*
2525 * Gateway credentials group address.
2526 */
2527 typedef struct tsol_gcgrp_addr_s {
2528 int ga_af; /* address family */
2529 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */
2530 } tsol_gcgrp_addr_t;

2532 /*
2533 * Gateway credentials group.
2534 */
2535 typedef struct tsol_gcgrp_s {
2536 uint_t gcgrp_refcnt; /* reference count */
2537 krwlock_t gcgrp_rwlock; /* lock to protect following */
2538 uint_t gcgrp_count; /* number of credentials */
2539 tsol_gc_t *gcgrp_head; /* first credential in list */
2540 tsol_gc_t *gcgrp_tail; /* last credential in list */
2541 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */
2542 } tsol_gcgrp_t;

2544 extern kmutex_t gcgrp_lock;

2546 #define GC_REFRELE(p) { \
2547 ASSERT((p)->gc_grp != NULL); \
2548 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \
2549 ASSERT((p)->gc_refcnt > 0); \
2550 if (--((p)->gc_refcnt) == 0) \
2551 gc_inactive(p); \
2552 else \
2553 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \
2554 }

2556 #define GCGRP_REFHOLD(p) { \
2557 mutex_enter(&gcgrp_lock); \
2558 ++((p)->gcgrp_refcnt); \
2559 ASSERT((p)->gcgrp_refcnt != 0); \
2560 mutex_exit(&gcgrp_lock); \
2561 }

2563 #define GCGRP_REFRELE(p) { \
2564 mutex_enter(&gcgrp_lock); \
2565 ASSERT((p)->gcgrp_refcnt > 0); \
2566 if (--((p)->gcgrp_refcnt) == 0) \
2567 gcgrp_inactive(p); \
2568 ASSERT(MUTEX_HELD(&gcgrp_lock)); \
2569 mutex_exit(&gcgrp_lock); \

new/usr/src/uts/common/inet/ip.h 40

2570 }

2572 /*
2573 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr
2574 */
2575 struct tsol_tnrhc;

2577 struct tsol_ire_gw_secattr_s {
2578 kmutex_t igsa_lock; /* lock to protect following */
2579 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */
2580 tsol_gc_t *igsa_gc; /* for prefix IREs */
2581 };

2583 void irb_refrele_ftable(irb_t *);

2585 extern struct kmem_cache *rt_entry_cache;

2587 typedef struct ire4 {
2588 ipaddr_t ire4_mask; /* Mask for matching this IRE. */
2589 ipaddr_t ire4_addr; /* Address this IRE represents. */
2590 ipaddr_t ire4_gateway_addr; /* Gateway including for IRE_ONLINK */
2591 ipaddr_t ire4_setsrc_addr; /* RTF_SETSRC */
2592 } ire4_t;

2594 typedef struct ire6 {
2595 in6_addr_t ire6_mask; /* Mask for matching this IRE. */
2596 in6_addr_t ire6_addr; /* Address this IRE represents. */
2597 in6_addr_t ire6_gateway_addr; /* Gateway including for IRE_ONLINK */
2598 in6_addr_t ire6_setsrc_addr; /* RTF_SETSRC */
2599 } ire6_t;

2601 typedef union ire_addr {
2602 ire6_t ire6_u;
2603 ire4_t ire4_u;
2604 } ire_addr_u_t;

2606 /*
2607 * Internet Routing Entry
2608 * When we have multiple identical IREs we logically add them by manipulating
2609 * ire_identical_ref and ire_delete first decrements
2610 * that and when it reaches 1 we know it is the last IRE.
2611 * "identical" is defined as being the same for:
2612 * ire_addr, ire_netmask, ire_gateway, ire_ill, ire_zoneid, and ire_type
2613 * For instance, multiple IRE_BROADCASTs for the same subnet number are
2614 * viewed as identical, and so are the IRE_INTERFACEs when there are
2615 * multiple logical interfaces (on the same ill) with the same subnet prefix.
2616 */
2617 struct ire_s {
2618 struct ire_s *ire_next; /* The hash chain must be first. */
2619 struct ire_s **ire_ptpn; /* Pointer to previous next. */
2620 uint32_t ire_refcnt; /* Number of references */
2621 ill_t *ire_ill;
2622 uint32_t ire_identical_ref; /* IRE_INTERFACE, IRE_BROADCAST */
2623 uchar_t ire_ipversion; /* IPv4/IPv6 version */
2624 ushort_t ire_type; /* Type of IRE */
2625 uint_t ire_generation; /* Generation including CONDEMNED */
2626 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */
2627 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */
2628 time_t ire_create_time; /* Time (in secs) IRE was created. */
2629 uint32_t ire_flags; /* flags related to route (RTF_*) */
2630 /*
2631 * ire_testhidden is TRUE for INTERFACE IREs of IS_UNDER_IPMP(ill)
2632 * interfaces
2633 */
2634 boolean_t ire_testhidden;
2635 pfirerecv_t ire_recvfn; /* Receive side handling */

new/usr/src/uts/common/inet/ip.h 41

2636 pfiresend_t ire_sendfn; /* Send side handling */
2637 pfirepostfrag_t ire_postfragfn; /* Bottom end of send handling */

2639 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */
2640 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */

2642 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */
2643 kmutex_t ire_lock;
2644 clock_t ire_last_used_time; /* For IRE_LOCAL reception */
2645 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */
2646 zoneid_t ire_zoneid;

2648 /*
2649 * Cached information of where to send packets that match this route.
2650 * The ire_dep_* information is used to determine when ire_nce_cache
2651 * needs to be updated.
2652 * ire_nce_cache is the fastpath for the Neighbor Cache Entry
2653 * for IPv6; arp info for IPv4
2654 * Since this is a cache setup and torn down independently of
2655 * applications we need to use nce_ref{rele,hold}_notr for it.
2656 */
2657 nce_t *ire_nce_cache;

2659 /*
2660 * Quick check whether the ire_type and ire_masklen indicates
2661 * that the IRE can have ire_nce_cache set i.e., whether it is
2662 * IRE_ONLINK and for a single destination.
2663 */
2664 boolean_t ire_nce_capable;

2666 /*
2667 * Dependency tracking so we can safely cache IRE and NCE pointers
2668 * in offlink and onlink IREs.
2669 * These are locked under the ips_ire_dep_lock rwlock. Write held
2670 * when modifying the linkage.
2671 * ire_dep_parent (Also chain towards IRE for nexthop)
2672 * ire_dep_parent_generation: ire_generation of ire_dep_parent
2673 * ire_dep_children (From parent to first child)
2674 * ire_dep_sib_next (linked list of siblings)
2675 * ire_dep_sib_ptpn (linked list of siblings)
2676 *
2677 * The parent has a ire_refhold on each child, and each child has
2678 * an ire_refhold on its parent.
2679 * Since ire_dep_parent is a cache setup and torn down independently of
2680 * applications we need to use ire_ref{rele,hold}_notr for it.
2681 */
2682 ire_t *ire_dep_parent;
2683 ire_t *ire_dep_children;
2684 ire_t *ire_dep_sib_next;
2685 ire_t **ire_dep_sib_ptpn; /* Pointer to previous next */
2686 uint_t ire_dep_parent_generation;

2688 uint_t ire_badcnt; /* Number of times ND_UNREACHABLE */
2689 uint64_t ire_last_badcnt; /* In seconds */

2691 /* ire_defense* and ire_last_used_time are only used on IRE_LOCALs */
2692 uint_t ire_defense_count; /* number of ARP conflicts */
2693 uint_t ire_defense_time; /* last time defended (secs) */

2695 boolean_t ire_trace_disable; /* True when alloc fails */
2696 ip_stack_t *ire_ipst; /* Does not have a netstack_hold */
2697 iulp_t ire_metrics;
2698 /*
2699 * default and prefix routes that are added without explicitly
2700 * specifying the interface are termed "unbound" routes, and will
2701 * have ire_unbound set to true.

new/usr/src/uts/common/inet/ip.h 42

2702 */
2703 boolean_t ire_unbound;
2704 };

2706 /* IPv4 compatibility macros */
2707 #define ire_mask ire_u.ire4_u.ire4_mask
2708 #define ire_addr ire_u.ire4_u.ire4_addr
2709 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr
2710 #define ire_setsrc_addr ire_u.ire4_u.ire4_setsrc_addr

2712 #define ire_mask_v6 ire_u.ire6_u.ire6_mask
2713 #define ire_addr_v6 ire_u.ire6_u.ire6_addr
2714 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr
2715 #define ire_setsrc_addr_v6 ire_u.ire6_u.ire6_setsrc_addr

2717 /*
2718 * Values for ire_generation.
2719 *
2720 * If an IRE is marked with IRE_IS_CONDEMNED, the last walker of
2721 * the bucket should delete this IRE from this bucket.
2722 *
2723 * IRE_GENERATION_VERIFY is never stored in ire_generation but it is
2724 * stored in places that cache IREs (such as ixa_ire_generation and
2725 * ire_dep_parent_generation). It is used as a signal that the cache is
2726 * stale and needs to be reverified.
2727 */
2728 #define IRE_GENERATION_CONDEMNED 0
2729 #define IRE_GENERATION_VERIFY 1
2730 #define IRE_GENERATION_INITIAL 2
2731 #define IRE_IS_CONDEMNED(ire) \
2732 ((ire)->ire_generation == IRE_GENERATION_CONDEMNED)

2734 /* Convenient typedefs for sockaddrs */
2735 typedef struct sockaddr_in sin_t;
2736 typedef struct sockaddr_in6 sin6_t;

2738 /* Name/Value Descriptor. */
2739 typedef struct nv_s {
2740 uint64_t nv_value;
2741 char *nv_name;
2742 } nv_t;

2744 #define ILL_FRAG_HASH(s, i) \
2745 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT)

2747 /*
2748 * The MAX number of allowed fragmented packets per hash bucket
2749 * calculation is based on the most common mtu size of 1500. This limit
2750 * will work well for other mtu sizes as well.
2751 */
2752 #define COMMON_IP_MTU 1500
2753 #define MAX_FRAG_MIN 10
2754 #define MAX_FRAG_PKTS(ipst) \
2755 MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \
2756 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT))))

2758 /*
2759 * Maximum dups allowed per packet.
2760 */
2761 extern uint_t ip_max_frag_dups;

2763 /*
2764 * Per-packet information for received packets and transmitted.
2765 * Used by the transport protocols when converting between the packet
2766 * and ancillary data and socket options.
2767 *

new/usr/src/uts/common/inet/ip.h 43

2768 * Note: This private data structure and related IPPF_* constant
2769 * definitions are exposed to enable compilation of some debugging tools
2770 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be
2771 * a temporary hack and long term alternate interfaces should be defined
2772 * to support the needs of such tools and private definitions moved to
2773 * private headers.
2774 */
2775 struct ip_pkt_s {
2776 uint_t ipp_fields; /* Which fields are valid */
2777 in6_addr_t ipp_addr; /* pktinfo src/dst addr */
2778 #define ipp_addr_v4 V4_PART_OF_V6(ipp_addr)
2779 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS, IP_TTL */
2780 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */
2781 uint_t ipp_hopoptslen;
2782 uint_t ipp_rthdrdstoptslen;
2783 uint_t ipp_rthdrlen;
2784 uint_t ipp_dstoptslen;
2785 uint_t ipp_fraghdrlen;
2786 ip6_hbh_t *ipp_hopopts;
2787 ip6_dest_t *ipp_rthdrdstopts;
2788 ip6_rthdr_t *ipp_rthdr;
2789 ip6_dest_t *ipp_dstopts;
2790 ip6_frag_t *ipp_fraghdr;
2791 uint8_t ipp_tclass; /* IPV6_TCLASS */
2792 uint8_t ipp_type_of_service; /* IP_TOS */
2793 uint_t ipp_ipv4_options_len; /* Len of IPv4 options */
2794 uint8_t *ipp_ipv4_options; /* Ptr to IPv4 options */
2795 uint_t ipp_label_len_v4; /* Len of TX label for IPv4 */
2796 uint8_t *ipp_label_v4; /* TX label for IPv4 */
2797 uint_t ipp_label_len_v6; /* Len of TX label for IPv6 */
2798 uint8_t *ipp_label_v6; /* TX label for IPv6 */
2799 };
2800 typedef struct ip_pkt_s ip_pkt_t;

2802 extern void ip_pkt_free(ip_pkt_t *); /* free storage inside ip_pkt_t */
2803 extern ipaddr_t ip_pkt_source_route_v4(const ip_pkt_t *);
2804 extern in6_addr_t *ip_pkt_source_route_v6(const ip_pkt_t *);
2805 extern int ip_pkt_copy(ip_pkt_t *, ip_pkt_t *, int);
2806 extern void ip_pkt_source_route_reverse_v4(ip_pkt_t *);

2808 /* ipp_fields values */
2809 #define IPPF_ADDR 0x0001 /* Part of in6_pktinfo: src/dst addr */
2810 #define IPPF_HOPLIMIT 0x0002 /* Overrides unicast and multicast */
2811 #define IPPF_TCLASS 0x0004 /* Overrides class in sin6_flowinfo */

2813 #define IPPF_HOPOPTS 0x0010 /* ipp_hopopts set */
2814 #define IPPF_RTHDR 0x0020 /* ipp_rthdr set */
2815 #define IPPF_RTHDRDSTOPTS 0x0040 /* ipp_rthdrdstopts set */
2816 #define IPPF_DSTOPTS 0x0080 /* ipp_dstopts set */

2818 #define IPPF_IPV4_OPTIONS 0x0100 /* ipp_ipv4_options set */
2819 #define IPPF_LABEL_V4 0x0200 /* ipp_label_v4 set */
2820 #define IPPF_LABEL_V6 0x0400 /* ipp_label_v6 set */

2822 #define IPPF_FRAGHDR 0x0800 /* Used for IPsec receive side */

2824 /*
2825 * Data structure which is passed to conn_opt_get/set.
2826 * The conn_t is included even though it can be inferred from queue_t.
2827 * setsockopt and getsockopt use conn_ixa and conn_xmit_ipp. However,
2828 * when handling ancillary data we use separate ixa and ipps.
2829 */
2830 typedef struct conn_opt_arg_s {
2831 conn_t *coa_connp;
2832 ip_xmit_attr_t *coa_ixa;
2833 ip_pkt_t *coa_ipp;

new/usr/src/uts/common/inet/ip.h 44

2834 boolean_t coa_ancillary; /* Ancillary data and not setsockopt */
2835 uint_t coa_changed; /* See below */
2836 } conn_opt_arg_t;

2838 /*
2839 * Flags for what changed.
2840 * If we want to be more efficient in the future we can have more fine
2841 * grained flags e.g., a flag for just IP_TOS changing.
2842 * For now we either call ip_set_destination (for "route changed")
2843 * and/or conn_build_hdr_template/conn_prepend_hdr (for "header changed").
2844 */
2845 #define COA_HEADER_CHANGED 0x0001
2846 #define COA_ROUTE_CHANGED 0x0002
2847 #define COA_RCVBUF_CHANGED 0x0004 /* SO_RCVBUF */
2848 #define COA_SNDBUF_CHANGED 0x0008 /* SO_SNDBUF */
2849 #define COA_WROFF_CHANGED 0x0010 /* Header size changed */
2850 #define COA_ICMP_BIND_NEEDED 0x0020
2851 #define COA_OOBINLINE_CHANGED 0x0040

2853 #define TCP_PORTS_OFFSET 0
2854 #define UDP_PORTS_OFFSET 0

2856 /*
2857 * lookups return the ill/ipif only if the flags are clear OR Iam writer.
2858 * ill / ipif lookup functions increment the refcnt on the ill / ipif only
2859 * after calling these macros. This ensures that the refcnt on the ipif or
2860 * ill will eventually drop down to zero.
2861 */
2862 #define ILL_LOOKUP_FAILED 1 /* Used as error code */
2863 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */

2865 #define ILL_CAN_LOOKUP(ill) \
2866 (!((ill)->ill_state_flags & ILL_CONDEMNED) || \
2867 IAM_WRITER_ILL(ill))

2869 #define ILL_IS_CONDEMNED(ill) \
2870 ((ill)->ill_state_flags & ILL_CONDEMNED)

2872 #define IPIF_CAN_LOOKUP(ipif) \
2873 (!((ipif)->ipif_state_flags & IPIF_CONDEMNED) || \
2874 IAM_WRITER_IPIF(ipif))

2876 #define IPIF_IS_CONDEMNED(ipif) \
2877 ((ipif)->ipif_state_flags & IPIF_CONDEMNED)

2879 #define IPIF_IS_CHANGING(ipif) \
2880 ((ipif)->ipif_state_flags & IPIF_CHANGING)

2882 /* Macros used to assert that this thread is a writer */
2883 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_xop->ipx_writer == curthread)
2884 #define IAM_WRITER_ILL(ill) IAM_WRITER_IPSQ((ill)->ill_phyint->phyint_ipsq)
2885 #define IAM_WRITER_IPIF(ipif) IAM_WRITER_ILL((ipif)->ipif_ill)

2887 /*
2888 * Grab ill locks in the proper order. The order is highest addressed
2889 * ill is locked first.
2890 */
2891 #define GRAB_ILL_LOCKS(ill_1, ill_2) \
2892 { \
2893 if ((ill_1) > (ill_2)) { \
2894 if (ill_1 != NULL) \
2895 mutex_enter(&(ill_1)->ill_lock); \
2896 if (ill_2 != NULL) \
2897 mutex_enter(&(ill_2)->ill_lock); \
2898 } else { \
2899 if (ill_2 != NULL) \

new/usr/src/uts/common/inet/ip.h 45

2900 mutex_enter(&(ill_2)->ill_lock); \
2901 if (ill_1 != NULL && ill_1 != ill_2) \
2902 mutex_enter(&(ill_1)->ill_lock); \
2903 } \
2904 }

2906 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \
2907 { \
2908 if (ill_1 != NULL) \
2909 mutex_exit(&(ill_1)->ill_lock); \
2910 if (ill_2 != NULL && ill_2 != ill_1) \
2911 mutex_exit(&(ill_2)->ill_lock); \
2912 }

2914 /* Get the other protocol instance ill */
2915 #define ILL_OTHER(ill) \
2916 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \
2917 (ill)->ill_phyint->phyint_illv6)

2919 /* ioctl command info: Ioctl properties extracted and stored in here */
2920 typedef struct cmd_info_s
2921 {
2922 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl’s */
2923 sin_t *ci_sin; /* the sin struct passed down */
2924 sin6_t *ci_sin6; /* the sin6_t struct passed down */
2925 struct lifreq *ci_lifr; /* the lifreq struct passed down */
2926 } cmd_info_t;

2928 extern struct kmem_cache *ire_cache;

2930 extern ipaddr_t ip_g_all_ones;

2932 extern uint_t ip_loopback_mtu; /* /etc/system */
2933 extern uint_t ip_loopback_mtuplus;
2934 extern uint_t ip_loopback_mtu_v6plus;

2936 extern vmem_t *ip_minor_arena_sa;
2937 extern vmem_t *ip_minor_arena_la;

2939 /*
2940 * ip_g_forward controls IP forwarding. It takes two values:
2941 * 0: IP_FORWARD_NEVER Don’t forward packets ever.
2942 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere.
2943 *
2944 * RFC1122 says there must be a configuration switch to control forwarding,
2945 * but that the default MUST be to not forward packets ever. Implicit
2946 * control based on configuration of multiple interfaces MUST NOT be
2947 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability
2948 * and, in fact, it was the default. That capability is now provided in the
2949 * /etc/rc2.d/S69inet script.
2950 */

2952 #define ips_ip_respond_to_address_mask_broadcast \
2953 ips_propinfo_tbl[0].prop_cur_bval
2954 #define ips_ip_g_resp_to_echo_bcast ips_propinfo_tbl[1].prop_cur_bval
2955 #define ips_ip_g_resp_to_echo_mcast ips_propinfo_tbl[2].prop_cur_bval
2956 #define ips_ip_g_resp_to_timestamp ips_propinfo_tbl[3].prop_cur_bval
2957 #define ips_ip_g_resp_to_timestamp_bcast ips_propinfo_tbl[4].prop_cur_bval
2958 #define ips_ip_g_send_redirects ips_propinfo_tbl[5].prop_cur_bval
2959 #define ips_ip_g_forward_directed_bcast ips_propinfo_tbl[6].prop_cur_bval
2960 #define ips_ip_mrtdebug ips_propinfo_tbl[7].prop_cur_uval
2961 #define ips_ip_ire_reclaim_fraction ips_propinfo_tbl[8].prop_cur_uval
2962 #define ips_ip_nce_reclaim_fraction ips_propinfo_tbl[9].prop_cur_uval
2963 #define ips_ip_dce_reclaim_fraction ips_propinfo_tbl[10].prop_cur_uval
2964 #define ips_ip_def_ttl ips_propinfo_tbl[11].prop_cur_uval
2965 #define ips_ip_forward_src_routed ips_propinfo_tbl[12].prop_cur_bval

new/usr/src/uts/common/inet/ip.h 46

2966 #define ips_ip_wroff_extra ips_propinfo_tbl[13].prop_cur_uval
2967 #define ips_ip_pathmtu_interval ips_propinfo_tbl[14].prop_cur_uval
2968 #define ips_ip_icmp_return ips_propinfo_tbl[15].prop_cur_uval
2969 #define ips_ip_path_mtu_discovery ips_propinfo_tbl[16].prop_cur_bval
2970 #define ips_ip_pmtu_min ips_propinfo_tbl[17].prop_cur_uval
2971 #define ips_ip_ignore_redirect ips_propinfo_tbl[18].prop_cur_bval
2972 #define ips_ip_arp_icmp_error ips_propinfo_tbl[19].prop_cur_bval
2973 #define ips_ip_broadcast_ttl ips_propinfo_tbl[20].prop_cur_uval
2974 #define ips_ip_icmp_err_interval ips_propinfo_tbl[21].prop_cur_uval
2975 #define ips_ip_icmp_err_burst ips_propinfo_tbl[22].prop_cur_uval
2976 #define ips_ip_reass_queue_bytes ips_propinfo_tbl[23].prop_cur_uval
2977 #define ips_ip_strict_dst_multihoming ips_propinfo_tbl[24].prop_cur_uval
2978 #define ips_ip_addrs_per_if ips_propinfo_tbl[25].prop_cur_uval
2979 #define ips_ipsec_override_persocket_policy ips_propinfo_tbl[26].prop_cur_bval
2980 #define ips_icmp_accept_clear_messages ips_propinfo_tbl[27].prop_cur_bval
2981 #define ips_igmp_accept_clear_messages ips_propinfo_tbl[28].prop_cur_bval

2983 /* IPv6 configuration knobs */
2984 #define ips_delay_first_probe_time ips_propinfo_tbl[29].prop_cur_uval
2985 #define ips_max_unicast_solicit ips_propinfo_tbl[30].prop_cur_uval
2986 #define ips_ipv6_def_hops ips_propinfo_tbl[31].prop_cur_uval
2987 #define ips_ipv6_icmp_return ips_propinfo_tbl[32].prop_cur_uval
2988 #define ips_ipv6_forward_src_routed ips_propinfo_tbl[33].prop_cur_bval
2989 #define ips_ipv6_resp_echo_mcast ips_propinfo_tbl[34].prop_cur_bval
2990 #define ips_ipv6_send_redirects ips_propinfo_tbl[35].prop_cur_bval
2991 #define ips_ipv6_ignore_redirect ips_propinfo_tbl[36].prop_cur_bval
2992 #define ips_ipv6_strict_dst_multihoming ips_propinfo_tbl[37].prop_cur_uval
2993 #define ips_src_check ips_propinfo_tbl[38].prop_cur_uval
2994 #define ips_ipsec_policy_log_interval ips_propinfo_tbl[39].prop_cur_uval
2995 #define ips_pim_accept_clear_messages ips_propinfo_tbl[40].prop_cur_bval
2996 #define ips_ip_ndp_unsolicit_interval ips_propinfo_tbl[41].prop_cur_uval
2997 #define ips_ip_ndp_unsolicit_count ips_propinfo_tbl[42].prop_cur_uval
2998 #define ips_ipv6_ignore_home_address_opt ips_propinfo_tbl[43].prop_cur_bval

3000 /* Misc IP configuration knobs */
3001 #define ips_ip_policy_mask ips_propinfo_tbl[44].prop_cur_uval
3002 #define ips_ip_ecmp_behavior ips_propinfo_tbl[45].prop_cur_uval
3003 #define ips_ip_multirt_ttl ips_propinfo_tbl[46].prop_cur_uval
3004 #define ips_ip_ire_badcnt_lifetime ips_propinfo_tbl[47].prop_cur_uval
3005 #define ips_ip_max_temp_idle ips_propinfo_tbl[48].prop_cur_uval
3006 #define ips_ip_max_temp_defend ips_propinfo_tbl[49].prop_cur_uval
3007 #define ips_ip_max_defend ips_propinfo_tbl[50].prop_cur_uval
3008 #define ips_ip_defend_interval ips_propinfo_tbl[51].prop_cur_uval
3009 #define ips_ip_dup_recovery ips_propinfo_tbl[52].prop_cur_uval
3010 #define ips_ip_restrict_interzone_loopback ips_propinfo_tbl[53].prop_cur_bval
3011 #define ips_ip_lso_outbound ips_propinfo_tbl[54].prop_cur_bval
3012 #define ips_igmp_max_version ips_propinfo_tbl[55].prop_cur_uval
3013 #define ips_mld_max_version ips_propinfo_tbl[56].prop_cur_uval
3014 #define ips_ip_forwarding ips_propinfo_tbl[57].prop_cur_bval
3015 #define ips_ipv6_forwarding ips_propinfo_tbl[58].prop_cur_bval
3016 #define ips_ip_reassembly_timeout ips_propinfo_tbl[59].prop_cur_uval
3017 #define ips_ipv6_reassembly_timeout ips_propinfo_tbl[60].prop_cur_uval
3018 #define ips_ip_cgtp_filter ips_propinfo_tbl[61].prop_cur_bval
3019 #define ips_arp_probe_delay ips_propinfo_tbl[62].prop_cur_uval
3020 #define ips_arp_fastprobe_delay ips_propinfo_tbl[63].prop_cur_uval
3021 #define ips_arp_probe_interval ips_propinfo_tbl[64].prop_cur_uval
3022 #define ips_arp_fastprobe_interval ips_propinfo_tbl[65].prop_cur_uval
3023 #define ips_arp_probe_count ips_propinfo_tbl[66].prop_cur_uval
3024 #define ips_arp_fastprobe_count ips_propinfo_tbl[67].prop_cur_uval
3025 #define ips_ipv4_dad_announce_interval ips_propinfo_tbl[68].prop_cur_uval
3026 #define ips_ipv6_dad_announce_interval ips_propinfo_tbl[69].prop_cur_uval
3027 #define ips_arp_defend_interval ips_propinfo_tbl[70].prop_cur_uval
3028 #define ips_arp_defend_rate ips_propinfo_tbl[71].prop_cur_uval
3029 #define ips_ndp_defend_interval ips_propinfo_tbl[72].prop_cur_uval
3030 #define ips_ndp_defend_rate ips_propinfo_tbl[73].prop_cur_uval
3031 #define ips_arp_defend_period ips_propinfo_tbl[74].prop_cur_uval

new/usr/src/uts/common/inet/ip.h 47

3032 #define ips_ndp_defend_period ips_propinfo_tbl[75].prop_cur_uval
3033 #define ips_ipv4_icmp_return_pmtu ips_propinfo_tbl[76].prop_cur_bval
3034 #define ips_ipv6_icmp_return_pmtu ips_propinfo_tbl[77].prop_cur_bval
3035 #define ips_ip_arp_publish_count ips_propinfo_tbl[78].prop_cur_uval
3036 #define ips_ip_arp_publish_interval ips_propinfo_tbl[79].prop_cur_uval
3037 #define ips_ip_strict_src_multihoming ips_propinfo_tbl[80].prop_cur_uval
3038 #define ips_ipv6_strict_src_multihoming ips_propinfo_tbl[81].prop_cur_uval
3039 #define ips_ipv6_drop_inbound_icmpv6 ips_propinfo_tbl[82].prop_cur_bval

3041 extern int dohwcksum; /* use h/w cksum if supported by the h/w */
3042 #ifdef ZC_TEST
3043 extern int noswcksum;
3044 #endif

3046 extern char ipif_loopback_name[];

3048 extern nv_t *ire_nv_tbl;

3050 extern struct module_info ip_mod_info;

3052 #define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \
3053 ((ipst)->ips_ip4_physical_in_event.he_interested)
3054 #define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \
3055 ((ipst)->ips_ip6_physical_in_event.he_interested)
3056 #define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \
3057 ((ipst)->ips_ip4_physical_out_event.he_interested)
3058 #define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \
3059 ((ipst)->ips_ip6_physical_out_event.he_interested)
3060 #define HOOKS4_INTERESTED_FORWARDING(ipst) \
3061 ((ipst)->ips_ip4_forwarding_event.he_interested)
3062 #define HOOKS6_INTERESTED_FORWARDING(ipst) \
3063 ((ipst)->ips_ip6_forwarding_event.he_interested)
3064 #define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \
3065 ((ipst)->ips_ip4_loopback_in_event.he_interested)
3066 #define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \
3067 ((ipst)->ips_ip6_loopback_in_event.he_interested)
3068 #define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \
3069 ((ipst)->ips_ip4_loopback_out_event.he_interested)
3070 #define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \
3071 ((ipst)->ips_ip6_loopback_out_event.he_interested)
3072 /*
3073 * Hooks marcos used inside of ip
3074 * The callers use the above INTERESTED macros first, hence
3075 * the he_interested check is superflous.
3076 */
3077 #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst, _err) \
3078 if ((_hook).he_interested) { \
3079 hook_pkt_event_t info; \
3080 \
3081 _NOTE(CONSTCOND) \
3082 ASSERT((_ilp != NULL) || (_olp != NULL)); \
3083 \
3084 FW_SET_ILL_INDEX(info.hpe_ifp, (ill_t *)_ilp); \
3085 FW_SET_ILL_INDEX(info.hpe_ofp, (ill_t *)_olp); \
3086 info.hpe_protocol = ipst->ips_ipv4_net_data; \
3087 info.hpe_hdr = _iph; \
3088 info.hpe_mp = &(_fm); \
3089 info.hpe_mb = _m; \
3090 info.hpe_flags = _llm; \
3091 _err = hook_run(ipst->ips_ipv4_net_data->netd_hooks, \
3092 _event, (hook_data_t)&info); \
3093 if (_err != 0) { \
3094 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\
3095 (_hook).he_name, (void *)_fm, (void *)_m)); \
3096 if (_fm != NULL) { \
3097 freemsg(_fm); \

new/usr/src/uts/common/inet/ip.h 48

3098 _fm = NULL; \
3099 } \
3100 _iph = NULL; \
3101 _m = NULL; \
3102 } else { \
3103 _iph = info.hpe_hdr; \
3104 _m = info.hpe_mb; \
3105 } \
3106 }

3108 #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst, _err) \
3109 if ((_hook).he_interested) { \
3110 hook_pkt_event_t info; \
3111 \
3112 _NOTE(CONSTCOND) \
3113 ASSERT((_ilp != NULL) || (_olp != NULL)); \
3114 \
3115 FW_SET_ILL_INDEX(info.hpe_ifp, (ill_t *)_ilp); \
3116 FW_SET_ILL_INDEX(info.hpe_ofp, (ill_t *)_olp); \
3117 info.hpe_protocol = ipst->ips_ipv6_net_data; \
3118 info.hpe_hdr = _iph; \
3119 info.hpe_mp = &(_fm); \
3120 info.hpe_mb = _m; \
3121 info.hpe_flags = _llm; \
3122 _err = hook_run(ipst->ips_ipv6_net_data->netd_hooks, \
3123 _event, (hook_data_t)&info); \
3124 if (_err != 0) { \
3125 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\
3126 (_hook).he_name, (void *)_fm, (void *)_m)); \
3127 if (_fm != NULL) { \
3128 freemsg(_fm); \
3129 _fm = NULL; \
3130 } \
3131 _iph = NULL; \
3132 _m = NULL; \
3133 } else { \
3134 _iph = info.hpe_hdr; \
3135 _m = info.hpe_mb; \
3136 } \
3137 }

3139 #define FW_SET_ILL_INDEX(fp, ill) \
3140 _NOTE(CONSTCOND) \
3141 if ((ill) == NULL || (ill)->ill_phyint == NULL) { \
3142 (fp) = 0; \
3143 _NOTE(CONSTCOND) \
3144 } else if (IS_UNDER_IPMP(ill)) { \
3145 (fp) = ipmp_ill_get_ipmp_ifindex(ill); \
3146 } else { \
3147 (fp) = (ill)->ill_phyint->phyint_ifindex; \
3148 }

3150 /*
3151 * Network byte order macros
3152 */
3153 #ifdef _BIG_ENDIAN
3154 #define N_IN_CLASSA_NET IN_CLASSA_NET
3155 #define N_IN_CLASSD_NET IN_CLASSD_NET
3156 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP
3157 #define N_IN_LOOPBACK_NET (ipaddr_t)0x7f000000U
3158 #else /* _BIG_ENDIAN */
3159 #define N_IN_CLASSA_NET (ipaddr_t)0x000000ffU
3160 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U
3161 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U
3162 #define N_IN_LOOPBACK_NET (ipaddr_t)0x0000007fU
3163 #endif /* _BIG_ENDIAN */

new/usr/src/uts/common/inet/ip.h 49

3164 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP)
3165 #define CLASSE(addr) (((addr) & N_IN_CLASSD_NET) == N_IN_CLASSD_NET)
3166 #define IP_LOOPBACK_ADDR(addr) \
3167 (((addr) & N_IN_CLASSA_NET == N_IN_LOOPBACK_NET))

3169 extern int ip_debug;
3170 extern uint_t ip_thread_data;
3171 extern krwlock_t ip_thread_rwlock;
3172 extern list_t ip_thread_list;

3174 #ifdef IP_DEBUG
3175 #include <sys/debug.h>
3176 #include <sys/promif.h>

3178 #define ip0dbg(a) printf a
3179 #define ip1dbg(a) if (ip_debug > 2) printf a
3180 #define ip2dbg(a) if (ip_debug > 3) printf a
3181 #define ip3dbg(a) if (ip_debug > 4) printf a
3182 #else
3183 #define ip0dbg(a) /* */
3184 #define ip1dbg(a) /* */
3185 #define ip2dbg(a) /* */
3186 #define ip3dbg(a) /* */
3187 #endif /* IP_DEBUG */

3189 /* Default MAC-layer address string length for mac_colon_addr */
3190 #define MAC_STR_LEN 128

3192 struct mac_header_info_s;

3194 extern void ill_frag_timer(void *);
3195 extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *);
3196 extern ill_t *ill_next(ill_walk_context_t *, ill_t *);
3197 extern void ill_frag_timer_start(ill_t *);
3198 extern void ill_nic_event_dispatch(ill_t *, lif_if_t, nic_event_t,
3199 nic_event_data_t, size_t);
3200 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t);
3201 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t);
3202 extern mblk_t *ip_dlnotify_alloc(uint_t, uint_t);
3203 extern mblk_t *ip_dlnotify_alloc2(uint_t, uint_t, uint_t);
3204 extern char *ip_dot_addr(ipaddr_t, char *);
3205 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t);
3206 extern void ip_lwput(queue_t *, mblk_t *);
3207 extern boolean_t icmp_err_rate_limit(ip_stack_t *);
3208 extern void icmp_frag_needed(mblk_t *, int, ip_recv_attr_t *);
3209 extern mblk_t *icmp_inbound_v4(mblk_t *, ip_recv_attr_t *);
3210 extern void icmp_time_exceeded(mblk_t *, uint8_t, ip_recv_attr_t *);
3211 extern void icmp_unreachable(mblk_t *, uint8_t, ip_recv_attr_t *);
3212 extern boolean_t ip_ipsec_policy_inherit(conn_t *, conn_t *, ip_recv_attr_t *);
3213 extern void *ip_pullup(mblk_t *, ssize_t, ip_recv_attr_t *);
3214 extern void ip_setl2src(mblk_t *, ip_recv_attr_t *, ill_t *);
3215 extern mblk_t *ip_check_and_align_header(mblk_t *, uint_t, ip_recv_attr_t *);
3216 extern mblk_t *ip_check_length(mblk_t *, uchar_t *, ssize_t, uint_t, uint_t,
3217 ip_recv_attr_t *);
3218 extern mblk_t *ip_check_optlen(mblk_t *, ipha_t *, uint_t, uint_t,
3219 ip_recv_attr_t *);
3220 extern mblk_t *ip_fix_dbref(mblk_t *, ip_recv_attr_t *);
3221 extern uint_t ip_cksum(mblk_t *, int, uint32_t);
3222 extern int ip_close(queue_t *, int);
3223 extern uint16_t ip_csum_hdr(ipha_t *);
3224 extern void ip_forward_xmit_v4(nce_t *, ill_t *, mblk_t *, ipha_t *,
3225 ip_recv_attr_t *, uint32_t, uint32_t);
3226 extern boolean_t ip_forward_options(mblk_t *, ipha_t *, ill_t *,
3227 ip_recv_attr_t *);
3228 extern int ip_fragment_v4(mblk_t *, nce_t *, iaflags_t, uint_t, uint32_t,
3229 uint32_t, zoneid_t, zoneid_t, pfirepostfrag_t postfragfn,

new/usr/src/uts/common/inet/ip.h 50

3230 uintptr_t *cookie);
3231 extern void ip_proto_not_sup(mblk_t *, ip_recv_attr_t *);
3232 extern void ip_ire_g_fini(void);
3233 extern void ip_ire_g_init(void);
3234 extern void ip_ire_fini(ip_stack_t *);
3235 extern void ip_ire_init(ip_stack_t *);
3236 extern void ip_mdata_to_mhi(ill_t *, mblk_t *, struct mac_header_info_s *);
3237 extern int ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag,
3238 cred_t *credp);
3239 extern int ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
3240 cred_t *credp);
3241 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *,
3242 size_t);
3243 extern void ip_rput(queue_t *, mblk_t *);
3244 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *,
3245 struct mac_header_info_s *);
3246 extern void ip_input_v6(ill_t *, ill_rx_ring_t *, mblk_t *,
3247 struct mac_header_info_s *);
3248 extern mblk_t *ip_input_common_v4(ill_t *, ill_rx_ring_t *, mblk_t *,
3249 struct mac_header_info_s *, squeue_t *, mblk_t **, uint_t *);
3250 extern mblk_t *ip_input_common_v6(ill_t *, ill_rx_ring_t *, mblk_t *,
3251 struct mac_header_info_s *, squeue_t *, mblk_t **, uint_t *);
3252 extern void ill_input_full_v4(mblk_t *, void *, void *,
3253 ip_recv_attr_t *, rtc_t *);
3254 extern void ill_input_short_v4(mblk_t *, void *, void *,
3255 ip_recv_attr_t *, rtc_t *);
3256 extern void ill_input_full_v6(mblk_t *, void *, void *,
3257 ip_recv_attr_t *, rtc_t *);
3258 extern void ill_input_short_v6(mblk_t *, void *, void *,
3259 ip_recv_attr_t *, rtc_t *);
3260 extern ipaddr_t ip_input_options(ipha_t *, ipaddr_t, mblk_t *,
3261 ip_recv_attr_t *, int *);
3262 extern boolean_t ip_input_local_options(mblk_t *, ipha_t *, ip_recv_attr_t *);
3263 extern mblk_t *ip_input_fragment(mblk_t *, ipha_t *, ip_recv_attr_t *);
3264 extern mblk_t *ip_input_fragment_v6(mblk_t *, ip6_t *, ip6_frag_t *, uint_t,
3265 ip_recv_attr_t *);
3266 extern void ip_input_post_ipsec(mblk_t *, ip_recv_attr_t *);
3267 extern void ip_fanout_v4(mblk_t *, ipha_t *, ip_recv_attr_t *);
3268 extern void ip_fanout_v6(mblk_t *, ip6_t *, ip_recv_attr_t *);
3269 extern void ip_fanout_proto_conn(conn_t *, mblk_t *, ipha_t *, ip6_t *,
3270 ip_recv_attr_t *);
3271 extern void ip_fanout_proto_v4(mblk_t *, ipha_t *, ip_recv_attr_t *);
3272 extern void ip_fanout_send_icmp_v4(mblk_t *, uint_t, uint_t,
3273 ip_recv_attr_t *);
3274 extern void ip_fanout_udp_conn(conn_t *, mblk_t *, ipha_t *, ip6_t *,
3275 ip_recv_attr_t *);
3276 extern void ip_fanout_udp_multi_v4(mblk_t *, ipha_t *, uint16_t, uint16_t,
3277 ip_recv_attr_t *);
3278 extern mblk_t *zero_spi_check(mblk_t *, ip_recv_attr_t *);
3279 extern void ip_build_hdrs_v4(uchar_t *, uint_t, const ip_pkt_t *, uint8_t);
3280 extern int ip_find_hdr_v4(ipha_t *, ip_pkt_t *, boolean_t);
3281 extern int ip_total_hdrs_len_v4(const ip_pkt_t *);

3283 extern mblk_t *ip_accept_tcp(ill_t *, ill_rx_ring_t *, squeue_t *,
3284 mblk_t *, mblk_t **, uint_t *cnt);
3285 extern void ip_rput_dlpi(ill_t *, mblk_t *);
3286 extern void ip_rput_notdata(ill_t *, mblk_t *);

3288 extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *,
3289 mib2_ipIfStatsEntry_t *);
3290 extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *,
3291 mib2_ipv6IfIcmpEntry_t *);
3292 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *);
3293 extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *);
3294 extern void ip_send_potential_redirect_v4(mblk_t *, ipha_t *, ire_t *,
3295 ip_recv_attr_t *);

new/usr/src/uts/common/inet/ip.h 51

3296 extern int ip_set_destination_v4(ipaddr_t *, ipaddr_t, ipaddr_t,
3297 ip_xmit_attr_t *, iulp_t *, uint32_t, uint_t);
3298 extern int ip_set_destination_v6(in6_addr_t *, const in6_addr_t *,
3299 const in6_addr_t *, ip_xmit_attr_t *, iulp_t *, uint32_t, uint_t);

3301 extern int ip_output_simple(mblk_t *, ip_xmit_attr_t *);
3302 extern int ip_output_simple_v4(mblk_t *, ip_xmit_attr_t *);
3303 extern int ip_output_simple_v6(mblk_t *, ip_xmit_attr_t *);
3304 extern int ip_output_options(mblk_t *, ipha_t *, ip_xmit_attr_t *,
3305 ill_t *);
3306 extern void ip_output_local_options(ipha_t *, ip_stack_t *);

3308 extern ip_xmit_attr_t *conn_get_ixa(conn_t *, boolean_t);
3309 extern ip_xmit_attr_t *conn_get_ixa_tryhard(conn_t *, boolean_t);
3310 extern ip_xmit_attr_t *conn_replace_ixa(conn_t *, ip_xmit_attr_t *);
3311 extern ip_xmit_attr_t *conn_get_ixa_exclusive(conn_t *);
3312 extern ip_xmit_attr_t *ip_xmit_attr_duplicate(ip_xmit_attr_t *);
3313 extern void ip_xmit_attr_replace_tsl(ip_xmit_attr_t *, ts_label_t *);
3314 extern void ip_xmit_attr_restore_tsl(ip_xmit_attr_t *, cred_t *);
3315 boolean_t ip_recv_attr_replace_label(ip_recv_attr_t *, ts_label_t *);
3316 extern void ixa_inactive(ip_xmit_attr_t *);
3317 extern void ixa_refrele(ip_xmit_attr_t *);
3318 extern boolean_t ixa_check_drain_insert(conn_t *, ip_xmit_attr_t *);
3319 extern void ixa_cleanup(ip_xmit_attr_t *);
3320 extern void ira_cleanup(ip_recv_attr_t *, boolean_t);
3321 extern void ixa_safe_copy(ip_xmit_attr_t *, ip_xmit_attr_t *);

3323 extern int conn_ip_output(mblk_t *, ip_xmit_attr_t *);
3324 extern boolean_t ip_output_verify_local(ip_xmit_attr_t *);
3325 extern mblk_t *ip_output_process_local(mblk_t *, ip_xmit_attr_t *, boolean_t,
3326 boolean_t, conn_t *);

3328 extern int conn_opt_get(conn_opt_arg_t *, t_scalar_t, t_scalar_t,
3329 uchar_t *);
3330 extern int conn_opt_set(conn_opt_arg_t *, t_scalar_t, t_scalar_t, uint_t,
3331 uchar_t *, boolean_t, cred_t *);
3332 extern boolean_t conn_same_as_last_v4(conn_t *, sin_t *);
3333 extern boolean_t conn_same_as_last_v6(conn_t *, sin6_t *);
3334 extern int conn_update_label(const conn_t *, const ip_xmit_attr_t *,
3335 const in6_addr_t *, ip_pkt_t *);

3337 extern int ip_opt_set_multicast_group(conn_t *, t_scalar_t,
3338 uchar_t *, boolean_t, boolean_t);
3339 extern int ip_opt_set_multicast_sources(conn_t *, t_scalar_t,
3340 uchar_t *, boolean_t, boolean_t);
3341 extern int conn_getsockname(conn_t *, struct sockaddr *, uint_t *);
3342 extern int conn_getpeername(conn_t *, struct sockaddr *, uint_t *);

3344 extern int conn_build_hdr_template(conn_t *, uint_t, uint_t,
3345 const in6_addr_t *, const in6_addr_t *, uint32_t);
3346 extern mblk_t *conn_prepend_hdr(ip_xmit_attr_t *, const ip_pkt_t *,
3347 const in6_addr_t *, const in6_addr_t *, uint8_t, uint32_t, uint_t,
3348 mblk_t *, uint_t, uint_t, uint32_t *, int *);
3349 extern void ip_attr_newdst(ip_xmit_attr_t *);
3350 extern void ip_attr_nexthop(const ip_pkt_t *, const ip_xmit_attr_t *,
3351 const in6_addr_t *, in6_addr_t *);
3352 extern int conn_connect(conn_t *, iulp_t *, uint32_t);
3353 extern int ip_attr_connect(const conn_t *, ip_xmit_attr_t *,
3354 const in6_addr_t *, const in6_addr_t *, const in6_addr_t *, in_port_t,
3355 in6_addr_t *, iulp_t *, uint32_t);
3356 extern int conn_inherit_parent(conn_t *, conn_t *);

3358 extern void conn_ixa_cleanup(conn_t *connp, void *arg);

3360 extern boolean_t conn_wantpacket(conn_t *, ip_recv_attr_t *, ipha_t *);
3361 extern uint_t ip_type_v4(ipaddr_t, ip_stack_t *);

new/usr/src/uts/common/inet/ip.h 52

3362 extern uint_t ip_type_v6(const in6_addr_t *, ip_stack_t *);

3364 extern void ip_wput_nondata(queue_t *, mblk_t *);
3365 extern void ip_wsrv(queue_t *);
3366 extern char *ip_nv_lookup(nv_t *, int);
3367 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
3368 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
3369 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *);
3370 extern ipaddr_t ip_net_mask(ipaddr_t);
3371 extern void arp_bringup_done(ill_t *, int);
3372 extern void arp_replumb_done(ill_t *, int);

3374 extern struct qinit iprinitv6;

3376 extern void ipmp_init(ip_stack_t *);
3377 extern void ipmp_destroy(ip_stack_t *);
3378 extern ipmp_grp_t *ipmp_grp_create(const char *, phyint_t *);
3379 extern void ipmp_grp_destroy(ipmp_grp_t *);
3380 extern void ipmp_grp_info(const ipmp_grp_t *, lifgroupinfo_t *);
3381 extern int ipmp_grp_rename(ipmp_grp_t *, const char *);
3382 extern ipmp_grp_t *ipmp_grp_lookup(const char *, ip_stack_t *);
3383 extern int ipmp_grp_vet_phyint(ipmp_grp_t *, phyint_t *);
3384 extern ipmp_illgrp_t *ipmp_illgrp_create(ill_t *);
3385 extern void ipmp_illgrp_destroy(ipmp_illgrp_t *);
3386 extern ill_t *ipmp_illgrp_add_ipif(ipmp_illgrp_t *, ipif_t *);
3387 extern void ipmp_illgrp_del_ipif(ipmp_illgrp_t *, ipif_t *);
3388 extern ill_t *ipmp_illgrp_next_ill(ipmp_illgrp_t *);
3389 extern ill_t *ipmp_illgrp_hold_next_ill(ipmp_illgrp_t *);
3390 extern ill_t *ipmp_illgrp_hold_cast_ill(ipmp_illgrp_t *);
3391 extern ill_t *ipmp_illgrp_ipmp_ill(ipmp_illgrp_t *);
3392 extern void ipmp_illgrp_refresh_mtu(ipmp_illgrp_t *);
3393 extern ipmp_arpent_t *ipmp_illgrp_create_arpent(ipmp_illgrp_t *,
3394 boolean_t, ipaddr_t, uchar_t *, size_t, uint16_t);
3395 extern void ipmp_illgrp_destroy_arpent(ipmp_illgrp_t *, ipmp_arpent_t *);
3396 extern ipmp_arpent_t *ipmp_illgrp_lookup_arpent(ipmp_illgrp_t *, ipaddr_t *);
3397 extern void ipmp_illgrp_refresh_arpent(ipmp_illgrp_t *);
3398 extern void ipmp_illgrp_mark_arpent(ipmp_illgrp_t *, ipmp_arpent_t *);
3399 extern ill_t *ipmp_illgrp_find_ill(ipmp_illgrp_t *, uchar_t *, uint_t);
3400 extern void ipmp_illgrp_link_grp(ipmp_illgrp_t *, ipmp_grp_t *);
3401 extern int ipmp_illgrp_unlink_grp(ipmp_illgrp_t *);
3402 extern uint_t ipmp_ill_get_ipmp_ifindex(const ill_t *);
3403 extern void ipmp_ill_join_illgrp(ill_t *, ipmp_illgrp_t *);
3404 extern void ipmp_ill_leave_illgrp(ill_t *);
3405 extern ill_t *ipmp_ill_hold_ipmp_ill(ill_t *);
3406 extern ill_t *ipmp_ill_hold_xmit_ill(ill_t *, boolean_t);
3407 extern boolean_t ipmp_ill_is_active(ill_t *);
3408 extern void ipmp_ill_refresh_active(ill_t *);
3409 extern void ipmp_phyint_join_grp(phyint_t *, ipmp_grp_t *);
3410 extern void ipmp_phyint_leave_grp(phyint_t *);
3411 extern void ipmp_phyint_refresh_active(phyint_t *);
3412 extern ill_t *ipmp_ipif_bound_ill(const ipif_t *);
3413 extern ill_t *ipmp_ipif_hold_bound_ill(const ipif_t *);
3414 extern boolean_t ipmp_ipif_is_dataaddr(const ipif_t *);
3415 extern boolean_t ipmp_ipif_is_stubaddr(const ipif_t *);
3416 extern boolean_t ipmp_packet_is_probe(mblk_t *, ill_t *);
3417 extern void ipmp_ncec_delete_nce(ncec_t *);
3418 extern void ipmp_ncec_refresh_nce(ncec_t *);

3420 extern void conn_drain_insert(conn_t *, idl_tx_list_t *);
3421 extern void conn_setqfull(conn_t *, boolean_t *);
3422 extern void conn_clrqfull(conn_t *, boolean_t *);
3423 extern int conn_ipsec_length(conn_t *);
3424 extern ipaddr_t ip_get_dst(ipha_t *);
3425 extern uint_t ip_get_pmtu(ip_xmit_attr_t *);
3426 extern uint_t ip_get_base_mtu(ill_t *, ire_t *);
3427 extern mblk_t *ip_output_attach_policy(mblk_t *, ipha_t *, ip6_t *,

new/usr/src/uts/common/inet/ip.h 53

3428 const conn_t *, ip_xmit_attr_t *);
3429 extern int ipsec_out_extra_length(ip_xmit_attr_t *);
3430 extern int ipsec_out_process(mblk_t *, ip_xmit_attr_t *);
3431 extern int ip_output_post_ipsec(mblk_t *, ip_xmit_attr_t *);
3432 extern void ipsec_out_to_in(ip_xmit_attr_t *, ill_t *ill,
3433 ip_recv_attr_t *);

3435 extern void ire_cleanup(ire_t *);
3436 extern void ire_inactive(ire_t *);
3437 extern boolean_t irb_inactive(irb_t *);
3438 extern ire_t *ire_unlink(irb_t *);

3440 #ifdef DEBUG
3441 extern boolean_t th_trace_ref(const void *, ip_stack_t *);
3442 extern void th_trace_unref(const void *);
3443 extern void th_trace_cleanup(const void *, boolean_t);
3444 extern void ire_trace_ref(ire_t *);
3445 extern void ire_untrace_ref(ire_t *);
3446 #endif

3448 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *);
3449 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *);
3450 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *);
3451 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *);

3453 extern uint8_t ipoptp_next(ipoptp_t *);
3454 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *);
3455 extern int ip_opt_get_user(conn_t *, uchar_t *);
3456 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int);
3457 extern int ip_snmp_get(queue_t *q, mblk_t *mctl, int level, boolean_t);
3458 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int);
3459 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3460 extern void ip_quiesce_conn(conn_t *);
3461 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3462 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *);

3464 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *,
3465 uint_t);
3466 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *,
3467 uint_t);
3468 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t);

3470 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *);
3471 extern void conn_ioctl_cleanup(conn_t *);

3473 extern void ip_unbind(conn_t *);

3475 extern void tnet_init(void);
3476 extern void tnet_fini(void);

3478 /*
3479 * Hook functions to enable cluster networking
3480 * On non-clustered systems these vectors must always be NULL.
3481 */
3482 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
3483 sa_family_t addr_family, uint8_t *laddrp, void *args);
3484 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
3485 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
3486 void *args);
3487 extern int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
3488 boolean_t is_outgoing, sa_family_t addr_family, uint8_t *laddrp,
3489 in_port_t lport, uint8_t *faddrp, in_port_t fport, void *args);
3490 extern void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
3491 void *);
3492 extern void (*cl_inet_getspi)(netstackid_t stack_id, uint8_t protocol,
3493 uint8_t *ptr, size_t len, void *args);

new/usr/src/uts/common/inet/ip.h 54

3494 extern int (*cl_inet_checkspi)(netstackid_t stack_id, uint8_t protocol,
3495 uint32_t spi, void *args);
3496 extern void (*cl_inet_deletespi)(netstackid_t stack_id, uint8_t protocol,
3497 uint32_t spi, void *args);
3498 extern void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t,
3499 sa_family_t, in6_addr_t, in6_addr_t, void *);

3502 /* Hooks for CGTP (multirt routes) filtering module */
3503 #define CGTP_FILTER_REV_1 1
3504 #define CGTP_FILTER_REV_2 2
3505 #define CGTP_FILTER_REV_3 3
3506 #define CGTP_FILTER_REV CGTP_FILTER_REV_3

3508 /* cfo_filter and cfo_filter_v6 hooks return values */
3509 #define CGTP_IP_PKT_NOT_CGTP 0
3510 #define CGTP_IP_PKT_PREMIUM 1
3511 #define CGTP_IP_PKT_DUPLICATE 2

3513 /* Version 3 of the filter interface */
3514 typedef struct cgtp_filter_ops {
3515 int cfo_filter_rev; /* CGTP_FILTER_REV_3 */
3516 int (*cfo_change_state)(netstackid_t, int);
3517 int (*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t,
3518 ipaddr_t, ipaddr_t);
3519 int (*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t);
3520 int (*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *,
3521 in6_addr_t *, in6_addr_t *);
3522 int (*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *);
3523 int (*cfo_filter)(netstackid_t, uint_t, mblk_t *);
3524 int (*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *,
3525 ip6_frag_t *);
3526 } cgtp_filter_ops_t;

3528 #define CGTP_MCAST_SUCCESS 1

3530 /*
3531 * The separate CGTP module needs this global symbol so that it
3532 * can check the version and determine whether to use the old or the new
3533 * version of the filtering interface.
3534 */
3535 extern int ip_cgtp_filter_rev;

3537 extern int ip_cgtp_filter_supported(void);
3538 extern int ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *);
3539 extern int ip_cgtp_filter_unregister(netstackid_t);
3540 extern int ip_cgtp_filter_is_registered(netstackid_t);

3542 /*
3543 * rr_ring_state cycles in the order shown below from RR_FREE through
3544 * RR_FREE_IN_PROG and back to RR_FREE.
3545 */
3546 typedef enum {
3547 RR_FREE, /* Free slot */
3548 RR_SQUEUE_UNBOUND, /* Ring’s squeue is unbound */
3549 RR_SQUEUE_BIND_INPROG, /* Ring’s squeue bind in progress */
3550 RR_SQUEUE_BOUND, /* Ring’s squeue bound to cpu */
3551 RR_FREE_INPROG /* Ring is being freed */
3552 } ip_ring_state_t;

3554 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */
3555 #define ILL_POLLING 0x01 /* Polling in use */

3557 /*
3558 * These functions pointer types are exported by the mac/dls layer.
3559 * we need to duplicate the definitions here because we cannot

new/usr/src/uts/common/inet/ip.h 55

3560 * include mac/dls header files here.
3561 */
3562 typedef boolean_t (*ip_mac_intr_disable_t)(void *);
3563 typedef void (*ip_mac_intr_enable_t)(void *);
3564 typedef ip_mac_tx_cookie_t (*ip_dld_tx_t)(void *, mblk_t *,
3565 uint64_t, uint16_t);
3566 typedef void (*ip_flow_enable_t)(void *, ip_mac_tx_cookie_t);
3567 typedef void *(*ip_dld_callb_t)(void *,
3568 ip_flow_enable_t, void *);
3569 typedef boolean_t (*ip_dld_fctl_t)(void *, ip_mac_tx_cookie_t);
3570 typedef int (*ip_capab_func_t)(void *, uint_t,
3571 void *, uint_t);

3573 /*
3574 * POLLING README
3575 * sq_get_pkts() is called to pick packets from softring in poll mode. It
3576 * calls rr_rx to get the chain and process it with rr_ip_accept.
3577 * rr_rx = mac_soft_ring_poll() to pick packets
3578 * rr_ip_accept = ip_accept_tcp() to process packets
3579 */

3581 /*
3582 * XXX: With protocol, service specific squeues, they will have
3583 * specific acceptor functions.
3584 */
3585 typedef mblk_t *(*ip_mac_rx_t)(void *, size_t);
3586 typedef mblk_t *(*ip_accept_t)(ill_t *, ill_rx_ring_t *,
3587 squeue_t *, mblk_t *, mblk_t **, uint_t *);

3589 /*
3590 * rr_intr_enable, rr_intr_disable, rr_rx_handle, rr_rx:
3591 * May be accessed while in the squeue AND after checking that SQS_POLL_CAPAB
3592 * is set.
3593 *
3594 * rr_ring_state: Protected by ill_lock.
3595 */
3596 struct ill_rx_ring {
3597 ip_mac_intr_disable_t rr_intr_disable; /* Interrupt disabling func */
3598 ip_mac_intr_enable_t rr_intr_enable; /* Interrupt enabling func */
3599 void *rr_intr_handle; /* Handle interrupt funcs */
3600 ip_mac_rx_t rr_rx; /* Driver receive function */
3601 ip_accept_t rr_ip_accept; /* IP accept function */
3602 void *rr_rx_handle; /* Handle for Rx ring */
3603 squeue_t *rr_sqp; /* Squeue the ring is bound to */
3604 ill_t *rr_ill; /* back pointer to ill */
3605 ip_ring_state_t rr_ring_state; /* State of this ring */
3606 };

3608 /*
3609 * IP - DLD direct function call capability
3610 * Suffixes, df - dld function, dh - dld handle,
3611 * cf - client (IP) function, ch - client handle
3612 */
3613 typedef struct ill_dld_direct_s { /* DLD provided driver Tx */
3614 ip_dld_tx_t idd_tx_df; /* str_mdata_fastpath_put */
3615 void *idd_tx_dh; /* dld_str_t *dsp */
3616 ip_dld_callb_t idd_tx_cb_df; /* mac_tx_srs_notify */
3617 void *idd_tx_cb_dh; /* mac_client_handle_t *mch */
3618 ip_dld_fctl_t idd_tx_fctl_df; /* mac_tx_is_flow_blocked */
3619 void *idd_tx_fctl_dh; /* mac_client_handle */
3620 } ill_dld_direct_t;

3622 /* IP - DLD polling capability */
3623 typedef struct ill_dld_poll_s {
3624 ill_rx_ring_t idp_ring_tbl[ILL_MAX_RINGS];
3625 } ill_dld_poll_t;

new/usr/src/uts/common/inet/ip.h 56

3627 /* Describes ill->ill_dld_capab */
3628 struct ill_dld_capab_s {
3629 ip_capab_func_t idc_capab_df; /* dld_capab_func */
3630 void *idc_capab_dh; /* dld_str_t *dsp */
3631 ill_dld_direct_t idc_direct;
3632 ill_dld_poll_t idc_poll;
3633 };

3635 /*
3636 * IP squeues exports
3637 */
3638 extern boolean_t ip_squeue_fanout;

3640 #define IP_SQUEUE_GET(hint) ip_squeue_random(hint)

3642 extern void ip_squeue_init(void (*)(squeue_t *));
3643 extern squeue_t *ip_squeue_random(uint_t);
3644 extern squeue_t *ip_squeue_get(ill_rx_ring_t *);
3645 extern squeue_t *ip_squeue_getfree(pri_t);
3646 extern int ip_squeue_cpu_move(squeue_t *, processorid_t);
3647 extern void *ip_squeue_add_ring(ill_t *, void *);
3648 extern void ip_squeue_bind_ring(ill_t *, ill_rx_ring_t *, processorid_t);
3649 extern void ip_squeue_clean_ring(ill_t *, ill_rx_ring_t *);
3650 extern void ip_squeue_quiesce_ring(ill_t *, ill_rx_ring_t *);
3651 extern void ip_squeue_restart_ring(ill_t *, ill_rx_ring_t *);
3652 extern void ip_squeue_clean_all(ill_t *);
3653 extern boolean_t ip_source_routed(ipha_t *, ip_stack_t *);

3655 extern void tcp_wput(queue_t *, mblk_t *);

3657 extern int ip_fill_mtuinfo(conn_t *, ip_xmit_attr_t *,
3658 struct ip6_mtuinfo *);
3659 extern hook_t *ipobs_register_hook(netstack_t *, pfv_t);
3660 extern void ipobs_unregister_hook(netstack_t *, hook_t *);
3661 extern void ipobs_hook(mblk_t *, int, zoneid_t, zoneid_t, const ill_t *,
3662 ip_stack_t *);
3663 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *);

3665 extern void dce_g_init(void);
3666 extern void dce_g_destroy(void);
3667 extern void dce_stack_init(ip_stack_t *);
3668 extern void dce_stack_destroy(ip_stack_t *);
3669 extern void dce_cleanup(uint_t, ip_stack_t *);
3670 extern dce_t *dce_get_default(ip_stack_t *);
3671 extern dce_t *dce_lookup_pkt(mblk_t *, ip_xmit_attr_t *, uint_t *);
3672 extern dce_t *dce_lookup_v4(ipaddr_t, ip_stack_t *, uint_t *);
3673 extern dce_t *dce_lookup_v6(const in6_addr_t *, uint_t, ip_stack_t *,
3674 uint_t *);
3675 extern dce_t *dce_lookup_and_add_v4(ipaddr_t, ip_stack_t *);
3676 extern dce_t *dce_lookup_and_add_v6(const in6_addr_t *, uint_t,
3677 ip_stack_t *);
3678 extern int dce_update_uinfo_v4(ipaddr_t, iulp_t *, ip_stack_t *);
3679 extern int dce_update_uinfo_v6(const in6_addr_t *, uint_t, iulp_t *,
3680 ip_stack_t *);
3681 extern int dce_update_uinfo(const in6_addr_t *, uint_t, iulp_t *,
3682 ip_stack_t *);
3683 extern void dce_increment_generation(dce_t *);
3684 extern void dce_increment_all_generations(boolean_t, ip_stack_t *);
3685 extern void dce_refrele(dce_t *);
3686 extern void dce_refhold(dce_t *);
3687 extern void dce_refrele_notr(dce_t *);
3688 extern void dce_refhold_notr(dce_t *);
3689 mblk_t *ip_snmp_get_mib2_ip_dce(queue_t *, mblk_t *, ip_stack_t *ipst);

3691 extern ip_laddr_t ip_laddr_verify_v4(ipaddr_t, zoneid_t,

new/usr/src/uts/common/inet/ip.h 57

3692 ip_stack_t *, boolean_t);
3693 extern ip_laddr_t ip_laddr_verify_v6(const in6_addr_t *, zoneid_t,
3694 ip_stack_t *, boolean_t, uint_t);
3695 extern int ip_laddr_fanout_insert(conn_t *);

3697 extern boolean_t ip_verify_src(mblk_t *, ip_xmit_attr_t *, uint_t *);
3698 extern int ip_verify_ire(mblk_t *, ip_xmit_attr_t *);

3700 extern mblk_t *ip_xmit_attr_to_mblk(ip_xmit_attr_t *);
3701 extern boolean_t ip_xmit_attr_from_mblk(mblk_t *, ip_xmit_attr_t *);
3702 extern mblk_t *ip_xmit_attr_free_mblk(mblk_t *);
3703 extern mblk_t *ip_recv_attr_to_mblk(ip_recv_attr_t *);
3704 extern boolean_t ip_recv_attr_from_mblk(mblk_t *, ip_recv_attr_t *);
3705 extern mblk_t *ip_recv_attr_free_mblk(mblk_t *);
3706 extern boolean_t ip_recv_attr_is_mblk(mblk_t *);

3708 /*
3709 * Squeue tags. Tags only need to be unique when the callback function is the
3710 * same to distinguish between different calls, but we use unique tags for
3711 * convenience anyway.
3712 */
3713 #define SQTAG_IP_INPUT 1
3714 #define SQTAG_TCP_INPUT_ICMP_ERR 2
3715 #define SQTAG_TCP6_INPUT_ICMP_ERR 3
3716 #define SQTAG_IP_TCP_INPUT 4
3717 #define SQTAG_IP6_TCP_INPUT 5
3718 #define SQTAG_IP_TCP_CLOSE 6
3719 #define SQTAG_TCP_OUTPUT 7
3720 #define SQTAG_TCP_TIMER 8
3721 #define SQTAG_TCP_TIMEWAIT 9
3722 #define SQTAG_TCP_ACCEPT_FINISH 10
3723 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11
3724 #define SQTAG_TCP_ACCEPT_PENDING 12
3725 #define SQTAG_TCP_LISTEN_DISCON 13
3726 #define SQTAG_TCP_CONN_REQ_1 14
3727 #define SQTAG_TCP_EAGER_BLOWOFF 15
3728 #define SQTAG_TCP_EAGER_CLEANUP 16
3729 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17
3730 #define SQTAG_TCP_CONN_IND 18
3731 #define SQTAG_TCP_RSRV 19
3732 #define SQTAG_TCP_ABORT_BUCKET 20
3733 #define SQTAG_TCP_REINPUT 21
3734 #define SQTAG_TCP_REINPUT_EAGER 22
3735 #define SQTAG_TCP_INPUT_MCTL 23
3736 #define SQTAG_TCP_RPUTOTHER 24
3737 #define SQTAG_IP_PROTO_AGAIN 25
3738 #define SQTAG_IP_FANOUT_TCP 26
3739 #define SQTAG_IPSQ_CLEAN_RING 27
3740 #define SQTAG_TCP_WPUT_OTHER 28
3741 #define SQTAG_TCP_CONN_REQ_UNBOUND 29
3742 #define SQTAG_TCP_SEND_PENDING 30
3743 #define SQTAG_BIND_RETRY 31
3744 #define SQTAG_UDP_FANOUT 32
3745 #define SQTAG_UDP_INPUT 33
3746 #define SQTAG_UDP_WPUT 34
3747 #define SQTAG_UDP_OUTPUT 35
3748 #define SQTAG_TCP_KSSL_INPUT 36
3749 #define SQTAG_TCP_DROP_Q0 37
3750 #define SQTAG_TCP_CONN_REQ_2 38
3751 #define SQTAG_IP_INPUT_RX_RING 39
3752 #define SQTAG_SQUEUE_CHANGE 40
3753 #define SQTAG_CONNECT_FINISH 41
3754 #define SQTAG_SYNCHRONOUS_OP 42
3755 #define SQTAG_TCP_SHUTDOWN_OUTPUT 43
3756 #define SQTAG_TCP_IXA_CLEANUP 44
3757 #define SQTAG_TCP_SEND_SYNACK 45

new/usr/src/uts/common/inet/ip.h 58

3758 #define SQTAG_IP_DCCP_INPUT 46
3759 #define SQTAG_DCCP_CONN_REQ_UNBOUND 47
3760 #endif /* ! codereview */

3762 extern sin_t sin_null; /* Zero address for quick clears */
3763 extern sin6_t sin6_null; /* Zero address for quick clears */

3765 #endif /* _KERNEL */

3767 #ifdef __cplusplus
3768 }
3769 #endif

3771 #endif /* _INET_IP_H */

new/usr/src/uts/common/inet/ip/ip.c 1

**
 448519 Wed Jun 13 12:04:45 2012
new/usr/src/uts/common/inet/ip/ip.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 1990 Mentat Inc.
25 * Copyright (c) 2011 Joyent, Inc. All rights reserved.
26 */

28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/dlpi.h>
31 #include <sys/stropts.h>
32 #include <sys/sysmacros.h>
33 #include <sys/strsubr.h>
34 #include <sys/strlog.h>
35 #include <sys/strsun.h>
36 #include <sys/zone.h>
37 #define _SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/xti_inet.h>
40 #include <sys/ddi.h>
41 #include <sys/suntpi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/kobj.h>
45 #include <sys/modctl.h>
46 #include <sys/atomic.h>
47 #include <sys/policy.h>
48 #include <sys/priv.h>
49 #include <sys/taskq.h>

51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/kmem.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/vtrace.h>
57 #include <sys/isa_defs.h>
58 #include <sys/mac.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/route.h>

new/usr/src/uts/common/inet/ip/ip.c 2

62 #include <sys/sockio.h>
63 #include <netinet/in.h>
64 #include <net/if_dl.h>

66 #include <inet/common.h>
67 #include <inet/mi.h>
68 #include <inet/mib2.h>
69 #include <inet/nd.h>
70 #include <inet/arp.h>
71 #include <inet/snmpcom.h>
72 #include <inet/optcom.h>
73 #include <inet/kstatcom.h>

75 #include <netinet/igmp_var.h>
76 #include <netinet/ip6.h>
77 #include <netinet/icmp6.h>
78 #include <netinet/sctp.h>

80 #include <inet/ip.h>
81 #include <inet/ip_impl.h>
82 #include <inet/ip6.h>
83 #include <inet/ip6_asp.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/ip_multi.h>
87 #include <inet/ip_if.h>
88 #include <inet/ip_ire.h>
89 #include <inet/ip_ftable.h>
90 #include <inet/ip_rts.h>
91 #include <inet/ip_ndp.h>
92 #include <inet/ip_listutils.h>
93 #include <netinet/igmp.h>
94 #include <netinet/ip_mroute.h>
95 #include <inet/ipp_common.h>

97 #include <net/pfkeyv2.h>
98 #include <inet/sadb.h>
99 #include <inet/ipsec_impl.h>
100 #include <inet/iptun/iptun_impl.h>
101 #include <inet/ipdrop.h>
102 #include <inet/ip_netinfo.h>
103 #include <inet/ilb_ip.h>

105 #include <sys/ethernet.h>
106 #include <net/if_types.h>
107 #include <sys/cpuvar.h>

109 #include <ipp/ipp.h>
110 #include <ipp/ipp_impl.h>
111 #include <ipp/ipgpc/ipgpc.h>

113 #include <sys/pattr.h>
114 #include <inet/dccp/dccp_ip.h>
115 #include <inet/dccp/dccp_impl.h>
116 #endif /* ! codereview */
117 #include <inet/ipclassifier.h>
118 #include <inet/sctp_ip.h>
119 #include <inet/sctp/sctp_impl.h>
120 #include <inet/udp_impl.h>
121 #include <inet/rawip_impl.h>
122 #include <inet/rts_impl.h>

124 #include <sys/tsol/label.h>
125 #include <sys/tsol/tnet.h>

127 #include <sys/squeue_impl.h>

new/usr/src/uts/common/inet/ip/ip.c 3

128 #include <inet/ip_arp.h>

130 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */

132 /*
133 * Values for squeue switch:
134 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
135 * IP_SQUEUE_ENTER: SQ_PROCESS
136 * IP_SQUEUE_FILL: SQ_FILL
137 */
138 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */

140 int ip_squeue_flag;

142 /*
143 * Setable in /etc/system
144 */
145 int ip_poll_normal_ms = 100;
146 int ip_poll_normal_ticks = 0;
147 int ip_modclose_ackwait_ms = 3000;

149 /*
150 * It would be nice to have these present only in DEBUG systems, but the
151 * current design of the global symbol checking logic requires them to be
152 * unconditionally present.
153 */
154 uint_t ip_thread_data; /* TSD key for debug support */
155 krwlock_t ip_thread_rwlock;
156 list_t ip_thread_list;

158 /*
159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
160 */

162 struct listptr_s {
163 mblk_t *lp_head; /* pointer to the head of the list */
164 mblk_t *lp_tail; /* pointer to the tail of the list */
165 };

167 typedef struct listptr_s listptr_t;

169 /*
170 * This is used by ip_snmp_get_mib2_ip_route_media and
171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
172 */
173 typedef struct iproutedata_s {
174 uint_t ird_idx;
175 uint_t ird_flags; /* see below */
176 listptr_t ird_route; /* ipRouteEntryTable */
177 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */
178 listptr_t ird_attrs; /* ipRouteAttributeTable */
179 } iproutedata_t;

181 /* Include ire_testhidden and IRE_IF_CLONE routes */
182 #define IRD_REPORT_ALL 0x01

184 /*
185 * Cluster specific hooks. These should be NULL when booted as a non-cluster
186 */

188 /*
189 * Hook functions to enable cluster networking
190 * On non-clustered systems these vectors must always be NULL.
191 *
192 * Hook function to Check ip specified ip address is a shared ip address
193 * in the cluster

new/usr/src/uts/common/inet/ip/ip.c 4

194 *
195 */
196 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
197 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;

199 /*
200 * Hook function to generate cluster wide ip fragment identifier
201 */
202 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
203 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
204 void *args) = NULL;

206 /*
207 * Hook function to generate cluster wide SPI.
208 */
209 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
210 void *) = NULL;

212 /*
213 * Hook function to verify if the SPI is already utlized.
214 */

216 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;

218 /*
219 * Hook function to delete the SPI from the cluster wide repository.
220 */

222 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;

224 /*
225 * Hook function to inform the cluster when packet received on an IDLE SA
226 */

228 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
229 in6_addr_t, in6_addr_t, void *) = NULL;

231 /*
232 * Synchronization notes:
233 *
234 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
235 * MT level protection given by STREAMS. IP uses a combination of its own
236 * internal serialization mechanism and standard Solaris locking techniques.
237 * The internal serialization is per phyint. This is used to serialize
238 * plumbing operations, IPMP operations, most set ioctls, etc.
239 *
240 * Plumbing is a long sequence of operations involving message
241 * exchanges between IP, ARP and device drivers. Many set ioctls are typically
242 * involved in plumbing operations. A natural model is to serialize these
243 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
244 * parallel without any interference. But various set ioctls on hme0 are best
245 * serialized, along with IPMP operations and processing of DLPI control
246 * messages received from drivers on a per phyint basis. This serialization is
247 * provided by the ipsq_t and primitives operating on this. Details can
248 * be found in ip_if.c above the core primitives operating on ipsq_t.
249 *
250 * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
251 * Simiarly lookup of an ire by a thread also returns a refheld ire.
252 * In addition ipif’s and ill’s referenced by the ire are also indirectly
253 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
255 * address of an ipif has to go through the ipsq_t. This ensures that only
256 * one such exclusive operation proceeds at any time on the ipif. It then
257 * waits for all refcnts
258 * associated with this ipif to come down to zero. The address is changed
259 * only after the ipif has been quiesced. Then the ipif is brought up again.

new/usr/src/uts/common/inet/ip/ip.c 5

260 * More details are described above the comment in ip_sioctl_flags.
261 *
262 * Packet processing is based mostly on IREs and are fully multi-threaded
263 * using standard Solaris MT techniques.
264 *
265 * There are explicit locks in IP to handle:
266 * - The ip_g_head list maintained by mi_open_link() and friends.
267 *
268 * - The reassembly data structures (one lock per hash bucket)
269 *
270 * - conn_lock is meant to protect conn_t fields. The fields actually
271 * protected by conn_lock are documented in the conn_t definition.
272 *
273 * - ire_lock to protect some of the fields of the ire, IRE tables
274 * (one lock per hash bucket). Refer to ip_ire.c for details.
275 *
276 * - ndp_g_lock and ncec_lock for protecting NCEs.
277 *
278 * - ill_lock protects fields of the ill and ipif. Details in ip.h
279 *
280 * - ill_g_lock: This is a global reader/writer lock. Protects the following
281 * * The AVL tree based global multi list of all ills.
282 * * The linked list of all ipifs of an ill
283 * * The <ipsq-xop> mapping
284 * * <ill-phyint> association
285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif
286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the
287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
288 * writer for the actual duration of the insertion/deletion/change.
289 *
290 * - ill_lock: This is a per ill mutex.
291 * It protects some members of the ill_t struct; see ip.h for details.
292 * It also protects the <ill-phyint> assoc.
293 * It also protects the list of ipifs hanging off the ill.
294 *
295 * - ipsq_lock: This is a per ipsq_t mutex lock.
296 * This protects some members of the ipsq_t struct; see ip.h for details.
297 * It also protects the <ipsq-ipxop> mapping
298 *
299 * - ipx_lock: This is a per ipxop_t mutex lock.
300 * This protects some members of the ipxop_t struct; see ip.h for details.
301 *
302 * - phyint_lock: This is a per phyint mutex lock. Protects just the
303 * phyint_flags
304 *
305 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
306 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
307 * uniqueness check also done atomically.
308 *
309 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
310 * group list linked by ill_usesrc_grp_next. It also protects the
311 * ill_usesrc_ifindex field. It is taken as a writer when a member of the
312 * group is being added or deleted. This lock is taken as a reader when
313 * walking the list/group(eg: to get the number of members in a usesrc group).
314 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next
315 * field is changing state i.e from NULL to non-NULL or vice-versa. For
316 * example, it is not necessary to take this lock in the initial portion
317 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
318 * operations are executed exclusively and that ensures that the "usesrc
319 * group state" cannot change. The "usesrc group state" change can happen
320 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
321 *
322 * Changing <ill-phyint>, <ipsq-xop> assocications:
323 *
324 * To change the <ill-phyint> association, the ill_g_lock must be held
325 * as writer, and the ill_locks of both the v4 and v6 instance of the ill

new/usr/src/uts/common/inet/ip/ip.c 6

326 * must be held.
327 *
328 * To change the <ipsq-xop> association, the ill_g_lock must be held as
329 * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
330 * This is only done when ills are added or removed from IPMP groups.
331 *
332 * To add or delete an ipif from the list of ipifs hanging off the ill,
333 * ill_g_lock (writer) and ill_lock must be held and the thread must be
334 * a writer on the associated ipsq.
335 *
336 * To add or delete an ill to the system, the ill_g_lock must be held as
337 * writer and the thread must be a writer on the associated ipsq.
338 *
339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread
340 * must be a writer on the associated ipsq.
341 *
342 * Lock hierarchy
343 *
344 * Some lock hierarchy scenarios are listed below.
345 *
346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
347 * ill_g_lock -> ill_lock(s) -> phyint_lock
348 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
349 * ill_g_lock -> ip_addr_avail_lock
350 * conn_lock -> irb_lock -> ill_lock -> ire_lock
351 * ill_g_lock -> ip_g_nd_lock
352 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
353 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
354 * arl_lock -> ill_lock
355 * ips_ire_dep_lock -> irb_lock
356 *
357 * When more than 1 ill lock is needed to be held, all ill lock addresses
358 * are sorted on address and locked starting from highest addressed lock
359 * downward.
360 *
361 * Multicast scenarios
362 * ips_ill_g_lock -> ill_mcast_lock
363 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
364 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
365 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
366 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
367 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
368 *
369 * IPsec scenarios
370 *
371 * ipsa_lock -> ill_g_lock -> ill_lock
372 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
373 *
374 * Trusted Solaris scenarios
375 *
376 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
377 * igsa_lock -> gcdb_lock
378 * gcgrp_rwlock -> ire_lock
379 * gcgrp_rwlock -> gcdb_lock
380 *
381 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
382 *
383 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
384 * sq_lock -> conn_lock -> QLOCK(q)
385 * ill_lock -> ft_lock -> fe_lock
386 *
387 * Routing/forwarding table locking notes:
388 *
389 * Lock acquisition order: Radix tree lock, irb_lock.
390 * Requirements:
391 * i. Walker must not hold any locks during the walker callback.

new/usr/src/uts/common/inet/ip/ip.c 7

392 * ii Walker must not see a truncated tree during the walk because of any node
393 * deletion.
394 * iii Existing code assumes ire_bucket is valid if it is non-null and is used
395 * in many places in the code to walk the irb list. Thus even if all the
396 * ires in a bucket have been deleted, we still can’t free the radix node
397 * until the ires have actually been inactive’d (freed).
398 *
399 * Tree traversal - Need to hold the global tree lock in read mode.
400 * Before dropping the global tree lock, need to either increment the ire_refcnt
401 * to ensure that the radix node can’t be deleted.
402 *
403 * Tree add - Need to hold the global tree lock in write mode to add a
404 * radix node. To prevent the node from being deleted, increment the
405 * irb_refcnt, after the node is added to the tree. The ire itself is
406 * added later while holding the irb_lock, but not the tree lock.
407 *
408 * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
409 * All associated ires must be inactive (i.e. freed), and irb_refcnt
410 * must be zero.
411 *
412 * Walker - Increment irb_refcnt before calling the walker callback. Hold the
413 * global tree lock (read mode) for traversal.
414 *
415 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
416 * hence we will acquire irb_lock while holding ips_ire_dep_lock.
417 *
418 * IPsec notes :
419 *
420 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
421 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
422 * ip_xmit_attr_t has the
423 * information used by the IPsec code for applying the right level of
424 * protection. The information initialized by IP in the ip_xmit_attr_t
425 * is determined by the per-socket policy or global policy in the system.
426 * For inbound datagrams, the ip_recv_attr_t
427 * starts out with nothing in it. It gets filled
428 * with the right information if it goes through the AH/ESP code, which
429 * happens if the incoming packet is secure. The information initialized
430 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
431 * the policy requirements needed by per-socket policy or global policy
432 * is met or not.
433 *
434 * For fully connected sockets i.e dst, src [addr, port] is known,
435 * conn_policy_cached is set indicating that policy has been cached.
436 * conn_in_enforce_policy may or may not be set depending on whether
437 * there is a global policy match or per-socket policy match.
438 * Policy inheriting happpens in ip_policy_set once the destination is known.
439 * Once the right policy is set on the conn_t, policy cannot change for
440 * this socket. This makes life simpler for TCP (UDP ?) where
441 * re-transmissions go out with the same policy. For symmetry, policy
442 * is cached for fully connected UDP sockets also. Thus if policy is cached,
443 * it also implies that policy is latched i.e policy cannot change
444 * on these sockets. As we have the right policy on the conn, we don’t
445 * have to lookup global policy for every outbound and inbound datagram
446 * and thus serving as an optimization. Note that a global policy change
447 * does not affect fully connected sockets if they have policy. If fully
448 * connected sockets did not have any policy associated with it, global
449 * policy change may affect them.
450 *
451 * IP Flow control notes:
452 * ---------------------
453 * Non-TCP streams are flow controlled by IP. The way this is accomplished
454 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
455 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
456 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
457 * functions.

new/usr/src/uts/common/inet/ip/ip.c 8

458 *
459 * Per Tx ring udp flow control:
460 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
461 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
462 *
463 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
464 * To achieve best performance, outgoing traffic need to be fanned out among
465 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
466 * traffic out of the NIC and it takes a fanout hint. UDP connections pass
467 * the address of connp as fanout hint to mac_tx(). Under flow controlled
468 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
469 * cookie points to a specific Tx ring that is blocked. The cookie is used to
470 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
471 * point to drain_lists (idl_t’s). These drain list will store the blocked UDP
472 * connp’s. The drain list is not a single list but a configurable number of
473 * lists.
474 *
475 * The diagram below shows idl_tx_list_t’s and their drain_lists. ip_stack_t
476 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
477 * which is equal to 128. This array in turn contains a pointer to idl_t[],
478 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
479 * list will point to the list of connp’s that are flow controlled.
480 *
481 * --------------- ------- ------- -------
482 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
483 * | --------------- ------- ------- -------
484 * | --------------- ------- ------- -------
485 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
486 * ---------------- | --------------- ------- ------- -------
487 * |idl_tx_list[0]|->| --------------- ------- ------- -------
488 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
489 * | --------------- ------- ------- -------
490 *
491 * | --------------- ------- ------- -------
492 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
493 * --------------- ------- ------- -------
494 * --------------- ------- ------- -------
495 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
496 * | --------------- ------- ------- -------
497 * | --------------- ------- ------- -------
498 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
499 * |idl_tx_list[1]|->| --------------- ------- ------- -------
500 * ---------------- |
501 * | --------------- ------- ------- -------
502 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
503 * --------------- ------- ------- -------
504 *
505 * ----------------
506 * |idl_tx_list[n]|-> ...
507 * ----------------
508 *
509 * When mac_tx() returns a cookie, the cookie is hashed into an index into
510 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
511 * to insert the conn onto. conn_drain_insert() asserts flow control for the
512 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
513 * Further, conn_blocked is set to indicate that the conn is blocked.
514 *
515 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie
516 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
517 * is again hashed to locate the appropriate idl_tx_list, which is then
518 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in
519 * the drain list and calls conn_drain_remove() to clear flow control (via
520 * calling su_txq_full() or clearing QFULL), and remove the conn from the
521 * drain list.
522 *
523 * Note that the drain list is not a single list but a (configurable) array of

new/usr/src/uts/common/inet/ip/ip.c 9

524 * lists (8 elements by default). Synchronization between drain insertion and
525 * flow control wakeup is handled by using idl_txl->txl_lock, and only
526 * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
527 *
528 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
529 * On the send side, if the packet cannot be sent down to the driver by IP
530 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
531 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
532 * the 0’th drain list. When ip_wsrv() runs on the ill_wq because flow
533 * control has been relieved, the blocked conns in the 0’th drain list are
534 * drained as in the non-STREAMS case.
535 *
536 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
537 * is done when the conn is inserted into the drain list (conn_drain_insert())
538 * and cleared when the conn is removed from the it (conn_drain_remove()).
539 *
540 * IPQOS notes:
541 *
542 * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
543 * and IPQoS modules. IPPF includes hooks in IP at different control points
544 * (callout positions) which direct packets to IPQoS modules for policy
545 * processing. Policies, if present, are global.
546 *
547 * The callout positions are located in the following paths:
548 * o local_in (packets destined for this host)
549 * o local_out (packets orginating from this host)
550 * o fwd_in (packets forwarded by this m/c - inbound)
551 * o fwd_out (packets forwarded by this m/c - outbound)
552 * Hooks at these callout points can be enabled/disabled using the ndd variable
553 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
554 * By default all the callout positions are enabled.
555 *
556 * Outbound (local_out)
557 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
558 *
559 * Inbound (local_in)
560 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
561 *
562 * Forwarding (in and out)
563 * Hooks are placed in ire_recv_forward_v4/v6.
564 *
565 * IP Policy Framework processing (IPPF processing)
566 * Policy processing for a packet is initiated by ip_process, which ascertains
567 * that the classifier (ipgpc) is loaded and configured, failing which the
568 * packet resumes normal processing in IP. If the clasifier is present, the
569 * packet is acted upon by one or more IPQoS modules (action instances), per
570 * filters configured in ipgpc and resumes normal IP processing thereafter.
571 * An action instance can drop a packet in course of its processing.
572 *
573 * Zones notes:
574 *
575 * The partitioning rules for networking are as follows:
576 * 1) Packets coming from a zone must have a source address belonging to that
577 * zone.
578 * 2) Packets coming from a zone can only be sent on a physical interface on
579 * which the zone has an IP address.
580 * 3) Between two zones on the same machine, packet delivery is only allowed if
581 * there’s a matching route for the destination and zone in the forwarding
582 * table.
583 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
584 * different zones can bind to the same port with the wildcard address
585 * (INADDR_ANY).
586 *
587 * The granularity of interface partitioning is at the logical interface level.
588 * Therefore, every zone has its own IP addresses, and incoming packets can be
589 * attributed to a zone unambiguously. A logical interface is placed into a zone

new/usr/src/uts/common/inet/ip/ip.c 10

590 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
591 * structure. Rule (1) is implemented by modifying the source address selection
592 * algorithm so that the list of eligible addresses is filtered based on the
593 * sending process zone.
594 *
595 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
596 * across all zones, depending on their type. Here is the break-up:
597 *
598 * IRE type Shared/exclusive
599 * -------- ----------------
600 * IRE_BROADCAST Exclusive
601 * IRE_DEFAULT (default routes) Shared (*)
602 * IRE_LOCAL Exclusive (x)
603 * IRE_LOOPBACK Exclusive
604 * IRE_PREFIX (net routes) Shared (*)
605 * IRE_IF_NORESOLVER (interface routes) Exclusive
606 * IRE_IF_RESOLVER (interface routes) Exclusive
607 * IRE_IF_CLONE (interface routes) Exclusive
608 * IRE_HOST (host routes) Shared (*)
609 *
610 * (*) A zone can only use a default or off-subnet route if the gateway is
611 * directly reachable from the zone, that is, if the gateway’s address matches
612 * one of the zone’s logical interfaces.
613 *
614 * (x) IRE_LOCAL are handled a bit differently.
615 * When ip_restrict_interzone_loopback is set (the default),
616 * ire_route_recursive restricts loopback using an IRE_LOCAL
617 * between zone to the case when L2 would have conceptually looped the packet
618 * back, i.e. the loopback which is required since neither Ethernet drivers
619 * nor Ethernet hardware loops them back. This is the case when the normal
620 * routes (ignoring IREs with different zoneids) would send out the packet on
621 * the same ill as the ill with which is IRE_LOCAL is associated.
622 *
623 * Multiple zones can share a common broadcast address; typically all zones
624 * share the 255.255.255.255 address. Incoming as well as locally originated
625 * broadcast packets must be dispatched to all the zones on the broadcast
626 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
627 * since some zones may not be on the 10.16.72/24 network. To handle this, each
628 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
629 * sent to every zone that has an IRE_BROADCAST entry for the destination
630 * address on the input ill, see ip_input_broadcast().
631 *
632 * Applications in different zones can join the same multicast group address.
633 * The same logic applies for multicast as for broadcast. ip_input_multicast
634 * dispatches packets to all zones that have members on the physical interface.
635 */

637 /*
638 * Squeue Fanout flags:
639 * 0: No fanout.
640 * 1: Fanout across all squeues
641 */
642 boolean_t ip_squeue_fanout = 0;

644 /*
645 * Maximum dups allowed per packet.
646 */
647 uint_t ip_max_frag_dups = 10;

649 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
650 cred_t *credp, boolean_t isv6);
651 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *);

653 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
654 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
655 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,

new/usr/src/uts/common/inet/ip/ip.c 11

656 ip_recv_attr_t *);
657 static void icmp_options_update(ipha_t *);
658 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *);
659 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
660 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
661 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
662 ip_recv_attr_t *);
663 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
664 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
665 ip_recv_attr_t *);

667 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t);
668 char *ip_dot_addr(ipaddr_t, char *);
669 mblk_t *ip_carve_mp(mblk_t **, ssize_t);
670 int ip_close(queue_t *, int);
671 static char *ip_dot_saddr(uchar_t *, char *);
672 static void ip_lrput(queue_t *, mblk_t *);
673 ipaddr_t ip_net_mask(ipaddr_t);
674 char *ip_nv_lookup(nv_t *, int);
675 void ip_rput(queue_t *, mblk_t *);
676 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
677 void *dummy_arg);
678 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
679 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
680 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
681 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
682 ip_stack_t *, boolean_t);
683 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
684 boolean_t);
685 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
686 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
687 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
688 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
689 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
690 ip_stack_t *ipst, boolean_t);
691 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
692 ip_stack_t *ipst, boolean_t);
693 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
694 ip_stack_t *ipst);
695 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
696 ip_stack_t *ipst);
697 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
698 ip_stack_t *ipst);
699 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
700 ip_stack_t *ipst);
701 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
702 ip_stack_t *ipst);
703 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
704 ip_stack_t *ipst);
705 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
706 ip_stack_t *ipst);
707 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
708 ip_stack_t *ipst);
709 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *);
710 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
711 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
712 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
713 int ip_snmp_set(queue_t *, int, int, uchar_t *, int);

715 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
716 mblk_t *);

718 static void conn_drain_init(ip_stack_t *);
719 static void conn_drain_fini(ip_stack_t *);
720 static void conn_drain(conn_t *connp, boolean_t closing);

new/usr/src/uts/common/inet/ip/ip.c 12

722 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
723 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);

725 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns);
726 static void ip_stack_shutdown(netstackid_t stackid, void *arg);
727 static void ip_stack_fini(netstackid_t stackid, void *arg);

729 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
730 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
731 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t,
732 const in6_addr_t *);

734 static int ip_squeue_switch(int);

736 static void *ip_kstat_init(netstackid_t, ip_stack_t *);
737 static void ip_kstat_fini(netstackid_t, kstat_t *);
738 static int ip_kstat_update(kstat_t *kp, int rw);
739 static void *icmp_kstat_init(netstackid_t);
740 static void icmp_kstat_fini(netstackid_t, kstat_t *);
741 static int icmp_kstat_update(kstat_t *kp, int rw);
742 static void *ip_kstat2_init(netstackid_t, ip_stat_t *);
743 static void ip_kstat2_fini(netstackid_t, kstat_t *);

745 static void ipobs_init(ip_stack_t *);
746 static void ipobs_fini(ip_stack_t *);

748 static int ip_tp_cpu_update(cpu_setup_t, int, void *);

750 ipaddr_t ip_g_all_ones = IP_HOST_MASK;

752 static long ip_rput_pullups;
753 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */

755 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
756 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */

758 int ip_debug;

760 /*
761 * Multirouting/CGTP stuff
762 */
763 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */

765 /*
766 * IP tunables related declarations. Definitions are in ip_tunables.c
767 */
768 extern mod_prop_info_t ip_propinfo_tbl[];
769 extern int ip_propinfo_count;

771 /*
772 * Table of IP ioctls encoding the various properties of the ioctl and
773 * indexed based on the last byte of the ioctl command. Occasionally there
774 * is a clash, and there is more than 1 ioctl with the same last byte.
775 * In such a case 1 ioctl is encoded in the ndx table and the remaining
776 * ioctls are encoded in the misc table. An entry in the ndx table is
777 * retrieved by indexing on the last byte of the ioctl command and comparing
778 * the ioctl command with the value in the ndx table. In the event of a
779 * mismatch the misc table is then searched sequentially for the desired
780 * ioctl command.
781 *
782 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
783 */
784 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
785 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

new/usr/src/uts/common/inet/ip/ip.c 13

788 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
793 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
794 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

796 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV,
797 MISC_CMD, ip_siocaddrt, NULL },
798 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV,
799 MISC_CMD, ip_siocdelrt, NULL },

801 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
802 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
803 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
804 IF_CMD, ip_sioctl_get_addr, NULL },

806 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
807 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
808 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
809 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },

811 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
812 IPI_PRIV | IPI_WR,
813 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
814 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
815 IPI_MODOK | IPI_GET_CMD,
816 IF_CMD, ip_sioctl_get_flags, NULL },

818 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
819 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

821 /* copyin size cannot be coded for SIOCGIFCONF */
822 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
823 MISC_CMD, ip_sioctl_get_ifconf, NULL },

825 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
826 IF_CMD, ip_sioctl_mtu, NULL },
827 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
828 IF_CMD, ip_sioctl_get_mtu, NULL },
829 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
830 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
831 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
832 IF_CMD, ip_sioctl_brdaddr, NULL },
833 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
834 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
835 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
836 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
837 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
838 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
839 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
840 IF_CMD, ip_sioctl_metric, NULL },
841 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

843 /* See 166-168 below for extended SIOC*XARP ioctls */
844 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
845 ARP_CMD, ip_sioctl_arp, NULL },
846 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
847 ARP_CMD, ip_sioctl_arp, NULL },
848 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
849 ARP_CMD, ip_sioctl_arp, NULL },

851 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

new/usr/src/uts/common/inet/ip/ip.c 14

854 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
870 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
871 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

873 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
874 MISC_CMD, if_unitsel, if_unitsel_restart },

876 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
892 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
893 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

895 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
896 IPI_PRIV | IPI_WR | IPI_MODOK,
897 IF_CMD, ip_sioctl_sifname, NULL },

899 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
910 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
911 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

913 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
914 MISC_CMD, ip_sioctl_get_ifnum, NULL },
915 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
916 IF_CMD, ip_sioctl_get_muxid, NULL },
917 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
918 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },

new/usr/src/uts/common/inet/ip/ip.c 15

920 /* Both if and lif variants share same func */
921 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
922 IF_CMD, ip_sioctl_get_lifindex, NULL },
923 /* Both if and lif variants share same func */
924 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
925 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },

927 /* copyin size cannot be coded for SIOCGIFCONF */
928 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
929 MISC_CMD, ip_sioctl_get_ifconf, NULL },
930 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
946 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

948 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
949 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
950 ip_sioctl_removeif_restart },
951 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
952 IPI_GET_CMD | IPI_PRIV | IPI_WR,
953 LIF_CMD, ip_sioctl_addif, NULL },
954 #define SIOCLIFADDR_NDX 112
955 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
956 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
957 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
958 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
959 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
960 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
961 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
962 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
963 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
964 IPI_PRIV | IPI_WR,
965 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
966 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
967 IPI_GET_CMD | IPI_MODOK,
968 LIF_CMD, ip_sioctl_get_flags, NULL },

970 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
971 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

973 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
974 ip_sioctl_get_lifconf, NULL },
975 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
976 LIF_CMD, ip_sioctl_mtu, NULL },
977 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
978 LIF_CMD, ip_sioctl_get_mtu, NULL },
979 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
980 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
981 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
982 LIF_CMD, ip_sioctl_brdaddr, NULL },
983 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
984 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
985 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,

new/usr/src/uts/common/inet/ip/ip.c 16

986 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
987 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
988 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
989 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
990 LIF_CMD, ip_sioctl_metric, NULL },
991 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
992 IPI_PRIV | IPI_WR | IPI_MODOK,
993 LIF_CMD, ip_sioctl_slifname,
994 ip_sioctl_slifname_restart },

996 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
997 MISC_CMD, ip_sioctl_get_lifnum, NULL },
998 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
999 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },

1000 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1001 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1002 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1003 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1004 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1005 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1006 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1007 LIF_CMD, ip_sioctl_token, NULL },
1008 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1009 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1010 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1011 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1012 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1013 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1014 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1015 LIF_CMD, ip_sioctl_lnkinfo, NULL },

1017 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1018 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1019 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1020 LIF_CMD, ip_siocdelndp_v6, NULL },
1021 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1022 LIF_CMD, ip_siocqueryndp_v6, NULL },
1023 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1024 LIF_CMD, ip_siocsetndp_v6, NULL },
1025 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1026 MISC_CMD, ip_sioctl_tmyaddr, NULL },
1027 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1028 MISC_CMD, ip_sioctl_tonlink, NULL },
1029 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1030 MISC_CMD, ip_sioctl_tmysite, NULL },
1031 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1033 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1034 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1035 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1036 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1037 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },

1039 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

1041 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1042 LIF_CMD, ip_sioctl_get_binding, NULL },
1043 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1044 IPI_PRIV | IPI_WR,
1045 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1046 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1047 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1048 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1049 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },

1051 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */

new/usr/src/uts/common/inet/ip/ip.c 17

1052 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

1056 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

1058 /* These are handled in ip_sioctl_copyin_setup itself */
1059 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1060 MISC_CMD, NULL, NULL },
1061 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1062 MISC_CMD, NULL, NULL },
1063 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },

1065 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1066 ip_sioctl_get_lifconf, NULL },

1068 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1069 XARP_CMD, ip_sioctl_arp, NULL },
1070 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1071 XARP_CMD, ip_sioctl_arp, NULL },
1072 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1073 XARP_CMD, ip_sioctl_arp, NULL },

1075 /* SIOCPOPSOCKFS is not handled by IP */
1076 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },

1078 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1079 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1080 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1081 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1082 ip_sioctl_slifzone_restart },
1083 /* 172-174 are SCTP ioctls and not handled by IP */
1084 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1087 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1088 IPI_GET_CMD, LIF_CMD,
1089 ip_sioctl_get_lifusesrc, 0 },
1090 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1091 IPI_PRIV | IPI_WR,
1092 LIF_CMD, ip_sioctl_slifusesrc,
1093 NULL },
1094 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1095 ip_sioctl_get_lifsrcof, NULL },
1096 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1097 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1098 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1099 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1100 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1101 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1102 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1103 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1104 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1105 /* SIOCSENABLESDP is handled by SDP */
1106 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1107 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1108 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1109 IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1110 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1111 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1112 ip_sioctl_ilb_cmd, NULL },
1113 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1114 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1115 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1116 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1117 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,

new/usr/src/uts/common/inet/ip/ip.c 18

1118 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1119 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1120 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1121 };

1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);

1125 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1126 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1130 { ND_GET, 0, 0, 0, NULL, NULL },
1131 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1132 { IP_IOCTL, 0, 0, 0, NULL, NULL },
1133 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1134 MISC_CMD, mrt_ioctl},
1135 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1136 MISC_CMD, mrt_ioctl},
1137 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1138 MISC_CMD, mrt_ioctl}
1139 };

1141 int ip_misc_ioctl_count =
1142 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);

1144 int conn_drain_nthreads; /* Number of drainers reqd. */
1145 /* Settable in /etc/system */
1146 /* Defined in ip_ire.c */
1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1148 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1149 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;

1151 static nv_t ire_nv_arr[] = {
1152 { IRE_BROADCAST, "BROADCAST" },
1153 { IRE_LOCAL, "LOCAL" },
1154 { IRE_LOOPBACK, "LOOPBACK" },
1155 { IRE_DEFAULT, "DEFAULT" },
1156 { IRE_PREFIX, "PREFIX" },
1157 { IRE_IF_NORESOLVER, "IF_NORESOL" },
1158 { IRE_IF_RESOLVER, "IF_RESOLV" },
1159 { IRE_IF_CLONE, "IF_CLONE" },
1160 { IRE_HOST, "HOST" },
1161 { IRE_MULTICAST, "MULTICAST" },
1162 { IRE_NOROUTE, "NOROUTE" },
1163 { 0 }
1164 };

1166 nv_t *ire_nv_tbl = ire_nv_arr;

1168 /* Simple ICMP IP Header Template */
1169 static ipha_t icmp_ipha = {
1170 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1171 };

1173 struct module_info ip_mod_info = {
1174 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1175 IP_MOD_LOWAT
1176 };

1178 /*
1179 * Duplicate static symbols within a module confuses mdb; so we avoid the
1180 * problem by making the symbols here distinct from those in udp.c.
1181 */

1183 /*

new/usr/src/uts/common/inet/ip/ip.c 19

1184 * Entry points for IP as a device and as a module.
1185 * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1186 */
1187 static struct qinit iprinitv4 = {
1188 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1189 &ip_mod_info
1190 };

1192 struct qinit iprinitv6 = {
1193 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1194 &ip_mod_info
1195 };

1197 static struct qinit ipwinit = {
1198 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1199 &ip_mod_info
1200 };

1202 static struct qinit iplrinit = {
1203 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1204 &ip_mod_info
1205 };

1207 static struct qinit iplwinit = {
1208 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1209 &ip_mod_info
1210 };

1212 /* For AF_INET aka /dev/ip */
1213 struct streamtab ipinfov4 = {
1214 &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1215 };

1217 /* For AF_INET6 aka /dev/ip6 */
1218 struct streamtab ipinfov6 = {
1219 &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1220 };

1222 #ifdef DEBUG
1223 boolean_t skip_sctp_cksum = B_FALSE;
1224 #endif

1226 /*
1227 * Generate an ICMP fragmentation needed message.
1228 * When called from ip_output side a minimal ip_recv_attr_t needs to be
1229 * constructed by the caller.
1230 */
1231 void
1232 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1233 {
1234 icmph_t icmph;
1235 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

1237 mp = icmp_pkt_err_ok(mp, ira);
1238 if (mp == NULL)
1239 return;

1241 bzero(&icmph, sizeof (icmph_t));
1242 icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1243 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1244 icmph.icmph_du_mtu = htons((uint16_t)mtu);
1245 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1246 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);

1248 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1249 }

new/usr/src/uts/common/inet/ip/ip.c 20

1251 /*
1252 * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1253 * If the ICMP message is consumed by IP, i.e., it should not be delivered
1254 * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1255 * Likewise, if the ICMP error is misformed (too short, etc), then it
1256 * returns NULL. The caller uses this to determine whether or not to send
1257 * to raw sockets.
1258 *
1259 * All error messages are passed to the matching transport stream.
1260 *
1261 * The following cases are handled by icmp_inbound:
1262 * 1) It needs to send a reply back and possibly delivering it
1263 * to the "interested" upper clients.
1264 * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1265 * 3) It needs to change some values in IP only.
1266 * 4) It needs to change some values in IP and upper layers e.g TCP
1267 * by delivering an error to the upper layers.
1268 *
1269 * We handle the above three cases in the context of IPsec in the
1270 * following way :
1271 *
1272 * 1) Send the reply back in the same way as the request came in.
1273 * If it came in encrypted, it goes out encrypted. If it came in
1274 * clear, it goes out in clear. Thus, this will prevent chosen
1275 * plain text attack.
1276 * 2) The client may or may not expect things to come in secure.
1277 * If it comes in secure, the policy constraints are checked
1278 * before delivering it to the upper layers. If it comes in
1279 * clear, ipsec_inbound_accept_clear will decide whether to
1280 * accept this in clear or not. In both the cases, if the returned
1281 * message (IP header + 8 bytes) that caused the icmp message has
1282 * AH/ESP headers, it is sent up to AH/ESP for validation before
1283 * sending up. If there are only 8 bytes of returned message, then
1284 * upper client will not be notified.
1285 * 3) Check with global policy to see whether it matches the constaints.
1286 * But this will be done only if icmp_accept_messages_in_clear is
1287 * zero.
1288 * 4) If we need to change both in IP and ULP, then the decision taken
1289 * while affecting the values in IP and while delivering up to TCP
1290 * should be the same.
1291 *
1292 * There are two cases.
1293 *
1294 * a) If we reject data at the IP layer (ipsec_check_global_policy()
1295 * failed), we will not deliver it to the ULP, even though they
1296 * are *willing* to accept in *clear*. This is fine as our global
1297 * disposition to icmp messages asks us reject the datagram.
1298 *
1299 * b) If we accept data at the IP layer (ipsec_check_global_policy()
1300 * succeeded or icmp_accept_messages_in_clear is 1), and not able
1301 * to deliver it to ULP (policy failed), it can lead to
1302 * consistency problems. The cases known at this time are
1303 * ICMP_DESTINATION_UNREACHABLE messages with following code
1304 * values :
1305 *
1306 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1307 * and Upper layer rejects. Then the communication will
1308 * come to a stop. This is solved by making similar decisions
1309 * at both levels. Currently, when we are unable to deliver
1310 * to the Upper Layer (due to policy failures) while IP has
1311 * adjusted dce_pmtu, the next outbound datagram would
1312 * generate a local ICMP_FRAGMENTATION_NEEDED message - which
1313 * will be with the right level of protection. Thus the right
1314 * value will be communicated even if we are not able to
1315 * communicate when we get from the wire initially. But this

new/usr/src/uts/common/inet/ip/ip.c 21

1316 * assumes there would be at least one outbound datagram after
1317 * IP has adjusted its dce_pmtu value. To make things
1318 * simpler, we accept in clear after the validation of
1319 * AH/ESP headers.
1320 *
1321 * - Other ICMP ERRORS : We may not be able to deliver it to the
1322 * upper layer depending on the level of protection the upper
1323 * layer expects and the disposition in ipsec_inbound_accept_clear().
1324 * ipsec_inbound_accept_clear() decides whether a given ICMP error
1325 * should be accepted in clear when the Upper layer expects secure.
1326 * Thus the communication may get aborted by some bad ICMP
1327 * packets.
1328 */
1329 mblk_t *
1330 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1331 {
1332 icmph_t *icmph;
1333 ipha_t *ipha; /* Outer header */
1334 int ip_hdr_length; /* Outer header length */
1335 boolean_t interested;
1336 ipif_t *ipif;
1337 uint32_t ts;
1338 uint32_t *tsp;
1339 timestruc_t now;
1340 ill_t *ill = ira->ira_ill;
1341 ip_stack_t *ipst = ill->ill_ipst;
1342 zoneid_t zoneid = ira->ira_zoneid;
1343 int len_needed;
1344 mblk_t *mp_ret = NULL;

1346 ipha = (ipha_t *)mp->b_rptr;

1348 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);

1350 ip_hdr_length = ira->ira_ip_hdr_length;
1351 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1352 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1353 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1354 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1355 freemsg(mp);
1356 return (NULL);
1357 }
1358 /* Last chance to get real. */
1359 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1360 if (ipha == NULL) {
1361 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1362 freemsg(mp);
1363 return (NULL);
1364 }
1365 }

1367 /* The IP header will always be a multiple of four bytes */
1368 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1369 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1370 icmph->icmph_code));

1372 /*
1373 * We will set "interested" to "true" if we should pass a copy to
1374 * the transport or if we handle the packet locally.
1375 */
1376 interested = B_FALSE;
1377 switch (icmph->icmph_type) {
1378 case ICMP_ECHO_REPLY:
1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1380 break;
1381 case ICMP_DEST_UNREACHABLE:

new/usr/src/uts/common/inet/ip/ip.c 22

1382 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1383 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1384 interested = B_TRUE; /* Pass up to transport */
1385 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1386 break;
1387 case ICMP_SOURCE_QUENCH:
1388 interested = B_TRUE; /* Pass up to transport */
1389 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1390 break;
1391 case ICMP_REDIRECT:
1392 if (!ipst->ips_ip_ignore_redirect)
1393 interested = B_TRUE;
1394 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1395 break;
1396 case ICMP_ECHO_REQUEST:
1397 /*
1398 * Whether to respond to echo requests that come in as IP
1399 * broadcasts or as IP multicast is subject to debate
1400 * (what isn’t?). We aim to please, you pick it.
1401 * Default is do it.
1402 */
1403 if (ira->ira_flags & IRAF_MULTICAST) {
1404 /* multicast: respond based on tunable */
1405 interested = ipst->ips_ip_g_resp_to_echo_mcast;
1406 } else if (ira->ira_flags & IRAF_BROADCAST) {
1407 /* broadcast: respond based on tunable */
1408 interested = ipst->ips_ip_g_resp_to_echo_bcast;
1409 } else {
1410 /* unicast: always respond */
1411 interested = B_TRUE;
1412 }
1413 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1414 if (!interested) {
1415 /* We never pass these to RAW sockets */
1416 freemsg(mp);
1417 return (NULL);
1418 }

1420 /* Check db_ref to make sure we can modify the packet. */
1421 if (mp->b_datap->db_ref > 1) {
1422 mblk_t *mp1;

1424 mp1 = copymsg(mp);
1425 freemsg(mp);
1426 if (!mp1) {
1427 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1428 return (NULL);
1429 }
1430 mp = mp1;
1431 ipha = (ipha_t *)mp->b_rptr;
1432 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1433 }
1434 icmph->icmph_type = ICMP_ECHO_REPLY;
1435 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1436 icmp_send_reply_v4(mp, ipha, icmph, ira);
1437 return (NULL);

1439 case ICMP_ROUTER_ADVERTISEMENT:
1440 case ICMP_ROUTER_SOLICITATION:
1441 break;
1442 case ICMP_TIME_EXCEEDED:
1443 interested = B_TRUE; /* Pass up to transport */
1444 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1445 break;
1446 case ICMP_PARAM_PROBLEM:
1447 interested = B_TRUE; /* Pass up to transport */

new/usr/src/uts/common/inet/ip/ip.c 23

1448 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1449 break;
1450 case ICMP_TIME_STAMP_REQUEST:
1451 /* Response to Time Stamp Requests is local policy. */
1452 if (ipst->ips_ip_g_resp_to_timestamp) {
1453 if (ira->ira_flags & IRAF_MULTIBROADCAST)
1454 interested =
1455 ipst->ips_ip_g_resp_to_timestamp_bcast;
1456 else
1457 interested = B_TRUE;
1458 }
1459 if (!interested) {
1460 /* We never pass these to RAW sockets */
1461 freemsg(mp);
1462 return (NULL);
1463 }

1465 /* Make sure we have enough of the packet */
1466 len_needed = ip_hdr_length + ICMPH_SIZE +
1467 3 * sizeof (uint32_t);

1469 if (mp->b_wptr - mp->b_rptr < len_needed) {
1470 ipha = ip_pullup(mp, len_needed, ira);
1471 if (ipha == NULL) {
1472 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1473 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1474 mp, ill);
1475 freemsg(mp);
1476 return (NULL);
1477 }
1478 /* Refresh following the pullup. */
1479 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1480 }
1481 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1482 /* Check db_ref to make sure we can modify the packet. */
1483 if (mp->b_datap->db_ref > 1) {
1484 mblk_t *mp1;

1486 mp1 = copymsg(mp);
1487 freemsg(mp);
1488 if (!mp1) {
1489 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1490 return (NULL);
1491 }
1492 mp = mp1;
1493 ipha = (ipha_t *)mp->b_rptr;
1494 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1495 }
1496 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1497 tsp = (uint32_t *)&icmph[1];
1498 tsp++; /* Skip past ’originate time’ */
1499 /* Compute # of milliseconds since midnight */
1500 gethrestime(&now);
1501 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1502 now.tv_nsec / (NANOSEC / MILLISEC);
1503 *tsp++ = htonl(ts); /* Lay in ’receive time’ */
1504 *tsp++ = htonl(ts); /* Lay in ’send time’ */
1505 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1506 icmp_send_reply_v4(mp, ipha, icmph, ira);
1507 return (NULL);

1509 case ICMP_TIME_STAMP_REPLY:
1510 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1511 break;
1512 case ICMP_INFO_REQUEST:
1513 /* Per RFC 1122 3.2.2.7, ignore this. */

new/usr/src/uts/common/inet/ip/ip.c 24

1514 case ICMP_INFO_REPLY:
1515 break;
1516 case ICMP_ADDRESS_MASK_REQUEST:
1517 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1518 interested =
1519 ipst->ips_ip_respond_to_address_mask_broadcast;
1520 } else {
1521 interested = B_TRUE;
1522 }
1523 if (!interested) {
1524 /* We never pass these to RAW sockets */
1525 freemsg(mp);
1526 return (NULL);
1527 }
1528 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1529 if (mp->b_wptr - mp->b_rptr < len_needed) {
1530 ipha = ip_pullup(mp, len_needed, ira);
1531 if (ipha == NULL) {
1532 BUMP_MIB(ill->ill_ip_mib,
1533 ipIfStatsInTruncatedPkts);
1534 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1535 ill);
1536 freemsg(mp);
1537 return (NULL);
1538 }
1539 /* Refresh following the pullup. */
1540 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1541 }
1542 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1543 /* Check db_ref to make sure we can modify the packet. */
1544 if (mp->b_datap->db_ref > 1) {
1545 mblk_t *mp1;

1547 mp1 = copymsg(mp);
1548 freemsg(mp);
1549 if (!mp1) {
1550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1551 return (NULL);
1552 }
1553 mp = mp1;
1554 ipha = (ipha_t *)mp->b_rptr;
1555 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1556 }
1557 /*
1558 * Need the ipif with the mask be the same as the source
1559 * address of the mask reply. For unicast we have a specific
1560 * ipif. For multicast/broadcast we only handle onlink
1561 * senders, and use the source address to pick an ipif.
1562 */
1563 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1564 if (ipif == NULL) {
1565 /* Broadcast or multicast */
1566 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1567 if (ipif == NULL) {
1568 freemsg(mp);
1569 return (NULL);
1570 }
1571 }
1572 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1573 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1574 ipif_refrele(ipif);
1575 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1576 icmp_send_reply_v4(mp, ipha, icmph, ira);
1577 return (NULL);

1579 case ICMP_ADDRESS_MASK_REPLY:

new/usr/src/uts/common/inet/ip/ip.c 25

1580 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1581 break;
1582 default:
1583 interested = B_TRUE; /* Pass up to transport */
1584 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1585 break;
1586 }
1587 /*
1588 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1589 * if there isn’t one.
1590 */
1591 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1592 /* If there is an ICMP client and we want one too, copy it. */

1594 if (!interested) {
1595 /* Caller will deliver to RAW sockets */
1596 return (mp);
1597 }
1598 mp_ret = copymsg(mp);
1599 if (mp_ret == NULL) {
1600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1601 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1602 }
1603 } else if (!interested) {
1604 /* Neither we nor raw sockets are interested. Drop packet now */
1605 freemsg(mp);
1606 return (NULL);
1607 }

1609 /*
1610 * ICMP error or redirect packet. Make sure we have enough of
1611 * the header and that db_ref == 1 since we might end up modifying
1612 * the packet.
1613 */
1614 if (mp->b_cont != NULL) {
1615 if (ip_pullup(mp, -1, ira) == NULL) {
1616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1617 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1618 mp, ill);
1619 freemsg(mp);
1620 return (mp_ret);
1621 }
1622 }

1624 if (mp->b_datap->db_ref > 1) {
1625 mblk_t *mp1;

1627 mp1 = copymsg(mp);
1628 if (mp1 == NULL) {
1629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1630 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1631 freemsg(mp);
1632 return (mp_ret);
1633 }
1634 freemsg(mp);
1635 mp = mp1;
1636 }

1638 /*
1639 * In case mp has changed, verify the message before any further
1640 * processes.
1641 */
1642 ipha = (ipha_t *)mp->b_rptr;
1643 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1644 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1645 freemsg(mp);

new/usr/src/uts/common/inet/ip/ip.c 26

1646 return (mp_ret);
1647 }

1649 switch (icmph->icmph_type) {
1650 case ICMP_REDIRECT:
1651 icmp_redirect_v4(mp, ipha, icmph, ira);
1652 break;
1653 case ICMP_DEST_UNREACHABLE:
1654 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1655 /* Update DCE and adjust MTU is icmp header if needed */
1656 icmp_inbound_too_big_v4(icmph, ira);
1657 }
1658 /* FALLTHRU */
1659 default:
1660 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1661 break;
1662 }
1663 return (mp_ret);
1664 }

1666 /*
1667 * Send an ICMP echo, timestamp or address mask reply.
1668 * The caller has already updated the payload part of the packet.
1669 * We handle the ICMP checksum, IP source address selection and feed
1670 * the packet into ip_output_simple.
1671 */
1672 static void
1673 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1674 ip_recv_attr_t *ira)
1675 {
1676 uint_t ip_hdr_length = ira->ira_ip_hdr_length;
1677 ill_t *ill = ira->ira_ill;
1678 ip_stack_t *ipst = ill->ill_ipst;
1679 ip_xmit_attr_t ixas;

1681 /* Send out an ICMP packet */
1682 icmph->icmph_checksum = 0;
1683 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1684 /* Reset time to live. */
1685 ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1686 {
1687 /* Swap source and destination addresses */
1688 ipaddr_t tmp;

1690 tmp = ipha->ipha_src;
1691 ipha->ipha_src = ipha->ipha_dst;
1692 ipha->ipha_dst = tmp;
1693 }
1694 ipha->ipha_ident = 0;
1695 if (!IS_SIMPLE_IPH(ipha))
1696 icmp_options_update(ipha);

1698 bzero(&ixas, sizeof (ixas));
1699 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1700 ixas.ixa_zoneid = ira->ira_zoneid;
1701 ixas.ixa_cred = kcred;
1702 ixas.ixa_cpid = NOPID;
1703 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1704 ixas.ixa_ifindex = 0;
1705 ixas.ixa_ipst = ipst;
1706 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;

1708 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1709 /*
1710 * This packet should go out the same way as it
1711 * came in i.e in clear, independent of the IPsec policy

new/usr/src/uts/common/inet/ip/ip.c 27

1712 * for transmitting packets.
1713 */
1714 ixas.ixa_flags |= IXAF_NO_IPSEC;
1715 } else {
1716 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1718 /* Note: mp already consumed and ip_drop_packet done */
1719 return;
1720 }
1721 }
1722 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1723 /*
1724 * Not one or our addresses (IRE_LOCALs), thus we let
1725 * ip_output_simple pick the source.
1726 */
1727 ipha->ipha_src = INADDR_ANY;
1728 ixas.ixa_flags |= IXAF_SET_SOURCE;
1729 }
1730 /* Should we send with DF and use dce_pmtu? */
1731 if (ipst->ips_ipv4_icmp_return_pmtu) {
1732 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1733 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1734 }

1736 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);

1738 (void) ip_output_simple(mp, &ixas);
1739 ixa_cleanup(&ixas);
1740 }

1742 /*
1743 * Verify the ICMP messages for either for ICMP error or redirect packet.
1744 * The caller should have fully pulled up the message. If it’s a redirect
1745 * packet, only basic checks on IP header will be done; otherwise, verify
1746 * the packet by looking at the included ULP header.
1747 *
1748 * Called before icmp_inbound_error_fanout_v4 is called.
1749 */
1750 static boolean_t
1751 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1752 {
1753 ill_t *ill = ira->ira_ill;
1754 int hdr_length;
1755 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
1756 conn_t *connp;
1757 ipha_t *ipha; /* Inner IP header */

1759 ipha = (ipha_t *)&icmph[1];
1760 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1761 goto truncated;

1763 hdr_length = IPH_HDR_LENGTH(ipha);

1765 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1766 goto discard_pkt;

1768 if (hdr_length < sizeof (ipha_t))
1769 goto truncated;

1771 if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1772 goto truncated;

1774 /*
1775 * Stop here for ICMP_REDIRECT.
1776 */
1777 if (icmph->icmph_type == ICMP_REDIRECT)

new/usr/src/uts/common/inet/ip/ip.c 28

1778 return (B_TRUE);

1780 /*
1781 * ICMP errors only.
1782 */
1783 switch (ipha->ipha_protocol) {
1784 case IPPROTO_UDP:
1785 /*
1786 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1787 * transport header.
1788 */
1789 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1790 mp->b_wptr)
1791 goto truncated;
1792 break;
1793 case IPPROTO_TCP: {
1794 tcpha_t *tcpha;

1796 /*
1797 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1798 * transport header.
1799 */
1800 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1801 mp->b_wptr)
1802 goto truncated;

1804 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1805 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1806 ipst);
1807 if (connp == NULL)
1808 goto discard_pkt;

1810 if ((connp->conn_verifyicmp != NULL) &&
1811 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1812 CONN_DEC_REF(connp);
1813 goto discard_pkt;
1814 }
1815 CONN_DEC_REF(connp);
1816 break;
1817 }
1818 case IPPROTO_SCTP:
1819 /*
1820 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1821 * transport header.
1822 */
1823 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1824 mp->b_wptr)
1825 goto truncated;
1826 break;
1827 case IPPROTO_ESP:
1828 case IPPROTO_AH:
1829 break;
1830 case IPPROTO_ENCAP:
1831 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1832 mp->b_wptr)
1833 goto truncated;
1834 break;
1835 default:
1836 break;
1837 }

1839 return (B_TRUE);

1841 discard_pkt:
1842 /* Bogus ICMP error. */
1843 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);

new/usr/src/uts/common/inet/ip/ip.c 29

1844 return (B_FALSE);

1846 truncated:
1847 /* We pulled up everthing already. Must be truncated */
1848 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1849 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1850 return (B_FALSE);
1851 }

1853 /* Table from RFC 1191 */
1854 static int icmp_frag_size_table[] =
1855 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };

1857 /*
1858 * Process received ICMP Packet too big.
1859 * Just handles the DCE create/update, including using the above table of
1860 * PMTU guesses. The caller is responsible for validating the packet before
1861 * passing it in and also to fanout the ICMP error to any matching transport
1862 * conns. Assumes the message has been fully pulled up and verified.
1863 *
1864 * Before getting here, the caller has called icmp_inbound_verify_v4()
1865 * that should have verified with ULP to prevent undoing the changes we’re
1866 * going to make to DCE. For example, TCP might have verified that the packet
1867 * which generated error is in the send window.
1868 *
1869 * In some cases modified this MTU in the ICMP header packet; the caller
1870 * should pass to the matching ULP after this returns.
1871 */
1872 static void
1873 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1874 {
1875 dce_t *dce;
1876 int old_mtu;
1877 int mtu, orig_mtu;
1878 ipaddr_t dst;
1879 boolean_t disable_pmtud;
1880 ill_t *ill = ira->ira_ill;
1881 ip_stack_t *ipst = ill->ill_ipst;
1882 uint_t hdr_length;
1883 ipha_t *ipha;

1885 /* Caller already pulled up everything. */
1886 ipha = (ipha_t *)&icmph[1];
1887 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1888 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1889 ASSERT(ill != NULL);

1891 hdr_length = IPH_HDR_LENGTH(ipha);

1893 /*
1894 * We handle path MTU for source routed packets since the DCE
1895 * is looked up using the final destination.
1896 */
1897 dst = ip_get_dst(ipha);

1899 dce = dce_lookup_and_add_v4(dst, ipst);
1900 if (dce == NULL) {
1901 /* Couldn’t add a unique one - ENOMEM */
1902 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1903 ntohl(dst)));
1904 return;
1905 }

1907 /* Check for MTU discovery advice as described in RFC 1191 */
1908 mtu = ntohs(icmph->icmph_du_mtu);
1909 orig_mtu = mtu;

new/usr/src/uts/common/inet/ip/ip.c 30

1910 disable_pmtud = B_FALSE;

1912 mutex_enter(&dce->dce_lock);
1913 if (dce->dce_flags & DCEF_PMTU)
1914 old_mtu = dce->dce_pmtu;
1915 else
1916 old_mtu = ill->ill_mtu;

1918 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1919 uint32_t length;
1920 int i;

1922 /*
1923 * Use the table from RFC 1191 to figure out
1924 * the next "plateau" based on the length in
1925 * the original IP packet.
1926 */
1927 length = ntohs(ipha->ipha_length);
1928 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1929 uint32_t, length);
1930 if (old_mtu <= length &&
1931 old_mtu >= length - hdr_length) {
1932 /*
1933 * Handle broken BSD 4.2 systems that
1934 * return the wrong ipha_length in ICMP
1935 * errors.
1936 */
1937 ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1938 length, old_mtu));
1939 length -= hdr_length;
1940 }
1941 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1942 if (length > icmp_frag_size_table[i])
1943 break;
1944 }
1945 if (i == A_CNT(icmp_frag_size_table)) {
1946 /* Smaller than IP_MIN_MTU! */
1947 ip1dbg(("Too big for packet size %d\n",
1948 length));
1949 disable_pmtud = B_TRUE;
1950 mtu = ipst->ips_ip_pmtu_min;
1951 } else {
1952 mtu = icmp_frag_size_table[i];
1953 ip1dbg(("Calculated mtu %d, packet size %d, "
1954 "before %d\n", mtu, length, old_mtu));
1955 if (mtu < ipst->ips_ip_pmtu_min) {
1956 mtu = ipst->ips_ip_pmtu_min;
1957 disable_pmtud = B_TRUE;
1958 }
1959 }
1960 }
1961 if (disable_pmtud)
1962 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1963 else
1964 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;

1966 dce->dce_pmtu = MIN(old_mtu, mtu);
1967 /* Prepare to send the new max frag size for the ULP. */
1968 icmph->icmph_du_zero = 0;
1969 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu);
1970 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1971 dce, int, orig_mtu, int, mtu);

1973 /* We now have a PMTU for sure */
1974 dce->dce_flags |= DCEF_PMTU;
1975 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());

new/usr/src/uts/common/inet/ip/ip.c 31

1976 mutex_exit(&dce->dce_lock);
1977 /*
1978 * After dropping the lock the new value is visible to everyone.
1979 * Then we bump the generation number so any cached values reinspect
1980 * the dce_t.
1981 */
1982 dce_increment_generation(dce);
1983 dce_refrele(dce);
1984 }

1986 /*
1987 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1988 * calls this function.
1989 */
1990 static mblk_t *
1991 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1992 {
1993 int length;

1995 ASSERT(mp->b_datap->db_type == M_DATA);

1997 /* icmp_inbound_v4 has already pulled up the whole error packet */
1998 ASSERT(mp->b_cont == NULL);

2000 /*
2001 * The length that we want to overlay is the inner header
2002 * and what follows it.
2003 */
2004 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);

2006 /*
2007 * Overlay the inner header and whatever follows it over the
2008 * outer header.
2009 */
2010 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);

2012 /* Adjust for what we removed */
2013 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2014 return (mp);
2015 }

2017 /*
2018 * Try to pass the ICMP message upstream in case the ULP cares.
2019 *
2020 * If the packet that caused the ICMP error is secure, we send
2021 * it to AH/ESP to make sure that the attached packet has a
2022 * valid association. ipha in the code below points to the
2023 * IP header of the packet that caused the error.
2024 *
2025 * For IPsec cases, we let the next-layer-up (which has access to
2026 * cached policy on the conn_t, or can query the SPD directly)
2027 * subtract out any IPsec overhead if they must. We therefore make no
2028 * adjustments here for IPsec overhead.
2029 *
2030 * IFN could have been generated locally or by some router.
2031 *
2032 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2033 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2034 * This happens because IP adjusted its value of MTU on an
2035 * earlier IFN message and could not tell the upper layer,
2036 * the new adjusted value of MTU e.g. Packet was encrypted
2037 * or there was not enough information to fanout to upper
2038 * layers. Thus on the next outbound datagram, ire_send_wire
2039 * generates the IFN, where IPsec processing has *not* been
2040 * done.
2041 *

new/usr/src/uts/common/inet/ip/ip.c 32

2042 * Note that we retain ixa_fragsize across IPsec thus once
2043 * we have picking ixa_fragsize and entered ipsec_out_process we do
2044 * no change the fragsize even if the path MTU changes before
2045 * we reach ip_output_post_ipsec.
2046 *
2047 * In the local case, IRAF_LOOPBACK will be set indicating
2048 * that IFN was generated locally.
2049 *
2050 * ROUTER : IFN could be secure or non-secure.
2051 *
2052 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2053 * packet in error has AH/ESP headers to validate the AH/ESP
2054 * headers. AH/ESP will verify whether there is a valid SA or
2055 * not and send it back. We will fanout again if we have more
2056 * data in the packet.
2057 *
2058 * If the packet in error does not have AH/ESP, we handle it
2059 * like any other case.
2060 *
2061 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2062 * up to AH/ESP for validation. AH/ESP will verify whether there is a
2063 * valid SA or not and send it back. We will fanout again if
2064 * we have more data in the packet.
2065 *
2066 * If the packet in error does not have AH/ESP, we handle it
2067 * like any other case.
2068 *
2069 * The caller must have called icmp_inbound_verify_v4.
2070 */
2071 static void
2072 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2073 {
2074 uint16_t *up; /* Pointer to ports in ULP header */
2075 uint32_t ports; /* reversed ports for fanout */
2076 ipha_t ripha; /* With reversed addresses */
2077 ipha_t *ipha; /* Inner IP header */
2078 uint_t hdr_length; /* Inner IP header length */
2079 tcpha_t *tcpha;
2080 conn_t *connp;
2081 ill_t *ill = ira->ira_ill;
2082 ip_stack_t *ipst = ill->ill_ipst;
2083 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
2084 ill_t *rill = ira->ira_rill;

2086 /* Caller already pulled up everything. */
2087 ipha = (ipha_t *)&icmph[1];
2088 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2089 ASSERT(mp->b_cont == NULL);

2091 hdr_length = IPH_HDR_LENGTH(ipha);
2092 ira->ira_protocol = ipha->ipha_protocol;

2094 /*
2095 * We need a separate IP header with the source and destination
2096 * addresses reversed to do fanout/classification because the ipha in
2097 * the ICMP error is in the form we sent it out.
2098 */
2099 ripha.ipha_src = ipha->ipha_dst;
2100 ripha.ipha_dst = ipha->ipha_src;
2101 ripha.ipha_protocol = ipha->ipha_protocol;
2102 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;

2104 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2105 ripha.ipha_protocol, ntohl(ipha->ipha_src),
2106 ntohl(ipha->ipha_dst),
2107 icmph->icmph_type, icmph->icmph_code));

new/usr/src/uts/common/inet/ip/ip.c 33

2109 switch (ipha->ipha_protocol) {
2110 case IPPROTO_UDP:
2111 up = (uint16_t *)((uchar_t *)ipha + hdr_length);

2113 /* Attempt to find a client stream based on port. */
2114 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2115 ntohs(up[0]), ntohs(up[1])));

2117 /* Note that we send error to all matches. */
2118 ira->ira_flags |= IRAF_ICMP_ERROR;
2119 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2120 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2121 return;

2123 case IPPROTO_TCP:
2124 /*
2125 * Find a TCP client stream for this packet.
2126 * Note that we do a reverse lookup since the header is
2127 * in the form we sent it out.
2128 */
2129 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2130 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2131 ipst);
2132 if (connp == NULL)
2133 goto discard_pkt;

2135 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2136 (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2137 mp = ipsec_check_inbound_policy(mp, connp,
2138 ipha, NULL, ira);
2139 if (mp == NULL) {
2140 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2141 /* Note that mp is NULL */
2142 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2143 CONN_DEC_REF(connp);
2144 return;
2145 }
2146 }

2148 ira->ira_flags |= IRAF_ICMP_ERROR;
2149 ira->ira_ill = ira->ira_rill = NULL;
2150 if (IPCL_IS_TCP(connp)) {
2151 SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2152 connp->conn_recvicmp, connp, ira, SQ_FILL,
2153 SQTAG_TCP_INPUT_ICMP_ERR);
2154 } else {
2155 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2156 (connp->conn_recv)(connp, mp, NULL, ira);
2157 CONN_DEC_REF(connp);
2158 }
2159 ira->ira_ill = ill;
2160 ira->ira_rill = rill;
2161 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2162 return;

2164 case IPPROTO_SCTP:
2165 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2166 /* Find a SCTP client stream for this packet. */
2167 ((uint16_t *)&ports)[0] = up[1];
2168 ((uint16_t *)&ports)[1] = up[0];

2170 ira->ira_flags |= IRAF_ICMP_ERROR;
2171 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2172 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2173 return;

new/usr/src/uts/common/inet/ip/ip.c 34

2175 case IPPROTO_ESP:
2176 case IPPROTO_AH:
2177 if (!ipsec_loaded(ipss)) {
2178 ip_proto_not_sup(mp, ira);
2179 return;
2180 }

2182 if (ipha->ipha_protocol == IPPROTO_ESP)
2183 mp = ipsecesp_icmp_error(mp, ira);
2184 else
2185 mp = ipsecah_icmp_error(mp, ira);
2186 if (mp == NULL)
2187 return;

2189 /* Just in case ipsec didn’t preserve the NULL b_cont */
2190 if (mp->b_cont != NULL) {
2191 if (!pullupmsg(mp, -1))
2192 goto discard_pkt;
2193 }

2195 /*
2196 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2197 * correct, but we don’t use them any more here.
2198 *
2199 * If succesful, the mp has been modified to not include
2200 * the ESP/AH header so we can fanout to the ULP’s icmp
2201 * error handler.
2202 */
2203 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2204 goto truncated;

2206 /* Verify the modified message before any further processes. */
2207 ipha = (ipha_t *)mp->b_rptr;
2208 hdr_length = IPH_HDR_LENGTH(ipha);
2209 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2210 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2211 freemsg(mp);
2212 return;
2213 }

2215 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2216 return;

2218 case IPPROTO_ENCAP: {
2219 /* Look for self-encapsulated packets that caused an error */
2220 ipha_t *in_ipha;

2222 /*
2223 * Caller has verified that length has to be
2224 * at least the size of IP header.
2225 */
2226 ASSERT(hdr_length >= sizeof (ipha_t));
2227 /*
2228 * Check the sanity of the inner IP header like
2229 * we did for the outer header.
2230 */
2231 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2232 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2233 goto discard_pkt;
2234 }
2235 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2236 goto discard_pkt;
2237 }
2238 /* Check for Self-encapsulated tunnels */
2239 if (in_ipha->ipha_src == ipha->ipha_src &&

new/usr/src/uts/common/inet/ip/ip.c 35

2240 in_ipha->ipha_dst == ipha->ipha_dst) {

2242 mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2243 in_ipha);
2244 if (mp == NULL)
2245 goto discard_pkt;

2247 /*
2248 * Just in case self_encap didn’t preserve the NULL
2249 * b_cont
2250 */
2251 if (mp->b_cont != NULL) {
2252 if (!pullupmsg(mp, -1))
2253 goto discard_pkt;
2254 }
2255 /*
2256 * Note that ira_pktlen and ira_ip_hdr_length are no
2257 * longer correct, but we don’t use them any more here.
2258 */
2259 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2260 goto truncated;

2262 /*
2263 * Verify the modified message before any further
2264 * processes.
2265 */
2266 ipha = (ipha_t *)mp->b_rptr;
2267 hdr_length = IPH_HDR_LENGTH(ipha);
2268 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2269 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2270 freemsg(mp);
2271 return;
2272 }

2274 /*
2275 * The packet in error is self-encapsualted.
2276 * And we are finding it further encapsulated
2277 * which we could not have possibly generated.
2278 */
2279 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2280 goto discard_pkt;
2281 }
2282 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2283 return;
2284 }
2285 /* No self-encapsulated */
2286 /* FALLTHRU */
2287 }
2288 case IPPROTO_IPV6:
2289 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2290 &ripha.ipha_dst, ipst)) != NULL) {
2291 ira->ira_flags |= IRAF_ICMP_ERROR;
2292 connp->conn_recvicmp(connp, mp, NULL, ira);
2293 CONN_DEC_REF(connp);
2294 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2295 return;
2296 }
2297 /*
2298 * No IP tunnel is interested, fallthrough and see
2299 * if a raw socket will want it.
2300 */
2301 /* FALLTHRU */
2302 default:
2303 ira->ira_flags |= IRAF_ICMP_ERROR;
2304 ip_fanout_proto_v4(mp, &ripha, ira);
2305 ira->ira_flags &= ~IRAF_ICMP_ERROR;

new/usr/src/uts/common/inet/ip/ip.c 36

2306 return;
2307 }
2308 /* NOTREACHED */
2309 discard_pkt:
2310 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2311 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2312 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2313 freemsg(mp);
2314 return;

2316 truncated:
2317 /* We pulled up everthing already. Must be truncated */
2318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2319 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2320 freemsg(mp);
2321 }

2323 /*
2324 * Common IP options parser.
2325 *
2326 * Setup routine: fill in *optp with options-parsing state, then
2327 * tail-call ipoptp_next to return the first option.
2328 */
2329 uint8_t
2330 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2331 {
2332 uint32_t totallen; /* total length of all options */

2334 totallen = ipha->ipha_version_and_hdr_length -
2335 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2336 totallen <<= 2;
2337 optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2338 optp->ipoptp_end = optp->ipoptp_next + totallen;
2339 optp->ipoptp_flags = 0;
2340 return (ipoptp_next(optp));
2341 }

2343 /* Like above but without an ipha_t */
2344 uint8_t
2345 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2346 {
2347 optp->ipoptp_next = opt;
2348 optp->ipoptp_end = optp->ipoptp_next + totallen;
2349 optp->ipoptp_flags = 0;
2350 return (ipoptp_next(optp));
2351 }

2353 /*
2354 * Common IP options parser: extract next option.
2355 */
2356 uint8_t
2357 ipoptp_next(ipoptp_t *optp)
2358 {
2359 uint8_t *end = optp->ipoptp_end;
2360 uint8_t *cur = optp->ipoptp_next;
2361 uint8_t opt, len, pointer;

2363 /*
2364 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2365 * has been corrupted.
2366 */
2367 ASSERT(cur <= end);

2369 if (cur == end)
2370 return (IPOPT_EOL);

new/usr/src/uts/common/inet/ip/ip.c 37

2372 opt = cur[IPOPT_OPTVAL];

2374 /*
2375 * Skip any NOP options.
2376 */
2377 while (opt == IPOPT_NOP) {
2378 cur++;
2379 if (cur == end)
2380 return (IPOPT_EOL);
2381 opt = cur[IPOPT_OPTVAL];
2382 }

2384 if (opt == IPOPT_EOL)
2385 return (IPOPT_EOL);

2387 /*
2388 * Option requiring a length.
2389 */
2390 if ((cur + 1) >= end) {
2391 optp->ipoptp_flags |= IPOPTP_ERROR;
2392 return (IPOPT_EOL);
2393 }
2394 len = cur[IPOPT_OLEN];
2395 if (len < 2) {
2396 optp->ipoptp_flags |= IPOPTP_ERROR;
2397 return (IPOPT_EOL);
2398 }
2399 optp->ipoptp_cur = cur;
2400 optp->ipoptp_len = len;
2401 optp->ipoptp_next = cur + len;
2402 if (cur + len > end) {
2403 optp->ipoptp_flags |= IPOPTP_ERROR;
2404 return (IPOPT_EOL);
2405 }

2407 /*
2408 * For the options which require a pointer field, make sure
2409 * its there, and make sure it points to either something
2410 * inside this option, or the end of the option.
2411 */
2412 switch (opt) {
2413 case IPOPT_RR:
2414 case IPOPT_TS:
2415 case IPOPT_LSRR:
2416 case IPOPT_SSRR:
2417 if (len <= IPOPT_OFFSET) {
2418 optp->ipoptp_flags |= IPOPTP_ERROR;
2419 return (opt);
2420 }
2421 pointer = cur[IPOPT_OFFSET];
2422 if (pointer - 1 > len) {
2423 optp->ipoptp_flags |= IPOPTP_ERROR;
2424 return (opt);
2425 }
2426 break;
2427 }

2429 /*
2430 * Sanity check the pointer field based on the type of the
2431 * option.
2432 */
2433 switch (opt) {
2434 case IPOPT_RR:
2435 case IPOPT_SSRR:
2436 case IPOPT_LSRR:
2437 if (pointer < IPOPT_MINOFF_SR)

new/usr/src/uts/common/inet/ip/ip.c 38

2438 optp->ipoptp_flags |= IPOPTP_ERROR;
2439 break;
2440 case IPOPT_TS:
2441 if (pointer < IPOPT_MINOFF_IT)
2442 optp->ipoptp_flags |= IPOPTP_ERROR;
2443 /*
2444 * Note that the Internet Timestamp option also
2445 * contains two four bit fields (the Overflow field,
2446 * and the Flag field), which follow the pointer
2447 * field. We don’t need to check that these fields
2448 * fall within the length of the option because this
2449 * was implicitely done above. We’ve checked that the
2450 * pointer value is at least IPOPT_MINOFF_IT, and that
2451 * it falls within the option. Since IPOPT_MINOFF_IT >
2452 * IPOPT_POS_OV_FLG, we don’t need the explicit check.
2453 */
2454 ASSERT(len > IPOPT_POS_OV_FLG);
2455 break;
2456 }

2458 return (opt);
2459 }

2461 /*
2462 * Use the outgoing IP header to create an IP_OPTIONS option the way
2463 * it was passed down from the application.
2464 *
2465 * This is compatible with BSD in that it returns
2466 * the reverse source route with the final destination
2467 * as the last entry. The first 4 bytes of the option
2468 * will contain the final destination.
2469 */
2470 int
2471 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2472 {
2473 ipoptp_t opts;
2474 uchar_t *opt;
2475 uint8_t optval;
2476 uint8_t optlen;
2477 uint32_t len = 0;
2478 uchar_t *buf1 = buf;
2479 uint32_t totallen;
2480 ipaddr_t dst;
2481 ip_pkt_t *ipp = &connp->conn_xmit_ipp;

2483 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2484 return (0);

2486 totallen = ipp->ipp_ipv4_options_len;
2487 if (totallen & 0x3)
2488 return (0);

2490 buf += IP_ADDR_LEN; /* Leave room for final destination */
2491 len += IP_ADDR_LEN;
2492 bzero(buf1, IP_ADDR_LEN);

2494 dst = connp->conn_faddr_v4;

2496 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2497 optval != IPOPT_EOL;
2498 optval = ipoptp_next(&opts)) {
2499 int off;

2501 opt = opts.ipoptp_cur;
2502 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2503 break;

new/usr/src/uts/common/inet/ip/ip.c 39

2504 }
2505 optlen = opts.ipoptp_len;

2507 switch (optval) {
2508 case IPOPT_SSRR:
2509 case IPOPT_LSRR:

2511 /*
2512 * Insert destination as the first entry in the source
2513 * route and move down the entries on step.
2514 * The last entry gets placed at buf1.
2515 */
2516 buf[IPOPT_OPTVAL] = optval;
2517 buf[IPOPT_OLEN] = optlen;
2518 buf[IPOPT_OFFSET] = optlen;

2520 off = optlen - IP_ADDR_LEN;
2521 if (off < 0) {
2522 /* No entries in source route */
2523 break;
2524 }
2525 /* Last entry in source route if not already set */
2526 if (dst == INADDR_ANY)
2527 bcopy(opt + off, buf1, IP_ADDR_LEN);
2528 off -= IP_ADDR_LEN;

2530 while (off > 0) {
2531 bcopy(opt + off,
2532 buf + off + IP_ADDR_LEN,
2533 IP_ADDR_LEN);
2534 off -= IP_ADDR_LEN;
2535 }
2536 /* ipha_dst into first slot */
2537 bcopy(&dst, buf + off + IP_ADDR_LEN,
2538 IP_ADDR_LEN);
2539 buf += optlen;
2540 len += optlen;
2541 break;

2543 default:
2544 bcopy(opt, buf, optlen);
2545 buf += optlen;
2546 len += optlen;
2547 break;
2548 }
2549 }
2550 done:
2551 /* Pad the resulting options */
2552 while (len & 0x3) {
2553 *buf++ = IPOPT_EOL;
2554 len++;
2555 }
2556 return (len);
2557 }

2559 /*
2560 * Update any record route or timestamp options to include this host.
2561 * Reverse any source route option.
2562 * This routine assumes that the options are well formed i.e. that they
2563 * have already been checked.
2564 */
2565 static void
2566 icmp_options_update(ipha_t *ipha)
2567 {
2568 ipoptp_t opts;
2569 uchar_t *opt;

new/usr/src/uts/common/inet/ip/ip.c 40

2570 uint8_t optval;
2571 ipaddr_t src; /* Our local address */
2572 ipaddr_t dst;

2574 ip2dbg(("icmp_options_update\n"));
2575 src = ipha->ipha_src;
2576 dst = ipha->ipha_dst;

2578 for (optval = ipoptp_first(&opts, ipha);
2579 optval != IPOPT_EOL;
2580 optval = ipoptp_next(&opts)) {
2581 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2582 opt = opts.ipoptp_cur;
2583 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2584 optval, opts.ipoptp_len));
2585 switch (optval) {
2586 int off1, off2;
2587 case IPOPT_SSRR:
2588 case IPOPT_LSRR:
2589 /*
2590 * Reverse the source route. The first entry
2591 * should be the next to last one in the current
2592 * source route (the last entry is our address).
2593 * The last entry should be the final destination.
2594 */
2595 off1 = IPOPT_MINOFF_SR - 1;
2596 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2597 if (off2 < 0) {
2598 /* No entries in source route */
2599 ip1dbg((
2600 "icmp_options_update: bad src route\n"));
2601 break;
2602 }
2603 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2604 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2605 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2606 off2 -= IP_ADDR_LEN;

2608 while (off1 < off2) {
2609 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2610 bcopy((char *)opt + off2, (char *)opt + off1,
2611 IP_ADDR_LEN);
2612 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2613 off1 += IP_ADDR_LEN;
2614 off2 -= IP_ADDR_LEN;
2615 }
2616 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2617 break;
2618 }
2619 }
2620 }

2622 /*
2623 * Process received ICMP Redirect messages.
2624 * Assumes the caller has verified that the headers are in the pulled up mblk.
2625 * Consumes mp.
2626 */
2627 static void
2628 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2629 {
2630 ire_t *ire, *nire;
2631 ire_t *prev_ire;
2632 ipaddr_t src, dst, gateway;
2633 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2634 ipha_t *inner_ipha; /* Inner IP header */

new/usr/src/uts/common/inet/ip/ip.c 41

2636 /* Caller already pulled up everything. */
2637 inner_ipha = (ipha_t *)&icmph[1];
2638 src = ipha->ipha_src;
2639 dst = inner_ipha->ipha_dst;
2640 gateway = icmph->icmph_rd_gateway;
2641 /* Make sure the new gateway is reachable somehow. */
2642 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2643 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2644 /*
2645 * Make sure we had a route for the dest in question and that
2646 * that route was pointing to the old gateway (the source of the
2647 * redirect packet.)
2648 * We do longest match and then compare ire_gateway_addr below.
2649 */
2650 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2651 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2652 /*
2653 * Check that
2654 * the redirect was not from ourselves
2655 * the new gateway and the old gateway are directly reachable
2656 */
2657 if (prev_ire == NULL || ire == NULL ||
2658 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2659 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2660 !(ire->ire_type & IRE_IF_ALL) ||
2661 prev_ire->ire_gateway_addr != src) {
2662 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2663 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2664 freemsg(mp);
2665 if (ire != NULL)
2666 ire_refrele(ire);
2667 if (prev_ire != NULL)
2668 ire_refrele(prev_ire);
2669 return;
2670 }

2672 ire_refrele(prev_ire);
2673 ire_refrele(ire);

2675 /*
2676 * TODO: more precise handling for cases 0, 2, 3, the latter two
2677 * require TOS routing
2678 */
2679 switch (icmph->icmph_code) {
2680 case 0:
2681 case 1:
2682 /* TODO: TOS specificity for cases 2 and 3 */
2683 case 2:
2684 case 3:
2685 break;
2686 default:
2687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2688 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2689 freemsg(mp);
2690 return;
2691 }
2692 /*
2693 * Create a Route Association. This will allow us to remember that
2694 * someone we believe told us to use the particular gateway.
2695 */
2696 ire = ire_create(
2697 (uchar_t *)&dst, /* dest addr */
2698 (uchar_t *)&ip_g_all_ones, /* mask */
2699 (uchar_t *)&gateway, /* gateway addr */
2700 IRE_HOST,
2701 NULL, /* ill */

new/usr/src/uts/common/inet/ip/ip.c 42

2702 ALL_ZONES,
2703 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2704 NULL, /* tsol_gc_t */
2705 ipst);

2707 if (ire == NULL) {
2708 freemsg(mp);
2709 return;
2710 }
2711 nire = ire_add(ire);
2712 /* Check if it was a duplicate entry */
2713 if (nire != NULL && nire != ire) {
2714 ASSERT(nire->ire_identical_ref > 1);
2715 ire_delete(nire);
2716 ire_refrele(nire);
2717 nire = NULL;
2718 }
2719 ire = nire;
2720 if (ire != NULL) {
2721 ire_refrele(ire); /* Held in ire_add */

2723 /* tell routing sockets that we received a redirect */
2724 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2725 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2726 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2727 }

2729 /*
2730 * Delete any existing IRE_HOST type redirect ires for this destination.
2731 * This together with the added IRE has the effect of
2732 * modifying an existing redirect.
2733 */
2734 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2735 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2736 if (prev_ire != NULL) {
2737 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2738 ire_delete(prev_ire);
2739 ire_refrele(prev_ire);
2740 }

2742 freemsg(mp);
2743 }

2745 /*
2746 * Generate an ICMP parameter problem message.
2747 * When called from ip_output side a minimal ip_recv_attr_t needs to be
2748 * constructed by the caller.
2749 */
2750 static void
2751 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2752 {
2753 icmph_t icmph;
2754 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

2756 mp = icmp_pkt_err_ok(mp, ira);
2757 if (mp == NULL)
2758 return;

2760 bzero(&icmph, sizeof (icmph_t));
2761 icmph.icmph_type = ICMP_PARAM_PROBLEM;
2762 icmph.icmph_pp_ptr = ptr;
2763 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2764 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2765 }

2767 /*

new/usr/src/uts/common/inet/ip/ip.c 43

2768 * Build and ship an IPv4 ICMP message using the packet data in mp, and
2769 * the ICMP header pointed to by "stuff". (May be called as writer.)
2770 * Note: assumes that icmp_pkt_err_ok has been called to verify that
2771 * an icmp error packet can be sent.
2772 * Assigns an appropriate source address to the packet. If ipha_dst is
2773 * one of our addresses use it for source. Otherwise let ip_output_simple
2774 * pick the source address.
2775 */
2776 static void
2777 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2778 {
2779 ipaddr_t dst;
2780 icmph_t *icmph;
2781 ipha_t *ipha;
2782 uint_t len_needed;
2783 size_t msg_len;
2784 mblk_t *mp1;
2785 ipaddr_t src;
2786 ire_t *ire;
2787 ip_xmit_attr_t ixas;
2788 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

2790 ipha = (ipha_t *)mp->b_rptr;

2792 bzero(&ixas, sizeof (ixas));
2793 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2794 ixas.ixa_zoneid = ira->ira_zoneid;
2795 ixas.ixa_ifindex = 0;
2796 ixas.ixa_ipst = ipst;
2797 ixas.ixa_cred = kcred;
2798 ixas.ixa_cpid = NOPID;
2799 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2800 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;

2802 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2803 /*
2804 * Apply IPsec based on how IPsec was applied to
2805 * the packet that had the error.
2806 *
2807 * If it was an outbound packet that caused the ICMP
2808 * error, then the caller will have setup the IRA
2809 * appropriately.
2810 */
2811 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2812 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2813 /* Note: mp already consumed and ip_drop_packet done */
2814 return;
2815 }
2816 } else {
2817 /*
2818 * This is in clear. The icmp message we are building
2819 * here should go out in clear, independent of our policy.
2820 */
2821 ixas.ixa_flags |= IXAF_NO_IPSEC;
2822 }

2824 /* Remember our eventual destination */
2825 dst = ipha->ipha_src;

2827 /*
2828 * If the packet was for one of our unicast addresses, make
2829 * sure we respond with that as the source. Otherwise
2830 * have ip_output_simple pick the source address.
2831 */
2832 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2833 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,

new/usr/src/uts/common/inet/ip/ip.c 44

2834 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2835 if (ire != NULL) {
2836 ire_refrele(ire);
2837 src = ipha->ipha_dst;
2838 } else {
2839 src = INADDR_ANY;
2840 ixas.ixa_flags |= IXAF_SET_SOURCE;
2841 }

2843 /*
2844 * Check if we can send back more then 8 bytes in addition to
2845 * the IP header. We try to send 64 bytes of data and the internal
2846 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2847 */
2848 len_needed = IPH_HDR_LENGTH(ipha);
2849 if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2850 ipha->ipha_protocol == IPPROTO_IPV6) {
2851 if (!pullupmsg(mp, -1)) {
2852 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2853 ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2854 freemsg(mp);
2855 return;
2856 }
2857 ipha = (ipha_t *)mp->b_rptr;

2859 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2860 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2861 len_needed));
2862 } else {
2863 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);

2865 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2866 len_needed += ip_hdr_length_v6(mp, ip6h);
2867 }
2868 }
2869 len_needed += ipst->ips_ip_icmp_return;
2870 msg_len = msgdsize(mp);
2871 if (msg_len > len_needed) {
2872 (void) adjmsg(mp, len_needed - msg_len);
2873 msg_len = len_needed;
2874 }
2875 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2876 if (mp1 == NULL) {
2877 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2878 freemsg(mp);
2879 return;
2880 }
2881 mp1->b_cont = mp;
2882 mp = mp1;

2884 /*
2885 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2886 * node generates be accepted in peace by all on-host destinations.
2887 * If we do NOT assume that all on-host destinations trust
2888 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2889 * (Look for IXAF_TRUSTED_ICMP).
2890 */
2891 ixas.ixa_flags |= IXAF_TRUSTED_ICMP;

2893 ipha = (ipha_t *)mp->b_rptr;
2894 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2895 *ipha = icmp_ipha;
2896 ipha->ipha_src = src;
2897 ipha->ipha_dst = dst;
2898 ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2899 msg_len += sizeof (icmp_ipha) + len;

new/usr/src/uts/common/inet/ip/ip.c 45

2900 if (msg_len > IP_MAXPACKET) {
2901 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2902 msg_len = IP_MAXPACKET;
2903 }
2904 ipha->ipha_length = htons((uint16_t)msg_len);
2905 icmph = (icmph_t *)&ipha[1];
2906 bcopy(stuff, icmph, len);
2907 icmph->icmph_checksum = 0;
2908 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2909 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);

2911 (void) ip_output_simple(mp, &ixas);
2912 ixa_cleanup(&ixas);
2913 }

2915 /*
2916 * Determine if an ICMP error packet can be sent given the rate limit.
2917 * The limit consists of an average frequency (icmp_pkt_err_interval measured
2918 * in milliseconds) and a burst size. Burst size number of packets can
2919 * be sent arbitrarely closely spaced.
2920 * The state is tracked using two variables to implement an approximate
2921 * token bucket filter:
2922 * icmp_pkt_err_last - lbolt value when the last burst started
2923 * icmp_pkt_err_sent - number of packets sent in current burst
2924 */
2925 boolean_t
2926 icmp_err_rate_limit(ip_stack_t *ipst)
2927 {
2928 clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2929 uint_t refilled; /* Number of packets refilled in tbf since last */
2930 /* Guard against changes by loading into local variable */
2931 uint_t err_interval = ipst->ips_ip_icmp_err_interval;

2933 if (err_interval == 0)
2934 return (B_FALSE);

2936 if (ipst->ips_icmp_pkt_err_last > now) {
2937 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2938 ipst->ips_icmp_pkt_err_last = 0;
2939 ipst->ips_icmp_pkt_err_sent = 0;
2940 }
2941 /*
2942 * If we are in a burst update the token bucket filter.
2943 * Update the "last" time to be close to "now" but make sure
2944 * we don’t loose precision.
2945 */
2946 if (ipst->ips_icmp_pkt_err_sent != 0) {
2947 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2948 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2949 ipst->ips_icmp_pkt_err_sent = 0;
2950 } else {
2951 ipst->ips_icmp_pkt_err_sent -= refilled;
2952 ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2953 }
2954 }
2955 if (ipst->ips_icmp_pkt_err_sent == 0) {
2956 /* Start of new burst */
2957 ipst->ips_icmp_pkt_err_last = now;
2958 }
2959 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2960 ipst->ips_icmp_pkt_err_sent++;
2961 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2962 ipst->ips_icmp_pkt_err_sent));
2963 return (B_FALSE);
2964 }
2965 ip1dbg(("icmp_err_rate_limit: dropped\n"));

new/usr/src/uts/common/inet/ip/ip.c 46

2966 return (B_TRUE);
2967 }

2969 /*
2970 * Check if it is ok to send an IPv4 ICMP error packet in
2971 * response to the IPv4 packet in mp.
2972 * Free the message and return null if no
2973 * ICMP error packet should be sent.
2974 */
2975 static mblk_t *
2976 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2977 {
2978 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2979 icmph_t *icmph;
2980 ipha_t *ipha;
2981 uint_t len_needed;

2983 if (!mp)
2984 return (NULL);
2985 ipha = (ipha_t *)mp->b_rptr;
2986 if (ip_csum_hdr(ipha)) {
2987 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2988 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2989 freemsg(mp);
2990 return (NULL);
2991 }
2992 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2993 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2994 CLASSD(ipha->ipha_dst) ||
2995 CLASSD(ipha->ipha_src) ||
2996 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2997 /* Note: only errors to the fragment with offset 0 */
2998 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2999 freemsg(mp);
3000 return (NULL);
3001 }
3002 if (ipha->ipha_protocol == IPPROTO_ICMP) {
3003 /*
3004 * Check the ICMP type. RFC 1122 sez: don’t send ICMP
3005 * errors in response to any ICMP errors.
3006 */
3007 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3008 if (mp->b_wptr - mp->b_rptr < len_needed) {
3009 if (!pullupmsg(mp, len_needed)) {
3010 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3011 freemsg(mp);
3012 return (NULL);
3013 }
3014 ipha = (ipha_t *)mp->b_rptr;
3015 }
3016 icmph = (icmph_t *)
3017 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3018 switch (icmph->icmph_type) {
3019 case ICMP_DEST_UNREACHABLE:
3020 case ICMP_SOURCE_QUENCH:
3021 case ICMP_TIME_EXCEEDED:
3022 case ICMP_PARAM_PROBLEM:
3023 case ICMP_REDIRECT:
3024 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3025 freemsg(mp);
3026 return (NULL);
3027 default:
3028 break;
3029 }
3030 }
3031 /*

new/usr/src/uts/common/inet/ip/ip.c 47

3032 * If this is a labeled system, then check to see if we’re allowed to
3033 * send a response to this particular sender. If not, then just drop.
3034 */
3035 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3036 ip2dbg(("icmp_pkt_err_ok: can’t respond to packet\n"));
3037 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3038 freemsg(mp);
3039 return (NULL);
3040 }
3041 if (icmp_err_rate_limit(ipst)) {
3042 /*
3043 * Only send ICMP error packets every so often.
3044 * This should be done on a per port/source basis,
3045 * but for now this will suffice.
3046 */
3047 freemsg(mp);
3048 return (NULL);
3049 }
3050 return (mp);
3051 }

3053 /*
3054 * Called when a packet was sent out the same link that it arrived on.
3055 * Check if it is ok to send a redirect and then send it.
3056 */
3057 void
3058 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3059 ip_recv_attr_t *ira)
3060 {
3061 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3062 ipaddr_t src, nhop;
3063 mblk_t *mp1;
3064 ire_t *nhop_ire;

3066 /*
3067 * Check the source address to see if it originated
3068 * on the same logical subnet it is going back out on.
3069 * If so, we should be able to send it a redirect.
3070 * Avoid sending a redirect if the destination
3071 * is directly connected (i.e., we matched an IRE_ONLINK),
3072 * or if the packet was source routed out this interface.
3073 *
3074 * We avoid sending a redirect if the
3075 * destination is directly connected
3076 * because it is possible that multiple
3077 * IP subnets may have been configured on
3078 * the link, and the source may not
3079 * be on the same subnet as ip destination,
3080 * even though they are on the same
3081 * physical link.
3082 */
3083 if ((ire->ire_type & IRE_ONLINK) ||
3084 ip_source_routed(ipha, ipst))
3085 return;

3087 nhop_ire = ire_nexthop(ire);
3088 if (nhop_ire == NULL)
3089 return;

3091 nhop = nhop_ire->ire_addr;

3093 if (nhop_ire->ire_type & IRE_IF_CLONE) {
3094 ire_t *ire2;

3096 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3097 mutex_enter(&nhop_ire->ire_lock);

new/usr/src/uts/common/inet/ip/ip.c 48

3098 ire2 = nhop_ire->ire_dep_parent;
3099 if (ire2 != NULL)
3100 ire_refhold(ire2);
3101 mutex_exit(&nhop_ire->ire_lock);
3102 ire_refrele(nhop_ire);
3103 nhop_ire = ire2;
3104 }
3105 if (nhop_ire == NULL)
3106 return;

3108 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));

3110 src = ipha->ipha_src;

3112 /*
3113 * We look at the interface ire for the nexthop,
3114 * to see if ipha_src is in the same subnet
3115 * as the nexthop.
3116 */
3117 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3118 /*
3119 * The source is directly connected.
3120 */
3121 mp1 = copymsg(mp);
3122 if (mp1 != NULL) {
3123 icmp_send_redirect(mp1, nhop, ira);
3124 }
3125 }
3126 ire_refrele(nhop_ire);
3127 }

3129 /*
3130 * Generate an ICMP redirect message.
3131 */
3132 static void
3133 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3134 {
3135 icmph_t icmph;
3136 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

3138 mp = icmp_pkt_err_ok(mp, ira);
3139 if (mp == NULL)
3140 return;

3142 bzero(&icmph, sizeof (icmph_t));
3143 icmph.icmph_type = ICMP_REDIRECT;
3144 icmph.icmph_code = 1;
3145 icmph.icmph_rd_gateway = gateway;
3146 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3147 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3148 }

3150 /*
3151 * Generate an ICMP time exceeded message.
3152 */
3153 void
3154 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3155 {
3156 icmph_t icmph;
3157 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

3159 mp = icmp_pkt_err_ok(mp, ira);
3160 if (mp == NULL)
3161 return;

3163 bzero(&icmph, sizeof (icmph_t));

new/usr/src/uts/common/inet/ip/ip.c 49

3164 icmph.icmph_type = ICMP_TIME_EXCEEDED;
3165 icmph.icmph_code = code;
3166 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3167 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3168 }

3170 /*
3171 * Generate an ICMP unreachable message.
3172 * When called from ip_output side a minimal ip_recv_attr_t needs to be
3173 * constructed by the caller.
3174 */
3175 void
3176 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3177 {
3178 icmph_t icmph;
3179 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

3181 mp = icmp_pkt_err_ok(mp, ira);
3182 if (mp == NULL)
3183 return;

3185 bzero(&icmph, sizeof (icmph_t));
3186 icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3187 icmph.icmph_code = code;
3188 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3189 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3190 }

3192 /*
3193 * Latch in the IPsec state for a stream based the policy in the listener
3194 * and the actions in the ip_recv_attr_t.
3195 * Called directly from TCP and SCTP.
3196 */
3197 boolean_t
3198 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3199 {
3200 ASSERT(lconnp->conn_policy != NULL);
3201 ASSERT(connp->conn_policy == NULL);

3203 IPPH_REFHOLD(lconnp->conn_policy);
3204 connp->conn_policy = lconnp->conn_policy;

3206 if (ira->ira_ipsec_action != NULL) {
3207 if (connp->conn_latch == NULL) {
3208 connp->conn_latch = iplatch_create();
3209 if (connp->conn_latch == NULL)
3210 return (B_FALSE);
3211 }
3212 ipsec_latch_inbound(connp, ira);
3213 }
3214 return (B_TRUE);
3215 }

3217 /*
3218 * Verify whether or not the IP address is a valid local address.
3219 * Could be a unicast, including one for a down interface.
3220 * If allow_mcbc then a multicast or broadcast address is also
3221 * acceptable.
3222 *
3223 * In the case of a broadcast/multicast address, however, the
3224 * upper protocol is expected to reset the src address
3225 * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3226 * no packets are emitted with broadcast/multicast address as
3227 * source address (that violates hosts requirements RFC 1122)
3228 * The addresses valid for bind are:
3229 * (1) - INADDR_ANY (0)

new/usr/src/uts/common/inet/ip/ip.c 50

3230 * (2) - IP address of an UP interface
3231 * (3) - IP address of a DOWN interface
3232 * (4) - valid local IP broadcast addresses. In this case
3233 * the conn will only receive packets destined to
3234 * the specified broadcast address.
3235 * (5) - a multicast address. In this case
3236 * the conn will only receive packets destined to
3237 * the specified multicast address. Note: the
3238 * application still has to issue an
3239 * IP_ADD_MEMBERSHIP socket option.
3240 *
3241 * In all the above cases, the bound address must be valid in the current zone.
3242 * When the address is loopback, multicast or broadcast, there might be many
3243 * matching IREs so bind has to look up based on the zone.
3244 */
3245 ip_laddr_t
3246 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3247 ip_stack_t *ipst, boolean_t allow_mcbc)
3248 {
3249 ire_t *src_ire;

3251 ASSERT(src_addr != INADDR_ANY);

3253 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3254 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);

3256 /*
3257 * If an address other than in6addr_any is requested,
3258 * we verify that it is a valid address for bind
3259 * Note: Following code is in if-else-if form for
3260 * readability compared to a condition check.
3261 */
3262 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3263 /*
3264 * (2) Bind to address of local UP interface
3265 */
3266 ire_refrele(src_ire);
3267 return (IPVL_UNICAST_UP);
3268 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3269 /*
3270 * (4) Bind to broadcast address
3271 */
3272 ire_refrele(src_ire);
3273 if (allow_mcbc)
3274 return (IPVL_BCAST);
3275 else
3276 return (IPVL_BAD);
3277 } else if (CLASSD(src_addr)) {
3278 /* (5) bind to multicast address. */
3279 if (src_ire != NULL)
3280 ire_refrele(src_ire);

3282 if (allow_mcbc)
3283 return (IPVL_MCAST);
3284 else
3285 return (IPVL_BAD);
3286 } else {
3287 ipif_t *ipif;

3289 /*
3290 * (3) Bind to address of local DOWN interface?
3291 * (ipif_lookup_addr() looks up all interfaces
3292 * but we do not get here for UP interfaces
3293 * - case (2) above)
3294 */
3295 if (src_ire != NULL)

new/usr/src/uts/common/inet/ip/ip.c 51

3296 ire_refrele(src_ire);

3298 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3299 if (ipif == NULL)
3300 return (IPVL_BAD);

3302 /* Not a useful source? */
3303 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3304 ipif_refrele(ipif);
3305 return (IPVL_BAD);
3306 }
3307 ipif_refrele(ipif);
3308 return (IPVL_UNICAST_DOWN);
3309 }
3310 }

3312 /*
3313 * Insert in the bind fanout for IPv4 and IPv6.
3314 * The caller should already have used ip_laddr_verify_v*() before calling
3315 * this.
3316 */
3317 int
3318 ip_laddr_fanout_insert(conn_t *connp)
3319 {
3320 int error;

3322 /*
3323 * Allow setting new policies. For example, disconnects result
3324 * in us being called. As we would have set conn_policy_cached
3325 * to B_TRUE before, we should set it to B_FALSE, so that policy
3326 * can change after the disconnect.
3327 */
3328 connp->conn_policy_cached = B_FALSE;

3330 error = ipcl_bind_insert(connp);
3331 if (error != 0) {
3332 if (connp->conn_anon_port) {
3333 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3334 connp->conn_mlp_type, connp->conn_proto,
3335 ntohs(connp->conn_lport), B_FALSE);
3336 }
3337 connp->conn_mlp_type = mlptSingle;
3338 }
3339 return (error);
3340 }

3342 /*
3343 * Verify that both the source and destination addresses are valid. If
3344 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3345 * i.e. have no route to it. Protocols like TCP want to verify destination
3346 * reachability, while tunnels do not.
3347 *
3348 * Determine the route, the interface, and (optionally) the source address
3349 * to use to reach a given destination.
3350 * Note that we allow connect to broadcast and multicast addresses when
3351 * IPDF_ALLOW_MCBC is set.
3352 * first_hop and dst_addr are normally the same, but if source routing
3353 * they will differ; in that case the first_hop is what we’ll use for the
3354 * routing lookup but the dce and label checks will be done on dst_addr,
3355 *
3356 * If uinfo is set, then we fill in the best available information
3357 * we have for the destination. This is based on (in priority order) any
3358 * metrics and path MTU stored in a dce_t, route metrics, and finally the
3359 * ill_mtu/ill_mc_mtu.
3360 *
3361 * Tsol note: If we have a source route then dst_addr != firsthop. But we

new/usr/src/uts/common/inet/ip/ip.c 52

3362 * always do the label check on dst_addr.
3363 */
3364 int
3365 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3366 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3367 {
3368 ire_t *ire = NULL;
3369 int error = 0;
3370 ipaddr_t setsrc; /* RTF_SETSRC */
3371 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */
3372 ip_stack_t *ipst = ixa->ixa_ipst;
3373 dce_t *dce;
3374 uint_t pmtu;
3375 uint_t generation;
3376 nce_t *nce;
3377 ill_t *ill = NULL;
3378 boolean_t multirt = B_FALSE;

3380 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);

3382 /*
3383 * We never send to zero; the ULPs map it to the loopback address.
3384 * We can’t allow it since we use zero to mean unitialized in some
3385 * places.
3386 */
3387 ASSERT(dst_addr != INADDR_ANY);

3389 if (is_system_labeled()) {
3390 ts_label_t *tsl = NULL;

3392 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3393 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3394 if (error != 0)
3395 return (error);
3396 if (tsl != NULL) {
3397 /* Update the label */
3398 ip_xmit_attr_replace_tsl(ixa, tsl);
3399 }
3400 }

3402 setsrc = INADDR_ANY;
3403 /*
3404 * Select a route; For IPMP interfaces, we would only select
3405 * a "hidden" route (i.e., going through a specific under_ill)
3406 * if ixa_ifindex has been specified.
3407 */
3408 ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3409 &generation, &setsrc, &error, &multirt);
3410 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */
3411 if (error != 0)
3412 goto bad_addr;

3414 /*
3415 * ire can’t be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3416 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3417 * Otherwise the destination needn’t be reachable.
3418 *
3419 * If we match on a reject or black hole, then we’ve got a
3420 * local failure. May as well fail out the connect() attempt,
3421 * since it’s never going to succeed.
3422 */
3423 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3424 /*
3425 * If we’re verifying destination reachability, we always want
3426 * to complain here.
3427 *

new/usr/src/uts/common/inet/ip/ip.c 53

3428 * If we’re not verifying destination reachability but the
3429 * destination has a route, we still want to fail on the
3430 * temporary address and broadcast address tests.
3431 *
3432 * In both cases do we let the code continue so some reasonable
3433 * information is returned to the caller. That enables the
3434 * caller to use (and even cache) the IRE. conn_ip_ouput will
3435 * use the generation mismatch path to check for the unreachable
3436 * case thereby avoiding any specific check in the main path.
3437 */
3438 ASSERT(generation == IRE_GENERATION_VERIFY);
3439 if (flags & IPDF_VERIFY_DST) {
3440 /*
3441 * Set errno but continue to set up ixa_ire to be
3442 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3443 * That allows callers to use ip_output to get an
3444 * ICMP error back.
3445 */
3446 if (!(ire->ire_type & IRE_HOST))
3447 error = ENETUNREACH;
3448 else
3449 error = EHOSTUNREACH;
3450 }
3451 }

3453 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3454 !(flags & IPDF_ALLOW_MCBC)) {
3455 ire_refrele(ire);
3456 ire = ire_reject(ipst, B_FALSE);
3457 generation = IRE_GENERATION_VERIFY;
3458 error = ENETUNREACH;
3459 }

3461 /* Cache things */
3462 if (ixa->ixa_ire != NULL)
3463 ire_refrele_notr(ixa->ixa_ire);
3464 #ifdef DEBUG
3465 ire_refhold_notr(ire);
3466 ire_refrele(ire);
3467 #endif
3468 ixa->ixa_ire = ire;
3469 ixa->ixa_ire_generation = generation;

3471 /*
3472 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3473 * since some callers will send a packet to conn_ip_output() even if
3474 * there’s an error.
3475 */
3476 if (flags & IPDF_UNIQUE_DCE) {
3477 /* Fallback to the default dce if allocation fails */
3478 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3479 if (dce != NULL)
3480 generation = dce->dce_generation;
3481 else
3482 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3483 } else {
3484 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3485 }
3486 ASSERT(dce != NULL);
3487 if (ixa->ixa_dce != NULL)
3488 dce_refrele_notr(ixa->ixa_dce);
3489 #ifdef DEBUG
3490 dce_refhold_notr(dce);
3491 dce_refrele(dce);
3492 #endif
3493 ixa->ixa_dce = dce;

new/usr/src/uts/common/inet/ip/ip.c 54

3494 ixa->ixa_dce_generation = generation;

3496 /*
3497 * For multicast with multirt we have a flag passed back from
3498 * ire_lookup_multi_ill_v4 since we don’t have an IRE for each
3499 * possible multicast address.
3500 * We also need a flag for multicast since we can’t check
3501 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3502 */
3503 if (multirt) {
3504 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3505 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3506 } else {
3507 ixa->ixa_postfragfn = ire->ire_postfragfn;
3508 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3509 }
3510 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3511 /* Get an nce to cache. */
3512 nce = ire_to_nce(ire, firsthop, NULL);
3513 if (nce == NULL) {
3514 /* Allocation failure? */
3515 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3516 } else {
3517 if (ixa->ixa_nce != NULL)
3518 nce_refrele(ixa->ixa_nce);
3519 ixa->ixa_nce = nce;
3520 }
3521 }

3523 /*
3524 * If the source address is a loopback address, the
3525 * destination had best be local or multicast.
3526 * If we are sending to an IRE_LOCAL using a loopback source then
3527 * it had better be the same zoneid.
3528 */
3529 if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3530 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3531 ire = NULL; /* Stored in ixa_ire */
3532 error = EADDRNOTAVAIL;
3533 goto bad_addr;
3534 }
3535 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3536 ire = NULL; /* Stored in ixa_ire */
3537 error = EADDRNOTAVAIL;
3538 goto bad_addr;
3539 }
3540 }
3541 if (ire->ire_type & IRE_BROADCAST) {
3542 /*
3543 * If the ULP didn’t have a specified source, then we
3544 * make sure we reselect the source when sending
3545 * broadcasts out different interfaces.
3546 */
3547 if (flags & IPDF_SELECT_SRC)
3548 ixa->ixa_flags |= IXAF_SET_SOURCE;
3549 else
3550 ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3551 }

3553 /*
3554 * Does the caller want us to pick a source address?
3555 */
3556 if (flags & IPDF_SELECT_SRC) {
3557 ipaddr_t src_addr;

3559 /*

new/usr/src/uts/common/inet/ip/ip.c 55

3560 * We use use ire_nexthop_ill to avoid the under ipmp
3561 * interface for source address selection. Note that for ipmp
3562 * probe packets, ixa_ifindex would have been specified, and
3563 * the ip_select_route() invocation would have picked an ire
3564 * will ire_ill pointing at an under interface.
3565 */
3566 ill = ire_nexthop_ill(ire);

3568 /* If unreachable we have no ill but need some source */
3569 if (ill == NULL) {
3570 src_addr = htonl(INADDR_LOOPBACK);
3571 /* Make sure we look for a better source address */
3572 generation = SRC_GENERATION_VERIFY;
3573 } else {
3574 error = ip_select_source_v4(ill, setsrc, dst_addr,
3575 ixa->ixa_multicast_ifaddr, zoneid,
3576 ipst, &src_addr, &generation, NULL);
3577 if (error != 0) {
3578 ire = NULL; /* Stored in ixa_ire */
3579 goto bad_addr;
3580 }
3581 }

3583 /*
3584 * We allow the source address to to down.
3585 * However, we check that we don’t use the loopback address
3586 * as a source when sending out on the wire.
3587 */
3588 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3589 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3590 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3591 ire = NULL; /* Stored in ixa_ire */
3592 error = EADDRNOTAVAIL;
3593 goto bad_addr;
3594 }

3596 *src_addrp = src_addr;
3597 ixa->ixa_src_generation = generation;
3598 }

3600 /*
3601 * Make sure we don’t leave an unreachable ixa_nce in place
3602 * since ip_select_route is used when we unplumb i.e., remove
3603 * references on ixa_ire, ixa_nce, and ixa_dce.
3604 */
3605 nce = ixa->ixa_nce;
3606 if (nce != NULL && nce->nce_is_condemned) {
3607 nce_refrele(nce);
3608 ixa->ixa_nce = NULL;
3609 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3610 }

3612 /*
3613 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3614 * However, we can’t do it for IPv4 multicast or broadcast.
3615 */
3616 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3617 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;

3619 /*
3620 * Set initial value for fragmentation limit. Either conn_ip_output
3621 * or ULP might updates it when there are routing changes.
3622 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3623 */
3624 pmtu = ip_get_pmtu(ixa);
3625 ixa->ixa_fragsize = pmtu;

new/usr/src/uts/common/inet/ip/ip.c 56

3626 /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3627 if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3628 ixa->ixa_pmtu = pmtu;

3630 /*
3631 * Extract information useful for some transports.
3632 * First we look for DCE metrics. Then we take what we have in
3633 * the metrics in the route, where the offlink is used if we have
3634 * one.
3635 */
3636 if (uinfo != NULL) {
3637 bzero(uinfo, sizeof (*uinfo));

3639 if (dce->dce_flags & DCEF_UINFO)
3640 *uinfo = dce->dce_uinfo;

3642 rts_merge_metrics(uinfo, &ire->ire_metrics);

3644 /* Allow ire_metrics to decrease the path MTU from above */
3645 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3646 uinfo->iulp_mtu = pmtu;

3648 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3649 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3650 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3651 }

3653 if (ill != NULL)
3654 ill_refrele(ill);

3656 return (error);

3658 bad_addr:
3659 if (ire != NULL)
3660 ire_refrele(ire);

3662 if (ill != NULL)
3663 ill_refrele(ill);

3665 /*
3666 * Make sure we don’t leave an unreachable ixa_nce in place
3667 * since ip_select_route is used when we unplumb i.e., remove
3668 * references on ixa_ire, ixa_nce, and ixa_dce.
3669 */
3670 nce = ixa->ixa_nce;
3671 if (nce != NULL && nce->nce_is_condemned) {
3672 nce_refrele(nce);
3673 ixa->ixa_nce = NULL;
3674 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3675 }

3677 return (error);
3678 }

3681 /*
3682 * Get the base MTU for the case when path MTU discovery is not used.
3683 * Takes the MTU of the IRE into account.
3684 */
3685 uint_t
3686 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3687 {
3688 uint_t mtu;
3689 uint_t iremtu = ire->ire_metrics.iulp_mtu;

3691 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))

new/usr/src/uts/common/inet/ip/ip.c 57

3692 mtu = ill->ill_mc_mtu;
3693 else
3694 mtu = ill->ill_mtu;

3696 if (iremtu != 0 && iremtu < mtu)
3697 mtu = iremtu;

3699 return (mtu);
3700 }

3702 /*
3703 * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3704 * Assumes that ixa_ire, dce, and nce have already been set up.
3705 *
3706 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3707 * We avoid path MTU discovery if it is disabled with ndd.
3708 * Furtermore, if the path MTU is too small, then we don’t set DF for IPv4.
3709 *
3710 * NOTE: We also used to turn it off for source routed packets. That
3711 * is no longer required since the dce is per final destination.
3712 */
3713 uint_t
3714 ip_get_pmtu(ip_xmit_attr_t *ixa)
3715 {
3716 ip_stack_t *ipst = ixa->ixa_ipst;
3717 dce_t *dce;
3718 nce_t *nce;
3719 ire_t *ire;
3720 uint_t pmtu;

3722 ire = ixa->ixa_ire;
3723 dce = ixa->ixa_dce;
3724 nce = ixa->ixa_nce;

3726 /*
3727 * If path MTU discovery has been turned off by ndd, then we ignore
3728 * any dce_pmtu and for IPv4 we will not set DF.
3729 */
3730 if (!ipst->ips_ip_path_mtu_discovery)
3731 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;

3733 pmtu = IP_MAXPACKET;
3734 /*
3735 * Decide whether whether IPv4 sets DF
3736 * For IPv6 "no DF" means to use the 1280 mtu
3737 */
3738 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3739 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3740 } else {
3741 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3742 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3743 pmtu = IPV6_MIN_MTU;
3744 }

3746 /* Check if the PMTU is to old before we use it */
3747 if ((dce->dce_flags & DCEF_PMTU) &&
3748 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3749 ipst->ips_ip_pathmtu_interval) {
3750 /*
3751 * Older than 20 minutes. Drop the path MTU information.
3752 */
3753 mutex_enter(&dce->dce_lock);
3754 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3755 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3756 mutex_exit(&dce->dce_lock);
3757 dce_increment_generation(dce);

new/usr/src/uts/common/inet/ip/ip.c 58

3758 }

3760 /* The metrics on the route can lower the path MTU */
3761 if (ire->ire_metrics.iulp_mtu != 0 &&
3762 ire->ire_metrics.iulp_mtu < pmtu)
3763 pmtu = ire->ire_metrics.iulp_mtu;

3765 /*
3766 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3767 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3768 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3769 */
3770 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3771 if (dce->dce_flags & DCEF_PMTU) {
3772 if (dce->dce_pmtu < pmtu)
3773 pmtu = dce->dce_pmtu;

3775 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3776 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3777 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3778 } else {
3779 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3780 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3781 }
3782 } else {
3783 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3784 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3785 }
3786 }

3788 /*
3789 * If we have an IRE_LOCAL we use the loopback mtu instead of
3790 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3791 * mtu as IRE_LOOPBACK.
3792 */
3793 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3794 uint_t loopback_mtu;

3796 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3797 ip_loopback_mtu_v6plus : ip_loopback_mtuplus;

3799 if (loopback_mtu < pmtu)
3800 pmtu = loopback_mtu;
3801 } else if (nce != NULL) {
3802 /*
3803 * Make sure we don’t exceed the interface MTU.
3804 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3805 * an ill. We’d use the above IP_MAXPACKET in that case just
3806 * to tell the transport something larger than zero.
3807 */
3808 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3809 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3810 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3811 if (nce->nce_common->ncec_ill != nce->nce_ill &&
3812 nce->nce_ill->ill_mc_mtu < pmtu) {
3813 /*
3814 * for interfaces in an IPMP group, the mtu of
3815 * the nce_ill (under_ill) could be different
3816 * from the mtu of the ncec_ill, so we take the
3817 * min of the two.
3818 */
3819 pmtu = nce->nce_ill->ill_mc_mtu;
3820 }
3821 } else {
3822 if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3823 pmtu = nce->nce_common->ncec_ill->ill_mtu;

new/usr/src/uts/common/inet/ip/ip.c 59

3824 if (nce->nce_common->ncec_ill != nce->nce_ill &&
3825 nce->nce_ill->ill_mtu < pmtu) {
3826 /*
3827 * for interfaces in an IPMP group, the mtu of
3828 * the nce_ill (under_ill) could be different
3829 * from the mtu of the ncec_ill, so we take the
3830 * min of the two.
3831 */
3832 pmtu = nce->nce_ill->ill_mtu;
3833 }
3834 }
3835 }

3837 /*
3838 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3839 * Only applies to IPv6.
3840 */
3841 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3842 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3843 switch (ixa->ixa_use_min_mtu) {
3844 case IPV6_USE_MIN_MTU_MULTICAST:
3845 if (ire->ire_type & IRE_MULTICAST)
3846 pmtu = IPV6_MIN_MTU;
3847 break;
3848 case IPV6_USE_MIN_MTU_ALWAYS:
3849 pmtu = IPV6_MIN_MTU;
3850 break;
3851 case IPV6_USE_MIN_MTU_NEVER:
3852 break;
3853 }
3854 } else {
3855 /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3856 if (ire->ire_type & IRE_MULTICAST)
3857 pmtu = IPV6_MIN_MTU;
3858 }
3859 }

3861 /*
3862 * After receiving an ICMPv6 "packet too big" message with a
3863 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3864 * will insert a 8-byte fragment header in every packet. We compensate
3865 * for those cases by returning a smaller path MTU to the ULP.
3866 *
3867 * In the case of CGTP then ip_output will add a fragment header.
3868 * Make sure there is room for it by telling a smaller number
3869 * to the transport.
3870 *
3871 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3872 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3873 * which is the size of the packets it can send.
3874 */
3875 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3876 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
3877 (ire->ire_flags & RTF_MULTIRT) ||
3878 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3879 pmtu -= sizeof (ip6_frag_t);
3880 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3881 }
3882 }

3884 return (pmtu);
3885 }

3887 /*
3888 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3889 * the final piece where we don’t. Return a pointer to the first mblk in the

new/usr/src/uts/common/inet/ip/ip.c 60

3890 * result, and update the pointer to the next mblk to chew on. If anything
3891 * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3892 * NULL pointer.
3893 */
3894 mblk_t *
3895 ip_carve_mp(mblk_t **mpp, ssize_t len)
3896 {
3897 mblk_t *mp0;
3898 mblk_t *mp1;
3899 mblk_t *mp2;

3901 if (!len || !mpp || !(mp0 = *mpp))
3902 return (NULL);
3903 /* If we aren’t going to consume the first mblk, we need a dup. */
3904 if (mp0->b_wptr - mp0->b_rptr > len) {
3905 mp1 = dupb(mp0);
3906 if (mp1) {
3907 /* Partition the data between the two mblks. */
3908 mp1->b_wptr = mp1->b_rptr + len;
3909 mp0->b_rptr = mp1->b_wptr;
3910 /*
3911 * after adjustments if mblk not consumed is now
3912 * unaligned, try to align it. If this fails free
3913 * all messages and let upper layer recover.
3914 */
3915 if (!OK_32PTR(mp0->b_rptr)) {
3916 if (!pullupmsg(mp0, -1)) {
3917 freemsg(mp0);
3918 freemsg(mp1);
3919 *mpp = NULL;
3920 return (NULL);
3921 }
3922 }
3923 }
3924 return (mp1);
3925 }
3926 /* Eat through as many mblks as we need to get len bytes. */
3927 len -= mp0->b_wptr - mp0->b_rptr;
3928 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3929 if (mp2->b_wptr - mp2->b_rptr > len) {
3930 /*
3931 * We won’t consume the entire last mblk. Like
3932 * above, dup and partition it.
3933 */
3934 mp1->b_cont = dupb(mp2);
3935 mp1 = mp1->b_cont;
3936 if (!mp1) {
3937 /*
3938 * Trouble. Rather than go to a lot of
3939 * trouble to clean up, we free the messages.
3940 * This won’t be any worse than losing it on
3941 * the wire.
3942 */
3943 freemsg(mp0);
3944 freemsg(mp2);
3945 *mpp = NULL;
3946 return (NULL);
3947 }
3948 mp1->b_wptr = mp1->b_rptr + len;
3949 mp2->b_rptr = mp1->b_wptr;
3950 /*
3951 * after adjustments if mblk not consumed is now
3952 * unaligned, try to align it. If this fails free
3953 * all messages and let upper layer recover.
3954 */
3955 if (!OK_32PTR(mp2->b_rptr)) {

new/usr/src/uts/common/inet/ip/ip.c 61

3956 if (!pullupmsg(mp2, -1)) {
3957 freemsg(mp0);
3958 freemsg(mp2);
3959 *mpp = NULL;
3960 return (NULL);
3961 }
3962 }
3963 *mpp = mp2;
3964 return (mp0);
3965 }
3966 /* Decrement len by the amount we just got. */
3967 len -= mp2->b_wptr - mp2->b_rptr;
3968 }
3969 /*
3970 * len should be reduced to zero now. If not our caller has
3971 * screwed up.
3972 */
3973 if (len) {
3974 /* Shouldn’t happen! */
3975 freemsg(mp0);
3976 *mpp = NULL;
3977 return (NULL);
3978 }
3979 /*
3980 * We consumed up to exactly the end of an mblk. Detach the part
3981 * we are returning from the rest of the chain.
3982 */
3983 mp1->b_cont = NULL;
3984 *mpp = mp2;
3985 return (mp0);
3986 }

3988 /* The ill stream is being unplumbed. Called from ip_close */
3989 int
3990 ip_modclose(ill_t *ill)
3991 {
3992 boolean_t success;
3993 ipsq_t *ipsq;
3994 ipif_t *ipif;
3995 queue_t *q = ill->ill_rq;
3996 ip_stack_t *ipst = ill->ill_ipst;
3997 int i;
3998 arl_ill_common_t *ai = ill->ill_common;

4000 /*
4001 * The punlink prior to this may have initiated a capability
4002 * negotiation. But ipsq_enter will block until that finishes or
4003 * times out.
4004 */
4005 success = ipsq_enter(ill, B_FALSE, NEW_OP);

4007 /*
4008 * Open/close/push/pop is guaranteed to be single threaded
4009 * per stream by STREAMS. FS guarantees that all references
4010 * from top are gone before close is called. So there can’t
4011 * be another close thread that has set CONDEMNED on this ill.
4012 * and cause ipsq_enter to return failure.
4013 */
4014 ASSERT(success);
4015 ipsq = ill->ill_phyint->phyint_ipsq;

4017 /*
4018 * Mark it condemned. No new reference will be made to this ill.
4019 * Lookup functions will return an error. Threads that try to
4020 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4021 * that the refcnt will drop down to zero.

new/usr/src/uts/common/inet/ip/ip.c 62

4022 */
4023 mutex_enter(&ill->ill_lock);
4024 ill->ill_state_flags |= ILL_CONDEMNED;
4025 for (ipif = ill->ill_ipif; ipif != NULL;
4026 ipif = ipif->ipif_next) {
4027 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4028 }
4029 /*
4030 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4031 * returns error if ILL_CONDEMNED is set
4032 */
4033 cv_broadcast(&ill->ill_cv);
4034 mutex_exit(&ill->ill_lock);

4036 /*
4037 * Send all the deferred DLPI messages downstream which came in
4038 * during the small window right before ipsq_enter(). We do this
4039 * without waiting for the ACKs because all the ACKs for M_PROTO
4040 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4041 */
4042 ill_dlpi_send_deferred(ill);

4044 /*
4045 * Shut down fragmentation reassembly.
4046 * ill_frag_timer won’t start a timer again.
4047 * Now cancel any existing timer
4048 */
4049 (void) untimeout(ill->ill_frag_timer_id);
4050 (void) ill_frag_timeout(ill, 0);

4052 /*
4053 * Call ill_delete to bring down the ipifs, ilms and ill on
4054 * this ill. Then wait for the refcnts to drop to zero.
4055 * ill_is_freeable checks whether the ill is really quiescent.
4056 * Then make sure that threads that are waiting to enter the
4057 * ipsq have seen the error returned by ipsq_enter and have
4058 * gone away. Then we call ill_delete_tail which does the
4059 * DL_UNBIND_REQ with the driver and then qprocsoff.
4060 */
4061 ill_delete(ill);
4062 mutex_enter(&ill->ill_lock);
4063 while (!ill_is_freeable(ill))
4064 cv_wait(&ill->ill_cv, &ill->ill_lock);

4066 while (ill->ill_waiters)
4067 cv_wait(&ill->ill_cv, &ill->ill_lock);

4069 mutex_exit(&ill->ill_lock);

4071 /*
4072 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4073 * it held until the end of the function since the cleanup
4074 * below needs to be able to use the ip_stack_t.
4075 */
4076 netstack_hold(ipst->ips_netstack);

4078 /* qprocsoff is done via ill_delete_tail */
4079 ill_delete_tail(ill);
4080 /*
4081 * synchronously wait for arp stream to unbind. After this, we
4082 * cannot get any data packets up from the driver.
4083 */
4084 arp_unbind_complete(ill);
4085 ASSERT(ill->ill_ipst == NULL);

4087 /*

new/usr/src/uts/common/inet/ip/ip.c 63

4088 * Walk through all conns and qenable those that have queued data.
4089 * Close synchronization needs this to
4090 * be done to ensure that all upper layers blocked
4091 * due to flow control to the closing device
4092 * get unblocked.
4093 */
4094 ip1dbg(("ip_wsrv: walking\n"));
4095 for (i = 0; i < TX_FANOUT_SIZE; i++) {
4096 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4097 }

4099 /*
4100 * ai can be null if this is an IPv6 ill, or if the IPv4
4101 * stream is being torn down before ARP was plumbed (e.g.,
4102 * /sbin/ifconfig plumbing a stream twice, and encountering
4103 * an error
4104 */
4105 if (ai != NULL) {
4106 ASSERT(!ill->ill_isv6);
4107 mutex_enter(&ai->ai_lock);
4108 ai->ai_ill = NULL;
4109 if (ai->ai_arl == NULL) {
4110 mutex_destroy(&ai->ai_lock);
4111 kmem_free(ai, sizeof (*ai));
4112 } else {
4113 cv_signal(&ai->ai_ill_unplumb_done);
4114 mutex_exit(&ai->ai_lock);
4115 }
4116 }

4118 mutex_enter(&ipst->ips_ip_mi_lock);
4119 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4120 mutex_exit(&ipst->ips_ip_mi_lock);

4122 /*
4123 * credp could be null if the open didn’t succeed and ip_modopen
4124 * itself calls ip_close.
4125 */
4126 if (ill->ill_credp != NULL)
4127 crfree(ill->ill_credp);

4129 mutex_destroy(&ill->ill_saved_ire_lock);
4130 mutex_destroy(&ill->ill_lock);
4131 rw_destroy(&ill->ill_mcast_lock);
4132 mutex_destroy(&ill->ill_mcast_serializer);
4133 list_destroy(&ill->ill_nce);

4135 /*
4136 * Now we are done with the module close pieces that
4137 * need the netstack_t.
4138 */
4139 netstack_rele(ipst->ips_netstack);

4141 mi_close_free((IDP)ill);
4142 q->q_ptr = WR(q)->q_ptr = NULL;

4144 ipsq_exit(ipsq);

4146 return (0);
4147 }

4149 /*
4150 * This is called as part of close() for IP, UDP, ICMP, and RTS
4151 * in order to quiesce the conn.
4152 */
4153 void

new/usr/src/uts/common/inet/ip/ip.c 64

4154 ip_quiesce_conn(conn_t *connp)
4155 {
4156 boolean_t drain_cleanup_reqd = B_FALSE;
4157 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
4158 boolean_t ilg_cleanup_reqd = B_FALSE;
4159 ip_stack_t *ipst;

4161 ASSERT(!IPCL_IS_TCP(connp));
4162 ipst = connp->conn_netstack->netstack_ip;

4164 /*
4165 * Mark the conn as closing, and this conn must not be
4166 * inserted in future into any list. Eg. conn_drain_insert(),
4167 * won’t insert this conn into the conn_drain_list.
4168 *
4169 * conn_idl, and conn_ilg cannot get set henceforth.
4170 */
4171 mutex_enter(&connp->conn_lock);
4172 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4173 connp->conn_state_flags |= CONN_CLOSING;
4174 if (connp->conn_idl != NULL)
4175 drain_cleanup_reqd = B_TRUE;
4176 if (connp->conn_oper_pending_ill != NULL)
4177 conn_ioctl_cleanup_reqd = B_TRUE;
4178 if (connp->conn_dhcpinit_ill != NULL) {
4179 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4180 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4181 ill_set_inputfn(connp->conn_dhcpinit_ill);
4182 connp->conn_dhcpinit_ill = NULL;
4183 }
4184 if (connp->conn_ilg != NULL)
4185 ilg_cleanup_reqd = B_TRUE;
4186 mutex_exit(&connp->conn_lock);

4188 if (conn_ioctl_cleanup_reqd)
4189 conn_ioctl_cleanup(connp);

4191 if (is_system_labeled() && connp->conn_anon_port) {
4192 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4193 connp->conn_mlp_type, connp->conn_proto,
4194 ntohs(connp->conn_lport), B_FALSE);
4195 connp->conn_anon_port = 0;
4196 }
4197 connp->conn_mlp_type = mlptSingle;

4199 /*
4200 * Remove this conn from any fanout list it is on.
4201 * and then wait for any threads currently operating
4202 * on this endpoint to finish
4203 */
4204 ipcl_hash_remove(connp);

4206 /*
4207 * Remove this conn from the drain list, and do any other cleanup that
4208 * may be required. (TCP conns are never flow controlled, and
4209 * conn_idl will be NULL.)
4210 */
4211 if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4212 idl_t *idl = connp->conn_idl;

4214 mutex_enter(&idl->idl_lock);
4215 conn_drain(connp, B_TRUE);
4216 mutex_exit(&idl->idl_lock);
4217 }

4219 if (connp == ipst->ips_ip_g_mrouter)

new/usr/src/uts/common/inet/ip/ip.c 65

4220 (void) ip_mrouter_done(ipst);

4222 if (ilg_cleanup_reqd)
4223 ilg_delete_all(connp);

4225 /*
4226 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4227 * callers from write side can’t be there now because close
4228 * is in progress. The only other caller is ipcl_walk
4229 * which checks for the condemned flag.
4230 */
4231 mutex_enter(&connp->conn_lock);
4232 connp->conn_state_flags |= CONN_CONDEMNED;
4233 while (connp->conn_ref != 1)
4234 cv_wait(&connp->conn_cv, &connp->conn_lock);
4235 connp->conn_state_flags |= CONN_QUIESCED;
4236 mutex_exit(&connp->conn_lock);
4237 }

4239 /* ARGSUSED */
4240 int
4241 ip_close(queue_t *q, int flags)
4242 {
4243 conn_t *connp;

4245 /*
4246 * Call the appropriate delete routine depending on whether this is
4247 * a module or device.
4248 */
4249 if (WR(q)->q_next != NULL) {
4250 /* This is a module close */
4251 return (ip_modclose((ill_t *)q->q_ptr));
4252 }

4254 connp = q->q_ptr;
4255 ip_quiesce_conn(connp);

4257 qprocsoff(q);

4259 /*
4260 * Now we are truly single threaded on this stream, and can
4261 * delete the things hanging off the connp, and finally the connp.
4262 * We removed this connp from the fanout list, it cannot be
4263 * accessed thru the fanouts, and we already waited for the
4264 * conn_ref to drop to 0. We are already in close, so
4265 * there cannot be any other thread from the top. qprocsoff
4266 * has completed, and service has completed or won’t run in
4267 * future.
4268 */
4269 ASSERT(connp->conn_ref == 1);

4271 inet_minor_free(connp->conn_minor_arena, connp->conn_dev);

4273 connp->conn_ref--;
4274 ipcl_conn_destroy(connp);

4276 q->q_ptr = WR(q)->q_ptr = NULL;
4277 return (0);
4278 }

4280 /*
4281 * Wapper around putnext() so that ip_rts_request can merely use
4282 * conn_recv.
4283 */
4284 /*ARGSUSED2*/
4285 static void

new/usr/src/uts/common/inet/ip/ip.c 66

4286 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4287 {
4288 conn_t *connp = (conn_t *)arg1;

4290 putnext(connp->conn_rq, mp);
4291 }

4293 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4294 /* ARGSUSED */
4295 static void
4296 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4297 {
4298 freemsg(mp);
4299 }

4301 /*
4302 * Called when the module is about to be unloaded
4303 */
4304 void
4305 ip_ddi_destroy(void)
4306 {
4307 /* This needs to be called before destroying any transports. */
4308 mutex_enter(&cpu_lock);
4309 unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4310 mutex_exit(&cpu_lock);

4312 tnet_fini();

4314 icmp_ddi_g_destroy();
4315 rts_ddi_g_destroy();
4316 udp_ddi_g_destroy();
4317 dccp_ddi_g_destroy();
4318 #endif /* ! codereview */
4319 sctp_ddi_g_destroy();
4320 tcp_ddi_g_destroy();
4321 ilb_ddi_g_destroy();
4322 dce_g_destroy();
4323 ipsec_policy_g_destroy();
4324 ipcl_g_destroy();
4325 ip_net_g_destroy();
4326 ip_ire_g_fini();
4327 inet_minor_destroy(ip_minor_arena_sa);
4328 #if defined(_LP64)
4329 inet_minor_destroy(ip_minor_arena_la);
4330 #endif

4332 #ifdef DEBUG
4333 list_destroy(&ip_thread_list);
4334 rw_destroy(&ip_thread_rwlock);
4335 tsd_destroy(&ip_thread_data);
4336 #endif

4338 netstack_unregister(NS_IP);
4339 }

4341 /*
4342 * First step in cleanup.
4343 */
4344 /* ARGSUSED */
4345 static void
4346 ip_stack_shutdown(netstackid_t stackid, void *arg)
4347 {
4348 ip_stack_t *ipst = (ip_stack_t *)arg;

4350 #ifdef NS_DEBUG
4351 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);

new/usr/src/uts/common/inet/ip/ip.c 67

4352 #endif

4354 /*
4355 * Perform cleanup for special interfaces (loopback and IPMP).
4356 */
4357 ip_interface_cleanup(ipst);

4359 /*
4360 * The *_hook_shutdown()s start the process of notifying any
4361 * consumers that things are going away.... nothing is destroyed.
4362 */
4363 ipv4_hook_shutdown(ipst);
4364 ipv6_hook_shutdown(ipst);
4365 arp_hook_shutdown(ipst);

4367 mutex_enter(&ipst->ips_capab_taskq_lock);
4368 ipst->ips_capab_taskq_quit = B_TRUE;
4369 cv_signal(&ipst->ips_capab_taskq_cv);
4370 mutex_exit(&ipst->ips_capab_taskq_lock);
4371 }

4373 /*
4374 * Free the IP stack instance.
4375 */
4376 static void
4377 ip_stack_fini(netstackid_t stackid, void *arg)
4378 {
4379 ip_stack_t *ipst = (ip_stack_t *)arg;
4380 int ret;

4382 #ifdef NS_DEBUG
4383 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4384 #endif
4385 /*
4386 * At this point, all of the notifications that the events and
4387 * protocols are going away have been run, meaning that we can
4388 * now set about starting to clean things up.
4389 */
4390 ipobs_fini(ipst);
4391 ipv4_hook_destroy(ipst);
4392 ipv6_hook_destroy(ipst);
4393 arp_hook_destroy(ipst);
4394 ip_net_destroy(ipst);

4396 ipmp_destroy(ipst);

4398 ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4399 ipst->ips_ip_mibkp = NULL;
4400 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4401 ipst->ips_icmp_mibkp = NULL;
4402 ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4403 ipst->ips_ip_kstat = NULL;
4404 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4405 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4406 ipst->ips_ip6_kstat = NULL;
4407 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));

4409 kmem_free(ipst->ips_propinfo_tbl,
4410 ip_propinfo_count * sizeof (mod_prop_info_t));
4411 ipst->ips_propinfo_tbl = NULL;

4413 dce_stack_destroy(ipst);
4414 ip_mrouter_stack_destroy(ipst);

4416 ret = untimeout(ipst->ips_igmp_timeout_id);
4417 if (ret == -1) {

new/usr/src/uts/common/inet/ip/ip.c 68

4418 ASSERT(ipst->ips_igmp_timeout_id == 0);
4419 } else {
4420 ASSERT(ipst->ips_igmp_timeout_id != 0);
4421 ipst->ips_igmp_timeout_id = 0;
4422 }
4423 ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4424 if (ret == -1) {
4425 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4426 } else {
4427 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4428 ipst->ips_igmp_slowtimeout_id = 0;
4429 }
4430 ret = untimeout(ipst->ips_mld_timeout_id);
4431 if (ret == -1) {
4432 ASSERT(ipst->ips_mld_timeout_id == 0);
4433 } else {
4434 ASSERT(ipst->ips_mld_timeout_id != 0);
4435 ipst->ips_mld_timeout_id = 0;
4436 }
4437 ret = untimeout(ipst->ips_mld_slowtimeout_id);
4438 if (ret == -1) {
4439 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4440 } else {
4441 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4442 ipst->ips_mld_slowtimeout_id = 0;
4443 }

4445 ip_ire_fini(ipst);
4446 ip6_asp_free(ipst);
4447 conn_drain_fini(ipst);
4448 ipcl_destroy(ipst);

4450 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4451 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4452 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4453 ipst->ips_ndp4 = NULL;
4454 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4455 ipst->ips_ndp6 = NULL;

4457 if (ipst->ips_loopback_ksp != NULL) {
4458 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4459 ipst->ips_loopback_ksp = NULL;
4460 }

4462 mutex_destroy(&ipst->ips_capab_taskq_lock);
4463 cv_destroy(&ipst->ips_capab_taskq_cv);

4465 rw_destroy(&ipst->ips_srcid_lock);

4467 mutex_destroy(&ipst->ips_ip_mi_lock);
4468 rw_destroy(&ipst->ips_ill_g_usesrc_lock);

4470 mutex_destroy(&ipst->ips_igmp_timer_lock);
4471 mutex_destroy(&ipst->ips_mld_timer_lock);
4472 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4473 mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4474 mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4475 rw_destroy(&ipst->ips_ill_g_lock);

4477 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4478 ipst->ips_phyint_g_list = NULL;
4479 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4480 ipst->ips_ill_g_heads = NULL;

4482 ldi_ident_release(ipst->ips_ldi_ident);
4483 kmem_free(ipst, sizeof (*ipst));

new/usr/src/uts/common/inet/ip/ip.c 69

4484 }

4486 /*
4487 * This function is called from the TSD destructor, and is used to debug
4488 * reference count issues in IP. See block comment in <inet/ip_if.h> for
4489 * details.
4490 */
4491 static void
4492 ip_thread_exit(void *phash)
4493 {
4494 th_hash_t *thh = phash;

4496 rw_enter(&ip_thread_rwlock, RW_WRITER);
4497 list_remove(&ip_thread_list, thh);
4498 rw_exit(&ip_thread_rwlock);
4499 mod_hash_destroy_hash(thh->thh_hash);
4500 kmem_free(thh, sizeof (*thh));
4501 }

4503 /*
4504 * Called when the IP kernel module is loaded into the kernel
4505 */
4506 void
4507 ip_ddi_init(void)
4508 {
4509 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);

4511 /*
4512 * For IP and TCP the minor numbers should start from 2 since we have 4
4513 * initial devices: ip, ip6, tcp, tcp6.
4514 */
4515 /*
4516 * If this is a 64-bit kernel, then create two separate arenas -
4517 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4518 * other for socket apps in the range 2^^18 through 2^^32-1.
4519 */
4520 ip_minor_arena_la = NULL;
4521 ip_minor_arena_sa = NULL;
4522 #if defined(_LP64)
4523 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4524 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4525 cmn_err(CE_PANIC,
4526 "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4527 }
4528 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4529 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4530 cmn_err(CE_PANIC,
4531 "ip_ddi_init: ip_minor_arena_la creation failed\n");
4532 }
4533 #else
4534 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4535 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4536 cmn_err(CE_PANIC,
4537 "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4538 }
4539 #endif
4540 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);

4542 ipcl_g_init();
4543 ip_ire_g_init();
4544 ip_net_g_init();

4546 #ifdef DEBUG
4547 tsd_create(&ip_thread_data, ip_thread_exit);
4548 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4549 list_create(&ip_thread_list, sizeof (th_hash_t),

new/usr/src/uts/common/inet/ip/ip.c 70

4550 offsetof(th_hash_t, thh_link));
4551 #endif
4552 ipsec_policy_g_init();
4553 tcp_ddi_g_init();
4554 sctp_ddi_g_init();
4555 dccp_ddi_g_init();
4556 #endif /* ! codereview */
4557 dce_g_init();

4559 /*
4560 * We want to be informed each time a stack is created or
4561 * destroyed in the kernel, so we can maintain the
4562 * set of udp_stack_t’s.
4563 */
4564 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4565 ip_stack_fini);

4567 tnet_init();

4569 udp_ddi_g_init();
4570 rts_ddi_g_init();
4571 icmp_ddi_g_init();
4572 ilb_ddi_g_init();

4574 /* This needs to be called after all transports are initialized. */
4575 mutex_enter(&cpu_lock);
4576 register_cpu_setup_func(ip_tp_cpu_update, NULL);
4577 mutex_exit(&cpu_lock);
4578 }

4580 /*
4581 * Initialize the IP stack instance.
4582 */
4583 static void *
4584 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4585 {
4586 ip_stack_t *ipst;
4587 size_t arrsz;
4588 major_t major;

4590 #ifdef NS_DEBUG
4591 printf("ip_stack_init(stack %d)\n", stackid);
4592 #endif

4594 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4595 ipst->ips_netstack = ns;

4597 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4598 KM_SLEEP);
4599 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4600 KM_SLEEP);
4601 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4602 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4603 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4604 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);

4606 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4607 ipst->ips_igmp_deferred_next = INFINITY;
4608 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4609 ipst->ips_mld_deferred_next = INFINITY;
4610 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4611 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4612 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4613 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4614 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4615 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);

new/usr/src/uts/common/inet/ip/ip.c 71

4617 ipcl_init(ipst);
4618 ip_ire_init(ipst);
4619 ip6_asp_init(ipst);
4620 ipif_init(ipst);
4621 conn_drain_init(ipst);
4622 ip_mrouter_stack_init(ipst);
4623 dce_stack_init(ipst);

4625 ipst->ips_ip_multirt_log_interval = 1000;

4627 ipst->ips_ill_index = 1;

4629 ipst->ips_saved_ip_forwarding = -1;
4630 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */

4632 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4633 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4634 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);

4636 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4637 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4638 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4639 ipst->ips_ip6_kstat =
4640 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);

4642 ipst->ips_ip_src_id = 1;
4643 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);

4645 ipst->ips_src_generation = SRC_GENERATION_INITIAL;

4647 ip_net_init(ipst, ns);
4648 ipv4_hook_init(ipst);
4649 ipv6_hook_init(ipst);
4650 arp_hook_init(ipst);
4651 ipmp_init(ipst);
4652 ipobs_init(ipst);

4654 /*
4655 * Create the taskq dispatcher thread and initialize related stuff.
4656 */
4657 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4658 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4659 ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4660 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);

4662 major = mod_name_to_major(INET_NAME);
4663 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4664 return (ipst);
4665 }

4667 /*
4668 * Allocate and initialize a DLPI template of the specified length. (May be
4669 * called as writer.)
4670 */
4671 mblk_t *
4672 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4673 {
4674 mblk_t *mp;

4676 mp = allocb(len, BPRI_MED);
4677 if (!mp)
4678 return (NULL);

4680 /*
4681 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter

new/usr/src/uts/common/inet/ip/ip.c 72

4682 * of which we don’t seem to use) are sent with M_PCPROTO, and
4683 * that other DLPI are M_PROTO.
4684 */
4685 if (prim == DL_INFO_REQ) {
4686 mp->b_datap->db_type = M_PCPROTO;
4687 } else {
4688 mp->b_datap->db_type = M_PROTO;
4689 }

4691 mp->b_wptr = mp->b_rptr + len;
4692 bzero(mp->b_rptr, len);
4693 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4694 return (mp);
4695 }

4697 /*
4698 * Allocate and initialize a DLPI notification. (May be called as writer.)
4699 */
4700 mblk_t *
4701 ip_dlnotify_alloc(uint_t notification, uint_t data)
4702 {
4703 dl_notify_ind_t *notifyp;
4704 mblk_t *mp;

4706 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4707 return (NULL);

4709 notifyp = (dl_notify_ind_t *)mp->b_rptr;
4710 notifyp->dl_notification = notification;
4711 notifyp->dl_data = data;
4712 return (mp);
4713 }

4715 mblk_t *
4716 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4717 {
4718 dl_notify_ind_t *notifyp;
4719 mblk_t *mp;

4721 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4722 return (NULL);

4724 notifyp = (dl_notify_ind_t *)mp->b_rptr;
4725 notifyp->dl_notification = notification;
4726 notifyp->dl_data1 = data1;
4727 notifyp->dl_data2 = data2;
4728 return (mp);
4729 }

4731 /*
4732 * Debug formatting routine. Returns a character string representation of the
4733 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address
4734 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4735 *
4736 * Once the ndd table-printing interfaces are removed, this can be changed to
4737 * standard dotted-decimal form.
4738 */
4739 char *
4740 ip_dot_addr(ipaddr_t addr, char *buf)
4741 {
4742 uint8_t *ap = (uint8_t *)&addr;

4744 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4745 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4746 return (buf);
4747 }

new/usr/src/uts/common/inet/ip/ip.c 73

4749 /*
4750 * Write the given MAC address as a printable string in the usual colon-
4751 * separated format.
4752 */
4753 const char *
4754 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4755 {
4756 char *bp;

4758 if (alen == 0 || buflen < 4)
4759 return ("?");
4760 bp = buf;
4761 for (;;) {
4762 /*
4763 * If there are more MAC address bytes available, but we won’t
4764 * have any room to print them, then add "..." to the string
4765 * instead. See below for the ’magic number’ explanation.
4766 */
4767 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4768 (void) strcpy(bp, "...");
4769 break;
4770 }
4771 (void) sprintf(bp, "%02x", *addr++);
4772 bp += 2;
4773 if (--alen == 0)
4774 break;
4775 *bp++ = ’:’;
4776 buflen -= 3;
4777 /*
4778 * At this point, based on the first ’if’ statement above,
4779 * either alen == 1 and buflen >= 3, or alen > 1 and
4780 * buflen >= 4. The first case leaves room for the final "xx"
4781 * number and trailing NUL byte. The second leaves room for at
4782 * least "...". Thus the apparently ’magic’ numbers chosen for
4783 * that statement.
4784 */
4785 }
4786 return (buf);
4787 }

4789 /*
4790 * Called when it is conceptually a ULP that would sent the packet
4791 * e.g., port unreachable and protocol unreachable. Check that the packet
4792 * would have passed the IPsec global policy before sending the error.
4793 *
4794 * Send an ICMP error after patching up the packet appropriately.
4795 * Uses ip_drop_input and bumps the appropriate MIB.
4796 */
4797 void
4798 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4799 ip_recv_attr_t *ira)
4800 {
4801 ipha_t *ipha;
4802 boolean_t secure;
4803 ill_t *ill = ira->ira_ill;
4804 ip_stack_t *ipst = ill->ill_ipst;
4805 netstack_t *ns = ipst->ips_netstack;
4806 ipsec_stack_t *ipss = ns->netstack_ipsec;

4808 secure = ira->ira_flags & IRAF_IPSEC_SECURE;

4810 /*
4811 * We are generating an icmp error for some inbound packet.
4812 * Called from all ip_fanout_(udp, tcp, proto) functions.
4813 * Before we generate an error, check with global policy

new/usr/src/uts/common/inet/ip/ip.c 74

4814 * to see whether this is allowed to enter the system. As
4815 * there is no "conn", we are checking with global policy.
4816 */
4817 ipha = (ipha_t *)mp->b_rptr;
4818 if (secure || ipss->ipsec_inbound_v4_policy_present) {
4819 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4820 if (mp == NULL)
4821 return;
4822 }

4824 /* We never send errors for protocols that we do implement */
4825 if (ira->ira_protocol == IPPROTO_ICMP ||
4826 ira->ira_protocol == IPPROTO_IGMP) {
4827 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4828 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4829 freemsg(mp);
4830 return;
4831 }
4832 /*
4833 * Have to correct checksum since
4834 * the packet might have been
4835 * fragmented and the reassembly code in ip_rput
4836 * does not restore the IP checksum.
4837 */
4838 ipha->ipha_hdr_checksum = 0;
4839 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);

4841 switch (icmp_type) {
4842 case ICMP_DEST_UNREACHABLE:
4843 switch (icmp_code) {
4844 case ICMP_PROTOCOL_UNREACHABLE:
4845 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4846 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4847 break;
4848 case ICMP_PORT_UNREACHABLE:
4849 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4850 ip_drop_input("ipIfStatsNoPorts", mp, ill);
4851 break;
4852 }

4854 icmp_unreachable(mp, icmp_code, ira);
4855 break;
4856 default:
4857 #ifdef DEBUG
4858 panic("ip_fanout_send_icmp_v4: wrong type");
4859 /*NOTREACHED*/
4860 #else
4861 freemsg(mp);
4862 break;
4863 #endif
4864 }
4865 }

4867 /*
4868 * Used to send an ICMP error message when a packet is received for
4869 * a protocol that is not supported. The mblk passed as argument
4870 * is consumed by this function.
4871 */
4872 void
4873 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4874 {
4875 ipha_t *ipha;

4877 ipha = (ipha_t *)mp->b_rptr;
4878 if (ira->ira_flags & IRAF_IS_IPV4) {
4879 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);

new/usr/src/uts/common/inet/ip/ip.c 75

4880 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4881 ICMP_PROTOCOL_UNREACHABLE, ira);
4882 } else {
4883 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4884 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4885 ICMP6_PARAMPROB_NEXTHEADER, ira);
4886 }
4887 }

4889 /*
4890 * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4891 * Handles IPv4 and IPv6.
4892 * We are responsible for disposing of mp, such as by freemsg() or putnext()
4893 * Caller is responsible for dropping references to the conn.
4894 */
4895 void
4896 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4897 ip_recv_attr_t *ira)
4898 {
4899 ill_t *ill = ira->ira_ill;
4900 ip_stack_t *ipst = ill->ill_ipst;
4901 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
4902 boolean_t secure;
4903 uint_t protocol = ira->ira_protocol;
4904 iaflags_t iraflags = ira->ira_flags;
4905 queue_t *rq;

4907 secure = iraflags & IRAF_IPSEC_SECURE;

4909 rq = connp->conn_rq;
4910 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4911 switch (protocol) {
4912 case IPPROTO_ICMPV6:
4913 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4914 break;
4915 case IPPROTO_ICMP:
4916 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4917 break;
4918 default:
4919 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4920 break;
4921 }
4922 freemsg(mp);
4923 return;
4924 }

4926 ASSERT(!(IPCL_IS_IPTUN(connp)));

4928 if (((iraflags & IRAF_IS_IPV4) ?
4929 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4930 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4931 secure) {
4932 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4933 ip6h, ira);
4934 if (mp == NULL) {
4935 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4936 /* Note that mp is NULL */
4937 ip_drop_input("ipIfStatsInDiscards", mp, ill);
4938 return;
4939 }
4940 }

4942 if (iraflags & IRAF_ICMP_ERROR) {
4943 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4944 } else {
4945 ill_t *rill = ira->ira_rill;

new/usr/src/uts/common/inet/ip/ip.c 76

4947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4948 ira->ira_ill = ira->ira_rill = NULL;
4949 /* Send it upstream */
4950 (connp->conn_recv)(connp, mp, NULL, ira);
4951 ira->ira_ill = ill;
4952 ira->ira_rill = rill;
4953 }
4954 }

4956 /*
4957 * Handle protocols with which IP is less intimate. There
4958 * can be more than one stream bound to a particular
4959 * protocol. When this is the case, normally each one gets a copy
4960 * of any incoming packets.
4961 *
4962 * IPsec NOTE :
4963 *
4964 * Don’t allow a secure packet going up a non-secure connection.
4965 * We don’t allow this because
4966 *
4967 * 1) Reply might go out in clear which will be dropped at
4968 * the sending side.
4969 * 2) If the reply goes out in clear it will give the
4970 * adversary enough information for getting the key in
4971 * most of the cases.
4972 *
4973 * Moreover getting a secure packet when we expect clear
4974 * implies that SA’s were added without checking for
4975 * policy on both ends. This should not happen once ISAKMP
4976 * is used to negotiate SAs as SAs will be added only after
4977 * verifying the policy.
4978 *
4979 * Zones notes:
4980 * Earlier in ip_input on a system with multiple shared-IP zones we
4981 * duplicate the multicast and broadcast packets and send them up
4982 * with each explicit zoneid that exists on that ill.
4983 * This means that here we can match the zoneid with SO_ALLZONES being special.
4984 */
4985 void
4986 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
4987 {
4988 mblk_t *mp1;
4989 ipaddr_t laddr;
4990 conn_t *connp, *first_connp, *next_connp;
4991 connf_t *connfp;
4992 ill_t *ill = ira->ira_ill;
4993 ip_stack_t *ipst = ill->ill_ipst;

4995 laddr = ipha->ipha_dst;

4997 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
4998 mutex_enter(&connfp->connf_lock);
4999 connp = connfp->connf_head;
5000 for (connp = connfp->connf_head; connp != NULL;
5001 connp = connp->conn_next) {
5002 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5003 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5004 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5005 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5006 break;
5007 }
5008 }

5010 if (connp == NULL) {
5011 /*

new/usr/src/uts/common/inet/ip/ip.c 77

5012 * No one bound to these addresses. Is
5013 * there a client that wants all
5014 * unclaimed datagrams?
5015 */
5016 mutex_exit(&connfp->connf_lock);
5017 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5018 ICMP_PROTOCOL_UNREACHABLE, ira);
5019 return;
5020 }

5022 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);

5024 CONN_INC_REF(connp);
5025 first_connp = connp;
5026 connp = connp->conn_next;

5028 for (;;) {
5029 while (connp != NULL) {
5030 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5031 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5032 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5033 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5034 ira, connp)))
5035 break;
5036 connp = connp->conn_next;
5037 }

5039 if (connp == NULL) {
5040 /* No more interested clients */
5041 connp = first_connp;
5042 break;
5043 }
5044 if (((mp1 = dupmsg(mp)) == NULL) &&
5045 ((mp1 = copymsg(mp)) == NULL)) {
5046 /* Memory allocation failed */
5047 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5048 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5049 connp = first_connp;
5050 break;
5051 }

5053 CONN_INC_REF(connp);
5054 mutex_exit(&connfp->connf_lock);

5056 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5057 ira);

5059 mutex_enter(&connfp->connf_lock);
5060 /* Follow the next pointer before releasing the conn. */
5061 next_connp = connp->conn_next;
5062 CONN_DEC_REF(connp);
5063 connp = next_connp;
5064 }

5066 /* Last one. Send it upstream. */
5067 mutex_exit(&connfp->connf_lock);

5069 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);

5071 CONN_DEC_REF(connp);
5072 }

5074 /*
5075 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5076 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk
5077 * is not consumed.

new/usr/src/uts/common/inet/ip/ip.c 78

5078 *
5079 * One of three things can happen, all of which affect the passed-in mblk:
5080 *
5081 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk..
5082 *
5083 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5084 * ESP packet, and is passed along to ESP for consumption. Return NULL.
5085 *
5086 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL.
5087 */
5088 mblk_t *
5089 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5090 {
5091 int shift, plen, iph_len;
5092 ipha_t *ipha;
5093 udpha_t *udpha;
5094 uint32_t *spi;
5095 uint32_t esp_ports;
5096 uint8_t *orptr;
5097 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
5098 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;

5100 ipha = (ipha_t *)mp->b_rptr;
5101 iph_len = ira->ira_ip_hdr_length;
5102 plen = ira->ira_pktlen;

5104 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5105 /*
5106 * Most likely a keepalive for the benefit of an intervening
5107 * NAT. These aren’t for us, per se, so drop it.
5108 *
5109 * RFC 3947/8 doesn’t say for sure what to do for 2-3
5110 * byte packets (keepalives are 1-byte), but we’ll drop them
5111 * also.
5112 */
5113 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5114 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5115 return (NULL);
5116 }

5118 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5119 /* might as well pull it all up - it might be ESP. */
5120 if (!pullupmsg(mp, -1)) {
5121 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5122 DROPPER(ipss, ipds_esp_nomem),
5123 &ipss->ipsec_dropper);
5124 return (NULL);
5125 }

5127 ipha = (ipha_t *)mp->b_rptr;
5128 }
5129 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5130 if (*spi == 0) {
5131 /* UDP packet - remove 0-spi. */
5132 shift = sizeof (uint32_t);
5133 } else {
5134 /* ESP-in-UDP packet - reduce to ESP. */
5135 ipha->ipha_protocol = IPPROTO_ESP;
5136 shift = sizeof (udpha_t);
5137 }

5139 /* Fix IP header */
5140 ira->ira_pktlen = (plen - shift);
5141 ipha->ipha_length = htons(ira->ira_pktlen);
5142 ipha->ipha_hdr_checksum = 0;

new/usr/src/uts/common/inet/ip/ip.c 79

5144 orptr = mp->b_rptr;
5145 mp->b_rptr += shift;

5147 udpha = (udpha_t *)(orptr + iph_len);
5148 if (*spi == 0) {
5149 ASSERT((uint8_t *)ipha == orptr);
5150 udpha->uha_length = htons(plen - shift - iph_len);
5151 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */
5152 esp_ports = 0;
5153 } else {
5154 esp_ports = *((uint32_t *)udpha);
5155 ASSERT(esp_ports != 0);
5156 }
5157 ovbcopy(orptr, orptr + shift, iph_len);
5158 if (esp_ports != 0) /* Punt up for ESP processing. */ {
5159 ipha = (ipha_t *)(orptr + shift);

5161 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5162 ira->ira_esp_udp_ports = esp_ports;
5163 ip_fanout_v4(mp, ipha, ira);
5164 return (NULL);
5165 }
5166 return (mp);
5167 }

5169 /*
5170 * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5171 * Handles IPv4 and IPv6.
5172 * We are responsible for disposing of mp, such as by freemsg() or putnext()
5173 * Caller is responsible for dropping references to the conn.
5174 */
5175 void
5176 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5177 ip_recv_attr_t *ira)
5178 {
5179 ill_t *ill = ira->ira_ill;
5180 ip_stack_t *ipst = ill->ill_ipst;
5181 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
5182 boolean_t secure;
5183 iaflags_t iraflags = ira->ira_flags;

5185 secure = iraflags & IRAF_IPSEC_SECURE;

5187 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5188 !canputnext(connp->conn_rq)) {
5189 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5190 freemsg(mp);
5191 return;
5192 }

5194 if (((iraflags & IRAF_IS_IPV4) ?
5195 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5196 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5197 secure) {
5198 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5199 ip6h, ira);
5200 if (mp == NULL) {
5201 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5202 /* Note that mp is NULL */
5203 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5204 return;
5205 }
5206 }

5208 /*
5209 * Since this code is not used for UDP unicast we don’t need a NAT_T

new/usr/src/uts/common/inet/ip/ip.c 80

5210 * check. Only ip_fanout_v4 has that check.
5211 */
5212 if (ira->ira_flags & IRAF_ICMP_ERROR) {
5213 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5214 } else {
5215 ill_t *rill = ira->ira_rill;

5217 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5218 ira->ira_ill = ira->ira_rill = NULL;
5219 /* Send it upstream */
5220 (connp->conn_recv)(connp, mp, NULL, ira);
5221 ira->ira_ill = ill;
5222 ira->ira_rill = rill;
5223 }
5224 }

5226 /*
5227 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5228 * (Unicast fanout is handled in ip_input_v4.)
5229 *
5230 * If SO_REUSEADDR is set all multicast and broadcast packets
5231 * will be delivered to all conns bound to the same port.
5232 *
5233 * If there is at least one matching AF_INET receiver, then we will
5234 * ignore any AF_INET6 receivers.
5235 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5236 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5237 * packets.
5238 *
5239 * Zones notes:
5240 * Earlier in ip_input on a system with multiple shared-IP zones we
5241 * duplicate the multicast and broadcast packets and send them up
5242 * with each explicit zoneid that exists on that ill.
5243 * This means that here we can match the zoneid with SO_ALLZONES being special.
5244 */
5245 void
5246 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5247 ip_recv_attr_t *ira)
5248 {
5249 ipaddr_t laddr;
5250 in6_addr_t v6faddr;
5251 conn_t *connp;
5252 connf_t *connfp;
5253 ipaddr_t faddr;
5254 ill_t *ill = ira->ira_ill;
5255 ip_stack_t *ipst = ill->ill_ipst;

5257 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));

5259 laddr = ipha->ipha_dst;
5260 faddr = ipha->ipha_src;

5262 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5263 mutex_enter(&connfp->connf_lock);
5264 connp = connfp->connf_head;

5266 /*
5267 * If SO_REUSEADDR has been set on the first we send the
5268 * packet to all clients that have joined the group and
5269 * match the port.
5270 */
5271 while (connp != NULL) {
5272 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5273 conn_wantpacket(connp, ira, ipha) &&
5274 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5275 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))

new/usr/src/uts/common/inet/ip/ip.c 81

5276 break;
5277 connp = connp->conn_next;
5278 }

5280 if (connp == NULL)
5281 goto notfound;

5283 CONN_INC_REF(connp);

5285 if (connp->conn_reuseaddr) {
5286 conn_t *first_connp = connp;
5287 conn_t *next_connp;
5288 mblk_t *mp1;

5290 connp = connp->conn_next;
5291 for (;;) {
5292 while (connp != NULL) {
5293 if (IPCL_UDP_MATCH(connp, lport, laddr,
5294 fport, faddr) &&
5295 conn_wantpacket(connp, ira, ipha) &&
5296 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5297 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5298 ira, connp)))
5299 break;
5300 connp = connp->conn_next;
5301 }
5302 if (connp == NULL) {
5303 /* No more interested clients */
5304 connp = first_connp;
5305 break;
5306 }
5307 if (((mp1 = dupmsg(mp)) == NULL) &&
5308 ((mp1 = copymsg(mp)) == NULL)) {
5309 /* Memory allocation failed */
5310 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5311 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5312 connp = first_connp;
5313 break;
5314 }
5315 CONN_INC_REF(connp);
5316 mutex_exit(&connfp->connf_lock);

5318 IP_STAT(ipst, ip_udp_fanmb);
5319 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5320 NULL, ira);
5321 mutex_enter(&connfp->connf_lock);
5322 /* Follow the next pointer before releasing the conn */
5323 next_connp = connp->conn_next;
5324 CONN_DEC_REF(connp);
5325 connp = next_connp;
5326 }
5327 }

5329 /* Last one. Send it upstream. */
5330 mutex_exit(&connfp->connf_lock);
5331 IP_STAT(ipst, ip_udp_fanmb);
5332 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5333 CONN_DEC_REF(connp);
5334 return;

5336 notfound:
5337 mutex_exit(&connfp->connf_lock);
5338 /*
5339 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5340 * have already been matched above, since they live in the IPv4
5341 * fanout tables. This implies we only need to

new/usr/src/uts/common/inet/ip/ip.c 82

5342 * check for IPv6 in6addr_any endpoints here.
5343 * Thus we compare using ipv6_all_zeros instead of the destination
5344 * address, except for the multicast group membership lookup which
5345 * uses the IPv4 destination.
5346 */
5347 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5348 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5349 mutex_enter(&connfp->connf_lock);
5350 connp = connfp->connf_head;
5351 /*
5352 * IPv4 multicast packet being delivered to an AF_INET6
5353 * in6addr_any endpoint.
5354 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5355 * and not conn_wantpacket_v6() since any multicast membership is
5356 * for an IPv4-mapped multicast address.
5357 */
5358 while (connp != NULL) {
5359 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5360 fport, v6faddr) &&
5361 conn_wantpacket(connp, ira, ipha) &&
5362 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5363 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5364 break;
5365 connp = connp->conn_next;
5366 }

5368 if (connp == NULL) {
5369 /*
5370 * No one bound to this port. Is
5371 * there a client that wants all
5372 * unclaimed datagrams?
5373 */
5374 mutex_exit(&connfp->connf_lock);

5376 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5377 NULL) {
5378 ASSERT(ira->ira_protocol == IPPROTO_UDP);
5379 ip_fanout_proto_v4(mp, ipha, ira);
5380 } else {
5381 /*
5382 * We used to attempt to send an icmp error here, but
5383 * since this is known to be a multicast packet
5384 * and we don’t send icmp errors in response to
5385 * multicast, just drop the packet and give up sooner.
5386 */
5387 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5388 freemsg(mp);
5389 }
5390 return;
5391 }
5392 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);

5394 /*
5395 * If SO_REUSEADDR has been set on the first we send the
5396 * packet to all clients that have joined the group and
5397 * match the port.
5398 */
5399 if (connp->conn_reuseaddr) {
5400 conn_t *first_connp = connp;
5401 conn_t *next_connp;
5402 mblk_t *mp1;

5404 CONN_INC_REF(connp);
5405 connp = connp->conn_next;
5406 for (;;) {
5407 while (connp != NULL) {

new/usr/src/uts/common/inet/ip/ip.c 83

5408 if (IPCL_UDP_MATCH_V6(connp, lport,
5409 ipv6_all_zeros, fport, v6faddr) &&
5410 conn_wantpacket(connp, ira, ipha) &&
5411 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5412 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5413 ira, connp)))
5414 break;
5415 connp = connp->conn_next;
5416 }
5417 if (connp == NULL) {
5418 /* No more interested clients */
5419 connp = first_connp;
5420 break;
5421 }
5422 if (((mp1 = dupmsg(mp)) == NULL) &&
5423 ((mp1 = copymsg(mp)) == NULL)) {
5424 /* Memory allocation failed */
5425 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5426 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5427 connp = first_connp;
5428 break;
5429 }
5430 CONN_INC_REF(connp);
5431 mutex_exit(&connfp->connf_lock);

5433 IP_STAT(ipst, ip_udp_fanmb);
5434 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5435 NULL, ira);
5436 mutex_enter(&connfp->connf_lock);
5437 /* Follow the next pointer before releasing the conn */
5438 next_connp = connp->conn_next;
5439 CONN_DEC_REF(connp);
5440 connp = next_connp;
5441 }
5442 }

5444 /* Last one. Send it upstream. */
5445 mutex_exit(&connfp->connf_lock);
5446 IP_STAT(ipst, ip_udp_fanmb);
5447 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5448 CONN_DEC_REF(connp);
5449 }

5451 /*
5452 * Split an incoming packet’s IPv4 options into the label and the other options.
5453 * If ’allocate’ is set it does memory allocation for the ip_pkt_t, including
5454 * clearing out any leftover label or options.
5455 * Otherwise it just makes ipp point into the packet.
5456 *
5457 * Returns zero if ok; ENOMEM if the buffer couldn’t be allocated.
5458 */
5459 int
5460 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5461 {
5462 uchar_t *opt;
5463 uint32_t totallen;
5464 uint32_t optval;
5465 uint32_t optlen;

5467 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5468 ipp->ipp_hoplimit = ipha->ipha_ttl;
5469 ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5470 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);

5472 /*
5473 * Get length (in 4 byte octets) of IP header options.

new/usr/src/uts/common/inet/ip/ip.c 84

5474 */
5475 totallen = ipha->ipha_version_and_hdr_length -
5476 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);

5478 if (totallen == 0) {
5479 if (!allocate)
5480 return (0);

5482 /* Clear out anything from a previous packet */
5483 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5484 kmem_free(ipp->ipp_ipv4_options,
5485 ipp->ipp_ipv4_options_len);
5486 ipp->ipp_ipv4_options = NULL;
5487 ipp->ipp_ipv4_options_len = 0;
5488 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5489 }
5490 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5491 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5492 ipp->ipp_label_v4 = NULL;
5493 ipp->ipp_label_len_v4 = 0;
5494 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5495 }
5496 return (0);
5497 }

5499 totallen <<= 2;
5500 opt = (uchar_t *)&ipha[1];
5501 if (!is_system_labeled()) {

5503 copyall:
5504 if (!allocate) {
5505 if (totallen != 0) {
5506 ipp->ipp_ipv4_options = opt;
5507 ipp->ipp_ipv4_options_len = totallen;
5508 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5509 }
5510 return (0);
5511 }
5512 /* Just copy all of options */
5513 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5514 if (totallen == ipp->ipp_ipv4_options_len) {
5515 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5516 return (0);
5517 }
5518 kmem_free(ipp->ipp_ipv4_options,
5519 ipp->ipp_ipv4_options_len);
5520 ipp->ipp_ipv4_options = NULL;
5521 ipp->ipp_ipv4_options_len = 0;
5522 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5523 }
5524 if (totallen == 0)
5525 return (0);

5527 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5528 if (ipp->ipp_ipv4_options == NULL)
5529 return (ENOMEM);
5530 ipp->ipp_ipv4_options_len = totallen;
5531 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5532 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5533 return (0);
5534 }

5536 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5537 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5538 ipp->ipp_label_v4 = NULL;
5539 ipp->ipp_label_len_v4 = 0;

new/usr/src/uts/common/inet/ip/ip.c 85

5540 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5541 }

5543 /*
5544 * Search for CIPSO option.
5545 * We assume CIPSO is first in options if it is present.
5546 * If it isn’t, then ipp_opt_ipv4_options will not include the options
5547 * prior to the CIPSO option.
5548 */
5549 while (totallen != 0) {
5550 switch (optval = opt[IPOPT_OPTVAL]) {
5551 case IPOPT_EOL:
5552 return (0);
5553 case IPOPT_NOP:
5554 optlen = 1;
5555 break;
5556 default:
5557 if (totallen <= IPOPT_OLEN)
5558 return (EINVAL);
5559 optlen = opt[IPOPT_OLEN];
5560 if (optlen < 2)
5561 return (EINVAL);
5562 }
5563 if (optlen > totallen)
5564 return (EINVAL);

5566 switch (optval) {
5567 case IPOPT_COMSEC:
5568 if (!allocate) {
5569 ipp->ipp_label_v4 = opt;
5570 ipp->ipp_label_len_v4 = optlen;
5571 ipp->ipp_fields |= IPPF_LABEL_V4;
5572 } else {
5573 ipp->ipp_label_v4 = kmem_alloc(optlen,
5574 KM_NOSLEEP);
5575 if (ipp->ipp_label_v4 == NULL)
5576 return (ENOMEM);
5577 ipp->ipp_label_len_v4 = optlen;
5578 ipp->ipp_fields |= IPPF_LABEL_V4;
5579 bcopy(opt, ipp->ipp_label_v4, optlen);
5580 }
5581 totallen -= optlen;
5582 opt += optlen;

5584 /* Skip padding bytes until we get to a multiple of 4 */
5585 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5586 totallen--;
5587 opt++;
5588 }
5589 /* Remaining as ipp_ipv4_options */
5590 goto copyall;
5591 }
5592 totallen -= optlen;
5593 opt += optlen;
5594 }
5595 /* No CIPSO found; return everything as ipp_ipv4_options */
5596 totallen = ipha->ipha_version_and_hdr_length -
5597 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5598 totallen <<= 2;
5599 opt = (uchar_t *)&ipha[1];
5600 goto copyall;
5601 }

5603 /*
5604 * Efficient versions of lookup for an IRE when we only
5605 * match the address.

new/usr/src/uts/common/inet/ip/ip.c 86

5606 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5607 * Does not handle multicast addresses.
5608 */
5609 uint_t
5610 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5611 {
5612 ire_t *ire;
5613 uint_t result;

5615 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5616 ASSERT(ire != NULL);
5617 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5618 result = IRE_NOROUTE;
5619 else
5620 result = ire->ire_type;
5621 ire_refrele(ire);
5622 return (result);
5623 }

5625 /*
5626 * Efficient versions of lookup for an IRE when we only
5627 * match the address.
5628 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5629 * Does not handle multicast addresses.
5630 */
5631 uint_t
5632 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5633 {
5634 ire_t *ire;
5635 uint_t result;

5637 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5638 ASSERT(ire != NULL);
5639 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5640 result = IRE_NOROUTE;
5641 else
5642 result = ire->ire_type;
5643 ire_refrele(ire);
5644 return (result);
5645 }

5647 /*
5648 * Nobody should be sending
5649 * packets up this stream
5650 */
5651 static void
5652 ip_lrput(queue_t *q, mblk_t *mp)
5653 {
5654 switch (mp->b_datap->db_type) {
5655 case M_FLUSH:
5656 /* Turn around */
5657 if (*mp->b_rptr & FLUSHW) {
5658 *mp->b_rptr &= ~FLUSHR;
5659 qreply(q, mp);
5660 return;
5661 }
5662 break;
5663 }
5664 freemsg(mp);
5665 }

5667 /* Nobody should be sending packets down this stream */
5668 /* ARGSUSED */
5669 void
5670 ip_lwput(queue_t *q, mblk_t *mp)
5671 {

new/usr/src/uts/common/inet/ip/ip.c 87

5672 freemsg(mp);
5673 }

5675 /*
5676 * Move the first hop in any source route to ipha_dst and remove that part of
5677 * the source route. Called by other protocols. Errors in option formatting
5678 * are ignored - will be handled by ip_output_options. Return the final
5679 * destination (either ipha_dst or the last entry in a source route.)
5680 */
5681 ipaddr_t
5682 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5683 {
5684 ipoptp_t opts;
5685 uchar_t *opt;
5686 uint8_t optval;
5687 uint8_t optlen;
5688 ipaddr_t dst;
5689 int i;
5690 ip_stack_t *ipst = ns->netstack_ip;

5692 ip2dbg(("ip_massage_options\n"));
5693 dst = ipha->ipha_dst;
5694 for (optval = ipoptp_first(&opts, ipha);
5695 optval != IPOPT_EOL;
5696 optval = ipoptp_next(&opts)) {
5697 opt = opts.ipoptp_cur;
5698 switch (optval) {
5699 uint8_t off;
5700 case IPOPT_SSRR:
5701 case IPOPT_LSRR:
5702 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5703 ip1dbg(("ip_massage_options: bad src route\n"));
5704 break;
5705 }
5706 optlen = opts.ipoptp_len;
5707 off = opt[IPOPT_OFFSET];
5708 off--;
5709 redo_srr:
5710 if (optlen < IP_ADDR_LEN ||
5711 off > optlen - IP_ADDR_LEN) {
5712 /* End of source route */
5713 ip1dbg(("ip_massage_options: end of SR\n"));
5714 break;
5715 }
5716 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5717 ip1dbg(("ip_massage_options: next hop 0x%x\n",
5718 ntohl(dst)));
5719 /*
5720 * Check if our address is present more than
5721 * once as consecutive hops in source route.
5722 * XXX verify per-interface ip_forwarding
5723 * for source route?
5724 */
5725 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5726 off += IP_ADDR_LEN;
5727 goto redo_srr;
5728 }
5729 if (dst == htonl(INADDR_LOOPBACK)) {
5730 ip1dbg(("ip_massage_options: loopback addr in "
5731 "source route!\n"));
5732 break;
5733 }
5734 /*
5735 * Update ipha_dst to be the first hop and remove the
5736 * first hop from the source route (by overwriting
5737 * part of the option with NOP options).

new/usr/src/uts/common/inet/ip/ip.c 88

5738 */
5739 ipha->ipha_dst = dst;
5740 /* Put the last entry in dst */
5741 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5742 3;
5743 bcopy(&opt[off], &dst, IP_ADDR_LEN);

5745 ip1dbg(("ip_massage_options: last hop 0x%x\n",
5746 ntohl(dst)));
5747 /* Move down and overwrite */
5748 opt[IP_ADDR_LEN] = opt[0];
5749 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5750 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5751 for (i = 0; i < IP_ADDR_LEN; i++)
5752 opt[i] = IPOPT_NOP;
5753 break;
5754 }
5755 }
5756 return (dst);
5757 }

5759 /*
5760 * Return the network mask
5761 * associated with the specified address.
5762 */
5763 ipaddr_t
5764 ip_net_mask(ipaddr_t addr)
5765 {
5766 uchar_t *up = (uchar_t *)&addr;
5767 ipaddr_t mask = 0;
5768 uchar_t *maskp = (uchar_t *)&mask;

5770 #if defined(__i386) || defined(__amd64)
5771 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5772 #endif
5773 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER
5774 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5775 #endif
5776 if (CLASSD(addr)) {
5777 maskp[0] = 0xF0;
5778 return (mask);
5779 }

5781 /* We assume Class E default netmask to be 32 */
5782 if (CLASSE(addr))
5783 return (0xffffffffU);

5785 if (addr == 0)
5786 return (0);
5787 maskp[0] = 0xFF;
5788 if ((up[0] & 0x80) == 0)
5789 return (mask);

5791 maskp[1] = 0xFF;
5792 if ((up[0] & 0xC0) == 0x80)
5793 return (mask);

5795 maskp[2] = 0xFF;
5796 if ((up[0] & 0xE0) == 0xC0)
5797 return (mask);

5799 /* Otherwise return no mask */
5800 return ((ipaddr_t)0);
5801 }

5803 /* Name/Value Table Lookup Routine */

new/usr/src/uts/common/inet/ip/ip.c 89

5804 char *
5805 ip_nv_lookup(nv_t *nv, int value)
5806 {
5807 if (!nv)
5808 return (NULL);
5809 for (; nv->nv_name; nv++) {
5810 if (nv->nv_value == value)
5811 return (nv->nv_name);
5812 }
5813 return ("unknown");
5814 }

5816 static int
5817 ip_wait_for_info_ack(ill_t *ill)
5818 {
5819 int err;

5821 mutex_enter(&ill->ill_lock);
5822 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5823 /*
5824 * Return value of 0 indicates a pending signal.
5825 */
5826 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5827 if (err == 0) {
5828 mutex_exit(&ill->ill_lock);
5829 return (EINTR);
5830 }
5831 }
5832 mutex_exit(&ill->ill_lock);
5833 /*
5834 * ip_rput_other could have set an error in ill_error on
5835 * receipt of M_ERROR.
5836 */
5837 return (ill->ill_error);
5838 }

5840 /*
5841 * This is a module open, i.e. this is a control stream for access
5842 * to a DLPI device. We allocate an ill_t as the instance data in
5843 * this case.
5844 */
5845 static int
5846 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5847 {
5848 ill_t *ill;
5849 int err;
5850 zoneid_t zoneid;
5851 netstack_t *ns;
5852 ip_stack_t *ipst;

5854 /*
5855 * Prevent unprivileged processes from pushing IP so that
5856 * they can’t send raw IP.
5857 */
5858 if (secpolicy_net_rawaccess(credp) != 0)
5859 return (EPERM);

5861 ns = netstack_find_by_cred(credp);
5862 ASSERT(ns != NULL);
5863 ipst = ns->netstack_ip;
5864 ASSERT(ipst != NULL);

5866 /*
5867 * For exclusive stacks we set the zoneid to zero
5868 * to make IP operate as if in the global zone.
5869 */

new/usr/src/uts/common/inet/ip/ip.c 90

5870 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5871 zoneid = GLOBAL_ZONEID;
5872 else
5873 zoneid = crgetzoneid(credp);

5875 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5876 q->q_ptr = WR(q)->q_ptr = ill;
5877 ill->ill_ipst = ipst;
5878 ill->ill_zoneid = zoneid;

5880 /*
5881 * ill_init initializes the ill fields and then sends down
5882 * down a DL_INFO_REQ after calling qprocson.
5883 */
5884 err = ill_init(q, ill);

5886 if (err != 0) {
5887 mi_free(ill);
5888 netstack_rele(ipst->ips_netstack);
5889 q->q_ptr = NULL;
5890 WR(q)->q_ptr = NULL;
5891 return (err);
5892 }

5894 /*
5895 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5896 *
5897 * ill_init initializes the ipsq marking this thread as
5898 * writer
5899 */
5900 ipsq_exit(ill->ill_phyint->phyint_ipsq);
5901 err = ip_wait_for_info_ack(ill);
5902 if (err == 0)
5903 ill->ill_credp = credp;
5904 else
5905 goto fail;

5907 crhold(credp);

5909 mutex_enter(&ipst->ips_ip_mi_lock);
5910 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5911 sflag, credp);
5912 mutex_exit(&ipst->ips_ip_mi_lock);
5913 fail:
5914 if (err) {
5915 (void) ip_close(q, 0);
5916 return (err);
5917 }
5918 return (0);
5919 }

5921 /* For /dev/ip aka AF_INET open */
5922 int
5923 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5924 {
5925 return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5926 }

5928 /* For /dev/ip6 aka AF_INET6 open */
5929 int
5930 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5931 {
5932 return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5933 }

5935 /* IP open routine. */

new/usr/src/uts/common/inet/ip/ip.c 91

5936 int
5937 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5938 boolean_t isv6)
5939 {
5940 conn_t *connp;
5941 major_t maj;
5942 zoneid_t zoneid;
5943 netstack_t *ns;
5944 ip_stack_t *ipst;

5946 /* Allow reopen. */
5947 if (q->q_ptr != NULL)
5948 return (0);

5950 if (sflag & MODOPEN) {
5951 /* This is a module open */
5952 return (ip_modopen(q, devp, flag, sflag, credp));
5953 }

5955 if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5956 /*
5957 * Non streams based socket looking for a stream
5958 * to access IP
5959 */
5960 return (ip_helper_stream_setup(q, devp, flag, sflag,
5961 credp, isv6));
5962 }

5964 ns = netstack_find_by_cred(credp);
5965 ASSERT(ns != NULL);
5966 ipst = ns->netstack_ip;
5967 ASSERT(ipst != NULL);

5969 /*
5970 * For exclusive stacks we set the zoneid to zero
5971 * to make IP operate as if in the global zone.
5972 */
5973 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5974 zoneid = GLOBAL_ZONEID;
5975 else
5976 zoneid = crgetzoneid(credp);

5978 /*
5979 * We are opening as a device. This is an IP client stream, and we
5980 * allocate an conn_t as the instance data.
5981 */
5982 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);

5984 /*
5985 * ipcl_conn_create did a netstack_hold. Undo the hold that was
5986 * done by netstack_find_by_cred()
5987 */
5988 netstack_rele(ipst->ips_netstack);

5990 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
5991 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
5992 connp->conn_ixa->ixa_zoneid = zoneid;
5993 connp->conn_zoneid = zoneid;

5995 connp->conn_rq = q;
5996 q->q_ptr = WR(q)->q_ptr = connp;

5998 /* Minor tells us which /dev entry was opened */
5999 if (isv6) {
6000 connp->conn_family = AF_INET6;
6001 connp->conn_ipversion = IPV6_VERSION;

new/usr/src/uts/common/inet/ip/ip.c 92

6002 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6003 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6004 } else {
6005 connp->conn_family = AF_INET;
6006 connp->conn_ipversion = IPV4_VERSION;
6007 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6008 }

6010 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6011 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6012 connp->conn_minor_arena = ip_minor_arena_la;
6013 } else {
6014 /*
6015 * Either minor numbers in the large arena were exhausted
6016 * or a non socket application is doing the open.
6017 * Try to allocate from the small arena.
6018 */
6019 if ((connp->conn_dev =
6020 inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6021 /* CONN_DEC_REF takes care of netstack_rele() */
6022 q->q_ptr = WR(q)->q_ptr = NULL;
6023 CONN_DEC_REF(connp);
6024 return (EBUSY);
6025 }
6026 connp->conn_minor_arena = ip_minor_arena_sa;
6027 }

6029 maj = getemajor(*devp);
6030 *devp = makedevice(maj, (minor_t)connp->conn_dev);

6032 /*
6033 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6034 */
6035 connp->conn_cred = credp;
6036 connp->conn_cpid = curproc->p_pid;
6037 /* Cache things in ixa without an extra refhold */
6038 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6039 connp->conn_ixa->ixa_cred = connp->conn_cred;
6040 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6041 if (is_system_labeled())
6042 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);

6044 /*
6045 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6046 */
6047 connp->conn_recv = ip_conn_input;
6048 connp->conn_recvicmp = ip_conn_input_icmp;

6050 crhold(connp->conn_cred);

6052 /*
6053 * If the caller has the process-wide flag set, then default to MAC
6054 * exempt mode. This allows read-down to unlabeled hosts.
6055 */
6056 if (getpflags(NET_MAC_AWARE, credp) != 0)
6057 connp->conn_mac_mode = CONN_MAC_AWARE;

6059 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);

6061 connp->conn_rq = q;
6062 connp->conn_wq = WR(q);

6064 /* Non-zero default values */
6065 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;

6067 /*

new/usr/src/uts/common/inet/ip/ip.c 93

6068 * Make the conn globally visible to walkers
6069 */
6070 ASSERT(connp->conn_ref == 1);
6071 mutex_enter(&connp->conn_lock);
6072 connp->conn_state_flags &= ~CONN_INCIPIENT;
6073 mutex_exit(&connp->conn_lock);

6075 qprocson(q);

6077 return (0);
6078 }

6080 /*
6081 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6082 * all of them are copied to the conn_t. If the req is "zero", the policy is
6083 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6084 * fields.
6085 * We keep only the latest setting of the policy and thus policy setting
6086 * is not incremental/cumulative.
6087 *
6088 * Requests to set policies with multiple alternative actions will
6089 * go through a different API.
6090 */
6091 int
6092 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6093 {
6094 uint_t ah_req = 0;
6095 uint_t esp_req = 0;
6096 uint_t se_req = 0;
6097 ipsec_act_t *actp = NULL;
6098 uint_t nact;
6099 ipsec_policy_head_t *ph;
6100 boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6101 int error = 0;
6102 netstack_t *ns = connp->conn_netstack;
6103 ip_stack_t *ipst = ns->netstack_ip;
6104 ipsec_stack_t *ipss = ns->netstack_ipsec;

6106 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)

6108 /*
6109 * The IP_SEC_OPT option does not allow variable length parameters,
6110 * hence a request cannot be NULL.
6111 */
6112 if (req == NULL)
6113 return (EINVAL);

6115 ah_req = req->ipsr_ah_req;
6116 esp_req = req->ipsr_esp_req;
6117 se_req = req->ipsr_self_encap_req;

6119 /* Don’t allow setting self-encap without one or more of AH/ESP. */
6120 if (se_req != 0 && esp_req == 0 && ah_req == 0)
6121 return (EINVAL);

6123 /*
6124 * Are we dealing with a request to reset the policy (i.e.
6125 * zero requests).
6126 */
6127 is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6128 (esp_req & REQ_MASK) == 0 &&
6129 (se_req & REQ_MASK) == 0);

6131 if (!is_pol_reset) {
6132 /*
6133 * If we couldn’t load IPsec, fail with "protocol

new/usr/src/uts/common/inet/ip/ip.c 94

6134 * not supported".
6135 * IPsec may not have been loaded for a request with zero
6136 * policies, so we don’t fail in this case.
6137 */
6138 mutex_enter(&ipss->ipsec_loader_lock);
6139 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6140 mutex_exit(&ipss->ipsec_loader_lock);
6141 return (EPROTONOSUPPORT);
6142 }
6143 mutex_exit(&ipss->ipsec_loader_lock);

6145 /*
6146 * Test for valid requests. Invalid algorithms
6147 * need to be tested by IPsec code because new
6148 * algorithms can be added dynamically.
6149 */
6150 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6151 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6152 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6153 return (EINVAL);
6154 }

6156 /*
6157 * Only privileged users can issue these
6158 * requests.
6159 */
6160 if (((ah_req & IPSEC_PREF_NEVER) ||
6161 (esp_req & IPSEC_PREF_NEVER) ||
6162 (se_req & IPSEC_PREF_NEVER)) &&
6163 secpolicy_ip_config(cr, B_FALSE) != 0) {
6164 return (EPERM);
6165 }

6167 /*
6168 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6169 * are mutually exclusive.
6170 */
6171 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6172 ((esp_req & REQ_MASK) == REQ_MASK) ||
6173 ((se_req & REQ_MASK) == REQ_MASK)) {
6174 /* Both of them are set */
6175 return (EINVAL);
6176 }
6177 }

6179 ASSERT(MUTEX_HELD(&connp->conn_lock));

6181 /*
6182 * If we have already cached policies in conn_connect(), don’t
6183 * let them change now. We cache policies for connections
6184 * whose src,dst [addr, port] is known.
6185 */
6186 if (connp->conn_policy_cached) {
6187 return (EINVAL);
6188 }

6190 /*
6191 * We have a zero policies, reset the connection policy if already
6192 * set. This will cause the connection to inherit the
6193 * global policy, if any.
6194 */
6195 if (is_pol_reset) {
6196 if (connp->conn_policy != NULL) {
6197 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6198 connp->conn_policy = NULL;
6199 }

new/usr/src/uts/common/inet/ip/ip.c 95

6200 connp->conn_in_enforce_policy = B_FALSE;
6201 connp->conn_out_enforce_policy = B_FALSE;
6202 return (0);
6203 }

6205 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6206 ipst->ips_netstack);
6207 if (ph == NULL)
6208 goto enomem;

6210 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6211 if (actp == NULL)
6212 goto enomem;

6214 /*
6215 * Always insert IPv4 policy entries, since they can also apply to
6216 * ipv6 sockets being used in ipv4-compat mode.
6217 */
6218 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6219 IPSEC_TYPE_INBOUND, ns))
6220 goto enomem;
6221 is_pol_inserted = B_TRUE;
6222 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6223 IPSEC_TYPE_OUTBOUND, ns))
6224 goto enomem;

6226 /*
6227 * We’re looking at a v6 socket, also insert the v6-specific
6228 * entries.
6229 */
6230 if (connp->conn_family == AF_INET6) {
6231 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6232 IPSEC_TYPE_INBOUND, ns))
6233 goto enomem;
6234 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6235 IPSEC_TYPE_OUTBOUND, ns))
6236 goto enomem;
6237 }

6239 ipsec_actvec_free(actp, nact);

6241 /*
6242 * If the requests need security, set enforce_policy.
6243 * If the requests are IPSEC_PREF_NEVER, one should
6244 * still set conn_out_enforce_policy so that ip_set_destination
6245 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6246 * for connections that we don’t cache policy in at connect time,
6247 * if global policy matches in ip_output_attach_policy, we
6248 * don’t wrongly inherit global policy. Similarly, we need
6249 * to set conn_in_enforce_policy also so that we don’t verify
6250 * policy wrongly.
6251 */
6252 if ((ah_req & REQ_MASK) != 0 ||
6253 (esp_req & REQ_MASK) != 0 ||
6254 (se_req & REQ_MASK) != 0) {
6255 connp->conn_in_enforce_policy = B_TRUE;
6256 connp->conn_out_enforce_policy = B_TRUE;
6257 }

6259 return (error);
6260 #undef REQ_MASK

6262 /*
6263 * Common memory-allocation-failure exit path.
6264 */
6265 enomem:

new/usr/src/uts/common/inet/ip/ip.c 96

6266 if (actp != NULL)
6267 ipsec_actvec_free(actp, nact);
6268 if (is_pol_inserted)
6269 ipsec_polhead_flush(ph, ns);
6270 return (ENOMEM);
6271 }

6273 /*
6274 * Set socket options for joining and leaving multicast groups.
6275 * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6276 * The caller has already check that the option name is consistent with
6277 * the address family of the socket.
6278 */
6279 int
6280 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6281 uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6282 {
6283 int *i1 = (int *)invalp;
6284 int error = 0;
6285 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6286 struct ip_mreq *v4_mreqp;
6287 struct ipv6_mreq *v6_mreqp;
6288 struct group_req *greqp;
6289 ire_t *ire;
6290 boolean_t done = B_FALSE;
6291 ipaddr_t ifaddr;
6292 in6_addr_t v6group;
6293 uint_t ifindex;
6294 boolean_t mcast_opt = B_TRUE;
6295 mcast_record_t fmode;
6296 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6297 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);

6299 switch (name) {
6300 case IP_ADD_MEMBERSHIP:
6301 case IPV6_JOIN_GROUP:
6302 mcast_opt = B_FALSE;
6303 /* FALLTHRU */
6304 case MCAST_JOIN_GROUP:
6305 fmode = MODE_IS_EXCLUDE;
6306 optfn = ip_opt_add_group;
6307 break;

6309 case IP_DROP_MEMBERSHIP:
6310 case IPV6_LEAVE_GROUP:
6311 mcast_opt = B_FALSE;
6312 /* FALLTHRU */
6313 case MCAST_LEAVE_GROUP:
6314 fmode = MODE_IS_INCLUDE;
6315 optfn = ip_opt_delete_group;
6316 break;
6317 default:
6318 ASSERT(0);
6319 }

6321 if (mcast_opt) {
6322 struct sockaddr_in *sin;
6323 struct sockaddr_in6 *sin6;

6325 greqp = (struct group_req *)i1;
6326 if (greqp->gr_group.ss_family == AF_INET) {
6327 sin = (struct sockaddr_in *)&(greqp->gr_group);
6328 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6329 } else {
6330 if (!inet6)
6331 return (EINVAL); /* Not on INET socket */

new/usr/src/uts/common/inet/ip/ip.c 97

6333 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6334 v6group = sin6->sin6_addr;
6335 }
6336 ifaddr = INADDR_ANY;
6337 ifindex = greqp->gr_interface;
6338 } else if (inet6) {
6339 v6_mreqp = (struct ipv6_mreq *)i1;
6340 v6group = v6_mreqp->ipv6mr_multiaddr;
6341 ifaddr = INADDR_ANY;
6342 ifindex = v6_mreqp->ipv6mr_interface;
6343 } else {
6344 v4_mreqp = (struct ip_mreq *)i1;
6345 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6346 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6347 ifindex = 0;
6348 }

6350 /*
6351 * In the multirouting case, we need to replicate
6352 * the request on all interfaces that will take part
6353 * in replication. We do so because multirouting is
6354 * reflective, thus we will probably receive multi-
6355 * casts on those interfaces.
6356 * The ip_multirt_apply_membership() succeeds if
6357 * the operation succeeds on at least one interface.
6358 */
6359 if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6360 ipaddr_t group;

6362 IN6_V4MAPPED_TO_IPADDR(&v6group, group);

6364 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6365 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6366 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6367 } else {
6368 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6369 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6370 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6371 }
6372 if (ire != NULL) {
6373 if (ire->ire_flags & RTF_MULTIRT) {
6374 error = ip_multirt_apply_membership(optfn, ire, connp,
6375 checkonly, &v6group, fmode, &ipv6_all_zeros);
6376 done = B_TRUE;
6377 }
6378 ire_refrele(ire);
6379 }

6381 if (!done) {
6382 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6383 fmode, &ipv6_all_zeros);
6384 }
6385 return (error);
6386 }

6388 /*
6389 * Set socket options for joining and leaving multicast groups
6390 * for specific sources.
6391 * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6392 * The caller has already check that the option name is consistent with
6393 * the address family of the socket.
6394 */
6395 int
6396 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6397 uchar_t *invalp, boolean_t inet6, boolean_t checkonly)

new/usr/src/uts/common/inet/ip/ip.c 98

6398 {
6399 int *i1 = (int *)invalp;
6400 int error = 0;
6401 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6402 struct ip_mreq_source *imreqp;
6403 struct group_source_req *gsreqp;
6404 in6_addr_t v6group, v6src;
6405 uint32_t ifindex;
6406 ipaddr_t ifaddr;
6407 boolean_t mcast_opt = B_TRUE;
6408 mcast_record_t fmode;
6409 ire_t *ire;
6410 boolean_t done = B_FALSE;
6411 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6412 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);

6414 switch (name) {
6415 case IP_BLOCK_SOURCE:
6416 mcast_opt = B_FALSE;
6417 /* FALLTHRU */
6418 case MCAST_BLOCK_SOURCE:
6419 fmode = MODE_IS_EXCLUDE;
6420 optfn = ip_opt_add_group;
6421 break;

6423 case IP_UNBLOCK_SOURCE:
6424 mcast_opt = B_FALSE;
6425 /* FALLTHRU */
6426 case MCAST_UNBLOCK_SOURCE:
6427 fmode = MODE_IS_EXCLUDE;
6428 optfn = ip_opt_delete_group;
6429 break;

6431 case IP_ADD_SOURCE_MEMBERSHIP:
6432 mcast_opt = B_FALSE;
6433 /* FALLTHRU */
6434 case MCAST_JOIN_SOURCE_GROUP:
6435 fmode = MODE_IS_INCLUDE;
6436 optfn = ip_opt_add_group;
6437 break;

6439 case IP_DROP_SOURCE_MEMBERSHIP:
6440 mcast_opt = B_FALSE;
6441 /* FALLTHRU */
6442 case MCAST_LEAVE_SOURCE_GROUP:
6443 fmode = MODE_IS_INCLUDE;
6444 optfn = ip_opt_delete_group;
6445 break;
6446 default:
6447 ASSERT(0);
6448 }

6450 if (mcast_opt) {
6451 gsreqp = (struct group_source_req *)i1;
6452 ifindex = gsreqp->gsr_interface;
6453 if (gsreqp->gsr_group.ss_family == AF_INET) {
6454 struct sockaddr_in *s;
6455 s = (struct sockaddr_in *)&gsreqp->gsr_group;
6456 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6457 s = (struct sockaddr_in *)&gsreqp->gsr_source;
6458 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6459 } else {
6460 struct sockaddr_in6 *s6;

6462 if (!inet6)
6463 return (EINVAL); /* Not on INET socket */

new/usr/src/uts/common/inet/ip/ip.c 99

6465 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6466 v6group = s6->sin6_addr;
6467 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6468 v6src = s6->sin6_addr;
6469 }
6470 ifaddr = INADDR_ANY;
6471 } else {
6472 imreqp = (struct ip_mreq_source *)i1;
6473 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6474 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6475 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6476 ifindex = 0;
6477 }

6479 /*
6480 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6481 */
6482 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6483 v6src = ipv6_all_zeros;

6485 /*
6486 * In the multirouting case, we need to replicate
6487 * the request as noted in the mcast cases above.
6488 */
6489 if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6490 ipaddr_t group;

6492 IN6_V4MAPPED_TO_IPADDR(&v6group, group);

6494 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6495 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6496 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6497 } else {
6498 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6499 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6500 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6501 }
6502 if (ire != NULL) {
6503 if (ire->ire_flags & RTF_MULTIRT) {
6504 error = ip_multirt_apply_membership(optfn, ire, connp,
6505 checkonly, &v6group, fmode, &v6src);
6506 done = B_TRUE;
6507 }
6508 ire_refrele(ire);
6509 }
6510 if (!done) {
6511 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6512 fmode, &v6src);
6513 }
6514 return (error);
6515 }

6517 /*
6518 * Given a destination address and a pointer to where to put the information
6519 * this routine fills in the mtuinfo.
6520 * The socket must be connected.
6521 * For sctp conn_faddr is the primary address.
6522 */
6523 int
6524 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6525 {
6526 uint32_t pmtu = IP_MAXPACKET;
6527 uint_t scopeid;

6529 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))

new/usr/src/uts/common/inet/ip/ip.c 100

6530 return (-1);

6532 /* In case we never sent or called ip_set_destination_v4/v6 */
6533 if (ixa->ixa_ire != NULL)
6534 pmtu = ip_get_pmtu(ixa);

6536 if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6537 scopeid = ixa->ixa_scopeid;
6538 else
6539 scopeid = 0;

6541 bzero(mtuinfo, sizeof (*mtuinfo));
6542 mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6543 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6544 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6545 mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6546 mtuinfo->ip6m_mtu = pmtu;

6548 return (sizeof (struct ip6_mtuinfo));
6549 }

6551 /*
6552 * When the src multihoming is changed from weak to [strong, preferred]
6553 * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6554 * and identify routes that were created by user-applications in the
6555 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6556 * currently defined. These routes are then ’rebound’, i.e., their ire_ill
6557 * is selected by finding an interface route for the gateway.
6558 */
6559 /* ARGSUSED */
6560 void
6561 ip_ire_rebind_walker(ire_t *ire, void *notused)
6562 {
6563 if (!ire->ire_unbound || ire->ire_ill != NULL)
6564 return;
6565 ire_rebind(ire);
6566 ire_delete(ire);
6567 }

6569 /*
6570 * When the src multihoming is changed from [strong, preferred] to weak,
6571 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6572 * set any entries that were created by user-applications in the unbound state
6573 * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6574 */
6575 /* ARGSUSED */
6576 void
6577 ip_ire_unbind_walker(ire_t *ire, void *notused)
6578 {
6579 ire_t *new_ire;

6581 if (!ire->ire_unbound || ire->ire_ill == NULL)
6582 return;
6583 if (ire->ire_ipversion == IPV6_VERSION) {
6584 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6585 &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6586 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6587 } else {
6588 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6589 (uchar_t *)&ire->ire_mask,
6590 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6591 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6592 }
6593 if (new_ire == NULL)
6594 return;
6595 new_ire->ire_unbound = B_TRUE;

new/usr/src/uts/common/inet/ip/ip.c 101

6596 /*
6597 * The bound ire must first be deleted so that we don’t return
6598 * the existing one on the attempt to add the unbound new_ire.
6599 */
6600 ire_delete(ire);
6601 new_ire = ire_add(new_ire);
6602 if (new_ire != NULL)
6603 ire_refrele(new_ire);
6604 }

6606 /*
6607 * When the settings of ip*_strict_src_multihoming tunables are changed,
6608 * all cached routes need to be recomputed. This recomputation needs to be
6609 * done when going from weaker to stronger modes so that the cached ire
6610 * for the connection does not violate the current ip*_strict_src_multihoming
6611 * setting. It also needs to be done when going from stronger to weaker modes,
6612 * so that we fall back to matching on the longest-matching-route (as opposed
6613 * to a shorter match that may have been selected in the strong mode
6614 * to satisfy src_multihoming settings).
6615 *
6616 * The cached ixa_ire entires for all conn_t entries are marked as
6617 * "verify" so that they will be recomputed for the next packet.
6618 */
6619 void
6620 conn_ire_revalidate(conn_t *connp, void *arg)
6621 {
6622 boolean_t isv6 = (boolean_t)arg;

6624 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6625 (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6626 return;
6627 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6628 }

6630 /*
6631 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6632 * When an ipf is passed here for the first time, if
6633 * we already have in-order fragments on the queue, we convert from the fast-
6634 * path reassembly scheme to the hard-case scheme. From then on, additional
6635 * fragments are reassembled here. We keep track of the start and end offsets
6636 * of each piece, and the number of holes in the chain. When the hole count
6637 * goes to zero, we are done!
6638 *
6639 * The ipf_count will be updated to account for any mblk(s) added (pointed to
6640 * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6641 * ipfb_count and ill_frag_count by the difference of ipf_count before and
6642 * after the call to ip_reassemble().
6643 */
6644 int
6645 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6646 size_t msg_len)
6647 {
6648 uint_t end;
6649 mblk_t *next_mp;
6650 mblk_t *mp1;
6651 uint_t offset;
6652 boolean_t incr_dups = B_TRUE;
6653 boolean_t offset_zero_seen = B_FALSE;
6654 boolean_t pkt_boundary_checked = B_FALSE;

6656 /* If start == 0 then ipf_nf_hdr_len has to be set. */
6657 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);

6659 /* Add in byte count */
6660 ipf->ipf_count += msg_len;
6661 if (ipf->ipf_end) {

new/usr/src/uts/common/inet/ip/ip.c 102

6662 /*
6663 * We were part way through in-order reassembly, but now there
6664 * is a hole. We walk through messages already queued, and
6665 * mark them for hard case reassembly. We know that up till
6666 * now they were in order starting from offset zero.
6667 */
6668 offset = 0;
6669 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6670 IP_REASS_SET_START(mp1, offset);
6671 if (offset == 0) {
6672 ASSERT(ipf->ipf_nf_hdr_len != 0);
6673 offset = -ipf->ipf_nf_hdr_len;
6674 }
6675 offset += mp1->b_wptr - mp1->b_rptr;
6676 IP_REASS_SET_END(mp1, offset);
6677 }
6678 /* One hole at the end. */
6679 ipf->ipf_hole_cnt = 1;
6680 /* Brand it as a hard case, forever. */
6681 ipf->ipf_end = 0;
6682 }
6683 /* Walk through all the new pieces. */
6684 do {
6685 end = start + (mp->b_wptr - mp->b_rptr);
6686 /*
6687 * If start is 0, decrease ’end’ only for the first mblk of
6688 * the fragment. Otherwise ’end’ can get wrong value in the
6689 * second pass of the loop if first mblk is exactly the
6690 * size of ipf_nf_hdr_len.
6691 */
6692 if (start == 0 && !offset_zero_seen) {
6693 /* First segment */
6694 ASSERT(ipf->ipf_nf_hdr_len != 0);
6695 end -= ipf->ipf_nf_hdr_len;
6696 offset_zero_seen = B_TRUE;
6697 }
6698 next_mp = mp->b_cont;
6699 /*
6700 * We are checking to see if there is any interesing data
6701 * to process. If there isn’t and the mblk isn’t the
6702 * one which carries the unfragmentable header then we
6703 * drop it. It’s possible to have just the unfragmentable
6704 * header come through without any data. That needs to be
6705 * saved.
6706 *
6707 * If the assert at the top of this function holds then the
6708 * term "ipf->ipf_nf_hdr_len != 0" isn’t needed. This code
6709 * is infrequently traveled enough that the test is left in
6710 * to protect against future code changes which break that
6711 * invariant.
6712 */
6713 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6714 /* Empty. Blast it. */
6715 IP_REASS_SET_START(mp, 0);
6716 IP_REASS_SET_END(mp, 0);
6717 /*
6718 * If the ipf points to the mblk we are about to free,
6719 * update ipf to point to the next mblk (or NULL
6720 * if none).
6721 */
6722 if (ipf->ipf_mp->b_cont == mp)
6723 ipf->ipf_mp->b_cont = next_mp;
6724 freeb(mp);
6725 continue;
6726 }
6727 mp->b_cont = NULL;

new/usr/src/uts/common/inet/ip/ip.c 103

6728 IP_REASS_SET_START(mp, start);
6729 IP_REASS_SET_END(mp, end);
6730 if (!ipf->ipf_tail_mp) {
6731 ipf->ipf_tail_mp = mp;
6732 ipf->ipf_mp->b_cont = mp;
6733 if (start == 0 || !more) {
6734 ipf->ipf_hole_cnt = 1;
6735 /*
6736 * if the first fragment comes in more than one
6737 * mblk, this loop will be executed for each
6738 * mblk. Need to adjust hole count so exiting
6739 * this routine will leave hole count at 1.
6740 */
6741 if (next_mp)
6742 ipf->ipf_hole_cnt++;
6743 } else
6744 ipf->ipf_hole_cnt = 2;
6745 continue;
6746 } else if (ipf->ipf_last_frag_seen && !more &&
6747 !pkt_boundary_checked) {
6748 /*
6749 * We check datagram boundary only if this fragment
6750 * claims to be the last fragment and we have seen a
6751 * last fragment in the past too. We do this only
6752 * once for a given fragment.
6753 *
6754 * start cannot be 0 here as fragments with start=0
6755 * and MF=0 gets handled as a complete packet. These
6756 * fragments should not reach here.
6757 */

6759 if (start + msgdsize(mp) !=
6760 IP_REASS_END(ipf->ipf_tail_mp)) {
6761 /*
6762 * We have two fragments both of which claim
6763 * to be the last fragment but gives conflicting
6764 * information about the whole datagram size.
6765 * Something fishy is going on. Drop the
6766 * fragment and free up the reassembly list.
6767 */
6768 return (IP_REASS_FAILED);
6769 }

6771 /*
6772 * We shouldn’t come to this code block again for this
6773 * particular fragment.
6774 */
6775 pkt_boundary_checked = B_TRUE;
6776 }

6778 /* New stuff at or beyond tail? */
6779 offset = IP_REASS_END(ipf->ipf_tail_mp);
6780 if (start >= offset) {
6781 if (ipf->ipf_last_frag_seen) {
6782 /* current fragment is beyond last fragment */
6783 return (IP_REASS_FAILED);
6784 }
6785 /* Link it on end. */
6786 ipf->ipf_tail_mp->b_cont = mp;
6787 ipf->ipf_tail_mp = mp;
6788 if (more) {
6789 if (start != offset)
6790 ipf->ipf_hole_cnt++;
6791 } else if (start == offset && next_mp == NULL)
6792 ipf->ipf_hole_cnt--;
6793 continue;

new/usr/src/uts/common/inet/ip/ip.c 104

6794 }
6795 mp1 = ipf->ipf_mp->b_cont;
6796 offset = IP_REASS_START(mp1);
6797 /* New stuff at the front? */
6798 if (start < offset) {
6799 if (start == 0) {
6800 if (end >= offset) {
6801 /* Nailed the hole at the begining. */
6802 ipf->ipf_hole_cnt--;
6803 }
6804 } else if (end < offset) {
6805 /*
6806 * A hole, stuff, and a hole where there used
6807 * to be just a hole.
6808 */
6809 ipf->ipf_hole_cnt++;
6810 }
6811 mp->b_cont = mp1;
6812 /* Check for overlap. */
6813 while (end > offset) {
6814 if (end < IP_REASS_END(mp1)) {
6815 mp->b_wptr -= end - offset;
6816 IP_REASS_SET_END(mp, offset);
6817 BUMP_MIB(ill->ill_ip_mib,
6818 ipIfStatsReasmPartDups);
6819 break;
6820 }
6821 /* Did we cover another hole? */
6822 if ((mp1->b_cont &&
6823 IP_REASS_END(mp1) !=
6824 IP_REASS_START(mp1->b_cont) &&
6825 end >= IP_REASS_START(mp1->b_cont)) ||
6826 (!ipf->ipf_last_frag_seen && !more)) {
6827 ipf->ipf_hole_cnt--;
6828 }
6829 /* Clip out mp1. */
6830 if ((mp->b_cont = mp1->b_cont) == NULL) {
6831 /*
6832 * After clipping out mp1, this guy
6833 * is now hanging off the end.
6834 */
6835 ipf->ipf_tail_mp = mp;
6836 }
6837 IP_REASS_SET_START(mp1, 0);
6838 IP_REASS_SET_END(mp1, 0);
6839 /* Subtract byte count */
6840 ipf->ipf_count -= mp1->b_datap->db_lim -
6841 mp1->b_datap->db_base;
6842 freeb(mp1);
6843 BUMP_MIB(ill->ill_ip_mib,
6844 ipIfStatsReasmPartDups);
6845 mp1 = mp->b_cont;
6846 if (!mp1)
6847 break;
6848 offset = IP_REASS_START(mp1);
6849 }
6850 ipf->ipf_mp->b_cont = mp;
6851 continue;
6852 }
6853 /*
6854 * The new piece starts somewhere between the start of the head
6855 * and before the end of the tail.
6856 */
6857 for (; mp1; mp1 = mp1->b_cont) {
6858 offset = IP_REASS_END(mp1);
6859 if (start < offset) {

new/usr/src/uts/common/inet/ip/ip.c 105

6860 if (end <= offset) {
6861 /* Nothing new. */
6862 IP_REASS_SET_START(mp, 0);
6863 IP_REASS_SET_END(mp, 0);
6864 /* Subtract byte count */
6865 ipf->ipf_count -= mp->b_datap->db_lim -
6866 mp->b_datap->db_base;
6867 if (incr_dups) {
6868 ipf->ipf_num_dups++;
6869 incr_dups = B_FALSE;
6870 }
6871 freeb(mp);
6872 BUMP_MIB(ill->ill_ip_mib,
6873 ipIfStatsReasmDuplicates);
6874 break;
6875 }
6876 /*
6877 * Trim redundant stuff off beginning of new
6878 * piece.
6879 */
6880 IP_REASS_SET_START(mp, offset);
6881 mp->b_rptr += offset - start;
6882 BUMP_MIB(ill->ill_ip_mib,
6883 ipIfStatsReasmPartDups);
6884 start = offset;
6885 if (!mp1->b_cont) {
6886 /*
6887 * After trimming, this guy is now
6888 * hanging off the end.
6889 */
6890 mp1->b_cont = mp;
6891 ipf->ipf_tail_mp = mp;
6892 if (!more) {
6893 ipf->ipf_hole_cnt--;
6894 }
6895 break;
6896 }
6897 }
6898 if (start >= IP_REASS_START(mp1->b_cont))
6899 continue;
6900 /* Fill a hole */
6901 if (start > offset)
6902 ipf->ipf_hole_cnt++;
6903 mp->b_cont = mp1->b_cont;
6904 mp1->b_cont = mp;
6905 mp1 = mp->b_cont;
6906 offset = IP_REASS_START(mp1);
6907 if (end >= offset) {
6908 ipf->ipf_hole_cnt--;
6909 /* Check for overlap. */
6910 while (end > offset) {
6911 if (end < IP_REASS_END(mp1)) {
6912 mp->b_wptr -= end - offset;
6913 IP_REASS_SET_END(mp, offset);
6914 /*
6915 * TODO we might bump
6916 * this up twice if there is
6917 * overlap at both ends.
6918 */
6919 BUMP_MIB(ill->ill_ip_mib,
6920 ipIfStatsReasmPartDups);
6921 break;
6922 }
6923 /* Did we cover another hole? */
6924 if ((mp1->b_cont &&
6925 IP_REASS_END(mp1)

new/usr/src/uts/common/inet/ip/ip.c 106

6926 != IP_REASS_START(mp1->b_cont) &&
6927 end >=
6928 IP_REASS_START(mp1->b_cont)) ||
6929 (!ipf->ipf_last_frag_seen &&
6930 !more)) {
6931 ipf->ipf_hole_cnt--;
6932 }
6933 /* Clip out mp1. */
6934 if ((mp->b_cont = mp1->b_cont) ==
6935 NULL) {
6936 /*
6937 * After clipping out mp1,
6938 * this guy is now hanging
6939 * off the end.
6940 */
6941 ipf->ipf_tail_mp = mp;
6942 }
6943 IP_REASS_SET_START(mp1, 0);
6944 IP_REASS_SET_END(mp1, 0);
6945 /* Subtract byte count */
6946 ipf->ipf_count -=
6947 mp1->b_datap->db_lim -
6948 mp1->b_datap->db_base;
6949 freeb(mp1);
6950 BUMP_MIB(ill->ill_ip_mib,
6951 ipIfStatsReasmPartDups);
6952 mp1 = mp->b_cont;
6953 if (!mp1)
6954 break;
6955 offset = IP_REASS_START(mp1);
6956 }
6957 }
6958 break;
6959 }
6960 } while (start = end, mp = next_mp);

6962 /* Fragment just processed could be the last one. Remember this fact */
6963 if (!more)
6964 ipf->ipf_last_frag_seen = B_TRUE;

6966 /* Still got holes? */
6967 if (ipf->ipf_hole_cnt)
6968 return (IP_REASS_PARTIAL);
6969 /* Clean up overloaded fields to avoid upstream disasters. */
6970 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6971 IP_REASS_SET_START(mp1, 0);
6972 IP_REASS_SET_END(mp1, 0);
6973 }
6974 return (IP_REASS_COMPLETE);
6975 }

6977 /*
6978 * Fragmentation reassembly. Each ILL has a hash table for
6979 * queuing packets undergoing reassembly for all IPIFs
6980 * associated with the ILL. The hash is based on the packet
6981 * IP ident field. The ILL frag hash table was allocated
6982 * as a timer block at the time the ILL was created. Whenever
6983 * there is anything on the reassembly queue, the timer will
6984 * be running. Returns the reassembled packet if reassembly completes.
6985 */
6986 mblk_t *
6987 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
6988 {
6989 uint32_t frag_offset_flags;
6990 mblk_t *t_mp;
6991 ipaddr_t dst;

new/usr/src/uts/common/inet/ip/ip.c 107

6992 uint8_t proto = ipha->ipha_protocol;
6993 uint32_t sum_val;
6994 uint16_t sum_flags;
6995 ipf_t *ipf;
6996 ipf_t **ipfp;
6997 ipfb_t *ipfb;
6998 uint16_t ident;
6999 uint32_t offset;
7000 ipaddr_t src;
7001 uint_t hdr_length;
7002 uint32_t end;
7003 mblk_t *mp1;
7004 mblk_t *tail_mp;
7005 size_t count;
7006 size_t msg_len;
7007 uint8_t ecn_info = 0;
7008 uint32_t packet_size;
7009 boolean_t pruned = B_FALSE;
7010 ill_t *ill = ira->ira_ill;
7011 ip_stack_t *ipst = ill->ill_ipst;

7013 /*
7014 * Drop the fragmented as early as possible, if
7015 * we don’t have resource(s) to re-assemble.
7016 */
7017 if (ipst->ips_ip_reass_queue_bytes == 0) {
7018 freemsg(mp);
7019 return (NULL);
7020 }

7022 /* Check for fragmentation offset; return if there’s none */
7023 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7024 (IPH_MF | IPH_OFFSET)) == 0)
7025 return (mp);

7027 /*
7028 * We utilize hardware computed checksum info only for UDP since
7029 * IP fragmentation is a normal occurrence for the protocol. In
7030 * addition, checksum offload support for IP fragments carrying
7031 * UDP payload is commonly implemented across network adapters.
7032 */
7033 ASSERT(ira->ira_rill != NULL);
7034 if (proto == IPPROTO_UDP && dohwcksum &&
7035 ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7036 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7037 mblk_t *mp1 = mp->b_cont;
7038 int32_t len;

7040 /* Record checksum information from the packet */
7041 sum_val = (uint32_t)DB_CKSUM16(mp);
7042 sum_flags = DB_CKSUMFLAGS(mp);

7044 /* IP payload offset from beginning of mblk */
7045 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;

7047 if ((sum_flags & HCK_PARTIALCKSUM) &&
7048 (mp1 == NULL || mp1->b_cont == NULL) &&
7049 offset >= DB_CKSUMSTART(mp) &&
7050 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7051 uint32_t adj;
7052 /*
7053 * Partial checksum has been calculated by hardware
7054 * and attached to the packet; in addition, any
7055 * prepended extraneous data is even byte aligned.
7056 * If any such data exists, we adjust the checksum;
7057 * this would also handle any postpended data.

new/usr/src/uts/common/inet/ip/ip.c 108

7058 */
7059 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7060 mp, mp1, len, adj);

7062 /* One’s complement subtract extraneous checksum */
7063 if (adj >= sum_val)
7064 sum_val = ~(adj - sum_val) & 0xFFFF;
7065 else
7066 sum_val -= adj;
7067 }
7068 } else {
7069 sum_val = 0;
7070 sum_flags = 0;
7071 }

7073 /* Clear hardware checksumming flag */
7074 DB_CKSUMFLAGS(mp) = 0;

7076 ident = ipha->ipha_ident;
7077 offset = (frag_offset_flags << 3) & 0xFFFF;
7078 src = ipha->ipha_src;
7079 dst = ipha->ipha_dst;
7080 hdr_length = IPH_HDR_LENGTH(ipha);
7081 end = ntohs(ipha->ipha_length) - hdr_length;

7083 /* If end == 0 then we have a packet with no data, so just free it */
7084 if (end == 0) {
7085 freemsg(mp);
7086 return (NULL);
7087 }

7089 /* Record the ECN field info. */
7090 ecn_info = (ipha->ipha_type_of_service & 0x3);
7091 if (offset != 0) {
7092 /*
7093 * If this isn’t the first piece, strip the header, and
7094 * add the offset to the end value.
7095 */
7096 mp->b_rptr += hdr_length;
7097 end += offset;
7098 }

7100 /* Handle vnic loopback of fragments */
7101 if (mp->b_datap->db_ref > 2)
7102 msg_len = 0;
7103 else
7104 msg_len = MBLKSIZE(mp);

7106 tail_mp = mp;
7107 while (tail_mp->b_cont != NULL) {
7108 tail_mp = tail_mp->b_cont;
7109 if (tail_mp->b_datap->db_ref <= 2)
7110 msg_len += MBLKSIZE(tail_mp);
7111 }

7113 /* If the reassembly list for this ILL will get too big, prune it */
7114 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7115 ipst->ips_ip_reass_queue_bytes) {
7116 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7117 uint_t, ill->ill_frag_count,
7118 uint_t, ipst->ips_ip_reass_queue_bytes);
7119 ill_frag_prune(ill,
7120 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7121 (ipst->ips_ip_reass_queue_bytes - msg_len));
7122 pruned = B_TRUE;
7123 }

new/usr/src/uts/common/inet/ip/ip.c 109

7125 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7126 mutex_enter(&ipfb->ipfb_lock);

7128 ipfp = &ipfb->ipfb_ipf;
7129 /* Try to find an existing fragment queue for this packet. */
7130 for (;;) {
7131 ipf = ipfp[0];
7132 if (ipf != NULL) {
7133 /*
7134 * It has to match on ident and src/dst address.
7135 */
7136 if (ipf->ipf_ident == ident &&
7137 ipf->ipf_src == src &&
7138 ipf->ipf_dst == dst &&
7139 ipf->ipf_protocol == proto) {
7140 /*
7141 * If we have received too many
7142 * duplicate fragments for this packet
7143 * free it.
7144 */
7145 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7146 ill_frag_free_pkts(ill, ipfb, ipf, 1);
7147 freemsg(mp);
7148 mutex_exit(&ipfb->ipfb_lock);
7149 return (NULL);
7150 }
7151 /* Found it. */
7152 break;
7153 }
7154 ipfp = &ipf->ipf_hash_next;
7155 continue;
7156 }

7158 /*
7159 * If we pruned the list, do we want to store this new
7160 * fragment?. We apply an optimization here based on the
7161 * fact that most fragments will be received in order.
7162 * So if the offset of this incoming fragment is zero,
7163 * it is the first fragment of a new packet. We will
7164 * keep it. Otherwise drop the fragment, as we have
7165 * probably pruned the packet already (since the
7166 * packet cannot be found).
7167 */
7168 if (pruned && offset != 0) {
7169 mutex_exit(&ipfb->ipfb_lock);
7170 freemsg(mp);
7171 return (NULL);
7172 }

7174 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) {
7175 /*
7176 * Too many fragmented packets in this hash
7177 * bucket. Free the oldest.
7178 */
7179 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7180 }

7182 /* New guy. Allocate a frag message. */
7183 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7184 if (mp1 == NULL) {
7185 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7186 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7187 freemsg(mp);
7188 reass_done:
7189 mutex_exit(&ipfb->ipfb_lock);

new/usr/src/uts/common/inet/ip/ip.c 110

7190 return (NULL);
7191 }

7193 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7194 mp1->b_cont = mp;

7196 /* Initialize the fragment header. */
7197 ipf = (ipf_t *)mp1->b_rptr;
7198 ipf->ipf_mp = mp1;
7199 ipf->ipf_ptphn = ipfp;
7200 ipfp[0] = ipf;
7201 ipf->ipf_hash_next = NULL;
7202 ipf->ipf_ident = ident;
7203 ipf->ipf_protocol = proto;
7204 ipf->ipf_src = src;
7205 ipf->ipf_dst = dst;
7206 ipf->ipf_nf_hdr_len = 0;
7207 /* Record reassembly start time. */
7208 ipf->ipf_timestamp = gethrestime_sec();
7209 /* Record ipf generation and account for frag header */
7210 ipf->ipf_gen = ill->ill_ipf_gen++;
7211 ipf->ipf_count = MBLKSIZE(mp1);
7212 ipf->ipf_last_frag_seen = B_FALSE;
7213 ipf->ipf_ecn = ecn_info;
7214 ipf->ipf_num_dups = 0;
7215 ipfb->ipfb_frag_pkts++;
7216 ipf->ipf_checksum = 0;
7217 ipf->ipf_checksum_flags = 0;

7219 /* Store checksum value in fragment header */
7220 if (sum_flags != 0) {
7221 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7222 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7223 ipf->ipf_checksum = sum_val;
7224 ipf->ipf_checksum_flags = sum_flags;
7225 }

7227 /*
7228 * We handle reassembly two ways. In the easy case,
7229 * where all the fragments show up in order, we do
7230 * minimal bookkeeping, and just clip new pieces on
7231 * the end. If we ever see a hole, then we go off
7232 * to ip_reassemble which has to mark the pieces and
7233 * keep track of the number of holes, etc. Obviously,
7234 * the point of having both mechanisms is so we can
7235 * handle the easy case as efficiently as possible.
7236 */
7237 if (offset == 0) {
7238 /* Easy case, in-order reassembly so far. */
7239 ipf->ipf_count += msg_len;
7240 ipf->ipf_tail_mp = tail_mp;
7241 /*
7242 * Keep track of next expected offset in
7243 * ipf_end.
7244 */
7245 ipf->ipf_end = end;
7246 ipf->ipf_nf_hdr_len = hdr_length;
7247 } else {
7248 /* Hard case, hole at the beginning. */
7249 ipf->ipf_tail_mp = NULL;
7250 /*
7251 * ipf_end == 0 means that we have given up
7252 * on easy reassembly.
7253 */
7254 ipf->ipf_end = 0;

new/usr/src/uts/common/inet/ip/ip.c 111

7256 /* Forget checksum offload from now on */
7257 ipf->ipf_checksum_flags = 0;

7259 /*
7260 * ipf_hole_cnt is set by ip_reassemble.
7261 * ipf_count is updated by ip_reassemble.
7262 * No need to check for return value here
7263 * as we don’t expect reassembly to complete
7264 * or fail for the first fragment itself.
7265 */
7266 (void) ip_reassemble(mp, ipf,
7267 (frag_offset_flags & IPH_OFFSET) << 3,
7268 (frag_offset_flags & IPH_MF), ill, msg_len);
7269 }
7270 /* Update per ipfb and ill byte counts */
7271 ipfb->ipfb_count += ipf->ipf_count;
7272 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7273 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7274 /* If the frag timer wasn’t already going, start it. */
7275 mutex_enter(&ill->ill_lock);
7276 ill_frag_timer_start(ill);
7277 mutex_exit(&ill->ill_lock);
7278 goto reass_done;
7279 }

7281 /*
7282 * If the packet’s flag has changed (it could be coming up
7283 * from an interface different than the previous, therefore
7284 * possibly different checksum capability), then forget about
7285 * any stored checksum states. Otherwise add the value to
7286 * the existing one stored in the fragment header.
7287 */
7288 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7289 sum_val += ipf->ipf_checksum;
7290 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7291 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7292 ipf->ipf_checksum = sum_val;
7293 } else if (ipf->ipf_checksum_flags != 0) {
7294 /* Forget checksum offload from now on */
7295 ipf->ipf_checksum_flags = 0;
7296 }

7298 /*
7299 * We have a new piece of a datagram which is already being
7300 * reassembled. Update the ECN info if all IP fragments
7301 * are ECN capable. If there is one which is not, clear
7302 * all the info. If there is at least one which has CE
7303 * code point, IP needs to report that up to transport.
7304 */
7305 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7306 if (ecn_info == IPH_ECN_CE)
7307 ipf->ipf_ecn = IPH_ECN_CE;
7308 } else {
7309 ipf->ipf_ecn = IPH_ECN_NECT;
7310 }
7311 if (offset && ipf->ipf_end == offset) {
7312 /* The new fragment fits at the end */
7313 ipf->ipf_tail_mp->b_cont = mp;
7314 /* Update the byte count */
7315 ipf->ipf_count += msg_len;
7316 /* Update per ipfb and ill byte counts */
7317 ipfb->ipfb_count += msg_len;
7318 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7319 atomic_add_32(&ill->ill_frag_count, msg_len);
7320 if (frag_offset_flags & IPH_MF) {
7321 /* More to come. */

new/usr/src/uts/common/inet/ip/ip.c 112

7322 ipf->ipf_end = end;
7323 ipf->ipf_tail_mp = tail_mp;
7324 goto reass_done;
7325 }
7326 } else {
7327 /* Go do the hard cases. */
7328 int ret;

7330 if (offset == 0)
7331 ipf->ipf_nf_hdr_len = hdr_length;

7333 /* Save current byte count */
7334 count = ipf->ipf_count;
7335 ret = ip_reassemble(mp, ipf,
7336 (frag_offset_flags & IPH_OFFSET) << 3,
7337 (frag_offset_flags & IPH_MF), ill, msg_len);
7338 /* Count of bytes added and subtracted (freeb()ed) */
7339 count = ipf->ipf_count - count;
7340 if (count) {
7341 /* Update per ipfb and ill byte counts */
7342 ipfb->ipfb_count += count;
7343 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7344 atomic_add_32(&ill->ill_frag_count, count);
7345 }
7346 if (ret == IP_REASS_PARTIAL) {
7347 goto reass_done;
7348 } else if (ret == IP_REASS_FAILED) {
7349 /* Reassembly failed. Free up all resources */
7350 ill_frag_free_pkts(ill, ipfb, ipf, 1);
7351 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7352 IP_REASS_SET_START(t_mp, 0);
7353 IP_REASS_SET_END(t_mp, 0);
7354 }
7355 freemsg(mp);
7356 goto reass_done;
7357 }
7358 /* We will reach here iff ’ret’ is IP_REASS_COMPLETE */
7359 }
7360 /*
7361 * We have completed reassembly. Unhook the frag header from
7362 * the reassembly list.
7363 *
7364 * Before we free the frag header, record the ECN info
7365 * to report back to the transport.
7366 */
7367 ecn_info = ipf->ipf_ecn;
7368 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7369 ipfp = ipf->ipf_ptphn;

7371 /* We need to supply these to caller */
7372 if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7373 sum_val = ipf->ipf_checksum;
7374 else
7375 sum_val = 0;

7377 mp1 = ipf->ipf_mp;
7378 count = ipf->ipf_count;
7379 ipf = ipf->ipf_hash_next;
7380 if (ipf != NULL)
7381 ipf->ipf_ptphn = ipfp;
7382 ipfp[0] = ipf;
7383 atomic_add_32(&ill->ill_frag_count, -count);
7384 ASSERT(ipfb->ipfb_count >= count);
7385 ipfb->ipfb_count -= count;
7386 ipfb->ipfb_frag_pkts--;
7387 mutex_exit(&ipfb->ipfb_lock);

new/usr/src/uts/common/inet/ip/ip.c 113

7388 /* Ditch the frag header. */
7389 mp = mp1->b_cont;

7391 freeb(mp1);

7393 /* Restore original IP length in header. */
7394 packet_size = (uint32_t)msgdsize(mp);
7395 if (packet_size > IP_MAXPACKET) {
7396 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7397 ip_drop_input("Reassembled packet too large", mp, ill);
7398 freemsg(mp);
7399 return (NULL);
7400 }

7402 if (DB_REF(mp) > 1) {
7403 mblk_t *mp2 = copymsg(mp);

7405 if (mp2 == NULL) {
7406 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7407 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7408 freemsg(mp);
7409 return (NULL);
7410 }
7411 freemsg(mp);
7412 mp = mp2;
7413 }
7414 ipha = (ipha_t *)mp->b_rptr;

7416 ipha->ipha_length = htons((uint16_t)packet_size);
7417 /* We’re now complete, zip the frag state */
7418 ipha->ipha_fragment_offset_and_flags = 0;
7419 /* Record the ECN info. */
7420 ipha->ipha_type_of_service &= 0xFC;
7421 ipha->ipha_type_of_service |= ecn_info;

7423 /* Update the receive attributes */
7424 ira->ira_pktlen = packet_size;
7425 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);

7427 /* Reassembly is successful; set checksum information in packet */
7428 DB_CKSUM16(mp) = (uint16_t)sum_val;
7429 DB_CKSUMFLAGS(mp) = sum_flags;
7430 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;

7432 return (mp);
7433 }

7435 /*
7436 * Pullup function that should be used for IP input in order to
7437 * ensure we do not loose the L2 source address; we need the l2 source
7438 * address for IP_RECVSLLA and for ndp_input.
7439 *
7440 * We return either NULL or b_rptr.
7441 */
7442 void *
7443 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7444 {
7445 ill_t *ill = ira->ira_ill;

7447 if (ip_rput_pullups++ == 0) {
7448 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7449 "ip_pullup: %s forced us to "
7450 " pullup pkt, hdr len %ld, hdr addr %p",
7451 ill->ill_name, len, (void *)mp->b_rptr);
7452 }
7453 if (!(ira->ira_flags & IRAF_L2SRC_SET))

new/usr/src/uts/common/inet/ip/ip.c 114

7454 ip_setl2src(mp, ira, ira->ira_rill);
7455 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7456 if (!pullupmsg(mp, len))
7457 return (NULL);
7458 else
7459 return (mp->b_rptr);
7460 }

7462 /*
7463 * Make sure ira_l2src has an address. If we don’t have one fill with zeros.
7464 * When called from the ULP ira_rill will be NULL hence the caller has to
7465 * pass in the ill.
7466 */
7467 /* ARGSUSED */
7468 void
7469 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7470 {
7471 const uchar_t *addr;
7472 int alen;

7474 if (ira->ira_flags & IRAF_L2SRC_SET)
7475 return;

7477 ASSERT(ill != NULL);
7478 alen = ill->ill_phys_addr_length;
7479 ASSERT(alen <= sizeof (ira->ira_l2src));
7480 if (ira->ira_mhip != NULL &&
7481 (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7482 bcopy(addr, ira->ira_l2src, alen);
7483 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7484 (addr = ill->ill_phys_addr) != NULL) {
7485 bcopy(addr, ira->ira_l2src, alen);
7486 } else {
7487 bzero(ira->ira_l2src, alen);
7488 }
7489 ira->ira_flags |= IRAF_L2SRC_SET;
7490 }

7492 /*
7493 * check ip header length and align it.
7494 */
7495 mblk_t *
7496 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7497 {
7498 ill_t *ill = ira->ira_ill;
7499 ssize_t len;

7501 len = MBLKL(mp);

7503 if (!OK_32PTR(mp->b_rptr))
7504 IP_STAT(ill->ill_ipst, ip_notaligned);
7505 else
7506 IP_STAT(ill->ill_ipst, ip_recv_pullup);

7508 /* Guard against bogus device drivers */
7509 if (len < 0) {
7510 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7511 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7512 freemsg(mp);
7513 return (NULL);
7514 }

7516 if (len == 0) {
7517 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7518 mblk_t *mp1 = mp->b_cont;

new/usr/src/uts/common/inet/ip/ip.c 115

7520 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7521 ip_setl2src(mp, ira, ira->ira_rill);
7522 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);

7524 freeb(mp);
7525 mp = mp1;
7526 if (mp == NULL)
7527 return (NULL);

7529 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7530 return (mp);
7531 }
7532 if (ip_pullup(mp, min_size, ira) == NULL) {
7533 if (msgdsize(mp) < min_size) {
7534 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7535 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7536 } else {
7537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7538 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7539 }
7540 freemsg(mp);
7541 return (NULL);
7542 }
7543 return (mp);
7544 }

7546 /*
7547 * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7548 */
7549 mblk_t *
7550 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7551 uint_t min_size, ip_recv_attr_t *ira)
7552 {
7553 ill_t *ill = ira->ira_ill;

7555 /*
7556 * Make sure we have data length consistent
7557 * with the IP header.
7558 */
7559 if (mp->b_cont == NULL) {
7560 /* pkt_len is based on ipha_len, not the mblk length */
7561 if (pkt_len < min_size) {
7562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7563 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7564 freemsg(mp);
7565 return (NULL);
7566 }
7567 if (len < 0) {
7568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7569 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7570 freemsg(mp);
7571 return (NULL);
7572 }
7573 /* Drop any pad */
7574 mp->b_wptr = rptr + pkt_len;
7575 } else if ((len += msgdsize(mp->b_cont)) != 0) {
7576 ASSERT(pkt_len >= min_size);
7577 if (pkt_len < min_size) {
7578 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7579 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7580 freemsg(mp);
7581 return (NULL);
7582 }
7583 if (len < 0) {
7584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7585 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);

new/usr/src/uts/common/inet/ip/ip.c 116

7586 freemsg(mp);
7587 return (NULL);
7588 }
7589 /* Drop any pad */
7590 (void) adjmsg(mp, -len);
7591 /*
7592 * adjmsg may have freed an mblk from the chain, hence
7593 * invalidate any hw checksum here. This will force IP to
7594 * calculate the checksum in sw, but only for this packet.
7595 */
7596 DB_CKSUMFLAGS(mp) = 0;
7597 IP_STAT(ill->ill_ipst, ip_multimblk);
7598 }
7599 return (mp);
7600 }

7602 /*
7603 * Check that the IPv4 opt_len is consistent with the packet and pullup
7604 * the options.
7605 */
7606 mblk_t *
7607 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7608 ip_recv_attr_t *ira)
7609 {
7610 ill_t *ill = ira->ira_ill;
7611 ssize_t len;

7613 /* Assume no IPv6 packets arrive over the IPv4 queue */
7614 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7617 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7618 freemsg(mp);
7619 return (NULL);
7620 }

7622 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7623 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7624 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7625 freemsg(mp);
7626 return (NULL);
7627 }
7628 /*
7629 * Recompute complete header length and make sure we
7630 * have access to all of it.
7631 */
7632 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7633 if (len > (mp->b_wptr - mp->b_rptr)) {
7634 if (len > pkt_len) {
7635 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7636 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7637 freemsg(mp);
7638 return (NULL);
7639 }
7640 if (ip_pullup(mp, len, ira) == NULL) {
7641 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7642 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7643 freemsg(mp);
7644 return (NULL);
7645 }
7646 }
7647 return (mp);
7648 }

7650 /*
7651 * Returns a new ire, or the same ire, or NULL.

new/usr/src/uts/common/inet/ip/ip.c 117

7652 * If a different IRE is returned, then it is held; the caller
7653 * needs to release it.
7654 * In no case is there any hold/release on the ire argument.
7655 */
7656 ire_t *
7657 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7658 {
7659 ire_t *new_ire;
7660 ill_t *ire_ill;
7661 uint_t ifindex;
7662 ip_stack_t *ipst = ill->ill_ipst;
7663 boolean_t strict_check = B_FALSE;

7665 /*
7666 * IPMP common case: if IRE and ILL are in the same group, there’s no
7667 * issue (e.g. packet received on an underlying interface matched an
7668 * IRE_LOCAL on its associated group interface).
7669 */
7670 ASSERT(ire->ire_ill != NULL);
7671 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7672 return (ire);

7674 /*
7675 * Do another ire lookup here, using the ingress ill, to see if the
7676 * interface is in a usesrc group.
7677 * As long as the ills belong to the same group, we don’t consider
7678 * them to be arriving on the wrong interface. Thus, if the switch
7679 * is doing inbound load spreading, we won’t drop packets when the
7680 * ip*_strict_dst_multihoming switch is on.
7681 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7682 * where the local address may not be unique. In this case we were
7683 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7684 * actually returned. The new lookup, which is more specific, should
7685 * only find the IRE_LOCAL associated with the ingress ill if one
7686 * exists.
7687 */
7688 if (ire->ire_ipversion == IPV4_VERSION) {
7689 if (ipst->ips_ip_strict_dst_multihoming)
7690 strict_check = B_TRUE;
7691 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7692 IRE_LOCAL, ill, ALL_ZONES, NULL,
7693 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7694 } else {
7695 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7696 if (ipst->ips_ipv6_strict_dst_multihoming)
7697 strict_check = B_TRUE;
7698 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7699 IRE_LOCAL, ill, ALL_ZONES, NULL,
7700 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7701 }
7702 /*
7703 * If the same ire that was returned in ip_input() is found then this
7704 * is an indication that usesrc groups are in use. The packet
7705 * arrived on a different ill in the group than the one associated with
7706 * the destination address. If a different ire was found then the same
7707 * IP address must be hosted on multiple ills. This is possible with
7708 * unnumbered point2point interfaces. We switch to use this new ire in
7709 * order to have accurate interface statistics.
7710 */
7711 if (new_ire != NULL) {
7712 /* Note: held in one case but not the other? Caller handles */
7713 if (new_ire != ire)
7714 return (new_ire);
7715 /* Unchanged */
7716 ire_refrele(new_ire);
7717 return (ire);

new/usr/src/uts/common/inet/ip/ip.c 118

7718 }

7720 /*
7721 * Chase pointers once and store locally.
7722 */
7723 ASSERT(ire->ire_ill != NULL);
7724 ire_ill = ire->ire_ill;
7725 ifindex = ill->ill_usesrc_ifindex;

7727 /*
7728 * Check if it’s a legal address on the ’usesrc’ interface.
7729 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7730 * can just check phyint_ifindex.
7731 */
7732 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7733 return (ire);
7734 }

7736 /*
7737 * If the ip*_strict_dst_multihoming switch is on then we can
7738 * only accept this packet if the interface is marked as routing.
7739 */
7740 if (!(strict_check))
7741 return (ire);

7743 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7744 return (ire);
7745 }
7746 return (NULL);
7747 }

7749 /*
7750 * This function is used to construct a mac_header_info_s from a
7751 * DL_UNITDATA_IND message.
7752 * The address fields in the mhi structure points into the message,
7753 * thus the caller can’t use those fields after freeing the message.
7754 *
7755 * We determine whether the packet received is a non-unicast packet
7756 * and in doing so, determine whether or not it is broadcast vs multicast.
7757 * For it to be a broadcast packet, we must have the appropriate mblk_t
7758 * hanging off the ill_t. If this is either not present or doesn’t match
7759 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7760 * to be multicast. Thus NICs that have no broadcast address (or no
7761 * capability for one, such as point to point links) cannot return as
7762 * the packet being broadcast.
7763 */
7764 void
7765 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7766 {
7767 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7768 mblk_t *bmp;
7769 uint_t extra_offset;

7771 bzero(mhip, sizeof (struct mac_header_info_s));

7773 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;

7775 if (ill->ill_sap_length < 0)
7776 extra_offset = 0;
7777 else
7778 extra_offset = ill->ill_sap_length;

7780 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7781 extra_offset;
7782 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7783 extra_offset;

new/usr/src/uts/common/inet/ip/ip.c 119

7785 if (!ind->dl_group_address)
7786 return;

7788 /* Multicast or broadcast */
7789 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;

7791 if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7792 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7793 (bmp = ill->ill_bcast_mp) != NULL) {
7794 dl_unitdata_req_t *dlur;
7795 uint8_t *bphys_addr;

7797 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7798 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7799 extra_offset;

7801 if (bcmp(mhip->mhi_daddr, bphys_addr,
7802 ind->dl_dest_addr_length) == 0)
7803 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7804 }
7805 }

7807 /*
7808 * This function is used to construct a mac_header_info_s from a
7809 * M_DATA fastpath message from a DLPI driver.
7810 * The address fields in the mhi structure points into the message,
7811 * thus the caller can’t use those fields after freeing the message.
7812 *
7813 * We determine whether the packet received is a non-unicast packet
7814 * and in doing so, determine whether or not it is broadcast vs multicast.
7815 * For it to be a broadcast packet, we must have the appropriate mblk_t
7816 * hanging off the ill_t. If this is either not present or doesn’t match
7817 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7818 * to be multicast. Thus NICs that have no broadcast address (or no
7819 * capability for one, such as point to point links) cannot return as
7820 * the packet being broadcast.
7821 */
7822 void
7823 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7824 {
7825 mblk_t *bmp;
7826 struct ether_header *pether;

7828 bzero(mhip, sizeof (struct mac_header_info_s));

7830 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;

7832 pether = (struct ether_header *)((char *)mp->b_rptr
7833 - sizeof (struct ether_header));

7835 /*
7836 * Make sure the interface is an ethernet type, since we don’t
7837 * know the header format for anything but Ethernet. Also make
7838 * sure we are pointing correctly above db_base.
7839 */
7840 if (ill->ill_type != IFT_ETHER)
7841 return;

7843 retry:
7844 if ((uchar_t *)pether < mp->b_datap->db_base)
7845 return;

7847 /* Is there a VLAN tag? */
7848 if (ill->ill_isv6) {
7849 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {

new/usr/src/uts/common/inet/ip/ip.c 120

7850 pether = (struct ether_header *)((char *)pether - 4);
7851 goto retry;
7852 }
7853 } else {
7854 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7855 pether = (struct ether_header *)((char *)pether - 4);
7856 goto retry;
7857 }
7858 }
7859 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7860 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;

7862 if (!(mhip->mhi_daddr[0] & 0x01))
7863 return;

7865 /* Multicast or broadcast */
7866 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;

7868 if ((bmp = ill->ill_bcast_mp) != NULL) {
7869 dl_unitdata_req_t *dlur;
7870 uint8_t *bphys_addr;
7871 uint_t addrlen;

7873 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7874 addrlen = dlur->dl_dest_addr_length;
7875 if (ill->ill_sap_length < 0) {
7876 bphys_addr = (uchar_t *)dlur +
7877 dlur->dl_dest_addr_offset;
7878 addrlen += ill->ill_sap_length;
7879 } else {
7880 bphys_addr = (uchar_t *)dlur +
7881 dlur->dl_dest_addr_offset +
7882 ill->ill_sap_length;
7883 addrlen -= ill->ill_sap_length;
7884 }
7885 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7886 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7887 }
7888 }

7890 /*
7891 * Handle anything but M_DATA messages
7892 * We see the DL_UNITDATA_IND which are part
7893 * of the data path, and also the other messages from the driver.
7894 */
7895 void
7896 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7897 {
7898 mblk_t *first_mp;
7899 struct iocblk *iocp;
7900 struct mac_header_info_s mhi;

7902 switch (DB_TYPE(mp)) {
7903 case M_PROTO:
7904 case M_PCPROTO: {
7905 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7906 DL_UNITDATA_IND) {
7907 /* Go handle anything other than data elsewhere. */
7908 ip_rput_dlpi(ill, mp);
7909 return;
7910 }

7912 first_mp = mp;
7913 mp = first_mp->b_cont;
7914 first_mp->b_cont = NULL;

new/usr/src/uts/common/inet/ip/ip.c 121

7916 if (mp == NULL) {
7917 freeb(first_mp);
7918 return;
7919 }
7920 ip_dlur_to_mhi(ill, first_mp, &mhi);
7921 if (ill->ill_isv6)
7922 ip_input_v6(ill, NULL, mp, &mhi);
7923 else
7924 ip_input(ill, NULL, mp, &mhi);

7926 /* Ditch the DLPI header. */
7927 freeb(first_mp);
7928 return;
7929 }
7930 case M_IOCACK:
7931 iocp = (struct iocblk *)mp->b_rptr;
7932 switch (iocp->ioc_cmd) {
7933 case DL_IOC_HDR_INFO:
7934 ill_fastpath_ack(ill, mp);
7935 return;
7936 default:
7937 putnext(ill->ill_rq, mp);
7938 return;
7939 }
7940 /* FALLTHRU */
7941 case M_ERROR:
7942 case M_HANGUP:
7943 mutex_enter(&ill->ill_lock);
7944 if (ill->ill_state_flags & ILL_CONDEMNED) {
7945 mutex_exit(&ill->ill_lock);
7946 freemsg(mp);
7947 return;
7948 }
7949 ill_refhold_locked(ill);
7950 mutex_exit(&ill->ill_lock);
7951 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7952 B_FALSE);
7953 return;
7954 case M_CTL:
7955 putnext(ill->ill_rq, mp);
7956 return;
7957 case M_IOCNAK:
7958 ip1dbg(("got iocnak "));
7959 iocp = (struct iocblk *)mp->b_rptr;
7960 switch (iocp->ioc_cmd) {
7961 case DL_IOC_HDR_INFO:
7962 ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7963 return;
7964 default:
7965 break;
7966 }
7967 /* FALLTHRU */
7968 default:
7969 putnext(ill->ill_rq, mp);
7970 return;
7971 }
7972 }

7974 /* Read side put procedure. Packets coming from the wire arrive here. */
7975 void
7976 ip_rput(queue_t *q, mblk_t *mp)
7977 {
7978 ill_t *ill;
7979 union DL_primitives *dl;

7981 ill = (ill_t *)q->q_ptr;

new/usr/src/uts/common/inet/ip/ip.c 122

7983 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
7984 /*
7985 * If things are opening or closing, only accept high-priority
7986 * DLPI messages. (On open ill->ill_ipif has not yet been
7987 * created; on close, things hanging off the ill may have been
7988 * freed already.)
7989 */
7990 dl = (union DL_primitives *)mp->b_rptr;
7991 if (DB_TYPE(mp) != M_PCPROTO ||
7992 dl->dl_primitive == DL_UNITDATA_IND) {
7993 inet_freemsg(mp);
7994 return;
7995 }
7996 }
7997 if (DB_TYPE(mp) == M_DATA) {
7998 struct mac_header_info_s mhi;

8000 ip_mdata_to_mhi(ill, mp, &mhi);
8001 ip_input(ill, NULL, mp, &mhi);
8002 } else {
8003 ip_rput_notdata(ill, mp);
8004 }
8005 }

8007 /*
8008 * Move the information to a copy.
8009 */
8010 mblk_t *
8011 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8012 {
8013 mblk_t *mp1;
8014 ill_t *ill = ira->ira_ill;
8015 ip_stack_t *ipst = ill->ill_ipst;

8017 IP_STAT(ipst, ip_db_ref);

8019 /* Make sure we have ira_l2src before we loose the original mblk */
8020 if (!(ira->ira_flags & IRAF_L2SRC_SET))
8021 ip_setl2src(mp, ira, ira->ira_rill);

8023 mp1 = copymsg(mp);
8024 if (mp1 == NULL) {
8025 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8026 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8027 freemsg(mp);
8028 return (NULL);
8029 }
8030 /* preserve the hardware checksum flags and data, if present */
8031 if (DB_CKSUMFLAGS(mp) != 0) {
8032 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8033 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8034 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8035 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8036 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8037 }
8038 freemsg(mp);
8039 return (mp1);
8040 }

8042 static void
8043 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8044 t_uscalar_t err)
8045 {
8046 if (dl_err == DL_SYSERR) {
8047 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,

new/usr/src/uts/common/inet/ip/ip.c 123

8048 "%s: %s failed: DL_SYSERR (errno %u)\n",
8049 ill->ill_name, dl_primstr(prim), err);
8050 return;
8051 }

8053 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8054 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8055 dl_errstr(dl_err));
8056 }

8058 /*
8059 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8060 * than DL_UNITDATA_IND messages. If we need to process this message
8061 * exclusively, we call qwriter_ip, in which case we also need to call
8062 * ill_refhold before that, since qwriter_ip does an ill_refrele.
8063 */
8064 void
8065 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8066 {
8067 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
8068 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
8069 queue_t *q = ill->ill_rq;
8070 t_uscalar_t prim = dloa->dl_primitive;
8071 t_uscalar_t reqprim = DL_PRIM_INVAL;

8073 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8074 char *, dl_primstr(prim), ill_t *, ill);
8075 ip1dbg(("ip_rput_dlpi"));

8077 /*
8078 * If we received an ACK but didn’t send a request for it, then it
8079 * can’t be part of any pending operation; discard up-front.
8080 */
8081 switch (prim) {
8082 case DL_ERROR_ACK:
8083 reqprim = dlea->dl_error_primitive;
8084 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8085 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8086 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8087 dlea->dl_unix_errno));
8088 break;
8089 case DL_OK_ACK:
8090 reqprim = dloa->dl_correct_primitive;
8091 break;
8092 case DL_INFO_ACK:
8093 reqprim = DL_INFO_REQ;
8094 break;
8095 case DL_BIND_ACK:
8096 reqprim = DL_BIND_REQ;
8097 break;
8098 case DL_PHYS_ADDR_ACK:
8099 reqprim = DL_PHYS_ADDR_REQ;
8100 break;
8101 case DL_NOTIFY_ACK:
8102 reqprim = DL_NOTIFY_REQ;
8103 break;
8104 case DL_CAPABILITY_ACK:
8105 reqprim = DL_CAPABILITY_REQ;
8106 break;
8107 }

8109 if (prim != DL_NOTIFY_IND) {
8110 if (reqprim == DL_PRIM_INVAL ||
8111 !ill_dlpi_pending(ill, reqprim)) {
8112 /* Not a DLPI message we support or expected */
8113 freemsg(mp);

new/usr/src/uts/common/inet/ip/ip.c 124

8114 return;
8115 }
8116 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8117 dl_primstr(reqprim)));
8118 }

8120 switch (reqprim) {
8121 case DL_UNBIND_REQ:
8122 /*
8123 * NOTE: we mark the unbind as complete even if we got a
8124 * DL_ERROR_ACK, since there’s not much else we can do.
8125 */
8126 mutex_enter(&ill->ill_lock);
8127 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8128 cv_signal(&ill->ill_cv);
8129 mutex_exit(&ill->ill_lock);
8130 break;

8132 case DL_ENABMULTI_REQ:
8133 if (prim == DL_OK_ACK) {
8134 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8135 ill->ill_dlpi_multicast_state = IDS_OK;
8136 }
8137 break;
8138 }

8140 /*
8141 * The message is one we’re waiting for (or DL_NOTIFY_IND), but we
8142 * need to become writer to continue to process it. Because an
8143 * exclusive operation doesn’t complete until replies to all queued
8144 * DLPI messages have been received, we know we’re in the middle of an
8145 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8146 *
8147 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8148 * Since this is on the ill stream we unconditionally bump up the
8149 * refcount without doing ILL_CAN_LOOKUP().
8150 */
8151 ill_refhold(ill);
8152 if (prim == DL_NOTIFY_IND)
8153 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8154 else
8155 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8156 }

8158 /*
8159 * Handling of DLPI messages that require exclusive access to the ipsq.
8160 *
8161 * Need to do ipsq_pending_mp_get on ioctl completion, which could
8162 * happen here. (along with mi_copy_done)
8163 */
8164 /* ARGSUSED */
8165 static void
8166 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8167 {
8168 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
8169 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
8170 int err = 0;
8171 ill_t *ill = (ill_t *)q->q_ptr;
8172 ipif_t *ipif = NULL;
8173 mblk_t *mp1 = NULL;
8174 conn_t *connp = NULL;
8175 t_uscalar_t paddrreq;
8176 mblk_t *mp_hw;
8177 boolean_t success;
8178 boolean_t ioctl_aborted = B_FALSE;
8179 boolean_t log = B_TRUE;

new/usr/src/uts/common/inet/ip/ip.c 125

8181 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8182 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);

8184 ip1dbg(("ip_rput_dlpi_writer .."));
8185 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8186 ASSERT(IAM_WRITER_ILL(ill));

8188 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8189 /*
8190 * The current ioctl could have been aborted by the user and a new
8191 * ioctl to bring up another ill could have started. We could still
8192 * get a response from the driver later.
8193 */
8194 if (ipif != NULL && ipif->ipif_ill != ill)
8195 ioctl_aborted = B_TRUE;

8197 switch (dloa->dl_primitive) {
8198 case DL_ERROR_ACK:
8199 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8200 dl_primstr(dlea->dl_error_primitive)));

8202 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8203 char *, dl_primstr(dlea->dl_error_primitive),
8204 ill_t *, ill);

8206 switch (dlea->dl_error_primitive) {
8207 case DL_DISABMULTI_REQ:
8208 ill_dlpi_done(ill, dlea->dl_error_primitive);
8209 break;
8210 case DL_PROMISCON_REQ:
8211 case DL_PROMISCOFF_REQ:
8212 case DL_UNBIND_REQ:
8213 case DL_ATTACH_REQ:
8214 case DL_INFO_REQ:
8215 ill_dlpi_done(ill, dlea->dl_error_primitive);
8216 break;
8217 case DL_NOTIFY_REQ:
8218 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8219 log = B_FALSE;
8220 break;
8221 case DL_PHYS_ADDR_REQ:
8222 /*
8223 * For IPv6 only, there are two additional
8224 * phys_addr_req’s sent to the driver to get the
8225 * IPv6 token and lla. This allows IP to acquire
8226 * the hardware address format for a given interface
8227 * without having built in knowledge of the hardware
8228 * address. ill_phys_addr_pend keeps track of the last
8229 * DL_PAR sent so we know which response we are
8230 * dealing with. ill_dlpi_done will update
8231 * ill_phys_addr_pend when it sends the next req.
8232 * We don’t complete the IOCTL until all three DL_PARs
8233 * have been attempted, so set *_len to 0 and break.
8234 */
8235 paddrreq = ill->ill_phys_addr_pend;
8236 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8237 if (paddrreq == DL_IPV6_TOKEN) {
8238 ill->ill_token_length = 0;
8239 log = B_FALSE;
8240 break;
8241 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8242 ill->ill_nd_lla_len = 0;
8243 log = B_FALSE;
8244 break;
8245 }

new/usr/src/uts/common/inet/ip/ip.c 126

8246 /*
8247 * Something went wrong with the DL_PHYS_ADDR_REQ.
8248 * We presumably have an IOCTL hanging out waiting
8249 * for completion. Find it and complete the IOCTL
8250 * with the error noted.
8251 * However, ill_dl_phys was called on an ill queue
8252 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8253 * set. But the ioctl is known to be pending on ill_wq.
8254 */
8255 if (!ill->ill_ifname_pending)
8256 break;
8257 ill->ill_ifname_pending = 0;
8258 if (!ioctl_aborted)
8259 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8260 if (mp1 != NULL) {
8261 /*
8262 * This operation (SIOCSLIFNAME) must have
8263 * happened on the ill. Assert there is no conn
8264 */
8265 ASSERT(connp == NULL);
8266 q = ill->ill_wq;
8267 }
8268 break;
8269 case DL_BIND_REQ:
8270 ill_dlpi_done(ill, DL_BIND_REQ);
8271 if (ill->ill_ifname_pending)
8272 break;
8273 mutex_enter(&ill->ill_lock);
8274 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8275 mutex_exit(&ill->ill_lock);
8276 /*
8277 * Something went wrong with the bind. We presumably
8278 * have an IOCTL hanging out waiting for completion.
8279 * Find it, take down the interface that was coming
8280 * up, and complete the IOCTL with the error noted.
8281 */
8282 if (!ioctl_aborted)
8283 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8284 if (mp1 != NULL) {
8285 /*
8286 * This might be a result of a DL_NOTE_REPLUMB
8287 * notification. In that case, connp is NULL.
8288 */
8289 if (connp != NULL)
8290 q = CONNP_TO_WQ(connp);

8292 (void) ipif_down(ipif, NULL, NULL);
8293 /* error is set below the switch */
8294 }
8295 break;
8296 case DL_ENABMULTI_REQ:
8297 ill_dlpi_done(ill, DL_ENABMULTI_REQ);

8299 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8300 ill->ill_dlpi_multicast_state = IDS_FAILED;
8301 if (ill->ill_dlpi_multicast_state == IDS_FAILED) {

8303 printf("ip: joining multicasts failed (%d)"
8304 " on %s - will use link layer "
8305 "broadcasts for multicast\n",
8306 dlea->dl_errno, ill->ill_name);

8308 /*
8309 * Set up for multi_bcast; We are the
8310 * writer, so ok to access ill->ill_ipif
8311 * without any lock.

new/usr/src/uts/common/inet/ip/ip.c 127

8312 */
8313 mutex_enter(&ill->ill_phyint->phyint_lock);
8314 ill->ill_phyint->phyint_flags |=
8315 PHYI_MULTI_BCAST;
8316 mutex_exit(&ill->ill_phyint->phyint_lock);

8318 }
8319 freemsg(mp); /* Don’t want to pass this up */
8320 return;
8321 case DL_CAPABILITY_REQ:
8322 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8323 "DL_CAPABILITY REQ\n"));
8324 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8325 ill->ill_dlpi_capab_state = IDCS_FAILED;
8326 ill_capability_done(ill);
8327 freemsg(mp);
8328 return;
8329 }
8330 /*
8331 * Note the error for IOCTL completion (mp1 is set when
8332 * ready to complete ioctl). If ill_ifname_pending_err is
8333 * set, an error occured during plumbing (ill_ifname_pending),
8334 * so we want to report that error.
8335 *
8336 * NOTE: there are two addtional DL_PHYS_ADDR_REQ’s
8337 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8338 * expected to get errack’d if the driver doesn’t support
8339 * these flags (e.g. ethernet). log will be set to B_FALSE
8340 * if these error conditions are encountered.
8341 */
8342 if (mp1 != NULL) {
8343 if (ill->ill_ifname_pending_err != 0) {
8344 err = ill->ill_ifname_pending_err;
8345 ill->ill_ifname_pending_err = 0;
8346 } else {
8347 err = dlea->dl_unix_errno ?
8348 dlea->dl_unix_errno : ENXIO;
8349 }
8350 /*
8351 * If we’re plumbing an interface and an error hasn’t already
8352 * been saved, set ill_ifname_pending_err to the error passed
8353 * up. Ignore the error if log is B_FALSE (see comment above).
8354 */
8355 } else if (log && ill->ill_ifname_pending &&
8356 ill->ill_ifname_pending_err == 0) {
8357 ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8358 dlea->dl_unix_errno : ENXIO;
8359 }

8361 if (log)
8362 ip_dlpi_error(ill, dlea->dl_error_primitive,
8363 dlea->dl_errno, dlea->dl_unix_errno);
8364 break;
8365 case DL_CAPABILITY_ACK:
8366 ill_capability_ack(ill, mp);
8367 /*
8368 * The message has been handed off to ill_capability_ack
8369 * and must not be freed below
8370 */
8371 mp = NULL;
8372 break;

8374 case DL_INFO_ACK:
8375 /* Call a routine to handle this one. */
8376 ill_dlpi_done(ill, DL_INFO_REQ);
8377 ip_ll_subnet_defaults(ill, mp);

new/usr/src/uts/common/inet/ip/ip.c 128

8378 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8379 return;
8380 case DL_BIND_ACK:
8381 /*
8382 * We should have an IOCTL waiting on this unless
8383 * sent by ill_dl_phys, in which case just return
8384 */
8385 ill_dlpi_done(ill, DL_BIND_REQ);

8387 if (ill->ill_ifname_pending) {
8388 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8389 ill_t *, ill, mblk_t *, mp);
8390 break;
8391 }
8392 mutex_enter(&ill->ill_lock);
8393 ill->ill_dl_up = 1;
8394 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8395 mutex_exit(&ill->ill_lock);

8397 if (!ioctl_aborted)
8398 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8399 if (mp1 == NULL) {
8400 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8401 break;
8402 }
8403 /*
8404 * mp1 was added by ill_dl_up(). if that is a result of
8405 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8406 */
8407 if (connp != NULL)
8408 q = CONNP_TO_WQ(connp);
8409 /*
8410 * We are exclusive. So nothing can change even after
8411 * we get the pending mp.
8412 */
8413 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8414 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8415 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);

8417 /*
8418 * Now bring up the resolver; when that is complete, we’ll
8419 * create IREs. Note that we intentionally mirror what
8420 * ipif_up() would have done, because we got here by way of
8421 * ill_dl_up(), which stopped ipif_up()’s processing.
8422 */
8423 if (ill->ill_isv6) {
8424 /*
8425 * v6 interfaces.
8426 * Unlike ARP which has to do another bind
8427 * and attach, once we get here we are
8428 * done with NDP
8429 */
8430 (void) ipif_resolver_up(ipif, Res_act_initial);
8431 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8432 err = ipif_up_done_v6(ipif);
8433 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8434 /*
8435 * ARP and other v4 external resolvers.
8436 * Leave the pending mblk intact so that
8437 * the ioctl completes in ip_rput().
8438 */
8439 if (connp != NULL)
8440 mutex_enter(&connp->conn_lock);
8441 mutex_enter(&ill->ill_lock);
8442 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8443 mutex_exit(&ill->ill_lock);

new/usr/src/uts/common/inet/ip/ip.c 129

8444 if (connp != NULL)
8445 mutex_exit(&connp->conn_lock);
8446 if (success) {
8447 err = ipif_resolver_up(ipif, Res_act_initial);
8448 if (err == EINPROGRESS) {
8449 freemsg(mp);
8450 return;
8451 }
8452 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8453 } else {
8454 /* The conn has started closing */
8455 err = EINTR;
8456 }
8457 } else {
8458 /*
8459 * This one is complete. Reply to pending ioctl.
8460 */
8461 (void) ipif_resolver_up(ipif, Res_act_initial);
8462 err = ipif_up_done(ipif);
8463 }

8465 if ((err == 0) && (ill->ill_up_ipifs)) {
8466 err = ill_up_ipifs(ill, q, mp1);
8467 if (err == EINPROGRESS) {
8468 freemsg(mp);
8469 return;
8470 }
8471 }

8473 /*
8474 * If we have a moved ipif to bring up, and everything has
8475 * succeeded to this point, bring it up on the IPMP ill.
8476 * Otherwise, leave it down -- the admin can try to bring it
8477 * up by hand if need be.
8478 */
8479 if (ill->ill_move_ipif != NULL) {
8480 if (err != 0) {
8481 ill->ill_move_ipif = NULL;
8482 } else {
8483 ipif = ill->ill_move_ipif;
8484 ill->ill_move_ipif = NULL;
8485 err = ipif_up(ipif, q, mp1);
8486 if (err == EINPROGRESS) {
8487 freemsg(mp);
8488 return;
8489 }
8490 }
8491 }
8492 break;

8494 case DL_NOTIFY_IND: {
8495 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8496 uint_t orig_mtu, orig_mc_mtu;

8498 switch (notify->dl_notification) {
8499 case DL_NOTE_PHYS_ADDR:
8500 err = ill_set_phys_addr(ill, mp);
8501 break;

8503 case DL_NOTE_REPLUMB:
8504 /*
8505 * Directly return after calling ill_replumb().
8506 * Note that we should not free mp as it is reused
8507 * in the ill_replumb() function.
8508 */
8509 err = ill_replumb(ill, mp);

new/usr/src/uts/common/inet/ip/ip.c 130

8510 return;

8512 case DL_NOTE_FASTPATH_FLUSH:
8513 nce_flush(ill, B_FALSE);
8514 break;

8516 case DL_NOTE_SDU_SIZE:
8517 case DL_NOTE_SDU_SIZE2:
8518 /*
8519 * The dce and fragmentation code can cope with
8520 * this changing while packets are being sent.
8521 * When packets are sent ip_output will discover
8522 * a change.
8523 *
8524 * Change the MTU size of the interface.
8525 */
8526 mutex_enter(&ill->ill_lock);
8527 orig_mtu = ill->ill_mtu;
8528 orig_mc_mtu = ill->ill_mc_mtu;
8529 switch (notify->dl_notification) {
8530 case DL_NOTE_SDU_SIZE:
8531 ill->ill_current_frag =
8532 (uint_t)notify->dl_data;
8533 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8534 break;
8535 case DL_NOTE_SDU_SIZE2:
8536 ill->ill_current_frag =
8537 (uint_t)notify->dl_data1;
8538 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8539 break;
8540 }
8541 if (ill->ill_current_frag > ill->ill_max_frag)
8542 ill->ill_max_frag = ill->ill_current_frag;

8544 if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8545 ill->ill_mtu = ill->ill_current_frag;

8547 /*
8548 * If ill_user_mtu was set (via
8549 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8550 */
8551 if (ill->ill_user_mtu != 0 &&
8552 ill->ill_user_mtu < ill->ill_mtu)
8553 ill->ill_mtu = ill->ill_user_mtu;

8555 if (ill->ill_user_mtu != 0 &&
8556 ill->ill_user_mtu < ill->ill_mc_mtu)
8557 ill->ill_mc_mtu = ill->ill_user_mtu;

8559 if (ill->ill_isv6) {
8560 if (ill->ill_mtu < IPV6_MIN_MTU)
8561 ill->ill_mtu = IPV6_MIN_MTU;
8562 if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8563 ill->ill_mc_mtu = IPV6_MIN_MTU;
8564 } else {
8565 if (ill->ill_mtu < IP_MIN_MTU)
8566 ill->ill_mtu = IP_MIN_MTU;
8567 if (ill->ill_mc_mtu < IP_MIN_MTU)
8568 ill->ill_mc_mtu = IP_MIN_MTU;
8569 }
8570 } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8571 ill->ill_mc_mtu = ill->ill_mtu;
8572 }

8574 mutex_exit(&ill->ill_lock);
8575 /*

new/usr/src/uts/common/inet/ip/ip.c 131

8576 * Make sure all dce_generation checks find out
8577 * that ill_mtu/ill_mc_mtu has changed.
8578 */
8579 if (orig_mtu != ill->ill_mtu ||
8580 orig_mc_mtu != ill->ill_mc_mtu) {
8581 dce_increment_all_generations(ill->ill_isv6,
8582 ill->ill_ipst);
8583 }

8585 /*
8586 * Refresh IPMP meta-interface MTU if necessary.
8587 */
8588 if (IS_UNDER_IPMP(ill))
8589 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8590 break;

8592 case DL_NOTE_LINK_UP:
8593 case DL_NOTE_LINK_DOWN: {
8594 /*
8595 * We are writer. ill / phyint / ipsq assocs stable.
8596 * The RUNNING flag reflects the state of the link.
8597 */
8598 phyint_t *phyint = ill->ill_phyint;
8599 uint64_t new_phyint_flags;
8600 boolean_t changed = B_FALSE;
8601 boolean_t went_up;

8603 went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8604 mutex_enter(&phyint->phyint_lock);

8606 new_phyint_flags = went_up ?
8607 phyint->phyint_flags | PHYI_RUNNING :
8608 phyint->phyint_flags & ~PHYI_RUNNING;

8610 if (IS_IPMP(ill)) {
8611 new_phyint_flags = went_up ?
8612 new_phyint_flags & ~PHYI_FAILED :
8613 new_phyint_flags | PHYI_FAILED;
8614 }

8616 if (new_phyint_flags != phyint->phyint_flags) {
8617 phyint->phyint_flags = new_phyint_flags;
8618 changed = B_TRUE;
8619 }
8620 mutex_exit(&phyint->phyint_lock);
8621 /*
8622 * ill_restart_dad handles the DAD restart and routing
8623 * socket notification logic.
8624 */
8625 if (changed) {
8626 ill_restart_dad(phyint->phyint_illv4, went_up);
8627 ill_restart_dad(phyint->phyint_illv6, went_up);
8628 }
8629 break;
8630 }
8631 case DL_NOTE_PROMISC_ON_PHYS: {
8632 phyint_t *phyint = ill->ill_phyint;

8634 mutex_enter(&phyint->phyint_lock);
8635 phyint->phyint_flags |= PHYI_PROMISC;
8636 mutex_exit(&phyint->phyint_lock);
8637 break;
8638 }
8639 case DL_NOTE_PROMISC_OFF_PHYS: {
8640 phyint_t *phyint = ill->ill_phyint;

new/usr/src/uts/common/inet/ip/ip.c 132

8642 mutex_enter(&phyint->phyint_lock);
8643 phyint->phyint_flags &= ~PHYI_PROMISC;
8644 mutex_exit(&phyint->phyint_lock);
8645 break;
8646 }
8647 case DL_NOTE_CAPAB_RENEG:
8648 /*
8649 * Something changed on the driver side.
8650 * It wants us to renegotiate the capabilities
8651 * on this ill. One possible cause is the aggregation
8652 * interface under us where a port got added or
8653 * went away.
8654 *
8655 * If the capability negotiation is already done
8656 * or is in progress, reset the capabilities and
8657 * mark the ill’s ill_capab_reneg to be B_TRUE,
8658 * so that when the ack comes back, we can start
8659 * the renegotiation process.
8660 *
8661 * Note that if ill_capab_reneg is already B_TRUE
8662 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8663 * the capability resetting request has been sent
8664 * and the renegotiation has not been started yet;
8665 * nothing needs to be done in this case.
8666 */
8667 ipsq_current_start(ipsq, ill->ill_ipif, 0);
8668 ill_capability_reset(ill, B_TRUE);
8669 ipsq_current_finish(ipsq);
8670 break;

8672 case DL_NOTE_ALLOWED_IPS:
8673 ill_set_allowed_ips(ill, mp);
8674 break;
8675 default:
8676 ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8677 "type 0x%x for DL_NOTIFY_IND\n",
8678 notify->dl_notification));
8679 break;
8680 }

8682 /*
8683 * As this is an asynchronous operation, we
8684 * should not call ill_dlpi_done
8685 */
8686 break;
8687 }
8688 case DL_NOTIFY_ACK: {
8689 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;

8691 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8692 ill->ill_note_link = 1;
8693 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8694 break;
8695 }
8696 case DL_PHYS_ADDR_ACK: {
8697 /*
8698 * As part of plumbing the interface via SIOCSLIFNAME,
8699 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8700 * whose answers we receive here. As each answer is received,
8701 * we call ill_dlpi_done() to dispatch the next request as
8702 * we’re processing the current one. Once all answers have
8703 * been received, we use ipsq_pending_mp_get() to dequeue the
8704 * outstanding IOCTL and reply to it. (Because ill_dl_phys()
8705 * is invoked from an ill queue, conn_oper_pending_ill is not
8706 * available, but we know the ioctl is pending on ill_wq.)
8707 */

new/usr/src/uts/common/inet/ip/ip.c 133

8708 uint_t paddrlen, paddroff;
8709 uint8_t *addr;

8711 paddrreq = ill->ill_phys_addr_pend;
8712 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8713 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8714 addr = mp->b_rptr + paddroff;

8716 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8717 if (paddrreq == DL_IPV6_TOKEN) {
8718 /*
8719 * bcopy to low-order bits of ill_token
8720 *
8721 * XXX Temporary hack - currently, all known tokens
8722 * are 64 bits, so I’ll cheat for the moment.
8723 */
8724 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8725 ill->ill_token_length = paddrlen;
8726 break;
8727 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8728 ASSERT(ill->ill_nd_lla_mp == NULL);
8729 ill_set_ndmp(ill, mp, paddroff, paddrlen);
8730 mp = NULL;
8731 break;
8732 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8733 ASSERT(ill->ill_dest_addr_mp == NULL);
8734 ill->ill_dest_addr_mp = mp;
8735 ill->ill_dest_addr = addr;
8736 mp = NULL;
8737 if (ill->ill_isv6) {
8738 ill_setdesttoken(ill);
8739 ipif_setdestlinklocal(ill->ill_ipif);
8740 }
8741 break;
8742 }

8744 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8745 ASSERT(ill->ill_phys_addr_mp == NULL);
8746 if (!ill->ill_ifname_pending)
8747 break;
8748 ill->ill_ifname_pending = 0;
8749 if (!ioctl_aborted)
8750 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8751 if (mp1 != NULL) {
8752 ASSERT(connp == NULL);
8753 q = ill->ill_wq;
8754 }
8755 /*
8756 * If any error acks received during the plumbing sequence,
8757 * ill_ifname_pending_err will be set. Break out and send up
8758 * the error to the pending ioctl.
8759 */
8760 if (ill->ill_ifname_pending_err != 0) {
8761 err = ill->ill_ifname_pending_err;
8762 ill->ill_ifname_pending_err = 0;
8763 break;
8764 }

8766 ill->ill_phys_addr_mp = mp;
8767 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8768 mp = NULL;

8770 /*
8771 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8772 * provider doesn’t support physical addresses. We check both
8773 * paddrlen and ill_phys_addr_length because sppp (PPP) does

new/usr/src/uts/common/inet/ip/ip.c 134

8774 * not have physical addresses, but historically adversises a
8775 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8776 * its DL_PHYS_ADDR_ACK.
8777 */
8778 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8779 ill->ill_phys_addr = NULL;
8780 } else if (paddrlen != ill->ill_phys_addr_length) {
8781 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8782 paddrlen, ill->ill_phys_addr_length));
8783 err = EINVAL;
8784 break;
8785 }

8787 if (ill->ill_nd_lla_mp == NULL) {
8788 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8789 err = ENOMEM;
8790 break;
8791 }
8792 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8793 }

8795 if (ill->ill_isv6) {
8796 ill_setdefaulttoken(ill);
8797 ipif_setlinklocal(ill->ill_ipif);
8798 }
8799 break;
8800 }
8801 case DL_OK_ACK:
8802 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8803 dl_primstr((int)dloa->dl_correct_primitive),
8804 dloa->dl_correct_primitive));
8805 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8806 char *, dl_primstr(dloa->dl_correct_primitive),
8807 ill_t *, ill);

8809 switch (dloa->dl_correct_primitive) {
8810 case DL_ENABMULTI_REQ:
8811 case DL_DISABMULTI_REQ:
8812 ill_dlpi_done(ill, dloa->dl_correct_primitive);
8813 break;
8814 case DL_PROMISCON_REQ:
8815 case DL_PROMISCOFF_REQ:
8816 case DL_UNBIND_REQ:
8817 case DL_ATTACH_REQ:
8818 ill_dlpi_done(ill, dloa->dl_correct_primitive);
8819 break;
8820 }
8821 break;
8822 default:
8823 break;
8824 }

8826 freemsg(mp);
8827 if (mp1 == NULL)
8828 return;

8830 /*
8831 * The operation must complete without EINPROGRESS since
8832 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise,
8833 * the operation will be stuck forever inside the IPSQ.
8834 */
8835 ASSERT(err != EINPROGRESS);

8837 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8838 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8839 ipif_t *, NULL);

new/usr/src/uts/common/inet/ip/ip.c 135

8841 switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8842 case 0:
8843 ipsq_current_finish(ipsq);
8844 break;

8846 case SIOCSLIFNAME:
8847 case IF_UNITSEL: {
8848 ill_t *ill_other = ILL_OTHER(ill);

8850 /*
8851 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8852 * ill has a peer which is in an IPMP group, then place ill
8853 * into the same group. One catch: although ifconfig plumbs
8854 * the appropriate IPMP meta-interface prior to plumbing this
8855 * ill, it is possible for multiple ifconfig applications to
8856 * race (or for another application to adjust plumbing), in
8857 * which case the IPMP meta-interface we need will be missing.
8858 * If so, kick the phyint out of the group.
8859 */
8860 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8861 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp;
8862 ipmp_illgrp_t *illg;

8864 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8865 if (illg == NULL)
8866 ipmp_phyint_leave_grp(ill->ill_phyint);
8867 else
8868 ipmp_ill_join_illgrp(ill, illg);
8869 }

8871 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8872 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8873 else
8874 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8875 break;
8876 }
8877 case SIOCLIFADDIF:
8878 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8879 break;

8881 default:
8882 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8883 break;
8884 }
8885 }

8887 /*
8888 * ip_rput_other is called by ip_rput to handle messages modifying the global
8889 * state in IP. If ’ipsq’ is non-NULL, caller is writer on it.
8890 */
8891 /* ARGSUSED */
8892 void
8893 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8894 {
8895 ill_t *ill = q->q_ptr;
8896 struct iocblk *iocp;

8898 ip1dbg(("ip_rput_other "));
8899 if (ipsq != NULL) {
8900 ASSERT(IAM_WRITER_IPSQ(ipsq));
8901 ASSERT(ipsq->ipsq_xop ==
8902 ill->ill_phyint->phyint_ipsq->ipsq_xop);
8903 }

8905 switch (mp->b_datap->db_type) {

new/usr/src/uts/common/inet/ip/ip.c 136

8906 case M_ERROR:
8907 case M_HANGUP:
8908 /*
8909 * The device has a problem. We force the ILL down. It can
8910 * be brought up again manually using SIOCSIFFLAGS (via
8911 * ifconfig or equivalent).
8912 */
8913 ASSERT(ipsq != NULL);
8914 if (mp->b_rptr < mp->b_wptr)
8915 ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8916 if (ill->ill_error == 0)
8917 ill->ill_error = ENXIO;
8918 if (!ill_down_start(q, mp))
8919 return;
8920 ipif_all_down_tail(ipsq, q, mp, NULL);
8921 break;
8922 case M_IOCNAK: {
8923 iocp = (struct iocblk *)mp->b_rptr;

8925 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8926 /*
8927 * If this was the first attempt, turn off the fastpath
8928 * probing.
8929 */
8930 mutex_enter(&ill->ill_lock);
8931 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8932 ill->ill_dlpi_fastpath_state = IDS_FAILED;
8933 mutex_exit(&ill->ill_lock);
8934 /*
8935 * don’t flush the nce_t entries: we use them
8936 * as an index to the ncec itself.
8937 */
8938 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8939 ill->ill_name));
8940 } else {
8941 mutex_exit(&ill->ill_lock);
8942 }
8943 freemsg(mp);
8944 break;
8945 }
8946 default:
8947 ASSERT(0);
8948 break;
8949 }
8950 }

8952 /*
8953 * Update any source route, record route or timestamp options
8954 * When it fails it has consumed the message and BUMPed the MIB.
8955 */
8956 boolean_t
8957 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8958 ip_recv_attr_t *ira)
8959 {
8960 ipoptp_t opts;
8961 uchar_t *opt;
8962 uint8_t optval;
8963 uint8_t optlen;
8964 ipaddr_t dst;
8965 ipaddr_t ifaddr;
8966 uint32_t ts;
8967 timestruc_t now;
8968 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

8970 ip2dbg(("ip_forward_options\n"));
8971 dst = ipha->ipha_dst;

new/usr/src/uts/common/inet/ip/ip.c 137

8972 for (optval = ipoptp_first(&opts, ipha);
8973 optval != IPOPT_EOL;
8974 optval = ipoptp_next(&opts)) {
8975 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8976 opt = opts.ipoptp_cur;
8977 optlen = opts.ipoptp_len;
8978 ip2dbg(("ip_forward_options: opt %d, len %d\n",
8979 optval, opts.ipoptp_len));
8980 switch (optval) {
8981 uint32_t off;
8982 case IPOPT_SSRR:
8983 case IPOPT_LSRR:
8984 /* Check if adminstratively disabled */
8985 if (!ipst->ips_ip_forward_src_routed) {
8986 BUMP_MIB(dst_ill->ill_ip_mib,
8987 ipIfStatsForwProhibits);
8988 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
8989 mp, dst_ill);
8990 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
8991 ira);
8992 return (B_FALSE);
8993 }
8994 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
8995 /*
8996 * Must be partial since ip_input_options
8997 * checked for strict.
8998 */
8999 break;
9000 }
9001 off = opt[IPOPT_OFFSET];
9002 off--;
9003 redo_srr:
9004 if (optlen < IP_ADDR_LEN ||
9005 off > optlen - IP_ADDR_LEN) {
9006 /* End of source route */
9007 ip1dbg((
9008 "ip_forward_options: end of SR\n"));
9009 break;
9010 }
9011 /* Pick a reasonable address on the outbound if */
9012 ASSERT(dst_ill != NULL);
9013 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9014 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9015 NULL) != 0) {
9016 /* No source! Shouldn’t happen */
9017 ifaddr = INADDR_ANY;
9018 }
9019 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9020 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9021 ip1dbg(("ip_forward_options: next hop 0x%x\n",
9022 ntohl(dst)));

9024 /*
9025 * Check if our address is present more than
9026 * once as consecutive hops in source route.
9027 */
9028 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9029 off += IP_ADDR_LEN;
9030 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9031 goto redo_srr;
9032 }
9033 ipha->ipha_dst = dst;
9034 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9035 break;
9036 case IPOPT_RR:
9037 off = opt[IPOPT_OFFSET];

new/usr/src/uts/common/inet/ip/ip.c 138

9038 off--;
9039 if (optlen < IP_ADDR_LEN ||
9040 off > optlen - IP_ADDR_LEN) {
9041 /* No more room - ignore */
9042 ip1dbg((
9043 "ip_forward_options: end of RR\n"));
9044 break;
9045 }
9046 /* Pick a reasonable address on the outbound if */
9047 ASSERT(dst_ill != NULL);
9048 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9049 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9050 NULL) != 0) {
9051 /* No source! Shouldn’t happen */
9052 ifaddr = INADDR_ANY;
9053 }
9054 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9055 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9056 break;
9057 case IPOPT_TS:
9058 /* Insert timestamp if there is room */
9059 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9060 case IPOPT_TS_TSONLY:
9061 off = IPOPT_TS_TIMELEN;
9062 break;
9063 case IPOPT_TS_PRESPEC:
9064 case IPOPT_TS_PRESPEC_RFC791:
9065 /* Verify that the address matched */
9066 off = opt[IPOPT_OFFSET] - 1;
9067 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9068 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9069 /* Not for us */
9070 break;
9071 }
9072 /* FALLTHRU */
9073 case IPOPT_TS_TSANDADDR:
9074 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9075 break;
9076 default:
9077 /*
9078 * ip_*put_options should have already
9079 * dropped this packet.
9080 */
9081 cmn_err(CE_PANIC, "ip_forward_options: "
9082 "unknown IT - bug in ip_input_options?\n");
9083 return (B_TRUE); /* Keep "lint" happy */
9084 }
9085 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9086 /* Increase overflow counter */
9087 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9088 opt[IPOPT_POS_OV_FLG] =
9089 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9090 (off << 4));
9091 break;
9092 }
9093 off = opt[IPOPT_OFFSET] - 1;
9094 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9095 case IPOPT_TS_PRESPEC:
9096 case IPOPT_TS_PRESPEC_RFC791:
9097 case IPOPT_TS_TSANDADDR:
9098 /* Pick a reasonable addr on the outbound if */
9099 ASSERT(dst_ill != NULL);
9100 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9101 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9102 NULL, NULL) != 0) {
9103 /* No source! Shouldn’t happen */

new/usr/src/uts/common/inet/ip/ip.c 139

9104 ifaddr = INADDR_ANY;
9105 }
9106 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9107 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9108 /* FALLTHRU */
9109 case IPOPT_TS_TSONLY:
9110 off = opt[IPOPT_OFFSET] - 1;
9111 /* Compute # of milliseconds since midnight */
9112 gethrestime(&now);
9113 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9114 now.tv_nsec / (NANOSEC / MILLISEC);
9115 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9116 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9117 break;
9118 }
9119 break;
9120 }
9121 }
9122 return (B_TRUE);
9123 }

9125 /*
9126 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9127 * returns ’true’ if there are still fragments left on the queue, in
9128 * which case we restart the timer.
9129 */
9130 void
9131 ill_frag_timer(void *arg)
9132 {
9133 ill_t *ill = (ill_t *)arg;
9134 boolean_t frag_pending;
9135 ip_stack_t *ipst = ill->ill_ipst;
9136 time_t timeout;

9138 mutex_enter(&ill->ill_lock);
9139 ASSERT(!ill->ill_fragtimer_executing);
9140 if (ill->ill_state_flags & ILL_CONDEMNED) {
9141 ill->ill_frag_timer_id = 0;
9142 mutex_exit(&ill->ill_lock);
9143 return;
9144 }
9145 ill->ill_fragtimer_executing = 1;
9146 mutex_exit(&ill->ill_lock);

9148 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9149 ipst->ips_ip_reassembly_timeout);

9151 frag_pending = ill_frag_timeout(ill, timeout);

9153 /*
9154 * Restart the timer, if we have fragments pending or if someone
9155 * wanted us to be scheduled again.
9156 */
9157 mutex_enter(&ill->ill_lock);
9158 ill->ill_fragtimer_executing = 0;
9159 ill->ill_frag_timer_id = 0;
9160 if (frag_pending || ill->ill_fragtimer_needrestart)
9161 ill_frag_timer_start(ill);
9162 mutex_exit(&ill->ill_lock);
9163 }

9165 void
9166 ill_frag_timer_start(ill_t *ill)
9167 {
9168 ip_stack_t *ipst = ill->ill_ipst;
9169 clock_t timeo_ms;

new/usr/src/uts/common/inet/ip/ip.c 140

9171 ASSERT(MUTEX_HELD(&ill->ill_lock));

9173 /* If the ill is closing or opening don’t proceed */
9174 if (ill->ill_state_flags & ILL_CONDEMNED)
9175 return;

9177 if (ill->ill_fragtimer_executing) {
9178 /*
9179 * ill_frag_timer is currently executing. Just record the
9180 * the fact that we want the timer to be restarted.
9181 * ill_frag_timer will post a timeout before it returns,
9182 * ensuring it will be called again.
9183 */
9184 ill->ill_fragtimer_needrestart = 1;
9185 return;
9186 }

9188 if (ill->ill_frag_timer_id == 0) {
9189 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9190 ipst->ips_ip_reassembly_timeout) * SECONDS;

9192 /*
9193 * The timer is neither running nor is the timeout handler
9194 * executing. Post a timeout so that ill_frag_timer will be
9195 * called
9196 */
9197 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9198 MSEC_TO_TICK(timeo_ms >> 1));
9199 ill->ill_fragtimer_needrestart = 0;
9200 }
9201 }

9203 /*
9204 * Update any source route, record route or timestamp options.
9205 * Check that we are at end of strict source route.
9206 * The options have already been checked for sanity in ip_input_options().
9207 */
9208 boolean_t
9209 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9210 {
9211 ipoptp_t opts;
9212 uchar_t *opt;
9213 uint8_t optval;
9214 uint8_t optlen;
9215 ipaddr_t dst;
9216 ipaddr_t ifaddr;
9217 uint32_t ts;
9218 timestruc_t now;
9219 ill_t *ill = ira->ira_ill;
9220 ip_stack_t *ipst = ill->ill_ipst;

9222 ip2dbg(("ip_input_local_options\n"));

9224 for (optval = ipoptp_first(&opts, ipha);
9225 optval != IPOPT_EOL;
9226 optval = ipoptp_next(&opts)) {
9227 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9228 opt = opts.ipoptp_cur;
9229 optlen = opts.ipoptp_len;
9230 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9231 optval, optlen));
9232 switch (optval) {
9233 uint32_t off;
9234 case IPOPT_SSRR:
9235 case IPOPT_LSRR:

new/usr/src/uts/common/inet/ip/ip.c 141

9236 off = opt[IPOPT_OFFSET];
9237 off--;
9238 if (optlen < IP_ADDR_LEN ||
9239 off > optlen - IP_ADDR_LEN) {
9240 /* End of source route */
9241 ip1dbg(("ip_input_local_options: end of SR\n"));
9242 break;
9243 }
9244 /*
9245 * This will only happen if two consecutive entries
9246 * in the source route contains our address or if
9247 * it is a packet with a loose source route which
9248 * reaches us before consuming the whole source route
9249 */
9250 ip1dbg(("ip_input_local_options: not end of SR\n"));
9251 if (optval == IPOPT_SSRR) {
9252 goto bad_src_route;
9253 }
9254 /*
9255 * Hack: instead of dropping the packet truncate the
9256 * source route to what has been used by filling the
9257 * rest with IPOPT_NOP.
9258 */
9259 opt[IPOPT_OLEN] = (uint8_t)off;
9260 while (off < optlen) {
9261 opt[off++] = IPOPT_NOP;
9262 }
9263 break;
9264 case IPOPT_RR:
9265 off = opt[IPOPT_OFFSET];
9266 off--;
9267 if (optlen < IP_ADDR_LEN ||
9268 off > optlen - IP_ADDR_LEN) {
9269 /* No more room - ignore */
9270 ip1dbg((
9271 "ip_input_local_options: end of RR\n"));
9272 break;
9273 }
9274 /* Pick a reasonable address on the outbound if */
9275 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9276 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9277 NULL) != 0) {
9278 /* No source! Shouldn’t happen */
9279 ifaddr = INADDR_ANY;
9280 }
9281 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9282 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9283 break;
9284 case IPOPT_TS:
9285 /* Insert timestamp if there is romm */
9286 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9287 case IPOPT_TS_TSONLY:
9288 off = IPOPT_TS_TIMELEN;
9289 break;
9290 case IPOPT_TS_PRESPEC:
9291 case IPOPT_TS_PRESPEC_RFC791:
9292 /* Verify that the address matched */
9293 off = opt[IPOPT_OFFSET] - 1;
9294 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9295 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9296 /* Not for us */
9297 break;
9298 }
9299 /* FALLTHRU */
9300 case IPOPT_TS_TSANDADDR:
9301 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;

new/usr/src/uts/common/inet/ip/ip.c 142

9302 break;
9303 default:
9304 /*
9305 * ip_*put_options should have already
9306 * dropped this packet.
9307 */
9308 cmn_err(CE_PANIC, "ip_input_local_options: "
9309 "unknown IT - bug in ip_input_options?\n");
9310 return (B_TRUE); /* Keep "lint" happy */
9311 }
9312 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9313 /* Increase overflow counter */
9314 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9315 opt[IPOPT_POS_OV_FLG] =
9316 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9317 (off << 4));
9318 break;
9319 }
9320 off = opt[IPOPT_OFFSET] - 1;
9321 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9322 case IPOPT_TS_PRESPEC:
9323 case IPOPT_TS_PRESPEC_RFC791:
9324 case IPOPT_TS_TSANDADDR:
9325 /* Pick a reasonable addr on the outbound if */
9326 if (ip_select_source_v4(ill, INADDR_ANY,
9327 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9328 &ifaddr, NULL, NULL) != 0) {
9329 /* No source! Shouldn’t happen */
9330 ifaddr = INADDR_ANY;
9331 }
9332 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9333 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9334 /* FALLTHRU */
9335 case IPOPT_TS_TSONLY:
9336 off = opt[IPOPT_OFFSET] - 1;
9337 /* Compute # of milliseconds since midnight */
9338 gethrestime(&now);
9339 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9340 now.tv_nsec / (NANOSEC / MILLISEC);
9341 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9342 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9343 break;
9344 }
9345 break;
9346 }
9347 }
9348 return (B_TRUE);

9350 bad_src_route:
9351 /* make sure we clear any indication of a hardware checksum */
9352 DB_CKSUMFLAGS(mp) = 0;
9353 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9354 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9355 return (B_FALSE);

9357 }

9359 /*
9360 * Process IP options in an inbound packet. Always returns the nexthop.
9361 * Normally this is the passed in nexthop, but if there is an option
9362 * that effects the nexthop (such as a source route) that will be returned.
9363 * Sets *errorp if there is an error, in which case an ICMP error has been sent
9364 * and mp freed.
9365 */
9366 ipaddr_t
9367 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,

new/usr/src/uts/common/inet/ip/ip.c 143

9368 ip_recv_attr_t *ira, int *errorp)
9369 {
9370 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
9371 ipoptp_t opts;
9372 uchar_t *opt;
9373 uint8_t optval;
9374 uint8_t optlen;
9375 intptr_t code = 0;
9376 ire_t *ire;

9378 ip2dbg(("ip_input_options\n"));
9379 *errorp = 0;
9380 for (optval = ipoptp_first(&opts, ipha);
9381 optval != IPOPT_EOL;
9382 optval = ipoptp_next(&opts)) {
9383 opt = opts.ipoptp_cur;
9384 optlen = opts.ipoptp_len;
9385 ip2dbg(("ip_input_options: opt %d, len %d\n",
9386 optval, optlen));
9387 /*
9388 * Note: we need to verify the checksum before we
9389 * modify anything thus this routine only extracts the next
9390 * hop dst from any source route.
9391 */
9392 switch (optval) {
9393 uint32_t off;
9394 case IPOPT_SSRR:
9395 case IPOPT_LSRR:
9396 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9397 if (optval == IPOPT_SSRR) {
9398 ip1dbg(("ip_input_options: not next"
9399 " strict source route 0x%x\n",
9400 ntohl(dst)));
9401 code = (char *)&ipha->ipha_dst -
9402 (char *)ipha;
9403 goto param_prob; /* RouterReq’s */
9404 }
9405 ip2dbg(("ip_input_options: "
9406 "not next source route 0x%x\n",
9407 ntohl(dst)));
9408 break;
9409 }

9411 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9412 ip1dbg((
9413 "ip_input_options: bad option offset\n"));
9414 code = (char *)&opt[IPOPT_OLEN] -
9415 (char *)ipha;
9416 goto param_prob;
9417 }
9418 off = opt[IPOPT_OFFSET];
9419 off--;
9420 redo_srr:
9421 if (optlen < IP_ADDR_LEN ||
9422 off > optlen - IP_ADDR_LEN) {
9423 /* End of source route */
9424 ip1dbg(("ip_input_options: end of SR\n"));
9425 break;
9426 }
9427 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9428 ip1dbg(("ip_input_options: next hop 0x%x\n",
9429 ntohl(dst)));

9431 /*
9432 * Check if our address is present more than
9433 * once as consecutive hops in source route.

new/usr/src/uts/common/inet/ip/ip.c 144

9434 * XXX verify per-interface ip_forwarding
9435 * for source route?
9436 */
9437 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9438 off += IP_ADDR_LEN;
9439 goto redo_srr;
9440 }

9442 if (dst == htonl(INADDR_LOOPBACK)) {
9443 ip1dbg(("ip_input_options: loopback addr in "
9444 "source route!\n"));
9445 goto bad_src_route;
9446 }
9447 /*
9448 * For strict: verify that dst is directly
9449 * reachable.
9450 */
9451 if (optval == IPOPT_SSRR) {
9452 ire = ire_ftable_lookup_v4(dst, 0, 0,
9453 IRE_INTERFACE, NULL, ALL_ZONES,
9454 ira->ira_tsl,
9455 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9456 NULL);
9457 if (ire == NULL) {
9458 ip1dbg(("ip_input_options: SSRR not "
9459 "directly reachable: 0x%x\n",
9460 ntohl(dst)));
9461 goto bad_src_route;
9462 }
9463 ire_refrele(ire);
9464 }
9465 /*
9466 * Defer update of the offset and the record route
9467 * until the packet is forwarded.
9468 */
9469 break;
9470 case IPOPT_RR:
9471 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9472 ip1dbg((
9473 "ip_input_options: bad option offset\n"));
9474 code = (char *)&opt[IPOPT_OLEN] -
9475 (char *)ipha;
9476 goto param_prob;
9477 }
9478 break;
9479 case IPOPT_TS:
9480 /*
9481 * Verify that length >= 5 and that there is either
9482 * room for another timestamp or that the overflow
9483 * counter is not maxed out.
9484 */
9485 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9486 if (optlen < IPOPT_MINLEN_IT) {
9487 goto param_prob;
9488 }
9489 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9490 ip1dbg((
9491 "ip_input_options: bad option offset\n"));
9492 code = (char *)&opt[IPOPT_OFFSET] -
9493 (char *)ipha;
9494 goto param_prob;
9495 }
9496 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9497 case IPOPT_TS_TSONLY:
9498 off = IPOPT_TS_TIMELEN;
9499 break;

new/usr/src/uts/common/inet/ip/ip.c 145

9500 case IPOPT_TS_TSANDADDR:
9501 case IPOPT_TS_PRESPEC:
9502 case IPOPT_TS_PRESPEC_RFC791:
9503 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9504 break;
9505 default:
9506 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9507 (char *)ipha;
9508 goto param_prob;
9509 }
9510 if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9511 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9512 /*
9513 * No room and the overflow counter is 15
9514 * already.
9515 */
9516 goto param_prob;
9517 }
9518 break;
9519 }
9520 }

9522 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9523 return (dst);
9524 }

9526 ip1dbg(("ip_input_options: error processing IP options."));
9527 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;

9529 param_prob:
9530 /* make sure we clear any indication of a hardware checksum */
9531 DB_CKSUMFLAGS(mp) = 0;
9532 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9533 icmp_param_problem(mp, (uint8_t)code, ira);
9534 *errorp = -1;
9535 return (dst);

9537 bad_src_route:
9538 /* make sure we clear any indication of a hardware checksum */
9539 DB_CKSUMFLAGS(mp) = 0;
9540 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9541 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9542 *errorp = -1;
9543 return (dst);
9544 }

9546 /*
9547 * IP & ICMP info in >=14 msg’s ...
9548 * - ip fixed part (mib2_ip_t)
9549 * - icmp fixed part (mib2_icmp_t)
9550 * - ipAddrEntryTable (ip 20) all IPv4 ipifs
9551 * - ipRouteEntryTable (ip 21) all IPv4 IREs
9552 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries
9553 * - ipRouteAttributeTable (ip 102) labeled routes
9554 * - ip multicast membership (ip_member_t)
9555 * - ip multicast source filtering (ip_grpsrc_t)
9556 * - igmp fixed part (struct igmpstat)
9557 * - multicast routing stats (struct mrtstat)
9558 * - multicast routing vifs (array of struct vifctl)
9559 * - multicast routing routes (array of struct mfcctl)
9560 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9561 * One per ill plus one generic
9562 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9563 * One per ill plus one generic
9564 * - ipv6RouteEntry all IPv6 IREs
9565 * - ipv6RouteAttributeTable (ip6 102) labeled routes

new/usr/src/uts/common/inet/ip/ip.c 146

9566 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries
9567 * - ipv6AddrEntry all IPv6 ipifs
9568 * - ipv6 multicast membership (ipv6_member_t)
9569 * - ipv6 multicast source filtering (ipv6_grpsrc_t)
9570 *
9571 * NOTE: original mpctl is copied for msg’s 2..N, since its ctl part is
9572 * already filled in by the caller.
9573 * If legacy_req is true then MIB structures needs to be truncated to their
9574 * legacy sizes before being returned.
9575 * Return value of 0 indicates that no messages were sent and caller
9576 * should free mpctl.
9577 */
9578 int
9579 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9580 {
9581 ip_stack_t *ipst;
9582 sctp_stack_t *sctps;

9584 if (q->q_next != NULL) {
9585 ipst = ILLQ_TO_IPST(q);
9586 } else {
9587 ipst = CONNQ_TO_IPST(q);
9588 }
9589 ASSERT(ipst != NULL);
9590 sctps = ipst->ips_netstack->netstack_sctp;

9592 if (mpctl == NULL || mpctl->b_cont == NULL) {
9593 return (0);
9594 }

9596 /*
9597 * For the purposes of the (broken) packet shell use
9598 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9599 * to make TCP and UDP appear first in the list of mib items.
9600 * TBD: We could expand this and use it in netstat so that
9601 * the kernel doesn’t have to produce large tables (connections,
9602 * routes, etc) when netstat only wants the statistics or a particular
9603 * table.
9604 */
9605 if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9606 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9607 return (1);
9608 }
9609 }

9611 if (level != MIB2_TCP) {
9612 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9613 return (1);
9614 }
9615 }

9617 if (level != MIB2_UDP) {
9618 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9619 return (1);
9620 }
9621 }

9623 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9624 ipst, legacy_req)) == NULL) {
9625 return (1);
9626 }

9628 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9629 legacy_req)) == NULL) {
9630 return (1);
9631 }

new/usr/src/uts/common/inet/ip/ip.c 147

9633 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9634 return (1);
9635 }

9637 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9638 return (1);
9639 }

9641 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9642 return (1);
9643 }

9645 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9646 return (1);
9647 }

9649 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9650 legacy_req)) == NULL) {
9651 return (1);
9652 }

9654 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9655 legacy_req)) == NULL) {
9656 return (1);
9657 }

9659 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9660 return (1);
9661 }

9663 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9664 return (1);
9665 }

9667 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9668 return (1);
9669 }

9671 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9672 return (1);
9673 }

9675 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9676 return (1);
9677 }

9679 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9680 return (1);
9681 }

9683 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9684 if (mpctl == NULL)
9685 return (1);

9687 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9688 if (mpctl == NULL)
9689 return (1);

9691 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9692 return (1);
9693 }
9694 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9695 return (1);
9696 }
9697 freemsg(mpctl);

new/usr/src/uts/common/inet/ip/ip.c 148

9698 return (1);
9699 }

9701 /* Get global (legacy) IPv4 statistics */
9702 static mblk_t *
9703 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9704 ip_stack_t *ipst, boolean_t legacy_req)
9705 {
9706 mib2_ip_t old_ip_mib;
9707 struct opthdr *optp;
9708 mblk_t *mp2ctl;
9709 mib2_ipAddrEntry_t mae;

9711 /*
9712 * make a copy of the original message
9713 */
9714 mp2ctl = copymsg(mpctl);

9716 /* fixed length IP structure... */
9717 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9718 optp->level = MIB2_IP;
9719 optp->name = 0;
9720 SET_MIB(old_ip_mib.ipForwarding,
9721 (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9722 SET_MIB(old_ip_mib.ipDefaultTTL,
9723 (uint32_t)ipst->ips_ip_def_ttl);
9724 SET_MIB(old_ip_mib.ipReasmTimeout,
9725 ipst->ips_ip_reassembly_timeout);
9726 SET_MIB(old_ip_mib.ipAddrEntrySize,
9727 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9728 sizeof (mib2_ipAddrEntry_t));
9729 SET_MIB(old_ip_mib.ipRouteEntrySize,
9730 sizeof (mib2_ipRouteEntry_t));
9731 SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9732 sizeof (mib2_ipNetToMediaEntry_t));
9733 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9734 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9735 SET_MIB(old_ip_mib.ipRouteAttributeSize,
9736 sizeof (mib2_ipAttributeEntry_t));
9737 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9738 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));

9740 /*
9741 * Grab the statistics from the new IP MIB
9742 */
9743 SET_MIB(old_ip_mib.ipInReceives,
9744 (uint32_t)ipmib->ipIfStatsHCInReceives);
9745 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9746 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9747 SET_MIB(old_ip_mib.ipForwDatagrams,
9748 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9749 SET_MIB(old_ip_mib.ipInUnknownProtos,
9750 ipmib->ipIfStatsInUnknownProtos);
9751 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9752 SET_MIB(old_ip_mib.ipInDelivers,
9753 (uint32_t)ipmib->ipIfStatsHCInDelivers);
9754 SET_MIB(old_ip_mib.ipOutRequests,
9755 (uint32_t)ipmib->ipIfStatsHCOutRequests);
9756 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9757 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9758 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9759 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9760 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9761 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9762 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9763 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);

new/usr/src/uts/common/inet/ip/ip.c 149

9765 /* ipRoutingDiscards is not being used */
9766 SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9767 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9768 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9769 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9770 SET_MIB(old_ip_mib.ipReasmDuplicates,
9771 ipmib->ipIfStatsReasmDuplicates);
9772 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9773 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9774 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9775 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9776 SET_MIB(old_ip_mib.rawipInOverflows,
9777 ipmib->rawipIfStatsInOverflows);

9779 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9780 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9781 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9782 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9783 SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9784 ipmib->ipIfStatsOutSwitchIPVersion);

9786 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9787 (int)sizeof (old_ip_mib))) {
9788 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9789 (uint_t)sizeof (old_ip_mib)));
9790 }

9792 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9793 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9794 (int)optp->level, (int)optp->name, (int)optp->len));
9795 qreply(q, mpctl);
9796 return (mp2ctl);
9797 }

9799 /* Per interface IPv4 statistics */
9800 static mblk_t *
9801 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9802 boolean_t legacy_req)
9803 {
9804 struct opthdr *optp;
9805 mblk_t *mp2ctl;
9806 ill_t *ill;
9807 ill_walk_context_t ctx;
9808 mblk_t *mp_tail = NULL;
9809 mib2_ipIfStatsEntry_t global_ip_mib;
9810 mib2_ipAddrEntry_t mae;

9812 /*
9813 * Make a copy of the original message
9814 */
9815 mp2ctl = copymsg(mpctl);

9817 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9818 optp->level = MIB2_IP;
9819 optp->name = MIB2_IP_TRAFFIC_STATS;
9820 /* Include "unknown interface" ip_mib */
9821 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9822 ipst->ips_ip_mib.ipIfStatsIfIndex =
9823 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9824 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9825 (ipst->ips_ip_forwarding ? 1 : 2));
9826 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9827 (uint32_t)ipst->ips_ip_def_ttl);
9828 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9829 sizeof (mib2_ipIfStatsEntry_t));

new/usr/src/uts/common/inet/ip/ip.c 150

9830 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9831 sizeof (mib2_ipAddrEntry_t));
9832 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9833 sizeof (mib2_ipRouteEntry_t));
9834 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9835 sizeof (mib2_ipNetToMediaEntry_t));
9836 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9837 sizeof (ip_member_t));
9838 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9839 sizeof (ip_grpsrc_t));

9841 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));

9843 if (legacy_req) {
9844 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9845 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9846 }

9848 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9849 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9850 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9851 "failed to allocate %u bytes\n",
9852 (uint_t)sizeof (global_ip_mib)));
9853 }

9855 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9856 ill = ILL_START_WALK_V4(&ctx, ipst);
9857 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9858 ill->ill_ip_mib->ipIfStatsIfIndex =
9859 ill->ill_phyint->phyint_ifindex;
9860 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9861 (ipst->ips_ip_forwarding ? 1 : 2));
9862 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9863 (uint32_t)ipst->ips_ip_def_ttl);

9865 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9866 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9867 (char *)ill->ill_ip_mib,
9868 (int)sizeof (*ill->ill_ip_mib))) {
9869 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9870 "failed to allocate %u bytes\n",
9871 (uint_t)sizeof (*ill->ill_ip_mib)));
9872 }
9873 }
9874 rw_exit(&ipst->ips_ill_g_lock);

9876 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9877 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9878 "level %d, name %d, len %d\n",
9879 (int)optp->level, (int)optp->name, (int)optp->len));
9880 qreply(q, mpctl);

9882 if (mp2ctl == NULL)
9883 return (NULL);

9885 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9886 legacy_req));
9887 }

9889 /* Global IPv4 ICMP statistics */
9890 static mblk_t *
9891 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9892 {
9893 struct opthdr *optp;
9894 mblk_t *mp2ctl;

new/usr/src/uts/common/inet/ip/ip.c 151

9896 /*
9897 * Make a copy of the original message
9898 */
9899 mp2ctl = copymsg(mpctl);

9901 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9902 optp->level = MIB2_ICMP;
9903 optp->name = 0;
9904 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9905 (int)sizeof (ipst->ips_icmp_mib))) {
9906 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9907 (uint_t)sizeof (ipst->ips_icmp_mib)));
9908 }
9909 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9910 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9911 (int)optp->level, (int)optp->name, (int)optp->len));
9912 qreply(q, mpctl);
9913 return (mp2ctl);
9914 }

9916 /* Global IPv4 IGMP statistics */
9917 static mblk_t *
9918 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9919 {
9920 struct opthdr *optp;
9921 mblk_t *mp2ctl;

9923 /*
9924 * make a copy of the original message
9925 */
9926 mp2ctl = copymsg(mpctl);

9928 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9929 optp->level = EXPER_IGMP;
9930 optp->name = 0;
9931 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9932 (int)sizeof (ipst->ips_igmpstat))) {
9933 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9934 (uint_t)sizeof (ipst->ips_igmpstat)));
9935 }
9936 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9937 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9938 (int)optp->level, (int)optp->name, (int)optp->len));
9939 qreply(q, mpctl);
9940 return (mp2ctl);
9941 }

9943 /* Global IPv4 Multicast Routing statistics */
9944 static mblk_t *
9945 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9946 {
9947 struct opthdr *optp;
9948 mblk_t *mp2ctl;

9950 /*
9951 * make a copy of the original message
9952 */
9953 mp2ctl = copymsg(mpctl);

9955 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9956 optp->level = EXPER_DVMRP;
9957 optp->name = 0;
9958 if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9959 ip0dbg(("ip_mroute_stats: failed\n"));
9960 }
9961 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);

new/usr/src/uts/common/inet/ip/ip.c 152

9962 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9963 (int)optp->level, (int)optp->name, (int)optp->len));
9964 qreply(q, mpctl);
9965 return (mp2ctl);
9966 }

9968 /* IPv4 address information */
9969 static mblk_t *
9970 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9971 boolean_t legacy_req)
9972 {
9973 struct opthdr *optp;
9974 mblk_t *mp2ctl;
9975 mblk_t *mp_tail = NULL;
9976 ill_t *ill;
9977 ipif_t *ipif;
9978 uint_t bitval;
9979 mib2_ipAddrEntry_t mae;
9980 size_t mae_size;
9981 zoneid_t zoneid;
9982 ill_walk_context_t ctx;

9984 /*
9985 * make a copy of the original message
9986 */
9987 mp2ctl = copymsg(mpctl);

9989 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9990 sizeof (mib2_ipAddrEntry_t);

9992 /* ipAddrEntryTable */

9994 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9995 optp->level = MIB2_IP;
9996 optp->name = MIB2_IP_ADDR;
9997 zoneid = Q_TO_CONN(q)->conn_zoneid;

9999 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10000 ill = ILL_START_WALK_V4(&ctx, ipst);
10001 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10002 for (ipif = ill->ill_ipif; ipif != NULL;
10003 ipif = ipif->ipif_next) {
10004 if (ipif->ipif_zoneid != zoneid &&
10005 ipif->ipif_zoneid != ALL_ZONES)
10006 continue;
10007 /* Sum of count from dead IRE_LO* and our current */
10008 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10009 if (ipif->ipif_ire_local != NULL) {
10010 mae.ipAdEntInfo.ae_ibcnt +=
10011 ipif->ipif_ire_local->ire_ib_pkt_count;
10012 }
10013 mae.ipAdEntInfo.ae_obcnt = 0;
10014 mae.ipAdEntInfo.ae_focnt = 0;

10016 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10017 OCTET_LENGTH);
10018 mae.ipAdEntIfIndex.o_length =
10019 mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10020 mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10021 mae.ipAdEntNetMask = ipif->ipif_net_mask;
10022 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10023 mae.ipAdEntInfo.ae_subnet_len =
10024 ip_mask_to_plen(ipif->ipif_net_mask);
10025 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10026 for (bitval = 1;
10027 bitval &&

new/usr/src/uts/common/inet/ip/ip.c 153

10028 !(bitval & ipif->ipif_brd_addr);
10029 bitval <<= 1)
10030 noop;
10031 mae.ipAdEntBcastAddr = bitval;
10032 mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10033 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10034 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric;
10035 mae.ipAdEntInfo.ae_broadcast_addr =
10036 ipif->ipif_brd_addr;
10037 mae.ipAdEntInfo.ae_pp_dst_addr =
10038 ipif->ipif_pp_dst_addr;
10039 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10040 ill->ill_flags | ill->ill_phyint->phyint_flags;
10041 mae.ipAdEntRetransmitTime =
10042 ill->ill_reachable_retrans_time;

10044 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10045 (char *)&mae, (int)mae_size)) {
10046 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10047 "allocate %u bytes\n", (uint_t)mae_size));
10048 }
10049 }
10050 }
10051 rw_exit(&ipst->ips_ill_g_lock);

10053 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10054 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10055 (int)optp->level, (int)optp->name, (int)optp->len));
10056 qreply(q, mpctl);
10057 return (mp2ctl);
10058 }

10060 /* IPv6 address information */
10061 static mblk_t *
10062 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10063 boolean_t legacy_req)
10064 {
10065 struct opthdr *optp;
10066 mblk_t *mp2ctl;
10067 mblk_t *mp_tail = NULL;
10068 ill_t *ill;
10069 ipif_t *ipif;
10070 mib2_ipv6AddrEntry_t mae6;
10071 size_t mae6_size;
10072 zoneid_t zoneid;
10073 ill_walk_context_t ctx;

10075 /*
10076 * make a copy of the original message
10077 */
10078 mp2ctl = copymsg(mpctl);

10080 mae6_size = (legacy_req) ?
10081 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10082 sizeof (mib2_ipv6AddrEntry_t);

10084 /* ipv6AddrEntryTable */

10086 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10087 optp->level = MIB2_IP6;
10088 optp->name = MIB2_IP6_ADDR;
10089 zoneid = Q_TO_CONN(q)->conn_zoneid;

10091 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10092 ill = ILL_START_WALK_V6(&ctx, ipst);
10093 for (; ill != NULL; ill = ill_next(&ctx, ill)) {

new/usr/src/uts/common/inet/ip/ip.c 154

10094 for (ipif = ill->ill_ipif; ipif != NULL;
10095 ipif = ipif->ipif_next) {
10096 if (ipif->ipif_zoneid != zoneid &&
10097 ipif->ipif_zoneid != ALL_ZONES)
10098 continue;
10099 /* Sum of count from dead IRE_LO* and our current */
10100 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10101 if (ipif->ipif_ire_local != NULL) {
10102 mae6.ipv6AddrInfo.ae_ibcnt +=
10103 ipif->ipif_ire_local->ire_ib_pkt_count;
10104 }
10105 mae6.ipv6AddrInfo.ae_obcnt = 0;
10106 mae6.ipv6AddrInfo.ae_focnt = 0;

10108 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10109 OCTET_LENGTH);
10110 mae6.ipv6AddrIfIndex.o_length =
10111 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10112 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10113 mae6.ipv6AddrPfxLength =
10114 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10115 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10116 mae6.ipv6AddrInfo.ae_subnet_len =
10117 mae6.ipv6AddrPfxLength;
10118 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;

10120 /* Type: stateless(1), stateful(2), unknown(3) */
10121 if (ipif->ipif_flags & IPIF_ADDRCONF)
10122 mae6.ipv6AddrType = 1;
10123 else
10124 mae6.ipv6AddrType = 2;
10125 /* Anycast: true(1), false(2) */
10126 if (ipif->ipif_flags & IPIF_ANYCAST)
10127 mae6.ipv6AddrAnycastFlag = 1;
10128 else
10129 mae6.ipv6AddrAnycastFlag = 2;

10131 /*
10132 * Address status: preferred(1), deprecated(2),
10133 * invalid(3), inaccessible(4), unknown(5)
10134 */
10135 if (ipif->ipif_flags & IPIF_NOLOCAL)
10136 mae6.ipv6AddrStatus = 3;
10137 else if (ipif->ipif_flags & IPIF_DEPRECATED)
10138 mae6.ipv6AddrStatus = 2;
10139 else
10140 mae6.ipv6AddrStatus = 1;
10141 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10142 mae6.ipv6AddrInfo.ae_metric =
10143 ipif->ipif_ill->ill_metric;
10144 mae6.ipv6AddrInfo.ae_pp_dst_addr =
10145 ipif->ipif_v6pp_dst_addr;
10146 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10147 ill->ill_flags | ill->ill_phyint->phyint_flags;
10148 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10149 mae6.ipv6AddrIdentifier = ill->ill_token;
10150 mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10151 mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10152 mae6.ipv6AddrRetransmitTime =
10153 ill->ill_reachable_retrans_time;
10154 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10155 (char *)&mae6, (int)mae6_size)) {
10156 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10157 "allocate %u bytes\n",
10158 (uint_t)mae6_size));
10159 }

new/usr/src/uts/common/inet/ip/ip.c 155

10160 }
10161 }
10162 rw_exit(&ipst->ips_ill_g_lock);

10164 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10165 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10166 (int)optp->level, (int)optp->name, (int)optp->len));
10167 qreply(q, mpctl);
10168 return (mp2ctl);
10169 }

10171 /* IPv4 multicast group membership. */
10172 static mblk_t *
10173 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10174 {
10175 struct opthdr *optp;
10176 mblk_t *mp2ctl;
10177 ill_t *ill;
10178 ipif_t *ipif;
10179 ilm_t *ilm;
10180 ip_member_t ipm;
10181 mblk_t *mp_tail = NULL;
10182 ill_walk_context_t ctx;
10183 zoneid_t zoneid;

10185 /*
10186 * make a copy of the original message
10187 */
10188 mp2ctl = copymsg(mpctl);
10189 zoneid = Q_TO_CONN(q)->conn_zoneid;

10191 /* ipGroupMember table */
10192 optp = (struct opthdr *)&mpctl->b_rptr[
10193 sizeof (struct T_optmgmt_ack)];
10194 optp->level = MIB2_IP;
10195 optp->name = EXPER_IP_GROUP_MEMBERSHIP;

10197 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10198 ill = ILL_START_WALK_V4(&ctx, ipst);
10199 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10200 /* Make sure the ill isn’t going away. */
10201 if (!ill_check_and_refhold(ill))
10202 continue;
10203 rw_exit(&ipst->ips_ill_g_lock);
10204 rw_enter(&ill->ill_mcast_lock, RW_READER);
10205 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10206 if (ilm->ilm_zoneid != zoneid &&
10207 ilm->ilm_zoneid != ALL_ZONES)
10208 continue;

10210 /* Is there an ipif for ilm_ifaddr? */
10211 for (ipif = ill->ill_ipif; ipif != NULL;
10212 ipif = ipif->ipif_next) {
10213 if (!IPIF_IS_CONDEMNED(ipif) &&
10214 ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10215 ilm->ilm_ifaddr != INADDR_ANY)
10216 break;
10217 }
10218 if (ipif != NULL) {
10219 ipif_get_name(ipif,
10220 ipm.ipGroupMemberIfIndex.o_bytes,
10221 OCTET_LENGTH);
10222 } else {
10223 ill_get_name(ill,
10224 ipm.ipGroupMemberIfIndex.o_bytes,
10225 OCTET_LENGTH);

new/usr/src/uts/common/inet/ip/ip.c 156

10226 }
10227 ipm.ipGroupMemberIfIndex.o_length =
10228 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);

10230 ipm.ipGroupMemberAddress = ilm->ilm_addr;
10231 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10232 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10233 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10234 (char *)&ipm, (int)sizeof (ipm))) {
10235 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10236 "failed to allocate %u bytes\n",
10237 (uint_t)sizeof (ipm)));
10238 }
10239 }
10240 rw_exit(&ill->ill_mcast_lock);
10241 ill_refrele(ill);
10242 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10243 }
10244 rw_exit(&ipst->ips_ill_g_lock);
10245 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10246 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10247 (int)optp->level, (int)optp->name, (int)optp->len));
10248 qreply(q, mpctl);
10249 return (mp2ctl);
10250 }

10252 /* IPv6 multicast group membership. */
10253 static mblk_t *
10254 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10255 {
10256 struct opthdr *optp;
10257 mblk_t *mp2ctl;
10258 ill_t *ill;
10259 ilm_t *ilm;
10260 ipv6_member_t ipm6;
10261 mblk_t *mp_tail = NULL;
10262 ill_walk_context_t ctx;
10263 zoneid_t zoneid;

10265 /*
10266 * make a copy of the original message
10267 */
10268 mp2ctl = copymsg(mpctl);
10269 zoneid = Q_TO_CONN(q)->conn_zoneid;

10271 /* ip6GroupMember table */
10272 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10273 optp->level = MIB2_IP6;
10274 optp->name = EXPER_IP6_GROUP_MEMBERSHIP;

10276 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10277 ill = ILL_START_WALK_V6(&ctx, ipst);
10278 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10279 /* Make sure the ill isn’t going away. */
10280 if (!ill_check_and_refhold(ill))
10281 continue;
10282 rw_exit(&ipst->ips_ill_g_lock);
10283 /*
10284 * Normally we don’t have any members on under IPMP interfaces.
10285 * We report them as a debugging aid.
10286 */
10287 rw_enter(&ill->ill_mcast_lock, RW_READER);
10288 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10289 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10290 if (ilm->ilm_zoneid != zoneid &&
10291 ilm->ilm_zoneid != ALL_ZONES)

new/usr/src/uts/common/inet/ip/ip.c 157

10292 continue; /* not this zone */
10293 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10294 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10295 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10296 if (!snmp_append_data2(mpctl->b_cont,
10297 &mp_tail,
10298 (char *)&ipm6, (int)sizeof (ipm6))) {
10299 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10300 "failed to allocate %u bytes\n",
10301 (uint_t)sizeof (ipm6)));
10302 }
10303 }
10304 rw_exit(&ill->ill_mcast_lock);
10305 ill_refrele(ill);
10306 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10307 }
10308 rw_exit(&ipst->ips_ill_g_lock);

10310 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10311 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10312 (int)optp->level, (int)optp->name, (int)optp->len));
10313 qreply(q, mpctl);
10314 return (mp2ctl);
10315 }

10317 /* IP multicast filtered sources */
10318 static mblk_t *
10319 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10320 {
10321 struct opthdr *optp;
10322 mblk_t *mp2ctl;
10323 ill_t *ill;
10324 ipif_t *ipif;
10325 ilm_t *ilm;
10326 ip_grpsrc_t ips;
10327 mblk_t *mp_tail = NULL;
10328 ill_walk_context_t ctx;
10329 zoneid_t zoneid;
10330 int i;
10331 slist_t *sl;

10333 /*
10334 * make a copy of the original message
10335 */
10336 mp2ctl = copymsg(mpctl);
10337 zoneid = Q_TO_CONN(q)->conn_zoneid;

10339 /* ipGroupSource table */
10340 optp = (struct opthdr *)&mpctl->b_rptr[
10341 sizeof (struct T_optmgmt_ack)];
10342 optp->level = MIB2_IP;
10343 optp->name = EXPER_IP_GROUP_SOURCES;

10345 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10346 ill = ILL_START_WALK_V4(&ctx, ipst);
10347 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10348 /* Make sure the ill isn’t going away. */
10349 if (!ill_check_and_refhold(ill))
10350 continue;
10351 rw_exit(&ipst->ips_ill_g_lock);
10352 rw_enter(&ill->ill_mcast_lock, RW_READER);
10353 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10354 sl = ilm->ilm_filter;
10355 if (ilm->ilm_zoneid != zoneid &&
10356 ilm->ilm_zoneid != ALL_ZONES)
10357 continue;

new/usr/src/uts/common/inet/ip/ip.c 158

10358 if (SLIST_IS_EMPTY(sl))
10359 continue;

10361 /* Is there an ipif for ilm_ifaddr? */
10362 for (ipif = ill->ill_ipif; ipif != NULL;
10363 ipif = ipif->ipif_next) {
10364 if (!IPIF_IS_CONDEMNED(ipif) &&
10365 ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10366 ilm->ilm_ifaddr != INADDR_ANY)
10367 break;
10368 }
10369 if (ipif != NULL) {
10370 ipif_get_name(ipif,
10371 ips.ipGroupSourceIfIndex.o_bytes,
10372 OCTET_LENGTH);
10373 } else {
10374 ill_get_name(ill,
10375 ips.ipGroupSourceIfIndex.o_bytes,
10376 OCTET_LENGTH);
10377 }
10378 ips.ipGroupSourceIfIndex.o_length =
10379 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);

10381 ips.ipGroupSourceGroup = ilm->ilm_addr;
10382 for (i = 0; i < sl->sl_numsrc; i++) {
10383 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10384 continue;
10385 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10386 ips.ipGroupSourceAddress);
10387 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10388 (char *)&ips, (int)sizeof (ips)) == 0) {
10389 ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10390 " failed to allocate %u bytes\n",
10391 (uint_t)sizeof (ips)));
10392 }
10393 }
10394 }
10395 rw_exit(&ill->ill_mcast_lock);
10396 ill_refrele(ill);
10397 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10398 }
10399 rw_exit(&ipst->ips_ill_g_lock);
10400 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10401 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10402 (int)optp->level, (int)optp->name, (int)optp->len));
10403 qreply(q, mpctl);
10404 return (mp2ctl);
10405 }

10407 /* IPv6 multicast filtered sources. */
10408 static mblk_t *
10409 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10410 {
10411 struct opthdr *optp;
10412 mblk_t *mp2ctl;
10413 ill_t *ill;
10414 ilm_t *ilm;
10415 ipv6_grpsrc_t ips6;
10416 mblk_t *mp_tail = NULL;
10417 ill_walk_context_t ctx;
10418 zoneid_t zoneid;
10419 int i;
10420 slist_t *sl;

10422 /*
10423 * make a copy of the original message

new/usr/src/uts/common/inet/ip/ip.c 159

10424 */
10425 mp2ctl = copymsg(mpctl);
10426 zoneid = Q_TO_CONN(q)->conn_zoneid;

10428 /* ip6GroupMember table */
10429 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10430 optp->level = MIB2_IP6;
10431 optp->name = EXPER_IP6_GROUP_SOURCES;

10433 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10434 ill = ILL_START_WALK_V6(&ctx, ipst);
10435 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10436 /* Make sure the ill isn’t going away. */
10437 if (!ill_check_and_refhold(ill))
10438 continue;
10439 rw_exit(&ipst->ips_ill_g_lock);
10440 /*
10441 * Normally we don’t have any members on under IPMP interfaces.
10442 * We report them as a debugging aid.
10443 */
10444 rw_enter(&ill->ill_mcast_lock, RW_READER);
10445 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10446 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10447 sl = ilm->ilm_filter;
10448 if (ilm->ilm_zoneid != zoneid &&
10449 ilm->ilm_zoneid != ALL_ZONES)
10450 continue;
10451 if (SLIST_IS_EMPTY(sl))
10452 continue;
10453 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10454 for (i = 0; i < sl->sl_numsrc; i++) {
10455 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10456 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10457 (char *)&ips6, (int)sizeof (ips6))) {
10458 ip1dbg(("ip_snmp_get_mib2_ip6_"
10459 "group_src: failed to allocate "
10460 "%u bytes\n",
10461 (uint_t)sizeof (ips6)));
10462 }
10463 }
10464 }
10465 rw_exit(&ill->ill_mcast_lock);
10466 ill_refrele(ill);
10467 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10468 }
10469 rw_exit(&ipst->ips_ill_g_lock);

10471 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10472 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10473 (int)optp->level, (int)optp->name, (int)optp->len));
10474 qreply(q, mpctl);
10475 return (mp2ctl);
10476 }

10478 /* Multicast routing virtual interface table. */
10479 static mblk_t *
10480 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10481 {
10482 struct opthdr *optp;
10483 mblk_t *mp2ctl;

10485 /*
10486 * make a copy of the original message
10487 */
10488 mp2ctl = copymsg(mpctl);

new/usr/src/uts/common/inet/ip/ip.c 160

10490 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10491 optp->level = EXPER_DVMRP;
10492 optp->name = EXPER_DVMRP_VIF;
10493 if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10494 ip0dbg(("ip_mroute_vif: failed\n"));
10495 }
10496 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10497 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10498 (int)optp->level, (int)optp->name, (int)optp->len));
10499 qreply(q, mpctl);
10500 return (mp2ctl);
10501 }

10503 /* Multicast routing table. */
10504 static mblk_t *
10505 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10506 {
10507 struct opthdr *optp;
10508 mblk_t *mp2ctl;

10510 /*
10511 * make a copy of the original message
10512 */
10513 mp2ctl = copymsg(mpctl);

10515 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10516 optp->level = EXPER_DVMRP;
10517 optp->name = EXPER_DVMRP_MRT;
10518 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10519 ip0dbg(("ip_mroute_mrt: failed\n"));
10520 }
10521 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10522 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10523 (int)optp->level, (int)optp->name, (int)optp->len));
10524 qreply(q, mpctl);
10525 return (mp2ctl);
10526 }

10528 /*
10529 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10530 * in one IRE walk.
10531 */
10532 static mblk_t *
10533 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10534 ip_stack_t *ipst)
10535 {
10536 struct opthdr *optp;
10537 mblk_t *mp2ctl; /* Returned */
10538 mblk_t *mp3ctl; /* nettomedia */
10539 mblk_t *mp4ctl; /* routeattrs */
10540 iproutedata_t ird;
10541 zoneid_t zoneid;

10543 /*
10544 * make copies of the original message
10545 * - mp2ctl is returned unchanged to the caller for his use
10546 * - mpctl is sent upstream as ipRouteEntryTable
10547 * - mp3ctl is sent upstream as ipNetToMediaEntryTable
10548 * - mp4ctl is sent upstream as ipRouteAttributeTable
10549 */
10550 mp2ctl = copymsg(mpctl);
10551 mp3ctl = copymsg(mpctl);
10552 mp4ctl = copymsg(mpctl);
10553 if (mp3ctl == NULL || mp4ctl == NULL) {
10554 freemsg(mp4ctl);
10555 freemsg(mp3ctl);

new/usr/src/uts/common/inet/ip/ip.c 161

10556 freemsg(mp2ctl);
10557 freemsg(mpctl);
10558 return (NULL);
10559 }

10561 bzero(&ird, sizeof (ird));

10563 ird.ird_route.lp_head = mpctl->b_cont;
10564 ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10565 ird.ird_attrs.lp_head = mp4ctl->b_cont;
10566 /*
10567 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10568 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is
10569 * intended a temporary solution until a proper MIB API is provided
10570 * that provides complete filtering/caller-opt-in.
10571 */
10572 if (level == EXPER_IP_AND_ALL_IRES)
10573 ird.ird_flags |= IRD_REPORT_ALL;

10575 zoneid = Q_TO_CONN(q)->conn_zoneid;
10576 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);

10578 /* ipRouteEntryTable in mpctl */
10579 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10580 optp->level = MIB2_IP;
10581 optp->name = MIB2_IP_ROUTE;
10582 optp->len = msgdsize(ird.ird_route.lp_head);
10583 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10584 (int)optp->level, (int)optp->name, (int)optp->len));
10585 qreply(q, mpctl);

10587 /* ipNetToMediaEntryTable in mp3ctl */
10588 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);

10590 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10591 optp->level = MIB2_IP;
10592 optp->name = MIB2_IP_MEDIA;
10593 optp->len = msgdsize(ird.ird_netmedia.lp_head);
10594 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10595 (int)optp->level, (int)optp->name, (int)optp->len));
10596 qreply(q, mp3ctl);

10598 /* ipRouteAttributeTable in mp4ctl */
10599 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10600 optp->level = MIB2_IP;
10601 optp->name = EXPER_IP_RTATTR;
10602 optp->len = msgdsize(ird.ird_attrs.lp_head);
10603 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10604 (int)optp->level, (int)optp->name, (int)optp->len));
10605 if (optp->len == 0)
10606 freemsg(mp4ctl);
10607 else
10608 qreply(q, mp4ctl);

10610 return (mp2ctl);
10611 }

10613 /*
10614 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10615 * ipv6NetToMediaEntryTable in an NDP walk.
10616 */
10617 static mblk_t *
10618 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10619 ip_stack_t *ipst)
10620 {
10621 struct opthdr *optp;

new/usr/src/uts/common/inet/ip/ip.c 162

10622 mblk_t *mp2ctl; /* Returned */
10623 mblk_t *mp3ctl; /* nettomedia */
10624 mblk_t *mp4ctl; /* routeattrs */
10625 iproutedata_t ird;
10626 zoneid_t zoneid;

10628 /*
10629 * make copies of the original message
10630 * - mp2ctl is returned unchanged to the caller for his use
10631 * - mpctl is sent upstream as ipv6RouteEntryTable
10632 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10633 * - mp4ctl is sent upstream as ipv6RouteAttributeTable
10634 */
10635 mp2ctl = copymsg(mpctl);
10636 mp3ctl = copymsg(mpctl);
10637 mp4ctl = copymsg(mpctl);
10638 if (mp3ctl == NULL || mp4ctl == NULL) {
10639 freemsg(mp4ctl);
10640 freemsg(mp3ctl);
10641 freemsg(mp2ctl);
10642 freemsg(mpctl);
10643 return (NULL);
10644 }

10646 bzero(&ird, sizeof (ird));

10648 ird.ird_route.lp_head = mpctl->b_cont;
10649 ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10650 ird.ird_attrs.lp_head = mp4ctl->b_cont;
10651 /*
10652 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10653 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is
10654 * intended a temporary solution until a proper MIB API is provided
10655 * that provides complete filtering/caller-opt-in.
10656 */
10657 if (level == EXPER_IP_AND_ALL_IRES)
10658 ird.ird_flags |= IRD_REPORT_ALL;

10660 zoneid = Q_TO_CONN(q)->conn_zoneid;
10661 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);

10663 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10664 optp->level = MIB2_IP6;
10665 optp->name = MIB2_IP6_ROUTE;
10666 optp->len = msgdsize(ird.ird_route.lp_head);
10667 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10668 (int)optp->level, (int)optp->name, (int)optp->len));
10669 qreply(q, mpctl);

10671 /* ipv6NetToMediaEntryTable in mp3ctl */
10672 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);

10674 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10675 optp->level = MIB2_IP6;
10676 optp->name = MIB2_IP6_MEDIA;
10677 optp->len = msgdsize(ird.ird_netmedia.lp_head);
10678 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10679 (int)optp->level, (int)optp->name, (int)optp->len));
10680 qreply(q, mp3ctl);

10682 /* ipv6RouteAttributeTable in mp4ctl */
10683 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10684 optp->level = MIB2_IP6;
10685 optp->name = EXPER_IP_RTATTR;
10686 optp->len = msgdsize(ird.ird_attrs.lp_head);
10687 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",

new/usr/src/uts/common/inet/ip/ip.c 163

10688 (int)optp->level, (int)optp->name, (int)optp->len));
10689 if (optp->len == 0)
10690 freemsg(mp4ctl);
10691 else
10692 qreply(q, mp4ctl);

10694 return (mp2ctl);
10695 }

10697 /*
10698 * IPv6 mib: One per ill
10699 */
10700 static mblk_t *
10701 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10702 boolean_t legacy_req)
10703 {
10704 struct opthdr *optp;
10705 mblk_t *mp2ctl;
10706 ill_t *ill;
10707 ill_walk_context_t ctx;
10708 mblk_t *mp_tail = NULL;
10709 mib2_ipv6AddrEntry_t mae6;
10710 mib2_ipIfStatsEntry_t *ise;
10711 size_t ise_size, iae_size;

10713 /*
10714 * Make a copy of the original message
10715 */
10716 mp2ctl = copymsg(mpctl);

10718 /* fixed length IPv6 structure ... */

10720 if (legacy_req) {
10721 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10722 mib2_ipIfStatsEntry_t);
10723 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10724 } else {
10725 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10726 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10727 }

10729 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10730 optp->level = MIB2_IP6;
10731 optp->name = 0;
10732 /* Include "unknown interface" ip6_mib */
10733 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10734 ipst->ips_ip6_mib.ipIfStatsIfIndex =
10735 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10736 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10737 ipst->ips_ipv6_forwarding ? 1 : 2);
10738 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10739 ipst->ips_ipv6_def_hops);
10740 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10741 sizeof (mib2_ipIfStatsEntry_t));
10742 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10743 sizeof (mib2_ipv6AddrEntry_t));
10744 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10745 sizeof (mib2_ipv6RouteEntry_t));
10746 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10747 sizeof (mib2_ipv6NetToMediaEntry_t));
10748 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10749 sizeof (ipv6_member_t));
10750 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10751 sizeof (ipv6_grpsrc_t));

10753 /*

new/usr/src/uts/common/inet/ip/ip.c 164

10754 * Synchronize 64- and 32-bit counters
10755 */
10756 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10757 ipIfStatsHCInReceives);
10758 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10759 ipIfStatsHCInDelivers);
10760 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10761 ipIfStatsHCOutRequests);
10762 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10763 ipIfStatsHCOutForwDatagrams);
10764 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10765 ipIfStatsHCOutMcastPkts);
10766 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10767 ipIfStatsHCInMcastPkts);

10769 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10770 (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10771 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10772 (uint_t)ise_size));
10773 } else if (legacy_req) {
10774 /* Adjust the EntrySize fields for legacy requests. */
10775 ise =
10776 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10777 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10778 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10779 }

10781 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10782 ill = ILL_START_WALK_V6(&ctx, ipst);
10783 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10784 ill->ill_ip_mib->ipIfStatsIfIndex =
10785 ill->ill_phyint->phyint_ifindex;
10786 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10787 ipst->ips_ipv6_forwarding ? 1 : 2);
10788 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10789 ill->ill_max_hops);

10791 /*
10792 * Synchronize 64- and 32-bit counters
10793 */
10794 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10795 ipIfStatsHCInReceives);
10796 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10797 ipIfStatsHCInDelivers);
10798 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10799 ipIfStatsHCOutRequests);
10800 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10801 ipIfStatsHCOutForwDatagrams);
10802 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10803 ipIfStatsHCOutMcastPkts);
10804 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10805 ipIfStatsHCInMcastPkts);

10807 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10808 (char *)ill->ill_ip_mib, (int)ise_size)) {
10809 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10810 "%u bytes\n", (uint_t)ise_size));
10811 } else if (legacy_req) {
10812 /* Adjust the EntrySize fields for legacy requests. */
10813 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10814 (int)ise_size);
10815 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10816 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10817 }
10818 }
10819 rw_exit(&ipst->ips_ill_g_lock);

new/usr/src/uts/common/inet/ip/ip.c 165

10821 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10822 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10823 (int)optp->level, (int)optp->name, (int)optp->len));
10824 qreply(q, mpctl);
10825 return (mp2ctl);
10826 }

10828 /*
10829 * ICMPv6 mib: One per ill
10830 */
10831 static mblk_t *
10832 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10833 {
10834 struct opthdr *optp;
10835 mblk_t *mp2ctl;
10836 ill_t *ill;
10837 ill_walk_context_t ctx;
10838 mblk_t *mp_tail = NULL;
10839 /*
10840 * Make a copy of the original message
10841 */
10842 mp2ctl = copymsg(mpctl);

10844 /* fixed length ICMPv6 structure ... */

10846 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10847 optp->level = MIB2_ICMP6;
10848 optp->name = 0;
10849 /* Include "unknown interface" icmp6_mib */
10850 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10851 MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10852 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10853 sizeof (mib2_ipv6IfIcmpEntry_t);
10854 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10855 (char *)&ipst->ips_icmp6_mib,
10856 (int)sizeof (ipst->ips_icmp6_mib))) {
10857 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10858 (uint_t)sizeof (ipst->ips_icmp6_mib)));
10859 }

10861 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10862 ill = ILL_START_WALK_V6(&ctx, ipst);
10863 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10864 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10865 ill->ill_phyint->phyint_ifindex;
10866 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10867 (char *)ill->ill_icmp6_mib,
10868 (int)sizeof (*ill->ill_icmp6_mib))) {
10869 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10870 "%u bytes\n",
10871 (uint_t)sizeof (*ill->ill_icmp6_mib)));
10872 }
10873 }
10874 rw_exit(&ipst->ips_ill_g_lock);

10876 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10877 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10878 (int)optp->level, (int)optp->name, (int)optp->len));
10879 qreply(q, mpctl);
10880 return (mp2ctl);
10881 }

10883 /*
10884 * ire_walk routine to create both ipRouteEntryTable and
10885 * ipRouteAttributeTable in one IRE walk

new/usr/src/uts/common/inet/ip/ip.c 166

10886 */
10887 static void
10888 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10889 {
10890 ill_t *ill;
10891 mib2_ipRouteEntry_t *re;
10892 mib2_ipAttributeEntry_t iaes;
10893 tsol_ire_gw_secattr_t *attrp;
10894 tsol_gc_t *gc = NULL;
10895 tsol_gcgrp_t *gcgrp = NULL;
10896 ip_stack_t *ipst = ire->ire_ipst;

10898 ASSERT(ire->ire_ipversion == IPV4_VERSION);

10900 if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10901 if (ire->ire_testhidden)
10902 return;
10903 if (ire->ire_type & IRE_IF_CLONE)
10904 return;
10905 }

10907 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10908 return;

10910 if ((attrp = ire->ire_gw_secattr) != NULL) {
10911 mutex_enter(&attrp->igsa_lock);
10912 if ((gc = attrp->igsa_gc) != NULL) {
10913 gcgrp = gc->gc_grp;
10914 ASSERT(gcgrp != NULL);
10915 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10916 }
10917 mutex_exit(&attrp->igsa_lock);
10918 }
10919 /*
10920 * Return all IRE types for route table... let caller pick and choose
10921 */
10922 re->ipRouteDest = ire->ire_addr;
10923 ill = ire->ire_ill;
10924 re->ipRouteIfIndex.o_length = 0;
10925 if (ill != NULL) {
10926 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10927 re->ipRouteIfIndex.o_length =
10928 mi_strlen(re->ipRouteIfIndex.o_bytes);
10929 }
10930 re->ipRouteMetric1 = -1;
10931 re->ipRouteMetric2 = -1;
10932 re->ipRouteMetric3 = -1;
10933 re->ipRouteMetric4 = -1;

10935 re->ipRouteNextHop = ire->ire_gateway_addr;
10936 /* indirect(4), direct(3), or invalid(2) */
10937 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10938 re->ipRouteType = 2;
10939 else if (ire->ire_type & IRE_ONLINK)
10940 re->ipRouteType = 3;
10941 else
10942 re->ipRouteType = 4;

10944 re->ipRouteProto = -1;
10945 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10946 re->ipRouteMask = ire->ire_mask;
10947 re->ipRouteMetric5 = -1;
10948 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10949 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10950 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;

new/usr/src/uts/common/inet/ip/ip.c 167

10952 re->ipRouteInfo.re_frag_flag = 0;
10953 re->ipRouteInfo.re_rtt = 0;
10954 re->ipRouteInfo.re_src_addr = 0;
10955 re->ipRouteInfo.re_ref = ire->ire_refcnt;
10956 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count;
10957 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
10958 re->ipRouteInfo.re_flags = ire->ire_flags;

10960 /* Add the IRE_IF_CLONE’s counters to their parent IRE_INTERFACE */
10961 if (ire->ire_type & IRE_INTERFACE) {
10962 ire_t *child;

10964 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10965 child = ire->ire_dep_children;
10966 while (child != NULL) {
10967 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10968 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10969 child = child->ire_dep_sib_next;
10970 }
10971 rw_exit(&ipst->ips_ire_dep_lock);
10972 }

10974 if (ire->ire_flags & RTF_DYNAMIC) {
10975 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT;
10976 } else {
10977 re->ipRouteInfo.re_ire_type = ire->ire_type;
10978 }

10980 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10981 (char *)re, (int)sizeof (*re))) {
10982 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
10983 (uint_t)sizeof (*re)));
10984 }

10986 if (gc != NULL) {
10987 iaes.iae_routeidx = ird->ird_idx;
10988 iaes.iae_doi = gc->gc_db->gcdb_doi;
10989 iaes.iae_slrange = gc->gc_db->gcdb_slrange;

10991 if (!snmp_append_data2(ird->ird_attrs.lp_head,
10992 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10993 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
10994 "bytes\n", (uint_t)sizeof (iaes)));
10995 }
10996 }

10998 /* bump route index for next pass */
10999 ird->ird_idx++;

11001 kmem_free(re, sizeof (*re));
11002 if (gcgrp != NULL)
11003 rw_exit(&gcgrp->gcgrp_rwlock);
11004 }

11006 /*
11007 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11008 */
11009 static void
11010 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11011 {
11012 ill_t *ill;
11013 mib2_ipv6RouteEntry_t *re;
11014 mib2_ipAttributeEntry_t iaes;
11015 tsol_ire_gw_secattr_t *attrp;
11016 tsol_gc_t *gc = NULL;
11017 tsol_gcgrp_t *gcgrp = NULL;

new/usr/src/uts/common/inet/ip/ip.c 168

11018 ip_stack_t *ipst = ire->ire_ipst;

11020 ASSERT(ire->ire_ipversion == IPV6_VERSION);

11022 if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11023 if (ire->ire_testhidden)
11024 return;
11025 if (ire->ire_type & IRE_IF_CLONE)
11026 return;
11027 }

11029 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11030 return;

11032 if ((attrp = ire->ire_gw_secattr) != NULL) {
11033 mutex_enter(&attrp->igsa_lock);
11034 if ((gc = attrp->igsa_gc) != NULL) {
11035 gcgrp = gc->gc_grp;
11036 ASSERT(gcgrp != NULL);
11037 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11038 }
11039 mutex_exit(&attrp->igsa_lock);
11040 }
11041 /*
11042 * Return all IRE types for route table... let caller pick and choose
11043 */
11044 re->ipv6RouteDest = ire->ire_addr_v6;
11045 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11046 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */
11047 re->ipv6RouteIfIndex.o_length = 0;
11048 ill = ire->ire_ill;
11049 if (ill != NULL) {
11050 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11051 re->ipv6RouteIfIndex.o_length =
11052 mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11053 }

11055 ASSERT(!(ire->ire_type & IRE_BROADCAST));

11057 mutex_enter(&ire->ire_lock);
11058 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11059 mutex_exit(&ire->ire_lock);

11061 /* remote(4), local(3), or discard(2) */
11062 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11063 re->ipv6RouteType = 2;
11064 else if (ire->ire_type & IRE_ONLINK)
11065 re->ipv6RouteType = 3;
11066 else
11067 re->ipv6RouteType = 4;

11069 re->ipv6RouteProtocol = -1;
11070 re->ipv6RoutePolicy = 0;
11071 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time;
11072 re->ipv6RouteNextHopRDI = 0;
11073 re->ipv6RouteWeight = 0;
11074 re->ipv6RouteMetric = 0;
11075 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11076 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11077 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;

11079 re->ipv6RouteInfo.re_frag_flag = 0;
11080 re->ipv6RouteInfo.re_rtt = 0;
11081 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros;
11082 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count;
11083 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count;

new/usr/src/uts/common/inet/ip/ip.c 169

11084 re->ipv6RouteInfo.re_ref = ire->ire_refcnt;
11085 re->ipv6RouteInfo.re_flags = ire->ire_flags;

11087 /* Add the IRE_IF_CLONE’s counters to their parent IRE_INTERFACE */
11088 if (ire->ire_type & IRE_INTERFACE) {
11089 ire_t *child;

11091 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11092 child = ire->ire_dep_children;
11093 while (child != NULL) {
11094 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11095 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11096 child = child->ire_dep_sib_next;
11097 }
11098 rw_exit(&ipst->ips_ire_dep_lock);
11099 }
11100 if (ire->ire_flags & RTF_DYNAMIC) {
11101 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT;
11102 } else {
11103 re->ipv6RouteInfo.re_ire_type = ire->ire_type;
11104 }

11106 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11107 (char *)re, (int)sizeof (*re))) {
11108 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11109 (uint_t)sizeof (*re)));
11110 }

11112 if (gc != NULL) {
11113 iaes.iae_routeidx = ird->ird_idx;
11114 iaes.iae_doi = gc->gc_db->gcdb_doi;
11115 iaes.iae_slrange = gc->gc_db->gcdb_slrange;

11117 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11118 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11119 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11120 "bytes\n", (uint_t)sizeof (iaes)));
11121 }
11122 }

11124 /* bump route index for next pass */
11125 ird->ird_idx++;

11127 kmem_free(re, sizeof (*re));
11128 if (gcgrp != NULL)
11129 rw_exit(&gcgrp->gcgrp_rwlock);
11130 }

11132 /*
11133 * ncec_walk routine to create ipv6NetToMediaEntryTable
11134 */
11135 static int
11136 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11137 {
11138 ill_t *ill;
11139 mib2_ipv6NetToMediaEntry_t ntme;

11141 ill = ncec->ncec_ill;
11142 /* skip arpce entries, and loopback ncec entries */
11143 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11144 return (0);
11145 /*
11146 * Neighbor cache entry attached to IRE with on-link
11147 * destination.
11148 * We report all IPMP groups on ncec_ill which is normally the upper.
11149 */

new/usr/src/uts/common/inet/ip/ip.c 170

11150 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11151 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11152 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11153 if (ncec->ncec_lladdr != NULL) {
11154 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11155 ntme.ipv6NetToMediaPhysAddress.o_length);
11156 }
11157 /*
11158 * Note: Returns ND_* states. Should be:
11159 * reachable(1), stale(2), delay(3), probe(4),
11160 * invalid(5), unknown(6)
11161 */
11162 ntme.ipv6NetToMediaState = ncec->ncec_state;
11163 ntme.ipv6NetToMediaLastUpdated = 0;

11165 /* other(1), dynamic(2), static(3), local(4) */
11166 if (NCE_MYADDR(ncec)) {
11167 ntme.ipv6NetToMediaType = 4;
11168 } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11169 ntme.ipv6NetToMediaType = 1; /* proxy */
11170 } else if (ncec->ncec_flags & NCE_F_STATIC) {
11171 ntme.ipv6NetToMediaType = 3;
11172 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11173 ntme.ipv6NetToMediaType = 1;
11174 } else {
11175 ntme.ipv6NetToMediaType = 2;
11176 }

11178 if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11179 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11180 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11181 (uint_t)sizeof (ntme)));
11182 }
11183 return (0);
11184 }

11186 int
11187 nce2ace(ncec_t *ncec)
11188 {
11189 int flags = 0;

11191 if (NCE_ISREACHABLE(ncec))
11192 flags |= ACE_F_RESOLVED;
11193 if (ncec->ncec_flags & NCE_F_AUTHORITY)
11194 flags |= ACE_F_AUTHORITY;
11195 if (ncec->ncec_flags & NCE_F_PUBLISH)
11196 flags |= ACE_F_PUBLISH;
11197 if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11198 flags |= ACE_F_PERMANENT;
11199 if (NCE_MYADDR(ncec))
11200 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11201 if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11202 flags |= ACE_F_UNVERIFIED;
11203 if (ncec->ncec_flags & NCE_F_AUTHORITY)
11204 flags |= ACE_F_AUTHORITY;
11205 if (ncec->ncec_flags & NCE_F_DELAYED)
11206 flags |= ACE_F_DELAYED;
11207 return (flags);
11208 }

11210 /*
11211 * ncec_walk routine to create ipNetToMediaEntryTable
11212 */
11213 static int
11214 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11215 {

new/usr/src/uts/common/inet/ip/ip.c 171

11216 ill_t *ill;
11217 mib2_ipNetToMediaEntry_t ntme;
11218 const char *name = "unknown";
11219 ipaddr_t ncec_addr;

11221 ill = ncec->ncec_ill;
11222 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11223 ill->ill_net_type == IRE_LOOPBACK)
11224 return (0);

11226 /* We report all IPMP groups on ncec_ill which is normally the upper. */
11227 name = ill->ill_name;
11228 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11229 if (NCE_MYADDR(ncec)) {
11230 ntme.ipNetToMediaType = 4;
11231 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11232 ntme.ipNetToMediaType = 1;
11233 } else {
11234 ntme.ipNetToMediaType = 3;
11235 }
11236 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11237 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11238 ntme.ipNetToMediaIfIndex.o_length);

11240 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11241 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));

11243 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11244 ncec_addr = INADDR_BROADCAST;
11245 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11246 sizeof (ncec_addr));
11247 /*
11248 * map all the flags to the ACE counterpart.
11249 */
11250 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);

11252 ntme.ipNetToMediaPhysAddress.o_length =
11253 MIN(OCTET_LENGTH, ill->ill_phys_addr_length);

11255 if (!NCE_ISREACHABLE(ncec))
11256 ntme.ipNetToMediaPhysAddress.o_length = 0;
11257 else {
11258 if (ncec->ncec_lladdr != NULL) {
11259 bcopy(ncec->ncec_lladdr,
11260 ntme.ipNetToMediaPhysAddress.o_bytes,
11261 ntme.ipNetToMediaPhysAddress.o_length);
11262 }
11263 }

11265 if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11266 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11267 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11268 (uint_t)sizeof (ntme)));
11269 }
11270 return (0);
11271 }

11273 /*
11274 * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11275 */
11276 /* ARGSUSED */
11277 int
11278 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11279 {
11280 switch (level) {
11281 case MIB2_IP:

new/usr/src/uts/common/inet/ip/ip.c 172

11282 case MIB2_ICMP:
11283 switch (name) {
11284 default:
11285 break;
11286 }
11287 return (1);
11288 default:
11289 return (1);
11290 }
11291 }

11293 /*
11294 * When there exists both a 64- and 32-bit counter of a particular type
11295 * (i.e., InReceives), only the 64-bit counters are added.
11296 */
11297 void
11298 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11299 {
11300 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11301 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11302 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11303 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11304 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11305 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11306 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11307 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11308 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11309 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11310 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11311 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11312 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11313 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11314 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11315 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11316 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11317 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11318 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11319 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11320 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11321 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11322 o2->ipIfStatsInWrongIPVersion);
11323 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11324 o2->ipIfStatsInWrongIPVersion);
11325 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11326 o2->ipIfStatsOutSwitchIPVersion);
11327 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11328 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11329 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11330 o2->ipIfStatsHCInForwDatagrams);
11331 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11332 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11333 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11334 o2->ipIfStatsHCOutForwDatagrams);
11335 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11336 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11337 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11338 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11339 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11340 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11341 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11342 o2->ipIfStatsHCOutMcastOctets);
11343 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11344 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11345 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11346 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11347 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);

new/usr/src/uts/common/inet/ip/ip.c 173

11348 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11349 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11350 }

11352 void
11353 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11354 {
11355 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11356 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11357 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11358 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11359 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11360 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11361 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11362 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11363 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11364 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11365 o2->ipv6IfIcmpInRouterSolicits);
11366 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11367 o2->ipv6IfIcmpInRouterAdvertisements);
11368 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11369 o2->ipv6IfIcmpInNeighborSolicits);
11370 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11371 o2->ipv6IfIcmpInNeighborAdvertisements);
11372 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11373 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11374 o2->ipv6IfIcmpInGroupMembQueries);
11375 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11376 o2->ipv6IfIcmpInGroupMembResponses);
11377 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11378 o2->ipv6IfIcmpInGroupMembReductions);
11379 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11380 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11381 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11382 o2->ipv6IfIcmpOutDestUnreachs);
11383 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11384 o2->ipv6IfIcmpOutAdminProhibs);
11385 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11386 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11387 o2->ipv6IfIcmpOutParmProblems);
11388 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11389 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11390 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11391 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11392 o2->ipv6IfIcmpOutRouterSolicits);
11393 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11394 o2->ipv6IfIcmpOutRouterAdvertisements);
11395 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11396 o2->ipv6IfIcmpOutNeighborSolicits);
11397 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11398 o2->ipv6IfIcmpOutNeighborAdvertisements);
11399 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11400 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11401 o2->ipv6IfIcmpOutGroupMembQueries);
11402 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11403 o2->ipv6IfIcmpOutGroupMembResponses);
11404 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11405 o2->ipv6IfIcmpOutGroupMembReductions);
11406 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11407 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11408 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11409 o2->ipv6IfIcmpInBadNeighborAdvertisements);
11410 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11411 o2->ipv6IfIcmpInBadNeighborSolicitations);
11412 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11413 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,

new/usr/src/uts/common/inet/ip/ip.c 174

11414 o2->ipv6IfIcmpInGroupMembTotal);
11415 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11416 o2->ipv6IfIcmpInGroupMembBadQueries);
11417 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11418 o2->ipv6IfIcmpInGroupMembBadReports);
11419 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11420 o2->ipv6IfIcmpInGroupMembOurReports);
11421 }

11423 /*
11424 * Called before the options are updated to check if this packet will
11425 * be source routed from here.
11426 * This routine assumes that the options are well formed i.e. that they
11427 * have already been checked.
11428 */
11429 boolean_t
11430 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11431 {
11432 ipoptp_t opts;
11433 uchar_t *opt;
11434 uint8_t optval;
11435 uint8_t optlen;
11436 ipaddr_t dst;

11438 if (IS_SIMPLE_IPH(ipha)) {
11439 ip2dbg(("not source routed\n"));
11440 return (B_FALSE);
11441 }
11442 dst = ipha->ipha_dst;
11443 for (optval = ipoptp_first(&opts, ipha);
11444 optval != IPOPT_EOL;
11445 optval = ipoptp_next(&opts)) {
11446 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11447 opt = opts.ipoptp_cur;
11448 optlen = opts.ipoptp_len;
11449 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11450 optval, optlen));
11451 switch (optval) {
11452 uint32_t off;
11453 case IPOPT_SSRR:
11454 case IPOPT_LSRR:
11455 /*
11456 * If dst is one of our addresses and there are some
11457 * entries left in the source route return (true).
11458 */
11459 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11460 ip2dbg(("ip_source_routed: not next"
11461 " source route 0x%x\n",
11462 ntohl(dst)));
11463 return (B_FALSE);
11464 }
11465 off = opt[IPOPT_OFFSET];
11466 off--;
11467 if (optlen < IP_ADDR_LEN ||
11468 off > optlen - IP_ADDR_LEN) {
11469 /* End of source route */
11470 ip1dbg(("ip_source_routed: end of SR\n"));
11471 return (B_FALSE);
11472 }
11473 return (B_TRUE);
11474 }
11475 }
11476 ip2dbg(("not source routed\n"));
11477 return (B_FALSE);
11478 }

new/usr/src/uts/common/inet/ip/ip.c 175

11480 /*
11481 * ip_unbind is called by the transports to remove a conn from
11482 * the fanout table.
11483 */
11484 void
11485 ip_unbind(conn_t *connp)
11486 {

11488 ASSERT(!MUTEX_HELD(&connp->conn_lock));

11490 if (is_system_labeled() && connp->conn_anon_port) {
11491 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11492 connp->conn_mlp_type, connp->conn_proto,
11493 ntohs(connp->conn_lport), B_FALSE);
11494 connp->conn_anon_port = 0;
11495 }
11496 connp->conn_mlp_type = mlptSingle;

11498 ipcl_hash_remove(connp);
11499 }

11501 /*
11502 * Used for deciding the MSS size for the upper layer. Thus
11503 * we need to check the outbound policy values in the conn.
11504 */
11505 int
11506 conn_ipsec_length(conn_t *connp)
11507 {
11508 ipsec_latch_t *ipl;

11510 ipl = connp->conn_latch;
11511 if (ipl == NULL)
11512 return (0);

11514 if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11515 return (0);

11517 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11518 }

11520 /*
11521 * Returns an estimate of the IPsec headers size. This is used if
11522 * we don’t want to call into IPsec to get the exact size.
11523 */
11524 int
11525 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11526 {
11527 ipsec_action_t *a;

11529 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11530 return (0);

11532 a = ixa->ixa_ipsec_action;
11533 if (a == NULL) {
11534 ASSERT(ixa->ixa_ipsec_policy != NULL);
11535 a = ixa->ixa_ipsec_policy->ipsp_act;
11536 }
11537 ASSERT(a != NULL);

11539 return (a->ipa_ovhd);
11540 }

11542 /*
11543 * If there are any source route options, return the true final
11544 * destination. Otherwise, return the destination.
11545 */

new/usr/src/uts/common/inet/ip/ip.c 176

11546 ipaddr_t
11547 ip_get_dst(ipha_t *ipha)
11548 {
11549 ipoptp_t opts;
11550 uchar_t *opt;
11551 uint8_t optval;
11552 uint8_t optlen;
11553 ipaddr_t dst;
11554 uint32_t off;

11556 dst = ipha->ipha_dst;

11558 if (IS_SIMPLE_IPH(ipha))
11559 return (dst);

11561 for (optval = ipoptp_first(&opts, ipha);
11562 optval != IPOPT_EOL;
11563 optval = ipoptp_next(&opts)) {
11564 opt = opts.ipoptp_cur;
11565 optlen = opts.ipoptp_len;
11566 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11567 switch (optval) {
11568 case IPOPT_SSRR:
11569 case IPOPT_LSRR:
11570 off = opt[IPOPT_OFFSET];
11571 /*
11572 * If one of the conditions is true, it means
11573 * end of options and dst already has the right
11574 * value.
11575 */
11576 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11577 off = optlen - IP_ADDR_LEN;
11578 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11579 }
11580 return (dst);
11581 default:
11582 break;
11583 }
11584 }

11586 return (dst);
11587 }

11589 /*
11590 * Outbound IP fragmentation routine.
11591 * Assumes the caller has checked whether or not fragmentation should
11592 * be allowed. Here we copy the DF bit from the header to all the generated
11593 * fragments.
11594 */
11595 int
11596 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11597 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11598 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11599 {
11600 int i1;
11601 int hdr_len;
11602 mblk_t *hdr_mp;
11603 ipha_t *ipha;
11604 int ip_data_end;
11605 int len;
11606 mblk_t *mp = mp_orig;
11607 int offset;
11608 ill_t *ill = nce->nce_ill;
11609 ip_stack_t *ipst = ill->ill_ipst;
11610 mblk_t *carve_mp;
11611 uint32_t frag_flag;

new/usr/src/uts/common/inet/ip/ip.c 177

11612 uint_t priority = mp->b_band;
11613 int error = 0;

11615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);

11617 if (pkt_len != msgdsize(mp)) {
11618 ip0dbg(("Packet length mismatch: %d, %ld\n",
11619 pkt_len, msgdsize(mp)));
11620 freemsg(mp);
11621 return (EINVAL);
11622 }

11624 if (max_frag == 0) {
11625 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11627 ip_drop_output("FragFails: zero max_frag", mp, ill);
11628 freemsg(mp);
11629 return (EINVAL);
11630 }

11632 ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11633 ipha = (ipha_t *)mp->b_rptr;
11634 ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11635 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;

11637 /*
11638 * Establish the starting offset. May not be zero if we are fragging
11639 * a fragment that is being forwarded.
11640 */
11641 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;

11643 /* TODO why is this test needed? */
11644 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11645 /* TODO: notify ulp somehow */
11646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11647 ip_drop_output("FragFails: bad starting offset", mp, ill);
11648 freemsg(mp);
11649 return (EINVAL);
11650 }

11652 hdr_len = IPH_HDR_LENGTH(ipha);
11653 ipha->ipha_hdr_checksum = 0;

11655 /*
11656 * Establish the number of bytes maximum per frag, after putting
11657 * in the header.
11658 */
11659 len = (max_frag - hdr_len) & ~7;

11661 /* Get a copy of the header for the trailing frags */
11662 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11663 mp);
11664 if (hdr_mp == NULL) {
11665 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11666 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11667 freemsg(mp);
11668 return (ENOBUFS);
11669 }

11671 /* Store the starting offset, with the MoreFrags flag. */
11672 i1 = offset | IPH_MF | frag_flag;
11673 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);

11675 /* Establish the ending byte offset, based on the starting offset. */
11676 offset <<= 3;
11677 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;

new/usr/src/uts/common/inet/ip/ip.c 178

11679 /* Store the length of the first fragment in the IP header. */
11680 i1 = len + hdr_len;
11681 ASSERT(i1 <= IP_MAXPACKET);
11682 ipha->ipha_length = htons((uint16_t)i1);

11684 /*
11685 * Compute the IP header checksum for the first frag. We have to
11686 * watch out that we stop at the end of the header.
11687 */
11688 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);

11690 /*
11691 * Now carve off the first frag. Note that this will include the
11692 * original IP header.
11693 */
11694 if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11696 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11697 freeb(hdr_mp);
11698 freemsg(mp_orig);
11699 return (ENOBUFS);
11700 }

11702 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);

11704 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11705 ixa_cookie);
11706 if (error != 0 && error != EWOULDBLOCK) {
11707 /* No point in sending the other fragments */
11708 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11709 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11710 freeb(hdr_mp);
11711 freemsg(mp_orig);
11712 return (error);
11713 }

11715 /* No need to redo state machine in loop */
11716 ixaflags &= ~IXAF_REACH_CONF;

11718 /* Advance the offset to the second frag starting point. */
11719 offset += len;
11720 /*
11721 * Update hdr_len from the copied header - there might be less options
11722 * in the later fragments.
11723 */
11724 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11725 /* Loop until done. */
11726 for (;;) {
11727 uint16_t offset_and_flags;
11728 uint16_t ip_len;

11730 if (ip_data_end - offset > len) {
11731 /*
11732 * Carve off the appropriate amount from the original
11733 * datagram.
11734 */
11735 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11736 mp = NULL;
11737 break;
11738 }
11739 /*
11740 * More frags after this one. Get another copy
11741 * of the header.
11742 */
11743 if (carve_mp->b_datap->db_ref == 1 &&

new/usr/src/uts/common/inet/ip/ip.c 179

11744 hdr_mp->b_wptr - hdr_mp->b_rptr <
11745 carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11746 /* Inline IP header */
11747 carve_mp->b_rptr -= hdr_mp->b_wptr -
11748 hdr_mp->b_rptr;
11749 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11750 hdr_mp->b_wptr - hdr_mp->b_rptr);
11751 mp = carve_mp;
11752 } else {
11753 if (!(mp = copyb(hdr_mp))) {
11754 freemsg(carve_mp);
11755 break;
11756 }
11757 /* Get priority marking, if any. */
11758 mp->b_band = priority;
11759 mp->b_cont = carve_mp;
11760 }
11761 ipha = (ipha_t *)mp->b_rptr;
11762 offset_and_flags = IPH_MF;
11763 } else {
11764 /*
11765 * Last frag. Consume the header. Set len to
11766 * the length of this last piece.
11767 */
11768 len = ip_data_end - offset;

11770 /*
11771 * Carve off the appropriate amount from the original
11772 * datagram.
11773 */
11774 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11775 mp = NULL;
11776 break;
11777 }
11778 if (carve_mp->b_datap->db_ref == 1 &&
11779 hdr_mp->b_wptr - hdr_mp->b_rptr <
11780 carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11781 /* Inline IP header */
11782 carve_mp->b_rptr -= hdr_mp->b_wptr -
11783 hdr_mp->b_rptr;
11784 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11785 hdr_mp->b_wptr - hdr_mp->b_rptr);
11786 mp = carve_mp;
11787 freeb(hdr_mp);
11788 hdr_mp = mp;
11789 } else {
11790 mp = hdr_mp;
11791 /* Get priority marking, if any. */
11792 mp->b_band = priority;
11793 mp->b_cont = carve_mp;
11794 }
11795 ipha = (ipha_t *)mp->b_rptr;
11796 /* A frag of a frag might have IPH_MF non-zero */
11797 offset_and_flags =
11798 ntohs(ipha->ipha_fragment_offset_and_flags) &
11799 IPH_MF;
11800 }
11801 offset_and_flags |= (uint16_t)(offset >> 3);
11802 offset_and_flags |= (uint16_t)frag_flag;
11803 /* Store the offset and flags in the IP header. */
11804 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);

11806 /* Store the length in the IP header. */
11807 ip_len = (uint16_t)(len + hdr_len);
11808 ipha->ipha_length = htons(ip_len);

new/usr/src/uts/common/inet/ip/ip.c 180

11810 /*
11811 * Set the IP header checksum. Note that mp is just
11812 * the header, so this is easy to pass to ip_csum.
11813 */
11814 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);

11816 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);

11818 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11819 nolzid, ixa_cookie);
11820 /* All done if we just consumed the hdr_mp. */
11821 if (mp == hdr_mp) {
11822 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11823 return (error);
11824 }
11825 if (error != 0 && error != EWOULDBLOCK) {
11826 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11827 mblk_t *, hdr_mp);
11828 /* No point in sending the other fragments */
11829 break;
11830 }

11832 /* Otherwise, advance and loop. */
11833 offset += len;
11834 }
11835 /* Clean up following allocation failure. */
11836 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11837 ip_drop_output("FragFails: loop ended", NULL, ill);
11838 if (mp != hdr_mp)
11839 freeb(hdr_mp);
11840 if (mp != mp_orig)
11841 freemsg(mp_orig);
11842 return (error);
11843 }

11845 /*
11846 * Copy the header plus those options which have the copy bit set
11847 */
11848 static mblk_t *
11849 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11850 mblk_t *src)
11851 {
11852 mblk_t *mp;
11853 uchar_t *up;

11855 /*
11856 * Quick check if we need to look for options without the copy bit
11857 * set
11858 */
11859 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11860 if (!mp)
11861 return (mp);
11862 mp->b_rptr += ipst->ips_ip_wroff_extra;
11863 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11864 bcopy(rptr, mp->b_rptr, hdr_len);
11865 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11866 return (mp);
11867 }
11868 up = mp->b_rptr;
11869 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11870 up += IP_SIMPLE_HDR_LENGTH;
11871 rptr += IP_SIMPLE_HDR_LENGTH;
11872 hdr_len -= IP_SIMPLE_HDR_LENGTH;
11873 while (hdr_len > 0) {
11874 uint32_t optval;
11875 uint32_t optlen;

new/usr/src/uts/common/inet/ip/ip.c 181

11877 optval = *rptr;
11878 if (optval == IPOPT_EOL)
11879 break;
11880 if (optval == IPOPT_NOP)
11881 optlen = 1;
11882 else
11883 optlen = rptr[1];
11884 if (optval & IPOPT_COPY) {
11885 bcopy(rptr, up, optlen);
11886 up += optlen;
11887 }
11888 rptr += optlen;
11889 hdr_len -= optlen;
11890 }
11891 /*
11892 * Make sure that we drop an even number of words by filling
11893 * with EOL to the next word boundary.
11894 */
11895 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11896 hdr_len & 0x3; hdr_len++)
11897 *up++ = IPOPT_EOL;
11898 mp->b_wptr = up;
11899 /* Update header length */
11900 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11901 return (mp);
11902 }

11904 /*
11905 * Update any source route, record route, or timestamp options when
11906 * sending a packet back to ourselves.
11907 * Check that we are at end of strict source route.
11908 * The options have been sanity checked by ip_output_options().
11909 */
11910 void
11911 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11912 {
11913 ipoptp_t opts;
11914 uchar_t *opt;
11915 uint8_t optval;
11916 uint8_t optlen;
11917 ipaddr_t dst;
11918 uint32_t ts;
11919 timestruc_t now;

11921 for (optval = ipoptp_first(&opts, ipha);
11922 optval != IPOPT_EOL;
11923 optval = ipoptp_next(&opts)) {
11924 opt = opts.ipoptp_cur;
11925 optlen = opts.ipoptp_len;
11926 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11927 switch (optval) {
11928 uint32_t off;
11929 case IPOPT_SSRR:
11930 case IPOPT_LSRR:
11931 off = opt[IPOPT_OFFSET];
11932 off--;
11933 if (optlen < IP_ADDR_LEN ||
11934 off > optlen - IP_ADDR_LEN) {
11935 /* End of source route */
11936 break;
11937 }
11938 /*
11939 * This will only happen if two consecutive entries
11940 * in the source route contains our address or if
11941 * it is a packet with a loose source route which

new/usr/src/uts/common/inet/ip/ip.c 182

11942 * reaches us before consuming the whole source route
11943 */

11945 if (optval == IPOPT_SSRR) {
11946 return;
11947 }
11948 /*
11949 * Hack: instead of dropping the packet truncate the
11950 * source route to what has been used by filling the
11951 * rest with IPOPT_NOP.
11952 */
11953 opt[IPOPT_OLEN] = (uint8_t)off;
11954 while (off < optlen) {
11955 opt[off++] = IPOPT_NOP;
11956 }
11957 break;
11958 case IPOPT_RR:
11959 off = opt[IPOPT_OFFSET];
11960 off--;
11961 if (optlen < IP_ADDR_LEN ||
11962 off > optlen - IP_ADDR_LEN) {
11963 /* No more room - ignore */
11964 ip1dbg((
11965 "ip_output_local_options: end of RR\n"));
11966 break;
11967 }
11968 dst = htonl(INADDR_LOOPBACK);
11969 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11970 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11971 break;
11972 case IPOPT_TS:
11973 /* Insert timestamp if there is romm */
11974 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11975 case IPOPT_TS_TSONLY:
11976 off = IPOPT_TS_TIMELEN;
11977 break;
11978 case IPOPT_TS_PRESPEC:
11979 case IPOPT_TS_PRESPEC_RFC791:
11980 /* Verify that the address matched */
11981 off = opt[IPOPT_OFFSET] - 1;
11982 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
11983 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11984 /* Not for us */
11985 break;
11986 }
11987 /* FALLTHRU */
11988 case IPOPT_TS_TSANDADDR:
11989 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
11990 break;
11991 default:
11992 /*
11993 * ip_*put_options should have already
11994 * dropped this packet.
11995 */
11996 cmn_err(CE_PANIC, "ip_output_local_options: "
11997 "unknown IT - bug in ip_output_options?\n");
11998 return; /* Keep "lint" happy */
11999 }
12000 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12001 /* Increase overflow counter */
12002 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12003 opt[IPOPT_POS_OV_FLG] = (uint8_t)
12004 (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12005 (off << 4);
12006 break;
12007 }

new/usr/src/uts/common/inet/ip/ip.c 183

12008 off = opt[IPOPT_OFFSET] - 1;
12009 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12010 case IPOPT_TS_PRESPEC:
12011 case IPOPT_TS_PRESPEC_RFC791:
12012 case IPOPT_TS_TSANDADDR:
12013 dst = htonl(INADDR_LOOPBACK);
12014 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12015 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12016 /* FALLTHRU */
12017 case IPOPT_TS_TSONLY:
12018 off = opt[IPOPT_OFFSET] - 1;
12019 /* Compute # of milliseconds since midnight */
12020 gethrestime(&now);
12021 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12022 now.tv_nsec / (NANOSEC / MILLISEC);
12023 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12024 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12025 break;
12026 }
12027 break;
12028 }
12029 }
12030 }

12032 /*
12033 * Prepend an M_DATA fastpath header, and if none present prepend a
12034 * DL_UNITDATA_REQ. Frees the mblk on failure.
12035 *
12036 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12037 * If there is a change to them, the nce will be deleted (condemned) and
12038 * a new nce_t will be created when packets are sent. Thus we need no locks
12039 * to access those fields.
12040 *
12041 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12042 * we place b_band in dl_priority.dl_max.
12043 */
12044 static mblk_t *
12045 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12046 {
12047 uint_t hlen;
12048 mblk_t *mp1;
12049 uint_t priority;
12050 uchar_t *rptr;

12052 rptr = mp->b_rptr;

12054 ASSERT(DB_TYPE(mp) == M_DATA);
12055 priority = mp->b_band;

12057 ASSERT(nce != NULL);
12058 if ((mp1 = nce->nce_fp_mp) != NULL) {
12059 hlen = MBLKL(mp1);
12060 /*
12061 * Check if we have enough room to prepend fastpath
12062 * header
12063 */
12064 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12065 rptr -= hlen;
12066 bcopy(mp1->b_rptr, rptr, hlen);
12067 /*
12068 * Set the b_rptr to the start of the link layer
12069 * header
12070 */
12071 mp->b_rptr = rptr;
12072 return (mp);
12073 }

new/usr/src/uts/common/inet/ip/ip.c 184

12074 mp1 = copyb(mp1);
12075 if (mp1 == NULL) {
12076 ill_t *ill = nce->nce_ill;

12078 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12079 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12080 freemsg(mp);
12081 return (NULL);
12082 }
12083 mp1->b_band = priority;
12084 mp1->b_cont = mp;
12085 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12086 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12087 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12088 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12089 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12090 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12091 /*
12092 * XXX disable ICK_VALID and compute checksum
12093 * here; can happen if nce_fp_mp changes and
12094 * it can’t be copied now due to insufficient
12095 * space. (unlikely, fp mp can change, but it
12096 * does not increase in length)
12097 */
12098 return (mp1);
12099 }
12100 mp1 = copyb(nce->nce_dlur_mp);

12102 if (mp1 == NULL) {
12103 ill_t *ill = nce->nce_ill;

12105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12106 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12107 freemsg(mp);
12108 return (NULL);
12109 }
12110 mp1->b_cont = mp;
12111 if (priority != 0) {
12112 mp1->b_band = priority;
12113 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12114 priority;
12115 }
12116 return (mp1);
12117 #undef rptr
12118 }

12120 /*
12121 * Finish the outbound IPsec processing. This function is called from
12122 * ipsec_out_process() if the IPsec packet was processed
12123 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12124 * asynchronously.
12125 *
12126 * This is common to IPv4 and IPv6.
12127 */
12128 int
12129 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12130 {
12131 iaflags_t ixaflags = ixa->ixa_flags;
12132 uint_t pktlen;

12135 /* AH/ESP don’t update ixa_pktlen when they modify the packet */
12136 if (ixaflags & IXAF_IS_IPV4) {
12137 ipha_t *ipha = (ipha_t *)mp->b_rptr;

12139 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);

new/usr/src/uts/common/inet/ip/ip.c 185

12140 pktlen = ntohs(ipha->ipha_length);
12141 } else {
12142 ip6_t *ip6h = (ip6_t *)mp->b_rptr;

12144 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12145 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12146 }

12148 /*
12149 * We release any hard reference on the SAs here to make
12150 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12151 * on the SAs.
12152 * If in the future we want the hard latching of the SAs in the
12153 * ip_xmit_attr_t then we should remove this.
12154 */
12155 if (ixa->ixa_ipsec_esp_sa != NULL) {
12156 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12157 ixa->ixa_ipsec_esp_sa = NULL;
12158 }
12159 if (ixa->ixa_ipsec_ah_sa != NULL) {
12160 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12161 ixa->ixa_ipsec_ah_sa = NULL;
12162 }

12164 /* Do we need to fragment? */
12165 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12166 pktlen > ixa->ixa_fragsize) {
12167 if (ixaflags & IXAF_IS_IPV4) {
12168 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12169 /*
12170 * We check for the DF case in ipsec_out_process
12171 * hence this only handles the non-DF case.
12172 */
12173 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12174 pktlen, ixa->ixa_fragsize,
12175 ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12176 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12177 &ixa->ixa_cookie));
12178 } else {
12179 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12180 if (mp == NULL) {
12181 /* MIB and ip_drop_output already done */
12182 return (ENOMEM);
12183 }
12184 pktlen += sizeof (ip6_frag_t);
12185 if (pktlen > ixa->ixa_fragsize) {
12186 return (ip_fragment_v6(mp, ixa->ixa_nce,
12187 ixa->ixa_flags, pktlen,
12188 ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12189 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12190 ixa->ixa_postfragfn, &ixa->ixa_cookie));
12191 }
12192 }
12193 }
12194 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12195 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12196 ixa->ixa_no_loop_zoneid, NULL));
12197 }

12199 /*
12200 * Finish the inbound IPsec processing. This function is called from
12201 * ipsec_out_process() if the IPsec packet was processed
12202 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12203 * asynchronously.
12204 *
12205 * This is common to IPv4 and IPv6.

new/usr/src/uts/common/inet/ip/ip.c 186

12206 */
12207 void
12208 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12209 {
12210 iaflags_t iraflags = ira->ira_flags;

12212 /* Length might have changed */
12213 if (iraflags & IRAF_IS_IPV4) {
12214 ipha_t *ipha = (ipha_t *)mp->b_rptr;

12216 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12217 ira->ira_pktlen = ntohs(ipha->ipha_length);
12218 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12219 ira->ira_protocol = ipha->ipha_protocol;

12221 ip_fanout_v4(mp, ipha, ira);
12222 } else {
12223 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
12224 uint8_t *nexthdrp;

12226 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12227 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12228 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12229 &nexthdrp)) {
12230 /* Malformed packet */
12231 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12232 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12233 freemsg(mp);
12234 return;
12235 }
12236 ira->ira_protocol = *nexthdrp;
12237 ip_fanout_v6(mp, ip6h, ira);
12238 }
12239 }

12241 /*
12242 * Select which AH & ESP SA’s to use (if any) for the outbound packet.
12243 *
12244 * If this function returns B_TRUE, the requested SA’s have been filled
12245 * into the ixa_ipsec_*_sa pointers.
12246 *
12247 * If the function returns B_FALSE, the packet has been "consumed", most
12248 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12249 *
12250 * The SA references created by the protocol-specific "select"
12251 * function will be released in ip_output_post_ipsec.
12252 */
12253 static boolean_t
12254 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12255 {
12256 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12257 ipsec_policy_t *pp;
12258 ipsec_action_t *ap;

12260 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12261 ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12262 (ixa->ixa_ipsec_action != NULL));

12264 ap = ixa->ixa_ipsec_action;
12265 if (ap == NULL) {
12266 pp = ixa->ixa_ipsec_policy;
12267 ASSERT(pp != NULL);
12268 ap = pp->ipsp_act;
12269 ASSERT(ap != NULL);
12270 }

new/usr/src/uts/common/inet/ip/ip.c 187

12272 /*
12273 * We have an action. now, let’s select SA’s.
12274 * A side effect of setting ixa_ipsec_*_sa is that it will
12275 * be cached in the conn_t.
12276 */
12277 if (ap->ipa_want_esp) {
12278 if (ixa->ixa_ipsec_esp_sa == NULL) {
12279 need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12280 IPPROTO_ESP);
12281 }
12282 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12283 }

12285 if (ap->ipa_want_ah) {
12286 if (ixa->ixa_ipsec_ah_sa == NULL) {
12287 need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12288 IPPROTO_AH);
12289 }
12290 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12291 /*
12292 * The ESP and AH processing order needs to be preserved
12293 * when both protocols are required (ESP should be applied
12294 * before AH for an outbound packet). Force an ESP ACQUIRE
12295 * when both ESP and AH are required, and an AH ACQUIRE
12296 * is needed.
12297 */
12298 if (ap->ipa_want_esp && need_ah_acquire)
12299 need_esp_acquire = B_TRUE;
12300 }

12302 /*
12303 * Send an ACQUIRE (extended, regular, or both) if we need one.
12304 * Release SAs that got referenced, but will not be used until we
12305 * acquire _all_ of the SAs we need.
12306 */
12307 if (need_ah_acquire || need_esp_acquire) {
12308 if (ixa->ixa_ipsec_ah_sa != NULL) {
12309 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12310 ixa->ixa_ipsec_ah_sa = NULL;
12311 }
12312 if (ixa->ixa_ipsec_esp_sa != NULL) {
12313 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12314 ixa->ixa_ipsec_esp_sa = NULL;
12315 }

12317 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12318 return (B_FALSE);
12319 }

12321 return (B_TRUE);
12322 }

12324 /*
12325 * Handle IPsec output processing.
12326 * This function is only entered once for a given packet.
12327 * We try to do things synchronously, but if we need to have user-level
12328 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12329 * will be completed
12330 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12331 * - when asynchronous ESP is done it will do AH
12332 *
12333 * In all cases we come back in ip_output_post_ipsec() to fragment and
12334 * send out the packet.
12335 */
12336 int
12337 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)

new/usr/src/uts/common/inet/ip/ip.c 188

12338 {
12339 ill_t *ill = ixa->ixa_nce->nce_ill;
12340 ip_stack_t *ipst = ixa->ixa_ipst;
12341 ipsec_stack_t *ipss;
12342 ipsec_policy_t *pp;
12343 ipsec_action_t *ap;

12345 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);

12347 ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12348 (ixa->ixa_ipsec_action != NULL));

12350 ipss = ipst->ips_netstack->netstack_ipsec;
12351 if (!ipsec_loaded(ipss)) {
12352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12353 ip_drop_packet(mp, B_TRUE, ill,
12354 DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12355 &ipss->ipsec_dropper);
12356 return (ENOTSUP);
12357 }

12359 ap = ixa->ixa_ipsec_action;
12360 if (ap == NULL) {
12361 pp = ixa->ixa_ipsec_policy;
12362 ASSERT(pp != NULL);
12363 ap = pp->ipsp_act;
12364 ASSERT(ap != NULL);
12365 }

12367 /* Handle explicit drop action and bypass. */
12368 switch (ap->ipa_act.ipa_type) {
12369 case IPSEC_ACT_DISCARD:
12370 case IPSEC_ACT_REJECT:
12371 ip_drop_packet(mp, B_FALSE, ill,
12372 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12373 return (EHOSTUNREACH); /* IPsec policy failure */
12374 case IPSEC_ACT_BYPASS:
12375 return (ip_output_post_ipsec(mp, ixa));
12376 }

12378 /*
12379 * The order of processing is first insert a IP header if needed.
12380 * Then insert the ESP header and then the AH header.
12381 */
12382 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12383 /*
12384 * First get the outer IP header before sending
12385 * it to ESP.
12386 */
12387 ipha_t *oipha, *iipha;
12388 mblk_t *outer_mp, *inner_mp;

12390 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12391 (void) mi_strlog(ill->ill_rq, 0,
12392 SL_ERROR|SL_TRACE|SL_CONSOLE,
12393 "ipsec_out_process: "
12394 "Self-Encapsulation failed: Out of memory\n");
12395 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12396 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12397 freemsg(mp);
12398 return (ENOBUFS);
12399 }
12400 inner_mp = mp;
12401 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12402 oipha = (ipha_t *)outer_mp->b_rptr;
12403 iipha = (ipha_t *)inner_mp->b_rptr;

new/usr/src/uts/common/inet/ip/ip.c 189

12404 *oipha = *iipha;
12405 outer_mp->b_wptr += sizeof (ipha_t);
12406 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12407 sizeof (ipha_t));
12408 oipha->ipha_protocol = IPPROTO_ENCAP;
12409 oipha->ipha_version_and_hdr_length =
12410 IP_SIMPLE_HDR_VERSION;
12411 oipha->ipha_hdr_checksum = 0;
12412 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12413 outer_mp->b_cont = inner_mp;
12414 mp = outer_mp;

12416 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12417 }

12419 /* If we need to wait for a SA then we can’t return any errno */
12420 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12421 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12422 !ipsec_out_select_sa(mp, ixa))
12423 return (0);

12425 /*
12426 * By now, we know what SA’s to use. Toss over to ESP & AH
12427 * to do the heavy lifting.
12428 */
12429 if (ap->ipa_want_esp) {
12430 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);

12432 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12433 if (mp == NULL) {
12434 /*
12435 * Either it failed or is pending. In the former case
12436 * ipIfStatsInDiscards was increased.
12437 */
12438 return (0);
12439 }
12440 }

12442 if (ap->ipa_want_ah) {
12443 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);

12445 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12446 if (mp == NULL) {
12447 /*
12448 * Either it failed or is pending. In the former case
12449 * ipIfStatsInDiscards was increased.
12450 */
12451 return (0);
12452 }
12453 }
12454 /*
12455 * We are done with IPsec processing. Send it over
12456 * the wire.
12457 */
12458 return (ip_output_post_ipsec(mp, ixa));
12459 }

12461 /*
12462 * ioctls that go through a down/up sequence may need to wait for the down
12463 * to complete. This involves waiting for the ire and ipif refcnts to go down
12464 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12465 */
12466 /* ARGSUSED */
12467 void
12468 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12469 {

new/usr/src/uts/common/inet/ip/ip.c 190

12470 struct iocblk *iocp;
12471 mblk_t *mp1;
12472 ip_ioctl_cmd_t *ipip;
12473 int err;
12474 sin_t *sin;
12475 struct lifreq *lifr;
12476 struct ifreq *ifr;

12478 iocp = (struct iocblk *)mp->b_rptr;
12479 ASSERT(ipsq != NULL);
12480 /* Existence of mp1 verified in ip_wput_nondata */
12481 mp1 = mp->b_cont->b_cont;
12482 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12483 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12484 /*
12485 * Special case where ipx_current_ipif is not set:
12486 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12487 * We are here as were not able to complete the operation in
12488 * ipif_set_values because we could not become exclusive on
12489 * the new ipsq.
12490 */
12491 ill_t *ill = q->q_ptr;
12492 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12493 }
12494 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);

12496 if (ipip->ipi_cmd_type == IF_CMD) {
12497 /* This a old style SIOC[GS]IF* command */
12498 ifr = (struct ifreq *)mp1->b_rptr;
12499 sin = (sin_t *)&ifr->ifr_addr;
12500 } else if (ipip->ipi_cmd_type == LIF_CMD) {
12501 /* This a new style SIOC[GS]LIF* command */
12502 lifr = (struct lifreq *)mp1->b_rptr;
12503 sin = (sin_t *)&lifr->lifr_addr;
12504 } else {
12505 sin = NULL;
12506 }

12508 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12509 q, mp, ipip, mp1->b_rptr);

12511 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12512 int, ipip->ipi_cmd,
12513 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12514 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);

12516 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12517 }

12519 /*
12520 * ioctl processing
12521 *
12522 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12523 * the ioctl command in the ioctl tables, determines the copyin data size
12524 * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12525 *
12526 * ioctl processing then continues when the M_IOCDATA makes its way down to
12527 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its
12528 * associated ’conn’ is refheld till the end of the ioctl and the general
12529 * ioctl processing function ip_process_ioctl() is called to extract the
12530 * arguments and process the ioctl. To simplify extraction, ioctl commands
12531 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12532 * ‘struct lifreq’), and a common extract function (e.g., ip_extract_lifreq())
12533 * is used to extract the ioctl’s arguments.
12534 *
12535 * ip_process_ioctl determines if the ioctl needs to be serialized, and if

new/usr/src/uts/common/inet/ip/ip.c 191

12536 * so goes thru the serialization primitive ipsq_try_enter. Then the
12537 * appropriate function to handle the ioctl is called based on the entry in
12538 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12539 * which also refreleases the ’conn’ that was refheld at the start of the
12540 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12541 *
12542 * Many exclusive ioctls go thru an internal down up sequence as part of
12543 * the operation. For example an attempt to change the IP address of an
12544 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12545 * does all the cleanup such as deleting all ires that use this address.
12546 * Then we need to wait till all references to the interface go away.
12547 */
12548 void
12549 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12550 {
12551 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12552 ip_ioctl_cmd_t *ipip = arg;
12553 ip_extract_func_t *extract_funcp;
12554 cmd_info_t ci;
12555 int err;
12556 boolean_t entered_ipsq = B_FALSE;

12558 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));

12560 if (ipip == NULL)
12561 ipip = ip_sioctl_lookup(iocp->ioc_cmd);

12563 /*
12564 * SIOCLIFADDIF needs to go thru a special path since the
12565 * ill may not exist yet. This happens in the case of lo0
12566 * which is created using this ioctl.
12567 */
12568 if (ipip->ipi_cmd == SIOCLIFADDIF) {
12569 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12570 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12571 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12572 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12573 return;
12574 }

12576 ci.ci_ipif = NULL;
12577 switch (ipip->ipi_cmd_type) {
12578 case MISC_CMD:
12579 case MSFILT_CMD:
12580 /*
12581 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12582 */
12583 if (ipip->ipi_cmd == IF_UNITSEL) {
12584 /* ioctl comes down the ill */
12585 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12586 ipif_refhold(ci.ci_ipif);
12587 }
12588 err = 0;
12589 ci.ci_sin = NULL;
12590 ci.ci_sin6 = NULL;
12591 ci.ci_lifr = NULL;
12592 extract_funcp = NULL;
12593 break;

12595 case IF_CMD:
12596 case LIF_CMD:
12597 extract_funcp = ip_extract_lifreq;
12598 break;

12600 case ARP_CMD:
12601 case XARP_CMD:

new/usr/src/uts/common/inet/ip/ip.c 192

12602 extract_funcp = ip_extract_arpreq;
12603 break;

12605 default:
12606 ASSERT(0);
12607 }

12609 if (extract_funcp != NULL) {
12610 err = (*extract_funcp)(q, mp, ipip, &ci);
12611 if (err != 0) {
12612 DTRACE_PROBE4(ipif__ioctl,
12613 char *, "ip_process_ioctl finish err",
12614 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12615 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12616 return;
12617 }

12619 /*
12620 * All of the extraction functions return a refheld ipif.
12621 */
12622 ASSERT(ci.ci_ipif != NULL);
12623 }

12625 if (!(ipip->ipi_flags & IPI_WR)) {
12626 /*
12627 * A return value of EINPROGRESS means the ioctl is
12628 * either queued and waiting for some reason or has
12629 * already completed.
12630 */
12631 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12632 ci.ci_lifr);
12633 if (ci.ci_ipif != NULL) {
12634 DTRACE_PROBE4(ipif__ioctl,
12635 char *, "ip_process_ioctl finish RD",
12636 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12637 ipif_t *, ci.ci_ipif);
12638 ipif_refrele(ci.ci_ipif);
12639 } else {
12640 DTRACE_PROBE4(ipif__ioctl,
12641 char *, "ip_process_ioctl finish RD",
12642 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12643 }
12644 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12645 return;
12646 }

12648 ASSERT(ci.ci_ipif != NULL);

12650 /*
12651 * If ipsq is non-NULL, we are already being called exclusively
12652 */
12653 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12654 if (ipsq == NULL) {
12655 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12656 NEW_OP, B_TRUE);
12657 if (ipsq == NULL) {
12658 ipif_refrele(ci.ci_ipif);
12659 return;
12660 }
12661 entered_ipsq = B_TRUE;
12662 }
12663 /*
12664 * Release the ipif so that ipif_down and friends that wait for
12665 * references to go away are not misled about the current ipif_refcnt
12666 * values. We are writer so we can access the ipif even after releasing
12667 * the ipif.

new/usr/src/uts/common/inet/ip/ip.c 193

12668 */
12669 ipif_refrele(ci.ci_ipif);

12671 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);

12673 /*
12674 * A return value of EINPROGRESS means the ioctl is
12675 * either queued and waiting for some reason or has
12676 * already completed.
12677 */
12678 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);

12680 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12681 int, ipip->ipi_cmd,
12682 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12683 ipif_t *, ci.ci_ipif);
12684 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);

12686 if (entered_ipsq)
12687 ipsq_exit(ipsq);
12688 }

12690 /*
12691 * Complete the ioctl. Typically ioctls use the mi package and need to
12692 * do mi_copyout/mi_copy_done.
12693 */
12694 void
12695 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12696 {
12697 conn_t *connp = NULL;

12699 if (err == EINPROGRESS)
12700 return;

12702 if (CONN_Q(q)) {
12703 connp = Q_TO_CONN(q);
12704 ASSERT(connp->conn_ref >= 2);
12705 }

12707 switch (mode) {
12708 case COPYOUT:
12709 if (err == 0)
12710 mi_copyout(q, mp);
12711 else
12712 mi_copy_done(q, mp, err);
12713 break;

12715 case NO_COPYOUT:
12716 mi_copy_done(q, mp, err);
12717 break;

12719 default:
12720 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */
12721 break;
12722 }

12724 /*
12725 * The conn refhold and ioctlref placed on the conn at the start of the
12726 * ioctl are released here.
12727 */
12728 if (connp != NULL) {
12729 CONN_DEC_IOCTLREF(connp);
12730 CONN_OPER_PENDING_DONE(connp);
12731 }

12733 if (ipsq != NULL)

new/usr/src/uts/common/inet/ip/ip.c 194

12734 ipsq_current_finish(ipsq);
12735 }

12737 /* Handles all non data messages */
12738 void
12739 ip_wput_nondata(queue_t *q, mblk_t *mp)
12740 {
12741 mblk_t *mp1;
12742 struct iocblk *iocp;
12743 ip_ioctl_cmd_t *ipip;
12744 conn_t *connp;
12745 cred_t *cr;
12746 char *proto_str;

12748 if (CONN_Q(q))
12749 connp = Q_TO_CONN(q);
12750 else
12751 connp = NULL;

12753 switch (DB_TYPE(mp)) {
12754 case M_IOCTL:
12755 /*
12756 * IOCTL processing begins in ip_sioctl_copyin_setup which
12757 * will arrange to copy in associated control structures.
12758 */
12759 ip_sioctl_copyin_setup(q, mp);
12760 return;
12761 case M_IOCDATA:
12762 /*
12763 * Ensure that this is associated with one of our trans-
12764 * parent ioctls. If it’s not ours, discard it if we’re
12765 * running as a driver, or pass it on if we’re a module.
12766 */
12767 iocp = (struct iocblk *)mp->b_rptr;
12768 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12769 if (ipip == NULL) {
12770 if (q->q_next == NULL) {
12771 goto nak;
12772 } else {
12773 putnext(q, mp);
12774 }
12775 return;
12776 }
12777 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12778 /*
12779 * The ioctl is one we recognise, but is not consumed
12780 * by IP as a module and we are a module, so we drop
12781 */
12782 goto nak;
12783 }

12785 /* IOCTL continuation following copyin or copyout. */
12786 if (mi_copy_state(q, mp, NULL) == -1) {
12787 /*
12788 * The copy operation failed. mi_copy_state already
12789 * cleaned up, so we’re out of here.
12790 */
12791 return;
12792 }
12793 /*
12794 * If we just completed a copy in, we become writer and
12795 * continue processing in ip_sioctl_copyin_done. If it
12796 * was a copy out, we call mi_copyout again. If there is
12797 * nothing more to copy out, it will complete the IOCTL.
12798 */
12799 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {

new/usr/src/uts/common/inet/ip/ip.c 195

12800 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12801 mi_copy_done(q, mp, EPROTO);
12802 return;
12803 }
12804 /*
12805 * Check for cases that need more copying. A return
12806 * value of 0 means a second copyin has been started,
12807 * so we return; a return value of 1 means no more
12808 * copying is needed, so we continue.
12809 */
12810 if (ipip->ipi_cmd_type == MSFILT_CMD &&
12811 MI_COPY_COUNT(mp) == 1) {
12812 if (ip_copyin_msfilter(q, mp) == 0)
12813 return;
12814 }
12815 /*
12816 * Refhold the conn, till the ioctl completes. This is
12817 * needed in case the ioctl ends up in the pending mp
12818 * list. Every mp in the ipx_pending_mp list must have
12819 * a refhold on the conn to resume processing. The
12820 * refhold is released when the ioctl completes
12821 * (whether normally or abnormally). An ioctlref is also
12822 * placed on the conn to prevent TCP from removing the
12823 * queue needed to send the ioctl reply back.
12824 * In all cases ip_ioctl_finish is called to finish
12825 * the ioctl and release the refholds.
12826 */
12827 if (connp != NULL) {
12828 /* This is not a reentry */
12829 CONN_INC_REF(connp);
12830 CONN_INC_IOCTLREF(connp);
12831 } else {
12832 if (!(ipip->ipi_flags & IPI_MODOK)) {
12833 mi_copy_done(q, mp, EINVAL);
12834 return;
12835 }
12836 }

12838 ip_process_ioctl(NULL, q, mp, ipip);

12840 } else {
12841 mi_copyout(q, mp);
12842 }
12843 return;

12845 case M_IOCNAK:
12846 /*
12847 * The only way we could get here is if a resolver didn’t like
12848 * an IOCTL we sent it. This shouldn’t happen.
12849 */
12850 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12851 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12852 ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12853 freemsg(mp);
12854 return;
12855 case M_IOCACK:
12856 /* /dev/ip shouldn’t see this */
12857 goto nak;
12858 case M_FLUSH:
12859 if (*mp->b_rptr & FLUSHW)
12860 flushq(q, FLUSHALL);
12861 if (q->q_next) {
12862 putnext(q, mp);
12863 return;
12864 }
12865 if (*mp->b_rptr & FLUSHR) {

new/usr/src/uts/common/inet/ip/ip.c 196

12866 *mp->b_rptr &= ~FLUSHW;
12867 qreply(q, mp);
12868 return;
12869 }
12870 freemsg(mp);
12871 return;
12872 case M_CTL:
12873 break;
12874 case M_PROTO:
12875 case M_PCPROTO:
12876 /*
12877 * The only PROTO messages we expect are SNMP-related.
12878 */
12879 switch (((union T_primitives *)mp->b_rptr)->type) {
12880 case T_SVR4_OPTMGMT_REQ:
12881 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12882 "flags %x\n",
12883 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));

12885 if (connp == NULL) {
12886 proto_str = "T_SVR4_OPTMGMT_REQ";
12887 goto protonak;
12888 }

12890 /*
12891 * All Solaris components should pass a db_credp
12892 * for this TPI message, hence we ASSERT.
12893 * But in case there is some other M_PROTO that looks
12894 * like a TPI message sent by some other kernel
12895 * component, we check and return an error.
12896 */
12897 cr = msg_getcred(mp, NULL);
12898 ASSERT(cr != NULL);
12899 if (cr == NULL) {
12900 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12901 if (mp != NULL)
12902 qreply(q, mp);
12903 return;
12904 }

12906 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12907 proto_str = "Bad SNMPCOM request?";
12908 goto protonak;
12909 }
12910 return;
12911 default:
12912 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12913 (int)*(uint_t *)mp->b_rptr));
12914 freemsg(mp);
12915 return;
12916 }
12917 default:
12918 break;
12919 }
12920 if (q->q_next) {
12921 putnext(q, mp);
12922 } else
12923 freemsg(mp);
12924 return;

12926 nak:
12927 iocp->ioc_error = EINVAL;
12928 mp->b_datap->db_type = M_IOCNAK;
12929 iocp->ioc_count = 0;
12930 qreply(q, mp);
12931 return;

new/usr/src/uts/common/inet/ip/ip.c 197

12933 protonak:
12934 cmn_err(CE_NOTE, "IP doesn’t process %s as a module", proto_str);
12935 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12936 qreply(q, mp);
12937 }

12939 /*
12940 * Process IP options in an outbound packet. Verify that the nexthop in a
12941 * strict source route is onlink.
12942 * Returns non-zero if something fails in which case an ICMP error has been
12943 * sent and mp freed.
12944 *
12945 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12946 */
12947 int
12948 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12949 {
12950 ipoptp_t opts;
12951 uchar_t *opt;
12952 uint8_t optval;
12953 uint8_t optlen;
12954 ipaddr_t dst;
12955 intptr_t code = 0;
12956 ire_t *ire;
12957 ip_stack_t *ipst = ixa->ixa_ipst;
12958 ip_recv_attr_t iras;

12960 ip2dbg(("ip_output_options\n"));

12962 dst = ipha->ipha_dst;
12963 for (optval = ipoptp_first(&opts, ipha);
12964 optval != IPOPT_EOL;
12965 optval = ipoptp_next(&opts)) {
12966 opt = opts.ipoptp_cur;
12967 optlen = opts.ipoptp_len;
12968 ip2dbg(("ip_output_options: opt %d, len %d\n",
12969 optval, optlen));
12970 switch (optval) {
12971 uint32_t off;
12972 case IPOPT_SSRR:
12973 case IPOPT_LSRR:
12974 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12975 ip1dbg((
12976 "ip_output_options: bad option offset\n"));
12977 code = (char *)&opt[IPOPT_OLEN] -
12978 (char *)ipha;
12979 goto param_prob;
12980 }
12981 off = opt[IPOPT_OFFSET];
12982 ip1dbg(("ip_output_options: next hop 0x%x\n",
12983 ntohl(dst)));
12984 /*
12985 * For strict: verify that dst is directly
12986 * reachable.
12987 */
12988 if (optval == IPOPT_SSRR) {
12989 ire = ire_ftable_lookup_v4(dst, 0, 0,
12990 IRE_INTERFACE, NULL, ALL_ZONES,
12991 ixa->ixa_tsl,
12992 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
12993 NULL);
12994 if (ire == NULL) {
12995 ip1dbg(("ip_output_options: SSRR not"
12996 " directly reachable: 0x%x\n",
12997 ntohl(dst)));

new/usr/src/uts/common/inet/ip/ip.c 198

12998 goto bad_src_route;
12999 }
13000 ire_refrele(ire);
13001 }
13002 break;
13003 case IPOPT_RR:
13004 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13005 ip1dbg((
13006 "ip_output_options: bad option offset\n"));
13007 code = (char *)&opt[IPOPT_OLEN] -
13008 (char *)ipha;
13009 goto param_prob;
13010 }
13011 break;
13012 case IPOPT_TS:
13013 /*
13014 * Verify that length >=5 and that there is either
13015 * room for another timestamp or that the overflow
13016 * counter is not maxed out.
13017 */
13018 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13019 if (optlen < IPOPT_MINLEN_IT) {
13020 goto param_prob;
13021 }
13022 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13023 ip1dbg((
13024 "ip_output_options: bad option offset\n"));
13025 code = (char *)&opt[IPOPT_OFFSET] -
13026 (char *)ipha;
13027 goto param_prob;
13028 }
13029 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13030 case IPOPT_TS_TSONLY:
13031 off = IPOPT_TS_TIMELEN;
13032 break;
13033 case IPOPT_TS_TSANDADDR:
13034 case IPOPT_TS_PRESPEC:
13035 case IPOPT_TS_PRESPEC_RFC791:
13036 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13037 break;
13038 default:
13039 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13040 (char *)ipha;
13041 goto param_prob;
13042 }
13043 if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13044 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13045 /*
13046 * No room and the overflow counter is 15
13047 * already.
13048 */
13049 goto param_prob;
13050 }
13051 break;
13052 }
13053 }

13055 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13056 return (0);

13058 ip1dbg(("ip_output_options: error processing IP options."));
13059 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;

13061 param_prob:
13062 bzero(&iras, sizeof (iras));
13063 iras.ira_ill = iras.ira_rill = ill;

new/usr/src/uts/common/inet/ip/ip.c 199

13064 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13065 iras.ira_rifindex = iras.ira_ruifindex;
13066 iras.ira_flags = IRAF_IS_IPV4;

13068 ip_drop_output("ip_output_options", mp, ill);
13069 icmp_param_problem(mp, (uint8_t)code, &iras);
13070 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13071 return (-1);

13073 bad_src_route:
13074 bzero(&iras, sizeof (iras));
13075 iras.ira_ill = iras.ira_rill = ill;
13076 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13077 iras.ira_rifindex = iras.ira_ruifindex;
13078 iras.ira_flags = IRAF_IS_IPV4;

13080 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13081 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13082 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13083 return (-1);
13084 }

13086 /*
13087 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13088 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13089 * thru /etc/system.
13090 */
13091 #define CONN_MAXDRAINCNT 64

13093 static void
13094 conn_drain_init(ip_stack_t *ipst)
13095 {
13096 int i, j;
13097 idl_tx_list_t *itl_tx;

13099 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;

13101 if ((ipst->ips_conn_drain_list_cnt == 0) ||
13102 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13103 /*
13104 * Default value of the number of drainers is the
13105 * number of cpus, subject to maximum of 8 drainers.
13106 */
13107 if (boot_max_ncpus != -1)
13108 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13109 else
13110 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13111 }

13113 ipst->ips_idl_tx_list =
13114 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13115 for (i = 0; i < TX_FANOUT_SIZE; i++) {
13116 itl_tx = &ipst->ips_idl_tx_list[i];
13117 itl_tx->txl_drain_list =
13118 kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13119 sizeof (idl_t), KM_SLEEP);
13120 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13121 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13122 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13123 MUTEX_DEFAULT, NULL);
13124 itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13125 }
13126 }
13127 }

13129 static void

new/usr/src/uts/common/inet/ip/ip.c 200

13130 conn_drain_fini(ip_stack_t *ipst)
13131 {
13132 int i;
13133 idl_tx_list_t *itl_tx;

13135 for (i = 0; i < TX_FANOUT_SIZE; i++) {
13136 itl_tx = &ipst->ips_idl_tx_list[i];
13137 kmem_free(itl_tx->txl_drain_list,
13138 ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13139 }
13140 kmem_free(ipst->ips_idl_tx_list,
13141 TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13142 ipst->ips_idl_tx_list = NULL;
13143 }

13145 /*
13146 * Flow control has blocked us from proceeding. Insert the given conn in one
13147 * of the conn drain lists. When flow control is unblocked, either ip_wsrv()
13148 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13149 * will call conn_walk_drain(). See the flow control notes at the top of this
13150 * file for more details.
13151 */
13152 void
13153 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13154 {
13155 idl_t *idl = tx_list->txl_drain_list;
13156 uint_t index;
13157 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;

13159 mutex_enter(&connp->conn_lock);
13160 if (connp->conn_state_flags & CONN_CLOSING) {
13161 /*
13162 * The conn is closing as a result of which CONN_CLOSING
13163 * is set. Return.
13164 */
13165 mutex_exit(&connp->conn_lock);
13166 return;
13167 } else if (connp->conn_idl == NULL) {
13168 /*
13169 * Assign the next drain list round robin. We dont’ use
13170 * a lock, and thus it may not be strictly round robin.
13171 * Atomicity of load/stores is enough to make sure that
13172 * conn_drain_list_index is always within bounds.
13173 */
13174 index = tx_list->txl_drain_index;
13175 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13176 connp->conn_idl = &tx_list->txl_drain_list[index];
13177 index++;
13178 if (index == ipst->ips_conn_drain_list_cnt)
13179 index = 0;
13180 tx_list->txl_drain_index = index;
13181 } else {
13182 ASSERT(connp->conn_idl->idl_itl == tx_list);
13183 }
13184 mutex_exit(&connp->conn_lock);

13186 idl = connp->conn_idl;
13187 mutex_enter(&idl->idl_lock);
13188 if ((connp->conn_drain_prev != NULL) ||
13189 (connp->conn_state_flags & CONN_CLOSING)) {
13190 /*
13191 * The conn is either already in the drain list or closing.
13192 * (We needed to check for CONN_CLOSING again since close can
13193 * sneak in between dropping conn_lock and acquiring idl_lock.)
13194 */
13195 mutex_exit(&idl->idl_lock);

new/usr/src/uts/common/inet/ip/ip.c 201

13196 return;
13197 }

13199 /*
13200 * The conn is not in the drain list. Insert it at the
13201 * tail of the drain list. The drain list is circular
13202 * and doubly linked. idl_conn points to the 1st element
13203 * in the list.
13204 */
13205 if (idl->idl_conn == NULL) {
13206 idl->idl_conn = connp;
13207 connp->conn_drain_next = connp;
13208 connp->conn_drain_prev = connp;
13209 } else {
13210 conn_t *head = idl->idl_conn;

13212 connp->conn_drain_next = head;
13213 connp->conn_drain_prev = head->conn_drain_prev;
13214 head->conn_drain_prev->conn_drain_next = connp;
13215 head->conn_drain_prev = connp;
13216 }
13217 /*
13218 * For non streams based sockets assert flow control.
13219 */
13220 conn_setqfull(connp, NULL);
13221 mutex_exit(&idl->idl_lock);
13222 }

13224 static void
13225 conn_drain_remove(conn_t *connp)
13226 {
13227 idl_t *idl = connp->conn_idl;

13229 if (idl != NULL) {
13230 /*
13231 * Remove ourself from the drain list.
13232 */
13233 if (connp->conn_drain_next == connp) {
13234 /* Singleton in the list */
13235 ASSERT(connp->conn_drain_prev == connp);
13236 idl->idl_conn = NULL;
13237 } else {
13238 connp->conn_drain_prev->conn_drain_next =
13239 connp->conn_drain_next;
13240 connp->conn_drain_next->conn_drain_prev =
13241 connp->conn_drain_prev;
13242 if (idl->idl_conn == connp)
13243 idl->idl_conn = connp->conn_drain_next;
13244 }

13246 /*
13247 * NOTE: because conn_idl is associated with a specific drain
13248 * list which in turn is tied to the index the TX ring
13249 * (txl_cookie) hashes to, and because the TX ring can change
13250 * over the lifetime of the conn_t, we must clear conn_idl so
13251 * a subsequent conn_drain_insert() will set conn_idl again
13252 * based on the latest txl_cookie.
13253 */
13254 connp->conn_idl = NULL;
13255 }
13256 connp->conn_drain_next = NULL;
13257 connp->conn_drain_prev = NULL;

13259 conn_clrqfull(connp, NULL);
13260 /*
13261 * For streams based sockets open up flow control.

new/usr/src/uts/common/inet/ip/ip.c 202

13262 */
13263 if (!IPCL_IS_NONSTR(connp))
13264 enableok(connp->conn_wq);
13265 }

13267 /*
13268 * This conn is closing, and we are called from ip_close. OR
13269 * this conn is draining because flow-control on the ill has been relieved.
13270 *
13271 * We must also need to remove conn’s on this idl from the list, and also
13272 * inform the sockfs upcalls about the change in flow-control.
13273 */
13274 static void
13275 conn_drain(conn_t *connp, boolean_t closing)
13276 {
13277 idl_t *idl;
13278 conn_t *next_connp;

13280 /*
13281 * connp->conn_idl is stable at this point, and no lock is needed
13282 * to check it. If we are called from ip_close, close has already
13283 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13284 * called us only because conn_idl is non-null. If we are called thru
13285 * service, conn_idl could be null, but it cannot change because
13286 * service is single-threaded per queue, and there cannot be another
13287 * instance of service trying to call conn_drain_insert on this conn
13288 * now.
13289 */
13290 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);

13292 /*
13293 * If the conn doesn’t exist or is not on a drain list, bail.
13294 */
13295 if (connp == NULL || connp->conn_idl == NULL ||
13296 connp->conn_drain_prev == NULL) {
13297 return;
13298 }

13300 idl = connp->conn_idl;
13301 ASSERT(MUTEX_HELD(&idl->idl_lock));

13303 if (!closing) {
13304 next_connp = connp->conn_drain_next;
13305 while (next_connp != connp) {
13306 conn_t *delconnp = next_connp;

13308 next_connp = next_connp->conn_drain_next;
13309 conn_drain_remove(delconnp);
13310 }
13311 ASSERT(connp->conn_drain_next == idl->idl_conn);
13312 }
13313 conn_drain_remove(connp);
13314 }

13316 /*
13317 * Write service routine. Shared perimeter entry point.
13318 * The device queue’s messages has fallen below the low water mark and STREAMS
13319 * has backenabled the ill_wq. Send sockfs notification about flow-control on
13320 * each waiting conn.
13321 */
13322 void
13323 ip_wsrv(queue_t *q)
13324 {
13325 ill_t *ill;

13327 ill = (ill_t *)q->q_ptr;

new/usr/src/uts/common/inet/ip/ip.c 203

13328 if (ill->ill_state_flags == 0) {
13329 ip_stack_t *ipst = ill->ill_ipst;

13331 /*
13332 * The device flow control has opened up.
13333 * Walk through conn drain lists and qenable the
13334 * first conn in each list. This makes sense only
13335 * if the stream is fully plumbed and setup.
13336 * Hence the ill_state_flags check above.
13337 */
13338 ip1dbg(("ip_wsrv: walking\n"));
13339 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13340 enableok(ill->ill_wq);
13341 }
13342 }

13344 /*
13345 * Callback to disable flow control in IP.
13346 *
13347 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13348 * is enabled.
13349 *
13350 * When MAC_TX() is not able to send any more packets, dld sets its queue
13351 * to QFULL and enable the STREAMS flow control. Later, when the underlying
13352 * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13353 * function and wakes up corresponding mac worker threads, which in turn
13354 * calls this callback function, and disables flow control.
13355 */
13356 void
13357 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13358 {
13359 ill_t *ill = (ill_t *)arg;
13360 ip_stack_t *ipst = ill->ill_ipst;
13361 idl_tx_list_t *idl_txl;

13363 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13364 mutex_enter(&idl_txl->txl_lock);
13365 /* add code to to set a flag to indicate idl_txl is enabled */
13366 conn_walk_drain(ipst, idl_txl);
13367 mutex_exit(&idl_txl->txl_lock);
13368 }

13370 /*
13371 * Flow control has been relieved and STREAMS has backenabled us; drain
13372 * all the conn lists on ‘tx_list’.
13373 */
13374 static void
13375 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13376 {
13377 int i;
13378 idl_t *idl;

13380 IP_STAT(ipst, ip_conn_walk_drain);

13382 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13383 idl = &tx_list->txl_drain_list[i];
13384 mutex_enter(&idl->idl_lock);
13385 conn_drain(idl->idl_conn, B_FALSE);
13386 mutex_exit(&idl->idl_lock);
13387 }
13388 }

13390 /*
13391 * Determine if the ill and multicast aspects of that packets
13392 * "matches" the conn.
13393 */

new/usr/src/uts/common/inet/ip/ip.c 204

13394 boolean_t
13395 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13396 {
13397 ill_t *ill = ira->ira_rill;
13398 zoneid_t zoneid = ira->ira_zoneid;
13399 uint_t in_ifindex;
13400 ipaddr_t dst, src;

13402 dst = ipha->ipha_dst;
13403 src = ipha->ipha_src;

13405 /*
13406 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13407 * unicast, broadcast and multicast reception to
13408 * conn_incoming_ifindex.
13409 * conn_wantpacket is called for unicast, broadcast and
13410 * multicast packets.
13411 */
13412 in_ifindex = connp->conn_incoming_ifindex;

13414 /* mpathd can bind to the under IPMP interface, which we allow */
13415 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13416 if (!IS_UNDER_IPMP(ill))
13417 return (B_FALSE);

13419 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13420 return (B_FALSE);
13421 }

13423 if (!IPCL_ZONE_MATCH(connp, zoneid))
13424 return (B_FALSE);

13426 if (!(ira->ira_flags & IRAF_MULTICAST))
13427 return (B_TRUE);

13429 if (connp->conn_multi_router) {
13430 /* multicast packet and multicast router socket: send up */
13431 return (B_TRUE);
13432 }

13434 if (ipha->ipha_protocol == IPPROTO_PIM ||
13435 ipha->ipha_protocol == IPPROTO_RSVP)
13436 return (B_TRUE);

13438 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13439 }

13441 void
13442 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13443 {
13444 if (IPCL_IS_NONSTR(connp)) {
13445 (*connp->conn_upcalls->su_txq_full)
13446 (connp->conn_upper_handle, B_TRUE);
13447 if (flow_stopped != NULL)
13448 *flow_stopped = B_TRUE;
13449 } else {
13450 queue_t *q = connp->conn_wq;

13452 ASSERT(q != NULL);
13453 if (!(q->q_flag & QFULL)) {
13454 mutex_enter(QLOCK(q));
13455 if (!(q->q_flag & QFULL)) {
13456 /* still need to set QFULL */
13457 q->q_flag |= QFULL;
13458 /* set flow_stopped to true under QLOCK */
13459 if (flow_stopped != NULL)

new/usr/src/uts/common/inet/ip/ip.c 205

13460 *flow_stopped = B_TRUE;
13461 mutex_exit(QLOCK(q));
13462 } else {
13463 /* flow_stopped is left unchanged */
13464 mutex_exit(QLOCK(q));
13465 }
13466 }
13467 }
13468 }

13470 void
13471 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13472 {
13473 if (IPCL_IS_NONSTR(connp)) {
13474 (*connp->conn_upcalls->su_txq_full)
13475 (connp->conn_upper_handle, B_FALSE);
13476 if (flow_stopped != NULL)
13477 *flow_stopped = B_FALSE;
13478 } else {
13479 queue_t *q = connp->conn_wq;

13481 ASSERT(q != NULL);
13482 if (q->q_flag & QFULL) {
13483 mutex_enter(QLOCK(q));
13484 if (q->q_flag & QFULL) {
13485 q->q_flag &= ~QFULL;
13486 /* set flow_stopped to false under QLOCK */
13487 if (flow_stopped != NULL)
13488 *flow_stopped = B_FALSE;
13489 mutex_exit(QLOCK(q));
13490 if (q->q_flag & QWANTW)
13491 qbackenable(q, 0);
13492 } else {
13493 /* flow_stopped is left unchanged */
13494 mutex_exit(QLOCK(q));
13495 }
13496 }
13497 }

13499 mutex_enter(&connp->conn_lock);
13500 connp->conn_blocked = B_FALSE;
13501 mutex_exit(&connp->conn_lock);
13502 }

13504 /*
13505 * Return the length in bytes of the IPv4 headers (base header, label, and
13506 * other IP options) that will be needed based on the
13507 * ip_pkt_t structure passed by the caller.
13508 *
13509 * The returned length does not include the length of the upper level
13510 * protocol (ULP) header.
13511 * The caller needs to check that the length doesn’t exceed the max for IPv4.
13512 */
13513 int
13514 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13515 {
13516 int len;

13518 len = IP_SIMPLE_HDR_LENGTH;
13519 if (ipp->ipp_fields & IPPF_LABEL_V4) {
13520 ASSERT(ipp->ipp_label_len_v4 != 0);
13521 /* We need to round up here */
13522 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13523 }

13525 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {

new/usr/src/uts/common/inet/ip/ip.c 206

13526 ASSERT(ipp->ipp_ipv4_options_len != 0);
13527 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13528 len += ipp->ipp_ipv4_options_len;
13529 }
13530 return (len);
13531 }

13533 /*
13534 * All-purpose routine to build an IPv4 header with options based
13535 * on the abstract ip_pkt_t.
13536 *
13537 * The caller has to set the source and destination address as well as
13538 * ipha_length. The caller has to massage any source route and compensate
13539 * for the ULP pseudo-header checksum due to the source route.
13540 */
13541 void
13542 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13543 uint8_t protocol)
13544 {
13545 ipha_t *ipha = (ipha_t *)buf;
13546 uint8_t *cp;

13548 /* Initialize IPv4 header */
13549 ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13550 ipha->ipha_length = 0; /* Caller will set later */
13551 ipha->ipha_ident = 0;
13552 ipha->ipha_fragment_offset_and_flags = 0;
13553 ipha->ipha_ttl = ipp->ipp_unicast_hops;
13554 ipha->ipha_protocol = protocol;
13555 ipha->ipha_hdr_checksum = 0;

13557 if ((ipp->ipp_fields & IPPF_ADDR) &&
13558 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13559 ipha->ipha_src = ipp->ipp_addr_v4;

13561 cp = (uint8_t *)&ipha[1];
13562 if (ipp->ipp_fields & IPPF_LABEL_V4) {
13563 ASSERT(ipp->ipp_label_len_v4 != 0);
13564 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13565 cp += ipp->ipp_label_len_v4;
13566 /* We need to round up here */
13567 while ((uintptr_t)cp & 0x3) {
13568 *cp++ = IPOPT_NOP;
13569 }
13570 }

13572 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13573 ASSERT(ipp->ipp_ipv4_options_len != 0);
13574 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13575 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13576 cp += ipp->ipp_ipv4_options_len;
13577 }
13578 ipha->ipha_version_and_hdr_length =
13579 (uint8_t)((IP_VERSION << 4) + buf_len / 4);

13581 ASSERT((int)(cp - buf) == buf_len);
13582 }

13584 /* Allocate the private structure */
13585 static int
13586 ip_priv_alloc(void **bufp)
13587 {
13588 void *buf;

13590 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13591 return (ENOMEM);

new/usr/src/uts/common/inet/ip/ip.c 207

13593 *bufp = buf;
13594 return (0);
13595 }

13597 /* Function to delete the private structure */
13598 void
13599 ip_priv_free(void *buf)
13600 {
13601 ASSERT(buf != NULL);
13602 kmem_free(buf, sizeof (ip_priv_t));
13603 }

13605 /*
13606 * The entry point for IPPF processing.
13607 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13608 * routine just returns.
13609 *
13610 * When called, ip_process generates an ipp_packet_t structure
13611 * which holds the state information for this packet and invokes the
13612 * the classifier (via ipp_packet_process). The classification, depending on
13613 * configured filters, results in a list of actions for this packet. Invoking
13614 * an action may cause the packet to be dropped, in which case we return NULL.
13615 * proc indicates the callout position for
13616 * this packet and ill is the interface this packet arrived on or will leave
13617 * on (inbound and outbound resp.).
13618 *
13619 * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13620 * on the ill corrsponding to the destination IP address.
13621 */
13622 mblk_t *
13623 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13624 {
13625 ip_priv_t *priv;
13626 ipp_action_id_t aid;
13627 int rc = 0;
13628 ipp_packet_t *pp;

13630 /* If the classifier is not loaded, return */
13631 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13632 return (mp);
13633 }

13635 ASSERT(mp != NULL);

13637 /* Allocate the packet structure */
13638 rc = ipp_packet_alloc(&pp, "ip", aid);
13639 if (rc != 0)
13640 goto drop;

13642 /* Allocate the private structure */
13643 rc = ip_priv_alloc((void **)&priv);
13644 if (rc != 0) {
13645 ipp_packet_free(pp);
13646 goto drop;
13647 }
13648 priv->proc = proc;
13649 priv->ill_index = ill_get_upper_ifindex(rill);

13651 ipp_packet_set_private(pp, priv, ip_priv_free);
13652 ipp_packet_set_data(pp, mp);

13654 /* Invoke the classifier */
13655 rc = ipp_packet_process(&pp);
13656 if (pp != NULL) {
13657 mp = ipp_packet_get_data(pp);

new/usr/src/uts/common/inet/ip/ip.c 208

13658 ipp_packet_free(pp);
13659 if (rc != 0)
13660 goto drop;
13661 return (mp);
13662 } else {
13663 /* No mp to trace in ip_drop_input/ip_drop_output */
13664 mp = NULL;
13665 }
13666 drop:
13667 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13669 ip_drop_input("ip_process", mp, ill);
13670 } else {
13671 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13672 ip_drop_output("ip_process", mp, ill);
13673 }
13674 freemsg(mp);
13675 return (NULL);
13676 }

13678 /*
13679 * Propagate a multicast group membership operation (add/drop) on
13680 * all the interfaces crossed by the related multirt routes.
13681 * The call is considered successful if the operation succeeds
13682 * on at least one interface.
13683 *
13684 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13685 * multicast addresses with the ire argument being the first one.
13686 * We walk the bucket to find all the of those.
13687 *
13688 * Common to IPv4 and IPv6.
13689 */
13690 static int
13691 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13692 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13693 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13694 mcast_record_t fmode, const in6_addr_t *v6src)
13695 {
13696 ire_t *ire_gw;
13697 irb_t *irb;
13698 int ifindex;
13699 int error = 0;
13700 int result;
13701 ip_stack_t *ipst = ire->ire_ipst;
13702 ipaddr_t group;
13703 boolean_t isv6;
13704 int match_flags;

13706 if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13707 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13708 isv6 = B_FALSE;
13709 } else {
13710 isv6 = B_TRUE;
13711 }

13713 irb = ire->ire_bucket;
13714 ASSERT(irb != NULL);

13716 result = 0;
13717 irb_refhold(irb);
13718 for (; ire != NULL; ire = ire->ire_next) {
13719 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13720 continue;

13722 /* We handle -ifp routes by matching on the ill if set */
13723 match_flags = MATCH_IRE_TYPE;

new/usr/src/uts/common/inet/ip/ip.c 209

13724 if (ire->ire_ill != NULL)
13725 match_flags |= MATCH_IRE_ILL;

13727 if (isv6) {
13728 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13729 continue;

13731 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13732 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13733 match_flags, 0, ipst, NULL);
13734 } else {
13735 if (ire->ire_addr != group)
13736 continue;

13738 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13739 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13740 match_flags, 0, ipst, NULL);
13741 }
13742 /* No interface route exists for the gateway; skip this ire. */
13743 if (ire_gw == NULL)
13744 continue;
13745 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13746 ire_refrele(ire_gw);
13747 continue;
13748 }
13749 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */
13750 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;

13752 /*
13753 * The operation is considered a success if
13754 * it succeeds at least once on any one interface.
13755 */
13756 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13757 fmode, v6src);
13758 if (error == 0)
13759 result = CGTP_MCAST_SUCCESS;

13761 ire_refrele(ire_gw);
13762 }
13763 irb_refrele(irb);
13764 /*
13765 * Consider the call as successful if we succeeded on at least
13766 * one interface. Otherwise, return the last encountered error.
13767 */
13768 return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13769 }

13771 /*
13772 * Return the expected CGTP hooks version number.
13773 */
13774 int
13775 ip_cgtp_filter_supported(void)
13776 {
13777 return (ip_cgtp_filter_rev);
13778 }

13780 /*
13781 * CGTP hooks can be registered by invoking this function.
13782 * Checks that the version number matches.
13783 */
13784 int
13785 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13786 {
13787 netstack_t *ns;
13788 ip_stack_t *ipst;

new/usr/src/uts/common/inet/ip/ip.c 210

13790 if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13791 return (ENOTSUP);

13793 ns = netstack_find_by_stackid(stackid);
13794 if (ns == NULL)
13795 return (EINVAL);
13796 ipst = ns->netstack_ip;
13797 ASSERT(ipst != NULL);

13799 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13800 netstack_rele(ns);
13801 return (EALREADY);
13802 }

13804 ipst->ips_ip_cgtp_filter_ops = ops;

13806 ill_set_inputfn_all(ipst);

13808 netstack_rele(ns);
13809 return (0);
13810 }

13812 /*
13813 * CGTP hooks can be unregistered by invoking this function.
13814 * Returns ENXIO if there was no registration.
13815 * Returns EBUSY if the ndd variable has not been turned off.
13816 */
13817 int
13818 ip_cgtp_filter_unregister(netstackid_t stackid)
13819 {
13820 netstack_t *ns;
13821 ip_stack_t *ipst;

13823 ns = netstack_find_by_stackid(stackid);
13824 if (ns == NULL)
13825 return (EINVAL);
13826 ipst = ns->netstack_ip;
13827 ASSERT(ipst != NULL);

13829 if (ipst->ips_ip_cgtp_filter) {
13830 netstack_rele(ns);
13831 return (EBUSY);
13832 }

13834 if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13835 netstack_rele(ns);
13836 return (ENXIO);
13837 }
13838 ipst->ips_ip_cgtp_filter_ops = NULL;

13840 ill_set_inputfn_all(ipst);

13842 netstack_rele(ns);
13843 return (0);
13844 }

13846 /*
13847 * Check whether there is a CGTP filter registration.
13848 * Returns non-zero if there is a registration, otherwise returns zero.
13849 * Note: returns zero if bad stackid.
13850 */
13851 int
13852 ip_cgtp_filter_is_registered(netstackid_t stackid)
13853 {
13854 netstack_t *ns;
13855 ip_stack_t *ipst;

new/usr/src/uts/common/inet/ip/ip.c 211

13856 int ret;

13858 ns = netstack_find_by_stackid(stackid);
13859 if (ns == NULL)
13860 return (0);
13861 ipst = ns->netstack_ip;
13862 ASSERT(ipst != NULL);

13864 if (ipst->ips_ip_cgtp_filter_ops != NULL)
13865 ret = 1;
13866 else
13867 ret = 0;

13869 netstack_rele(ns);
13870 return (ret);
13871 }

13873 static int
13874 ip_squeue_switch(int val)
13875 {
13876 int rval;

13878 switch (val) {
13879 case IP_SQUEUE_ENTER_NODRAIN:
13880 rval = SQ_NODRAIN;
13881 break;
13882 case IP_SQUEUE_ENTER:
13883 rval = SQ_PROCESS;
13884 break;
13885 case IP_SQUEUE_FILL:
13886 default:
13887 rval = SQ_FILL;
13888 break;
13889 }
13890 return (rval);
13891 }

13893 static void *
13894 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13895 {
13896 kstat_t *ksp;

13898 ip_stat_t template = {
13899 { "ip_udp_fannorm", KSTAT_DATA_UINT64 },
13900 { "ip_udp_fanmb", KSTAT_DATA_UINT64 },
13901 { "ip_recv_pullup", KSTAT_DATA_UINT64 },
13902 { "ip_db_ref", KSTAT_DATA_UINT64 },
13903 { "ip_notaligned", KSTAT_DATA_UINT64 },
13904 { "ip_multimblk", KSTAT_DATA_UINT64 },
13905 { "ip_opt", KSTAT_DATA_UINT64 },
13906 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 },
13907 { "ip_conn_flputbq", KSTAT_DATA_UINT64 },
13908 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 },
13909 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 },
13910 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 },
13911 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 },
13912 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 },
13913 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 },
13914 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 },
13915 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 },
13916 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 },
13917 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 },
13918 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
13919 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
13920 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
13921 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },

new/usr/src/uts/common/inet/ip/ip.c 212

13922 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
13923 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
13924 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 },
13925 { "conn_in_recvopts", KSTAT_DATA_UINT64 },
13926 { "conn_in_recvif", KSTAT_DATA_UINT64 },
13927 { "conn_in_recvslla", KSTAT_DATA_UINT64 },
13928 { "conn_in_recvucred", KSTAT_DATA_UINT64 },
13929 { "conn_in_recvttl", KSTAT_DATA_UINT64 },
13930 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 },
13931 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 },
13932 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 },
13933 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 },
13934 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 },
13935 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 },
13936 { "conn_in_recvtclass", KSTAT_DATA_UINT64 },
13937 { "conn_in_timestamp", KSTAT_DATA_UINT64 },
13938 };

13940 ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13941 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13942 KSTAT_FLAG_VIRTUAL, stackid);

13944 if (ksp == NULL)
13945 return (NULL);

13947 bcopy(&template, ip_statisticsp, sizeof (template));
13948 ksp->ks_data = (void *)ip_statisticsp;
13949 ksp->ks_private = (void *)(uintptr_t)stackid;

13951 kstat_install(ksp);
13952 return (ksp);
13953 }

13955 static void
13956 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13957 {
13958 if (ksp != NULL) {
13959 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13960 kstat_delete_netstack(ksp, stackid);
13961 }
13962 }

13964 static void *
13965 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13966 {
13967 kstat_t *ksp;

13969 ip_named_kstat_t template = {
13970 { "forwarding", KSTAT_DATA_UINT32, 0 },
13971 { "defaultTTL", KSTAT_DATA_UINT32, 0 },
13972 { "inReceives", KSTAT_DATA_UINT64, 0 },
13973 { "inHdrErrors", KSTAT_DATA_UINT32, 0 },
13974 { "inAddrErrors", KSTAT_DATA_UINT32, 0 },
13975 { "forwDatagrams", KSTAT_DATA_UINT64, 0 },
13976 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 },
13977 { "inDiscards", KSTAT_DATA_UINT32, 0 },
13978 { "inDelivers", KSTAT_DATA_UINT64, 0 },
13979 { "outRequests", KSTAT_DATA_UINT64, 0 },
13980 { "outDiscards", KSTAT_DATA_UINT32, 0 },
13981 { "outNoRoutes", KSTAT_DATA_UINT32, 0 },
13982 { "reasmTimeout", KSTAT_DATA_UINT32, 0 },
13983 { "reasmReqds", KSTAT_DATA_UINT32, 0 },
13984 { "reasmOKs", KSTAT_DATA_UINT32, 0 },
13985 { "reasmFails", KSTAT_DATA_UINT32, 0 },
13986 { "fragOKs", KSTAT_DATA_UINT32, 0 },
13987 { "fragFails", KSTAT_DATA_UINT32, 0 },

new/usr/src/uts/common/inet/ip/ip.c 213

13988 { "fragCreates", KSTAT_DATA_UINT32, 0 },
13989 { "addrEntrySize", KSTAT_DATA_INT32, 0 },
13990 { "routeEntrySize", KSTAT_DATA_INT32, 0 },
13991 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 },
13992 { "routingDiscards", KSTAT_DATA_UINT32, 0 },
13993 { "inErrs", KSTAT_DATA_UINT32, 0 },
13994 { "noPorts", KSTAT_DATA_UINT32, 0 },
13995 { "inCksumErrs", KSTAT_DATA_UINT32, 0 },
13996 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 },
13997 { "reasmPartDups", KSTAT_DATA_UINT32, 0 },
13998 { "forwProhibits", KSTAT_DATA_UINT32, 0 },
13999 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 },
14000 { "udpInOverflows", KSTAT_DATA_UINT32, 0 },
14001 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 },
14002 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 },
14003 { "ipsecInFailed", KSTAT_DATA_INT32, 0 },
14004 { "memberEntrySize", KSTAT_DATA_INT32, 0 },
14005 { "inIPv6", KSTAT_DATA_UINT32, 0 },
14006 { "outIPv6", KSTAT_DATA_UINT32, 0 },
14007 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 },
14008 };

14010 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14011 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14012 if (ksp == NULL || ksp->ks_data == NULL)
14013 return (NULL);

14015 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14016 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14017 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14018 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14019 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);

14021 template.netToMediaEntrySize.value.i32 =
14022 sizeof (mib2_ipNetToMediaEntry_t);

14024 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);

14026 bcopy(&template, ksp->ks_data, sizeof (template));
14027 ksp->ks_update = ip_kstat_update;
14028 ksp->ks_private = (void *)(uintptr_t)stackid;

14030 kstat_install(ksp);
14031 return (ksp);
14032 }

14034 static void
14035 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14036 {
14037 if (ksp != NULL) {
14038 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14039 kstat_delete_netstack(ksp, stackid);
14040 }
14041 }

14043 static int
14044 ip_kstat_update(kstat_t *kp, int rw)
14045 {
14046 ip_named_kstat_t *ipkp;
14047 mib2_ipIfStatsEntry_t ipmib;
14048 ill_walk_context_t ctx;
14049 ill_t *ill;
14050 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14051 netstack_t *ns;
14052 ip_stack_t *ipst;

new/usr/src/uts/common/inet/ip/ip.c 214

14054 if (kp == NULL || kp->ks_data == NULL)
14055 return (EIO);

14057 if (rw == KSTAT_WRITE)
14058 return (EACCES);

14060 ns = netstack_find_by_stackid(stackid);
14061 if (ns == NULL)
14062 return (-1);
14063 ipst = ns->netstack_ip;
14064 if (ipst == NULL) {
14065 netstack_rele(ns);
14066 return (-1);
14067 }
14068 ipkp = (ip_named_kstat_t *)kp->ks_data;

14070 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14071 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14072 ill = ILL_START_WALK_V4(&ctx, ipst);
14073 for (; ill != NULL; ill = ill_next(&ctx, ill))
14074 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14075 rw_exit(&ipst->ips_ill_g_lock);

14077 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding;
14078 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL;
14079 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives;
14080 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors;
14081 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors;
14082 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14083 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos;
14084 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards;
14085 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers;
14086 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests;
14087 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards;
14088 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes;
14089 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14090 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds;
14091 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs;
14092 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails;
14093 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs;
14094 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails;
14095 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates;

14097 ipkp->routingDiscards.value.ui32 = 0;
14098 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs;
14099 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts;
14100 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs;
14101 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates;
14102 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups;
14103 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits;
14104 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs;
14105 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows;
14106 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows;
14107 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded;
14108 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed;

14110 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion;
14111 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion;
14112 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;

14114 netstack_rele(ns);

14116 return (0);
14117 }

14119 static void *

new/usr/src/uts/common/inet/ip/ip.c 215

14120 icmp_kstat_init(netstackid_t stackid)
14121 {
14122 kstat_t *ksp;

14124 icmp_named_kstat_t template = {
14125 { "inMsgs", KSTAT_DATA_UINT32 },
14126 { "inErrors", KSTAT_DATA_UINT32 },
14127 { "inDestUnreachs", KSTAT_DATA_UINT32 },
14128 { "inTimeExcds", KSTAT_DATA_UINT32 },
14129 { "inParmProbs", KSTAT_DATA_UINT32 },
14130 { "inSrcQuenchs", KSTAT_DATA_UINT32 },
14131 { "inRedirects", KSTAT_DATA_UINT32 },
14132 { "inEchos", KSTAT_DATA_UINT32 },
14133 { "inEchoReps", KSTAT_DATA_UINT32 },
14134 { "inTimestamps", KSTAT_DATA_UINT32 },
14135 { "inTimestampReps", KSTAT_DATA_UINT32 },
14136 { "inAddrMasks", KSTAT_DATA_UINT32 },
14137 { "inAddrMaskReps", KSTAT_DATA_UINT32 },
14138 { "outMsgs", KSTAT_DATA_UINT32 },
14139 { "outErrors", KSTAT_DATA_UINT32 },
14140 { "outDestUnreachs", KSTAT_DATA_UINT32 },
14141 { "outTimeExcds", KSTAT_DATA_UINT32 },
14142 { "outParmProbs", KSTAT_DATA_UINT32 },
14143 { "outSrcQuenchs", KSTAT_DATA_UINT32 },
14144 { "outRedirects", KSTAT_DATA_UINT32 },
14145 { "outEchos", KSTAT_DATA_UINT32 },
14146 { "outEchoReps", KSTAT_DATA_UINT32 },
14147 { "outTimestamps", KSTAT_DATA_UINT32 },
14148 { "outTimestampReps", KSTAT_DATA_UINT32 },
14149 { "outAddrMasks", KSTAT_DATA_UINT32 },
14150 { "outAddrMaskReps", KSTAT_DATA_UINT32 },
14151 { "inChksumErrs", KSTAT_DATA_UINT32 },
14152 { "inUnknowns", KSTAT_DATA_UINT32 },
14153 { "inFragNeeded", KSTAT_DATA_UINT32 },
14154 { "outFragNeeded", KSTAT_DATA_UINT32 },
14155 { "outDrops", KSTAT_DATA_UINT32 },
14156 { "inOverFlows", KSTAT_DATA_UINT32 },
14157 { "inBadRedirects", KSTAT_DATA_UINT32 },
14158 };

14160 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14161 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14162 if (ksp == NULL || ksp->ks_data == NULL)
14163 return (NULL);

14165 bcopy(&template, ksp->ks_data, sizeof (template));

14167 ksp->ks_update = icmp_kstat_update;
14168 ksp->ks_private = (void *)(uintptr_t)stackid;

14170 kstat_install(ksp);
14171 return (ksp);
14172 }

14174 static void
14175 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14176 {
14177 if (ksp != NULL) {
14178 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14179 kstat_delete_netstack(ksp, stackid);
14180 }
14181 }

14183 static int
14184 icmp_kstat_update(kstat_t *kp, int rw)
14185 {

new/usr/src/uts/common/inet/ip/ip.c 216

14186 icmp_named_kstat_t *icmpkp;
14187 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14188 netstack_t *ns;
14189 ip_stack_t *ipst;

14191 if ((kp == NULL) || (kp->ks_data == NULL))
14192 return (EIO);

14194 if (rw == KSTAT_WRITE)
14195 return (EACCES);

14197 ns = netstack_find_by_stackid(stackid);
14198 if (ns == NULL)
14199 return (-1);
14200 ipst = ns->netstack_ip;
14201 if (ipst == NULL) {
14202 netstack_rele(ns);
14203 return (-1);
14204 }
14205 icmpkp = (icmp_named_kstat_t *)kp->ks_data;

14207 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs;
14208 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors;
14209 icmpkp->inDestUnreachs.value.ui32 =
14210 ipst->ips_icmp_mib.icmpInDestUnreachs;
14211 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds;
14212 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs;
14213 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs;
14214 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects;
14215 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos;
14216 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps;
14217 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps;
14218 icmpkp->inTimestampReps.value.ui32 =
14219 ipst->ips_icmp_mib.icmpInTimestampReps;
14220 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks;
14221 icmpkp->inAddrMaskReps.value.ui32 =
14222 ipst->ips_icmp_mib.icmpInAddrMaskReps;
14223 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs;
14224 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors;
14225 icmpkp->outDestUnreachs.value.ui32 =
14226 ipst->ips_icmp_mib.icmpOutDestUnreachs;
14227 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds;
14228 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs;
14229 icmpkp->outSrcQuenchs.value.ui32 =
14230 ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14231 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects;
14232 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos;
14233 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps;
14234 icmpkp->outTimestamps.value.ui32 =
14235 ipst->ips_icmp_mib.icmpOutTimestamps;
14236 icmpkp->outTimestampReps.value.ui32 =
14237 ipst->ips_icmp_mib.icmpOutTimestampReps;
14238 icmpkp->outAddrMasks.value.ui32 =
14239 ipst->ips_icmp_mib.icmpOutAddrMasks;
14240 icmpkp->outAddrMaskReps.value.ui32 =
14241 ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14242 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs;
14243 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns;
14244 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded;
14245 icmpkp->outFragNeeded.value.ui32 =
14246 ipst->ips_icmp_mib.icmpOutFragNeeded;
14247 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops;
14248 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows;
14249 icmpkp->inBadRedirects.value.ui32 =
14250 ipst->ips_icmp_mib.icmpInBadRedirects;

new/usr/src/uts/common/inet/ip/ip.c 217

14252 netstack_rele(ns);
14253 return (0);
14254 }

14256 /*
14257 * This is the fanout function for raw socket opened for SCTP. Note
14258 * that it is called after SCTP checks that there is no socket which
14259 * wants a packet. Then before SCTP handles this out of the blue packet,
14260 * this function is called to see if there is any raw socket for SCTP.
14261 * If there is and it is bound to the correct address, the packet will
14262 * be sent to that socket. Note that only one raw socket can be bound to
14263 * a port. This is assured in ipcl_sctp_hash_insert();
14264 */
14265 void
14266 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14267 ip_recv_attr_t *ira)
14268 {
14269 conn_t *connp;
14270 queue_t *rq;
14271 boolean_t secure;
14272 ill_t *ill = ira->ira_ill;
14273 ip_stack_t *ipst = ill->ill_ipst;
14274 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
14275 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp;
14276 iaflags_t iraflags = ira->ira_flags;
14277 ill_t *rill = ira->ira_rill;

14279 secure = iraflags & IRAF_IPSEC_SECURE;

14281 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14282 ira, ipst);
14283 if (connp == NULL) {
14284 /*
14285 * Although raw sctp is not summed, OOB chunks must be.
14286 * Drop the packet here if the sctp checksum failed.
14287 */
14288 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14289 SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14290 freemsg(mp);
14291 return;
14292 }
14293 ira->ira_ill = ira->ira_rill = NULL;
14294 sctp_ootb_input(mp, ira, ipst);
14295 ira->ira_ill = ill;
14296 ira->ira_rill = rill;
14297 return;
14298 }
14299 rq = connp->conn_rq;
14300 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14301 CONN_DEC_REF(connp);
14302 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14303 freemsg(mp);
14304 return;
14305 }
14306 if (((iraflags & IRAF_IS_IPV4) ?
14307 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14308 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14309 secure) {
14310 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14311 ip6h, ira);
14312 if (mp == NULL) {
14313 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14314 /* Note that mp is NULL */
14315 ip_drop_input("ipIfStatsInDiscards", mp, ill);
14316 CONN_DEC_REF(connp);
14317 return;

new/usr/src/uts/common/inet/ip/ip.c 218

14318 }
14319 }

14321 if (iraflags & IRAF_ICMP_ERROR) {
14322 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14323 } else {
14324 ill_t *rill = ira->ira_rill;

14326 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14327 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14328 ira->ira_ill = ira->ira_rill = NULL;
14329 (connp->conn_recv)(connp, mp, NULL, ira);
14330 ira->ira_ill = ill;
14331 ira->ira_rill = rill;
14332 }
14333 CONN_DEC_REF(connp);
14334 }

14336 /*
14337 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14338 * header before the ip payload.
14339 */
14340 static void
14341 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14342 {
14343 int len = (mp->b_wptr - mp->b_rptr);
14344 mblk_t *ip_mp;

14346 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14347 if (is_fp_mp || len != fp_mp_len) {
14348 if (len > fp_mp_len) {
14349 /*
14350 * fastpath header and ip header in the first mblk
14351 */
14352 mp->b_rptr += fp_mp_len;
14353 } else {
14354 /*
14355 * ip_xmit_attach_llhdr had to prepend an mblk to
14356 * attach the fastpath header before ip header.
14357 */
14358 ip_mp = mp->b_cont;
14359 freeb(mp);
14360 mp = ip_mp;
14361 mp->b_rptr += (fp_mp_len - len);
14362 }
14363 } else {
14364 ip_mp = mp->b_cont;
14365 freeb(mp);
14366 mp = ip_mp;
14367 }
14368 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14369 freemsg(mp);
14370 }

14372 /*
14373 * Normal post fragmentation function.
14374 *
14375 * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14376 * using the same state machine.
14377 *
14378 * We return an error on failure. In particular we return EWOULDBLOCK
14379 * when the driver flow controls. In that case this ensures that ip_wsrv runs
14380 * (currently by canputnext failure resulting in backenabling from GLD.)
14381 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14382 * indication that they can flow control until ip_wsrv() tells then to restart.
14383 *

new/usr/src/uts/common/inet/ip/ip.c 219

14384 * If the nce passed by caller is incomplete, this function
14385 * queues the packet and if necessary, sends ARP request and bails.
14386 * If the Neighbor Cache passed is fully resolved, we simply prepend
14387 * the link-layer header to the packet, do ipsec hw acceleration
14388 * work if necessary, and send the packet out on the wire.
14389 */
14390 /* ARGSUSED6 */
14391 int
14392 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14393 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14394 {
14395 queue_t *wq;
14396 ill_t *ill = nce->nce_ill;
14397 ip_stack_t *ipst = ill->ill_ipst;
14398 uint64_t delta;
14399 boolean_t isv6 = ill->ill_isv6;
14400 boolean_t fp_mp;
14401 ncec_t *ncec = nce->nce_common;
14402 int64_t now = LBOLT_FASTPATH64;
14403 boolean_t is_probe;

14405 DTRACE_PROBE1(ip__xmit, nce_t *, nce);

14407 ASSERT(mp != NULL);
14408 ASSERT(mp->b_datap->db_type == M_DATA);
14409 ASSERT(pkt_len == msgdsize(mp));

14411 /*
14412 * If we have already been here and are coming back after ARP/ND.
14413 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14414 * in that case since they have seen the packet when it came here
14415 * the first time.
14416 */
14417 if (ixaflags & IXAF_NO_TRACE)
14418 goto sendit;

14420 if (ixaflags & IXAF_IS_IPV4) {
14421 ipha_t *ipha = (ipha_t *)mp->b_rptr;

14423 ASSERT(!isv6);
14424 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14425 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14426 !(ixaflags & IXAF_NO_PFHOOK)) {
14427 int error;

14429 FW_HOOKS(ipst->ips_ip4_physical_out_event,
14430 ipst->ips_ipv4firewall_physical_out,
14431 NULL, ill, ipha, mp, mp, 0, ipst, error);
14432 DTRACE_PROBE1(ip4__physical__out__end,
14433 mblk_t *, mp);
14434 if (mp == NULL)
14435 return (error);

14437 /* The length could have changed */
14438 pkt_len = msgdsize(mp);
14439 }
14440 if (ipst->ips_ip4_observe.he_interested) {
14441 /*
14442 * Note that for TX the zoneid is the sending
14443 * zone, whether or not MLP is in play.
14444 * Since the szone argument is the IP zoneid (i.e.,
14445 * zero for exclusive-IP zones) and ipobs wants
14446 * the system zoneid, we map it here.
14447 */
14448 szone = IP_REAL_ZONEID(szone, ipst);

new/usr/src/uts/common/inet/ip/ip.c 220

14450 /*
14451 * On the outbound path the destination zone will be
14452 * unknown as we’re sending this packet out on the
14453 * wire.
14454 */
14455 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14456 ill, ipst);
14457 }
14458 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
14459 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill,
14460 ipha_t *, ipha, ip6_t *, NULL, int, 0);
14461 } else {
14462 ip6_t *ip6h = (ip6_t *)mp->b_rptr;

14464 ASSERT(isv6);
14465 ASSERT(pkt_len ==
14466 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14467 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14468 !(ixaflags & IXAF_NO_PFHOOK)) {
14469 int error;

14471 FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14472 ipst->ips_ipv6firewall_physical_out,
14473 NULL, ill, ip6h, mp, mp, 0, ipst, error);
14474 DTRACE_PROBE1(ip6__physical__out__end,
14475 mblk_t *, mp);
14476 if (mp == NULL)
14477 return (error);

14479 /* The length could have changed */
14480 pkt_len = msgdsize(mp);
14481 }
14482 if (ipst->ips_ip6_observe.he_interested) {
14483 /* See above */
14484 szone = IP_REAL_ZONEID(szone, ipst);

14486 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14487 ill, ipst);
14488 }
14489 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
14490 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill,
14491 ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14492 }

14494 sendit:
14495 /*
14496 * We check the state without a lock because the state can never
14497 * move "backwards" to initial or incomplete.
14498 */
14499 switch (ncec->ncec_state) {
14500 case ND_REACHABLE:
14501 case ND_STALE:
14502 case ND_DELAY:
14503 case ND_PROBE:
14504 mp = ip_xmit_attach_llhdr(mp, nce);
14505 if (mp == NULL) {
14506 /*
14507 * ip_xmit_attach_llhdr has increased
14508 * ipIfStatsOutDiscards and called ip_drop_output()
14509 */
14510 return (ENOBUFS);
14511 }
14512 /*
14513 * check if nce_fastpath completed and we tagged on a
14514 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14515 */

new/usr/src/uts/common/inet/ip/ip.c 221

14516 fp_mp = (mp->b_datap->db_type == M_DATA);

14518 if (fp_mp &&
14519 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14520 ill_dld_direct_t *idd;

14522 idd = &ill->ill_dld_capab->idc_direct;
14523 /*
14524 * Send the packet directly to DLD, where it
14525 * may be queued depending on the availability
14526 * of transmit resources at the media layer.
14527 * Return value should be taken into
14528 * account and flow control the TCP.
14529 */
14530 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14531 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14532 pkt_len);

14534 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14535 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14536 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14537 } else {
14538 uintptr_t cookie;

14540 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14541 mp, (uintptr_t)xmit_hint, 0)) != 0) {
14542 if (ixacookie != NULL)
14543 *ixacookie = cookie;
14544 return (EWOULDBLOCK);
14545 }
14546 }
14547 } else {
14548 wq = ill->ill_wq;

14550 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14551 !canputnext(wq)) {
14552 if (ixacookie != NULL)
14553 *ixacookie = 0;
14554 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14555 nce->nce_fp_mp != NULL ?
14556 MBLKL(nce->nce_fp_mp) : 0);
14557 return (EWOULDBLOCK);
14558 }
14559 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14560 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14561 pkt_len);
14562 putnext(wq, mp);
14563 }

14565 /*
14566 * The rest of this function implements Neighbor Unreachability
14567 * detection. Determine if the ncec is eligible for NUD.
14568 */
14569 if (ncec->ncec_flags & NCE_F_NONUD)
14570 return (0);

14572 ASSERT(ncec->ncec_state != ND_INCOMPLETE);

14574 /*
14575 * Check for upper layer advice
14576 */
14577 if (ixaflags & IXAF_REACH_CONF) {
14578 timeout_id_t tid;

14580 /*
14581 * It should be o.k. to check the state without

new/usr/src/uts/common/inet/ip/ip.c 222

14582 * a lock here, at most we lose an advice.
14583 */
14584 ncec->ncec_last = TICK_TO_MSEC(now);
14585 if (ncec->ncec_state != ND_REACHABLE) {
14586 mutex_enter(&ncec->ncec_lock);
14587 ncec->ncec_state = ND_REACHABLE;
14588 tid = ncec->ncec_timeout_id;
14589 ncec->ncec_timeout_id = 0;
14590 mutex_exit(&ncec->ncec_lock);
14591 (void) untimeout(tid);
14592 if (ip_debug > 2) {
14593 /* ip1dbg */
14594 pr_addr_dbg("ip_xmit: state"
14595 " for %s changed to"
14596 " REACHABLE\n", AF_INET6,
14597 &ncec->ncec_addr);
14598 }
14599 }
14600 return (0);
14601 }

14603 delta = TICK_TO_MSEC(now) - ncec->ncec_last;
14604 ip1dbg(("ip_xmit: delta = %" PRId64
14605 " ill_reachable_time = %d \n", delta,
14606 ill->ill_reachable_time));
14607 if (delta > (uint64_t)ill->ill_reachable_time) {
14608 mutex_enter(&ncec->ncec_lock);
14609 switch (ncec->ncec_state) {
14610 case ND_REACHABLE:
14611 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14612 /* FALLTHROUGH */
14613 case ND_STALE:
14614 /*
14615 * ND_REACHABLE is identical to
14616 * ND_STALE in this specific case. If
14617 * reachable time has expired for this
14618 * neighbor (delta is greater than
14619 * reachable time), conceptually, the
14620 * neighbor cache is no longer in
14621 * REACHABLE state, but already in
14622 * STALE state. So the correct
14623 * transition here is to ND_DELAY.
14624 */
14625 ncec->ncec_state = ND_DELAY;
14626 mutex_exit(&ncec->ncec_lock);
14627 nce_restart_timer(ncec,
14628 ipst->ips_delay_first_probe_time);
14629 if (ip_debug > 3) {
14630 /* ip2dbg */
14631 pr_addr_dbg("ip_xmit: state"
14632 " for %s changed to"
14633 " DELAY\n", AF_INET6,
14634 &ncec->ncec_addr);
14635 }
14636 break;
14637 case ND_DELAY:
14638 case ND_PROBE:
14639 mutex_exit(&ncec->ncec_lock);
14640 /* Timers have already started */
14641 break;
14642 case ND_UNREACHABLE:
14643 /*
14644 * nce_timer has detected that this ncec
14645 * is unreachable and initiated deleting
14646 * this ncec.
14647 * This is a harmless race where we found the

new/usr/src/uts/common/inet/ip/ip.c 223

14648 * ncec before it was deleted and have
14649 * just sent out a packet using this
14650 * unreachable ncec.
14651 */
14652 mutex_exit(&ncec->ncec_lock);
14653 break;
14654 default:
14655 ASSERT(0);
14656 mutex_exit(&ncec->ncec_lock);
14657 }
14658 }
14659 return (0);

14661 case ND_INCOMPLETE:
14662 /*
14663 * the state could have changed since we didn’t hold the lock.
14664 * Re-verify state under lock.
14665 */
14666 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14667 mutex_enter(&ncec->ncec_lock);
14668 if (NCE_ISREACHABLE(ncec)) {
14669 mutex_exit(&ncec->ncec_lock);
14670 goto sendit;
14671 }
14672 /* queue the packet */
14673 nce_queue_mp(ncec, mp, is_probe);
14674 mutex_exit(&ncec->ncec_lock);
14675 DTRACE_PROBE2(ip__xmit__incomplete,
14676 (ncec_t *), ncec, (mblk_t *), mp);
14677 return (0);

14679 case ND_INITIAL:
14680 /*
14681 * State could have changed since we didn’t hold the lock, so
14682 * re-verify state.
14683 */
14684 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14685 mutex_enter(&ncec->ncec_lock);
14686 if (NCE_ISREACHABLE(ncec)) {
14687 mutex_exit(&ncec->ncec_lock);
14688 goto sendit;
14689 }
14690 nce_queue_mp(ncec, mp, is_probe);
14691 if (ncec->ncec_state == ND_INITIAL) {
14692 ncec->ncec_state = ND_INCOMPLETE;
14693 mutex_exit(&ncec->ncec_lock);
14694 /*
14695 * figure out the source we want to use
14696 * and resolve it.
14697 */
14698 ip_ndp_resolve(ncec);
14699 } else {
14700 mutex_exit(&ncec->ncec_lock);
14701 }
14702 return (0);

14704 case ND_UNREACHABLE:
14705 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14706 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14707 mp, ill);
14708 freemsg(mp);
14709 return (0);

14711 default:
14712 ASSERT(0);
14713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);

new/usr/src/uts/common/inet/ip/ip.c 224

14714 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14715 mp, ill);
14716 freemsg(mp);
14717 return (ENETUNREACH);
14718 }
14719 }

14721 /*
14722 * Return B_TRUE if the buffers differ in length or content.
14723 * This is used for comparing extension header buffers.
14724 * Note that an extension header would be declared different
14725 * even if all that changed was the next header value in that header i.e.
14726 * what really changed is the next extension header.
14727 */
14728 boolean_t
14729 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14730 uint_t blen)
14731 {
14732 if (!b_valid)
14733 blen = 0;

14735 if (alen != blen)
14736 return (B_TRUE);
14737 if (alen == 0)
14738 return (B_FALSE); /* Both zero length */
14739 return (bcmp(abuf, bbuf, alen));
14740 }

14742 /*
14743 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14744 * Return B_FALSE if memory allocation fails - don’t change any state!
14745 */
14746 boolean_t
14747 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14748 const void *src, uint_t srclen)
14749 {
14750 void *dst;

14752 if (!src_valid)
14753 srclen = 0;

14755 ASSERT(*dstlenp == 0);
14756 if (src != NULL && srclen != 0) {
14757 dst = mi_alloc(srclen, BPRI_MED);
14758 if (dst == NULL)
14759 return (B_FALSE);
14760 } else {
14761 dst = NULL;
14762 }
14763 if (*dstp != NULL)
14764 mi_free(*dstp);
14765 *dstp = dst;
14766 *dstlenp = dst == NULL ? 0 : srclen;
14767 return (B_TRUE);
14768 }

14770 /*
14771 * Replace what is in *dst, *dstlen with the source.
14772 * Assumes ip_allocbuf has already been called.
14773 */
14774 void
14775 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14776 const void *src, uint_t srclen)
14777 {
14778 if (!src_valid)
14779 srclen = 0;

new/usr/src/uts/common/inet/ip/ip.c 225

14781 ASSERT(*dstlenp == srclen);
14782 if (src != NULL && srclen != 0)
14783 bcopy(src, *dstp, srclen);
14784 }

14786 /*
14787 * Free the storage pointed to by the members of an ip_pkt_t.
14788 */
14789 void
14790 ip_pkt_free(ip_pkt_t *ipp)
14791 {
14792 uint_t fields = ipp->ipp_fields;

14794 if (fields & IPPF_HOPOPTS) {
14795 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14796 ipp->ipp_hopopts = NULL;
14797 ipp->ipp_hopoptslen = 0;
14798 }
14799 if (fields & IPPF_RTHDRDSTOPTS) {
14800 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14801 ipp->ipp_rthdrdstopts = NULL;
14802 ipp->ipp_rthdrdstoptslen = 0;
14803 }
14804 if (fields & IPPF_DSTOPTS) {
14805 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14806 ipp->ipp_dstopts = NULL;
14807 ipp->ipp_dstoptslen = 0;
14808 }
14809 if (fields & IPPF_RTHDR) {
14810 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14811 ipp->ipp_rthdr = NULL;
14812 ipp->ipp_rthdrlen = 0;
14813 }
14814 if (fields & IPPF_IPV4_OPTIONS) {
14815 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14816 ipp->ipp_ipv4_options = NULL;
14817 ipp->ipp_ipv4_options_len = 0;
14818 }
14819 if (fields & IPPF_LABEL_V4) {
14820 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14821 ipp->ipp_label_v4 = NULL;
14822 ipp->ipp_label_len_v4 = 0;
14823 }
14824 if (fields & IPPF_LABEL_V6) {
14825 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14826 ipp->ipp_label_v6 = NULL;
14827 ipp->ipp_label_len_v6 = 0;
14828 }
14829 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14830 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14831 }

14833 /*
14834 * Copy from src to dst and allocate as needed.
14835 * Returns zero or ENOMEM.
14836 *
14837 * The caller must initialize dst to zero.
14838 */
14839 int
14840 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14841 {
14842 uint_t fields = src->ipp_fields;

14844 /* Start with fields that don’t require memory allocation */
14845 dst->ipp_fields = fields &

new/usr/src/uts/common/inet/ip/ip.c 226

14846 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14847 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);

14849 dst->ipp_addr = src->ipp_addr;
14850 dst->ipp_unicast_hops = src->ipp_unicast_hops;
14851 dst->ipp_hoplimit = src->ipp_hoplimit;
14852 dst->ipp_tclass = src->ipp_tclass;
14853 dst->ipp_type_of_service = src->ipp_type_of_service;

14855 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14856 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14857 return (0);

14859 if (fields & IPPF_HOPOPTS) {
14860 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14861 if (dst->ipp_hopopts == NULL) {
14862 ip_pkt_free(dst);
14863 return (ENOMEM);
14864 }
14865 dst->ipp_fields |= IPPF_HOPOPTS;
14866 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14867 src->ipp_hopoptslen);
14868 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14869 }
14870 if (fields & IPPF_RTHDRDSTOPTS) {
14871 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14872 kmflag);
14873 if (dst->ipp_rthdrdstopts == NULL) {
14874 ip_pkt_free(dst);
14875 return (ENOMEM);
14876 }
14877 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14878 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14879 src->ipp_rthdrdstoptslen);
14880 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14881 }
14882 if (fields & IPPF_DSTOPTS) {
14883 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14884 if (dst->ipp_dstopts == NULL) {
14885 ip_pkt_free(dst);
14886 return (ENOMEM);
14887 }
14888 dst->ipp_fields |= IPPF_DSTOPTS;
14889 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14890 src->ipp_dstoptslen);
14891 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14892 }
14893 if (fields & IPPF_RTHDR) {
14894 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14895 if (dst->ipp_rthdr == NULL) {
14896 ip_pkt_free(dst);
14897 return (ENOMEM);
14898 }
14899 dst->ipp_fields |= IPPF_RTHDR;
14900 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14901 src->ipp_rthdrlen);
14902 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14903 }
14904 if (fields & IPPF_IPV4_OPTIONS) {
14905 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14906 kmflag);
14907 if (dst->ipp_ipv4_options == NULL) {
14908 ip_pkt_free(dst);
14909 return (ENOMEM);
14910 }
14911 dst->ipp_fields |= IPPF_IPV4_OPTIONS;

new/usr/src/uts/common/inet/ip/ip.c 227

14912 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14913 src->ipp_ipv4_options_len);
14914 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14915 }
14916 if (fields & IPPF_LABEL_V4) {
14917 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14918 if (dst->ipp_label_v4 == NULL) {
14919 ip_pkt_free(dst);
14920 return (ENOMEM);
14921 }
14922 dst->ipp_fields |= IPPF_LABEL_V4;
14923 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14924 src->ipp_label_len_v4);
14925 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14926 }
14927 if (fields & IPPF_LABEL_V6) {
14928 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14929 if (dst->ipp_label_v6 == NULL) {
14930 ip_pkt_free(dst);
14931 return (ENOMEM);
14932 }
14933 dst->ipp_fields |= IPPF_LABEL_V6;
14934 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14935 src->ipp_label_len_v6);
14936 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14937 }
14938 if (fields & IPPF_FRAGHDR) {
14939 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14940 if (dst->ipp_fraghdr == NULL) {
14941 ip_pkt_free(dst);
14942 return (ENOMEM);
14943 }
14944 dst->ipp_fields |= IPPF_FRAGHDR;
14945 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14946 src->ipp_fraghdrlen);
14947 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14948 }
14949 return (0);
14950 }

14952 /*
14953 * Returns INADDR_ANY if no source route
14954 */
14955 ipaddr_t
14956 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14957 {
14958 ipaddr_t nexthop = INADDR_ANY;
14959 ipoptp_t opts;
14960 uchar_t *opt;
14961 uint8_t optval;
14962 uint8_t optlen;
14963 uint32_t totallen;

14965 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14966 return (INADDR_ANY);

14968 totallen = ipp->ipp_ipv4_options_len;
14969 if (totallen & 0x3)
14970 return (INADDR_ANY);

14972 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14973 optval != IPOPT_EOL;
14974 optval = ipoptp_next(&opts)) {
14975 opt = opts.ipoptp_cur;
14976 switch (optval) {
14977 uint8_t off;

new/usr/src/uts/common/inet/ip/ip.c 228

14978 case IPOPT_SSRR:
14979 case IPOPT_LSRR:
14980 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14981 break;
14982 }
14983 optlen = opts.ipoptp_len;
14984 off = opt[IPOPT_OFFSET];
14985 off--;
14986 if (optlen < IP_ADDR_LEN ||
14987 off > optlen - IP_ADDR_LEN) {
14988 /* End of source route */
14989 break;
14990 }
14991 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
14992 if (nexthop == htonl(INADDR_LOOPBACK)) {
14993 /* Ignore */
14994 nexthop = INADDR_ANY;
14995 break;
14996 }
14997 break;
14998 }
14999 }
15000 return (nexthop);
15001 }

15003 /*
15004 * Reverse a source route.
15005 */
15006 void
15007 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15008 {
15009 ipaddr_t tmp;
15010 ipoptp_t opts;
15011 uchar_t *opt;
15012 uint8_t optval;
15013 uint32_t totallen;

15015 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15016 return;

15018 totallen = ipp->ipp_ipv4_options_len;
15019 if (totallen & 0x3)
15020 return;

15022 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15023 optval != IPOPT_EOL;
15024 optval = ipoptp_next(&opts)) {
15025 uint8_t off1, off2;

15027 opt = opts.ipoptp_cur;
15028 switch (optval) {
15029 case IPOPT_SSRR:
15030 case IPOPT_LSRR:
15031 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15032 break;
15033 }
15034 off1 = IPOPT_MINOFF_SR - 1;
15035 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15036 while (off2 > off1) {
15037 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15038 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15039 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15040 off2 -= IP_ADDR_LEN;
15041 off1 += IP_ADDR_LEN;
15042 }
15043 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;

new/usr/src/uts/common/inet/ip/ip.c 229

15044 break;
15045 }
15046 }
15047 }

15049 /*
15050 * Returns NULL if no routing header
15051 */
15052 in6_addr_t *
15053 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15054 {
15055 in6_addr_t *nexthop = NULL;
15056 ip6_rthdr0_t *rthdr;

15058 if (!(ipp->ipp_fields & IPPF_RTHDR))
15059 return (NULL);

15061 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15062 if (rthdr->ip6r0_segleft == 0)
15063 return (NULL);

15065 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15066 return (nexthop);
15067 }

15069 zoneid_t
15070 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15071 zoneid_t lookup_zoneid)
15072 {
15073 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
15074 ire_t *ire;
15075 int ire_flags = MATCH_IRE_TYPE;
15076 zoneid_t zoneid = ALL_ZONES;

15078 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15079 return (ALL_ZONES);

15081 if (lookup_zoneid != ALL_ZONES)
15082 ire_flags |= MATCH_IRE_ZONEONLY;
15083 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15084 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15085 if (ire != NULL) {
15086 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15087 ire_refrele(ire);
15088 }
15089 return (zoneid);
15090 }

15092 zoneid_t
15093 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15094 ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15095 {
15096 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
15097 ire_t *ire;
15098 int ire_flags = MATCH_IRE_TYPE;
15099 zoneid_t zoneid = ALL_ZONES;

15101 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15102 return (ALL_ZONES);

15104 if (IN6_IS_ADDR_LINKLOCAL(addr))
15105 ire_flags |= MATCH_IRE_ILL;

15107 if (lookup_zoneid != ALL_ZONES)
15108 ire_flags |= MATCH_IRE_ZONEONLY;
15109 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,

new/usr/src/uts/common/inet/ip/ip.c 230

15110 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15111 if (ire != NULL) {
15112 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15113 ire_refrele(ire);
15114 }
15115 return (zoneid);
15116 }

15118 /*
15119 * IP obserability hook support functions.
15120 */
15121 static void
15122 ipobs_init(ip_stack_t *ipst)
15123 {
15124 netid_t id;

15126 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);

15128 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15129 VERIFY(ipst->ips_ip4_observe_pr != NULL);

15131 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15132 VERIFY(ipst->ips_ip6_observe_pr != NULL);
15133 }

15135 static void
15136 ipobs_fini(ip_stack_t *ipst)
15137 {

15139 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15140 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15141 }

15143 /*
15144 * hook_pkt_observe_t is composed in network byte order so that the
15145 * entire mblk_t chain handed into hook_run can be used as-is.
15146 * The caveat is that use of the fields, such as the zone fields,
15147 * requires conversion into host byte order first.
15148 */
15149 void
15150 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15151 const ill_t *ill, ip_stack_t *ipst)
15152 {
15153 hook_pkt_observe_t *hdr;
15154 uint64_t grifindex;
15155 mblk_t *imp;

15157 imp = allocb(sizeof (*hdr), BPRI_HI);
15158 if (imp == NULL)
15159 return;

15161 hdr = (hook_pkt_observe_t *)imp->b_rptr;
15162 /*
15163 * b_wptr is set to make the apparent size of the data in the mblk_t
15164 * to exclude the pointers at the end of hook_pkt_observer_t.
15165 */
15166 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15167 imp->b_cont = mp;

15169 ASSERT(DB_TYPE(mp) == M_DATA);

15171 if (IS_UNDER_IPMP(ill))
15172 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15173 else
15174 grifindex = 0;

new/usr/src/uts/common/inet/ip/ip.c 231

15176 hdr->hpo_version = 1;
15177 hdr->hpo_htype = htons(htype);
15178 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15179 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15180 hdr->hpo_grifindex = htonl(grifindex);
15181 hdr->hpo_zsrc = htonl(zsrc);
15182 hdr->hpo_zdst = htonl(zdst);
15183 hdr->hpo_pkt = imp;
15184 hdr->hpo_ctx = ipst->ips_netstack;

15186 if (ill->ill_isv6) {
15187 hdr->hpo_family = AF_INET6;
15188 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15189 ipst->ips_ipv6observing, (hook_data_t)hdr);
15190 } else {
15191 hdr->hpo_family = AF_INET;
15192 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15193 ipst->ips_ipv4observing, (hook_data_t)hdr);
15194 }

15196 imp->b_cont = NULL;
15197 freemsg(imp);
15198 }

15200 /*
15201 * Utility routine that checks if ‘v4srcp’ is a valid address on underlying
15202 * interface ‘ill’. If ‘ipifp’ is non-NULL, it’s set to a held ipif
15203 * associated with ‘v4srcp’ on success. NOTE: if this is not called from
15204 * inside the IPSQ (ill_g_lock is not held), ‘ill’ may be removed from the
15205 * group during or after this lookup.
15206 */
15207 boolean_t
15208 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15209 {
15210 ipif_t *ipif;

15212 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15213 if (ipif != NULL) {
15214 if (ipifp != NULL)
15215 *ipifp = ipif;
15216 else
15217 ipif_refrele(ipif);
15218 return (B_TRUE);
15219 }

15221 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15222 *v4srcp));
15223 return (B_FALSE);
15224 }

15226 /*
15227 * Transport protocol call back function for CPU state change.
15228 */
15229 /* ARGSUSED */
15230 static int
15231 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15232 {
15233 processorid_t cpu_seqid;
15234 netstack_handle_t nh;
15235 netstack_t *ns;

15237 ASSERT(MUTEX_HELD(&cpu_lock));

15239 switch (what) {
15240 case CPU_CONFIG:
15241 case CPU_ON:

new/usr/src/uts/common/inet/ip/ip.c 232

15242 case CPU_INIT:
15243 case CPU_CPUPART_IN:
15244 cpu_seqid = cpu[id]->cpu_seqid;
15245 netstack_next_init(&nh);
15246 while ((ns = netstack_next(&nh)) != NULL) {
15247 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15248 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15249 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15250 netstack_rele(ns);
15251 }
15252 netstack_next_fini(&nh);
15253 break;
15254 case CPU_UNCONFIG:
15255 case CPU_OFF:
15256 case CPU_CPUPART_OUT:
15257 /*
15258 * Nothing to do. We don’t remove the per CPU stats from
15259 * the IP stack even when the CPU goes offline.
15260 */
15261 break;
15262 default:
15263 break;
15264 }
15265 return (0);
15266 }

new/usr/src/uts/common/inet/ip/ip_if.c 1

**
 533855 Wed Jun 13 12:04:52 2012
new/usr/src/uts/common/inet/ip/ip_if.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
24 */

26 /*
27 * This file contains the interface control functions for IP.
28 */

30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/strsun.h>
35 #include <sys/sysmacros.h>
36 #include <sys/strsubr.h>
37 #include <sys/strlog.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/cmn_err.h>
41 #include <sys/kstat.h>
42 #include <sys/debug.h>
43 #include <sys/zone.h>
44 #include <sys/sunldi.h>
45 #include <sys/file.h>
46 #include <sys/bitmap.h>
47 #include <sys/cpuvar.h>
48 #include <sys/time.h>
49 #include <sys/ctype.h>
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/socket.h>
54 #include <sys/isa_defs.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <sys/sockio.h>
61 #include <netinet/in.h>

new/usr/src/uts/common/inet/ip/ip_if.c 2

62 #include <netinet/ip6.h>
63 #include <netinet/icmp6.h>
64 #include <netinet/igmp_var.h>
65 #include <sys/policy.h>
66 #include <sys/ethernet.h>
67 #include <sys/callb.h>
68 #include <sys/md5.h>

70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */
71 #include <inet/mi.h>
72 #include <inet/nd.h>
73 #include <inet/tunables.h>
74 #include <inet/arp.h>
75 #include <inet/ip_arp.h>
76 #include <inet/mib2.h>
77 #include <inet/ip.h>
78 #include <inet/ip6.h>
79 #include <inet/ip6_asp.h>
80 #include <inet/tcp.h>
81 #include <inet/ip_multi.h>
82 #include <inet/ip_ire.h>
83 #include <inet/ip_ftable.h>
84 #include <inet/ip_rts.h>
85 #include <inet/ip_ndp.h>
86 #include <inet/ip_if.h>
87 #include <inet/ip_impl.h>
88 #include <inet/sctp_ip.h>
89 #include <inet/ip_netinfo.h>
90 #include <inet/ilb_ip.h>

92 #include <netinet/igmp.h>
93 #include <inet/ip_listutils.h>
94 #include <inet/ipclassifier.h>
95 #include <sys/mac_client.h>
96 #include <sys/dld.h>
97 #include <sys/mac_flow.h>

99 #include <sys/systeminfo.h>
100 #include <sys/bootconf.h>

102 #include <sys/tsol/tndb.h>
103 #include <sys/tsol/tnet.h>

105 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */
106 #include <inet/udp_impl.h> /* needed for udp_stack_t */
107 #include <inet/dccp/dccp_stack.h> /* needed for dccp_stack_t */
108 #endif /* ! codereview */

110 /* The character which tells where the ill_name ends */
111 #define IPIF_SEPARATOR_CHAR ’:’

113 /* IP ioctl function table entry */
114 typedef struct ipft_s {
115 int ipft_cmd;
116 pfi_t ipft_pfi;
117 int ipft_min_size;
118 int ipft_flags;
119 } ipft_t;
120 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */
121 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */

123 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
124 static int nd_ill_forward_set(queue_t *q, mblk_t *mp,
125 char *value, caddr_t cp, cred_t *ioc_cr);

127 static boolean_t ill_is_quiescent(ill_t *);

new/usr/src/uts/common/inet/ip/ip_if.c 3

128 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
129 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type);
130 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
131 mblk_t *mp, boolean_t need_up);
132 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
133 mblk_t *mp, boolean_t need_up);
134 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
135 queue_t *q, mblk_t *mp, boolean_t need_up);
136 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
137 mblk_t *mp);
138 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
139 mblk_t *mp);
140 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
141 queue_t *q, mblk_t *mp, boolean_t need_up);
142 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
143 int ioccmd, struct linkblk *li);
144 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
145 static void ip_wput_ioctl(queue_t *q, mblk_t *mp);
146 static void ipsq_flush(ill_t *ill);

148 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
149 queue_t *q, mblk_t *mp, boolean_t need_up);
150 static void ipsq_delete(ipsq_t *);

152 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type,
153 boolean_t initialize, boolean_t insert, int *errorp);
154 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
155 static void ipif_delete_bcast_ires(ipif_t *ipif);
156 static int ipif_add_ires_v4(ipif_t *, boolean_t);
157 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
158 boolean_t isv6);
159 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
160 static void ipif_free(ipif_t *ipif);
161 static void ipif_free_tail(ipif_t *ipif);
162 static void ipif_set_default(ipif_t *ipif);
163 static int ipif_set_values(queue_t *q, mblk_t *mp,
164 char *interf_name, uint_t *ppa);
165 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
166 queue_t *q);
167 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen,
168 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
169 ip_stack_t *);
170 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen,
171 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func,
172 int *error, ip_stack_t *);

174 static int ill_alloc_ppa(ill_if_t *, ill_t *);
175 static void ill_delete_interface_type(ill_if_t *);
176 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
177 static void ill_dl_down(ill_t *ill);
178 static void ill_down(ill_t *ill);
179 static void ill_down_ipifs(ill_t *, boolean_t);
180 static void ill_free_mib(ill_t *ill);
181 static void ill_glist_delete(ill_t *);
182 static void ill_phyint_reinit(ill_t *ill);
183 static void ill_set_nce_router_flags(ill_t *, boolean_t);
184 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
185 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);

187 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
188 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
189 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
190 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
191 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
192 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
193 static ip_v4mapinfo_func_t ip_ib_v4_mapping;

new/usr/src/uts/common/inet/ip/ip_if.c 4

194 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
195 static ip_v4mapinfo_func_t ip_mbcast_mapping;
196 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
197 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
198 static void phyint_free(phyint_t *);

200 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
201 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
202 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
203 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
204 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
205 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
206 dl_capability_sub_t *);
207 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
208 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *);
209 static void ill_capability_dld_ack(ill_t *, mblk_t *,
210 dl_capability_sub_t *);
211 static void ill_capability_dld_enable(ill_t *);
212 static void ill_capability_ack_thr(void *);
213 static void ill_capability_lso_enable(ill_t *);

215 static ill_t *ill_prev_usesrc(ill_t *);
216 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
217 static void ill_disband_usesrc_group(ill_t *);
218 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);

220 #ifdef DEBUG
221 static void ill_trace_cleanup(const ill_t *);
222 static void ipif_trace_cleanup(const ipif_t *);
223 #endif

225 static void ill_dlpi_clear_deferred(ill_t *ill);

227 /*
228 * if we go over the memory footprint limit more than once in this msec
229 * interval, we’ll start pruning aggressively.
230 */
231 int ip_min_frag_prune_time = 0;

233 static ipft_t ip_ioctl_ftbl[] = {
234 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
235 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
236 IPFT_F_NO_REPLY },
237 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
238 { 0 }
239 };

241 /* Simple ICMP IP Header Template */
242 static ipha_t icmp_ipha = {
243 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
244 };

246 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };

248 static ip_m_t ip_m_tbl[] = {
249 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
251 ip_nodef_v6intfid },
252 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
254 ip_nodef_v6intfid },
255 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
257 ip_nodef_v6intfid },
258 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
259 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,

new/usr/src/uts/common/inet/ip/ip_if.c 5

260 ip_nodef_v6intfid },
261 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
262 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
263 ip_nodef_v6intfid },
264 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
265 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
266 ip_nodef_v6intfid },
267 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
268 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
269 ip_ipv4_v6destintfid },
270 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
271 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
272 ip_ipv6_v6destintfid },
273 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
274 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
275 ip_nodef_v6intfid },
276 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
277 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
278 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
279 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
280 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
281 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
282 ip_nodef_v6intfid }
283 };

285 static ill_t ill_null; /* Empty ILL for init. */
286 char ipif_loopback_name[] = "lo0";

288 /* These are used by all IP network modules. */
289 sin6_t sin6_null; /* Zero address for quick clears */
290 sin_t sin_null; /* Zero address for quick clears */

292 /* When set search for unused ipif_seqid */
293 static ipif_t ipif_zero;

295 /*
296 * ppa arena is created after these many
297 * interfaces have been plumbed.
298 */
299 uint_t ill_no_arena = 12; /* Setable in /etc/system */

301 /*
302 * Allocate per-interface mibs.
303 * Returns true if ok. False otherwise.
304 * ipsq may not yet be allocated (loopback case).
305 */
306 static boolean_t
307 ill_allocate_mibs(ill_t *ill)
308 {
309 /* Already allocated? */
310 if (ill->ill_ip_mib != NULL) {
311 if (ill->ill_isv6)
312 ASSERT(ill->ill_icmp6_mib != NULL);
313 return (B_TRUE);
314 }

316 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
317 KM_NOSLEEP);
318 if (ill->ill_ip_mib == NULL) {
319 return (B_FALSE);
320 }

322 /* Setup static information */
323 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
324 sizeof (mib2_ipIfStatsEntry_t));
325 if (ill->ill_isv6) {

new/usr/src/uts/common/inet/ip/ip_if.c 6

326 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
327 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
328 sizeof (mib2_ipv6AddrEntry_t));
329 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
330 sizeof (mib2_ipv6RouteEntry_t));
331 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
332 sizeof (mib2_ipv6NetToMediaEntry_t));
333 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
334 sizeof (ipv6_member_t));
335 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
336 sizeof (ipv6_grpsrc_t));
337 } else {
338 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
339 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
340 sizeof (mib2_ipAddrEntry_t));
341 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
342 sizeof (mib2_ipRouteEntry_t));
343 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
344 sizeof (mib2_ipNetToMediaEntry_t));
345 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
346 sizeof (ip_member_t));
347 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
348 sizeof (ip_grpsrc_t));

350 /*
351 * For a v4 ill, we are done at this point, because per ill
352 * icmp mibs are only used for v6.
353 */
354 return (B_TRUE);
355 }

357 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
358 KM_NOSLEEP);
359 if (ill->ill_icmp6_mib == NULL) {
360 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
361 ill->ill_ip_mib = NULL;
362 return (B_FALSE);
363 }
364 /* static icmp info */
365 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
366 sizeof (mib2_ipv6IfIcmpEntry_t);
367 /*
368 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
369 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
370 * -> ill_phyint_reinit
371 */
372 return (B_TRUE);
373 }

375 /*
376 * Completely vaporize a lower level tap and all associated interfaces.
377 * ill_delete is called only out of ip_close when the device control
378 * stream is being closed.
379 */
380 void
381 ill_delete(ill_t *ill)
382 {
383 ipif_t *ipif;
384 ill_t *prev_ill;
385 ip_stack_t *ipst = ill->ill_ipst;

387 /*
388 * ill_delete may be forcibly entering the ipsq. The previous
389 * ioctl may not have completed and may need to be aborted.
390 * ipsq_flush takes care of it. If we don’t need to enter the
391 * the ipsq forcibly, the 2nd invocation of ipsq_flush in

new/usr/src/uts/common/inet/ip/ip_if.c 7

392 * ill_delete_tail is sufficient.
393 */
394 ipsq_flush(ill);

396 /*
397 * Nuke all interfaces. ipif_free will take down the interface,
398 * remove it from the list, and free the data structure.
399 * Walk down the ipif list and remove the logical interfaces
400 * first before removing the main ipif. We can’t unplumb
401 * zeroth interface first in the case of IPv6 as update_conn_ill
402 * -> ip_ll_multireq de-references ill_ipif for checking
403 * POINTOPOINT.
404 *
405 * If ill_ipif was not properly initialized (i.e low on memory),
406 * then no interfaces to clean up. In this case just clean up the
407 * ill.
408 */
409 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
410 ipif_free(ipif);

412 /*
413 * clean out all the nce_t entries that depend on this
414 * ill for the ill_phys_addr.
415 */
416 nce_flush(ill, B_TRUE);

418 /* Clean up msgs on pending upcalls for mrouted */
419 reset_mrt_ill(ill);

421 update_conn_ill(ill, ipst);

423 /*
424 * Remove multicast references added as a result of calls to
425 * ip_join_allmulti().
426 */
427 ip_purge_allmulti(ill);

429 /*
430 * If the ill being deleted is under IPMP, boot it out of the illgrp.
431 */
432 if (IS_UNDER_IPMP(ill))
433 ipmp_ill_leave_illgrp(ill);

435 /*
436 * ill_down will arrange to blow off any IRE’s dependent on this
437 * ILL, and shut down fragmentation reassembly.
438 */
439 ill_down(ill);

441 /* Let SCTP know, so that it can remove this from its list. */
442 sctp_update_ill(ill, SCTP_ILL_REMOVE);

444 /*
445 * Walk all CONNs that can have a reference on an ire or nce for this
446 * ill (we actually walk all that now have stale references).
447 */
448 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);

450 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
451 if (ill->ill_isv6)
452 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);

454 /*
455 * If an address on this ILL is being used as a source address then
456 * clear out the pointers in other ILLs that point to this ILL.
457 */

new/usr/src/uts/common/inet/ip/ip_if.c 8

458 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
459 if (ill->ill_usesrc_grp_next != NULL) {
460 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
461 ill_disband_usesrc_group(ill);
462 } else { /* consumer of the usesrc ILL */
463 prev_ill = ill_prev_usesrc(ill);
464 prev_ill->ill_usesrc_grp_next =
465 ill->ill_usesrc_grp_next;
466 }
467 }
468 rw_exit(&ipst->ips_ill_g_usesrc_lock);
469 }

471 static void
472 ipif_non_duplicate(ipif_t *ipif)
473 {
474 ill_t *ill = ipif->ipif_ill;
475 mutex_enter(&ill->ill_lock);
476 if (ipif->ipif_flags & IPIF_DUPLICATE) {
477 ipif->ipif_flags &= ~IPIF_DUPLICATE;
478 ASSERT(ill->ill_ipif_dup_count > 0);
479 ill->ill_ipif_dup_count--;
480 }
481 mutex_exit(&ill->ill_lock);
482 }

484 /*
485 * ill_delete_tail is called from ip_modclose after all references
486 * to the closing ill are gone. The wait is done in ip_modclose
487 */
488 void
489 ill_delete_tail(ill_t *ill)
490 {
491 mblk_t **mpp;
492 ipif_t *ipif;
493 ip_stack_t *ipst = ill->ill_ipst;

495 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
496 ipif_non_duplicate(ipif);
497 (void) ipif_down_tail(ipif);
498 }

500 ASSERT(ill->ill_ipif_dup_count == 0);

502 /*
503 * If polling capability is enabled (which signifies direct
504 * upcall into IP and driver has ill saved as a handle),
505 * we need to make sure that unbind has completed before we
506 * let the ill disappear and driver no longer has any reference
507 * to this ill.
508 */
509 mutex_enter(&ill->ill_lock);
510 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
511 cv_wait(&ill->ill_cv, &ill->ill_lock);
512 mutex_exit(&ill->ill_lock);
513 ASSERT(!(ill->ill_capabilities &
514 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));

516 if (ill->ill_net_type != IRE_LOOPBACK)
517 qprocsoff(ill->ill_rq);

519 /*
520 * We do an ipsq_flush once again now. New messages could have
521 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
522 * could also have landed up if an ioctl thread had looked up
523 * the ill before we set the ILL_CONDEMNED flag, but not yet

new/usr/src/uts/common/inet/ip/ip_if.c 9

524 * enqueued the ioctl when we did the ipsq_flush last time.
525 */
526 ipsq_flush(ill);

528 /*
529 * Free capabilities.
530 */
531 if (ill->ill_hcksum_capab != NULL) {
532 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
533 ill->ill_hcksum_capab = NULL;
534 }

536 if (ill->ill_zerocopy_capab != NULL) {
537 kmem_free(ill->ill_zerocopy_capab,
538 sizeof (ill_zerocopy_capab_t));
539 ill->ill_zerocopy_capab = NULL;
540 }

542 if (ill->ill_lso_capab != NULL) {
543 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
544 ill->ill_lso_capab = NULL;
545 }

547 if (ill->ill_dld_capab != NULL) {
548 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
549 ill->ill_dld_capab = NULL;
550 }

552 /* Clean up ill_allowed_ips* related state */
553 if (ill->ill_allowed_ips != NULL) {
554 ASSERT(ill->ill_allowed_ips_cnt > 0);
555 kmem_free(ill->ill_allowed_ips,
556 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
557 ill->ill_allowed_ips = NULL;
558 ill->ill_allowed_ips_cnt = 0;
559 }

561 while (ill->ill_ipif != NULL)
562 ipif_free_tail(ill->ill_ipif);

564 /*
565 * We have removed all references to ilm from conn and the ones joined
566 * within the kernel.
567 *
568 * We don’t walk conns, mrts and ires because
569 *
570 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
571 * 2) ill_down ->ill_downi walks all the ires and cleans up
572 * ill references.
573 */

575 /*
576 * If this ill is an IPMP meta-interface, blow away the illgrp. This
577 * is safe to do because the illgrp has already been unlinked from the
578 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
579 */
580 if (IS_IPMP(ill)) {
581 ipmp_illgrp_destroy(ill->ill_grp);
582 ill->ill_grp = NULL;
583 }

585 if (ill->ill_mphysaddr_list != NULL) {
586 multiphysaddr_t *mpa, *tmpa;

588 mpa = ill->ill_mphysaddr_list;
589 ill->ill_mphysaddr_list = NULL;

new/usr/src/uts/common/inet/ip/ip_if.c 10

590 while (mpa) {
591 tmpa = mpa->mpa_next;
592 kmem_free(mpa, sizeof (*mpa));
593 mpa = tmpa;
594 }
595 }
596 /*
597 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
598 * could free the phyint. No more reference to the phyint after this
599 * point.
600 */
601 (void) ill_glist_delete(ill);

603 if (ill->ill_frag_ptr != NULL) {
604 uint_t count;

606 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
607 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
608 }
609 mi_free(ill->ill_frag_ptr);
610 ill->ill_frag_ptr = NULL;
611 ill->ill_frag_hash_tbl = NULL;
612 }

614 freemsg(ill->ill_nd_lla_mp);
615 /* Free all retained control messages. */
616 mpp = &ill->ill_first_mp_to_free;
617 do {
618 while (mpp[0]) {
619 mblk_t *mp;
620 mblk_t *mp1;

622 mp = mpp[0];
623 mpp[0] = mp->b_next;
624 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
625 mp1->b_next = NULL;
626 mp1->b_prev = NULL;
627 }
628 freemsg(mp);
629 }
630 } while (mpp++ != &ill->ill_last_mp_to_free);

632 ill_free_mib(ill);

634 #ifdef DEBUG
635 ill_trace_cleanup(ill);
636 #endif

638 /* The default multicast interface might have changed */
639 ire_increment_multicast_generation(ipst, ill->ill_isv6);

641 /* Drop refcnt here */
642 netstack_rele(ill->ill_ipst->ips_netstack);
643 ill->ill_ipst = NULL;
644 }

646 static void
647 ill_free_mib(ill_t *ill)
648 {
649 ip_stack_t *ipst = ill->ill_ipst;

651 /*
652 * MIB statistics must not be lost, so when an interface
653 * goes away the counter values will be added to the global
654 * MIBs.
655 */

new/usr/src/uts/common/inet/ip/ip_if.c 11

656 if (ill->ill_ip_mib != NULL) {
657 if (ill->ill_isv6) {
658 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
659 ill->ill_ip_mib);
660 } else {
661 ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
662 ill->ill_ip_mib);
663 }

665 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
666 ill->ill_ip_mib = NULL;
667 }
668 if (ill->ill_icmp6_mib != NULL) {
669 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
670 ill->ill_icmp6_mib);
671 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
672 ill->ill_icmp6_mib = NULL;
673 }
674 }

676 /*
677 * Concatenate together a physical address and a sap.
678 *
679 * Sap_lengths are interpreted as follows:
680 * sap_length == 0 ==> no sap
681 * sap_length > 0 ==> sap is at the head of the dlpi address
682 * sap_length < 0 ==> sap is at the tail of the dlpi address
683 */
684 static void
685 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
686 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
687 {
688 uint16_t sap_addr = (uint16_t)sap_src;

690 if (sap_length == 0) {
691 if (phys_src == NULL)
692 bzero(dst, phys_length);
693 else
694 bcopy(phys_src, dst, phys_length);
695 } else if (sap_length < 0) {
696 if (phys_src == NULL)
697 bzero(dst, phys_length);
698 else
699 bcopy(phys_src, dst, phys_length);
700 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
701 } else {
702 bcopy(&sap_addr, dst, sizeof (sap_addr));
703 if (phys_src == NULL)
704 bzero((char *)dst + sap_length, phys_length);
705 else
706 bcopy(phys_src, (char *)dst + sap_length, phys_length);
707 }
708 }

710 /*
711 * Generate a dl_unitdata_req mblk for the device and address given.
712 * addr_length is the length of the physical portion of the address.
713 * If addr is NULL include an all zero address of the specified length.
714 * TRUE? In any case, addr_length is taken to be the entire length of the
715 * dlpi address, including the absolute value of sap_length.
716 */
717 mblk_t *
718 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
719 t_scalar_t sap_length)
720 {
721 dl_unitdata_req_t *dlur;

new/usr/src/uts/common/inet/ip/ip_if.c 12

722 mblk_t *mp;
723 t_scalar_t abs_sap_length; /* absolute value */

725 abs_sap_length = ABS(sap_length);
726 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
727 DL_UNITDATA_REQ);
728 if (mp == NULL)
729 return (NULL);
730 dlur = (dl_unitdata_req_t *)mp->b_rptr;
731 /* HACK: accomodate incompatible DLPI drivers */
732 if (addr_length == 8)
733 addr_length = 6;
734 dlur->dl_dest_addr_length = addr_length + abs_sap_length;
735 dlur->dl_dest_addr_offset = sizeof (*dlur);
736 dlur->dl_priority.dl_min = 0;
737 dlur->dl_priority.dl_max = 0;
738 ill_dlur_copy_address(addr, addr_length, sap, sap_length,
739 (uchar_t *)&dlur[1]);
740 return (mp);
741 }

743 /*
744 * Add the pending mp to the list. There can be only 1 pending mp
745 * in the list. Any exclusive ioctl that needs to wait for a response
746 * from another module or driver needs to use this function to set
747 * the ipx_pending_mp to the ioctl mblk and wait for the response from
748 * the other module/driver. This is also used while waiting for the
749 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
750 */
751 boolean_t
752 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
753 int waitfor)
754 {
755 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;

757 ASSERT(IAM_WRITER_IPIF(ipif));
758 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
759 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
760 ASSERT(ipx->ipx_pending_mp == NULL);
761 /*
762 * The caller may be using a different ipif than the one passed into
763 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
764 * ill needs to wait for the V6 ill to quiesce). So we can’t ASSERT
765 * that ‘ipx_current_ipif == ipif’.
766 */
767 ASSERT(ipx->ipx_current_ipif != NULL);

769 /*
770 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
771 * driver.
772 */
773 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
774 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
775 (DB_TYPE(add_mp) == M_PCPROTO));

777 if (connp != NULL) {
778 ASSERT(MUTEX_HELD(&connp->conn_lock));
779 /*
780 * Return error if the conn has started closing. The conn
781 * could have finished cleaning up the pending mp list,
782 * If so we should not add another mp to the list negating
783 * the cleanup.
784 */
785 if (connp->conn_state_flags & CONN_CLOSING)
786 return (B_FALSE);
787 }

new/usr/src/uts/common/inet/ip/ip_if.c 13

788 mutex_enter(&ipx->ipx_lock);
789 ipx->ipx_pending_ipif = ipif;
790 /*
791 * Note down the queue in b_queue. This will be returned by
792 * ipsq_pending_mp_get. Caller will then use these values to restart
793 * the processing
794 */
795 add_mp->b_next = NULL;
796 add_mp->b_queue = q;
797 ipx->ipx_pending_mp = add_mp;
798 ipx->ipx_waitfor = waitfor;
799 mutex_exit(&ipx->ipx_lock);

801 if (connp != NULL)
802 connp->conn_oper_pending_ill = ipif->ipif_ill;

804 return (B_TRUE);
805 }

807 /*
808 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
809 * queued in the list.
810 */
811 mblk_t *
812 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
813 {
814 mblk_t *curr = NULL;
815 ipxop_t *ipx = ipsq->ipsq_xop;

817 *connpp = NULL;
818 mutex_enter(&ipx->ipx_lock);
819 if (ipx->ipx_pending_mp == NULL) {
820 mutex_exit(&ipx->ipx_lock);
821 return (NULL);
822 }

824 /* There can be only 1 such excl message */
825 curr = ipx->ipx_pending_mp;
826 ASSERT(curr->b_next == NULL);
827 ipx->ipx_pending_ipif = NULL;
828 ipx->ipx_pending_mp = NULL;
829 ipx->ipx_waitfor = 0;
830 mutex_exit(&ipx->ipx_lock);

832 if (CONN_Q(curr->b_queue)) {
833 /*
834 * This mp did a refhold on the conn, at the start of the ioctl.
835 * So we can safely return a pointer to the conn to the caller.
836 */
837 *connpp = Q_TO_CONN(curr->b_queue);
838 } else {
839 *connpp = NULL;
840 }
841 curr->b_next = NULL;
842 curr->b_prev = NULL;
843 return (curr);
844 }

846 /*
847 * Cleanup the ioctl mp queued in ipx_pending_mp
848 * - Called in the ill_delete path
849 * - Called in the M_ERROR or M_HANGUP path on the ill.
850 * - Called in the conn close path.
851 *
852 * Returns success on finding the pending mblk associated with the ioctl or
853 * exclusive operation in progress, failure otherwise.

new/usr/src/uts/common/inet/ip/ip_if.c 14

854 */
855 boolean_t
856 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
857 {
858 mblk_t *mp;
859 ipxop_t *ipx;
860 queue_t *q;
861 ipif_t *ipif;
862 int cmd;

864 ASSERT(IAM_WRITER_ILL(ill));
865 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;

867 mutex_enter(&ipx->ipx_lock);
868 mp = ipx->ipx_pending_mp;
869 if (connp != NULL) {
870 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
871 /*
872 * Nothing to clean since the conn that is closing
873 * does not have a matching pending mblk in
874 * ipx_pending_mp.
875 */
876 mutex_exit(&ipx->ipx_lock);
877 return (B_FALSE);
878 }
879 } else {
880 /*
881 * A non-zero ill_error signifies we are called in the
882 * M_ERROR or M_HANGUP path and we need to unconditionally
883 * abort any current ioctl and do the corresponding cleanup.
884 * A zero ill_error means we are in the ill_delete path and
885 * we do the cleanup only if there is a pending mp.
886 */
887 if (mp == NULL && ill->ill_error == 0) {
888 mutex_exit(&ipx->ipx_lock);
889 return (B_FALSE);
890 }
891 }

893 /* Now remove from the ipx_pending_mp */
894 ipx->ipx_pending_mp = NULL;
895 ipif = ipx->ipx_pending_ipif;
896 ipx->ipx_pending_ipif = NULL;
897 ipx->ipx_waitfor = 0;
898 ipx->ipx_current_ipif = NULL;
899 cmd = ipx->ipx_current_ioctl;
900 ipx->ipx_current_ioctl = 0;
901 ipx->ipx_current_done = B_TRUE;
902 mutex_exit(&ipx->ipx_lock);

904 if (mp == NULL)
905 return (B_FALSE);

907 q = mp->b_queue;
908 mp->b_next = NULL;
909 mp->b_prev = NULL;
910 mp->b_queue = NULL;

912 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
913 DTRACE_PROBE4(ipif__ioctl,
914 char *, "ipsq_pending_mp_cleanup",
915 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
916 ipif_t *, ipif);
917 if (connp == NULL) {
918 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
919 } else {

new/usr/src/uts/common/inet/ip/ip_if.c 15

920 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
921 mutex_enter(&ipif->ipif_ill->ill_lock);
922 ipif->ipif_state_flags &= ~IPIF_CHANGING;
923 mutex_exit(&ipif->ipif_ill->ill_lock);
924 }
925 } else {
926 inet_freemsg(mp);
927 }
928 return (B_TRUE);
929 }

931 /*
932 * Called in the conn close path and ill delete path
933 */
934 static void
935 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
936 {
937 ipsq_t *ipsq;
938 mblk_t *prev;
939 mblk_t *curr;
940 mblk_t *next;
941 queue_t *wq, *rq = NULL;
942 mblk_t *tmp_list = NULL;

944 ASSERT(IAM_WRITER_ILL(ill));
945 if (connp != NULL)
946 wq = CONNP_TO_WQ(connp);
947 else
948 wq = ill->ill_wq;

950 /*
951 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
952 * against this here.
953 */
954 if (wq != NULL)
955 rq = RD(wq);

957 ipsq = ill->ill_phyint->phyint_ipsq;
958 /*
959 * Cleanup the ioctl mp’s queued in ipsq_xopq_pending_mp if any.
960 * In the case of ioctl from a conn, there can be only 1 mp
961 * queued on the ipsq. If an ill is being unplumbed flush all
962 * the messages.
963 */
964 mutex_enter(&ipsq->ipsq_lock);
965 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
966 curr = next) {
967 next = curr->b_next;
968 if (connp == NULL ||
969 (curr->b_queue == wq || curr->b_queue == rq)) {
970 /* Unlink the mblk from the pending mp list */
971 if (prev != NULL) {
972 prev->b_next = curr->b_next;
973 } else {
974 ASSERT(ipsq->ipsq_xopq_mphead == curr);
975 ipsq->ipsq_xopq_mphead = curr->b_next;
976 }
977 if (ipsq->ipsq_xopq_mptail == curr)
978 ipsq->ipsq_xopq_mptail = prev;
979 /*
980 * Create a temporary list and release the ipsq lock
981 * New elements are added to the head of the tmp_list
982 */
983 curr->b_next = tmp_list;
984 tmp_list = curr;
985 } else {

new/usr/src/uts/common/inet/ip/ip_if.c 16

986 prev = curr;
987 }
988 }
989 mutex_exit(&ipsq->ipsq_lock);

991 while (tmp_list != NULL) {
992 curr = tmp_list;
993 tmp_list = curr->b_next;
994 curr->b_next = NULL;
995 curr->b_prev = NULL;
996 wq = curr->b_queue;
997 curr->b_queue = NULL;
998 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
999 DTRACE_PROBE4(ipif__ioctl,

1000 char *, "ipsq_xopq_mp_cleanup",
1001 int, 0, ill_t *, NULL, ipif_t *, NULL);
1002 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
1003 CONN_CLOSE : NO_COPYOUT, NULL);
1004 } else {
1005 /*
1006 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1007 * this can’t be just inet_freemsg. we have to
1008 * restart it otherwise the thread will be stuck.
1009 */
1010 inet_freemsg(curr);
1011 }
1012 }
1013 }

1015 /*
1016 * This conn has started closing. Cleanup any pending ioctl from this conn.
1017 * STREAMS ensures that there can be at most 1 active ioctl on a stream.
1018 */
1019 void
1020 conn_ioctl_cleanup(conn_t *connp)
1021 {
1022 ipsq_t *ipsq;
1023 ill_t *ill;
1024 boolean_t refheld;

1026 /*
1027 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1028 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1029 * started the mp could be present in ipx_pending_mp. Note that if
1030 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1031 * not yet queued anywhere. In this case, the conn close code will wait
1032 * until the conn_ref is dropped. If the stream was a tcp stream, then
1033 * tcp_close will wait first until all ioctls have completed for this
1034 * conn.
1035 */
1036 mutex_enter(&connp->conn_lock);
1037 ill = connp->conn_oper_pending_ill;
1038 if (ill == NULL) {
1039 mutex_exit(&connp->conn_lock);
1040 return;
1041 }

1043 /*
1044 * We may not be able to refhold the ill if the ill/ipif
1045 * is changing. But we need to make sure that the ill will
1046 * not vanish. So we just bump up the ill_waiter count.
1047 */
1048 refheld = ill_waiter_inc(ill);
1049 mutex_exit(&connp->conn_lock);
1050 if (refheld) {
1051 if (ipsq_enter(ill, B_TRUE, NEW_OP)) {

new/usr/src/uts/common/inet/ip/ip_if.c 17

1052 ill_waiter_dcr(ill);
1053 /*
1054 * Check whether this ioctl has started and is
1055 * pending. If it is not found there then check
1056 * whether this ioctl has not even started and is in
1057 * the ipsq_xopq list.
1058 */
1059 if (!ipsq_pending_mp_cleanup(ill, connp))
1060 ipsq_xopq_mp_cleanup(ill, connp);
1061 ipsq = ill->ill_phyint->phyint_ipsq;
1062 ipsq_exit(ipsq);
1063 return;
1064 }
1065 }

1067 /*
1068 * The ill is also closing and we could not bump up the
1069 * ill_waiter_count or we could not enter the ipsq. Leave
1070 * the cleanup to ill_delete
1071 */
1072 mutex_enter(&connp->conn_lock);
1073 while (connp->conn_oper_pending_ill != NULL)
1074 cv_wait(&connp->conn_refcv, &connp->conn_lock);
1075 mutex_exit(&connp->conn_lock);
1076 if (refheld)
1077 ill_waiter_dcr(ill);
1078 }

1080 /*
1081 * ipcl_walk function for cleaning up conn_*_ill fields.
1082 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1083 * conn_bound_if in place. We prefer dropping
1084 * packets instead of sending them out the wrong interface, or accepting
1085 * packets from the wrong ifindex.
1086 */
1087 static void
1088 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1089 {
1090 ill_t *ill = (ill_t *)arg;

1092 mutex_enter(&connp->conn_lock);
1093 if (connp->conn_dhcpinit_ill == ill) {
1094 connp->conn_dhcpinit_ill = NULL;
1095 ASSERT(ill->ill_dhcpinit != 0);
1096 atomic_dec_32(&ill->ill_dhcpinit);
1097 ill_set_inputfn(ill);
1098 }
1099 mutex_exit(&connp->conn_lock);
1100 }

1102 static int
1103 ill_down_ipifs_tail(ill_t *ill)
1104 {
1105 ipif_t *ipif;
1106 int err;

1108 ASSERT(IAM_WRITER_ILL(ill));
1109 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1110 ipif_non_duplicate(ipif);
1111 /*
1112 * ipif_down_tail will call arp_ll_down on the last ipif
1113 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1114 */
1115 if ((err = ipif_down_tail(ipif)) != 0)
1116 return (err);
1117 }

new/usr/src/uts/common/inet/ip/ip_if.c 18

1118 return (0);
1119 }

1121 /* ARGSUSED */
1122 void
1123 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1124 {
1125 ASSERT(IAM_WRITER_IPSQ(ipsq));
1126 (void) ill_down_ipifs_tail(q->q_ptr);
1127 freemsg(mp);
1128 ipsq_current_finish(ipsq);
1129 }

1131 /*
1132 * ill_down_start is called when we want to down this ill and bring it up again
1133 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1134 * all interfaces, but don’t tear down any plumbing.
1135 */
1136 boolean_t
1137 ill_down_start(queue_t *q, mblk_t *mp)
1138 {
1139 ill_t *ill = q->q_ptr;
1140 ipif_t *ipif;

1142 ASSERT(IAM_WRITER_ILL(ill));
1143 /*
1144 * It is possible that some ioctl is already in progress while we
1145 * received the M_ERROR / M_HANGUP in which case, we need to abort
1146 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1147 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1148 * the in progress ioctl from ever completing.
1149 *
1150 * The thread that started the ioctl (if any) must have returned,
1151 * since we are now executing as writer. After the 2 calls below,
1152 * the state of the ipsq and the ill would reflect no trace of any
1153 * pending operation. Subsequently if there is any response to the
1154 * original ioctl from the driver, it would be discarded as an
1155 * unsolicited message from the driver.
1156 */
1157 (void) ipsq_pending_mp_cleanup(ill, NULL);
1158 ill_dlpi_clear_deferred(ill);

1160 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1161 (void) ipif_down(ipif, NULL, NULL);

1163 ill_down(ill);

1165 /*
1166 * Walk all CONNs that can have a reference on an ire or nce for this
1167 * ill (we actually walk all that now have stale references).
1168 */
1169 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);

1171 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
1172 if (ill->ill_isv6)
1173 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);

1175 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);

1177 /*
1178 * Atomically test and add the pending mp if references are active.
1179 */
1180 mutex_enter(&ill->ill_lock);
1181 if (!ill_is_quiescent(ill)) {
1182 /* call cannot fail since ‘conn_t *’ argument is NULL */
1183 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,

new/usr/src/uts/common/inet/ip/ip_if.c 19

1184 mp, ILL_DOWN);
1185 mutex_exit(&ill->ill_lock);
1186 return (B_FALSE);
1187 }
1188 mutex_exit(&ill->ill_lock);
1189 return (B_TRUE);
1190 }

1192 static void
1193 ill_down(ill_t *ill)
1194 {
1195 mblk_t *mp;
1196 ip_stack_t *ipst = ill->ill_ipst;

1198 /*
1199 * Blow off any IREs dependent on this ILL.
1200 * The caller needs to handle conn_ixa_cleanup
1201 */
1202 ill_delete_ires(ill);

1204 ire_walk_ill(0, 0, ill_downi, ill, ill);

1206 /* Remove any conn_*_ill depending on this ill */
1207 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);

1209 /*
1210 * Free state for additional IREs.
1211 */
1212 mutex_enter(&ill->ill_saved_ire_lock);
1213 mp = ill->ill_saved_ire_mp;
1214 ill->ill_saved_ire_mp = NULL;
1215 ill->ill_saved_ire_cnt = 0;
1216 mutex_exit(&ill->ill_saved_ire_lock);
1217 freemsg(mp);
1218 }

1220 /*
1221 * ire_walk routine used to delete every IRE that depends on
1222 * ’ill’. (Always called as writer, and may only be called from ire_walk.)
1223 *
1224 * Note: since the routes added by the kernel are deleted separately,
1225 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1226 *
1227 * We also remove references on ire_nce_cache entries that refer to the ill.
1228 */
1229 void
1230 ill_downi(ire_t *ire, char *ill_arg)
1231 {
1232 ill_t *ill = (ill_t *)ill_arg;
1233 nce_t *nce;

1235 mutex_enter(&ire->ire_lock);
1236 nce = ire->ire_nce_cache;
1237 if (nce != NULL && nce->nce_ill == ill)
1238 ire->ire_nce_cache = NULL;
1239 else
1240 nce = NULL;
1241 mutex_exit(&ire->ire_lock);
1242 if (nce != NULL)
1243 nce_refrele(nce);
1244 if (ire->ire_ill == ill) {
1245 /*
1246 * The existing interface binding for ire must be
1247 * deleted before trying to bind the route to another
1248 * interface. However, since we are using the contents of the
1249 * ire after ire_delete, the caller has to ensure that

new/usr/src/uts/common/inet/ip/ip_if.c 20

1250 * CONDEMNED (deleted) ire’s are not removed from the list
1251 * when ire_delete() returns. Currently ill_downi() is
1252 * only called as part of ire_walk*() routines, so that
1253 * the irb_refhold() done by ire_walk*() will ensure that
1254 * ire_delete() does not lead to ire_inactive().
1255 */
1256 ASSERT(ire->ire_bucket->irb_refcnt > 0);
1257 ire_delete(ire);
1258 if (ire->ire_unbound)
1259 ire_rebind(ire);
1260 }
1261 }

1263 /* Remove IRE_IF_CLONE on this ill */
1264 void
1265 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1266 {
1267 ill_t *ill = (ill_t *)ill_arg;

1269 ASSERT(ire->ire_type & IRE_IF_CLONE);
1270 if (ire->ire_ill == ill)
1271 ire_delete(ire);
1272 }

1274 /* Consume an M_IOCACK of the fastpath probe. */
1275 void
1276 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1277 {
1278 mblk_t *mp1 = mp;

1280 /*
1281 * If this was the first attempt turn on the fastpath probing.
1282 */
1283 mutex_enter(&ill->ill_lock);
1284 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1285 ill->ill_dlpi_fastpath_state = IDS_OK;
1286 mutex_exit(&ill->ill_lock);

1288 /* Free the M_IOCACK mblk, hold on to the data */
1289 mp = mp->b_cont;
1290 freeb(mp1);
1291 if (mp == NULL)
1292 return;
1293 if (mp->b_cont != NULL)
1294 nce_fastpath_update(ill, mp);
1295 else
1296 ip0dbg(("ill_fastpath_ack: no b_cont\n"));
1297 freemsg(mp);
1298 }

1300 /*
1301 * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1302 * The data portion of the request is a dl_unitdata_req_t template for
1303 * what we would send downstream in the absence of a fastpath confirmation.
1304 */
1305 int
1306 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1307 {
1308 struct iocblk *ioc;
1309 mblk_t *mp;

1311 if (dlur_mp == NULL)
1312 return (EINVAL);

1314 mutex_enter(&ill->ill_lock);
1315 switch (ill->ill_dlpi_fastpath_state) {

new/usr/src/uts/common/inet/ip/ip_if.c 21

1316 case IDS_FAILED:
1317 /*
1318 * Driver NAKed the first fastpath ioctl - assume it doesn’t
1319 * support it.
1320 */
1321 mutex_exit(&ill->ill_lock);
1322 return (ENOTSUP);
1323 case IDS_UNKNOWN:
1324 /* This is the first probe */
1325 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1326 break;
1327 default:
1328 break;
1329 }
1330 mutex_exit(&ill->ill_lock);

1332 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1333 return (EAGAIN);

1335 mp->b_cont = copyb(dlur_mp);
1336 if (mp->b_cont == NULL) {
1337 freeb(mp);
1338 return (EAGAIN);
1339 }

1341 ioc = (struct iocblk *)mp->b_rptr;
1342 ioc->ioc_count = msgdsize(mp->b_cont);

1344 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1345 char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1346 putnext(ill->ill_wq, mp);
1347 return (0);
1348 }

1350 void
1351 ill_capability_probe(ill_t *ill)
1352 {
1353 mblk_t *mp;

1355 ASSERT(IAM_WRITER_ILL(ill));

1357 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1358 ill->ill_dlpi_capab_state != IDCS_FAILED)
1359 return;

1361 /*
1362 * We are starting a new cycle of capability negotiation.
1363 * Free up the capab reset messages of any previous incarnation.
1364 * We will do a fresh allocation when we get the response to our probe
1365 */
1366 if (ill->ill_capab_reset_mp != NULL) {
1367 freemsg(ill->ill_capab_reset_mp);
1368 ill->ill_capab_reset_mp = NULL;
1369 }

1371 ip1dbg(("ill_capability_probe: starting capability negotiation\n"));

1373 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1374 if (mp == NULL)
1375 return;

1377 ill_capability_send(ill, mp);
1378 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1379 }

1381 void

new/usr/src/uts/common/inet/ip/ip_if.c 22

1382 ill_capability_reset(ill_t *ill, boolean_t reneg)
1383 {
1384 ASSERT(IAM_WRITER_ILL(ill));

1386 if (ill->ill_dlpi_capab_state != IDCS_OK)
1387 return;

1389 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;

1391 ill_capability_send(ill, ill->ill_capab_reset_mp);
1392 ill->ill_capab_reset_mp = NULL;
1393 /*
1394 * We turn off all capabilities except those pertaining to
1395 * direct function call capabilities viz. ILL_CAPAB_DLD*
1396 * which will be turned off by the corresponding reset functions.
1397 */
1398 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY);
1399 }

1401 static void
1402 ill_capability_reset_alloc(ill_t *ill)
1403 {
1404 mblk_t *mp;
1405 size_t size = 0;
1406 int err;
1407 dl_capability_req_t *capb;

1409 ASSERT(IAM_WRITER_ILL(ill));
1410 ASSERT(ill->ill_capab_reset_mp == NULL);

1412 if (ILL_HCKSUM_CAPABLE(ill)) {
1413 size += sizeof (dl_capability_sub_t) +
1414 sizeof (dl_capab_hcksum_t);
1415 }

1417 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1418 size += sizeof (dl_capability_sub_t) +
1419 sizeof (dl_capab_zerocopy_t);
1420 }

1422 if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1423 size += sizeof (dl_capability_sub_t) +
1424 sizeof (dl_capab_dld_t);
1425 }

1427 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1428 STR_NOSIG, &err);

1430 mp->b_datap->db_type = M_PROTO;
1431 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));

1433 capb = (dl_capability_req_t *)mp->b_rptr;
1434 capb->dl_primitive = DL_CAPABILITY_REQ;
1435 capb->dl_sub_offset = sizeof (dl_capability_req_t);
1436 capb->dl_sub_length = size;

1438 mp->b_wptr += sizeof (dl_capability_req_t);

1440 /*
1441 * Each handler fills in the corresponding dl_capability_sub_t
1442 * inside the mblk,
1443 */
1444 ill_capability_hcksum_reset_fill(ill, mp);
1445 ill_capability_zerocopy_reset_fill(ill, mp);
1446 ill_capability_dld_reset_fill(ill, mp);

new/usr/src/uts/common/inet/ip/ip_if.c 23

1448 ill->ill_capab_reset_mp = mp;
1449 }

1451 static void
1452 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1453 {
1454 dl_capab_id_t *id_ic;
1455 uint_t sub_dl_cap = outers->dl_cap;
1456 dl_capability_sub_t *inners;
1457 uint8_t *capend;

1459 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);

1461 /*
1462 * Note: range checks here are not absolutely sufficient to
1463 * make us robust against malformed messages sent by drivers;
1464 * this is in keeping with the rest of IP’s dlpi handling.
1465 * (Remember, it’s coming from something else in the kernel
1466 * address space)
1467 */

1469 capend = (uint8_t *)(outers + 1) + outers->dl_length;
1470 if (capend > mp->b_wptr) {
1471 cmn_err(CE_WARN, "ill_capability_id_ack: "
1472 "malformed sub-capability too long for mblk");
1473 return;
1474 }

1476 id_ic = (dl_capab_id_t *)(outers + 1);

1478 if (outers->dl_length < sizeof (*id_ic) ||
1479 (inners = &id_ic->id_subcap,
1480 inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1481 cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1482 "encapsulated capab type %d too long for mblk",
1483 inners->dl_cap);
1484 return;
1485 }

1487 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1488 ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1489 "isn’t as expected; pass-thru module(s) detected, "
1490 "discarding capability\n", inners->dl_cap));
1491 return;
1492 }

1494 /* Process the encapsulated sub-capability */
1495 ill_capability_dispatch(ill, mp, inners);
1496 }

1498 static void
1499 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1500 {
1501 dl_capability_sub_t *dl_subcap;

1503 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1504 return;

1506 /*
1507 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1508 * initialized below since it is not used by DLD.
1509 */
1510 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1511 dl_subcap->dl_cap = DL_CAPAB_DLD;
1512 dl_subcap->dl_length = sizeof (dl_capab_dld_t);

new/usr/src/uts/common/inet/ip/ip_if.c 24

1514 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1515 }

1517 static void
1518 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1519 {
1520 /*
1521 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1522 * is only to get the VRRP capability.
1523 *
1524 * Note that we cannot check ill_ipif_up_count here since
1525 * ill_ipif_up_count is only incremented when the resolver is setup.
1526 * That is done asynchronously, and can race with this function.
1527 */
1528 if (!ill->ill_dl_up) {
1529 if (subp->dl_cap == DL_CAPAB_VRRP)
1530 ill_capability_vrrp_ack(ill, mp, subp);
1531 return;
1532 }

1534 switch (subp->dl_cap) {
1535 case DL_CAPAB_HCKSUM:
1536 ill_capability_hcksum_ack(ill, mp, subp);
1537 break;
1538 case DL_CAPAB_ZEROCOPY:
1539 ill_capability_zerocopy_ack(ill, mp, subp);
1540 break;
1541 case DL_CAPAB_DLD:
1542 ill_capability_dld_ack(ill, mp, subp);
1543 break;
1544 case DL_CAPAB_VRRP:
1545 break;
1546 default:
1547 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1548 subp->dl_cap));
1549 }
1550 }

1552 /*
1553 * Process the vrrp capability received from a DLS Provider. isub must point
1554 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1555 */
1556 static void
1557 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1558 {
1559 dl_capab_vrrp_t *vrrp;
1560 uint_t sub_dl_cap = isub->dl_cap;
1561 uint8_t *capend;

1563 ASSERT(IAM_WRITER_ILL(ill));
1564 ASSERT(sub_dl_cap == DL_CAPAB_VRRP);

1566 /*
1567 * Note: range checks here are not absolutely sufficient to
1568 * make us robust against malformed messages sent by drivers;
1569 * this is in keeping with the rest of IP’s dlpi handling.
1570 * (Remember, it’s coming from something else in the kernel
1571 * address space)
1572 */
1573 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1574 if (capend > mp->b_wptr) {
1575 cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1576 "malformed sub-capability too long for mblk");
1577 return;
1578 }
1579 vrrp = (dl_capab_vrrp_t *)(isub + 1);

new/usr/src/uts/common/inet/ip/ip_if.c 25

1581 /*
1582 * Compare the IP address family and set ILLF_VRRP for the right ill.
1583 */
1584 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1585 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1586 ill->ill_flags |= ILLF_VRRP;
1587 }
1588 }

1590 /*
1591 * Process a hardware checksum offload capability negotiation ack received
1592 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1593 * of a DL_CAPABILITY_ACK message.
1594 */
1595 static void
1596 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1597 {
1598 dl_capability_req_t *ocap;
1599 dl_capab_hcksum_t *ihck, *ohck;
1600 ill_hcksum_capab_t **ill_hcksum;
1601 mblk_t *nmp = NULL;
1602 uint_t sub_dl_cap = isub->dl_cap;
1603 uint8_t *capend;

1605 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);

1607 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;

1609 /*
1610 * Note: range checks here are not absolutely sufficient to
1611 * make us robust against malformed messages sent by drivers;
1612 * this is in keeping with the rest of IP’s dlpi handling.
1613 * (Remember, it’s coming from something else in the kernel
1614 * address space)
1615 */
1616 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1617 if (capend > mp->b_wptr) {
1618 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1619 "malformed sub-capability too long for mblk");
1620 return;
1621 }

1623 /*
1624 * There are two types of acks we process here:
1625 * 1. acks in reply to a (first form) generic capability req
1626 * (no ENABLE flag set)
1627 * 2. acks in reply to a ENABLE capability req.
1628 * (ENABLE flag set)
1629 */
1630 ihck = (dl_capab_hcksum_t *)(isub + 1);

1632 if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1633 cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1634 "unsupported hardware checksum "
1635 "sub-capability (version %d, expected %d)",
1636 ihck->hcksum_version, HCKSUM_VERSION_1);
1637 return;
1638 }

1640 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1641 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1642 "checksum capability isn’t as expected; pass-thru "
1643 "module(s) detected, discarding capability\n"));
1644 return;
1645 }

new/usr/src/uts/common/inet/ip/ip_if.c 26

1647 #define CURR_HCKSUM_CAPAB \
1648 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \
1649 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)

1651 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1652 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1653 /* do ENABLE processing */
1654 if (*ill_hcksum == NULL) {
1655 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1656 KM_NOSLEEP);

1658 if (*ill_hcksum == NULL) {
1659 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1660 "could not enable hcksum version %d "
1661 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1662 ill->ill_name);
1663 return;
1664 }
1665 }

1667 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1668 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1669 ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1670 ip1dbg(("ill_capability_hcksum_ack: interface %s "
1671 "has enabled hardware checksumming\n ",
1672 ill->ill_name));
1673 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1674 /*
1675 * Enabling hardware checksum offload
1676 * Currently IP supports {TCP,UDP}/IPv4
1677 * partial and full cksum offload and
1678 * IPv4 header checksum offload.
1679 * Allocate new mblk which will
1680 * contain a new capability request
1681 * to enable hardware checksum offload.
1682 */
1683 uint_t size;
1684 uchar_t *rptr;

1686 size = sizeof (dl_capability_req_t) +
1687 sizeof (dl_capability_sub_t) + isub->dl_length;

1689 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1690 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1691 "could not enable hardware cksum for %s (ENOMEM)\n",
1692 ill->ill_name);
1693 return;
1694 }

1696 rptr = nmp->b_rptr;
1697 /* initialize dl_capability_req_t */
1698 ocap = (dl_capability_req_t *)nmp->b_rptr;
1699 ocap->dl_sub_offset =
1700 sizeof (dl_capability_req_t);
1701 ocap->dl_sub_length =
1702 sizeof (dl_capability_sub_t) +
1703 isub->dl_length;
1704 nmp->b_rptr += sizeof (dl_capability_req_t);

1706 /* initialize dl_capability_sub_t */
1707 bcopy(isub, nmp->b_rptr, sizeof (*isub));
1708 nmp->b_rptr += sizeof (*isub);

1710 /* initialize dl_capab_hcksum_t */
1711 ohck = (dl_capab_hcksum_t *)nmp->b_rptr;

new/usr/src/uts/common/inet/ip/ip_if.c 27

1712 bcopy(ihck, ohck, sizeof (*ihck));

1714 nmp->b_rptr = rptr;
1715 ASSERT(nmp->b_wptr == (nmp->b_rptr + size));

1717 /* Set ENABLE flag */
1718 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1719 ohck->hcksum_txflags |= HCKSUM_ENABLE;

1721 /*
1722 * nmp points to a DL_CAPABILITY_REQ message to enable
1723 * hardware checksum acceleration.
1724 */
1725 ill_capability_send(ill, nmp);
1726 } else {
1727 ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1728 "advertised %x hardware checksum capability flags\n",
1729 ill->ill_name, ihck->hcksum_txflags));
1730 }
1731 }

1733 static void
1734 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1735 {
1736 dl_capab_hcksum_t *hck_subcap;
1737 dl_capability_sub_t *dl_subcap;

1739 if (!ILL_HCKSUM_CAPABLE(ill))
1740 return;

1742 ASSERT(ill->ill_hcksum_capab != NULL);

1744 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1745 dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1746 dl_subcap->dl_length = sizeof (*hck_subcap);

1748 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1749 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1750 hck_subcap->hcksum_txflags = 0;

1752 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1753 }

1755 static void
1756 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1757 {
1758 mblk_t *nmp = NULL;
1759 dl_capability_req_t *oc;
1760 dl_capab_zerocopy_t *zc_ic, *zc_oc;
1761 ill_zerocopy_capab_t **ill_zerocopy_capab;
1762 uint_t sub_dl_cap = isub->dl_cap;
1763 uint8_t *capend;

1765 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);

1767 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;

1769 /*
1770 * Note: range checks here are not absolutely sufficient to
1771 * make us robust against malformed messages sent by drivers;
1772 * this is in keeping with the rest of IP’s dlpi handling.
1773 * (Remember, it’s coming from something else in the kernel
1774 * address space)
1775 */
1776 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1777 if (capend > mp->b_wptr) {

new/usr/src/uts/common/inet/ip/ip_if.c 28

1778 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1779 "malformed sub-capability too long for mblk");
1780 return;
1781 }

1783 zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1784 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1785 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1786 "unsupported ZEROCOPY sub-capability (version %d, "
1787 "expected %d)", zc_ic->zerocopy_version,
1788 ZEROCOPY_VERSION_1);
1789 return;
1790 }

1792 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1793 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1794 "capability isn’t as expected; pass-thru module(s) "
1795 "detected, discarding capability\n"));
1796 return;
1797 }

1799 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1800 if (*ill_zerocopy_capab == NULL) {
1801 *ill_zerocopy_capab =
1802 kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1803 KM_NOSLEEP);

1805 if (*ill_zerocopy_capab == NULL) {
1806 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1807 "could not enable Zero-copy version %d "
1808 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1809 ill->ill_name);
1810 return;
1811 }
1812 }

1814 ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1815 "supports Zero-copy version %d\n", ill->ill_name,
1816 ZEROCOPY_VERSION_1));

1818 (*ill_zerocopy_capab)->ill_zerocopy_version =
1819 zc_ic->zerocopy_version;
1820 (*ill_zerocopy_capab)->ill_zerocopy_flags =
1821 zc_ic->zerocopy_flags;

1823 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1824 } else {
1825 uint_t size;
1826 uchar_t *rptr;

1828 size = sizeof (dl_capability_req_t) +
1829 sizeof (dl_capability_sub_t) +
1830 sizeof (dl_capab_zerocopy_t);

1832 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1833 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1834 "could not enable zerocopy for %s (ENOMEM)\n",
1835 ill->ill_name);
1836 return;
1837 }

1839 rptr = nmp->b_rptr;
1840 /* initialize dl_capability_req_t */
1841 oc = (dl_capability_req_t *)rptr;
1842 oc->dl_sub_offset = sizeof (dl_capability_req_t);
1843 oc->dl_sub_length = sizeof (dl_capability_sub_t) +

new/usr/src/uts/common/inet/ip/ip_if.c 29

1844 sizeof (dl_capab_zerocopy_t);
1845 rptr += sizeof (dl_capability_req_t);

1847 /* initialize dl_capability_sub_t */
1848 bcopy(isub, rptr, sizeof (*isub));
1849 rptr += sizeof (*isub);

1851 /* initialize dl_capab_zerocopy_t */
1852 zc_oc = (dl_capab_zerocopy_t *)rptr;
1853 *zc_oc = *zc_ic;

1855 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1856 "to enable zero-copy version %d\n", ill->ill_name,
1857 ZEROCOPY_VERSION_1));

1859 /* set VMSAFE_MEM flag */
1860 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;

1862 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1863 ill_capability_send(ill, nmp);
1864 }
1865 }

1867 static void
1868 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1869 {
1870 dl_capab_zerocopy_t *zerocopy_subcap;
1871 dl_capability_sub_t *dl_subcap;

1873 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1874 return;

1876 ASSERT(ill->ill_zerocopy_capab != NULL);

1878 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1879 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1880 dl_subcap->dl_length = sizeof (*zerocopy_subcap);

1882 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1883 zerocopy_subcap->zerocopy_version =
1884 ill->ill_zerocopy_capab->ill_zerocopy_version;
1885 zerocopy_subcap->zerocopy_flags = 0;

1887 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1888 }

1890 /*
1891 * DLD capability
1892 * Refer to dld.h for more information regarding the purpose and usage
1893 * of this capability.
1894 */
1895 static void
1896 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1897 {
1898 dl_capab_dld_t *dld_ic, dld;
1899 uint_t sub_dl_cap = isub->dl_cap;
1900 uint8_t *capend;
1901 ill_dld_capab_t *idc;

1903 ASSERT(IAM_WRITER_ILL(ill));
1904 ASSERT(sub_dl_cap == DL_CAPAB_DLD);

1906 /*
1907 * Note: range checks here are not absolutely sufficient to
1908 * make us robust against malformed messages sent by drivers;
1909 * this is in keeping with the rest of IP’s dlpi handling.

new/usr/src/uts/common/inet/ip/ip_if.c 30

1910 * (Remember, it’s coming from something else in the kernel
1911 * address space)
1912 */
1913 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1914 if (capend > mp->b_wptr) {
1915 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1916 "malformed sub-capability too long for mblk");
1917 return;
1918 }
1919 dld_ic = (dl_capab_dld_t *)(isub + 1);
1920 if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1921 cmn_err(CE_CONT, "ill_capability_dld_ack: "
1922 "unsupported DLD sub-capability (version %d, "
1923 "expected %d)", dld_ic->dld_version,
1924 DLD_CURRENT_VERSION);
1925 return;
1926 }
1927 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1928 ip1dbg(("ill_capability_dld_ack: mid token for dld "
1929 "capability isn’t as expected; pass-thru module(s) "
1930 "detected, discarding capability\n"));
1931 return;
1932 }

1934 /*
1935 * Copy locally to ensure alignment.
1936 */
1937 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));

1939 if ((idc = ill->ill_dld_capab) == NULL) {
1940 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1941 if (idc == NULL) {
1942 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1943 "could not enable DLD version %d "
1944 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1945 ill->ill_name);
1946 return;
1947 }
1948 ill->ill_dld_capab = idc;
1949 }
1950 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1951 idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1952 ip1dbg(("ill_capability_dld_ack: interface %s "
1953 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));

1955 ill_capability_dld_enable(ill);
1956 }

1958 /*
1959 * Typically capability negotiation between IP and the driver happens via
1960 * DLPI message exchange. However GLD also offers a direct function call
1961 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1962 * But arbitrary function calls into IP or GLD are not permitted, since both
1963 * of them are protected by their own perimeter mechanism. The perimeter can
1964 * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1965 * these perimeters is IP -> MAC. Thus for example to enable the squeue
1966 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1967 * to enter the mac perimeter and then do the direct function calls into
1968 * GLD to enable squeue polling. The ring related callbacks from the mac into
1969 * the stack to add, bind, quiesce, restart or cleanup a ring are all
1970 * protected by the mac perimeter.
1971 */
1972 static void
1973 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1974 {
1975 ill_dld_capab_t *idc = ill->ill_dld_capab;

new/usr/src/uts/common/inet/ip/ip_if.c 31

1976 int err;

1978 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1979 DLD_ENABLE);
1980 ASSERT(err == 0);
1981 }

1983 static void
1984 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1985 {
1986 ill_dld_capab_t *idc = ill->ill_dld_capab;
1987 int err;

1989 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1990 DLD_DISABLE);
1991 ASSERT(err == 0);
1992 }

1994 boolean_t
1995 ill_mac_perim_held(ill_t *ill)
1996 {
1997 ill_dld_capab_t *idc = ill->ill_dld_capab;

1999 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
2000 DLD_QUERY));
2001 }

2003 static void
2004 ill_capability_direct_enable(ill_t *ill)
2005 {
2006 ill_dld_capab_t *idc = ill->ill_dld_capab;
2007 ill_dld_direct_t *idd = &idc->idc_direct;
2008 dld_capab_direct_t direct;
2009 int rc;

2011 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));

2013 bzero(&direct, sizeof (direct));
2014 direct.di_rx_cf = (uintptr_t)ip_input;
2015 direct.di_rx_ch = ill;

2017 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2018 DLD_ENABLE);
2019 if (rc == 0) {
2020 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2021 idd->idd_tx_dh = direct.di_tx_dh;
2022 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2023 idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2024 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2025 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2026 ASSERT(idd->idd_tx_cb_df != NULL);
2027 ASSERT(idd->idd_tx_fctl_df != NULL);
2028 ASSERT(idd->idd_tx_df != NULL);
2029 /*
2030 * One time registration of flow enable callback function
2031 */
2032 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2033 ill_flow_enable, ill);
2034 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2035 DTRACE_PROBE1(direct_on, (ill_t *), ill);
2036 } else {
2037 cmn_err(CE_WARN, "warning: could not enable DIRECT "
2038 "capability, rc = %d\n", rc);
2039 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2040 }
2041 }

new/usr/src/uts/common/inet/ip/ip_if.c 32

2043 static void
2044 ill_capability_poll_enable(ill_t *ill)
2045 {
2046 ill_dld_capab_t *idc = ill->ill_dld_capab;
2047 dld_capab_poll_t poll;
2048 int rc;

2050 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));

2052 bzero(&poll, sizeof (poll));
2053 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2054 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2055 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2056 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2057 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2058 poll.poll_ring_ch = ill;
2059 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2060 DLD_ENABLE);
2061 if (rc == 0) {
2062 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2063 DTRACE_PROBE1(poll_on, (ill_t *), ill);
2064 } else {
2065 ip1dbg(("warning: could not enable POLL "
2066 "capability, rc = %d\n", rc));
2067 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2068 }
2069 }

2071 /*
2072 * Enable the LSO capability.
2073 */
2074 static void
2075 ill_capability_lso_enable(ill_t *ill)
2076 {
2077 ill_dld_capab_t *idc = ill->ill_dld_capab;
2078 dld_capab_lso_t lso;
2079 int rc;

2081 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));

2083 if (ill->ill_lso_capab == NULL) {
2084 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2085 KM_NOSLEEP);
2086 if (ill->ill_lso_capab == NULL) {
2087 cmn_err(CE_WARN, "ill_capability_lso_enable: "
2088 "could not enable LSO for %s (ENOMEM)\n",
2089 ill->ill_name);
2090 return;
2091 }
2092 }

2094 bzero(&lso, sizeof (lso));
2095 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2096 DLD_ENABLE)) == 0) {
2097 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2098 ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2099 ill->ill_capabilities |= ILL_CAPAB_LSO;
2100 ip1dbg(("ill_capability_lso_enable: interface %s "
2101 "has enabled LSO\n ", ill->ill_name));
2102 } else {
2103 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2104 ill->ill_lso_capab = NULL;
2105 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2106 }
2107 }

new/usr/src/uts/common/inet/ip/ip_if.c 33

2109 static void
2110 ill_capability_dld_enable(ill_t *ill)
2111 {
2112 mac_perim_handle_t mph;

2114 ASSERT(IAM_WRITER_ILL(ill));

2116 if (ill->ill_isv6)
2117 return;

2119 ill_mac_perim_enter(ill, &mph);
2120 if (!ill->ill_isv6) {
2121 ill_capability_direct_enable(ill);
2122 ill_capability_poll_enable(ill);
2123 ill_capability_lso_enable(ill);
2124 }
2125 ill->ill_capabilities |= ILL_CAPAB_DLD;
2126 ill_mac_perim_exit(ill, mph);
2127 }

2129 static void
2130 ill_capability_dld_disable(ill_t *ill)
2131 {
2132 ill_dld_capab_t *idc;
2133 ill_dld_direct_t *idd;
2134 mac_perim_handle_t mph;

2136 ASSERT(IAM_WRITER_ILL(ill));

2138 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2139 return;

2141 ill_mac_perim_enter(ill, &mph);

2143 idc = ill->ill_dld_capab;
2144 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2145 /*
2146 * For performance we avoid locks in the transmit data path
2147 * and don’t maintain a count of the number of threads using
2148 * direct calls. Thus some threads could be using direct
2149 * transmit calls to GLD, even after the capability mechanism
2150 * turns it off. This is still safe since the handles used in
2151 * the direct calls continue to be valid until the unplumb is
2152 * completed. Remove the callback that was added (1-time) at
2153 * capab enable time.
2154 */
2155 mutex_enter(&ill->ill_lock);
2156 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2157 mutex_exit(&ill->ill_lock);
2158 if (ill->ill_flownotify_mh != NULL) {
2159 idd = &idc->idc_direct;
2160 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2161 ill->ill_flownotify_mh);
2162 ill->ill_flownotify_mh = NULL;
2163 }
2164 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2165 NULL, DLD_DISABLE);
2166 }

2168 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2169 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2170 ip_squeue_clean_all(ill);
2171 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2172 NULL, DLD_DISABLE);
2173 }

new/usr/src/uts/common/inet/ip/ip_if.c 34

2175 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2176 ASSERT(ill->ill_lso_capab != NULL);
2177 /*
2178 * Clear the capability flag for LSO but retain the
2179 * ill_lso_capab structure since it’s possible that another
2180 * thread is still referring to it. The structure only gets
2181 * deallocated when we destroy the ill.
2182 */

2184 ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2185 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2186 NULL, DLD_DISABLE);
2187 }

2189 ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2190 ill_mac_perim_exit(ill, mph);
2191 }

2193 /*
2194 * Capability Negotiation protocol
2195 *
2196 * We don’t wait for DLPI capability operations to finish during interface
2197 * bringup or teardown. Doing so would introduce more asynchrony and the
2198 * interface up/down operations will need multiple return and restarts.
2199 * Instead the ’ipsq_current_ipif’ of the ipsq is not cleared as long as
2200 * the ’ill_dlpi_deferred’ chain is non-empty. This ensures that the next
2201 * exclusive operation won’t start until the DLPI operations of the previous
2202 * exclusive operation complete.
2203 *
2204 * The capability state machine is shown below.
2205 *
2206 * state next state event, action
2207 *
2208 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe
2209 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack
2210 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack)
2211 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG
2212 * IDCS_OK IDCS_RESET_SENT ill_capability_reset
2213 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr
2214 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr ->
2215 * ill_capability_probe.
2216 */

2218 /*
2219 * Dedicated thread started from ip_stack_init that handles capability
2220 * disable. This thread ensures the taskq dispatch does not fail by waiting
2221 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2222 * that direct calls to DLD are done in a cv_waitable context.
2223 */
2224 void
2225 ill_taskq_dispatch(ip_stack_t *ipst)
2226 {
2227 callb_cpr_t cprinfo;
2228 char name[64];
2229 mblk_t *mp;

2231 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2232 ipst->ips_netstack->netstack_stackid);
2233 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2234 name);
2235 mutex_enter(&ipst->ips_capab_taskq_lock);

2237 for (;;) {
2238 mp = ipst->ips_capab_taskq_head;
2239 while (mp != NULL) {

new/usr/src/uts/common/inet/ip/ip_if.c 35

2240 ipst->ips_capab_taskq_head = mp->b_next;
2241 if (ipst->ips_capab_taskq_head == NULL)
2242 ipst->ips_capab_taskq_tail = NULL;
2243 mutex_exit(&ipst->ips_capab_taskq_lock);
2244 mp->b_next = NULL;

2246 VERIFY(taskq_dispatch(system_taskq,
2247 ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2248 mutex_enter(&ipst->ips_capab_taskq_lock);
2249 mp = ipst->ips_capab_taskq_head;
2250 }

2252 if (ipst->ips_capab_taskq_quit)
2253 break;
2254 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2255 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2256 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2257 }
2258 VERIFY(ipst->ips_capab_taskq_head == NULL);
2259 VERIFY(ipst->ips_capab_taskq_tail == NULL);
2260 CALLB_CPR_EXIT(&cprinfo);
2261 thread_exit();
2262 }

2264 /*
2265 * Consume a new-style hardware capabilities negotiation ack.
2266 * Called via taskq on receipt of DL_CAPABILITY_ACK.
2267 */
2268 static void
2269 ill_capability_ack_thr(void *arg)
2270 {
2271 mblk_t *mp = arg;
2272 dl_capability_ack_t *capp;
2273 dl_capability_sub_t *subp, *endp;
2274 ill_t *ill;
2275 boolean_t reneg;

2277 ill = (ill_t *)mp->b_prev;
2278 mp->b_prev = NULL;

2280 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);

2282 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2283 ill->ill_dlpi_capab_state == IDCS_RENEG) {
2284 /*
2285 * We have received the ack for our DL_CAPAB reset request.
2286 * There isnt’ anything in the message that needs processing.
2287 * All message based capabilities have been disabled, now
2288 * do the function call based capability disable.
2289 */
2290 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2291 ill_capability_dld_disable(ill);
2292 ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2293 if (reneg)
2294 ill_capability_probe(ill);
2295 goto done;
2296 }

2298 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2299 ill->ill_dlpi_capab_state = IDCS_OK;

2301 capp = (dl_capability_ack_t *)mp->b_rptr;

2303 if (capp->dl_sub_length == 0) {
2304 /* no new-style capabilities */
2305 goto done;

new/usr/src/uts/common/inet/ip/ip_if.c 36

2306 }

2308 /* make sure the driver supplied correct dl_sub_length */
2309 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2310 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2311 "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2312 goto done;
2313 }

2315 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2316 /*
2317 * There are sub-capabilities. Process the ones we know about.
2318 * Loop until we don’t have room for another sub-cap header..
2319 */
2320 for (subp = SC(capp, capp->dl_sub_offset),
2321 endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2322 subp <= endp;
2323 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {

2325 switch (subp->dl_cap) {
2326 case DL_CAPAB_ID_WRAPPER:
2327 ill_capability_id_ack(ill, mp, subp);
2328 break;
2329 default:
2330 ill_capability_dispatch(ill, mp, subp);
2331 break;
2332 }
2333 }
2334 #undef SC
2335 done:
2336 inet_freemsg(mp);
2337 ill_capability_done(ill);
2338 ipsq_exit(ill->ill_phyint->phyint_ipsq);
2339 }

2341 /*
2342 * This needs to be started in a taskq thread to provide a cv_waitable
2343 * context.
2344 */
2345 void
2346 ill_capability_ack(ill_t *ill, mblk_t *mp)
2347 {
2348 ip_stack_t *ipst = ill->ill_ipst;

2350 mp->b_prev = (mblk_t *)ill;
2351 ASSERT(mp->b_next == NULL);

2353 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2354 TQ_NOSLEEP) != 0)
2355 return;

2357 /*
2358 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2359 * which will do the dispatch using TQ_SLEEP to guarantee success.
2360 */
2361 mutex_enter(&ipst->ips_capab_taskq_lock);
2362 if (ipst->ips_capab_taskq_head == NULL) {
2363 ASSERT(ipst->ips_capab_taskq_tail == NULL);
2364 ipst->ips_capab_taskq_head = mp;
2365 } else {
2366 ipst->ips_capab_taskq_tail->b_next = mp;
2367 }
2368 ipst->ips_capab_taskq_tail = mp;

2370 cv_signal(&ipst->ips_capab_taskq_cv);
2371 mutex_exit(&ipst->ips_capab_taskq_lock);

new/usr/src/uts/common/inet/ip/ip_if.c 37

2372 }

2374 /*
2375 * This routine is called to scan the fragmentation reassembly table for
2376 * the specified ILL for any packets that are starting to smell.
2377 * dead_interval is the maximum time in seconds that will be tolerated. It
2378 * will either be the value specified in ip_g_frag_timeout, or zero if the
2379 * ILL is shutting down and it is time to blow everything off.
2380 *
2381 * It returns the number of seconds (as a time_t) that the next frag timer
2382 * should be scheduled for, 0 meaning that the timer doesn’t need to be
2383 * re-started. Note that the method of calculating next_timeout isn’t
2384 * entirely accurate since time will flow between the time we grab
2385 * current_time and the time we schedule the next timeout. This isn’t a
2386 * big problem since this is the timer for sending an ICMP reassembly time
2387 * exceeded messages, and it doesn’t have to be exactly accurate.
2388 *
2389 * This function is
2390 * sometimes called as writer, although this is not required.
2391 */
2392 time_t
2393 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2394 {
2395 ipfb_t *ipfb;
2396 ipfb_t *endp;
2397 ipf_t *ipf;
2398 ipf_t *ipfnext;
2399 mblk_t *mp;
2400 time_t current_time = gethrestime_sec();
2401 time_t next_timeout = 0;
2402 uint32_t hdr_length;
2403 mblk_t *send_icmp_head;
2404 mblk_t *send_icmp_head_v6;
2405 ip_stack_t *ipst = ill->ill_ipst;
2406 ip_recv_attr_t iras;

2408 bzero(&iras, sizeof (iras));
2409 iras.ira_flags = 0;
2410 iras.ira_ill = iras.ira_rill = ill;
2411 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2412 iras.ira_rifindex = iras.ira_ruifindex;

2414 ipfb = ill->ill_frag_hash_tbl;
2415 if (ipfb == NULL)
2416 return (B_FALSE);
2417 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2418 /* Walk the frag hash table. */
2419 for (; ipfb < endp; ipfb++) {
2420 send_icmp_head = NULL;
2421 send_icmp_head_v6 = NULL;
2422 mutex_enter(&ipfb->ipfb_lock);
2423 while ((ipf = ipfb->ipfb_ipf) != 0) {
2424 time_t frag_time = current_time - ipf->ipf_timestamp;
2425 time_t frag_timeout;

2427 if (frag_time < dead_interval) {
2428 /*
2429 * There are some outstanding fragments
2430 * that will timeout later. Make note of
2431 * the time so that we can reschedule the
2432 * next timeout appropriately.
2433 */
2434 frag_timeout = dead_interval - frag_time;
2435 if (next_timeout == 0 ||
2436 frag_timeout < next_timeout) {
2437 next_timeout = frag_timeout;

new/usr/src/uts/common/inet/ip/ip_if.c 38

2438 }
2439 break;
2440 }
2441 /* Time’s up. Get it out of here. */
2442 hdr_length = ipf->ipf_nf_hdr_len;
2443 ipfnext = ipf->ipf_hash_next;
2444 if (ipfnext)
2445 ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2446 *ipf->ipf_ptphn = ipfnext;
2447 mp = ipf->ipf_mp->b_cont;
2448 for (; mp; mp = mp->b_cont) {
2449 /* Extra points for neatness. */
2450 IP_REASS_SET_START(mp, 0);
2451 IP_REASS_SET_END(mp, 0);
2452 }
2453 mp = ipf->ipf_mp->b_cont;
2454 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2455 ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2456 ipfb->ipfb_count -= ipf->ipf_count;
2457 ASSERT(ipfb->ipfb_frag_pkts > 0);
2458 ipfb->ipfb_frag_pkts--;
2459 /*
2460 * We do not send any icmp message from here because
2461 * we currently are holding the ipfb_lock for this
2462 * hash chain. If we try and send any icmp messages
2463 * from here we may end up via a put back into ip
2464 * trying to get the same lock, causing a recursive
2465 * mutex panic. Instead we build a list and send all
2466 * the icmp messages after we have dropped the lock.
2467 */
2468 if (ill->ill_isv6) {
2469 if (hdr_length != 0) {
2470 mp->b_next = send_icmp_head_v6;
2471 send_icmp_head_v6 = mp;
2472 } else {
2473 freemsg(mp);
2474 }
2475 } else {
2476 if (hdr_length != 0) {
2477 mp->b_next = send_icmp_head;
2478 send_icmp_head = mp;
2479 } else {
2480 freemsg(mp);
2481 }
2482 }
2483 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2484 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2485 freeb(ipf->ipf_mp);
2486 }
2487 mutex_exit(&ipfb->ipfb_lock);
2488 /*
2489 * Now need to send any icmp messages that we delayed from
2490 * above.
2491 */
2492 while (send_icmp_head_v6 != NULL) {
2493 ip6_t *ip6h;

2495 mp = send_icmp_head_v6;
2496 send_icmp_head_v6 = send_icmp_head_v6->b_next;
2497 mp->b_next = NULL;
2498 ip6h = (ip6_t *)mp->b_rptr;
2499 iras.ira_flags = 0;
2500 /*
2501 * This will result in an incorrect ALL_ZONES zoneid
2502 * for multicast packets, but we
2503 * don’t send ICMP errors for those in any case.

new/usr/src/uts/common/inet/ip/ip_if.c 39

2504 */
2505 iras.ira_zoneid =
2506 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2507 ill, ipst);
2508 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2509 icmp_time_exceeded_v6(mp,
2510 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2511 &iras);
2512 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2513 }
2514 while (send_icmp_head != NULL) {
2515 ipaddr_t dst;

2517 mp = send_icmp_head;
2518 send_icmp_head = send_icmp_head->b_next;
2519 mp->b_next = NULL;

2521 dst = ((ipha_t *)mp->b_rptr)->ipha_dst;

2523 iras.ira_flags = IRAF_IS_IPV4;
2524 /*
2525 * This will result in an incorrect ALL_ZONES zoneid
2526 * for broadcast and multicast packets, but we
2527 * don’t send ICMP errors for those in any case.
2528 */
2529 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2530 ill, ipst);
2531 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2532 icmp_time_exceeded(mp,
2533 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2534 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2535 }
2536 }
2537 /*
2538 * A non-dying ILL will use the return value to decide whether to
2539 * restart the frag timer, and for how long.
2540 */
2541 return (next_timeout);
2542 }

2544 /*
2545 * This routine is called when the approximate count of mblk memory used
2546 * for the specified ILL has exceeded max_count.
2547 */
2548 void
2549 ill_frag_prune(ill_t *ill, uint_t max_count)
2550 {
2551 ipfb_t *ipfb;
2552 ipf_t *ipf;
2553 size_t count;
2554 clock_t now;

2556 /*
2557 * If we are here within ip_min_frag_prune_time msecs remove
2558 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2559 * ill_frag_free_num_pkts.
2560 */
2561 mutex_enter(&ill->ill_lock);
2562 now = ddi_get_lbolt();
2563 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2564 (ip_min_frag_prune_time != 0 ?
2565 ip_min_frag_prune_time : msec_per_tick)) {

2567 ill->ill_frag_free_num_pkts++;

2569 } else {

new/usr/src/uts/common/inet/ip/ip_if.c 40

2570 ill->ill_frag_free_num_pkts = 0;
2571 }
2572 ill->ill_last_frag_clean_time = now;
2573 mutex_exit(&ill->ill_lock);

2575 /*
2576 * free ill_frag_free_num_pkts oldest packets from each bucket.
2577 */
2578 if (ill->ill_frag_free_num_pkts != 0) {
2579 int ix;

2581 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2582 ipfb = &ill->ill_frag_hash_tbl[ix];
2583 mutex_enter(&ipfb->ipfb_lock);
2584 if (ipfb->ipfb_ipf != NULL) {
2585 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2586 ill->ill_frag_free_num_pkts);
2587 }
2588 mutex_exit(&ipfb->ipfb_lock);
2589 }
2590 }
2591 /*
2592 * While the reassembly list for this ILL is too big, prune a fragment
2593 * queue by age, oldest first.
2594 */
2595 while (ill->ill_frag_count > max_count) {
2596 int ix;
2597 ipfb_t *oipfb = NULL;
2598 uint_t oldest = UINT_MAX;

2600 count = 0;
2601 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2602 ipfb = &ill->ill_frag_hash_tbl[ix];
2603 mutex_enter(&ipfb->ipfb_lock);
2604 ipf = ipfb->ipfb_ipf;
2605 if (ipf != NULL && ipf->ipf_gen < oldest) {
2606 oldest = ipf->ipf_gen;
2607 oipfb = ipfb;
2608 }
2609 count += ipfb->ipfb_count;
2610 mutex_exit(&ipfb->ipfb_lock);
2611 }
2612 if (oipfb == NULL)
2613 break;

2615 if (count <= max_count)
2616 return; /* Somebody beat us to it, nothing to do */
2617 mutex_enter(&oipfb->ipfb_lock);
2618 ipf = oipfb->ipfb_ipf;
2619 if (ipf != NULL) {
2620 ill_frag_free_pkts(ill, oipfb, ipf, 1);
2621 }
2622 mutex_exit(&oipfb->ipfb_lock);
2623 }
2624 }

2626 /*
2627 * free ’free_cnt’ fragmented packets starting at ipf.
2628 */
2629 void
2630 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2631 {
2632 size_t count;
2633 mblk_t *mp;
2634 mblk_t *tmp;
2635 ipf_t **ipfp = ipf->ipf_ptphn;

new/usr/src/uts/common/inet/ip/ip_if.c 41

2637 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2638 ASSERT(ipfp != NULL);
2639 ASSERT(ipf != NULL);

2641 while (ipf != NULL && free_cnt-- > 0) {
2642 count = ipf->ipf_count;
2643 mp = ipf->ipf_mp;
2644 ipf = ipf->ipf_hash_next;
2645 for (tmp = mp; tmp; tmp = tmp->b_cont) {
2646 IP_REASS_SET_START(tmp, 0);
2647 IP_REASS_SET_END(tmp, 0);
2648 }
2649 atomic_add_32(&ill->ill_frag_count, -count);
2650 ASSERT(ipfb->ipfb_count >= count);
2651 ipfb->ipfb_count -= count;
2652 ASSERT(ipfb->ipfb_frag_pkts > 0);
2653 ipfb->ipfb_frag_pkts--;
2654 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2655 ip_drop_input("ipIfStatsReasmFails", mp, ill);
2656 freemsg(mp);
2657 }

2659 if (ipf)
2660 ipf->ipf_ptphn = ipfp;
2661 ipfp[0] = ipf;
2662 }

2664 /*
2665 * Helper function for ill_forward_set().
2666 */
2667 static void
2668 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2669 {
2670 ip_stack_t *ipst = ill->ill_ipst;

2672 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));

2674 ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2675 (enable ? "Enabling" : "Disabling"),
2676 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2677 mutex_enter(&ill->ill_lock);
2678 if (enable)
2679 ill->ill_flags |= ILLF_ROUTER;
2680 else
2681 ill->ill_flags &= ~ILLF_ROUTER;
2682 mutex_exit(&ill->ill_lock);
2683 if (ill->ill_isv6)
2684 ill_set_nce_router_flags(ill, enable);
2685 /* Notify routing socket listeners of this change. */
2686 if (ill->ill_ipif != NULL)
2687 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2688 }

2690 /*
2691 * Set an ill’s ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing
2692 * socket messages for each interface whose flags we change.
2693 */
2694 int
2695 ill_forward_set(ill_t *ill, boolean_t enable)
2696 {
2697 ipmp_illgrp_t *illg;
2698 ip_stack_t *ipst = ill->ill_ipst;

2700 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));

new/usr/src/uts/common/inet/ip/ip_if.c 42

2702 if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2703 (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2704 return (0);

2706 if (IS_LOOPBACK(ill))
2707 return (EINVAL);

2709 if (enable && ill->ill_allowed_ips_cnt > 0)
2710 return (EPERM);

2712 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2713 /*
2714 * Update all of the interfaces in the group.
2715 */
2716 illg = ill->ill_grp;
2717 ill = list_head(&illg->ig_if);
2718 for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2719 ill_forward_set_on_ill(ill, enable);

2721 /*
2722 * Update the IPMP meta-interface.
2723 */
2724 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2725 return (0);
2726 }

2728 ill_forward_set_on_ill(ill, enable);
2729 return (0);
2730 }

2732 /*
2733 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce’s for
2734 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2735 * set or clear.
2736 */
2737 static void
2738 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2739 {
2740 ipif_t *ipif;
2741 ncec_t *ncec;
2742 nce_t *nce;

2744 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2745 /*
2746 * NOTE: we match across the illgrp because nce’s for
2747 * addresses on IPMP interfaces have an nce_ill that points to
2748 * the bound underlying ill.
2749 */
2750 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2751 if (nce != NULL) {
2752 ncec = nce->nce_common;
2753 mutex_enter(&ncec->ncec_lock);
2754 if (enable)
2755 ncec->ncec_flags |= NCE_F_ISROUTER;
2756 else
2757 ncec->ncec_flags &= ~NCE_F_ISROUTER;
2758 mutex_exit(&ncec->ncec_lock);
2759 nce_refrele(nce);
2760 }
2761 }
2762 }

2764 /*
2765 * Intializes the context structure and returns the first ill in the list
2766 * cuurently start_list and end_list can have values:
2767 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists.

new/usr/src/uts/common/inet/ip/ip_if.c 43

2768 * IP_V4_G_HEAD Traverse IPV4 list only.
2769 * IP_V6_G_HEAD Traverse IPV6 list only.
2770 */

2772 /*
2773 * We don’t check for CONDEMNED ills here. Caller must do that if
2774 * necessary under the ill lock.
2775 */
2776 ill_t *
2777 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2778 ip_stack_t *ipst)
2779 {
2780 ill_if_t *ifp;
2781 ill_t *ill;
2782 avl_tree_t *avl_tree;

2784 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2785 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);

2787 /*
2788 * setup the lists to search
2789 */
2790 if (end_list != MAX_G_HEADS) {
2791 ctx->ctx_current_list = start_list;
2792 ctx->ctx_last_list = end_list;
2793 } else {
2794 ctx->ctx_last_list = MAX_G_HEADS - 1;
2795 ctx->ctx_current_list = 0;
2796 }

2798 while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2799 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2800 if (ifp != (ill_if_t *)
2801 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2802 avl_tree = &ifp->illif_avl_by_ppa;
2803 ill = avl_first(avl_tree);
2804 /*
2805 * ill is guaranteed to be non NULL or ifp should have
2806 * not existed.
2807 */
2808 ASSERT(ill != NULL);
2809 return (ill);
2810 }
2811 ctx->ctx_current_list++;
2812 }

2814 return (NULL);
2815 }

2817 /*
2818 * returns the next ill in the list. ill_first() must have been called
2819 * before calling ill_next() or bad things will happen.
2820 */

2822 /*
2823 * We don’t check for CONDEMNED ills here. Caller must do that if
2824 * necessary under the ill lock.
2825 */
2826 ill_t *
2827 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2828 {
2829 ill_if_t *ifp;
2830 ill_t *ill;
2831 ip_stack_t *ipst = lastill->ill_ipst;

2833 ASSERT(lastill->ill_ifptr != (ill_if_t *)

new/usr/src/uts/common/inet/ip/ip_if.c 44

2834 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2835 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2836 AVL_AFTER)) != NULL) {
2837 return (ill);
2838 }

2840 /* goto next ill_ifp in the list. */
2841 ifp = lastill->ill_ifptr->illif_next;

2843 /* make sure not at end of circular list */
2844 while (ifp ==
2845 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2846 if (++ctx->ctx_current_list > ctx->ctx_last_list)
2847 return (NULL);
2848 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2849 }

2851 return (avl_first(&ifp->illif_avl_by_ppa));
2852 }

2854 /*
2855 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2856 * The final number (PPA) must not have any leading zeros. Upon success, a
2857 * pointer to the start of the PPA is returned; otherwise NULL is returned.
2858 */
2859 static char *
2860 ill_get_ppa_ptr(char *name)
2861 {
2862 int namelen = strlen(name);
2863 int end_ndx = namelen - 1;
2864 int ppa_ndx, i;

2866 /*
2867 * Check that the first character is [a-zA-Z], and that the last
2868 * character is [0-9].
2869 */
2870 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2871 return (NULL);

2873 /*
2874 * Set ‘ppa_ndx’ to the PPA start, and check for leading zeroes.
2875 */
2876 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2877 if (!isdigit(name[ppa_ndx - 1]))
2878 break;

2880 if (name[ppa_ndx] == ’0’ && ppa_ndx < end_ndx)
2881 return (NULL);

2883 /*
2884 * Check that the intermediate characters are [a-z0-9.]
2885 */
2886 for (i = 1; i < ppa_ndx; i++) {
2887 if (!isalpha(name[i]) && !isdigit(name[i]) &&
2888 name[i] != ’.’ && name[i] != ’_’) {
2889 return (NULL);
2890 }
2891 }

2893 return (name + ppa_ndx);
2894 }

2896 /*
2897 * use avl tree to locate the ill.
2898 */
2899 static ill_t *

new/usr/src/uts/common/inet/ip/ip_if.c 45

2900 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2901 {
2902 char *ppa_ptr = NULL;
2903 int len;
2904 uint_t ppa;
2905 ill_t *ill = NULL;
2906 ill_if_t *ifp;
2907 int list;

2909 /*
2910 * get ppa ptr
2911 */
2912 if (isv6)
2913 list = IP_V6_G_HEAD;
2914 else
2915 list = IP_V4_G_HEAD;

2917 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2918 return (NULL);
2919 }

2921 len = ppa_ptr - name + 1;

2923 ppa = stoi(&ppa_ptr);

2925 ifp = IP_VX_ILL_G_LIST(list, ipst);

2927 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2928 /*
2929 * match is done on len - 1 as the name is not null
2930 * terminated it contains ppa in addition to the interface
2931 * name.
2932 */
2933 if ((ifp->illif_name_len == len) &&
2934 bcmp(ifp->illif_name, name, len - 1) == 0) {
2935 break;
2936 } else {
2937 ifp = ifp->illif_next;
2938 }
2939 }

2941 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2942 /*
2943 * Even the interface type does not exist.
2944 */
2945 return (NULL);
2946 }

2948 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2949 if (ill != NULL) {
2950 mutex_enter(&ill->ill_lock);
2951 if (ILL_CAN_LOOKUP(ill)) {
2952 ill_refhold_locked(ill);
2953 mutex_exit(&ill->ill_lock);
2954 return (ill);
2955 }
2956 mutex_exit(&ill->ill_lock);
2957 }
2958 return (NULL);
2959 }

2961 /*
2962 * comparison function for use with avl.
2963 */
2964 static int
2965 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)

new/usr/src/uts/common/inet/ip/ip_if.c 46

2966 {
2967 uint_t ppa;
2968 uint_t ill_ppa;

2970 ASSERT(ppa_ptr != NULL && ill_ptr != NULL);

2972 ppa = *((uint_t *)ppa_ptr);
2973 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2974 /*
2975 * We want the ill with the lowest ppa to be on the
2976 * top.
2977 */
2978 if (ill_ppa < ppa)
2979 return (1);
2980 if (ill_ppa > ppa)
2981 return (-1);
2982 return (0);
2983 }

2985 /*
2986 * remove an interface type from the global list.
2987 */
2988 static void
2989 ill_delete_interface_type(ill_if_t *interface)
2990 {
2991 ASSERT(interface != NULL);
2992 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);

2994 avl_destroy(&interface->illif_avl_by_ppa);
2995 if (interface->illif_ppa_arena != NULL)
2996 vmem_destroy(interface->illif_ppa_arena);

2998 remque(interface);

3000 mi_free(interface);
3001 }

3003 /*
3004 * remove ill from the global list.
3005 */
3006 static void
3007 ill_glist_delete(ill_t *ill)
3008 {
3009 ip_stack_t *ipst;
3010 phyint_t *phyi;

3012 if (ill == NULL)
3013 return;
3014 ipst = ill->ill_ipst;
3015 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);

3017 /*
3018 * If the ill was never inserted into the AVL tree
3019 * we skip the if branch.
3020 */
3021 if (ill->ill_ifptr != NULL) {
3022 /*
3023 * remove from AVL tree and free ppa number
3024 */
3025 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);

3027 if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3028 vmem_free(ill->ill_ifptr->illif_ppa_arena,
3029 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3030 }
3031 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {

new/usr/src/uts/common/inet/ip/ip_if.c 47

3032 ill_delete_interface_type(ill->ill_ifptr);
3033 }

3035 /*
3036 * Indicate ill is no longer in the list.
3037 */
3038 ill->ill_ifptr = NULL;
3039 ill->ill_name_length = 0;
3040 ill->ill_name[0] = ’\0’;
3041 ill->ill_ppa = UINT_MAX;
3042 }

3044 /* Generate one last event for this ill. */
3045 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3046 ill->ill_name_length);

3048 ASSERT(ill->ill_phyint != NULL);
3049 phyi = ill->ill_phyint;
3050 ill->ill_phyint = NULL;

3052 /*
3053 * ill_init allocates a phyint always to store the copy
3054 * of flags relevant to phyint. At that point in time, we could
3055 * not assign the name and hence phyint_illv4/v6 could not be
3056 * initialized. Later in ipif_set_values, we assign the name to
3057 * the ill, at which point in time we assign phyint_illv4/v6.
3058 * Thus we don’t rely on phyint_illv6 to be initialized always.
3059 */
3060 if (ill->ill_flags & ILLF_IPV6)
3061 phyi->phyint_illv6 = NULL;
3062 else
3063 phyi->phyint_illv4 = NULL;

3065 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3066 rw_exit(&ipst->ips_ill_g_lock);
3067 return;
3068 }

3070 /*
3071 * There are no ills left on this phyint; pull it out of the phyint
3072 * avl trees, and free it.
3073 */
3074 if (phyi->phyint_ifindex > 0) {
3075 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3076 phyi);
3077 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3078 phyi);
3079 }
3080 rw_exit(&ipst->ips_ill_g_lock);

3082 phyint_free(phyi);
3083 }

3085 /*
3086 * allocate a ppa, if the number of plumbed interfaces of this type are
3087 * less than ill_no_arena do a linear search to find a unused ppa.
3088 * When the number goes beyond ill_no_arena switch to using an arena.
3089 * Note: ppa value of zero cannot be allocated from vmem_arena as it
3090 * is the return value for an error condition, so allocation starts at one
3091 * and is decremented by one.
3092 */
3093 static int
3094 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3095 {
3096 ill_t *tmp_ill;
3097 uint_t start, end;

new/usr/src/uts/common/inet/ip/ip_if.c 48

3098 int ppa;

3100 if (ifp->illif_ppa_arena == NULL &&
3101 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3102 /*
3103 * Create an arena.
3104 */
3105 ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3106 (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3107 NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3108 /* allocate what has already been assigned */
3109 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3110 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3111 tmp_ill, AVL_AFTER)) {
3112 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3113 1, /* size */
3114 1, /* align/quantum */
3115 0, /* phase */
3116 0, /* nocross */
3117 /* minaddr */
3118 (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3119 /* maxaddr */
3120 (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3121 VM_NOSLEEP|VM_FIRSTFIT);
3122 if (ppa == 0) {
3123 ip1dbg(("ill_alloc_ppa: ppa allocation"
3124 " failed while switching"));
3125 vmem_destroy(ifp->illif_ppa_arena);
3126 ifp->illif_ppa_arena = NULL;
3127 break;
3128 }
3129 }
3130 }

3132 if (ifp->illif_ppa_arena != NULL) {
3133 if (ill->ill_ppa == UINT_MAX) {
3134 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3135 1, VM_NOSLEEP|VM_FIRSTFIT);
3136 if (ppa == 0)
3137 return (EAGAIN);
3138 ill->ill_ppa = --ppa;
3139 } else {
3140 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3141 1, /* size */
3142 1, /* align/quantum */
3143 0, /* phase */
3144 0, /* nocross */
3145 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3146 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3147 VM_NOSLEEP|VM_FIRSTFIT);
3148 /*
3149 * Most likely the allocation failed because
3150 * the requested ppa was in use.
3151 */
3152 if (ppa == 0)
3153 return (EEXIST);
3154 }
3155 return (0);
3156 }

3158 /*
3159 * No arena is in use and not enough (>ill_no_arena) interfaces have
3160 * been plumbed to create one. Do a linear search to get a unused ppa.
3161 */
3162 if (ill->ill_ppa == UINT_MAX) {
3163 end = UINT_MAX - 1;

new/usr/src/uts/common/inet/ip/ip_if.c 49

3164 start = 0;
3165 } else {
3166 end = start = ill->ill_ppa;
3167 }

3169 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3170 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3171 if (start++ >= end) {
3172 if (ill->ill_ppa == UINT_MAX)
3173 return (EAGAIN);
3174 else
3175 return (EEXIST);
3176 }
3177 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3178 }
3179 ill->ill_ppa = start;
3180 return (0);
3181 }

3183 /*
3184 * Insert ill into the list of configured ill’s. Once this function completes,
3185 * the ill is globally visible and is available through lookups. More precisely
3186 * this happens after the caller drops the ill_g_lock.
3187 */
3188 static int
3189 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3190 {
3191 ill_if_t *ill_interface;
3192 avl_index_t where = 0;
3193 int error;
3194 int name_length;
3195 int index;
3196 boolean_t check_length = B_FALSE;
3197 ip_stack_t *ipst = ill->ill_ipst;

3199 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));

3201 name_length = mi_strlen(name) + 1;

3203 if (isv6)
3204 index = IP_V6_G_HEAD;
3205 else
3206 index = IP_V4_G_HEAD;

3208 ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3209 /*
3210 * Search for interface type based on name
3211 */
3212 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3213 if ((ill_interface->illif_name_len == name_length) &&
3214 (strcmp(ill_interface->illif_name, name) == 0)) {
3215 break;
3216 }
3217 ill_interface = ill_interface->illif_next;
3218 }

3220 /*
3221 * Interface type not found, create one.
3222 */
3223 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3224 ill_g_head_t ghead;

3226 /*
3227 * allocate ill_if_t structure
3228 */
3229 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));

new/usr/src/uts/common/inet/ip/ip_if.c 50

3230 if (ill_interface == NULL) {
3231 return (ENOMEM);
3232 }

3234 (void) strcpy(ill_interface->illif_name, name);
3235 ill_interface->illif_name_len = name_length;

3237 avl_create(&ill_interface->illif_avl_by_ppa,
3238 ill_compare_ppa, sizeof (ill_t),
3239 offsetof(struct ill_s, ill_avl_byppa));

3241 /*
3242 * link the structure in the back to maintain order
3243 * of configuration for ifconfig output.
3244 */
3245 ghead = ipst->ips_ill_g_heads[index];
3246 insque(ill_interface, ghead.ill_g_list_tail);
3247 }

3249 if (ill->ill_ppa == UINT_MAX)
3250 check_length = B_TRUE;

3252 error = ill_alloc_ppa(ill_interface, ill);
3253 if (error != 0) {
3254 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3255 ill_delete_interface_type(ill->ill_ifptr);
3256 return (error);
3257 }

3259 /*
3260 * When the ppa is choosen by the system, check that there is
3261 * enough space to insert ppa. if a specific ppa was passed in this
3262 * check is not required as the interface name passed in will have
3263 * the right ppa in it.
3264 */
3265 if (check_length) {
3266 /*
3267 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3268 */
3269 char buf[sizeof (uint_t) * 3];

3271 /*
3272 * convert ppa to string to calculate the amount of space
3273 * required for it in the name.
3274 */
3275 numtos(ill->ill_ppa, buf);

3277 /* Do we have enough space to insert ppa ? */

3279 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3280 /* Free ppa and interface type struct */
3281 if (ill_interface->illif_ppa_arena != NULL) {
3282 vmem_free(ill_interface->illif_ppa_arena,
3283 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3284 }
3285 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3286 ill_delete_interface_type(ill->ill_ifptr);

3288 return (EINVAL);
3289 }
3290 }

3292 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3293 ill->ill_name_length = mi_strlen(ill->ill_name) + 1;

3295 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,

new/usr/src/uts/common/inet/ip/ip_if.c 51

3296 &where);
3297 ill->ill_ifptr = ill_interface;
3298 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);

3300 ill_phyint_reinit(ill);
3301 return (0);
3302 }

3304 /* Initialize the per phyint ipsq used for serialization */
3305 static boolean_t
3306 ipsq_init(ill_t *ill, boolean_t enter)
3307 {
3308 ipsq_t *ipsq;
3309 ipxop_t *ipx;

3311 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3312 return (B_FALSE);

3314 ill->ill_phyint->phyint_ipsq = ipsq;
3315 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3316 ipx->ipx_ipsq = ipsq;
3317 ipsq->ipsq_next = ipsq;
3318 ipsq->ipsq_phyint = ill->ill_phyint;
3319 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3320 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3321 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */
3322 if (enter) {
3323 ipx->ipx_writer = curthread;
3324 ipx->ipx_forced = B_FALSE;
3325 ipx->ipx_reentry_cnt = 1;
3326 #ifdef DEBUG
3327 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3328 #endif
3329 }
3330 return (B_TRUE);
3331 }

3333 /*
3334 * ill_init is called by ip_open when a device control stream is opened.
3335 * It does a few initializations, and shoots a DL_INFO_REQ message down
3336 * to the driver. The response is later picked up in ip_rput_dlpi and
3337 * used to set up default mechanisms for talking to the driver. (Always
3338 * called as writer.)
3339 *
3340 * If this function returns error, ip_open will call ip_close which in
3341 * turn will call ill_delete to clean up any memory allocated here that
3342 * is not yet freed.
3343 */
3344 int
3345 ill_init(queue_t *q, ill_t *ill)
3346 {
3347 int count;
3348 dl_info_req_t *dlir;
3349 mblk_t *info_mp;
3350 uchar_t *frag_ptr;

3352 /*
3353 * The ill is initialized to zero by mi_alloc*(). In addition
3354 * some fields already contain valid values, initialized in
3355 * ip_open(), before we reach here.
3356 */
3357 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3358 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3359 ill->ill_saved_ire_cnt = 0;

3361 ill->ill_rq = q;

new/usr/src/uts/common/inet/ip/ip_if.c 52

3362 ill->ill_wq = WR(q);

3364 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3365 BPRI_HI);
3366 if (info_mp == NULL)
3367 return (ENOMEM);

3369 /*
3370 * Allocate sufficient space to contain our fragment hash table and
3371 * the device name.
3372 */
3373 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ);
3374 if (frag_ptr == NULL) {
3375 freemsg(info_mp);
3376 return (ENOMEM);
3377 }
3378 ill->ill_frag_ptr = frag_ptr;
3379 ill->ill_frag_free_num_pkts = 0;
3380 ill->ill_last_frag_clean_time = 0;
3381 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3382 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3383 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3384 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3385 NULL, MUTEX_DEFAULT, NULL);
3386 }

3388 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3389 if (ill->ill_phyint == NULL) {
3390 freemsg(info_mp);
3391 mi_free(frag_ptr);
3392 return (ENOMEM);
3393 }

3395 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3396 /*
3397 * For now pretend this is a v4 ill. We need to set phyint_ill*
3398 * at this point because of the following reason. If we can’t
3399 * enter the ipsq at some point and cv_wait, the writer that
3400 * wakes us up tries to locate us using the list of all phyints
3401 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3402 * If we don’t set it now, we risk a missed wakeup.
3403 */
3404 ill->ill_phyint->phyint_illv4 = ill;
3405 ill->ill_ppa = UINT_MAX;
3406 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));

3408 ill_set_inputfn(ill);

3410 if (!ipsq_init(ill, B_TRUE)) {
3411 freemsg(info_mp);
3412 mi_free(frag_ptr);
3413 mi_free(ill->ill_phyint);
3414 return (ENOMEM);
3415 }

3417 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;

3419 /* Frag queue limit stuff */
3420 ill->ill_frag_count = 0;
3421 ill->ill_ipf_gen = 0;

3423 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3424 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3425 ill->ill_global_timer = INFINITY;
3426 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3427 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;

new/usr/src/uts/common/inet/ip/ip_if.c 53

3428 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3429 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;

3431 /*
3432 * Initialize IPv6 configuration variables. The IP module is always
3433 * opened as an IPv4 module. Instead tracking down the cases where
3434 * it switches to do ipv6, we’ll just initialize the IPv6 configuration
3435 * here for convenience, this has no effect until the ill is set to do
3436 * IPv6.
3437 */
3438 ill->ill_reachable_time = ND_REACHABLE_TIME;
3439 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3440 ill->ill_max_buf = ND_MAX_Q;
3441 ill->ill_refcnt = 0;

3443 /* Send down the Info Request to the driver. */
3444 info_mp->b_datap->db_type = M_PCPROTO;
3445 dlir = (dl_info_req_t *)info_mp->b_rptr;
3446 info_mp->b_wptr = (uchar_t *)&dlir[1];
3447 dlir->dl_primitive = DL_INFO_REQ;

3449 ill->ill_dlpi_pending = DL_PRIM_INVAL;

3451 qprocson(q);
3452 ill_dlpi_send(ill, info_mp);

3454 return (0);
3455 }

3457 /*
3458 * ill_dls_info
3459 * creates datalink socket info from the device.
3460 */
3461 int
3462 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3463 {
3464 size_t len;

3466 sdl->sdl_family = AF_LINK;
3467 sdl->sdl_index = ill_get_upper_ifindex(ill);
3468 sdl->sdl_type = ill->ill_type;
3469 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3470 len = strlen(sdl->sdl_data);
3471 ASSERT(len < 256);
3472 sdl->sdl_nlen = (uchar_t)len;
3473 sdl->sdl_alen = ill->ill_phys_addr_length;
3474 sdl->sdl_slen = 0;
3475 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3476 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);

3478 return (sizeof (struct sockaddr_dl));
3479 }

3481 /*
3482 * ill_xarp_info
3483 * creates xarp info from the device.
3484 */
3485 static int
3486 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3487 {
3488 sdl->sdl_family = AF_LINK;
3489 sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3490 sdl->sdl_type = ill->ill_type;
3491 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3492 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3493 sdl->sdl_alen = ill->ill_phys_addr_length;

new/usr/src/uts/common/inet/ip/ip_if.c 54

3494 sdl->sdl_slen = 0;
3495 return (sdl->sdl_nlen);
3496 }

3498 static int
3499 loopback_kstat_update(kstat_t *ksp, int rw)
3500 {
3501 kstat_named_t *kn;
3502 netstackid_t stackid;
3503 netstack_t *ns;
3504 ip_stack_t *ipst;

3506 if (ksp == NULL || ksp->ks_data == NULL)
3507 return (EIO);

3509 if (rw == KSTAT_WRITE)
3510 return (EACCES);

3512 kn = KSTAT_NAMED_PTR(ksp);
3513 stackid = (zoneid_t)(uintptr_t)ksp->ks_private;

3515 ns = netstack_find_by_stackid(stackid);
3516 if (ns == NULL)
3517 return (-1);

3519 ipst = ns->netstack_ip;
3520 if (ipst == NULL) {
3521 netstack_rele(ns);
3522 return (-1);
3523 }
3524 kn[0].value.ui32 = ipst->ips_loopback_packets;
3525 kn[1].value.ui32 = ipst->ips_loopback_packets;
3526 netstack_rele(ns);
3527 return (0);
3528 }

3530 /*
3531 * Has ifindex been plumbed already?
3532 */
3533 static boolean_t
3534 phyint_exists(uint_t index, ip_stack_t *ipst)
3535 {
3536 ASSERT(index != 0);
3537 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));

3539 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3540 &index, NULL) != NULL);
3541 }

3543 /*
3544 * Pick a unique ifindex.
3545 * When the index counter passes IF_INDEX_MAX for the first time, the wrap
3546 * flag is set so that next time time ip_assign_ifindex() is called, it
3547 * falls through and resets the index counter back to 1, the minimum value
3548 * for the interface index. The logic below assumes that ips_ill_index
3549 * can hold a value of IF_INDEX_MAX+1 without there being any loss
3550 * (i.e. reset back to 0.)
3551 */
3552 boolean_t
3553 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3554 {
3555 uint_t loops;

3557 if (!ipst->ips_ill_index_wrap) {
3558 *indexp = ipst->ips_ill_index++;
3559 if (ipst->ips_ill_index > IF_INDEX_MAX) {

new/usr/src/uts/common/inet/ip/ip_if.c 55

3560 /*
3561 * Reached the maximum ifindex value, set the wrap
3562 * flag to indicate that it is no longer possible
3563 * to assume that a given index is unallocated.
3564 */
3565 ipst->ips_ill_index_wrap = B_TRUE;
3566 }
3567 return (B_TRUE);
3568 }

3570 if (ipst->ips_ill_index > IF_INDEX_MAX)
3571 ipst->ips_ill_index = 1;

3573 /*
3574 * Start reusing unused indexes. Note that we hold the ill_g_lock
3575 * at this point and don’t want to call any function that attempts
3576 * to get the lock again.
3577 */
3578 for (loops = IF_INDEX_MAX; loops > 0; loops--) {
3579 if (!phyint_exists(ipst->ips_ill_index, ipst)) {
3580 /* found unused index - use it */
3581 *indexp = ipst->ips_ill_index;
3582 return (B_TRUE);
3583 }

3585 ipst->ips_ill_index++;
3586 if (ipst->ips_ill_index > IF_INDEX_MAX)
3587 ipst->ips_ill_index = 1;
3588 }

3590 /*
3591 * all interface indicies are inuse.
3592 */
3593 return (B_FALSE);
3594 }

3596 /*
3597 * Assign a unique interface index for the phyint.
3598 */
3599 static boolean_t
3600 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3601 {
3602 ASSERT(phyi->phyint_ifindex == 0);
3603 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3604 }

3606 /*
3607 * Initialize the flags on ‘phyi’ as per the provided mactype.
3608 */
3609 static void
3610 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3611 {
3612 uint64_t flags = 0;

3614 /*
3615 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces,
3616 * we always presume the underlying hardware is working and set
3617 * PHYI_RUNNING (if it’s not, the driver will subsequently send a
3618 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization
3619 * there are no active interfaces in the group so we set PHYI_FAILED.
3620 */
3621 if (mactype == SUNW_DL_IPMP)
3622 flags |= PHYI_FAILED;
3623 else
3624 flags |= PHYI_RUNNING;

new/usr/src/uts/common/inet/ip/ip_if.c 56

3626 switch (mactype) {
3627 case SUNW_DL_VNI:
3628 flags |= PHYI_VIRTUAL;
3629 break;
3630 case SUNW_DL_IPMP:
3631 flags |= PHYI_IPMP;
3632 break;
3633 case DL_LOOP:
3634 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3635 break;
3636 }

3638 mutex_enter(&phyi->phyint_lock);
3639 phyi->phyint_flags |= flags;
3640 mutex_exit(&phyi->phyint_lock);
3641 }

3643 /*
3644 * Return a pointer to the ill which matches the supplied name. Note that
3645 * the ill name length includes the null termination character. (May be
3646 * called as writer.)
3647 * If do_alloc and the interface is "lo0" it will be automatically created.
3648 * Cannot bump up reference on condemned ills. So dup detect can’t be done
3649 * using this func.
3650 */
3651 ill_t *
3652 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3653 boolean_t *did_alloc, ip_stack_t *ipst)
3654 {
3655 ill_t *ill;
3656 ipif_t *ipif;
3657 ipsq_t *ipsq;
3658 kstat_named_t *kn;
3659 boolean_t isloopback;
3660 in6_addr_t ov6addr;

3662 isloopback = mi_strcmp(name, ipif_loopback_name) == 0;

3664 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3665 ill = ill_find_by_name(name, isv6, ipst);
3666 rw_exit(&ipst->ips_ill_g_lock);
3667 if (ill != NULL)
3668 return (ill);

3670 /*
3671 * Couldn’t find it. Does this happen to be a lookup for the
3672 * loopback device and are we allowed to allocate it?
3673 */
3674 if (!isloopback || !do_alloc)
3675 return (NULL);

3677 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3678 ill = ill_find_by_name(name, isv6, ipst);
3679 if (ill != NULL) {
3680 rw_exit(&ipst->ips_ill_g_lock);
3681 return (ill);
3682 }

3684 /* Create the loopback device on demand */
3685 ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3686 sizeof (ipif_loopback_name), BPRI_MED));
3687 if (ill == NULL)
3688 goto done;

3690 *ill = ill_null;
3691 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);

new/usr/src/uts/common/inet/ip/ip_if.c 57

3692 ill->ill_ipst = ipst;
3693 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3694 netstack_hold(ipst->ips_netstack);
3695 /*
3696 * For exclusive stacks we set the zoneid to zero
3697 * to make IP operate as if in the global zone.
3698 */
3699 ill->ill_zoneid = GLOBAL_ZONEID;

3701 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3702 if (ill->ill_phyint == NULL)
3703 goto done;

3705 if (isv6)
3706 ill->ill_phyint->phyint_illv6 = ill;
3707 else
3708 ill->ill_phyint->phyint_illv4 = ill;
3709 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3710 phyint_flags_init(ill->ill_phyint, DL_LOOP);

3712 if (isv6) {
3713 ill->ill_isv6 = B_TRUE;
3714 ill->ill_max_frag = ip_loopback_mtu_v6plus;
3715 } else {
3716 ill->ill_max_frag = ip_loopback_mtuplus;
3717 }
3718 if (!ill_allocate_mibs(ill))
3719 goto done;
3720 ill->ill_current_frag = ill->ill_max_frag;
3721 ill->ill_mtu = ill->ill_max_frag; /* Initial value */
3722 ill->ill_mc_mtu = ill->ill_mtu;
3723 /*
3724 * ipif_loopback_name can’t be pointed at directly because its used
3725 * by both the ipv4 and ipv6 interfaces. When the ill is removed
3726 * from the glist, ill_glist_delete() sets the first character of
3727 * ill_name to ’\0’.
3728 */
3729 ill->ill_name = (char *)ill + sizeof (*ill);
3730 (void) strcpy(ill->ill_name, ipif_loopback_name);
3731 ill->ill_name_length = sizeof (ipif_loopback_name);
3732 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3733 ill->ill_dlpi_pending = DL_PRIM_INVAL;

3735 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3736 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3737 ill->ill_global_timer = INFINITY;
3738 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3739 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3740 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3741 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;

3743 /* No resolver here. */
3744 ill->ill_net_type = IRE_LOOPBACK;

3746 /* Initialize the ipsq */
3747 if (!ipsq_init(ill, B_FALSE))
3748 goto done;

3750 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3751 if (ipif == NULL)
3752 goto done;

3754 ill->ill_flags = ILLF_MULTICAST;

3756 ov6addr = ipif->ipif_v6lcl_addr;
3757 /* Set up default loopback address and mask. */

new/usr/src/uts/common/inet/ip/ip_if.c 58

3758 if (!isv6) {
3759 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);

3761 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3762 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3763 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3764 ipif->ipif_v6subnet);
3765 ill->ill_flags |= ILLF_IPV4;
3766 } else {
3767 ipif->ipif_v6lcl_addr = ipv6_loopback;
3768 ipif->ipif_v6net_mask = ipv6_all_ones;
3769 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3770 ipif->ipif_v6subnet);
3771 ill->ill_flags |= ILLF_IPV6;
3772 }

3774 /*
3775 * Chain us in at the end of the ill list. hold the ill
3776 * before we make it globally visible. 1 for the lookup.
3777 */
3778 ill->ill_refcnt = 0;
3779 ill_refhold(ill);

3781 ill->ill_frag_count = 0;
3782 ill->ill_frag_free_num_pkts = 0;
3783 ill->ill_last_frag_clean_time = 0;

3785 ipsq = ill->ill_phyint->phyint_ipsq;

3787 ill_set_inputfn(ill);

3789 if (ill_glist_insert(ill, "lo", isv6) != 0)
3790 cmn_err(CE_PANIC, "cannot insert loopback interface");

3792 /* Let SCTP know so that it can add this to its list */
3793 sctp_update_ill(ill, SCTP_ILL_INSERT);

3795 /*
3796 * We have already assigned ipif_v6lcl_addr above, but we need to
3797 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3798 * requires to be after ill_glist_insert() since we need the
3799 * ill_index set. Pass on ipv6_loopback as the old address.
3800 */
3801 sctp_update_ipif_addr(ipif, ov6addr);

3803 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);

3805 /*
3806 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3807 * If so, free our original one.
3808 */
3809 if (ipsq != ill->ill_phyint->phyint_ipsq)
3810 ipsq_delete(ipsq);

3812 if (ipst->ips_loopback_ksp == NULL) {
3813 /* Export loopback interface statistics */
3814 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3815 ipif_loopback_name, "net",
3816 KSTAT_TYPE_NAMED, 2, 0,
3817 ipst->ips_netstack->netstack_stackid);
3818 if (ipst->ips_loopback_ksp != NULL) {
3819 ipst->ips_loopback_ksp->ks_update =
3820 loopback_kstat_update;
3821 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3822 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3823 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);

new/usr/src/uts/common/inet/ip/ip_if.c 59

3824 ipst->ips_loopback_ksp->ks_private =
3825 (void *)(uintptr_t)ipst->ips_netstack->
3826 netstack_stackid;
3827 kstat_install(ipst->ips_loopback_ksp);
3828 }
3829 }

3831 *did_alloc = B_TRUE;
3832 rw_exit(&ipst->ips_ill_g_lock);
3833 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3834 NE_PLUMB, ill->ill_name, ill->ill_name_length);
3835 return (ill);
3836 done:
3837 if (ill != NULL) {
3838 if (ill->ill_phyint != NULL) {
3839 ipsq = ill->ill_phyint->phyint_ipsq;
3840 if (ipsq != NULL) {
3841 ipsq->ipsq_phyint = NULL;
3842 ipsq_delete(ipsq);
3843 }
3844 mi_free(ill->ill_phyint);
3845 }
3846 ill_free_mib(ill);
3847 if (ill->ill_ipst != NULL)
3848 netstack_rele(ill->ill_ipst->ips_netstack);
3849 mi_free(ill);
3850 }
3851 rw_exit(&ipst->ips_ill_g_lock);
3852 return (NULL);
3853 }

3855 /*
3856 * For IPP calls - use the ip_stack_t for global stack.
3857 */
3858 ill_t *
3859 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3860 {
3861 ip_stack_t *ipst;
3862 ill_t *ill;

3864 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3865 if (ipst == NULL) {
3866 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3867 return (NULL);
3868 }

3870 ill = ill_lookup_on_ifindex(index, isv6, ipst);
3871 netstack_rele(ipst->ips_netstack);
3872 return (ill);
3873 }

3875 /*
3876 * Return a pointer to the ill which matches the index and IP version type.
3877 */
3878 ill_t *
3879 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3880 {
3881 ill_t *ill;
3882 phyint_t *phyi;

3884 /*
3885 * Indexes are stored in the phyint - a common structure
3886 * to both IPv4 and IPv6.
3887 */
3888 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3889 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,

new/usr/src/uts/common/inet/ip/ip_if.c 60

3890 (void *) &index, NULL);
3891 if (phyi != NULL) {
3892 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3893 if (ill != NULL) {
3894 mutex_enter(&ill->ill_lock);
3895 if (!ILL_IS_CONDEMNED(ill)) {
3896 ill_refhold_locked(ill);
3897 mutex_exit(&ill->ill_lock);
3898 rw_exit(&ipst->ips_ill_g_lock);
3899 return (ill);
3900 }
3901 mutex_exit(&ill->ill_lock);
3902 }
3903 }
3904 rw_exit(&ipst->ips_ill_g_lock);
3905 return (NULL);
3906 }

3908 /*
3909 * Verify whether or not an interface index is valid for the specified zoneid
3910 * to transmit packets.
3911 * It can be zero (meaning "reset") or an interface index assigned
3912 * to a non-VNI interface. (We don’t use VNI interface to send packets.)
3913 */
3914 boolean_t
3915 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3916 ip_stack_t *ipst)
3917 {
3918 ill_t *ill;

3920 if (ifindex == 0)
3921 return (B_TRUE);

3923 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3924 if (ill == NULL)
3925 return (B_FALSE);
3926 if (IS_VNI(ill)) {
3927 ill_refrele(ill);
3928 return (B_FALSE);
3929 }
3930 ill_refrele(ill);
3931 return (B_TRUE);
3932 }

3934 /*
3935 * Return the ifindex next in sequence after the passed in ifindex.
3936 * If there is no next ifindex for the given protocol, return 0.
3937 */
3938 uint_t
3939 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3940 {
3941 phyint_t *phyi;
3942 phyint_t *phyi_initial;
3943 uint_t ifindex;

3945 rw_enter(&ipst->ips_ill_g_lock, RW_READER);

3947 if (index == 0) {
3948 phyi = avl_first(
3949 &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3950 } else {
3951 phyi = phyi_initial = avl_find(
3952 &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3953 (void *) &index, NULL);
3954 }

new/usr/src/uts/common/inet/ip/ip_if.c 61

3956 for (; phyi != NULL;
3957 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3958 phyi, AVL_AFTER)) {
3959 /*
3960 * If we’re not returning the first interface in the tree
3961 * and we still haven’t moved past the phyint_t that
3962 * corresponds to index, avl_walk needs to be called again
3963 */
3964 if (!((index != 0) && (phyi == phyi_initial))) {
3965 if (isv6) {
3966 if ((phyi->phyint_illv6) &&
3967 ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3968 (phyi->phyint_illv6->ill_isv6 == 1))
3969 break;
3970 } else {
3971 if ((phyi->phyint_illv4) &&
3972 ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3973 (phyi->phyint_illv4->ill_isv6 == 0))
3974 break;
3975 }
3976 }
3977 }

3979 rw_exit(&ipst->ips_ill_g_lock);

3981 if (phyi != NULL)
3982 ifindex = phyi->phyint_ifindex;
3983 else
3984 ifindex = 0;

3986 return (ifindex);
3987 }

3989 /*
3990 * Return the ifindex for the named interface.
3991 * If there is no next ifindex for the interface, return 0.
3992 */
3993 uint_t
3994 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
3995 {
3996 phyint_t *phyi;
3997 avl_index_t where = 0;
3998 uint_t ifindex;

4000 rw_enter(&ipst->ips_ill_g_lock, RW_READER);

4002 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4003 name, &where)) == NULL) {
4004 rw_exit(&ipst->ips_ill_g_lock);
4005 return (0);
4006 }

4008 ifindex = phyi->phyint_ifindex;

4010 rw_exit(&ipst->ips_ill_g_lock);

4012 return (ifindex);
4013 }

4015 /*
4016 * Return the ifindex to be used by upper layer protocols for instance
4017 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4018 */
4019 uint_t
4020 ill_get_upper_ifindex(const ill_t *ill)
4021 {

new/usr/src/uts/common/inet/ip/ip_if.c 62

4022 if (IS_UNDER_IPMP(ill))
4023 return (ipmp_ill_get_ipmp_ifindex(ill));
4024 else
4025 return (ill->ill_phyint->phyint_ifindex);
4026 }

4029 /*
4030 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4031 * that gives a running thread a reference to the ill. This reference must be
4032 * released by the thread when it is done accessing the ill and related
4033 * objects. ill_refcnt can not be used to account for static references
4034 * such as other structures pointing to an ill. Callers must generally
4035 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4036 * or be sure that the ill is not being deleted or changing state before
4037 * calling the refhold functions. A non-zero ill_refcnt ensures that the
4038 * ill won’t change any of its critical state such as address, netmask etc.
4039 */
4040 void
4041 ill_refhold(ill_t *ill)
4042 {
4043 mutex_enter(&ill->ill_lock);
4044 ill->ill_refcnt++;
4045 ILL_TRACE_REF(ill);
4046 mutex_exit(&ill->ill_lock);
4047 }

4049 void
4050 ill_refhold_locked(ill_t *ill)
4051 {
4052 ASSERT(MUTEX_HELD(&ill->ill_lock));
4053 ill->ill_refcnt++;
4054 ILL_TRACE_REF(ill);
4055 }

4057 /* Returns true if we managed to get a refhold */
4058 boolean_t
4059 ill_check_and_refhold(ill_t *ill)
4060 {
4061 mutex_enter(&ill->ill_lock);
4062 if (!ILL_IS_CONDEMNED(ill)) {
4063 ill_refhold_locked(ill);
4064 mutex_exit(&ill->ill_lock);
4065 return (B_TRUE);
4066 }
4067 mutex_exit(&ill->ill_lock);
4068 return (B_FALSE);
4069 }

4071 /*
4072 * Must not be called while holding any locks. Otherwise if this is
4073 * the last reference to be released, there is a chance of recursive mutex
4074 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4075 * to restart an ioctl.
4076 */
4077 void
4078 ill_refrele(ill_t *ill)
4079 {
4080 mutex_enter(&ill->ill_lock);
4081 ASSERT(ill->ill_refcnt != 0);
4082 ill->ill_refcnt--;
4083 ILL_UNTRACE_REF(ill);
4084 if (ill->ill_refcnt != 0) {
4085 /* Every ire pointing to the ill adds 1 to ill_refcnt */
4086 mutex_exit(&ill->ill_lock);
4087 return;

new/usr/src/uts/common/inet/ip/ip_if.c 63

4088 }

4090 /* Drops the ill_lock */
4091 ipif_ill_refrele_tail(ill);
4092 }

4094 /*
4095 * Obtain a weak reference count on the ill. This reference ensures the
4096 * ill won’t be freed, but the ill may change any of its critical state
4097 * such as netmask, address etc. Returns an error if the ill has started
4098 * closing.
4099 */
4100 boolean_t
4101 ill_waiter_inc(ill_t *ill)
4102 {
4103 mutex_enter(&ill->ill_lock);
4104 if (ill->ill_state_flags & ILL_CONDEMNED) {
4105 mutex_exit(&ill->ill_lock);
4106 return (B_FALSE);
4107 }
4108 ill->ill_waiters++;
4109 mutex_exit(&ill->ill_lock);
4110 return (B_TRUE);
4111 }

4113 void
4114 ill_waiter_dcr(ill_t *ill)
4115 {
4116 mutex_enter(&ill->ill_lock);
4117 ill->ill_waiters--;
4118 if (ill->ill_waiters == 0)
4119 cv_broadcast(&ill->ill_cv);
4120 mutex_exit(&ill->ill_lock);
4121 }

4123 /*
4124 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4125 * driver. We construct best guess defaults for lower level information that
4126 * we need. If an interface is brought up without injection of any overriding
4127 * information from outside, we have to be ready to go with these defaults.
4128 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4129 * we primarely want the dl_provider_style.
4130 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4131 * at which point we assume the other part of the information is valid.
4132 */
4133 void
4134 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4135 {
4136 uchar_t *brdcst_addr;
4137 uint_t brdcst_addr_length, phys_addr_length;
4138 t_scalar_t sap_length;
4139 dl_info_ack_t *dlia;
4140 ip_m_t *ipm;
4141 dl_qos_cl_sel1_t *sel1;
4142 int min_mtu;

4144 ASSERT(IAM_WRITER_ILL(ill));

4146 /*
4147 * Till the ill is fully up the ill is not globally visible.
4148 * So no need for a lock.
4149 */
4150 dlia = (dl_info_ack_t *)mp->b_rptr;
4151 ill->ill_mactype = dlia->dl_mac_type;

4153 ipm = ip_m_lookup(dlia->dl_mac_type);

new/usr/src/uts/common/inet/ip/ip_if.c 64

4154 if (ipm == NULL) {
4155 ipm = ip_m_lookup(DL_OTHER);
4156 ASSERT(ipm != NULL);
4157 }
4158 ill->ill_media = ipm;

4160 /*
4161 * When the new DLPI stuff is ready we’ll pull lengths
4162 * from dlia.
4163 */
4164 if (dlia->dl_version == DL_VERSION_2) {
4165 brdcst_addr_length = dlia->dl_brdcst_addr_length;
4166 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4167 brdcst_addr_length);
4168 if (brdcst_addr == NULL) {
4169 brdcst_addr_length = 0;
4170 }
4171 sap_length = dlia->dl_sap_length;
4172 phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4173 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4174 brdcst_addr_length, sap_length, phys_addr_length));
4175 } else {
4176 brdcst_addr_length = 6;
4177 brdcst_addr = ip_six_byte_all_ones;
4178 sap_length = -2;
4179 phys_addr_length = brdcst_addr_length;
4180 }

4182 ill->ill_bcast_addr_length = brdcst_addr_length;
4183 ill->ill_phys_addr_length = phys_addr_length;
4184 ill->ill_sap_length = sap_length;

4186 /*
4187 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4188 * but we must ensure a minimum IP MTU is used since other bits of
4189 * IP will fly apart otherwise.
4190 */
4191 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4192 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4193 ill->ill_current_frag = ill->ill_max_frag;
4194 ill->ill_mtu = ill->ill_max_frag;
4195 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */

4197 ill->ill_type = ipm->ip_m_type;

4199 if (!ill->ill_dlpi_style_set) {
4200 if (dlia->dl_provider_style == DL_STYLE2)
4201 ill->ill_needs_attach = 1;

4203 phyint_flags_init(ill->ill_phyint, ill->ill_mactype);

4205 /*
4206 * Allocate the first ipif on this ill. We don’t delay it
4207 * further as ioctl handling assumes at least one ipif exists.
4208 *
4209 * At this point we don’t know whether the ill is v4 or v6.
4210 * We will know this whan the SIOCSLIFNAME happens and
4211 * the correct value for ill_isv6 will be assigned in
4212 * ipif_set_values(). We need to hold the ill lock and
4213 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4214 * the wakeup.
4215 */
4216 (void) ipif_allocate(ill, 0, IRE_LOCAL,
4217 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4218 mutex_enter(&ill->ill_lock);
4219 ASSERT(ill->ill_dlpi_style_set == 0);

new/usr/src/uts/common/inet/ip/ip_if.c 65

4220 ill->ill_dlpi_style_set = 1;
4221 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4222 cv_broadcast(&ill->ill_cv);
4223 mutex_exit(&ill->ill_lock);
4224 freemsg(mp);
4225 return;
4226 }
4227 ASSERT(ill->ill_ipif != NULL);
4228 /*
4229 * We know whether it is IPv4 or IPv6 now, as this is the
4230 * second DL_INFO_ACK we are recieving in response to the
4231 * DL_INFO_REQ sent in ipif_set_values.
4232 */
4233 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4234 /*
4235 * Clear all the flags that were set based on ill_bcast_addr_length
4236 * and ill_phys_addr_length (in ipif_set_values) as these could have
4237 * changed now and we need to re-evaluate.
4238 */
4239 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4240 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);

4242 /*
4243 * Free ill_bcast_mp as things could have changed now.
4244 *
4245 * NOTE: The IPMP meta-interface is special-cased because it starts
4246 * with no underlying interfaces (and thus an unknown broadcast
4247 * address length), but we enforce that an interface is broadcast-
4248 * capable as part of allowing it to join a group.
4249 */
4250 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4251 if (ill->ill_bcast_mp != NULL)
4252 freemsg(ill->ill_bcast_mp);
4253 ill->ill_net_type = IRE_IF_NORESOLVER;

4255 ill->ill_bcast_mp = ill_dlur_gen(NULL,
4256 ill->ill_phys_addr_length,
4257 ill->ill_sap,
4258 ill->ill_sap_length);

4260 if (ill->ill_isv6)
4261 /*
4262 * Note: xresolv interfaces will eventually need NOARP
4263 * set here as well, but that will require those
4264 * external resolvers to have some knowledge of
4265 * that flag and act appropriately. Not to be changed
4266 * at present.
4267 */
4268 ill->ill_flags |= ILLF_NONUD;
4269 else
4270 ill->ill_flags |= ILLF_NOARP;

4272 if (ill->ill_mactype == SUNW_DL_VNI) {
4273 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4274 } else if (ill->ill_phys_addr_length == 0 ||
4275 ill->ill_mactype == DL_IPV4 ||
4276 ill->ill_mactype == DL_IPV6) {
4277 /*
4278 * The underying link is point-to-point, so mark the
4279 * interface as such. We can do IP multicast over
4280 * such a link since it transmits all network-layer
4281 * packets to the remote side the same way.
4282 */
4283 ill->ill_flags |= ILLF_MULTICAST;
4284 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4285 }

new/usr/src/uts/common/inet/ip/ip_if.c 66

4286 } else {
4287 ill->ill_net_type = IRE_IF_RESOLVER;
4288 if (ill->ill_bcast_mp != NULL)
4289 freemsg(ill->ill_bcast_mp);
4290 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4291 ill->ill_bcast_addr_length, ill->ill_sap,
4292 ill->ill_sap_length);
4293 /*
4294 * Later detect lack of DLPI driver multicast
4295 * capability by catching DL_ENABMULTI errors in
4296 * ip_rput_dlpi.
4297 */
4298 ill->ill_flags |= ILLF_MULTICAST;
4299 if (!ill->ill_isv6)
4300 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4301 }

4303 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4304 if (ill->ill_mactype == SUNW_DL_IPMP)
4305 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);

4307 /* By default an interface does not support any CoS marking */
4308 ill->ill_flags &= ~ILLF_COS_ENABLED;

4310 /*
4311 * If we get QoS information in DL_INFO_ACK, the device supports
4312 * some form of CoS marking, set ILLF_COS_ENABLED.
4313 */
4314 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4315 dlia->dl_qos_length);
4316 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4317 ill->ill_flags |= ILLF_COS_ENABLED;
4318 }

4320 /* Clear any previous error indication. */
4321 ill->ill_error = 0;
4322 freemsg(mp);
4323 }

4325 /*
4326 * Perform various checks to verify that an address would make sense as a
4327 * local, remote, or subnet interface address.
4328 */
4329 static boolean_t
4330 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4331 {
4332 ipaddr_t net_mask;

4334 /*
4335 * Don’t allow all zeroes, or all ones, but allow
4336 * all ones netmask.
4337 */
4338 if ((net_mask = ip_net_mask(addr)) == 0)
4339 return (B_FALSE);
4340 /* A given netmask overrides the "guess" netmask */
4341 if (subnet_mask != 0)
4342 net_mask = subnet_mask;
4343 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4344 (addr == (addr | ~net_mask)))) {
4345 return (B_FALSE);
4346 }

4348 /*
4349 * Even if the netmask is all ones, we do not allow address to be
4350 * 255.255.255.255
4351 */

new/usr/src/uts/common/inet/ip/ip_if.c 67

4352 if (addr == INADDR_BROADCAST)
4353 return (B_FALSE);

4355 if (CLASSD(addr))
4356 return (B_FALSE);

4358 return (B_TRUE);
4359 }

4361 #define V6_IPIF_LINKLOCAL(p) \
4362 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)

4364 /*
4365 * Compare two given ipifs and check if the second one is better than
4366 * the first one using the order of preference (not taking deprecated
4367 * into acount) specified in ipif_lookup_multicast().
4368 */
4369 static boolean_t
4370 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4371 {
4372 /* Check the least preferred first. */
4373 if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4374 /* If both ipifs are the same, use the first one. */
4375 if (IS_LOOPBACK(new_ipif->ipif_ill))
4376 return (B_FALSE);
4377 else
4378 return (B_TRUE);
4379 }

4381 /* For IPv6, check for link local address. */
4382 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4383 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4384 V6_IPIF_LINKLOCAL(new_ipif)) {
4385 /* The second one is equal or less preferred. */
4386 return (B_FALSE);
4387 } else {
4388 return (B_TRUE);
4389 }
4390 }

4392 /* Then check for point to point interface. */
4393 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4394 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4395 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4396 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4397 return (B_FALSE);
4398 } else {
4399 return (B_TRUE);
4400 }
4401 }

4403 /* old_ipif is a normal interface, so no need to use the new one. */
4404 return (B_FALSE);
4405 }

4407 /*
4408 * Find a mulitcast-capable ipif given an IP instance and zoneid.
4409 * The ipif must be up, and its ill must multicast-capable, not
4410 * condemned, not an underlying interface in an IPMP group, and
4411 * not a VNI interface. Order of preference:
4412 *
4413 * 1a. normal
4414 * 1b. normal, but deprecated
4415 * 2a. point to point
4416 * 2b. point to point, but deprecated
4417 * 3a. link local

new/usr/src/uts/common/inet/ip/ip_if.c 68

4418 * 3b. link local, but deprecated
4419 * 4. loopback.
4420 */
4421 static ipif_t *
4422 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4423 {
4424 ill_t *ill;
4425 ill_walk_context_t ctx;
4426 ipif_t *ipif;
4427 ipif_t *saved_ipif = NULL;
4428 ipif_t *dep_ipif = NULL;

4430 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4431 if (isv6)
4432 ill = ILL_START_WALK_V6(&ctx, ipst);
4433 else
4434 ill = ILL_START_WALK_V4(&ctx, ipst);

4436 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4437 mutex_enter(&ill->ill_lock);
4438 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4439 ILL_IS_CONDEMNED(ill) ||
4440 !(ill->ill_flags & ILLF_MULTICAST)) {
4441 mutex_exit(&ill->ill_lock);
4442 continue;
4443 }
4444 for (ipif = ill->ill_ipif; ipif != NULL;
4445 ipif = ipif->ipif_next) {
4446 if (zoneid != ipif->ipif_zoneid &&
4447 zoneid != ALL_ZONES &&
4448 ipif->ipif_zoneid != ALL_ZONES) {
4449 continue;
4450 }
4451 if (!(ipif->ipif_flags & IPIF_UP) ||
4452 IPIF_IS_CONDEMNED(ipif)) {
4453 continue;
4454 }

4456 /*
4457 * Found one candidate. If it is deprecated,
4458 * remember it in dep_ipif. If it is not deprecated,
4459 * remember it in saved_ipif.
4460 */
4461 if (ipif->ipif_flags & IPIF_DEPRECATED) {
4462 if (dep_ipif == NULL) {
4463 dep_ipif = ipif;
4464 } else if (ipif_comp_multi(dep_ipif, ipif,
4465 isv6)) {
4466 /*
4467 * If the previous dep_ipif does not
4468 * belong to the same ill, we’ve done
4469 * a ipif_refhold() on it. So we need
4470 * to release it.
4471 */
4472 if (dep_ipif->ipif_ill != ill)
4473 ipif_refrele(dep_ipif);
4474 dep_ipif = ipif;
4475 }
4476 continue;
4477 }
4478 if (saved_ipif == NULL) {
4479 saved_ipif = ipif;
4480 } else {
4481 if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4482 if (saved_ipif->ipif_ill != ill)
4483 ipif_refrele(saved_ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 69

4484 saved_ipif = ipif;
4485 }
4486 }
4487 }
4488 /*
4489 * Before going to the next ill, do a ipif_refhold() on the
4490 * saved ones.
4491 */
4492 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4493 ipif_refhold_locked(saved_ipif);
4494 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4495 ipif_refhold_locked(dep_ipif);
4496 mutex_exit(&ill->ill_lock);
4497 }
4498 rw_exit(&ipst->ips_ill_g_lock);

4500 /*
4501 * If we have only the saved_ipif, return it. But if we have both
4502 * saved_ipif and dep_ipif, check to see which one is better.
4503 */
4504 if (saved_ipif != NULL) {
4505 if (dep_ipif != NULL) {
4506 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4507 ipif_refrele(saved_ipif);
4508 return (dep_ipif);
4509 } else {
4510 ipif_refrele(dep_ipif);
4511 return (saved_ipif);
4512 }
4513 }
4514 return (saved_ipif);
4515 } else {
4516 return (dep_ipif);
4517 }
4518 }

4520 ill_t *
4521 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4522 {
4523 ipif_t *ipif;
4524 ill_t *ill;

4526 ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4527 if (ipif == NULL)
4528 return (NULL);

4530 ill = ipif->ipif_ill;
4531 ill_refhold(ill);
4532 ipif_refrele(ipif);
4533 return (ill);
4534 }

4536 /*
4537 * This function is called when an application does not specify an interface
4538 * to be used for multicast traffic (joining a group/sending data). It
4539 * calls ire_lookup_multi() to look for an interface route for the
4540 * specified multicast group. Doing this allows the administrator to add
4541 * prefix routes for multicast to indicate which interface to be used for
4542 * multicast traffic in the above scenario. The route could be for all
4543 * multicast (224.0/4), for a single multicast group (a /32 route) or
4544 * anything in between. If there is no such multicast route, we just find
4545 * any multicast capable interface and return it. The returned ipif
4546 * is refhold’ed.
4547 *
4548 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4549 * unicast table. This is used by CGTP.

new/usr/src/uts/common/inet/ip/ip_if.c 70

4550 */
4551 ill_t *
4552 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4553 boolean_t *multirtp, ipaddr_t *setsrcp)
4554 {
4555 ill_t *ill;

4557 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4558 if (ill != NULL)
4559 return (ill);

4561 return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4562 }

4564 /*
4565 * Look for an ipif with the specified interface address and destination.
4566 * The destination address is used only for matching point-to-point interfaces.
4567 */
4568 ipif_t *
4569 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4570 {
4571 ipif_t *ipif;
4572 ill_t *ill;
4573 ill_walk_context_t ctx;

4575 /*
4576 * First match all the point-to-point interfaces
4577 * before looking at non-point-to-point interfaces.
4578 * This is done to avoid returning non-point-to-point
4579 * ipif instead of unnumbered point-to-point ipif.
4580 */
4581 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4582 ill = ILL_START_WALK_V4(&ctx, ipst);
4583 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4584 mutex_enter(&ill->ill_lock);
4585 for (ipif = ill->ill_ipif; ipif != NULL;
4586 ipif = ipif->ipif_next) {
4587 /* Allow the ipif to be down */
4588 if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4589 (ipif->ipif_lcl_addr == if_addr) &&
4590 (ipif->ipif_pp_dst_addr == dst)) {
4591 if (!IPIF_IS_CONDEMNED(ipif)) {
4592 ipif_refhold_locked(ipif);
4593 mutex_exit(&ill->ill_lock);
4594 rw_exit(&ipst->ips_ill_g_lock);
4595 return (ipif);
4596 }
4597 }
4598 }
4599 mutex_exit(&ill->ill_lock);
4600 }
4601 rw_exit(&ipst->ips_ill_g_lock);

4603 /* lookup the ipif based on interface address */
4604 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4605 ASSERT(ipif == NULL || !ipif->ipif_isv6);
4606 return (ipif);
4607 }

4609 /*
4610 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4611 */
4612 static ipif_t *
4613 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4614 zoneid_t zoneid, ip_stack_t *ipst)
4615 {

new/usr/src/uts/common/inet/ip/ip_if.c 71

4616 ipif_t *ipif;
4617 ill_t *ill;
4618 boolean_t ptp = B_FALSE;
4619 ill_walk_context_t ctx;
4620 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4621 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);

4623 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4624 /*
4625 * Repeat twice, first based on local addresses and
4626 * next time for pointopoint.
4627 */
4628 repeat:
4629 ill = ILL_START_WALK_V4(&ctx, ipst);
4630 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4631 if (match_ill != NULL && ill != match_ill &&
4632 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4633 continue;
4634 }
4635 mutex_enter(&ill->ill_lock);
4636 for (ipif = ill->ill_ipif; ipif != NULL;
4637 ipif = ipif->ipif_next) {
4638 if (zoneid != ALL_ZONES &&
4639 zoneid != ipif->ipif_zoneid &&
4640 ipif->ipif_zoneid != ALL_ZONES)
4641 continue;

4643 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4644 continue;

4646 /* Allow the ipif to be down */
4647 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4648 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4649 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4650 (ipif->ipif_pp_dst_addr == addr))) {
4651 if (!IPIF_IS_CONDEMNED(ipif)) {
4652 ipif_refhold_locked(ipif);
4653 mutex_exit(&ill->ill_lock);
4654 rw_exit(&ipst->ips_ill_g_lock);
4655 return (ipif);
4656 }
4657 }
4658 }
4659 mutex_exit(&ill->ill_lock);
4660 }

4662 /* If we already did the ptp case, then we are done */
4663 if (ptp) {
4664 rw_exit(&ipst->ips_ill_g_lock);
4665 return (NULL);
4666 }
4667 ptp = B_TRUE;
4668 goto repeat;
4669 }

4671 /*
4672 * Lookup an ipif with the specified address. For point-to-point links we
4673 * look for matches on either the destination address or the local address,
4674 * but we skip the local address check if IPIF_UNNUMBERED is set. If the
4675 * ‘match_ill’ argument is non-NULL, the lookup is restricted to that ill
4676 * (or illgrp if ‘match_ill’ is in an IPMP group).
4677 */
4678 ipif_t *
4679 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4680 ip_stack_t *ipst)
4681 {

new/usr/src/uts/common/inet/ip/ip_if.c 72

4682 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4683 zoneid, ipst));
4684 }

4686 /*
4687 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4688 * except that we will only return an address if it is not marked as
4689 * IPIF_DUPLICATE
4690 */
4691 ipif_t *
4692 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4693 ip_stack_t *ipst)
4694 {
4695 return (ipif_lookup_addr_common(addr, match_ill,
4696 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4697 zoneid, ipst));
4698 }

4700 /*
4701 * Special abbreviated version of ipif_lookup_addr() that doesn’t match
4702 * ‘match_ill’ across the IPMP group. This function is only needed in some
4703 * corner-cases; almost everything should use ipif_lookup_addr().
4704 */
4705 ipif_t *
4706 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4707 {
4708 ASSERT(match_ill != NULL);
4709 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4710 ipst));
4711 }

4713 /*
4714 * Look for an ipif with the specified address. For point-point links
4715 * we look for matches on either the destination address and the local
4716 * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4717 * is set.
4718 * If the ‘match_ill’ argument is non-NULL, the lookup is restricted to that
4719 * ill (or illgrp if ‘match_ill’ is in an IPMP group).
4720 * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4721 */
4722 zoneid_t
4723 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4724 {
4725 zoneid_t zoneid;
4726 ipif_t *ipif;
4727 ill_t *ill;
4728 boolean_t ptp = B_FALSE;
4729 ill_walk_context_t ctx;

4731 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4732 /*
4733 * Repeat twice, first based on local addresses and
4734 * next time for pointopoint.
4735 */
4736 repeat:
4737 ill = ILL_START_WALK_V4(&ctx, ipst);
4738 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4739 if (match_ill != NULL && ill != match_ill &&
4740 !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4741 continue;
4742 }
4743 mutex_enter(&ill->ill_lock);
4744 for (ipif = ill->ill_ipif; ipif != NULL;
4745 ipif = ipif->ipif_next) {
4746 /* Allow the ipif to be down */
4747 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&

new/usr/src/uts/common/inet/ip/ip_if.c 73

4748 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4749 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4750 (ipif->ipif_pp_dst_addr == addr)) &&
4751 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4752 zoneid = ipif->ipif_zoneid;
4753 mutex_exit(&ill->ill_lock);
4754 rw_exit(&ipst->ips_ill_g_lock);
4755 /*
4756 * If ipif_zoneid was ALL_ZONES then we have
4757 * a trusted extensions shared IP address.
4758 * In that case GLOBAL_ZONEID works to send.
4759 */
4760 if (zoneid == ALL_ZONES)
4761 zoneid = GLOBAL_ZONEID;
4762 return (zoneid);
4763 }
4764 }
4765 mutex_exit(&ill->ill_lock);
4766 }

4768 /* If we already did the ptp case, then we are done */
4769 if (ptp) {
4770 rw_exit(&ipst->ips_ill_g_lock);
4771 return (ALL_ZONES);
4772 }
4773 ptp = B_TRUE;
4774 goto repeat;
4775 }

4777 /*
4778 * Look for an ipif that matches the specified remote address i.e. the
4779 * ipif that would receive the specified packet.
4780 * First look for directly connected interfaces and then do a recursive
4781 * IRE lookup and pick the first ipif corresponding to the source address in the
4782 * ire.
4783 * Returns: held ipif
4784 *
4785 * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4786 */
4787 ipif_t *
4788 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4789 {
4790 ipif_t *ipif;

4792 ASSERT(!ill->ill_isv6);

4794 /*
4795 * Someone could be changing this ipif currently or change it
4796 * after we return this. Thus a few packets could use the old
4797 * old values. However structure updates/creates (ire, ilg, ilm etc)
4798 * will atomically be updated or cleaned up with the new value
4799 * Thus we don’t need a lock to check the flags or other attrs below.
4800 */
4801 mutex_enter(&ill->ill_lock);
4802 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4803 if (IPIF_IS_CONDEMNED(ipif))
4804 continue;
4805 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4806 ipif->ipif_zoneid != ALL_ZONES)
4807 continue;
4808 /* Allow the ipif to be down */
4809 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4810 if ((ipif->ipif_pp_dst_addr == addr) ||
4811 (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4812 ipif->ipif_lcl_addr == addr)) {
4813 ipif_refhold_locked(ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 74

4814 mutex_exit(&ill->ill_lock);
4815 return (ipif);
4816 }
4817 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4818 ipif_refhold_locked(ipif);
4819 mutex_exit(&ill->ill_lock);
4820 return (ipif);
4821 }
4822 }
4823 mutex_exit(&ill->ill_lock);
4824 /*
4825 * For a remote destination it isn’t possible to nail down a particular
4826 * ipif.
4827 */

4829 /* Pick the first interface */
4830 ipif = ipif_get_next_ipif(NULL, ill);
4831 return (ipif);
4832 }

4834 /*
4835 * This func does not prevent refcnt from increasing. But if
4836 * the caller has taken steps to that effect, then this func
4837 * can be used to determine whether the ill has become quiescent
4838 */
4839 static boolean_t
4840 ill_is_quiescent(ill_t *ill)
4841 {
4842 ipif_t *ipif;

4844 ASSERT(MUTEX_HELD(&ill->ill_lock));

4846 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4847 if (ipif->ipif_refcnt != 0)
4848 return (B_FALSE);
4849 }
4850 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4851 return (B_FALSE);
4852 }
4853 return (B_TRUE);
4854 }

4856 boolean_t
4857 ill_is_freeable(ill_t *ill)
4858 {
4859 ipif_t *ipif;

4861 ASSERT(MUTEX_HELD(&ill->ill_lock));

4863 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4864 if (ipif->ipif_refcnt != 0) {
4865 return (B_FALSE);
4866 }
4867 }
4868 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4869 return (B_FALSE);
4870 }
4871 return (B_TRUE);
4872 }

4874 /*
4875 * This func does not prevent refcnt from increasing. But if
4876 * the caller has taken steps to that effect, then this func
4877 * can be used to determine whether the ipif has become quiescent
4878 */
4879 static boolean_t

new/usr/src/uts/common/inet/ip/ip_if.c 75

4880 ipif_is_quiescent(ipif_t *ipif)
4881 {
4882 ill_t *ill;

4884 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));

4886 if (ipif->ipif_refcnt != 0)
4887 return (B_FALSE);

4889 ill = ipif->ipif_ill;
4890 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4891 ill->ill_logical_down) {
4892 return (B_TRUE);
4893 }

4895 /* This is the last ipif going down or being deleted on this ill */
4896 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4897 return (B_FALSE);
4898 }

4900 return (B_TRUE);
4901 }

4903 /*
4904 * return true if the ipif can be destroyed: the ipif has to be quiescent
4905 * with zero references from ire/ilm to it.
4906 */
4907 static boolean_t
4908 ipif_is_freeable(ipif_t *ipif)
4909 {
4910 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4911 ASSERT(ipif->ipif_id != 0);
4912 return (ipif->ipif_refcnt == 0);
4913 }

4915 /*
4916 * The ipif/ill/ire has been refreled. Do the tail processing.
4917 * Determine if the ipif or ill in question has become quiescent and if so
4918 * wakeup close and/or restart any queued pending ioctl that is waiting
4919 * for the ipif_down (or ill_down)
4920 */
4921 void
4922 ipif_ill_refrele_tail(ill_t *ill)
4923 {
4924 mblk_t *mp;
4925 conn_t *connp;
4926 ipsq_t *ipsq;
4927 ipxop_t *ipx;
4928 ipif_t *ipif;
4929 dl_notify_ind_t *dlindp;

4931 ASSERT(MUTEX_HELD(&ill->ill_lock));

4933 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4934 /* ip_modclose() may be waiting */
4935 cv_broadcast(&ill->ill_cv);
4936 }

4938 ipsq = ill->ill_phyint->phyint_ipsq;
4939 mutex_enter(&ipsq->ipsq_lock);
4940 ipx = ipsq->ipsq_xop;
4941 mutex_enter(&ipx->ipx_lock);
4942 if (ipx->ipx_waitfor == 0) /* no one’s waiting; bail */
4943 goto unlock;

4945 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);

new/usr/src/uts/common/inet/ip/ip_if.c 76

4947 ipif = ipx->ipx_pending_ipif;
4948 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */
4949 goto unlock;

4951 switch (ipx->ipx_waitfor) {
4952 case IPIF_DOWN:
4953 if (!ipif_is_quiescent(ipif))
4954 goto unlock;
4955 break;
4956 case IPIF_FREE:
4957 if (!ipif_is_freeable(ipif))
4958 goto unlock;
4959 break;
4960 case ILL_DOWN:
4961 if (!ill_is_quiescent(ill))
4962 goto unlock;
4963 break;
4964 case ILL_FREE:
4965 /*
4966 * ILL_FREE is only for loopback; normal ill teardown waits
4967 * synchronously in ip_modclose() without using ipx_waitfor,
4968 * handled by the cv_broadcast() at the top of this function.
4969 */
4970 if (!ill_is_freeable(ill))
4971 goto unlock;
4972 break;
4973 default:
4974 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4975 (void *)ipsq, ipx->ipx_waitfor);
4976 }

4978 ill_refhold_locked(ill); /* for qwriter_ip() call below */
4979 mutex_exit(&ipx->ipx_lock);
4980 mp = ipsq_pending_mp_get(ipsq, &connp);
4981 mutex_exit(&ipsq->ipsq_lock);
4982 mutex_exit(&ill->ill_lock);

4984 ASSERT(mp != NULL);
4985 /*
4986 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4987 * we can only get here when the current operation decides it
4988 * it needs to quiesce via ipsq_pending_mp_add().
4989 */
4990 switch (mp->b_datap->db_type) {
4991 case M_PCPROTO:
4992 case M_PROTO:
4993 /*
4994 * For now, only DL_NOTIFY_IND messages can use this facility.
4995 */
4996 dlindp = (dl_notify_ind_t *)mp->b_rptr;
4997 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);

4999 switch (dlindp->dl_notification) {
5000 case DL_NOTE_PHYS_ADDR:
5001 qwriter_ip(ill, ill->ill_rq, mp,
5002 ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5003 return;
5004 case DL_NOTE_REPLUMB:
5005 qwriter_ip(ill, ill->ill_rq, mp,
5006 ill_replumb_tail, CUR_OP, B_TRUE);
5007 return;
5008 default:
5009 ASSERT(0);
5010 ill_refrele(ill);
5011 }

new/usr/src/uts/common/inet/ip/ip_if.c 77

5012 break;

5014 case M_ERROR:
5015 case M_HANGUP:
5016 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5017 B_TRUE);
5018 return;

5020 case M_IOCTL:
5021 case M_IOCDATA:
5022 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5023 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5024 return;

5026 default:
5027 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5028 "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5029 }
5030 return;
5031 unlock:
5032 mutex_exit(&ipsq->ipsq_lock);
5033 mutex_exit(&ipx->ipx_lock);
5034 mutex_exit(&ill->ill_lock);
5035 }

5037 #ifdef DEBUG
5038 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5039 static void
5040 th_trace_rrecord(th_trace_t *th_trace)
5041 {
5042 tr_buf_t *tr_buf;
5043 uint_t lastref;

5045 lastref = th_trace->th_trace_lastref;
5046 lastref++;
5047 if (lastref == TR_BUF_MAX)
5048 lastref = 0;
5049 th_trace->th_trace_lastref = lastref;
5050 tr_buf = &th_trace->th_trbuf[lastref];
5051 tr_buf->tr_time = ddi_get_lbolt();
5052 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5053 }

5055 static void
5056 th_trace_free(void *value)
5057 {
5058 th_trace_t *th_trace = value;

5060 ASSERT(th_trace->th_refcnt == 0);
5061 kmem_free(th_trace, sizeof (*th_trace));
5062 }

5064 /*
5065 * Find or create the per-thread hash table used to track object references.
5066 * The ipst argument is NULL if we shouldn’t allocate.
5067 *
5068 * Accesses per-thread data, so there’s no need to lock here.
5069 */
5070 static mod_hash_t *
5071 th_trace_gethash(ip_stack_t *ipst)
5072 {
5073 th_hash_t *thh;

5075 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5076 mod_hash_t *mh;
5077 char name[256];

new/usr/src/uts/common/inet/ip/ip_if.c 78

5078 size_t objsize, rshift;
5079 int retv;

5081 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5082 return (NULL);
5083 (void) snprintf(name, sizeof (name), "th_trace_%p",
5084 (void *)curthread);

5086 /*
5087 * We use mod_hash_create_extended here rather than the more
5088 * obvious mod_hash_create_ptrhash because the latter has a
5089 * hard-coded KM_SLEEP, and we’d prefer to fail rather than
5090 * block.
5091 */
5092 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5093 MAX(sizeof (ire_t), sizeof (ncec_t)));
5094 rshift = highbit(objsize);
5095 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5096 th_trace_free, mod_hash_byptr, (void *)rshift,
5097 mod_hash_ptrkey_cmp, KM_NOSLEEP);
5098 if (mh == NULL) {
5099 kmem_free(thh, sizeof (*thh));
5100 return (NULL);
5101 }
5102 thh->thh_hash = mh;
5103 thh->thh_ipst = ipst;
5104 /*
5105 * We trace ills, ipifs, ires, and nces. All of these are
5106 * per-IP-stack, so the lock on the thread list is as well.
5107 */
5108 rw_enter(&ip_thread_rwlock, RW_WRITER);
5109 list_insert_tail(&ip_thread_list, thh);
5110 rw_exit(&ip_thread_rwlock);
5111 retv = tsd_set(ip_thread_data, thh);
5112 ASSERT(retv == 0);
5113 }
5114 return (thh != NULL ? thh->thh_hash : NULL);
5115 }

5117 boolean_t
5118 th_trace_ref(const void *obj, ip_stack_t *ipst)
5119 {
5120 th_trace_t *th_trace;
5121 mod_hash_t *mh;
5122 mod_hash_val_t val;

5124 if ((mh = th_trace_gethash(ipst)) == NULL)
5125 return (B_FALSE);

5127 /*
5128 * Attempt to locate the trace buffer for this obj and thread.
5129 * If it does not exist, then allocate a new trace buffer and
5130 * insert into the hash.
5131 */
5132 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5133 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5134 if (th_trace == NULL)
5135 return (B_FALSE);

5137 th_trace->th_id = curthread;
5138 if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5139 (mod_hash_val_t)th_trace) != 0) {
5140 kmem_free(th_trace, sizeof (th_trace_t));
5141 return (B_FALSE);
5142 }
5143 } else {

new/usr/src/uts/common/inet/ip/ip_if.c 79

5144 th_trace = (th_trace_t *)val;
5145 }

5147 ASSERT(th_trace->th_refcnt >= 0 &&
5148 th_trace->th_refcnt < TR_BUF_MAX - 1);

5150 th_trace->th_refcnt++;
5151 th_trace_rrecord(th_trace);
5152 return (B_TRUE);
5153 }

5155 /*
5156 * For the purpose of tracing a reference release, we assume that global
5157 * tracing is always on and that the same thread initiated the reference hold
5158 * is releasing.
5159 */
5160 void
5161 th_trace_unref(const void *obj)
5162 {
5163 int retv;
5164 mod_hash_t *mh;
5165 th_trace_t *th_trace;
5166 mod_hash_val_t val;

5168 mh = th_trace_gethash(NULL);
5169 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5170 ASSERT(retv == 0);
5171 th_trace = (th_trace_t *)val;

5173 ASSERT(th_trace->th_refcnt > 0);
5174 th_trace->th_refcnt--;
5175 th_trace_rrecord(th_trace);
5176 }

5178 /*
5179 * If tracing has been disabled, then we assume that the reference counts are
5180 * now useless, and we clear them out before destroying the entries.
5181 */
5182 void
5183 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5184 {
5185 th_hash_t *thh;
5186 mod_hash_t *mh;
5187 mod_hash_val_t val;
5188 th_trace_t *th_trace;
5189 int retv;

5191 rw_enter(&ip_thread_rwlock, RW_READER);
5192 for (thh = list_head(&ip_thread_list); thh != NULL;
5193 thh = list_next(&ip_thread_list, thh)) {
5194 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5195 &val) == 0) {
5196 th_trace = (th_trace_t *)val;
5197 if (trace_disable)
5198 th_trace->th_refcnt = 0;
5199 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5200 ASSERT(retv == 0);
5201 }
5202 }
5203 rw_exit(&ip_thread_rwlock);
5204 }

5206 void
5207 ipif_trace_ref(ipif_t *ipif)
5208 {
5209 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));

new/usr/src/uts/common/inet/ip/ip_if.c 80

5211 if (ipif->ipif_trace_disable)
5212 return;

5214 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5215 ipif->ipif_trace_disable = B_TRUE;
5216 ipif_trace_cleanup(ipif);
5217 }
5218 }

5220 void
5221 ipif_untrace_ref(ipif_t *ipif)
5222 {
5223 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));

5225 if (!ipif->ipif_trace_disable)
5226 th_trace_unref(ipif);
5227 }

5229 void
5230 ill_trace_ref(ill_t *ill)
5231 {
5232 ASSERT(MUTEX_HELD(&ill->ill_lock));

5234 if (ill->ill_trace_disable)
5235 return;

5237 if (!th_trace_ref(ill, ill->ill_ipst)) {
5238 ill->ill_trace_disable = B_TRUE;
5239 ill_trace_cleanup(ill);
5240 }
5241 }

5243 void
5244 ill_untrace_ref(ill_t *ill)
5245 {
5246 ASSERT(MUTEX_HELD(&ill->ill_lock));

5248 if (!ill->ill_trace_disable)
5249 th_trace_unref(ill);
5250 }

5252 /*
5253 * Called when ipif is unplumbed or when memory alloc fails. Note that on
5254 * failure, ipif_trace_disable is set.
5255 */
5256 static void
5257 ipif_trace_cleanup(const ipif_t *ipif)
5258 {
5259 th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5260 }

5262 /*
5263 * Called when ill is unplumbed or when memory alloc fails. Note that on
5264 * failure, ill_trace_disable is set.
5265 */
5266 static void
5267 ill_trace_cleanup(const ill_t *ill)
5268 {
5269 th_trace_cleanup(ill, ill->ill_trace_disable);
5270 }
5271 #endif /* DEBUG */

5273 void
5274 ipif_refhold_locked(ipif_t *ipif)
5275 {

new/usr/src/uts/common/inet/ip/ip_if.c 81

5276 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5277 ipif->ipif_refcnt++;
5278 IPIF_TRACE_REF(ipif);
5279 }

5281 void
5282 ipif_refhold(ipif_t *ipif)
5283 {
5284 ill_t *ill;

5286 ill = ipif->ipif_ill;
5287 mutex_enter(&ill->ill_lock);
5288 ipif->ipif_refcnt++;
5289 IPIF_TRACE_REF(ipif);
5290 mutex_exit(&ill->ill_lock);
5291 }

5293 /*
5294 * Must not be called while holding any locks. Otherwise if this is
5295 * the last reference to be released there is a chance of recursive mutex
5296 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5297 * to restart an ioctl.
5298 */
5299 void
5300 ipif_refrele(ipif_t *ipif)
5301 {
5302 ill_t *ill;

5304 ill = ipif->ipif_ill;

5306 mutex_enter(&ill->ill_lock);
5307 ASSERT(ipif->ipif_refcnt != 0);
5308 ipif->ipif_refcnt--;
5309 IPIF_UNTRACE_REF(ipif);
5310 if (ipif->ipif_refcnt != 0) {
5311 mutex_exit(&ill->ill_lock);
5312 return;
5313 }

5315 /* Drops the ill_lock */
5316 ipif_ill_refrele_tail(ill);
5317 }

5319 ipif_t *
5320 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5321 {
5322 ipif_t *ipif;

5324 mutex_enter(&ill->ill_lock);
5325 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5326 ipif != NULL; ipif = ipif->ipif_next) {
5327 if (IPIF_IS_CONDEMNED(ipif))
5328 continue;
5329 ipif_refhold_locked(ipif);
5330 mutex_exit(&ill->ill_lock);
5331 return (ipif);
5332 }
5333 mutex_exit(&ill->ill_lock);
5334 return (NULL);
5335 }

5337 /*
5338 * TODO: make this table extendible at run time
5339 * Return a pointer to the mac type info for ’mac_type’
5340 */
5341 static ip_m_t *

new/usr/src/uts/common/inet/ip/ip_if.c 82

5342 ip_m_lookup(t_uscalar_t mac_type)
5343 {
5344 ip_m_t *ipm;

5346 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5347 if (ipm->ip_m_mac_type == mac_type)
5348 return (ipm);
5349 return (NULL);
5350 }

5352 /*
5353 * Make a link layer address from the multicast IP address *addr.
5354 * To form the link layer address, invoke the ip_m_v*mapping function
5355 * associated with the link-layer type.
5356 */
5357 void
5358 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5359 {
5360 ip_m_t *ipm;

5362 if (ill->ill_net_type == IRE_IF_NORESOLVER)
5363 return;

5365 ASSERT(addr != NULL);

5367 ipm = ip_m_lookup(ill->ill_mactype);
5368 if (ipm == NULL ||
5369 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5370 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5371 ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5372 ill->ill_name, ill->ill_mactype));
5373 return;
5374 }
5375 if (ill->ill_isv6)
5376 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5377 else
5378 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5379 }

5381 /*
5382 * Returns B_FALSE if the IPv4 netmask pointed by ‘mask’ is non-contiguous.
5383 * Otherwise returns B_TRUE.
5384 *
5385 * The netmask can be verified to be contiguous with 32 shifts and or
5386 * operations. Take the contiguous mask (in host byte order) and compute
5387 * mask | mask << 1 | mask << 2 | ... | mask << 31
5388 * the result will be the same as the ’mask’ for contiguous mask.
5389 */
5390 static boolean_t
5391 ip_contiguous_mask(uint32_t mask)
5392 {
5393 uint32_t m = mask;
5394 int i;

5396 for (i = 1; i < 32; i++)
5397 m |= (mask << i);

5399 return (m == mask);
5400 }

5402 /*
5403 * ip_rt_add is called to add an IPv4 route to the forwarding table.
5404 * ill is passed in to associate it with the correct interface.
5405 * If ire_arg is set, then we return the held IRE in that location.
5406 */
5407 int

new/usr/src/uts/common/inet/ip/ip_if.c 83

5408 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5409 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5410 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5411 {
5412 ire_t *ire, *nire;
5413 ire_t *gw_ire = NULL;
5414 ipif_t *ipif = NULL;
5415 uint_t type;
5416 int match_flags = MATCH_IRE_TYPE;
5417 tsol_gc_t *gc = NULL;
5418 tsol_gcgrp_t *gcgrp = NULL;
5419 boolean_t gcgrp_xtraref = B_FALSE;
5420 boolean_t cgtp_broadcast;
5421 boolean_t unbound = B_FALSE;

5423 ip1dbg(("ip_rt_add:"));

5425 if (ire_arg != NULL)
5426 *ire_arg = NULL;

5428 /* disallow non-contiguous netmasks */
5429 if (!ip_contiguous_mask(ntohl(mask)))
5430 return (ENOTSUP);

5432 /*
5433 * If this is the case of RTF_HOST being set, then we set the netmask
5434 * to all ones (regardless if one was supplied).
5435 */
5436 if (flags & RTF_HOST)
5437 mask = IP_HOST_MASK;

5439 /*
5440 * Prevent routes with a zero gateway from being created (since
5441 * interfaces can currently be plumbed and brought up no assigned
5442 * address).
5443 */
5444 if (gw_addr == 0)
5445 return (ENETUNREACH);
5446 /*
5447 * Get the ipif, if any, corresponding to the gw_addr
5448 * If -ifp was specified we restrict ourselves to the ill, otherwise
5449 * we match on the gatway and destination to handle unnumbered pt-pt
5450 * interfaces.
5451 */
5452 if (ill != NULL)
5453 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5454 else
5455 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5456 if (ipif != NULL) {
5457 if (IS_VNI(ipif->ipif_ill)) {
5458 ipif_refrele(ipif);
5459 return (EINVAL);
5460 }
5461 }

5463 /*
5464 * GateD will attempt to create routes with a loopback interface
5465 * address as the gateway and with RTF_GATEWAY set. We allow
5466 * these routes to be added, but create them as interface routes
5467 * since the gateway is an interface address.
5468 */
5469 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5470 flags &= ~RTF_GATEWAY;
5471 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5472 mask == IP_HOST_MASK) {
5473 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,

new/usr/src/uts/common/inet/ip/ip_if.c 84

5474 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5475 NULL);
5476 if (ire != NULL) {
5477 ire_refrele(ire);
5478 ipif_refrele(ipif);
5479 return (EEXIST);
5480 }
5481 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5482 "for 0x%x\n", (void *)ipif,
5483 ipif->ipif_ire_type,
5484 ntohl(ipif->ipif_lcl_addr)));
5485 ire = ire_create(
5486 (uchar_t *)&dst_addr, /* dest address */
5487 (uchar_t *)&mask, /* mask */
5488 NULL, /* no gateway */
5489 ipif->ipif_ire_type, /* LOOPBACK */
5490 ipif->ipif_ill,
5491 zoneid,
5492 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5493 NULL,
5494 ipst);

5496 if (ire == NULL) {
5497 ipif_refrele(ipif);
5498 return (ENOMEM);
5499 }
5500 /* src address assigned by the caller? */
5501 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5502 ire->ire_setsrc_addr = src_addr;

5504 nire = ire_add(ire);
5505 if (nire == NULL) {
5506 /*
5507 * In the result of failure, ire_add() will have
5508 * already deleted the ire in question, so there
5509 * is no need to do that here.
5510 */
5511 ipif_refrele(ipif);
5512 return (ENOMEM);
5513 }
5514 /*
5515 * Check if it was a duplicate entry. This handles
5516 * the case of two racing route adds for the same route
5517 */
5518 if (nire != ire) {
5519 ASSERT(nire->ire_identical_ref > 1);
5520 ire_delete(nire);
5521 ire_refrele(nire);
5522 ipif_refrele(ipif);
5523 return (EEXIST);
5524 }
5525 ire = nire;
5526 goto save_ire;
5527 }
5528 }

5530 /*
5531 * The routes for multicast with CGTP are quite special in that
5532 * the gateway is the local interface address, yet RTF_GATEWAY
5533 * is set. We turn off RTF_GATEWAY to provide compatibility with
5534 * this undocumented and unusual use of multicast routes.
5535 */
5536 if ((flags & RTF_MULTIRT) && ipif != NULL)
5537 flags &= ~RTF_GATEWAY;

5539 /*

new/usr/src/uts/common/inet/ip/ip_if.c 85

5540 * Traditionally, interface routes are ones where RTF_GATEWAY isn’t set
5541 * and the gateway address provided is one of the system’s interface
5542 * addresses. By using the routing socket interface and supplying an
5543 * RTA_IFP sockaddr with an interface index, an alternate method of
5544 * specifying an interface route to be created is available which uses
5545 * the interface index that specifies the outgoing interface rather than
5546 * the address of an outgoing interface (which may not be able to
5547 * uniquely identify an interface). When coupled with the RTF_GATEWAY
5548 * flag, routes can be specified which not only specify the next-hop to
5549 * be used when routing to a certain prefix, but also which outgoing
5550 * interface should be used.
5551 *
5552 * Previously, interfaces would have unique addresses assigned to them
5553 * and so the address assigned to a particular interface could be used
5554 * to identify a particular interface. One exception to this was the
5555 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5556 *
5557 * With the advent of IPv6 and its link-local addresses, this
5558 * restriction was relaxed and interfaces could share addresses between
5559 * themselves. In fact, typically all of the link-local interfaces on
5560 * an IPv6 node or router will have the same link-local address. In
5561 * order to differentiate between these interfaces, the use of an
5562 * interface index is necessary and this index can be carried inside a
5563 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction
5564 * of using the interface index, however, is that all of the ipif’s that
5565 * are part of an ill have the same index and so the RTA_IFP sockaddr
5566 * cannot be used to differentiate between ipif’s (or logical
5567 * interfaces) that belong to the same ill (physical interface).
5568 *
5569 * For example, in the following case involving IPv4 interfaces and
5570 * logical interfaces
5571 *
5572 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0
5573 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0
5574 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0
5575 *
5576 * the ipif’s corresponding to each of these interface routes can be
5577 * uniquely identified by the "gateway" (actually interface address).
5578 *
5579 * In this case involving multiple IPv6 default routes to a particular
5580 * link-local gateway, the use of RTA_IFP is necessary to specify which
5581 * default route is of interest:
5582 *
5583 * default fe80::123:4567:89ab:cdef U if0
5584 * default fe80::123:4567:89ab:cdef U if1
5585 */

5587 /* RTF_GATEWAY not set */
5588 if (!(flags & RTF_GATEWAY)) {
5589 if (sp != NULL) {
5590 ip2dbg(("ip_rt_add: gateway security attributes "
5591 "cannot be set with interface route\n"));
5592 if (ipif != NULL)
5593 ipif_refrele(ipif);
5594 return (EINVAL);
5595 }

5597 /*
5598 * Whether or not ill (RTA_IFP) is set, we require that
5599 * the gateway is one of our local addresses.
5600 */
5601 if (ipif == NULL)
5602 return (ENETUNREACH);

5604 /*
5605 * We use MATCH_IRE_ILL here. If the caller specified an

new/usr/src/uts/common/inet/ip/ip_if.c 86

5606 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5607 * we use the ill derived from the gateway address.
5608 * We can always match the gateway address since we record it
5609 * in ire_gateway_addr.
5610 * We don’t allow RTA_IFP to specify a different ill than the
5611 * one matching the ipif to make sure we can delete the route.
5612 */
5613 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5614 if (ill == NULL) {
5615 ill = ipif->ipif_ill;
5616 } else if (ill != ipif->ipif_ill) {
5617 ipif_refrele(ipif);
5618 return (EINVAL);
5619 }

5621 /*
5622 * We check for an existing entry at this point.
5623 *
5624 * Since a netmask isn’t passed in via the ioctl interface
5625 * (SIOCADDRT), we don’t check for a matching netmask in that
5626 * case.
5627 */
5628 if (!ioctl_msg)
5629 match_flags |= MATCH_IRE_MASK;
5630 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5631 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5632 NULL);
5633 if (ire != NULL) {
5634 ire_refrele(ire);
5635 ipif_refrele(ipif);
5636 return (EEXIST);
5637 }

5639 /*
5640 * Some software (for example, GateD and Sun Cluster) attempts
5641 * to create (what amount to) IRE_PREFIX routes with the
5642 * loopback address as the gateway. This is primarily done to
5643 * set up prefixes with the RTF_REJECT flag set (for example,
5644 * when generating aggregate routes.)
5645 *
5646 * If the IRE type (as defined by ill->ill_net_type) would be
5647 * IRE_LOOPBACK, then we map the request into a
5648 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5649 * these interface routes, by definition, can only be that.
5650 *
5651 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5652 * routine, but rather using ire_create() directly.
5653 *
5654 */
5655 type = ill->ill_net_type;
5656 if (type == IRE_LOOPBACK) {
5657 type = IRE_IF_NORESOLVER;
5658 flags |= RTF_BLACKHOLE;
5659 }

5661 /*
5662 * Create a copy of the IRE_IF_NORESOLVER or
5663 * IRE_IF_RESOLVER with the modified address, netmask, and
5664 * gateway.
5665 */
5666 ire = ire_create(
5667 (uchar_t *)&dst_addr,
5668 (uint8_t *)&mask,
5669 (uint8_t *)&gw_addr,
5670 type,
5671 ill,

new/usr/src/uts/common/inet/ip/ip_if.c 87

5672 zoneid,
5673 flags,
5674 NULL,
5675 ipst);
5676 if (ire == NULL) {
5677 ipif_refrele(ipif);
5678 return (ENOMEM);
5679 }

5681 /* src address assigned by the caller? */
5682 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5683 ire->ire_setsrc_addr = src_addr;

5685 nire = ire_add(ire);
5686 if (nire == NULL) {
5687 /*
5688 * In the result of failure, ire_add() will have
5689 * already deleted the ire in question, so there
5690 * is no need to do that here.
5691 */
5692 ipif_refrele(ipif);
5693 return (ENOMEM);
5694 }
5695 /*
5696 * Check if it was a duplicate entry. This handles
5697 * the case of two racing route adds for the same route
5698 */
5699 if (nire != ire) {
5700 ire_delete(nire);
5701 ire_refrele(nire);
5702 ipif_refrele(ipif);
5703 return (EEXIST);
5704 }
5705 ire = nire;
5706 goto save_ire;
5707 }

5709 /*
5710 * Get an interface IRE for the specified gateway.
5711 * If we don’t have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5712 * gateway, it is currently unreachable and we fail the request
5713 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5714 * is an IRE_LOCAL or IRE_LOOPBACK.
5715 * If RTA_IFP was specified we look on that particular ill.
5716 */
5717 if (ill != NULL)
5718 match_flags |= MATCH_IRE_ILL;

5720 /* Check whether the gateway is reachable. */
5721 again:
5722 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5723 if (flags & RTF_INDIRECT)
5724 type |= IRE_OFFLINK;

5726 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5727 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5728 if (gw_ire == NULL) {
5729 /*
5730 * With IPMP, we allow host routes to influence in.mpathd’s
5731 * target selection. However, if the test addresses are on
5732 * their own network, the above lookup will fail since the
5733 * underlying IRE_INTERFACEs are marked hidden. So allow
5734 * hidden test IREs to be found and try again.
5735 */
5736 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) {
5737 match_flags |= MATCH_IRE_TESTHIDDEN;

new/usr/src/uts/common/inet/ip/ip_if.c 88

5738 goto again;
5739 }
5740 if (ipif != NULL)
5741 ipif_refrele(ipif);
5742 return (ENETUNREACH);
5743 }
5744 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5745 ire_refrele(gw_ire);
5746 if (ipif != NULL)
5747 ipif_refrele(ipif);
5748 return (ENETUNREACH);
5749 }

5751 if (ill == NULL && !(flags & RTF_INDIRECT)) {
5752 unbound = B_TRUE;
5753 if (ipst->ips_ip_strict_src_multihoming > 0)
5754 ill = gw_ire->ire_ill;
5755 }

5757 /*
5758 * We create one of three types of IREs as a result of this request
5759 * based on the netmask. A netmask of all ones (which is automatically
5760 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5761 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5762 * created. Otherwise, an IRE_PREFIX route is created for the
5763 * destination prefix.
5764 */
5765 if (mask == IP_HOST_MASK)
5766 type = IRE_HOST;
5767 else if (mask == 0)
5768 type = IRE_DEFAULT;
5769 else
5770 type = IRE_PREFIX;

5772 /* check for a duplicate entry */
5773 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5774 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5775 0, ipst, NULL);
5776 if (ire != NULL) {
5777 if (ipif != NULL)
5778 ipif_refrele(ipif);
5779 ire_refrele(gw_ire);
5780 ire_refrele(ire);
5781 return (EEXIST);
5782 }

5784 /* Security attribute exists */
5785 if (sp != NULL) {
5786 tsol_gcgrp_addr_t ga;

5788 /* find or create the gateway credentials group */
5789 ga.ga_af = AF_INET;
5790 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);

5792 /* we hold reference to it upon success */
5793 gcgrp = gcgrp_lookup(&ga, B_TRUE);
5794 if (gcgrp == NULL) {
5795 if (ipif != NULL)
5796 ipif_refrele(ipif);
5797 ire_refrele(gw_ire);
5798 return (ENOMEM);
5799 }

5801 /*
5802 * Create and add the security attribute to the group; a
5803 * reference to the group is made upon allocating a new

new/usr/src/uts/common/inet/ip/ip_if.c 89

5804 * entry successfully. If it finds an already-existing
5805 * entry for the security attribute in the group, it simply
5806 * returns it and no new reference is made to the group.
5807 */
5808 gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5809 if (gc == NULL) {
5810 if (ipif != NULL)
5811 ipif_refrele(ipif);
5812 /* release reference held by gcgrp_lookup */
5813 GCGRP_REFRELE(gcgrp);
5814 ire_refrele(gw_ire);
5815 return (ENOMEM);
5816 }
5817 }

5819 /* Create the IRE. */
5820 ire = ire_create(
5821 (uchar_t *)&dst_addr, /* dest address */
5822 (uchar_t *)&mask, /* mask */
5823 (uchar_t *)&gw_addr, /* gateway address */
5824 (ushort_t)type, /* IRE type */
5825 ill,
5826 zoneid,
5827 flags,
5828 gc, /* security attribute */
5829 ipst);

5831 /*
5832 * The ire holds a reference to the ’gc’ and the ’gc’ holds a
5833 * reference to the ’gcgrp’. We can now release the extra reference
5834 * the ’gcgrp’ acquired in the gcgrp_lookup, if it was not used.
5835 */
5836 if (gcgrp_xtraref)
5837 GCGRP_REFRELE(gcgrp);
5838 if (ire == NULL) {
5839 if (gc != NULL)
5840 GC_REFRELE(gc);
5841 if (ipif != NULL)
5842 ipif_refrele(ipif);
5843 ire_refrele(gw_ire);
5844 return (ENOMEM);
5845 }

5847 /* Before we add, check if an extra CGTP broadcast is needed */
5848 cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5849 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);

5851 /* src address assigned by the caller? */
5852 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5853 ire->ire_setsrc_addr = src_addr;

5855 ire->ire_unbound = unbound;

5857 /*
5858 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5859 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5860 */

5862 /* Add the new IRE. */
5863 nire = ire_add(ire);
5864 if (nire == NULL) {
5865 /*
5866 * In the result of failure, ire_add() will have
5867 * already deleted the ire in question, so there
5868 * is no need to do that here.
5869 */

new/usr/src/uts/common/inet/ip/ip_if.c 90

5870 if (ipif != NULL)
5871 ipif_refrele(ipif);
5872 ire_refrele(gw_ire);
5873 return (ENOMEM);
5874 }
5875 /*
5876 * Check if it was a duplicate entry. This handles
5877 * the case of two racing route adds for the same route
5878 */
5879 if (nire != ire) {
5880 ire_delete(nire);
5881 ire_refrele(nire);
5882 if (ipif != NULL)
5883 ipif_refrele(ipif);
5884 ire_refrele(gw_ire);
5885 return (EEXIST);
5886 }
5887 ire = nire;

5889 if (flags & RTF_MULTIRT) {
5890 /*
5891 * Invoke the CGTP (multirouting) filtering module
5892 * to add the dst address in the filtering database.
5893 * Replicated inbound packets coming from that address
5894 * will be filtered to discard the duplicates.
5895 * It is not necessary to call the CGTP filter hook
5896 * when the dst address is a broadcast or multicast,
5897 * because an IP source address cannot be a broadcast
5898 * or a multicast.
5899 */
5900 if (cgtp_broadcast) {
5901 ip_cgtp_bcast_add(ire, ipst);
5902 goto save_ire;
5903 }
5904 if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5905 !CLASSD(ire->ire_addr)) {
5906 int res;
5907 ipif_t *src_ipif;

5909 /* Find the source address corresponding to gw_ire */
5910 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5911 NULL, zoneid, ipst);
5912 if (src_ipif != NULL) {
5913 res = ipst->ips_ip_cgtp_filter_ops->
5914 cfo_add_dest_v4(
5915 ipst->ips_netstack->netstack_stackid,
5916 ire->ire_addr,
5917 ire->ire_gateway_addr,
5918 ire->ire_setsrc_addr,
5919 src_ipif->ipif_lcl_addr);
5920 ipif_refrele(src_ipif);
5921 } else {
5922 res = EADDRNOTAVAIL;
5923 }
5924 if (res != 0) {
5925 if (ipif != NULL)
5926 ipif_refrele(ipif);
5927 ire_refrele(gw_ire);
5928 ire_delete(ire);
5929 ire_refrele(ire); /* Held in ire_add */
5930 return (res);
5931 }
5932 }
5933 }

5935 save_ire:

new/usr/src/uts/common/inet/ip/ip_if.c 91

5936 if (gw_ire != NULL) {
5937 ire_refrele(gw_ire);
5938 gw_ire = NULL;
5939 }
5940 if (ill != NULL) {
5941 /*
5942 * Save enough information so that we can recreate the IRE if
5943 * the interface goes down and then up. The metrics associated
5944 * with the route will be saved as well when rts_setmetrics() is
5945 * called after the IRE has been created. In the case where
5946 * memory cannot be allocated, none of this information will be
5947 * saved.
5948 */
5949 ill_save_ire(ill, ire);
5950 }
5951 if (ioctl_msg)
5952 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5953 if (ire_arg != NULL) {
5954 /*
5955 * Store the ire that was successfully added into where ire_arg
5956 * points to so that callers don’t have to look it up
5957 * themselves (but they are responsible for ire_refrele()ing
5958 * the ire when they are finished with it).
5959 */
5960 *ire_arg = ire;
5961 } else {
5962 ire_refrele(ire); /* Held in ire_add */
5963 }
5964 if (ipif != NULL)
5965 ipif_refrele(ipif);
5966 return (0);
5967 }

5969 /*
5970 * ip_rt_delete is called to delete an IPv4 route.
5971 * ill is passed in to associate it with the correct interface.
5972 */
5973 /* ARGSUSED4 */
5974 int
5975 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5976 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5977 ip_stack_t *ipst, zoneid_t zoneid)
5978 {
5979 ire_t *ire = NULL;
5980 ipif_t *ipif;
5981 uint_t type;
5982 uint_t match_flags = MATCH_IRE_TYPE;
5983 int err = 0;

5985 ip1dbg(("ip_rt_delete:"));
5986 /*
5987 * If this is the case of RTF_HOST being set, then we set the netmask
5988 * to all ones. Otherwise, we use the netmask if one was supplied.
5989 */
5990 if (flags & RTF_HOST) {
5991 mask = IP_HOST_MASK;
5992 match_flags |= MATCH_IRE_MASK;
5993 } else if (rtm_addrs & RTA_NETMASK) {
5994 match_flags |= MATCH_IRE_MASK;
5995 }

5997 /*
5998 * Note that RTF_GATEWAY is never set on a delete, therefore
5999 * we check if the gateway address is one of our interfaces first,
6000 * and fall back on RTF_GATEWAY routes.
6001 *

new/usr/src/uts/common/inet/ip/ip_if.c 92

6002 * This makes it possible to delete an original
6003 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
6004 * However, we have RTF_KERNEL set on the ones created by ipif_up
6005 * and those can not be deleted here.
6006 *
6007 * We use MATCH_IRE_ILL if we know the interface. If the caller
6008 * specified an interface (from the RTA_IFP sockaddr) we use it,
6009 * otherwise we use the ill derived from the gateway address.
6010 * We can always match the gateway address since we record it
6011 * in ire_gateway_addr.
6012 *
6013 * For more detail on specifying routes by gateway address and by
6014 * interface index, see the comments in ip_rt_add().
6015 */
6016 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
6017 if (ipif != NULL) {
6018 ill_t *ill_match;

6020 if (ill != NULL)
6021 ill_match = ill;
6022 else
6023 ill_match = ipif->ipif_ill;

6025 match_flags |= MATCH_IRE_ILL;
6026 if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6027 ire = ire_ftable_lookup_v4(dst_addr, mask, 0,
6028 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
6029 match_flags, 0, ipst, NULL);
6030 }
6031 if (ire == NULL) {
6032 match_flags |= MATCH_IRE_GW;
6033 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6034 IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6035 match_flags, 0, ipst, NULL);
6036 }
6037 /* Avoid deleting routes created by kernel from an ipif */
6038 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6039 ire_refrele(ire);
6040 ire = NULL;
6041 }

6043 /* Restore in case we didn’t find a match */
6044 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6045 }

6047 if (ire == NULL) {
6048 /*
6049 * At this point, the gateway address is not one of our own
6050 * addresses or a matching interface route was not found. We
6051 * set the IRE type to lookup based on whether
6052 * this is a host route, a default route or just a prefix.
6053 *
6054 * If an ill was passed in, then the lookup is based on an
6055 * interface index so MATCH_IRE_ILL is added to match_flags.
6056 */
6057 match_flags |= MATCH_IRE_GW;
6058 if (ill != NULL)
6059 match_flags |= MATCH_IRE_ILL;
6060 if (mask == IP_HOST_MASK)
6061 type = IRE_HOST;
6062 else if (mask == 0)
6063 type = IRE_DEFAULT;
6064 else
6065 type = IRE_PREFIX;
6066 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6067 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);

new/usr/src/uts/common/inet/ip/ip_if.c 93

6068 }

6070 if (ipif != NULL) {
6071 ipif_refrele(ipif);
6072 ipif = NULL;
6073 }

6075 if (ire == NULL)
6076 return (ESRCH);

6078 if (ire->ire_flags & RTF_MULTIRT) {
6079 /*
6080 * Invoke the CGTP (multirouting) filtering module
6081 * to remove the dst address from the filtering database.
6082 * Packets coming from that address will no longer be
6083 * filtered to remove duplicates.
6084 */
6085 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6086 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6087 ipst->ips_netstack->netstack_stackid,
6088 ire->ire_addr, ire->ire_gateway_addr);
6089 }
6090 ip_cgtp_bcast_delete(ire, ipst);
6091 }

6093 ill = ire->ire_ill;
6094 if (ill != NULL)
6095 ill_remove_saved_ire(ill, ire);
6096 if (ioctl_msg)
6097 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6098 ire_delete(ire);
6099 ire_refrele(ire);
6100 return (err);
6101 }

6103 /*
6104 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6105 */
6106 /* ARGSUSED */
6107 int
6108 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6109 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6110 {
6111 ipaddr_t dst_addr;
6112 ipaddr_t gw_addr;
6113 ipaddr_t mask;
6114 int error = 0;
6115 mblk_t *mp1;
6116 struct rtentry *rt;
6117 ipif_t *ipif = NULL;
6118 ip_stack_t *ipst;

6120 ASSERT(q->q_next == NULL);
6121 ipst = CONNQ_TO_IPST(q);

6123 ip1dbg(("ip_siocaddrt:"));
6124 /* Existence of mp1 verified in ip_wput_nondata */
6125 mp1 = mp->b_cont->b_cont;
6126 rt = (struct rtentry *)mp1->b_rptr;

6128 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6129 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;

6131 /*
6132 * If the RTF_HOST flag is on, this is a request to assign a gateway
6133 * to a particular host address. In this case, we set the netmask to

new/usr/src/uts/common/inet/ip/ip_if.c 94

6134 * all ones for the particular destination address. Otherwise,
6135 * determine the netmask to be used based on dst_addr and the interfaces
6136 * in use.
6137 */
6138 if (rt->rt_flags & RTF_HOST) {
6139 mask = IP_HOST_MASK;
6140 } else {
6141 /*
6142 * Note that ip_subnet_mask returns a zero mask in the case of
6143 * default (an all-zeroes address).
6144 */
6145 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6146 }

6148 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6149 B_TRUE, NULL, ipst, ALL_ZONES);
6150 if (ipif != NULL)
6151 ipif_refrele(ipif);
6152 return (error);
6153 }

6155 /*
6156 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6157 */
6158 /* ARGSUSED */
6159 int
6160 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6161 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6162 {
6163 ipaddr_t dst_addr;
6164 ipaddr_t gw_addr;
6165 ipaddr_t mask;
6166 int error;
6167 mblk_t *mp1;
6168 struct rtentry *rt;
6169 ipif_t *ipif = NULL;
6170 ip_stack_t *ipst;

6172 ASSERT(q->q_next == NULL);
6173 ipst = CONNQ_TO_IPST(q);

6175 ip1dbg(("ip_siocdelrt:"));
6176 /* Existence of mp1 verified in ip_wput_nondata */
6177 mp1 = mp->b_cont->b_cont;
6178 rt = (struct rtentry *)mp1->b_rptr;

6180 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6181 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;

6183 /*
6184 * If the RTF_HOST flag is on, this is a request to delete a gateway
6185 * to a particular host address. In this case, we set the netmask to
6186 * all ones for the particular destination address. Otherwise,
6187 * determine the netmask to be used based on dst_addr and the interfaces
6188 * in use.
6189 */
6190 if (rt->rt_flags & RTF_HOST) {
6191 mask = IP_HOST_MASK;
6192 } else {
6193 /*
6194 * Note that ip_subnet_mask returns a zero mask in the case of
6195 * default (an all-zeroes address).
6196 */
6197 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6198 }

new/usr/src/uts/common/inet/ip/ip_if.c 95

6200 error = ip_rt_delete(dst_addr, mask, gw_addr,
6201 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6202 ipst, ALL_ZONES);
6203 if (ipif != NULL)
6204 ipif_refrele(ipif);
6205 return (error);
6206 }

6208 /*
6209 * Enqueue the mp onto the ipsq, chained by b_next.
6210 * b_prev stores the function to be executed later, and b_queue the queue
6211 * where this mp originated.
6212 */
6213 void
6214 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6215 ill_t *pending_ill)
6216 {
6217 conn_t *connp;
6218 ipxop_t *ipx = ipsq->ipsq_xop;

6220 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6221 ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6222 ASSERT(func != NULL);

6224 mp->b_queue = q;
6225 mp->b_prev = (void *)func;
6226 mp->b_next = NULL;

6228 switch (type) {
6229 case CUR_OP:
6230 if (ipx->ipx_mptail != NULL) {
6231 ASSERT(ipx->ipx_mphead != NULL);
6232 ipx->ipx_mptail->b_next = mp;
6233 } else {
6234 ASSERT(ipx->ipx_mphead == NULL);
6235 ipx->ipx_mphead = mp;
6236 }
6237 ipx->ipx_mptail = mp;
6238 break;

6240 case NEW_OP:
6241 if (ipsq->ipsq_xopq_mptail != NULL) {
6242 ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6243 ipsq->ipsq_xopq_mptail->b_next = mp;
6244 } else {
6245 ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6246 ipsq->ipsq_xopq_mphead = mp;
6247 }
6248 ipsq->ipsq_xopq_mptail = mp;
6249 ipx->ipx_ipsq_queued = B_TRUE;
6250 break;

6252 case SWITCH_OP:
6253 ASSERT(ipsq->ipsq_swxop != NULL);
6254 /* only one switch operation is currently allowed */
6255 ASSERT(ipsq->ipsq_switch_mp == NULL);
6256 ipsq->ipsq_switch_mp = mp;
6257 ipx->ipx_ipsq_queued = B_TRUE;
6258 break;
6259 default:
6260 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6261 }

6263 if (CONN_Q(q) && pending_ill != NULL) {
6264 connp = Q_TO_CONN(q);
6265 ASSERT(MUTEX_HELD(&connp->conn_lock));

new/usr/src/uts/common/inet/ip/ip_if.c 96

6266 connp->conn_oper_pending_ill = pending_ill;
6267 }
6268 }

6270 /*
6271 * Dequeue the next message that requested exclusive access to this IPSQ’s
6272 * xop. Specifically:
6273 *
6274 * 1. If we’re still processing the current operation on ‘ipsq’, then
6275 * dequeue the next message for the operation (from ipx_mphead), or
6276 * return NULL if there are no queued messages for the operation.
6277 * These messages are queued via CUR_OP to qwriter_ip() and friends.
6278 *
6279 * 2. If the current operation on ‘ipsq’ has completed (ipx_current_ipif is
6280 * not set) see if the ipsq has requested an xop switch. If so, switch
6281 * ‘ipsq’ to a different xop. Xop switches only happen when joining or
6282 * leaving IPMP groups and require a careful dance -- see the comments
6283 * in-line below for details. If we’re leaving a group xop or if we’re
6284 * joining a group xop and become writer on it, then we proceed to (3).
6285 * Otherwise, we return NULL and exit the xop.
6286 *
6287 * 3. For each IPSQ in the xop, return any switch operation stored on
6288 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6289 * any other messages queued on the IPSQ. Otherwise, dequeue the next
6290 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6291 * Note that if the phyint tied to ‘ipsq’ is not using IPMP there will
6292 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for
6293 * each phyint in the group, including the IPMP meta-interface phyint.
6294 */
6295 static mblk_t *
6296 ipsq_dq(ipsq_t *ipsq)
6297 {
6298 ill_t *illv4, *illv6;
6299 mblk_t *mp;
6300 ipsq_t *xopipsq;
6301 ipsq_t *leftipsq = NULL;
6302 ipxop_t *ipx;
6303 phyint_t *phyi = ipsq->ipsq_phyint;
6304 ip_stack_t *ipst = ipsq->ipsq_ipst;
6305 boolean_t emptied = B_FALSE;

6307 /*
6308 * Grab all the locks we need in the defined order (ill_g_lock ->
6309 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6310 */
6311 rw_enter(&ipst->ips_ill_g_lock,
6312 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6313 mutex_enter(&ipsq->ipsq_lock);
6314 ipx = ipsq->ipsq_xop;
6315 mutex_enter(&ipx->ipx_lock);

6317 /*
6318 * Dequeue the next message associated with the current exclusive
6319 * operation, if any.
6320 */
6321 if ((mp = ipx->ipx_mphead) != NULL) {
6322 ipx->ipx_mphead = mp->b_next;
6323 if (ipx->ipx_mphead == NULL)
6324 ipx->ipx_mptail = NULL;
6325 mp->b_next = (void *)ipsq;
6326 goto out;
6327 }

6329 if (ipx->ipx_current_ipif != NULL)
6330 goto empty;

new/usr/src/uts/common/inet/ip/ip_if.c 97

6332 if (ipsq->ipsq_swxop != NULL) {
6333 /*
6334 * The exclusive operation that is now being completed has
6335 * requested a switch to a different xop. This happens
6336 * when an interface joins or leaves an IPMP group. Joins
6337 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6338 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6339 * (phyint_free()), or interface plumb for an ill type
6340 * not in the IPMP group (ip_rput_dlpi_writer()).
6341 *
6342 * Xop switches are not allowed on the IPMP meta-interface.
6343 */
6344 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6345 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6346 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);

6348 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6349 /*
6350 * We’re switching back to our own xop, so we have two
6351 * xop’s to drain/exit: our own, and the group xop
6352 * that we are leaving.
6353 *
6354 * First, pull ourselves out of the group ipsq list.
6355 * This is safe since we’re writer on ill_g_lock.
6356 */
6357 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);

6359 xopipsq = ipx->ipx_ipsq;
6360 while (xopipsq->ipsq_next != ipsq)
6361 xopipsq = xopipsq->ipsq_next;

6363 xopipsq->ipsq_next = ipsq->ipsq_next;
6364 ipsq->ipsq_next = ipsq;
6365 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6366 ipsq->ipsq_swxop = NULL;

6368 /*
6369 * Second, prepare to exit the group xop. The actual
6370 * ipsq_exit() is done at the end of this function
6371 * since we cannot hold any locks across ipsq_exit().
6372 * Note that although we drop the group’s ipx_lock, no
6373 * threads can proceed since we’re still ipx_writer.
6374 */
6375 leftipsq = xopipsq;
6376 mutex_exit(&ipx->ipx_lock);

6378 /*
6379 * Third, set ipx to point to our own xop (which was
6380 * inactive and therefore can be entered).
6381 */
6382 ipx = ipsq->ipsq_xop;
6383 mutex_enter(&ipx->ipx_lock);
6384 ASSERT(ipx->ipx_writer == NULL);
6385 ASSERT(ipx->ipx_current_ipif == NULL);
6386 } else {
6387 /*
6388 * We’re switching from our own xop to a group xop.
6389 * The requestor of the switch must ensure that the
6390 * group xop cannot go away (e.g. by ensuring the
6391 * phyint associated with the xop cannot go away).
6392 *
6393 * If we can become writer on our new xop, then we’ll
6394 * do the drain. Otherwise, the current writer of our
6395 * new xop will do the drain when it exits.
6396 *
6397 * First, splice ourselves into the group IPSQ list.

new/usr/src/uts/common/inet/ip/ip_if.c 98

6398 * This is safe since we’re writer on ill_g_lock.
6399 */
6400 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);

6402 xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6403 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6404 xopipsq = xopipsq->ipsq_next;

6406 xopipsq->ipsq_next = ipsq;
6407 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6408 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6409 ipsq->ipsq_swxop = NULL;

6411 /*
6412 * Second, exit our own xop, since it’s now unused.
6413 * This is safe since we’ve got the only reference.
6414 */
6415 ASSERT(ipx->ipx_writer == curthread);
6416 ipx->ipx_writer = NULL;
6417 VERIFY(--ipx->ipx_reentry_cnt == 0);
6418 ipx->ipx_ipsq_queued = B_FALSE;
6419 mutex_exit(&ipx->ipx_lock);

6421 /*
6422 * Third, set ipx to point to our new xop, and check
6423 * if we can become writer on it. If we cannot, then
6424 * the current writer will drain the IPSQ group when
6425 * it exits. Our ipsq_xop is guaranteed to be stable
6426 * because we’re still holding ipsq_lock.
6427 */
6428 ipx = ipsq->ipsq_xop;
6429 mutex_enter(&ipx->ipx_lock);
6430 if (ipx->ipx_writer != NULL ||
6431 ipx->ipx_current_ipif != NULL) {
6432 goto out;
6433 }
6434 }

6436 /*
6437 * Fourth, become writer on our new ipx before we continue
6438 * with the drain. Note that we never dropped ipsq_lock
6439 * above, so no other thread could’ve raced with us to
6440 * become writer first. Also, we’re holding ipx_lock, so
6441 * no other thread can examine the ipx right now.
6442 */
6443 ASSERT(ipx->ipx_current_ipif == NULL);
6444 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6445 VERIFY(ipx->ipx_reentry_cnt++ == 0);
6446 ipx->ipx_writer = curthread;
6447 ipx->ipx_forced = B_FALSE;
6448 #ifdef DEBUG
6449 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6450 #endif
6451 }

6453 xopipsq = ipsq;
6454 do {
6455 /*
6456 * So that other operations operate on a consistent and
6457 * complete phyint, a switch message on an IPSQ must be
6458 * handled prior to any other operations on that IPSQ.
6459 */
6460 if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6461 xopipsq->ipsq_switch_mp = NULL;
6462 ASSERT(mp->b_next == NULL);
6463 mp->b_next = (void *)xopipsq;

new/usr/src/uts/common/inet/ip/ip_if.c 99

6464 goto out;
6465 }

6467 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6468 xopipsq->ipsq_xopq_mphead = mp->b_next;
6469 if (xopipsq->ipsq_xopq_mphead == NULL)
6470 xopipsq->ipsq_xopq_mptail = NULL;
6471 mp->b_next = (void *)xopipsq;
6472 goto out;
6473 }
6474 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6475 empty:
6476 /*
6477 * There are no messages. Further, we are holding ipx_lock, hence no
6478 * new messages can end up on any IPSQ in the xop.
6479 */
6480 ipx->ipx_writer = NULL;
6481 ipx->ipx_forced = B_FALSE;
6482 VERIFY(--ipx->ipx_reentry_cnt == 0);
6483 ipx->ipx_ipsq_queued = B_FALSE;
6484 emptied = B_TRUE;
6485 #ifdef DEBUG
6486 ipx->ipx_depth = 0;
6487 #endif
6488 out:
6489 mutex_exit(&ipx->ipx_lock);
6490 mutex_exit(&ipsq->ipsq_lock);

6492 /*
6493 * If we completely emptied the xop, then wake up any threads waiting
6494 * to enter any of the IPSQ’s associated with it.
6495 */
6496 if (emptied) {
6497 xopipsq = ipsq;
6498 do {
6499 if ((phyi = xopipsq->ipsq_phyint) == NULL)
6500 continue;

6502 illv4 = phyi->phyint_illv4;
6503 illv6 = phyi->phyint_illv6;

6505 GRAB_ILL_LOCKS(illv4, illv6);
6506 if (illv4 != NULL)
6507 cv_broadcast(&illv4->ill_cv);
6508 if (illv6 != NULL)
6509 cv_broadcast(&illv6->ill_cv);
6510 RELEASE_ILL_LOCKS(illv4, illv6);
6511 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6512 }
6513 rw_exit(&ipst->ips_ill_g_lock);

6515 /*
6516 * Now that all locks are dropped, exit the IPSQ we left.
6517 */
6518 if (leftipsq != NULL)
6519 ipsq_exit(leftipsq);

6521 return (mp);
6522 }

6524 /*
6525 * Return completion status of previously initiated DLPI operations on
6526 * ills in the purview of an ipsq.
6527 */
6528 static boolean_t
6529 ipsq_dlpi_done(ipsq_t *ipsq)

new/usr/src/uts/common/inet/ip/ip_if.c 100

6530 {
6531 ipsq_t *ipsq_start;
6532 phyint_t *phyi;
6533 ill_t *ill;

6535 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6536 ipsq_start = ipsq;

6538 do {
6539 /*
6540 * The only current users of this function are ipsq_try_enter
6541 * and ipsq_enter which have made sure that ipsq_writer is
6542 * NULL before we reach here. ill_dlpi_pending is modified
6543 * only by an ipsq writer
6544 */
6545 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6546 phyi = ipsq->ipsq_phyint;
6547 /*
6548 * phyi could be NULL if a phyint that is part of an
6549 * IPMP group is being unplumbed. A more detailed
6550 * comment is in ipmp_grp_update_kstats()
6551 */
6552 if (phyi != NULL) {
6553 ill = phyi->phyint_illv4;
6554 if (ill != NULL &&
6555 (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6556 ill->ill_arl_dlpi_pending))
6557 return (B_FALSE);

6559 ill = phyi->phyint_illv6;
6560 if (ill != NULL &&
6561 ill->ill_dlpi_pending != DL_PRIM_INVAL)
6562 return (B_FALSE);
6563 }

6565 } while ((ipsq = ipsq->ipsq_next) != ipsq_start);

6567 return (B_TRUE);
6568 }

6570 /*
6571 * Enter the ipsq corresponding to ill, by waiting synchronously till
6572 * we can enter the ipsq exclusively. Unless ’force’ is used, the ipsq
6573 * will have to drain completely before ipsq_enter returns success.
6574 * ipx_current_ipif will be set if some exclusive op is in progress,
6575 * and the ipsq_exit logic will start the next enqueued op after
6576 * completion of the current op. If ’force’ is used, we don’t wait
6577 * for the enqueued ops. This is needed when a conn_close wants to
6578 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6579 * of an ill can also use this option. But we dont’ use it currently.
6580 */
6581 #define ENTER_SQ_WAIT_TICKS 100
6582 boolean_t
6583 ipsq_enter(ill_t *ill, boolean_t force, int type)
6584 {
6585 ipsq_t *ipsq;
6586 ipxop_t *ipx;
6587 boolean_t waited_enough = B_FALSE;
6588 ip_stack_t *ipst = ill->ill_ipst;

6590 /*
6591 * Note that the relationship between ill and ipsq is fixed as long as
6592 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the
6593 * relationship between the IPSQ and xop cannot change. However,
6594 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6595 * while we’re waiting. We wait on ill_cv and rely on ipsq_exit()

new/usr/src/uts/common/inet/ip/ip_if.c 101

6596 * waking up all ills in the xop when it becomes available.
6597 */
6598 for (;;) {
6599 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6600 mutex_enter(&ill->ill_lock);
6601 if (ill->ill_state_flags & ILL_CONDEMNED) {
6602 mutex_exit(&ill->ill_lock);
6603 rw_exit(&ipst->ips_ill_g_lock);
6604 return (B_FALSE);
6605 }

6607 ipsq = ill->ill_phyint->phyint_ipsq;
6608 mutex_enter(&ipsq->ipsq_lock);
6609 ipx = ipsq->ipsq_xop;
6610 mutex_enter(&ipx->ipx_lock);

6612 if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6613 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6614 waited_enough))
6615 break;

6617 rw_exit(&ipst->ips_ill_g_lock);

6619 if (!force || ipx->ipx_writer != NULL) {
6620 mutex_exit(&ipx->ipx_lock);
6621 mutex_exit(&ipsq->ipsq_lock);
6622 cv_wait(&ill->ill_cv, &ill->ill_lock);
6623 } else {
6624 mutex_exit(&ipx->ipx_lock);
6625 mutex_exit(&ipsq->ipsq_lock);
6626 (void) cv_reltimedwait(&ill->ill_cv,
6627 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6628 waited_enough = B_TRUE;
6629 }
6630 mutex_exit(&ill->ill_lock);
6631 }

6633 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6634 ASSERT(ipx->ipx_reentry_cnt == 0);
6635 ipx->ipx_writer = curthread;
6636 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6637 ipx->ipx_reentry_cnt++;
6638 #ifdef DEBUG
6639 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6640 #endif
6641 mutex_exit(&ipx->ipx_lock);
6642 mutex_exit(&ipsq->ipsq_lock);
6643 mutex_exit(&ill->ill_lock);
6644 rw_exit(&ipst->ips_ill_g_lock);

6646 return (B_TRUE);
6647 }

6649 /*
6650 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6651 * across the call to the core interface ipsq_try_enter() and hence calls this
6652 * function directly. This is explained more fully in ipif_set_values().
6653 * In order to support the above constraint, ipsq_try_enter is implemented as
6654 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6655 */
6656 static ipsq_t *
6657 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6658 int type, boolean_t reentry_ok)
6659 {
6660 ipsq_t *ipsq;
6661 ipxop_t *ipx;

new/usr/src/uts/common/inet/ip/ip_if.c 102

6662 ip_stack_t *ipst = ill->ill_ipst;

6664 /*
6665 * lock ordering:
6666 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6667 *
6668 * ipx of an ipsq can’t change when ipsq_lock is held.
6669 */
6670 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6671 GRAB_CONN_LOCK(q);
6672 mutex_enter(&ill->ill_lock);
6673 ipsq = ill->ill_phyint->phyint_ipsq;
6674 mutex_enter(&ipsq->ipsq_lock);
6675 ipx = ipsq->ipsq_xop;
6676 mutex_enter(&ipx->ipx_lock);

6678 /*
6679 * 1. Enter the ipsq if we are already writer and reentry is ok.
6680 * (Note: If the caller does not specify reentry_ok then neither
6681 * ’func’ nor any of its callees must ever attempt to enter the ipsq
6682 * again. Otherwise it can lead to an infinite loop
6683 * 2. Enter the ipsq if there is no current writer and this attempted
6684 * entry is part of the current operation
6685 * 3. Enter the ipsq if there is no current writer and this is a new
6686 * operation and the operation queue is empty and there is no
6687 * operation currently in progress and if all previously initiated
6688 * DLPI operations have completed.
6689 */
6690 if ((ipx->ipx_writer == curthread && reentry_ok) ||
6691 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6692 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6693 ipsq_dlpi_done(ipsq))))) {
6694 /* Success. */
6695 ipx->ipx_reentry_cnt++;
6696 ipx->ipx_writer = curthread;
6697 ipx->ipx_forced = B_FALSE;
6698 mutex_exit(&ipx->ipx_lock);
6699 mutex_exit(&ipsq->ipsq_lock);
6700 mutex_exit(&ill->ill_lock);
6701 RELEASE_CONN_LOCK(q);
6702 #ifdef DEBUG
6703 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6704 #endif
6705 return (ipsq);
6706 }

6708 if (func != NULL)
6709 ipsq_enq(ipsq, q, mp, func, type, ill);

6711 mutex_exit(&ipx->ipx_lock);
6712 mutex_exit(&ipsq->ipsq_lock);
6713 mutex_exit(&ill->ill_lock);
6714 RELEASE_CONN_LOCK(q);
6715 return (NULL);
6716 }

6718 /*
6719 * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6720 * certain critical operations like plumbing (i.e. most set ioctls), etc.
6721 * There is one ipsq per phyint. The ipsq
6722 * serializes exclusive ioctls issued by applications on a per ipsq basis in
6723 * ipsq_xopq_mphead. It also protects against multiple threads executing in
6724 * the ipsq. Responses from the driver pertain to the current ioctl (say a
6725 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6726 * up the interface) and are enqueued in ipx_mphead.
6727 *

new/usr/src/uts/common/inet/ip/ip_if.c 103

6728 * If a thread does not want to reenter the ipsq when it is already writer,
6729 * it must make sure that the specified reentry point to be called later
6730 * when the ipsq is empty, nor any code path starting from the specified reentry
6731 * point must never ever try to enter the ipsq again. Otherwise it can lead
6732 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6733 * When the thread that is currently exclusive finishes, it (ipsq_exit)
6734 * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6735 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6736 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6737 * ioctl if the current ioctl has completed. If the current ioctl is still
6738 * in progress it simply returns. The current ioctl could be waiting for
6739 * a response from another module (the driver or could be waiting for
6740 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6741 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6742 * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6743 * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6744 * all associated DLPI operations have completed.
6745 */

6747 /*
6748 * Try to enter the IPSQ corresponding to ‘ipif’ or ‘ill’ exclusively (‘ipif’
6749 * and ‘ill’ cannot both be specified). Returns a pointer to the entered IPSQ
6750 * on success, or NULL on failure. The caller ensures ipif/ill is valid by
6751 * refholding it as necessary. If the IPSQ cannot be entered and ‘func’ is
6752 * non-NULL, then ‘func’ will be called back with ‘q’ and ‘mp’ once the IPSQ
6753 * can be entered. If ‘func’ is NULL, then ‘q’ and ‘mp’ are ignored.
6754 */
6755 ipsq_t *
6756 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6757 ipsq_func_t func, int type, boolean_t reentry_ok)
6758 {
6759 ip_stack_t *ipst;
6760 ipsq_t *ipsq;

6762 /* Only 1 of ipif or ill can be specified */
6763 ASSERT((ipif != NULL) ^ (ill != NULL));

6765 if (ipif != NULL)
6766 ill = ipif->ipif_ill;
6767 ipst = ill->ill_ipst;

6769 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6770 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6771 rw_exit(&ipst->ips_ill_g_lock);

6773 return (ipsq);
6774 }

6776 /*
6777 * Try to enter the IPSQ corresponding to ‘ill’ as writer. The caller ensures
6778 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ
6779 * cannot be entered, the mp is queued for completion.
6780 */
6781 void
6782 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6783 boolean_t reentry_ok)
6784 {
6785 ipsq_t *ipsq;

6787 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);

6789 /*
6790 * Drop the caller’s refhold on the ill. This is safe since we either
6791 * entered the IPSQ (and thus are exclusive), or failed to enter the
6792 * IPSQ, in which case we return without accessing ill anymore. This
6793 * is needed because func needs to see the correct refcount.

new/usr/src/uts/common/inet/ip/ip_if.c 104

6794 * e.g. removeif can work only then.
6795 */
6796 ill_refrele(ill);
6797 if (ipsq != NULL) {
6798 (*func)(ipsq, q, mp, NULL);
6799 ipsq_exit(ipsq);
6800 }
6801 }

6803 /*
6804 * Exit the specified IPSQ. If this is the final exit on it then drain it
6805 * prior to exiting. Caller must be writer on the specified IPSQ.
6806 */
6807 void
6808 ipsq_exit(ipsq_t *ipsq)
6809 {
6810 mblk_t *mp;
6811 ipsq_t *mp_ipsq;
6812 queue_t *q;
6813 phyint_t *phyi;
6814 ipsq_func_t func;

6816 ASSERT(IAM_WRITER_IPSQ(ipsq));

6818 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6819 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6820 ipsq->ipsq_xop->ipx_reentry_cnt--;
6821 return;
6822 }

6824 for (;;) {
6825 phyi = ipsq->ipsq_phyint;
6826 mp = ipsq_dq(ipsq);
6827 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;

6829 /*
6830 * If we’ve changed to a new IPSQ, and the phyint associated
6831 * with the old one has gone away, free the old IPSQ. Note
6832 * that this cannot happen while the IPSQ is in a group.
6833 */
6834 if (mp_ipsq != ipsq && phyi == NULL) {
6835 ASSERT(ipsq->ipsq_next == ipsq);
6836 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6837 ipsq_delete(ipsq);
6838 }

6840 if (mp == NULL)
6841 break;

6843 q = mp->b_queue;
6844 func = (ipsq_func_t)mp->b_prev;
6845 ipsq = mp_ipsq;
6846 mp->b_next = mp->b_prev = NULL;
6847 mp->b_queue = NULL;

6849 /*
6850 * If ’q’ is an conn queue, it is valid, since we did a
6851 * a refhold on the conn at the start of the ioctl.
6852 * If ’q’ is an ill queue, it is valid, since close of an
6853 * ill will clean up its IPSQ.
6854 */
6855 (*func)(ipsq, q, mp, NULL);
6856 }
6857 }

6859 /*

new/usr/src/uts/common/inet/ip/ip_if.c 105

6860 * Used to start any igmp or mld timers that could not be started
6861 * while holding ill_mcast_lock. The timers can’t be started while holding
6862 * the lock, since mld/igmp_start_timers may need to call untimeout()
6863 * which can’t be done while holding the lock which the timeout handler
6864 * acquires. Otherwise
6865 * there could be a deadlock since the timeout handlers
6866 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6867 * ill_mcast_lock.
6868 */
6869 void
6870 ill_mcast_timer_start(ip_stack_t *ipst)
6871 {
6872 int next;

6874 mutex_enter(&ipst->ips_igmp_timer_lock);
6875 next = ipst->ips_igmp_deferred_next;
6876 ipst->ips_igmp_deferred_next = INFINITY;
6877 mutex_exit(&ipst->ips_igmp_timer_lock);

6879 if (next != INFINITY)
6880 igmp_start_timers(next, ipst);

6882 mutex_enter(&ipst->ips_mld_timer_lock);
6883 next = ipst->ips_mld_deferred_next;
6884 ipst->ips_mld_deferred_next = INFINITY;
6885 mutex_exit(&ipst->ips_mld_timer_lock);

6887 if (next != INFINITY)
6888 mld_start_timers(next, ipst);
6889 }

6891 /*
6892 * Start the current exclusive operation on ‘ipsq’; associate it with ‘ipif’
6893 * and ‘ioccmd’.
6894 */
6895 void
6896 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6897 {
6898 ill_t *ill = ipif->ipif_ill;
6899 ipxop_t *ipx = ipsq->ipsq_xop;

6901 ASSERT(IAM_WRITER_IPSQ(ipsq));
6902 ASSERT(ipx->ipx_current_ipif == NULL);
6903 ASSERT(ipx->ipx_current_ioctl == 0);

6905 ipx->ipx_current_done = B_FALSE;
6906 ipx->ipx_current_ioctl = ioccmd;
6907 mutex_enter(&ipx->ipx_lock);
6908 ipx->ipx_current_ipif = ipif;
6909 mutex_exit(&ipx->ipx_lock);

6911 /*
6912 * Set IPIF_CHANGING on one or more ipifs associated with the
6913 * current exclusive operation. IPIF_CHANGING prevents any new
6914 * references to the ipif (so that the references will eventually
6915 * drop to zero) and also prevents any "get" operations (e.g.,
6916 * SIOCGLIFFLAGS) from being able to access the ipif until the
6917 * operation has completed and the ipif is again in a stable state.
6918 *
6919 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6920 * ioctl. For internal operations (where ioccmd is zero), all ipifs
6921 * on the ill are marked with IPIF_CHANGING since it’s unclear which
6922 * ipifs will be affected.
6923 *
6924 * Note that SIOCLIFREMOVEIF is a special case as it sets
6925 * IPIF_CONDEMNED internally after identifying the right ipif to

new/usr/src/uts/common/inet/ip/ip_if.c 106

6926 * operate on.
6927 */
6928 switch (ioccmd) {
6929 case SIOCLIFREMOVEIF:
6930 break;
6931 case 0:
6932 mutex_enter(&ill->ill_lock);
6933 ipif = ipif->ipif_ill->ill_ipif;
6934 for (; ipif != NULL; ipif = ipif->ipif_next)
6935 ipif->ipif_state_flags |= IPIF_CHANGING;
6936 mutex_exit(&ill->ill_lock);
6937 break;
6938 default:
6939 mutex_enter(&ill->ill_lock);
6940 ipif->ipif_state_flags |= IPIF_CHANGING;
6941 mutex_exit(&ill->ill_lock);
6942 }
6943 }

6945 /*
6946 * Finish the current exclusive operation on ‘ipsq’. Usually, this will allow
6947 * the next exclusive operation to begin once we ipsq_exit(). However, if
6948 * pending DLPI operations remain, then we will wait for the queue to drain
6949 * before allowing the next exclusive operation to begin. This ensures that
6950 * DLPI operations from one exclusive operation are never improperly processed
6951 * as part of a subsequent exclusive operation.
6952 */
6953 void
6954 ipsq_current_finish(ipsq_t *ipsq)
6955 {
6956 ipxop_t *ipx = ipsq->ipsq_xop;
6957 t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6958 ipif_t *ipif = ipx->ipx_current_ipif;

6960 ASSERT(IAM_WRITER_IPSQ(ipsq));

6962 /*
6963 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6964 * (but in that case, IPIF_CHANGING will already be clear and no
6965 * pending DLPI messages can remain).
6966 */
6967 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6968 ill_t *ill = ipif->ipif_ill;

6970 mutex_enter(&ill->ill_lock);
6971 dlpi_pending = ill->ill_dlpi_pending;
6972 if (ipx->ipx_current_ioctl == 0) {
6973 ipif = ill->ill_ipif;
6974 for (; ipif != NULL; ipif = ipif->ipif_next)
6975 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6976 } else {
6977 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6978 }
6979 mutex_exit(&ill->ill_lock);
6980 }

6982 ASSERT(!ipx->ipx_current_done);
6983 ipx->ipx_current_done = B_TRUE;
6984 ipx->ipx_current_ioctl = 0;
6985 if (dlpi_pending == DL_PRIM_INVAL) {
6986 mutex_enter(&ipx->ipx_lock);
6987 ipx->ipx_current_ipif = NULL;
6988 mutex_exit(&ipx->ipx_lock);
6989 }
6990 }

new/usr/src/uts/common/inet/ip/ip_if.c 107

6992 /*
6993 * The ill is closing. Flush all messages on the ipsq that originated
6994 * from this ill. Usually there wont’ be any messages on the ipsq_xopq_mphead
6995 * for this ill since ipsq_enter could not have entered until then.
6996 * New messages can’t be queued since the CONDEMNED flag is set.
6997 */
6998 static void
6999 ipsq_flush(ill_t *ill)
7000 {
7001 queue_t *q;
7002 mblk_t *prev;
7003 mblk_t *mp;
7004 mblk_t *mp_next;
7005 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;

7007 ASSERT(IAM_WRITER_ILL(ill));

7009 /*
7010 * Flush any messages sent up by the driver.
7011 */
7012 mutex_enter(&ipx->ipx_lock);
7013 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
7014 mp_next = mp->b_next;
7015 q = mp->b_queue;
7016 if (q == ill->ill_rq || q == ill->ill_wq) {
7017 /* dequeue mp */
7018 if (prev == NULL)
7019 ipx->ipx_mphead = mp->b_next;
7020 else
7021 prev->b_next = mp->b_next;
7022 if (ipx->ipx_mptail == mp) {
7023 ASSERT(mp_next == NULL);
7024 ipx->ipx_mptail = prev;
7025 }
7026 inet_freemsg(mp);
7027 } else {
7028 prev = mp;
7029 }
7030 }
7031 mutex_exit(&ipx->ipx_lock);
7032 (void) ipsq_pending_mp_cleanup(ill, NULL);
7033 ipsq_xopq_mp_cleanup(ill, NULL);
7034 }

7036 /*
7037 * Parse an ifreq or lifreq struct coming down ioctls and refhold
7038 * and return the associated ipif.
7039 * Return value:
7040 * Non zero: An error has occurred. ci may not be filled out.
7041 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7042 * a held ipif in ci.ci_ipif.
7043 */
7044 int
7045 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7046 cmd_info_t *ci)
7047 {
7048 char *name;
7049 struct ifreq *ifr;
7050 struct lifreq *lifr;
7051 ipif_t *ipif = NULL;
7052 ill_t *ill;
7053 conn_t *connp;
7054 boolean_t isv6;
7055 int err;
7056 mblk_t *mp1;
7057 zoneid_t zoneid;

new/usr/src/uts/common/inet/ip/ip_if.c 108

7058 ip_stack_t *ipst;

7060 if (q->q_next != NULL) {
7061 ill = (ill_t *)q->q_ptr;
7062 isv6 = ill->ill_isv6;
7063 connp = NULL;
7064 zoneid = ALL_ZONES;
7065 ipst = ill->ill_ipst;
7066 } else {
7067 ill = NULL;
7068 connp = Q_TO_CONN(q);
7069 isv6 = (connp->conn_family == AF_INET6);
7070 zoneid = connp->conn_zoneid;
7071 if (zoneid == GLOBAL_ZONEID) {
7072 /* global zone can access ipifs in all zones */
7073 zoneid = ALL_ZONES;
7074 }
7075 ipst = connp->conn_netstack->netstack_ip;
7076 }

7078 /* Has been checked in ip_wput_nondata */
7079 mp1 = mp->b_cont->b_cont;

7081 if (ipip->ipi_cmd_type == IF_CMD) {
7082 /* This a old style SIOC[GS]IF* command */
7083 ifr = (struct ifreq *)mp1->b_rptr;
7084 /*
7085 * Null terminate the string to protect against buffer
7086 * overrun. String was generated by user code and may not
7087 * be trusted.
7088 */
7089 ifr->ifr_name[IFNAMSIZ - 1] = ’\0’;
7090 name = ifr->ifr_name;
7091 ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7092 ci->ci_sin6 = NULL;
7093 ci->ci_lifr = (struct lifreq *)ifr;
7094 } else {
7095 /* This a new style SIOC[GS]LIF* command */
7096 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7097 lifr = (struct lifreq *)mp1->b_rptr;
7098 /*
7099 * Null terminate the string to protect against buffer
7100 * overrun. String was generated by user code and may not
7101 * be trusted.
7102 */
7103 lifr->lifr_name[LIFNAMSIZ - 1] = ’\0’;
7104 name = lifr->lifr_name;
7105 ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7106 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7107 ci->ci_lifr = lifr;
7108 }

7110 if (ipip->ipi_cmd == SIOCSLIFNAME) {
7111 /*
7112 * The ioctl will be failed if the ioctl comes down
7113 * an conn stream
7114 */
7115 if (ill == NULL) {
7116 /*
7117 * Not an ill queue, return EINVAL same as the
7118 * old error code.
7119 */
7120 return (ENXIO);
7121 }
7122 ipif = ill->ill_ipif;
7123 ipif_refhold(ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 109

7124 } else {
7125 /*
7126 * Ensure that ioctls don’t see any internal state changes
7127 * caused by set ioctls by deferring them if IPIF_CHANGING is
7128 * set.
7129 */
7130 ipif = ipif_lookup_on_name_async(name, mi_strlen(name),
7131 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst);
7132 if (ipif == NULL) {
7133 if (err == EINPROGRESS)
7134 return (err);
7135 err = 0; /* Ensure we don’t use it below */
7136 }
7137 }

7139 /*
7140 * Old style [GS]IFCMD does not admit IPv6 ipif
7141 */
7142 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7143 ipif_refrele(ipif);
7144 return (ENXIO);
7145 }

7147 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7148 name[0] == ’\0’) {
7149 /*
7150 * Handle a or a SIOC?IF* with a null name
7151 * during plumb (on the ill queue before the I_PLINK).
7152 */
7153 ipif = ill->ill_ipif;
7154 ipif_refhold(ipif);
7155 }

7157 if (ipif == NULL)
7158 return (ENXIO);

7160 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7161 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);

7163 ci->ci_ipif = ipif;
7164 return (0);
7165 }

7167 /*
7168 * Return the total number of ipifs.
7169 */
7170 static uint_t
7171 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7172 {
7173 uint_t numifs = 0;
7174 ill_t *ill;
7175 ill_walk_context_t ctx;
7176 ipif_t *ipif;

7178 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7179 ill = ILL_START_WALK_V4(&ctx, ipst);
7180 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7181 if (IS_UNDER_IPMP(ill))
7182 continue;
7183 for (ipif = ill->ill_ipif; ipif != NULL;
7184 ipif = ipif->ipif_next) {
7185 if (ipif->ipif_zoneid == zoneid ||
7186 ipif->ipif_zoneid == ALL_ZONES)
7187 numifs++;
7188 }
7189 }

new/usr/src/uts/common/inet/ip/ip_if.c 110

7190 rw_exit(&ipst->ips_ill_g_lock);
7191 return (numifs);
7192 }

7194 /*
7195 * Return the total number of ipifs.
7196 */
7197 static uint_t
7198 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7199 {
7200 uint_t numifs = 0;
7201 ill_t *ill;
7202 ipif_t *ipif;
7203 ill_walk_context_t ctx;

7205 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));

7207 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7208 if (family == AF_INET)
7209 ill = ILL_START_WALK_V4(&ctx, ipst);
7210 else if (family == AF_INET6)
7211 ill = ILL_START_WALK_V6(&ctx, ipst);
7212 else
7213 ill = ILL_START_WALK_ALL(&ctx, ipst);

7215 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7216 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7217 continue;

7219 for (ipif = ill->ill_ipif; ipif != NULL;
7220 ipif = ipif->ipif_next) {
7221 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7222 !(lifn_flags & LIFC_NOXMIT))
7223 continue;
7224 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7225 !(lifn_flags & LIFC_TEMPORARY))
7226 continue;
7227 if (((ipif->ipif_flags &
7228 (IPIF_NOXMIT|IPIF_NOLOCAL|
7229 IPIF_DEPRECATED)) ||
7230 IS_LOOPBACK(ill) ||
7231 !(ipif->ipif_flags & IPIF_UP)) &&
7232 (lifn_flags & LIFC_EXTERNAL_SOURCE))
7233 continue;

7235 if (zoneid != ipif->ipif_zoneid &&
7236 ipif->ipif_zoneid != ALL_ZONES &&
7237 (zoneid != GLOBAL_ZONEID ||
7238 !(lifn_flags & LIFC_ALLZONES)))
7239 continue;

7241 numifs++;
7242 }
7243 }
7244 rw_exit(&ipst->ips_ill_g_lock);
7245 return (numifs);
7246 }

7248 uint_t
7249 ip_get_lifsrcofnum(ill_t *ill)
7250 {
7251 uint_t numifs = 0;
7252 ill_t *ill_head = ill;
7253 ip_stack_t *ipst = ill->ill_ipst;

7255 /*

new/usr/src/uts/common/inet/ip/ip_if.c 111

7256 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7257 * other thread may be trying to relink the ILLs in this usesrc group
7258 * and adjusting the ill_usesrc_grp_next pointers
7259 */
7260 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7261 if ((ill->ill_usesrc_ifindex == 0) &&
7262 (ill->ill_usesrc_grp_next != NULL)) {
7263 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7264 ill = ill->ill_usesrc_grp_next)
7265 numifs++;
7266 }
7267 rw_exit(&ipst->ips_ill_g_usesrc_lock);

7269 return (numifs);
7270 }

7272 /* Null values are passed in for ipif, sin, and ifreq */
7273 /* ARGSUSED */
7274 int
7275 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7276 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7277 {
7278 int *nump;
7279 conn_t *connp = Q_TO_CONN(q);

7281 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */

7283 /* Existence of b_cont->b_cont checked in ip_wput_nondata */
7284 nump = (int *)mp->b_cont->b_cont->b_rptr;

7286 *nump = ip_get_numifs(connp->conn_zoneid,
7287 connp->conn_netstack->netstack_ip);
7288 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7289 return (0);
7290 }

7292 /* Null values are passed in for ipif, sin, and ifreq */
7293 /* ARGSUSED */
7294 int
7295 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7296 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7297 {
7298 struct lifnum *lifn;
7299 mblk_t *mp1;
7300 conn_t *connp = Q_TO_CONN(q);

7302 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */

7304 /* Existence checked in ip_wput_nondata */
7305 mp1 = mp->b_cont->b_cont;

7307 lifn = (struct lifnum *)mp1->b_rptr;
7308 switch (lifn->lifn_family) {
7309 case AF_UNSPEC:
7310 case AF_INET:
7311 case AF_INET6:
7312 break;
7313 default:
7314 return (EAFNOSUPPORT);
7315 }

7317 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7318 connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7319 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7320 return (0);
7321 }

new/usr/src/uts/common/inet/ip/ip_if.c 112

7323 /* ARGSUSED */
7324 int
7325 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7326 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7327 {
7328 STRUCT_HANDLE(ifconf, ifc);
7329 mblk_t *mp1;
7330 struct iocblk *iocp;
7331 struct ifreq *ifr;
7332 ill_walk_context_t ctx;
7333 ill_t *ill;
7334 ipif_t *ipif;
7335 struct sockaddr_in *sin;
7336 int32_t ifclen;
7337 zoneid_t zoneid;
7338 ip_stack_t *ipst = CONNQ_TO_IPST(q);

7340 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */

7342 ip1dbg(("ip_sioctl_get_ifconf"));
7343 /* Existence verified in ip_wput_nondata */
7344 mp1 = mp->b_cont->b_cont;
7345 iocp = (struct iocblk *)mp->b_rptr;
7346 zoneid = Q_TO_CONN(q)->conn_zoneid;

7348 /*
7349 * The original SIOCGIFCONF passed in a struct ifconf which specified
7350 * the user buffer address and length into which the list of struct
7351 * ifreqs was to be copied. Since AT&T Streams does not seem to
7352 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7353 * the SIOCGIFCONF operation was redefined to simply provide
7354 * a large output buffer into which we are supposed to jam the ifreq
7355 * array. The same ioctl command code was used, despite the fact that
7356 * both the applications and the kernel code had to change, thus making
7357 * it impossible to support both interfaces.
7358 *
7359 * For reasons not good enough to try to explain, the following
7360 * algorithm is used for deciding what to do with one of these:
7361 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7362 * form with the output buffer coming down as the continuation message.
7363 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7364 * and we have to copy in the ifconf structure to find out how big the
7365 * output buffer is and where to copy out to. Sure no problem...
7366 *
7367 */
7368 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7369 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7370 int numifs = 0;
7371 size_t ifc_bufsize;

7373 /*
7374 * Must be (better be!) continuation of a TRANSPARENT
7375 * IOCTL. We just copied in the ifconf structure.
7376 */
7377 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7378 (struct ifconf *)mp1->b_rptr);

7380 /*
7381 * Allocate a buffer to hold requested information.
7382 *
7383 * If ifc_len is larger than what is needed, we only
7384 * allocate what we will use.
7385 *
7386 * If ifc_len is smaller than what is needed, return
7387 * EINVAL.

new/usr/src/uts/common/inet/ip/ip_if.c 113

7388 *
7389 * XXX: the ill_t structure can hava 2 counters, for
7390 * v4 and v6 (not just ill_ipif_up_count) to store the
7391 * number of interfaces for a device, so we don’t need
7392 * to count them here...
7393 */
7394 numifs = ip_get_numifs(zoneid, ipst);

7396 ifclen = STRUCT_FGET(ifc, ifc_len);
7397 ifc_bufsize = numifs * sizeof (struct ifreq);
7398 if (ifc_bufsize > ifclen) {
7399 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7400 /* old behaviour */
7401 return (EINVAL);
7402 } else {
7403 ifc_bufsize = ifclen;
7404 }
7405 }

7407 mp1 = mi_copyout_alloc(q, mp,
7408 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7409 if (mp1 == NULL)
7410 return (ENOMEM);

7412 mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7413 }
7414 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7415 /*
7416 * the SIOCGIFCONF ioctl only knows about
7417 * IPv4 addresses, so don’t try to tell
7418 * it about interfaces with IPv6-only
7419 * addresses. (Last parm ’isv6’ is B_FALSE)
7420 */

7422 ifr = (struct ifreq *)mp1->b_rptr;

7424 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7425 ill = ILL_START_WALK_V4(&ctx, ipst);
7426 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7427 if (IS_UNDER_IPMP(ill))
7428 continue;
7429 for (ipif = ill->ill_ipif; ipif != NULL;
7430 ipif = ipif->ipif_next) {
7431 if (zoneid != ipif->ipif_zoneid &&
7432 ipif->ipif_zoneid != ALL_ZONES)
7433 continue;
7434 if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7435 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7436 /* old behaviour */
7437 rw_exit(&ipst->ips_ill_g_lock);
7438 return (EINVAL);
7439 } else {
7440 goto if_copydone;
7441 }
7442 }
7443 ipif_get_name(ipif, ifr->ifr_name,
7444 sizeof (ifr->ifr_name));
7445 sin = (sin_t *)&ifr->ifr_addr;
7446 *sin = sin_null;
7447 sin->sin_family = AF_INET;
7448 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7449 ifr++;
7450 }
7451 }
7452 if_copydone:
7453 rw_exit(&ipst->ips_ill_g_lock);

new/usr/src/uts/common/inet/ip/ip_if.c 114

7454 mp1->b_wptr = (uchar_t *)ifr;

7456 if (STRUCT_BUF(ifc) != NULL) {
7457 STRUCT_FSET(ifc, ifc_len,
7458 (int)((uchar_t *)ifr - mp1->b_rptr));
7459 }
7460 return (0);
7461 }

7463 /*
7464 * Get the interfaces using the address hosted on the interface passed in,
7465 * as a source adddress
7466 */
7467 /* ARGSUSED */
7468 int
7469 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7470 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7471 {
7472 mblk_t *mp1;
7473 ill_t *ill, *ill_head;
7474 ipif_t *ipif, *orig_ipif;
7475 int numlifs = 0;
7476 size_t lifs_bufsize, lifsmaxlen;
7477 struct lifreq *lifr;
7478 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7479 uint_t ifindex;
7480 zoneid_t zoneid;
7481 boolean_t isv6 = B_FALSE;
7482 struct sockaddr_in *sin;
7483 struct sockaddr_in6 *sin6;
7484 STRUCT_HANDLE(lifsrcof, lifs);
7485 ip_stack_t *ipst;

7487 ipst = CONNQ_TO_IPST(q);

7489 ASSERT(q->q_next == NULL);

7491 zoneid = Q_TO_CONN(q)->conn_zoneid;

7493 /* Existence verified in ip_wput_nondata */
7494 mp1 = mp->b_cont->b_cont;

7496 /*
7497 * Must be (better be!) continuation of a TRANSPARENT
7498 * IOCTL. We just copied in the lifsrcof structure.
7499 */
7500 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7501 (struct lifsrcof *)mp1->b_rptr);

7503 if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7504 return (EINVAL);

7506 ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7507 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7508 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7509 if (ipif == NULL) {
7510 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7511 ifindex));
7512 return (ENXIO);
7513 }

7515 /* Allocate a buffer to hold requested information */
7516 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7517 lifs_bufsize = numlifs * sizeof (struct lifreq);
7518 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen);
7519 /* The actual size needed is always returned in lifs_len */

new/usr/src/uts/common/inet/ip/ip_if.c 115

7520 STRUCT_FSET(lifs, lifs_len, lifs_bufsize);

7522 /* If the amount we need is more than what is passed in, abort */
7523 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7524 ipif_refrele(ipif);
7525 return (0);
7526 }

7528 mp1 = mi_copyout_alloc(q, mp,
7529 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7530 if (mp1 == NULL) {
7531 ipif_refrele(ipif);
7532 return (ENOMEM);
7533 }

7535 mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7536 bzero(mp1->b_rptr, lifs_bufsize);

7538 lifr = (struct lifreq *)mp1->b_rptr;

7540 ill = ill_head = ipif->ipif_ill;
7541 orig_ipif = ipif;

7543 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7544 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7545 rw_enter(&ipst->ips_ill_g_lock, RW_READER);

7547 ill = ill->ill_usesrc_grp_next; /* start from next ill */
7548 for (; (ill != NULL) && (ill != ill_head);
7549 ill = ill->ill_usesrc_grp_next) {

7551 if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7552 break;

7554 ipif = ill->ill_ipif;
7555 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7556 if (ipif->ipif_isv6) {
7557 sin6 = (sin6_t *)&lifr->lifr_addr;
7558 *sin6 = sin6_null;
7559 sin6->sin6_family = AF_INET6;
7560 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7561 lifr->lifr_addrlen = ip_mask_to_plen_v6(
7562 &ipif->ipif_v6net_mask);
7563 } else {
7564 sin = (sin_t *)&lifr->lifr_addr;
7565 *sin = sin_null;
7566 sin->sin_family = AF_INET;
7567 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7568 lifr->lifr_addrlen = ip_mask_to_plen(
7569 ipif->ipif_net_mask);
7570 }
7571 lifr++;
7572 }
7573 rw_exit(&ipst->ips_ill_g_lock);
7574 rw_exit(&ipst->ips_ill_g_usesrc_lock);
7575 ipif_refrele(orig_ipif);
7576 mp1->b_wptr = (uchar_t *)lifr;
7577 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));

7579 return (0);
7580 }

7582 /* ARGSUSED */
7583 int
7584 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7585 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)

new/usr/src/uts/common/inet/ip/ip_if.c 116

7586 {
7587 mblk_t *mp1;
7588 int list;
7589 ill_t *ill;
7590 ipif_t *ipif;
7591 int flags;
7592 int numlifs = 0;
7593 size_t lifc_bufsize;
7594 struct lifreq *lifr;
7595 sa_family_t family;
7596 struct sockaddr_in *sin;
7597 struct sockaddr_in6 *sin6;
7598 ill_walk_context_t ctx;
7599 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7600 int32_t lifclen;
7601 zoneid_t zoneid;
7602 STRUCT_HANDLE(lifconf, lifc);
7603 ip_stack_t *ipst = CONNQ_TO_IPST(q);

7605 ip1dbg(("ip_sioctl_get_lifconf"));

7607 ASSERT(q->q_next == NULL);

7609 zoneid = Q_TO_CONN(q)->conn_zoneid;

7611 /* Existence verified in ip_wput_nondata */
7612 mp1 = mp->b_cont->b_cont;

7614 /*
7615 * An extended version of SIOCGIFCONF that takes an
7616 * additional address family and flags field.
7617 * AF_UNSPEC retrieve both IPv4 and IPv6.
7618 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7619 * interfaces are omitted.
7620 * Similarly, IPIF_TEMPORARY interfaces are omitted
7621 * unless LIFC_TEMPORARY is specified.
7622 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7623 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7624 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7625 * has priority over LIFC_NOXMIT.
7626 */
7627 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);

7629 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7630 return (EINVAL);

7632 /*
7633 * Must be (better be!) continuation of a TRANSPARENT
7634 * IOCTL. We just copied in the lifconf structure.
7635 */
7636 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);

7638 family = STRUCT_FGET(lifc, lifc_family);
7639 flags = STRUCT_FGET(lifc, lifc_flags);

7641 switch (family) {
7642 case AF_UNSPEC:
7643 /*
7644 * walk all ILL’s.
7645 */
7646 list = MAX_G_HEADS;
7647 break;
7648 case AF_INET:
7649 /*
7650 * walk only IPV4 ILL’s.
7651 */

new/usr/src/uts/common/inet/ip/ip_if.c 117

7652 list = IP_V4_G_HEAD;
7653 break;
7654 case AF_INET6:
7655 /*
7656 * walk only IPV6 ILL’s.
7657 */
7658 list = IP_V6_G_HEAD;
7659 break;
7660 default:
7661 return (EAFNOSUPPORT);
7662 }

7664 /*
7665 * Allocate a buffer to hold requested information.
7666 *
7667 * If lifc_len is larger than what is needed, we only
7668 * allocate what we will use.
7669 *
7670 * If lifc_len is smaller than what is needed, return
7671 * EINVAL.
7672 */
7673 numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7674 lifc_bufsize = numlifs * sizeof (struct lifreq);
7675 lifclen = STRUCT_FGET(lifc, lifc_len);
7676 if (lifc_bufsize > lifclen) {
7677 if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7678 return (EINVAL);
7679 else
7680 lifc_bufsize = lifclen;
7681 }

7683 mp1 = mi_copyout_alloc(q, mp,
7684 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7685 if (mp1 == NULL)
7686 return (ENOMEM);

7688 mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7689 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);

7691 lifr = (struct lifreq *)mp1->b_rptr;

7693 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7694 ill = ill_first(list, list, &ctx, ipst);
7695 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7696 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7697 continue;

7699 for (ipif = ill->ill_ipif; ipif != NULL;
7700 ipif = ipif->ipif_next) {
7701 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7702 !(flags & LIFC_NOXMIT))
7703 continue;

7705 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7706 !(flags & LIFC_TEMPORARY))
7707 continue;

7709 if (((ipif->ipif_flags &
7710 (IPIF_NOXMIT|IPIF_NOLOCAL|
7711 IPIF_DEPRECATED)) ||
7712 IS_LOOPBACK(ill) ||
7713 !(ipif->ipif_flags & IPIF_UP)) &&
7714 (flags & LIFC_EXTERNAL_SOURCE))
7715 continue;

7717 if (zoneid != ipif->ipif_zoneid &&

new/usr/src/uts/common/inet/ip/ip_if.c 118

7718 ipif->ipif_zoneid != ALL_ZONES &&
7719 (zoneid != GLOBAL_ZONEID ||
7720 !(flags & LIFC_ALLZONES)))
7721 continue;

7723 if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7724 if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7725 rw_exit(&ipst->ips_ill_g_lock);
7726 return (EINVAL);
7727 } else {
7728 goto lif_copydone;
7729 }
7730 }

7732 ipif_get_name(ipif, lifr->lifr_name,
7733 sizeof (lifr->lifr_name));
7734 lifr->lifr_type = ill->ill_type;
7735 if (ipif->ipif_isv6) {
7736 sin6 = (sin6_t *)&lifr->lifr_addr;
7737 *sin6 = sin6_null;
7738 sin6->sin6_family = AF_INET6;
7739 sin6->sin6_addr =
7740 ipif->ipif_v6lcl_addr;
7741 lifr->lifr_addrlen =
7742 ip_mask_to_plen_v6(
7743 &ipif->ipif_v6net_mask);
7744 } else {
7745 sin = (sin_t *)&lifr->lifr_addr;
7746 *sin = sin_null;
7747 sin->sin_family = AF_INET;
7748 sin->sin_addr.s_addr =
7749 ipif->ipif_lcl_addr;
7750 lifr->lifr_addrlen =
7751 ip_mask_to_plen(
7752 ipif->ipif_net_mask);
7753 }
7754 lifr++;
7755 }
7756 }
7757 lif_copydone:
7758 rw_exit(&ipst->ips_ill_g_lock);

7760 mp1->b_wptr = (uchar_t *)lifr;
7761 if (STRUCT_BUF(lifc) != NULL) {
7762 STRUCT_FSET(lifc, lifc_len,
7763 (int)((uchar_t *)lifr - mp1->b_rptr));
7764 }
7765 return (0);
7766 }

7768 static void
7769 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7770 {
7771 ip6_asp_t *table;
7772 size_t table_size;
7773 mblk_t *data_mp;
7774 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7775 ip_stack_t *ipst;

7777 if (q->q_next == NULL)
7778 ipst = CONNQ_TO_IPST(q);
7779 else
7780 ipst = ILLQ_TO_IPST(q);

7782 /* These two ioctls are I_STR only */
7783 if (iocp->ioc_count == TRANSPARENT) {

new/usr/src/uts/common/inet/ip/ip_if.c 119

7784 miocnak(q, mp, 0, EINVAL);
7785 return;
7786 }

7788 data_mp = mp->b_cont;
7789 if (data_mp == NULL) {
7790 /* The user passed us a NULL argument */
7791 table = NULL;
7792 table_size = iocp->ioc_count;
7793 } else {
7794 /*
7795 * The user provided a table. The stream head
7796 * may have copied in the user data in chunks,
7797 * so make sure everything is pulled up
7798 * properly.
7799 */
7800 if (MBLKL(data_mp) < iocp->ioc_count) {
7801 mblk_t *new_data_mp;
7802 if ((new_data_mp = msgpullup(data_mp, -1)) ==
7803 NULL) {
7804 miocnak(q, mp, 0, ENOMEM);
7805 return;
7806 }
7807 freemsg(data_mp);
7808 data_mp = new_data_mp;
7809 mp->b_cont = data_mp;
7810 }
7811 table = (ip6_asp_t *)data_mp->b_rptr;
7812 table_size = iocp->ioc_count;
7813 }

7815 switch (iocp->ioc_cmd) {
7816 case SIOCGIP6ADDRPOLICY:
7817 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7818 if (iocp->ioc_rval == -1)
7819 iocp->ioc_error = EINVAL;
7820 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7821 else if (table != NULL &&
7822 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7823 ip6_asp_t *src = table;
7824 ip6_asp32_t *dst = (void *)table;
7825 int count = table_size / sizeof (ip6_asp_t);
7826 int i;

7828 /*
7829 * We need to do an in-place shrink of the array
7830 * to match the alignment attributes of the
7831 * 32-bit ABI looking at it.
7832 */
7833 /* LINTED: logical expression always true: op "||" */
7834 ASSERT(sizeof (*src) > sizeof (*dst));
7835 for (i = 1; i < count; i++)
7836 bcopy(src + i, dst + i, sizeof (*dst));
7837 }
7838 #endif
7839 break;

7841 case SIOCSIP6ADDRPOLICY:
7842 ASSERT(mp->b_prev == NULL);
7843 mp->b_prev = (void *)q;
7844 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7845 /*
7846 * We pass in the datamodel here so that the ip6_asp_replace()
7847 * routine can handle converting from 32-bit to native formats
7848 * where necessary.
7849 *

new/usr/src/uts/common/inet/ip/ip_if.c 120

7850 * A better way to handle this might be to convert the inbound
7851 * data structure here, and hang it off a new ’mp’; thus the
7852 * ip6_asp_replace() logic would always be dealing with native
7853 * format data structures..
7854 *
7855 * (An even simpler way to handle these ioctls is to just
7856 * add a 32-bit trailing ’pad’ field to the ip6_asp_t structure
7857 * and just recompile everything that depends on it.)
7858 */
7859 #endif
7860 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7861 iocp->ioc_flag & IOC_MODELS);
7862 return;
7863 }

7865 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7866 qreply(q, mp);
7867 }

7869 static void
7870 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7871 {
7872 mblk_t *data_mp;
7873 struct dstinforeq *dir;
7874 uint8_t *end, *cur;
7875 in6_addr_t *daddr, *saddr;
7876 ipaddr_t v4daddr;
7877 ire_t *ire;
7878 ipaddr_t v4setsrc;
7879 in6_addr_t v6setsrc;
7880 char *slabel, *dlabel;
7881 boolean_t isipv4;
7882 int match_ire;
7883 ill_t *dst_ill;
7884 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7885 conn_t *connp = Q_TO_CONN(q);
7886 zoneid_t zoneid = IPCL_ZONEID(connp);
7887 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
7888 uint64_t ipif_flags;

7890 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */

7892 /*
7893 * This ioctl is I_STR only, and must have a
7894 * data mblk following the M_IOCTL mblk.
7895 */
7896 data_mp = mp->b_cont;
7897 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7898 miocnak(q, mp, 0, EINVAL);
7899 return;
7900 }

7902 if (MBLKL(data_mp) < iocp->ioc_count) {
7903 mblk_t *new_data_mp;

7905 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7906 miocnak(q, mp, 0, ENOMEM);
7907 return;
7908 }
7909 freemsg(data_mp);
7910 data_mp = new_data_mp;
7911 mp->b_cont = data_mp;
7912 }
7913 match_ire = MATCH_IRE_DSTONLY;

7915 for (cur = data_mp->b_rptr, end = data_mp->b_wptr;

new/usr/src/uts/common/inet/ip/ip_if.c 121

7916 end - cur >= sizeof (struct dstinforeq);
7917 cur += sizeof (struct dstinforeq)) {
7918 dir = (struct dstinforeq *)cur;
7919 daddr = &dir->dir_daddr;
7920 saddr = &dir->dir_saddr;

7922 /*
7923 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7924 * v4 mapped addresses; ire_ftable_lookup_v6()
7925 * and ip_select_source_v6() do not.
7926 */
7927 dir->dir_dscope = ip_addr_scope_v6(daddr);
7928 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);

7930 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7931 if (isipv4) {
7932 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7933 v4setsrc = INADDR_ANY;
7934 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7935 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7936 NULL, NULL);
7937 } else {
7938 v6setsrc = ipv6_all_zeros;
7939 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7940 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7941 NULL, NULL);
7942 }
7943 ASSERT(ire != NULL);
7944 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7945 ire_refrele(ire);
7946 dir->dir_dreachable = 0;

7948 /* move on to next dst addr */
7949 continue;
7950 }
7951 dir->dir_dreachable = 1;

7953 dst_ill = ire_nexthop_ill(ire);
7954 if (dst_ill == NULL) {
7955 ire_refrele(ire);
7956 continue;
7957 }

7959 /* With ipmp we most likely look at the ipmp ill here */
7960 dir->dir_dmactype = dst_ill->ill_mactype;

7962 if (isipv4) {
7963 ipaddr_t v4saddr;

7965 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7966 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7967 &v4saddr, NULL, &ipif_flags) != 0) {
7968 v4saddr = INADDR_ANY;
7969 ipif_flags = 0;
7970 }
7971 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7972 } else {
7973 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7974 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7975 saddr, NULL, &ipif_flags) != 0) {
7976 *saddr = ipv6_all_zeros;
7977 ipif_flags = 0;
7978 }
7979 }

7981 dir->dir_sscope = ip_addr_scope_v6(saddr);

new/usr/src/uts/common/inet/ip/ip_if.c 122

7982 slabel = ip6_asp_lookup(saddr, NULL, ipst);
7983 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7984 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7985 ire_refrele(ire);
7986 ill_refrele(dst_ill);
7987 }
7988 miocack(q, mp, iocp->ioc_count, 0);
7989 }

7991 /*
7992 * Check if this is an address assigned to this machine.
7993 * Skips interfaces that are down by using ire checks.
7994 * Translates mapped addresses to v4 addresses and then
7995 * treats them as such, returning true if the v4 address
7996 * associated with this mapped address is configured.
7997 * Note: Applications will have to be careful what they do
7998 * with the response; use of mapped addresses limits
7999 * what can be done with the socket, especially with
8000 * respect to socket options and ioctls - neither IPv4
8001 * options nor IPv6 sticky options/ancillary data options
8002 * may be used.
8003 */
8004 /* ARGSUSED */
8005 int
8006 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8007 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8008 {
8009 struct sioc_addrreq *sia;
8010 sin_t *sin;
8011 ire_t *ire;
8012 mblk_t *mp1;
8013 zoneid_t zoneid;
8014 ip_stack_t *ipst;

8016 ip1dbg(("ip_sioctl_tmyaddr"));

8018 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8019 zoneid = Q_TO_CONN(q)->conn_zoneid;
8020 ipst = CONNQ_TO_IPST(q);

8022 /* Existence verified in ip_wput_nondata */
8023 mp1 = mp->b_cont->b_cont;
8024 sia = (struct sioc_addrreq *)mp1->b_rptr;
8025 sin = (sin_t *)&sia->sa_addr;
8026 switch (sin->sin_family) {
8027 case AF_INET6: {
8028 sin6_t *sin6 = (sin6_t *)sin;

8030 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8031 ipaddr_t v4_addr;

8033 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8034 v4_addr);
8035 ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8036 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8037 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8038 } else {
8039 in6_addr_t v6addr;

8041 v6addr = sin6->sin6_addr;
8042 ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8043 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8044 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8045 }
8046 break;
8047 }

new/usr/src/uts/common/inet/ip/ip_if.c 123

8048 case AF_INET: {
8049 ipaddr_t v4addr;

8051 v4addr = sin->sin_addr.s_addr;
8052 ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8053 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8054 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8055 break;
8056 }
8057 default:
8058 return (EAFNOSUPPORT);
8059 }
8060 if (ire != NULL) {
8061 sia->sa_res = 1;
8062 ire_refrele(ire);
8063 } else {
8064 sia->sa_res = 0;
8065 }
8066 return (0);
8067 }

8069 /*
8070 * Check if this is an address assigned on-link i.e. neighbor,
8071 * and makes sure it’s reachable from the current zone.
8072 * Returns true for my addresses as well.
8073 * Translates mapped addresses to v4 addresses and then
8074 * treats them as such, returning true if the v4 address
8075 * associated with this mapped address is configured.
8076 * Note: Applications will have to be careful what they do
8077 * with the response; use of mapped addresses limits
8078 * what can be done with the socket, especially with
8079 * respect to socket options and ioctls - neither IPv4
8080 * options nor IPv6 sticky options/ancillary data options
8081 * may be used.
8082 */
8083 /* ARGSUSED */
8084 int
8085 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8086 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8087 {
8088 struct sioc_addrreq *sia;
8089 sin_t *sin;
8090 mblk_t *mp1;
8091 ire_t *ire = NULL;
8092 zoneid_t zoneid;
8093 ip_stack_t *ipst;

8095 ip1dbg(("ip_sioctl_tonlink"));

8097 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8098 zoneid = Q_TO_CONN(q)->conn_zoneid;
8099 ipst = CONNQ_TO_IPST(q);

8101 /* Existence verified in ip_wput_nondata */
8102 mp1 = mp->b_cont->b_cont;
8103 sia = (struct sioc_addrreq *)mp1->b_rptr;
8104 sin = (sin_t *)&sia->sa_addr;

8106 /*
8107 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8108 * to make sure we only look at on-link unicast address.
8109 */
8110 switch (sin->sin_family) {
8111 case AF_INET6: {
8112 sin6_t *sin6 = (sin6_t *)sin;

new/usr/src/uts/common/inet/ip/ip_if.c 124

8114 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8115 ipaddr_t v4_addr;

8117 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8118 v4_addr);
8119 if (!CLASSD(v4_addr)) {
8120 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8121 NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8122 0, ipst, NULL);
8123 }
8124 } else {
8125 in6_addr_t v6addr;

8127 v6addr = sin6->sin6_addr;
8128 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8129 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8130 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8131 ipst, NULL);
8132 }
8133 }
8134 break;
8135 }
8136 case AF_INET: {
8137 ipaddr_t v4addr;

8139 v4addr = sin->sin_addr.s_addr;
8140 if (!CLASSD(v4addr)) {
8141 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8142 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8143 }
8144 break;
8145 }
8146 default:
8147 return (EAFNOSUPPORT);
8148 }
8149 sia->sa_res = 0;
8150 if (ire != NULL) {
8151 ASSERT(!(ire->ire_type & IRE_MULTICAST));

8153 if ((ire->ire_type & IRE_ONLINK) &&
8154 !(ire->ire_type & IRE_BROADCAST))
8155 sia->sa_res = 1;
8156 ire_refrele(ire);
8157 }
8158 return (0);
8159 }

8161 /*
8162 * TBD: implement when kernel maintaines a list of site prefixes.
8163 */
8164 /* ARGSUSED */
8165 int
8166 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8167 ip_ioctl_cmd_t *ipip, void *ifreq)
8168 {
8169 return (ENXIO);
8170 }

8172 /* ARP IOCTLs. */
8173 /* ARGSUSED */
8174 int
8175 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8176 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8177 {
8178 int err;
8179 ipaddr_t ipaddr;

new/usr/src/uts/common/inet/ip/ip_if.c 125

8180 struct iocblk *iocp;
8181 conn_t *connp;
8182 struct arpreq *ar;
8183 struct xarpreq *xar;
8184 int arp_flags, flags, alength;
8185 uchar_t *lladdr;
8186 ip_stack_t *ipst;
8187 ill_t *ill = ipif->ipif_ill;
8188 ill_t *proxy_ill = NULL;
8189 ipmp_arpent_t *entp = NULL;
8190 boolean_t proxyarp = B_FALSE;
8191 boolean_t if_arp_ioctl = B_FALSE;
8192 ncec_t *ncec = NULL;
8193 nce_t *nce;

8195 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8196 connp = Q_TO_CONN(q);
8197 ipst = connp->conn_netstack->netstack_ip;
8198 iocp = (struct iocblk *)mp->b_rptr;

8200 if (ipip->ipi_cmd_type == XARP_CMD) {
8201 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8202 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8203 ar = NULL;

8205 arp_flags = xar->xarp_flags;
8206 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8207 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8208 /*
8209 * Validate against user’s link layer address length
8210 * input and name and addr length limits.
8211 */
8212 alength = ill->ill_phys_addr_length;
8213 if (ipip->ipi_cmd == SIOCSXARP) {
8214 if (alength != xar->xarp_ha.sdl_alen ||
8215 (alength + xar->xarp_ha.sdl_nlen >
8216 sizeof (xar->xarp_ha.sdl_data)))
8217 return (EINVAL);
8218 }
8219 } else {
8220 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8221 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8222 xar = NULL;

8224 arp_flags = ar->arp_flags;
8225 lladdr = (uchar_t *)ar->arp_ha.sa_data;
8226 /*
8227 * Theoretically, the sa_family could tell us what link
8228 * layer type this operation is trying to deal with. By
8229 * common usage AF_UNSPEC means ethernet. We’ll assume
8230 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8231 * for now. Our new SIOC*XARP ioctls can be used more
8232 * generally.
8233 *
8234 * If the underlying media happens to have a non 6 byte
8235 * address, arp module will fail set/get, but the del
8236 * operation will succeed.
8237 */
8238 alength = 6;
8239 if ((ipip->ipi_cmd != SIOCDARP) &&
8240 (alength != ill->ill_phys_addr_length)) {
8241 return (EINVAL);
8242 }
8243 }

8245 /* Translate ATF* flags to NCE* flags */

new/usr/src/uts/common/inet/ip/ip_if.c 126

8246 flags = 0;
8247 if (arp_flags & ATF_AUTHORITY)
8248 flags |= NCE_F_AUTHORITY;
8249 if (arp_flags & ATF_PERM)
8250 flags |= NCE_F_NONUD; /* not subject to aging */
8251 if (arp_flags & ATF_PUBL)
8252 flags |= NCE_F_PUBLISH;

8254 /*
8255 * IPMP ARP special handling:
8256 *
8257 * 1. Since ARP mappings must appear consistent across the group,
8258 * prohibit changing ARP mappings on the underlying interfaces.
8259 *
8260 * 2. Since ARP mappings for IPMP data addresses are maintained by
8261 * IP itself, prohibit changing them.
8262 *
8263 * 3. For proxy ARP, use a functioning hardware address in the group,
8264 * provided one exists. If one doesn’t, just add the entry as-is;
8265 * ipmp_illgrp_refresh_arpent() will refresh it if things change.
8266 */
8267 if (IS_UNDER_IPMP(ill)) {
8268 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8269 return (EPERM);
8270 }
8271 if (IS_IPMP(ill)) {
8272 ipmp_illgrp_t *illg = ill->ill_grp;

8274 switch (ipip->ipi_cmd) {
8275 case SIOCSARP:
8276 case SIOCSXARP:
8277 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8278 if (proxy_ill != NULL) {
8279 proxyarp = B_TRUE;
8280 if (!ipmp_ill_is_active(proxy_ill))
8281 proxy_ill = ipmp_illgrp_next_ill(illg);
8282 if (proxy_ill != NULL)
8283 lladdr = proxy_ill->ill_phys_addr;
8284 }
8285 /* FALLTHRU */
8286 }
8287 }

8289 ipaddr = sin->sin_addr.s_addr;
8290 /*
8291 * don’t match across illgrp per case (1) and (2).
8292 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8293 */
8294 nce = nce_lookup_v4(ill, &ipaddr);
8295 if (nce != NULL)
8296 ncec = nce->nce_common;

8298 switch (iocp->ioc_cmd) {
8299 case SIOCDARP:
8300 case SIOCDXARP: {
8301 /*
8302 * Delete the NCE if any.
8303 */
8304 if (ncec == NULL) {
8305 iocp->ioc_error = ENXIO;
8306 break;
8307 }
8308 /* Don’t allow changes to arp mappings of local addresses. */
8309 if (NCE_MYADDR(ncec)) {
8310 nce_refrele(nce);
8311 return (ENOTSUP);

new/usr/src/uts/common/inet/ip/ip_if.c 127

8312 }
8313 iocp->ioc_error = 0;

8315 /*
8316 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8317 * This will delete all the nce entries on the under_ills.
8318 */
8319 ncec_delete(ncec);
8320 /*
8321 * Once the NCE has been deleted, then the ire_dep* consistency
8322 * mechanism will find any IRE which depended on the now
8323 * condemned NCE (as part of sending packets).
8324 * That mechanism handles redirects by deleting redirects
8325 * that refer to UNREACHABLE nces.
8326 */
8327 break;
8328 }
8329 case SIOCGARP:
8330 case SIOCGXARP:
8331 if (ncec != NULL) {
8332 lladdr = ncec->ncec_lladdr;
8333 flags = ncec->ncec_flags;
8334 iocp->ioc_error = 0;
8335 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8336 } else {
8337 iocp->ioc_error = ENXIO;
8338 }
8339 break;
8340 case SIOCSARP:
8341 case SIOCSXARP:
8342 /* Don’t allow changes to arp mappings of local addresses. */
8343 if (ncec != NULL && NCE_MYADDR(ncec)) {
8344 nce_refrele(nce);
8345 return (ENOTSUP);
8346 }

8348 /* static arp entries will undergo NUD if ATF_PERM is not set */
8349 flags |= NCE_F_STATIC;
8350 if (!if_arp_ioctl) {
8351 ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8352 lladdr, alength, flags);
8353 } else {
8354 ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8355 if (ipif != NULL) {
8356 ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8357 lladdr, alength, flags);
8358 ipif_refrele(ipif);
8359 }
8360 }
8361 if (nce != NULL) {
8362 nce_refrele(nce);
8363 nce = NULL;
8364 }
8365 /*
8366 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8367 * by nce_add_common()
8368 */
8369 err = nce_lookup_then_add_v4(ill, lladdr,
8370 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8371 &nce);
8372 if (err == EEXIST) {
8373 ncec = nce->nce_common;
8374 mutex_enter(&ncec->ncec_lock);
8375 ncec->ncec_state = ND_REACHABLE;
8376 ncec->ncec_flags = flags;
8377 nce_update(ncec, ND_UNCHANGED, lladdr);

new/usr/src/uts/common/inet/ip/ip_if.c 128

8378 mutex_exit(&ncec->ncec_lock);
8379 err = 0;
8380 }
8381 if (nce != NULL) {
8382 nce_refrele(nce);
8383 nce = NULL;
8384 }
8385 if (IS_IPMP(ill) && err == 0) {
8386 entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8387 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8388 flags);
8389 if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8390 iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8391 break;
8392 }
8393 }
8394 iocp->ioc_error = err;
8395 }

8397 if (nce != NULL) {
8398 nce_refrele(nce);
8399 }

8401 /*
8402 * If we created an IPMP ARP entry, mark that we’ve notified ARP.
8403 */
8404 if (entp != NULL)
8405 ipmp_illgrp_mark_arpent(ill->ill_grp, entp);

8407 return (iocp->ioc_error);
8408 }

8410 /*
8411 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8412 * the associated sin and refhold and return the associated ipif via ‘ci’.
8413 */
8414 int
8415 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8416 cmd_info_t *ci)
8417 {
8418 mblk_t *mp1;
8419 sin_t *sin;
8420 conn_t *connp;
8421 ipif_t *ipif;
8422 ire_t *ire = NULL;
8423 ill_t *ill = NULL;
8424 boolean_t exists;
8425 ip_stack_t *ipst;
8426 struct arpreq *ar;
8427 struct xarpreq *xar;
8428 struct sockaddr_dl *sdl;

8430 /* ioctl comes down on a conn */
8431 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8432 connp = Q_TO_CONN(q);
8433 if (connp->conn_family == AF_INET6)
8434 return (ENXIO);

8436 ipst = connp->conn_netstack->netstack_ip;

8438 /* Verified in ip_wput_nondata */
8439 mp1 = mp->b_cont->b_cont;

8441 if (ipip->ipi_cmd_type == XARP_CMD) {
8442 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8443 xar = (struct xarpreq *)mp1->b_rptr;

new/usr/src/uts/common/inet/ip/ip_if.c 129

8444 sin = (sin_t *)&xar->xarp_pa;
8445 sdl = &xar->xarp_ha;

8447 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8448 return (ENXIO);
8449 if (sdl->sdl_nlen >= LIFNAMSIZ)
8450 return (EINVAL);
8451 } else {
8452 ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8453 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8454 ar = (struct arpreq *)mp1->b_rptr;
8455 sin = (sin_t *)&ar->arp_pa;
8456 }

8458 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8459 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8460 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8461 if (ipif == NULL)
8462 return (ENXIO);
8463 if (ipif->ipif_id != 0) {
8464 ipif_refrele(ipif);
8465 return (ENXIO);
8466 }
8467 } else {
8468 /*
8469 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8470 * of 0: use the IP address to find the ipif. If the IP
8471 * address is an IPMP test address, ire_ftable_lookup() will
8472 * find the wrong ill, so we first do an ipif_lookup_addr().
8473 */
8474 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8475 ipst);
8476 if (ipif == NULL) {
8477 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8478 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8479 NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8480 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8481 if (ire != NULL)
8482 ire_refrele(ire);
8483 return (ENXIO);
8484 }
8485 ASSERT(ire != NULL && ill != NULL);
8486 ipif = ill->ill_ipif;
8487 ipif_refhold(ipif);
8488 ire_refrele(ire);
8489 }
8490 }

8492 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8493 ipif_refrele(ipif);
8494 return (ENXIO);
8495 }

8497 ci->ci_sin = sin;
8498 ci->ci_ipif = ipif;
8499 return (0);
8500 }

8502 /*
8503 * Link or unlink the illgrp on IPMP meta-interface ‘ill’ depending on the
8504 * value of ‘ioccmd’. While an illgrp is linked to an ipmp_grp_t, it is
8505 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8506 * up and thus an ill can join that illgrp.
8507 *
8508 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8509 * open()/close() primarily because close() is not allowed to fail or block

new/usr/src/uts/common/inet/ip/ip_if.c 130

8510 * forever. On the other hand, I_PUNLINK *can* fail, and there’s no reason
8511 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure
8512 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8513 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts
8514 * to I_LINK since I_UNLINK is optional and we’d end up in an inconsistent
8515 * state if I_UNLINK didn’t occur.
8516 *
8517 * Note that for each plumb/unplumb operation, we may end up here more than
8518 * once because of the way ifconfig works. However, it’s OK to link the same
8519 * illgrp more than once, or unlink an illgrp that’s already unlinked.
8520 */
8521 static int
8522 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8523 {
8524 int err;
8525 ip_stack_t *ipst = ill->ill_ipst;

8527 ASSERT(IS_IPMP(ill));
8528 ASSERT(IAM_WRITER_ILL(ill));

8530 switch (ioccmd) {
8531 case I_LINK:
8532 return (ENOTSUP);

8534 case I_PLINK:
8535 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8536 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8537 rw_exit(&ipst->ips_ipmp_lock);
8538 break;

8540 case I_PUNLINK:
8541 /*
8542 * Require all UP ipifs be brought down prior to unlinking the
8543 * illgrp so any associated IREs (and other state) is torched.
8544 */
8545 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8546 return (EBUSY);

8548 /*
8549 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8550 * with an SIOCSLIFGROUPNAME request from an ill trying to
8551 * join this group. Specifically: ills trying to join grab
8552 * ipmp_lock and bump a "pending join" counter checked by
8553 * ipmp_illgrp_unlink_grp(). During the unlink no new pending
8554 * joins can occur (since we have ipmp_lock). Once we drop
8555 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8556 * find the illgrp (since we unlinked it) and will return
8557 * EAFNOSUPPORT. This will then take them back through the
8558 * IPMP meta-interface plumbing logic in ifconfig, and thus
8559 * back through I_PLINK above.
8560 */
8561 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8562 err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8563 rw_exit(&ipst->ips_ipmp_lock);
8564 return (err);
8565 default:
8566 break;
8567 }
8568 return (0);
8569 }

8571 /*
8572 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8573 * atomically set/clear the muxids. Also complete the ioctl by acking or
8574 * naking it. Note that the code is structured such that the link type,
8575 * whether it’s persistent or not, is treated equally. ifconfig(1M) and

new/usr/src/uts/common/inet/ip/ip_if.c 131

8576 * its clones use the persistent link, while pppd(1M) and perhaps many
8577 * other daemons may use non-persistent link. When combined with some
8578 * ill_t states, linking and unlinking lower streams may be used as
8579 * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8580 */
8581 /* ARGSUSED */
8582 void
8583 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8584 {
8585 mblk_t *mp1;
8586 struct linkblk *li;
8587 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8588 int err = 0;

8590 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8591 ioccmd == I_LINK || ioccmd == I_UNLINK);

8593 mp1 = mp->b_cont; /* This is the linkblk info */
8594 li = (struct linkblk *)mp1->b_rptr;

8596 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8597 if (err == EINPROGRESS)
8598 return;
8599 if (err == 0)
8600 miocack(q, mp, 0, 0);
8601 else
8602 miocnak(q, mp, 0, err);

8604 /* Conn was refheld in ip_sioctl_copyin_setup */
8605 if (CONN_Q(q)) {
8606 CONN_DEC_IOCTLREF(Q_TO_CONN(q));
8607 CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8608 }
8609 }

8611 /*
8612 * Process I_{P}LINK and I_{P}UNLINK requests named by ‘ioccmd’ and pointed to
8613 * by ‘mp’ and ‘li’ for the IP module stream (if li->q_bot is in fact an IP
8614 * module stream).
8615 * Returns zero on success, EINPROGRESS if the operation is still pending, or
8616 * an error code on failure.
8617 */
8618 static int
8619 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8620 struct linkblk *li)
8621 {
8622 int err = 0;
8623 ill_t *ill;
8624 queue_t *ipwq, *dwq;
8625 const char *name;
8626 struct qinit *qinfo;
8627 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8628 boolean_t entered_ipsq = B_FALSE;
8629 boolean_t is_ip = B_FALSE;
8630 arl_t *arl;

8632 /*
8633 * Walk the lower stream to verify it’s the IP module stream.
8634 * The IP module is identified by its name, wput function,
8635 * and non-NULL q_next. STREAMS ensures that the lower stream
8636 * (li->l_qbot) will not vanish until this ioctl completes.
8637 */
8638 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8639 qinfo = ipwq->q_qinfo;
8640 name = qinfo->qi_minfo->mi_idname;
8641 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&

new/usr/src/uts/common/inet/ip/ip_if.c 132

8642 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8643 is_ip = B_TRUE;
8644 break;
8645 }
8646 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8647 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8648 break;
8649 }
8650 }

8652 /*
8653 * If this isn’t an IP module stream, bail.
8654 */
8655 if (ipwq == NULL)
8656 return (0);

8658 if (!is_ip) {
8659 arl = (arl_t *)ipwq->q_ptr;
8660 ill = arl_to_ill(arl);
8661 if (ill == NULL)
8662 return (0);
8663 } else {
8664 ill = ipwq->q_ptr;
8665 }
8666 ASSERT(ill != NULL);

8668 if (ipsq == NULL) {
8669 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8670 NEW_OP, B_FALSE);
8671 if (ipsq == NULL) {
8672 if (!is_ip)
8673 ill_refrele(ill);
8674 return (EINPROGRESS);
8675 }
8676 entered_ipsq = B_TRUE;
8677 }
8678 ASSERT(IAM_WRITER_ILL(ill));
8679 mutex_enter(&ill->ill_lock);
8680 if (!is_ip) {
8681 if (islink && ill->ill_muxid == 0) {
8682 /*
8683 * Plumbing has to be done with IP plumbed first, arp
8684 * second, but here we have arp being plumbed first.
8685 */
8686 mutex_exit(&ill->ill_lock);
8687 if (entered_ipsq)
8688 ipsq_exit(ipsq);
8689 ill_refrele(ill);
8690 return (EINVAL);
8691 }
8692 }
8693 mutex_exit(&ill->ill_lock);
8694 if (!is_ip) {
8695 arl->arl_muxid = islink ? li->l_index : 0;
8696 ill_refrele(ill);
8697 goto done;
8698 }

8700 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8701 goto done;

8703 /*
8704 * As part of I_{P}LINKing, stash the number of downstream modules and
8705 * the read queue of the module immediately below IP in the ill.
8706 * These are used during the capability negotiation below.
8707 */

new/usr/src/uts/common/inet/ip/ip_if.c 133

8708 ill->ill_lmod_rq = NULL;
8709 ill->ill_lmod_cnt = 0;
8710 if (islink && ((dwq = ipwq->q_next) != NULL)) {
8711 ill->ill_lmod_rq = RD(dwq);
8712 for (; dwq != NULL; dwq = dwq->q_next)
8713 ill->ill_lmod_cnt++;
8714 }

8716 ill->ill_muxid = islink ? li->l_index : 0;

8718 /*
8719 * Mark the ipsq busy until the capability operations initiated below
8720 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8721 * returns, but the capability operation may complete asynchronously
8722 * much later.
8723 */
8724 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8725 /*
8726 * If there’s at least one up ipif on this ill, then we’re bound to
8727 * the underlying driver via DLPI. In that case, renegotiate
8728 * capabilities to account for any possible change in modules
8729 * interposed between IP and the driver.
8730 */
8731 if (ill->ill_ipif_up_count > 0) {
8732 if (islink)
8733 ill_capability_probe(ill);
8734 else
8735 ill_capability_reset(ill, B_FALSE);
8736 }
8737 ipsq_current_finish(ipsq);
8738 done:
8739 if (entered_ipsq)
8740 ipsq_exit(ipsq);

8742 return (err);
8743 }

8745 /*
8746 * Search the ioctl command in the ioctl tables and return a pointer
8747 * to the ioctl command information. The ioctl command tables are
8748 * static and fully populated at compile time.
8749 */
8750 ip_ioctl_cmd_t *
8751 ip_sioctl_lookup(int ioc_cmd)
8752 {
8753 int index;
8754 ip_ioctl_cmd_t *ipip;
8755 ip_ioctl_cmd_t *ipip_end;

8757 if (ioc_cmd == IPI_DONTCARE)
8758 return (NULL);

8760 /*
8761 * Do a 2 step search. First search the indexed table
8762 * based on the least significant byte of the ioctl cmd.
8763 * If we don’t find a match, then search the misc table
8764 * serially.
8765 */
8766 index = ioc_cmd & 0xFF;
8767 if (index < ip_ndx_ioctl_count) {
8768 ipip = &ip_ndx_ioctl_table[index];
8769 if (ipip->ipi_cmd == ioc_cmd) {
8770 /* Found a match in the ndx table */
8771 return (ipip);
8772 }
8773 }

new/usr/src/uts/common/inet/ip/ip_if.c 134

8775 /* Search the misc table */
8776 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8777 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8778 if (ipip->ipi_cmd == ioc_cmd)
8779 /* Found a match in the misc table */
8780 return (ipip);
8781 }

8783 return (NULL);
8784 }

8786 /*
8787 * helper function for ip_sioctl_getsetprop(), which does some sanity checks
8788 */
8789 static boolean_t
8790 getset_ioctl_checks(mblk_t *mp)
8791 {
8792 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8793 mblk_t *mp1 = mp->b_cont;
8794 mod_ioc_prop_t *pioc;
8795 uint_t flags;
8796 uint_t pioc_size;

8798 /* do sanity checks on various arguments */
8799 if (mp1 == NULL || iocp->ioc_count == 0 ||
8800 iocp->ioc_count == TRANSPARENT) {
8801 return (B_FALSE);
8802 }
8803 if (msgdsize(mp1) < iocp->ioc_count) {
8804 if (!pullupmsg(mp1, iocp->ioc_count))
8805 return (B_FALSE);
8806 }

8808 pioc = (mod_ioc_prop_t *)mp1->b_rptr;

8810 /* sanity checks on mpr_valsize */
8811 pioc_size = sizeof (mod_ioc_prop_t);
8812 if (pioc->mpr_valsize != 0)
8813 pioc_size += pioc->mpr_valsize - 1;

8815 if (iocp->ioc_count != pioc_size)
8816 return (B_FALSE);

8818 flags = pioc->mpr_flags;
8819 if (iocp->ioc_cmd == SIOCSETPROP) {
8820 /*
8821 * One can either reset the value to it’s default value or
8822 * change the current value or append/remove the value from
8823 * a multi-valued properties.
8824 */
8825 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8826 flags != MOD_PROP_ACTIVE &&
8827 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) &&
8828 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE))
8829 return (B_FALSE);
8830 } else {
8831 ASSERT(iocp->ioc_cmd == SIOCGETPROP);

8833 /*
8834 * One can retrieve only one kind of property information
8835 * at a time.
8836 */
8837 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE &&
8838 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8839 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE &&

new/usr/src/uts/common/inet/ip/ip_if.c 135

8840 (flags & MOD_PROP_PERM) != MOD_PROP_PERM)
8841 return (B_FALSE);
8842 }

8844 return (B_TRUE);
8845 }

8847 /*
8848 * process the SIOC{SET|GET}PROP ioctl’s
8849 */
8850 /* ARGSUSED */
8851 static void
8852 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp)
8853 {
8854 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8855 mblk_t *mp1 = mp->b_cont;
8856 mod_ioc_prop_t *pioc;
8857 mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8858 ip_stack_t *ipst;
8859 icmp_stack_t *is;
8860 tcp_stack_t *tcps;
8861 sctp_stack_t *sctps;
8862 dccp_stack_t *dccps;
8863 #endif /* ! codereview */
8864 udp_stack_t *us;
8865 netstack_t *stack;
8866 void *cbarg;
8867 cred_t *cr;
8868 boolean_t set;
8869 int err;

8871 ASSERT(q->q_next == NULL);
8872 ASSERT(CONN_Q(q));

8874 if (!getset_ioctl_checks(mp)) {
8875 miocnak(q, mp, 0, EINVAL);
8876 return;
8877 }
8878 ipst = CONNQ_TO_IPST(q);
8879 stack = ipst->ips_netstack;
8880 pioc = (mod_ioc_prop_t *)mp1->b_rptr;

8882 switch (pioc->mpr_proto) {
8883 case MOD_PROTO_IP:
8884 case MOD_PROTO_IPV4:
8885 case MOD_PROTO_IPV6:
8886 ptbl = ipst->ips_propinfo_tbl;
8887 cbarg = ipst;
8888 break;
8889 case MOD_PROTO_RAWIP:
8890 is = stack->netstack_icmp;
8891 ptbl = is->is_propinfo_tbl;
8892 cbarg = is;
8893 break;
8894 case MOD_PROTO_TCP:
8895 tcps = stack->netstack_tcp;
8896 ptbl = tcps->tcps_propinfo_tbl;
8897 cbarg = tcps;
8898 break;
8899 case MOD_PROTO_UDP:
8900 us = stack->netstack_udp;
8901 ptbl = us->us_propinfo_tbl;
8902 cbarg = us;
8903 break;
8904 case MOD_PROTO_SCTP:
8905 sctps = stack->netstack_sctp;

new/usr/src/uts/common/inet/ip/ip_if.c 136

8906 ptbl = sctps->sctps_propinfo_tbl;
8907 cbarg = sctps;
8908 break;
8909 case MOD_PROTO_DCCP:
8910 dccps = stack->netstack_dccp;
8911 ptbl = dccps->dccps_propinfo_tbl;
8912 cbarg = dccps;
8913 #endif /* ! codereview */
8914 default:
8915 miocnak(q, mp, 0, EINVAL);
8916 return;
8917 }

8919 /* search for given property in respective protocol propinfo table */
8920 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) {
8921 if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 &&
8922 pinfo->mpi_proto == pioc->mpr_proto)
8923 break;
8924 }
8925 if (pinfo->mpi_name == NULL) {
8926 miocnak(q, mp, 0, ENOENT);
8927 return;
8928 }

8930 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE;
8931 if (set && pinfo->mpi_setf != NULL) {
8932 cr = msg_getcred(mp, NULL);
8933 if (cr == NULL)
8934 cr = iocp->ioc_cr;
8935 err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname,
8936 pioc->mpr_val, pioc->mpr_flags);
8937 } else if (!set && pinfo->mpi_getf != NULL) {
8938 err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname,
8939 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags);
8940 } else {
8941 err = EPERM;
8942 }

8944 if (err != 0) {
8945 miocnak(q, mp, 0, err);
8946 } else {
8947 if (set)
8948 miocack(q, mp, 0, 0);
8949 else /* For get, we need to return back the data */
8950 miocack(q, mp, iocp->ioc_count, 0);
8951 }
8952 }

8954 /*
8955 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding
8956 * as several routing daemons have unfortunately used this ’unpublished’
8957 * but well-known ioctls.
8958 */
8959 /* ARGSUSED */
8960 static void
8961 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp)
8962 {
8963 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8964 mblk_t *mp1 = mp->b_cont;
8965 char *pname, *pval, *buf;
8966 uint_t bufsize, proto;
8967 mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8968 ip_stack_t *ipst;
8969 int err = 0;

8971 ASSERT(CONN_Q(q));

new/usr/src/uts/common/inet/ip/ip_if.c 137

8972 ipst = CONNQ_TO_IPST(q);

8974 if (iocp->ioc_count == 0 || mp1 == NULL) {
8975 miocnak(q, mp, 0, EINVAL);
8976 return;
8977 }

8979 mp1->b_datap->db_lim[-1] = ’\0’; /* Force null termination */
8980 pval = buf = pname = (char *)mp1->b_rptr;
8981 bufsize = MBLKL(mp1);

8983 if (strcmp(pname, "ip_forwarding") == 0) {
8984 pname = "forwarding";
8985 proto = MOD_PROTO_IPV4;
8986 } else if (strcmp(pname, "ip6_forwarding") == 0) {
8987 pname = "forwarding";
8988 proto = MOD_PROTO_IPV6;
8989 } else {
8990 miocnak(q, mp, 0, EINVAL);
8991 return;
8992 }

8994 ptbl = ipst->ips_propinfo_tbl;
8995 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) {
8996 if (strcmp(pinfo->mpi_name, pname) == 0 &&
8997 pinfo->mpi_proto == proto)
8998 break;
8999 }

9001 ASSERT(pinfo->mpi_name != NULL);

9003 switch (iocp->ioc_cmd) {
9004 case ND_GET:
9005 if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize,
9006 0)) == 0) {
9007 miocack(q, mp, iocp->ioc_count, 0);
9008 return;
9009 }
9010 break;
9011 case ND_SET:
9012 /*
9013 * buffer will have property name and value in the following
9014 * format,
9015 * <property name>’\0’<property value>’\0’, extract them;
9016 */
9017 while (*pval++)
9018 noop;

9020 if (!*pval || pval >= (char *)mp1->b_wptr) {
9021 err = EINVAL;
9022 } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL,
9023 pval, 0)) == 0) {
9024 miocack(q, mp, 0, 0);
9025 return;
9026 }
9027 break;
9028 default:
9029 err = EINVAL;
9030 break;
9031 }
9032 miocnak(q, mp, 0, err);
9033 }

9035 /*
9036 * Wrapper function for resuming deferred ioctl processing
9037 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,

new/usr/src/uts/common/inet/ip/ip_if.c 138

9038 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9039 */
9040 /* ARGSUSED */
9041 void
9042 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9043 void *dummy_arg)
9044 {
9045 ip_sioctl_copyin_setup(q, mp);
9046 }

9048 /*
9049 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
9050 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle
9051 * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9052 * We establish here the size of the block to be copied in. mi_copyin
9053 * arranges for this to happen, an processing continues in ip_wput_nondata with
9054 * an M_IOCDATA message.
9055 */
9056 void
9057 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9058 {
9059 int copyin_size;
9060 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9061 ip_ioctl_cmd_t *ipip;
9062 cred_t *cr;
9063 ip_stack_t *ipst;

9065 if (CONN_Q(q))
9066 ipst = CONNQ_TO_IPST(q);
9067 else
9068 ipst = ILLQ_TO_IPST(q);

9070 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9071 if (ipip == NULL) {
9072 /*
9073 * The ioctl is not one we understand or own.
9074 * Pass it along to be processed down stream,
9075 * if this is a module instance of IP, else nak
9076 * the ioctl.
9077 */
9078 if (q->q_next == NULL) {
9079 goto nak;
9080 } else {
9081 putnext(q, mp);
9082 return;
9083 }
9084 }

9086 /*
9087 * If this is deferred, then we will do all the checks when we
9088 * come back.
9089 */
9090 if ((iocp->ioc_cmd == SIOCGDSTINFO ||
9091 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
9092 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
9093 return;
9094 }

9096 /*
9097 * Only allow a very small subset of IP ioctls on this stream if
9098 * IP is a module and not a driver. Allowing ioctls to be processed
9099 * in this case may cause assert failures or data corruption.
9100 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
9101 * ioctls allowed on an IP module stream, after which this stream
9102 * normally becomes a multiplexor (at which time the stream head
9103 * will fail all ioctls).

new/usr/src/uts/common/inet/ip/ip_if.c 139

9104 */
9105 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
9106 goto nak;
9107 }

9109 /* Make sure we have ioctl data to process. */
9110 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
9111 goto nak;

9113 /*
9114 * Prefer dblk credential over ioctl credential; some synthesized
9115 * ioctls have kcred set because there’s no way to crhold()
9116 * a credential in some contexts. (ioc_cr is not crfree() by
9117 * the framework; the caller of ioctl needs to hold the reference
9118 * for the duration of the call).
9119 */
9120 cr = msg_getcred(mp, NULL);
9121 if (cr == NULL)
9122 cr = iocp->ioc_cr;

9124 /* Make sure normal users don’t send down privileged ioctls */
9125 if ((ipip->ipi_flags & IPI_PRIV) &&
9126 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
9127 /* We checked the privilege earlier but log it here */
9128 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
9129 return;
9130 }

9132 /*
9133 * The ioctl command tables can only encode fixed length
9134 * ioctl data. If the length is variable, the table will
9135 * encode the length as zero. Such special cases are handled
9136 * below in the switch.
9137 */
9138 if (ipip->ipi_copyin_size != 0) {
9139 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
9140 return;
9141 }

9143 switch (iocp->ioc_cmd) {
9144 case O_SIOCGIFCONF:
9145 case SIOCGIFCONF:
9146 /*
9147 * This IOCTL is hilarious. See comments in
9148 * ip_sioctl_get_ifconf for the story.
9149 */
9150 if (iocp->ioc_count == TRANSPARENT)
9151 copyin_size = SIZEOF_STRUCT(ifconf,
9152 iocp->ioc_flag);
9153 else
9154 copyin_size = iocp->ioc_count;
9155 mi_copyin(q, mp, NULL, copyin_size);
9156 return;

9158 case O_SIOCGLIFCONF:
9159 case SIOCGLIFCONF:
9160 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
9161 mi_copyin(q, mp, NULL, copyin_size);
9162 return;

9164 case SIOCGLIFSRCOF:
9165 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
9166 mi_copyin(q, mp, NULL, copyin_size);
9167 return;

9169 case SIOCGIP6ADDRPOLICY:

new/usr/src/uts/common/inet/ip/ip_if.c 140

9170 ip_sioctl_ip6addrpolicy(q, mp);
9171 ip6_asp_table_refrele(ipst);
9172 return;

9174 case SIOCSIP6ADDRPOLICY:
9175 ip_sioctl_ip6addrpolicy(q, mp);
9176 return;

9178 case SIOCGDSTINFO:
9179 ip_sioctl_dstinfo(q, mp);
9180 ip6_asp_table_refrele(ipst);
9181 return;

9183 case ND_SET:
9184 case ND_GET:
9185 ip_process_legacy_nddprop(q, mp);
9186 return;

9188 case SIOCSETPROP:
9189 case SIOCGETPROP:
9190 ip_sioctl_getsetprop(q, mp);
9191 return;

9193 case I_PLINK:
9194 case I_PUNLINK:
9195 case I_LINK:
9196 case I_UNLINK:
9197 /*
9198 * We treat non-persistent link similarly as the persistent
9199 * link case, in terms of plumbing/unplumbing, as well as
9200 * dynamic re-plumbing events indicator. See comments
9201 * in ip_sioctl_plink() for more.
9202 *
9203 * Request can be enqueued in the ’ipsq’ while waiting
9204 * to become exclusive. So bump up the conn ref.
9205 */
9206 if (CONN_Q(q)) {
9207 CONN_INC_REF(Q_TO_CONN(q));
9208 CONN_INC_IOCTLREF(Q_TO_CONN(q))
9209 }
9210 ip_sioctl_plink(NULL, q, mp, NULL);
9211 return;

9213 case IP_IOCTL:
9214 ip_wput_ioctl(q, mp);
9215 return;

9217 case SIOCILB:
9218 /* The ioctl length varies depending on the ILB command. */
9219 copyin_size = iocp->ioc_count;
9220 if (copyin_size < sizeof (ilb_cmd_t))
9221 goto nak;
9222 mi_copyin(q, mp, NULL, copyin_size);
9223 return;

9225 default:
9226 cmn_err(CE_PANIC, "should not happen ");
9227 }
9228 nak:
9229 if (mp->b_cont != NULL) {
9230 freemsg(mp->b_cont);
9231 mp->b_cont = NULL;
9232 }
9233 iocp->ioc_error = EINVAL;
9234 mp->b_datap->db_type = M_IOCNAK;
9235 iocp->ioc_count = 0;

new/usr/src/uts/common/inet/ip/ip_if.c 141

9236 qreply(q, mp);
9237 }

9239 static void
9240 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9241 {
9242 struct arpreq *ar;
9243 struct xarpreq *xar;
9244 mblk_t *tmp;
9245 struct iocblk *iocp;
9246 int x_arp_ioctl = B_FALSE;
9247 int *flagsp;
9248 char *storage = NULL;

9250 ASSERT(ill != NULL);

9252 iocp = (struct iocblk *)mp->b_rptr;
9253 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);

9255 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9256 if ((iocp->ioc_cmd == SIOCGXARP) ||
9257 (iocp->ioc_cmd == SIOCSXARP)) {
9258 x_arp_ioctl = B_TRUE;
9259 xar = (struct xarpreq *)tmp->b_rptr;
9260 flagsp = &xar->xarp_flags;
9261 storage = xar->xarp_ha.sdl_data;
9262 } else {
9263 ar = (struct arpreq *)tmp->b_rptr;
9264 flagsp = &ar->arp_flags;
9265 storage = ar->arp_ha.sa_data;
9266 }

9268 /*
9269 * We’re done if this is not an SIOCG{X}ARP
9270 */
9271 if (x_arp_ioctl) {
9272 storage += ill_xarp_info(&xar->xarp_ha, ill);
9273 if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9274 sizeof (xar->xarp_ha.sdl_data)) {
9275 iocp->ioc_error = EINVAL;
9276 return;
9277 }
9278 }
9279 *flagsp = ATF_INUSE;
9280 /*
9281 * If /sbin/arp told us we are the authority using the "permanent"
9282 * flag, or if this is one of my addresses print "permanent"
9283 * in the /sbin/arp output.
9284 */
9285 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9286 *flagsp |= ATF_AUTHORITY;
9287 if (flags & NCE_F_NONUD)
9288 *flagsp |= ATF_PERM; /* not subject to aging */
9289 if (flags & NCE_F_PUBLISH)
9290 *flagsp |= ATF_PUBL;
9291 if (hwaddr != NULL) {
9292 *flagsp |= ATF_COM;
9293 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9294 }
9295 }

9297 /*
9298 * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9299 * interface) create the next available logical interface for this
9300 * physical interface.
9301 * If ipif is NULL (i.e. the lookup didn’t find one) attempt to create an

new/usr/src/uts/common/inet/ip/ip_if.c 142

9302 * ipif with the specified name.
9303 *
9304 * If the address family is not AF_UNSPEC then set the address as well.
9305 *
9306 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9307 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9308 *
9309 * Executed as a writer on the ill.
9310 * So no lock is needed to traverse the ipif chain, or examine the
9311 * phyint flags.
9312 */
9313 /* ARGSUSED */
9314 int
9315 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9316 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9317 {
9318 mblk_t *mp1;
9319 struct lifreq *lifr;
9320 boolean_t isv6;
9321 boolean_t exists;
9322 char *name;
9323 char *endp;
9324 char *cp;
9325 int namelen;
9326 ipif_t *ipif;
9327 long id;
9328 ipsq_t *ipsq;
9329 ill_t *ill;
9330 sin_t *sin;
9331 int err = 0;
9332 boolean_t found_sep = B_FALSE;
9333 conn_t *connp;
9334 zoneid_t zoneid;
9335 ip_stack_t *ipst = CONNQ_TO_IPST(q);

9337 ASSERT(q->q_next == NULL);
9338 ip1dbg(("ip_sioctl_addif\n"));
9339 /* Existence of mp1 has been checked in ip_wput_nondata */
9340 mp1 = mp->b_cont->b_cont;
9341 /*
9342 * Null terminate the string to protect against buffer
9343 * overrun. String was generated by user code and may not
9344 * be trusted.
9345 */
9346 lifr = (struct lifreq *)mp1->b_rptr;
9347 lifr->lifr_name[LIFNAMSIZ - 1] = ’\0’;
9348 name = lifr->lifr_name;
9349 ASSERT(CONN_Q(q));
9350 connp = Q_TO_CONN(q);
9351 isv6 = (connp->conn_family == AF_INET6);
9352 zoneid = connp->conn_zoneid;
9353 namelen = mi_strlen(name);
9354 if (namelen == 0)
9355 return (EINVAL);

9357 exists = B_FALSE;
9358 if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9359 (mi_strcmp(name, ipif_loopback_name) == 0)) {
9360 /*
9361 * Allow creating lo0 using SIOCLIFADDIF.
9362 * can’t be any other writer thread. So can pass null below
9363 * for the last 4 args to ipif_lookup_name.
9364 */
9365 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9366 &exists, isv6, zoneid, ipst);
9367 /* Prevent any further action */

new/usr/src/uts/common/inet/ip/ip_if.c 143

9368 if (ipif == NULL) {
9369 return (ENOBUFS);
9370 } else if (!exists) {
9371 /* We created the ipif now and as writer */
9372 ipif_refrele(ipif);
9373 return (0);
9374 } else {
9375 ill = ipif->ipif_ill;
9376 ill_refhold(ill);
9377 ipif_refrele(ipif);
9378 }
9379 } else {
9380 /* Look for a colon in the name. */
9381 endp = &name[namelen];
9382 for (cp = endp; --cp > name;) {
9383 if (*cp == IPIF_SEPARATOR_CHAR) {
9384 found_sep = B_TRUE;
9385 /*
9386 * Reject any non-decimal aliases for plumbing
9387 * of logical interfaces. Aliases with leading
9388 * zeroes are also rejected as they introduce
9389 * ambiguity in the naming of the interfaces.
9390 * Comparing with "0" takes care of all such
9391 * cases.
9392 */
9393 if ((strncmp("0", cp+1, 1)) == 0)
9394 return (EINVAL);

9396 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9397 id <= 0 || *endp != ’\0’) {
9398 return (EINVAL);
9399 }
9400 *cp = ’\0’;
9401 break;
9402 }
9403 }
9404 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9405 if (found_sep)
9406 *cp = IPIF_SEPARATOR_CHAR;
9407 if (ill == NULL)
9408 return (ENXIO);
9409 }

9411 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9412 B_TRUE);

9414 /*
9415 * Release the refhold due to the lookup, now that we are excl
9416 * or we are just returning
9417 */
9418 ill_refrele(ill);

9420 if (ipsq == NULL)
9421 return (EINPROGRESS);

9423 /* We are now exclusive on the IPSQ */
9424 ASSERT(IAM_WRITER_ILL(ill));

9426 if (found_sep) {
9427 /* Now see if there is an IPIF with this unit number. */
9428 for (ipif = ill->ill_ipif; ipif != NULL;
9429 ipif = ipif->ipif_next) {
9430 if (ipif->ipif_id == id) {
9431 err = EEXIST;
9432 goto done;
9433 }

new/usr/src/uts/common/inet/ip/ip_if.c 144

9434 }
9435 }

9437 /*
9438 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9439 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name()
9440 * instead.
9441 */
9442 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9443 B_TRUE, B_TRUE, &err)) == NULL) {
9444 goto done;
9445 }

9447 /* Return created name with ioctl */
9448 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9449 IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9450 ip1dbg(("created %s\n", lifr->lifr_name));

9452 /* Set address */
9453 sin = (sin_t *)&lifr->lifr_addr;
9454 if (sin->sin_family != AF_UNSPEC) {
9455 err = ip_sioctl_addr(ipif, sin, q, mp,
9456 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9457 }

9459 done:
9460 ipsq_exit(ipsq);
9461 return (err);
9462 }

9464 /*
9465 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9466 * interface) delete it based on the IP address (on this physical interface).
9467 * Otherwise delete it based on the ipif_id.
9468 * Also, special handling to allow a removeif of lo0.
9469 */
9470 /* ARGSUSED */
9471 int
9472 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9473 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9474 {
9475 conn_t *connp;
9476 ill_t *ill = ipif->ipif_ill;
9477 boolean_t success;
9478 ip_stack_t *ipst;

9480 ipst = CONNQ_TO_IPST(q);

9482 ASSERT(q->q_next == NULL);
9483 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9484 ill->ill_name, ipif->ipif_id, (void *)ipif));
9485 ASSERT(IAM_WRITER_IPIF(ipif));

9487 connp = Q_TO_CONN(q);
9488 /*
9489 * Special case for unplumbing lo0 (the loopback physical interface).
9490 * If unplumbing lo0, the incoming address structure has been
9491 * initialized to all zeros. When unplumbing lo0, all its logical
9492 * interfaces must be removed too.
9493 *
9494 * Note that this interface may be called to remove a specific
9495 * loopback logical interface (eg, lo0:1). But in that case
9496 * ipif->ipif_id != 0 so that the code path for that case is the
9497 * same as any other interface (meaning it skips the code directly
9498 * below).
9499 */

new/usr/src/uts/common/inet/ip/ip_if.c 145

9500 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9501 if (sin->sin_family == AF_UNSPEC &&
9502 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9503 /*
9504 * Mark it condemned. No new ref. will be made to ill.
9505 */
9506 mutex_enter(&ill->ill_lock);
9507 ill->ill_state_flags |= ILL_CONDEMNED;
9508 for (ipif = ill->ill_ipif; ipif != NULL;
9509 ipif = ipif->ipif_next) {
9510 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9511 }
9512 mutex_exit(&ill->ill_lock);

9514 ipif = ill->ill_ipif;
9515 /* unplumb the loopback interface */
9516 ill_delete(ill);
9517 mutex_enter(&connp->conn_lock);
9518 mutex_enter(&ill->ill_lock);

9520 /* Are any references to this ill active */
9521 if (ill_is_freeable(ill)) {
9522 mutex_exit(&ill->ill_lock);
9523 mutex_exit(&connp->conn_lock);
9524 ill_delete_tail(ill);
9525 mi_free(ill);
9526 return (0);
9527 }
9528 success = ipsq_pending_mp_add(connp, ipif,
9529 CONNP_TO_WQ(connp), mp, ILL_FREE);
9530 mutex_exit(&connp->conn_lock);
9531 mutex_exit(&ill->ill_lock);
9532 if (success)
9533 return (EINPROGRESS);
9534 else
9535 return (EINTR);
9536 }
9537 }

9539 if (ipif->ipif_id == 0) {
9540 ipsq_t *ipsq;

9542 /* Find based on address */
9543 if (ipif->ipif_isv6) {
9544 sin6_t *sin6;

9546 if (sin->sin_family != AF_INET6)
9547 return (EAFNOSUPPORT);

9549 sin6 = (sin6_t *)sin;
9550 /* We are a writer, so we should be able to lookup */
9551 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9552 ipst);
9553 } else {
9554 if (sin->sin_family != AF_INET)
9555 return (EAFNOSUPPORT);

9557 /* We are a writer, so we should be able to lookup */
9558 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9559 ipst);
9560 }
9561 if (ipif == NULL) {
9562 return (EADDRNOTAVAIL);
9563 }

9565 /*

new/usr/src/uts/common/inet/ip/ip_if.c 146

9566 * It is possible for a user to send an SIOCLIFREMOVEIF with
9567 * lifr_name of the physical interface but with an ip address
9568 * lifr_addr of a logical interface plumbed over it.
9569 * So update ipx_current_ipif now that ipif points to the
9570 * correct one.
9571 */
9572 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9573 ipsq->ipsq_xop->ipx_current_ipif = ipif;

9575 /* This is a writer */
9576 ipif_refrele(ipif);
9577 }

9579 /*
9580 * Can not delete instance zero since it is tied to the ill.
9581 */
9582 if (ipif->ipif_id == 0)
9583 return (EBUSY);

9585 mutex_enter(&ill->ill_lock);
9586 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9587 mutex_exit(&ill->ill_lock);

9589 ipif_free(ipif);

9591 mutex_enter(&connp->conn_lock);
9592 mutex_enter(&ill->ill_lock);

9594 /* Are any references to this ipif active */
9595 if (ipif_is_freeable(ipif)) {
9596 mutex_exit(&ill->ill_lock);
9597 mutex_exit(&connp->conn_lock);
9598 ipif_non_duplicate(ipif);
9599 (void) ipif_down_tail(ipif);
9600 ipif_free_tail(ipif); /* frees ipif */
9601 return (0);
9602 }
9603 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9604 IPIF_FREE);
9605 mutex_exit(&ill->ill_lock);
9606 mutex_exit(&connp->conn_lock);
9607 if (success)
9608 return (EINPROGRESS);
9609 else
9610 return (EINTR);
9611 }

9613 /*
9614 * Restart the removeif ioctl. The refcnt has gone down to 0.
9615 * The ipif is already condemned. So can’t find it thru lookups.
9616 */
9617 /* ARGSUSED */
9618 int
9619 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9620 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9621 {
9622 ill_t *ill = ipif->ipif_ill;

9624 ASSERT(IAM_WRITER_IPIF(ipif));
9625 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);

9627 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9628 ill->ill_name, ipif->ipif_id, (void *)ipif));

9630 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9631 ASSERT(ill->ill_state_flags & ILL_CONDEMNED);

new/usr/src/uts/common/inet/ip/ip_if.c 147

9632 ill_delete_tail(ill);
9633 mi_free(ill);
9634 return (0);
9635 }

9637 ipif_non_duplicate(ipif);
9638 (void) ipif_down_tail(ipif);
9639 ipif_free_tail(ipif);

9641 return (0);
9642 }

9644 /*
9645 * Set the local interface address using the given prefix and ill_token.
9646 */
9647 /* ARGSUSED */
9648 int
9649 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9650 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9651 {
9652 int err;
9653 in6_addr_t v6addr;
9654 sin6_t *sin6;
9655 ill_t *ill;
9656 int i;

9658 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n",
9659 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

9661 ASSERT(IAM_WRITER_IPIF(ipif));

9663 if (!ipif->ipif_isv6)
9664 return (EINVAL);

9666 if (sin->sin_family != AF_INET6)
9667 return (EAFNOSUPPORT);

9669 sin6 = (sin6_t *)sin;
9670 v6addr = sin6->sin6_addr;
9671 ill = ipif->ipif_ill;

9673 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) ||
9674 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
9675 return (EADDRNOTAVAIL);

9677 for (i = 0; i < 4; i++)
9678 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i];

9680 err = ip_sioctl_addr(ipif, sin, q, mp,
9681 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq);
9682 return (err);
9683 }

9685 /*
9686 * Restart entry point to restart the address set operation after the
9687 * refcounts have dropped to zero.
9688 */
9689 /* ARGSUSED */
9690 int
9691 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9692 ip_ioctl_cmd_t *ipip, void *ifreq)
9693 {
9694 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n",
9695 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9696 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq));
9697 }

new/usr/src/uts/common/inet/ip/ip_if.c 148

9699 /*
9700 * Set the local interface address.
9701 * Allow an address of all zero when the interface is down.
9702 */
9703 /* ARGSUSED */
9704 int
9705 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9706 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9707 {
9708 int err = 0;
9709 in6_addr_t v6addr;
9710 boolean_t need_up = B_FALSE;
9711 ill_t *ill;
9712 int i;

9714 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9715 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

9717 ASSERT(IAM_WRITER_IPIF(ipif));

9719 ill = ipif->ipif_ill;
9720 if (ipif->ipif_isv6) {
9721 sin6_t *sin6;
9722 phyint_t *phyi;

9724 if (sin->sin_family != AF_INET6)
9725 return (EAFNOSUPPORT);

9727 sin6 = (sin6_t *)sin;
9728 v6addr = sin6->sin6_addr;
9729 phyi = ill->ill_phyint;

9731 /*
9732 * Enforce that true multicast interfaces have a link-local
9733 * address for logical unit 0.
9734 *
9735 * However for those ipif’s for which link-local address was
9736 * not created by default, also allow setting :: as the address.
9737 * This scenario would arise, when we delete an address on ipif
9738 * with logical unit 0, we would want to set :: as the address.
9739 */
9740 if (ipif->ipif_id == 0 &&
9741 (ill->ill_flags & ILLF_MULTICAST) &&
9742 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9743 !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9744 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {

9746 /*
9747 * if default link-local was not created by kernel for
9748 * this ill, allow setting :: as the address on ipif:0.
9749 */
9750 if (ill->ill_flags & ILLF_NOLINKLOCAL) {
9751 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr))
9752 return (EADDRNOTAVAIL);
9753 } else {
9754 return (EADDRNOTAVAIL);
9755 }
9756 }

9758 /*
9759 * up interfaces shouldn’t have the unspecified address
9760 * unless they also have the IPIF_NOLOCAL flags set and
9761 * have a subnet assigned.
9762 */
9763 if ((ipif->ipif_flags & IPIF_UP) &&

new/usr/src/uts/common/inet/ip/ip_if.c 149

9764 IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9765 (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9766 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9767 return (EADDRNOTAVAIL);
9768 }

9770 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9771 return (EADDRNOTAVAIL);
9772 } else {
9773 ipaddr_t addr;

9775 if (sin->sin_family != AF_INET)
9776 return (EAFNOSUPPORT);

9778 addr = sin->sin_addr.s_addr;

9780 /* Allow INADDR_ANY as the local address. */
9781 if (addr != INADDR_ANY &&
9782 !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9783 return (EADDRNOTAVAIL);

9785 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9786 }
9787 /*
9788 * verify that the address being configured is permitted by the
9789 * ill_allowed_ips[] for the interface.
9790 */
9791 if (ill->ill_allowed_ips_cnt > 0) {
9792 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) {
9793 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i],
9794 &v6addr))
9795 break;
9796 }
9797 if (i == ill->ill_allowed_ips_cnt) {
9798 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr);
9799 return (EPERM);
9800 }
9801 }
9802 /*
9803 * Even if there is no change we redo things just to rerun
9804 * ipif_set_default.
9805 */
9806 if (ipif->ipif_flags & IPIF_UP) {
9807 /*
9808 * Setting a new local address, make sure
9809 * we have net and subnet bcast ire’s for
9810 * the old address if we need them.
9811 */
9812 /*
9813 * If the interface is already marked up,
9814 * we call ipif_down which will take care
9815 * of ditching any IREs that have been set
9816 * up based on the old interface address.
9817 */
9818 err = ipif_logical_down(ipif, q, mp);
9819 if (err == EINPROGRESS)
9820 return (err);
9821 (void) ipif_down_tail(ipif);
9822 need_up = 1;
9823 }

9825 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9826 return (err);
9827 }

9829 int

new/usr/src/uts/common/inet/ip/ip_if.c 150

9830 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9831 boolean_t need_up)
9832 {
9833 in6_addr_t v6addr;
9834 in6_addr_t ov6addr;
9835 ipaddr_t addr;
9836 sin6_t *sin6;
9837 int sinlen;
9838 int err = 0;
9839 ill_t *ill = ipif->ipif_ill;
9840 boolean_t need_dl_down;
9841 boolean_t need_arp_down;
9842 struct iocblk *iocp;

9844 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;

9846 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9847 ill->ill_name, ipif->ipif_id, (void *)ipif));
9848 ASSERT(IAM_WRITER_IPIF(ipif));

9850 /* Must cancel any pending timer before taking the ill_lock */
9851 if (ipif->ipif_recovery_id != 0)
9852 (void) untimeout(ipif->ipif_recovery_id);
9853 ipif->ipif_recovery_id = 0;

9855 if (ipif->ipif_isv6) {
9856 sin6 = (sin6_t *)sin;
9857 v6addr = sin6->sin6_addr;
9858 sinlen = sizeof (struct sockaddr_in6);
9859 } else {
9860 addr = sin->sin_addr.s_addr;
9861 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9862 sinlen = sizeof (struct sockaddr_in);
9863 }
9864 mutex_enter(&ill->ill_lock);
9865 ov6addr = ipif->ipif_v6lcl_addr;
9866 ipif->ipif_v6lcl_addr = v6addr;
9867 sctp_update_ipif_addr(ipif, ov6addr);
9868 ipif->ipif_addr_ready = 0;

9870 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);

9872 /*
9873 * If the interface was previously marked as a duplicate, then since
9874 * we’ve now got a "new" address, it should no longer be considered a
9875 * duplicate -- even if the "new" address is the same as the old one.
9876 * Note that if all ipifs are down, we may have a pending ARP down
9877 * event to handle. This is because we want to recover from duplicates
9878 * and thus delay tearing down ARP until the duplicates have been
9879 * removed or disabled.
9880 */
9881 need_dl_down = need_arp_down = B_FALSE;
9882 if (ipif->ipif_flags & IPIF_DUPLICATE) {
9883 need_arp_down = !need_up;
9884 ipif->ipif_flags &= ~IPIF_DUPLICATE;
9885 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9886 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9887 need_dl_down = B_TRUE;
9888 }
9889 }

9891 ipif_set_default(ipif);

9893 /*
9894 * If we’ve just manually set the IPv6 link-local address (0th ipif),
9895 * tag the ill so that future updates to the interface ID don’t result

new/usr/src/uts/common/inet/ip/ip_if.c 151

9896 * in this address getting automatically reconfigured from under the
9897 * administrator.
9898 */
9899 if (ipif->ipif_isv6 && ipif->ipif_id == 0) {
9900 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR &&
9901 !IN6_IS_ADDR_UNSPECIFIED(&v6addr)))
9902 ill->ill_manual_linklocal = 1;
9903 }

9905 /*
9906 * When publishing an interface address change event, we only notify
9907 * the event listeners of the new address. It is assumed that if they
9908 * actively care about the addresses assigned that they will have
9909 * already discovered the previous address assigned (if there was one.)
9910 *
9911 * Don’t attach nic event message for SIOCLIFADDIF ioctl.
9912 */
9913 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9914 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9915 NE_ADDRESS_CHANGE, sin, sinlen);
9916 }

9918 mutex_exit(&ill->ill_lock);

9920 if (need_up) {
9921 /*
9922 * Now bring the interface back up. If this
9923 * is the only IPIF for the ILL, ipif_up
9924 * will have to re-bind to the device, so
9925 * we may get back EINPROGRESS, in which
9926 * case, this IOCTL will get completed in
9927 * ip_rput_dlpi when we see the DL_BIND_ACK.
9928 */
9929 err = ipif_up(ipif, q, mp);
9930 } else {
9931 /* Perhaps ilgs should use this ill */
9932 update_conn_ill(NULL, ill->ill_ipst);
9933 }

9935 if (need_dl_down)
9936 ill_dl_down(ill);

9938 if (need_arp_down && !ill->ill_isv6)
9939 (void) ipif_arp_down(ipif);

9941 /*
9942 * The default multicast interface might have changed (for
9943 * instance if the IPv6 scope of the address changed)
9944 */
9945 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);

9947 return (err);
9948 }

9950 /*
9951 * Restart entry point to restart the address set operation after the
9952 * refcounts have dropped to zero.
9953 */
9954 /* ARGSUSED */
9955 int
9956 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9957 ip_ioctl_cmd_t *ipip, void *ifreq)
9958 {
9959 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9960 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9961 ASSERT(IAM_WRITER_IPIF(ipif));

new/usr/src/uts/common/inet/ip/ip_if.c 152

9962 (void) ipif_down_tail(ipif);
9963 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9964 }

9966 /* ARGSUSED */
9967 int
9968 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9969 ip_ioctl_cmd_t *ipip, void *if_req)
9970 {
9971 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9972 struct lifreq *lifr = (struct lifreq *)if_req;

9974 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9975 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9976 /*
9977 * The net mask and address can’t change since we have a
9978 * reference to the ipif. So no lock is necessary.
9979 */
9980 if (ipif->ipif_isv6) {
9981 *sin6 = sin6_null;
9982 sin6->sin6_family = AF_INET6;
9983 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9984 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9985 lifr->lifr_addrlen =
9986 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9987 } else {
9988 *sin = sin_null;
9989 sin->sin_family = AF_INET;
9990 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9991 if (ipip->ipi_cmd_type == LIF_CMD) {
9992 lifr->lifr_addrlen =
9993 ip_mask_to_plen(ipif->ipif_net_mask);
9994 }
9995 }
9996 return (0);
9997 }

9999 /*
10000 * Set the destination address for a pt-pt interface.
10001 */
10002 /* ARGSUSED */
10003 int
10004 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10005 ip_ioctl_cmd_t *ipip, void *if_req)
10006 {
10007 int err = 0;
10008 in6_addr_t v6addr;
10009 boolean_t need_up = B_FALSE;

10011 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
10012 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10013 ASSERT(IAM_WRITER_IPIF(ipif));

10015 if (ipif->ipif_isv6) {
10016 sin6_t *sin6;

10018 if (sin->sin_family != AF_INET6)
10019 return (EAFNOSUPPORT);

10021 sin6 = (sin6_t *)sin;
10022 v6addr = sin6->sin6_addr;

10024 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
10025 return (EADDRNOTAVAIL);
10026 } else {
10027 ipaddr_t addr;

new/usr/src/uts/common/inet/ip/ip_if.c 153

10029 if (sin->sin_family != AF_INET)
10030 return (EAFNOSUPPORT);

10032 addr = sin->sin_addr.s_addr;
10033 if (addr != INADDR_ANY &&
10034 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) {
10035 return (EADDRNOTAVAIL);
10036 }

10038 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10039 }

10041 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
10042 return (0); /* No change */

10044 if (ipif->ipif_flags & IPIF_UP) {
10045 /*
10046 * If the interface is already marked up,
10047 * we call ipif_down which will take care
10048 * of ditching any IREs that have been set
10049 * up based on the old pp dst address.
10050 */
10051 err = ipif_logical_down(ipif, q, mp);
10052 if (err == EINPROGRESS)
10053 return (err);
10054 (void) ipif_down_tail(ipif);
10055 need_up = B_TRUE;
10056 }
10057 /*
10058 * could return EINPROGRESS. If so ioctl will complete in
10059 * ip_rput_dlpi_writer
10060 */
10061 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
10062 return (err);
10063 }

10065 static int
10066 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10067 boolean_t need_up)
10068 {
10069 in6_addr_t v6addr;
10070 ill_t *ill = ipif->ipif_ill;
10071 int err = 0;
10072 boolean_t need_dl_down;
10073 boolean_t need_arp_down;

10075 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
10076 ipif->ipif_id, (void *)ipif));

10078 /* Must cancel any pending timer before taking the ill_lock */
10079 if (ipif->ipif_recovery_id != 0)
10080 (void) untimeout(ipif->ipif_recovery_id);
10081 ipif->ipif_recovery_id = 0;

10083 if (ipif->ipif_isv6) {
10084 sin6_t *sin6;

10086 sin6 = (sin6_t *)sin;
10087 v6addr = sin6->sin6_addr;
10088 } else {
10089 ipaddr_t addr;

10091 addr = sin->sin_addr.s_addr;
10092 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10093 }

new/usr/src/uts/common/inet/ip/ip_if.c 154

10094 mutex_enter(&ill->ill_lock);
10095 /* Set point to point destination address. */
10096 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10097 /*
10098 * Allow this as a means of creating logical
10099 * pt-pt interfaces on top of e.g. an Ethernet.
10100 * XXX Undocumented HACK for testing.
10101 * pt-pt interfaces are created with NUD disabled.
10102 */
10103 ipif->ipif_flags |= IPIF_POINTOPOINT;
10104 ipif->ipif_flags &= ~IPIF_BROADCAST;
10105 if (ipif->ipif_isv6)
10106 ill->ill_flags |= ILLF_NONUD;
10107 }

10109 /*
10110 * If the interface was previously marked as a duplicate, then since
10111 * we’ve now got a "new" address, it should no longer be considered a
10112 * duplicate -- even if the "new" address is the same as the old one.
10113 * Note that if all ipifs are down, we may have a pending ARP down
10114 * event to handle.
10115 */
10116 need_dl_down = need_arp_down = B_FALSE;
10117 if (ipif->ipif_flags & IPIF_DUPLICATE) {
10118 need_arp_down = !need_up;
10119 ipif->ipif_flags &= ~IPIF_DUPLICATE;
10120 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
10121 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
10122 need_dl_down = B_TRUE;
10123 }
10124 }

10126 /*
10127 * If we’ve just manually set the IPv6 destination link-local address
10128 * (0th ipif), tag the ill so that future updates to the destination
10129 * interface ID (as can happen with interfaces over IP tunnels) don’t
10130 * result in this address getting automatically reconfigured from
10131 * under the administrator.
10132 */
10133 if (ipif->ipif_isv6 && ipif->ipif_id == 0)
10134 ill->ill_manual_dst_linklocal = 1;

10136 /* Set the new address. */
10137 ipif->ipif_v6pp_dst_addr = v6addr;
10138 /* Make sure subnet tracks pp_dst */
10139 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
10140 mutex_exit(&ill->ill_lock);

10142 if (need_up) {
10143 /*
10144 * Now bring the interface back up. If this
10145 * is the only IPIF for the ILL, ipif_up
10146 * will have to re-bind to the device, so
10147 * we may get back EINPROGRESS, in which
10148 * case, this IOCTL will get completed in
10149 * ip_rput_dlpi when we see the DL_BIND_ACK.
10150 */
10151 err = ipif_up(ipif, q, mp);
10152 }

10154 if (need_dl_down)
10155 ill_dl_down(ill);
10156 if (need_arp_down && !ipif->ipif_isv6)
10157 (void) ipif_arp_down(ipif);

10159 return (err);

new/usr/src/uts/common/inet/ip/ip_if.c 155

10160 }

10162 /*
10163 * Restart entry point to restart the dstaddress set operation after the
10164 * refcounts have dropped to zero.
10165 */
10166 /* ARGSUSED */
10167 int
10168 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10169 ip_ioctl_cmd_t *ipip, void *ifreq)
10170 {
10171 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
10172 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10173 (void) ipif_down_tail(ipif);
10174 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
10175 }

10177 /* ARGSUSED */
10178 int
10179 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10180 ip_ioctl_cmd_t *ipip, void *if_req)
10181 {
10182 sin6_t *sin6 = (struct sockaddr_in6 *)sin;

10184 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
10185 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10186 /*
10187 * Get point to point destination address. The addresses can’t
10188 * change since we hold a reference to the ipif.
10189 */
10190 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
10191 return (EADDRNOTAVAIL);

10193 if (ipif->ipif_isv6) {
10194 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10195 *sin6 = sin6_null;
10196 sin6->sin6_family = AF_INET6;
10197 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
10198 } else {
10199 *sin = sin_null;
10200 sin->sin_family = AF_INET;
10201 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
10202 }
10203 return (0);
10204 }

10206 /*
10207 * Check which flags will change by the given flags being set
10208 * silently ignore flags which userland is not allowed to control.
10209 * (Because these flags may change between SIOCGLIFFLAGS and
10210 * SIOCSLIFFLAGS, and that’s outside of userland’s control,
10211 * we need to silently ignore them rather than fail.)
10212 */
10213 static void
10214 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
10215 uint64_t *offp)
10216 {
10217 ill_t *ill = ipif->ipif_ill;
10218 phyint_t *phyi = ill->ill_phyint;
10219 uint64_t cantchange_flags, intf_flags;
10220 uint64_t turn_on, turn_off;

10222 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10223 cantchange_flags = IFF_CANTCHANGE;
10224 if (IS_IPMP(ill))
10225 cantchange_flags |= IFF_IPMP_CANTCHANGE;

new/usr/src/uts/common/inet/ip/ip_if.c 156

10226 turn_on = (flags ^ intf_flags) & ~cantchange_flags;
10227 turn_off = intf_flags & turn_on;
10228 turn_on ^= turn_off;
10229 *onp = turn_on;
10230 *offp = turn_off;
10231 }

10233 /*
10234 * Set interface flags. Many flags require special handling (e.g.,
10235 * bringing the interface down); see below for details.
10236 *
10237 * NOTE : We really don’t enforce that ipif_id zero should be used
10238 * for setting any flags other than IFF_LOGINT_FLAGS. This
10239 * is because applications generally does SICGLIFFLAGS and
10240 * ORs in the new flags (that affects the logical) and does a
10241 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
10242 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
10243 * flags that will be turned on is correct with respect to
10244 * ipif_id 0. For backward compatibility reasons, it is not done.
10245 */
10246 /* ARGSUSED */
10247 int
10248 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10249 ip_ioctl_cmd_t *ipip, void *if_req)
10250 {
10251 uint64_t turn_on;
10252 uint64_t turn_off;
10253 int err = 0;
10254 phyint_t *phyi;
10255 ill_t *ill;
10256 conn_t *connp;
10257 uint64_t intf_flags;
10258 boolean_t phyint_flags_modified = B_FALSE;
10259 uint64_t flags;
10260 struct ifreq *ifr;
10261 struct lifreq *lifr;
10262 boolean_t set_linklocal = B_FALSE;

10264 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
10265 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

10267 ASSERT(IAM_WRITER_IPIF(ipif));

10269 ill = ipif->ipif_ill;
10270 phyi = ill->ill_phyint;

10272 if (ipip->ipi_cmd_type == IF_CMD) {
10273 ifr = (struct ifreq *)if_req;
10274 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10275 } else {
10276 lifr = (struct lifreq *)if_req;
10277 flags = lifr->lifr_flags;
10278 }

10280 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;

10282 /*
10283 * Have the flags been set correctly until now?
10284 */
10285 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10286 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10287 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10288 /*
10289 * Compare the new flags to the old, and partition
10290 * into those coming on and those going off.
10291 * For the 16 bit command keep the bits above bit 16 unchanged.

new/usr/src/uts/common/inet/ip/ip_if.c 157

10292 */
10293 if (ipip->ipi_cmd == SIOCSIFFLAGS)
10294 flags |= intf_flags & ~0xFFFF;

10296 /*
10297 * Explicitly fail attempts to change flags that are always invalid on
10298 * an IPMP meta-interface.
10299 */
10300 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10301 return (EINVAL);

10303 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10304 if ((turn_on|turn_off) == 0)
10305 return (0); /* No change */

10307 /*
10308 * All test addresses must be IFF_DEPRECATED (to ensure source address
10309 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10310 * allow it to be turned off.
10311 */
10312 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10313 (turn_on|intf_flags) & IFF_NOFAILOVER)
10314 return (EINVAL);

10316 if ((connp = Q_TO_CONN(q)) == NULL)
10317 return (EINVAL);

10319 /*
10320 * Only vrrp control socket is allowed to change IFF_UP and
10321 * IFF_NOACCEPT flags when IFF_VRRP is set.
10322 */
10323 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10324 if (!connp->conn_isvrrp)
10325 return (EINVAL);
10326 }

10328 /*
10329 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10330 * VRRP control socket.
10331 */
10332 if ((turn_off | turn_on) & IFF_NOACCEPT) {
10333 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10334 return (EINVAL);
10335 }

10337 if (turn_on & IFF_NOFAILOVER) {
10338 turn_on |= IFF_DEPRECATED;
10339 flags |= IFF_DEPRECATED;
10340 }

10342 /*
10343 * On underlying interfaces, only allow applications to manage test
10344 * addresses -- otherwise, they may get confused when the address
10345 * moves as part of being brought up. Likewise, prevent an
10346 * application-managed test address from being converted to a data
10347 * address. To prevent migration of administratively up addresses in
10348 * the kernel, we don’t allow them to be converted either.
10349 */
10350 if (IS_UNDER_IPMP(ill)) {
10351 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;

10353 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10354 return (EINVAL);

10356 if ((turn_off & IFF_NOFAILOVER) &&
10357 (flags & (appflags | IFF_UP | IFF_DUPLICATE)))

new/usr/src/uts/common/inet/ip/ip_if.c 158

10358 return (EINVAL);
10359 }

10361 /*
10362 * Only allow IFF_TEMPORARY flag to be set on
10363 * IPv6 interfaces.
10364 */
10365 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10366 return (EINVAL);

10368 /*
10369 * cannot turn off IFF_NOXMIT on VNI interfaces.
10370 */
10371 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10372 return (EINVAL);

10374 /*
10375 * Don’t allow the IFF_ROUTER flag to be turned on on loopback
10376 * interfaces. It makes no sense in that context.
10377 */
10378 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10379 return (EINVAL);

10381 /*
10382 * For IPv6 ipif_id 0, don’t allow the interface to be up without
10383 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10384 * If the link local address isn’t set, and can be set, it will get
10385 * set later on in this function.
10386 */
10387 if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10388 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10389 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10390 if (ipif_cant_setlinklocal(ipif))
10391 return (EINVAL);
10392 set_linklocal = B_TRUE;
10393 }

10395 /*
10396 * If we modify physical interface flags, we’ll potentially need to
10397 * send up two routing socket messages for the changes (one for the
10398 * IPv4 ill, and another for the IPv6 ill). Note that here.
10399 */
10400 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10401 phyint_flags_modified = B_TRUE;

10403 /*
10404 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10405 * (otherwise, we’d immediately use them, defeating standby). Also,
10406 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10407 * set, don’t allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10408 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We
10409 * also don’t allow PHYI_STANDBY if VNI is enabled since its semantics
10410 * will not be honored.
10411 */
10412 if (turn_on & PHYI_STANDBY) {
10413 /*
10414 * No need to grab ill_g_usesrc_lock here; see the
10415 * synchronization notes in ip.c.
10416 */
10417 if (ill->ill_usesrc_grp_next != NULL ||
10418 intf_flags & PHYI_INACTIVE)
10419 return (EINVAL);
10420 if (!(flags & PHYI_FAILED)) {
10421 flags |= PHYI_INACTIVE;
10422 turn_on |= PHYI_INACTIVE;
10423 }

new/usr/src/uts/common/inet/ip/ip_if.c 159

10424 }

10426 if (turn_off & PHYI_STANDBY) {
10427 flags &= ~PHYI_INACTIVE;
10428 turn_off |= PHYI_INACTIVE;
10429 }

10431 /*
10432 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10433 * would end up on.
10434 */
10435 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10436 (PHYI_FAILED | PHYI_INACTIVE))
10437 return (EINVAL);

10439 /*
10440 * If ILLF_ROUTER changes, we need to change the ip forwarding
10441 * status of the interface.
10442 */
10443 if ((turn_on | turn_off) & ILLF_ROUTER) {
10444 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10445 if (err != 0)
10446 return (err);
10447 }

10449 /*
10450 * If the interface is not UP and we are not going to
10451 * bring it UP, record the flags and return. When the
10452 * interface comes UP later, the right actions will be
10453 * taken.
10454 */
10455 if (!(ipif->ipif_flags & IPIF_UP) &&
10456 !(turn_on & IPIF_UP)) {
10457 /* Record new flags in their respective places. */
10458 mutex_enter(&ill->ill_lock);
10459 mutex_enter(&ill->ill_phyint->phyint_lock);
10460 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10461 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10462 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10463 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10464 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10465 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10466 mutex_exit(&ill->ill_lock);
10467 mutex_exit(&ill->ill_phyint->phyint_lock);

10469 /*
10470 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10471 * same to the kernel: if any of them has been set by
10472 * userland, the interface cannot be used for data traffic.
10473 */
10474 if ((turn_on|turn_off) &
10475 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10476 ASSERT(!IS_IPMP(ill));
10477 /*
10478 * It’s possible the ill is part of an "anonymous"
10479 * IPMP group rather than a real group. In that case,
10480 * there are no other interfaces in the group and thus
10481 * no need to call ipmp_phyint_refresh_active().
10482 */
10483 if (IS_UNDER_IPMP(ill))
10484 ipmp_phyint_refresh_active(phyi);
10485 }

10487 if (phyint_flags_modified) {
10488 if (phyi->phyint_illv4 != NULL) {
10489 ip_rts_ifmsg(phyi->phyint_illv4->

new/usr/src/uts/common/inet/ip/ip_if.c 160

10490 ill_ipif, RTSQ_DEFAULT);
10491 }
10492 if (phyi->phyint_illv6 != NULL) {
10493 ip_rts_ifmsg(phyi->phyint_illv6->
10494 ill_ipif, RTSQ_DEFAULT);
10495 }
10496 }
10497 /* The default multicast interface might have changed */
10498 ire_increment_multicast_generation(ill->ill_ipst,
10499 ill->ill_isv6);

10501 return (0);
10502 } else if (set_linklocal) {
10503 mutex_enter(&ill->ill_lock);
10504 if (set_linklocal)
10505 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10506 mutex_exit(&ill->ill_lock);
10507 }

10509 /*
10510 * Disallow IPv6 interfaces coming up that have the unspecified address,
10511 * or point-to-point interfaces with an unspecified destination. We do
10512 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10513 * have a subnet assigned, which is how in.ndpd currently manages its
10514 * onlink prefix list when no addresses are configured with those
10515 * prefixes.
10516 */
10517 if (ipif->ipif_isv6 &&
10518 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10519 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10520 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10521 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10522 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10523 return (EINVAL);
10524 }

10526 /*
10527 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10528 * from being brought up.
10529 */
10530 if (!ipif->ipif_isv6 &&
10531 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10532 ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10533 return (EINVAL);
10534 }

10536 /*
10537 * If we are going to change one or more of the flags that are
10538 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10539 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10540 * IPIF_NOFAILOVER, we will take special action. This is
10541 * done by bring the ipif down, changing the flags and bringing
10542 * it back up again. For IPIF_NOFAILOVER, the act of bringing it
10543 * back up will trigger the address to be moved.
10544 *
10545 * If we are going to change IFF_NOACCEPT, we need to bring
10546 * all the ipifs down then bring them up again. The act of
10547 * bringing all the ipifs back up will trigger the local
10548 * ires being recreated with "no_accept" set/cleared.
10549 *
10550 * Note that ILLF_NOACCEPT is always set separately from the
10551 * other flags.
10552 */
10553 if ((turn_on|turn_off) &
10554 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10555 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|

new/usr/src/uts/common/inet/ip/ip_if.c 161

10556 IPIF_NOFAILOVER)) {
10557 /*
10558 * ipif_down() will ire_delete bcast ire’s for the subnet,
10559 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10560 * entries shared between multiple ipifs on the same subnet.
10561 */
10562 if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10563 !(turn_off & IPIF_UP)) {
10564 if (ipif->ipif_flags & IPIF_UP)
10565 ill->ill_logical_down = 1;
10566 turn_on &= ~IPIF_UP;
10567 }
10568 err = ipif_down(ipif, q, mp);
10569 ip1dbg(("ipif_down returns %d err ", err));
10570 if (err == EINPROGRESS)
10571 return (err);
10572 (void) ipif_down_tail(ipif);
10573 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10574 /*
10575 * If we can quiesce the ill, then continue. If not, then
10576 * ip_sioctl_flags_tail() will be called from
10577 * ipif_ill_refrele_tail().
10578 */
10579 ill_down_ipifs(ill, B_TRUE);

10581 mutex_enter(&connp->conn_lock);
10582 mutex_enter(&ill->ill_lock);
10583 if (!ill_is_quiescent(ill)) {
10584 boolean_t success;

10586 success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10587 q, mp, ILL_DOWN);
10588 mutex_exit(&ill->ill_lock);
10589 mutex_exit(&connp->conn_lock);
10590 return (success ? EINPROGRESS : EINTR);
10591 }
10592 mutex_exit(&ill->ill_lock);
10593 mutex_exit(&connp->conn_lock);
10594 }
10595 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10596 }

10598 static int
10599 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10600 {
10601 ill_t *ill;
10602 phyint_t *phyi;
10603 uint64_t turn_on, turn_off;
10604 boolean_t phyint_flags_modified = B_FALSE;
10605 int err = 0;
10606 boolean_t set_linklocal = B_FALSE;

10608 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10609 ipif->ipif_ill->ill_name, ipif->ipif_id));

10611 ASSERT(IAM_WRITER_IPIF(ipif));

10613 ill = ipif->ipif_ill;
10614 phyi = ill->ill_phyint;

10616 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);

10618 /*
10619 * IFF_UP is handled separately.
10620 */
10621 turn_on &= ~IFF_UP;

new/usr/src/uts/common/inet/ip/ip_if.c 162

10622 turn_off &= ~IFF_UP;

10624 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10625 phyint_flags_modified = B_TRUE;

10627 /*
10628 * Now we change the flags. Track current value of
10629 * other flags in their respective places.
10630 */
10631 mutex_enter(&ill->ill_lock);
10632 mutex_enter(&phyi->phyint_lock);
10633 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10634 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10635 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10636 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10637 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10638 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10639 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10640 set_linklocal = B_TRUE;
10641 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10642 }

10644 mutex_exit(&ill->ill_lock);
10645 mutex_exit(&phyi->phyint_lock);

10647 if (set_linklocal)
10648 (void) ipif_setlinklocal(ipif);

10650 /*
10651 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10652 * the kernel: if any of them has been set by userland, the interface
10653 * cannot be used for data traffic.
10654 */
10655 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10656 ASSERT(!IS_IPMP(ill));
10657 /*
10658 * It’s possible the ill is part of an "anonymous" IPMP group
10659 * rather than a real group. In that case, there are no other
10660 * interfaces in the group and thus no need for us to call
10661 * ipmp_phyint_refresh_active().
10662 */
10663 if (IS_UNDER_IPMP(ill))
10664 ipmp_phyint_refresh_active(phyi);
10665 }

10667 if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10668 /*
10669 * If the ILLF_NOACCEPT flag is changed, bring up all the
10670 * ipifs that were brought down.
10671 *
10672 * The routing sockets messages are sent as the result
10673 * of ill_up_ipifs(), further, SCTP’s IPIF list was updated
10674 * as well.
10675 */
10676 err = ill_up_ipifs(ill, q, mp);
10677 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10678 /*
10679 * XXX ipif_up really does not know whether a phyint flags
10680 * was modified or not. So, it sends up information on
10681 * only one routing sockets message. As we don’t bring up
10682 * the interface and also set PHYI_ flags simultaneously
10683 * it should be okay.
10684 */
10685 err = ipif_up(ipif, q, mp);
10686 } else {
10687 /*

new/usr/src/uts/common/inet/ip/ip_if.c 163

10688 * Make sure routing socket sees all changes to the flags.
10689 * ipif_up_done* handles this when we use ipif_up.
10690 */
10691 if (phyint_flags_modified) {
10692 if (phyi->phyint_illv4 != NULL) {
10693 ip_rts_ifmsg(phyi->phyint_illv4->
10694 ill_ipif, RTSQ_DEFAULT);
10695 }
10696 if (phyi->phyint_illv6 != NULL) {
10697 ip_rts_ifmsg(phyi->phyint_illv6->
10698 ill_ipif, RTSQ_DEFAULT);
10699 }
10700 } else {
10701 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10702 }
10703 /*
10704 * Update the flags in SCTP’s IPIF list, ipif_up() will do
10705 * this in need_up case.
10706 */
10707 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10708 }

10710 /* The default multicast interface might have changed */
10711 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10712 return (err);
10713 }

10715 /*
10716 * Restart the flags operation now that the refcounts have dropped to zero.
10717 */
10718 /* ARGSUSED */
10719 int
10720 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10721 ip_ioctl_cmd_t *ipip, void *if_req)
10722 {
10723 uint64_t flags;
10724 struct ifreq *ifr = if_req;
10725 struct lifreq *lifr = if_req;
10726 uint64_t turn_on, turn_off;

10728 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10729 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

10731 if (ipip->ipi_cmd_type == IF_CMD) {
10732 /* cast to uint16_t prevents unwanted sign extension */
10733 flags = (uint16_t)ifr->ifr_flags;
10734 } else {
10735 flags = lifr->lifr_flags;
10736 }

10738 /*
10739 * If this function call is a result of the ILLF_NOACCEPT flag
10740 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10741 */
10742 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10743 if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10744 (void) ipif_down_tail(ipif);

10746 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10747 }

10749 /*
10750 * Can operate on either a module or a driver queue.
10751 */
10752 /* ARGSUSED */
10753 int

new/usr/src/uts/common/inet/ip/ip_if.c 164

10754 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10755 ip_ioctl_cmd_t *ipip, void *if_req)
10756 {
10757 /*
10758 * Has the flags been set correctly till now ?
10759 */
10760 ill_t *ill = ipif->ipif_ill;
10761 phyint_t *phyi = ill->ill_phyint;

10763 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10764 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10765 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10766 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10767 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);

10769 /*
10770 * Need a lock since some flags can be set even when there are
10771 * references to the ipif.
10772 */
10773 mutex_enter(&ill->ill_lock);
10774 if (ipip->ipi_cmd_type == IF_CMD) {
10775 struct ifreq *ifr = (struct ifreq *)if_req;

10777 /* Get interface flags (low 16 only). */
10778 ifr->ifr_flags = ((ipif->ipif_flags |
10779 ill->ill_flags | phyi->phyint_flags) & 0xffff);
10780 } else {
10781 struct lifreq *lifr = (struct lifreq *)if_req;

10783 /* Get interface flags. */
10784 lifr->lifr_flags = ipif->ipif_flags |
10785 ill->ill_flags | phyi->phyint_flags;
10786 }
10787 mutex_exit(&ill->ill_lock);
10788 return (0);
10789 }

10791 /*
10792 * We allow the MTU to be set on an ILL, but not have it be different
10793 * for different IPIFs since we don’t actually send packets on IPIFs.
10794 */
10795 /* ARGSUSED */
10796 int
10797 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10798 ip_ioctl_cmd_t *ipip, void *if_req)
10799 {
10800 int mtu;
10801 int ip_min_mtu;
10802 struct ifreq *ifr;
10803 struct lifreq *lifr;
10804 ill_t *ill;

10806 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10807 ipif->ipif_id, (void *)ipif));
10808 if (ipip->ipi_cmd_type == IF_CMD) {
10809 ifr = (struct ifreq *)if_req;
10810 mtu = ifr->ifr_metric;
10811 } else {
10812 lifr = (struct lifreq *)if_req;
10813 mtu = lifr->lifr_mtu;
10814 }
10815 /* Only allow for logical unit zero i.e. not on "bge0:17" */
10816 if (ipif->ipif_id != 0)
10817 return (EINVAL);

10819 ill = ipif->ipif_ill;

new/usr/src/uts/common/inet/ip/ip_if.c 165

10820 if (ipif->ipif_isv6)
10821 ip_min_mtu = IPV6_MIN_MTU;
10822 else
10823 ip_min_mtu = IP_MIN_MTU;

10825 mutex_enter(&ill->ill_lock);
10826 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10827 mutex_exit(&ill->ill_lock);
10828 return (EINVAL);
10829 }
10830 /* Avoid increasing ill_mc_mtu */
10831 if (ill->ill_mc_mtu > mtu)
10832 ill->ill_mc_mtu = mtu;

10834 /*
10835 * The dce and fragmentation code can handle changes to ill_mtu
10836 * concurrent with sending/fragmenting packets.
10837 */
10838 ill->ill_mtu = mtu;
10839 ill->ill_flags |= ILLF_FIXEDMTU;
10840 mutex_exit(&ill->ill_lock);

10842 /*
10843 * Make sure all dce_generation checks find out
10844 * that ill_mtu/ill_mc_mtu has changed.
10845 */
10846 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);

10848 /*
10849 * Refresh IPMP meta-interface MTU if necessary.
10850 */
10851 if (IS_UNDER_IPMP(ill))
10852 ipmp_illgrp_refresh_mtu(ill->ill_grp);

10854 /* Update the MTU in SCTP’s list */
10855 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10856 return (0);
10857 }

10859 /* Get interface MTU. */
10860 /* ARGSUSED */
10861 int
10862 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10863 ip_ioctl_cmd_t *ipip, void *if_req)
10864 {
10865 struct ifreq *ifr;
10866 struct lifreq *lifr;

10868 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10869 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

10871 /*
10872 * We allow a get on any logical interface even though the set
10873 * can only be done on logical unit 0.
10874 */
10875 if (ipip->ipi_cmd_type == IF_CMD) {
10876 ifr = (struct ifreq *)if_req;
10877 ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10878 } else {
10879 lifr = (struct lifreq *)if_req;
10880 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10881 }
10882 return (0);
10883 }

10885 /* Set interface broadcast address. */

new/usr/src/uts/common/inet/ip/ip_if.c 166

10886 /* ARGSUSED2 */
10887 int
10888 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10889 ip_ioctl_cmd_t *ipip, void *if_req)
10890 {
10891 ipaddr_t addr;
10892 ire_t *ire;
10893 ill_t *ill = ipif->ipif_ill;
10894 ip_stack_t *ipst = ill->ill_ipst;

10896 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10897 ipif->ipif_id));

10899 ASSERT(IAM_WRITER_IPIF(ipif));
10900 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10901 return (EADDRNOTAVAIL);

10903 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */

10905 if (sin->sin_family != AF_INET)
10906 return (EAFNOSUPPORT);

10908 addr = sin->sin_addr.s_addr;

10910 if (ipif->ipif_flags & IPIF_UP) {
10911 /*
10912 * If we are already up, make sure the new
10913 * broadcast address makes sense. If it does,
10914 * there should be an IRE for it already.
10915 */
10916 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10917 ill, ipif->ipif_zoneid, NULL,
10918 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10919 if (ire == NULL) {
10920 return (EINVAL);
10921 } else {
10922 ire_refrele(ire);
10923 }
10924 }
10925 /*
10926 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10927 * needs to already exist we never need to change the set of
10928 * IRE_BROADCASTs when we are UP.
10929 */
10930 if (addr != ipif->ipif_brd_addr)
10931 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);

10933 return (0);
10934 }

10936 /* Get interface broadcast address. */
10937 /* ARGSUSED */
10938 int
10939 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10940 ip_ioctl_cmd_t *ipip, void *if_req)
10941 {
10942 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10943 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10944 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10945 return (EADDRNOTAVAIL);

10947 /* IPIF_BROADCAST not possible with IPv6 */
10948 ASSERT(!ipif->ipif_isv6);
10949 *sin = sin_null;
10950 sin->sin_family = AF_INET;
10951 sin->sin_addr.s_addr = ipif->ipif_brd_addr;

new/usr/src/uts/common/inet/ip/ip_if.c 167

10952 return (0);
10953 }

10955 /*
10956 * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10957 */
10958 /* ARGSUSED */
10959 int
10960 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10961 ip_ioctl_cmd_t *ipip, void *if_req)
10962 {
10963 int err = 0;
10964 in6_addr_t v6mask;

10966 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10967 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

10969 ASSERT(IAM_WRITER_IPIF(ipif));

10971 if (ipif->ipif_isv6) {
10972 sin6_t *sin6;

10974 if (sin->sin_family != AF_INET6)
10975 return (EAFNOSUPPORT);

10977 sin6 = (sin6_t *)sin;
10978 v6mask = sin6->sin6_addr;
10979 } else {
10980 ipaddr_t mask;

10982 if (sin->sin_family != AF_INET)
10983 return (EAFNOSUPPORT);

10985 mask = sin->sin_addr.s_addr;
10986 if (!ip_contiguous_mask(ntohl(mask)))
10987 return (ENOTSUP);
10988 V4MASK_TO_V6(mask, v6mask);
10989 }

10991 /*
10992 * No big deal if the interface isn’t already up, or the mask
10993 * isn’t really changing, or this is pt-pt.
10994 */
10995 if (!(ipif->ipif_flags & IPIF_UP) ||
10996 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10997 (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10998 ipif->ipif_v6net_mask = v6mask;
10999 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11000 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
11001 ipif->ipif_v6net_mask,
11002 ipif->ipif_v6subnet);
11003 }
11004 return (0);
11005 }
11006 /*
11007 * Make sure we have valid net and subnet broadcast ire’s
11008 * for the old netmask, if needed by other logical interfaces.
11009 */
11010 err = ipif_logical_down(ipif, q, mp);
11011 if (err == EINPROGRESS)
11012 return (err);
11013 (void) ipif_down_tail(ipif);
11014 err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
11015 return (err);
11016 }

new/usr/src/uts/common/inet/ip/ip_if.c 168

11018 static int
11019 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
11020 {
11021 in6_addr_t v6mask;
11022 int err = 0;

11024 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
11025 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

11027 if (ipif->ipif_isv6) {
11028 sin6_t *sin6;

11030 sin6 = (sin6_t *)sin;
11031 v6mask = sin6->sin6_addr;
11032 } else {
11033 ipaddr_t mask;

11035 mask = sin->sin_addr.s_addr;
11036 V4MASK_TO_V6(mask, v6mask);
11037 }

11039 ipif->ipif_v6net_mask = v6mask;
11040 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11041 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
11042 ipif->ipif_v6subnet);
11043 }
11044 err = ipif_up(ipif, q, mp);

11046 if (err == 0 || err == EINPROGRESS) {
11047 /*
11048 * The interface must be DL_BOUND if this packet has to
11049 * go out on the wire. Since we only go through a logical
11050 * down and are bound with the driver during an internal
11051 * down/up that is satisfied.
11052 */
11053 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
11054 /* Potentially broadcast an address mask reply. */
11055 ipif_mask_reply(ipif);
11056 }
11057 }
11058 return (err);
11059 }

11061 /* ARGSUSED */
11062 int
11063 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11064 ip_ioctl_cmd_t *ipip, void *if_req)
11065 {
11066 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
11067 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11068 (void) ipif_down_tail(ipif);
11069 return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
11070 }

11072 /* Get interface net mask. */
11073 /* ARGSUSED */
11074 int
11075 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11076 ip_ioctl_cmd_t *ipip, void *if_req)
11077 {
11078 struct lifreq *lifr = (struct lifreq *)if_req;
11079 struct sockaddr_in6 *sin6 = (sin6_t *)sin;

11081 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
11082 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

new/usr/src/uts/common/inet/ip/ip_if.c 169

11084 /*
11085 * net mask can’t change since we have a reference to the ipif.
11086 */
11087 if (ipif->ipif_isv6) {
11088 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11089 *sin6 = sin6_null;
11090 sin6->sin6_family = AF_INET6;
11091 sin6->sin6_addr = ipif->ipif_v6net_mask;
11092 lifr->lifr_addrlen =
11093 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11094 } else {
11095 *sin = sin_null;
11096 sin->sin_family = AF_INET;
11097 sin->sin_addr.s_addr = ipif->ipif_net_mask;
11098 if (ipip->ipi_cmd_type == LIF_CMD) {
11099 lifr->lifr_addrlen =
11100 ip_mask_to_plen(ipif->ipif_net_mask);
11101 }
11102 }
11103 return (0);
11104 }

11106 /* ARGSUSED */
11107 int
11108 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11109 ip_ioctl_cmd_t *ipip, void *if_req)
11110 {
11111 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
11112 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

11114 /*
11115 * Since no applications should ever be setting metrics on underlying
11116 * interfaces, we explicitly fail to smoke ’em out.
11117 */
11118 if (IS_UNDER_IPMP(ipif->ipif_ill))
11119 return (EINVAL);

11121 /*
11122 * Set interface metric. We don’t use this for
11123 * anything but we keep track of it in case it is
11124 * important to routing applications or such.
11125 */
11126 if (ipip->ipi_cmd_type == IF_CMD) {
11127 struct ifreq *ifr;

11129 ifr = (struct ifreq *)if_req;
11130 ipif->ipif_ill->ill_metric = ifr->ifr_metric;
11131 } else {
11132 struct lifreq *lifr;

11134 lifr = (struct lifreq *)if_req;
11135 ipif->ipif_ill->ill_metric = lifr->lifr_metric;
11136 }
11137 return (0);
11138 }

11140 /* ARGSUSED */
11141 int
11142 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11143 ip_ioctl_cmd_t *ipip, void *if_req)
11144 {
11145 /* Get interface metric. */
11146 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
11147 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

11149 if (ipip->ipi_cmd_type == IF_CMD) {

new/usr/src/uts/common/inet/ip/ip_if.c 170

11150 struct ifreq *ifr;

11152 ifr = (struct ifreq *)if_req;
11153 ifr->ifr_metric = ipif->ipif_ill->ill_metric;
11154 } else {
11155 struct lifreq *lifr;

11157 lifr = (struct lifreq *)if_req;
11158 lifr->lifr_metric = ipif->ipif_ill->ill_metric;
11159 }

11161 return (0);
11162 }

11164 /* ARGSUSED */
11165 int
11166 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11167 ip_ioctl_cmd_t *ipip, void *if_req)
11168 {
11169 int arp_muxid;

11171 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
11172 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11173 /*
11174 * Set the muxid returned from I_PLINK.
11175 */
11176 if (ipip->ipi_cmd_type == IF_CMD) {
11177 struct ifreq *ifr = (struct ifreq *)if_req;

11179 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
11180 arp_muxid = ifr->ifr_arp_muxid;
11181 } else {
11182 struct lifreq *lifr = (struct lifreq *)if_req;

11184 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
11185 arp_muxid = lifr->lifr_arp_muxid;
11186 }
11187 arl_set_muxid(ipif->ipif_ill, arp_muxid);
11188 return (0);
11189 }

11191 /* ARGSUSED */
11192 int
11193 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11194 ip_ioctl_cmd_t *ipip, void *if_req)
11195 {
11196 int arp_muxid = 0;

11198 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
11199 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11200 /*
11201 * Get the muxid saved in ill for I_PUNLINK.
11202 */
11203 arp_muxid = arl_get_muxid(ipif->ipif_ill);
11204 if (ipip->ipi_cmd_type == IF_CMD) {
11205 struct ifreq *ifr = (struct ifreq *)if_req;

11207 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11208 ifr->ifr_arp_muxid = arp_muxid;
11209 } else {
11210 struct lifreq *lifr = (struct lifreq *)if_req;

11212 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11213 lifr->lifr_arp_muxid = arp_muxid;
11214 }
11215 return (0);

new/usr/src/uts/common/inet/ip/ip_if.c 171

11216 }

11218 /*
11219 * Set the subnet prefix. Does not modify the broadcast address.
11220 */
11221 /* ARGSUSED */
11222 int
11223 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11224 ip_ioctl_cmd_t *ipip, void *if_req)
11225 {
11226 int err = 0;
11227 in6_addr_t v6addr;
11228 in6_addr_t v6mask;
11229 boolean_t need_up = B_FALSE;
11230 int addrlen;

11232 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
11233 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

11235 ASSERT(IAM_WRITER_IPIF(ipif));
11236 addrlen = ((struct lifreq *)if_req)->lifr_addrlen;

11238 if (ipif->ipif_isv6) {
11239 sin6_t *sin6;

11241 if (sin->sin_family != AF_INET6)
11242 return (EAFNOSUPPORT);

11244 sin6 = (sin6_t *)sin;
11245 v6addr = sin6->sin6_addr;
11246 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
11247 return (EADDRNOTAVAIL);
11248 } else {
11249 ipaddr_t addr;

11251 if (sin->sin_family != AF_INET)
11252 return (EAFNOSUPPORT);

11254 addr = sin->sin_addr.s_addr;
11255 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
11256 return (EADDRNOTAVAIL);
11257 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11258 /* Add 96 bits */
11259 addrlen += IPV6_ABITS - IP_ABITS;
11260 }

11262 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
11263 return (EINVAL);

11265 /* Check if bits in the address is set past the mask */
11266 if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
11267 return (EINVAL);

11269 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
11270 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
11271 return (0); /* No change */

11273 if (ipif->ipif_flags & IPIF_UP) {
11274 /*
11275 * If the interface is already marked up,
11276 * we call ipif_down which will take care
11277 * of ditching any IREs that have been set
11278 * up based on the old interface address.
11279 */
11280 err = ipif_logical_down(ipif, q, mp);
11281 if (err == EINPROGRESS)

new/usr/src/uts/common/inet/ip/ip_if.c 172

11282 return (err);
11283 (void) ipif_down_tail(ipif);
11284 need_up = B_TRUE;
11285 }

11287 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11288 return (err);
11289 }

11291 static int
11292 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11293 queue_t *q, mblk_t *mp, boolean_t need_up)
11294 {
11295 ill_t *ill = ipif->ipif_ill;
11296 int err = 0;

11298 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11299 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

11301 /* Set the new address. */
11302 mutex_enter(&ill->ill_lock);
11303 ipif->ipif_v6net_mask = v6mask;
11304 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11305 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11306 ipif->ipif_v6subnet);
11307 }
11308 mutex_exit(&ill->ill_lock);

11310 if (need_up) {
11311 /*
11312 * Now bring the interface back up. If this
11313 * is the only IPIF for the ILL, ipif_up
11314 * will have to re-bind to the device, so
11315 * we may get back EINPROGRESS, in which
11316 * case, this IOCTL will get completed in
11317 * ip_rput_dlpi when we see the DL_BIND_ACK.
11318 */
11319 err = ipif_up(ipif, q, mp);
11320 if (err == EINPROGRESS)
11321 return (err);
11322 }
11323 return (err);
11324 }

11326 /* ARGSUSED */
11327 int
11328 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11329 ip_ioctl_cmd_t *ipip, void *if_req)
11330 {
11331 int addrlen;
11332 in6_addr_t v6addr;
11333 in6_addr_t v6mask;
11334 struct lifreq *lifr = (struct lifreq *)if_req;

11336 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11337 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11338 (void) ipif_down_tail(ipif);

11340 addrlen = lifr->lifr_addrlen;
11341 if (ipif->ipif_isv6) {
11342 sin6_t *sin6;

11344 sin6 = (sin6_t *)sin;
11345 v6addr = sin6->sin6_addr;
11346 } else {
11347 ipaddr_t addr;

new/usr/src/uts/common/inet/ip/ip_if.c 173

11349 addr = sin->sin_addr.s_addr;
11350 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11351 addrlen += IPV6_ABITS - IP_ABITS;
11352 }
11353 (void) ip_plen_to_mask_v6(addrlen, &v6mask);

11355 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11356 }

11358 /* ARGSUSED */
11359 int
11360 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11361 ip_ioctl_cmd_t *ipip, void *if_req)
11362 {
11363 struct lifreq *lifr = (struct lifreq *)if_req;
11364 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;

11366 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11367 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11368 ASSERT(ipip->ipi_cmd_type == LIF_CMD);

11370 if (ipif->ipif_isv6) {
11371 *sin6 = sin6_null;
11372 sin6->sin6_family = AF_INET6;
11373 sin6->sin6_addr = ipif->ipif_v6subnet;
11374 lifr->lifr_addrlen =
11375 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11376 } else {
11377 *sin = sin_null;
11378 sin->sin_family = AF_INET;
11379 sin->sin_addr.s_addr = ipif->ipif_subnet;
11380 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11381 }
11382 return (0);
11383 }

11385 /*
11386 * Set the IPv6 address token.
11387 */
11388 /* ARGSUSED */
11389 int
11390 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11391 ip_ioctl_cmd_t *ipi, void *if_req)
11392 {
11393 ill_t *ill = ipif->ipif_ill;
11394 int err;
11395 in6_addr_t v6addr;
11396 in6_addr_t v6mask;
11397 boolean_t need_up = B_FALSE;
11398 int i;
11399 sin6_t *sin6 = (sin6_t *)sin;
11400 struct lifreq *lifr = (struct lifreq *)if_req;
11401 int addrlen;

11403 ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11404 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11405 ASSERT(IAM_WRITER_IPIF(ipif));

11407 addrlen = lifr->lifr_addrlen;
11408 /* Only allow for logical unit zero i.e. not on "le0:17" */
11409 if (ipif->ipif_id != 0)
11410 return (EINVAL);

11412 if (!ipif->ipif_isv6)
11413 return (EINVAL);

new/usr/src/uts/common/inet/ip/ip_if.c 174

11415 if (addrlen > IPV6_ABITS)
11416 return (EINVAL);

11418 v6addr = sin6->sin6_addr;

11420 /*
11421 * The length of the token is the length from the end. To get
11422 * the proper mask for this, compute the mask of the bits not
11423 * in the token; ie. the prefix, and then xor to get the mask.
11424 */
11425 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11426 return (EINVAL);
11427 for (i = 0; i < 4; i++) {
11428 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11429 }

11431 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11432 ill->ill_token_length == addrlen)
11433 return (0); /* No change */

11435 if (ipif->ipif_flags & IPIF_UP) {
11436 err = ipif_logical_down(ipif, q, mp);
11437 if (err == EINPROGRESS)
11438 return (err);
11439 (void) ipif_down_tail(ipif);
11440 need_up = B_TRUE;
11441 }
11442 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11443 return (err);
11444 }

11446 static int
11447 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11448 mblk_t *mp, boolean_t need_up)
11449 {
11450 in6_addr_t v6addr;
11451 in6_addr_t v6mask;
11452 ill_t *ill = ipif->ipif_ill;
11453 int i;
11454 int err = 0;

11456 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11458 v6addr = sin6->sin6_addr;
11459 /*
11460 * The length of the token is the length from the end. To get
11461 * the proper mask for this, compute the mask of the bits not
11462 * in the token; ie. the prefix, and then xor to get the mask.
11463 */
11464 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11465 for (i = 0; i < 4; i++)
11466 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;

11468 mutex_enter(&ill->ill_lock);
11469 V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11470 ill->ill_token_length = addrlen;
11471 ill->ill_manual_token = 1;

11473 /* Reconfigure the link-local address based on this new token */
11474 ipif_setlinklocal(ill->ill_ipif);

11476 mutex_exit(&ill->ill_lock);

11478 if (need_up) {
11479 /*

new/usr/src/uts/common/inet/ip/ip_if.c 175

11480 * Now bring the interface back up. If this
11481 * is the only IPIF for the ILL, ipif_up
11482 * will have to re-bind to the device, so
11483 * we may get back EINPROGRESS, in which
11484 * case, this IOCTL will get completed in
11485 * ip_rput_dlpi when we see the DL_BIND_ACK.
11486 */
11487 err = ipif_up(ipif, q, mp);
11488 if (err == EINPROGRESS)
11489 return (err);
11490 }
11491 return (err);
11492 }

11494 /* ARGSUSED */
11495 int
11496 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11497 ip_ioctl_cmd_t *ipi, void *if_req)
11498 {
11499 ill_t *ill;
11500 sin6_t *sin6 = (sin6_t *)sin;
11501 struct lifreq *lifr = (struct lifreq *)if_req;

11503 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11504 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11505 if (ipif->ipif_id != 0)
11506 return (EINVAL);

11508 ill = ipif->ipif_ill;
11509 if (!ill->ill_isv6)
11510 return (ENXIO);

11512 *sin6 = sin6_null;
11513 sin6->sin6_family = AF_INET6;
11514 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11515 sin6->sin6_addr = ill->ill_token;
11516 lifr->lifr_addrlen = ill->ill_token_length;
11517 return (0);
11518 }

11520 /*
11521 * Set (hardware) link specific information that might override
11522 * what was acquired through the DL_INFO_ACK.
11523 */
11524 /* ARGSUSED */
11525 int
11526 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11527 ip_ioctl_cmd_t *ipi, void *if_req)
11528 {
11529 ill_t *ill = ipif->ipif_ill;
11530 int ip_min_mtu;
11531 struct lifreq *lifr = (struct lifreq *)if_req;
11532 lif_ifinfo_req_t *lir;

11534 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11535 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11536 lir = &lifr->lifr_ifinfo;
11537 ASSERT(IAM_WRITER_IPIF(ipif));

11539 /* Only allow for logical unit zero i.e. not on "bge0:17" */
11540 if (ipif->ipif_id != 0)
11541 return (EINVAL);

11543 /* Set interface MTU. */
11544 if (ipif->ipif_isv6)
11545 ip_min_mtu = IPV6_MIN_MTU;

new/usr/src/uts/common/inet/ip/ip_if.c 176

11546 else
11547 ip_min_mtu = IP_MIN_MTU;

11549 /*
11550 * Verify values before we set anything. Allow zero to
11551 * mean unspecified.
11552 *
11553 * XXX We should be able to set the user-defined lir_mtu to some value
11554 * that is greater than ill_current_frag but less than ill_max_frag- the
11555 * ill_max_frag value tells us the max MTU that can be handled by the
11556 * datalink, whereas the ill_current_frag is dynamically computed for
11557 * some link-types like tunnels, based on the tunnel PMTU. However,
11558 * since there is currently no way of distinguishing between
11559 * administratively fixed link mtu values (e.g., those set via
11560 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11561 * for tunnels) we conservatively choose the ill_current_frag as the
11562 * upper-bound.
11563 */
11564 if (lir->lir_maxmtu != 0 &&
11565 (lir->lir_maxmtu > ill->ill_current_frag ||
11566 lir->lir_maxmtu < ip_min_mtu))
11567 return (EINVAL);
11568 if (lir->lir_reachtime != 0 &&
11569 lir->lir_reachtime > ND_MAX_REACHTIME)
11570 return (EINVAL);
11571 if (lir->lir_reachretrans != 0 &&
11572 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11573 return (EINVAL);

11575 mutex_enter(&ill->ill_lock);
11576 /*
11577 * The dce and fragmentation code can handle changes to ill_mtu
11578 * concurrent with sending/fragmenting packets.
11579 */
11580 if (lir->lir_maxmtu != 0)
11581 ill->ill_user_mtu = lir->lir_maxmtu;

11583 if (lir->lir_reachtime != 0)
11584 ill->ill_reachable_time = lir->lir_reachtime;

11586 if (lir->lir_reachretrans != 0)
11587 ill->ill_reachable_retrans_time = lir->lir_reachretrans;

11589 ill->ill_max_hops = lir->lir_maxhops;
11590 ill->ill_max_buf = ND_MAX_Q;
11591 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11592 /*
11593 * ill_mtu is the actual interface MTU, obtained as the min
11594 * of user-configured mtu and the value announced by the
11595 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11596 * we have already made the choice of requiring
11597 * ill_user_mtu < ill_current_frag by the time we get here,
11598 * the ill_mtu effectively gets assigned to the ill_user_mtu
11599 * here.
11600 */
11601 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11602 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu);
11603 }
11604 mutex_exit(&ill->ill_lock);

11606 /*
11607 * Make sure all dce_generation checks find out
11608 * that ill_mtu/ill_mc_mtu has changed.
11609 */
11610 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11611 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);

new/usr/src/uts/common/inet/ip/ip_if.c 177

11613 /*
11614 * Refresh IPMP meta-interface MTU if necessary.
11615 */
11616 if (IS_UNDER_IPMP(ill))
11617 ipmp_illgrp_refresh_mtu(ill->ill_grp);

11619 return (0);
11620 }

11622 /* ARGSUSED */
11623 int
11624 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11625 ip_ioctl_cmd_t *ipi, void *if_req)
11626 {
11627 struct lif_ifinfo_req *lir;
11628 ill_t *ill = ipif->ipif_ill;

11630 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11631 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11632 if (ipif->ipif_id != 0)
11633 return (EINVAL);

11635 lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11636 lir->lir_maxhops = ill->ill_max_hops;
11637 lir->lir_reachtime = ill->ill_reachable_time;
11638 lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11639 lir->lir_maxmtu = ill->ill_mtu;

11641 return (0);
11642 }

11644 /*
11645 * Return best guess as to the subnet mask for the specified address.
11646 * Based on the subnet masks for all the configured interfaces.
11647 *
11648 * We end up returning a zero mask in the case of default, multicast or
11649 * experimental.
11650 */
11651 static ipaddr_t
11652 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11653 {
11654 ipaddr_t net_mask;
11655 ill_t *ill;
11656 ipif_t *ipif;
11657 ill_walk_context_t ctx;
11658 ipif_t *fallback_ipif = NULL;

11660 net_mask = ip_net_mask(addr);
11661 if (net_mask == 0) {
11662 *ipifp = NULL;
11663 return (0);
11664 }

11666 /* Let’s check to see if this is maybe a local subnet route. */
11667 /* this function only applies to IPv4 interfaces */
11668 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11669 ill = ILL_START_WALK_V4(&ctx, ipst);
11670 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11671 mutex_enter(&ill->ill_lock);
11672 for (ipif = ill->ill_ipif; ipif != NULL;
11673 ipif = ipif->ipif_next) {
11674 if (IPIF_IS_CONDEMNED(ipif))
11675 continue;
11676 if (!(ipif->ipif_flags & IPIF_UP))
11677 continue;

new/usr/src/uts/common/inet/ip/ip_if.c 178

11678 if ((ipif->ipif_subnet & net_mask) ==
11679 (addr & net_mask)) {
11680 /*
11681 * Don’t trust pt-pt interfaces if there are
11682 * other interfaces.
11683 */
11684 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11685 if (fallback_ipif == NULL) {
11686 ipif_refhold_locked(ipif);
11687 fallback_ipif = ipif;
11688 }
11689 continue;
11690 }

11692 /*
11693 * Fine. Just assume the same net mask as the
11694 * directly attached subnet interface is using.
11695 */
11696 ipif_refhold_locked(ipif);
11697 mutex_exit(&ill->ill_lock);
11698 rw_exit(&ipst->ips_ill_g_lock);
11699 if (fallback_ipif != NULL)
11700 ipif_refrele(fallback_ipif);
11701 *ipifp = ipif;
11702 return (ipif->ipif_net_mask);
11703 }
11704 }
11705 mutex_exit(&ill->ill_lock);
11706 }
11707 rw_exit(&ipst->ips_ill_g_lock);

11709 *ipifp = fallback_ipif;
11710 return ((fallback_ipif != NULL) ?
11711 fallback_ipif->ipif_net_mask : net_mask);
11712 }

11714 /*
11715 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11716 */
11717 static void
11718 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11719 {
11720 IOCP iocp;
11721 ipft_t *ipft;
11722 ipllc_t *ipllc;
11723 mblk_t *mp1;
11724 cred_t *cr;
11725 int error = 0;
11726 conn_t *connp;

11728 ip1dbg(("ip_wput_ioctl"));
11729 iocp = (IOCP)mp->b_rptr;
11730 mp1 = mp->b_cont;
11731 if (mp1 == NULL) {
11732 iocp->ioc_error = EINVAL;
11733 mp->b_datap->db_type = M_IOCNAK;
11734 iocp->ioc_count = 0;
11735 qreply(q, mp);
11736 return;
11737 }

11739 /*
11740 * These IOCTLs provide various control capabilities to
11741 * upstream agents such as ULPs and processes. There
11742 * are currently two such IOCTLs implemented. They
11743 * are used by TCP to provide update information for

new/usr/src/uts/common/inet/ip/ip_if.c 179

11744 * existing IREs and to forcibly delete an IRE for a
11745 * host that is not responding, thereby forcing an
11746 * attempt at a new route.
11747 */
11748 iocp->ioc_error = EINVAL;
11749 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11750 goto done;

11752 ipllc = (ipllc_t *)mp1->b_rptr;
11753 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11754 if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11755 break;
11756 }
11757 /*
11758 * prefer credential from mblk over ioctl;
11759 * see ip_sioctl_copyin_setup
11760 */
11761 cr = msg_getcred(mp, NULL);
11762 if (cr == NULL)
11763 cr = iocp->ioc_cr;

11765 /*
11766 * Refhold the conn in case the request gets queued up in some lookup
11767 */
11768 ASSERT(CONN_Q(q));
11769 connp = Q_TO_CONN(q);
11770 CONN_INC_REF(connp);
11771 CONN_INC_IOCTLREF(connp);
11772 if (ipft->ipft_pfi &&
11773 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11774 pullupmsg(mp1, ipft->ipft_min_size))) {
11775 error = (*ipft->ipft_pfi)(q,
11776 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11777 }
11778 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11779 /*
11780 * CONN_OPER_PENDING_DONE happens in the function called
11781 * through ipft_pfi above.
11782 */
11783 return;
11784 }

11786 CONN_DEC_IOCTLREF(connp);
11787 CONN_OPER_PENDING_DONE(connp);
11788 if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11789 freemsg(mp);
11790 return;
11791 }
11792 iocp->ioc_error = error;

11794 done:
11795 mp->b_datap->db_type = M_IOCACK;
11796 if (iocp->ioc_error)
11797 iocp->ioc_count = 0;
11798 qreply(q, mp);
11799 }

11801 /*
11802 * Assign a unique id for the ipif. This is used by sctp_addr.c
11803 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11804 */
11805 static void
11806 ipif_assign_seqid(ipif_t *ipif)
11807 {
11808 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

new/usr/src/uts/common/inet/ip/ip_if.c 180

11810 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
11811 }

11813 /*
11814 * Clone the contents of ‘sipif’ to ‘dipif’. Requires that both ipifs are
11815 * administratively down (i.e., no DAD), of the same type, and locked. Note
11816 * that the clone is complete -- including the seqid -- and the expectation is
11817 * that the caller will either free or overwrite ‘sipif’ before it’s unlocked.
11818 */
11819 static void
11820 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11821 {
11822 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11823 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11824 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11825 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11826 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);

11828 dipif->ipif_flags = sipif->ipif_flags;
11829 dipif->ipif_zoneid = sipif->ipif_zoneid;
11830 dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11831 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11832 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11833 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11834 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;

11836 /*
11837 * As per the comment atop the function, we assume that these sipif
11838 * fields will be changed before sipif is unlocked.
11839 */
11840 dipif->ipif_seqid = sipif->ipif_seqid;
11841 dipif->ipif_state_flags = sipif->ipif_state_flags;
11842 }

11844 /*
11845 * Transfer the contents of ‘sipif’ to ‘dipif’, and then free (if ‘virgipif’
11846 * is NULL) or overwrite ‘sipif’ with ‘virgipif’, which must be a virgin
11847 * (unreferenced) ipif. Also, if ‘sipif’ is used by the current xop, then
11848 * transfer the xop to ‘dipif’. Requires that all ipifs are administratively
11849 * down (i.e., no DAD), of the same type, and unlocked.
11850 */
11851 static void
11852 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11853 {
11854 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11855 ipxop_t *ipx = ipsq->ipsq_xop;

11857 ASSERT(sipif != dipif);
11858 ASSERT(sipif != virgipif);

11860 /*
11861 * Grab all of the locks that protect the ipif in a defined order.
11862 */
11863 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);

11865 ipif_clone(sipif, dipif);
11866 if (virgipif != NULL) {
11867 ipif_clone(virgipif, sipif);
11868 mi_free(virgipif);
11869 }

11871 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);

11873 /*
11874 * Transfer ownership of the current xop, if necessary.
11875 */

new/usr/src/uts/common/inet/ip/ip_if.c 181

11876 if (ipx->ipx_current_ipif == sipif) {
11877 ASSERT(ipx->ipx_pending_ipif == NULL);
11878 mutex_enter(&ipx->ipx_lock);
11879 ipx->ipx_current_ipif = dipif;
11880 mutex_exit(&ipx->ipx_lock);
11881 }

11883 if (virgipif == NULL)
11884 mi_free(sipif);
11885 }

11887 /*
11888 * checks if:
11889 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11890 * - logical interface is within the allowed range
11891 */
11892 static int
11893 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11894 {
11895 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11896 return (ENAMETOOLONG);

11898 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11899 return (ERANGE);
11900 return (0);
11901 }

11903 /*
11904 * Insert the ipif, so that the list of ipifs on the ill will be sorted
11905 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11906 * be inserted into the first space available in the list. The value of
11907 * ipif_id will then be set to the appropriate value for its position.
11908 */
11909 static int
11910 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11911 {
11912 ill_t *ill;
11913 ipif_t *tipif;
11914 ipif_t **tipifp;
11915 int id, err;
11916 ip_stack_t *ipst;

11918 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11919 IAM_WRITER_IPIF(ipif));

11921 ill = ipif->ipif_ill;
11922 ASSERT(ill != NULL);
11923 ipst = ill->ill_ipst;

11925 /*
11926 * In the case of lo0:0 we already hold the ill_g_lock.
11927 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11928 * ipif_insert.
11929 */
11930 if (acquire_g_lock)
11931 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11932 mutex_enter(&ill->ill_lock);
11933 id = ipif->ipif_id;
11934 tipifp = &(ill->ill_ipif);
11935 if (id == -1) { /* need to find a real id */
11936 id = 0;
11937 while ((tipif = *tipifp) != NULL) {
11938 ASSERT(tipif->ipif_id >= id);
11939 if (tipif->ipif_id != id)
11940 break; /* non-consecutive id */
11941 id++;

new/usr/src/uts/common/inet/ip/ip_if.c 182

11942 tipifp = &(tipif->ipif_next);
11943 }
11944 if ((err = is_lifname_valid(ill, id)) != 0) {
11945 mutex_exit(&ill->ill_lock);
11946 if (acquire_g_lock)
11947 rw_exit(&ipst->ips_ill_g_lock);
11948 return (err);
11949 }
11950 ipif->ipif_id = id; /* assign new id */
11951 } else if ((err = is_lifname_valid(ill, id)) == 0) {
11952 /* we have a real id; insert ipif in the right place */
11953 while ((tipif = *tipifp) != NULL) {
11954 ASSERT(tipif->ipif_id != id);
11955 if (tipif->ipif_id > id)
11956 break; /* found correct location */
11957 tipifp = &(tipif->ipif_next);
11958 }
11959 } else {
11960 mutex_exit(&ill->ill_lock);
11961 if (acquire_g_lock)
11962 rw_exit(&ipst->ips_ill_g_lock);
11963 return (err);
11964 }

11966 ASSERT(tipifp != &(ill->ill_ipif) || id == 0);

11968 ipif->ipif_next = tipif;
11969 *tipifp = ipif;
11970 mutex_exit(&ill->ill_lock);
11971 if (acquire_g_lock)
11972 rw_exit(&ipst->ips_ill_g_lock);

11974 return (0);
11975 }

11977 static void
11978 ipif_remove(ipif_t *ipif)
11979 {
11980 ipif_t **ipifp;
11981 ill_t *ill = ipif->ipif_ill;

11983 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));

11985 mutex_enter(&ill->ill_lock);
11986 ipifp = &ill->ill_ipif;
11987 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11988 if (*ipifp == ipif) {
11989 *ipifp = ipif->ipif_next;
11990 break;
11991 }
11992 }
11993 mutex_exit(&ill->ill_lock);
11994 }

11996 /*
11997 * Allocate and initialize a new interface control structure. (Always
11998 * called as writer.)
11999 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
12000 * is not part of the global linked list of ills. ipif_seqid is unique
12001 * in the system and to preserve the uniqueness, it is assigned only
12002 * when ill becomes part of the global list. At that point ill will
12003 * have a name. If it doesn’t get assigned here, it will get assigned
12004 * in ipif_set_values() as part of SIOCSLIFNAME processing.
12005 * Aditionally, if we come here from ip_ll_subnet_defaults, we don’t set
12006 * the interface flags or any other information from the DL_INFO_ACK for
12007 * DL_STYLE2 drivers (initialize == B_FALSE), since we won’t have them at

new/usr/src/uts/common/inet/ip/ip_if.c 183

12008 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
12009 * second DL_INFO_ACK comes in from the driver.
12010 */
12011 static ipif_t *
12012 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
12013 boolean_t insert, int *errorp)
12014 {
12015 int err;
12016 ipif_t *ipif;
12017 ip_stack_t *ipst = ill->ill_ipst;

12019 ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
12020 ill->ill_name, id, (void *)ill));
12021 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));

12023 if (errorp != NULL)
12024 *errorp = 0;

12026 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
12027 if (errorp != NULL)
12028 *errorp = ENOMEM;
12029 return (NULL);
12030 }
12031 *ipif = ipif_zero; /* start clean */

12033 ipif->ipif_ill = ill;
12034 ipif->ipif_id = id; /* could be -1 */
12035 /*
12036 * Inherit the zoneid from the ill; for the shared stack instance
12037 * this is always the global zone
12038 */
12039 ipif->ipif_zoneid = ill->ill_zoneid;

12041 ipif->ipif_refcnt = 0;

12043 if (insert) {
12044 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
12045 mi_free(ipif);
12046 if (errorp != NULL)
12047 *errorp = err;
12048 return (NULL);
12049 }
12050 /* -1 id should have been replaced by real id */
12051 id = ipif->ipif_id;
12052 ASSERT(id >= 0);
12053 }

12055 if (ill->ill_name[0] != ’\0’)
12056 ipif_assign_seqid(ipif);

12058 /*
12059 * If this is the zeroth ipif on the IPMP ill, create the illgrp
12060 * (which must not exist yet because the zeroth ipif is created once
12061 * per ill). However, do not not link it to the ipmp_grp_t until
12062 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
12063 */
12064 if (id == 0 && IS_IPMP(ill)) {
12065 if (ipmp_illgrp_create(ill) == NULL) {
12066 if (insert) {
12067 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
12068 ipif_remove(ipif);
12069 rw_exit(&ipst->ips_ill_g_lock);
12070 }
12071 mi_free(ipif);
12072 if (errorp != NULL)
12073 *errorp = ENOMEM;

new/usr/src/uts/common/inet/ip/ip_if.c 184

12074 return (NULL);
12075 }
12076 }

12078 /*
12079 * We grab ill_lock to protect the flag changes. The ipif is still
12080 * not up and can’t be looked up until the ioctl completes and the
12081 * IPIF_CHANGING flag is cleared.
12082 */
12083 mutex_enter(&ill->ill_lock);

12085 ipif->ipif_ire_type = ire_type;

12087 if (ipif->ipif_isv6) {
12088 ill->ill_flags |= ILLF_IPV6;
12089 } else {
12090 ipaddr_t inaddr_any = INADDR_ANY;

12092 ill->ill_flags |= ILLF_IPV4;

12094 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
12095 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12096 &ipif->ipif_v6lcl_addr);
12097 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12098 &ipif->ipif_v6subnet);
12099 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12100 &ipif->ipif_v6net_mask);
12101 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12102 &ipif->ipif_v6brd_addr);
12103 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12104 &ipif->ipif_v6pp_dst_addr);
12105 }

12107 /*
12108 * Don’t set the interface flags etc. now, will do it in
12109 * ip_ll_subnet_defaults.
12110 */
12111 if (!initialize)
12112 goto out;

12114 /*
12115 * NOTE: The IPMP meta-interface is special-cased because it starts
12116 * with no underlying interfaces (and thus an unknown broadcast
12117 * address length), but all interfaces that can be placed into an IPMP
12118 * group are required to be broadcast-capable.
12119 */
12120 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
12121 /*
12122 * Later detect lack of DLPI driver multicast capability by
12123 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
12124 */
12125 ill->ill_flags |= ILLF_MULTICAST;
12126 if (!ipif->ipif_isv6)
12127 ipif->ipif_flags |= IPIF_BROADCAST;
12128 } else {
12129 if (ill->ill_net_type != IRE_LOOPBACK) {
12130 if (ipif->ipif_isv6)
12131 /*
12132 * Note: xresolv interfaces will eventually need
12133 * NOARP set here as well, but that will require
12134 * those external resolvers to have some
12135 * knowledge of that flag and act appropriately.
12136 * Not to be changed at present.
12137 */
12138 ill->ill_flags |= ILLF_NONUD;
12139 else

new/usr/src/uts/common/inet/ip/ip_if.c 185

12140 ill->ill_flags |= ILLF_NOARP;
12141 }
12142 if (ill->ill_phys_addr_length == 0) {
12143 if (IS_VNI(ill)) {
12144 ipif->ipif_flags |= IPIF_NOXMIT;
12145 } else {
12146 /* pt-pt supports multicast. */
12147 ill->ill_flags |= ILLF_MULTICAST;
12148 if (ill->ill_net_type != IRE_LOOPBACK)
12149 ipif->ipif_flags |= IPIF_POINTOPOINT;
12150 }
12151 }
12152 }
12153 out:
12154 mutex_exit(&ill->ill_lock);
12155 return (ipif);
12156 }

12158 /*
12159 * Remove the neighbor cache entries associated with this logical
12160 * interface.
12161 */
12162 int
12163 ipif_arp_down(ipif_t *ipif)
12164 {
12165 ill_t *ill = ipif->ipif_ill;
12166 int err = 0;

12168 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12169 ASSERT(IAM_WRITER_IPIF(ipif));

12171 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
12172 ill_t *, ill, ipif_t *, ipif);
12173 ipif_nce_down(ipif);

12175 /*
12176 * If this is the last ipif that is going down and there are no
12177 * duplicate addresses we may yet attempt to re-probe, then we need to
12178 * clean up ARP completely.
12179 */
12180 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
12181 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
12182 /*
12183 * If this was the last ipif on an IPMP interface, purge any
12184 * static ARP entries associated with it.
12185 */
12186 if (IS_IPMP(ill))
12187 ipmp_illgrp_refresh_arpent(ill->ill_grp);

12189 /* UNBIND, DETACH */
12190 err = arp_ll_down(ill);
12191 }

12193 return (err);
12194 }

12196 /*
12197 * Get the resolver set up for a new IP address. (Always called as writer.)
12198 * Called both for IPv4 and IPv6 interfaces, though it only does some
12199 * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
12200 *
12201 * The enumerated value res_act tunes the behavior:
12202 * * Res_act_initial: set up all the resolver structures for a new
12203 * IP address.
12204 * * Res_act_defend: tell ARP that it needs to send a single gratuitous
12205 * ARP message in defense of the address.

new/usr/src/uts/common/inet/ip/ip_if.c 186

12206 * * Res_act_rebind: tell ARP to change the hardware address for an IP
12207 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif().
12208 *
12209 * Returns zero on success, or an errno upon failure.
12210 */
12211 int
12212 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
12213 {
12214 ill_t *ill = ipif->ipif_ill;
12215 int err;
12216 boolean_t was_dup;

12218 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
12219 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
12220 ASSERT(IAM_WRITER_IPIF(ipif));

12222 was_dup = B_FALSE;
12223 if (res_act == Res_act_initial) {
12224 ipif->ipif_addr_ready = 0;
12225 /*
12226 * We’re bringing an interface up here. There’s no way that we
12227 * should need to shut down ARP now.
12228 */
12229 mutex_enter(&ill->ill_lock);
12230 if (ipif->ipif_flags & IPIF_DUPLICATE) {
12231 ipif->ipif_flags &= ~IPIF_DUPLICATE;
12232 ill->ill_ipif_dup_count--;
12233 was_dup = B_TRUE;
12234 }
12235 mutex_exit(&ill->ill_lock);
12236 }
12237 if (ipif->ipif_recovery_id != 0)
12238 (void) untimeout(ipif->ipif_recovery_id);
12239 ipif->ipif_recovery_id = 0;
12240 if (ill->ill_net_type != IRE_IF_RESOLVER) {
12241 ipif->ipif_addr_ready = 1;
12242 return (0);
12243 }
12244 /* NDP will set the ipif_addr_ready flag when it’s ready */
12245 if (ill->ill_isv6)
12246 return (0);

12248 err = ipif_arp_up(ipif, res_act, was_dup);
12249 return (err);
12250 }

12252 /*
12253 * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
12254 * when a link has just gone back up.
12255 */
12256 static void
12257 ipif_nce_start_dad(ipif_t *ipif)
12258 {
12259 ncec_t *ncec;
12260 ill_t *ill = ipif->ipif_ill;
12261 boolean_t isv6 = ill->ill_isv6;

12263 if (isv6) {
12264 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
12265 &ipif->ipif_v6lcl_addr);
12266 } else {
12267 ipaddr_t v4addr;

12269 if (ill->ill_net_type != IRE_IF_RESOLVER ||
12270 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
12271 ipif->ipif_lcl_addr == INADDR_ANY) {

new/usr/src/uts/common/inet/ip/ip_if.c 187

12272 /*
12273 * If we can’t contact ARP for some reason,
12274 * that’s not really a problem. Just send
12275 * out the routing socket notification that
12276 * DAD completion would have done, and continue.
12277 */
12278 ipif_mask_reply(ipif);
12279 ipif_up_notify(ipif);
12280 ipif->ipif_addr_ready = 1;
12281 return;
12282 }

12284 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12285 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12286 }

12288 if (ncec == NULL) {
12289 ip1dbg(("couldn’t find ncec for ipif %p leaving !ready\n",
12290 (void *)ipif));
12291 return;
12292 }
12293 if (!nce_restart_dad(ncec)) {
12294 /*
12295 * If we can’t restart DAD for some reason, that’s not really a
12296 * problem. Just send out the routing socket notification that
12297 * DAD completion would have done, and continue.
12298 */
12299 ipif_up_notify(ipif);
12300 ipif->ipif_addr_ready = 1;
12301 }
12302 ncec_refrele(ncec);
12303 }

12305 /*
12306 * Restart duplicate address detection on all interfaces on the given ill.
12307 *
12308 * This is called when an interface transitions from down to up
12309 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12310 *
12311 * Note that since the underlying physical link has transitioned, we must cause
12312 * at least one routing socket message to be sent here, either via DAD
12313 * completion or just by default on the first ipif. (If we don’t do this, then
12314 * in.mpathd will see long delays when doing link-based failure recovery.)
12315 */
12316 void
12317 ill_restart_dad(ill_t *ill, boolean_t went_up)
12318 {
12319 ipif_t *ipif;

12321 if (ill == NULL)
12322 return;

12324 /*
12325 * If layer two doesn’t support duplicate address detection, then just
12326 * send the routing socket message now and be done with it.
12327 */
12328 if (!ill->ill_isv6 && arp_no_defense) {
12329 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12330 return;
12331 }

12333 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12334 if (went_up) {

12336 if (ipif->ipif_flags & IPIF_UP) {
12337 ipif_nce_start_dad(ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 188

12338 } else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12339 /*
12340 * kick off the bring-up process now.
12341 */
12342 ipif_do_recovery(ipif);
12343 } else {
12344 /*
12345 * Unfortunately, the first ipif is "special"
12346 * and represents the underlying ill in the
12347 * routing socket messages. Thus, when this
12348 * one ipif is down, we must still notify so
12349 * that the user knows the IFF_RUNNING status
12350 * change. (If the first ipif is up, then
12351 * we’ll handle eventual routing socket
12352 * notification via DAD completion.)
12353 */
12354 if (ipif == ill->ill_ipif) {
12355 ip_rts_ifmsg(ill->ill_ipif,
12356 RTSQ_DEFAULT);
12357 }
12358 }
12359 } else {
12360 /*
12361 * After link down, we’ll need to send a new routing
12362 * message when the link comes back, so clear
12363 * ipif_addr_ready.
12364 */
12365 ipif->ipif_addr_ready = 0;
12366 }
12367 }

12369 /*
12370 * If we’ve torn down links, then notify the user right away.
12371 */
12372 if (!went_up)
12373 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12374 }

12376 static void
12377 ipsq_delete(ipsq_t *ipsq)
12378 {
12379 ipxop_t *ipx = ipsq->ipsq_xop;

12381 ipsq->ipsq_ipst = NULL;
12382 ASSERT(ipsq->ipsq_phyint == NULL);
12383 ASSERT(ipsq->ipsq_xop != NULL);
12384 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12385 ASSERT(ipx->ipx_pending_mp == NULL);
12386 kmem_free(ipsq, sizeof (ipsq_t));
12387 }

12389 static int
12390 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12391 {
12392 int err = 0;
12393 ipif_t *ipif;

12395 if (ill == NULL)
12396 return (0);

12398 ASSERT(IAM_WRITER_ILL(ill));
12399 ill->ill_up_ipifs = B_TRUE;
12400 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12401 if (ipif->ipif_was_up) {
12402 if (!(ipif->ipif_flags & IPIF_UP))
12403 err = ipif_up(ipif, q, mp);

new/usr/src/uts/common/inet/ip/ip_if.c 189

12404 ipif->ipif_was_up = B_FALSE;
12405 if (err != 0) {
12406 ASSERT(err == EINPROGRESS);
12407 return (err);
12408 }
12409 }
12410 }
12411 ill->ill_up_ipifs = B_FALSE;
12412 return (0);
12413 }

12415 /*
12416 * This function is called to bring up all the ipifs that were up before
12417 * bringing the ill down via ill_down_ipifs().
12418 */
12419 int
12420 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12421 {
12422 int err;

12424 ASSERT(IAM_WRITER_ILL(ill));

12426 if (ill->ill_replumbing) {
12427 ill->ill_replumbing = 0;
12428 /*
12429 * Send down REPLUMB_DONE notification followed by the
12430 * BIND_REQ on the arp stream.
12431 */
12432 if (!ill->ill_isv6)
12433 arp_send_replumb_conf(ill);
12434 }
12435 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12436 if (err != 0)
12437 return (err);

12439 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12440 }

12442 /*
12443 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12444 * down the ipifs without sending DL_UNBIND_REQ to the driver.
12445 */
12446 static void
12447 ill_down_ipifs(ill_t *ill, boolean_t logical)
12448 {
12449 ipif_t *ipif;

12451 ASSERT(IAM_WRITER_ILL(ill));

12453 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12454 /*
12455 * We go through the ipif_down logic even if the ipif
12456 * is already down, since routes can be added based
12457 * on down ipifs. Going through ipif_down once again
12458 * will delete any IREs created based on these routes.
12459 */
12460 if (ipif->ipif_flags & IPIF_UP)
12461 ipif->ipif_was_up = B_TRUE;

12463 if (logical) {
12464 (void) ipif_logical_down(ipif, NULL, NULL);
12465 ipif_non_duplicate(ipif);
12466 (void) ipif_down_tail(ipif);
12467 } else {
12468 (void) ipif_down(ipif, NULL, NULL);
12469 }

new/usr/src/uts/common/inet/ip/ip_if.c 190

12470 }
12471 }

12473 /*
12474 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take
12475 * a look again at valid source addresses.
12476 * This should be called each time after the set of source addresses has been
12477 * changed.
12478 */
12479 void
12480 ip_update_source_selection(ip_stack_t *ipst)
12481 {
12482 /* We skip past SRC_GENERATION_VERIFY */
12483 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) ==
12484 SRC_GENERATION_VERIFY)
12485 atomic_add_32(&ipst->ips_src_generation, 1);
12486 }

12488 /*
12489 * Finish the group join started in ip_sioctl_groupname().
12490 */
12491 /* ARGSUSED */
12492 static void
12493 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12494 {
12495 ill_t *ill = q->q_ptr;
12496 phyint_t *phyi = ill->ill_phyint;
12497 ipmp_grp_t *grp = phyi->phyint_grp;
12498 ip_stack_t *ipst = ill->ill_ipst;

12500 /* IS_UNDER_IPMP() won’t work until ipmp_ill_join_illgrp() is called */
12501 ASSERT(!IS_IPMP(ill) && grp != NULL);
12502 ASSERT(IAM_WRITER_IPSQ(ipsq));

12504 if (phyi->phyint_illv4 != NULL) {
12505 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12506 VERIFY(grp->gr_pendv4-- > 0);
12507 rw_exit(&ipst->ips_ipmp_lock);
12508 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12509 }
12510 if (phyi->phyint_illv6 != NULL) {
12511 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12512 VERIFY(grp->gr_pendv6-- > 0);
12513 rw_exit(&ipst->ips_ipmp_lock);
12514 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12515 }
12516 freemsg(mp);
12517 }

12519 /*
12520 * Process an SIOCSLIFGROUPNAME request.
12521 */
12522 /* ARGSUSED */
12523 int
12524 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12525 ip_ioctl_cmd_t *ipip, void *ifreq)
12526 {
12527 struct lifreq *lifr = ifreq;
12528 ill_t *ill = ipif->ipif_ill;
12529 ip_stack_t *ipst = ill->ill_ipst;
12530 phyint_t *phyi = ill->ill_phyint;
12531 ipmp_grp_t *grp = phyi->phyint_grp;
12532 mblk_t *ipsq_mp;
12533 int err = 0;

12535 /*

new/usr/src/uts/common/inet/ip/ip_if.c 191

12536 * Note that phyint_grp can only change here, where we’re exclusive.
12537 */
12538 ASSERT(IAM_WRITER_ILL(ill));

12540 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12541 (phyi->phyint_flags & PHYI_VIRTUAL))
12542 return (EINVAL);

12544 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = ’\0’;

12546 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);

12548 /*
12549 * If the name hasn’t changed, there’s nothing to do.
12550 */
12551 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12552 goto unlock;

12554 /*
12555 * Handle requests to rename an IPMP meta-interface.
12556 *
12557 * Note that creation of the IPMP meta-interface is handled in
12558 * userland through the standard plumbing sequence. As part of the
12559 * plumbing the IPMP meta-interface, its initial groupname is set to
12560 * the name of the interface (see ipif_set_values_tail()).
12561 */
12562 if (IS_IPMP(ill)) {
12563 err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12564 goto unlock;
12565 }

12567 /*
12568 * Handle requests to add or remove an IP interface from a group.
12569 */
12570 if (lifr->lifr_groupname[0] != ’\0’) { /* add */
12571 /*
12572 * Moves are handled by first removing the interface from
12573 * its existing group, and then adding it to another group.
12574 * So, fail if it’s already in a group.
12575 */
12576 if (IS_UNDER_IPMP(ill)) {
12577 err = EALREADY;
12578 goto unlock;
12579 }

12581 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12582 if (grp == NULL) {
12583 err = ENOENT;
12584 goto unlock;
12585 }

12587 /*
12588 * Check if the phyint and its ills are suitable for
12589 * inclusion into the group.
12590 */
12591 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12592 goto unlock;

12594 /*
12595 * Checks pass; join the group, and enqueue the remaining
12596 * illgrp joins for when we’ve become part of the group xop
12597 * and are exclusive across its IPSQs. Since qwriter_ip()
12598 * requires an mblk_t to scribble on, and since ‘mp’ will be
12599 * freed as part of completing the ioctl, allocate another.
12600 */
12601 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {

new/usr/src/uts/common/inet/ip/ip_if.c 192

12602 err = ENOMEM;
12603 goto unlock;
12604 }

12606 /*
12607 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12608 * IPMP meta-interface ills needed by ‘phyi’ cannot go away
12609 * before ip_join_illgrps() is called back. See the comments
12610 * in ip_sioctl_plink_ipmp() for more.
12611 */
12612 if (phyi->phyint_illv4 != NULL)
12613 grp->gr_pendv4++;
12614 if (phyi->phyint_illv6 != NULL)
12615 grp->gr_pendv6++;

12617 rw_exit(&ipst->ips_ipmp_lock);

12619 ipmp_phyint_join_grp(phyi, grp);
12620 ill_refhold(ill);
12621 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12622 SWITCH_OP, B_FALSE);
12623 return (0);
12624 } else {
12625 /*
12626 * Request to remove the interface from a group. If the
12627 * interface is not in a group, this trivially succeeds.
12628 */
12629 rw_exit(&ipst->ips_ipmp_lock);
12630 if (IS_UNDER_IPMP(ill))
12631 ipmp_phyint_leave_grp(phyi);
12632 return (0);
12633 }
12634 unlock:
12635 rw_exit(&ipst->ips_ipmp_lock);
12636 return (err);
12637 }

12639 /*
12640 * Process an SIOCGLIFBINDING request.
12641 */
12642 /* ARGSUSED */
12643 int
12644 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12645 ip_ioctl_cmd_t *ipip, void *ifreq)
12646 {
12647 ill_t *ill;
12648 struct lifreq *lifr = ifreq;
12649 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

12651 if (!IS_IPMP(ipif->ipif_ill))
12652 return (EINVAL);

12654 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12655 if ((ill = ipif->ipif_bound_ill) == NULL)
12656 lifr->lifr_binding[0] = ’\0’;
12657 else
12658 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12659 rw_exit(&ipst->ips_ipmp_lock);
12660 return (0);
12661 }

12663 /*
12664 * Process an SIOCGLIFGROUPNAME request.
12665 */
12666 /* ARGSUSED */
12667 int

new/usr/src/uts/common/inet/ip/ip_if.c 193

12668 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12669 ip_ioctl_cmd_t *ipip, void *ifreq)
12670 {
12671 ipmp_grp_t *grp;
12672 struct lifreq *lifr = ifreq;
12673 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

12675 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12676 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12677 lifr->lifr_groupname[0] = ’\0’;
12678 else
12679 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12680 rw_exit(&ipst->ips_ipmp_lock);
12681 return (0);
12682 }

12684 /*
12685 * Process an SIOCGLIFGROUPINFO request.
12686 */
12687 /* ARGSUSED */
12688 int
12689 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12690 ip_ioctl_cmd_t *ipip, void *dummy)
12691 {
12692 ipmp_grp_t *grp;
12693 lifgroupinfo_t *lifgr;
12694 ip_stack_t *ipst = CONNQ_TO_IPST(q);

12696 /* ip_wput_nondata() verified mp->b_cont->b_cont */
12697 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12698 lifgr->gi_grname[LIFGRNAMSIZ - 1] = ’\0’;

12700 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12701 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12702 rw_exit(&ipst->ips_ipmp_lock);
12703 return (ENOENT);
12704 }
12705 ipmp_grp_info(grp, lifgr);
12706 rw_exit(&ipst->ips_ipmp_lock);
12707 return (0);
12708 }

12710 static void
12711 ill_dl_down(ill_t *ill)
12712 {
12713 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);

12715 /*
12716 * The ill is down; unbind but stay attached since we’re still
12717 * associated with a PPA. If we have negotiated DLPI capabilites
12718 * with the data link service provider (IDS_OK) then reset them.
12719 * The interval between unbinding and rebinding is potentially
12720 * unbounded hence we cannot assume things will be the same.
12721 * The DLPI capabilities will be probed again when the data link
12722 * is brought up.
12723 */
12724 mblk_t *mp = ill->ill_unbind_mp;

12726 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));

12728 if (!ill->ill_replumbing) {
12729 /* Free all ilms for this ill */
12730 update_conn_ill(ill, ill->ill_ipst);
12731 } else {
12732 ill_leave_multicast(ill);
12733 }

new/usr/src/uts/common/inet/ip/ip_if.c 194

12735 ill->ill_unbind_mp = NULL;
12736 if (mp != NULL) {
12737 ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12738 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12739 ill->ill_name));
12740 mutex_enter(&ill->ill_lock);
12741 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12742 mutex_exit(&ill->ill_lock);
12743 /*
12744 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12745 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12746 * ill_capability_dld_disable disable rightaway. If this is not
12747 * an unplumb operation then the disable happens on receipt of
12748 * the capab ack via ip_rput_dlpi_writer ->
12749 * ill_capability_ack_thr. In both cases the order of
12750 * the operations seen by DLD is capability disable followed
12751 * by DL_UNBIND. Also the DLD capability disable needs a
12752 * cv_wait’able context.
12753 */
12754 if (ill->ill_state_flags & ILL_CONDEMNED)
12755 ill_capability_dld_disable(ill);
12756 ill_capability_reset(ill, B_FALSE);
12757 ill_dlpi_send(ill, mp);
12758 }
12759 mutex_enter(&ill->ill_lock);
12760 ill->ill_dl_up = 0;
12761 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12762 mutex_exit(&ill->ill_lock);
12763 }

12765 void
12766 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12767 {
12768 union DL_primitives *dlp;
12769 t_uscalar_t prim;
12770 boolean_t waitack = B_FALSE;

12772 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);

12774 dlp = (union DL_primitives *)mp->b_rptr;
12775 prim = dlp->dl_primitive;

12777 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12778 dl_primstr(prim), prim, ill->ill_name));

12780 switch (prim) {
12781 case DL_PHYS_ADDR_REQ:
12782 {
12783 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12784 ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12785 break;
12786 }
12787 case DL_BIND_REQ:
12788 mutex_enter(&ill->ill_lock);
12789 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12790 mutex_exit(&ill->ill_lock);
12791 break;
12792 }

12794 /*
12795 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12796 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12797 * we only wait for the ACK of the DL_UNBIND_REQ.
12798 */
12799 mutex_enter(&ill->ill_lock);

new/usr/src/uts/common/inet/ip/ip_if.c 195

12800 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12801 (prim == DL_UNBIND_REQ)) {
12802 ill->ill_dlpi_pending = prim;
12803 waitack = B_TRUE;
12804 }

12806 mutex_exit(&ill->ill_lock);
12807 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12808 char *, dl_primstr(prim), ill_t *, ill);
12809 putnext(ill->ill_wq, mp);

12811 /*
12812 * There is no ack for DL_NOTIFY_CONF messages
12813 */
12814 if (waitack && prim == DL_NOTIFY_CONF)
12815 ill_dlpi_done(ill, prim);
12816 }

12818 /*
12819 * Helper function for ill_dlpi_send().
12820 */
12821 /* ARGSUSED */
12822 static void
12823 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12824 {
12825 ill_dlpi_send(q->q_ptr, mp);
12826 }

12828 /*
12829 * Send a DLPI control message to the driver but make sure there
12830 * is only one outstanding message. Uses ill_dlpi_pending to tell
12831 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12832 * when an ACK or a NAK is received to process the next queued message.
12833 */
12834 void
12835 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12836 {
12837 mblk_t **mpp;

12839 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);

12841 /*
12842 * To ensure that any DLPI requests for current exclusive operation
12843 * are always completely sent before any DLPI messages for other
12844 * operations, require writer access before enqueuing.
12845 */
12846 if (!IAM_WRITER_ILL(ill)) {
12847 ill_refhold(ill);
12848 /* qwriter_ip() does the ill_refrele() */
12849 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12850 NEW_OP, B_TRUE);
12851 return;
12852 }

12854 mutex_enter(&ill->ill_lock);
12855 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12856 /* Must queue message. Tail insertion */
12857 mpp = &ill->ill_dlpi_deferred;
12858 while (*mpp != NULL)
12859 mpp = &((*mpp)->b_next);

12861 ip1dbg(("ill_dlpi_send: deferring request for %s "
12862 "while %s pending\n", ill->ill_name,
12863 dl_primstr(ill->ill_dlpi_pending)));

12865 *mpp = mp;

new/usr/src/uts/common/inet/ip/ip_if.c 196

12866 mutex_exit(&ill->ill_lock);
12867 return;
12868 }
12869 mutex_exit(&ill->ill_lock);
12870 ill_dlpi_dispatch(ill, mp);
12871 }

12873 void
12874 ill_capability_send(ill_t *ill, mblk_t *mp)
12875 {
12876 ill->ill_capab_pending_cnt++;
12877 ill_dlpi_send(ill, mp);
12878 }

12880 void
12881 ill_capability_done(ill_t *ill)
12882 {
12883 ASSERT(ill->ill_capab_pending_cnt != 0);

12885 ill_dlpi_done(ill, DL_CAPABILITY_REQ);

12887 ill->ill_capab_pending_cnt--;
12888 if (ill->ill_capab_pending_cnt == 0 &&
12889 ill->ill_dlpi_capab_state == IDCS_OK)
12890 ill_capability_reset_alloc(ill);
12891 }

12893 /*
12894 * Send all deferred DLPI messages without waiting for their ACKs.
12895 */
12896 void
12897 ill_dlpi_send_deferred(ill_t *ill)
12898 {
12899 mblk_t *mp, *nextmp;

12901 /*
12902 * Clear ill_dlpi_pending so that the message is not queued in
12903 * ill_dlpi_send().
12904 */
12905 mutex_enter(&ill->ill_lock);
12906 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12907 mp = ill->ill_dlpi_deferred;
12908 ill->ill_dlpi_deferred = NULL;
12909 mutex_exit(&ill->ill_lock);

12911 for (; mp != NULL; mp = nextmp) {
12912 nextmp = mp->b_next;
12913 mp->b_next = NULL;
12914 ill_dlpi_send(ill, mp);
12915 }
12916 }

12918 /*
12919 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12920 * or M_HANGUP
12921 */
12922 static void
12923 ill_dlpi_clear_deferred(ill_t *ill)
12924 {
12925 mblk_t *mp, *nextmp;

12927 mutex_enter(&ill->ill_lock);
12928 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12929 mp = ill->ill_dlpi_deferred;
12930 ill->ill_dlpi_deferred = NULL;
12931 mutex_exit(&ill->ill_lock);

new/usr/src/uts/common/inet/ip/ip_if.c 197

12933 for (; mp != NULL; mp = nextmp) {
12934 nextmp = mp->b_next;
12935 inet_freemsg(mp);
12936 }
12937 }

12939 /*
12940 * Check if the DLPI primitive ‘prim’ is pending; print a warning if not.
12941 */
12942 boolean_t
12943 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12944 {
12945 t_uscalar_t pending;

12947 mutex_enter(&ill->ill_lock);
12948 if (ill->ill_dlpi_pending == prim) {
12949 mutex_exit(&ill->ill_lock);
12950 return (B_TRUE);
12951 }

12953 /*
12954 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12955 * without waiting, so don’t print any warnings in that case.
12956 */
12957 if (ill->ill_state_flags & ILL_CONDEMNED) {
12958 mutex_exit(&ill->ill_lock);
12959 return (B_FALSE);
12960 }
12961 pending = ill->ill_dlpi_pending;
12962 mutex_exit(&ill->ill_lock);

12964 if (pending == DL_PRIM_INVAL) {
12965 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12966 "received unsolicited ack for %s on %s\n",
12967 dl_primstr(prim), ill->ill_name);
12968 } else {
12969 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12970 "received unexpected ack for %s on %s (expecting %s)\n",
12971 dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12972 }
12973 return (B_FALSE);
12974 }

12976 /*
12977 * Complete the current DLPI operation associated with ‘prim’ on ‘ill’ and
12978 * start the next queued DLPI operation (if any). If there are no queued DLPI
12979 * operations and the ill’s current exclusive IPSQ operation has finished
12980 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12981 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See
12982 * the comments above ipsq_current_finish() for details.
12983 */
12984 void
12985 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12986 {
12987 mblk_t *mp;
12988 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12989 ipxop_t *ipx = ipsq->ipsq_xop;

12991 ASSERT(IAM_WRITER_IPSQ(ipsq));
12992 mutex_enter(&ill->ill_lock);

12994 ASSERT(prim != DL_PRIM_INVAL);
12995 ASSERT(ill->ill_dlpi_pending == prim);

12997 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,

new/usr/src/uts/common/inet/ip/ip_if.c 198

12998 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));

13000 if ((mp = ill->ill_dlpi_deferred) == NULL) {
13001 ill->ill_dlpi_pending = DL_PRIM_INVAL;
13002 if (ipx->ipx_current_done) {
13003 mutex_enter(&ipx->ipx_lock);
13004 ipx->ipx_current_ipif = NULL;
13005 mutex_exit(&ipx->ipx_lock);
13006 }
13007 cv_signal(&ill->ill_cv);
13008 mutex_exit(&ill->ill_lock);
13009 return;
13010 }

13012 ill->ill_dlpi_deferred = mp->b_next;
13013 mp->b_next = NULL;
13014 mutex_exit(&ill->ill_lock);

13016 ill_dlpi_dispatch(ill, mp);
13017 }

13019 /*
13020 * Queue a (multicast) DLPI control message to be sent to the driver by
13021 * later calling ill_dlpi_send_queued.
13022 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13023 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
13024 * for the same group to race.
13025 * We send DLPI control messages in order using ill_lock.
13026 * For IPMP we should be called on the cast_ill.
13027 */
13028 void
13029 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
13030 {
13031 mblk_t **mpp;

13033 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);

13035 mutex_enter(&ill->ill_lock);
13036 /* Must queue message. Tail insertion */
13037 mpp = &ill->ill_dlpi_deferred;
13038 while (*mpp != NULL)
13039 mpp = &((*mpp)->b_next);

13041 *mpp = mp;
13042 mutex_exit(&ill->ill_lock);
13043 }

13045 /*
13046 * Send the messages that were queued. Make sure there is only
13047 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
13048 * when an ACK or a NAK is received to process the next queued message.
13049 * For IPMP we are called on the upper ill, but when send what is queued
13050 * on the cast_ill.
13051 */
13052 void
13053 ill_dlpi_send_queued(ill_t *ill)
13054 {
13055 mblk_t *mp;
13056 union DL_primitives *dlp;
13057 t_uscalar_t prim;
13058 ill_t *release_ill = NULL;

13060 if (IS_IPMP(ill)) {
13061 /* On the upper IPMP ill. */
13062 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13063 if (release_ill == NULL) {

new/usr/src/uts/common/inet/ip/ip_if.c 199

13064 /* Avoid ever sending anything down to the ipmpstub */
13065 return;
13066 }
13067 ill = release_ill;
13068 }
13069 mutex_enter(&ill->ill_lock);
13070 while ((mp = ill->ill_dlpi_deferred) != NULL) {
13071 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
13072 /* Can’t send. Somebody else will send it */
13073 mutex_exit(&ill->ill_lock);
13074 goto done;
13075 }
13076 ill->ill_dlpi_deferred = mp->b_next;
13077 mp->b_next = NULL;
13078 if (!ill->ill_dl_up) {
13079 /*
13080 * Nobody there. All multicast addresses will be
13081 * re-joined when we get the DL_BIND_ACK bringing the
13082 * interface up.
13083 */
13084 freemsg(mp);
13085 continue;
13086 }
13087 dlp = (union DL_primitives *)mp->b_rptr;
13088 prim = dlp->dl_primitive;

13090 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
13091 (prim == DL_UNBIND_REQ)) {
13092 ill->ill_dlpi_pending = prim;
13093 }
13094 mutex_exit(&ill->ill_lock);

13096 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
13097 char *, dl_primstr(prim), ill_t *, ill);
13098 putnext(ill->ill_wq, mp);
13099 mutex_enter(&ill->ill_lock);
13100 }
13101 mutex_exit(&ill->ill_lock);
13102 done:
13103 if (release_ill != NULL)
13104 ill_refrele(release_ill);
13105 }

13107 /*
13108 * Queue an IP (IGMP/MLD) message to be sent by IP from
13109 * ill_mcast_send_queued
13110 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13111 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
13112 * group to race.
13113 * We send them in order using ill_lock.
13114 * For IPMP we are called on the upper ill, but we queue on the cast_ill.
13115 */
13116 void
13117 ill_mcast_queue(ill_t *ill, mblk_t *mp)
13118 {
13119 mblk_t **mpp;
13120 ill_t *release_ill = NULL;

13122 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));

13124 if (IS_IPMP(ill)) {
13125 /* On the upper IPMP ill. */
13126 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13127 if (release_ill == NULL) {
13128 /* Discard instead of queuing for the ipmp interface */
13129 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);

new/usr/src/uts/common/inet/ip/ip_if.c 200

13130 ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
13131 mp, ill);
13132 freemsg(mp);
13133 return;
13134 }
13135 ill = release_ill;
13136 }

13138 mutex_enter(&ill->ill_lock);
13139 /* Must queue message. Tail insertion */
13140 mpp = &ill->ill_mcast_deferred;
13141 while (*mpp != NULL)
13142 mpp = &((*mpp)->b_next);

13144 *mpp = mp;
13145 mutex_exit(&ill->ill_lock);
13146 if (release_ill != NULL)
13147 ill_refrele(release_ill);
13148 }

13150 /*
13151 * Send the IP packets that were queued by ill_mcast_queue.
13152 * These are IGMP/MLD packets.
13153 *
13154 * For IPMP we are called on the upper ill, but when send what is queued
13155 * on the cast_ill.
13156 *
13157 * Request loopback of the report if we are acting as a multicast
13158 * router, so that the process-level routing demon can hear it.
13159 * This will run multiple times for the same group if there are members
13160 * on the same group for multiple ipif’s on the same ill. The
13161 * igmp_input/mld_input code will suppress this due to the loopback thus we
13162 * always loopback membership report.
13163 *
13164 * We also need to make sure that this does not get load balanced
13165 * by IPMP. We do this by passing an ill to ip_output_simple.
13166 */
13167 void
13168 ill_mcast_send_queued(ill_t *ill)
13169 {
13170 mblk_t *mp;
13171 ip_xmit_attr_t ixas;
13172 ill_t *release_ill = NULL;

13174 if (IS_IPMP(ill)) {
13175 /* On the upper IPMP ill. */
13176 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13177 if (release_ill == NULL) {
13178 /*
13179 * We should have no messages on the ipmp interface
13180 * but no point in trying to send them.
13181 */
13182 return;
13183 }
13184 ill = release_ill;
13185 }
13186 bzero(&ixas, sizeof (ixas));
13187 ixas.ixa_zoneid = ALL_ZONES;
13188 ixas.ixa_cred = kcred;
13189 ixas.ixa_cpid = NOPID;
13190 ixas.ixa_tsl = NULL;
13191 /*
13192 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
13193 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
13194 * That is necessary to handle IGMP/MLD snooping switches.
13195 */

new/usr/src/uts/common/inet/ip/ip_if.c 201

13196 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
13197 ixas.ixa_ipst = ill->ill_ipst;

13199 mutex_enter(&ill->ill_lock);
13200 while ((mp = ill->ill_mcast_deferred) != NULL) {
13201 ill->ill_mcast_deferred = mp->b_next;
13202 mp->b_next = NULL;
13203 if (!ill->ill_dl_up) {
13204 /*
13205 * Nobody there. Just drop the ip packets.
13206 * IGMP/MLD will resend later, if this is a replumb.
13207 */
13208 freemsg(mp);
13209 continue;
13210 }
13211 mutex_enter(&ill->ill_phyint->phyint_lock);
13212 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
13213 /*
13214 * When the ill is getting deactivated, we only want to
13215 * send the DLPI messages, so drop IGMP/MLD packets.
13216 * DLPI messages are handled by ill_dlpi_send_queued()
13217 */
13218 mutex_exit(&ill->ill_phyint->phyint_lock);
13219 freemsg(mp);
13220 continue;
13221 }
13222 mutex_exit(&ill->ill_phyint->phyint_lock);
13223 mutex_exit(&ill->ill_lock);

13225 /* Check whether we are sending IPv4 or IPv6. */
13226 if (ill->ill_isv6) {
13227 ip6_t *ip6h = (ip6_t *)mp->b_rptr;

13229 ixas.ixa_multicast_ttl = ip6h->ip6_hops;
13230 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
13231 } else {
13232 ipha_t *ipha = (ipha_t *)mp->b_rptr;

13234 ixas.ixa_multicast_ttl = ipha->ipha_ttl;
13235 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13236 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
13237 }
13238 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE;
13239 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
13240 (void) ip_output_simple(mp, &ixas);
13241 ixa_cleanup(&ixas);

13243 mutex_enter(&ill->ill_lock);
13244 }
13245 mutex_exit(&ill->ill_lock);

13247 done:
13248 if (release_ill != NULL)
13249 ill_refrele(release_ill);
13250 }

13252 /*
13253 * Take down a specific interface, but don’t lose any information about it.
13254 * (Always called as writer.)
13255 * This function goes through the down sequence even if the interface is
13256 * already down. There are 2 reasons.
13257 * a. Currently we permit interface routes that depend on down interfaces
13258 * to be added. This behaviour itself is questionable. However it appears
13259 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long
13260 * time. We go thru the cleanup in order to remove these routes.
13261 * b. The bringup of the interface could fail in ill_dl_up i.e. we get

new/usr/src/uts/common/inet/ip/ip_if.c 202

13262 * DL_ERROR_ACK in response to the DL_BIND request. The interface is
13263 * down, but we need to cleanup i.e. do ill_dl_down and
13264 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
13265 *
13266 * IP-MT notes:
13267 *
13268 * Model of reference to interfaces.
13269 *
13270 * The following members in ipif_t track references to the ipif.
13271 * int ipif_refcnt; Active reference count
13272 *
13273 * The following members in ill_t track references to the ill.
13274 * int ill_refcnt; active refcnt
13275 * uint_t ill_ire_cnt; Number of ires referencing ill
13276 * uint_t ill_ncec_cnt; Number of ncecs referencing ill
13277 * uint_t ill_nce_cnt; Number of nces referencing ill
13278 * uint_t ill_ilm_cnt; Number of ilms referencing ill
13279 *
13280 * Reference to an ipif or ill can be obtained in any of the following ways.
13281 *
13282 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
13283 * Pointers to ipif / ill from other data structures viz ire and conn.
13284 * Implicit reference to the ipif / ill by holding a reference to the ire.
13285 *
13286 * The ipif/ill lookup functions return a reference held ipif / ill.
13287 * ipif_refcnt and ill_refcnt track the reference counts respectively.
13288 * This is a purely dynamic reference count associated with threads holding
13289 * references to the ipif / ill. Pointers from other structures do not
13290 * count towards this reference count.
13291 *
13292 * ill_ire_cnt is the number of ire’s associated with the
13293 * ill. This is incremented whenever a new ire is created referencing the
13294 * ill. This is done atomically inside ire_add_v[46] where the ire is
13295 * actually added to the ire hash table. The count is decremented in
13296 * ire_inactive where the ire is destroyed.
13297 *
13298 * ill_ncec_cnt is the number of ncec’s referencing the ill thru ncec_ill.
13299 * This is incremented atomically in
13300 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13301 * table. Similarly it is decremented in ncec_inactive() where the ncec
13302 * is destroyed.
13303 *
13304 * ill_nce_cnt is the number of nce’s referencing the ill thru nce_ill. This is
13305 * incremented atomically in nce_add() where the nce is actually added to the
13306 * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13307 * is destroyed.
13308 *
13309 * ill_ilm_cnt is the ilm’s reference to the ill. It is incremented in
13310 * ilm_add() and decremented before the ilm is freed in ilm_delete().
13311 *
13312 * Flow of ioctls involving interface down/up
13313 *
13314 * The following is the sequence of an attempt to set some critical flags on an
13315 * up interface.
13316 * ip_sioctl_flags
13317 * ipif_down
13318 * wait for ipif to be quiescent
13319 * ipif_down_tail
13320 * ip_sioctl_flags_tail
13321 *
13322 * All set ioctls that involve down/up sequence would have a skeleton similar
13323 * to the above. All the *tail functions are called after the refcounts have
13324 * dropped to the appropriate values.
13325 *
13326 * SIOC ioctls during the IPIF_CHANGING interval.
13327 *

new/usr/src/uts/common/inet/ip/ip_if.c 203

13328 * Threads handling SIOC set ioctls serialize on the squeue, but this
13329 * is not done for SIOC get ioctls. Since a set ioctl can cause several
13330 * steps of internal changes to the state, some of which are visible in
13331 * ipif_flags (such as IFF_UP being cleared and later set), and we want
13332 * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13333 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13334 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13335 * the current exclusive operation completes. The IPIF_CHANGING check
13336 * and enqueue is atomic using the ill_lock and ipsq_lock. The
13337 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can’t
13338 * change while the ill_lock is held. Before dropping the ill_lock we acquire
13339 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can’t finish
13340 * until we release the ipsq_lock, even though the ill/ipif state flags
13341 * can change after we drop the ill_lock.
13342 */
13343 int
13344 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13345 {
13346 ill_t *ill = ipif->ipif_ill;
13347 conn_t *connp;
13348 boolean_t success;
13349 boolean_t ipif_was_up = B_FALSE;
13350 ip_stack_t *ipst = ill->ill_ipst;

13352 ASSERT(IAM_WRITER_IPIF(ipif));

13354 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));

13356 DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13357 ill_t *, ill, ipif_t *, ipif);

13359 if (ipif->ipif_flags & IPIF_UP) {
13360 mutex_enter(&ill->ill_lock);
13361 ipif->ipif_flags &= ~IPIF_UP;
13362 ASSERT(ill->ill_ipif_up_count > 0);
13363 --ill->ill_ipif_up_count;
13364 mutex_exit(&ill->ill_lock);
13365 ipif_was_up = B_TRUE;
13366 /* Update status in SCTP’s list */
13367 sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13368 ill_nic_event_dispatch(ipif->ipif_ill,
13369 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13370 }

13372 /*
13373 * Removal of the last ipif from an ill may result in a DL_UNBIND
13374 * being sent to the driver, and we must not send any data packets to
13375 * the driver after the DL_UNBIND_REQ. To ensure this, all the
13376 * ire and nce entries used in the data path will be cleaned
13377 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make
13378 * sure on new entries will be added until the ill is bound
13379 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon
13380 * receipt of a DL_BIND_ACK.
13381 */
13382 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13383 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13384 ill->ill_dl_up) {
13385 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
13386 }

13388 /*
13389 * Blow away memberships we established in ipif_multicast_up().
13390 */
13391 ipif_multicast_down(ipif);

13393 /*

new/usr/src/uts/common/inet/ip/ip_if.c 204

13394 * Remove from the mapping for __sin6_src_id. We insert only
13395 * when the address is not INADDR_ANY. As IPv4 addresses are
13396 * stored as mapped addresses, we need to check for mapped
13397 * INADDR_ANY also.
13398 */
13399 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13400 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13401 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13402 int err;

13404 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13405 ipif->ipif_zoneid, ipst);
13406 if (err != 0) {
13407 ip0dbg(("ipif_down: srcid_remove %d\n", err));
13408 }
13409 }

13411 if (ipif_was_up) {
13412 /* only delete if we’d added ire’s before */
13413 if (ipif->ipif_isv6)
13414 ipif_delete_ires_v6(ipif);
13415 else
13416 ipif_delete_ires_v4(ipif);
13417 }

13419 if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13420 /*
13421 * Since the interface is now down, it may have just become
13422 * inactive. Note that this needs to be done even for a
13423 * lll_logical_down(), or ARP entries will not get correctly
13424 * restored when the interface comes back up.
13425 */
13426 if (IS_UNDER_IPMP(ill))
13427 ipmp_ill_refresh_active(ill);
13428 }

13430 /*
13431 * neighbor-discovery or arp entries for this interface. The ipif
13432 * has to be quiesced, so we walk all the nce’s and delete those
13433 * that point at the ipif->ipif_ill. At the same time, we also
13434 * update IPMP so that ipifs for data addresses are unbound. We dont
13435 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13436 * that for ipif_down_tail()
13437 */
13438 ipif_nce_down(ipif);

13440 /*
13441 * If this is the last ipif on the ill, we also need to remove
13442 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13443 * never succeed.
13444 */
13445 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13446 ire_walk_ill(0, 0, ill_downi, ill, ill);

13448 /*
13449 * Walk all CONNs that can have a reference on an ire for this
13450 * ipif (we actually walk all that now have stale references).
13451 */
13452 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);

13454 /*
13455 * If mp is NULL the caller will wait for the appropriate refcnt.
13456 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down
13457 * and ill_delete -> ipif_free -> ipif_down
13458 */
13459 if (mp == NULL) {

new/usr/src/uts/common/inet/ip/ip_if.c 205

13460 ASSERT(q == NULL);
13461 return (0);
13462 }

13464 if (CONN_Q(q)) {
13465 connp = Q_TO_CONN(q);
13466 mutex_enter(&connp->conn_lock);
13467 } else {
13468 connp = NULL;
13469 }
13470 mutex_enter(&ill->ill_lock);
13471 /*
13472 * Are there any ire’s pointing to this ipif that are still active ?
13473 * If this is the last ipif going down, are there any ire’s pointing
13474 * to this ill that are still active ?
13475 */
13476 if (ipif_is_quiescent(ipif)) {
13477 mutex_exit(&ill->ill_lock);
13478 if (connp != NULL)
13479 mutex_exit(&connp->conn_lock);
13480 return (0);
13481 }

13483 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13484 ill->ill_name, (void *)ill));
13485 /*
13486 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13487 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13488 * which in turn is called by the last refrele on the ipif/ill/ire.
13489 */
13490 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13491 if (!success) {
13492 /* The conn is closing. So just return */
13493 ASSERT(connp != NULL);
13494 mutex_exit(&ill->ill_lock);
13495 mutex_exit(&connp->conn_lock);
13496 return (EINTR);
13497 }

13499 mutex_exit(&ill->ill_lock);
13500 if (connp != NULL)
13501 mutex_exit(&connp->conn_lock);
13502 return (EINPROGRESS);
13503 }

13505 int
13506 ipif_down_tail(ipif_t *ipif)
13507 {
13508 ill_t *ill = ipif->ipif_ill;
13509 int err = 0;

13511 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13512 ill_t *, ill, ipif_t *, ipif);

13514 /*
13515 * Skip any loopback interface (null wq).
13516 * If this is the last logical interface on the ill
13517 * have ill_dl_down tell the driver we are gone (unbind)
13518 * Note that lun 0 can ipif_down even though
13519 * there are other logical units that are up.
13520 * This occurs e.g. when we change a "significant" IFF_ flag.
13521 */
13522 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13523 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13524 ill->ill_dl_up) {
13525 ill_dl_down(ill);

new/usr/src/uts/common/inet/ip/ip_if.c 206

13526 }
13527 if (!ipif->ipif_isv6)
13528 err = ipif_arp_down(ipif);

13530 ill->ill_logical_down = 0;

13532 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13533 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13534 return (err);
13535 }

13537 /*
13538 * Bring interface logically down without bringing the physical interface
13539 * down e.g. when the netmask is changed. This avoids long lasting link
13540 * negotiations between an ethernet interface and a certain switches.
13541 */
13542 static int
13543 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13544 {
13545 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13546 ill_t *, ipif->ipif_ill, ipif_t *, ipif);

13548 /*
13549 * The ill_logical_down flag is a transient flag. It is set here
13550 * and is cleared once the down has completed in ipif_down_tail.
13551 * This flag does not indicate whether the ill stream is in the
13552 * DL_BOUND state with the driver. Instead this flag is used by
13553 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13554 * the driver. The state of the ill stream i.e. whether it is
13555 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13556 */
13557 ipif->ipif_ill->ill_logical_down = 1;
13558 return (ipif_down(ipif, q, mp));
13559 }

13561 /*
13562 * Initiate deallocate of an IPIF. Always called as writer. Called by
13563 * ill_delete or ip_sioctl_removeif.
13564 */
13565 static void
13566 ipif_free(ipif_t *ipif)
13567 {
13568 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

13570 ASSERT(IAM_WRITER_IPIF(ipif));

13572 if (ipif->ipif_recovery_id != 0)
13573 (void) untimeout(ipif->ipif_recovery_id);
13574 ipif->ipif_recovery_id = 0;

13576 /*
13577 * Take down the interface. We can be called either from ill_delete
13578 * or from ip_sioctl_removeif.
13579 */
13580 (void) ipif_down(ipif, NULL, NULL);

13582 /*
13583 * Now that the interface is down, there’s no chance it can still
13584 * become a duplicate. Cancel any timer that may have been set while
13585 * tearing down.
13586 */
13587 if (ipif->ipif_recovery_id != 0)
13588 (void) untimeout(ipif->ipif_recovery_id);
13589 ipif->ipif_recovery_id = 0;

13591 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);

new/usr/src/uts/common/inet/ip/ip_if.c 207

13592 /* Remove pointers to this ill in the multicast routing tables */
13593 reset_mrt_vif_ipif(ipif);
13594 /* If necessary, clear the cached source ipif rotor. */
13595 if (ipif->ipif_ill->ill_src_ipif == ipif)
13596 ipif->ipif_ill->ill_src_ipif = NULL;
13597 rw_exit(&ipst->ips_ill_g_lock);
13598 }

13600 static void
13601 ipif_free_tail(ipif_t *ipif)
13602 {
13603 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

13605 /*
13606 * Need to hold both ill_g_lock and ill_lock while
13607 * inserting or removing an ipif from the linked list
13608 * of ipifs hanging off the ill.
13609 */
13610 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);

13612 #ifdef DEBUG
13613 ipif_trace_cleanup(ipif);
13614 #endif

13616 /* Ask SCTP to take it out of it list */
13617 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13618 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);

13620 /* Get it out of the ILL interface list. */
13621 ipif_remove(ipif);
13622 rw_exit(&ipst->ips_ill_g_lock);

13624 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13625 ASSERT(ipif->ipif_recovery_id == 0);
13626 ASSERT(ipif->ipif_ire_local == NULL);
13627 ASSERT(ipif->ipif_ire_if == NULL);

13629 /* Free the memory. */
13630 mi_free(ipif);
13631 }

13633 /*
13634 * Sets ‘buf’ to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13635 * is zero.
13636 */
13637 void
13638 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13639 {
13640 char lbuf[LIFNAMSIZ];
13641 char *name;
13642 size_t name_len;

13644 buf[0] = ’\0’;
13645 name = ipif->ipif_ill->ill_name;
13646 name_len = ipif->ipif_ill->ill_name_length;
13647 if (ipif->ipif_id != 0) {
13648 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13649 ipif->ipif_id);
13650 name = lbuf;
13651 name_len = mi_strlen(name) + 1;
13652 }
13653 len -= 1;
13654 buf[len] = ’\0’;
13655 len = MIN(len, name_len);
13656 bcopy(name, buf, len);
13657 }

new/usr/src/uts/common/inet/ip/ip_if.c 208

13659 /*
13660 * Sets ‘buf’ to an ill name.
13661 */
13662 void
13663 ill_get_name(const ill_t *ill, char *buf, int len)
13664 {
13665 char *name;
13666 size_t name_len;

13668 name = ill->ill_name;
13669 name_len = ill->ill_name_length;
13670 len -= 1;
13671 buf[len] = ’\0’;
13672 len = MIN(len, name_len);
13673 bcopy(name, buf, len);
13674 }

13676 /*
13677 * Find an IPIF based on the name passed in. Names can be of the form <phys>
13678 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the
13679 * implied unit id is zero. <phys> must correspond to the name of an ILL.
13680 * (May be called as writer.)
13681 */
13682 static ipif_t *
13683 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13684 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13685 {
13686 char *cp;
13687 char *endp;
13688 long id;
13689 ill_t *ill;
13690 ipif_t *ipif;
13691 uint_t ire_type;
13692 boolean_t did_alloc = B_FALSE;
13693 char last;

13695 /*
13696 * If the caller wants to us to create the ipif, make sure we have a
13697 * valid zoneid
13698 */
13699 ASSERT(!do_alloc || zoneid != ALL_ZONES);

13701 if (namelen == 0) {
13702 return (NULL);
13703 }

13705 *exists = B_FALSE;
13706 /* Look for a colon in the name. */
13707 endp = &name[namelen];
13708 for (cp = endp; --cp > name;) {
13709 if (*cp == IPIF_SEPARATOR_CHAR)
13710 break;
13711 }

13713 if (*cp == IPIF_SEPARATOR_CHAR) {
13714 /*
13715 * Reject any non-decimal aliases for logical
13716 * interfaces. Aliases with leading zeroes
13717 * are also rejected as they introduce ambiguity
13718 * in the naming of the interfaces.
13719 * In order to confirm with existing semantics,
13720 * and to not break any programs/script relying
13721 * on that behaviour, if<0>:0 is considered to be
13722 * a valid interface.
13723 *

new/usr/src/uts/common/inet/ip/ip_if.c 209

13724 * If alias has two or more digits and the first
13725 * is zero, fail.
13726 */
13727 if (&cp[2] < endp && cp[1] == ’0’) {
13728 return (NULL);
13729 }
13730 }

13732 if (cp <= name) {
13733 cp = endp;
13734 }
13735 last = *cp;
13736 *cp = ’\0’;

13738 /*
13739 * Look up the ILL, based on the portion of the name
13740 * before the slash. ill_lookup_on_name returns a held ill.
13741 * Temporary to check whether ill exists already. If so
13742 * ill_lookup_on_name will clear it.
13743 */
13744 ill = ill_lookup_on_name(name, do_alloc, isv6,
13745 &did_alloc, ipst);
13746 *cp = last;
13747 if (ill == NULL)
13748 return (NULL);

13750 /* Establish the unit number in the name. */
13751 id = 0;
13752 if (cp < endp && *endp == ’\0’) {
13753 /* If there was a colon, the unit number follows. */
13754 cp++;
13755 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13756 ill_refrele(ill);
13757 return (NULL);
13758 }
13759 }

13761 mutex_enter(&ill->ill_lock);
13762 /* Now see if there is an IPIF with this unit number. */
13763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13764 if (ipif->ipif_id == id) {
13765 if (zoneid != ALL_ZONES &&
13766 zoneid != ipif->ipif_zoneid &&
13767 ipif->ipif_zoneid != ALL_ZONES) {
13768 mutex_exit(&ill->ill_lock);
13769 ill_refrele(ill);
13770 return (NULL);
13771 }
13772 if (IPIF_CAN_LOOKUP(ipif)) {
13773 ipif_refhold_locked(ipif);
13774 mutex_exit(&ill->ill_lock);
13775 if (!did_alloc)
13776 *exists = B_TRUE;
13777 /*
13778 * Drop locks before calling ill_refrele
13779 * since it can potentially call into
13780 * ipif_ill_refrele_tail which can end up
13781 * in trying to acquire any lock.
13782 */
13783 ill_refrele(ill);
13784 return (ipif);
13785 }
13786 }
13787 }

13789 if (!do_alloc) {

new/usr/src/uts/common/inet/ip/ip_if.c 210

13790 mutex_exit(&ill->ill_lock);
13791 ill_refrele(ill);
13792 return (NULL);
13793 }

13795 /*
13796 * If none found, atomically allocate and return a new one.
13797 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13798 * to support "receive only" use of lo0:1 etc. as is still done
13799 * below as an initial guess.
13800 * However, this is now likely to be overriden later in ipif_up_done()
13801 * when we know for sure what address has been configured on the
13802 * interface, since we might have more than one loopback interface
13803 * with a loopback address, e.g. in the case of zones, and all the
13804 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13805 */
13806 if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13807 ire_type = IRE_LOOPBACK;
13808 else
13809 ire_type = IRE_LOCAL;
13810 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13811 if (ipif != NULL)
13812 ipif_refhold_locked(ipif);
13813 mutex_exit(&ill->ill_lock);
13814 ill_refrele(ill);
13815 return (ipif);
13816 }

13818 /*
13819 * Variant of the above that queues the request on the ipsq when
13820 * IPIF_CHANGING is set.
13821 */
13822 static ipif_t *
13823 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6,
13824 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
13825 ip_stack_t *ipst)
13826 {
13827 char *cp;
13828 char *endp;
13829 long id;
13830 ill_t *ill;
13831 ipif_t *ipif;
13832 boolean_t did_alloc = B_FALSE;
13833 ipsq_t *ipsq;

13835 if (error != NULL)
13836 *error = 0;

13838 if (namelen == 0) {
13839 if (error != NULL)
13840 *error = ENXIO;
13841 return (NULL);
13842 }

13844 /* Look for a colon in the name. */
13845 endp = &name[namelen];
13846 for (cp = endp; --cp > name;) {
13847 if (*cp == IPIF_SEPARATOR_CHAR)
13848 break;
13849 }

13851 if (*cp == IPIF_SEPARATOR_CHAR) {
13852 /*
13853 * Reject any non-decimal aliases for logical
13854 * interfaces. Aliases with leading zeroes
13855 * are also rejected as they introduce ambiguity

new/usr/src/uts/common/inet/ip/ip_if.c 211

13856 * in the naming of the interfaces.
13857 * In order to confirm with existing semantics,
13858 * and to not break any programs/script relying
13859 * on that behaviour, if<0>:0 is considered to be
13860 * a valid interface.
13861 *
13862 * If alias has two or more digits and the first
13863 * is zero, fail.
13864 */
13865 if (&cp[2] < endp && cp[1] == ’0’) {
13866 if (error != NULL)
13867 *error = EINVAL;
13868 return (NULL);
13869 }
13870 }

13872 if (cp <= name) {
13873 cp = endp;
13874 } else {
13875 *cp = ’\0’;
13876 }

13878 /*
13879 * Look up the ILL, based on the portion of the name
13880 * before the slash. ill_lookup_on_name returns a held ill.
13881 * Temporary to check whether ill exists already. If so
13882 * ill_lookup_on_name will clear it.
13883 */
13884 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst);
13885 if (cp != endp)
13886 *cp = IPIF_SEPARATOR_CHAR;
13887 if (ill == NULL)
13888 return (NULL);

13890 /* Establish the unit number in the name. */
13891 id = 0;
13892 if (cp < endp && *endp == ’\0’) {
13893 /* If there was a colon, the unit number follows. */
13894 cp++;
13895 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13896 ill_refrele(ill);
13897 if (error != NULL)
13898 *error = ENXIO;
13899 return (NULL);
13900 }
13901 }

13903 GRAB_CONN_LOCK(q);
13904 mutex_enter(&ill->ill_lock);
13905 /* Now see if there is an IPIF with this unit number. */
13906 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13907 if (ipif->ipif_id == id) {
13908 if (zoneid != ALL_ZONES &&
13909 zoneid != ipif->ipif_zoneid &&
13910 ipif->ipif_zoneid != ALL_ZONES) {
13911 mutex_exit(&ill->ill_lock);
13912 RELEASE_CONN_LOCK(q);
13913 ill_refrele(ill);
13914 if (error != NULL)
13915 *error = ENXIO;
13916 return (NULL);
13917 }

13919 if (!(IPIF_IS_CHANGING(ipif) ||
13920 IPIF_IS_CONDEMNED(ipif)) ||
13921 IAM_WRITER_IPIF(ipif)) {

new/usr/src/uts/common/inet/ip/ip_if.c 212

13922 ipif_refhold_locked(ipif);
13923 mutex_exit(&ill->ill_lock);
13924 /*
13925 * Drop locks before calling ill_refrele
13926 * since it can potentially call into
13927 * ipif_ill_refrele_tail which can end up
13928 * in trying to acquire any lock.
13929 */
13930 RELEASE_CONN_LOCK(q);
13931 ill_refrele(ill);
13932 return (ipif);
13933 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) {
13934 ipsq = ill->ill_phyint->phyint_ipsq;
13935 mutex_enter(&ipsq->ipsq_lock);
13936 mutex_enter(&ipsq->ipsq_xop->ipx_lock);
13937 mutex_exit(&ill->ill_lock);
13938 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
13939 mutex_exit(&ipsq->ipsq_xop->ipx_lock);
13940 mutex_exit(&ipsq->ipsq_lock);
13941 RELEASE_CONN_LOCK(q);
13942 ill_refrele(ill);
13943 if (error != NULL)
13944 *error = EINPROGRESS;
13945 return (NULL);
13946 }
13947 }
13948 }
13949 RELEASE_CONN_LOCK(q);
13950 mutex_exit(&ill->ill_lock);
13951 ill_refrele(ill);
13952 if (error != NULL)
13953 *error = ENXIO;
13954 return (NULL);
13955 }

13957 /*
13958 * This routine is called whenever a new address comes up on an ipif. If
13959 * we are configured to respond to address mask requests, then we are supposed
13960 * to broadcast an address mask reply at this time. This routine is also
13961 * called if we are already up, but a netmask change is made. This is legal
13962 * but might not make the system manager very popular. (May be called
13963 * as writer.)
13964 */
13965 void
13966 ipif_mask_reply(ipif_t *ipif)
13967 {
13968 icmph_t *icmph;
13969 ipha_t *ipha;
13970 mblk_t *mp;
13971 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13972 ip_xmit_attr_t ixas;

13974 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)

13976 if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13977 return;

13979 /* ICMP mask reply is IPv4 only */
13980 ASSERT(!ipif->ipif_isv6);
13981 /* ICMP mask reply is not for a loopback interface */
13982 ASSERT(ipif->ipif_ill->ill_wq != NULL);

13984 if (ipif->ipif_lcl_addr == INADDR_ANY)
13985 return;

13987 mp = allocb(REPLY_LEN, BPRI_HI);

new/usr/src/uts/common/inet/ip/ip_if.c 213

13988 if (mp == NULL)
13989 return;
13990 mp->b_wptr = mp->b_rptr + REPLY_LEN;

13992 ipha = (ipha_t *)mp->b_rptr;
13993 bzero(ipha, REPLY_LEN);
13994 *ipha = icmp_ipha;
13995 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13996 ipha->ipha_src = ipif->ipif_lcl_addr;
13997 ipha->ipha_dst = ipif->ipif_brd_addr;
13998 ipha->ipha_length = htons(REPLY_LEN);
13999 ipha->ipha_ident = 0;

14001 icmph = (icmph_t *)&ipha[1];
14002 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
14003 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
14004 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);

14006 bzero(&ixas, sizeof (ixas));
14007 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
14008 ixas.ixa_zoneid = ALL_ZONES;
14009 ixas.ixa_ifindex = 0;
14010 ixas.ixa_ipst = ipst;
14011 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
14012 (void) ip_output_simple(mp, &ixas);
14013 ixa_cleanup(&ixas);
14014 #undef REPLY_LEN
14015 }

14017 /*
14018 * Join the ipif specific multicast groups.
14019 * Must be called after a mapping has been set up in the resolver. (Always
14020 * called as writer.)
14021 */
14022 void
14023 ipif_multicast_up(ipif_t *ipif)
14024 {
14025 int err;
14026 ill_t *ill;
14027 ilm_t *ilm;

14029 ASSERT(IAM_WRITER_IPIF(ipif));

14031 ill = ipif->ipif_ill;

14033 ip1dbg(("ipif_multicast_up\n"));
14034 if (!(ill->ill_flags & ILLF_MULTICAST) ||
14035 ipif->ipif_allhosts_ilm != NULL)
14036 return;

14038 if (ipif->ipif_isv6) {
14039 in6_addr_t v6allmc = ipv6_all_hosts_mcast;
14040 in6_addr_t v6solmc = ipv6_solicited_node_mcast;

14042 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];

14044 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14045 return;

14047 ip1dbg(("ipif_multicast_up - addmulti\n"));

14049 /*
14050 * Join the all hosts multicast address. We skip this for
14051 * underlying IPMP interfaces since they should be invisible.
14052 */
14053 if (!IS_UNDER_IPMP(ill)) {

new/usr/src/uts/common/inet/ip/ip_if.c 214

14054 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
14055 &err);
14056 if (ilm == NULL) {
14057 ASSERT(err != 0);
14058 ip0dbg(("ipif_multicast_up: "
14059 "all_hosts_mcast failed %d\n", err));
14060 return;
14061 }
14062 ipif->ipif_allhosts_ilm = ilm;
14063 }

14065 /*
14066 * Enable multicast for the solicited node multicast address.
14067 * If IPMP we need to put the membership on the upper ill.
14068 */
14069 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
14070 ill_t *mcast_ill = NULL;
14071 boolean_t need_refrele;

14073 if (IS_UNDER_IPMP(ill) &&
14074 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
14075 need_refrele = B_TRUE;
14076 } else {
14077 mcast_ill = ill;
14078 need_refrele = B_FALSE;
14079 }

14081 ilm = ip_addmulti(&v6solmc, mcast_ill,
14082 ipif->ipif_zoneid, &err);
14083 if (need_refrele)
14084 ill_refrele(mcast_ill);

14086 if (ilm == NULL) {
14087 ASSERT(err != 0);
14088 ip0dbg(("ipif_multicast_up: solicited MC"
14089 " failed %d\n", err));
14090 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
14091 ipif->ipif_allhosts_ilm = NULL;
14092 (void) ip_delmulti(ilm);
14093 }
14094 return;
14095 }
14096 ipif->ipif_solmulti_ilm = ilm;
14097 }
14098 } else {
14099 in6_addr_t v6group;

14101 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
14102 return;

14104 /* Join the all hosts multicast address */
14105 ip1dbg(("ipif_multicast_up - addmulti\n"));
14106 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);

14108 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
14109 if (ilm == NULL) {
14110 ASSERT(err != 0);
14111 ip0dbg(("ipif_multicast_up: failed %d\n", err));
14112 return;
14113 }
14114 ipif->ipif_allhosts_ilm = ilm;
14115 }
14116 }

14118 /*
14119 * Blow away any multicast groups that we joined in ipif_multicast_up().

new/usr/src/uts/common/inet/ip/ip_if.c 215

14120 * (ilms from explicit memberships are handled in conn_update_ill.)
14121 */
14122 void
14123 ipif_multicast_down(ipif_t *ipif)
14124 {
14125 ASSERT(IAM_WRITER_IPIF(ipif));

14127 ip1dbg(("ipif_multicast_down\n"));

14129 if (ipif->ipif_allhosts_ilm != NULL) {
14130 (void) ip_delmulti(ipif->ipif_allhosts_ilm);
14131 ipif->ipif_allhosts_ilm = NULL;
14132 }
14133 if (ipif->ipif_solmulti_ilm != NULL) {
14134 (void) ip_delmulti(ipif->ipif_solmulti_ilm);
14135 ipif->ipif_solmulti_ilm = NULL;
14136 }
14137 }

14139 /*
14140 * Used when an interface comes up to recreate any extra routes on this
14141 * interface.
14142 */
14143 int
14144 ill_recover_saved_ire(ill_t *ill)
14145 {
14146 mblk_t *mp;
14147 ip_stack_t *ipst = ill->ill_ipst;

14149 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));

14151 mutex_enter(&ill->ill_saved_ire_lock);
14152 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
14153 ire_t *ire, *nire;
14154 ifrt_t *ifrt;

14156 ifrt = (ifrt_t *)mp->b_rptr;
14157 /*
14158 * Create a copy of the IRE with the saved address and netmask.
14159 */
14160 if (ill->ill_isv6) {
14161 ire = ire_create_v6(
14162 &ifrt->ifrt_v6addr,
14163 &ifrt->ifrt_v6mask,
14164 &ifrt->ifrt_v6gateway_addr,
14165 ifrt->ifrt_type,
14166 ill,
14167 ifrt->ifrt_zoneid,
14168 ifrt->ifrt_flags,
14169 NULL,
14170 ipst);
14171 } else {
14172 ire = ire_create(
14173 (uint8_t *)&ifrt->ifrt_addr,
14174 (uint8_t *)&ifrt->ifrt_mask,
14175 (uint8_t *)&ifrt->ifrt_gateway_addr,
14176 ifrt->ifrt_type,
14177 ill,
14178 ifrt->ifrt_zoneid,
14179 ifrt->ifrt_flags,
14180 NULL,
14181 ipst);
14182 }
14183 if (ire == NULL) {
14184 mutex_exit(&ill->ill_saved_ire_lock);
14185 return (ENOMEM);

new/usr/src/uts/common/inet/ip/ip_if.c 216

14186 }

14188 if (ifrt->ifrt_flags & RTF_SETSRC) {
14189 if (ill->ill_isv6) {
14190 ire->ire_setsrc_addr_v6 =
14191 ifrt->ifrt_v6setsrc_addr;
14192 } else {
14193 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
14194 }
14195 }

14197 /*
14198 * Some software (for example, GateD and Sun Cluster) attempts
14199 * to create (what amount to) IRE_PREFIX routes with the
14200 * loopback address as the gateway. This is primarily done to
14201 * set up prefixes with the RTF_REJECT flag set (for example,
14202 * when generating aggregate routes.)
14203 *
14204 * If the IRE type (as defined by ill->ill_net_type) is
14205 * IRE_LOOPBACK, then we map the request into a
14206 * IRE_IF_NORESOLVER.
14207 */
14208 if (ill->ill_net_type == IRE_LOOPBACK)
14209 ire->ire_type = IRE_IF_NORESOLVER;

14211 /*
14212 * ire held by ire_add, will be refreled’ towards the
14213 * the end of ipif_up_done
14214 */
14215 nire = ire_add(ire);
14216 /*
14217 * Check if it was a duplicate entry. This handles
14218 * the case of two racing route adds for the same route
14219 */
14220 if (nire == NULL) {
14221 ip1dbg(("ill_recover_saved_ire: FAILED\n"));
14222 } else if (nire != ire) {
14223 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
14224 (void *)nire));
14225 ire_delete(nire);
14226 } else {
14227 ip1dbg(("ill_recover_saved_ire: added ire %p\n",
14228 (void *)nire));
14229 }
14230 if (nire != NULL)
14231 ire_refrele(nire);
14232 }
14233 mutex_exit(&ill->ill_saved_ire_lock);
14234 return (0);
14235 }

14237 /*
14238 * Used to set the netmask and broadcast address to default values when the
14239 * interface is brought up. (Always called as writer.)
14240 */
14241 static void
14242 ipif_set_default(ipif_t *ipif)
14243 {
14244 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));

14246 if (!ipif->ipif_isv6) {
14247 /*
14248 * Interface holds an IPv4 address. Default
14249 * mask is the natural netmask.
14250 */
14251 if (!ipif->ipif_net_mask) {

new/usr/src/uts/common/inet/ip/ip_if.c 217

14252 ipaddr_t v4mask;

14254 v4mask = ip_net_mask(ipif->ipif_lcl_addr);
14255 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
14256 }
14257 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14258 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14259 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14260 } else {
14261 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14262 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14263 }
14264 /*
14265 * NOTE: SunOS 4.X does this even if the broadcast address
14266 * has been already set thus we do the same here.
14267 */
14268 if (ipif->ipif_flags & IPIF_BROADCAST) {
14269 ipaddr_t v4addr;

14271 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
14272 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
14273 }
14274 } else {
14275 /*
14276 * Interface holds an IPv6-only address. Default
14277 * mask is all-ones.
14278 */
14279 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
14280 ipif->ipif_v6net_mask = ipv6_all_ones;
14281 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14282 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14283 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14284 } else {
14285 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14286 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14287 }
14288 }
14289 }

14291 /*
14292 * Return 0 if this address can be used as local address without causing
14293 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
14294 * is already up on a different ill, and EADDRINUSE if it’s up on the same ill.
14295 * Note that the same IPv6 link-local address is allowed as long as the ills
14296 * are not on the same link.
14297 */
14298 int
14299 ip_addr_availability_check(ipif_t *new_ipif)
14300 {
14301 in6_addr_t our_v6addr;
14302 ill_t *ill;
14303 ipif_t *ipif;
14304 ill_walk_context_t ctx;
14305 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst;

14307 ASSERT(IAM_WRITER_IPIF(new_ipif));
14308 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
14309 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));

14311 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
14312 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
14313 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
14314 return (0);

14316 our_v6addr = new_ipif->ipif_v6lcl_addr;

new/usr/src/uts/common/inet/ip/ip_if.c 218

14318 if (new_ipif->ipif_isv6)
14319 ill = ILL_START_WALK_V6(&ctx, ipst);
14320 else
14321 ill = ILL_START_WALK_V4(&ctx, ipst);

14323 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
14324 for (ipif = ill->ill_ipif; ipif != NULL;
14325 ipif = ipif->ipif_next) {
14326 if ((ipif == new_ipif) ||
14327 !(ipif->ipif_flags & IPIF_UP) ||
14328 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14329 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
14330 &our_v6addr))
14331 continue;

14333 if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
14334 new_ipif->ipif_flags |= IPIF_UNNUMBERED;
14335 else if (ipif->ipif_flags & IPIF_POINTOPOINT)
14336 ipif->ipif_flags |= IPIF_UNNUMBERED;
14337 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
14338 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
14339 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
14340 continue;
14341 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
14342 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
14343 continue;
14344 else if (new_ipif->ipif_ill == ill)
14345 return (EADDRINUSE);
14346 else
14347 return (EADDRNOTAVAIL);
14348 }
14349 }

14351 return (0);
14352 }

14354 /*
14355 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
14356 * IREs for the ipif.
14357 * When the routine returns EINPROGRESS then mp has been consumed and
14358 * the ioctl will be acked from ip_rput_dlpi.
14359 */
14360 int
14361 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
14362 {
14363 ill_t *ill = ipif->ipif_ill;
14364 boolean_t isv6 = ipif->ipif_isv6;
14365 int err = 0;
14366 boolean_t success;
14367 uint_t ipif_orig_id;
14368 ip_stack_t *ipst = ill->ill_ipst;

14370 ASSERT(IAM_WRITER_IPIF(ipif));

14372 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14373 DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
14374 ill_t *, ill, ipif_t *, ipif);

14376 /* Shouldn’t get here if it is already up. */
14377 if (ipif->ipif_flags & IPIF_UP)
14378 return (EALREADY);

14380 /*
14381 * If this is a request to bring up a data address on an interface
14382 * under IPMP, then move the address to its IPMP meta-interface and
14383 * try to bring it up. One complication is that the zeroth ipif for

new/usr/src/uts/common/inet/ip/ip_if.c 219

14384 * an ill is special, in that every ill always has one, and that code
14385 * throughout IP deferences ill->ill_ipif without holding any locks.
14386 */
14387 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
14388 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
14389 ipif_t *stubipif = NULL, *moveipif = NULL;
14390 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);

14392 /*
14393 * The ipif being brought up should be quiesced. If it’s not,
14394 * something has gone amiss and we need to bail out. (If it’s
14395 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
14396 */
14397 mutex_enter(&ill->ill_lock);
14398 if (!ipif_is_quiescent(ipif)) {
14399 mutex_exit(&ill->ill_lock);
14400 return (EINVAL);
14401 }
14402 mutex_exit(&ill->ill_lock);

14404 /*
14405 * If we’re going to need to allocate ipifs, do it prior
14406 * to starting the move (and grabbing locks).
14407 */
14408 if (ipif->ipif_id == 0) {
14409 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14410 B_FALSE, &err)) == NULL) {
14411 return (err);
14412 }
14413 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14414 B_FALSE, &err)) == NULL) {
14415 mi_free(moveipif);
14416 return (err);
14417 }
14418 }

14420 /*
14421 * Grab or transfer the ipif to move. During the move, keep
14422 * ill_g_lock held to prevent any ill walker threads from
14423 * seeing things in an inconsistent state.
14424 */
14425 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14426 if (ipif->ipif_id != 0) {
14427 ipif_remove(ipif);
14428 } else {
14429 ipif_transfer(ipif, moveipif, stubipif);
14430 ipif = moveipif;
14431 }

14433 /*
14434 * Place the ipif on the IPMP ill. If the zeroth ipif on
14435 * the IPMP ill is a stub (0.0.0.0 down address) then we
14436 * replace that one. Otherwise, pick the next available slot.
14437 */
14438 ipif->ipif_ill = ipmp_ill;
14439 ipif_orig_id = ipif->ipif_id;

14441 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14442 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14443 ipif = ipmp_ill->ill_ipif;
14444 } else {
14445 ipif->ipif_id = -1;
14446 if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14447 /*
14448 * No more available ipif_id’s -- put it back
14449 * on the original ill and fail the operation.

new/usr/src/uts/common/inet/ip/ip_if.c 220

14450 * Since we’re writer on the ill, we can be
14451 * sure our old slot is still available.
14452 */
14453 ipif->ipif_id = ipif_orig_id;
14454 ipif->ipif_ill = ill;
14455 if (ipif_orig_id == 0) {
14456 ipif_transfer(ipif, ill->ill_ipif,
14457 NULL);
14458 } else {
14459 VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14460 }
14461 rw_exit(&ipst->ips_ill_g_lock);
14462 return (err);
14463 }
14464 }
14465 rw_exit(&ipst->ips_ill_g_lock);

14467 /*
14468 * Tell SCTP that the ipif has moved. Note that even if we
14469 * had to allocate a new ipif, the original sequence id was
14470 * preserved and therefore SCTP won’t know.
14471 */
14472 sctp_move_ipif(ipif, ill, ipmp_ill);

14474 /*
14475 * If the ipif being brought up was on slot zero, then we
14476 * first need to bring up the placeholder we stuck there. In
14477 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14478 * call to ipif_up() itself, if we successfully bring up the
14479 * placeholder, we’ll check ill_move_ipif and bring it up too.
14480 */
14481 if (ipif_orig_id == 0) {
14482 ASSERT(ill->ill_move_ipif == NULL);
14483 ill->ill_move_ipif = ipif;
14484 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14485 ASSERT(ill->ill_move_ipif == NULL);
14486 if (err != EINPROGRESS)
14487 ill->ill_move_ipif = NULL;
14488 return (err);
14489 }

14491 /*
14492 * Bring it up on the IPMP ill.
14493 */
14494 return (ipif_up(ipif, q, mp));
14495 }

14497 /* Skip arp/ndp for any loopback interface. */
14498 if (ill->ill_wq != NULL) {
14499 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14500 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;

14502 if (!ill->ill_dl_up) {
14503 /*
14504 * ill_dl_up is not yet set. i.e. we are yet to
14505 * DL_BIND with the driver and this is the first
14506 * logical interface on the ill to become "up".
14507 * Tell the driver to get going (via DL_BIND_REQ).
14508 * Note that changing "significant" IFF_ flags
14509 * address/netmask etc cause a down/up dance, but
14510 * does not cause an unbind (DL_UNBIND) with the driver
14511 */
14512 return (ill_dl_up(ill, ipif, mp, q));
14513 }

14515 /*

new/usr/src/uts/common/inet/ip/ip_if.c 221

14516 * ipif_resolver_up may end up needeing to bind/attach
14517 * the ARP stream, which in turn necessitates a
14518 * DLPI message exchange with the driver. ioctls are
14519 * serialized and so we cannot send more than one
14520 * interface up message at a time. If ipif_resolver_up
14521 * does need to wait for the DLPI handshake for the ARP stream,
14522 * we get EINPROGRESS and we will complete in arp_bringup_done.
14523 */

14525 ASSERT(connp != NULL || !CONN_Q(q));
14526 if (connp != NULL)
14527 mutex_enter(&connp->conn_lock);
14528 mutex_enter(&ill->ill_lock);
14529 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14530 mutex_exit(&ill->ill_lock);
14531 if (connp != NULL)
14532 mutex_exit(&connp->conn_lock);
14533 if (!success)
14534 return (EINTR);

14536 /*
14537 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14538 * complete when ipif_ndp_up returns.
14539 */
14540 err = ipif_resolver_up(ipif, Res_act_initial);
14541 if (err == EINPROGRESS) {
14542 /* We will complete it in arp_bringup_done() */
14543 return (err);
14544 }

14546 if (isv6 && err == 0)
14547 err = ipif_ndp_up(ipif, B_TRUE);

14549 ASSERT(err != EINPROGRESS);
14550 mp = ipsq_pending_mp_get(ipsq, &connp);
14551 ASSERT(mp != NULL);
14552 if (err != 0)
14553 return (err);
14554 } else {
14555 /*
14556 * Interfaces without underlying hardware don’t do duplicate
14557 * address detection.
14558 */
14559 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14560 ipif->ipif_addr_ready = 1;
14561 err = ill_add_ires(ill);
14562 /* allocation failure? */
14563 if (err != 0)
14564 return (err);
14565 }

14567 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14568 if (err == 0 && ill->ill_move_ipif != NULL) {
14569 ipif = ill->ill_move_ipif;
14570 ill->ill_move_ipif = NULL;
14571 return (ipif_up(ipif, q, mp));
14572 }
14573 return (err);
14574 }

14576 /*
14577 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14578 * The identical set of IREs need to be removed in ill_delete_ires().
14579 */
14580 int
14581 ill_add_ires(ill_t *ill)

new/usr/src/uts/common/inet/ip/ip_if.c 222

14582 {
14583 ire_t *ire;
14584 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14585 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);

14587 if (ill->ill_ire_multicast != NULL)
14588 return (0);

14590 /*
14591 * provide some dummy ire_addr for creating the ire.
14592 */
14593 if (ill->ill_isv6) {
14594 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14595 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14596 } else {
14597 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14598 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14599 }
14600 if (ire == NULL)
14601 return (ENOMEM);

14603 ill->ill_ire_multicast = ire;
14604 return (0);
14605 }

14607 void
14608 ill_delete_ires(ill_t *ill)
14609 {
14610 if (ill->ill_ire_multicast != NULL) {
14611 /*
14612 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14613 * which was taken without any th_tracing enabled.
14614 * We also mark it as condemned (note that it was never added)
14615 * so that caching conn’s can move off of it.
14616 */
14617 ire_make_condemned(ill->ill_ire_multicast);
14618 ire_refrele_notr(ill->ill_ire_multicast);
14619 ill->ill_ire_multicast = NULL;
14620 }
14621 }

14623 /*
14624 * Perform a bind for the physical device.
14625 * When the routine returns EINPROGRESS then mp has been consumed and
14626 * the ioctl will be acked from ip_rput_dlpi.
14627 * Allocate an unbind message and save it until ipif_down.
14628 */
14629 static int
14630 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14631 {
14632 mblk_t *bind_mp = NULL;
14633 mblk_t *unbind_mp = NULL;
14634 conn_t *connp;
14635 boolean_t success;
14636 int err;

14638 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);

14640 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14641 ASSERT(IAM_WRITER_ILL(ill));
14642 ASSERT(mp != NULL);

14644 /*
14645 * Make sure we have an IRE_MULTICAST in case we immediately
14646 * start receiving packets.
14647 */

new/usr/src/uts/common/inet/ip/ip_if.c 223

14648 err = ill_add_ires(ill);
14649 if (err != 0)
14650 goto bad;

14652 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14653 DL_BIND_REQ);
14654 if (bind_mp == NULL)
14655 goto bad;
14656 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14657 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;

14659 /*
14660 * ill_unbind_mp would be non-null if the following sequence had
14661 * happened:
14662 * - send DL_BIND_REQ to driver, wait for response
14663 * - multiple ioctls that need to bring the ipif up are encountered,
14664 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ.
14665 * These ioctls will then be enqueued on the ipsq
14666 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ
14667 * At this point, the pending ioctls in the ipsq will be drained, and
14668 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with
14669 * a non-null ill->ill_unbind_mp
14670 */
14671 if (ill->ill_unbind_mp == NULL) {
14672 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t),
14673 DL_UNBIND_REQ);
14674 if (unbind_mp == NULL)
14675 goto bad;
14676 }
14677 /*
14678 * Record state needed to complete this operation when the
14679 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks.
14680 */
14681 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14682 ASSERT(connp != NULL || !CONN_Q(q));
14683 GRAB_CONN_LOCK(q);
14684 mutex_enter(&ipif->ipif_ill->ill_lock);
14685 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14686 mutex_exit(&ipif->ipif_ill->ill_lock);
14687 RELEASE_CONN_LOCK(q);
14688 if (!success)
14689 goto bad;

14691 /*
14692 * Save the unbind message for ill_dl_down(); it will be consumed when
14693 * the interface goes down.
14694 */
14695 if (ill->ill_unbind_mp == NULL)
14696 ill->ill_unbind_mp = unbind_mp;

14698 ill_dlpi_send(ill, bind_mp);
14699 /* Send down link-layer capabilities probe if not already done. */
14700 ill_capability_probe(ill);

14702 /*
14703 * Sysid used to rely on the fact that netboots set domainname
14704 * and the like. Now that miniroot boots aren’t strictly netboots
14705 * and miniroot network configuration is driven from userland
14706 * these things still need to be set. This situation can be detected
14707 * by comparing the interface being configured here to the one
14708 * dhcifname was set to reference by the boot loader. Once sysid is
14709 * converted to use dhcp_ipc_getinfo() this call can go away.
14710 */
14711 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14712 (strcmp(ill->ill_name, dhcifname) == 0) &&
14713 (strlen(srpc_domain) == 0)) {

new/usr/src/uts/common/inet/ip/ip_if.c 224

14714 if (dhcpinit() != 0)
14715 cmn_err(CE_WARN, "no cached dhcp response");
14716 }

14718 /*
14719 * This operation will complete in ip_rput_dlpi with either
14720 * a DL_BIND_ACK or DL_ERROR_ACK.
14721 */
14722 return (EINPROGRESS);
14723 bad:
14724 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));

14726 freemsg(bind_mp);
14727 freemsg(unbind_mp);
14728 return (ENOMEM);
14729 }

14731 /* Add room for tcp+ip headers */
14732 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;

14734 /*
14735 * DLPI and ARP is up.
14736 * Create all the IREs associated with an interface. Bring up multicast.
14737 * Set the interface flag and finish other initialization
14738 * that potentially had to be deferred to after DL_BIND_ACK.
14739 */
14740 int
14741 ipif_up_done(ipif_t *ipif)
14742 {
14743 ill_t *ill = ipif->ipif_ill;
14744 int err = 0;
14745 boolean_t loopback = B_FALSE;
14746 boolean_t update_src_selection = B_TRUE;
14747 ipif_t *tmp_ipif;

14749 ip1dbg(("ipif_up_done(%s:%u)\n",
14750 ipif->ipif_ill->ill_name, ipif->ipif_id));
14751 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14752 ill_t *, ill, ipif_t *, ipif);

14754 /* Check if this is a loopback interface */
14755 if (ipif->ipif_ill->ill_wq == NULL)
14756 loopback = B_TRUE;

14758 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));

14760 /*
14761 * If all other interfaces for this ill are down or DEPRECATED,
14762 * or otherwise unsuitable for source address selection,
14763 * reset the src generation numbers to make sure source
14764 * address selection gets to take this new ipif into account.
14765 * No need to hold ill_lock while traversing the ipif list since
14766 * we are writer
14767 */
14768 for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14769 tmp_ipif = tmp_ipif->ipif_next) {
14770 if (((tmp_ipif->ipif_flags &
14771 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14772 !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14773 (tmp_ipif == ipif))
14774 continue;
14775 /* first useable pre-existing interface */
14776 update_src_selection = B_FALSE;
14777 break;
14778 }
14779 if (update_src_selection)

new/usr/src/uts/common/inet/ip/ip_if.c 225

14780 ip_update_source_selection(ill->ill_ipst);

14782 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14783 nce_t *loop_nce = NULL;
14784 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);

14786 /*
14787 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14788 * ipif_lookup_on_name(), but in the case of zones we can have
14789 * several loopback addresses on lo0. So all the interfaces with
14790 * loopback addresses need to be marked IRE_LOOPBACK.
14791 */
14792 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14793 htonl(INADDR_LOOPBACK))
14794 ipif->ipif_ire_type = IRE_LOOPBACK;
14795 else
14796 ipif->ipif_ire_type = IRE_LOCAL;
14797 if (ill->ill_net_type != IRE_LOOPBACK)
14798 flags |= NCE_F_PUBLISH;

14800 /* add unicast nce for the local addr */
14801 err = nce_lookup_then_add_v4(ill, NULL,
14802 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14803 ND_REACHABLE, &loop_nce);
14804 /* A shared-IP zone sees EEXIST for lo0:N */
14805 if (err == 0 || err == EEXIST) {
14806 ipif->ipif_added_nce = 1;
14807 loop_nce->nce_ipif_cnt++;
14808 nce_refrele(loop_nce);
14809 err = 0;
14810 } else {
14811 ASSERT(loop_nce == NULL);
14812 return (err);
14813 }
14814 }

14816 /* Create all the IREs associated with this interface */
14817 err = ipif_add_ires_v4(ipif, loopback);
14818 if (err != 0) {
14819 /*
14820 * see comments about return value from
14821 * ip_addr_availability_check() in ipif_add_ires_v4().
14822 */
14823 if (err != EADDRINUSE) {
14824 (void) ipif_arp_down(ipif);
14825 } else {
14826 /*
14827 * Make IPMP aware of the deleted ipif so that
14828 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14829 * can be completed. Note that we do not want to
14830 * destroy the nce that was created on the ipmp_ill
14831 * for the active copy of the duplicate address in
14832 * use.
14833 */
14834 if (IS_IPMP(ill))
14835 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14836 err = EADDRNOTAVAIL;
14837 }
14838 return (err);
14839 }

14841 if (ill->ill_ipif_up_count == 1 && !loopback) {
14842 /* Recover any additional IREs entries for this ill */
14843 (void) ill_recover_saved_ire(ill);
14844 }

new/usr/src/uts/common/inet/ip/ip_if.c 226

14846 if (ill->ill_need_recover_multicast) {
14847 /*
14848 * Need to recover all multicast memberships in the driver.
14849 * This had to be deferred until we had attached. The same
14850 * code exists in ipif_up_done_v6() to recover IPv6
14851 * memberships.
14852 *
14853 * Note that it would be preferable to unconditionally do the
14854 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14855 * that since ill_join_allmulti() depends on ill_dl_up being
14856 * set, and it is not set until we receive a DL_BIND_ACK after
14857 * having called ill_dl_up().
14858 */
14859 ill_recover_multicast(ill);
14860 }

14862 if (ill->ill_ipif_up_count == 1) {
14863 /*
14864 * Since the interface is now up, it may now be active.
14865 */
14866 if (IS_UNDER_IPMP(ill))
14867 ipmp_ill_refresh_active(ill);

14869 /*
14870 * If this is an IPMP interface, we may now be able to
14871 * establish ARP entries.
14872 */
14873 if (IS_IPMP(ill))
14874 ipmp_illgrp_refresh_arpent(ill->ill_grp);
14875 }

14877 /* Join the allhosts multicast address */
14878 ipif_multicast_up(ipif);

14880 if (!loopback && !update_src_selection &&
14881 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14882 ip_update_source_selection(ill->ill_ipst);

14884 if (!loopback && ipif->ipif_addr_ready) {
14885 /* Broadcast an address mask reply. */
14886 ipif_mask_reply(ipif);
14887 }
14888 /* Perhaps ilgs should use this ill */
14889 update_conn_ill(NULL, ill->ill_ipst);

14891 /*
14892 * This had to be deferred until we had bound. Tell routing sockets and
14893 * others that this interface is up if it looks like the address has
14894 * been validated. Otherwise, if it isn’t ready yet, wait for
14895 * duplicate address detection to do its thing.
14896 */
14897 if (ipif->ipif_addr_ready)
14898 ipif_up_notify(ipif);
14899 return (0);
14900 }

14902 /*
14903 * Add the IREs associated with the ipif.
14904 * Those MUST be explicitly removed in ipif_delete_ires_v4.
14905 */
14906 static int
14907 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14908 {
14909 ill_t *ill = ipif->ipif_ill;
14910 ip_stack_t *ipst = ill->ill_ipst;
14911 ire_t *ire_array[20];

new/usr/src/uts/common/inet/ip/ip_if.c 227

14912 ire_t **irep = ire_array;
14913 ire_t **irep1;
14914 ipaddr_t net_mask = 0;
14915 ipaddr_t subnet_mask, route_mask;
14916 int err;
14917 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */
14918 ire_t *ire_if = NULL;
14919 uchar_t *gw;

14921 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14922 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14923 /*
14924 * If we’re on a labeled system then make sure that zone-
14925 * private addresses have proper remote host database entries.
14926 */
14927 if (is_system_labeled() &&
14928 ipif->ipif_ire_type != IRE_LOOPBACK &&
14929 !tsol_check_interface_address(ipif))
14930 return (EINVAL);

14932 /* Register the source address for __sin6_src_id */
14933 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14934 ipif->ipif_zoneid, ipst);
14935 if (err != 0) {
14936 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14937 return (err);
14938 }

14940 if (loopback)
14941 gw = (uchar_t *)&ipif->ipif_lcl_addr;
14942 else
14943 gw = NULL;

14945 /* If the interface address is set, create the local IRE. */
14946 ire_local = ire_create(
14947 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */
14948 (uchar_t *)&ip_g_all_ones, /* mask */
14949 gw, /* gateway */
14950 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */
14951 ipif->ipif_ill,
14952 ipif->ipif_zoneid,
14953 ((ipif->ipif_flags & IPIF_PRIVATE) ?
14954 RTF_PRIVATE : 0) | RTF_KERNEL,
14955 NULL,
14956 ipst);
14957 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14958 " for 0x%x\n", (void *)ipif, (void *)ire_local,
14959 ipif->ipif_ire_type,
14960 ntohl(ipif->ipif_lcl_addr)));
14961 if (ire_local == NULL) {
14962 ip1dbg(("ipif_up_done: NULL ire_local\n"));
14963 err = ENOMEM;
14964 goto bad;
14965 }
14966 } else {
14967 ip1dbg((
14968 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14969 ipif->ipif_ire_type,
14970 ntohl(ipif->ipif_lcl_addr),
14971 (uint_t)ipif->ipif_flags));
14972 }
14973 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14974 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14975 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14976 } else {
14977 net_mask = htonl(IN_CLASSA_NET); /* fallback */

new/usr/src/uts/common/inet/ip/ip_if.c 228

14978 }

14980 subnet_mask = ipif->ipif_net_mask;

14982 /*
14983 * If mask was not specified, use natural netmask of
14984 * interface address. Also, store this mask back into the
14985 * ipif struct.
14986 */
14987 if (subnet_mask == 0) {
14988 subnet_mask = net_mask;
14989 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14990 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14991 ipif->ipif_v6subnet);
14992 }

14994 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14995 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14996 ipif->ipif_subnet != INADDR_ANY) {
14997 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */

14999 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
15000 route_mask = IP_HOST_MASK;
15001 } else {
15002 route_mask = subnet_mask;
15003 }

15005 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
15006 "creating if IRE ill_net_type 0x%x for 0x%x\n",
15007 (void *)ipif, (void *)ill, ill->ill_net_type,
15008 ntohl(ipif->ipif_subnet)));
15009 ire_if = ire_create(
15010 (uchar_t *)&ipif->ipif_subnet,
15011 (uchar_t *)&route_mask,
15012 (uchar_t *)&ipif->ipif_lcl_addr,
15013 ill->ill_net_type,
15014 ill,
15015 ipif->ipif_zoneid,
15016 ((ipif->ipif_flags & IPIF_PRIVATE) ?
15017 RTF_PRIVATE: 0) | RTF_KERNEL,
15018 NULL,
15019 ipst);
15020 if (ire_if == NULL) {
15021 ip1dbg(("ipif_up_done: NULL ire_if\n"));
15022 err = ENOMEM;
15023 goto bad;
15024 }
15025 }

15027 /*
15028 * Create any necessary broadcast IREs.
15029 */
15030 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15031 !(ipif->ipif_flags & IPIF_NOXMIT))
15032 irep = ipif_create_bcast_ires(ipif, irep);

15034 /* If an earlier ire_create failed, get out now */
15035 for (irep1 = irep; irep1 > ire_array;) {
15036 irep1--;
15037 if (*irep1 == NULL) {
15038 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
15039 err = ENOMEM;
15040 goto bad;
15041 }
15042 }

new/usr/src/uts/common/inet/ip/ip_if.c 229

15044 /*
15045 * Need to atomically check for IP address availability under
15046 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new
15047 * ills or new ipifs can be added while we are checking availability.
15048 */
15049 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15050 mutex_enter(&ipst->ips_ip_addr_avail_lock);
15051 /* Mark it up, and increment counters. */
15052 ipif->ipif_flags |= IPIF_UP;
15053 ill->ill_ipif_up_count++;
15054 err = ip_addr_availability_check(ipif);
15055 mutex_exit(&ipst->ips_ip_addr_avail_lock);
15056 rw_exit(&ipst->ips_ill_g_lock);

15058 if (err != 0) {
15059 /*
15060 * Our address may already be up on the same ill. In this case,
15061 * the ARP entry for our ipif replaced the one for the other
15062 * ipif. So we don’t want to delete it (otherwise the other ipif
15063 * would be unable to send packets).
15064 * ip_addr_availability_check() identifies this case for us and
15065 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
15066 * which is the expected error code.
15067 */
15068 ill->ill_ipif_up_count--;
15069 ipif->ipif_flags &= ~IPIF_UP;
15070 goto bad;
15071 }

15073 /*
15074 * Add in all newly created IREs. ire_create_bcast() has
15075 * already checked for duplicates of the IRE_BROADCAST type.
15076 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
15077 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
15078 * a /32 route.
15079 */
15080 if (ire_if != NULL) {
15081 ire_if = ire_add(ire_if);
15082 if (ire_if == NULL) {
15083 err = ENOMEM;
15084 goto bad2;
15085 }
15086 #ifdef DEBUG
15087 ire_refhold_notr(ire_if);
15088 ire_refrele(ire_if);
15089 #endif
15090 }
15091 if (ire_local != NULL) {
15092 ire_local = ire_add(ire_local);
15093 if (ire_local == NULL) {
15094 err = ENOMEM;
15095 goto bad2;
15096 }
15097 #ifdef DEBUG
15098 ire_refhold_notr(ire_local);
15099 ire_refrele(ire_local);
15100 #endif
15101 }
15102 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15103 if (ire_local != NULL)
15104 ipif->ipif_ire_local = ire_local;
15105 if (ire_if != NULL)
15106 ipif->ipif_ire_if = ire_if;
15107 rw_exit(&ipst->ips_ill_g_lock);
15108 ire_local = NULL;
15109 ire_if = NULL;

new/usr/src/uts/common/inet/ip/ip_if.c 230

15111 /*
15112 * We first add all of them, and if that succeeds we refrele the
15113 * bunch. That enables us to delete all of them should any of the
15114 * ire_adds fail.
15115 */
15116 for (irep1 = irep; irep1 > ire_array;) {
15117 irep1--;
15118 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
15119 *irep1 = ire_add(*irep1);
15120 if (*irep1 == NULL) {
15121 err = ENOMEM;
15122 goto bad2;
15123 }
15124 }

15126 for (irep1 = irep; irep1 > ire_array;) {
15127 irep1--;
15128 /* refheld by ire_add. */
15129 if (*irep1 != NULL) {
15130 ire_refrele(*irep1);
15131 *irep1 = NULL;
15132 }
15133 }

15135 if (!loopback) {
15136 /*
15137 * If the broadcast address has been set, make sure it makes
15138 * sense based on the interface address.
15139 * Only match on ill since we are sharing broadcast addresses.
15140 */
15141 if ((ipif->ipif_brd_addr != INADDR_ANY) &&
15142 (ipif->ipif_flags & IPIF_BROADCAST)) {
15143 ire_t *ire;

15145 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
15146 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
15147 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);

15149 if (ire == NULL) {
15150 /*
15151 * If there isn’t a matching broadcast IRE,
15152 * revert to the default for this netmask.
15153 */
15154 ipif->ipif_v6brd_addr = ipv6_all_zeros;
15155 mutex_enter(&ipif->ipif_ill->ill_lock);
15156 ipif_set_default(ipif);
15157 mutex_exit(&ipif->ipif_ill->ill_lock);
15158 } else {
15159 ire_refrele(ire);
15160 }
15161 }

15163 }
15164 return (0);

15166 bad2:
15167 ill->ill_ipif_up_count--;
15168 ipif->ipif_flags &= ~IPIF_UP;

15170 bad:
15171 ip1dbg(("ipif_add_ires: FAILED \n"));
15172 if (ire_local != NULL)
15173 ire_delete(ire_local);
15174 if (ire_if != NULL)
15175 ire_delete(ire_if);

new/usr/src/uts/common/inet/ip/ip_if.c 231

15177 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15178 ire_local = ipif->ipif_ire_local;
15179 ipif->ipif_ire_local = NULL;
15180 ire_if = ipif->ipif_ire_if;
15181 ipif->ipif_ire_if = NULL;
15182 rw_exit(&ipst->ips_ill_g_lock);
15183 if (ire_local != NULL) {
15184 ire_delete(ire_local);
15185 ire_refrele_notr(ire_local);
15186 }
15187 if (ire_if != NULL) {
15188 ire_delete(ire_if);
15189 ire_refrele_notr(ire_if);
15190 }

15192 while (irep > ire_array) {
15193 irep--;
15194 if (*irep != NULL) {
15195 ire_delete(*irep);
15196 }
15197 }
15198 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);

15200 return (err);
15201 }

15203 /* Remove all the IREs created by ipif_add_ires_v4 */
15204 void
15205 ipif_delete_ires_v4(ipif_t *ipif)
15206 {
15207 ill_t *ill = ipif->ipif_ill;
15208 ip_stack_t *ipst = ill->ill_ipst;
15209 ire_t *ire;

15211 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15212 ire = ipif->ipif_ire_local;
15213 ipif->ipif_ire_local = NULL;
15214 rw_exit(&ipst->ips_ill_g_lock);
15215 if (ire != NULL) {
15216 /*
15217 * Move count to ipif so we don’t loose the count due to
15218 * a down/up dance.
15219 */
15220 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);

15222 ire_delete(ire);
15223 ire_refrele_notr(ire);
15224 }
15225 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15226 ire = ipif->ipif_ire_if;
15227 ipif->ipif_ire_if = NULL;
15228 rw_exit(&ipst->ips_ill_g_lock);
15229 if (ire != NULL) {
15230 ire_delete(ire);
15231 ire_refrele_notr(ire);
15232 }

15234 /*
15235 * Delete the broadcast IREs.
15236 */
15237 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15238 !(ipif->ipif_flags & IPIF_NOXMIT))
15239 ipif_delete_bcast_ires(ipif);
15240 }

new/usr/src/uts/common/inet/ip/ip_if.c 232

15242 /*
15243 * Checks for availbility of a usable source address (if there is one) when the
15244 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
15245 * this selection is done regardless of the destination.
15246 */
15247 boolean_t
15248 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
15249 ip_stack_t *ipst)
15250 {
15251 ipif_t *ipif = NULL;
15252 ill_t *uill;

15254 ASSERT(ifindex != 0);

15256 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15257 if (uill == NULL)
15258 return (B_FALSE);

15260 mutex_enter(&uill->ill_lock);
15261 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15262 if (IPIF_IS_CONDEMNED(ipif))
15263 continue;
15264 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15265 continue;
15266 if (!(ipif->ipif_flags & IPIF_UP))
15267 continue;
15268 if (ipif->ipif_zoneid != zoneid)
15269 continue;
15270 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15271 ipif->ipif_lcl_addr == INADDR_ANY)
15272 continue;
15273 mutex_exit(&uill->ill_lock);
15274 ill_refrele(uill);
15275 return (B_TRUE);
15276 }
15277 mutex_exit(&uill->ill_lock);
15278 ill_refrele(uill);
15279 return (B_FALSE);
15280 }

15282 /*
15283 * Find an ipif with a good local address on the ill+zoneid.
15284 */
15285 ipif_t *
15286 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
15287 {
15288 ipif_t *ipif;

15290 mutex_enter(&ill->ill_lock);
15291 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15292 if (IPIF_IS_CONDEMNED(ipif))
15293 continue;
15294 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15295 continue;
15296 if (!(ipif->ipif_flags & IPIF_UP))
15297 continue;
15298 if (ipif->ipif_zoneid != zoneid &&
15299 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
15300 continue;
15301 if (ill->ill_isv6 ?
15302 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15303 ipif->ipif_lcl_addr == INADDR_ANY)
15304 continue;
15305 ipif_refhold_locked(ipif);
15306 mutex_exit(&ill->ill_lock);
15307 return (ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 233

15308 }
15309 mutex_exit(&ill->ill_lock);
15310 return (NULL);
15311 }

15313 /*
15314 * IP source address type, sorted from worst to best. For a given type,
15315 * always prefer IP addresses on the same subnet. All-zones addresses are
15316 * suboptimal because they pose problems with unlabeled destinations.
15317 */
15318 typedef enum {
15319 IPIF_NONE,
15320 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */
15321 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */
15322 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */
15323 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */
15324 IPIF_DIFFNET, /* normal and different subnet */
15325 IPIF_SAMENET, /* normal and same subnet */
15326 IPIF_LOCALADDR /* local loopback */
15327 } ipif_type_t;

15329 /*
15330 * Pick the optimal ipif on ‘ill’ for sending to destination ‘dst’ from zone
15331 * ‘zoneid’. We rate usable ipifs from low -> high as per the ipif_type_t
15332 * enumeration, and return the highest-rated ipif. If there’s a tie, we pick
15333 * the first one, unless IPMP is used in which case we round-robin among them;
15334 * see below for more.
15335 *
15336 * Returns NULL if there is no suitable source address for the ill.
15337 * This only occurs when there is no valid source address for the ill.
15338 */
15339 ipif_t *
15340 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
15341 boolean_t allow_usesrc, boolean_t *notreadyp)
15342 {
15343 ill_t *usill = NULL;
15344 ill_t *ipmp_ill = NULL;
15345 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif;
15346 ipif_type_t type, best_type;
15347 tsol_tpc_t *src_rhtp, *dst_rhtp;
15348 ip_stack_t *ipst = ill->ill_ipst;
15349 boolean_t samenet;

15351 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
15352 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
15353 B_FALSE, ipst);
15354 if (usill != NULL)
15355 ill = usill; /* Select source from usesrc ILL */
15356 else
15357 return (NULL);
15358 }

15360 /*
15361 * Test addresses should never be used for source address selection,
15362 * so if we were passed one, switch to the IPMP meta-interface.
15363 */
15364 if (IS_UNDER_IPMP(ill)) {
15365 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
15366 ill = ipmp_ill; /* Select source from IPMP ill */
15367 else
15368 return (NULL);
15369 }

15371 /*
15372 * If we’re dealing with an unlabeled destination on a labeled system,
15373 * make sure that we ignore source addresses that are incompatible with

new/usr/src/uts/common/inet/ip/ip_if.c 234

15374 * the destination’s default label. That destination’s default label
15375 * must dominate the minimum label on the source address.
15376 */
15377 dst_rhtp = NULL;
15378 if (is_system_labeled()) {
15379 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
15380 if (dst_rhtp == NULL)
15381 return (NULL);
15382 if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
15383 TPC_RELE(dst_rhtp);
15384 dst_rhtp = NULL;
15385 }
15386 }

15388 /*
15389 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
15390 * can be deleted. But an ipif/ill can get CONDEMNED any time.
15391 * After selecting the right ipif, under ill_lock make sure ipif is
15392 * not condemned, and increment refcnt. If ipif is CONDEMNED,
15393 * we retry. Inside the loop we still need to check for CONDEMNED,
15394 * but not under a lock.
15395 */
15396 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15397 retry:
15398 /*
15399 * For source address selection, we treat the ipif list as circular
15400 * and continue until we get back to where we started. This allows
15401 * IPMP to vary source address selection (which improves inbound load
15402 * spreading) by caching its last ending point and starting from
15403 * there. NOTE: we don’t have to worry about ill_src_ipif changing
15404 * ills since that can’t happen on the IPMP ill.
15405 */
15406 start_ipif = ill->ill_ipif;
15407 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
15408 start_ipif = ill->ill_src_ipif;

15410 ipif = start_ipif;
15411 best_ipif = NULL;
15412 best_type = IPIF_NONE;
15413 do {
15414 if ((next_ipif = ipif->ipif_next) == NULL)
15415 next_ipif = ill->ill_ipif;

15417 if (IPIF_IS_CONDEMNED(ipif))
15418 continue;
15419 /* Always skip NOLOCAL and ANYCAST interfaces */
15420 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15421 continue;
15422 /* Always skip NOACCEPT interfaces */
15423 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
15424 continue;
15425 if (!(ipif->ipif_flags & IPIF_UP))
15426 continue;

15428 if (!ipif->ipif_addr_ready) {
15429 if (notreadyp != NULL)
15430 *notreadyp = B_TRUE;
15431 continue;
15432 }

15434 if (zoneid != ALL_ZONES &&
15435 ipif->ipif_zoneid != zoneid &&
15436 ipif->ipif_zoneid != ALL_ZONES)
15437 continue;

15439 /*

new/usr/src/uts/common/inet/ip/ip_if.c 235

15440 * Interfaces with 0.0.0.0 address are allowed to be UP, but
15441 * are not valid as source addresses.
15442 */
15443 if (ipif->ipif_lcl_addr == INADDR_ANY)
15444 continue;

15446 /*
15447 * Check compatibility of local address for destination’s
15448 * default label if we’re on a labeled system. Incompatible
15449 * addresses can’t be used at all.
15450 */
15451 if (dst_rhtp != NULL) {
15452 boolean_t incompat;

15454 src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15455 IPV4_VERSION, B_FALSE);
15456 if (src_rhtp == NULL)
15457 continue;
15458 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15459 src_rhtp->tpc_tp.tp_doi !=
15460 dst_rhtp->tpc_tp.tp_doi ||
15461 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15462 &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15463 !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15464 src_rhtp->tpc_tp.tp_sl_set_cipso));
15465 TPC_RELE(src_rhtp);
15466 if (incompat)
15467 continue;
15468 }

15470 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);

15472 if (ipif->ipif_lcl_addr == dst) {
15473 type = IPIF_LOCALADDR;
15474 } else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15475 type = samenet ? IPIF_SAMENET_DEPRECATED :
15476 IPIF_DIFFNET_DEPRECATED;
15477 } else if (ipif->ipif_zoneid == ALL_ZONES) {
15478 type = samenet ? IPIF_SAMENET_ALLZONES :
15479 IPIF_DIFFNET_ALLZONES;
15480 } else {
15481 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15482 }

15484 if (type > best_type) {
15485 best_type = type;
15486 best_ipif = ipif;
15487 if (best_type == IPIF_LOCALADDR)
15488 break; /* can’t get better */
15489 }
15490 } while ((ipif = next_ipif) != start_ipif);

15492 if ((ipif = best_ipif) != NULL) {
15493 mutex_enter(&ipif->ipif_ill->ill_lock);
15494 if (IPIF_IS_CONDEMNED(ipif)) {
15495 mutex_exit(&ipif->ipif_ill->ill_lock);
15496 goto retry;
15497 }
15498 ipif_refhold_locked(ipif);

15500 /*
15501 * For IPMP, update the source ipif rotor to the next ipif,
15502 * provided we can look it up. (We must not use it if it’s
15503 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15504 * ipif_free() checked ill_src_ipif.)
15505 */

new/usr/src/uts/common/inet/ip/ip_if.c 236

15506 if (IS_IPMP(ill) && ipif != NULL) {
15507 next_ipif = ipif->ipif_next;
15508 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15509 ill->ill_src_ipif = next_ipif;
15510 else
15511 ill->ill_src_ipif = NULL;
15512 }
15513 mutex_exit(&ipif->ipif_ill->ill_lock);
15514 }

15516 rw_exit(&ipst->ips_ill_g_lock);
15517 if (usill != NULL)
15518 ill_refrele(usill);
15519 if (ipmp_ill != NULL)
15520 ill_refrele(ipmp_ill);
15521 if (dst_rhtp != NULL)
15522 TPC_RELE(dst_rhtp);

15524 #ifdef DEBUG
15525 if (ipif == NULL) {
15526 char buf1[INET6_ADDRSTRLEN];

15528 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15529 ill->ill_name,
15530 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15531 } else {
15532 char buf1[INET6_ADDRSTRLEN];
15533 char buf2[INET6_ADDRSTRLEN];

15535 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15536 ipif->ipif_ill->ill_name,
15537 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15538 inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15539 buf2, sizeof (buf2))));
15540 }
15541 #endif /* DEBUG */
15542 return (ipif);
15543 }

15545 /*
15546 * Pick a source address based on the destination ill and an optional setsrc
15547 * address.
15548 * The result is stored in srcp. If generation is set, then put the source
15549 * generation number there before we look for the source address (to avoid
15550 * missing changes in the set of source addresses.
15551 * If flagsp is set, then us it to pass back ipif_flags.
15552 *
15553 * If the caller wants to cache the returned source address and detect when
15554 * that might be stale, the caller should pass in a generation argument,
15555 * which the caller can later compare against ips_src_generation
15556 *
15557 * The precedence order for selecting an IPv4 source address is:
15558 * - RTF_SETSRC on the offlink ire always wins.
15559 * - If usrsrc is set, swap the ill to be the usesrc one.
15560 * - If IPMP is used on the ill, select a random address from the most
15561 * preferred ones below:
15562 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15563 * 2. Not deprecated, not ALL_ZONES
15564 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15565 * 4. Not deprecated, ALL_ZONES
15566 * 5. If onlink destination, same subnet and deprecated
15567 * 6. Deprecated.
15568 *
15569 * We have lower preference for ALL_ZONES IP addresses,
15570 * as they pose problems with unlabeled destinations.
15571 *

new/usr/src/uts/common/inet/ip/ip_if.c 237

15572 * Note that when multiple IP addresses match e.g., #1 we pick
15573 * the first one if IPMP is not in use. With IPMP we randomize.
15574 */
15575 int
15576 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15577 ipaddr_t multicast_ifaddr,
15578 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15579 uint32_t *generation, uint64_t *flagsp)
15580 {
15581 ipif_t *ipif;
15582 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */

15584 if (flagsp != NULL)
15585 *flagsp = 0;

15587 /*
15588 * Need to grab the generation number before we check to
15589 * avoid a race with a change to the set of local addresses.
15590 * No lock needed since the thread which updates the set of local
15591 * addresses use ipif/ill locks and exit those (hence a store memory
15592 * barrier) before doing the atomic increase of ips_src_generation.
15593 */
15594 if (generation != NULL) {
15595 *generation = ipst->ips_src_generation;
15596 }

15598 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15599 *srcp = multicast_ifaddr;
15600 return (0);
15601 }

15603 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15604 if (setsrc != INADDR_ANY) {
15605 *srcp = setsrc;
15606 return (0);
15607 }
15608 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready);
15609 if (ipif == NULL) {
15610 if (notready)
15611 return (ENETDOWN);
15612 else
15613 return (EADDRNOTAVAIL);
15614 }
15615 *srcp = ipif->ipif_lcl_addr;
15616 if (flagsp != NULL)
15617 *flagsp = ipif->ipif_flags;
15618 ipif_refrele(ipif);
15619 return (0);
15620 }

15622 /* ARGSUSED */
15623 int
15624 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15625 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15626 {
15627 /*
15628 * ill_phyint_reinit merged the v4 and v6 into a single
15629 * ipsq. We might not have been able to complete the
15630 * operation in ipif_set_values, if we could not become
15631 * exclusive. If so restart it here.
15632 */
15633 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15634 }

15636 /*
15637 * Can operate on either a module or a driver queue.

new/usr/src/uts/common/inet/ip/ip_if.c 238

15638 * Returns an error if not a module queue.
15639 */
15640 /* ARGSUSED */
15641 int
15642 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15643 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15644 {
15645 queue_t *q1 = q;
15646 char *cp;
15647 char interf_name[LIFNAMSIZ];
15648 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;

15650 if (q->q_next == NULL) {
15651 ip1dbg((
15652 "if_unitsel: IF_UNITSEL: no q_next\n"));
15653 return (EINVAL);
15654 }

15656 if (((ill_t *)(q->q_ptr))->ill_name[0] != ’\0’)
15657 return (EALREADY);

15659 do {
15660 q1 = q1->q_next;
15661 } while (q1->q_next);
15662 cp = q1->q_qinfo->qi_minfo->mi_idname;
15663 (void) sprintf(interf_name, "%s%d", cp, ppa);

15665 /*
15666 * Here we are not going to delay the ioack until after
15667 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15668 * original ioctl message before sending the requests.
15669 */
15670 return (ipif_set_values(q, mp, interf_name, &ppa));
15671 }

15673 /* ARGSUSED */
15674 int
15675 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15676 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15677 {
15678 return (ENXIO);
15679 }

15681 /*
15682 * Create any IRE_BROADCAST entries for ‘ipif’, and store those entries in
15683 * ‘irep’. Returns a pointer to the next free ‘irep’ entry
15684 * A mirror exists in ipif_delete_bcast_ires().
15685 *
15686 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15687 * done in ire_add.
15688 */
15689 static ire_t **
15690 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15691 {
15692 ipaddr_t addr;
15693 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15694 ipaddr_t subnetmask = ipif->ipif_net_mask;
15695 ill_t *ill = ipif->ipif_ill;
15696 zoneid_t zoneid = ipif->ipif_zoneid;

15698 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));

15700 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15701 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));

15703 if (ipif->ipif_lcl_addr == INADDR_ANY ||

new/usr/src/uts/common/inet/ip/ip_if.c 239

15704 (ipif->ipif_flags & IPIF_NOLOCAL))
15705 netmask = htonl(IN_CLASSA_NET); /* fallback */

15707 irep = ire_create_bcast(ill, 0, zoneid, irep);
15708 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);

15710 /*
15711 * For backward compatibility, we create net broadcast IREs based on
15712 * the old "IP address class system", since some old machines only
15713 * respond to these class derived net broadcast. However, we must not
15714 * create these net broadcast IREs if the subnetmask is shorter than
15715 * the IP address class based derived netmask. Otherwise, we may
15716 * create a net broadcast address which is the same as an IP address
15717 * on the subnet -- and then TCP will refuse to talk to that address.
15718 */
15719 if (netmask < subnetmask) {
15720 addr = netmask & ipif->ipif_subnet;
15721 irep = ire_create_bcast(ill, addr, zoneid, irep);
15722 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15723 }

15725 /*
15726 * Don’t create IRE_BROADCAST IREs for the interface if the subnetmask
15727 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15728 * created. Creating these broadcast IREs will only create confusion
15729 * as ‘addr’ will be the same as the IP address.
15730 */
15731 if (subnetmask != 0xFFFFFFFF) {
15732 addr = ipif->ipif_subnet;
15733 irep = ire_create_bcast(ill, addr, zoneid, irep);
15734 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15735 }

15737 return (irep);
15738 }

15740 /*
15741 * Mirror of ipif_create_bcast_ires()
15742 */
15743 static void
15744 ipif_delete_bcast_ires(ipif_t *ipif)
15745 {
15746 ipaddr_t addr;
15747 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15748 ipaddr_t subnetmask = ipif->ipif_net_mask;
15749 ill_t *ill = ipif->ipif_ill;
15750 zoneid_t zoneid = ipif->ipif_zoneid;
15751 ire_t *ire;

15753 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15754 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));

15756 if (ipif->ipif_lcl_addr == INADDR_ANY ||
15757 (ipif->ipif_flags & IPIF_NOLOCAL))
15758 netmask = htonl(IN_CLASSA_NET); /* fallback */

15760 ire = ire_lookup_bcast(ill, 0, zoneid);
15761 ASSERT(ire != NULL);
15762 ire_delete(ire); ire_refrele(ire);
15763 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15764 ASSERT(ire != NULL);
15765 ire_delete(ire); ire_refrele(ire);

15767 /*
15768 * For backward compatibility, we create net broadcast IREs based on
15769 * the old "IP address class system", since some old machines only

new/usr/src/uts/common/inet/ip/ip_if.c 240

15770 * respond to these class derived net broadcast. However, we must not
15771 * create these net broadcast IREs if the subnetmask is shorter than
15772 * the IP address class based derived netmask. Otherwise, we may
15773 * create a net broadcast address which is the same as an IP address
15774 * on the subnet -- and then TCP will refuse to talk to that address.
15775 */
15776 if (netmask < subnetmask) {
15777 addr = netmask & ipif->ipif_subnet;
15778 ire = ire_lookup_bcast(ill, addr, zoneid);
15779 ASSERT(ire != NULL);
15780 ire_delete(ire); ire_refrele(ire);
15781 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15782 ASSERT(ire != NULL);
15783 ire_delete(ire); ire_refrele(ire);
15784 }

15786 /*
15787 * Don’t create IRE_BROADCAST IREs for the interface if the subnetmask
15788 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15789 * created. Creating these broadcast IREs will only create confusion
15790 * as ‘addr’ will be the same as the IP address.
15791 */
15792 if (subnetmask != 0xFFFFFFFF) {
15793 addr = ipif->ipif_subnet;
15794 ire = ire_lookup_bcast(ill, addr, zoneid);
15795 ASSERT(ire != NULL);
15796 ire_delete(ire); ire_refrele(ire);
15797 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15798 ASSERT(ire != NULL);
15799 ire_delete(ire); ire_refrele(ire);
15800 }
15801 }

15803 /*
15804 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15805 * from lifr_flags and the name from lifr_name.
15806 * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15807 * since ipif_lookup_on_name uses the _isv6 flags when matching.
15808 * Returns EINPROGRESS when mp has been consumed by queueing it on
15809 * ipx_pending_mp and the ioctl will complete in ip_rput.
15810 *
15811 * Can operate on either a module or a driver queue.
15812 * Returns an error if not a module queue.
15813 */
15814 /* ARGSUSED */
15815 int
15816 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15817 ip_ioctl_cmd_t *ipip, void *if_req)
15818 {
15819 ill_t *ill = q->q_ptr;
15820 phyint_t *phyi;
15821 ip_stack_t *ipst;
15822 struct lifreq *lifr = if_req;
15823 uint64_t new_flags;

15825 ASSERT(ipif != NULL);
15826 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));

15828 if (q->q_next == NULL) {
15829 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15830 return (EINVAL);
15831 }

15833 /*
15834 * If we are not writer on ’q’ then this interface exists already
15835 * and previous lookups (ip_extract_lifreq()) found this ipif --

new/usr/src/uts/common/inet/ip/ip_if.c 241

15836 * so return EALREADY.
15837 */
15838 if (ill != ipif->ipif_ill)
15839 return (EALREADY);

15841 if (ill->ill_name[0] != ’\0’)
15842 return (EALREADY);

15844 /*
15845 * If there’s another ill already with the requested name, ensure
15846 * that it’s of the same type. Otherwise, ill_phyint_reinit() will
15847 * fuse together two unrelated ills, which will cause chaos.
15848 */
15849 ipst = ill->ill_ipst;
15850 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15851 lifr->lifr_name, NULL);
15852 if (phyi != NULL) {
15853 ill_t *ill_mate = phyi->phyint_illv4;

15855 if (ill_mate == NULL)
15856 ill_mate = phyi->phyint_illv6;
15857 ASSERT(ill_mate != NULL);

15859 if (ill_mate->ill_media->ip_m_mac_type !=
15860 ill->ill_media->ip_m_mac_type) {
15861 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15862 "use the same ill name on differing media\n"));
15863 return (EINVAL);
15864 }
15865 }

15867 /*
15868 * We start off as IFF_IPV4 in ipif_allocate and become
15869 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value.
15870 * The only flags that we read from user space are IFF_IPV4,
15871 * IFF_IPV6, and IFF_BROADCAST.
15872 *
15873 * This ill has not been inserted into the global list.
15874 * So we are still single threaded and don’t need any lock
15875 *
15876 * Saniy check the flags.
15877 */

15879 if ((lifr->lifr_flags & IFF_BROADCAST) &&
15880 ((lifr->lifr_flags & IFF_IPV6) ||
15881 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15882 ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15883 "or IPv6 i.e., no broadcast \n"));
15884 return (EINVAL);
15885 }

15887 new_flags =
15888 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);

15890 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15891 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15892 "IFF_IPV4 or IFF_IPV6\n"));
15893 return (EINVAL);
15894 }

15896 /*
15897 * We always start off as IPv4, so only need to check for IPv6.
15898 */
15899 if ((new_flags & IFF_IPV6) != 0) {
15900 ill->ill_flags |= ILLF_IPV6;
15901 ill->ill_flags &= ~ILLF_IPV4;

new/usr/src/uts/common/inet/ip/ip_if.c 242

15903 if (lifr->lifr_flags & IFF_NOLINKLOCAL)
15904 ill->ill_flags |= ILLF_NOLINKLOCAL;
15905 }

15907 if ((new_flags & IFF_BROADCAST) != 0)
15908 ipif->ipif_flags |= IPIF_BROADCAST;
15909 else
15910 ipif->ipif_flags &= ~IPIF_BROADCAST;

15912 /* We started off as V4. */
15913 if (ill->ill_flags & ILLF_IPV6) {
15914 ill->ill_phyint->phyint_illv6 = ill;
15915 ill->ill_phyint->phyint_illv4 = NULL;
15916 }

15918 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15919 }

15921 /* ARGSUSED */
15922 int
15923 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15924 ip_ioctl_cmd_t *ipip, void *if_req)
15925 {
15926 /*
15927 * ill_phyint_reinit merged the v4 and v6 into a single
15928 * ipsq. We might not have been able to complete the
15929 * slifname in ipif_set_values, if we could not become
15930 * exclusive. If so restart it here
15931 */
15932 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15933 }

15935 /*
15936 * Return a pointer to the ipif which matches the index, IP version type and
15937 * zoneid.
15938 */
15939 ipif_t *
15940 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15941 ip_stack_t *ipst)
15942 {
15943 ill_t *ill;
15944 ipif_t *ipif = NULL;

15946 ill = ill_lookup_on_ifindex(index, isv6, ipst);
15947 if (ill != NULL) {
15948 mutex_enter(&ill->ill_lock);
15949 for (ipif = ill->ill_ipif; ipif != NULL;
15950 ipif = ipif->ipif_next) {
15951 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15952 zoneid == ipif->ipif_zoneid ||
15953 ipif->ipif_zoneid == ALL_ZONES)) {
15954 ipif_refhold_locked(ipif);
15955 break;
15956 }
15957 }
15958 mutex_exit(&ill->ill_lock);
15959 ill_refrele(ill);
15960 }
15961 return (ipif);
15962 }

15964 /*
15965 * Change an existing physical interface’s index. If the new index
15966 * is acceptable we update the index and the phyint_list_avl_by_index tree.
15967 * Finally, we update other systems which may have a dependence on the

new/usr/src/uts/common/inet/ip/ip_if.c 243

15968 * index value.
15969 */
15970 /* ARGSUSED */
15971 int
15972 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15973 ip_ioctl_cmd_t *ipip, void *ifreq)
15974 {
15975 ill_t *ill;
15976 phyint_t *phyi;
15977 struct ifreq *ifr = (struct ifreq *)ifreq;
15978 struct lifreq *lifr = (struct lifreq *)ifreq;
15979 uint_t old_index, index;
15980 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
15981 avl_index_t where;

15983 if (ipip->ipi_cmd_type == IF_CMD)
15984 index = ifr->ifr_index;
15985 else
15986 index = lifr->lifr_index;

15988 /*
15989 * Only allow on physical interface. Also, index zero is illegal.
15990 */
15991 ill = ipif->ipif_ill;
15992 phyi = ill->ill_phyint;
15993 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) {
15994 return (EINVAL);
15995 }

15997 /* If the index is not changing, no work to do */
15998 if (phyi->phyint_ifindex == index)
15999 return (0);

16001 /*
16002 * Use phyint_exists() to determine if the new interface index
16003 * is already in use. If the index is unused then we need to
16004 * change the phyint’s position in the phyint_list_avl_by_index
16005 * tree. If we do not do this, subsequent lookups (using the new
16006 * index value) will not find the phyint.
16007 */
16008 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16009 if (phyint_exists(index, ipst)) {
16010 rw_exit(&ipst->ips_ill_g_lock);
16011 return (EEXIST);
16012 }

16014 /*
16015 * The new index is unused. Set it in the phyint. However we must not
16016 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
16017 * changes. The event must be bound to old ifindex value.
16018 */
16019 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
16020 &index, sizeof (index));

16022 old_index = phyi->phyint_ifindex;
16023 phyi->phyint_ifindex = index;

16025 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
16026 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16027 &index, &where);
16028 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16029 phyi, where);
16030 rw_exit(&ipst->ips_ill_g_lock);

16032 /* Update SCTP’s ILL list */
16033 sctp_ill_reindex(ill, old_index);

new/usr/src/uts/common/inet/ip/ip_if.c 244

16035 /* Send the routing sockets message */
16036 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
16037 if (ILL_OTHER(ill))
16038 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);

16040 /* Perhaps ilgs should use this ill */
16041 update_conn_ill(NULL, ill->ill_ipst);
16042 return (0);
16043 }

16045 /* ARGSUSED */
16046 int
16047 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16048 ip_ioctl_cmd_t *ipip, void *ifreq)
16049 {
16050 struct ifreq *ifr = (struct ifreq *)ifreq;
16051 struct lifreq *lifr = (struct lifreq *)ifreq;

16053 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
16054 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16055 /* Get the interface index */
16056 if (ipip->ipi_cmd_type == IF_CMD) {
16057 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16058 } else {
16059 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16060 }
16061 return (0);
16062 }

16064 /* ARGSUSED */
16065 int
16066 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16067 ip_ioctl_cmd_t *ipip, void *ifreq)
16068 {
16069 struct lifreq *lifr = (struct lifreq *)ifreq;

16071 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
16072 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16073 /* Get the interface zone */
16074 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16075 lifr->lifr_zoneid = ipif->ipif_zoneid;
16076 return (0);
16077 }

16079 /*
16080 * Set the zoneid of an interface.
16081 */
16082 /* ARGSUSED */
16083 int
16084 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16085 ip_ioctl_cmd_t *ipip, void *ifreq)
16086 {
16087 struct lifreq *lifr = (struct lifreq *)ifreq;
16088 int err = 0;
16089 boolean_t need_up = B_FALSE;
16090 zone_t *zptr;
16091 zone_status_t status;
16092 zoneid_t zoneid;

16094 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16095 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
16096 if (!is_system_labeled())
16097 return (ENOTSUP);
16098 zoneid = GLOBAL_ZONEID;
16099 }

new/usr/src/uts/common/inet/ip/ip_if.c 245

16101 /* cannot assign instance zero to a non-global zone */
16102 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
16103 return (ENOTSUP);

16105 /*
16106 * Cannot assign to a zone that doesn’t exist or is shutting down. In
16107 * the event of a race with the zone shutdown processing, since IP
16108 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
16109 * interface will be cleaned up even if the zone is shut down
16110 * immediately after the status check. If the interface can’t be brought
16111 * down right away, and the zone is shut down before the restart
16112 * function is called, we resolve the possible races by rechecking the
16113 * zone status in the restart function.
16114 */
16115 if ((zptr = zone_find_by_id(zoneid)) == NULL)
16116 return (EINVAL);
16117 status = zone_status_get(zptr);
16118 zone_rele(zptr);

16120 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
16121 return (EINVAL);

16123 if (ipif->ipif_flags & IPIF_UP) {
16124 /*
16125 * If the interface is already marked up,
16126 * we call ipif_down which will take care
16127 * of ditching any IREs that have been set
16128 * up based on the old interface address.
16129 */
16130 err = ipif_logical_down(ipif, q, mp);
16131 if (err == EINPROGRESS)
16132 return (err);
16133 (void) ipif_down_tail(ipif);
16134 need_up = B_TRUE;
16135 }

16137 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
16138 return (err);
16139 }

16141 static int
16142 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
16143 queue_t *q, mblk_t *mp, boolean_t need_up)
16144 {
16145 int err = 0;
16146 ip_stack_t *ipst;

16148 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
16149 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

16151 if (CONN_Q(q))
16152 ipst = CONNQ_TO_IPST(q);
16153 else
16154 ipst = ILLQ_TO_IPST(q);

16156 /*
16157 * For exclusive stacks we don’t allow a different zoneid than
16158 * global.
16159 */
16160 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
16161 zoneid != GLOBAL_ZONEID)
16162 return (EINVAL);

16164 /* Set the new zone id. */
16165 ipif->ipif_zoneid = zoneid;

new/usr/src/uts/common/inet/ip/ip_if.c 246

16167 /* Update sctp list */
16168 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);

16170 /* The default multicast interface might have changed */
16171 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);

16173 if (need_up) {
16174 /*
16175 * Now bring the interface back up. If this
16176 * is the only IPIF for the ILL, ipif_up
16177 * will have to re-bind to the device, so
16178 * we may get back EINPROGRESS, in which
16179 * case, this IOCTL will get completed in
16180 * ip_rput_dlpi when we see the DL_BIND_ACK.
16181 */
16182 err = ipif_up(ipif, q, mp);
16183 }
16184 return (err);
16185 }

16187 /* ARGSUSED */
16188 int
16189 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16190 ip_ioctl_cmd_t *ipip, void *if_req)
16191 {
16192 struct lifreq *lifr = (struct lifreq *)if_req;
16193 zoneid_t zoneid;
16194 zone_t *zptr;
16195 zone_status_t status;

16197 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16198 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
16199 zoneid = GLOBAL_ZONEID;

16201 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
16202 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));

16204 /*
16205 * We recheck the zone status to resolve the following race condition:
16206 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
16207 * 2) hme0:1 is up and can’t be brought down right away;
16208 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
16209 * 3) zone "myzone" is halted; the zone status switches to
16210 * ’shutting_down’ and the zones framework sends SIOCGLIFCONF to list
16211 * the interfaces to remove - hme0:1 is not returned because it’s not
16212 * yet in "myzone", so it won’t be removed;
16213 * 4) the restart function for SIOCSLIFZONE is called; without the
16214 * status check here, we would have hme0:1 in "myzone" after it’s been
16215 * destroyed.
16216 * Note that if the status check fails, we need to bring the interface
16217 * back to its state prior to ip_sioctl_slifzone(), hence the call to
16218 * ipif_up_done[_v6]().
16219 */
16220 status = ZONE_IS_UNINITIALIZED;
16221 if ((zptr = zone_find_by_id(zoneid)) != NULL) {
16222 status = zone_status_get(zptr);
16223 zone_rele(zptr);
16224 }
16225 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
16226 if (ipif->ipif_isv6) {
16227 (void) ipif_up_done_v6(ipif);
16228 } else {
16229 (void) ipif_up_done(ipif);
16230 }
16231 return (EINVAL);

new/usr/src/uts/common/inet/ip/ip_if.c 247

16232 }

16234 (void) ipif_down_tail(ipif);

16236 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
16237 B_TRUE));
16238 }

16240 /*
16241 * Return the number of addresses on ‘ill’ with one or more of the values
16242 * in ‘set’ set and all of the values in ‘clear’ clear.
16243 */
16244 static uint_t
16245 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
16246 {
16247 ipif_t *ipif;
16248 uint_t cnt = 0;

16250 ASSERT(IAM_WRITER_ILL(ill));

16252 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
16253 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
16254 cnt++;

16256 return (cnt);
16257 }

16259 /*
16260 * Return the number of migratable addresses on ‘ill’ that are under
16261 * application control.
16262 */
16263 uint_t
16264 ill_appaddr_cnt(const ill_t *ill)
16265 {
16266 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
16267 IPIF_NOFAILOVER));
16268 }

16270 /*
16271 * Return the number of point-to-point addresses on ‘ill’.
16272 */
16273 uint_t
16274 ill_ptpaddr_cnt(const ill_t *ill)
16275 {
16276 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
16277 }

16279 /* ARGSUSED */
16280 int
16281 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16282 ip_ioctl_cmd_t *ipip, void *ifreq)
16283 {
16284 struct lifreq *lifr = ifreq;

16286 ASSERT(q->q_next == NULL);
16287 ASSERT(CONN_Q(q));

16289 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
16290 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16291 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
16292 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));

16294 return (0);
16295 }

16297 /* Find the previous ILL in this usesrc group */

new/usr/src/uts/common/inet/ip/ip_if.c 248

16298 static ill_t *
16299 ill_prev_usesrc(ill_t *uill)
16300 {
16301 ill_t *ill;

16303 for (ill = uill->ill_usesrc_grp_next;
16304 ASSERT(ill), ill->ill_usesrc_grp_next != uill;
16305 ill = ill->ill_usesrc_grp_next)
16306 /* do nothing */;
16307 return (ill);
16308 }

16310 /*
16311 * Release all members of the usesrc group. This routine is called
16312 * from ill_delete when the interface being unplumbed is the
16313 * group head.
16314 *
16315 * This silently clears the usesrc that ifconfig setup.
16316 * An alternative would be to keep that ifindex, and drop packets on the floor
16317 * since no source address can be selected.
16318 * Even if we keep the current semantics, don’t need a lock and a linked list.
16319 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
16320 * the one that is being removed. Issue is how we return the usesrc users
16321 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
16322 * ill_usesrc_ifindex matching a target ill. We could also do that with an
16323 * ill walk, but the walker would need to insert in the ioctl response.
16324 */
16325 static void
16326 ill_disband_usesrc_group(ill_t *uill)
16327 {
16328 ill_t *next_ill, *tmp_ill;
16329 ip_stack_t *ipst = uill->ill_ipst;

16331 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16332 next_ill = uill->ill_usesrc_grp_next;

16334 do {
16335 ASSERT(next_ill != NULL);
16336 tmp_ill = next_ill->ill_usesrc_grp_next;
16337 ASSERT(tmp_ill != NULL);
16338 next_ill->ill_usesrc_grp_next = NULL;
16339 next_ill->ill_usesrc_ifindex = 0;
16340 next_ill = tmp_ill;
16341 } while (next_ill->ill_usesrc_ifindex != 0);
16342 uill->ill_usesrc_grp_next = NULL;
16343 }

16345 /*
16346 * Remove the client usesrc ILL from the list and relink to a new list
16347 */
16348 int
16349 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
16350 {
16351 ill_t *ill, *tmp_ill;
16352 ip_stack_t *ipst = ucill->ill_ipst;

16354 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
16355 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));

16357 /*
16358 * Check if the usesrc client ILL passed in is not already
16359 * in use as a usesrc ILL i.e one whose source address is
16360 * in use OR a usesrc ILL is not already in use as a usesrc
16361 * client ILL
16362 */
16363 if ((ucill->ill_usesrc_ifindex == 0) ||

new/usr/src/uts/common/inet/ip/ip_if.c 249

16364 (uill->ill_usesrc_ifindex != 0)) {
16365 return (-1);
16366 }

16368 ill = ill_prev_usesrc(ucill);
16369 ASSERT(ill->ill_usesrc_grp_next != NULL);

16371 /* Remove from the current list */
16372 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
16373 /* Only two elements in the list */
16374 ASSERT(ill->ill_usesrc_ifindex == 0);
16375 ill->ill_usesrc_grp_next = NULL;
16376 } else {
16377 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
16378 }

16380 if (ifindex == 0) {
16381 ucill->ill_usesrc_ifindex = 0;
16382 ucill->ill_usesrc_grp_next = NULL;
16383 return (0);
16384 }

16386 ucill->ill_usesrc_ifindex = ifindex;
16387 tmp_ill = uill->ill_usesrc_grp_next;
16388 uill->ill_usesrc_grp_next = ucill;
16389 ucill->ill_usesrc_grp_next =
16390 (tmp_ill != NULL) ? tmp_ill : uill;
16391 return (0);
16392 }

16394 /*
16395 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
16396 * ip.c for locking details.
16397 */
16398 /* ARGSUSED */
16399 int
16400 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16401 ip_ioctl_cmd_t *ipip, void *ifreq)
16402 {
16403 struct lifreq *lifr = (struct lifreq *)ifreq;
16404 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
16405 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
16406 int err = 0, ret;
16407 uint_t ifindex;
16408 ipsq_t *ipsq = NULL;
16409 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;

16411 ASSERT(IAM_WRITER_IPIF(ipif));
16412 ASSERT(q->q_next == NULL);
16413 ASSERT(CONN_Q(q));

16415 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;

16417 ifindex = lifr->lifr_index;
16418 if (ifindex == 0) {
16419 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
16420 /* non usesrc group interface, nothing to reset */
16421 return (0);
16422 }
16423 ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
16424 /* valid reset request */
16425 reset_flg = B_TRUE;
16426 }

16428 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
16429 if (usesrc_ill == NULL)

new/usr/src/uts/common/inet/ip/ip_if.c 250

16430 return (ENXIO);
16431 if (usesrc_ill == ipif->ipif_ill) {
16432 ill_refrele(usesrc_ill);
16433 return (EINVAL);
16434 }

16436 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
16437 NEW_OP, B_TRUE);
16438 if (ipsq == NULL) {
16439 err = EINPROGRESS;
16440 /* Operation enqueued on the ipsq of the usesrc ILL */
16441 goto done;
16442 }

16444 /* USESRC isn’t currently supported with IPMP */
16445 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
16446 err = ENOTSUP;
16447 goto done;
16448 }

16450 /*
16451 * USESRC isn’t compatible with the STANDBY flag. (STANDBY is only
16452 * used by IPMP underlying interfaces, but someone might think it’s
16453 * more general and try to use it independently with VNI.)
16454 */
16455 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
16456 err = ENOTSUP;
16457 goto done;
16458 }

16460 /*
16461 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16462 * already a client then return EINVAL
16463 */
16464 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16465 err = EINVAL;
16466 goto done;
16467 }

16469 /*
16470 * If the ill_usesrc_ifindex field is already set to what it needs to
16471 * be then this is a duplicate operation.
16472 */
16473 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16474 err = 0;
16475 goto done;
16476 }

16478 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16479 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16480 usesrc_ill->ill_isv6));

16482 /*
16483 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16484 * and the ill_usesrc_ifindex fields
16485 */
16486 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);

16488 if (reset_flg) {
16489 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16490 if (ret != 0) {
16491 err = EINVAL;
16492 }
16493 rw_exit(&ipst->ips_ill_g_usesrc_lock);
16494 goto done;
16495 }

new/usr/src/uts/common/inet/ip/ip_if.c 251

16497 /*
16498 * Four possibilities to consider:
16499 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16500 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn’t
16501 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn’t
16502 * 4. Both are part of their respective usesrc groups
16503 */
16504 if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16505 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16506 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16507 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16508 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16509 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16510 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16511 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16512 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16513 /* Insert at head of list */
16514 usesrc_cli_ill->ill_usesrc_grp_next =
16515 usesrc_ill->ill_usesrc_grp_next;
16516 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16517 } else {
16518 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16519 ifindex);
16520 if (ret != 0)
16521 err = EINVAL;
16522 }
16523 rw_exit(&ipst->ips_ill_g_usesrc_lock);

16525 done:
16526 if (ipsq != NULL)
16527 ipsq_exit(ipsq);
16528 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16529 ill_refrele(usesrc_ill);

16531 /* Let conn_ixa caching know that source address selection changed */
16532 ip_update_source_selection(ipst);

16534 return (err);
16535 }

16537 /* ARGSUSED */
16538 int
16539 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16540 ip_ioctl_cmd_t *ipip, void *if_req)
16541 {
16542 struct lifreq *lifr = (struct lifreq *)if_req;
16543 ill_t *ill = ipif->ipif_ill;

16545 /*
16546 * Need a lock since IFF_UP can be set even when there are
16547 * references to the ipif.
16548 */
16549 mutex_enter(&ill->ill_lock);
16550 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0)
16551 lifr->lifr_dadstate = DAD_IN_PROGRESS;
16552 else
16553 lifr->lifr_dadstate = DAD_DONE;
16554 mutex_exit(&ill->ill_lock);
16555 return (0);
16556 }

16558 /*
16559 * comparison function used by avl.
16560 */
16561 static int

new/usr/src/uts/common/inet/ip/ip_if.c 252

16562 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16563 {

16565 uint_t index;

16567 ASSERT(phyip != NULL && index_ptr != NULL);

16569 index = *((uint_t *)index_ptr);
16570 /*
16571 * let the phyint with the lowest index be on top.
16572 */
16573 if (((phyint_t *)phyip)->phyint_ifindex < index)
16574 return (1);
16575 if (((phyint_t *)phyip)->phyint_ifindex > index)
16576 return (-1);
16577 return (0);
16578 }

16580 /*
16581 * comparison function used by avl.
16582 */
16583 static int
16584 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16585 {
16586 ill_t *ill;
16587 int res = 0;

16589 ASSERT(phyip != NULL && name_ptr != NULL);

16591 if (((phyint_t *)phyip)->phyint_illv4)
16592 ill = ((phyint_t *)phyip)->phyint_illv4;
16593 else
16594 ill = ((phyint_t *)phyip)->phyint_illv6;
16595 ASSERT(ill != NULL);

16597 res = strcmp(ill->ill_name, (char *)name_ptr);
16598 if (res > 0)
16599 return (1);
16600 else if (res < 0)
16601 return (-1);
16602 return (0);
16603 }

16605 /*
16606 * This function is called on the unplumb path via ill_glist_delete() when
16607 * there are no ills left on the phyint and thus the phyint can be freed.
16608 */
16609 static void
16610 phyint_free(phyint_t *phyi)
16611 {
16612 ip_stack_t *ipst = PHYINT_TO_IPST(phyi);

16614 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);

16616 /*
16617 * If this phyint was an IPMP meta-interface, blow away the group.
16618 * This is safe to do because all of the illgrps have already been
16619 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16620 * If we’re cleaning up as a result of failed initialization,
16621 * phyint_grp may be NULL.
16622 */
16623 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16624 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16625 ipmp_grp_destroy(phyi->phyint_grp);
16626 phyi->phyint_grp = NULL;
16627 rw_exit(&ipst->ips_ipmp_lock);

new/usr/src/uts/common/inet/ip/ip_if.c 253

16628 }

16630 /*
16631 * If this interface was under IPMP, take it out of the group.
16632 */
16633 if (phyi->phyint_grp != NULL)
16634 ipmp_phyint_leave_grp(phyi);

16636 /*
16637 * Delete the phyint and disassociate its ipsq. The ipsq itself
16638 * will be freed in ipsq_exit().
16639 */
16640 phyi->phyint_ipsq->ipsq_phyint = NULL;
16641 phyi->phyint_name[0] = ’\0’;

16643 mi_free(phyi);
16644 }

16646 /*
16647 * Attach the ill to the phyint structure which can be shared by both
16648 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16649 * function is called from ipif_set_values and ill_lookup_on_name (for
16650 * loopback) where we know the name of the ill. We lookup the ill and if
16651 * there is one present already with the name use that phyint. Otherwise
16652 * reuse the one allocated by ill_init.
16653 */
16654 static void
16655 ill_phyint_reinit(ill_t *ill)
16656 {
16657 boolean_t isv6 = ill->ill_isv6;
16658 phyint_t *phyi_old;
16659 phyint_t *phyi;
16660 avl_index_t where = 0;
16661 ill_t *ill_other = NULL;
16662 ip_stack_t *ipst = ill->ill_ipst;

16664 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));

16666 phyi_old = ill->ill_phyint;
16667 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16668 phyi_old->phyint_illv6 == NULL));
16669 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16670 phyi_old->phyint_illv4 == NULL));
16671 ASSERT(phyi_old->phyint_ifindex == 0);

16673 /*
16674 * Now that our ill has a name, set it in the phyint.
16675 */
16676 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);

16678 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16679 ill->ill_name, &where);

16681 /*
16682 * 1. We grabbed the ill_g_lock before inserting this ill into
16683 * the global list of ills. So no other thread could have located
16684 * this ill and hence the ipsq of this ill is guaranteed to be empty.
16685 * 2. Now locate the other protocol instance of this ill.
16686 * 3. Now grab both ill locks in the right order, and the phyint lock of
16687 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16688 * of neither ill can change.
16689 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16690 * other ill.
16691 * 5. Release all locks.
16692 */

new/usr/src/uts/common/inet/ip/ip_if.c 254

16694 /*
16695 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16696 * we are initializing IPv4.
16697 */
16698 if (phyi != NULL) {
16699 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16700 ASSERT(ill_other->ill_phyint != NULL);
16701 ASSERT((isv6 && !ill_other->ill_isv6) ||
16702 (!isv6 && ill_other->ill_isv6));
16703 GRAB_ILL_LOCKS(ill, ill_other);
16704 /*
16705 * We are potentially throwing away phyint_flags which
16706 * could be different from the one that we obtain from
16707 * ill_other->ill_phyint. But it is okay as we are assuming
16708 * that the state maintained within IP is correct.
16709 */
16710 mutex_enter(&phyi->phyint_lock);
16711 if (isv6) {
16712 ASSERT(phyi->phyint_illv6 == NULL);
16713 phyi->phyint_illv6 = ill;
16714 } else {
16715 ASSERT(phyi->phyint_illv4 == NULL);
16716 phyi->phyint_illv4 = ill;
16717 }

16719 /*
16720 * Delete the old phyint and make its ipsq eligible
16721 * to be freed in ipsq_exit().
16722 */
16723 phyi_old->phyint_illv4 = NULL;
16724 phyi_old->phyint_illv6 = NULL;
16725 phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16726 phyi_old->phyint_name[0] = ’\0’;
16727 mi_free(phyi_old);
16728 } else {
16729 mutex_enter(&ill->ill_lock);
16730 /*
16731 * We don’t need to acquire any lock, since
16732 * the ill is not yet visible globally and we
16733 * have not yet released the ill_g_lock.
16734 */
16735 phyi = phyi_old;
16736 mutex_enter(&phyi->phyint_lock);
16737 /* XXX We need a recovery strategy here. */
16738 if (!phyint_assign_ifindex(phyi, ipst))
16739 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");

16741 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16742 (void *)phyi, where);

16744 (void) avl_find(&ipst->ips_phyint_g_list->
16745 phyint_list_avl_by_index,
16746 &phyi->phyint_ifindex, &where);
16747 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16748 (void *)phyi, where);
16749 }

16751 /*
16752 * Reassigning ill_phyint automatically reassigns the ipsq also.
16753 * pending mp is not affected because that is per ill basis.
16754 */
16755 ill->ill_phyint = phyi;

16757 /*
16758 * Now that the phyint’s ifindex has been assigned, complete the
16759 * remaining

new/usr/src/uts/common/inet/ip/ip_if.c 255

16760 */
16761 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16762 if (ill->ill_isv6) {
16763 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16764 ill->ill_phyint->phyint_ifindex;
16765 ill->ill_mcast_type = ipst->ips_mld_max_version;
16766 } else {
16767 ill->ill_mcast_type = ipst->ips_igmp_max_version;
16768 }

16770 /*
16771 * Generate an event within the hooks framework to indicate that
16772 * a new interface has just been added to IP. For this event to
16773 * be generated, the network interface must, at least, have an
16774 * ifindex assigned to it. (We don’t generate the event for
16775 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16776 *
16777 * This needs to be run inside the ill_g_lock perimeter to ensure
16778 * that the ordering of delivered events to listeners matches the
16779 * order of them in the kernel.
16780 */
16781 if (!IS_LOOPBACK(ill)) {
16782 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16783 ill->ill_name_length);
16784 }
16785 RELEASE_ILL_LOCKS(ill, ill_other);
16786 mutex_exit(&phyi->phyint_lock);
16787 }

16789 /*
16790 * Notify any downstream modules of the name of this interface.
16791 * An M_IOCTL is used even though we don’t expect a successful reply.
16792 * Any reply message from the driver (presumably an M_IOCNAK) will
16793 * eventually get discarded somewhere upstream. The message format is
16794 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16795 * to IP.
16796 */
16797 static void
16798 ip_ifname_notify(ill_t *ill, queue_t *q)
16799 {
16800 mblk_t *mp1, *mp2;
16801 struct iocblk *iocp;
16802 struct lifreq *lifr;

16804 mp1 = mkiocb(SIOCSLIFNAME);
16805 if (mp1 == NULL)
16806 return;
16807 mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16808 if (mp2 == NULL) {
16809 freeb(mp1);
16810 return;
16811 }

16813 mp1->b_cont = mp2;
16814 iocp = (struct iocblk *)mp1->b_rptr;
16815 iocp->ioc_count = sizeof (struct lifreq);

16817 lifr = (struct lifreq *)mp2->b_rptr;
16818 mp2->b_wptr += sizeof (struct lifreq);
16819 bzero(lifr, sizeof (struct lifreq));

16821 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16822 lifr->lifr_ppa = ill->ill_ppa;
16823 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));

16825 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",

new/usr/src/uts/common/inet/ip/ip_if.c 256

16826 char *, "SIOCSLIFNAME", ill_t *, ill);
16827 putnext(q, mp1);
16828 }

16830 static int
16831 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16832 {
16833 int err;
16834 ip_stack_t *ipst = ill->ill_ipst;
16835 phyint_t *phyi = ill->ill_phyint;

16837 /*
16838 * Now that ill_name is set, the configuration for the IPMP
16839 * meta-interface can be performed.
16840 */
16841 if (IS_IPMP(ill)) {
16842 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16843 /*
16844 * If phyi->phyint_grp is NULL, then this is the first IPMP
16845 * meta-interface and we need to create the IPMP group.
16846 */
16847 if (phyi->phyint_grp == NULL) {
16848 /*
16849 * If someone has renamed another IPMP group to have
16850 * the same name as our interface, bail.
16851 */
16852 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16853 rw_exit(&ipst->ips_ipmp_lock);
16854 return (EEXIST);
16855 }
16856 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16857 if (phyi->phyint_grp == NULL) {
16858 rw_exit(&ipst->ips_ipmp_lock);
16859 return (ENOMEM);
16860 }
16861 }
16862 rw_exit(&ipst->ips_ipmp_lock);
16863 }

16865 /* Tell downstream modules where they are. */
16866 ip_ifname_notify(ill, q);

16868 /*
16869 * ill_dl_phys returns EINPROGRESS in the usual case.
16870 * Error cases are ENOMEM ...
16871 */
16872 err = ill_dl_phys(ill, ipif, mp, q);

16874 if (ill->ill_isv6) {
16875 mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16876 if (ipst->ips_mld_slowtimeout_id == 0) {
16877 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16878 (void *)ipst,
16879 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16880 }
16881 mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16882 } else {
16883 mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16884 if (ipst->ips_igmp_slowtimeout_id == 0) {
16885 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16886 (void *)ipst,
16887 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16888 }
16889 mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16890 }

new/usr/src/uts/common/inet/ip/ip_if.c 257

16892 return (err);
16893 }

16895 /*
16896 * Common routine for ppa and ifname setting. Should be called exclusive.
16897 *
16898 * Returns EINPROGRESS when mp has been consumed by queueing it on
16899 * ipx_pending_mp and the ioctl will complete in ip_rput.
16900 *
16901 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16902 * the new name and new ppa in lifr_name and lifr_ppa respectively.
16903 * For SLIFNAME, we pass these values back to the userland.
16904 */
16905 static int
16906 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16907 {
16908 ill_t *ill;
16909 ipif_t *ipif;
16910 ipsq_t *ipsq;
16911 char *ppa_ptr;
16912 char *old_ptr;
16913 char old_char;
16914 int error;
16915 ip_stack_t *ipst;

16917 ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16918 ASSERT(q->q_next != NULL);
16919 ASSERT(interf_name != NULL);

16921 ill = (ill_t *)q->q_ptr;
16922 ipst = ill->ill_ipst;

16924 ASSERT(ill->ill_ipst != NULL);
16925 ASSERT(ill->ill_name[0] == ’\0’);
16926 ASSERT(IAM_WRITER_ILL(ill));
16927 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16928 ASSERT(ill->ill_ppa == UINT_MAX);

16930 ill->ill_defend_start = ill->ill_defend_count = 0;
16931 /* The ppa is sent down by ifconfig or is chosen */
16932 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16933 return (EINVAL);
16934 }

16936 /*
16937 * make sure ppa passed in is same as ppa in the name.
16938 * This check is not made when ppa == UINT_MAX in that case ppa
16939 * in the name could be anything. System will choose a ppa and
16940 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16941 */
16942 if (*new_ppa_ptr != UINT_MAX) {
16943 /* stoi changes the pointer */
16944 old_ptr = ppa_ptr;
16945 /*
16946 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16947 * (they don’t have an externally visible ppa). We assign one
16948 * here so that we can manage the interface. Note that in
16949 * the past this value was always 0 for DLPI 1 drivers.
16950 */
16951 if (*new_ppa_ptr == 0)
16952 *new_ppa_ptr = stoi(&old_ptr);
16953 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16954 return (EINVAL);
16955 }
16956 /*
16957 * terminate string before ppa

new/usr/src/uts/common/inet/ip/ip_if.c 258

16958 * save char at that location.
16959 */
16960 old_char = ppa_ptr[0];
16961 ppa_ptr[0] = ’\0’;

16963 ill->ill_ppa = *new_ppa_ptr;
16964 /*
16965 * Finish as much work now as possible before calling ill_glist_insert
16966 * which makes the ill globally visible and also merges it with the
16967 * other protocol instance of this phyint. The remaining work is
16968 * done after entering the ipsq which may happen sometime later.
16969 */
16970 ipif = ill->ill_ipif;

16972 /* We didn’t do this when we allocated ipif in ip_ll_subnet_defaults */
16973 ipif_assign_seqid(ipif);

16975 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16976 ill->ill_flags |= ILLF_IPV4;

16978 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */
16979 ASSERT((ipif->ipif_flags & IPIF_UP) == 0);

16981 if (ill->ill_flags & ILLF_IPV6) {

16983 ill->ill_isv6 = B_TRUE;
16984 ill_set_inputfn(ill);
16985 if (ill->ill_rq != NULL) {
16986 ill->ill_rq->q_qinfo = &iprinitv6;
16987 }

16989 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16990 ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16991 ipif->ipif_v6subnet = ipv6_all_zeros;
16992 ipif->ipif_v6net_mask = ipv6_all_zeros;
16993 ipif->ipif_v6brd_addr = ipv6_all_zeros;
16994 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16995 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16996 /*
16997 * point-to-point or Non-mulicast capable
16998 * interfaces won’t do NUD unless explicitly
16999 * configured to do so.
17000 */
17001 if (ipif->ipif_flags & IPIF_POINTOPOINT ||
17002 !(ill->ill_flags & ILLF_MULTICAST)) {
17003 ill->ill_flags |= ILLF_NONUD;
17004 }
17005 /* Make sure IPv4 specific flag is not set on IPv6 if */
17006 if (ill->ill_flags & ILLF_NOARP) {
17007 /*
17008 * Note: xresolv interfaces will eventually need
17009 * NOARP set here as well, but that will require
17010 * those external resolvers to have some
17011 * knowledge of that flag and act appropriately.
17012 * Not to be changed at present.
17013 */
17014 ill->ill_flags &= ~ILLF_NOARP;
17015 }
17016 /*
17017 * Set the ILLF_ROUTER flag according to the global
17018 * IPv6 forwarding policy.
17019 */
17020 if (ipst->ips_ipv6_forwarding != 0)
17021 ill->ill_flags |= ILLF_ROUTER;
17022 } else if (ill->ill_flags & ILLF_IPV4) {
17023 ill->ill_isv6 = B_FALSE;

new/usr/src/uts/common/inet/ip/ip_if.c 259

17024 ill_set_inputfn(ill);
17025 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
17026 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
17027 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
17028 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
17029 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
17030 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
17031 /*
17032 * Set the ILLF_ROUTER flag according to the global
17033 * IPv4 forwarding policy.
17034 */
17035 if (ipst->ips_ip_forwarding != 0)
17036 ill->ill_flags |= ILLF_ROUTER;
17037 }

17039 ASSERT(ill->ill_phyint != NULL);

17041 /*
17042 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
17043 * be completed in ill_glist_insert -> ill_phyint_reinit
17044 */
17045 if (!ill_allocate_mibs(ill))
17046 return (ENOMEM);

17048 /*
17049 * Pick a default sap until we get the DL_INFO_ACK back from
17050 * the driver.
17051 */
17052 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
17053 ill->ill_media->ip_m_ipv4sap;

17055 ill->ill_ifname_pending = 1;
17056 ill->ill_ifname_pending_err = 0;

17058 /*
17059 * When the first ipif comes up in ipif_up_done(), multicast groups
17060 * that were joined while this ill was not bound to the DLPI link need
17061 * to be recovered by ill_recover_multicast().
17062 */
17063 ill->ill_need_recover_multicast = 1;

17065 ill_refhold(ill);
17066 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17067 if ((error = ill_glist_insert(ill, interf_name,
17068 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
17069 ill->ill_ppa = UINT_MAX;
17070 ill->ill_name[0] = ’\0’;
17071 /*
17072 * undo null termination done above.
17073 */
17074 ppa_ptr[0] = old_char;
17075 rw_exit(&ipst->ips_ill_g_lock);
17076 ill_refrele(ill);
17077 return (error);
17078 }

17080 ASSERT(ill->ill_name_length <= LIFNAMSIZ);

17082 /*
17083 * When we return the buffer pointed to by interf_name should contain
17084 * the same name as in ill_name.
17085 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
17086 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
17087 * so copy full name and update the ppa ptr.
17088 * When ppa passed in != UINT_MAX all values are correct just undo
17089 * null termination, this saves a bcopy.

new/usr/src/uts/common/inet/ip/ip_if.c 260

17090 */
17091 if (*new_ppa_ptr == UINT_MAX) {
17092 bcopy(ill->ill_name, interf_name, ill->ill_name_length);
17093 *new_ppa_ptr = ill->ill_ppa;
17094 } else {
17095 /*
17096 * undo null termination done above.
17097 */
17098 ppa_ptr[0] = old_char;
17099 }

17101 /* Let SCTP know about this ILL */
17102 sctp_update_ill(ill, SCTP_ILL_INSERT);

17104 /*
17105 * ill_glist_insert has made the ill visible globally, and
17106 * ill_phyint_reinit could have changed the ipsq. At this point,
17107 * we need to hold the ips_ill_g_lock across the call to enter the
17108 * ipsq to enforce atomicity and prevent reordering. In the event
17109 * the ipsq has changed, and if the new ipsq is currently busy,
17110 * we need to make sure that this half-completed ioctl is ahead of
17111 * any subsequent ioctl. We achieve this by not dropping the
17112 * ips_ill_g_lock which prevents any ill lookup itself thereby
17113 * ensuring that new ioctls can’t start.
17114 */
17115 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
17116 B_TRUE);

17118 rw_exit(&ipst->ips_ill_g_lock);
17119 ill_refrele(ill);
17120 if (ipsq == NULL)
17121 return (EINPROGRESS);

17123 /*
17124 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
17125 */
17126 if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
17127 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
17128 else
17129 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);

17131 error = ipif_set_values_tail(ill, ipif, mp, q);
17132 ipsq_exit(ipsq);
17133 if (error != 0 && error != EINPROGRESS) {
17134 /*
17135 * restore previous values
17136 */
17137 ill->ill_isv6 = B_FALSE;
17138 ill_set_inputfn(ill);
17139 }
17140 return (error);
17141 }

17143 void
17144 ipif_init(ip_stack_t *ipst)
17145 {
17146 int i;

17148 for (i = 0; i < MAX_G_HEADS; i++) {
17149 ipst->ips_ill_g_heads[i].ill_g_list_head =
17150 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17151 ipst->ips_ill_g_heads[i].ill_g_list_tail =
17152 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17153 }

17155 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,

new/usr/src/uts/common/inet/ip/ip_if.c 261

17156 ill_phyint_compare_index,
17157 sizeof (phyint_t),
17158 offsetof(struct phyint, phyint_avl_by_index));
17159 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17160 ill_phyint_compare_name,
17161 sizeof (phyint_t),
17162 offsetof(struct phyint, phyint_avl_by_name));
17163 }

17165 /*
17166 * Save enough information so that we can recreate the IRE if
17167 * the interface goes down and then up.
17168 */
17169 void
17170 ill_save_ire(ill_t *ill, ire_t *ire)
17171 {
17172 mblk_t *save_mp;

17174 save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
17175 if (save_mp != NULL) {
17176 ifrt_t *ifrt;

17178 save_mp->b_wptr += sizeof (ifrt_t);
17179 ifrt = (ifrt_t *)save_mp->b_rptr;
17180 bzero(ifrt, sizeof (ifrt_t));
17181 ifrt->ifrt_type = ire->ire_type;
17182 if (ire->ire_ipversion == IPV4_VERSION) {
17183 ASSERT(!ill->ill_isv6);
17184 ifrt->ifrt_addr = ire->ire_addr;
17185 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
17186 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
17187 ifrt->ifrt_mask = ire->ire_mask;
17188 } else {
17189 ASSERT(ill->ill_isv6);
17190 ifrt->ifrt_v6addr = ire->ire_addr_v6;
17191 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */
17192 mutex_enter(&ire->ire_lock);
17193 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
17194 mutex_exit(&ire->ire_lock);
17195 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
17196 ifrt->ifrt_v6mask = ire->ire_mask_v6;
17197 }
17198 ifrt->ifrt_flags = ire->ire_flags;
17199 ifrt->ifrt_zoneid = ire->ire_zoneid;
17200 mutex_enter(&ill->ill_saved_ire_lock);
17201 save_mp->b_cont = ill->ill_saved_ire_mp;
17202 ill->ill_saved_ire_mp = save_mp;
17203 ill->ill_saved_ire_cnt++;
17204 mutex_exit(&ill->ill_saved_ire_lock);
17205 }
17206 }

17208 /*
17209 * Remove one entry from ill_saved_ire_mp.
17210 */
17211 void
17212 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
17213 {
17214 mblk_t **mpp;
17215 mblk_t *mp;
17216 ifrt_t *ifrt;

17218 /* Remove from ill_saved_ire_mp list if it is there */
17219 mutex_enter(&ill->ill_saved_ire_lock);
17220 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
17221 mpp = &(*mpp)->b_cont) {

new/usr/src/uts/common/inet/ip/ip_if.c 262

17222 in6_addr_t gw_addr_v6;

17224 /*
17225 * On a given ill, the tuple of address, gateway, mask,
17226 * ire_type, and zoneid is unique for each saved IRE.
17227 */
17228 mp = *mpp;
17229 ifrt = (ifrt_t *)mp->b_rptr;
17230 /* ire_gateway_addr_v6 can change - need lock */
17231 mutex_enter(&ire->ire_lock);
17232 gw_addr_v6 = ire->ire_gateway_addr_v6;
17233 mutex_exit(&ire->ire_lock);

17235 if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
17236 ifrt->ifrt_type != ire->ire_type)
17237 continue;

17239 if (ill->ill_isv6 ?
17240 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
17241 &ire->ire_addr_v6) &&
17242 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
17243 &gw_addr_v6) &&
17244 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
17245 &ire->ire_mask_v6)) :
17246 (ifrt->ifrt_addr == ire->ire_addr &&
17247 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
17248 ifrt->ifrt_mask == ire->ire_mask)) {
17249 *mpp = mp->b_cont;
17250 ill->ill_saved_ire_cnt--;
17251 freeb(mp);
17252 break;
17253 }
17254 }
17255 mutex_exit(&ill->ill_saved_ire_lock);
17256 }

17258 /*
17259 * IP multirouting broadcast routes handling
17260 * Append CGTP broadcast IREs to regular ones created
17261 * at ifconfig time.
17262 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
17263 * the destination and the gateway are broadcast addresses.
17264 * The caller has verified that the destination is an IRE_BROADCAST and that
17265 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
17266 * we create a MULTIRT IRE_BROADCAST.
17267 * Note that the IRE_HOST created by ire_rt_add doesn’t get found by anything
17268 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
17269 */
17270 static void
17271 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
17272 {
17273 ire_t *ire_prim;

17275 ASSERT(ire != NULL);

17277 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17278 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
17279 NULL);
17280 if (ire_prim != NULL) {
17281 /*
17282 * We are in the special case of broadcasts for
17283 * CGTP. We add an IRE_BROADCAST that holds
17284 * the RTF_MULTIRT flag, the destination
17285 * address and the low level
17286 * info of ire_prim. In other words, CGTP
17287 * broadcast is added to the redundant ipif.

new/usr/src/uts/common/inet/ip/ip_if.c 263

17288 */
17289 ill_t *ill_prim;
17290 ire_t *bcast_ire;

17292 ill_prim = ire_prim->ire_ill;

17294 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
17295 (void *)ire_prim, (void *)ill_prim));

17297 bcast_ire = ire_create(
17298 (uchar_t *)&ire->ire_addr,
17299 (uchar_t *)&ip_g_all_ones,
17300 (uchar_t *)&ire->ire_gateway_addr,
17301 IRE_BROADCAST,
17302 ill_prim,
17303 GLOBAL_ZONEID, /* CGTP is only for the global zone */
17304 ire->ire_flags | RTF_KERNEL,
17305 NULL,
17306 ipst);

17308 /*
17309 * Here we assume that ire_add does head insertion so that
17310 * the added IRE_BROADCAST comes before the existing IRE_HOST.
17311 */
17312 if (bcast_ire != NULL) {
17313 if (ire->ire_flags & RTF_SETSRC) {
17314 bcast_ire->ire_setsrc_addr =
17315 ire->ire_setsrc_addr;
17316 }
17317 bcast_ire = ire_add(bcast_ire);
17318 if (bcast_ire != NULL) {
17319 ip2dbg(("ip_cgtp_filter_bcast_add: "
17320 "added bcast_ire %p\n",
17321 (void *)bcast_ire));

17323 ill_save_ire(ill_prim, bcast_ire);
17324 ire_refrele(bcast_ire);
17325 }
17326 }
17327 ire_refrele(ire_prim);
17328 }
17329 }

17331 /*
17332 * IP multirouting broadcast routes handling
17333 * Remove the broadcast ire.
17334 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
17335 * the destination and the gateway are broadcast addresses.
17336 * The caller has only verified that RTF_MULTIRT was set. We check
17337 * that the destination is broadcast and that the gateway is a broadcast
17338 * address, and if so delete the IRE added by ip_cgtp_bcast_add().
17339 */
17340 static void
17341 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
17342 {
17343 ASSERT(ire != NULL);

17345 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
17346 ire_t *ire_prim;

17348 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17349 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
17350 ipst, NULL);
17351 if (ire_prim != NULL) {
17352 ill_t *ill_prim;
17353 ire_t *bcast_ire;

new/usr/src/uts/common/inet/ip/ip_if.c 264

17355 ill_prim = ire_prim->ire_ill;

17357 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17358 "ire_prim %p, ill_prim %p\n",
17359 (void *)ire_prim, (void *)ill_prim));

17361 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
17362 ire->ire_gateway_addr, IRE_BROADCAST,
17363 ill_prim, ALL_ZONES, NULL,
17364 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
17365 MATCH_IRE_MASK, 0, ipst, NULL);

17367 if (bcast_ire != NULL) {
17368 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17369 "looked up bcast_ire %p\n",
17370 (void *)bcast_ire));
17371 ill_remove_saved_ire(bcast_ire->ire_ill,
17372 bcast_ire);
17373 ire_delete(bcast_ire);
17374 ire_refrele(bcast_ire);
17375 }
17376 ire_refrele(ire_prim);
17377 }
17378 }
17379 }

17381 /*
17382 * Derive an interface id from the link layer address.
17383 * Knows about IEEE 802 and IEEE EUI-64 mappings.
17384 */
17385 static void
17386 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17387 {
17388 char *addr;

17390 /*
17391 * Note that some IPv6 interfaces get plumbed over links that claim to
17392 * be DL_ETHER, but don’t actually have Ethernet MAC addresses (e.g.
17393 * PPP links). The ETHERADDRL check here ensures that we only set the
17394 * interface ID on IPv6 interfaces above links that actually have real
17395 * Ethernet addresses.
17396 */
17397 if (ill->ill_phys_addr_length == ETHERADDRL) {
17398 /* Form EUI-64 like address */
17399 addr = (char *)&v6addr->s6_addr32[2];
17400 bcopy(ill->ill_phys_addr, addr, 3);
17401 addr[0] ^= 0x2; /* Toggle Universal/Local bit */
17402 addr[3] = (char)0xff;
17403 addr[4] = (char)0xfe;
17404 bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
17405 }
17406 }

17408 /* ARGSUSED */
17409 static void
17410 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17411 {
17412 }

17414 typedef struct ipmp_ifcookie {
17415 uint32_t ic_hostid;
17416 char ic_ifname[LIFNAMSIZ];
17417 char ic_zonename[ZONENAME_MAX];
17418 } ipmp_ifcookie_t;

new/usr/src/uts/common/inet/ip/ip_if.c 265

17420 /*
17421 * Construct a pseudo-random interface ID for the IPMP interface that’s both
17422 * predictable and (almost) guaranteed to be unique.
17423 */
17424 static void
17425 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17426 {
17427 zone_t *zp;
17428 uint8_t *addr;
17429 uchar_t hash[16];
17430 ulong_t hostid;
17431 MD5_CTX ctx;
17432 ipmp_ifcookie_t ic = { 0 };

17434 ASSERT(IS_IPMP(ill));

17436 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
17437 ic.ic_hostid = htonl((uint32_t)hostid);

17439 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);

17441 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
17442 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
17443 zone_rele(zp);
17444 }

17446 MD5Init(&ctx);
17447 MD5Update(&ctx, &ic, sizeof (ic));
17448 MD5Final(hash, &ctx);

17450 /*
17451 * Map the hash to an interface ID per the basic approach in RFC3041.
17452 */
17453 addr = &v6addr->s6_addr8[8];
17454 bcopy(hash + 8, addr, sizeof (uint64_t));
17455 addr[0] &= ~0x2; /* set local bit */
17456 }

17458 /*
17459 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
17460 */
17461 static void
17462 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
17463 {
17464 phyint_t *phyi = ill->ill_phyint;

17466 /*
17467 * Check PHYI_MULTI_BCAST and length of physical
17468 * address to determine if we use the mapping or the
17469 * broadcast address.
17470 */
17471 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17472 ill->ill_phys_addr_length != ETHERADDRL) {
17473 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17474 return;
17475 }
17476 m_physaddr[0] = 0x33;
17477 m_physaddr[1] = 0x33;
17478 m_physaddr[2] = m_ip6addr[12];
17479 m_physaddr[3] = m_ip6addr[13];
17480 m_physaddr[4] = m_ip6addr[14];
17481 m_physaddr[5] = m_ip6addr[15];
17482 }

17484 /*
17485 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.

new/usr/src/uts/common/inet/ip/ip_if.c 266

17486 */
17487 static void
17488 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17489 {
17490 phyint_t *phyi = ill->ill_phyint;

17492 /*
17493 * Check PHYI_MULTI_BCAST and length of physical
17494 * address to determine if we use the mapping or the
17495 * broadcast address.
17496 */
17497 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17498 ill->ill_phys_addr_length != ETHERADDRL) {
17499 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17500 return;
17501 }
17502 m_physaddr[0] = 0x01;
17503 m_physaddr[1] = 0x00;
17504 m_physaddr[2] = 0x5e;
17505 m_physaddr[3] = m_ipaddr[1] & 0x7f;
17506 m_physaddr[4] = m_ipaddr[2];
17507 m_physaddr[5] = m_ipaddr[3];
17508 }

17510 /* ARGSUSED */
17511 static void
17512 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17513 {
17514 /*
17515 * for the MULTI_BCAST case and other cases when we want to
17516 * use the link-layer broadcast address for multicast.
17517 */
17518 uint8_t *bphys_addr;
17519 dl_unitdata_req_t *dlur;

17521 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17522 if (ill->ill_sap_length < 0) {
17523 bphys_addr = (uchar_t *)dlur +
17524 dlur->dl_dest_addr_offset;
17525 } else {
17526 bphys_addr = (uchar_t *)dlur +
17527 dlur->dl_dest_addr_offset + ill->ill_sap_length;
17528 }

17530 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17531 }

17533 /*
17534 * Derive IPoIB interface id from the link layer address.
17535 */
17536 static void
17537 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17538 {
17539 char *addr;

17541 ASSERT(ill->ill_phys_addr_length == 20);
17542 addr = (char *)&v6addr->s6_addr32[2];
17543 bcopy(ill->ill_phys_addr + 12, addr, 8);
17544 /*
17545 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17546 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17547 * rules. In these cases, the IBA considers these GUIDs to be in
17548 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17549 * required; vendors are required not to assign global EUI-64’s
17550 * that differ only in u/l bit values, thus guaranteeing uniqueness
17551 * of the interface identifier. Whether the GUID is in modified

new/usr/src/uts/common/inet/ip/ip_if.c 267

17552 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17553 * bit set to 1.
17554 */
17555 addr[0] |= 2; /* Set Universal/Local bit to 1 */
17556 }

17558 /*
17559 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17560 * Note on mapping from multicast IP addresses to IPoIB multicast link
17561 * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17562 * The format of an IPoIB multicast address is:
17563 *
17564 * 4 byte QPN Scope Sign. Pkey
17565 * +--+
17566 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17567 * +--+
17568 *
17569 * The Scope and Pkey components are properties of the IBA port and
17570 * network interface. They can be ascertained from the broadcast address.
17571 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17572 */
17573 static void
17574 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17575 {
17576 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17577 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17578 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17579 uint8_t *bphys_addr;
17580 dl_unitdata_req_t *dlur;

17582 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);

17584 /*
17585 * RFC 4391: IPv4 MGID is 28-bit long.
17586 */
17587 m_physaddr[16] = m_ipaddr[0] & 0x0f;
17588 m_physaddr[17] = m_ipaddr[1];
17589 m_physaddr[18] = m_ipaddr[2];
17590 m_physaddr[19] = m_ipaddr[3];

17593 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17594 if (ill->ill_sap_length < 0) {
17595 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17596 } else {
17597 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17598 ill->ill_sap_length;
17599 }
17600 /*
17601 * Now fill in the IBA scope/Pkey values from the broadcast address.
17602 */
17603 m_physaddr[5] = bphys_addr[5];
17604 m_physaddr[8] = bphys_addr[8];
17605 m_physaddr[9] = bphys_addr[9];
17606 }

17608 static void
17609 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17610 {
17611 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17612 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17613 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17614 uint8_t *bphys_addr;
17615 dl_unitdata_req_t *dlur;

17617 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);

new/usr/src/uts/common/inet/ip/ip_if.c 268

17619 /*
17620 * RFC 4391: IPv4 MGID is 80-bit long.
17621 */
17622 bcopy(&m_ipaddr[6], &m_physaddr[10], 10);

17624 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17625 if (ill->ill_sap_length < 0) {
17626 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17627 } else {
17628 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17629 ill->ill_sap_length;
17630 }
17631 /*
17632 * Now fill in the IBA scope/Pkey values from the broadcast address.
17633 */
17634 m_physaddr[5] = bphys_addr[5];
17635 m_physaddr[8] = bphys_addr[8];
17636 m_physaddr[9] = bphys_addr[9];
17637 }

17639 /*
17640 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17641 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the
17642 * IPv6 interface id. This is a suggested mechanism described in section 3.7
17643 * of RFC4213.
17644 */
17645 static void
17646 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17647 {
17648 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17649 v6addr->s6_addr32[2] = 0;
17650 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17651 }

17653 /*
17654 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17655 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface
17656 * id.
17657 */
17658 static void
17659 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17660 {
17661 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;

17663 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17664 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17665 }

17667 static void
17668 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17669 {
17670 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17671 }

17673 static void
17674 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17675 {
17676 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17677 }

17679 static void
17680 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17681 {
17682 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17683 }

new/usr/src/uts/common/inet/ip/ip_if.c 269

17685 static void
17686 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17687 {
17688 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17689 }

17691 /*
17692 * Lookup an ill and verify that the zoneid has an ipif on that ill.
17693 * Returns an held ill, or NULL.
17694 */
17695 ill_t *
17696 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17697 ip_stack_t *ipst)
17698 {
17699 ill_t *ill;
17700 ipif_t *ipif;

17702 ill = ill_lookup_on_ifindex(index, isv6, ipst);
17703 if (ill == NULL)
17704 return (NULL);

17706 mutex_enter(&ill->ill_lock);
17707 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17708 if (IPIF_IS_CONDEMNED(ipif))
17709 continue;
17710 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17711 ipif->ipif_zoneid != ALL_ZONES)
17712 continue;

17714 mutex_exit(&ill->ill_lock);
17715 return (ill);
17716 }
17717 mutex_exit(&ill->ill_lock);
17718 ill_refrele(ill);
17719 return (NULL);
17720 }

17722 /*
17723 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17724 * If a pointer to an ipif_t is returned then the caller will need to do
17725 * an ill_refrele().
17726 */
17727 ipif_t *
17728 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17729 ip_stack_t *ipst)
17730 {
17731 ipif_t *ipif;
17732 ill_t *ill;

17734 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17735 if (ill == NULL)
17736 return (NULL);

17738 mutex_enter(&ill->ill_lock);
17739 if (ill->ill_state_flags & ILL_CONDEMNED) {
17740 mutex_exit(&ill->ill_lock);
17741 ill_refrele(ill);
17742 return (NULL);
17743 }

17745 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17746 if (!IPIF_CAN_LOOKUP(ipif))
17747 continue;
17748 if (lifidx == ipif->ipif_id) {
17749 ipif_refhold_locked(ipif);

new/usr/src/uts/common/inet/ip/ip_if.c 270

17750 break;
17751 }
17752 }

17754 mutex_exit(&ill->ill_lock);
17755 ill_refrele(ill);
17756 return (ipif);
17757 }

17759 /*
17760 * Set ill_inputfn based on the current know state.
17761 * This needs to be called when any of the factors taken into
17762 * account changes.
17763 */
17764 void
17765 ill_set_inputfn(ill_t *ill)
17766 {
17767 ip_stack_t *ipst = ill->ill_ipst;

17769 if (ill->ill_isv6) {
17770 if (is_system_labeled())
17771 ill->ill_inputfn = ill_input_full_v6;
17772 else
17773 ill->ill_inputfn = ill_input_short_v6;
17774 } else {
17775 if (is_system_labeled())
17776 ill->ill_inputfn = ill_input_full_v4;
17777 else if (ill->ill_dhcpinit != 0)
17778 ill->ill_inputfn = ill_input_full_v4;
17779 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17780 != NULL)
17781 ill->ill_inputfn = ill_input_full_v4;
17782 else if (ipst->ips_ip_cgtp_filter &&
17783 ipst->ips_ip_cgtp_filter_ops != NULL)
17784 ill->ill_inputfn = ill_input_full_v4;
17785 else
17786 ill->ill_inputfn = ill_input_short_v4;
17787 }
17788 }

17790 /*
17791 * Re-evaluate ill_inputfn for all the IPv4 ills.
17792 * Used when RSVP and CGTP comes and goes.
17793 */
17794 void
17795 ill_set_inputfn_all(ip_stack_t *ipst)
17796 {
17797 ill_walk_context_t ctx;
17798 ill_t *ill;

17800 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17801 ill = ILL_START_WALK_V4(&ctx, ipst);
17802 for (; ill != NULL; ill = ill_next(&ctx, ill))
17803 ill_set_inputfn(ill);

17805 rw_exit(&ipst->ips_ill_g_lock);
17806 }

17808 /*
17809 * Set the physical address information for ‘ill’ to the contents of the
17810 * dl_notify_ind_t pointed to by ‘mp’. Must be called as writer, and will be
17811 * asynchronous if ‘ill’ cannot immediately be quiesced -- in which case
17812 * EINPROGRESS will be returned.
17813 */
17814 int
17815 ill_set_phys_addr(ill_t *ill, mblk_t *mp)

new/usr/src/uts/common/inet/ip/ip_if.c 271

17816 {
17817 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17818 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr;

17820 ASSERT(IAM_WRITER_IPSQ(ipsq));

17822 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17823 dlindp->dl_data != DL_CURR_DEST_ADDR &&
17824 dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17825 /* Changing DL_IPV6_TOKEN is not yet supported */
17826 return (0);
17827 }

17829 /*
17830 * We need to store up to two copies of ‘mp’ in ‘ill’. Due to the
17831 * design of ipsq_pending_mp_add(), we can’t pass them as separate
17832 * arguments to ill_set_phys_addr_tail(). Instead, chain them
17833 * together here, then pull ’em apart in ill_set_phys_addr_tail().
17834 */
17835 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17836 freemsg(mp);
17837 return (ENOMEM);
17838 }

17840 ipsq_current_start(ipsq, ill->ill_ipif, 0);

17842 /*
17843 * Since we’ll only do a logical down, we can’t rely on ipif_down
17844 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset
17845 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this
17846 * case, to quiesce ire’s and nce’s for ill_is_quiescent.
17847 */
17848 mutex_enter(&ill->ill_lock);
17849 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17850 /* no more ire/nce addition allowed */
17851 mutex_exit(&ill->ill_lock);

17853 /*
17854 * If we can quiesce the ill, then set the address. If not, then
17855 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17856 */
17857 ill_down_ipifs(ill, B_TRUE);
17858 mutex_enter(&ill->ill_lock);
17859 if (!ill_is_quiescent(ill)) {
17860 /* call cannot fail since ‘conn_t *’ argument is NULL */
17861 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17862 mp, ILL_DOWN);
17863 mutex_exit(&ill->ill_lock);
17864 return (EINPROGRESS);
17865 }
17866 mutex_exit(&ill->ill_lock);

17868 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17869 return (0);
17870 }

17872 /*
17873 * When the allowed-ips link property is set on the datalink, IP receives a
17874 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips()
17875 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then
17876 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the
17877 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[]
17878 * array.
17879 */
17880 void
17881 ill_set_allowed_ips(ill_t *ill, mblk_t *mp)

new/usr/src/uts/common/inet/ip/ip_if.c 272

17882 {
17883 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17884 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr;
17885 mac_protect_t *mrp;
17886 int i;

17888 ASSERT(IAM_WRITER_IPSQ(ipsq));
17889 mrp = (mac_protect_t *)&dlip[1];

17891 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */
17892 kmem_free(ill->ill_allowed_ips,
17893 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17894 ill->ill_allowed_ips_cnt = 0;
17895 ill->ill_allowed_ips = NULL;
17896 mutex_enter(&ill->ill_phyint->phyint_lock);
17897 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT;
17898 mutex_exit(&ill->ill_phyint->phyint_lock);
17899 return;
17900 }

17902 if (ill->ill_allowed_ips != NULL) {
17903 kmem_free(ill->ill_allowed_ips,
17904 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17905 }
17906 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt;
17907 ill->ill_allowed_ips = kmem_alloc(
17908 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP);
17909 for (i = 0; i < mrp->mp_ipaddrcnt; i++)
17910 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr;

17912 mutex_enter(&ill->ill_phyint->phyint_lock);
17913 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT;
17914 mutex_exit(&ill->ill_phyint->phyint_lock);
17915 }

17917 /*
17918 * Once the ill associated with ‘q’ has quiesced, set its physical address
17919 * information to the values in ‘addrmp’. Note that two copies of ‘addrmp’
17920 * are passed (linked by b_cont), since we sometimes need to save two distinct
17921 * copies in the ill_t, and our context doesn’t permit sleeping or allocation
17922 * failure (we’ll free the other copy if it’s not needed). Since the ill_t
17923 * is quiesced, we know any stale nce’s with the old address information have
17924 * already been removed, so we don’t need to call nce_flush().
17925 */
17926 /* ARGSUSED */
17927 static void
17928 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17929 {
17930 ill_t *ill = q->q_ptr;
17931 mblk_t *addrmp2 = unlinkb(addrmp);
17932 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17933 uint_t addrlen, addroff;
17934 int status;

17936 ASSERT(IAM_WRITER_IPSQ(ipsq));

17938 addroff = dlindp->dl_addr_offset;
17939 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);

17941 switch (dlindp->dl_data) {
17942 case DL_IPV6_LINK_LAYER_ADDR:
17943 ill_set_ndmp(ill, addrmp, addroff, addrlen);
17944 freemsg(addrmp2);
17945 break;

17947 case DL_CURR_DEST_ADDR:

new/usr/src/uts/common/inet/ip/ip_if.c 273

17948 freemsg(ill->ill_dest_addr_mp);
17949 ill->ill_dest_addr = addrmp->b_rptr + addroff;
17950 ill->ill_dest_addr_mp = addrmp;
17951 if (ill->ill_isv6) {
17952 ill_setdesttoken(ill);
17953 ipif_setdestlinklocal(ill->ill_ipif);
17954 }
17955 freemsg(addrmp2);
17956 break;

17958 case DL_CURR_PHYS_ADDR:
17959 freemsg(ill->ill_phys_addr_mp);
17960 ill->ill_phys_addr = addrmp->b_rptr + addroff;
17961 ill->ill_phys_addr_mp = addrmp;
17962 ill->ill_phys_addr_length = addrlen;
17963 if (ill->ill_isv6)
17964 ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17965 else
17966 freemsg(addrmp2);
17967 if (ill->ill_isv6) {
17968 ill_setdefaulttoken(ill);
17969 ipif_setlinklocal(ill->ill_ipif);
17970 }
17971 break;
17972 default:
17973 ASSERT(0);
17974 }

17976 /*
17977 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires
17978 * as we bring the ipifs up again.
17979 */
17980 mutex_enter(&ill->ill_lock);
17981 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17982 mutex_exit(&ill->ill_lock);
17983 /*
17984 * If there are ipifs to bring up, ill_up_ipifs() will return
17985 * EINPROGRESS, and ipsq_current_finish() will be called by
17986 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17987 * brought up.
17988 */
17989 status = ill_up_ipifs(ill, q, addrmp);
17990 if (status != EINPROGRESS)
17991 ipsq_current_finish(ipsq);
17992 }

17994 /*
17995 * Helper routine for setting the ill_nd_lla fields.
17996 */
17997 void
17998 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17999 {
18000 freemsg(ill->ill_nd_lla_mp);
18001 ill->ill_nd_lla = ndmp->b_rptr + addroff;
18002 ill->ill_nd_lla_mp = ndmp;
18003 ill->ill_nd_lla_len = addrlen;
18004 }

18006 /*
18007 * Replumb the ill.
18008 */
18009 int
18010 ill_replumb(ill_t *ill, mblk_t *mp)
18011 {
18012 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;

new/usr/src/uts/common/inet/ip/ip_if.c 274

18014 ASSERT(IAM_WRITER_IPSQ(ipsq));

18016 ipsq_current_start(ipsq, ill->ill_ipif, 0);

18018 /*
18019 * If we can quiesce the ill, then continue. If not, then
18020 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
18021 */
18022 ill_down_ipifs(ill, B_FALSE);

18024 mutex_enter(&ill->ill_lock);
18025 if (!ill_is_quiescent(ill)) {
18026 /* call cannot fail since ‘conn_t *’ argument is NULL */
18027 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
18028 mp, ILL_DOWN);
18029 mutex_exit(&ill->ill_lock);
18030 return (EINPROGRESS);
18031 }
18032 mutex_exit(&ill->ill_lock);

18034 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
18035 return (0);
18036 }

18038 /* ARGSUSED */
18039 static void
18040 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
18041 {
18042 ill_t *ill = q->q_ptr;
18043 int err;
18044 conn_t *connp = NULL;

18046 ASSERT(IAM_WRITER_IPSQ(ipsq));
18047 freemsg(ill->ill_replumb_mp);
18048 ill->ill_replumb_mp = copyb(mp);

18050 if (ill->ill_replumb_mp == NULL) {
18051 /* out of memory */
18052 ipsq_current_finish(ipsq);
18053 return;
18054 }

18056 mutex_enter(&ill->ill_lock);
18057 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
18058 ill->ill_rq, ill->ill_replumb_mp, 0);
18059 mutex_exit(&ill->ill_lock);

18061 if (!ill->ill_up_ipifs) {
18062 /* already closing */
18063 ipsq_current_finish(ipsq);
18064 return;
18065 }
18066 ill->ill_replumbing = 1;
18067 err = ill_down_ipifs_tail(ill);

18069 /*
18070 * Successfully quiesced and brought down the interface, now we send
18071 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
18072 * DL_NOTE_REPLUMB message.
18073 */
18074 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
18075 DL_NOTIFY_CONF);
18076 ASSERT(mp != NULL);
18077 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
18078 DL_NOTE_REPLUMB_DONE;
18079 ill_dlpi_send(ill, mp);

new/usr/src/uts/common/inet/ip/ip_if.c 275

18081 /*
18082 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
18083 * streams have to be unbound. When all the DLPI exchanges are done,
18084 * ipsq_current_finish() will be called by arp_bringup_done(). The
18085 * remainder of ipif bringup via ill_up_ipifs() will also be done in
18086 * arp_bringup_done().
18087 */
18088 ASSERT(ill->ill_replumb_mp != NULL);
18089 if (err == EINPROGRESS)
18090 return;
18091 else
18092 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
18093 ASSERT(connp == NULL);
18094 if (err == 0 && ill->ill_replumb_mp != NULL &&
18095 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
18096 return;
18097 }
18098 ipsq_current_finish(ipsq);
18099 }

18101 /*
18102 * Issue ioctl ‘cmd’ on ‘lh’; caller provides the initial payload in ‘buf’
18103 * which is ‘bufsize’ bytes. On success, zero is returned and ‘buf’ updated
18104 * as per the ioctl. On failure, an errno is returned.
18105 */
18106 static int
18107 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
18108 {
18109 int rval;
18110 struct strioctl iocb;

18112 iocb.ic_cmd = cmd;
18113 iocb.ic_timout = 15;
18114 iocb.ic_len = bufsize;
18115 iocb.ic_dp = buf;

18117 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
18118 }

18120 /*
18121 * Issue an SIOCGLIFCONF for address family ‘af’ and store the result into a
18122 * dynamically-allocated ‘lifcp’ that will be ‘bufsizep’ bytes on success.
18123 */
18124 static int
18125 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
18126 uint_t *bufsizep, cred_t *cr)
18127 {
18128 int err;
18129 struct lifnum lifn;

18131 bzero(&lifn, sizeof (lifn));
18132 lifn.lifn_family = af;
18133 lifn.lifn_flags = LIFC_UNDER_IPMP;

18135 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
18136 return (err);

18138 /*
18139 * Pad the interface count to account for additional interfaces that
18140 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
18141 */
18142 lifn.lifn_count += 4;
18143 bzero(lifcp, sizeof (*lifcp));
18144 lifcp->lifc_flags = LIFC_UNDER_IPMP;
18145 lifcp->lifc_family = af;

new/usr/src/uts/common/inet/ip/ip_if.c 276

18146 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
18147 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);

18149 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
18150 if (err != 0) {
18151 kmem_free(lifcp->lifc_buf, *bufsizep);
18152 return (err);
18153 }

18155 return (0);
18156 }

18158 /*
18159 * Helper for ip_interface_cleanup() that removes the loopback interface.
18160 */
18161 static void
18162 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18163 {
18164 int err;
18165 struct lifreq lifr;

18167 bzero(&lifr, sizeof (lifr));
18168 (void) strcpy(lifr.lifr_name, ipif_loopback_name);

18170 /*
18171 * Attempt to remove the interface. It may legitimately not exist
18172 * (e.g. the zone administrator unplumbed it), so ignore ENXIO.
18173 */
18174 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
18175 if (err != 0 && err != ENXIO) {
18176 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
18177 "error %d\n", isv6 ? "v6" : "v4", err));
18178 }
18179 }

18181 /*
18182 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
18183 * groups and that IPMP data addresses are down. These conditions must be met
18184 * so that IPMP interfaces can be I_PUNLINK’d, as per ip_sioctl_plink_ipmp().
18185 */
18186 static void
18187 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18188 {
18189 int af = isv6 ? AF_INET6 : AF_INET;
18190 int i, nifs;
18191 int err;
18192 uint_t bufsize;
18193 uint_t lifrsize = sizeof (struct lifreq);
18194 struct lifconf lifc;
18195 struct lifreq *lifrp;

18197 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
18198 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
18199 "(error %d); any IPMP interfaces cannot be shutdown", err);
18200 return;
18201 }

18203 nifs = lifc.lifc_len / lifrsize;
18204 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
18205 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18206 if (err != 0) {
18207 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
18208 "flags: error %d", lifrp->lifr_name, err);
18209 continue;
18210 }

new/usr/src/uts/common/inet/ip/ip_if.c 277

18212 if (lifrp->lifr_flags & IFF_IPMP) {
18213 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
18214 continue;

18216 lifrp->lifr_flags &= ~IFF_UP;
18217 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
18218 if (err != 0) {
18219 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18220 "bring down (error %d); IPMP interface may "
18221 "not be shutdown", lifrp->lifr_name, err);
18222 }

18224 /*
18225 * Check if IFF_DUPLICATE is still set -- and if so,
18226 * reset the address to clear it.
18227 */
18228 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18229 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
18230 continue;

18232 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
18233 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
18234 lifrp, lifrsize, cr)) != 0) {
18235 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18236 "reset DAD (error %d); IPMP interface may "
18237 "not be shutdown", lifrp->lifr_name, err);
18238 }
18239 continue;
18240 }

18242 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) {
18243 lifrp->lifr_groupname[0] = ’\0’;
18244 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp,
18245 lifrsize, cr)) != 0) {
18246 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18247 "leave IPMP group (error %d); associated "
18248 "IPMP interface may not be shutdown",
18249 lifrp->lifr_name, err);
18250 continue;
18251 }
18252 }
18253 }

18255 kmem_free(lifc.lifc_buf, bufsize);
18256 }

18258 #define UDPDEV "/devices/pseudo/udp@0:udp"
18259 #define UDP6DEV "/devices/pseudo/udp6@0:udp6"

18261 /*
18262 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
18263 * Non-loopback interfaces are either I_LINK’d or I_PLINK’d; the former go away
18264 * when the user-level processes in the zone are killed and the latter are
18265 * cleaned up by str_stack_shutdown().
18266 */
18267 void
18268 ip_interface_cleanup(ip_stack_t *ipst)
18269 {
18270 ldi_handle_t lh;
18271 ldi_ident_t li;
18272 cred_t *cr;
18273 int err;
18274 int i;
18275 char *devs[] = { UDP6DEV, UDPDEV };
18276 netstackid_t stackid = ipst->ips_netstack->netstack_stackid;

new/usr/src/uts/common/inet/ip/ip_if.c 278

18278 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
18279 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
18280 " error %d", err);
18281 return;
18282 }

18284 cr = zone_get_kcred(netstackid_to_zoneid(stackid));
18285 ASSERT(cr != NULL);

18287 /*
18288 * NOTE: loop executes exactly twice and is hardcoded to know that the
18289 * first iteration is IPv6. (Unrolling yields repetitious code, hence
18290 * the loop.)
18291 */
18292 for (i = 0; i < 2; i++) {
18293 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
18294 if (err != 0) {
18295 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
18296 " error %d", devs[i], err);
18297 continue;
18298 }

18300 ip_loopback_removeif(lh, i == 0, cr);
18301 ip_ipmp_cleanup(lh, i == 0, cr);

18303 (void) ldi_close(lh, FREAD|FWRITE, cr);
18304 }

18306 ldi_ident_release(li);
18307 crfree(cr);
18308 }

18310 /*
18311 * This needs to be in-sync with nic_event_t definition
18312 */
18313 static const char *
18314 ill_hook_event2str(nic_event_t event)
18315 {
18316 switch (event) {
18317 case NE_PLUMB:
18318 return ("PLUMB");
18319 case NE_UNPLUMB:
18320 return ("UNPLUMB");
18321 case NE_UP:
18322 return ("UP");
18323 case NE_DOWN:
18324 return ("DOWN");
18325 case NE_ADDRESS_CHANGE:
18326 return ("ADDRESS_CHANGE");
18327 case NE_LIF_UP:
18328 return ("LIF_UP");
18329 case NE_LIF_DOWN:
18330 return ("LIF_DOWN");
18331 case NE_IFINDEX_CHANGE:
18332 return ("IFINDEX_CHANGE");
18333 default:
18334 return ("UNKNOWN");
18335 }
18336 }

18338 void
18339 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
18340 nic_event_data_t data, size_t datalen)
18341 {
18342 ip_stack_t *ipst = ill->ill_ipst;
18343 hook_nic_event_int_t *info;

new/usr/src/uts/common/inet/ip/ip_if.c 279

18344 const char *str = NULL;

18346 /* create a new nic event info */
18347 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
18348 goto fail;

18350 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
18351 info->hnei_event.hne_lif = lif;
18352 info->hnei_event.hne_event = event;
18353 info->hnei_event.hne_protocol = ill->ill_isv6 ?
18354 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18355 info->hnei_event.hne_data = NULL;
18356 info->hnei_event.hne_datalen = 0;
18357 info->hnei_stackid = ipst->ips_netstack->netstack_stackid;

18359 if (data != NULL && datalen != 0) {
18360 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
18361 if (info->hnei_event.hne_data == NULL)
18362 goto fail;
18363 bcopy(data, info->hnei_event.hne_data, datalen);
18364 info->hnei_event.hne_datalen = datalen;
18365 }

18367 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
18368 DDI_NOSLEEP) == DDI_SUCCESS)
18369 return;

18371 fail:
18372 if (info != NULL) {
18373 if (info->hnei_event.hne_data != NULL) {
18374 kmem_free(info->hnei_event.hne_data,
18375 info->hnei_event.hne_datalen);
18376 }
18377 kmem_free(info, sizeof (hook_nic_event_t));
18378 }
18379 str = ill_hook_event2str(event);
18380 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
18381 "information for %s (ENOMEM)\n", str, ill->ill_name));
18382 }

18384 static int
18385 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
18386 {
18387 int err = 0;
18388 const in_addr_t *addr = NULL;
18389 nce_t *nce = NULL;
18390 ill_t *ill = ipif->ipif_ill;
18391 ill_t *bound_ill;
18392 boolean_t added_ipif = B_FALSE;
18393 uint16_t state;
18394 uint16_t flags;

18396 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
18397 ill_t *, ill, ipif_t *, ipif);
18398 if (ipif->ipif_lcl_addr != INADDR_ANY) {
18399 addr = &ipif->ipif_lcl_addr;
18400 }

18402 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
18403 if (res_act != Res_act_initial)
18404 return (EINVAL);
18405 }

18407 if (addr != NULL) {
18408 ipmp_illgrp_t *illg = ill->ill_grp;

new/usr/src/uts/common/inet/ip/ip_if.c 280

18410 /* add unicast nce for the local addr */

18412 if (IS_IPMP(ill)) {
18413 /*
18414 * If we’re here via ipif_up(), then the ipif
18415 * won’t be bound yet -- add it to the group,
18416 * which will bind it if possible. (We would
18417 * add it in ipif_up(), but deleting on failure
18418 * there is gruesome.) If we’re here via
18419 * ipmp_ill_bind_ipif(), then the ipif has
18420 * already been added to the group and we
18421 * just need to use the binding.
18422 */
18423 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
18424 bound_ill = ipmp_illgrp_add_ipif(illg, ipif);
18425 if (bound_ill == NULL) {
18426 /*
18427 * We couldn’t bind the ipif to an ill
18428 * yet, so we have nothing to publish.
18429 * Mark the address as ready and return.
18430 */
18431 ipif->ipif_addr_ready = 1;
18432 return (0);
18433 }
18434 added_ipif = B_TRUE;
18435 }
18436 } else {
18437 bound_ill = ill;
18438 }

18440 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
18441 NCE_F_NONUD);
18442 /*
18443 * If this is an initial bring-up (or the ipif was never
18444 * completely brought up), do DAD. Otherwise, we’re here
18445 * because IPMP has rebound an address to this ill: send
18446 * unsolicited advertisements (ARP announcements) to
18447 * inform others.
18448 */
18449 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
18450 state = ND_UNCHANGED; /* compute in nce_add_common() */
18451 } else {
18452 state = ND_REACHABLE;
18453 flags |= NCE_F_UNSOL_ADV;
18454 }

18456 retry:
18457 err = nce_lookup_then_add_v4(ill,
18458 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
18459 addr, flags, state, &nce);

18461 /*
18462 * note that we may encounter EEXIST if we are moving
18463 * the nce as a result of a rebind operation.
18464 */
18465 switch (err) {
18466 case 0:
18467 ipif->ipif_added_nce = 1;
18468 nce->nce_ipif_cnt++;
18469 break;
18470 case EEXIST:
18471 ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
18472 ill->ill_name));
18473 if (!NCE_MYADDR(nce->nce_common)) {
18474 /*
18475 * A leftover nce from before this address

new/usr/src/uts/common/inet/ip/ip_if.c 281

18476 * existed
18477 */
18478 ncec_delete(nce->nce_common);
18479 nce_refrele(nce);
18480 nce = NULL;
18481 goto retry;
18482 }
18483 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
18484 nce_refrele(nce);
18485 nce = NULL;
18486 ip1dbg(("ipif_arp_up: NCE already exists "
18487 "for %s:%u\n", ill->ill_name,
18488 ipif->ipif_id));
18489 goto arp_up_done;
18490 }
18491 /*
18492 * Duplicate local addresses are permissible for
18493 * IPIF_POINTOPOINT interfaces which will get marked
18494 * IPIF_UNNUMBERED later in
18495 * ip_addr_availability_check().
18496 *
18497 * The nce_ipif_cnt field tracks the number of
18498 * ipifs that have nce_addr as their local address.
18499 */
18500 ipif->ipif_addr_ready = 1;
18501 ipif->ipif_added_nce = 1;
18502 nce->nce_ipif_cnt++;
18503 err = 0;
18504 break;
18505 default:
18506 ASSERT(nce == NULL);
18507 goto arp_up_done;
18508 }
18509 if (arp_no_defense) {
18510 if ((ipif->ipif_flags & IPIF_UP) &&
18511 !ipif->ipif_addr_ready)
18512 ipif_up_notify(ipif);
18513 ipif->ipif_addr_ready = 1;
18514 }
18515 } else {
18516 /* zero address. nothing to publish */
18517 ipif->ipif_addr_ready = 1;
18518 }
18519 if (nce != NULL)
18520 nce_refrele(nce);
18521 arp_up_done:
18522 if (added_ipif && err != 0)
18523 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18524 return (err);
18525 }

18527 int
18528 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18529 {
18530 int err = 0;
18531 ill_t *ill = ipif->ipif_ill;
18532 boolean_t first_interface, wait_for_dlpi = B_FALSE;

18534 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18535 ill_t *, ill, ipif_t *, ipif);

18537 /*
18538 * need to bring up ARP or setup mcast mapping only
18539 * when the first interface is coming UP.
18540 */
18541 first_interface = (ill->ill_ipif_up_count == 0 &&

new/usr/src/uts/common/inet/ip/ip_if.c 282

18542 ill->ill_ipif_dup_count == 0 && !was_dup);

18544 if (res_act == Res_act_initial && first_interface) {
18545 /*
18546 * Send ATTACH + BIND
18547 */
18548 err = arp_ll_up(ill);
18549 if (err != EINPROGRESS && err != 0)
18550 return (err);

18552 /*
18553 * Add NCE for local address. Start DAD.
18554 * we’ll wait to hear that DAD has finished
18555 * before using the interface.
18556 */
18557 if (err == EINPROGRESS)
18558 wait_for_dlpi = B_TRUE;
18559 }

18561 if (!wait_for_dlpi)
18562 (void) ipif_arp_up_done_tail(ipif, res_act);

18564 return (!wait_for_dlpi ? 0 : EINPROGRESS);
18565 }

18567 /*
18568 * Finish processing of "arp_up" after all the DLPI message
18569 * exchanges have completed between arp and the driver.
18570 */
18571 void
18572 arp_bringup_done(ill_t *ill, int err)
18573 {
18574 mblk_t *mp1;
18575 ipif_t *ipif;
18576 conn_t *connp = NULL;
18577 ipsq_t *ipsq;
18578 queue_t *q;

18580 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));

18582 ASSERT(IAM_WRITER_ILL(ill));

18584 ipsq = ill->ill_phyint->phyint_ipsq;
18585 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18586 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18587 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18588 if (mp1 == NULL) /* bringup was aborted by the user */
18589 return;

18591 /*
18592 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18593 * must have an associated conn_t. Otherwise, we’re bringing this
18594 * interface back up as part of handling an asynchronous event (e.g.,
18595 * physical address change).
18596 */
18597 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18598 ASSERT(connp != NULL);
18599 q = CONNP_TO_WQ(connp);
18600 } else {
18601 ASSERT(connp == NULL);
18602 q = ill->ill_rq;
18603 }
18604 if (err == 0) {
18605 if (ipif->ipif_isv6) {
18606 if ((err = ipif_up_done_v6(ipif)) != 0)
18607 ip0dbg(("arp_bringup_done: init failed\n"));

new/usr/src/uts/common/inet/ip/ip_if.c 283

18608 } else {
18609 err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18610 if (err != 0 ||
18611 (err = ipif_up_done(ipif)) != 0) {
18612 ip0dbg(("arp_bringup_done: "
18613 "init failed err %x\n", err));
18614 (void) ipif_arp_down(ipif);
18615 }

18617 }
18618 } else {
18619 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18620 }

18622 if ((err == 0) && (ill->ill_up_ipifs)) {
18623 err = ill_up_ipifs(ill, q, mp1);
18624 if (err == EINPROGRESS)
18625 return;
18626 }

18628 /*
18629 * If we have a moved ipif to bring up, and everything has succeeded
18630 * to this point, bring it up on the IPMP ill. Otherwise, leave it
18631 * down -- the admin can try to bring it up by hand if need be.
18632 */
18633 if (ill->ill_move_ipif != NULL) {
18634 ipif = ill->ill_move_ipif;
18635 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18636 ipif->ipif_ill->ill_name));
18637 ill->ill_move_ipif = NULL;
18638 if (err == 0) {
18639 err = ipif_up(ipif, q, mp1);
18640 if (err == EINPROGRESS)
18641 return;
18642 }
18643 }

18645 /*
18646 * The operation must complete without EINPROGRESS since
18647 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18648 * Otherwise, the operation will be stuck forever in the ipsq.
18649 */
18650 ASSERT(err != EINPROGRESS);
18651 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18652 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18653 int, ipsq->ipsq_xop->ipx_current_ioctl,
18654 ill_t *, ill, ipif_t *, ipif);
18655 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18656 } else {
18657 ipsq_current_finish(ipsq);
18658 }
18659 }

18661 /*
18662 * Finish processing of arp replumb after all the DLPI message
18663 * exchanges have completed between arp and the driver.
18664 */
18665 void
18666 arp_replumb_done(ill_t *ill, int err)
18667 {
18668 mblk_t *mp1;
18669 ipif_t *ipif;
18670 conn_t *connp = NULL;
18671 ipsq_t *ipsq;
18672 queue_t *q;

new/usr/src/uts/common/inet/ip/ip_if.c 284

18674 ASSERT(IAM_WRITER_ILL(ill));

18676 ipsq = ill->ill_phyint->phyint_ipsq;
18677 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18678 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18679 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18680 if (mp1 == NULL) {
18681 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18682 ipsq->ipsq_xop->ipx_current_ioctl));
18683 /* bringup was aborted by the user */
18684 return;
18685 }
18686 /*
18687 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18688 * must have an associated conn_t. Otherwise, we’re bringing this
18689 * interface back up as part of handling an asynchronous event (e.g.,
18690 * physical address change).
18691 */
18692 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18693 ASSERT(connp != NULL);
18694 q = CONNP_TO_WQ(connp);
18695 } else {
18696 ASSERT(connp == NULL);
18697 q = ill->ill_rq;
18698 }
18699 if ((err == 0) && (ill->ill_up_ipifs)) {
18700 err = ill_up_ipifs(ill, q, mp1);
18701 if (err == EINPROGRESS)
18702 return;
18703 }
18704 /*
18705 * The operation must complete without EINPROGRESS since
18706 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18707 * Otherwise, the operation will be stuck forever in the ipsq.
18708 */
18709 ASSERT(err != EINPROGRESS);
18710 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18711 DTRACE_PROBE4(ipif__ioctl, char *,
18712 "arp_replumb_done finish",
18713 int, ipsq->ipsq_xop->ipx_current_ioctl,
18714 ill_t *, ill, ipif_t *, ipif);
18715 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18716 } else {
18717 ipsq_current_finish(ipsq);
18718 }
18719 }

18721 void
18722 ipif_up_notify(ipif_t *ipif)
18723 {
18724 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18725 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18726 sctp_update_ipif(ipif, SCTP_IPIF_UP);
18727 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18728 NE_LIF_UP, NULL, 0);
18729 }

18731 /*
18732 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18733 * this assumes the context is cv_wait’able. Hence it shouldnt’ be used on
18734 * TPI end points with STREAMS modules pushed above. This is assured by not
18735 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl
18736 * never ends up on an ipsq, otherwise we may end up processing the ioctl
18737 * while unwinding from the ispq and that could be a thread from the bottom.
18738 */
18739 /* ARGSUSED */

new/usr/src/uts/common/inet/ip/ip_if.c 285

18740 int
18741 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18742 ip_ioctl_cmd_t *ipip, void *arg)
18743 {
18744 mblk_t *cmd_mp = mp->b_cont->b_cont;
18745 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18746 int ret = 0;
18747 int i;
18748 size_t size;
18749 ip_stack_t *ipst;
18750 zoneid_t zoneid;
18751 ilb_stack_t *ilbs;

18753 ipst = CONNQ_TO_IPST(q);
18754 ilbs = ipst->ips_netstack->netstack_ilb;
18755 zoneid = Q_TO_CONN(q)->conn_zoneid;

18757 switch (command) {
18758 case ILB_CREATE_RULE: {
18759 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;

18761 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18762 ret = EINVAL;
18763 break;
18764 }

18766 ret = ilb_rule_add(ilbs, zoneid, cmd);
18767 break;
18768 }
18769 case ILB_DESTROY_RULE:
18770 case ILB_ENABLE_RULE:
18771 case ILB_DISABLE_RULE: {
18772 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;

18774 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18775 ret = EINVAL;
18776 break;
18777 }

18779 if (cmd->flags & ILB_RULE_ALLRULES) {
18780 if (command == ILB_DESTROY_RULE) {
18781 ilb_rule_del_all(ilbs, zoneid);
18782 break;
18783 } else if (command == ILB_ENABLE_RULE) {
18784 ilb_rule_enable_all(ilbs, zoneid);
18785 break;
18786 } else if (command == ILB_DISABLE_RULE) {
18787 ilb_rule_disable_all(ilbs, zoneid);
18788 break;
18789 }
18790 } else {
18791 if (command == ILB_DESTROY_RULE) {
18792 ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18793 } else if (command == ILB_ENABLE_RULE) {
18794 ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18795 NULL);
18796 } else if (command == ILB_DISABLE_RULE) {
18797 ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18798 NULL);
18799 }
18800 }
18801 break;
18802 }
18803 case ILB_NUM_RULES: {
18804 ilb_num_rules_cmd_t *cmd;

new/usr/src/uts/common/inet/ip/ip_if.c 286

18806 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18807 ret = EINVAL;
18808 break;
18809 }
18810 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18811 ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18812 break;
18813 }
18814 case ILB_RULE_NAMES: {
18815 ilb_rule_names_cmd_t *cmd;

18817 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18818 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18819 cmd->num_names == 0) {
18820 ret = EINVAL;
18821 break;
18822 }
18823 size = cmd->num_names * ILB_RULE_NAMESZ;
18824 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18825 size != cmd_mp->b_wptr) {
18826 ret = EINVAL;
18827 break;
18828 }
18829 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18830 break;
18831 }
18832 case ILB_NUM_SERVERS: {
18833 ilb_num_servers_cmd_t *cmd;

18835 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18836 ret = EINVAL;
18837 break;
18838 }
18839 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18840 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18841 &(cmd->num));
18842 break;
18843 }
18844 case ILB_LIST_RULE: {
18845 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;

18847 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18848 ret = EINVAL;
18849 break;
18850 }
18851 ret = ilb_rule_list(ilbs, zoneid, cmd);
18852 break;
18853 }
18854 case ILB_LIST_SERVERS: {
18855 ilb_servers_info_cmd_t *cmd;

18857 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18858 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18859 cmd->num_servers == 0) {
18860 ret = EINVAL;
18861 break;
18862 }
18863 size = cmd->num_servers * sizeof (ilb_server_info_t);
18864 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18865 size != cmd_mp->b_wptr) {
18866 ret = EINVAL;
18867 break;
18868 }

18870 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18871 &cmd->num_servers);

new/usr/src/uts/common/inet/ip/ip_if.c 287

18872 break;
18873 }
18874 case ILB_ADD_SERVERS: {
18875 ilb_servers_info_cmd_t *cmd;
18876 ilb_rule_t *rule;

18878 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18879 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18880 ret = EINVAL;
18881 break;
18882 }
18883 size = cmd->num_servers * sizeof (ilb_server_info_t);
18884 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18885 size != cmd_mp->b_wptr) {
18886 ret = EINVAL;
18887 break;
18888 }
18889 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18890 if (rule == NULL) {
18891 ASSERT(ret != 0);
18892 break;
18893 }
18894 for (i = 0; i < cmd->num_servers; i++) {
18895 ilb_server_info_t *s;

18897 s = &cmd->servers[i];
18898 s->err = ilb_server_add(ilbs, rule, s);
18899 }
18900 ILB_RULE_REFRELE(rule);
18901 break;
18902 }
18903 case ILB_DEL_SERVERS:
18904 case ILB_ENABLE_SERVERS:
18905 case ILB_DISABLE_SERVERS: {
18906 ilb_servers_cmd_t *cmd;
18907 ilb_rule_t *rule;
18908 int (*f)();

18910 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18911 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18912 ret = EINVAL;
18913 break;
18914 }
18915 size = cmd->num_servers * sizeof (ilb_server_arg_t);
18916 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18917 size != cmd_mp->b_wptr) {
18918 ret = EINVAL;
18919 break;
18920 }

18922 if (command == ILB_DEL_SERVERS)
18923 f = ilb_server_del;
18924 else if (command == ILB_ENABLE_SERVERS)
18925 f = ilb_server_enable;
18926 else if (command == ILB_DISABLE_SERVERS)
18927 f = ilb_server_disable;

18929 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18930 if (rule == NULL) {
18931 ASSERT(ret != 0);
18932 break;
18933 }

18935 for (i = 0; i < cmd->num_servers; i++) {
18936 ilb_server_arg_t *s;

new/usr/src/uts/common/inet/ip/ip_if.c 288

18938 s = &cmd->servers[i];
18939 s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18940 }
18941 ILB_RULE_REFRELE(rule);
18942 break;
18943 }
18944 case ILB_LIST_NAT_TABLE: {
18945 ilb_list_nat_cmd_t *cmd;

18947 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18948 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18949 ret = EINVAL;
18950 break;
18951 }
18952 size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18953 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18954 size != cmd_mp->b_wptr) {
18955 ret = EINVAL;
18956 break;
18957 }

18959 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18960 &cmd->flags);
18961 break;
18962 }
18963 case ILB_LIST_STICKY_TABLE: {
18964 ilb_list_sticky_cmd_t *cmd;

18966 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18967 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18968 ret = EINVAL;
18969 break;
18970 }
18971 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18972 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18973 size != cmd_mp->b_wptr) {
18974 ret = EINVAL;
18975 break;
18976 }

18978 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18979 &cmd->num_sticky, &cmd->flags);
18980 break;
18981 }
18982 default:
18983 ret = EINVAL;
18984 break;
18985 }
18986 done:
18987 return (ret);
18988 }

18990 /* Remove all cache entries for this logical interface */
18991 void
18992 ipif_nce_down(ipif_t *ipif)
18993 {
18994 ill_t *ill = ipif->ipif_ill;
18995 nce_t *nce;

18997 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18998 ill_t *, ill, ipif_t *, ipif);
18999 if (ipif->ipif_added_nce) {
19000 if (ipif->ipif_isv6)
19001 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
19002 else
19003 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);

new/usr/src/uts/common/inet/ip/ip_if.c 289

19004 if (nce != NULL) {
19005 if (--nce->nce_ipif_cnt == 0)
19006 ncec_delete(nce->nce_common);
19007 ipif->ipif_added_nce = 0;
19008 nce_refrele(nce);
19009 } else {
19010 /*
19011 * nce may already be NULL because it was already
19012 * flushed, e.g., due to a call to nce_flush
19013 */
19014 ipif->ipif_added_nce = 0;
19015 }
19016 }
19017 /*
19018 * Make IPMP aware of the deleted data address.
19019 */
19020 if (IS_IPMP(ill))
19021 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);

19023 /*
19024 * Remove all other nces dependent on this ill when the last ipif
19025 * is going away.
19026 */
19027 if (ill->ill_ipif_up_count == 0) {
19028 ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
19029 (uchar_t *)ill, ill->ill_ipst);
19030 if (IS_UNDER_IPMP(ill))
19031 nce_flush(ill, B_TRUE);
19032 }
19033 }

19035 /*
19036 * find the first interface that uses usill for its source address.
19037 */
19038 ill_t *
19039 ill_lookup_usesrc(ill_t *usill)
19040 {
19041 ip_stack_t *ipst = usill->ill_ipst;
19042 ill_t *ill;

19044 ASSERT(usill != NULL);

19046 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
19047 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
19048 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19049 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
19050 ill = ill->ill_usesrc_grp_next) {
19051 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
19052 !ILL_IS_CONDEMNED(ill)) {
19053 ill_refhold(ill);
19054 break;
19055 }
19056 }
19057 rw_exit(&ipst->ips_ill_g_lock);
19058 rw_exit(&ipst->ips_ill_g_usesrc_lock);
19059 return (ill);
19060 }

19062 /*
19063 * This comment applies to both ip_sioctl_get_ifhwaddr and
19064 * ip_sioctl_get_lifhwaddr as the basic function of these two functions
19065 * is the same.
19066 *
19067 * The goal here is to find an IP interface that corresponds to the name
19068 * provided by the caller in the ifreq/lifreq structure held in the mblk_t
19069 * chain and to fill out a sockaddr/sockaddr_storage structure with the

new/usr/src/uts/common/inet/ip/ip_if.c 290

19070 * mac address.
19071 *
19072 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number
19073 * of different reasons:
19074 * ENXIO - the device name is not known to IP.
19075 * EADDRNOTAVAIL - the device has no hardware address. This is indicated
19076 * by ill_phys_addr not pointing to an actual address.
19077 * EPFNOSUPPORT - this will indicate that a request is being made for a
19078 * mac address that will not fit in the data structure supplier (struct
19079 * sockaddr).
19080 *
19081 */
19082 /* ARGSUSED */
19083 int
19084 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19085 ip_ioctl_cmd_t *ipip, void *if_req)
19086 {
19087 struct sockaddr *sock;
19088 struct ifreq *ifr;
19089 mblk_t *mp1;
19090 ill_t *ill;

19092 ASSERT(ipif != NULL);
19093 ill = ipif->ipif_ill;

19095 if (ill->ill_phys_addr == NULL) {
19096 return (EADDRNOTAVAIL);
19097 }
19098 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) {
19099 return (EPFNOSUPPORT);
19100 }

19102 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name));

19104 /* Existence of mp1 has been checked in ip_wput_nondata */
19105 mp1 = mp->b_cont->b_cont;
19106 ifr = (struct ifreq *)mp1->b_rptr;

19108 sock = &ifr->ifr_addr;
19109 /*
19110 * The "family" field in the returned structure is set to a value
19111 * that represents the type of device to which the address belongs.
19112 * The value returned may differ to that on Linux but it will still
19113 * represent the correct symbol on Solaris.
19114 */
19115 sock->sa_family = arp_hw_type(ill->ill_mactype);
19116 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length);

19118 return (0);
19119 }

19121 /*
19122 * The expection of applications using SIOCGIFHWADDR is that data will
19123 * be returned in the sa_data field of the sockaddr structure. With
19124 * SIOCGLIFHWADDR, we’re breaking new ground as there is no Linux
19125 * equivalent. In light of this, struct sockaddr_dl is used as it
19126 * offers more space for address storage in sll_data.
19127 */
19128 /* ARGSUSED */
19129 int
19130 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19131 ip_ioctl_cmd_t *ipip, void *if_req)
19132 {
19133 struct sockaddr_dl *sock;
19134 struct lifreq *lifr;
19135 mblk_t *mp1;

new/usr/src/uts/common/inet/ip/ip_if.c 291

19136 ill_t *ill;

19138 ASSERT(ipif != NULL);
19139 ill = ipif->ipif_ill;

19141 if (ill->ill_phys_addr == NULL) {
19142 return (EADDRNOTAVAIL);
19143 }
19144 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) {
19145 return (EPFNOSUPPORT);
19146 }

19148 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name));

19150 /* Existence of mp1 has been checked in ip_wput_nondata */
19151 mp1 = mp->b_cont->b_cont;
19152 lifr = (struct lifreq *)mp1->b_rptr;

19154 /*
19155 * sockaddr_ll is used here because it is also the structure used in
19156 * responding to the same ioctl in sockpfp. The only other choice is
19157 * sockaddr_dl which contains fields that are not required here
19158 * because its purpose is different.
19159 */
19160 lifr->lifr_type = ill->ill_type;
19161 sock = (struct sockaddr_dl *)&lifr->lifr_addr;
19162 sock->sdl_family = AF_LINK;
19163 sock->sdl_index = ill->ill_phyint->phyint_ifindex;
19164 sock->sdl_type = ill->ill_mactype;
19165 sock->sdl_nlen = 0;
19166 sock->sdl_slen = 0;
19167 sock->sdl_alen = ill->ill_phys_addr_length;
19168 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length);

19170 return (0);
19171 }

new/usr/src/uts/common/inet/ip/ip_input.c 1

**
 89485 Wed Jun 13 12:04:55 2012
new/usr/src/uts/common/inet/ip/ip_input.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
24 *
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 */
27 /* Copyright (c) 1990 Mentat Inc. */

29 #include <sys/types.h>
30 #include <sys/stream.h>
31 #include <sys/dlpi.h>
32 #include <sys/stropts.h>
33 #include <sys/sysmacros.h>
34 #include <sys/strsubr.h>
35 #include <sys/strlog.h>
36 #include <sys/strsun.h>
37 #include <sys/zone.h>
38 #define _SUN_TPI_VERSION 2
39 #include <sys/tihdr.h>
40 #include <sys/xti_inet.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/cmn_err.h>
44 #include <sys/debug.h>
45 #include <sys/kobj.h>
46 #include <sys/modctl.h>
47 #include <sys/atomic.h>
48 #include <sys/policy.h>
49 #include <sys/priv.h>

51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/kmem.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/vtrace.h>
57 #include <sys/isa_defs.h>
58 #include <sys/mac.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/route.h>

new/usr/src/uts/common/inet/ip/ip_input.c 2

62 #include <sys/sockio.h>
63 #include <netinet/in.h>
64 #include <net/if_dl.h>

66 #include <inet/common.h>
67 #include <inet/mi.h>
68 #include <inet/mib2.h>
69 #include <inet/nd.h>
70 #include <inet/arp.h>
71 #include <inet/snmpcom.h>
72 #include <inet/kstatcom.h>

74 #include <netinet/igmp_var.h>
75 #include <netinet/ip6.h>
76 #include <netinet/icmp6.h>
77 #include <netinet/sctp.h>

79 #include <inet/ip.h>
80 #include <inet/ip_impl.h>
81 #include <inet/ip6.h>
82 #include <inet/ip6_asp.h>
83 #include <inet/optcom.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/ip_multi.h>
87 #include <inet/ip_if.h>
88 #include <inet/ip_ire.h>
89 #include <inet/ip_ftable.h>
90 #include <inet/ip_rts.h>
91 #include <inet/ip_ndp.h>
92 #include <inet/ip_listutils.h>
93 #include <netinet/igmp.h>
94 #include <netinet/ip_mroute.h>
95 #include <inet/ipp_common.h>

97 #include <net/pfkeyv2.h>
98 #include <inet/sadb.h>
99 #include <inet/ipsec_impl.h>
100 #include <inet/ipdrop.h>
101 #include <inet/ip_netinfo.h>
102 #include <inet/ilb_ip.h>
103 #include <sys/squeue_impl.h>
104 #include <sys/squeue.h>

106 #include <sys/ethernet.h>
107 #include <net/if_types.h>
108 #include <sys/cpuvar.h>

110 #include <ipp/ipp.h>
111 #include <ipp/ipp_impl.h>
112 #include <ipp/ipgpc/ipgpc.h>

114 #include <sys/pattr.h>
115 #include <inet/ipclassifier.h>
116 #include <inet/sctp_ip.h>
117 #include <inet/sctp/sctp_impl.h>
118 #include <inet/udp_impl.h>
119 #include <inet/dccp/dccp_impl.h>
120 #endif /* ! codereview */
121 #include <sys/sunddi.h>

123 #include <sys/tsol/label.h>
124 #include <sys/tsol/tnet.h>

126 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */

new/usr/src/uts/common/inet/ip/ip_input.c 3

128 #ifdef DEBUG
129 extern boolean_t skip_sctp_cksum;
130 #endif

132 static void ip_input_local_v4(ire_t *, mblk_t *, ipha_t *,
133 ip_recv_attr_t *);

135 static void ip_input_broadcast_v4(ire_t *, mblk_t *, ipha_t *,
136 ip_recv_attr_t *);
137 static void ip_input_multicast_v4(ire_t *, mblk_t *, ipha_t *,
138 ip_recv_attr_t *);

140 #pragma inline(ip_input_common_v4, ip_input_local_v4, ip_forward_xmit_v4)

142 /*
143 * Direct read side procedure capable of dealing with chains. GLDv3 based
144 * drivers call this function directly with mblk chains while STREAMS
145 * read side procedure ip_rput() calls this for single packet with ip_ring
146 * set to NULL to process one packet at a time.
147 *
148 * The ill will always be valid if this function is called directly from
149 * the driver.
150 *
151 * If ip_input() is called from GLDv3:
152 *
153 * - This must be a non-VLAN IP stream.
154 * - ’mp’ is either an untagged or a special priority-tagged packet.
155 * - Any VLAN tag that was in the MAC header has been stripped.
156 *
157 * If the IP header in packet is not 32-bit aligned, every message in the
158 * chain will be aligned before further operations. This is required on SPARC
159 * platform.
160 */
161 void
162 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain,
163 struct mac_header_info_s *mhip)
164 {
165 (void) ip_input_common_v4(ill, ip_ring, mp_chain, mhip, NULL, NULL,
166 NULL);
167 }

169 /*
170 * ip_accept_tcp() - This function is called by the squeue when it retrieves
171 * a chain of packets in the poll mode. The packets have gone through the
172 * data link processing but not IP processing. For performance and latency
173 * reasons, the squeue wants to process the chain in line instead of feeding
174 * it back via ip_input path.
175 *
176 * We set up the ip_recv_attr_t with IRAF_TARGET_SQP to that ip_fanout_v4
177 * will pass back any TCP packets matching the target sqp to
178 * ip_input_common_v4 using ira_target_sqp_mp. Other packets are handled by
179 * ip_input_v4 and ip_fanout_v4 as normal.
180 * The TCP packets that match the target squeue are returned to the caller
181 * as a b_next chain after each packet has been prepend with an mblk
182 * from ip_recv_attr_to_mblk.
183 */
184 mblk_t *
185 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp,
186 mblk_t *mp_chain, mblk_t **last, uint_t *cnt)
187 {
188 return (ip_input_common_v4(ill, ip_ring, mp_chain, NULL, target_sqp,
189 last, cnt));
190 }

192 /*
193 * Used by ip_input and ip_accept_tcp

new/usr/src/uts/common/inet/ip/ip_input.c 4

194 * The last three arguments are only used by ip_accept_tcp, and mhip is
195 * only used by ip_input.
196 */
197 mblk_t *
198 ip_input_common_v4(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain,
199 struct mac_header_info_s *mhip, squeue_t *target_sqp,
200 mblk_t **last, uint_t *cnt)
201 {
202 mblk_t *mp;
203 ipha_t *ipha;
204 ip_recv_attr_t iras; /* Receive attributes */
205 rtc_t rtc;
206 iaflags_t chain_flags = 0; /* Fixed for chain */
207 mblk_t *ahead = NULL; /* Accepted head */
208 mblk_t *atail = NULL; /* Accepted tail */
209 uint_t acnt = 0; /* Accepted count */

211 ASSERT(mp_chain != NULL);
212 ASSERT(ill != NULL);

214 /* These ones do not change as we loop over packets */
215 iras.ira_ill = iras.ira_rill = ill;
216 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
217 iras.ira_rifindex = iras.ira_ruifindex;
218 iras.ira_sqp = NULL;
219 iras.ira_ring = ip_ring;
220 /* For ECMP and outbound transmit ring selection */
221 iras.ira_xmit_hint = ILL_RING_TO_XMIT_HINT(ip_ring);

223 iras.ira_target_sqp = target_sqp;
224 iras.ira_target_sqp_mp = NULL;
225 if (target_sqp != NULL)
226 chain_flags |= IRAF_TARGET_SQP;

228 /*
229 * We try to have a mhip pointer when possible, but
230 * it might be NULL in some cases. In those cases we
231 * have to assume unicast.
232 */
233 iras.ira_mhip = mhip;
234 iras.ira_flags = 0;
235 if (mhip != NULL) {
236 switch (mhip->mhi_dsttype) {
237 case MAC_ADDRTYPE_MULTICAST :
238 chain_flags |= IRAF_L2DST_MULTICAST;
239 break;
240 case MAC_ADDRTYPE_BROADCAST :
241 chain_flags |= IRAF_L2DST_BROADCAST;
242 break;
243 }
244 }

246 /*
247 * Initialize the one-element route cache.
248 *
249 * We do ire caching from one iteration to
250 * another. In the event the packet chain contains
251 * all packets from the same dst, this caching saves
252 * an ire_route_recursive for each of the succeeding
253 * packets in a packet chain.
254 */
255 rtc.rtc_ire = NULL;
256 rtc.rtc_ipaddr = INADDR_ANY;

258 /* Loop over b_next */
259 for (mp = mp_chain; mp != NULL; mp = mp_chain) {

new/usr/src/uts/common/inet/ip/ip_input.c 5

260 mp_chain = mp->b_next;
261 mp->b_next = NULL;

263 ASSERT(DB_TYPE(mp) == M_DATA);

266 /*
267 * if db_ref > 1 then copymsg and free original. Packet
268 * may be changed and we do not want the other entity
269 * who has a reference to this message to trip over the
270 * changes. This is a blind change because trying to
271 * catch all places that might change the packet is too
272 * difficult.
273 *
274 * This corresponds to the fast path case, where we have
275 * a chain of M_DATA mblks. We check the db_ref count
276 * of only the 1st data block in the mblk chain. There
277 * doesn’t seem to be a reason why a device driver would
278 * send up data with varying db_ref counts in the mblk
279 * chain. In any case the Fast path is a private
280 * interface, and our drivers don’t do such a thing.
281 * Given the above assumption, there is no need to walk
282 * down the entire mblk chain (which could have a
283 * potential performance problem)
284 *
285 * The "(DB_REF(mp) > 1)" check was moved from ip_rput()
286 * to here because of exclusive ip stacks and vnics.
287 * Packets transmitted from exclusive stack over vnic
288 * can have db_ref > 1 and when it gets looped back to
289 * another vnic in a different zone, you have ip_input()
290 * getting dblks with db_ref > 1. So if someone
291 * complains of TCP performance under this scenario,
292 * take a serious look here on the impact of copymsg().
293 */
294 if (DB_REF(mp) > 1) {
295 if ((mp = ip_fix_dbref(mp, &iras)) == NULL) {
296 /* mhip might point into 1st packet in chain */
297 iras.ira_mhip = NULL;
298 continue;
299 }
300 }

302 /*
303 * IP header ptr not aligned?
304 * OR IP header not complete in first mblk
305 */
306 ipha = (ipha_t *)mp->b_rptr;
307 if (!OK_32PTR(ipha) || MBLKL(mp) < IP_SIMPLE_HDR_LENGTH) {
308 mp = ip_check_and_align_header(mp, IP_SIMPLE_HDR_LENGTH,
309 &iras);
310 if (mp == NULL) {
311 /* mhip might point into 1st packet in chain */
312 iras.ira_mhip = NULL;
313 continue;
314 }
315 ipha = (ipha_t *)mp->b_rptr;
316 }

318 /* Protect against a mix of Ethertypes and IP versions */
319 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
320 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
321 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
322 freemsg(mp);
323 /* mhip might point into 1st packet in the chain. */
324 iras.ira_mhip = NULL;
325 continue;

new/usr/src/uts/common/inet/ip/ip_input.c 6

326 }

328 /*
329 * Check for Martian addrs; we have to explicitly
330 * test for for zero dst since this is also used as
331 * an indication that the rtc is not used.
332 */
333 if (ipha->ipha_dst == INADDR_ANY) {
334 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors);
335 ip_drop_input("ipIfStatsInAddrErrors", mp, ill);
336 freemsg(mp);
337 /* mhip might point into 1st packet in the chain. */
338 iras.ira_mhip = NULL;
339 continue;
340 }

342 /*
343 * Keep L2SRC from a previous packet in chain since mhip
344 * might point into an earlier packet in the chain.
345 * Keep IRAF_VERIFIED_SRC to avoid redoing broadcast
346 * source check in forwarding path.
347 */
348 chain_flags |= (iras.ira_flags &
349 (IRAF_L2SRC_SET|IRAF_VERIFIED_SRC));

351 iras.ira_flags = IRAF_IS_IPV4 | IRAF_VERIFY_IP_CKSUM |
352 IRAF_VERIFY_ULP_CKSUM | chain_flags;
353 iras.ira_free_flags = 0;
354 iras.ira_cred = NULL;
355 iras.ira_cpid = NOPID;
356 iras.ira_tsl = NULL;
357 iras.ira_zoneid = ALL_ZONES; /* Default for forwarding */

359 /*
360 * We must count all incoming packets, even if they end
361 * up being dropped later on. Defer counting bytes until
362 * we have the whole IP header in first mblk.
363 */
364 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives);

366 iras.ira_pktlen = ntohs(ipha->ipha_length);
367 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets,
368 iras.ira_pktlen);

370 /*
371 * Call one of:
372 * ill_input_full_v4
373 * ill_input_short_v4
374 * The former is used in unusual cases. See ill_set_inputfn().
375 */
376 (*ill->ill_inputfn)(mp, ipha, &ipha->ipha_dst, &iras, &rtc);

378 /* Any references to clean up? No hold on ira_ill */
379 if (iras.ira_flags & (IRAF_IPSEC_SECURE|IRAF_SYSTEM_LABELED))
380 ira_cleanup(&iras, B_FALSE);

382 if (iras.ira_target_sqp_mp != NULL) {
383 /* Better be called from ip_accept_tcp */
384 ASSERT(target_sqp != NULL);

386 /* Found one packet to accept */
387 mp = iras.ira_target_sqp_mp;
388 iras.ira_target_sqp_mp = NULL;
389 ASSERT(ip_recv_attr_is_mblk(mp));

391 if (atail != NULL)

new/usr/src/uts/common/inet/ip/ip_input.c 7

392 atail->b_next = mp;
393 else
394 ahead = mp;
395 atail = mp;
396 acnt++;
397 mp = NULL;
398 }
399 /* mhip might point into 1st packet in the chain. */
400 iras.ira_mhip = NULL;
401 }
402 /* Any remaining references to the route cache? */
403 if (rtc.rtc_ire != NULL) {
404 ASSERT(rtc.rtc_ipaddr != INADDR_ANY);
405 ire_refrele(rtc.rtc_ire);
406 }

408 if (ahead != NULL) {
409 /* Better be called from ip_accept_tcp */
410 ASSERT(target_sqp != NULL);
411 *last = atail;
412 *cnt = acnt;
413 return (ahead);
414 }

416 return (NULL);
417 }

419 /*
420 * This input function is used when
421 * - is_system_labeled()
422 * - CGTP filtering
423 * - DHCP unicast before we have an IP address configured
424 * - there is an listener for IPPROTO_RSVP
425 */
426 void
427 ill_input_full_v4(mblk_t *mp, void *iph_arg, void *nexthop_arg,
428 ip_recv_attr_t *ira, rtc_t *rtc)
429 {
430 ipha_t *ipha = (ipha_t *)iph_arg;
431 ipaddr_t nexthop = *(ipaddr_t *)nexthop_arg;
432 ill_t *ill = ira->ira_ill;
433 ip_stack_t *ipst = ill->ill_ipst;
434 int cgtp_flt_pkt;

436 ASSERT(ira->ira_tsl == NULL);

438 /*
439 * Attach any necessary label information to
440 * this packet
441 */
442 if (is_system_labeled()) {
443 ira->ira_flags |= IRAF_SYSTEM_LABELED;

445 /*
446 * This updates ira_cred, ira_tsl and ira_free_flags based
447 * on the label.
448 */
449 if (!tsol_get_pkt_label(mp, IPV4_VERSION, ira)) {
450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
451 ip_drop_input("ipIfStatsInDiscards", mp, ill);
452 freemsg(mp);
453 return;
454 }
455 /* Note that ira_tsl can be NULL here. */

457 /* tsol_get_pkt_label sometimes does pullupmsg */

new/usr/src/uts/common/inet/ip/ip_input.c 8

458 ipha = (ipha_t *)mp->b_rptr;
459 }

461 /*
462 * Invoke the CGTP (multirouting) filtering module to process
463 * the incoming packet. Packets identified as duplicates
464 * must be discarded. Filtering is active only if the
465 * the ip_cgtp_filter ndd variable is non-zero.
466 */
467 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP;
468 if (ipst->ips_ip_cgtp_filter &&
469 ipst->ips_ip_cgtp_filter_ops != NULL) {
470 netstackid_t stackid;

472 stackid = ipst->ips_netstack->netstack_stackid;
473 /*
474 * CGTP and IPMP are mutually exclusive so
475 * phyint_ifindex is fine here.
476 */
477 cgtp_flt_pkt =
478 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid,
479 ill->ill_phyint->phyint_ifindex, mp);
480 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) {
481 ip_drop_input("CGTP_IP_PKT_DUPLICATE", mp, ill);
482 freemsg(mp);
483 return;
484 }
485 }

487 /*
488 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP
489 * server to unicast DHCP packets to a DHCP client using the
490 * IP address it is offering to the client. This can be
491 * disabled through the "broadcast bit", but not all DHCP
492 * servers honor that bit. Therefore, to interoperate with as
493 * many DHCP servers as possible, the DHCP client allows the
494 * server to unicast, but we treat those packets as broadcast
495 * here. Note that we don’t rewrite the packet itself since
496 * (a) that would mess up the checksums and (b) the DHCP
497 * client conn is bound to INADDR_ANY so ip_fanout_udp() will
498 * hand it the packet regardless.
499 */
500 if (ill->ill_dhcpinit != 0 &&
501 ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION &&
502 ipha->ipha_protocol == IPPROTO_UDP) {
503 udpha_t *udpha;

505 ipha = ip_pullup(mp, sizeof (ipha_t) + sizeof (udpha_t), ira);
506 if (ipha == NULL) {
507 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
508 ip_drop_input("ipIfStatsInDiscards - dhcp", mp, ill);
509 freemsg(mp);
510 return;
511 }
512 /* Reload since pullupmsg() can change b_rptr. */
513 udpha = (udpha_t *)&ipha[1];

515 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) {
516 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill,
517 mblk_t *, mp);
518 /*
519 * This assumes that we deliver to all conns for
520 * multicast and broadcast packets.
521 */
522 nexthop = INADDR_BROADCAST;
523 ira->ira_flags |= IRAF_DHCP_UNICAST;

new/usr/src/uts/common/inet/ip/ip_input.c 9

524 }
525 }

527 /*
528 * If rsvpd is running, let RSVP daemon handle its processing
529 * and forwarding of RSVP multicast/unicast packets.
530 * If rsvpd is not running but mrouted is running, RSVP
531 * multicast packets are forwarded as multicast traffic
532 * and RSVP unicast packets are forwarded by unicast router.
533 * If neither rsvpd nor mrouted is running, RSVP multicast
534 * packets are not forwarded, but the unicast packets are
535 * forwarded like unicast traffic.
536 */
537 if (ipha->ipha_protocol == IPPROTO_RSVP &&
538 ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head != NULL) {
539 /* RSVP packet and rsvpd running. Treat as ours */
540 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(nexthop)));
541 /*
542 * We use a multicast address to get the packet to
543 * ire_recv_multicast_v4. There will not be a membership
544 * check since we set IRAF_RSVP
545 */
546 nexthop = htonl(INADDR_UNSPEC_GROUP);
547 ira->ira_flags |= IRAF_RSVP;
548 }

550 ill_input_short_v4(mp, ipha, &nexthop, ira, rtc);
551 }

553 /*
554 * This is the tail-end of the full receive side packet handling.
555 * It can be used directly when the configuration is simple.
556 */
557 void
558 ill_input_short_v4(mblk_t *mp, void *iph_arg, void *nexthop_arg,
559 ip_recv_attr_t *ira, rtc_t *rtc)
560 {
561 ire_t *ire;
562 uint_t opt_len;
563 ill_t *ill = ira->ira_ill;
564 ip_stack_t *ipst = ill->ill_ipst;
565 uint_t pkt_len;
566 ssize_t len;
567 ipha_t *ipha = (ipha_t *)iph_arg;
568 ipaddr_t nexthop = *(ipaddr_t *)nexthop_arg;
569 ilb_stack_t *ilbs = ipst->ips_netstack->netstack_ilb;
570 uint_t irr_flags;
571 #define rptr ((uchar_t *)ipha)

573 ASSERT(DB_TYPE(mp) == M_DATA);

575 /*
576 * The following test for loopback is faster than
577 * IP_LOOPBACK_ADDR(), because it avoids any bitwise
578 * operations.
579 * Note that these addresses are always in network byte order
580 */
581 if (((*(uchar_t *)&ipha->ipha_dst) == IN_LOOPBACKNET) ||
582 ((*(uchar_t *)&ipha->ipha_src) == IN_LOOPBACKNET)) {
583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors);
584 ip_drop_input("ipIfStatsInAddrErrors", mp, ill);
585 freemsg(mp);
586 return;
587 }

589 len = mp->b_wptr - rptr;

new/usr/src/uts/common/inet/ip/ip_input.c 10

590 pkt_len = ira->ira_pktlen;

592 /* multiple mblk or too short */
593 len -= pkt_len;
594 if (len != 0) {
595 mp = ip_check_length(mp, rptr, len, pkt_len,
596 IP_SIMPLE_HDR_LENGTH, ira);
597 if (mp == NULL)
598 return;
599 ipha = (ipha_t *)mp->b_rptr;
600 }

602 DTRACE_IP7(receive, mblk_t *, mp, conn_t *, NULL, void_ip_t *,
603 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL,
604 int, 0);

606 /*
607 * The event for packets being received from a ’physical’
608 * interface is placed after validation of the source and/or
609 * destination address as being local so that packets can be
610 * redirected to loopback addresses using ipnat.
611 */
612 DTRACE_PROBE4(ip4__physical__in__start,
613 ill_t *, ill, ill_t *, NULL,
614 ipha_t *, ipha, mblk_t *, mp);

616 if (HOOKS4_INTERESTED_PHYSICAL_IN(ipst)) {
617 int ll_multicast = 0;
618 int error;
619 ipaddr_t orig_dst = ipha->ipha_dst;

621 if (ira->ira_flags & IRAF_L2DST_MULTICAST)
622 ll_multicast = HPE_MULTICAST;
623 else if (ira->ira_flags & IRAF_L2DST_BROADCAST)
624 ll_multicast = HPE_BROADCAST;

626 FW_HOOKS(ipst->ips_ip4_physical_in_event,
627 ipst->ips_ipv4firewall_physical_in,
628 ill, NULL, ipha, mp, mp, ll_multicast, ipst, error);

630 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp);

632 if (mp == NULL)
633 return;
634 /* The length could have changed */
635 ipha = (ipha_t *)mp->b_rptr;
636 ira->ira_pktlen = ntohs(ipha->ipha_length);
637 pkt_len = ira->ira_pktlen;

639 /*
640 * In case the destination changed we override any previous
641 * change to nexthop.
642 */
643 if (orig_dst != ipha->ipha_dst)
644 nexthop = ipha->ipha_dst;
645 if (nexthop == INADDR_ANY) {
646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors);
647 ip_drop_input("ipIfStatsInAddrErrors", mp, ill);
648 freemsg(mp);
649 return;
650 }
651 }

653 if (ipst->ips_ip4_observe.he_interested) {
654 zoneid_t dzone;

new/usr/src/uts/common/inet/ip/ip_input.c 11

656 /*
657 * On the inbound path the src zone will be unknown as
658 * this packet has come from the wire.
659 */
660 dzone = ip_get_zoneid_v4(nexthop, mp, ira, ALL_ZONES);
661 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, ill, ipst);
662 }

664 /*
665 * If there is a good HW IP header checksum we clear the need
666 * look at the IP header checksum.
667 */
668 if ((DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM) &&
669 ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
670 /* Header checksum was ok. Clear the flag */
671 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
672 ira->ira_flags &= ~IRAF_VERIFY_IP_CKSUM;
673 }

675 /*
676 * Here we check to see if we machine is setup as
677 * L3 loadbalancer and if the incoming packet is for a VIP
678 *
679 * Check the following:
680 * - there is at least a rule
681 * - protocol of the packet is supported
682 */
683 if (ilb_has_rules(ilbs) && ILB_SUPP_L4(ipha->ipha_protocol)) {
684 ipaddr_t lb_dst;
685 int lb_ret;

687 /* For convenience, we pull up the mblk. */
688 if (mp->b_cont != NULL) {
689 if (pullupmsg(mp, -1) == 0) {
690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
691 ip_drop_input("ipIfStatsInDiscards - pullupmsg",
692 mp, ill);
693 freemsg(mp);
694 return;
695 }
696 ipha = (ipha_t *)mp->b_rptr;
697 }

699 /*
700 * We just drop all fragments going to any VIP, at
701 * least for now....
702 */
703 if (ntohs(ipha->ipha_fragment_offset_and_flags) &
704 (IPH_MF | IPH_OFFSET)) {
705 if (!ilb_rule_match_vip_v4(ilbs, nexthop, NULL)) {
706 goto after_ilb;
707 }

709 ILB_KSTAT_UPDATE(ilbs, ip_frag_in, 1);
710 ILB_KSTAT_UPDATE(ilbs, ip_frag_dropped, 1);
711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
712 ip_drop_input("ILB fragment", mp, ill);
713 freemsg(mp);
714 return;
715 }
716 lb_ret = ilb_check_v4(ilbs, ill, mp, ipha, ipha->ipha_protocol,
717 (uint8_t *)ipha + IPH_HDR_LENGTH(ipha), &lb_dst);

719 if (lb_ret == ILB_DROPPED) {
720 /* Is this the right counter to increase? */
721 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);

new/usr/src/uts/common/inet/ip/ip_input.c 12

722 ip_drop_input("ILB_DROPPED", mp, ill);
723 freemsg(mp);
724 return;
725 }
726 if (lb_ret == ILB_BALANCED) {
727 /* Set the dst to that of the chosen server */
728 nexthop = lb_dst;
729 DB_CKSUMFLAGS(mp) = 0;
730 }
731 }

733 after_ilb:
734 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION;
735 ira->ira_ip_hdr_length = IP_SIMPLE_HDR_LENGTH;
736 if (opt_len != 0) {
737 int error = 0;

739 ira->ira_ip_hdr_length += (opt_len << 2);
740 ira->ira_flags |= IRAF_IPV4_OPTIONS;

742 /* IP Options present! Validate the length. */
743 mp = ip_check_optlen(mp, ipha, opt_len, pkt_len, ira);
744 if (mp == NULL)
745 return;

747 /* Might have changed */
748 ipha = (ipha_t *)mp->b_rptr;

750 /* Verify IP header checksum before parsing the options */
751 if ((ira->ira_flags & IRAF_VERIFY_IP_CKSUM) &&
752 ip_csum_hdr(ipha)) {
753 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
754 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);
755 freemsg(mp);
756 return;
757 }
758 ira->ira_flags &= ~IRAF_VERIFY_IP_CKSUM;

760 /*
761 * Go off to ip_input_options which returns the next hop
762 * destination address, which may have been affected
763 * by source routing.
764 */
765 IP_STAT(ipst, ip_opt);

767 nexthop = ip_input_options(ipha, nexthop, mp, ira, &error);
768 if (error != 0) {
769 /*
770 * An ICMP error has been sent and the packet has
771 * been dropped.
772 */
773 return;
774 }
775 }

777 if (ill->ill_flags & ILLF_ROUTER)
778 irr_flags = IRR_ALLOCATE;
779 else
780 irr_flags = IRR_NONE;

782 /* Can not use route cache with TX since the labels can differ */
783 if (ira->ira_flags & IRAF_SYSTEM_LABELED) {
784 if (CLASSD(nexthop)) {
785 ire = ire_multicast(ill);
786 } else {
787 /* Match destination and label */

new/usr/src/uts/common/inet/ip/ip_input.c 13

788 ire = ire_route_recursive_v4(nexthop, 0, NULL,
789 ALL_ZONES, ira->ira_tsl, MATCH_IRE_SECATTR,
790 irr_flags, ira->ira_xmit_hint, ipst, NULL, NULL,
791 NULL);
792 }
793 /* Update the route cache so we do the ire_refrele */
794 ASSERT(ire != NULL);
795 if (rtc->rtc_ire != NULL)
796 ire_refrele(rtc->rtc_ire);
797 rtc->rtc_ire = ire;
798 rtc->rtc_ipaddr = nexthop;
799 } else if (nexthop == rtc->rtc_ipaddr && rtc->rtc_ire != NULL) {
800 /* Use the route cache */
801 ire = rtc->rtc_ire;
802 } else {
803 /* Update the route cache */
804 if (CLASSD(nexthop)) {
805 ire = ire_multicast(ill);
806 } else {
807 /* Just match the destination */
808 ire = ire_route_recursive_dstonly_v4(nexthop, irr_flags,
809 ira->ira_xmit_hint, ipst);
810 }
811 ASSERT(ire != NULL);
812 if (rtc->rtc_ire != NULL)
813 ire_refrele(rtc->rtc_ire);
814 rtc->rtc_ire = ire;
815 rtc->rtc_ipaddr = nexthop;
816 }

818 ire->ire_ib_pkt_count++;

820 /*
821 * Based on ire_type and ire_flags call one of:
822 * ire_recv_local_v4 - for IRE_LOCAL
823 * ire_recv_loopback_v4 - for IRE_LOOPBACK
824 * ire_recv_multirt_v4 - if RTF_MULTIRT
825 * ire_recv_noroute_v4 - if RTF_REJECT or RTF_BLACHOLE
826 * ire_recv_multicast_v4 - for IRE_MULTICAST
827 * ire_recv_broadcast_v4 - for IRE_BROADCAST
828 * ire_recv_noaccept_v4 - for ire_noaccept ones
829 * ire_recv_forward_v4 - for the rest.
830 */
831 (*ire->ire_recvfn)(ire, mp, ipha, ira);
832 }
833 #undef rptr

835 /*
836 * ire_recvfn for IREs that need forwarding
837 */
838 void
839 ire_recv_forward_v4(ire_t *ire, mblk_t *mp, void *iph_arg, ip_recv_attr_t *ira)
840 {
841 ipha_t *ipha = (ipha_t *)iph_arg;
842 ill_t *ill = ira->ira_ill;
843 ip_stack_t *ipst = ill->ill_ipst;
844 ill_t *dst_ill;
845 nce_t *nce;
846 ipaddr_t src = ipha->ipha_src;
847 uint32_t added_tx_len;
848 uint32_t mtu, iremtu;

850 if (ira->ira_flags & (IRAF_L2DST_MULTICAST|IRAF_L2DST_BROADCAST)) {
851 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
852 ip_drop_input("l2 multicast not forwarded", mp, ill);
853 freemsg(mp);

new/usr/src/uts/common/inet/ip/ip_input.c 14

854 return;
855 }

857 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) {
858 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
859 ip_drop_input("ipIfStatsForwProhibits", mp, ill);
860 freemsg(mp);
861 return;
862 }

864 /*
865 * Either ire_nce_capable or ire_dep_parent would be set for the IRE
866 * when it is found by ire_route_recursive, but that some other thread
867 * could have changed the routes with the effect of clearing
868 * ire_dep_parent. In that case we’d end up dropping the packet, or
869 * finding a new nce below.
870 * Get, allocate, or update the nce.
871 * We get a refhold on ire_nce_cache as a result of this to avoid races
872 * where ire_nce_cache is deleted.
873 *
874 * This ensures that we don’t forward if the interface is down since
875 * ipif_down removes all the nces.
876 */
877 mutex_enter(&ire->ire_lock);
878 nce = ire->ire_nce_cache;
879 if (nce == NULL) {
880 /* Not yet set up - try to set one up */
881 mutex_exit(&ire->ire_lock);
882 (void) ire_revalidate_nce(ire);
883 mutex_enter(&ire->ire_lock);
884 nce = ire->ire_nce_cache;
885 if (nce == NULL) {
886 mutex_exit(&ire->ire_lock);
887 /* The ire_dep_parent chain went bad, or no memory */
888 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
889 ip_drop_input("No ire_dep_parent", mp, ill);
890 freemsg(mp);
891 return;
892 }
893 }
894 nce_refhold(nce);
895 mutex_exit(&ire->ire_lock);

897 if (nce->nce_is_condemned) {
898 nce_t *nce1;

900 nce1 = ire_handle_condemned_nce(nce, ire, ipha, NULL, B_FALSE);
901 nce_refrele(nce);
902 if (nce1 == NULL) {
903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
904 ip_drop_input("No nce", mp, ill);
905 freemsg(mp);
906 return;
907 }
908 nce = nce1;
909 }
910 dst_ill = nce->nce_ill;

912 /*
913 * Unless we are forwarding, drop the packet.
914 * We have to let source routed packets through if they go out
915 * the same interface i.e., they are ’ping -l’ packets.
916 */
917 if (!(dst_ill->ill_flags & ILLF_ROUTER) &&
918 !(ip_source_routed(ipha, ipst) && dst_ill == ill)) {
919 if (ip_source_routed(ipha, ipst)) {

new/usr/src/uts/common/inet/ip/ip_input.c 15

920 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
921 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
922 nce_refrele(nce);
923 return;
924 }
925 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
926 ip_drop_input("ipIfStatsForwProhibits", mp, ill);
927 freemsg(mp);
928 nce_refrele(nce);
929 return;
930 }

932 if (ire->ire_zoneid != GLOBAL_ZONEID && ire->ire_zoneid != ALL_ZONES) {
933 ipaddr_t dst = ipha->ipha_dst;

935 ire->ire_ib_pkt_count--;
936 /*
937 * Should only use IREs that are visible from the
938 * global zone for forwarding.
939 * Take a source route into account the same way as ip_input
940 * did.
941 */
942 if (ira->ira_flags & IRAF_IPV4_OPTIONS) {
943 int error = 0;

945 dst = ip_input_options(ipha, dst, mp, ira, &error);
946 ASSERT(error == 0); /* ip_input checked */
947 }
948 ire = ire_route_recursive_v4(dst, 0, NULL, GLOBAL_ZONEID,
949 ira->ira_tsl, MATCH_IRE_SECATTR,
950 (ill->ill_flags & ILLF_ROUTER) ? IRR_ALLOCATE : IRR_NONE,
951 ira->ira_xmit_hint, ipst, NULL, NULL, NULL);
952 ire->ire_ib_pkt_count++;
953 (*ire->ire_recvfn)(ire, mp, ipha, ira);
954 ire_refrele(ire);
955 nce_refrele(nce);
956 return;
957 }

959 /*
960 * ipIfStatsHCInForwDatagrams should only be increment if there
961 * will be an attempt to forward the packet, which is why we
962 * increment after the above condition has been checked.
963 */
964 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams);

966 /* Initiate Read side IPPF processing */
967 if (IPP_ENABLED(IPP_FWD_IN, ipst)) {
968 /* ip_process translates an IS_UNDER_IPMP */
969 mp = ip_process(IPP_FWD_IN, mp, ill, ill);
970 if (mp == NULL) {
971 /* ip_drop_packet and MIB done */
972 ip2dbg(("ire_recv_forward_v4: pkt dropped/deferred "
973 "during IPPF processing\n"));
974 nce_refrele(nce);
975 return;
976 }
977 }

979 DTRACE_PROBE4(ip4__forwarding__start,
980 ill_t *, ill, ill_t *, dst_ill, ipha_t *, ipha, mblk_t *, mp);

982 if (HOOKS4_INTERESTED_FORWARDING(ipst)) {
983 int error;

985 FW_HOOKS(ipst->ips_ip4_forwarding_event,

new/usr/src/uts/common/inet/ip/ip_input.c 16

986 ipst->ips_ipv4firewall_forwarding,
987 ill, dst_ill, ipha, mp, mp, 0, ipst, error);

989 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp);

991 if (mp == NULL) {
992 nce_refrele(nce);
993 return;
994 }
995 /*
996 * Even if the destination was changed by the filter we use the
997 * forwarding decision that was made based on the address
998 * in ip_input.
999 */

1001 /* Might have changed */
1002 ipha = (ipha_t *)mp->b_rptr;
1003 ira->ira_pktlen = ntohs(ipha->ipha_length);
1004 }

1006 /* Packet is being forwarded. Turning off hwcksum flag. */
1007 DB_CKSUMFLAGS(mp) = 0;

1009 /*
1010 * Martian Address Filtering [RFC 1812, Section 5.3.7]
1011 * The loopback address check for both src and dst has already
1012 * been checked in ip_input
1013 * In the future one can envision adding RPF checks using number 3.
1014 * If we already checked the same source address we can skip this.
1015 */
1016 if (!(ira->ira_flags & IRAF_VERIFIED_SRC) ||
1017 src != ira->ira_verified_src) {
1018 switch (ipst->ips_src_check) {
1019 case 0:
1020 break;
1021 case 2:
1022 if (ip_type_v4(src, ipst) == IRE_BROADCAST) {
1023 BUMP_MIB(ill->ill_ip_mib,
1024 ipIfStatsForwProhibits);
1025 BUMP_MIB(ill->ill_ip_mib,
1026 ipIfStatsInAddrErrors);
1027 ip_drop_input("ipIfStatsInAddrErrors", mp, ill);
1028 freemsg(mp);
1029 nce_refrele(nce);
1030 return;
1031 }
1032 /* FALLTHRU */

1034 case 1:
1035 if (CLASSD(src)) {
1036 BUMP_MIB(ill->ill_ip_mib,
1037 ipIfStatsForwProhibits);
1038 BUMP_MIB(ill->ill_ip_mib,
1039 ipIfStatsInAddrErrors);
1040 ip_drop_input("ipIfStatsInAddrErrors", mp, ill);
1041 freemsg(mp);
1042 nce_refrele(nce);
1043 return;
1044 }
1045 break;
1046 }
1047 /* Remember for next packet */
1048 ira->ira_flags |= IRAF_VERIFIED_SRC;
1049 ira->ira_verified_src = src;
1050 }

new/usr/src/uts/common/inet/ip/ip_input.c 17

1052 /*
1053 * Check if packet is going out the same link on which it arrived.
1054 * Means we might need to send a redirect.
1055 */
1056 if (IS_ON_SAME_LAN(dst_ill, ill) && ipst->ips_ip_g_send_redirects) {
1057 ip_send_potential_redirect_v4(mp, ipha, ire, ira);
1058 }

1060 added_tx_len = 0;
1061 if (ira->ira_flags & IRAF_SYSTEM_LABELED) {
1062 mblk_t *mp1;
1063 uint32_t old_pkt_len = ira->ira_pktlen;

1065 /* Verify IP header checksum before adding/removing options */
1066 if ((ira->ira_flags & IRAF_VERIFY_IP_CKSUM) &&
1067 ip_csum_hdr(ipha)) {
1068 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
1069 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);
1070 freemsg(mp);
1071 nce_refrele(nce);
1072 return;
1073 }
1074 ira->ira_flags &= ~IRAF_VERIFY_IP_CKSUM;

1076 /*
1077 * Check if it can be forwarded and add/remove
1078 * CIPSO options as needed.
1079 */
1080 if ((mp1 = tsol_ip_forward(ire, mp, ira)) == NULL) {
1081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
1082 ip_drop_input("tsol_ip_forward", mp, ill);
1083 freemsg(mp);
1084 nce_refrele(nce);
1085 return;
1086 }
1087 /*
1088 * Size may have changed. Remember amount added in case
1089 * IP needs to send an ICMP too big.
1090 */
1091 mp = mp1;
1092 ipha = (ipha_t *)mp->b_rptr;
1093 ira->ira_pktlen = ntohs(ipha->ipha_length);
1094 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
1095 if (ira->ira_pktlen > old_pkt_len)
1096 added_tx_len = ira->ira_pktlen - old_pkt_len;

1098 /* Options can have been added or removed */
1099 if (ira->ira_ip_hdr_length != IP_SIMPLE_HDR_LENGTH)
1100 ira->ira_flags |= IRAF_IPV4_OPTIONS;
1101 else
1102 ira->ira_flags &= ~IRAF_IPV4_OPTIONS;
1103 }

1105 mtu = dst_ill->ill_mtu;
1106 if ((iremtu = ire->ire_metrics.iulp_mtu) != 0 && iremtu < mtu)
1107 mtu = iremtu;
1108 ip_forward_xmit_v4(nce, ill, mp, ipha, ira, mtu, added_tx_len);
1109 nce_refrele(nce);
1110 }

1112 /*
1113 * Used for sending out unicast and multicast packets that are
1114 * forwarded.
1115 */
1116 void
1117 ip_forward_xmit_v4(nce_t *nce, ill_t *ill, mblk_t *mp, ipha_t *ipha,

new/usr/src/uts/common/inet/ip/ip_input.c 18

1118 ip_recv_attr_t *ira, uint32_t mtu, uint32_t added_tx_len)
1119 {
1120 ill_t *dst_ill = nce->nce_ill;
1121 uint32_t pkt_len;
1122 uint32_t sum;
1123 iaflags_t iraflags = ira->ira_flags;
1124 ip_stack_t *ipst = ill->ill_ipst;
1125 iaflags_t ixaflags;

1127 if (ipha->ipha_ttl <= 1) {
1128 /* Perhaps the checksum was bad */
1129 if ((iraflags & IRAF_VERIFY_IP_CKSUM) && ip_csum_hdr(ipha)) {
1130 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
1131 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);
1132 freemsg(mp);
1133 return;
1134 }
1135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1136 ip_drop_input("ICMP_TTL_EXCEEDED", mp, ill);
1137 icmp_time_exceeded(mp, ICMP_TTL_EXCEEDED, ira);
1138 return;
1139 }
1140 ipha->ipha_ttl--;
1141 /* Adjust the checksum to reflect the ttl decrement. */
1142 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
1143 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));

1145 /* Check if there are options to update */
1146 if (iraflags & IRAF_IPV4_OPTIONS) {
1147 ASSERT(ipha->ipha_version_and_hdr_length !=
1148 IP_SIMPLE_HDR_VERSION);
1149 ASSERT(!(iraflags & IRAF_VERIFY_IP_CKSUM));

1151 if (!ip_forward_options(mp, ipha, dst_ill, ira)) {
1152 /* ipIfStatsForwProhibits and ip_drop_input done */
1153 return;
1154 }

1156 ipha->ipha_hdr_checksum = 0;
1157 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1158 }

1160 /* Initiate Write side IPPF processing before any fragmentation */
1161 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) {
1162 /* ip_process translates an IS_UNDER_IPMP */
1163 mp = ip_process(IPP_FWD_OUT, mp, dst_ill, dst_ill);
1164 if (mp == NULL) {
1165 /* ip_drop_packet and MIB done */
1166 ip2dbg(("ire_recv_forward_v4: pkt dropped/deferred" \
1167 " during IPPF processing\n"));
1168 return;
1169 }
1170 }

1172 pkt_len = ira->ira_pktlen;

1174 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams);

1176 ixaflags = IXAF_IS_IPV4 | IXAF_NO_DEV_FLOW_CTL;

1178 if (pkt_len > mtu) {
1179 /*
1180 * It needs fragging on its way out. If we haven’t
1181 * verified the header checksum yet we do it now since
1182 * are going to put a surely good checksum in the
1183 * outgoing header, we have to make sure that it

new/usr/src/uts/common/inet/ip/ip_input.c 19

1184 * was good coming in.
1185 */
1186 if ((iraflags & IRAF_VERIFY_IP_CKSUM) && ip_csum_hdr(ipha)) {
1187 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
1188 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);
1189 freemsg(mp);
1190 return;
1191 }
1192 if (ipha->ipha_fragment_offset_and_flags & IPH_DF_HTONS) {
1193 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutFragFails);
1194 ip_drop_output("ipIfStatsOutFragFails", mp, dst_ill);
1195 if (iraflags & IRAF_SYSTEM_LABELED) {
1196 /*
1197 * Remove any CIPSO option added by
1198 * tsol_ip_forward, and make sure we report
1199 * a path MTU so that there
1200 * is room to add such a CIPSO option for future
1201 * packets.
1202 */
1203 mtu = tsol_pmtu_adjust(mp, mtu, added_tx_len,
1204 AF_INET);
1205 }

1207 icmp_frag_needed(mp, mtu, ira);
1208 return;
1209 }

1211 (void) ip_fragment_v4(mp, nce, ixaflags, pkt_len, mtu,
1212 ira->ira_xmit_hint, GLOBAL_ZONEID, 0, ip_xmit, NULL);
1213 return;
1214 }

1216 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
1217 if (iraflags & IRAF_LOOPBACK_COPY) {
1218 /*
1219 * IXAF_NO_LOOP_ZONEID is not set hence 7th arg
1220 * is don’t care
1221 */
1222 (void) ip_postfrag_loopcheck(mp, nce,
1223 ixaflags | IXAF_LOOPBACK_COPY,
1224 pkt_len, ira->ira_xmit_hint, GLOBAL_ZONEID, 0, NULL);
1225 } else {
1226 (void) ip_xmit(mp, nce, ixaflags, pkt_len, ira->ira_xmit_hint,
1227 GLOBAL_ZONEID, 0, NULL);
1228 }
1229 }

1231 /*
1232 * ire_recvfn for RTF_REJECT and RTF_BLACKHOLE routes, including IRE_NOROUTE,
1233 * which is what ire_route_recursive returns when there is no matching ire.
1234 * Send ICMP unreachable unless blackhole.
1235 */
1236 void
1237 ire_recv_noroute_v4(ire_t *ire, mblk_t *mp, void *iph_arg, ip_recv_attr_t *ira)
1238 {
1239 ipha_t *ipha = (ipha_t *)iph_arg;
1240 ill_t *ill = ira->ira_ill;
1241 ip_stack_t *ipst = ill->ill_ipst;

1243 /* Would we have forwarded this packet if we had a route? */
1244 if (ira->ira_flags & (IRAF_L2DST_MULTICAST|IRAF_L2DST_BROADCAST)) {
1245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
1246 ip_drop_input("l2 multicast not forwarded", mp, ill);
1247 freemsg(mp);
1248 return;
1249 }

new/usr/src/uts/common/inet/ip/ip_input.c 20

1251 if (!(ill->ill_flags & ILLF_ROUTER)) {
1252 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
1253 ip_drop_input("ipIfStatsForwProhibits", mp, ill);
1254 freemsg(mp);
1255 return;
1256 }
1257 /*
1258 * If we had a route this could have been forwarded. Count as such.
1259 *
1260 * ipIfStatsHCInForwDatagrams should only be increment if there
1261 * will be an attempt to forward the packet, which is why we
1262 * increment after the above condition has been checked.
1263 */
1264 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams);

1266 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInNoRoutes);

1268 ip_rts_change(RTM_MISS, ipha->ipha_dst, 0, 0, 0, 0, 0, 0, RTA_DST,
1269 ipst);

1271 if (ire->ire_flags & RTF_BLACKHOLE) {
1272 ip_drop_input("ipIfStatsInNoRoutes RTF_BLACKHOLE", mp, ill);
1273 freemsg(mp);
1274 } else {
1275 ip_drop_input("ipIfStatsInNoRoutes RTF_REJECT", mp, ill);

1277 if (ip_source_routed(ipha, ipst)) {
1278 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
1279 } else {
1280 icmp_unreachable(mp, ICMP_HOST_UNREACHABLE, ira);
1281 }
1282 }
1283 }

1285 /*
1286 * ire_recvfn for IRE_LOCALs marked with ire_noaccept. Such IREs are used for
1287 * VRRP when in noaccept mode.
1288 * We silently drop the packet. ARP handles packets even if noaccept is set.
1289 */
1290 /* ARGSUSED */
1291 void
1292 ire_recv_noaccept_v4(ire_t *ire, mblk_t *mp, void *iph_arg,
1293 ip_recv_attr_t *ira)
1294 {
1295 ill_t *ill = ira->ira_ill;

1297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1298 ip_drop_input("ipIfStatsInDiscards - noaccept", mp, ill);
1299 freemsg(mp);
1300 }

1302 /*
1303 * ire_recvfn for IRE_BROADCAST.
1304 */
1305 void
1306 ire_recv_broadcast_v4(ire_t *ire, mblk_t *mp, void *iph_arg,
1307 ip_recv_attr_t *ira)
1308 {
1309 ipha_t *ipha = (ipha_t *)iph_arg;
1310 ill_t *ill = ira->ira_ill;
1311 ill_t *dst_ill = ire->ire_ill;
1312 ip_stack_t *ipst = ill->ill_ipst;
1313 ire_t *alt_ire;
1314 nce_t *nce;
1315 ipaddr_t ipha_dst;

new/usr/src/uts/common/inet/ip/ip_input.c 21

1317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts);

1319 /* Tag for higher-level protocols */
1320 ira->ira_flags |= IRAF_BROADCAST;

1322 /*
1323 * Whether local or directed broadcast forwarding: don’t allow
1324 * for TCP.
1325 */
1326 if (ipha->ipha_protocol == IPPROTO_TCP) {
1327 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1328 ip_drop_input("ipIfStatsInDiscards", mp, ill);
1329 freemsg(mp);
1330 return;
1331 }

1333 /*
1334 * So that we don’t end up with dups, only one ill an IPMP group is
1335 * nominated to receive broadcast traffic.
1336 * If we have no cast_ill we are liberal and accept everything.
1337 */
1338 if (IS_UNDER_IPMP(ill)) {
1339 /* For an under ill_grp can change under lock */
1340 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
1341 if (!ill->ill_nom_cast && ill->ill_grp != NULL &&
1342 ill->ill_grp->ig_cast_ill != NULL) {
1343 rw_exit(&ipst->ips_ill_g_lock);
1344 /* No MIB since this is normal operation */
1345 ip_drop_input("not nom_cast", mp, ill);
1346 freemsg(mp);
1347 return;
1348 }
1349 rw_exit(&ipst->ips_ill_g_lock);

1351 ira->ira_ruifindex = ill_get_upper_ifindex(ill);
1352 }

1354 /*
1355 * After reassembly and IPsec we will need to duplicate the
1356 * broadcast packet for all matching zones on the ill.
1357 */
1358 ira->ira_zoneid = ALL_ZONES;

1360 /*
1361 * Check for directed broadcast i.e. ire->ire_ill is different than
1362 * the incoming ill.
1363 * The same broadcast address can be assigned to multiple interfaces
1364 * so have to check explicitly for that case by looking up the alt_ire
1365 */
1366 if (dst_ill == ill && !(ire->ire_flags & RTF_MULTIRT)) {
1367 /* Reassemble on the ill on which the packet arrived */
1368 ip_input_local_v4(ire, mp, ipha, ira);
1369 /* Restore */
1370 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
1371 return;
1372 }

1374 /* Is there an IRE_BROADCAST on the incoming ill? */
1375 ipha_dst = ((ira->ira_flags & IRAF_DHCP_UNICAST) ? INADDR_BROADCAST :
1376 ipha->ipha_dst);
1377 alt_ire = ire_ftable_lookup_v4(ipha_dst, 0, 0, IRE_BROADCAST, ill,
1378 ALL_ZONES, ira->ira_tsl,
1379 MATCH_IRE_TYPE|MATCH_IRE_ILL|MATCH_IRE_SECATTR, 0, ipst, NULL);
1380 if (alt_ire != NULL) {
1381 /* Not a directed broadcast */

new/usr/src/uts/common/inet/ip/ip_input.c 22

1382 /*
1383 * In the special case of multirouted broadcast
1384 * packets, we unconditionally need to "gateway"
1385 * them to the appropriate interface here so that reassembly
1386 * works. We know that the IRE_BROADCAST on cgtp0 doesn’t
1387 * have RTF_MULTIRT set so we look for such an IRE in the
1388 * bucket.
1389 */
1390 if (alt_ire->ire_flags & RTF_MULTIRT) {
1391 irb_t *irb;
1392 ire_t *ire1;

1394 irb = ire->ire_bucket;
1395 irb_refhold(irb);
1396 for (ire1 = irb->irb_ire; ire1 != NULL;
1397 ire1 = ire1->ire_next) {
1398 if (IRE_IS_CONDEMNED(ire1))
1399 continue;
1400 if (!(ire1->ire_type & IRE_BROADCAST) ||
1401 (ire1->ire_flags & RTF_MULTIRT))
1402 continue;
1403 ill = ire1->ire_ill;
1404 ill_refhold(ill);
1405 break;
1406 }
1407 irb_refrele(irb);
1408 if (ire1 != NULL) {
1409 ill_t *orig_ill = ira->ira_ill;

1411 ire_refrele(alt_ire);
1412 /* Reassemble on the new ill */
1413 ira->ira_ill = ill;
1414 ip_input_local_v4(ire, mp, ipha, ira);
1415 ill_refrele(ill);
1416 /* Restore */
1417 ira->ira_ill = orig_ill;
1418 ira->ira_ruifindex =
1419 orig_ill->ill_phyint->phyint_ifindex;
1420 return;
1421 }
1422 }
1423 ire_refrele(alt_ire);
1424 /* Reassemble on the ill on which the packet arrived */
1425 ip_input_local_v4(ire, mp, ipha, ira);
1426 goto done;
1427 }

1429 /*
1430 * This is a directed broadcast
1431 *
1432 * If directed broadcast is allowed, then forward the packet out
1433 * the destination interface with IXAF_LOOPBACK_COPY set. That will
1434 * result in ip_input() receiving a copy of the packet on the
1435 * appropriate ill. (We could optimize this to avoid the extra trip
1436 * via ip_input(), but since directed broadcasts are normally disabled
1437 * it doesn’t make sense to optimize it.)
1438 */
1439 if (!ipst->ips_ip_g_forward_directed_bcast ||
1440 (ira->ira_flags & (IRAF_L2DST_MULTICAST|IRAF_L2DST_BROADCAST))) {
1441 ip_drop_input("directed broadcast not allowed", mp, ill);
1442 freemsg(mp);
1443 goto done;
1444 }
1445 if ((ira->ira_flags & IRAF_VERIFY_IP_CKSUM) && ip_csum_hdr(ipha)) {
1446 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
1447 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);

new/usr/src/uts/common/inet/ip/ip_input.c 23

1448 freemsg(mp);
1449 goto done;
1450 }

1452 /*
1453 * Clear the indication that this may have hardware
1454 * checksum as we are not using it for forwarding.
1455 */
1456 DB_CKSUMFLAGS(mp) = 0;

1458 /*
1459 * Adjust ttl to 2 (1+1 - the forward engine will decrement it by one.
1460 */
1461 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1;
1462 ipha->ipha_hdr_checksum = 0;
1463 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);

1465 /*
1466 * We use ip_forward_xmit to do any fragmentation.
1467 * and loopback copy on the outbound interface.
1468 *
1469 * Make it so that IXAF_LOOPBACK_COPY to be set on transmit side.
1470 */
1471 ira->ira_flags |= IRAF_LOOPBACK_COPY;

1473 nce = arp_nce_init(dst_ill, ipha->ipha_dst, IRE_BROADCAST);
1474 if (nce == NULL) {
1475 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards);
1476 ip_drop_output("No nce", mp, dst_ill);
1477 freemsg(mp);
1478 goto done;
1479 }

1481 ip_forward_xmit_v4(nce, ill, mp, ipha, ira, dst_ill->ill_mc_mtu, 0);
1482 nce_refrele(nce);
1483 done:
1484 /* Restore */
1485 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
1486 }

1488 /*
1489 * ire_recvfn for IRE_MULTICAST.
1490 */
1491 void
1492 ire_recv_multicast_v4(ire_t *ire, mblk_t *mp, void *iph_arg,
1493 ip_recv_attr_t *ira)
1494 {
1495 ipha_t *ipha = (ipha_t *)iph_arg;
1496 ill_t *ill = ira->ira_ill;
1497 ip_stack_t *ipst = ill->ill_ipst;

1499 ASSERT(ire->ire_ill == ira->ira_ill);

1501 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts);
1502 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, ira->ira_pktlen);

1504 /* RSVP hook */
1505 if (ira->ira_flags & IRAF_RSVP)
1506 goto forus;

1508 /* Tag for higher-level protocols */
1509 ira->ira_flags |= IRAF_MULTICAST;

1511 /*
1512 * So that we don’t end up with dups, only one ill an IPMP group is
1513 * nominated to receive multicast traffic.

new/usr/src/uts/common/inet/ip/ip_input.c 24

1514 * If we have no cast_ill we are liberal and accept everything.
1515 */
1516 if (IS_UNDER_IPMP(ill)) {
1517 ip_stack_t *ipst = ill->ill_ipst;

1519 /* For an under ill_grp can change under lock */
1520 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
1521 if (!ill->ill_nom_cast && ill->ill_grp != NULL &&
1522 ill->ill_grp->ig_cast_ill != NULL) {
1523 rw_exit(&ipst->ips_ill_g_lock);
1524 ip_drop_input("not on cast ill", mp, ill);
1525 freemsg(mp);
1526 return;
1527 }
1528 rw_exit(&ipst->ips_ill_g_lock);
1529 /*
1530 * We switch to the upper ill so that mrouter and hasmembers
1531 * can operate on upper here and in ip_input_multicast.
1532 */
1533 ill = ipmp_ill_hold_ipmp_ill(ill);
1534 if (ill != NULL) {
1535 ASSERT(ill != ira->ira_ill);
1536 ASSERT(ire->ire_ill == ira->ira_ill);
1537 ira->ira_ill = ill;
1538 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
1539 } else {
1540 ill = ira->ira_ill;
1541 }
1542 }

1544 /*
1545 * Check if we are a multicast router - send ip_mforward a copy of
1546 * the packet.
1547 * Due to mroute_decap tunnels we consider forwarding packets even if
1548 * mrouted has not joined the allmulti group on this interface.
1549 */
1550 if (ipst->ips_ip_g_mrouter) {
1551 int retval;

1553 /*
1554 * Clear the indication that this may have hardware
1555 * checksum as we are not using it for forwarding.
1556 */
1557 DB_CKSUMFLAGS(mp) = 0;

1559 /*
1560 * ip_mforward helps us make these distinctions: If received
1561 * on tunnel and not IGMP, then drop.
1562 * If IGMP packet, then don’t check membership
1563 * If received on a phyint and IGMP or PIM, then
1564 * don’t check membership
1565 */
1566 retval = ip_mforward(mp, ira);
1567 /* ip_mforward updates mib variables if needed */

1569 switch (retval) {
1570 case 0:
1571 /*
1572 * pkt is okay and arrived on phyint.
1573 *
1574 * If we are running as a multicast router
1575 * we need to see all IGMP and/or PIM packets.
1576 */
1577 if ((ipha->ipha_protocol == IPPROTO_IGMP) ||
1578 (ipha->ipha_protocol == IPPROTO_PIM)) {
1579 goto forus;

new/usr/src/uts/common/inet/ip/ip_input.c 25

1580 }
1581 break;
1582 case -1:
1583 /* pkt is mal-formed, toss it */
1584 freemsg(mp);
1585 goto done;
1586 case 1:
1587 /*
1588 * pkt is okay and arrived on a tunnel
1589 *
1590 * If we are running a multicast router
1591 * we need to see all igmp packets.
1592 */
1593 if (ipha->ipha_protocol == IPPROTO_IGMP) {
1594 goto forus;
1595 }
1596 ip_drop_input("Multicast on tunnel ignored", mp, ill);
1597 freemsg(mp);
1598 goto done;
1599 }
1600 }

1602 /*
1603 * Check if we have members on this ill. This is not necessary for
1604 * correctness because even if the NIC/GLD had a leaky filter, we
1605 * filter before passing to each conn_t.
1606 */
1607 if (!ill_hasmembers_v4(ill, ipha->ipha_dst)) {
1608 /*
1609 * Nobody interested
1610 *
1611 * This might just be caused by the fact that
1612 * multiple IP Multicast addresses map to the same
1613 * link layer multicast - no need to increment counter!
1614 */
1615 ip_drop_input("Multicast with no members", mp, ill);
1616 freemsg(mp);
1617 goto done;
1618 }
1619 forus:
1620 ip2dbg(("ire_recv_multicast_v4: multicast for us: 0x%x\n",
1621 ntohl(ipha->ipha_dst)));

1623 /*
1624 * After reassembly and IPsec we will need to duplicate the
1625 * multicast packet for all matching zones on the ill.
1626 */
1627 ira->ira_zoneid = ALL_ZONES;

1629 /* Reassemble on the ill on which the packet arrived */
1630 ip_input_local_v4(ire, mp, ipha, ira);
1631 done:
1632 if (ill != ire->ire_ill) {
1633 ill_refrele(ill);
1634 ira->ira_ill = ire->ire_ill;
1635 ira->ira_ruifindex = ira->ira_ill->ill_phyint->phyint_ifindex;
1636 }
1637 }

1639 /*
1640 * ire_recvfn for IRE_OFFLINK with RTF_MULTIRT.
1641 * Drop packets since we don’t forward out multirt routes.
1642 */
1643 /* ARGSUSED */
1644 void
1645 ire_recv_multirt_v4(ire_t *ire, mblk_t *mp, void *iph_arg, ip_recv_attr_t *ira)

new/usr/src/uts/common/inet/ip/ip_input.c 26

1646 {
1647 ill_t *ill = ira->ira_ill;

1649 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInNoRoutes);
1650 ip_drop_input("Not forwarding out MULTIRT", mp, ill);
1651 freemsg(mp);
1652 }

1654 /*
1655 * ire_recvfn for IRE_LOOPBACK. This is only used when a FW_HOOK
1656 * has rewritten the packet to have a loopback destination address (We
1657 * filter out packet with a loopback destination from arriving over the wire).
1658 * We don’t know what zone to use, thus we always use the GLOBAL_ZONEID.
1659 */
1660 void
1661 ire_recv_loopback_v4(ire_t *ire, mblk_t *mp, void *iph_arg, ip_recv_attr_t *ira)
1662 {
1663 ipha_t *ipha = (ipha_t *)iph_arg;
1664 ill_t *ill = ira->ira_ill;
1665 ill_t *ire_ill = ire->ire_ill;

1667 ira->ira_zoneid = GLOBAL_ZONEID;

1669 /* Switch to the lo0 ill for further processing */
1670 if (ire_ill != ill) {
1671 /*
1672 * Update ira_ill to be the ILL on which the IP address
1673 * is hosted.
1674 * No need to hold the ill since we have a hold on the ire
1675 */
1676 ASSERT(ira->ira_ill == ira->ira_rill);
1677 ira->ira_ill = ire_ill;

1679 ip_input_local_v4(ire, mp, ipha, ira);

1681 /* Restore */
1682 ASSERT(ira->ira_ill == ire_ill);
1683 ira->ira_ill = ill;
1684 return;

1686 }
1687 ip_input_local_v4(ire, mp, ipha, ira);
1688 }

1690 /*
1691 * ire_recvfn for IRE_LOCAL.
1692 */
1693 void
1694 ire_recv_local_v4(ire_t *ire, mblk_t *mp, void *iph_arg, ip_recv_attr_t *ira)
1695 {
1696 ipha_t *ipha = (ipha_t *)iph_arg;
1697 ill_t *ill = ira->ira_ill;
1698 ill_t *ire_ill = ire->ire_ill;

1700 /* Make a note for DAD that this address is in use */
1701 ire->ire_last_used_time = LBOLT_FASTPATH;

1703 /* Only target the IRE_LOCAL with the right zoneid. */
1704 ira->ira_zoneid = ire->ire_zoneid;

1706 /*
1707 * If the packet arrived on the wrong ill, we check that
1708 * this is ok.
1709 * If it is, then we ensure that we do the reassembly on
1710 * the ill on which the address is hosted. We keep ira_rill as
1711 * the one on which the packet arrived, so that IP_PKTINFO and

new/usr/src/uts/common/inet/ip/ip_input.c 27

1712 * friends can report this.
1713 */
1714 if (ire_ill != ill) {
1715 ire_t *new_ire;

1717 new_ire = ip_check_multihome(&ipha->ipha_dst, ire, ill);
1718 if (new_ire == NULL) {
1719 /* Drop packet */
1720 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
1721 ip_drop_input("ipIfStatsInForwProhibits", mp, ill);
1722 freemsg(mp);
1723 return;
1724 }
1725 /*
1726 * Update ira_ill to be the ILL on which the IP address
1727 * is hosted. No need to hold the ill since we have a
1728 * hold on the ire. Note that we do the switch even if
1729 * new_ire == ire (for IPMP, ire would be the one corresponding
1730 * to the IPMP ill).
1731 */
1732 ASSERT(ira->ira_ill == ira->ira_rill);
1733 ira->ira_ill = new_ire->ire_ill;

1735 /* ira_ruifindex tracks the upper for ira_rill */
1736 if (IS_UNDER_IPMP(ill))
1737 ira->ira_ruifindex = ill_get_upper_ifindex(ill);

1739 ip_input_local_v4(new_ire, mp, ipha, ira);

1741 /* Restore */
1742 ASSERT(ira->ira_ill == new_ire->ire_ill);
1743 ira->ira_ill = ill;
1744 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;

1746 if (new_ire != ire)
1747 ire_refrele(new_ire);
1748 return;
1749 }

1751 ip_input_local_v4(ire, mp, ipha, ira);
1752 }

1754 /*
1755 * Common function for packets arriving for the host. Handles
1756 * checksum verification, reassembly checks, etc.
1757 */
1758 static void
1759 ip_input_local_v4(ire_t *ire, mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
1760 {
1761 ill_t *ill = ira->ira_ill;
1762 iaflags_t iraflags = ira->ira_flags;

1764 /*
1765 * Verify IP header checksum. If the packet was AH or ESP then
1766 * this flag has already been cleared. Likewise if the packet
1767 * had a hardware checksum.
1768 */
1769 if ((iraflags & IRAF_VERIFY_IP_CKSUM) && ip_csum_hdr(ipha)) {
1770 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
1771 ip_drop_input("ipIfStatsInCksumErrs", mp, ill);
1772 freemsg(mp);
1773 return;
1774 }

1776 if (iraflags & IRAF_IPV4_OPTIONS) {
1777 if (!ip_input_local_options(mp, ipha, ira)) {

new/usr/src/uts/common/inet/ip/ip_input.c 28

1778 /* Error has been sent and mp consumed */
1779 return;
1780 }
1781 /*
1782 * Some old hardware does partial checksum by including the
1783 * whole IP header, so the partial checksum value might have
1784 * become invalid if any option in the packet have been
1785 * updated. Always clear partial checksum flag here.
1786 */
1787 DB_CKSUMFLAGS(mp) &= ~HCK_PARTIALCKSUM;
1788 }

1790 /*
1791 * Is packet part of fragmented IP packet?
1792 * We compare against defined values in network byte order
1793 */
1794 if (ipha->ipha_fragment_offset_and_flags &
1795 (IPH_MF_HTONS | IPH_OFFSET_HTONS)) {
1796 /*
1797 * Make sure we have ira_l2src before we loose the original
1798 * mblk
1799 */
1800 if (!(ira->ira_flags & IRAF_L2SRC_SET))
1801 ip_setl2src(mp, ira, ira->ira_rill);

1803 mp = ip_input_fragment(mp, ipha, ira);
1804 if (mp == NULL)
1805 return;
1806 /* Completed reassembly */
1807 ipha = (ipha_t *)mp->b_rptr;
1808 }

1810 /*
1811 * For broadcast and multicast we need some extra work before
1812 * we call ip_fanout_v4(), since in the case of shared-IP zones
1813 * we need to pretend that a packet arrived for each zoneid.
1814 */
1815 if (iraflags & IRAF_MULTIBROADCAST) {
1816 if (iraflags & IRAF_BROADCAST)
1817 ip_input_broadcast_v4(ire, mp, ipha, ira);
1818 else
1819 ip_input_multicast_v4(ire, mp, ipha, ira);
1820 return;
1821 }
1822 ip_fanout_v4(mp, ipha, ira);
1823 }

1826 /*
1827 * Handle multiple zones which match the same broadcast address
1828 * and ill by delivering a packet to each of them.
1829 * Walk the bucket and look for different ire_zoneid but otherwise
1830 * the same IRE (same ill/addr/mask/type).
1831 * Note that ire_add() tracks IREs that are identical in all
1832 * fields (addr/mask/type/gw/ill/zoneid) within a single IRE by
1833 * increasing ire_identical_cnt. Thus we don’t need to be concerned
1834 * about those.
1835 */
1836 static void
1837 ip_input_broadcast_v4(ire_t *ire, mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
1838 {
1839 ill_t *ill = ira->ira_ill;
1840 ip_stack_t *ipst = ill->ill_ipst;
1841 netstack_t *ns = ipst->ips_netstack;
1842 irb_t *irb;
1843 ire_t *ire1;

new/usr/src/uts/common/inet/ip/ip_input.c 29

1844 mblk_t *mp1;
1845 ipha_t *ipha1;
1846 uint_t ira_pktlen = ira->ira_pktlen;
1847 uint16_t ira_ip_hdr_length = ira->ira_ip_hdr_length;

1849 irb = ire->ire_bucket;

1851 /*
1852 * If we don’t have more than one shared-IP zone, or if
1853 * there can’t be more than one IRE_BROADCAST for this
1854 * IP address, then just set the zoneid and proceed.
1855 */
1856 if (ns->netstack_numzones == 1 || irb->irb_ire_cnt == 1) {
1857 ira->ira_zoneid = ire->ire_zoneid;

1859 ip_fanout_v4(mp, ipha, ira);
1860 return;
1861 }
1862 irb_refhold(irb);
1863 for (ire1 = irb->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
1864 /* We do the main IRE after the end of the loop */
1865 if (ire1 == ire)
1866 continue;

1868 /*
1869 * Only IREs for the same IP address should be in the same
1870 * bucket.
1871 * But could have IRE_HOSTs in the case of CGTP.
1872 */
1873 ASSERT(ire1->ire_addr == ire->ire_addr);
1874 if (!(ire1->ire_type & IRE_BROADCAST))
1875 continue;

1877 if (IRE_IS_CONDEMNED(ire1))
1878 continue;

1880 mp1 = copymsg(mp);
1881 if (mp1 == NULL) {
1882 /* Failed to deliver to one zone */
1883 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1884 ip_drop_input("ipIfStatsInDiscards", mp, ill);
1885 continue;
1886 }
1887 ira->ira_zoneid = ire1->ire_zoneid;
1888 ipha1 = (ipha_t *)mp1->b_rptr;
1889 ip_fanout_v4(mp1, ipha1, ira);
1890 /*
1891 * IPsec might have modified ira_pktlen and ira_ip_hdr_length
1892 * so we restore them for a potential next iteration
1893 */
1894 ira->ira_pktlen = ira_pktlen;
1895 ira->ira_ip_hdr_length = ira_ip_hdr_length;
1896 }
1897 irb_refrele(irb);
1898 /* Do the main ire */
1899 ira->ira_zoneid = ire->ire_zoneid;
1900 ip_fanout_v4(mp, ipha, ira);
1901 }

1903 /*
1904 * Handle multiple zones which want to receive the same multicast packets
1905 * on this ill by delivering a packet to each of them.
1906 *
1907 * Note that for packets delivered to transports we could instead do this
1908 * as part of the fanout code, but since we need to handle icmp_inbound
1909 * it is simpler to have multicast work the same as broadcast.

new/usr/src/uts/common/inet/ip/ip_input.c 30

1910 *
1911 * The ip_fanout matching for multicast matches based on ilm independent of
1912 * zoneid since the zoneid restriction is applied when joining a multicast
1913 * group.
1914 */
1915 /* ARGSUSED */
1916 static void
1917 ip_input_multicast_v4(ire_t *ire, mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
1918 {
1919 ill_t *ill = ira->ira_ill;
1920 iaflags_t iraflags = ira->ira_flags;
1921 ip_stack_t *ipst = ill->ill_ipst;
1922 netstack_t *ns = ipst->ips_netstack;
1923 zoneid_t zoneid;
1924 mblk_t *mp1;
1925 ipha_t *ipha1;
1926 uint_t ira_pktlen = ira->ira_pktlen;
1927 uint16_t ira_ip_hdr_length = ira->ira_ip_hdr_length;

1929 /* ire_recv_multicast has switched to the upper ill for IPMP */
1930 ASSERT(!IS_UNDER_IPMP(ill));

1932 /*
1933 * If we don’t have more than one shared-IP zone, or if
1934 * there are no members in anything but the global zone,
1935 * then just set the zoneid and proceed.
1936 */
1937 if (ns->netstack_numzones == 1 ||
1938 !ill_hasmembers_otherzones_v4(ill, ipha->ipha_dst,
1939 GLOBAL_ZONEID)) {
1940 ira->ira_zoneid = GLOBAL_ZONEID;

1942 /* If sender didn’t want this zone to receive it, drop */
1943 if ((iraflags & IRAF_NO_LOOP_ZONEID_SET) &&
1944 ira->ira_no_loop_zoneid == ira->ira_zoneid) {
1945 ip_drop_input("Multicast but wrong zoneid", mp, ill);
1946 freemsg(mp);
1947 return;
1948 }
1949 ip_fanout_v4(mp, ipha, ira);
1950 return;
1951 }

1953 /*
1954 * Here we loop over all zoneids that have members in the group
1955 * and deliver a packet to ip_fanout for each zoneid.
1956 *
1957 * First find any members in the lowest numeric zoneid by looking for
1958 * first zoneid larger than -1 (ALL_ZONES).
1959 * We terminate the loop when we receive -1 (ALL_ZONES).
1960 */
1961 zoneid = ill_hasmembers_nextzone_v4(ill, ipha->ipha_dst, ALL_ZONES);
1962 for (; zoneid != ALL_ZONES;
1963 zoneid = ill_hasmembers_nextzone_v4(ill, ipha->ipha_dst, zoneid)) {
1964 /*
1965 * Avoid an extra copymsg/freemsg by skipping global zone here
1966 * and doing that at the end.
1967 */
1968 if (zoneid == GLOBAL_ZONEID)
1969 continue;

1971 ira->ira_zoneid = zoneid;

1973 /* If sender didn’t want this zone to receive it, skip */
1974 if ((iraflags & IRAF_NO_LOOP_ZONEID_SET) &&
1975 ira->ira_no_loop_zoneid == ira->ira_zoneid)

new/usr/src/uts/common/inet/ip/ip_input.c 31

1976 continue;

1978 mp1 = copymsg(mp);
1979 if (mp1 == NULL) {
1980 /* Failed to deliver to one zone */
1981 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1982 ip_drop_input("ipIfStatsInDiscards", mp, ill);
1983 continue;
1984 }
1985 ipha1 = (ipha_t *)mp1->b_rptr;
1986 ip_fanout_v4(mp1, ipha1, ira);
1987 /*
1988 * IPsec might have modified ira_pktlen and ira_ip_hdr_length
1989 * so we restore them for a potential next iteration
1990 */
1991 ira->ira_pktlen = ira_pktlen;
1992 ira->ira_ip_hdr_length = ira_ip_hdr_length;
1993 }

1995 /* Do the main ire */
1996 ira->ira_zoneid = GLOBAL_ZONEID;
1997 /* If sender didn’t want this zone to receive it, drop */
1998 if ((iraflags & IRAF_NO_LOOP_ZONEID_SET) &&
1999 ira->ira_no_loop_zoneid == ira->ira_zoneid) {
2000 ip_drop_input("Multicast but wrong zoneid", mp, ill);
2001 freemsg(mp);
2002 } else {
2003 ip_fanout_v4(mp, ipha, ira);
2004 }
2005 }

2008 /*
2009 * Determine the zoneid and IRAF_TX_* flags if trusted extensions
2010 * is in use. Updates ira_zoneid and ira_flags as a result.
2011 */
2012 static void
2013 ip_fanout_tx_v4(mblk_t *mp, ipha_t *ipha, uint8_t protocol,
2014 uint_t ip_hdr_length, ip_recv_attr_t *ira)
2015 {
2016 uint16_t *up;
2017 uint16_t lport;
2018 zoneid_t zoneid;

2020 ASSERT(ira->ira_flags & IRAF_SYSTEM_LABELED);

2022 /*
2023 * If the packet is unlabeled we might allow read-down
2024 * for MAC_EXEMPT. Below we clear this if it is a multi-level
2025 * port (MLP).
2026 * Note that ira_tsl can be NULL here.
2027 */
2028 if (ira->ira_tsl != NULL && ira->ira_tsl->tsl_flags & TSLF_UNLABELED)
2029 ira->ira_flags |= IRAF_TX_MAC_EXEMPTABLE;

2031 if (ira->ira_zoneid != ALL_ZONES)
2032 return;

2034 ira->ira_flags |= IRAF_TX_SHARED_ADDR;

2036 up = (uint16_t *)((uchar_t *)ipha + ip_hdr_length);
2037 switch (protocol) {
2038 case IPPROTO_TCP:
2039 case IPPROTO_SCTP:
2040 case IPPROTO_UDP:
2041 /* Caller ensures this */

new/usr/src/uts/common/inet/ip/ip_input.c 32

2042 ASSERT(((uchar_t *)ipha) + ip_hdr_length +4 <= mp->b_wptr);

2044 /*
2045 * Only these transports support MLP.
2046 * We know their destination port numbers is in
2047 * the same place in the header.
2048 */
2049 lport = up[1];

2051 /*
2052 * No need to handle exclusive-stack zones
2053 * since ALL_ZONES only applies to the shared IP instance.
2054 */
2055 zoneid = tsol_mlp_findzone(protocol, lport);
2056 /*
2057 * If no shared MLP is found, tsol_mlp_findzone returns
2058 * ALL_ZONES. In that case, we assume it’s SLP, and
2059 * search for the zone based on the packet label.
2060 *
2061 * If there is such a zone, we prefer to find a
2062 * connection in it. Otherwise, we look for a
2063 * MAC-exempt connection in any zone whose label
2064 * dominates the default label on the packet.
2065 */
2066 if (zoneid == ALL_ZONES)
2067 zoneid = tsol_attr_to_zoneid(ira);
2068 else
2069 ira->ira_flags &= ~IRAF_TX_MAC_EXEMPTABLE;
2070 break;
2071 default:
2072 /* Handle shared address for other protocols */
2073 zoneid = tsol_attr_to_zoneid(ira);
2074 break;
2075 }
2076 ira->ira_zoneid = zoneid;
2077 }

2079 /*
2080 * Increment checksum failure statistics
2081 */
2082 static void
2083 ip_input_cksum_err_v4(uint8_t protocol, uint16_t hck_flags, ill_t *ill)
2084 {
2085 ip_stack_t *ipst = ill->ill_ipst;

2087 switch (protocol) {
2088 case IPPROTO_TCP:
2089 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs);

2091 if (hck_flags & HCK_FULLCKSUM)
2092 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err);
2093 else if (hck_flags & HCK_PARTIALCKSUM)
2094 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err);
2095 else
2096 IP_STAT(ipst, ip_tcp_in_sw_cksum_err);
2097 break;
2098 case IPPROTO_UDP:
2099 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs);
2100 if (hck_flags & HCK_FULLCKSUM)
2101 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err);
2102 else if (hck_flags & HCK_PARTIALCKSUM)
2103 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err);
2104 else
2105 IP_STAT(ipst, ip_udp_in_sw_cksum_err);
2106 break;
2107 case IPPROTO_ICMP:

new/usr/src/uts/common/inet/ip/ip_input.c 33

2108 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs);
2109 break;
2110 default:
2111 ASSERT(0);
2112 break;
2113 }
2114 }

2116 /* Calculate the IPv4 pseudo-header checksum */
2117 uint32_t
2118 ip_input_cksum_pseudo_v4(ipha_t *ipha, ip_recv_attr_t *ira)
2119 {
2120 uint_t ulp_len;
2121 uint32_t cksum;
2122 uint8_t protocol = ira->ira_protocol;
2123 uint16_t ip_hdr_length = ira->ira_ip_hdr_length;

2125 #define iphs ((uint16_t *)ipha)

2127 switch (protocol) {
2128 case IPPROTO_TCP:
2129 ulp_len = ira->ira_pktlen - ip_hdr_length;

2131 /* Protocol and length */
2132 cksum = htons(ulp_len) + IP_TCP_CSUM_COMP;
2133 /* IP addresses */
2134 cksum += iphs[6] + iphs[7] + iphs[8] + iphs[9];
2135 break;

2137 case IPPROTO_UDP: {
2138 udpha_t *udpha;

2140 udpha = (udpha_t *)((uchar_t *)ipha + ip_hdr_length);

2142 /* Protocol and length */
2143 cksum = udpha->uha_length + IP_UDP_CSUM_COMP;
2144 /* IP addresses */
2145 cksum += iphs[6] + iphs[7] + iphs[8] + iphs[9];
2146 break;
2147 }

2149 default:
2150 cksum = 0;
2151 break;
2152 }
2153 #undef iphs
2154 return (cksum);
2155 }

2158 /*
2159 * Software verification of the ULP checksums.
2160 * Returns B_TRUE if ok.
2161 * Increments statistics of failed.
2162 */
2163 static boolean_t
2164 ip_input_sw_cksum_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
2165 {
2166 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2167 uint32_t cksum;
2168 uint8_t protocol = ira->ira_protocol;
2169 uint16_t ip_hdr_length = ira->ira_ip_hdr_length;

2171 IP_STAT(ipst, ip_in_sw_cksum);

2173 ASSERT(protocol == IPPROTO_TCP || protocol == IPPROTO_UDP);

new/usr/src/uts/common/inet/ip/ip_input.c 34

2175 cksum = ip_input_cksum_pseudo_v4(ipha, ira);
2176 cksum = IP_CSUM(mp, ip_hdr_length, cksum);
2177 if (cksum == 0)
2178 return (B_TRUE);

2180 ip_input_cksum_err_v4(protocol, 0, ira->ira_ill);
2181 return (B_FALSE);
2182 }

2184 /*
2185 * Verify the ULP checksums.
2186 * Returns B_TRUE if ok, or if the ULP doesn’t have a well-defined checksum
2187 * algorithm.
2188 * Increments statistics if failed.
2189 */
2190 static boolean_t
2191 ip_input_cksum_v4(iaflags_t iraflags, mblk_t *mp, ipha_t *ipha,
2192 ip_recv_attr_t *ira)
2193 {
2194 ill_t *ill = ira->ira_rill;
2195 uint16_t hck_flags;
2196 uint32_t cksum;
2197 mblk_t *mp1;
2198 int32_t len;
2199 uint8_t protocol = ira->ira_protocol;
2200 uint16_t ip_hdr_length = ira->ira_ip_hdr_length;

2203 switch (protocol) {
2204 case IPPROTO_TCP:
2205 break;

2207 case IPPROTO_UDP: {
2208 udpha_t *udpha;

2210 udpha = (udpha_t *)((uchar_t *)ipha + ip_hdr_length);
2211 if (udpha->uha_checksum == 0) {
2212 /* Packet doesn’t have a UDP checksum */
2213 return (B_TRUE);
2214 }
2215 break;
2216 }
2217 case IPPROTO_SCTP: {
2218 sctp_hdr_t *sctph;
2219 uint32_t pktsum;

2221 sctph = (sctp_hdr_t *)((uchar_t *)ipha + ip_hdr_length);
2222 #ifdef DEBUG
2223 if (skip_sctp_cksum)
2224 return (B_TRUE);
2225 #endif
2226 pktsum = sctph->sh_chksum;
2227 sctph->sh_chksum = 0;
2228 cksum = sctp_cksum(mp, ip_hdr_length);
2229 sctph->sh_chksum = pktsum;
2230 if (cksum == pktsum)
2231 return (B_TRUE);

2233 /*
2234 * Defer until later whether a bad checksum is ok
2235 * in order to allow RAW sockets to use Adler checksum
2236 * with SCTP.
2237 */
2238 ira->ira_flags |= IRAF_SCTP_CSUM_ERR;
2239 return (B_TRUE);

new/usr/src/uts/common/inet/ip/ip_input.c 35

2240 }

2242 default:
2243 /* No ULP checksum to verify. */
2244 return (B_TRUE);
2245 }
2246 /*
2247 * Revert to software checksum calculation if the interface
2248 * isn’t capable of checksum offload.
2249 * We clear DB_CKSUMFLAGS when going through IPsec in ip_fanout.
2250 * Note: IRAF_NO_HW_CKSUM is not currently used.
2251 */
2252 ASSERT(!IS_IPMP(ill));
2253 if ((iraflags & IRAF_NO_HW_CKSUM) || !ILL_HCKSUM_CAPABLE(ill) ||
2254 !dohwcksum) {
2255 return (ip_input_sw_cksum_v4(mp, ipha, ira));
2256 }

2258 /*
2259 * We apply this for all ULP protocols. Does the HW know to
2260 * not set the flags for SCTP and other protocols.
2261 */

2263 hck_flags = DB_CKSUMFLAGS(mp);

2265 if (hck_flags & HCK_FULLCKSUM_OK) {
2266 /*
2267 * Hardware has already verified the checksum.
2268 */
2269 return (B_TRUE);
2270 }

2272 if (hck_flags & HCK_FULLCKSUM) {
2273 /*
2274 * Full checksum has been computed by the hardware
2275 * and has been attached. If the driver wants us to
2276 * verify the correctness of the attached value, in
2277 * order to protect against faulty hardware, compare
2278 * it against -0 (0xFFFF) to see if it’s valid.
2279 */
2280 cksum = DB_CKSUM16(mp);
2281 if (cksum == 0xFFFF)
2282 return (B_TRUE);
2283 ip_input_cksum_err_v4(protocol, hck_flags, ira->ira_ill);
2284 return (B_FALSE);
2285 }

2287 mp1 = mp->b_cont;
2288 if ((hck_flags & HCK_PARTIALCKSUM) &&
2289 (mp1 == NULL || mp1->b_cont == NULL) &&
2290 ip_hdr_length >= DB_CKSUMSTART(mp) &&
2291 ((len = ip_hdr_length - DB_CKSUMSTART(mp)) & 1) == 0) {
2292 uint32_t adj;
2293 uchar_t *cksum_start;

2295 cksum = ip_input_cksum_pseudo_v4(ipha, ira);

2297 cksum_start = ((uchar_t *)ipha + DB_CKSUMSTART(mp));

2299 /*
2300 * Partial checksum has been calculated by hardware
2301 * and attached to the packet; in addition, any
2302 * prepended extraneous data is even byte aligned,
2303 * and there are at most two mblks associated with
2304 * the packet. If any such data exists, we adjust
2305 * the checksum; also take care any postpended data.

new/usr/src/uts/common/inet/ip/ip_input.c 36

2306 */
2307 IP_ADJCKSUM_PARTIAL(cksum_start, mp, mp1, len, adj);
2308 /*
2309 * One’s complement subtract extraneous checksum
2310 */
2311 cksum += DB_CKSUM16(mp);
2312 if (adj >= cksum)
2313 cksum = ~(adj - cksum) & 0xFFFF;
2314 else
2315 cksum -= adj;
2316 cksum = (cksum & 0xFFFF) + ((int)cksum >> 16);
2317 cksum = (cksum & 0xFFFF) + ((int)cksum >> 16);
2318 if (!(~cksum & 0xFFFF))
2319 return (B_TRUE);

2321 ip_input_cksum_err_v4(protocol, hck_flags, ira->ira_ill);
2322 return (B_FALSE);
2323 }
2324 return (ip_input_sw_cksum_v4(mp, ipha, ira));
2325 }

2328 /*
2329 * Handle fanout of received packets.
2330 * Unicast packets that are looped back (from ire_send_local_v4) and packets
2331 * from the wire are differentiated by checking IRAF_VERIFY_ULP_CKSUM.
2332 *
2333 * IPQoS Notes
2334 * Before sending it to the client, invoke IPPF processing. Policy processing
2335 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled.
2336 */
2337 void
2338 ip_fanout_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
2339 {
2340 ill_t *ill = ira->ira_ill;
2341 iaflags_t iraflags = ira->ira_flags;
2342 ip_stack_t *ipst = ill->ill_ipst;
2343 uint8_t protocol = ipha->ipha_protocol;
2344 conn_t *connp;
2345 #define rptr ((uchar_t *)ipha)
2346 uint_t ip_hdr_length;
2347 uint_t min_ulp_header_length;
2348 int offset;
2349 ssize_t len;
2350 netstack_t *ns = ipst->ips_netstack;
2351 ipsec_stack_t *ipss = ns->netstack_ipsec;
2352 ill_t *rill = ira->ira_rill;

2354 ASSERT(ira->ira_pktlen == ntohs(ipha->ipha_length));

2356 ip_hdr_length = ira->ira_ip_hdr_length;
2357 ira->ira_protocol = protocol;

2359 /*
2360 * Time for IPP once we’ve done reassembly and IPsec.
2361 * We skip this for loopback packets since we don’t do IPQoS
2362 * on loopback.
2363 */
2364 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) &&
2365 !(iraflags & IRAF_LOOPBACK) &&
2366 (protocol != IPPROTO_ESP || protocol != IPPROTO_AH)) {
2367 /*
2368 * Use the interface on which the packet arrived - not where
2369 * the IP address is hosted.
2370 */
2371 /* ip_process translates an IS_UNDER_IPMP */

new/usr/src/uts/common/inet/ip/ip_input.c 37

2372 mp = ip_process(IPP_LOCAL_IN, mp, rill, ill);
2373 if (mp == NULL) {
2374 /* ip_drop_packet and MIB done */
2375 return;
2376 }
2377 }

2379 /* Determine the minimum required size of the upper-layer header */
2380 /* Need to do this for at least the set of ULPs that TX handles. */
2381 switch (protocol) {
2382 case IPPROTO_TCP:
2383 min_ulp_header_length = TCP_MIN_HEADER_LENGTH;
2384 break;
2385 case IPPROTO_SCTP:
2386 min_ulp_header_length = SCTP_COMMON_HDR_LENGTH;
2387 break;
2388 case IPPROTO_UDP:
2389 min_ulp_header_length = UDPH_SIZE;
2390 break;
2391 case IPPROTO_ICMP:
2392 min_ulp_header_length = ICMPH_SIZE;
2393 break;
2394 case IPPROTO_DCCP:
2395 min_ulp_header_length = DCCP_MIN_HEADER_LENGTH;
2396 break;
2397 #endif /* ! codereview */
2398 default:
2399 min_ulp_header_length = 0;
2400 break;
2401 }
2402 /* Make sure we have the min ULP header length */
2403 len = mp->b_wptr - rptr;
2404 if (len < ip_hdr_length + min_ulp_header_length) {
2405 if (ira->ira_pktlen < ip_hdr_length + min_ulp_header_length) {
2406 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2407 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2408 freemsg(mp);
2409 return;
2410 }
2411 IP_STAT(ipst, ip_recv_pullup);
2412 ipha = ip_pullup(mp, ip_hdr_length + min_ulp_header_length,
2413 ira);
2414 if (ipha == NULL)
2415 goto discard;
2416 len = mp->b_wptr - rptr;
2417 }

2419 /*
2420 * If trusted extensions then determine the zoneid and TX specific
2421 * ira_flags.
2422 */
2423 if (iraflags & IRAF_SYSTEM_LABELED) {
2424 /* This can update ira->ira_flags and ira->ira_zoneid */
2425 ip_fanout_tx_v4(mp, ipha, protocol, ip_hdr_length, ira);
2426 iraflags = ira->ira_flags;
2427 }

2430 /* Verify ULP checksum. Handles TCP, UDP, and SCTP */
2431 if (iraflags & IRAF_VERIFY_ULP_CKSUM) {
2432 if (!ip_input_cksum_v4(iraflags, mp, ipha, ira)) {
2433 /* Bad checksum. Stats are already incremented */
2434 ip_drop_input("Bad ULP checksum", mp, ill);
2435 freemsg(mp);
2436 return;
2437 }

new/usr/src/uts/common/inet/ip/ip_input.c 38

2438 /* IRAF_SCTP_CSUM_ERR could have been set */
2439 iraflags = ira->ira_flags;
2440 }
2441 switch (protocol) {
2442 case IPPROTO_TCP:
2443 /* For TCP, discard broadcast and multicast packets. */
2444 if (iraflags & IRAF_MULTIBROADCAST)
2445 goto discard;

2447 /* First mblk contains IP+TCP headers per above check */
2448 ASSERT(len >= ip_hdr_length + TCP_MIN_HEADER_LENGTH);

2450 /* TCP options present? */
2451 offset = ((uchar_t *)ipha)[ip_hdr_length + 12] >> 4;
2452 if (offset != 5) {
2453 if (offset < 5)
2454 goto discard;

2456 /*
2457 * There must be TCP options.
2458 * Make sure we can grab them.
2459 */
2460 offset <<= 2;
2461 offset += ip_hdr_length;
2462 if (len < offset) {
2463 if (ira->ira_pktlen < offset) {
2464 BUMP_MIB(ill->ill_ip_mib,
2465 ipIfStatsInTruncatedPkts);
2466 ip_drop_input(
2467 "ipIfStatsInTruncatedPkts",
2468 mp, ill);
2469 freemsg(mp);
2470 return;
2471 }
2472 IP_STAT(ipst, ip_recv_pullup);
2473 ipha = ip_pullup(mp, offset, ira);
2474 if (ipha == NULL)
2475 goto discard;
2476 len = mp->b_wptr - rptr;
2477 }
2478 }

2480 /*
2481 * Pass up a squeue hint to tcp.
2482 * If ira_sqp is already set (this is loopback) we leave it
2483 * alone.
2484 */
2485 if (ira->ira_sqp == NULL) {
2486 ira->ira_sqp = ip_squeue_get(ira->ira_ring);
2487 }

2489 /* Look for AF_INET or AF_INET6 that matches */
2490 connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_length,
2491 ira, ipst);
2492 if (connp == NULL) {
2493 /* Send the TH_RST */
2494 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2495 tcp_xmit_listeners_reset(mp, ira, ipst, NULL);
2496 return;
2497 }
2498 if (connp->conn_incoming_ifindex != 0 &&
2499 connp->conn_incoming_ifindex != ira->ira_ruifindex) {
2500 CONN_DEC_REF(connp);

2502 /* Send the TH_RST */
2503 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);

new/usr/src/uts/common/inet/ip/ip_input.c 39

2504 tcp_xmit_listeners_reset(mp, ira, ipst, NULL);
2505 return;
2506 }
2507 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2508 (iraflags & IRAF_IPSEC_SECURE)) {
2509 mp = ipsec_check_inbound_policy(mp, connp,
2510 ipha, NULL, ira);
2511 if (mp == NULL) {
2512 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2513 /* Note that mp is NULL */
2514 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2515 CONN_DEC_REF(connp);
2516 return;
2517 }
2518 }
2519 /* Found a client; up it goes */
2520 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2521 ira->ira_ill = ira->ira_rill = NULL;
2522 if (!IPCL_IS_TCP(connp)) {
2523 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2524 (connp->conn_recv)(connp, mp, NULL, ira);
2525 CONN_DEC_REF(connp);
2526 ira->ira_ill = ill;
2527 ira->ira_rill = rill;
2528 return;
2529 }

2531 /*
2532 * We do different processing whether called from
2533 * ip_accept_tcp and we match the target, don’t match
2534 * the target, and when we are called by ip_input.
2535 */
2536 if (iraflags & IRAF_TARGET_SQP) {
2537 if (ira->ira_target_sqp == connp->conn_sqp) {
2538 mblk_t *attrmp;

2540 attrmp = ip_recv_attr_to_mblk(ira);
2541 if (attrmp == NULL) {
2542 BUMP_MIB(ill->ill_ip_mib,
2543 ipIfStatsInDiscards);
2544 ip_drop_input("ipIfStatsInDiscards",
2545 mp, ill);
2546 freemsg(mp);
2547 CONN_DEC_REF(connp);
2548 } else {
2549 SET_SQUEUE(attrmp, connp->conn_recv,
2550 connp);
2551 attrmp->b_cont = mp;
2552 ASSERT(ira->ira_target_sqp_mp == NULL);
2553 ira->ira_target_sqp_mp = attrmp;
2554 /*
2555 * Conn ref release when drained from
2556 * the squeue.
2557 */
2558 }
2559 } else {
2560 SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2561 connp->conn_recv, connp, ira, SQ_FILL,
2562 SQTAG_IP_TCP_INPUT);
2563 }
2564 } else {
2565 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv,
2566 connp, ira, ip_squeue_flag, SQTAG_IP_TCP_INPUT);
2567 }
2568 ira->ira_ill = ill;
2569 ira->ira_rill = rill;

new/usr/src/uts/common/inet/ip/ip_input.c 40

2570 return;

2572 case IPPROTO_SCTP: {
2573 sctp_hdr_t *sctph;
2574 in6_addr_t map_src, map_dst;
2575 uint32_t ports; /* Source and destination ports */
2576 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp;

2578 /* For SCTP, discard broadcast and multicast packets. */
2579 if (iraflags & IRAF_MULTIBROADCAST)
2580 goto discard;

2582 /*
2583 * Since there is no SCTP h/w cksum support yet, just
2584 * clear the flag.
2585 */
2586 DB_CKSUMFLAGS(mp) = 0;

2588 /* Length ensured above */
2589 ASSERT(MBLKL(mp) >= ip_hdr_length + SCTP_COMMON_HDR_LENGTH);
2590 sctph = (sctp_hdr_t *)(rptr + ip_hdr_length);

2592 /* get the ports */
2593 ports = *(uint32_t *)&sctph->sh_sport;

2595 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst);
2596 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src);
2597 if (iraflags & IRAF_SCTP_CSUM_ERR) {
2598 /*
2599 * No potential sctp checksum errors go to the Sun
2600 * sctp stack however they might be Adler-32 summed
2601 * packets a userland stack bound to a raw IP socket
2602 * could reasonably use. Note though that Adler-32 is
2603 * a long deprecated algorithm and customer sctp
2604 * networks should eventually migrate to CRC-32 at
2605 * which time this facility should be removed.
2606 */
2607 ip_fanout_sctp_raw(mp, ipha, NULL, ports, ira);
2608 return;
2609 }
2610 connp = sctp_fanout(&map_src, &map_dst, ports, ira, mp,
2611 sctps, sctph);
2612 if (connp == NULL) {
2613 /* Check for raw socket or OOTB handling */
2614 ip_fanout_sctp_raw(mp, ipha, NULL, ports, ira);
2615 return;
2616 }
2617 if (connp->conn_incoming_ifindex != 0 &&
2618 connp->conn_incoming_ifindex != ira->ira_ruifindex) {
2619 CONN_DEC_REF(connp);
2620 /* Check for raw socket or OOTB handling */
2621 ip_fanout_sctp_raw(mp, ipha, NULL, ports, ira);
2622 return;
2623 }

2625 /* Found a client; up it goes */
2626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2627 sctp_input(connp, ipha, NULL, mp, ira);
2628 /* sctp_input does a rele of the sctp_t */
2629 return;
2630 }

2632 case IPPROTO_UDP:
2633 /* First mblk contains IP+UDP headers as checked above */
2634 ASSERT(MBLKL(mp) >= ip_hdr_length + UDPH_SIZE);

new/usr/src/uts/common/inet/ip/ip_input.c 41

2636 if (iraflags & IRAF_MULTIBROADCAST) {
2637 uint16_t *up; /* Pointer to ports in ULP header */

2639 up = (uint16_t *)((uchar_t *)ipha + ip_hdr_length);
2640 ip_fanout_udp_multi_v4(mp, ipha, up[1], up[0], ira);
2641 return;
2642 }

2644 /* Look for AF_INET or AF_INET6 that matches */
2645 connp = ipcl_classify_v4(mp, IPPROTO_UDP, ip_hdr_length,
2646 ira, ipst);
2647 if (connp == NULL) {
2648 no_udp_match:
2649 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].
2650 connf_head != NULL) {
2651 ASSERT(ira->ira_protocol == IPPROTO_UDP);
2652 ip_fanout_proto_v4(mp, ipha, ira);
2653 } else {
2654 ip_fanout_send_icmp_v4(mp,
2655 ICMP_DEST_UNREACHABLE,
2656 ICMP_PORT_UNREACHABLE, ira);
2657 }
2658 return;

2660 }
2661 if (connp->conn_incoming_ifindex != 0 &&
2662 connp->conn_incoming_ifindex != ira->ira_ruifindex) {
2663 CONN_DEC_REF(connp);
2664 goto no_udp_match;
2665 }
2666 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
2667 !canputnext(connp->conn_rq)) {
2668 CONN_DEC_REF(connp);
2669 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
2670 ip_drop_input("udpIfStatsInOverflows", mp, ill);
2671 freemsg(mp);
2672 return;
2673 }
2674 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2675 (iraflags & IRAF_IPSEC_SECURE)) {
2676 mp = ipsec_check_inbound_policy(mp, connp,
2677 ipha, NULL, ira);
2678 if (mp == NULL) {
2679 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2680 /* Note that mp is NULL */
2681 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2682 CONN_DEC_REF(connp);
2683 return;
2684 }
2685 }
2686 /*
2687 * Remove 0-spi if it’s 0, or move everything behind
2688 * the UDP header over it and forward to ESP via
2689 * ip_fanout_v4().
2690 */
2691 if (connp->conn_udp->udp_nat_t_endpoint) {
2692 if (iraflags & IRAF_IPSEC_SECURE) {
2693 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
2694 DROPPER(ipss, ipds_esp_nat_t_ipsec),
2695 &ipss->ipsec_dropper);
2696 CONN_DEC_REF(connp);
2697 return;
2698 }

2700 mp = zero_spi_check(mp, ira);
2701 if (mp == NULL) {

new/usr/src/uts/common/inet/ip/ip_input.c 42

2702 /*
2703 * Packet was consumed - probably sent to
2704 * ip_fanout_v4.
2705 */
2706 CONN_DEC_REF(connp);
2707 return;
2708 }
2709 /* Else continue like a normal UDP packet. */
2710 ipha = (ipha_t *)mp->b_rptr;
2711 protocol = ipha->ipha_protocol;
2712 ira->ira_protocol = protocol;
2713 }
2714 /* Found a client; up it goes */
2715 IP_STAT(ipst, ip_udp_fannorm);
2716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2717 ira->ira_ill = ira->ira_rill = NULL;
2718 (connp->conn_recv)(connp, mp, NULL, ira);
2719 CONN_DEC_REF(connp);
2720 ira->ira_ill = ill;
2721 ira->ira_rill = rill;
2722 return;
2723 case IPPROTO_DCCP:
2724 /* For DCCP, discard broadcast and multicast packets */
2725 if (iraflags & IRAF_MULTIBROADCAST) {
2726 goto discard;
2727 }

2729 /* Checked above */
2730 ASSERT(len >= ip_hdr_length + DCCP_MIN_HEADER_LENGTH);

2732 /* Squeue hint */
2733 if (ira->ira_sqp == NULL) {
2734 ira->ira_sqp = ip_squeue_get(ira->ira_ring);
2735 }

2737 connp = ipcl_classify_v4(mp, IPPROTO_DCCP, ip_hdr_length,
2738 ira, ipst);
2739 if (connp == NULL) {
2740 cmn_err(CE_NOTE, "ip_input.c: ip_fanout_v4 connp not fou
2741 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2742 dccp_xmit_listeners_reset(mp, ira, ipst, NULL);
2743 return;
2744 }

2746 if (connp->conn_incoming_ifindex != 0 &&
2747 connp->conn_incoming_ifindex != ira->ira_ruifindex) {
2748 cmn_err(CE_NOTE, "ip_input.c: ip_fanout_v4 ifindex probl
2749 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2750 dccp_xmit_listeners_reset(mp, ira, ipst, NULL);
2751 return;
2752 }

2754 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2755 (iraflags & IRAF_IPSEC_SECURE)) {
2756 mp = ipsec_check_inbound_policy(mp, connp,
2757 ipha, NULL, ira);
2758 if (mp == NULL) {
2759 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2760 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2761 CONN_DEC_REF(connp);
2762 return;
2763 }
2764 }

2766 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2767 ira->ira_ill = ira->ira_rill = NULL;

new/usr/src/uts/common/inet/ip/ip_input.c 43

2769 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv,
2770 connp, ira, ip_squeue_flag, SQTAG_IP_DCCP_INPUT);

2772 ira->ira_ill = ill;
2773 ira->ira_rill = rill;
2774 return;
2775 #endif /* ! codereview */
2776 default:
2777 break;
2778 }

2780 /*
2781 * Clear hardware checksumming flag as it is currently only
2782 * used by TCP and UDP.
2783 */
2784 DB_CKSUMFLAGS(mp) = 0;

2786 switch (protocol) {
2787 case IPPROTO_ICMP:
2788 /*
2789 * We need to accomodate icmp messages coming in clear
2790 * until we get everything secure from the wire. If
2791 * icmp_accept_clear_messages is zero we check with
2792 * the global policy and act accordingly. If it is
2793 * non-zero, we accept the message without any checks.
2794 * But *this does not mean* that this will be delivered
2795 * to RAW socket clients. By accepting we might send
2796 * replies back, change our MTU value etc.,
2797 * but delivery to the ULP/clients depends on their
2798 * policy dispositions.
2799 */
2800 if (ipst->ips_icmp_accept_clear_messages == 0) {
2801 mp = ipsec_check_global_policy(mp, NULL,
2802 ipha, NULL, ira, ns);
2803 if (mp == NULL)
2804 return;
2805 }

2807 /*
2808 * On a labeled system, we have to check whether the zone
2809 * itself is permitted to receive raw traffic.
2810 */
2811 if (ira->ira_flags & IRAF_SYSTEM_LABELED) {
2812 if (!tsol_can_accept_raw(mp, ira, B_FALSE)) {
2813 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
2814 ip_drop_input("tsol_can_accept_raw", mp, ill);
2815 freemsg(mp);
2816 return;
2817 }
2818 }

2820 /*
2821 * ICMP header checksum, including checksum field,
2822 * should be zero.
2823 */
2824 if (IP_CSUM(mp, ip_hdr_length, 0)) {
2825 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs);
2826 ip_drop_input("icmpInCksumErrs", mp, ill);
2827 freemsg(mp);
2828 return;
2829 }
2830 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2831 mp = icmp_inbound_v4(mp, ira);
2832 if (mp == NULL) {
2833 /* No need to pass to RAW sockets */

new/usr/src/uts/common/inet/ip/ip_input.c 44

2834 return;
2835 }
2836 break;

2838 case IPPROTO_IGMP:
2839 /*
2840 * If we are not willing to accept IGMP packets in clear,
2841 * then check with global policy.
2842 */
2843 if (ipst->ips_igmp_accept_clear_messages == 0) {
2844 mp = ipsec_check_global_policy(mp, NULL,
2845 ipha, NULL, ira, ns);
2846 if (mp == NULL)
2847 return;
2848 }
2849 if ((ira->ira_flags & IRAF_SYSTEM_LABELED) &&
2850 !tsol_can_accept_raw(mp, ira, B_TRUE)) {
2851 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2852 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2853 freemsg(mp);
2854 return;
2855 }
2856 /*
2857 * Validate checksum
2858 */
2859 if (IP_CSUM(mp, ip_hdr_length, 0)) {
2860 ++ipst->ips_igmpstat.igps_rcv_badsum;
2861 ip_drop_input("igps_rcv_badsum", mp, ill);
2862 freemsg(mp);
2863 return;
2864 }

2866 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2867 mp = igmp_input(mp, ira);
2868 if (mp == NULL) {
2869 /* Bad packet - discarded by igmp_input */
2870 return;
2871 }
2872 break;
2873 case IPPROTO_PIM:
2874 /*
2875 * If we are not willing to accept PIM packets in clear,
2876 * then check with global policy.
2877 */
2878 if (ipst->ips_pim_accept_clear_messages == 0) {
2879 mp = ipsec_check_global_policy(mp, NULL,
2880 ipha, NULL, ira, ns);
2881 if (mp == NULL)
2882 return;
2883 }
2884 if ((ira->ira_flags & IRAF_SYSTEM_LABELED) &&
2885 !tsol_can_accept_raw(mp, ira, B_TRUE)) {
2886 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2887 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2888 freemsg(mp);
2889 return;
2890 }
2891 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);

2893 /* Checksum is verified in pim_input */
2894 mp = pim_input(mp, ira);
2895 if (mp == NULL) {
2896 /* Bad packet - discarded by pim_input */
2897 return;
2898 }
2899 break;

new/usr/src/uts/common/inet/ip/ip_input.c 45

2900 case IPPROTO_AH:
2901 case IPPROTO_ESP: {
2902 /*
2903 * Fast path for AH/ESP.
2904 */
2905 netstack_t *ns = ipst->ips_netstack;
2906 ipsec_stack_t *ipss = ns->netstack_ipsec;

2908 IP_STAT(ipst, ipsec_proto_ahesp);

2910 if (!ipsec_loaded(ipss)) {
2911 ip_proto_not_sup(mp, ira);
2912 return;
2913 }

2915 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
2916 /* select inbound SA and have IPsec process the pkt */
2917 if (protocol == IPPROTO_ESP) {
2918 esph_t *esph;
2919 boolean_t esp_in_udp_sa;
2920 boolean_t esp_in_udp_packet;

2922 mp = ipsec_inbound_esp_sa(mp, ira, &esph);
2923 if (mp == NULL)
2924 return;

2926 ASSERT(esph != NULL);
2927 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2928 ASSERT(ira->ira_ipsec_esp_sa != NULL);
2929 ASSERT(ira->ira_ipsec_esp_sa->ipsa_input_func != NULL);

2931 esp_in_udp_sa = ((ira->ira_ipsec_esp_sa->ipsa_flags &
2932 IPSA_F_NATT) != 0);
2933 esp_in_udp_packet =
2934 (ira->ira_flags & IRAF_ESP_UDP_PORTS) != 0;

2936 /*
2937 * The following is a fancy, but quick, way of saying:
2938 * ESP-in-UDP SA and Raw ESP packet --> drop
2939 * OR
2940 * ESP SA and ESP-in-UDP packet --> drop
2941 */
2942 if (esp_in_udp_sa != esp_in_udp_packet) {
2943 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2944 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
2945 DROPPER(ipss, ipds_esp_no_sa),
2946 &ipss->ipsec_dropper);
2947 return;
2948 }
2949 mp = ira->ira_ipsec_esp_sa->ipsa_input_func(mp, esph,
2950 ira);
2951 } else {
2952 ah_t *ah;

2954 mp = ipsec_inbound_ah_sa(mp, ira, &ah);
2955 if (mp == NULL)
2956 return;

2958 ASSERT(ah != NULL);
2959 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2960 ASSERT(ira->ira_ipsec_ah_sa != NULL);
2961 ASSERT(ira->ira_ipsec_ah_sa->ipsa_input_func != NULL);
2962 mp = ira->ira_ipsec_ah_sa->ipsa_input_func(mp, ah,
2963 ira);
2964 }

new/usr/src/uts/common/inet/ip/ip_input.c 46

2966 if (mp == NULL) {
2967 /*
2968 * Either it failed or is pending. In the former case
2969 * ipIfStatsInDiscards was increased.
2970 */
2971 return;
2972 }
2973 /* we’re done with IPsec processing, send it up */
2974 ip_input_post_ipsec(mp, ira);
2975 return;
2976 }
2977 case IPPROTO_ENCAP: {
2978 ipha_t *inner_ipha;

2980 /*
2981 * Handle self-encapsulated packets (IP-in-IP where
2982 * the inner addresses == the outer addresses).
2983 */
2984 if ((uchar_t *)ipha + ip_hdr_length + sizeof (ipha_t) >
2985 mp->b_wptr) {
2986 if (ira->ira_pktlen <
2987 ip_hdr_length + sizeof (ipha_t)) {
2988 BUMP_MIB(ill->ill_ip_mib,
2989 ipIfStatsInTruncatedPkts);
2990 ip_drop_input("ipIfStatsInTruncatedPkts",
2991 mp, ill);
2992 freemsg(mp);
2993 return;
2994 }
2995 ipha = ip_pullup(mp, (uchar_t *)ipha + ip_hdr_length +
2996 sizeof (ipha_t) - mp->b_rptr, ira);
2997 if (ipha == NULL) {
2998 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2999 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3000 freemsg(mp);
3001 return;
3002 }
3003 }
3004 inner_ipha = (ipha_t *)((uchar_t *)ipha + ip_hdr_length);
3005 /*
3006 * Check the sanity of the inner IP header.
3007 */
3008 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) {
3009 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3010 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3011 freemsg(mp);
3012 return;
3013 }
3014 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) {
3015 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3016 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3017 freemsg(mp);
3018 return;
3019 }
3020 if (inner_ipha->ipha_src != ipha->ipha_src ||
3021 inner_ipha->ipha_dst != ipha->ipha_dst) {
3022 /* We fallthru to iptun fanout below */
3023 goto iptun;
3024 }

3026 /*
3027 * Self-encapsulated tunnel packet. Remove
3028 * the outer IP header and fanout again.
3029 * We also need to make sure that the inner
3030 * header is pulled up until options.
3031 */

new/usr/src/uts/common/inet/ip/ip_input.c 47

3032 mp->b_rptr = (uchar_t *)inner_ipha;
3033 ipha = inner_ipha;
3034 ip_hdr_length = IPH_HDR_LENGTH(ipha);
3035 if ((uchar_t *)ipha + ip_hdr_length > mp->b_wptr) {
3036 if (ira->ira_pktlen <
3037 (uchar_t *)ipha + ip_hdr_length - mp->b_rptr) {
3038 BUMP_MIB(ill->ill_ip_mib,
3039 ipIfStatsInTruncatedPkts);
3040 ip_drop_input("ipIfStatsInTruncatedPkts",
3041 mp, ill);
3042 freemsg(mp);
3043 return;
3044 }
3045 ipha = ip_pullup(mp,
3046 (uchar_t *)ipha + ip_hdr_length - mp->b_rptr, ira);
3047 if (ipha == NULL) {
3048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3049 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3050 freemsg(mp);
3051 return;
3052 }
3053 }
3054 if (ip_hdr_length > sizeof (ipha_t)) {
3055 /* We got options on the inner packet. */
3056 ipaddr_t dst = ipha->ipha_dst;
3057 int error = 0;

3059 dst = ip_input_options(ipha, dst, mp, ira, &error);
3060 if (error != 0) {
3061 /*
3062 * An ICMP error has been sent and the packet
3063 * has been dropped.
3064 */
3065 return;
3066 }
3067 if (dst != ipha->ipha_dst) {
3068 /*
3069 * Someone put a source-route in
3070 * the inside header of a self-
3071 * encapsulated packet. Drop it
3072 * with extreme prejudice and let
3073 * the sender know.
3074 */
3075 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
3076 mp, ill);
3077 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
3078 ira);
3079 return;
3080 }
3081 }
3082 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
3083 /*
3084 * This means that somebody is sending
3085 * Self-encapsualted packets without AH/ESP.
3086 *
3087 * Send this packet to find a tunnel endpoint.
3088 * if I can’t find one, an ICMP
3089 * PROTOCOL_UNREACHABLE will get sent.
3090 */
3091 protocol = ipha->ipha_protocol;
3092 ira->ira_protocol = protocol;
3093 goto iptun;
3094 }

3096 /* Update based on removed IP header */
3097 ira->ira_ip_hdr_length = ip_hdr_length;

new/usr/src/uts/common/inet/ip/ip_input.c 48

3098 ira->ira_pktlen = ntohs(ipha->ipha_length);

3100 if (ira->ira_flags & IRAF_IPSEC_DECAPS) {
3101 /*
3102 * This packet is self-encapsulated multiple
3103 * times. We don’t want to recurse infinitely.
3104 * To keep it simple, drop the packet.
3105 */
3106 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3107 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3108 freemsg(mp);
3109 return;
3110 }
3111 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
3112 ira->ira_flags |= IRAF_IPSEC_DECAPS;

3114 ip_input_post_ipsec(mp, ira);
3115 return;
3116 }

3118 iptun: /* IPPROTO_ENCAPS that is not self-encapsulated */
3119 case IPPROTO_IPV6:
3120 /* iptun will verify trusted label */
3121 connp = ipcl_classify_v4(mp, protocol, ip_hdr_length,
3122 ira, ipst);
3123 if (connp != NULL) {
3124 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
3125 ira->ira_ill = ira->ira_rill = NULL;
3126 (connp->conn_recv)(connp, mp, NULL, ira);
3127 CONN_DEC_REF(connp);
3128 ira->ira_ill = ill;
3129 ira->ira_rill = rill;
3130 return;
3131 }
3132 /* FALLTHRU */
3133 default:
3134 /*
3135 * On a labeled system, we have to check whether the zone
3136 * itself is permitted to receive raw traffic.
3137 */
3138 if (ira->ira_flags & IRAF_SYSTEM_LABELED) {
3139 if (!tsol_can_accept_raw(mp, ira, B_FALSE)) {
3140 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3141 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3142 freemsg(mp);
3143 return;
3144 }
3145 }
3146 break;
3147 }

3149 /*
3150 * The above input functions may have returned the pulled up message.
3151 * So ipha need to be reinitialized.
3152 */
3153 ipha = (ipha_t *)mp->b_rptr;
3154 ira->ira_protocol = protocol = ipha->ipha_protocol;
3155 if (ipst->ips_ipcl_proto_fanout_v4[protocol].connf_head == NULL) {
3156 /*
3157 * No user-level listener for these packets packets.
3158 * Check for IPPROTO_ENCAP...
3159 */
3160 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) {
3161 /*
3162 * Check policy here,
3163 * THEN ship off to ip_mroute_decap().

new/usr/src/uts/common/inet/ip/ip_input.c 49

3164 *
3165 * BTW, If I match a configured IP-in-IP
3166 * tunnel above, this path will not be reached, and
3167 * ip_mroute_decap will never be called.
3168 */
3169 mp = ipsec_check_global_policy(mp, connp,
3170 ipha, NULL, ira, ns);
3171 if (mp != NULL) {
3172 ip_mroute_decap(mp, ira);
3173 } /* Else we already freed everything! */
3174 } else {
3175 ip_proto_not_sup(mp, ira);
3176 }
3177 return;
3178 }

3180 /*
3181 * Handle fanout to raw sockets. There
3182 * can be more than one stream bound to a particular
3183 * protocol. When this is the case, each one gets a copy
3184 * of any incoming packets.
3185 */
3186 ASSERT(ira->ira_protocol == ipha->ipha_protocol);
3187 ip_fanout_proto_v4(mp, ipha, ira);
3188 return;

3190 discard:
3191 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
3192 ip_drop_input("ipIfStatsInDiscards", mp, ill);
3193 freemsg(mp);
3194 #undef rptr
3195 }

new/usr/src/uts/common/inet/ip/ip_output.c 1

**
 74252 Wed Jun 13 12:05:01 2012
new/usr/src/uts/common/inet/ip/ip_output.c
%B
**
______unchanged_portion_omitted_

1606 /*
1607 * Calculate a checksum ignoring any hardware capabilities
1608 *
1609 * Returns B_FALSE if the packet was too short for the checksum. Caller
1610 * should free and do stats.
1611 */
1612 static boolean_t
1613 ip_output_sw_cksum_v4(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa)
1614 {
1615 ip_stack_t *ipst = ixa->ixa_ipst;
1616 uint_t pktlen = ixa->ixa_pktlen;
1617 uint16_t *cksump;
1618 uint32_t cksum;
1619 uint8_t protocol = ixa->ixa_protocol;
1620 uint16_t ip_hdr_length = ixa->ixa_ip_hdr_length;
1621 ipaddr_t dst = ipha->ipha_dst;
1622 ipaddr_t src = ipha->ipha_src;

1624 /* Just in case it contained garbage */
1625 DB_CKSUMFLAGS(mp) &= ~HCK_FLAGS;

1627 /*
1628 * Calculate ULP checksum
1629 */
1630 if (protocol == IPPROTO_TCP) {
1631 cksump = IPH_TCPH_CHECKSUMP(ipha, ip_hdr_length);
1632 cksum = IP_TCP_CSUM_COMP;
1633 } else if (protocol == IPPROTO_UDP) {
1634 cksump = IPH_UDPH_CHECKSUMP(ipha, ip_hdr_length);
1635 cksum = IP_UDP_CSUM_COMP;
1636 } else if (protocol == IPPROTO_SCTP) {
1637 sctp_hdr_t *sctph;

1639 ASSERT(MBLKL(mp) >= (ip_hdr_length + sizeof (*sctph)));
1640 sctph = (sctp_hdr_t *)(mp->b_rptr + ip_hdr_length);
1641 /*
1642 * Zero out the checksum field to ensure proper
1643 * checksum calculation.
1644 */
1645 sctph->sh_chksum = 0;
1646 #ifdef DEBUG
1647 if (!skip_sctp_cksum)
1648 #endif
1649 sctph->sh_chksum = sctp_cksum(mp, ip_hdr_length);
1650 goto ip_hdr_cksum;
1651 } else if (protocol == IPPROTO_DCCP) {
1652 cksump = IPH_DCCPH_CHECKSUMP(ipha, ip_hdr_length);
1653 cksum = IP_DCCP_CSUM_COMP;
1654 #endif /* ! codereview */
1655 } else {
1656 goto ip_hdr_cksum;
1657 }

1659 /* ULP puts the checksum field is in the first mblk */
1660 ASSERT(((uchar_t *)cksump) + sizeof (uint16_t) <= mp->b_wptr);

1662 /*
1663 * We accumulate the pseudo header checksum in cksum.
1664 * This is pretty hairy code, so watch close. One

new/usr/src/uts/common/inet/ip/ip_output.c 2

1665 * thing to keep in mind is that UDP and TCP have
1666 * stored their respective datagram lengths in their
1667 * checksum fields. This lines things up real nice.
1668 */
1669 cksum += (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);

1671 cksum = IP_CSUM(mp, ip_hdr_length, cksum);
1672 /*
1673 * For UDP/IPv4 a zero means that the packets wasn’t checksummed.
1674 * Change to 0xffff
1675 */
1676 if (protocol == IPPROTO_UDP && cksum == 0)
1677 *cksump = ~cksum;
1678 else
1679 *cksump = cksum;

1681 IP_STAT(ipst, ip_out_sw_cksum);
1682 IP_STAT_UPDATE(ipst, ip_out_sw_cksum_bytes, pktlen);

1684 ip_hdr_cksum:
1685 /* Calculate IPv4 header checksum */
1686 ipha->ipha_hdr_checksum = 0;
1687 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1688 return (B_TRUE);
1689 }

1691 /*
1692 * Calculate the ULP checksum - try to use hardware.
1693 * In the case of MULTIRT, broadcast or multicast the
1694 * IXAF_NO_HW_CKSUM is set in which case we use software.
1695 *
1696 * If the hardware supports IP header checksum offload; then clear the
1697 * contents of IP header checksum field as expected by NIC.
1698 * Do this only if we offloaded either full or partial sum.
1699 *
1700 * Returns B_FALSE if the packet was too short for the checksum. Caller
1701 * should free and do stats.
1702 */
1703 static boolean_t
1704 ip_output_cksum_v4(iaflags_t ixaflags, mblk_t *mp, ipha_t *ipha,
1705 ip_xmit_attr_t *ixa, ill_t *ill)
1706 {
1707 uint_t pktlen = ixa->ixa_pktlen;
1708 uint16_t *cksump;
1709 uint16_t hck_flags;
1710 uint32_t cksum;
1711 uint8_t protocol = ixa->ixa_protocol;
1712 uint16_t ip_hdr_length = ixa->ixa_ip_hdr_length;

1714 if ((ixaflags & IXAF_NO_HW_CKSUM) || !ILL_HCKSUM_CAPABLE(ill) ||
1715 !dohwcksum) {
1716 return (ip_output_sw_cksum_v4(mp, ipha, ixa));
1717 }

1719 /*
1720 * Calculate ULP checksum. Note that we don’t use cksump and cksum
1721 * if the ill has FULL support.
1722 */
1723 if (protocol == IPPROTO_TCP) {
1724 cksump = IPH_TCPH_CHECKSUMP(ipha, ip_hdr_length);
1725 cksum = IP_TCP_CSUM_COMP; /* Pseudo-header cksum */
1726 } else if (protocol == IPPROTO_UDP) {
1727 cksump = IPH_UDPH_CHECKSUMP(ipha, ip_hdr_length);
1728 cksum = IP_UDP_CSUM_COMP; /* Pseudo-header cksum */
1729 } else if (protocol == IPPROTO_SCTP) {
1730 sctp_hdr_t *sctph;

new/usr/src/uts/common/inet/ip/ip_output.c 3

1732 ASSERT(MBLKL(mp) >= (ip_hdr_length + sizeof (*sctph)));
1733 sctph = (sctp_hdr_t *)(mp->b_rptr + ip_hdr_length);
1734 /*
1735 * Zero out the checksum field to ensure proper
1736 * checksum calculation.
1737 */
1738 sctph->sh_chksum = 0;
1739 #ifdef DEBUG
1740 if (!skip_sctp_cksum)
1741 #endif
1742 sctph->sh_chksum = sctp_cksum(mp, ip_hdr_length);
1743 goto ip_hdr_cksum;
1744 } else if (protocol == IPPROTO_DCCP) {
1745 cksump = IPH_DCCPH_CHECKSUMP(ipha, ip_hdr_length);
1746 cksum = IP_DCCP_CSUM_COMP;
1747 #endif /* ! codereview */
1748 } else {
1749 ip_hdr_cksum:
1750 /* Calculate IPv4 header checksum */
1751 ipha->ipha_hdr_checksum = 0;
1752 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1753 return (B_TRUE);
1754 }

1756 /* ULP puts the checksum field is in the first mblk */
1757 ASSERT(((uchar_t *)cksump) + sizeof (uint16_t) <= mp->b_wptr);

1759 /*
1760 * Underlying interface supports hardware checksum offload for
1761 * the payload; leave the payload checksum for the hardware to
1762 * calculate. N.B: We only need to set up checksum info on the
1763 * first mblk.
1764 */
1765 hck_flags = ill->ill_hcksum_capab->ill_hcksum_txflags;

1767 DB_CKSUMFLAGS(mp) &= ~HCK_FLAGS;
1768 if (hck_flags & HCKSUM_INET_FULL_V4) {
1769 /*
1770 * Hardware calculates pseudo-header, header and the
1771 * payload checksums, so clear the checksum field in
1772 * the protocol header.
1773 */
1774 *cksump = 0;
1775 DB_CKSUMFLAGS(mp) |= HCK_FULLCKSUM;

1777 ipha->ipha_hdr_checksum = 0;
1778 if (hck_flags & HCKSUM_IPHDRCKSUM) {
1779 DB_CKSUMFLAGS(mp) |= HCK_IPV4_HDRCKSUM;
1780 } else {
1781 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1782 }
1783 return (B_TRUE);
1784 }
1785 if ((hck_flags) & HCKSUM_INET_PARTIAL) {
1786 ipaddr_t dst = ipha->ipha_dst;
1787 ipaddr_t src = ipha->ipha_src;
1788 /*
1789 * Partial checksum offload has been enabled. Fill
1790 * the checksum field in the protocol header with the
1791 * pseudo-header checksum value.
1792 *
1793 * We accumulate the pseudo header checksum in cksum.
1794 * This is pretty hairy code, so watch close. One
1795 * thing to keep in mind is that UDP and TCP have
1796 * stored their respective datagram lengths in their

new/usr/src/uts/common/inet/ip/ip_output.c 4

1797 * checksum fields. This lines things up real nice.
1798 */
1799 cksum += (dst >> 16) + (dst & 0xFFFF) +
1800 (src >> 16) + (src & 0xFFFF);
1801 cksum += *(cksump);
1802 cksum = (cksum & 0xFFFF) + (cksum >> 16);
1803 *(cksump) = (cksum & 0xFFFF) + (cksum >> 16);

1805 /*
1806 * Offsets are relative to beginning of IP header.
1807 */
1808 DB_CKSUMSTART(mp) = ip_hdr_length;
1809 DB_CKSUMSTUFF(mp) = (uint8_t *)cksump - (uint8_t *)ipha;
1810 DB_CKSUMEND(mp) = pktlen;
1811 DB_CKSUMFLAGS(mp) |= HCK_PARTIALCKSUM;

1813 ipha->ipha_hdr_checksum = 0;
1814 if (hck_flags & HCKSUM_IPHDRCKSUM) {
1815 DB_CKSUMFLAGS(mp) |= HCK_IPV4_HDRCKSUM;
1816 } else {
1817 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1818 }
1819 return (B_TRUE);
1820 }
1821 /* Hardware capabilities include neither full nor partial IPv4 */
1822 return (ip_output_sw_cksum_v4(mp, ipha, ixa));
1823 }

1825 /*
1826 * ire_sendfn for offlink and onlink destinations.
1827 * Also called from the multicast, broadcast, multirt send functions.
1828 *
1829 * Assumes that the caller has a hold on the ire.
1830 *
1831 * This function doesn’t care if the IRE just became condemned since that
1832 * can happen at any time.
1833 */
1834 /* ARGSUSED */
1835 int
1836 ire_send_wire_v4(ire_t *ire, mblk_t *mp, void *iph_arg,
1837 ip_xmit_attr_t *ixa, uint32_t *identp)
1838 {
1839 ip_stack_t *ipst = ixa->ixa_ipst;
1840 ipha_t *ipha = (ipha_t *)iph_arg;
1841 iaflags_t ixaflags = ixa->ixa_flags;
1842 ill_t *ill;

1844 ASSERT(ixa->ixa_nce != NULL);
1845 ill = ixa->ixa_nce->nce_ill;

1847 if (ixaflags & IXAF_DONTROUTE)
1848 ipha->ipha_ttl = 1;

1850 /*
1851 * Assign an ident value for this packet. There could be other
1852 * threads targeting the same destination, so we have to arrange
1853 * for a atomic increment. Note that we use a 32-bit atomic add
1854 * because it has better performance than its 16-bit sibling.
1855 *
1856 * Normally ixa_extra_ident is 0, but in the case of LSO it will
1857 * be the number of TCP segments that the driver/hardware will
1858 * extraly construct.
1859 *
1860 * If running in cluster mode and if the source address
1861 * belongs to a replicated service then vector through
1862 * cl_inet_ipident vector to allocate ip identifier

new/usr/src/uts/common/inet/ip/ip_output.c 5

1863 * NOTE: This is a contract private interface with the
1864 * clustering group.
1865 */
1866 if (cl_inet_ipident != NULL) {
1867 ipaddr_t src = ipha->ipha_src;
1868 ipaddr_t dst = ipha->ipha_dst;
1869 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid;

1871 ASSERT(cl_inet_isclusterwide != NULL);
1872 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP,
1873 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) {
1874 /*
1875 * Note: not correct with LSO since we can’t allocate
1876 * ixa_extra_ident+1 consecutive values.
1877 */
1878 ipha->ipha_ident = (*cl_inet_ipident)(stack_id,
1879 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src,
1880 (uint8_t *)(uintptr_t)dst, NULL);
1881 } else {
1882 ipha->ipha_ident = atomic_add_32_nv(identp,
1883 ixa->ixa_extra_ident + 1);
1884 }
1885 } else {
1886 ipha->ipha_ident = atomic_add_32_nv(identp,
1887 ixa->ixa_extra_ident + 1);
1888 }
1889 #ifndef _BIG_ENDIAN
1890 ipha->ipha_ident = htons(ipha->ipha_ident);
1891 #endif

1893 /*
1894 * This might set b_band, thus the IPsec and fragmentation
1895 * code in IP ensures that b_band is updated in the first mblk.
1896 */
1897 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
1898 /* ip_process translates an IS_UNDER_IPMP */
1899 mp = ip_process(IPP_LOCAL_OUT, mp, ill, ill);
1900 if (mp == NULL) {
1901 /* ip_drop_packet and MIB done */
1902 return (0); /* Might just be delayed */
1903 }
1904 }

1906 /*
1907 * Verify any IPv4 options.
1908 *
1909 * The presense of IP options also forces the network stack to
1910 * calculate the checksum in software. This is because:
1911 *
1912 * Wrap around: certain partial-checksum NICs (eri, ce) limit
1913 * the size of "start offset" width to 6-bit. This effectively
1914 * sets the largest value of the offset to 64-bytes, starting
1915 * from the MAC header. When the cumulative MAC and IP headers
1916 * exceed such limit, the offset will wrap around. This causes
1917 * the checksum to be calculated at the wrong place.
1918 *
1919 * IPv4 source routing: none of the full-checksum capable NICs
1920 * is capable of correctly handling the IPv4 source-routing
1921 * option for purposes of calculating the pseudo-header; the
1922 * actual destination is different from the destination in the
1923 * header which is that of the next-hop. (This case may not be
1924 * true for NICs which can parse IPv6 extension headers, but
1925 * we choose to simplify the implementation by not offloading
1926 * checksum when they are present.)
1927 */
1928 if (!IS_SIMPLE_IPH(ipha)) {

new/usr/src/uts/common/inet/ip/ip_output.c 6

1929 ixaflags = ixa->ixa_flags |= IXAF_NO_HW_CKSUM;
1930 /* An IS_UNDER_IPMP ill is ok here */
1931 if (ip_output_options(mp, ipha, ixa, ill)) {
1932 /* Packet has been consumed and ICMP error sent */
1933 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1934 return (EINVAL);
1935 }
1936 }

1938 /*
1939 * To handle IPsec/iptun’s labeling needs we need to tag packets
1940 * while we still have ixa_tsl
1941 */
1942 if (is_system_labeled() && ixa->ixa_tsl != NULL &&
1943 (ill->ill_mactype == DL_6TO4 || ill->ill_mactype == DL_IPV4 ||
1944 ill->ill_mactype == DL_IPV6)) {
1945 cred_t *newcr;

1947 newcr = copycred_from_tslabel(ixa->ixa_cred, ixa->ixa_tsl,
1948 KM_NOSLEEP);
1949 if (newcr == NULL) {
1950 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1951 ip_drop_output("ipIfStatsOutDiscards - newcr",
1952 mp, ill);
1953 freemsg(mp);
1954 return (ENOBUFS);
1955 }
1956 mblk_setcred(mp, newcr, NOPID);
1957 crfree(newcr); /* mblk_setcred did its own crhold */
1958 }

1960 if (ixa->ixa_pktlen > ixa->ixa_fragsize ||
1961 (ixaflags & IXAF_IPSEC_SECURE)) {
1962 uint32_t pktlen;

1964 pktlen = ixa->ixa_pktlen;
1965 if (ixaflags & IXAF_IPSEC_SECURE)
1966 pktlen += ipsec_out_extra_length(ixa);

1968 if (pktlen > IP_MAXPACKET)
1969 return (EMSGSIZE);

1971 if (ixaflags & IXAF_SET_ULP_CKSUM) {
1972 /*
1973 * Compute ULP checksum and IP header checksum
1974 * using software
1975 */
1976 if (!ip_output_sw_cksum_v4(mp, ipha, ixa)) {
1977 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1978 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
1979 freemsg(mp);
1980 return (EINVAL);
1981 }
1982 } else {
1983 /* Calculate IPv4 header checksum */
1984 ipha->ipha_hdr_checksum = 0;
1985 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
1986 }

1988 /*
1989 * If this packet would generate a icmp_frag_needed
1990 * message, we need to handle it before we do the IPsec
1991 * processing. Otherwise, we need to strip the IPsec
1992 * headers before we send up the message to the ULPs
1993 * which becomes messy and difficult.
1994 *

new/usr/src/uts/common/inet/ip/ip_output.c 7

1995 * We check using IXAF_DONTFRAG. The DF bit in the header
1996 * is not inspected - it will be copied to any generated
1997 * fragments.
1998 */
1999 if ((pktlen > ixa->ixa_fragsize) &&
2000 (ixaflags & IXAF_DONTFRAG)) {
2001 /* Generate ICMP and return error */
2002 ip_recv_attr_t iras;

2004 DTRACE_PROBE4(ip4__fragsize__fail, uint_t, pktlen,
2005 uint_t, ixa->ixa_fragsize, uint_t, ixa->ixa_pktlen,
2006 uint_t, ixa->ixa_pmtu);

2008 bzero(&iras, sizeof (iras));
2009 /* Map ixa to ira including IPsec policies */
2010 ipsec_out_to_in(ixa, ill, &iras);

2012 ip_drop_output("ICMP_FRAG_NEEDED", mp, ill);
2013 icmp_frag_needed(mp, ixa->ixa_fragsize, &iras);
2014 /* We moved any IPsec refs from ixa to iras */
2015 ira_cleanup(&iras, B_FALSE);
2016 return (EMSGSIZE);
2017 }
2018 DTRACE_PROBE4(ip4__fragsize__ok, uint_t, pktlen,
2019 uint_t, ixa->ixa_fragsize, uint_t, ixa->ixa_pktlen,
2020 uint_t, ixa->ixa_pmtu);

2022 if (ixaflags & IXAF_IPSEC_SECURE) {
2023 /*
2024 * Pass in sufficient information so that
2025 * IPsec can determine whether to fragment, and
2026 * which function to call after fragmentation.
2027 */
2028 return (ipsec_out_process(mp, ixa));
2029 }
2030 return (ip_fragment_v4(mp, ixa->ixa_nce, ixaflags,
2031 ixa->ixa_pktlen, ixa->ixa_fragsize, ixa->ixa_xmit_hint,
2032 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
2033 ixa->ixa_postfragfn, &ixa->ixa_cookie));
2034 }
2035 if (ixaflags & IXAF_SET_ULP_CKSUM) {
2036 /* Compute ULP checksum and IP header checksum */
2037 /* An IS_UNDER_IPMP ill is ok here */
2038 if (!ip_output_cksum_v4(ixaflags, mp, ipha, ixa, ill)) {
2039 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2040 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
2041 freemsg(mp);
2042 return (EINVAL);
2043 }
2044 } else {
2045 /* Calculate IPv4 header checksum */
2046 ipha->ipha_hdr_checksum = 0;
2047 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
2048 }
2049 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixaflags,
2050 ixa->ixa_pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
2051 ixa->ixa_no_loop_zoneid, &ixa->ixa_cookie));
2052 }

2054 /*
2055 * Send mp into ip_input
2056 * Common for IPv4 and IPv6
2057 */
2058 void
2059 ip_postfrag_loopback(mblk_t *mp, nce_t *nce, iaflags_t ixaflags,
2060 uint_t pkt_len, zoneid_t nolzid)

new/usr/src/uts/common/inet/ip/ip_output.c 8

2061 {
2062 rtc_t rtc;
2063 ill_t *ill = nce->nce_ill;
2064 ip_recv_attr_t iras; /* NOTE: No bzero for performance */
2065 ncec_t *ncec;

2067 ncec = nce->nce_common;
2068 iras.ira_flags = IRAF_VERIFY_IP_CKSUM | IRAF_VERIFY_ULP_CKSUM |
2069 IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK;
2070 if (ncec->ncec_flags & NCE_F_BCAST)
2071 iras.ira_flags |= IRAF_L2DST_BROADCAST;
2072 else if (ncec->ncec_flags & NCE_F_MCAST)
2073 iras.ira_flags |= IRAF_L2DST_MULTICAST;

2075 iras.ira_free_flags = 0;
2076 iras.ira_cred = NULL;
2077 iras.ira_cpid = NOPID;
2078 iras.ira_tsl = NULL;
2079 iras.ira_zoneid = ALL_ZONES;
2080 iras.ira_pktlen = pkt_len;
2081 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, iras.ira_pktlen);
2082 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives);

2084 if (ixaflags & IXAF_IS_IPV4)
2085 iras.ira_flags |= IRAF_IS_IPV4;

2087 iras.ira_ill = iras.ira_rill = ill;
2088 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2089 iras.ira_rifindex = iras.ira_ruifindex;
2090 iras.ira_mhip = NULL;

2092 iras.ira_flags |= ixaflags & IAF_MASK;
2093 iras.ira_no_loop_zoneid = nolzid;

2095 /* Broadcast and multicast doesn’t care about the squeue */
2096 iras.ira_sqp = NULL;

2098 rtc.rtc_ire = NULL;
2099 if (ixaflags & IXAF_IS_IPV4) {
2100 ipha_t *ipha = (ipha_t *)mp->b_rptr;

2102 rtc.rtc_ipaddr = INADDR_ANY;

2104 (*ill->ill_inputfn)(mp, ipha, &ipha->ipha_dst, &iras, &rtc);
2105 if (rtc.rtc_ire != NULL) {
2106 ASSERT(rtc.rtc_ipaddr != INADDR_ANY);
2107 ire_refrele(rtc.rtc_ire);
2108 }
2109 } else {
2110 ip6_t *ip6h = (ip6_t *)mp->b_rptr;

2112 rtc.rtc_ip6addr = ipv6_all_zeros;

2114 (*ill->ill_inputfn)(mp, ip6h, &ip6h->ip6_dst, &iras, &rtc);
2115 if (rtc.rtc_ire != NULL) {
2116 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&rtc.rtc_ip6addr));
2117 ire_refrele(rtc.rtc_ire);
2118 }
2119 }
2120 /* Any references to clean up? No hold on ira */
2121 if (iras.ira_flags & (IRAF_IPSEC_SECURE|IRAF_SYSTEM_LABELED))
2122 ira_cleanup(&iras, B_FALSE);
2123 }

2125 /*
2126 * Post fragmentation function for IRE_MULTICAST and IRE_BROADCAST which

new/usr/src/uts/common/inet/ip/ip_output.c 9

2127 * looks at the IXAF_LOOPBACK_COPY flag.
2128 * Common for IPv4 and IPv6.
2129 *
2130 * If the loopback copy fails (due to no memory) but we send the packet out
2131 * on the wire we return no failure. Only in the case we supress the wire
2132 * sending do we take the loopback failure into account.
2133 *
2134 * Note that we do not perform DTRACE_IP7 and FW_HOOKS for the looped back copy.
2135 * Those operations are performed on this packet in ip_xmit() and it would
2136 * be odd to do it twice for the same packet.
2137 */
2138 int
2139 ip_postfrag_loopcheck(mblk_t *mp, nce_t *nce, iaflags_t ixaflags,
2140 uint_t pkt_len, uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid,
2141 uintptr_t *ixacookie)
2142 {
2143 ill_t *ill = nce->nce_ill;
2144 int error = 0;

2146 /*
2147 * Check for IXAF_LOOPBACK_COPY - send a copy to ip as if the driver
2148 * had looped it back
2149 */
2150 if (ixaflags & IXAF_LOOPBACK_COPY) {
2151 mblk_t *mp1;

2153 mp1 = copymsg(mp);
2154 if (mp1 == NULL) {
2155 /* Failed to deliver the loopback copy. */
2156 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2157 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
2158 error = ENOBUFS;
2159 } else {
2160 ip_postfrag_loopback(mp1, nce, ixaflags, pkt_len,
2161 nolzid);
2162 }
2163 }

2165 /*
2166 * If TTL = 0 then only do the loopback to this host i.e. we are
2167 * done. We are also done if this was the
2168 * loopback interface since it is sufficient
2169 * to loopback one copy of a multicast packet.
2170 */
2171 if (ixaflags & IXAF_IS_IPV4) {
2172 ipha_t *ipha = (ipha_t *)mp->b_rptr;

2174 if (ipha->ipha_ttl == 0) {
2175 ip_drop_output("multicast ipha_ttl not sent to wire",
2176 mp, ill);
2177 freemsg(mp);
2178 return (error);
2179 }
2180 } else {
2181 ip6_t *ip6h = (ip6_t *)mp->b_rptr;

2183 if (ip6h->ip6_hops == 0) {
2184 ip_drop_output("multicast ipha_ttl not sent to wire",
2185 mp, ill);
2186 freemsg(mp);
2187 return (error);
2188 }
2189 }
2190 if (nce->nce_ill->ill_wq == NULL) {
2191 /* Loopback interface */
2192 ip_drop_output("multicast on lo0 not sent to wire", mp, ill);

new/usr/src/uts/common/inet/ip/ip_output.c 10

2193 freemsg(mp);
2194 return (error);
2195 }

2197 return (ip_xmit(mp, nce, ixaflags, pkt_len, xmit_hint, szone, 0,
2198 ixacookie));
2199 }

2201 /*
2202 * Post fragmentation function for RTF_MULTIRT routes.
2203 * Since IRE_BROADCASTs can have RTF_MULTIRT, this function
2204 * checks IXAF_LOOPBACK_COPY.
2205 *
2206 * If no packet is sent due to failures then we return an errno, but if at
2207 * least one succeeded we return zero.
2208 */
2209 int
2210 ip_postfrag_multirt_v4(mblk_t *mp, nce_t *nce, iaflags_t ixaflags,
2211 uint_t pkt_len, uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid,
2212 uintptr_t *ixacookie)
2213 {
2214 irb_t *irb;
2215 ipha_t *ipha = (ipha_t *)mp->b_rptr;
2216 ire_t *ire;
2217 ire_t *ire1;
2218 mblk_t *mp1;
2219 nce_t *nce1;
2220 ill_t *ill = nce->nce_ill;
2221 ill_t *ill1;
2222 ip_stack_t *ipst = ill->ill_ipst;
2223 int error = 0;
2224 int num_sent = 0;
2225 int err;
2226 uint_t ire_type;
2227 ipaddr_t nexthop;

2229 ASSERT(ixaflags & IXAF_IS_IPV4);

2231 /* Check for IXAF_LOOPBACK_COPY */
2232 if (ixaflags & IXAF_LOOPBACK_COPY) {
2233 mblk_t *mp1;

2235 mp1 = copymsg(mp);
2236 if (mp1 == NULL) {
2237 /* Failed to deliver the loopback copy. */
2238 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2239 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
2240 error = ENOBUFS;
2241 } else {
2242 ip_postfrag_loopback(mp1, nce, ixaflags, pkt_len,
2243 nolzid);
2244 }
2245 }

2247 /*
2248 * Loop over RTF_MULTIRT for ipha_dst in the same bucket. Send
2249 * a copy to each one.
2250 * Use the nce (nexthop) and ipha_dst to find the ire.
2251 *
2252 * MULTIRT is not designed to work with shared-IP zones thus we don’t
2253 * need to pass a zoneid or a label to the IRE lookup.
2254 */
2255 if (V4_PART_OF_V6(nce->nce_addr) == ipha->ipha_dst) {
2256 /* Broadcast and multicast case */
2257 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 0,
2258 NULL, ALL_ZONES, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);

new/usr/src/uts/common/inet/ip/ip_output.c 11

2259 } else {
2260 ipaddr_t v4addr = V4_PART_OF_V6(nce->nce_addr);

2262 /* Unicast case */
2263 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, v4addr, 0,
2264 NULL, ALL_ZONES, NULL, MATCH_IRE_GW, 0, ipst, NULL);
2265 }

2267 if (ire == NULL ||
2268 (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2269 !(ire->ire_flags & RTF_MULTIRT)) {
2270 /* Drop */
2271 ip_drop_output("ip_postfrag_multirt didn’t find route",
2272 mp, nce->nce_ill);
2273 if (ire != NULL)
2274 ire_refrele(ire);
2275 return (ENETUNREACH);
2276 }

2278 irb = ire->ire_bucket;
2279 irb_refhold(irb);
2280 for (ire1 = irb->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
2281 /*
2282 * For broadcast we can have a mixture of IRE_BROADCAST and
2283 * IRE_HOST due to the manually added IRE_HOSTs that are used
2284 * to trigger the creation of the special CGTP broadcast routes.
2285 * Thus we have to skip if ire_type doesn’t match the original.
2286 */
2287 if (IRE_IS_CONDEMNED(ire1) ||
2288 !(ire1->ire_flags & RTF_MULTIRT) ||
2289 ire1->ire_type != ire->ire_type)
2290 continue;

2292 /* Do the ire argument one after the loop */
2293 if (ire1 == ire)
2294 continue;

2296 ill1 = ire_nexthop_ill(ire1);
2297 if (ill1 == NULL) {
2298 /*
2299 * This ire might not have been picked by
2300 * ire_route_recursive, in which case ire_dep might
2301 * not have been setup yet.
2302 * We kick ire_route_recursive to try to resolve
2303 * starting at ire1.
2304 */
2305 ire_t *ire2;
2306 uint_t match_flags = MATCH_IRE_DSTONLY;

2308 if (ire1->ire_ill != NULL)
2309 match_flags |= MATCH_IRE_ILL;
2310 ire2 = ire_route_recursive_impl_v4(ire1,
2311 ire1->ire_addr, ire1->ire_type, ire1->ire_ill,
2312 ire1->ire_zoneid, NULL, match_flags,
2313 IRR_ALLOCATE, 0, ipst, NULL, NULL, NULL);
2314 if (ire2 != NULL)
2315 ire_refrele(ire2);
2316 ill1 = ire_nexthop_ill(ire1);
2317 }

2319 if (ill1 == NULL) {
2320 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2321 ip_drop_output("ipIfStatsOutDiscards - no ill",
2322 mp, ill);
2323 error = ENETUNREACH;
2324 continue;

new/usr/src/uts/common/inet/ip/ip_output.c 12

2325 }

2327 /* Pick the addr and type to use for arp_nce_init */
2328 if (nce->nce_common->ncec_flags & NCE_F_BCAST) {
2329 ire_type = IRE_BROADCAST;
2330 nexthop = ire1->ire_gateway_addr;
2331 } else if (nce->nce_common->ncec_flags & NCE_F_MCAST) {
2332 ire_type = IRE_MULTICAST;
2333 nexthop = ipha->ipha_dst;
2334 } else {
2335 ire_type = ire1->ire_type; /* Doesn’t matter */
2336 nexthop = ire1->ire_gateway_addr;
2337 }

2339 /* If IPMP meta or under, then we just drop */
2340 if (ill1->ill_grp != NULL) {
2341 BUMP_MIB(ill1->ill_ip_mib, ipIfStatsOutDiscards);
2342 ip_drop_output("ipIfStatsOutDiscards - IPMP",
2343 mp, ill1);
2344 ill_refrele(ill1);
2345 error = ENETUNREACH;
2346 continue;
2347 }

2349 nce1 = arp_nce_init(ill1, nexthop, ire_type);
2350 if (nce1 == NULL) {
2351 BUMP_MIB(ill1->ill_ip_mib, ipIfStatsOutDiscards);
2352 ip_drop_output("ipIfStatsOutDiscards - no nce",
2353 mp, ill1);
2354 ill_refrele(ill1);
2355 error = ENETUNREACH;
2356 continue;
2357 }
2358 mp1 = copymsg(mp);
2359 if (mp1 == NULL) {
2360 BUMP_MIB(ill1->ill_ip_mib, ipIfStatsOutDiscards);
2361 ip_drop_output("ipIfStatsOutDiscards", mp, ill1);
2362 nce_refrele(nce1);
2363 ill_refrele(ill1);
2364 error = ENOBUFS;
2365 continue;
2366 }
2367 /* Preserve HW checksum for this copy */
2368 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
2369 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
2370 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
2371 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
2372 DB_LSOMSS(mp1) = DB_LSOMSS(mp);

2374 ire1->ire_ob_pkt_count++;
2375 err = ip_xmit(mp1, nce1, ixaflags, pkt_len, xmit_hint, szone,
2376 0, ixacookie);
2377 if (err == 0)
2378 num_sent++;
2379 else
2380 error = err;
2381 nce_refrele(nce1);
2382 ill_refrele(ill1);
2383 }
2384 irb_refrele(irb);
2385 ire_refrele(ire);
2386 /* Finally, the main one */
2387 err = ip_xmit(mp, nce, ixaflags, pkt_len, xmit_hint, szone, 0,
2388 ixacookie);
2389 if (err == 0)
2390 num_sent++;

new/usr/src/uts/common/inet/ip/ip_output.c 13

2391 else
2392 error = err;
2393 if (num_sent > 0)
2394 return (0);
2395 else
2396 return (error);
2397 }

2399 /*
2400 * Verify local connectivity. This check is called by ULP fusion code.
2401 * The generation number on an IRE_LOCAL or IRE_LOOPBACK only changes if
2402 * the interface is brought down and back up. So we simply fail the local
2403 * process. The caller, TCP Fusion, should unfuse the connection.
2404 */
2405 boolean_t
2406 ip_output_verify_local(ip_xmit_attr_t *ixa)
2407 {
2408 ire_t *ire = ixa->ixa_ire;

2410 if (!(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)))
2411 return (B_FALSE);

2413 return (ixa->ixa_ire->ire_generation == ixa->ixa_ire_generation);
2414 }

2416 /*
2417 * Local process for ULP loopback, TCP Fusion. Handle both IPv4 and IPv6.
2418 *
2419 * The caller must call ip_output_verify_local() first. This function handles
2420 * IPobs, FW_HOOKS, and/or IPsec cases sequentially.
2421 */
2422 mblk_t *
2423 ip_output_process_local(mblk_t *mp, ip_xmit_attr_t *ixa, boolean_t hooks_out,
2424 boolean_t hooks_in, conn_t *peer_connp)
2425 {
2426 ill_t *ill = ixa->ixa_ire->ire_ill;
2427 ipha_t *ipha = NULL;
2428 ip6_t *ip6h = NULL;
2429 ip_stack_t *ipst = ixa->ixa_ipst;
2430 iaflags_t ixaflags = ixa->ixa_flags;
2431 ip_recv_attr_t iras;
2432 int error;

2434 ASSERT(mp != NULL);

2436 if (ixaflags & IXAF_IS_IPV4) {
2437 ipha = (ipha_t *)mp->b_rptr;

2439 /*
2440 * If a callback is enabled then we need to know the
2441 * source and destination zoneids for the packet. We already
2442 * have those handy.
2443 */
2444 if (ipst->ips_ip4_observe.he_interested) {
2445 zoneid_t szone, dzone;
2446 zoneid_t stackzoneid;

2448 stackzoneid = netstackid_to_zoneid(
2449 ipst->ips_netstack->netstack_stackid);

2451 if (stackzoneid == GLOBAL_ZONEID) {
2452 /* Shared-IP zone */
2453 dzone = ixa->ixa_ire->ire_zoneid;
2454 szone = ixa->ixa_zoneid;
2455 } else {
2456 szone = dzone = stackzoneid;

new/usr/src/uts/common/inet/ip/ip_output.c 14

2457 }
2458 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill,
2459 ipst);
2460 }
2461 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,
2462 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *,
2463 NULL, int, 1);

2465 /* FW_HOOKS: LOOPBACK_OUT */
2466 if (hooks_out) {
2467 DTRACE_PROBE4(ip4__loopback__out__start, ill_t *, NULL,
2468 ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
2469 FW_HOOKS(ipst->ips_ip4_loopback_out_event,
2470 ipst->ips_ipv4firewall_loopback_out,
2471 NULL, ill, ipha, mp, mp, 0, ipst, error);
2472 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp);
2473 }
2474 if (mp == NULL)
2475 return (NULL);

2477 /* FW_HOOKS: LOOPBACK_IN */
2478 if (hooks_in) {
2479 DTRACE_PROBE4(ip4__loopback__in__start, ill_t *, ill,
2480 ill_t *, NULL, ipha_t *, ipha, mblk_t *, mp);
2481 FW_HOOKS(ipst->ips_ip4_loopback_in_event,
2482 ipst->ips_ipv4firewall_loopback_in,
2483 ill, NULL, ipha, mp, mp, 0, ipst, error);
2484 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp);
2485 }
2486 if (mp == NULL)
2487 return (NULL);

2489 DTRACE_IP7(receive, mblk_t *, mp, conn_t *, NULL, void_ip_t *,
2490 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *,
2491 NULL, int, 1);

2493 /* Inbound IPsec polocies */
2494 if (peer_connp != NULL) {
2495 /* Map ixa to ira including IPsec policies. */
2496 ipsec_out_to_in(ixa, ill, &iras);
2497 mp = ipsec_check_inbound_policy(mp, peer_connp, ipha,
2498 NULL, &iras);
2499 }
2500 } else {
2501 ip6h = (ip6_t *)mp->b_rptr;

2503 /*
2504 * If a callback is enabled then we need to know the
2505 * source and destination zoneids for the packet. We already
2506 * have those handy.
2507 */
2508 if (ipst->ips_ip6_observe.he_interested) {
2509 zoneid_t szone, dzone;
2510 zoneid_t stackzoneid;

2512 stackzoneid = netstackid_to_zoneid(
2513 ipst->ips_netstack->netstack_stackid);

2515 if (stackzoneid == GLOBAL_ZONEID) {
2516 /* Shared-IP zone */
2517 dzone = ixa->ixa_ire->ire_zoneid;
2518 szone = ixa->ixa_zoneid;
2519 } else {
2520 szone = dzone = stackzoneid;
2521 }
2522 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill,

new/usr/src/uts/common/inet/ip/ip_output.c 15

2523 ipst);
2524 }
2525 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,
2526 ip6h, __dtrace_ipsr_ill_t *, ill, ipha_t *, NULL, ip6_t *,
2527 ip6h, int, 1);

2529 /* FW_HOOKS: LOOPBACK_OUT */
2530 if (hooks_out) {
2531 DTRACE_PROBE4(ip6__loopback__out__start, ill_t *, NULL,
2532 ill_t *, ill, ip6_t *, ip6h, mblk_t *, mp);
2533 FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
2534 ipst->ips_ipv6firewall_loopback_out,
2535 NULL, ill, ip6h, mp, mp, 0, ipst, error);
2536 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp);
2537 }
2538 if (mp == NULL)
2539 return (NULL);

2541 /* FW_HOOKS: LOOPBACK_IN */
2542 if (hooks_in) {
2543 DTRACE_PROBE4(ip6__loopback__in__start, ill_t *, ill,
2544 ill_t *, NULL, ip6_t *, ip6h, mblk_t *, mp);
2545 FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
2546 ipst->ips_ipv6firewall_loopback_in,
2547 ill, NULL, ip6h, mp, mp, 0, ipst, error);
2548 DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp);
2549 }
2550 if (mp == NULL)
2551 return (NULL);

2553 DTRACE_IP7(receive, mblk_t *, mp, conn_t *, NULL, void_ip_t *,
2554 ip6h, __dtrace_ipsr_ill_t *, ill, ipha_t *, NULL, ip6_t *,
2555 ip6h, int, 1);

2557 /* Inbound IPsec polocies */
2558 if (peer_connp != NULL) {
2559 /* Map ixa to ira including IPsec policies. */
2560 ipsec_out_to_in(ixa, ill, &iras);
2561 mp = ipsec_check_inbound_policy(mp, peer_connp, NULL,
2562 ip6h, &iras);
2563 }
2564 }

2566 if (mp == NULL) {
2567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2568 ip_drop_input("ipIfStatsInDiscards", NULL, ill);
2569 }

2571 return (mp);
2572 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 1

**
 84408 Wed Jun 13 12:05:02 2012
new/usr/src/uts/common/inet/ip/ipclassifier.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 /*
26 * IP PACKET CLASSIFIER
27 *
28 * The IP packet classifier provides mapping between IP packets and persistent
29 * connection state for connection-oriented protocols. It also provides
30 * interface for managing connection states.
31 *
32 * The connection state is kept in conn_t data structure and contains, among
33 * other things:
34 *
35 * o local/remote address and ports
36 * o Transport protocol
37 * o squeue for the connection (for TCP only)
38 * o reference counter
39 * o Connection state
40 * o hash table linkage
41 * o interface/ire information
42 * o credentials
43 * o ipsec policy
44 * o send and receive functions.
45 * o mutex lock.
46 *
47 * Connections use a reference counting scheme. They are freed when the
48 * reference counter drops to zero. A reference is incremented when connection
49 * is placed in a list or table, when incoming packet for the connection arrives
50 * and when connection is processed via squeue (squeue processing may be
51 * asynchronous and the reference protects the connection from being destroyed
52 * before its processing is finished).
53 *
54 * conn_recv is used to pass up packets to the ULP.
55 * For TCP conn_recv changes. It is tcp_input_listener_unbound initially for
56 * a listener, and changes to tcp_input_listener as the listener has picked a
57 * good squeue. For other cases it is set to tcp_input_data.
58 *
59 * conn_recvicmp is used to pass up ICMP errors to the ULP.
60 *
61 * Classifier uses several hash tables:

new/usr/src/uts/common/inet/ip/ipclassifier.c 2

62 *
63 * ipcl_conn_fanout: contains all TCP connections in CONNECTED state
64 * ipcl_bind_fanout: contains all connections in BOUND state
65 * ipcl_proto_fanout: IPv4 protocol fanout
66 * ipcl_proto_fanout_v6: IPv6 protocol fanout
67 * ipcl_udp_fanout: contains all UDP connections
68 * ipcl_iptun_fanout: contains all IP tunnel connections
69 * ipcl_globalhash_fanout: contains all connections
70 *
71 * The ipcl_globalhash_fanout is used for any walkers (like snmp and Clustering)
72 * which need to view all existing connections.
73 *
74 * All tables are protected by per-bucket locks. When both per-bucket lock and
75 * connection lock need to be held, the per-bucket lock should be acquired
76 * first, followed by the connection lock.
77 *
78 * All functions doing search in one of these tables increment a reference
79 * counter on the connection found (if any). This reference should be dropped
80 * when the caller has finished processing the connection.
81 *
82 *
83 * INTERFACES:
84 * ===========
85 *
86 * Connection Lookup:
87 * ------------------
88 *
89 * conn_t *ipcl_classify_v4(mp, protocol, hdr_len, ira, ip_stack)
90 * conn_t *ipcl_classify_v6(mp, protocol, hdr_len, ira, ip_stack)
91 *
92 * Finds connection for an incoming IPv4 or IPv6 packet. Returns NULL if
93 * it can’t find any associated connection. If the connection is found, its
94 * reference counter is incremented.
95 *
96 * mp: mblock, containing packet header. The full header should fit
97 * into a single mblock. It should also contain at least full IP
98 * and TCP or UDP header.
99 *
100 * protocol: Either IPPROTO_TCP or IPPROTO_UDP.
101 *
102 * hdr_len: The size of IP header. It is used to find TCP or UDP header in
103 * the packet.
104 *
105 * ira->ira_zoneid: The zone in which the returned connection must be; the
106 * zoneid corresponding to the ire_zoneid on the IRE located for
107 * the packet’s destination address.
108 *
109 * ira->ira_flags: Contains the IRAF_TX_MAC_EXEMPTABLE and
110 * IRAF_TX_SHARED_ADDR flags
111 *
112 * For TCP connections, the lookup order is as follows:
113 * 5-tuple {src, dst, protocol, local port, remote port}
114 * lookup in ipcl_conn_fanout table.
115 * 3-tuple {dst, remote port, protocol} lookup in
116 * ipcl_bind_fanout table.
117 *
118 * For UDP connections, a 5-tuple {src, dst, protocol, local port,
119 * remote port} lookup is done on ipcl_udp_fanout. Note that,
120 * these interfaces do not handle cases where a packets belongs
121 * to multiple UDP clients, which is handled in IP itself.
122 *
123 * If the destination IRE is ALL_ZONES (indicated by zoneid), then we must
124 * determine which actual zone gets the segment. This is used only in a
125 * labeled environment. The matching rules are:
126 *
127 * - If it’s not a multilevel port, then the label on the packet selects

new/usr/src/uts/common/inet/ip/ipclassifier.c 3

128 * the zone. Unlabeled packets are delivered to the global zone.
129 *
130 * - If it’s a multilevel port, then only the zone registered to receive
131 * packets on that port matches.
132 *
133 * Also, in a labeled environment, packet labels need to be checked. For fully
134 * bound TCP connections, we can assume that the packet label was checked
135 * during connection establishment, and doesn’t need to be checked on each
136 * packet. For others, though, we need to check for strict equality or, for
137 * multilevel ports, membership in the range or set. This part currently does
138 * a tnrh lookup on each packet, but could be optimized to use cached results
139 * if that were necessary. (SCTP doesn’t come through here, but if it did,
140 * we would apply the same rules as TCP.)
141 *
142 * An implication of the above is that fully-bound TCP sockets must always use
143 * distinct 4-tuples; they can’t be discriminated by label alone.
144 *
145 * Note that we cannot trust labels on packets sent to fully-bound UDP sockets,
146 * as there’s no connection set-up handshake and no shared state.
147 *
148 * Labels on looped-back packets within a single zone do not need to be
149 * checked, as all processes in the same zone have the same label.
150 *
151 * Finally, for unlabeled packets received by a labeled system, special rules
152 * apply. We consider only the MLP if there is one. Otherwise, we prefer a
153 * socket in the zone whose label matches the default label of the sender, if
154 * any. In any event, the receiving socket must have SO_MAC_EXEMPT set and the
155 * receiver’s label must dominate the sender’s default label.
156 *
157 * conn_t *ipcl_tcp_lookup_reversed_ipv4(ipha_t *, tcpha_t *, int, ip_stack);
158 * conn_t *ipcl_tcp_lookup_reversed_ipv6(ip6_t *, tcpha_t *, int, uint_t,
159 * ip_stack);
160 *
161 * Lookup routine to find a exact match for {src, dst, local port,
162 * remote port) for TCP connections in ipcl_conn_fanout. The address and
163 * ports are read from the IP and TCP header respectively.
164 *
165 * conn_t *ipcl_lookup_listener_v4(lport, laddr, protocol,
166 * zoneid, ip_stack);
167 * conn_t *ipcl_lookup_listener_v6(lport, laddr, protocol, ifindex,
168 * zoneid, ip_stack);
169 *
170 * Lookup routine to find a listener with the tuple {lport, laddr,
171 * protocol} in the ipcl_bind_fanout table. For IPv6, an additional
172 * parameter interface index is also compared.
173 *
174 * void ipcl_walk(func, arg, ip_stack)
175 *
176 * Apply ’func’ to every connection available. The ’func’ is called as
177 * (*func)(connp, arg). The walk is non-atomic so connections may be
178 * created and destroyed during the walk. The CONN_CONDEMNED and
179 * CONN_INCIPIENT flags ensure that connections which are newly created
180 * or being destroyed are not selected by the walker.
181 *
182 * Table Updates
183 * -------------
184 *
185 * int ipcl_conn_insert(connp);
186 * int ipcl_conn_insert_v4(connp);
187 * int ipcl_conn_insert_v6(connp);
188 *
189 * Insert ’connp’ in the ipcl_conn_fanout.
190 * Arguements :
191 * connp conn_t to be inserted
192 *
193 * Return value :

new/usr/src/uts/common/inet/ip/ipclassifier.c 4

194 * 0 if connp was inserted
195 * EADDRINUSE if the connection with the same tuple
196 * already exists.
197 *
198 * int ipcl_bind_insert(connp);
199 * int ipcl_bind_insert_v4(connp);
200 * int ipcl_bind_insert_v6(connp);
201 *
202 * Insert ’connp’ in ipcl_bind_fanout.
203 * Arguements :
204 * connp conn_t to be inserted
205 *
206 *
207 * void ipcl_hash_remove(connp);
208 *
209 * Removes the ’connp’ from the connection fanout table.
210 *
211 * Connection Creation/Destruction
212 * -------------------------------
213 *
214 * conn_t *ipcl_conn_create(type, sleep, netstack_t *)
215 *
216 * Creates a new conn based on the type flag, inserts it into
217 * globalhash table.
218 *
219 * type: This flag determines the type of conn_t which needs to be
220 * created i.e., which kmem_cache it comes from.
221 * IPCL_TCPCONN indicates a TCP connection
222 * IPCL_SCTPCONN indicates a SCTP connection
223 * IPCL_UDPCONN indicates a UDP conn_t.
224 * IPCL_RAWIPCONN indicates a RAWIP/ICMP conn_t.
225 * IPCL_RTSCONN indicates a RTS conn_t.
226 * IPCL_DCCPCONN indicates a DCCP conn_t.
227 #endif /* ! codereview */
228 * IPCL_IPCCONN indicates all other connections.
229 *
230 * void ipcl_conn_destroy(connp)
231 *
232 * Destroys the connection state, removes it from the global
233 * connection hash table and frees its memory.
234 */

236 #include <sys/types.h>
237 #include <sys/stream.h>
238 #include <sys/stropts.h>
239 #include <sys/sysmacros.h>
240 #include <sys/strsubr.h>
241 #include <sys/strsun.h>
242 #define _SUN_TPI_VERSION 2
243 #include <sys/ddi.h>
244 #include <sys/cmn_err.h>
245 #include <sys/debug.h>

247 #include <sys/systm.h>
248 #include <sys/param.h>
249 #include <sys/kmem.h>
250 #include <sys/isa_defs.h>
251 #include <inet/common.h>
252 #include <netinet/ip6.h>
253 #include <netinet/icmp6.h>

255 #include <inet/ip.h>
256 #include <inet/ip_if.h>
257 #include <inet/ip_ire.h>
258 #include <inet/ip6.h>
259 #include <inet/ip_ndp.h>

new/usr/src/uts/common/inet/ip/ipclassifier.c 5

260 #include <inet/ip_impl.h>
261 #include <inet/udp_impl.h>
262 #include <inet/dccp/dccp_impl.h>
263 #endif /* ! codereview */
264 #include <inet/sctp_ip.h>
265 #include <inet/sctp/sctp_impl.h>
266 #include <inet/rawip_impl.h>
267 #include <inet/rts_impl.h>
268 #include <inet/iptun/iptun_impl.h>

270 #include <sys/cpuvar.h>

272 #include <inet/ipclassifier.h>
273 #include <inet/tcp.h>
274 #include <inet/ipsec_impl.h>

276 #include <sys/tsol/tnet.h>
277 #include <sys/sockio.h>

279 /* Old value for compatibility. Setable in /etc/system */
280 uint_t tcp_conn_hash_size = 0;

282 /* New value. Zero means choose automatically. Setable in /etc/system */
283 uint_t ipcl_conn_hash_size = 0;
284 uint_t ipcl_conn_hash_memfactor = 8192;
285 uint_t ipcl_conn_hash_maxsize = 82500;

287 /* bind/dccp/udp fanout table size */
226 /* bind/udp fanout table size */
288 uint_t ipcl_bind_fanout_size = 512;
289 uint_t ipcl_dccp_fanout_size = 512;
290 #endif /* ! codereview */
291 uint_t ipcl_udp_fanout_size = 16384;

293 /* Raw socket fanout size. Must be a power of 2. */
294 uint_t ipcl_raw_fanout_size = 256;

296 /*
297 * The IPCL_IPTUN_HASH() function works best with a prime table size. We
298 * expect that most large deployments would have hundreds of tunnels, and
299 * thousands in the extreme case.
300 */
301 uint_t ipcl_iptun_fanout_size = 6143;

303 /*
304 * Power of 2^N Primes useful for hashing for N of 0-28,
305 * these primes are the nearest prime <= 2^N - 2^(N-2).
306 */

308 #define P2Ps() {0, 0, 0, 5, 11, 23, 47, 89, 191, 383, 761, 1531, 3067, \
309 6143, 12281, 24571, 49139, 98299, 196597, 393209, \
310 786431, 1572853, 3145721, 6291449, 12582893, 25165813, \
311 50331599, 100663291, 201326557, 0}

313 /*
314 * wrapper structure to ensure that conn and what follows it (tcp_t, etc)
315 * are aligned on cache lines.
316 */
317 typedef union itc_s {
318 conn_t itc_conn;
319 char itcu_filler[CACHE_ALIGN(conn_s)];
320 } itc_t;

322 struct kmem_cache *tcp_conn_cache;
323 struct kmem_cache *ip_conn_cache;
324 extern struct kmem_cache *sctp_conn_cache;

new/usr/src/uts/common/inet/ip/ipclassifier.c 6

325 struct kmem_cache *udp_conn_cache;
326 struct kmem_cache *rawip_conn_cache;
327 struct kmem_cache *rts_conn_cache;
328 struct kmem_cache *dccp_conn_cache;
329 #endif /* ! codereview */

331 extern void tcp_timermp_free(tcp_t *);
332 extern mblk_t *tcp_timermp_alloc(int);

334 static int ip_conn_constructor(void *, void *, int);
335 static void ip_conn_destructor(void *, void *);

337 static int tcp_conn_constructor(void *, void *, int);
338 static void tcp_conn_destructor(void *, void *);

340 static int udp_conn_constructor(void *, void *, int);
341 static void udp_conn_destructor(void *, void *);

343 static int rawip_conn_constructor(void *, void *, int);
344 static void rawip_conn_destructor(void *, void *);

346 static int rts_conn_constructor(void *, void *, int);
347 static void rts_conn_destructor(void *, void *);

349 static int dccp_conn_constructor(void *, void *, int);
350 static void dccp_conn_destructor(void *, void *);

352 #endif /* ! codereview */
353 /*
354 * Global (for all stack instances) init routine
355 */
356 void
357 ipcl_g_init(void)
358 {
359 ip_conn_cache = kmem_cache_create("ip_conn_cache",
360 sizeof (conn_t), CACHE_ALIGN_SIZE,
361 ip_conn_constructor, ip_conn_destructor,
362 NULL, NULL, NULL, 0);

364 tcp_conn_cache = kmem_cache_create("tcp_conn_cache",
365 sizeof (itc_t) + sizeof (tcp_t), CACHE_ALIGN_SIZE,
366 tcp_conn_constructor, tcp_conn_destructor,
367 tcp_conn_reclaim, NULL, NULL, 0);

369 udp_conn_cache = kmem_cache_create("udp_conn_cache",
370 sizeof (itc_t) + sizeof (udp_t), CACHE_ALIGN_SIZE,
371 udp_conn_constructor, udp_conn_destructor,
372 NULL, NULL, NULL, 0);

374 rawip_conn_cache = kmem_cache_create("rawip_conn_cache",
375 sizeof (itc_t) + sizeof (icmp_t), CACHE_ALIGN_SIZE,
376 rawip_conn_constructor, rawip_conn_destructor,
377 NULL, NULL, NULL, 0);

379 rts_conn_cache = kmem_cache_create("rts_conn_cache",
380 sizeof (itc_t) + sizeof (rts_t), CACHE_ALIGN_SIZE,
381 rts_conn_constructor, rts_conn_destructor,
382 NULL, NULL, NULL, 0);

384 /* XXX:DCCP reclaim */
385 dccp_conn_cache = kmem_cache_create("dccp_conn_cache",
386 sizeof (itc_t) + sizeof (dccp_t), CACHE_ALIGN_SIZE,
387 dccp_conn_constructor, dccp_conn_destructor,
388 NULL, NULL, NULL, 0);
389 #endif /* ! codereview */
390 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 7

392 /*
393 * ipclassifier intialization routine, sets up hash tables.
394 */
395 void
396 ipcl_init(ip_stack_t *ipst)
397 {
398 int i;
399 int sizes[] = P2Ps();

401 /*
402 * Calculate size of conn fanout table from /etc/system settings
403 */
404 if (ipcl_conn_hash_size != 0) {
405 ipst->ips_ipcl_conn_fanout_size = ipcl_conn_hash_size;
406 } else if (tcp_conn_hash_size != 0) {
407 ipst->ips_ipcl_conn_fanout_size = tcp_conn_hash_size;
408 } else {
409 extern pgcnt_t freemem;

411 ipst->ips_ipcl_conn_fanout_size =
412 (freemem * PAGESIZE) / ipcl_conn_hash_memfactor;

414 if (ipst->ips_ipcl_conn_fanout_size > ipcl_conn_hash_maxsize) {
415 ipst->ips_ipcl_conn_fanout_size =
416 ipcl_conn_hash_maxsize;
417 }
418 }

420 for (i = 9; i < sizeof (sizes) / sizeof (*sizes) - 1; i++) {
421 if (sizes[i] >= ipst->ips_ipcl_conn_fanout_size) {
422 break;
423 }
424 }
425 if ((ipst->ips_ipcl_conn_fanout_size = sizes[i]) == 0) {
426 /* Out of range, use the 2^16 value */
427 ipst->ips_ipcl_conn_fanout_size = sizes[16];
428 }

430 /* Take values from /etc/system */
431 ipst->ips_ipcl_bind_fanout_size = ipcl_bind_fanout_size;
432 ipst->ips_ipcl_dccp_fanout_size = ipcl_dccp_fanout_size;
433 #endif /* ! codereview */
434 ipst->ips_ipcl_udp_fanout_size = ipcl_udp_fanout_size;
435 ipst->ips_ipcl_raw_fanout_size = ipcl_raw_fanout_size;
436 ipst->ips_ipcl_iptun_fanout_size = ipcl_iptun_fanout_size;

438 ASSERT(ipst->ips_ipcl_conn_fanout == NULL);

440 ipst->ips_ipcl_conn_fanout = kmem_zalloc(
441 ipst->ips_ipcl_conn_fanout_size * sizeof (connf_t), KM_SLEEP);

443 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
444 mutex_init(&ipst->ips_ipcl_conn_fanout[i].connf_lock, NULL,
445 MUTEX_DEFAULT, NULL);
446 }

448 ipst->ips_ipcl_bind_fanout = kmem_zalloc(
449 ipst->ips_ipcl_bind_fanout_size * sizeof (connf_t), KM_SLEEP);

451 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
452 mutex_init(&ipst->ips_ipcl_bind_fanout[i].connf_lock, NULL,
453 MUTEX_DEFAULT, NULL);
454 }

456 ipst->ips_ipcl_proto_fanout_v4 = kmem_zalloc(IPPROTO_MAX *

new/usr/src/uts/common/inet/ip/ipclassifier.c 8

457 sizeof (connf_t), KM_SLEEP);
458 for (i = 0; i < IPPROTO_MAX; i++) {
459 mutex_init(&ipst->ips_ipcl_proto_fanout_v4[i].connf_lock, NULL,
460 MUTEX_DEFAULT, NULL);
461 }

463 ipst->ips_ipcl_proto_fanout_v6 = kmem_zalloc(IPPROTO_MAX *
464 sizeof (connf_t), KM_SLEEP);
465 for (i = 0; i < IPPROTO_MAX; i++) {
466 mutex_init(&ipst->ips_ipcl_proto_fanout_v6[i].connf_lock, NULL,
467 MUTEX_DEFAULT, NULL);
468 }

470 ipst->ips_rts_clients = kmem_zalloc(sizeof (connf_t), KM_SLEEP);
471 mutex_init(&ipst->ips_rts_clients->connf_lock,
472 NULL, MUTEX_DEFAULT, NULL);

474 ipst->ips_ipcl_udp_fanout = kmem_zalloc(
475 ipst->ips_ipcl_udp_fanout_size * sizeof (connf_t), KM_SLEEP);
476 for (i = 0; i < ipst->ips_ipcl_udp_fanout_size; i++) {
477 mutex_init(&ipst->ips_ipcl_udp_fanout[i].connf_lock, NULL,
478 MUTEX_DEFAULT, NULL);
479 }

481 ipst->ips_ipcl_iptun_fanout = kmem_zalloc(
482 ipst->ips_ipcl_iptun_fanout_size * sizeof (connf_t), KM_SLEEP);
483 for (i = 0; i < ipst->ips_ipcl_iptun_fanout_size; i++) {
484 mutex_init(&ipst->ips_ipcl_iptun_fanout[i].connf_lock, NULL,
485 MUTEX_DEFAULT, NULL);
486 }

488 ipst->ips_ipcl_raw_fanout = kmem_zalloc(
489 ipst->ips_ipcl_raw_fanout_size * sizeof (connf_t), KM_SLEEP);
490 for (i = 0; i < ipst->ips_ipcl_raw_fanout_size; i++) {
491 mutex_init(&ipst->ips_ipcl_raw_fanout[i].connf_lock, NULL,
492 MUTEX_DEFAULT, NULL);
493 }

495 ipst->ips_ipcl_globalhash_fanout = kmem_zalloc(
496 sizeof (connf_t) * CONN_G_HASH_SIZE, KM_SLEEP);
497 for (i = 0; i < CONN_G_HASH_SIZE; i++) {
498 mutex_init(&ipst->ips_ipcl_globalhash_fanout[i].connf_lock,
499 NULL, MUTEX_DEFAULT, NULL);
500 }

502 ipst->ips_ipcl_dccp_fanout = kmem_zalloc(
503 ipst->ips_ipcl_dccp_fanout_size * sizeof (connf_t), KM_SLEEP);
504 for (i = 0; i < ipst->ips_ipcl_dccp_fanout_size; i++) {
505 mutex_init(&ipst->ips_ipcl_dccp_fanout[i].connf_lock, NULL,
506 MUTEX_DEFAULT, NULL);
507 }
508 #endif /* ! codereview */
509 }

511 void
512 ipcl_g_destroy(void)
513 {
514 kmem_cache_destroy(ip_conn_cache);
515 kmem_cache_destroy(tcp_conn_cache);
516 kmem_cache_destroy(udp_conn_cache);
517 kmem_cache_destroy(rawip_conn_cache);
518 kmem_cache_destroy(rts_conn_cache);
519 kmem_cache_destroy(dccp_conn_cache);
520 #endif /* ! codereview */
521 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 9

523 /*
524 * All user-level and kernel use of the stack must be gone
525 * by now.
526 */
527 void
528 ipcl_destroy(ip_stack_t *ipst)
529 {
530 int i;

532 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
533 ASSERT(ipst->ips_ipcl_conn_fanout[i].connf_head == NULL);
534 mutex_destroy(&ipst->ips_ipcl_conn_fanout[i].connf_lock);
535 }
536 kmem_free(ipst->ips_ipcl_conn_fanout, ipst->ips_ipcl_conn_fanout_size *
537 sizeof (connf_t));
538 ipst->ips_ipcl_conn_fanout = NULL;

540 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
541 ASSERT(ipst->ips_ipcl_bind_fanout[i].connf_head == NULL);
542 mutex_destroy(&ipst->ips_ipcl_bind_fanout[i].connf_lock);
543 }
544 kmem_free(ipst->ips_ipcl_bind_fanout, ipst->ips_ipcl_bind_fanout_size *
545 sizeof (connf_t));
546 ipst->ips_ipcl_bind_fanout = NULL;

548 for (i = 0; i < IPPROTO_MAX; i++) {
549 ASSERT(ipst->ips_ipcl_proto_fanout_v4[i].connf_head == NULL);
550 mutex_destroy(&ipst->ips_ipcl_proto_fanout_v4[i].connf_lock);
551 }
552 kmem_free(ipst->ips_ipcl_proto_fanout_v4,
553 IPPROTO_MAX * sizeof (connf_t));
554 ipst->ips_ipcl_proto_fanout_v4 = NULL;

556 for (i = 0; i < IPPROTO_MAX; i++) {
557 ASSERT(ipst->ips_ipcl_proto_fanout_v6[i].connf_head == NULL);
558 mutex_destroy(&ipst->ips_ipcl_proto_fanout_v6[i].connf_lock);
559 }
560 kmem_free(ipst->ips_ipcl_proto_fanout_v6,
561 IPPROTO_MAX * sizeof (connf_t));
562 ipst->ips_ipcl_proto_fanout_v6 = NULL;

564 for (i = 0; i < ipst->ips_ipcl_udp_fanout_size; i++) {
565 ASSERT(ipst->ips_ipcl_udp_fanout[i].connf_head == NULL);
566 mutex_destroy(&ipst->ips_ipcl_udp_fanout[i].connf_lock);
567 }
568 kmem_free(ipst->ips_ipcl_udp_fanout, ipst->ips_ipcl_udp_fanout_size *
569 sizeof (connf_t));
570 ipst->ips_ipcl_udp_fanout = NULL;

572 for (i = 0; i < ipst->ips_ipcl_iptun_fanout_size; i++) {
573 ASSERT(ipst->ips_ipcl_iptun_fanout[i].connf_head == NULL);
574 mutex_destroy(&ipst->ips_ipcl_iptun_fanout[i].connf_lock);
575 }
576 kmem_free(ipst->ips_ipcl_iptun_fanout,
577 ipst->ips_ipcl_iptun_fanout_size * sizeof (connf_t));
578 ipst->ips_ipcl_iptun_fanout = NULL;

580 for (i = 0; i < ipst->ips_ipcl_raw_fanout_size; i++) {
581 ASSERT(ipst->ips_ipcl_raw_fanout[i].connf_head == NULL);
582 mutex_destroy(&ipst->ips_ipcl_raw_fanout[i].connf_lock);
583 }
584 kmem_free(ipst->ips_ipcl_raw_fanout, ipst->ips_ipcl_raw_fanout_size *
585 sizeof (connf_t));
586 ipst->ips_ipcl_raw_fanout = NULL;

588 for (i = 0; i < CONN_G_HASH_SIZE; i++) {

new/usr/src/uts/common/inet/ip/ipclassifier.c 10

589 ASSERT(ipst->ips_ipcl_globalhash_fanout[i].connf_head == NULL);
590 mutex_destroy(&ipst->ips_ipcl_globalhash_fanout[i].connf_lock);
591 }
592 kmem_free(ipst->ips_ipcl_globalhash_fanout,
593 sizeof (connf_t) * CONN_G_HASH_SIZE);
594 ipst->ips_ipcl_globalhash_fanout = NULL;

596 for (i = 0; i < ipst->ips_ipcl_dccp_fanout_size; i++) {
597 ASSERT(ipst->ips_ipcl_dccp_fanout[i].connf_head == NULL);
598 mutex_destroy(&ipst->ips_ipcl_dccp_fanout[i].connf_lock);
599 }
600 kmem_free(ipst->ips_ipcl_dccp_fanout, ipst->ips_ipcl_dccp_fanout_size *
601 sizeof (connf_t));
602 ipst->ips_ipcl_dccp_fanout = NULL;

604 #endif /* ! codereview */
605 ASSERT(ipst->ips_rts_clients->connf_head == NULL);
606 mutex_destroy(&ipst->ips_rts_clients->connf_lock);
607 kmem_free(ipst->ips_rts_clients, sizeof (connf_t));
608 ipst->ips_rts_clients = NULL;
609 }

611 /*
612 * conn creation routine. initialize the conn, sets the reference
613 * and inserts it in the global hash table.
614 */
615 conn_t *
616 ipcl_conn_create(uint32_t type, int sleep, netstack_t *ns)
617 {
618 conn_t *connp;
619 struct kmem_cache *conn_cache;

621 switch (type) {
622 case IPCL_SCTPCONN:
623 if ((connp = kmem_cache_alloc(sctp_conn_cache, sleep)) == NULL)
624 return (NULL);
625 sctp_conn_init(connp);
626 netstack_hold(ns);
627 connp->conn_netstack = ns;
628 connp->conn_ixa->ixa_ipst = ns->netstack_ip;
629 connp->conn_ixa->ixa_conn_id = (long)connp;
630 ipcl_globalhash_insert(connp);
631 return (connp);

633 case IPCL_TCPCONN:
634 conn_cache = tcp_conn_cache;
635 break;

637 case IPCL_UDPCONN:
638 conn_cache = udp_conn_cache;
639 break;

641 case IPCL_RAWIPCONN:
642 conn_cache = rawip_conn_cache;
643 break;

645 case IPCL_RTSCONN:
646 conn_cache = rts_conn_cache;
647 break;

649 case IPCL_IPCCONN:
650 conn_cache = ip_conn_cache;
651 break;

653 case IPCL_DCCPCONN:
654 conn_cache = dccp_conn_cache;

new/usr/src/uts/common/inet/ip/ipclassifier.c 11

655 break;

657 #endif /* ! codereview */
658 default:
659 connp = NULL;
660 ASSERT(0);
661 }

663 if ((connp = kmem_cache_alloc(conn_cache, sleep)) == NULL)
664 return (NULL);

666 connp->conn_ref = 1;
667 netstack_hold(ns);
668 connp->conn_netstack = ns;
669 connp->conn_ixa->ixa_ipst = ns->netstack_ip;
670 connp->conn_ixa->ixa_conn_id = (long)connp;
671 ipcl_globalhash_insert(connp);
672 return (connp);
673 }

675 void
676 ipcl_conn_destroy(conn_t *connp)
677 {
678 mblk_t *mp;
679 netstack_t *ns = connp->conn_netstack;

681 ASSERT(!MUTEX_HELD(&connp->conn_lock));
682 ASSERT(connp->conn_ref == 0);
683 ASSERT(connp->conn_ioctlref == 0);

685 DTRACE_PROBE1(conn__destroy, conn_t *, connp);

687 if (connp->conn_cred != NULL) {
688 crfree(connp->conn_cred);
689 connp->conn_cred = NULL;
690 /* ixa_cred done in ipcl_conn_cleanup below */
691 }

693 if (connp->conn_ht_iphc != NULL) {
694 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
695 connp->conn_ht_iphc = NULL;
696 connp->conn_ht_iphc_allocated = 0;
697 connp->conn_ht_iphc_len = 0;
698 connp->conn_ht_ulp = NULL;
699 connp->conn_ht_ulp_len = 0;
700 }
701 ip_pkt_free(&connp->conn_xmit_ipp);

703 ipcl_globalhash_remove(connp);

705 if (connp->conn_latch != NULL) {
706 IPLATCH_REFRELE(connp->conn_latch);
707 connp->conn_latch = NULL;
708 }
709 if (connp->conn_latch_in_policy != NULL) {
710 IPPOL_REFRELE(connp->conn_latch_in_policy);
711 connp->conn_latch_in_policy = NULL;
712 }
713 if (connp->conn_latch_in_action != NULL) {
714 IPACT_REFRELE(connp->conn_latch_in_action);
715 connp->conn_latch_in_action = NULL;
716 }
717 if (connp->conn_policy != NULL) {
718 IPPH_REFRELE(connp->conn_policy, ns);
719 connp->conn_policy = NULL;
720 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 12

722 if (connp->conn_ipsec_opt_mp != NULL) {
723 freemsg(connp->conn_ipsec_opt_mp);
724 connp->conn_ipsec_opt_mp = NULL;
725 }

727 if (connp->conn_flags & IPCL_TCPCONN) {
728 tcp_t *tcp = connp->conn_tcp;

730 tcp_free(tcp);
731 mp = tcp->tcp_timercache;

733 tcp->tcp_tcps = NULL;

735 /*
736 * tcp_rsrv_mp can be NULL if tcp_get_conn() fails to allocate
737 * the mblk.
738 */
739 if (tcp->tcp_rsrv_mp != NULL) {
740 freeb(tcp->tcp_rsrv_mp);
741 tcp->tcp_rsrv_mp = NULL;
742 mutex_destroy(&tcp->tcp_rsrv_mp_lock);
743 }

745 ipcl_conn_cleanup(connp);
746 connp->conn_flags = IPCL_TCPCONN;
747 if (ns != NULL) {
748 ASSERT(tcp->tcp_tcps == NULL);
749 connp->conn_netstack = NULL;
750 connp->conn_ixa->ixa_ipst = NULL;
751 netstack_rele(ns);
752 }

754 bzero(tcp, sizeof (tcp_t));

756 tcp->tcp_timercache = mp;
757 tcp->tcp_connp = connp;
758 kmem_cache_free(tcp_conn_cache, connp);
759 return;
760 }

762 if (connp->conn_flags & IPCL_SCTPCONN) {
763 ASSERT(ns != NULL);
764 sctp_free(connp);
765 return;
766 }

768 if (connp->conn_flags & IPCL_DCCPCONN) {
769 dccp_t *dccp = connp->conn_dccp;

771 cmn_err(CE_NOTE, "ipclassifier: conn_flags DCCP cache_free");

773 /* XXX:DCCP */
774 /* Crash bug here: udp_conn_cache and dccp_conn_cache */
775 /*
776 ipcl_conn_cleanup(connp);
777 connp->conn_flags = IPCL_DCCPCONN;
778 bzero(dccp, sizeof (dccp_t));
779 dccp->dccp_connp = connp;
780 kmem_cache_free(dccp_conn_cache, connp);
781 return;
782 */
783 }

785 #endif /* ! codereview */
786 ipcl_conn_cleanup(connp);

new/usr/src/uts/common/inet/ip/ipclassifier.c 13

787 if (ns != NULL) {
788 connp->conn_netstack = NULL;
789 connp->conn_ixa->ixa_ipst = NULL;
790 netstack_rele(ns);
791 }

793 /* leave conn_priv aka conn_udp, conn_icmp, etc in place. */
794 if (connp->conn_flags & IPCL_UDPCONN) {
795 connp->conn_flags = IPCL_UDPCONN;
796 kmem_cache_free(udp_conn_cache, connp);
797 } else if (connp->conn_flags & IPCL_RAWIPCONN) {
798 connp->conn_flags = IPCL_RAWIPCONN;
799 connp->conn_proto = IPPROTO_ICMP;
800 connp->conn_ixa->ixa_protocol = connp->conn_proto;
801 kmem_cache_free(rawip_conn_cache, connp);
802 } else if (connp->conn_flags & IPCL_RTSCONN) {
803 connp->conn_flags = IPCL_RTSCONN;
804 kmem_cache_free(rts_conn_cache, connp);
805 } else {
806 connp->conn_flags = IPCL_IPCCONN;
807 ASSERT(connp->conn_flags & IPCL_IPCCONN);
808 ASSERT(connp->conn_priv == NULL);
809 kmem_cache_free(ip_conn_cache, connp);
810 }
811 }

813 /*
814 * Running in cluster mode - deregister listener information
815 */
816 static void
817 ipcl_conn_unlisten(conn_t *connp)
818 {
819 ASSERT((connp->conn_flags & IPCL_CL_LISTENER) != 0);
820 ASSERT(connp->conn_lport != 0);

822 if (cl_inet_unlisten != NULL) {
823 sa_family_t addr_family;
824 uint8_t *laddrp;

826 if (connp->conn_ipversion == IPV6_VERSION) {
827 addr_family = AF_INET6;
828 laddrp = (uint8_t *)&connp->conn_bound_addr_v6;
829 } else {
830 addr_family = AF_INET;
831 laddrp = (uint8_t *)&connp->conn_bound_addr_v4;
832 }
833 (*cl_inet_unlisten)(connp->conn_netstack->netstack_stackid,
834 IPPROTO_TCP, addr_family, laddrp, connp->conn_lport, NULL);
835 }
836 connp->conn_flags &= ~IPCL_CL_LISTENER;
837 }

839 /*
840 * We set the IPCL_REMOVED flag (instead of clearing the flag indicating
841 * which table the conn belonged to). So for debugging we can see which hash
842 * table this connection was in.
843 */
844 #define IPCL_HASH_REMOVE(connp) { \
845 connf_t *connfp = (connp)->conn_fanout; \
846 ASSERT(!MUTEX_HELD(&((connp)->conn_lock))); \
847 if (connfp != NULL) { \
848 mutex_enter(&connfp->connf_lock); \
849 if ((connp)->conn_next != NULL) \
850 (connp)->conn_next->conn_prev = \
851 (connp)->conn_prev; \
852 if ((connp)->conn_prev != NULL) \

new/usr/src/uts/common/inet/ip/ipclassifier.c 14

853 (connp)->conn_prev->conn_next = \
854 (connp)->conn_next; \
855 else \
856 connfp->connf_head = (connp)->conn_next; \
857 (connp)->conn_fanout = NULL; \
858 (connp)->conn_next = NULL; \
859 (connp)->conn_prev = NULL; \
860 (connp)->conn_flags |= IPCL_REMOVED; \
861 if (((connp)->conn_flags & IPCL_CL_LISTENER) != 0) \
862 ipcl_conn_unlisten((connp)); \
863 CONN_DEC_REF((connp)); \
864 mutex_exit(&connfp->connf_lock); \
865 } \
866 }

868 void
869 ipcl_hash_remove(conn_t *connp)
870 {
871 uint8_t protocol = connp->conn_proto;

873 IPCL_HASH_REMOVE(connp);
874 if (protocol == IPPROTO_RSVP)
875 ill_set_inputfn_all(connp->conn_netstack->netstack_ip);
876 }

878 /*
879 * The whole purpose of this function is allow removal of
880 * a conn_t from the connected hash for timewait reclaim.
881 * This is essentially a TW reclaim fastpath where timewait
882 * collector checks under fanout lock (so no one else can
883 * get access to the conn_t) that refcnt is 2 i.e. one for
884 * TCP and one for the classifier hash list. If ref count
885 * is indeed 2, we can just remove the conn under lock and
886 * avoid cleaning up the conn under squeue. This gives us
887 * improved performance.
888 */
889 void
890 ipcl_hash_remove_locked(conn_t *connp, connf_t *connfp)
891 {
892 ASSERT(MUTEX_HELD(&connfp->connf_lock));
893 ASSERT(MUTEX_HELD(&connp->conn_lock));
894 ASSERT((connp->conn_flags & IPCL_CL_LISTENER) == 0);

896 if ((connp)->conn_next != NULL) {
897 (connp)->conn_next->conn_prev = (connp)->conn_prev;
898 }
899 if ((connp)->conn_prev != NULL) {
900 (connp)->conn_prev->conn_next = (connp)->conn_next;
901 } else {
902 connfp->connf_head = (connp)->conn_next;
903 }
904 (connp)->conn_fanout = NULL;
905 (connp)->conn_next = NULL;
906 (connp)->conn_prev = NULL;
907 (connp)->conn_flags |= IPCL_REMOVED;
908 ASSERT((connp)->conn_ref == 2);
909 (connp)->conn_ref--;
910 }

912 #define IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp) { \
913 ASSERT((connp)->conn_fanout == NULL); \
914 ASSERT((connp)->conn_next == NULL); \
915 ASSERT((connp)->conn_prev == NULL); \
916 if ((connfp)->connf_head != NULL) { \
917 (connfp)->connf_head->conn_prev = (connp); \
918 (connp)->conn_next = (connfp)->connf_head; \

new/usr/src/uts/common/inet/ip/ipclassifier.c 15

919 } \
920 (connp)->conn_fanout = (connfp); \
921 (connfp)->connf_head = (connp); \
922 (connp)->conn_flags = ((connp)->conn_flags & ~IPCL_REMOVED) | \
923 IPCL_CONNECTED; \
924 CONN_INC_REF(connp); \
925 }

927 #define IPCL_HASH_INSERT_CONNECTED(connfp, connp) { \
928 IPCL_HASH_REMOVE((connp)); \
929 mutex_enter(&(connfp)->connf_lock); \
930 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp); \
931 mutex_exit(&(connfp)->connf_lock); \
932 }

934 #define IPCL_HASH_INSERT_BOUND(connfp, connp) { \
935 conn_t *pconnp = NULL, *nconnp; \
936 IPCL_HASH_REMOVE((connp)); \
937 mutex_enter(&(connfp)->connf_lock); \
938 nconnp = (connfp)->connf_head; \
939 while (nconnp != NULL && \
940 !_IPCL_V4_MATCH_ANY(nconnp->conn_laddr_v6)) { \
941 pconnp = nconnp; \
942 nconnp = nconnp->conn_next; \
943 } \
944 if (pconnp != NULL) { \
945 pconnp->conn_next = (connp); \
946 (connp)->conn_prev = pconnp; \
947 } else { \
948 (connfp)->connf_head = (connp); \
949 } \
950 if (nconnp != NULL) { \
951 (connp)->conn_next = nconnp; \
952 nconnp->conn_prev = (connp); \
953 } \
954 (connp)->conn_fanout = (connfp); \
955 (connp)->conn_flags = ((connp)->conn_flags & ~IPCL_REMOVED) | \
956 IPCL_BOUND; \
957 CONN_INC_REF(connp); \
958 mutex_exit(&(connfp)->connf_lock); \
959 }

961 #define IPCL_HASH_INSERT_WILDCARD(connfp, connp) { \
962 conn_t **list, *prev, *next; \
963 boolean_t isv4mapped = \
964 IN6_IS_ADDR_V4MAPPED(&(connp)->conn_laddr_v6); \
965 IPCL_HASH_REMOVE((connp)); \
966 mutex_enter(&(connfp)->connf_lock); \
967 list = &(connfp)->connf_head; \
968 prev = NULL; \
969 while ((next = *list) != NULL) { \
970 if (isv4mapped && \
971 IN6_IS_ADDR_UNSPECIFIED(&next->conn_laddr_v6) && \
972 connp->conn_zoneid == next->conn_zoneid) { \
973 (connp)->conn_next = next; \
974 if (prev != NULL) \
975 prev = next->conn_prev; \
976 next->conn_prev = (connp); \
977 break; \
978 } \
979 list = &next->conn_next; \
980 prev = next; \
981 } \
982 (connp)->conn_prev = prev; \
983 *list = (connp); \
984 (connp)->conn_fanout = (connfp); \

new/usr/src/uts/common/inet/ip/ipclassifier.c 16

985 (connp)->conn_flags = ((connp)->conn_flags & ~IPCL_REMOVED) | \
986 IPCL_BOUND; \
987 CONN_INC_REF((connp)); \
988 mutex_exit(&(connfp)->connf_lock); \
989 }

991 void
992 ipcl_hash_insert_wildcard(connf_t *connfp, conn_t *connp)
993 {
994 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
995 }

997 /*
998 * Because the classifier is used to classify inbound packets, the destination
999 * address is meant to be our local tunnel address (tunnel source), and the

1000 * source the remote tunnel address (tunnel destination).
1001 *
1002 * Note that conn_proto can’t be used for fanout since the upper protocol
1003 * can be both 41 and 4 when IPv6 and IPv4 are over the same tunnel.
1004 */
1005 conn_t *
1006 ipcl_iptun_classify_v4(ipaddr_t *src, ipaddr_t *dst, ip_stack_t *ipst)
1007 {
1008 connf_t *connfp;
1009 conn_t *connp;

1011 /* first look for IPv4 tunnel links */
1012 connfp = &ipst->ips_ipcl_iptun_fanout[IPCL_IPTUN_HASH(*dst, *src)];
1013 mutex_enter(&connfp->connf_lock);
1014 for (connp = connfp->connf_head; connp != NULL;
1015 connp = connp->conn_next) {
1016 if (IPCL_IPTUN_MATCH(connp, *dst, *src))
1017 break;
1018 }
1019 if (connp != NULL)
1020 goto done;

1022 mutex_exit(&connfp->connf_lock);

1024 /* We didn’t find an IPv4 tunnel, try a 6to4 tunnel */
1025 connfp = &ipst->ips_ipcl_iptun_fanout[IPCL_IPTUN_HASH(*dst,
1026 INADDR_ANY)];
1027 mutex_enter(&connfp->connf_lock);
1028 for (connp = connfp->connf_head; connp != NULL;
1029 connp = connp->conn_next) {
1030 if (IPCL_IPTUN_MATCH(connp, *dst, INADDR_ANY))
1031 break;
1032 }
1033 done:
1034 if (connp != NULL)
1035 CONN_INC_REF(connp);
1036 mutex_exit(&connfp->connf_lock);
1037 return (connp);
1038 }

1040 conn_t *
1041 ipcl_iptun_classify_v6(in6_addr_t *src, in6_addr_t *dst, ip_stack_t *ipst)
1042 {
1043 connf_t *connfp;
1044 conn_t *connp;

1046 /* Look for an IPv6 tunnel link */
1047 connfp = &ipst->ips_ipcl_iptun_fanout[IPCL_IPTUN_HASH_V6(dst, src)];
1048 mutex_enter(&connfp->connf_lock);
1049 for (connp = connfp->connf_head; connp != NULL;
1050 connp = connp->conn_next) {

new/usr/src/uts/common/inet/ip/ipclassifier.c 17

1051 if (IPCL_IPTUN_MATCH_V6(connp, dst, src)) {
1052 CONN_INC_REF(connp);
1053 break;
1054 }
1055 }
1056 mutex_exit(&connfp->connf_lock);
1057 return (connp);
1058 }

1060 /*
1061 * This function is used only for inserting SCTP raw socket now.
1062 * This may change later.
1063 *
1064 * Note that only one raw socket can be bound to a port. The param
1065 * lport is in network byte order.
1066 */
1067 static int
1068 ipcl_sctp_hash_insert(conn_t *connp, in_port_t lport)
1069 {
1070 connf_t *connfp;
1071 conn_t *oconnp;
1072 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;

1074 connfp = &ipst->ips_ipcl_raw_fanout[IPCL_RAW_HASH(ntohs(lport), ipst)];

1076 /* Check for existing raw socket already bound to the port. */
1077 mutex_enter(&connfp->connf_lock);
1078 for (oconnp = connfp->connf_head; oconnp != NULL;
1079 oconnp = oconnp->conn_next) {
1080 if (oconnp->conn_lport == lport &&
1081 oconnp->conn_zoneid == connp->conn_zoneid &&
1082 oconnp->conn_family == connp->conn_family &&
1083 ((IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6) ||
1084 IN6_IS_ADDR_UNSPECIFIED(&oconnp->conn_laddr_v6) ||
1085 IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_laddr_v6) ||
1086 IN6_IS_ADDR_V4MAPPED_ANY(&oconnp->conn_laddr_v6)) ||
1087 IN6_ARE_ADDR_EQUAL(&oconnp->conn_laddr_v6,
1088 &connp->conn_laddr_v6))) {
1089 break;
1090 }
1091 }
1092 mutex_exit(&connfp->connf_lock);
1093 if (oconnp != NULL)
1094 return (EADDRNOTAVAIL);

1096 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) ||
1097 IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
1098 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6) ||
1099 IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_laddr_v6)) {
1100 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1101 } else {
1102 IPCL_HASH_INSERT_BOUND(connfp, connp);
1103 }
1104 } else {
1105 IPCL_HASH_INSERT_CONNECTED(connfp, connp);
1106 }
1107 return (0);
1108 }

1110 static int
1111 ipcl_iptun_hash_insert(conn_t *connp, ip_stack_t *ipst)
1112 {
1113 connf_t *connfp;
1114 conn_t *tconnp;
1115 ipaddr_t laddr = connp->conn_laddr_v4;
1116 ipaddr_t faddr = connp->conn_faddr_v4;

new/usr/src/uts/common/inet/ip/ipclassifier.c 18

1118 connfp = &ipst->ips_ipcl_iptun_fanout[IPCL_IPTUN_HASH(laddr, faddr)];
1119 mutex_enter(&connfp->connf_lock);
1120 for (tconnp = connfp->connf_head; tconnp != NULL;
1121 tconnp = tconnp->conn_next) {
1122 if (IPCL_IPTUN_MATCH(tconnp, laddr, faddr)) {
1123 /* A tunnel is already bound to these addresses. */
1124 mutex_exit(&connfp->connf_lock);
1125 return (EADDRINUSE);
1126 }
1127 }
1128 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);
1129 mutex_exit(&connfp->connf_lock);
1130 return (0);
1131 }

1133 static int
1134 ipcl_iptun_hash_insert_v6(conn_t *connp, ip_stack_t *ipst)
1135 {
1136 connf_t *connfp;
1137 conn_t *tconnp;
1138 in6_addr_t *laddr = &connp->conn_laddr_v6;
1139 in6_addr_t *faddr = &connp->conn_faddr_v6;

1141 connfp = &ipst->ips_ipcl_iptun_fanout[IPCL_IPTUN_HASH_V6(laddr, faddr)];
1142 mutex_enter(&connfp->connf_lock);
1143 for (tconnp = connfp->connf_head; tconnp != NULL;
1144 tconnp = tconnp->conn_next) {
1145 if (IPCL_IPTUN_MATCH_V6(tconnp, laddr, faddr)) {
1146 /* A tunnel is already bound to these addresses. */
1147 mutex_exit(&connfp->connf_lock);
1148 return (EADDRINUSE);
1149 }
1150 }
1151 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);
1152 mutex_exit(&connfp->connf_lock);
1153 return (0);
1154 }

1156 /*
1157 * Check for a MAC exemption conflict on a labeled system. Note that for
1158 * protocols that use port numbers (UDP, TCP, SCTP), we do this check up in the
1159 * transport layer. This check is for binding all other protocols.
1160 *
1161 * Returns true if there’s a conflict.
1162 */
1163 static boolean_t
1164 check_exempt_conflict_v4(conn_t *connp, ip_stack_t *ipst)
1165 {
1166 connf_t *connfp;
1167 conn_t *tconn;

1169 connfp = &ipst->ips_ipcl_proto_fanout_v4[connp->conn_proto];
1170 mutex_enter(&connfp->connf_lock);
1171 for (tconn = connfp->connf_head; tconn != NULL;
1172 tconn = tconn->conn_next) {
1173 /* We don’t allow v4 fallback for v6 raw socket */
1174 if (connp->conn_family != tconn->conn_family)
1175 continue;
1176 /* If neither is exempt, then there’s no conflict */
1177 if ((connp->conn_mac_mode == CONN_MAC_DEFAULT) &&
1178 (tconn->conn_mac_mode == CONN_MAC_DEFAULT))
1179 continue;
1180 /* We are only concerned about sockets for a different zone */
1181 if (connp->conn_zoneid == tconn->conn_zoneid)
1182 continue;

new/usr/src/uts/common/inet/ip/ipclassifier.c 19

1183 /* If both are bound to different specific addrs, ok */
1184 if (connp->conn_laddr_v4 != INADDR_ANY &&
1185 tconn->conn_laddr_v4 != INADDR_ANY &&
1186 connp->conn_laddr_v4 != tconn->conn_laddr_v4)
1187 continue;
1188 /* These two conflict; fail */
1189 break;
1190 }
1191 mutex_exit(&connfp->connf_lock);
1192 return (tconn != NULL);
1193 }

1195 static boolean_t
1196 check_exempt_conflict_v6(conn_t *connp, ip_stack_t *ipst)
1197 {
1198 connf_t *connfp;
1199 conn_t *tconn;

1201 connfp = &ipst->ips_ipcl_proto_fanout_v6[connp->conn_proto];
1202 mutex_enter(&connfp->connf_lock);
1203 for (tconn = connfp->connf_head; tconn != NULL;
1204 tconn = tconn->conn_next) {
1205 /* We don’t allow v4 fallback for v6 raw socket */
1206 if (connp->conn_family != tconn->conn_family)
1207 continue;
1208 /* If neither is exempt, then there’s no conflict */
1209 if ((connp->conn_mac_mode == CONN_MAC_DEFAULT) &&
1210 (tconn->conn_mac_mode == CONN_MAC_DEFAULT))
1211 continue;
1212 /* We are only concerned about sockets for a different zone */
1213 if (connp->conn_zoneid == tconn->conn_zoneid)
1214 continue;
1215 /* If both are bound to different addrs, ok */
1216 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6) &&
1217 !IN6_IS_ADDR_UNSPECIFIED(&tconn->conn_laddr_v6) &&
1218 !IN6_ARE_ADDR_EQUAL(&connp->conn_laddr_v6,
1219 &tconn->conn_laddr_v6))
1220 continue;
1221 /* These two conflict; fail */
1222 break;
1223 }
1224 mutex_exit(&connfp->connf_lock);
1225 return (tconn != NULL);
1226 }

1228 /*
1229 * (v4, v6) bind hash insertion routines
1230 * The caller has already setup the conn (conn_proto, conn_laddr_v6, conn_lport)
1231 */

1233 int
1234 ipcl_bind_insert(conn_t *connp)
1235 {
1236 if (connp->conn_ipversion == IPV6_VERSION)
1237 return (ipcl_bind_insert_v6(connp));
1238 else
1239 return (ipcl_bind_insert_v4(connp));
1240 }

1242 int
1243 ipcl_bind_insert_v4(conn_t *connp)
1244 {
1245 connf_t *connfp;
1246 int ret = 0;
1247 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
1248 uint16_t lport = connp->conn_lport;

new/usr/src/uts/common/inet/ip/ipclassifier.c 20

1249 uint8_t protocol = connp->conn_proto;

1251 if (IPCL_IS_IPTUN(connp))
1252 return (ipcl_iptun_hash_insert(connp, ipst));

1254 switch (protocol) {
1255 default:
1256 if (is_system_labeled() &&
1257 check_exempt_conflict_v4(connp, ipst))
1258 return (EADDRINUSE);
1259 /* FALLTHROUGH */
1260 case IPPROTO_UDP:
1261 if (protocol == IPPROTO_UDP) {
1262 connfp = &ipst->ips_ipcl_udp_fanout[
1263 IPCL_UDP_HASH(lport, ipst)];
1264 } else {
1265 connfp = &ipst->ips_ipcl_proto_fanout_v4[protocol];
1266 }

1268 if (connp->conn_faddr_v4 != INADDR_ANY) {
1269 IPCL_HASH_INSERT_CONNECTED(connfp, connp);
1270 } else if (connp->conn_laddr_v4 != INADDR_ANY) {
1271 IPCL_HASH_INSERT_BOUND(connfp, connp);
1272 } else {
1273 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1274 }
1275 if (protocol == IPPROTO_RSVP)
1276 ill_set_inputfn_all(ipst);
1277 break;

1279 case IPPROTO_TCP:
1280 /* Insert it in the Bind Hash */
1281 ASSERT(connp->conn_zoneid != ALL_ZONES);
1282 connfp = &ipst->ips_ipcl_bind_fanout[
1283 IPCL_BIND_HASH(lport, ipst)];
1284 if (connp->conn_laddr_v4 != INADDR_ANY) {
1285 IPCL_HASH_INSERT_BOUND(connfp, connp);
1286 } else {
1287 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1288 }
1289 if (cl_inet_listen != NULL) {
1290 ASSERT(connp->conn_ipversion == IPV4_VERSION);
1291 connp->conn_flags |= IPCL_CL_LISTENER;
1292 (*cl_inet_listen)(
1293 connp->conn_netstack->netstack_stackid,
1294 IPPROTO_TCP, AF_INET,
1295 (uint8_t *)&connp->conn_bound_addr_v4, lport, NULL);
1296 }
1297 break;

1299 case IPPROTO_SCTP:
1300 ret = ipcl_sctp_hash_insert(connp, lport);
1301 break;

1303 case IPPROTO_DCCP:
1304 cmn_err(CE_NOTE, "ipcl_bind_insert_v4");
1305 ASSERT(connp->conn_zoneid != ALL_ZONES);
1306 connfp = &ipst->ips_ipcl_dccp_fanout[
1307 IPCL_DCCP_HASH(lport, ipst)];
1308 if (connp->conn_laddr_v4 != INADDR_ANY) {
1309 IPCL_HASH_INSERT_BOUND(connfp, connp);
1310 } else {
1311 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1312 }
1313 /* XXX:DCCP */
1314 break;

new/usr/src/uts/common/inet/ip/ipclassifier.c 21

1315 #endif /* ! codereview */
1316 }

1319 #endif /* ! codereview */
1320 return (ret);
1321 }

1323 int
1324 ipcl_bind_insert_v6(conn_t *connp)
1325 {
1326 connf_t *connfp;
1327 int ret = 0;
1328 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
1329 uint16_t lport = connp->conn_lport;
1330 uint8_t protocol = connp->conn_proto;

1332 if (IPCL_IS_IPTUN(connp)) {
1333 return (ipcl_iptun_hash_insert_v6(connp, ipst));
1334 }

1336 switch (protocol) {
1337 default:
1338 if (is_system_labeled() &&
1339 check_exempt_conflict_v6(connp, ipst))
1340 return (EADDRINUSE);
1341 /* FALLTHROUGH */
1342 case IPPROTO_UDP:
1343 if (protocol == IPPROTO_UDP) {
1344 connfp = &ipst->ips_ipcl_udp_fanout[
1345 IPCL_UDP_HASH(lport, ipst)];
1346 } else {
1347 connfp = &ipst->ips_ipcl_proto_fanout_v6[protocol];
1348 }

1350 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) {
1351 IPCL_HASH_INSERT_CONNECTED(connfp, connp);
1352 } else if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1353 IPCL_HASH_INSERT_BOUND(connfp, connp);
1354 } else {
1355 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1356 }
1357 break;

1359 case IPPROTO_TCP:
1360 /* Insert it in the Bind Hash */
1361 ASSERT(connp->conn_zoneid != ALL_ZONES);
1362 connfp = &ipst->ips_ipcl_bind_fanout[
1363 IPCL_BIND_HASH(lport, ipst)];
1364 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1365 IPCL_HASH_INSERT_BOUND(connfp, connp);
1366 } else {
1367 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1368 }
1369 if (cl_inet_listen != NULL) {
1370 sa_family_t addr_family;
1371 uint8_t *laddrp;

1373 if (connp->conn_ipversion == IPV6_VERSION) {
1374 addr_family = AF_INET6;
1375 laddrp =
1376 (uint8_t *)&connp->conn_bound_addr_v6;
1377 } else {
1378 addr_family = AF_INET;
1379 laddrp = (uint8_t *)&connp->conn_bound_addr_v4;
1380 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 22

1381 connp->conn_flags |= IPCL_CL_LISTENER;
1382 (*cl_inet_listen)(
1383 connp->conn_netstack->netstack_stackid,
1384 IPPROTO_TCP, addr_family, laddrp, lport, NULL);
1385 }
1386 break;

1388 case IPPROTO_SCTP:
1389 ret = ipcl_sctp_hash_insert(connp, lport);
1390 break;

1392 case IPPROTO_DCCP:
1393 /* XXX:DCCP */
1394 break;
1395 #endif /* ! codereview */
1396 }

1398 return (ret);
1399 }

1401 /*
1402 * ipcl_conn_hash insertion routines.
1403 * The caller has already set conn_proto and the addresses/ports in the conn_t.
1404 */

1406 int
1407 ipcl_conn_insert(conn_t *connp)
1408 {
1409 if (connp->conn_ipversion == IPV6_VERSION)
1410 return (ipcl_conn_insert_v6(connp));
1411 else
1412 return (ipcl_conn_insert_v4(connp));
1413 }

1415 int
1416 ipcl_conn_insert_v4(conn_t *connp)
1417 {
1418 connf_t *connfp;
1419 conn_t *tconnp;
1420 int ret = 0;
1421 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
1422 uint16_t lport = connp->conn_lport;
1423 uint8_t protocol = connp->conn_proto;

1425 if (IPCL_IS_IPTUN(connp))
1426 return (ipcl_iptun_hash_insert(connp, ipst));

1428 switch (protocol) {
1429 case IPPROTO_TCP:
1430 /*
1431 * For TCP, we check whether the connection tuple already
1432 * exists before allowing the connection to proceed. We
1433 * also allow indexing on the zoneid. This is to allow
1434 * multiple shared stack zones to have the same tcp
1435 * connection tuple. In practice this only happens for
1436 * INADDR_LOOPBACK as it’s the only local address which
1437 * doesn’t have to be unique.
1438 */
1439 connfp = &ipst->ips_ipcl_conn_fanout[
1440 IPCL_CONN_HASH(connp->conn_faddr_v4,
1441 connp->conn_ports, ipst)];
1442 mutex_enter(&connfp->connf_lock);
1443 for (tconnp = connfp->connf_head; tconnp != NULL;
1444 tconnp = tconnp->conn_next) {
1445 if (IPCL_CONN_MATCH(tconnp, connp->conn_proto,
1446 connp->conn_faddr_v4, connp->conn_laddr_v4,

new/usr/src/uts/common/inet/ip/ipclassifier.c 23

1447 connp->conn_ports) &&
1448 IPCL_ZONE_MATCH(tconnp, connp->conn_zoneid)) {
1449 /* Already have a conn. bail out */
1450 mutex_exit(&connfp->connf_lock);
1451 return (EADDRINUSE);
1452 }
1453 }
1454 if (connp->conn_fanout != NULL) {
1455 /*
1456 * Probably a XTI/TLI application trying to do a
1457 * rebind. Let it happen.
1458 */
1459 mutex_exit(&connfp->connf_lock);
1460 IPCL_HASH_REMOVE(connp);
1461 mutex_enter(&connfp->connf_lock);
1462 }

1464 ASSERT(connp->conn_recv != NULL);
1465 ASSERT(connp->conn_recvicmp != NULL);

1467 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);
1468 mutex_exit(&connfp->connf_lock);
1469 break;

1471 case IPPROTO_SCTP:
1472 /*
1473 * The raw socket may have already been bound, remove it
1474 * from the hash first.
1475 */
1476 IPCL_HASH_REMOVE(connp);
1477 ret = ipcl_sctp_hash_insert(connp, lport);
1478 break;

1480 case IPPROTO_DCCP:
1481 cmn_err(CE_NOTE, "insert v4");

1483 connfp = &ipst->ips_ipcl_conn_fanout[
1484 IPCL_CONN_HASH(connp->conn_faddr_v4,
1485 connp->conn_ports, ipst)];
1486 mutex_enter(&connfp->connf_lock);
1487 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);
1488 mutex_exit(&connfp->connf_lock);
1489 /* XXX:DCCP */
1490 break;

1492 #endif /* ! codereview */
1493 default:
1494 /*
1495 * Check for conflicts among MAC exempt bindings. For
1496 * transports with port numbers, this is done by the upper
1497 * level per-transport binding logic. For all others, it’s
1498 * done here.
1499 */
1500 if (is_system_labeled() &&
1501 check_exempt_conflict_v4(connp, ipst))
1502 return (EADDRINUSE);
1503 /* FALLTHROUGH */

1505 case IPPROTO_UDP:
1506 if (protocol == IPPROTO_UDP) {
1507 connfp = &ipst->ips_ipcl_udp_fanout[
1508 IPCL_UDP_HASH(lport, ipst)];
1509 } else {
1510 connfp = &ipst->ips_ipcl_proto_fanout_v4[protocol];
1511 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 24

1513 if (connp->conn_faddr_v4 != INADDR_ANY) {
1514 IPCL_HASH_INSERT_CONNECTED(connfp, connp);
1515 } else if (connp->conn_laddr_v4 != INADDR_ANY) {
1516 IPCL_HASH_INSERT_BOUND(connfp, connp);
1517 } else {
1518 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1519 }
1520 break;
1521 }

1523 return (ret);
1524 }

1526 int
1527 ipcl_conn_insert_v6(conn_t *connp)
1528 {
1529 connf_t *connfp;
1530 conn_t *tconnp;
1531 int ret = 0;
1532 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
1533 uint16_t lport = connp->conn_lport;
1534 uint8_t protocol = connp->conn_proto;
1535 uint_t ifindex = connp->conn_bound_if;

1537 if (IPCL_IS_IPTUN(connp))
1538 return (ipcl_iptun_hash_insert_v6(connp, ipst));

1540 switch (protocol) {
1541 case IPPROTO_TCP:

1543 /*
1544 * For tcp, we check whether the connection tuple already
1545 * exists before allowing the connection to proceed. We
1546 * also allow indexing on the zoneid. This is to allow
1547 * multiple shared stack zones to have the same tcp
1548 * connection tuple. In practice this only happens for
1549 * ipv6_loopback as it’s the only local address which
1550 * doesn’t have to be unique.
1551 */
1552 connfp = &ipst->ips_ipcl_conn_fanout[
1553 IPCL_CONN_HASH_V6(connp->conn_faddr_v6, connp->conn_ports,
1554 ipst)];
1555 mutex_enter(&connfp->connf_lock);
1556 for (tconnp = connfp->connf_head; tconnp != NULL;
1557 tconnp = tconnp->conn_next) {
1558 /* NOTE: need to match zoneid. Bug in onnv-gate */
1559 if (IPCL_CONN_MATCH_V6(tconnp, connp->conn_proto,
1560 connp->conn_faddr_v6, connp->conn_laddr_v6,
1561 connp->conn_ports) &&
1562 (tconnp->conn_bound_if == 0 ||
1563 tconnp->conn_bound_if == ifindex) &&
1564 IPCL_ZONE_MATCH(tconnp, connp->conn_zoneid)) {
1565 /* Already have a conn. bail out */
1566 mutex_exit(&connfp->connf_lock);
1567 return (EADDRINUSE);
1568 }
1569 }
1570 if (connp->conn_fanout != NULL) {
1571 /*
1572 * Probably a XTI/TLI application trying to do a
1573 * rebind. Let it happen.
1574 */
1575 mutex_exit(&connfp->connf_lock);
1576 IPCL_HASH_REMOVE(connp);
1577 mutex_enter(&connfp->connf_lock);
1578 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 25

1579 IPCL_HASH_INSERT_CONNECTED_LOCKED(connfp, connp);
1580 mutex_exit(&connfp->connf_lock);
1581 break;

1583 case IPPROTO_SCTP:
1584 IPCL_HASH_REMOVE(connp);
1585 ret = ipcl_sctp_hash_insert(connp, lport);
1586 break;

1588 case IPPROTO_DCCP:
1589 /* XXX:DCCP */
1590 break;

1592 #endif /* ! codereview */
1593 default:
1594 if (is_system_labeled() &&
1595 check_exempt_conflict_v6(connp, ipst))
1596 return (EADDRINUSE);
1597 /* FALLTHROUGH */
1598 case IPPROTO_UDP:
1599 if (protocol == IPPROTO_UDP) {
1600 connfp = &ipst->ips_ipcl_udp_fanout[
1601 IPCL_UDP_HASH(lport, ipst)];
1602 } else {
1603 connfp = &ipst->ips_ipcl_proto_fanout_v6[protocol];
1604 }

1606 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) {
1607 IPCL_HASH_INSERT_CONNECTED(connfp, connp);
1608 } else if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1609 IPCL_HASH_INSERT_BOUND(connfp, connp);
1610 } else {
1611 IPCL_HASH_INSERT_WILDCARD(connfp, connp);
1612 }
1613 break;
1614 }

1616 return (ret);
1617 }

1619 /*
1620 * v4 packet classifying function. looks up the fanout table to
1621 * find the conn, the packet belongs to. returns the conn with
1622 * the reference held, null otherwise.
1623 *
1624 * If zoneid is ALL_ZONES, then the search rules described in the "Connection
1625 * Lookup" comment block are applied. Labels are also checked as described
1626 * above. If the packet is from the inside (looped back), and is from the same
1627 * zone, then label checks are omitted.
1628 */
1629 conn_t *
1630 ipcl_classify_v4(mblk_t *mp, uint8_t protocol, uint_t hdr_len,
1631 ip_recv_attr_t *ira, ip_stack_t *ipst)
1632 {
1633 ipha_t *ipha;
1634 connf_t *connfp, *bind_connfp;
1635 uint16_t lport;
1636 uint16_t fport;
1637 uint32_t ports;
1638 conn_t *connp;
1639 uint16_t *up;
1640 zoneid_t zoneid = ira->ira_zoneid;

1642 ipha = (ipha_t *)mp->b_rptr;
1643 up = (uint16_t *)((uchar_t *)ipha + hdr_len + TCP_PORTS_OFFSET);

new/usr/src/uts/common/inet/ip/ipclassifier.c 26

1645 switch (protocol) {
1646 case IPPROTO_TCP:
1647 ports = *(uint32_t *)up;
1648 connfp =
1649 &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH(ipha->ipha_src,
1650 ports, ipst)];
1651 mutex_enter(&connfp->connf_lock);
1652 for (connp = connfp->connf_head; connp != NULL;
1653 connp = connp->conn_next) {
1654 if (IPCL_CONN_MATCH(connp, protocol,
1655 ipha->ipha_src, ipha->ipha_dst, ports) &&
1656 (connp->conn_zoneid == zoneid ||
1657 connp->conn_allzones ||
1658 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1659 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
1660 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
1661 break;
1662 }

1664 if (connp != NULL) {
1665 /*
1666 * We have a fully-bound TCP connection.
1667 *
1668 * For labeled systems, there’s no need to check the
1669 * label here. It’s known to be good as we checked
1670 * before allowing the connection to become bound.
1671 */
1672 CONN_INC_REF(connp);
1673 mutex_exit(&connfp->connf_lock);
1674 return (connp);
1675 }

1677 mutex_exit(&connfp->connf_lock);
1678 lport = up[1];
1679 bind_connfp =
1680 &ipst->ips_ipcl_bind_fanout[IPCL_BIND_HASH(lport, ipst)];
1681 mutex_enter(&bind_connfp->connf_lock);
1682 for (connp = bind_connfp->connf_head; connp != NULL;
1683 connp = connp->conn_next) {
1684 if (IPCL_BIND_MATCH(connp, protocol, ipha->ipha_dst,
1685 lport) &&
1686 (connp->conn_zoneid == zoneid ||
1687 connp->conn_allzones ||
1688 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1689 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
1690 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
1691 break;
1692 }

1694 /*
1695 * If the matching connection is SLP on a private address, then
1696 * the label on the packet must match the local zone’s label.
1697 * Otherwise, it must be in the label range defined by tnrh.
1698 * This is ensured by tsol_receive_local.
1699 *
1700 * Note that we don’t check tsol_receive_local for
1701 * the connected case.
1702 */
1703 if (connp != NULL && (ira->ira_flags & IRAF_SYSTEM_LABELED) &&
1704 !tsol_receive_local(mp, &ipha->ipha_dst, IPV4_VERSION,
1705 ira, connp)) {
1706 DTRACE_PROBE3(tx__ip__log__info__classify__tcp,
1707 char *, "connp(1) could not receive mp(2)",
1708 conn_t *, connp, mblk_t *, mp);
1709 connp = NULL;
1710 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 27

1712 if (connp != NULL) {
1713 /* Have a listener at least */
1714 CONN_INC_REF(connp);
1715 mutex_exit(&bind_connfp->connf_lock);
1716 return (connp);
1717 }

1719 mutex_exit(&bind_connfp->connf_lock);
1720 break;

1722 case IPPROTO_UDP:
1723 lport = up[1];
1724 fport = up[0];
1725 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
1726 mutex_enter(&connfp->connf_lock);
1727 for (connp = connfp->connf_head; connp != NULL;
1728 connp = connp->conn_next) {
1729 if (IPCL_UDP_MATCH(connp, lport, ipha->ipha_dst,
1730 fport, ipha->ipha_src) &&
1731 (connp->conn_zoneid == zoneid ||
1732 connp->conn_allzones ||
1733 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1734 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE))))
1735 break;
1736 }

1738 if (connp != NULL && (ira->ira_flags & IRAF_SYSTEM_LABELED) &&
1739 !tsol_receive_local(mp, &ipha->ipha_dst, IPV4_VERSION,
1740 ira, connp)) {
1741 DTRACE_PROBE3(tx__ip__log__info__classify__udp,
1742 char *, "connp(1) could not receive mp(2)",
1743 conn_t *, connp, mblk_t *, mp);
1744 connp = NULL;
1745 }

1747 if (connp != NULL) {
1748 CONN_INC_REF(connp);
1749 mutex_exit(&connfp->connf_lock);
1750 return (connp);
1751 }

1753 /*
1754 * We shouldn’t come here for multicast/broadcast packets
1755 */
1756 mutex_exit(&connfp->connf_lock);

1758 break;

1760 case IPPROTO_DCCP:
1761 fport = up[0];
1762 lport = up[1];
1763 connfp = &ipst->ips_ipcl_dccp_fanout[IPCL_DCCP_HASH(
1764 lport, ipst)];
1765 mutex_enter(&connfp->connf_lock);
1766 for (connp = connfp->connf_head; connp != NULL;
1767 connp = connp->conn_next) {
1768 cmn_err(CE_NOTE, "connfp found");
1769 /* XXX:DCCP */
1770 if (IPCL_UDP_MATCH(connp, lport, ipha->ipha_dst,
1771 fport, ipha->ipha_src)) {
1772 break;
1773 }
1774 }

1776 if (connp != NULL) {

new/usr/src/uts/common/inet/ip/ipclassifier.c 28

1777 CONN_INC_REF(connp);
1778 mutex_exit(&connfp->connf_lock);
1779 return (connp);
1780 }

1782 mutex_exit(&connfp->connf_lock);
1783 break;

1785 #endif /* ! codereview */
1786 case IPPROTO_ENCAP:
1787 case IPPROTO_IPV6:
1788 return (ipcl_iptun_classify_v4(&ipha->ipha_src,
1789 &ipha->ipha_dst, ipst));
1790 }

1792 return (NULL);
1793 }

1795 conn_t *
1796 ipcl_classify_v6(mblk_t *mp, uint8_t protocol, uint_t hdr_len,
1797 ip_recv_attr_t *ira, ip_stack_t *ipst)
1798 {
1799 ip6_t *ip6h;
1800 connf_t *connfp, *bind_connfp;
1801 uint16_t lport;
1802 uint16_t fport;
1803 tcpha_t *tcpha;
1804 uint32_t ports;
1805 conn_t *connp;
1806 uint16_t *up;
1807 zoneid_t zoneid = ira->ira_zoneid;

1809 ip6h = (ip6_t *)mp->b_rptr;

1811 switch (protocol) {
1812 case IPPROTO_TCP:
1813 tcpha = (tcpha_t *)&mp->b_rptr[hdr_len];
1814 up = &tcpha->tha_lport;
1815 ports = *(uint32_t *)up;

1817 connfp =
1818 &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH_V6(ip6h->ip6_src,
1819 ports, ipst)];
1820 mutex_enter(&connfp->connf_lock);
1821 for (connp = connfp->connf_head; connp != NULL;
1822 connp = connp->conn_next) {
1823 if (IPCL_CONN_MATCH_V6(connp, protocol,
1824 ip6h->ip6_src, ip6h->ip6_dst, ports) &&
1825 (connp->conn_zoneid == zoneid ||
1826 connp->conn_allzones ||
1827 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1828 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
1829 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
1830 break;
1831 }

1833 if (connp != NULL) {
1834 /*
1835 * We have a fully-bound TCP connection.
1836 *
1837 * For labeled systems, there’s no need to check the
1838 * label here. It’s known to be good as we checked
1839 * before allowing the connection to become bound.
1840 */
1841 CONN_INC_REF(connp);
1842 mutex_exit(&connfp->connf_lock);

new/usr/src/uts/common/inet/ip/ipclassifier.c 29

1843 return (connp);
1844 }

1846 mutex_exit(&connfp->connf_lock);

1848 lport = up[1];
1849 bind_connfp =
1850 &ipst->ips_ipcl_bind_fanout[IPCL_BIND_HASH(lport, ipst)];
1851 mutex_enter(&bind_connfp->connf_lock);
1852 for (connp = bind_connfp->connf_head; connp != NULL;
1853 connp = connp->conn_next) {
1854 if (IPCL_BIND_MATCH_V6(connp, protocol,
1855 ip6h->ip6_dst, lport) &&
1856 (connp->conn_zoneid == zoneid ||
1857 connp->conn_allzones ||
1858 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1859 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
1860 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
1861 break;
1862 }

1864 if (connp != NULL && (ira->ira_flags & IRAF_SYSTEM_LABELED) &&
1865 !tsol_receive_local(mp, &ip6h->ip6_dst, IPV6_VERSION,
1866 ira, connp)) {
1867 DTRACE_PROBE3(tx__ip__log__info__classify__tcp6,
1868 char *, "connp(1) could not receive mp(2)",
1869 conn_t *, connp, mblk_t *, mp);
1870 connp = NULL;
1871 }

1873 if (connp != NULL) {
1874 /* Have a listner at least */
1875 CONN_INC_REF(connp);
1876 mutex_exit(&bind_connfp->connf_lock);
1877 return (connp);
1878 }

1880 mutex_exit(&bind_connfp->connf_lock);
1881 break;

1883 case IPPROTO_UDP:
1884 up = (uint16_t *)&mp->b_rptr[hdr_len];
1885 lport = up[1];
1886 fport = up[0];
1887 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
1888 mutex_enter(&connfp->connf_lock);
1889 for (connp = connfp->connf_head; connp != NULL;
1890 connp = connp->conn_next) {
1891 if (IPCL_UDP_MATCH_V6(connp, lport, ip6h->ip6_dst,
1892 fport, ip6h->ip6_src) &&
1893 (connp->conn_zoneid == zoneid ||
1894 connp->conn_allzones ||
1895 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1896 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
1897 (ira->ira_flags & IRAF_TX_SHARED_ADDR))))
1898 break;
1899 }

1901 if (connp != NULL && (ira->ira_flags & IRAF_SYSTEM_LABELED) &&
1902 !tsol_receive_local(mp, &ip6h->ip6_dst, IPV6_VERSION,
1903 ira, connp)) {
1904 DTRACE_PROBE3(tx__ip__log__info__classify__udp6,
1905 char *, "connp(1) could not receive mp(2)",
1906 conn_t *, connp, mblk_t *, mp);
1907 connp = NULL;
1908 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 30

1910 if (connp != NULL) {
1911 CONN_INC_REF(connp);
1912 mutex_exit(&connfp->connf_lock);
1913 return (connp);
1914 }

1916 /*
1917 * We shouldn’t come here for multicast/broadcast packets
1918 */
1919 mutex_exit(&connfp->connf_lock);
1920 break;
1921 case IPPROTO_ENCAP:
1922 case IPPROTO_IPV6:
1923 return (ipcl_iptun_classify_v6(&ip6h->ip6_src,
1924 &ip6h->ip6_dst, ipst));
1925 }

1927 return (NULL);
1928 }

1930 /*
1931 * wrapper around ipcl_classify_(v4,v6) routines.
1932 */
1933 conn_t *
1934 ipcl_classify(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
1935 {
1936 if (ira->ira_flags & IRAF_IS_IPV4) {
1937 return (ipcl_classify_v4(mp, ira->ira_protocol,
1938 ira->ira_ip_hdr_length, ira, ipst));
1939 } else {
1940 return (ipcl_classify_v6(mp, ira->ira_protocol,
1941 ira->ira_ip_hdr_length, ira, ipst));
1942 }
1943 }

1945 /*
1946 * Only used to classify SCTP RAW sockets
1947 */
1948 conn_t *
1949 ipcl_classify_raw(mblk_t *mp, uint8_t protocol, uint32_t ports,
1950 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, ip_stack_t *ipst)
1951 {
1952 connf_t *connfp;
1953 conn_t *connp;
1954 in_port_t lport;
1955 int ipversion;
1956 const void *dst;
1957 zoneid_t zoneid = ira->ira_zoneid;

1959 lport = ((uint16_t *)&ports)[1];
1960 if (ira->ira_flags & IRAF_IS_IPV4) {
1961 dst = (const void *)&ipha->ipha_dst;
1962 ipversion = IPV4_VERSION;
1963 } else {
1964 dst = (const void *)&ip6h->ip6_dst;
1965 ipversion = IPV6_VERSION;
1966 }

1968 connfp = &ipst->ips_ipcl_raw_fanout[IPCL_RAW_HASH(ntohs(lport), ipst)];
1969 mutex_enter(&connfp->connf_lock);
1970 for (connp = connfp->connf_head; connp != NULL;
1971 connp = connp->conn_next) {
1972 /* We don’t allow v4 fallback for v6 raw socket. */
1973 if (ipversion != connp->conn_ipversion)
1974 continue;

new/usr/src/uts/common/inet/ip/ipclassifier.c 31

1975 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
1976 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
1977 if (ipversion == IPV4_VERSION) {
1978 if (!IPCL_CONN_MATCH(connp, protocol,
1979 ipha->ipha_src, ipha->ipha_dst, ports))
1980 continue;
1981 } else {
1982 if (!IPCL_CONN_MATCH_V6(connp, protocol,
1983 ip6h->ip6_src, ip6h->ip6_dst, ports))
1984 continue;
1985 }
1986 } else {
1987 if (ipversion == IPV4_VERSION) {
1988 if (!IPCL_BIND_MATCH(connp, protocol,
1989 ipha->ipha_dst, lport))
1990 continue;
1991 } else {
1992 if (!IPCL_BIND_MATCH_V6(connp, protocol,
1993 ip6h->ip6_dst, lport))
1994 continue;
1995 }
1996 }

1998 if (connp->conn_zoneid == zoneid ||
1999 connp->conn_allzones ||
2000 ((connp->conn_mac_mode != CONN_MAC_DEFAULT) &&
2001 (ira->ira_flags & IRAF_TX_MAC_EXEMPTABLE) &&
2002 (ira->ira_flags & IRAF_TX_SHARED_ADDR)))
2003 break;
2004 }

2006 if (connp != NULL && (ira->ira_flags & IRAF_SYSTEM_LABELED) &&
2007 !tsol_receive_local(mp, dst, ipversion, ira, connp)) {
2008 DTRACE_PROBE3(tx__ip__log__info__classify__rawip,
2009 char *, "connp(1) could not receive mp(2)",
2010 conn_t *, connp, mblk_t *, mp);
2011 connp = NULL;
2012 }

2014 if (connp != NULL)
2015 goto found;
2016 mutex_exit(&connfp->connf_lock);

2018 /* Try to look for a wildcard SCTP RAW socket match. */
2019 connfp = &ipst->ips_ipcl_raw_fanout[IPCL_RAW_HASH(0, ipst)];
2020 mutex_enter(&connfp->connf_lock);
2021 for (connp = connfp->connf_head; connp != NULL;
2022 connp = connp->conn_next) {
2023 /* We don’t allow v4 fallback for v6 raw socket. */
2024 if (ipversion != connp->conn_ipversion)
2025 continue;
2026 if (!IPCL_ZONE_MATCH(connp, zoneid))
2027 continue;

2029 if (ipversion == IPV4_VERSION) {
2030 if (IPCL_RAW_MATCH(connp, protocol, ipha->ipha_dst))
2031 break;
2032 } else {
2033 if (IPCL_RAW_MATCH_V6(connp, protocol, ip6h->ip6_dst)) {
2034 break;
2035 }
2036 }
2037 }

2039 if (connp != NULL)
2040 goto found;

new/usr/src/uts/common/inet/ip/ipclassifier.c 32

2042 mutex_exit(&connfp->connf_lock);
2043 return (NULL);

2045 found:
2046 ASSERT(connp != NULL);
2047 CONN_INC_REF(connp);
2048 mutex_exit(&connfp->connf_lock);
2049 return (connp);
2050 }

2052 /* ARGSUSED */
2053 static int
2054 tcp_conn_constructor(void *buf, void *cdrarg, int kmflags)
2055 {
2056 itc_t *itc = (itc_t *)buf;
2057 conn_t *connp = &itc->itc_conn;
2058 tcp_t *tcp = (tcp_t *)&itc[1];

2060 bzero(connp, sizeof (conn_t));
2061 bzero(tcp, sizeof (tcp_t));

2063 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2064 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2065 cv_init(&connp->conn_sq_cv, NULL, CV_DEFAULT, NULL);
2066 tcp->tcp_timercache = tcp_timermp_alloc(kmflags);
2067 if (tcp->tcp_timercache == NULL)
2068 return (ENOMEM);
2069 connp->conn_tcp = tcp;
2070 connp->conn_flags = IPCL_TCPCONN;
2071 connp->conn_proto = IPPROTO_TCP;
2072 tcp->tcp_connp = connp;
2073 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);

2075 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2076 if (connp->conn_ixa == NULL) {
2077 tcp_timermp_free(tcp);
2078 return (ENOMEM);
2079 }
2080 connp->conn_ixa->ixa_refcnt = 1;
2081 connp->conn_ixa->ixa_protocol = connp->conn_proto;
2082 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);
2083 return (0);
2084 }

2086 /* ARGSUSED */
2087 static void
2088 tcp_conn_destructor(void *buf, void *cdrarg)
2089 {
2090 itc_t *itc = (itc_t *)buf;
2091 conn_t *connp = &itc->itc_conn;
2092 tcp_t *tcp = (tcp_t *)&itc[1];

2094 ASSERT(connp->conn_flags & IPCL_TCPCONN);
2095 ASSERT(tcp->tcp_connp == connp);
2096 ASSERT(connp->conn_tcp == tcp);
2097 tcp_timermp_free(tcp);
2098 mutex_destroy(&connp->conn_lock);
2099 cv_destroy(&connp->conn_cv);
2100 cv_destroy(&connp->conn_sq_cv);
2101 rw_destroy(&connp->conn_ilg_lock);

2103 /* Can be NULL if constructor failed */
2104 if (connp->conn_ixa != NULL) {
2105 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2106 ASSERT(connp->conn_ixa->ixa_ire == NULL);

new/usr/src/uts/common/inet/ip/ipclassifier.c 33

2107 ASSERT(connp->conn_ixa->ixa_nce == NULL);
2108 ixa_refrele(connp->conn_ixa);
2109 }
2110 }

2112 /* ARGSUSED */
2113 static int
2114 ip_conn_constructor(void *buf, void *cdrarg, int kmflags)
2115 {
2116 itc_t *itc = (itc_t *)buf;
2117 conn_t *connp = &itc->itc_conn;

2119 bzero(connp, sizeof (conn_t));
2120 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2121 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2122 connp->conn_flags = IPCL_IPCCONN;
2123 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);

2125 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2126 if (connp->conn_ixa == NULL)
2127 return (ENOMEM);
2128 connp->conn_ixa->ixa_refcnt = 1;
2129 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);
2130 return (0);
2131 }

2133 /* ARGSUSED */
2134 static void
2135 ip_conn_destructor(void *buf, void *cdrarg)
2136 {
2137 itc_t *itc = (itc_t *)buf;
2138 conn_t *connp = &itc->itc_conn;

2140 ASSERT(connp->conn_flags & IPCL_IPCCONN);
2141 ASSERT(connp->conn_priv == NULL);
2142 mutex_destroy(&connp->conn_lock);
2143 cv_destroy(&connp->conn_cv);
2144 rw_destroy(&connp->conn_ilg_lock);

2146 /* Can be NULL if constructor failed */
2147 if (connp->conn_ixa != NULL) {
2148 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2149 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2150 ASSERT(connp->conn_ixa->ixa_nce == NULL);
2151 ixa_refrele(connp->conn_ixa);
2152 }
2153 }

2155 /* ARGSUSED */
2156 static int
2157 udp_conn_constructor(void *buf, void *cdrarg, int kmflags)
2158 {
2159 itc_t *itc = (itc_t *)buf;
2160 conn_t *connp = &itc->itc_conn;
2161 udp_t *udp = (udp_t *)&itc[1];

2163 bzero(connp, sizeof (conn_t));
2164 bzero(udp, sizeof (udp_t));

2166 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2167 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2168 connp->conn_udp = udp;
2169 connp->conn_flags = IPCL_UDPCONN;
2170 connp->conn_proto = IPPROTO_UDP;
2171 udp->udp_connp = connp;
2172 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);

new/usr/src/uts/common/inet/ip/ipclassifier.c 34

2173 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2174 if (connp->conn_ixa == NULL)
2175 return (ENOMEM);
2176 connp->conn_ixa->ixa_refcnt = 1;
2177 connp->conn_ixa->ixa_protocol = connp->conn_proto;
2178 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);
2179 return (0);
2180 }

2182 /* ARGSUSED */
2183 static void
2184 udp_conn_destructor(void *buf, void *cdrarg)
2185 {
2186 itc_t *itc = (itc_t *)buf;
2187 conn_t *connp = &itc->itc_conn;
2188 udp_t *udp = (udp_t *)&itc[1];

2190 ASSERT(connp->conn_flags & IPCL_UDPCONN);
2191 ASSERT(udp->udp_connp == connp);
2192 ASSERT(connp->conn_udp == udp);
2193 mutex_destroy(&connp->conn_lock);
2194 cv_destroy(&connp->conn_cv);
2195 rw_destroy(&connp->conn_ilg_lock);

2197 /* Can be NULL if constructor failed */
2198 if (connp->conn_ixa != NULL) {
2199 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2200 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2201 ASSERT(connp->conn_ixa->ixa_nce == NULL);
2202 ixa_refrele(connp->conn_ixa);
2203 }
2204 }

2206 /* ARGSUSED */
2207 static int
2208 rawip_conn_constructor(void *buf, void *cdrarg, int kmflags)
2209 {
2210 itc_t *itc = (itc_t *)buf;
2211 conn_t *connp = &itc->itc_conn;
2212 icmp_t *icmp = (icmp_t *)&itc[1];

2214 bzero(connp, sizeof (conn_t));
2215 bzero(icmp, sizeof (icmp_t));

2217 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2218 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2219 connp->conn_icmp = icmp;
2220 connp->conn_flags = IPCL_RAWIPCONN;
2221 connp->conn_proto = IPPROTO_ICMP;
2222 icmp->icmp_connp = connp;
2223 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);
2224 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2225 if (connp->conn_ixa == NULL)
2226 return (ENOMEM);
2227 connp->conn_ixa->ixa_refcnt = 1;
2228 connp->conn_ixa->ixa_protocol = connp->conn_proto;
2229 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);
2230 return (0);
2231 }

2233 /* ARGSUSED */
2234 static void
2235 rawip_conn_destructor(void *buf, void *cdrarg)
2236 {
2237 itc_t *itc = (itc_t *)buf;
2238 conn_t *connp = &itc->itc_conn;

new/usr/src/uts/common/inet/ip/ipclassifier.c 35

2239 icmp_t *icmp = (icmp_t *)&itc[1];

2241 ASSERT(connp->conn_flags & IPCL_RAWIPCONN);
2242 ASSERT(icmp->icmp_connp == connp);
2243 ASSERT(connp->conn_icmp == icmp);
2244 mutex_destroy(&connp->conn_lock);
2245 cv_destroy(&connp->conn_cv);
2246 rw_destroy(&connp->conn_ilg_lock);

2248 /* Can be NULL if constructor failed */
2249 if (connp->conn_ixa != NULL) {
2250 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2251 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2252 ASSERT(connp->conn_ixa->ixa_nce == NULL);
2253 ixa_refrele(connp->conn_ixa);
2254 }
2255 }

2257 /* ARGSUSED */
2258 static int
2259 rts_conn_constructor(void *buf, void *cdrarg, int kmflags)
2260 {
2261 itc_t *itc = (itc_t *)buf;
2262 conn_t *connp = &itc->itc_conn;
2263 rts_t *rts = (rts_t *)&itc[1];

2265 bzero(connp, sizeof (conn_t));
2266 bzero(rts, sizeof (rts_t));

2268 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2269 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2270 connp->conn_rts = rts;
2271 connp->conn_flags = IPCL_RTSCONN;
2272 rts->rts_connp = connp;
2273 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);
2274 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2275 if (connp->conn_ixa == NULL)
2276 return (ENOMEM);
2277 connp->conn_ixa->ixa_refcnt = 1;
2278 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);
2279 return (0);
2280 }

2282 /* ARGSUSED */
2283 static void
2284 rts_conn_destructor(void *buf, void *cdrarg)
2285 {
2286 itc_t *itc = (itc_t *)buf;
2287 conn_t *connp = &itc->itc_conn;
2288 rts_t *rts = (rts_t *)&itc[1];

2290 ASSERT(connp->conn_flags & IPCL_RTSCONN);
2291 ASSERT(rts->rts_connp == connp);
2292 ASSERT(connp->conn_rts == rts);
2293 mutex_destroy(&connp->conn_lock);
2294 cv_destroy(&connp->conn_cv);
2295 rw_destroy(&connp->conn_ilg_lock);

2297 /* Can be NULL if constructor failed */
2298 if (connp->conn_ixa != NULL) {
2299 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2300 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2301 ASSERT(connp->conn_ixa->ixa_nce == NULL);
2302 ixa_refrele(connp->conn_ixa);
2303 }
2304 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 36

2306 /* ARGSUSED */
2307 static int
2308 dccp_conn_constructor(void *buf, void *cdrarg, int kmflags)
2309 {
2310 itc_t *itc = (itc_t *)buf;
2311 conn_t *connp = &itc->itc_conn;
2312 dccp_t *dccp = (dccp_t *)&itc[1];

2314 bzero(connp, sizeof (conn_t));
2315 bzero(dccp, sizeof (dccp_t));

2317 mutex_init(&connp->conn_lock, NULL, MUTEX_DEFAULT, NULL);
2318 cv_init(&connp->conn_cv, NULL, CV_DEFAULT, NULL);
2319 rw_init(&connp->conn_ilg_lock, NULL, RW_DEFAULT, NULL);

2321 connp->conn_dccp = dccp;
2322 connp->conn_flags = IPCL_DCCPCONN;
2323 connp->conn_proto = IPPROTO_DCCP;
2324 dccp->dccp_connp = connp;
2325 connp->conn_ixa = kmem_zalloc(sizeof (ip_xmit_attr_t), kmflags);
2326 if (connp->conn_ixa == NULL)
2327 return (NULL);
2328 connp->conn_ixa->ixa_refcnt = 1;
2329 connp->conn_ixa->ixa_protocol = connp->conn_proto;
2330 connp->conn_ixa->ixa_xmit_hint = CONN_TO_XMIT_HINT(connp);

2332 return (0);
2333 }

2335 /* ARGSUSED */
2336 static void
2337 dccp_conn_destructor(void *buf, void *cdrarg)
2338 {
2339 itc_t *itc = (itc_t *)buf;
2340 conn_t *connp = &itc->itc_conn;
2341 dccp_t *dccp = (dccp_t *)&itc[1];

2343 ASSERT(connp->conn_flags & IPCL_DCCPCONN);
2344 ASSERT(dccp->dccp_connp == connp);
2345 ASSERT(connp->conn_dccp == dccp);

2347 mutex_destroy(&connp->conn_lock);
2348 cv_destroy(&connp->conn_cv);
2349 rw_destroy(&connp->conn_ilg_lock);

2351 if (connp->conn_ixa != NULL) {
2352 ASSERT(connp->conn_ixa->ixa_refcnt == 1);
2353 ASSERT(connp->conn_ixa->ixa_ire == NULL);
2354 ASSERT(connp->conn_ixa->ixa_nce == NULL);

2356 ixa_refrele(connp->conn_ixa);
2357 }
2358 }

2360 #endif /* ! codereview */
2361 /*
2362 * Called as part of ipcl_conn_destroy to assert and clear any pointers
2363 * in the conn_t.
2364 *
2365 * Below we list all the pointers in the conn_t as a documentation aid.
2366 * The ones that we can not ASSERT to be NULL are #ifdef’ed out.
2367 * If you add any pointers to the conn_t please add an ASSERT here
2368 * and #ifdef it out if it can’t be actually asserted to be NULL.
2369 * In any case, we bzero most of the conn_t at the end of the function.
2370 */

new/usr/src/uts/common/inet/ip/ipclassifier.c 37

2371 void
2372 ipcl_conn_cleanup(conn_t *connp)
2373 {
2374 ip_xmit_attr_t *ixa;

2376 ASSERT(connp->conn_latch == NULL);
2377 ASSERT(connp->conn_latch_in_policy == NULL);
2378 ASSERT(connp->conn_latch_in_action == NULL);
2379 #ifdef notdef
2380 ASSERT(connp->conn_rq == NULL);
2381 ASSERT(connp->conn_wq == NULL);
2382 #endif
2383 ASSERT(connp->conn_cred == NULL);
2384 ASSERT(connp->conn_g_fanout == NULL);
2385 ASSERT(connp->conn_g_next == NULL);
2386 ASSERT(connp->conn_g_prev == NULL);
2387 ASSERT(connp->conn_policy == NULL);
2388 ASSERT(connp->conn_fanout == NULL);
2389 ASSERT(connp->conn_next == NULL);
2390 ASSERT(connp->conn_prev == NULL);
2391 ASSERT(connp->conn_oper_pending_ill == NULL);
2392 ASSERT(connp->conn_ilg == NULL);
2393 ASSERT(connp->conn_drain_next == NULL);
2394 ASSERT(connp->conn_drain_prev == NULL);
2395 #ifdef notdef
2396 /* conn_idl is not cleared when removed from idl list */
2397 ASSERT(connp->conn_idl == NULL);
2398 #endif
2399 ASSERT(connp->conn_ipsec_opt_mp == NULL);
2400 #ifdef notdef
2401 /* conn_netstack is cleared by the caller; needed by ixa_cleanup */
2402 ASSERT(connp->conn_netstack == NULL);
2403 #endif

2405 ASSERT(connp->conn_helper_info == NULL);
2406 ASSERT(connp->conn_ixa != NULL);
2407 ixa = connp->conn_ixa;
2408 ASSERT(ixa->ixa_refcnt == 1);
2409 /* Need to preserve ixa_protocol */
2410 ixa_cleanup(ixa);
2411 ixa->ixa_flags = 0;

2413 /* Clear out the conn_t fields that are not preserved */
2414 bzero(&connp->conn_start_clr,
2415 sizeof (conn_t) -
2416 ((uchar_t *)&connp->conn_start_clr - (uchar_t *)connp));
2417 }

2419 /*
2420 * All conns are inserted in a global multi-list for the benefit of
2421 * walkers. The walk is guaranteed to walk all open conns at the time
2422 * of the start of the walk exactly once. This property is needed to
2423 * achieve some cleanups during unplumb of interfaces. This is achieved
2424 * as follows.
2425 *
2426 * ipcl_conn_create and ipcl_conn_destroy are the only functions that
2427 * call the insert and delete functions below at creation and deletion
2428 * time respectively. The conn never moves or changes its position in this
2429 * multi-list during its lifetime. CONN_CONDEMNED ensures that the refcnt
2430 * won’t increase due to walkers, once the conn deletion has started. Note
2431 * that we can’t remove the conn from the global list and then wait for
2432 * the refcnt to drop to zero, since walkers would then see a truncated
2433 * list. CONN_INCIPIENT ensures that walkers don’t start looking at
2434 * conns until ip_open is ready to make them globally visible.
2435 * The global round robin multi-list locks are held only to get the
2436 * next member/insertion/deletion and contention should be negligible

new/usr/src/uts/common/inet/ip/ipclassifier.c 38

2437 * if the multi-list is much greater than the number of cpus.
2438 */
2439 void
2440 ipcl_globalhash_insert(conn_t *connp)
2441 {
2442 int index;
2443 struct connf_s *connfp;
2444 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;

2446 /*
2447 * No need for atomic here. Approximate even distribution
2448 * in the global lists is sufficient.
2449 */
2450 ipst->ips_conn_g_index++;
2451 index = ipst->ips_conn_g_index & (CONN_G_HASH_SIZE - 1);

2453 connp->conn_g_prev = NULL;
2454 /*
2455 * Mark as INCIPIENT, so that walkers will ignore this
2456 * for now, till ip_open is ready to make it visible globally.
2457 */
2458 connp->conn_state_flags |= CONN_INCIPIENT;

2460 connfp = &ipst->ips_ipcl_globalhash_fanout[index];
2461 /* Insert at the head of the list */
2462 mutex_enter(&connfp->connf_lock);
2463 connp->conn_g_next = connfp->connf_head;
2464 if (connp->conn_g_next != NULL)
2465 connp->conn_g_next->conn_g_prev = connp;
2466 connfp->connf_head = connp;

2468 /* The fanout bucket this conn points to */
2469 connp->conn_g_fanout = connfp;

2471 mutex_exit(&connfp->connf_lock);
2472 }

2474 void
2475 ipcl_globalhash_remove(conn_t *connp)
2476 {
2477 struct connf_s *connfp;

2479 /*
2480 * We were never inserted in the global multi list.
2481 * IPCL_NONE variety is never inserted in the global multilist
2482 * since it is presumed to not need any cleanup and is transient.
2483 */
2484 if (connp->conn_g_fanout == NULL)
2485 return;

2487 connfp = connp->conn_g_fanout;
2488 mutex_enter(&connfp->connf_lock);
2489 if (connp->conn_g_prev != NULL)
2490 connp->conn_g_prev->conn_g_next = connp->conn_g_next;
2491 else
2492 connfp->connf_head = connp->conn_g_next;
2493 if (connp->conn_g_next != NULL)
2494 connp->conn_g_next->conn_g_prev = connp->conn_g_prev;
2495 mutex_exit(&connfp->connf_lock);

2497 /* Better to stumble on a null pointer than to corrupt memory */
2498 connp->conn_g_next = NULL;
2499 connp->conn_g_prev = NULL;
2500 connp->conn_g_fanout = NULL;
2501 }

new/usr/src/uts/common/inet/ip/ipclassifier.c 39

2503 /*
2504 * Walk the list of all conn_t’s in the system, calling the function provided
2505 * With the specified argument for each.
2506 * Applies to both IPv4 and IPv6.
2507 *
2508 * CONNs may hold pointers to ills (conn_dhcpinit_ill and
2509 * conn_oper_pending_ill). To guard against stale pointers
2510 * ipcl_walk() is called to cleanup the conn_t’s, typically when an interface is
2511 * unplumbed or removed. New conn_t’s that are created while we are walking
2512 * may be missed by this walk, because they are not necessarily inserted
2513 * at the tail of the list. They are new conn_t’s and thus don’t have any
2514 * stale pointers. The CONN_CLOSING flag ensures that no new reference
2515 * is created to the struct that is going away.
2516 */
2517 void
2518 ipcl_walk(pfv_t func, void *arg, ip_stack_t *ipst)
2519 {
2520 int i;
2521 conn_t *connp;
2522 conn_t *prev_connp;

2524 for (i = 0; i < CONN_G_HASH_SIZE; i++) {
2525 mutex_enter(&ipst->ips_ipcl_globalhash_fanout[i].connf_lock);
2526 prev_connp = NULL;
2527 connp = ipst->ips_ipcl_globalhash_fanout[i].connf_head;
2528 while (connp != NULL) {
2529 mutex_enter(&connp->conn_lock);
2530 if (connp->conn_state_flags &
2531 (CONN_CONDEMNED | CONN_INCIPIENT)) {
2532 mutex_exit(&connp->conn_lock);
2533 connp = connp->conn_g_next;
2534 continue;
2535 }
2536 CONN_INC_REF_LOCKED(connp);
2537 mutex_exit(&connp->conn_lock);
2538 mutex_exit(
2539 &ipst->ips_ipcl_globalhash_fanout[i].connf_lock);
2540 (*func)(connp, arg);
2541 if (prev_connp != NULL)
2542 CONN_DEC_REF(prev_connp);
2543 mutex_enter(
2544 &ipst->ips_ipcl_globalhash_fanout[i].connf_lock);
2545 prev_connp = connp;
2546 connp = connp->conn_g_next;
2547 }
2548 mutex_exit(&ipst->ips_ipcl_globalhash_fanout[i].connf_lock);
2549 if (prev_connp != NULL)
2550 CONN_DEC_REF(prev_connp);
2551 }
2552 }

2554 /*
2555 * Search for a peer TCP/IPv4 loopback conn by doing a reverse lookup on
2556 * the {src, dst, lport, fport} quadruplet. Returns with conn reference
2557 * held; caller must call CONN_DEC_REF. Only checks for connected entries
2558 * (peer tcp in ESTABLISHED state).
2559 */
2560 conn_t *
2561 ipcl_conn_tcp_lookup_reversed_ipv4(conn_t *connp, ipha_t *ipha, tcpha_t *tcpha,
2562 ip_stack_t *ipst)
2563 {
2564 uint32_t ports;
2565 uint16_t *pports = (uint16_t *)&ports;
2566 connf_t *connfp;
2567 conn_t *tconnp;
2568 boolean_t zone_chk;

new/usr/src/uts/common/inet/ip/ipclassifier.c 40

2570 /*
2571 * If either the source of destination address is loopback, then
2572 * both endpoints must be in the same Zone. Otherwise, both of
2573 * the addresses are system-wide unique (tcp is in ESTABLISHED
2574 * state) and the endpoints may reside in different Zones.
2575 */
2576 zone_chk = (ipha->ipha_src == htonl(INADDR_LOOPBACK) ||
2577 ipha->ipha_dst == htonl(INADDR_LOOPBACK));

2579 pports[0] = tcpha->tha_fport;
2580 pports[1] = tcpha->tha_lport;

2582 connfp = &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH(ipha->ipha_dst,
2583 ports, ipst)];

2585 mutex_enter(&connfp->connf_lock);
2586 for (tconnp = connfp->connf_head; tconnp != NULL;
2587 tconnp = tconnp->conn_next) {

2589 if (IPCL_CONN_MATCH(tconnp, IPPROTO_TCP,
2590 ipha->ipha_dst, ipha->ipha_src, ports) &&
2591 tconnp->conn_tcp->tcp_state == TCPS_ESTABLISHED &&
2592 (!zone_chk || tconnp->conn_zoneid == connp->conn_zoneid)) {

2594 ASSERT(tconnp != connp);
2595 CONN_INC_REF(tconnp);
2596 mutex_exit(&connfp->connf_lock);
2597 return (tconnp);
2598 }
2599 }
2600 mutex_exit(&connfp->connf_lock);
2601 return (NULL);
2602 }

2604 /*
2605 * Search for a peer TCP/IPv6 loopback conn by doing a reverse lookup on
2606 * the {src, dst, lport, fport} quadruplet. Returns with conn reference
2607 * held; caller must call CONN_DEC_REF. Only checks for connected entries
2608 * (peer tcp in ESTABLISHED state).
2609 */
2610 conn_t *
2611 ipcl_conn_tcp_lookup_reversed_ipv6(conn_t *connp, ip6_t *ip6h, tcpha_t *tcpha,
2612 ip_stack_t *ipst)
2613 {
2614 uint32_t ports;
2615 uint16_t *pports = (uint16_t *)&ports;
2616 connf_t *connfp;
2617 conn_t *tconnp;
2618 boolean_t zone_chk;

2620 /*
2621 * If either the source of destination address is loopback, then
2622 * both endpoints must be in the same Zone. Otherwise, both of
2623 * the addresses are system-wide unique (tcp is in ESTABLISHED
2624 * state) and the endpoints may reside in different Zones. We
2625 * don’t do Zone check for link local address(es) because the
2626 * current Zone implementation treats each link local address as
2627 * being unique per system node, i.e. they belong to global Zone.
2628 */
2629 zone_chk = (IN6_IS_ADDR_LOOPBACK(&ip6h->ip6_src) ||
2630 IN6_IS_ADDR_LOOPBACK(&ip6h->ip6_dst));

2632 pports[0] = tcpha->tha_fport;
2633 pports[1] = tcpha->tha_lport;

new/usr/src/uts/common/inet/ip/ipclassifier.c 41

2635 connfp = &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH_V6(ip6h->ip6_dst,
2636 ports, ipst)];

2638 mutex_enter(&connfp->connf_lock);
2639 for (tconnp = connfp->connf_head; tconnp != NULL;
2640 tconnp = tconnp->conn_next) {

2642 /* We skip conn_bound_if check here as this is loopback tcp */
2643 if (IPCL_CONN_MATCH_V6(tconnp, IPPROTO_TCP,
2644 ip6h->ip6_dst, ip6h->ip6_src, ports) &&
2645 tconnp->conn_tcp->tcp_state == TCPS_ESTABLISHED &&
2646 (!zone_chk || tconnp->conn_zoneid == connp->conn_zoneid)) {

2648 ASSERT(tconnp != connp);
2649 CONN_INC_REF(tconnp);
2650 mutex_exit(&connfp->connf_lock);
2651 return (tconnp);
2652 }
2653 }
2654 mutex_exit(&connfp->connf_lock);
2655 return (NULL);
2656 }

2658 /*
2659 * Find an exact {src, dst, lport, fport} match for a bounced datagram.
2660 * Returns with conn reference held. Caller must call CONN_DEC_REF.
2661 * Only checks for connected entries i.e. no INADDR_ANY checks.
2662 */
2663 conn_t *
2664 ipcl_tcp_lookup_reversed_ipv4(ipha_t *ipha, tcpha_t *tcpha, int min_state,
2665 ip_stack_t *ipst)
2666 {
2667 uint32_t ports;
2668 uint16_t *pports;
2669 connf_t *connfp;
2670 conn_t *tconnp;

2672 pports = (uint16_t *)&ports;
2673 pports[0] = tcpha->tha_fport;
2674 pports[1] = tcpha->tha_lport;

2676 connfp = &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH(ipha->ipha_dst,
2677 ports, ipst)];

2679 mutex_enter(&connfp->connf_lock);
2680 for (tconnp = connfp->connf_head; tconnp != NULL;
2681 tconnp = tconnp->conn_next) {

2683 if (IPCL_CONN_MATCH(tconnp, IPPROTO_TCP,
2684 ipha->ipha_dst, ipha->ipha_src, ports) &&
2685 tconnp->conn_tcp->tcp_state >= min_state) {

2687 CONN_INC_REF(tconnp);
2688 mutex_exit(&connfp->connf_lock);
2689 return (tconnp);
2690 }
2691 }
2692 mutex_exit(&connfp->connf_lock);
2693 return (NULL);
2694 }

2696 /*
2697 * Find an exact {src, dst, lport, fport} match for a bounced datagram.
2698 * Returns with conn reference held. Caller must call CONN_DEC_REF.
2699 * Only checks for connected entries i.e. no INADDR_ANY checks.
2700 * Match on ifindex in addition to addresses.

new/usr/src/uts/common/inet/ip/ipclassifier.c 42

2701 */
2702 conn_t *
2703 ipcl_tcp_lookup_reversed_ipv6(ip6_t *ip6h, tcpha_t *tcpha, int min_state,
2704 uint_t ifindex, ip_stack_t *ipst)
2705 {
2706 tcp_t *tcp;
2707 uint32_t ports;
2708 uint16_t *pports;
2709 connf_t *connfp;
2710 conn_t *tconnp;

2712 pports = (uint16_t *)&ports;
2713 pports[0] = tcpha->tha_fport;
2714 pports[1] = tcpha->tha_lport;

2716 connfp = &ipst->ips_ipcl_conn_fanout[IPCL_CONN_HASH_V6(ip6h->ip6_dst,
2717 ports, ipst)];

2719 mutex_enter(&connfp->connf_lock);
2720 for (tconnp = connfp->connf_head; tconnp != NULL;
2721 tconnp = tconnp->conn_next) {

2723 tcp = tconnp->conn_tcp;
2724 if (IPCL_CONN_MATCH_V6(tconnp, IPPROTO_TCP,
2725 ip6h->ip6_dst, ip6h->ip6_src, ports) &&
2726 tcp->tcp_state >= min_state &&
2727 (tconnp->conn_bound_if == 0 ||
2728 tconnp->conn_bound_if == ifindex)) {

2730 CONN_INC_REF(tconnp);
2731 mutex_exit(&connfp->connf_lock);
2732 return (tconnp);
2733 }
2734 }
2735 mutex_exit(&connfp->connf_lock);
2736 return (NULL);
2737 }

2739 /*
2740 * Finds a TCP/IPv4 listening connection; called by tcp_disconnect to locate
2741 * a listener when changing state.
2742 */
2743 conn_t *
2744 ipcl_lookup_listener_v4(uint16_t lport, ipaddr_t laddr, zoneid_t zoneid,
2745 ip_stack_t *ipst)
2746 {
2747 connf_t *bind_connfp;
2748 conn_t *connp;
2749 tcp_t *tcp;

2751 /*
2752 * Avoid false matches for packets sent to an IP destination of
2753 * all zeros.
2754 */
2755 if (laddr == 0)
2756 return (NULL);

2758 ASSERT(zoneid != ALL_ZONES);

2760 bind_connfp = &ipst->ips_ipcl_bind_fanout[IPCL_BIND_HASH(lport, ipst)];
2761 mutex_enter(&bind_connfp->connf_lock);
2762 for (connp = bind_connfp->connf_head; connp != NULL;
2763 connp = connp->conn_next) {
2764 tcp = connp->conn_tcp;
2765 if (IPCL_BIND_MATCH(connp, IPPROTO_TCP, laddr, lport) &&
2766 IPCL_ZONE_MATCH(connp, zoneid) &&

new/usr/src/uts/common/inet/ip/ipclassifier.c 43

2767 (tcp->tcp_listener == NULL)) {
2768 CONN_INC_REF(connp);
2769 mutex_exit(&bind_connfp->connf_lock);
2770 return (connp);
2771 }
2772 }
2773 mutex_exit(&bind_connfp->connf_lock);
2774 return (NULL);
2775 }

2777 /*
2778 * Finds a TCP/IPv6 listening connection; called by tcp_disconnect to locate
2779 * a listener when changing state.
2780 */
2781 conn_t *
2782 ipcl_lookup_listener_v6(uint16_t lport, in6_addr_t *laddr, uint_t ifindex,
2783 zoneid_t zoneid, ip_stack_t *ipst)
2784 {
2785 connf_t *bind_connfp;
2786 conn_t *connp = NULL;
2787 tcp_t *tcp;

2789 /*
2790 * Avoid false matches for packets sent to an IP destination of
2791 * all zeros.
2792 */
2793 if (IN6_IS_ADDR_UNSPECIFIED(laddr))
2794 return (NULL);

2796 ASSERT(zoneid != ALL_ZONES);

2798 bind_connfp = &ipst->ips_ipcl_bind_fanout[IPCL_BIND_HASH(lport, ipst)];
2799 mutex_enter(&bind_connfp->connf_lock);
2800 for (connp = bind_connfp->connf_head; connp != NULL;
2801 connp = connp->conn_next) {
2802 tcp = connp->conn_tcp;
2803 if (IPCL_BIND_MATCH_V6(connp, IPPROTO_TCP, *laddr, lport) &&
2804 IPCL_ZONE_MATCH(connp, zoneid) &&
2805 (connp->conn_bound_if == 0 ||
2806 connp->conn_bound_if == ifindex) &&
2807 tcp->tcp_listener == NULL) {
2808 CONN_INC_REF(connp);
2809 mutex_exit(&bind_connfp->connf_lock);
2810 return (connp);
2811 }
2812 }
2813 mutex_exit(&bind_connfp->connf_lock);
2814 return (NULL);
2815 }

2817 /*
2818 * ipcl_get_next_conn
2819 * get the next entry in the conn global list
2820 * and put a reference on the next_conn.
2821 * decrement the reference on the current conn.
2822 *
2823 * This is an iterator based walker function that also provides for
2824 * some selection by the caller. It walks through the conn_hash bucket
2825 * searching for the next valid connp in the list, and selects connections
2826 * that are neither closed nor condemned. It also REFHOLDS the conn
2827 * thus ensuring that the conn exists when the caller uses the conn.
2828 */
2829 conn_t *
2830 ipcl_get_next_conn(connf_t *connfp, conn_t *connp, uint32_t conn_flags)
2831 {
2832 conn_t *next_connp;

new/usr/src/uts/common/inet/ip/ipclassifier.c 44

2834 if (connfp == NULL)
2835 return (NULL);

2837 mutex_enter(&connfp->connf_lock);

2839 next_connp = (connp == NULL) ?
2840 connfp->connf_head : connp->conn_g_next;

2842 while (next_connp != NULL) {
2843 mutex_enter(&next_connp->conn_lock);
2844 if (!(next_connp->conn_flags & conn_flags) ||
2845 (next_connp->conn_state_flags &
2846 (CONN_CONDEMNED | CONN_INCIPIENT))) {
2847 /*
2848 * This conn has been condemned or
2849 * is closing, or the flags don’t match
2850 */
2851 mutex_exit(&next_connp->conn_lock);
2852 next_connp = next_connp->conn_g_next;
2853 continue;
2854 }
2855 CONN_INC_REF_LOCKED(next_connp);
2856 mutex_exit(&next_connp->conn_lock);
2857 break;
2858 }

2860 mutex_exit(&connfp->connf_lock);

2862 if (connp != NULL)
2863 CONN_DEC_REF(connp);

2865 return (next_connp);
2866 }

2868 #ifdef CONN_DEBUG
2869 /*
2870 * Trace of the last NBUF refhold/refrele
2871 */
2872 int
2873 conn_trace_ref(conn_t *connp)
2874 {
2875 int last;
2876 conn_trace_t *ctb;

2878 ASSERT(MUTEX_HELD(&connp->conn_lock));
2879 last = connp->conn_trace_last;
2880 last++;
2881 if (last == CONN_TRACE_MAX)
2882 last = 0;

2884 ctb = &connp->conn_trace_buf[last];
2885 ctb->ctb_depth = getpcstack(ctb->ctb_stack, CONN_STACK_DEPTH);
2886 connp->conn_trace_last = last;
2887 return (1);
2888 }

2890 int
2891 conn_untrace_ref(conn_t *connp)
2892 {
2893 int last;
2894 conn_trace_t *ctb;

2896 ASSERT(MUTEX_HELD(&connp->conn_lock));
2897 last = connp->conn_trace_last;
2898 last++;

new/usr/src/uts/common/inet/ip/ipclassifier.c 45

2899 if (last == CONN_TRACE_MAX)
2900 last = 0;

2902 ctb = &connp->conn_trace_buf[last];
2903 ctb->ctb_depth = getpcstack(ctb->ctb_stack, CONN_STACK_DEPTH);
2904 connp->conn_trace_last = last;
2905 return (1);
2906 }
2907 #endif

new/usr/src/uts/common/inet/ip_impl.h 1

**
 6502 Wed Jun 13 12:05:04 2012
new/usr/src/uts/common/inet/ip_impl.h
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _INET_IP_IMPL_H
27 #define _INET_IP_IMPL_H

29 /*
30 * IP implementation private declarations. These interfaces are
31 * used to build the IP module and are not meant to be accessed
32 * by any modules except IP itself. They are undocumented and are
33 * subject to change without notice.
34 */

36 #ifdef __cplusplus
37 extern "C" {
38 #endif

40 #ifdef _KERNEL

42 #include <sys/sdt.h>
43 #include <sys/dld.h>
44 #include <inet/tunables.h>

46 #define IP_MOD_ID 5701

48 #define INET_NAME "ip"

50 #ifdef _BIG_ENDIAN
51 #define IP_HDR_CSUM_TTL_ADJUST 256
52 #define IP_TCP_CSUM_COMP IPPROTO_TCP
53 #define IP_UDP_CSUM_COMP IPPROTO_UDP
54 #define IP_ICMPV6_CSUM_COMP IPPROTO_ICMPV6
55 #define IP_DCCP_CSUM_COMP IPPROTO_DCCP
56 #endif /* ! codereview */
57 #else
58 #define IP_HDR_CSUM_TTL_ADJUST 1
59 #define IP_TCP_CSUM_COMP (IPPROTO_TCP << 8)
60 #define IP_UDP_CSUM_COMP (IPPROTO_UDP << 8)
61 #define IP_ICMPV6_CSUM_COMP (IPPROTO_ICMPV6 << 8)

new/usr/src/uts/common/inet/ip_impl.h 2

62 #define IP_DCCP_CSUM_COMP (IPPROTO_DCCP << 8)
63 #endif /* ! codereview */
64 #endif

66 #define TCP_CHECKSUM_OFFSET 16
67 #define TCP_CHECKSUM_SIZE 2

69 #define UDP_CHECKSUM_OFFSET 6
70 #define UDP_CHECKSUM_SIZE 2

72 #define ICMPV6_CHECKSUM_OFFSET 2
73 #define ICMPV6_CHECKSUM_SIZE 2

75 #define DCCP_CHECKSUM_OFFSET 6
76 #define DCCP_CHECKSUM_SIZE 2

78 #endif /* ! codereview */
79 #define IPH_TCPH_CHECKSUMP(ipha, hlen) \
80 ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + TCP_CHECKSUM_OFFSET)))

82 #define IPH_UDPH_CHECKSUMP(ipha, hlen) \
83 ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + UDP_CHECKSUM_OFFSET)))

85 #define IPH_ICMPV6_CHECKSUMP(ipha, hlen) \
86 ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + ICMPV6_CHECKSUM_OFFSET)))

88 #define IPH_DCCPH_CHECKSUMP(ipha, hlen) \
89 ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + DCCP_CHECKSUM_OFFSET)))

91 #endif /* ! codereview */
92 #define ILL_HCKSUM_CAPABLE(ill) \
93 (((ill)->ill_capabilities & ILL_CAPAB_HCKSUM) != 0)

95 /*
96 * Macro to adjust a given checksum value depending on any prepended
97 * or postpended data on the packet. It expects the start offset to
98 * begin at an even boundary and that the packet consists of at most
99 * two mblks.
100 */
101 #define IP_ADJCKSUM_PARTIAL(cksum_start, mp, mp1, len, adj) { \
102 /* \
103 * Prepended extraneous data; adjust checksum. \
104 */ \
105 if ((len) > 0) \
106 (adj) = IP_BCSUM_PARTIAL(cksum_start, len, 0); \
107 else \
108 (adj) = 0; \
109 /* \
110 * len is now the total length of mblk(s) \
111 */ \
112 (len) = MBLKL(mp); \
113 if ((mp1) == NULL) \
114 (mp1) = (mp); \
115 else \
116 (len) += MBLKL(mp1); \
117 /* \
118 * Postpended extraneous data; adjust checksum. \
119 */ \
120 if (((len) = (DB_CKSUMEND(mp) - len)) > 0) { \
121 uint32_t _pad; \
122 \
123 _pad = IP_BCSUM_PARTIAL((mp1)->b_wptr, len, 0); \
124 /* \
125 * If the postpended extraneous data was odd \
126 * byte aligned, swap resulting checksum bytes. \
127 */ \

new/usr/src/uts/common/inet/ip_impl.h 3

128 if ((uintptr_t)(mp1)->b_wptr & 1) \
129 (adj) += ((_pad << 8) & 0xFFFF) | (_pad >> 8); \
130 else \
131 (adj) += _pad; \
132 (adj) = ((adj) & 0xFFFF) + ((int)(adj) >> 16); \
133 } \
134 }

136 #define IS_SIMPLE_IPH(ipha) \
137 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION)

139 /*
140 * Currently supported flags for LSO.
141 */
142 #define LSO_BASIC_TCP_IPV4 DLD_LSO_BASIC_TCP_IPV4
143 #define LSO_BASIC_TCP_IPV6 DLD_LSO_BASIC_TCP_IPV6

145 #define ILL_LSO_CAPABLE(ill) \
146 (((ill)->ill_capabilities & ILL_CAPAB_LSO) != 0)

148 #define ILL_LSO_USABLE(ill) \
149 (ILL_LSO_CAPABLE(ill) && \
150 ill->ill_lso_capab != NULL)

152 #define ILL_LSO_TCP_IPV4_USABLE(ill) \
153 (ILL_LSO_USABLE(ill) && \
154 ill->ill_lso_capab->ill_lso_flags & LSO_BASIC_TCP_IPV4)

156 #define ILL_LSO_TCP_IPV6_USABLE(ill) \
157 (ILL_LSO_USABLE(ill) && \
158 ill->ill_lso_capab->ill_lso_flags & LSO_BASIC_TCP_IPV6)

160 #define ILL_ZCOPY_CAPABLE(ill) \
161 (((ill)->ill_capabilities & ILL_CAPAB_ZEROCOPY) != 0)

163 #define ILL_ZCOPY_USABLE(ill) \
164 (ILL_ZCOPY_CAPABLE(ill) && (ill->ill_zerocopy_capab != NULL) && \
165 (ill->ill_zerocopy_capab->ill_zerocopy_flags != 0))

168 /* Macro that follows definitions of flags for mac_tx() (see mac_client.h) */
169 #define IP_DROP_ON_NO_DESC 0x01 /* Equivalent to MAC_DROP_ON_NO_DESC */

171 #define ILL_DIRECT_CAPABLE(ill) \
172 (((ill)->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0)

174 /* This macro is used by the mac layer */
175 #define MBLK_RX_FANOUT_SLOWPATH(mp, ipha) \
176 (DB_TYPE(mp) != M_DATA || DB_REF(mp) != 1 || !OK_32PTR(ipha) || \
177 (((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH) >= (mp)->b_wptr))

179 /*
180 * In non-global zone exclusive IP stacks, data structures such as IRE
181 * entries pretend that they’re in the global zone. The following
182 * macro evaluates to the real zoneid instead of a pretend
183 * GLOBAL_ZONEID.
184 */
185 #define IP_REAL_ZONEID(zoneid, ipst) \
186 (((zoneid) == GLOBAL_ZONEID) ? \
187 netstackid_to_zoneid((ipst)->ips_netstack->netstack_stackid) : \
188 (zoneid))

190 extern void ill_flow_enable(void *, ip_mac_tx_cookie_t);
191 extern zoneid_t ip_get_zoneid_v4(ipaddr_t, mblk_t *, ip_recv_attr_t *,
192 zoneid_t);
193 extern zoneid_t ip_get_zoneid_v6(in6_addr_t *, mblk_t *, const ill_t *,

new/usr/src/uts/common/inet/ip_impl.h 4

194 ip_recv_attr_t *, zoneid_t);
195 extern void conn_ire_revalidate(conn_t *, void *);
196 extern void ip_ire_unbind_walker(ire_t *, void *);
197 extern void ip_ire_rebind_walker(ire_t *, void *);

199 /*
200 * flag passed in by IP based protocols to get a private ip stream with
201 * no conn_t. Note this flag has the same value as SO_FALLBACK
202 */
203 #define IP_HELPER_STR SO_FALLBACK

205 #define IP_MOD_MINPSZ 1
206 #define IP_MOD_MAXPSZ INFPSZ
207 #define IP_MOD_HIWAT 65536
208 #define IP_MOD_LOWAT 1024

210 #define DEV_IP "/devices/pseudo/ip@0:ip"
211 #define DEV_IP6 "/devices/pseudo/ip6@0:ip6"

213 #endif /* _KERNEL */

215 #ifdef __cplusplus
216 }
217 #endif

219 #endif /* _INET_IP_IMPL_H */

new/usr/src/uts/common/inet/ip_stack.h 1

**
 13690 Wed Jun 13 12:05:06 2012
new/usr/src/uts/common/inet/ip_stack.h
%B
**
______unchanged_portion_omitted_

143 /*
144 * IP stack instances
145 */
146 struct ip_stack {
147 netstack_t *ips_netstack; /* Common netstack */

149 uint_t ips_src_generation; /* Both IPv4 and IPv6 */

151 struct mod_prop_info_s *ips_propinfo_tbl; /* ip tunables table */

153 mib2_ipIfStatsEntry_t ips_ip_mib; /* SNMP fixed size info */
154 mib2_icmp_t ips_icmp_mib;
155 /*
156 * IPv6 mibs when the interface (ill) is not known.
157 * When the ill is known the per-interface mib in the ill is used.
158 */
159 mib2_ipIfStatsEntry_t ips_ip6_mib;
160 mib2_ipv6IfIcmpEntry_t ips_icmp6_mib;

162 struct igmpstat ips_igmpstat;

164 kstat_t *ips_ip_mibkp; /* kstat exporting ip_mib data */
165 kstat_t *ips_icmp_mibkp; /* kstat exporting icmp_mib data */
166 kstat_t *ips_ip_kstat;
167 ip_stat_t ips_ip_statistics;
168 kstat_t *ips_ip6_kstat;
169 ip6_stat_t ips_ip6_statistics;

171 /* ip.c */
172 kmutex_t ips_igmp_timer_lock;
173 kmutex_t ips_mld_timer_lock;
174 kmutex_t ips_ip_mi_lock;
175 kmutex_t ips_ip_addr_avail_lock;
176 krwlock_t ips_ill_g_lock;

178 krwlock_t ips_ill_g_usesrc_lock;

180 /* Taskq dispatcher for capability operations */
181 kmutex_t ips_capab_taskq_lock;
182 kcondvar_t ips_capab_taskq_cv;
183 mblk_t *ips_capab_taskq_head;
184 mblk_t *ips_capab_taskq_tail;
185 kthread_t *ips_capab_taskq_thread;
186 boolean_t ips_capab_taskq_quit;

188 /* ipclassifier.c - keep in ip_stack_t */
189 /* ipclassifier hash tables */
190 struct connf_s *ips_rts_clients;
191 struct connf_s *ips_ipcl_conn_fanout;
192 struct connf_s *ips_ipcl_bind_fanout;
193 struct connf_s *ips_ipcl_proto_fanout_v4;
194 struct connf_s *ips_ipcl_proto_fanout_v6;
195 struct connf_s *ips_ipcl_udp_fanout;
196 struct connf_s *ips_ipcl_raw_fanout; /* RAW SCTP sockets */
197 struct connf_s *ips_ipcl_iptun_fanout;
198 struct connf_s *ips_ipcl_dccp_fanout;
199 #endif /* ! codereview */
200 uint_t ips_ipcl_conn_fanout_size;
201 uint_t ips_ipcl_bind_fanout_size;

new/usr/src/uts/common/inet/ip_stack.h 2

202 uint_t ips_ipcl_udp_fanout_size;
203 uint_t ips_ipcl_raw_fanout_size;
204 uint_t ips_ipcl_iptun_fanout_size;
205 uint_t ips_ipcl_dccp_fanout_size;
206 #endif /* ! codereview */
207 struct connf_s *ips_ipcl_globalhash_fanout;
208 int ips_conn_g_index;

210 /* ip.c */
211 /* Following protected by igmp_timer_lock */
212 int ips_igmp_time_to_next; /* Time since last timeout */
213 int ips_igmp_timer_scheduled_last;
214 int ips_igmp_deferred_next;
215 timeout_id_t ips_igmp_timeout_id;
216 boolean_t ips_igmp_timer_setter_active;

218 /* Following protected by mld_timer_lock */
219 int ips_mld_time_to_next; /* Time since last timeout */
220 int ips_mld_timer_scheduled_last;
221 int ips_mld_deferred_next;
222 timeout_id_t ips_mld_timeout_id;
223 boolean_t ips_mld_timer_setter_active;

225 /* Protected by igmp_slowtimeout_lock */
226 timeout_id_t ips_igmp_slowtimeout_id;
227 kmutex_t ips_igmp_slowtimeout_lock;

229 /* Protected by mld_slowtimeout_lock */
230 timeout_id_t ips_mld_slowtimeout_id;
231 kmutex_t ips_mld_slowtimeout_lock;

233 /* IPv4 forwarding table */
234 struct radix_node_head *ips_ip_ftable;

236 #define IPV6_ABITS 128
237 #define IP6_MASK_TABLE_SIZE (IPV6_ABITS + 1) /* 129 ptrs */
238 struct irb *ips_ip_forwarding_table_v6[IP6_MASK_TABLE_SIZE];

240 /*
241 * ire_ft_init_lock is used while initializing ip_forwarding_table
242 * dynamically in ire_add.
243 */
244 kmutex_t ips_ire_ft_init_lock;

246 /*
247 * This is the IPv6 counterpart of RADIX_NODE_HEAD_LOCK. It is used
248 * to prevent adds and deletes while we are doing a ftable_lookup
249 * and extracting the ire_generation.
250 */
251 krwlock_t ips_ip6_ire_head_lock;

253 uint32_t ips_ip6_ftable_hash_size;

255 ire_stats_t ips_ire_stats_v4; /* IPv4 ire statistics */
256 ire_stats_t ips_ire_stats_v6; /* IPv6 ire statistics */

258 /* Count how many condemned objects for kmem_cache callbacks */
259 uint32_t ips_num_ire_condemned;
260 uint32_t ips_num_nce_condemned;
261 uint32_t ips_num_dce_condemned;

263 struct ire_s *ips_ire_reject_v4; /* For unreachable dests */
264 struct ire_s *ips_ire_reject_v6; /* For unreachable dests */
265 struct ire_s *ips_ire_blackhole_v4; /* For temporary failures */
266 struct ire_s *ips_ire_blackhole_v6; /* For temporary failures */

new/usr/src/uts/common/inet/ip_stack.h 3

268 /* ips_ire_dep_lock protects ire_dep_* relationship between IREs */
269 krwlock_t ips_ire_dep_lock;

271 /* Destination Cache Entries */
272 struct dce_s *ips_dce_default;
273 uint_t ips_dce_hashsize;
274 struct dcb_s *ips_dce_hash_v4;
275 struct dcb_s *ips_dce_hash_v6;

277 /* pending binds */
278 mblk_t *ips_ip6_asp_pending_ops;
279 mblk_t *ips_ip6_asp_pending_ops_tail;

281 /* Synchronize updates with table usage */
282 mblk_t *ips_ip6_asp_pending_update; /* pending table updates */

284 boolean_t ips_ip6_asp_uip; /* table update in progress */
285 kmutex_t ips_ip6_asp_lock; /* protect all the above */
286 uint32_t ips_ip6_asp_refcnt; /* outstanding references */

288 struct ip6_asp *ips_ip6_asp_table;
289 /* The number of policy entries in the table */
290 uint_t ips_ip6_asp_table_count;

292 struct conn_s *ips_ip_g_mrouter;

294 /* Time since last icmp_pkt_err */
295 clock_t ips_icmp_pkt_err_last;
296 /* Number of packets sent in burst */
297 uint_t ips_icmp_pkt_err_sent;

299 /* Protected by ip_mi_lock */
300 void *ips_ip_g_head; /* IP Instance Data List Head */
301 void *ips_arp_g_head; /* ARP Instance Data List Head */

303 /* Multirouting stuff */
304 /* Interval (in ms) between consecutive ’bad MTU’ warnings */
305 hrtime_t ips_ip_multirt_log_interval;
306 /* Time since last warning issued. */
307 hrtime_t ips_multirt_bad_mtu_last_time;

309 /*
310 * CGTP hooks. Enabling and disabling of hooks is controlled by an
311 * IP tunable ’ips_ip_cgtp_filter’.
312 */
313 struct cgtp_filter_ops *ips_ip_cgtp_filter_ops;

315 struct ipsq_s *ips_ipsq_g_head;
316 uint_t ips_ill_index; /* Used to assign interface indicies */
317 /* When set search for unused index */
318 boolean_t ips_ill_index_wrap;

320 uint_t ips_loopback_packets;

322 /* NDP/NCE structures for IPv4 and IPv6 */
323 struct ndp_g_s *ips_ndp4;
324 struct ndp_g_s *ips_ndp6;

326 /* ip_mroute stuff */
327 kmutex_t ips_ip_g_mrouter_mutex;

329 struct mrtstat *ips_mrtstat; /* Stats for netstat */
330 int ips_saved_ip_forwarding;

332 /* numvifs is only a hint about the max interface being used. */
333 ushort_t ips_numvifs;

new/usr/src/uts/common/inet/ip_stack.h 4

334 kmutex_t ips_numvifs_mutex;

336 struct vif *ips_vifs;
337 struct mfcb *ips_mfcs; /* kernel routing table */
338 struct tbf *ips_tbfs;
339 /*
340 * One-back cache used to locate a tunnel’s vif,
341 * given a datagram’s src ip address.
342 */
343 ipaddr_t ips_last_encap_src;
344 struct vif *ips_last_encap_vif;
345 kmutex_t ips_last_encap_lock; /* Protects the above */

347 /*
348 * reg_vif_num is protected by numvifs_mutex
349 */
350 /* Whether or not special PIM assert processing is enabled. */
351 ushort_t ips_reg_vif_num; /* Index to Register vif */
352 int ips_pim_assert;

354 union ill_g_head_u *ips_ill_g_heads; /* ILL List Head */

356 kstat_t *ips_loopback_ksp;

358 /* Array of conn drain lists */
359 struct idl_tx_list_s *ips_idl_tx_list;
360 uint_t ips_conn_drain_list_cnt; /* Count of conn_drain_list */

362 /*
363 * ID used to assign next free one.
364 * Increases by one. Once it wraps we search for an unused ID.
365 */
366 uint_t ips_ip_src_id;
367 boolean_t ips_srcid_wrapped;

369 struct srcid_map *ips_srcid_head;
370 krwlock_t ips_srcid_lock;

372 uint64_t ips_ipif_g_seqid; /* Used only for sctp_addr.c */
373 union phyint_list_u *ips_phyint_g_list; /* start of phyint list */

375 /* ip_netinfo.c */
376 hook_family_t ips_ipv4root;
377 hook_family_t ips_ipv6root;
378 hook_family_t ips_arproot;

380 net_handle_t ips_ipv4_net_data;
381 net_handle_t ips_ipv6_net_data;
382 net_handle_t ips_arp_net_data;

384 /*
385 * Hooks for firewalling
386 */
387 hook_event_t ips_ip4_physical_in_event;
388 hook_event_t ips_ip4_physical_out_event;
389 hook_event_t ips_ip4_forwarding_event;
390 hook_event_t ips_ip4_loopback_in_event;
391 hook_event_t ips_ip4_loopback_out_event;

393 hook_event_t ips_ip6_physical_in_event;
394 hook_event_t ips_ip6_physical_out_event;
395 hook_event_t ips_ip6_forwarding_event;
396 hook_event_t ips_ip6_loopback_in_event;
397 hook_event_t ips_ip6_loopback_out_event;

399 hook_event_t ips_arp_physical_in_event;

new/usr/src/uts/common/inet/ip_stack.h 5

400 hook_event_t ips_arp_physical_out_event;
401 hook_event_t ips_arp_nic_events;

403 hook_event_token_t ips_ipv4firewall_physical_in;
404 hook_event_token_t ips_ipv4firewall_physical_out;
405 hook_event_token_t ips_ipv4firewall_forwarding;
406 hook_event_token_t ips_ipv4firewall_loopback_in;
407 hook_event_token_t ips_ipv4firewall_loopback_out;

409 hook_event_token_t ips_ipv6firewall_physical_in;
410 hook_event_token_t ips_ipv6firewall_physical_out;
411 hook_event_token_t ips_ipv6firewall_forwarding;
412 hook_event_token_t ips_ipv6firewall_loopback_in;
413 hook_event_token_t ips_ipv6firewall_loopback_out;

415 hook_event_t ips_ip4_nic_events;
416 hook_event_t ips_ip6_nic_events;
417 hook_event_token_t ips_ipv4nicevents;
418 hook_event_token_t ips_ipv6nicevents;

420 hook_event_token_t ips_arp_physical_in;
421 hook_event_token_t ips_arp_physical_out;
422 hook_event_token_t ips_arpnicevents;

424 net_handle_t ips_ip4_observe_pr;
425 net_handle_t ips_ip6_observe_pr;
426 hook_event_t ips_ip4_observe;
427 hook_event_t ips_ip6_observe;
428 hook_event_token_t ips_ipv4observing;
429 hook_event_token_t ips_ipv6observing;

431 struct __ldi_ident *ips_ldi_ident;

433 /* ipmp.c */
434 krwlock_t ips_ipmp_lock;
435 mod_hash_t *ips_ipmp_grp_hash;

437 };
438 typedef struct ip_stack ip_stack_t;

440 /* Finding an ip_stack_t */
441 #define CONNQ_TO_IPST(_q) (Q_TO_CONN(_q)->conn_netstack->netstack_ip)
442 #define ILLQ_TO_IPST(_q) (((ill_t *)(_q)->q_ptr)->ill_ipst)
443 #define PHYINT_TO_IPST(phyi) ((phyi)->phyint_ipsq->ipsq_ipst)

445 #else /* _KERNEL */
446 typedef int ip_stack_t;
447 #endif /* _KERNEL */

449 #ifdef __cplusplus
450 }
451 #endif

453 #endif /* _INET_IP_STACK_H */

new/usr/src/uts/common/inet/ipclassifier.h 1

**
 26769 Wed Jun 13 12:05:10 2012
new/usr/src/uts/common/inet/ipclassifier.h
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _INET_IPCLASSIFIER_H
27 #define _INET_IPCLASSIFIER_H

29 #ifdef __cplusplus
30 extern "C" {
31 #endif

33 #include <inet/common.h>
34 #include <inet/ip.h>
35 #include <inet/mi.h>
36 #include <inet/tcp.h>
37 #include <inet/ip6.h>
38 #include <netinet/in.h> /* for IPPROTO_* constants */
39 #include <sys/sdt.h>
40 #include <sys/socket_proto.h>
41 #include <sys/sunddi.h>
42 #include <sys/sunldi.h>

44 typedef void (*edesc_rpf)(void *, mblk_t *, void *, ip_recv_attr_t *);
45 struct icmph_s;
46 struct icmp6_hdr;
47 typedef boolean_t (*edesc_vpf)(conn_t *, void *, struct icmph_s *,
48 struct icmp6_hdr *, ip_recv_attr_t *);

50 /*
51 * ==============================
52 * = The CONNECTION =
53 * ==============================
54 */

56 /*
57 * The connection structure contains the common information/flags/ref needed.
58 * Implementation will keep the connection struct, the layers (with their
59 * respective data for event i.e. tcp_t if event was tcp_input_data) all in one
60 * contiguous memory location.
61 */

new/usr/src/uts/common/inet/ipclassifier.h 2

63 /* Conn Flags */
64 /* Unused 0x00020000 */
65 /* Unused 0x00040000 */
66 #define IPCL_FULLY_BOUND 0x00080000 /* Bound to correct squeue */
67 /* Unused 0x00100000 */
68 /* Unused 0x00200000 */
69 /* Unused 0x00400000 */
70 #define IPCL_CL_LISTENER 0x00800000 /* Cluster listener */
71 /* Unused 0x01000000 */
72 /* Unused 0x02000000 */
73 /* Unused 0x04000000 */
74 /* Unused 0x08000000 */
75 /* Unused 0x10000000 */
76 /* Unused 0x20000000 */
77 #define IPCL_CONNECTED 0x40000000 /* Conn in connected table */
78 #define IPCL_BOUND 0x80000000 /* Conn in bind table */

80 /* Flags identifying the type of conn */
81 #define IPCL_TCPCONN 0x00000001 /* From tcp_conn_cache */
82 #define IPCL_SCTPCONN 0x00000002 /* From sctp_conn_cache */
83 #define IPCL_IPCCONN 0x00000004 /* From ip_conn_cache */
84 #define IPCL_UDPCONN 0x00000008 /* From udp_conn_cache */
85 #define IPCL_RAWIPCONN 0x00000010 /* From rawip_conn_cache */
86 #define IPCL_RTSCONN 0x00000020 /* From rts_conn_cache */
87 /* Unused 0x00000040 */
88 #define IPCL_IPTUN 0x00000080 /* iptun module above us */
89 #define IPCL_DCCPCONN 0x00000100 /* From dccp_conn_cache */
90 #endif /* ! codereview */

92 #define IPCL_NONSTR 0x00001000 /* A non-STREAMS socket */
93 /* Unused 0x10000000 */

95 #define IPCL_REMOVED 0x00000100
96 #define IPCL_REUSED 0x00000200

98 #define IPCL_IS_CONNECTED(connp) \
99 ((connp)->conn_flags & IPCL_CONNECTED)

101 #define IPCL_IS_BOUND(connp) \
102 ((connp)->conn_flags & IPCL_BOUND)

104 /*
105 * Can’t use conn_proto since we need to tell difference
106 * between a real TCP socket and a SOCK_RAW, IPPROTO_TCP.
107 */
108 #define IPCL_IS_TCP(connp) \
109 ((connp)->conn_flags & IPCL_TCPCONN)

111 #define IPCL_IS_SCTP(connp) \
112 ((connp)->conn_flags & IPCL_SCTPCONN)

114 #define IPCL_IS_UDP(connp) \
115 ((connp)->conn_flags & IPCL_UDPCONN)

117 #define IPCL_IS_RAWIP(connp) \
118 ((connp)->conn_flags & IPCL_RAWIPCONN)

120 #define IPCL_IS_RTS(connp) \
121 ((connp)->conn_flags & IPCL_RTSCONN)

123 #define IPCL_IS_IPTUN(connp) \
124 ((connp)->conn_flags & IPCL_IPTUN)

126 #define IPCL_IS_DCCP(connp) \
127 ((connp)->conn_flags & IPCL_DCCPCONN)

new/usr/src/uts/common/inet/ipclassifier.h 3

129 #endif /* ! codereview */
130 #define IPCL_IS_NONSTR(connp) ((connp)->conn_flags & IPCL_NONSTR)

132 typedef struct connf_s connf_t;

134 typedef struct
135 {
136 int ctb_depth;
137 #define CONN_STACK_DEPTH 15
138 pc_t ctb_stack[CONN_STACK_DEPTH];
139 } conn_trace_t;

141 typedef struct ip_helper_minor_info_s {
142 dev_t ip_minfo_dev; /* Device */
143 vmem_t *ip_minfo_arena; /* Arena */
144 } ip_helper_minfo_t;

146 /*
147 * ip helper stream info
148 */
149 typedef struct ip_helper_stream_info_s {
150 ldi_handle_t iphs_handle;
151 queue_t *iphs_rq;
152 queue_t *iphs_wq;
153 ip_helper_minfo_t *iphs_minfo;
154 } ip_helper_stream_info_t;

156 /*
157 * Mandatory Access Control mode, in conn_t’s conn_mac_mode field.
158 * CONN_MAC_DEFAULT: strict enforcement of MAC.
159 * CONN_MAC_AWARE: allows communications between unlabeled systems
160 * and privileged daemons
161 * CONN_MAC_IMPLICIT: allows communications without explicit labels
162 * on the wire with privileged daemons.
163 *
164 * CONN_MAC_IMPLICIT is intended specifically for labeled IPsec key management
165 * in networks which don’t pass CIPSO-labeled packets.
166 */
167 #define CONN_MAC_DEFAULT 0
168 #define CONN_MAC_AWARE 1
169 #define CONN_MAC_IMPLICIT 2

171 /*
172 * conn receive ancillary definition.
173 *
174 * These are the set of socket options that make the receive side
175 * potentially pass up ancillary data items.
176 * We have a union with an integer so that we can quickly check whether
177 * any ancillary data items need to be added.
178 */
179 typedef struct crb_s {
180 union {
181 uint32_t crbu_all;
182 struct {
183 uint32_t
184 crbb_recvdstaddr : 1, /* IP_RECVDSTADDR option */
185 crbb_recvopts : 1, /* IP_RECVOPTS option */
186 crbb_recvif : 1, /* IP_RECVIF option */
187 crbb_recvslla : 1, /* IP_RECVSLLA option */

189 crbb_recvttl : 1, /* IP_RECVTTL option */
190 crbb_ip_recvpktinfo : 1, /* IP*_RECVPKTINFO option */
191 crbb_ipv6_recvhoplimit : 1, /* IPV6_RECVHOPLIMIT option */
192 crbb_ipv6_recvhopopts : 1, /* IPV6_RECVHOPOPTS option */

new/usr/src/uts/common/inet/ipclassifier.h 4

194 crbb_ipv6_recvdstopts : 1, /* IPV6_RECVDSTOPTS option */
195 crbb_ipv6_recvrthdr : 1, /* IPV6_RECVRTHDR option */
196 crbb_old_ipv6_recvdstopts : 1, /* old form of IPV6_DSTOPTS */
197 crbb_ipv6_recvrthdrdstopts : 1, /* IPV6_RECVRTHDRDSTOPTS */

199 crbb_ipv6_recvtclass : 1, /* IPV6_RECVTCLASS */
200 crbb_recvucred : 1, /* IP_RECVUCRED option */
201 crbb_timestamp : 1; /* SO_TIMESTAMP "socket" option */

203 } crbb;
204 } crbu;
205 } crb_t;

207 #define crb_all crbu.crbu_all
208 #define crb_recvdstaddr crbu.crbb.crbb_recvdstaddr
209 #define crb_recvopts crbu.crbb.crbb_recvopts
210 #define crb_recvif crbu.crbb.crbb_recvif
211 #define crb_recvslla crbu.crbb.crbb_recvslla
212 #define crb_recvttl crbu.crbb.crbb_recvttl
213 #define crb_ip_recvpktinfo crbu.crbb.crbb_ip_recvpktinfo
214 #define crb_ipv6_recvhoplimit crbu.crbb.crbb_ipv6_recvhoplimit
215 #define crb_ipv6_recvhopopts crbu.crbb.crbb_ipv6_recvhopopts
216 #define crb_ipv6_recvdstopts crbu.crbb.crbb_ipv6_recvdstopts
217 #define crb_ipv6_recvrthdr crbu.crbb.crbb_ipv6_recvrthdr
218 #define crb_old_ipv6_recvdstopts crbu.crbb.crbb_old_ipv6_recvdstopts
219 #define crb_ipv6_recvrthdrdstopts crbu.crbb.crbb_ipv6_recvrthdrdstopts
220 #define crb_ipv6_recvtclass crbu.crbb.crbb_ipv6_recvtclass
221 #define crb_recvucred crbu.crbb.crbb_recvucred
222 #define crb_timestamp crbu.crbb.crbb_timestamp

224 /*
225 * The initial fields in the conn_t are setup by the kmem_cache constructor,
226 * and are preserved when it is freed. Fields after that are bzero’ed when
227 * the conn_t is freed.
228 *
229 * Much of the conn_t is protected by conn_lock.
230 *
231 * conn_lock is also used by some ULPs (like UDP and RAWIP) to protect
232 * their state.
233 */
234 struct conn_s {
235 kmutex_t conn_lock;
236 uint32_t conn_ref; /* Reference counter */
237 uint32_t conn_flags; /* Conn Flags */

239 union {
240 tcp_t *cp_tcp; /* Pointer to the tcp struct */
241 struct udp_s *cp_udp; /* Pointer to the udp struct */
242 struct icmp_s *cp_icmp; /* Pointer to rawip struct */
243 struct rts_s *cp_rts; /* Pointer to rts struct */
244 struct iptun_s *cp_iptun; /* Pointer to iptun_t */
245 struct sctp_s *cp_sctp; /* For IPCL_SCTPCONN */
246 struct dccp_s *cp_dccp; /* Pointer to dccp struct */
247 #endif /* ! codereview */
248 void *cp_priv;
249 } conn_proto_priv;
250 #define conn_tcp conn_proto_priv.cp_tcp
251 #define conn_udp conn_proto_priv.cp_udp
252 #define conn_icmp conn_proto_priv.cp_icmp
253 #define conn_rts conn_proto_priv.cp_rts
254 #define conn_iptun conn_proto_priv.cp_iptun
255 #define conn_sctp conn_proto_priv.cp_sctp
256 #define conn_dccp conn_proto_priv.cp_dccp
257 #endif /* ! codereview */
258 #define conn_priv conn_proto_priv.cp_priv

new/usr/src/uts/common/inet/ipclassifier.h 5

260 kcondvar_t conn_cv;
261 uint8_t conn_proto; /* protocol type */

263 edesc_rpf conn_recv; /* Pointer to recv routine */
264 edesc_rpf conn_recvicmp; /* For ICMP error */
265 edesc_vpf conn_verifyicmp; /* Verify ICMP error */

267 ip_xmit_attr_t *conn_ixa; /* Options if no ancil data */

269 /* Fields after this are bzero’ed when the conn_t is freed. */
270 #define conn_start_clr conn_recv_ancillary

272 /* Options for receive-side ancillary data */
273 crb_t conn_recv_ancillary;

275 squeue_t *conn_sqp; /* Squeue for processing */
276 uint_t conn_state_flags; /* IP state flags */

278 int conn_lingertime; /* linger time (in seconds) */

280 unsigned int
281 conn_on_sqp : 1, /* Conn is being processed */
282 conn_linger : 1, /* SO_LINGER state */
283 conn_useloopback : 1, /* SO_USELOOPBACK state */
284 conn_broadcast : 1, /* SO_BROADCAST state */

286 conn_reuseaddr : 1, /* SO_REUSEADDR state */
287 conn_keepalive : 1, /* SO_KEEPALIVE state */
288 conn_multi_router : 1, /* Wants all multicast pkts */
289 conn_unspec_src : 1, /* IP_UNSPEC_SRC */

291 conn_policy_cached : 1, /* Is policy cached/latched ? */
292 conn_in_enforce_policy : 1, /* Enforce Policy on inbound */
293 conn_out_enforce_policy : 1, /* Enforce Policy on outbound */
294 conn_debug : 1, /* SO_DEBUG */

296 conn_ipv6_v6only : 1, /* IPV6_V6ONLY */
297 conn_oobinline : 1, /* SO_OOBINLINE state */
298 conn_dgram_errind : 1, /* SO_DGRAM_ERRIND state */
299 conn_exclbind : 1, /* SO_EXCLBIND state */

301 conn_mdt_ok : 1, /* MDT is permitted */
302 conn_allzones : 1, /* SO_ALLZONES */
303 conn_ipv6_recvpathmtu : 1, /* IPV6_RECVPATHMTU */
304 conn_mcbc_bind : 1, /* Bound to multi/broadcast */

306 conn_pad_to_bit_31 : 12;

308 boolean_t conn_blocked; /* conn is flow-controlled */

310 squeue_t *conn_initial_sqp; /* Squeue at open time */
311 squeue_t *conn_final_sqp; /* Squeue after connect */
312 ill_t *conn_dhcpinit_ill; /* IP_DHCPINIT_IF */
313 ipsec_latch_t *conn_latch; /* latched IDS */
314 struct ipsec_policy_s *conn_latch_in_policy; /* latched policy (in) */
315 struct ipsec_action_s *conn_latch_in_action; /* latched action (in) */
316 uint_t conn_bound_if; /* IP*_BOUND_IF */
317 queue_t *conn_rq; /* Read queue */
318 queue_t *conn_wq; /* Write queue */
319 dev_t conn_dev; /* Minor number */
320 vmem_t *conn_minor_arena; /* Minor arena */
321 ip_helper_stream_info_t *conn_helper_info;

323 cred_t *conn_cred; /* Credentials */
324 pid_t conn_cpid; /* pid from open/connect */
325 uint64_t conn_open_time; /* time when this was opened */

new/usr/src/uts/common/inet/ipclassifier.h 6

327 connf_t *conn_g_fanout; /* Global Hash bucket head */
328 struct conn_s *conn_g_next; /* Global Hash chain next */
329 struct conn_s *conn_g_prev; /* Global Hash chain prev */
330 struct ipsec_policy_head_s *conn_policy; /* Configured policy */
331 in6_addr_t conn_bound_addr_v6; /* Address in bind() */
332 #define conn_bound_addr_v4 V4_PART_OF_V6(conn_bound_addr_v6)
333 connf_t *conn_fanout; /* Hash bucket we’re part of */
334 struct conn_s *conn_next; /* Hash chain next */
335 struct conn_s *conn_prev; /* Hash chain prev */

337 struct {
338 in6_addr_t connua_laddr; /* Local address - match */
339 in6_addr_t connua_faddr; /* Remote address */
340 } connua_v6addr;
341 #define conn_laddr_v4 V4_PART_OF_V6(connua_v6addr.connua_laddr)
342 #define conn_faddr_v4 V4_PART_OF_V6(connua_v6addr.connua_faddr)
343 #define conn_laddr_v6 connua_v6addr.connua_laddr
344 #define conn_faddr_v6 connua_v6addr.connua_faddr
345 in6_addr_t conn_saddr_v6; /* Local address - source */
346 #define conn_saddr_v4 V4_PART_OF_V6(conn_saddr_v6)

348 union {
349 /* Used for classifier match performance */
350 uint32_t connu_ports2;
351 struct {
352 in_port_t connu_fport; /* Remote port */
353 in_port_t connu_lport; /* Local port */
354 } connu_ports;
355 } u_port;
356 #define conn_fport u_port.connu_ports.connu_fport
357 #define conn_lport u_port.connu_ports.connu_lport
358 #define conn_ports u_port.connu_ports2

360 uint_t conn_incoming_ifindex; /* IP{,V6}_BOUND_IF, scopeid */
361 ill_t *conn_oper_pending_ill; /* pending shared ioctl */

363 krwlock_t conn_ilg_lock; /* Protects conn_ilg_* */
364 ilg_t *conn_ilg; /* Group memberships */

366 kcondvar_t conn_refcv; /* For conn_oper_pending_ill */

368 struct conn_s *conn_drain_next; /* Next conn in drain list */
369 struct conn_s *conn_drain_prev; /* Prev conn in drain list */
370 idl_t *conn_idl; /* Ptr to the drain list head */
371 mblk_t *conn_ipsec_opt_mp; /* ipsec option mblk */
372 zoneid_t conn_zoneid; /* zone connection is in */
373 int conn_rtaware; /* RT_AWARE sockopt value */
374 kcondvar_t conn_sq_cv; /* For non-STREAMS socket IO */
375 sock_upcalls_t *conn_upcalls; /* Upcalls to sockfs */
376 sock_upper_handle_t conn_upper_handle; /* Upper handle: sonode * */

378 unsigned int
379 conn_mlp_type : 2, /* mlp_type_t; tsol/tndb.h */
380 conn_anon_mlp : 1, /* user wants anon MLP */
381 conn_anon_port : 1, /* user bound anonymously */

383 conn_mac_mode : 2, /* normal/loose/implicit MAC */
384 conn_anon_priv_bind : 1, /* *_ANON_PRIV_BIND state */
385 conn_zone_is_global : 1, /* GLOBAL_ZONEID */
386 conn_isvrrp : 1, /* VRRP control socket */
387 conn_spare : 23;

389 boolean_t conn_flow_cntrld;
390 netstack_t *conn_netstack; /* Corresponds to a netstack_hold */

new/usr/src/uts/common/inet/ipclassifier.h 7

392 /*
393 * IP format that packets received for this struct should use.
394 * Value can be IP4_VERSION or IPV6_VERSION.
395 * The sending version is encoded using IXAF_IS_IPV4.
396 */
397 ushort_t conn_ipversion;

399 /* Written to only once at the time of opening the endpoint */
400 sa_family_t conn_family; /* Family from socket() call */
401 uint_t conn_so_type; /* Type from socket() call */

403 uint_t conn_sndbuf; /* SO_SNDBUF state */
404 uint_t conn_rcvbuf; /* SO_RCVBUF state */
405 uint_t conn_wroff; /* Current write offset */

407 uint_t conn_sndlowat; /* Send buffer low water mark */
408 uint_t conn_rcvlowat; /* Recv buffer low water mark */

410 uint8_t conn_default_ttl; /* Default TTL/hoplimit */

412 uint32_t conn_flowinfo; /* Connected flow id and tclass */

414 /*
415 * The most recent address for sendto. Initially set to zero
416 * which is always different than then the destination address
417 * since the send interprets zero as the loopback address.
418 */
419 in6_addr_t conn_v6lastdst;
420 #define conn_v4lastdst V4_PART_OF_V6(conn_v6lastdst)
421 ushort_t conn_lastipversion;
422 in_port_t conn_lastdstport;
423 uint32_t conn_lastflowinfo; /* IPv6-only */
424 uint_t conn_lastscopeid; /* IPv6-only */
425 uint_t conn_lastsrcid; /* Only for AF_INET6 */
426 /*
427 * When we are not connected conn_saddr might be unspecified.
428 * We track the source that was used with conn_v6lastdst here.
429 */
430 in6_addr_t conn_v6lastsrc;
431 #define conn_v4lastsrc V4_PART_OF_V6(conn_v6lastsrc)

433 /* Templates for transmitting packets */
434 ip_pkt_t conn_xmit_ipp; /* Options if no ancil data */

436 /*
437 * Header template - conn_ht_ulp is a pointer into conn_ht_iphc.
438 * Note that ixa_ip_hdr_length indicates the offset of ht_ulp in
439 * ht_iphc
440 *
441 * The header template is maintained for connected endpoints (and
442 * updated when sticky options are changed) and also for the lastdst.
443 * There is no conflict between those usages since SOCK_DGRAM and
444 * SOCK_RAW can not be used to specify a destination address (with
445 * sendto/sendmsg) if the socket has been connected.
446 */
447 uint8_t *conn_ht_iphc; /* Start of IP header */
448 uint_t conn_ht_iphc_allocated; /* Allocated buffer size */
449 uint_t conn_ht_iphc_len; /* IP+ULP size */
450 uint8_t *conn_ht_ulp; /* Upper-layer header */
451 uint_t conn_ht_ulp_len; /* ULP header len */

453 /* Checksum to compensate for source routed packets. Host byte order */
454 uint32_t conn_sum;

456 uint32_t conn_ioctlref; /* ioctl ref count */
457 #ifdef CONN_DEBUG

new/usr/src/uts/common/inet/ipclassifier.h 8

458 #define CONN_TRACE_MAX 10
459 int conn_trace_last; /* ndx of last used tracebuf */
460 conn_trace_t conn_trace_buf[CONN_TRACE_MAX];
461 #endif
462 };

464 /*
465 * connf_t - connection fanout data.
466 *
467 * The hash tables and their linkage (conn_t.{hashnextp, hashprevp} are
468 * protected by the per-bucket lock. Each conn_t inserted in the list
469 * points back at the connf_t that heads the bucket.
470 */
471 struct connf_s {
472 struct conn_s *connf_head;
473 kmutex_t connf_lock;
474 };

476 #define CONN_INC_REF(connp) { \
477 mutex_enter(&(connp)->conn_lock); \
478 DTRACE_PROBE1(conn__inc__ref, conn_t *, connp); \
479 ASSERT(conn_trace_ref(connp)); \
480 (connp)->conn_ref++; \
481 ASSERT((connp)->conn_ref != 0); \
482 mutex_exit(&(connp)->conn_lock); \
483 }

485 #define CONN_INC_REF_LOCKED(connp) { \
486 DTRACE_PROBE1(conn__inc__ref, conn_t *, connp); \
487 ASSERT(MUTEX_HELD(&(connp)->conn_lock)); \
488 ASSERT(conn_trace_ref(connp)); \
489 (connp)->conn_ref++; \
490 ASSERT((connp)->conn_ref != 0); \
491 }

493 #define CONN_DEC_REF(connp) { \
494 mutex_enter(&(connp)->conn_lock); \
495 DTRACE_PROBE1(conn__dec__ref, conn_t *, connp); \
496 /* \
497 * The squeue framework always does a CONN_DEC_REF after return \
498 * from TCP. Hence the refcnt must be at least 2 if conn_on_sqp \
499 * is B_TRUE and conn_ref is being decremented. This is to \
500 * account for the mblk being currently processed. \
501 */ \
502 if ((connp)->conn_ref == 0 || \
503 ((connp)->conn_ref == 1 && (connp)->conn_on_sqp)) \
504 cmn_err(CE_PANIC, "CONN_DEC_REF: connp(%p) has ref " \
505 "= %d\n", (void *)(connp), (connp)->conn_ref); \
506 ASSERT(conn_untrace_ref(connp)); \
507 (connp)->conn_ref--; \
508 if ((connp)->conn_ref == 0) { \
509 /* Refcnt can’t increase again, safe to drop lock */ \
510 mutex_exit(&(connp)->conn_lock); \
511 ipcl_conn_destroy(connp); \
512 } else { \
513 cv_broadcast(&(connp)->conn_cv); \
514 mutex_exit(&(connp)->conn_lock); \
515 } \
516 }

518 /*
519 * For use with subsystems within ip which use ALL_ZONES as a wildcard
520 */
521 #define IPCL_ZONEID(connp) \
522 ((connp)->conn_allzones ? ALL_ZONES : (connp)->conn_zoneid)

new/usr/src/uts/common/inet/ipclassifier.h 9

524 /*
525 * For matching between a conn_t and a zoneid.
526 */
527 #define IPCL_ZONE_MATCH(connp, zoneid) \
528 (((connp)->conn_allzones) || \
529 ((zoneid) == ALL_ZONES) || \
530 (connp)->conn_zoneid == (zoneid))

532 /*
533 * On a labeled system, we must treat bindings to ports
534 * on shared IP addresses by sockets with MAC exemption
535 * privilege as being in all zones, as there’s
536 * otherwise no way to identify the right receiver.
537 */

539 #define IPCL_CONNS_MAC(conn1, conn2) \
540 (((conn1)->conn_mac_mode != CONN_MAC_DEFAULT) || \
541 ((conn2)->conn_mac_mode != CONN_MAC_DEFAULT))

543 #define IPCL_BIND_ZONE_MATCH(conn1, conn2) \
544 (IPCL_CONNS_MAC(conn1, conn2) || \
545 IPCL_ZONE_MATCH(conn1, conn2->conn_zoneid) || \
546 IPCL_ZONE_MATCH(conn2, conn1->conn_zoneid))

549 #define _IPCL_V4_MATCH(v6addr, v4addr) \
550 (V4_PART_OF_V6((v6addr)) == (v4addr) && IN6_IS_ADDR_V4MAPPED(&(v6addr)))

552 #define _IPCL_V4_MATCH_ANY(addr) \
553 (IN6_IS_ADDR_V4MAPPED_ANY(&(addr)) || IN6_IS_ADDR_UNSPECIFIED(&(addr)))

556 /*
557 * IPCL_PROTO_MATCH() and IPCL_PROTO_MATCH_V6() only matches conns with
558 * the specified ira_zoneid or conn_allzones by calling conn_wantpacket.
559 */
560 #define IPCL_PROTO_MATCH(connp, ira, ipha) \
561 ((((connp)->conn_laddr_v4 == INADDR_ANY) || \
562 (((connp)->conn_laddr_v4 == ((ipha)->ipha_dst)) && \
563 (((connp)->conn_faddr_v4 == INADDR_ANY) || \
564 ((connp)->conn_faddr_v4 == ((ipha)->ipha_src))))) && \
565 conn_wantpacket((connp), (ira), (ipha)))

567 #define IPCL_PROTO_MATCH_V6(connp, ira, ip6h) \
568 ((IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_laddr_v6) || \
569 (IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, &((ip6h)->ip6_dst)) && \
570 (IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_faddr_v6) || \
571 IN6_ARE_ADDR_EQUAL(&(connp)->conn_faddr_v6, &((ip6h)->ip6_src))))) && \
572 (conn_wantpacket_v6((connp), (ira), (ip6h))))

574 #define IPCL_CONN_HASH(src, ports, ipst) \
575 ((unsigned)(ntohl((src)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \
576 ((ports) >> 8) ^ (ports)) % (ipst)->ips_ipcl_conn_fanout_size)

578 #define IPCL_CONN_HASH_V6(src, ports, ipst) \
579 IPCL_CONN_HASH(V4_PART_OF_V6((src)), (ports), (ipst))

581 #define IPCL_CONN_MATCH(connp, proto, src, dst, ports) \
582 ((connp)->conn_proto == (proto) && \
583 (connp)->conn_ports == (ports) && \
584 _IPCL_V4_MATCH((connp)->conn_faddr_v6, (src)) && \
585 _IPCL_V4_MATCH((connp)->conn_laddr_v6, (dst)) && \
586 !(connp)->conn_ipv6_v6only)

588 #define IPCL_CONN_MATCH_V6(connp, proto, src, dst, ports) \
589 ((connp)->conn_proto == (proto) && \

new/usr/src/uts/common/inet/ipclassifier.h 10

590 (connp)->conn_ports == (ports) && \
591 IN6_ARE_ADDR_EQUAL(&(connp)->conn_faddr_v6, &(src)) && \
592 IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, &(dst)))

594 #define IPCL_PORT_HASH(port, size) \
595 ((((port) >> 8) ^ (port)) & ((size) - 1))

597 #define IPCL_BIND_HASH(lport, ipst) \
598 ((unsigned)(((lport) >> 8) ^ (lport)) % \
599 (ipst)->ips_ipcl_bind_fanout_size)

601 #define IPCL_BIND_MATCH(connp, proto, laddr, lport) \
602 ((connp)->conn_proto == (proto) && \
603 (connp)->conn_lport == (lport) && \
604 (_IPCL_V4_MATCH_ANY((connp)->conn_laddr_v6) || \
605 _IPCL_V4_MATCH((connp)->conn_laddr_v6, (laddr))) && \
606 !(connp)->conn_ipv6_v6only)

608 #define IPCL_BIND_MATCH_V6(connp, proto, laddr, lport) \
609 ((connp)->conn_proto == (proto) && \
610 (connp)->conn_lport == (lport) && \
611 (IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, &(laddr)) || \
612 IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_laddr_v6)))

614 /*
615 * We compare conn_laddr since it captures both connected and a bind to
616 * a multicast or broadcast address.
617 * The caller needs to match the zoneid and also call conn_wantpacket
618 * for multicast, broadcast, or when conn_incoming_ifindex is set.
619 */
620 #define IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr) \
621 (((connp)->conn_lport == (lport)) && \
622 ((_IPCL_V4_MATCH_ANY((connp)->conn_laddr_v6) || \
623 (_IPCL_V4_MATCH((connp)->conn_laddr_v6, (laddr)) && \
624 (_IPCL_V4_MATCH_ANY((connp)->conn_faddr_v6) || \
625 (_IPCL_V4_MATCH((connp)->conn_faddr_v6, (faddr)) && \
626 (connp)->conn_fport == (fport)))))) && \
627 !(connp)->conn_ipv6_v6only)

629 /*
630 * We compare conn_laddr since it captures both connected and a bind to
631 * a multicast or broadcast address.
632 * The caller needs to match the zoneid and also call conn_wantpacket_v6
633 * for multicast or when conn_incoming_ifindex is set.
634 */
635 #define IPCL_UDP_MATCH_V6(connp, lport, laddr, fport, faddr) \
636 (((connp)->conn_lport == (lport)) && \
637 (IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_laddr_v6) || \
638 (IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, &(laddr)) && \
639 (IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_faddr_v6) || \
640 (IN6_ARE_ADDR_EQUAL(&(connp)->conn_faddr_v6, &(faddr)) && \
641 (connp)->conn_fport == (fport))))))

643 #define IPCL_IPTUN_HASH(laddr, faddr) \
644 ((ntohl(laddr) ^ ((ntohl(faddr) << 24) | (ntohl(faddr) >> 8))) % \
645 ipcl_iptun_fanout_size)

647 #define IPCL_IPTUN_HASH_V6(laddr, faddr) \
648 IPCL_IPTUN_HASH((laddr)->s6_addr32[0] ^ (laddr)->s6_addr32[1] ^ \
649 (faddr)->s6_addr32[2] ^ (faddr)->s6_addr32[3], \
650 (faddr)->s6_addr32[0] ^ (faddr)->s6_addr32[1] ^ \
651 (laddr)->s6_addr32[2] ^ (laddr)->s6_addr32[3])

653 #define IPCL_IPTUN_MATCH(connp, laddr, faddr) \
654 (_IPCL_V4_MATCH((connp)->conn_laddr_v6, (laddr)) && \
655 _IPCL_V4_MATCH((connp)->conn_faddr_v6, (faddr)))

new/usr/src/uts/common/inet/ipclassifier.h 11

657 #define IPCL_IPTUN_MATCH_V6(connp, laddr, faddr) \
658 (IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, (laddr)) && \
659 IN6_ARE_ADDR_EQUAL(&(connp)->conn_faddr_v6, (faddr)))

661 #define IPCL_UDP_HASH(lport, ipst) \
662 IPCL_PORT_HASH(lport, (ipst)->ips_ipcl_udp_fanout_size)

664 #define IPCL_DCCP_HASH(lport, ipst) \
665 IPCL_PORT_HASH(lport, (ipst)->ips_ipcl_dccp_fanout_size)

667 #endif /* ! codereview */
668 #define CONN_G_HASH_SIZE 1024

670 /* Raw socket hash function. */
671 #define IPCL_RAW_HASH(lport, ipst) \
672 IPCL_PORT_HASH(lport, (ipst)->ips_ipcl_raw_fanout_size)

674 /*
675 * This is similar to IPCL_BIND_MATCH except that the local port check
676 * is changed to a wildcard port check.
677 * We compare conn_laddr since it captures both connected and a bind to
678 * a multicast or broadcast address.
679 */
680 #define IPCL_RAW_MATCH(connp, proto, laddr) \
681 ((connp)->conn_proto == (proto) && \
682 (connp)->conn_lport == 0 && \
683 (_IPCL_V4_MATCH_ANY((connp)->conn_laddr_v6) || \
684 _IPCL_V4_MATCH((connp)->conn_laddr_v6, (laddr))))

686 #define IPCL_RAW_MATCH_V6(connp, proto, laddr) \
687 ((connp)->conn_proto == (proto) && \
688 (connp)->conn_lport == 0 && \
689 (IN6_IS_ADDR_UNSPECIFIED(&(connp)->conn_laddr_v6) || \
690 IN6_ARE_ADDR_EQUAL(&(connp)->conn_laddr_v6, &(laddr))))

692 /* Function prototypes */
693 extern void ipcl_g_init(void);
694 extern void ipcl_init(ip_stack_t *);
695 extern void ipcl_g_destroy(void);
696 extern void ipcl_destroy(ip_stack_t *);
697 extern conn_t *ipcl_conn_create(uint32_t, int, netstack_t *);
698 extern void ipcl_conn_destroy(conn_t *);

700 void ipcl_hash_insert_wildcard(connf_t *, conn_t *);
701 void ipcl_hash_remove(conn_t *);
702 void ipcl_hash_remove_locked(conn_t *connp, connf_t *connfp);

704 extern int ipcl_bind_insert(conn_t *);
705 extern int ipcl_bind_insert_v4(conn_t *);
706 extern int ipcl_bind_insert_v6(conn_t *);
707 extern int ipcl_conn_insert(conn_t *);
708 extern int ipcl_conn_insert_v4(conn_t *);
709 extern int ipcl_conn_insert_v6(conn_t *);
710 extern conn_t *ipcl_get_next_conn(connf_t *, conn_t *, uint32_t);

712 conn_t *ipcl_classify_v4(mblk_t *, uint8_t, uint_t, ip_recv_attr_t *,
713 ip_stack_t *);
714 conn_t *ipcl_classify_v6(mblk_t *, uint8_t, uint_t, ip_recv_attr_t *,
715 ip_stack_t *);
716 conn_t *ipcl_classify(mblk_t *, ip_recv_attr_t *, ip_stack_t *);
717 conn_t *ipcl_classify_raw(mblk_t *, uint8_t, uint32_t, ipha_t *,
718 ip6_t *, ip_recv_attr_t *, ip_stack_t *);
719 conn_t *ipcl_iptun_classify_v4(ipaddr_t *, ipaddr_t *, ip_stack_t *);
720 conn_t *ipcl_iptun_classify_v6(in6_addr_t *, in6_addr_t *, ip_stack_t *);
721 void ipcl_globalhash_insert(conn_t *);

new/usr/src/uts/common/inet/ipclassifier.h 12

722 void ipcl_globalhash_remove(conn_t *);
723 void ipcl_walk(pfv_t, void *, ip_stack_t *);
724 conn_t *ipcl_tcp_lookup_reversed_ipv4(ipha_t *, tcpha_t *, int, ip_stack_t *);
725 conn_t *ipcl_tcp_lookup_reversed_ipv6(ip6_t *, tcpha_t *, int, uint_t,
726 ip_stack_t *);
727 conn_t *ipcl_lookup_listener_v4(uint16_t, ipaddr_t, zoneid_t, ip_stack_t *);
728 conn_t *ipcl_lookup_listener_v6(uint16_t, in6_addr_t *, uint_t, zoneid_t,
729 ip_stack_t *);
730 int conn_trace_ref(conn_t *);
731 int conn_untrace_ref(conn_t *);
732 void ipcl_conn_cleanup(conn_t *);
733 extern uint_t conn_recvancillary_size(conn_t *, crb_t, ip_recv_attr_t *,
734 mblk_t *, ip_pkt_t *);
735 extern void conn_recvancillary_add(conn_t *, crb_t, ip_recv_attr_t *,
736 ip_pkt_t *, uchar_t *, uint_t);
737 conn_t *ipcl_conn_tcp_lookup_reversed_ipv4(conn_t *, ipha_t *, tcpha_t *,
738 ip_stack_t *);
739 conn_t *ipcl_conn_tcp_lookup_reversed_ipv6(conn_t *, ip6_t *, tcpha_t *,
740 ip_stack_t *);

742 extern int ip_create_helper_stream(conn_t *, ldi_ident_t);
743 extern void ip_free_helper_stream(conn_t *);
744 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int,
745 cred_t *, boolean_t);

747 #ifdef __cplusplus
748 }
749 #endif

751 #endif /* _INET_IPCLASSIFIER_H */

new/usr/src/uts/common/inet/mib2.h 1

**
 61137 Wed Jun 13 12:05:11 2012
new/usr/src/uts/common/inet/mib2.h
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
22 */
23 /* Copyright (c) 1990 Mentat Inc. */

25 #ifndef _INET_MIB2_H
26 #define _INET_MIB2_H

28 #include <netinet/in.h> /* For in6_addr_t */
29 #include <sys/tsol/label.h> /* For brange_t */
30 #include <sys/tsol/label_macro.h> /* For brange_t */

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 /*
37 * The IPv6 parts of this are derived from:
38 * RFC 2465
39 * RFC 2466
40 * RFC 2452
41 * RFC 2454
42 */

44 /*
45 * SNMP set/get via M_PROTO T_OPTMGMT_REQ. Structure is that used
46 * for [gs]etsockopt() calls. get uses T_CURRENT, set uses T_NEOGTIATE
47 * MGMT_flags value. The following definition of opthdr is taken from
48 * socket.h:
49 *
50 * An option specification consists of an opthdr, followed by the value of
51 * the option. An options buffer contains one or more options. The len
52 * field of opthdr specifies the length of the option value in bytes. This
53 * length must be a multiple of sizeof(long) (use OPTLEN macro).
54 *
55 * struct opthdr {
56 * long level; protocol level affected
57 * long name; option to modify
58 * long len; length of option value
59 * };
60 *
61 * #define OPTLEN(x) ((((x) + sizeof(long) - 1) / sizeof(long)) * sizeof(long))

new/usr/src/uts/common/inet/mib2.h 2

62 * #define OPTVAL(opt) ((char *)(opt + 1))
63 *
64 * For get requests (T_CURRENT), any MIB2_xxx value can be used (only
65 * "get all" is supported, so all modules get a copy of the request to
66 * return everything it knows. In general, we use MIB2_IP. There is
67 * one exception: in general, IP will not report information related to
68 * ire_testhidden and IRE_IF_CLONE routes (e.g., in the MIB2_IP_ROUTE
69 * table). However, using the special value EXPER_IP_AND_ALL_IRES will cause
70 * all information to be reported. This special value should only be
71 * used by IPMP-aware low-level utilities (e.g. in.mpathd).
72 *
73 * IMPORTANT: some fields are grouped in a different structure than
74 * suggested by MIB-II, e.g., checksum error counts. The original MIB-2
75 * field name has been retained. Field names beginning with "mi" are not
76 * defined in the MIB but contain important & useful information maintained
77 * by the corresponding module.
78 */
79 #ifndef IPPROTO_MAX
80 #define IPPROTO_MAX 256
81 #endif

83 #define MIB2_SYSTEM (IPPROTO_MAX+1)
84 #define MIB2_INTERFACES (IPPROTO_MAX+2)
85 #define MIB2_AT (IPPROTO_MAX+3)
86 #define MIB2_IP (IPPROTO_MAX+4)
87 #define MIB2_ICMP (IPPROTO_MAX+5)
88 #define MIB2_TCP (IPPROTO_MAX+6)
89 #define MIB2_UDP (IPPROTO_MAX+7)
90 #define MIB2_EGP (IPPROTO_MAX+8)
91 #define MIB2_CMOT (IPPROTO_MAX+9)
92 #define MIB2_TRANSMISSION (IPPROTO_MAX+10)
93 #define MIB2_SNMP (IPPROTO_MAX+11)
94 #define MIB2_IP6 (IPPROTO_MAX+12)
95 #define MIB2_ICMP6 (IPPROTO_MAX+13)
96 #define MIB2_TCP6 (IPPROTO_MAX+14)
97 #define MIB2_UDP6 (IPPROTO_MAX+15)
98 #define MIB2_SCTP (IPPROTO_MAX+16)
99 #define MIB2_DCCP (IPPROTO_MAX+17)
100 #endif /* ! codereview */

102 /*
103 * Define range of levels for use with MIB2_*
104 */
105 #define MIB2_RANGE_START (IPPROTO_MAX+1)
106 #define MIB2_RANGE_END (IPPROTO_MAX+17)
99 #define MIB2_RANGE_END (IPPROTO_MAX+16)

109 #define EXPER 1024 /* experimental - not part of mib */
110 #define EXPER_IGMP (EXPER+1)
111 #define EXPER_DVMRP (EXPER+2)
112 #define EXPER_RAWIP (EXPER+3)
113 #define EXPER_IP_AND_ALL_IRES (EXPER+4)

115 /*
116 * Define range of levels for experimental use
117 */
118 #define EXPER_RANGE_START (EXPER+1)
119 #define EXPER_RANGE_END (EXPER+4)

121 #define BUMP_MIB(s, x) { \
122 extern void __dtrace_probe___mib_##x(int, void *); \
123 void *stataddr = &((s)->x); \
124 __dtrace_probe___mib_##x(1, stataddr); \
125 (s)->x++; \
126 }

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/mib2.h 3

1787 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1788 #pragma pack()
1789 #endif

1791 /*
1792 * the DCCP group
1793 */
1794 #define MIB2_DCCP_CONN 18

1796 #define MIB2_DCCP_closed 1
1797 #define MIB2_DCCP_listen 2

1799 /* Pack data to make struct size the same for 32- and 64-bits */
1800 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1801 #pragma pack(4)
1802 #endif

1804 typedef struct mib2_dccp {

1806 Counter dccpActiveOpens;

1808 int dccpEntrySize;
1809 } mib2_dccp_t;

1811 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1812 #pragma pack()
1813 #endif

1815 /* Pack data to make struct size the same for 32- and 64-bits */
1816 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1817 #pragma pack(4)
1818 #endif

1820 typedef struct mib2_dccpConnEntry {
1821 int dccpConnState;
1822 IpAddress dccpConnLocalAddress;
1823 int dccpConnLocalPort;
1824 IpAddress dccpConnRemAddress;
1825 int dccpConnRemPort;

1827 uint32_t dccpConnCreationProcess;
1828 uint64_t dccpConnCreationTime;
1829 } mib2_dccpConnEntry_t;
1830 #define MIB_FIRST_NEW_ELM_mib2_dccpConnEntry_t dccpConnCreationProcess

1832 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1833 #pragma pack()
1834 #endif
1835 #endif /* ! codereview */

1837 #ifdef __cplusplus
1838 }
1839 #endif

1841 #endif /* _INET_MIB2_H */

new/usr/src/uts/common/inet/sctp/sctp_impl.h 1

**
 46352 Wed Jun 13 12:05:13 2012
new/usr/src/uts/common/inet/sctp/sctp_impl.h
%B
**
______unchanged_portion_omitted_

428 /*
429 * Bind hash array size and hash function. The size must be a power
430 * of 2 and lport must be in host byte order.
431 */
432 #define SCTP_BIND_FANOUT_SIZE 2048
433 #define SCTP_BIND_HASH(lport) (((lport) * 31) & (SCTP_BIND_FANOUT_SIZE - 1))

435 /* options that SCTP negotiates during association establishment */
436 #define SCTP_PRSCTP_OPTION 0x01

438 /*
439 * Listener hash array size and hash function. The size must be a power
440 * of 2 and lport must be in host byte order.
441 */
442 #define SCTP_LISTEN_FANOUT_SIZE 512
443 #define SCTP_LISTEN_HASH(lport) (((lport) * 31) & (SCTP_LISTEN_FANOUT_SIZE - 1))

445 typedef struct sctp_tf_s {
446 struct sctp_s *tf_sctp;
447 kmutex_t tf_lock;
448 #define SF_CACHEL_PAD 64
449 uchar_t tf_pad[SF_CACHEL_PAD - (sizeof (struct sctp_s *) +
450 sizeof (kmutex_t))];
451 #endif /* ! codereview */
452 } sctp_tf_t;

454 /* Round up the value to the nearest mss. */
455 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss))

457 extern sin_t sctp_sin_null; /* Zero address for quick clears */
458 extern sin6_t sctp_sin6_null; /* Zero address for quick clears */

460 #define SCTP_IS_DETACHED(sctp) ((sctp)->sctp_detached)

462 /* Data structure used to track received TSNs */
463 typedef struct sctp_set_s {
464 struct sctp_set_s *next;
465 struct sctp_set_s *prev;
466 uint32_t begin;
467 uint32_t end;
468 } sctp_set_t;

470 /* Data structure used to track TSNs for PR-SCTP */
471 typedef struct sctp_ftsn_set_s {
472 struct sctp_ftsn_set_s *next;
473 ftsn_entry_t ftsn_entries;
474 } sctp_ftsn_set_t;

476 /* Data structure used to track incoming SCTP streams */
477 typedef struct sctp_instr_s {
478 mblk_t *istr_msgs;
479 int istr_nmsgs;
480 uint16_t nextseq;
481 struct sctp_s *sctp;
482 mblk_t *istr_reass;
483 } sctp_instr_t;

485 /* Reassembly data structure (per-stream) */
486 typedef struct sctp_reass_s {

new/usr/src/uts/common/inet/sctp/sctp_impl.h 2

487 uint16_t sr_ssn;
488 uint16_t sr_needed;
489 uint16_t sr_got;
490 uint16_t sr_msglen; /* len of consecutive fragments */
491 /* from the begining (B-bit) */
492 mblk_t *sr_tail;
493 boolean_t sr_hasBchunk; /* If the fragment list begins with */
494 /* a B-bit set chunk */
495 uint32_t sr_nexttsn; /* TSN of the next fragment we */
496 /* are expecting */
497 boolean_t sr_partial_delivered;
498 } sctp_reass_t;

500 /* debugging */
501 #undef dprint
502 #ifdef DEBUG
503 extern int sctpdebug;
504 #define dprint(level, args) { if (sctpdebug > (level)) printf args; }
505 #else
506 #define dprint(level, args) {}
507 #endif

510 /* Peer address tracking */

512 /*
513 * States for peer addresses
514 *
515 * SCTP_FADDRS_UNCONFIRMED: we have not communicated with this peer address
516 * before, mark it as unconfirmed so that we will not send data to it.
517 * All addresses initially are in unconfirmed state and required
518 * validation. SCTP sends a heartbeat to each of them and when it gets
519 * back a heartbeat ACK, the address will be marked as alive. This
520 * validation fixes a security issue with multihoming. If an attacker
521 * establishes an association with us and tells us that it has addresses
522 * belonging to another host A, this will prevent A from communicating
523 * with us. This is fixed by peer address validation. In the above case,
524 * A will respond with an abort.
525 *
526 * SCTP_FADDRS_ALIVE: this peer address is alive and we can communicate with
527 * it with no problem.
528 *
529 * SCTP_FADDRS_DOWN: we have exceeded the retransmission limit to this
530 * peer address. Once an address is marked down, we will only send
531 * a heartbeat to it every hb_interval in case it becomes alive now.
532 *
533 * SCTP_FADDRS_UNREACH: there is no suitable source address to send to
534 * this peer address. For example, the peer address is v6 but we only
535 * have v4 addresses. It is marked unreachable until there is an
536 * address configuration change. At that time, mark these addresses
537 * as unconfirmed and try again to see if those unreachable addresses
538 * are OK as we may have more source addresses.
539 */
540 typedef enum {
541 SCTP_FADDRS_UNREACH,
542 SCTP_FADDRS_DOWN,
543 SCTP_FADDRS_ALIVE,
544 SCTP_FADDRS_UNCONFIRMED
545 } faddr_state_t;

547 typedef struct sctp_faddr_s {
548 struct sctp_faddr_s *sf_next;
549 faddr_state_t sf_state;

551 in6_addr_t sf_faddr;
552 in6_addr_t sf_saddr;

new/usr/src/uts/common/inet/sctp/sctp_impl.h 3

554 int64_t sf_hb_expiry; /* time to retransmit heartbeat */
555 uint32_t sf_hb_interval; /* the heartbeat interval */

557 int sf_rto; /* RTO in tick */
558 int sf_srtt; /* Smoothed RTT in tick */
559 int sf_rttvar; /* RTT variance in tick */
560 uint32_t sf_rtt_updates;
561 int sf_strikes;
562 int sf_max_retr;
563 uint32_t sf_pmss;
564 uint32_t sf_cwnd;
565 uint32_t sf_ssthresh;
566 uint32_t sf_suna; /* sent - unack’ed */
567 uint32_t sf_pba; /* partial bytes acked */
568 uint32_t sf_acked;
569 int64_t sf_lastactive;
570 mblk_t *sf_timer_mp; /* retransmission timer control */
571 uint32_t
572 sf_hb_pending : 1,
573 sf_timer_running : 1,
574 sf_df : 1,
575 sf_pmtu_discovered : 1,

577 sf_rc_timer_running : 1,
578 sf_isv4 : 1,
579 sf_hb_enabled : 1;

581 mblk_t *sf_rc_timer_mp; /* reliable control chunk timer */
582 ip_xmit_attr_t *sf_ixa; /* Transmit attributes */
583 uint32_t sf_T3expire; /* # of times T3 timer expired */

585 uint64_t sf_hb_secret; /* per addr "secret" in heartbeat */
586 uint32_t sf_rxt_unacked; /* # unack’ed retransmitted bytes */
587 } sctp_faddr_t;

589 /* Flags to indicate supported address type in the PARM_SUP_ADDRS. */
590 #define PARM_SUPP_V6 0x1
591 #define PARM_SUPP_V4 0x2

593 /*
594 * Set heartbeat interval plus jitter. The jitter is supposed to be random,
595 * up to +/- 50% of the RTO. We use gethrtime() here for performance reason
596 * as the jitter does not really need to be "very" random.
597 */
598 #define SET_HB_INTVL(fp) \
599 ((fp)->sf_hb_interval + (fp)->sf_rto + ((fp)->sf_rto >> 1) - \
600 (uint_t)gethrtime() % (fp)->sf_rto)

602 #define SCTP_IPIF_HASH 16

604 typedef struct sctp_ipif_hash_s {
605 list_t sctp_ipif_list;
606 int ipif_count;
607 krwlock_t ipif_hash_lock;
608 } sctp_ipif_hash_t;

611 /*
612 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is
613 * either sctp_slow_start_initial or sctp_slow_start_after idle
614 * depending on the caller.
615 */
616 #define SET_CWND(fp, mss, def_max_init_cwnd) \
617 { \
618 (fp)->sf_cwnd = MIN(def_max_init_cwnd * (mss), \

new/usr/src/uts/common/inet/sctp/sctp_impl.h 4

619 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
620 }

623 struct sctp_s;

625 /*
626 * Control structure for each open SCTP stream,
627 * defined only within the kernel or for a kmem user.
628 * NOTE: sctp_reinit_values MUST have a line for each field in this structure!
629 */
630 #if (defined(_KERNEL) || defined(_KMEMUSER))

632 typedef struct sctp_s {

634 /*
635 * The following is shared with (and duplicated) in IP, so if you
636 * make changes, make sure you also change things in ip_sctp.c.
637 */
638 struct sctp_s *sctp_conn_hash_next;
639 struct sctp_s *sctp_conn_hash_prev;

641 struct sctp_s *sctp_listen_hash_next;
642 struct sctp_s *sctp_listen_hash_prev;

644 sctp_tf_t *sctp_listen_tfp; /* Ptr to tf */
645 sctp_tf_t *sctp_conn_tfp; /* Ptr to tf */

647 /* Global list of sctp */
648 list_node_t sctp_list;

650 sctp_faddr_t *sctp_faddrs;
651 int sctp_nfaddrs;
652 sctp_ipif_hash_t sctp_saddrs[SCTP_IPIF_HASH];
653 int sctp_nsaddrs;

655 kmutex_t sctp_lock;
656 kcondvar_t sctp_cv;
657 boolean_t sctp_running;

659 #define sctp_ulpd sctp_connp->conn_upper_handle
660 #define sctp_upcalls sctp_connp->conn_upcalls

662 #define sctp_ulp_newconn sctp_upcalls->su_newconn
663 #define sctp_ulp_connected sctp_upcalls->su_connected
664 #define sctp_ulp_disconnected sctp_upcalls->su_disconnected
665 #define sctp_ulp_opctl sctp_upcalls->su_opctl
666 #define sctp_ulp_recv sctp_upcalls->su_recv
667 #define sctp_ulp_txq_full sctp_upcalls->su_txq_full
668 #define sctp_ulp_prop sctp_upcalls->su_set_proto_props

670 int32_t sctp_state;

672 conn_t *sctp_connp; /* conn_t stuff */
673 sctp_stack_t *sctp_sctps;

675 /* Peer address tracking */
676 sctp_faddr_t *sctp_lastfaddr; /* last faddr in list */
677 sctp_faddr_t *sctp_primary; /* primary faddr */
678 sctp_faddr_t *sctp_current; /* current faddr */
679 sctp_faddr_t *sctp_lastdata; /* last data seen from this */

681 /* Outbound data tracking */
682 mblk_t *sctp_xmit_head;
683 mblk_t *sctp_xmit_tail;
684 mblk_t *sctp_xmit_unsent;

new/usr/src/uts/common/inet/sctp/sctp_impl.h 5

685 mblk_t *sctp_xmit_unsent_tail;
686 mblk_t *sctp_xmit_unacked;

688 int32_t sctp_unacked; /* # of unacked bytes */
689 int32_t sctp_unsent; /* # of unsent bytes in hand */

691 uint32_t sctp_ltsn; /* Local instance TSN */
692 uint32_t sctp_lastack_rxd; /* Last rx’d cumtsn */
693 uint32_t sctp_recovery_tsn; /* Exit from fast recovery */
694 uint32_t sctp_adv_pap; /* Adv. Peer Ack Point */

696 uint16_t sctp_num_ostr;
697 uint16_t *sctp_ostrcntrs;

699 mblk_t *sctp_pad_mp; /* pad unaligned data chunks */

701 /* sendmsg() default parameters */
702 uint16_t sctp_def_stream; /* default stream id */
703 uint16_t sctp_def_flags; /* default xmit flags */
704 uint32_t sctp_def_ppid; /* default payload id */
705 uint32_t sctp_def_context; /* default context */
706 uint32_t sctp_def_timetolive; /* default msg TTL */

708 /* Inbound data tracking */
709 sctp_set_t *sctp_sack_info; /* Sack tracking */
710 mblk_t *sctp_ack_mp; /* Delayed ACK timer block */
711 sctp_instr_t *sctp_instr; /* Instream trackers */
712 mblk_t *sctp_uo_frags; /* Un-ordered msg. fragments */
713 uint32_t sctp_ftsn; /* Peer’s TSN */
714 uint32_t sctp_lastacked; /* last cumtsn SACKd */
715 uint16_t sctp_num_istr; /* No. of instreams */
716 int32_t sctp_istr_nmsgs; /* No. of chunks in instreams */
717 int32_t sctp_sack_gaps; /* No. of received gaps */
718 int32_t sctp_sack_toggle; /* SACK every other pkt */

720 /* RTT calculation */
721 uint32_t sctp_rtt_tsn;
722 int64_t sctp_out_time;

724 /* Stats can be reset by snmp users kstat, netstat and snmp agents */
725 uint64_t sctp_opkts; /* sent pkts */
726 uint64_t sctp_obchunks; /* sent control chunks */
727 uint64_t sctp_odchunks; /* sent ordered data chunks */
728 uint64_t sctp_oudchunks; /* sent unord data chunks */
729 uint64_t sctp_rxtchunks; /* retransmitted chunks */
730 uint64_t sctp_ipkts; /* recv pkts */
731 uint64_t sctp_ibchunks; /* recv control chunks */
732 uint64_t sctp_idchunks; /* recv ordered data chunks */
733 uint64_t sctp_iudchunks; /* recv unord data chunks */
734 uint64_t sctp_fragdmsgs;
735 uint64_t sctp_reassmsgs;
736 uint32_t sctp_T1expire; /* # of times T1timer expired */
737 uint32_t sctp_T2expire; /* # of times T2timer expired */
738 uint32_t sctp_T3expire; /* # of times T3timer expired */
739 uint32_t sctp_assoc_start_time; /* time when assoc was est. */

741 uint32_t sctp_frwnd; /* Peer RWND */
742 uint32_t sctp_cwnd_max;

744 /* Inbound flow control */
745 int32_t sctp_rwnd; /* Current receive window */
746 int32_t sctp_arwnd; /* Last advertised window */
747 int32_t sctp_rxqueued; /* No. of bytes in RX q’s */
748 int32_t sctp_ulp_rxqueued; /* Data in ULP */

750 /* Pre-initialized composite headers */

new/usr/src/uts/common/inet/sctp/sctp_impl.h 6

751 uchar_t *sctp_iphc; /* v4 sctp/ip hdr template buffer */
752 uchar_t *sctp_iphc6; /* v6 sctp/ip hdr template buffer */

754 int32_t sctp_iphc_len; /* actual allocated v4 buffer size */
755 int32_t sctp_iphc6_len; /* actual allocated v6 buffer size */

757 int32_t sctp_hdr_len; /* len of combined SCTP/IP v4 hdr */
758 int32_t sctp_hdr6_len; /* len of combined SCTP/IP v6 hdr */

760 ipha_t *sctp_ipha; /* IPv4 header in the buffer */
761 ip6_t *sctp_ip6h; /* IPv6 header in the buffer */

763 int32_t sctp_ip_hdr_len; /* Byte len of our current v4 hdr */
764 int32_t sctp_ip_hdr6_len; /* Byte len of our current v6 hdr */

766 sctp_hdr_t *sctp_sctph; /* sctp header in combined v4 hdr */
767 sctp_hdr_t *sctp_sctph6; /* sctp header in combined v6 hdr */

769 uint32_t sctp_lvtag; /* local SCTP instance verf tag */
770 uint32_t sctp_fvtag; /* Peer’s SCTP verf tag */

772 /* Path MTU Discovery */
773 int64_t sctp_last_mtu_probe;
774 clock_t sctp_mtu_probe_intvl;
775 uint32_t sctp_mss; /* Max send size (not TCP MSS!) */

777 /* structs sctp_bits, sctp_events are for clearing all bits at once */
778 struct {
779 uint32_t

781 sctp_understands_asconf : 1, /* Peer handles ASCONF chunks */
782 sctp_cchunk_pend : 1, /* Control chunk in flight. */
783 sctp_lingering : 1, /* Lingering in close */
784 sctp_loopback: 1, /* src and dst are the same machine */

786 sctp_force_sack : 1,
787 sctp_ack_timer_running: 1, /* Delayed ACK timer running */
788 sctp_hwcksum : 1, /* The NIC is capable of hwcksum */
789 sctp_understands_addip : 1,

791 sctp_bound_to_all : 1,
792 sctp_cansleep : 1, /* itf routines can sleep */
793 sctp_detached : 1, /* If we’re detached from a stream */
794 sctp_send_adaptation : 1, /* send adaptation layer ind */

796 sctp_recv_adaptation : 1, /* recv adaptation layer ind */
797 sctp_ndelay : 1, /* turn off Nagle */
798 sctp_condemned : 1, /* this sctp is about to disappear */
799 sctp_chk_fast_rexmit : 1, /* check for fast rexmit message */

801 sctp_prsctp_aware : 1, /* is peer PR-SCTP aware? */
802 sctp_linklocal : 1, /* is linklocal assoc. */
803 sctp_rexmitting : 1, /* SCTP is retransmitting */
804 sctp_zero_win_probe : 1, /* doing zero win probe */

806 sctp_txq_full : 1, /* the tx queue is full */
807 sctp_ulp_discon_done : 1, /* ulp_disconnecting done */
808 sctp_flowctrld : 1, /* upper layer flow controlled */
809 sctp_dummy : 5;
810 } sctp_bits;
811 struct {
812 uint32_t

814 sctp_recvsndrcvinfo : 1,
815 sctp_recvassocevnt : 1,
816 sctp_recvpathevnt : 1,

new/usr/src/uts/common/inet/sctp/sctp_impl.h 7

817 sctp_recvsendfailevnt : 1,

819 sctp_recvpeererr : 1,
820 sctp_recvshutdownevnt : 1,
821 sctp_recvpdevnt : 1,
822 sctp_recvalevnt : 1;
823 } sctp_events;
824 #define sctp_priv_stream sctp_bits.sctp_priv_stream
825 #define sctp_understands_asconf sctp_bits.sctp_understands_asconf
826 #define sctp_cchunk_pend sctp_bits.sctp_cchunk_pend
827 #define sctp_lingering sctp_bits.sctp_lingering
828 #define sctp_loopback sctp_bits.sctp_loopback
829 #define sctp_force_sack sctp_bits.sctp_force_sack
830 #define sctp_ack_timer_running sctp_bits.sctp_ack_timer_running
831 #define sctp_hwcksum sctp_bits.sctp_hwcksum
832 #define sctp_understands_addip sctp_bits.sctp_understands_addip
833 #define sctp_bound_to_all sctp_bits.sctp_bound_to_all
834 #define sctp_cansleep sctp_bits.sctp_cansleep
835 #define sctp_detached sctp_bits.sctp_detached
836 #define sctp_send_adaptation sctp_bits.sctp_send_adaptation
837 #define sctp_recv_adaptation sctp_bits.sctp_recv_adaptation
838 #define sctp_ndelay sctp_bits.sctp_ndelay
839 #define sctp_condemned sctp_bits.sctp_condemned
840 #define sctp_chk_fast_rexmit sctp_bits.sctp_chk_fast_rexmit
841 #define sctp_prsctp_aware sctp_bits.sctp_prsctp_aware
842 #define sctp_linklocal sctp_bits.sctp_linklocal
843 #define sctp_rexmitting sctp_bits.sctp_rexmitting
844 #define sctp_zero_win_probe sctp_bits.sctp_zero_win_probe
845 #define sctp_txq_full sctp_bits.sctp_txq_full
846 #define sctp_ulp_discon_done sctp_bits.sctp_ulp_discon_done
847 #define sctp_flowctrld sctp_bits.sctp_flowctrld

849 #define sctp_recvsndrcvinfo sctp_events.sctp_recvsndrcvinfo
850 #define sctp_recvassocevnt sctp_events.sctp_recvassocevnt
851 #define sctp_recvpathevnt sctp_events.sctp_recvpathevnt
852 #define sctp_recvsendfailevnt sctp_events.sctp_recvsendfailevnt
853 #define sctp_recvpeererr sctp_events.sctp_recvpeererr
854 #define sctp_recvshutdownevnt sctp_events.sctp_recvshutdownevnt
855 #define sctp_recvpdevnt sctp_events.sctp_recvpdevnt
856 #define sctp_recvalevnt sctp_events.sctp_recvalevnt

858 /* Retransmit info */
859 mblk_t *sctp_cookie_mp; /* cookie chunk, if rxt needed */
860 int32_t sctp_strikes; /* Total number of assoc strikes */
861 int32_t sctp_max_init_rxt;
862 int32_t sctp_pa_max_rxt; /* Max per-assoc retransmit cnt */
863 int32_t sctp_pp_max_rxt; /* Max per-path retransmit cnt */
864 uint32_t sctp_rto_max;
865 uint32_t sctp_rto_max_init;
866 uint32_t sctp_rto_min;
867 uint32_t sctp_rto_initial;

869 int64_t sctp_last_secret_update;
870 uint8_t sctp_secret[SCTP_SECRET_LEN]; /* for cookie auth */
871 uint8_t sctp_old_secret[SCTP_SECRET_LEN];
872 uint32_t sctp_cookie_lifetime; /* cookie lifetime in tick */

874 /* Bind hash tables */
875 kmutex_t *sctp_bind_lockp; /* Ptr to tf_lock */
876 struct sctp_s *sctp_bind_hash;
877 struct sctp_s **sctp_ptpbhn;

879 /* Shutdown / cleanup */
880 sctp_faddr_t *sctp_shutdown_faddr; /* rotate faddr during shutd */
881 int32_t sctp_client_errno; /* How the client screwed up */
882 kmutex_t sctp_reflock; /* Protects sctp_refcnt & timer mp */

new/usr/src/uts/common/inet/sctp/sctp_impl.h 8

883 ushort_t sctp_refcnt; /* No. of pending upstream msg */
884 mblk_t *sctp_timer_mp; /* List of fired timers. */

886 mblk_t *sctp_heartbeat_mp; /* Timer block for heartbeats */
887 uint32_t sctp_hb_interval; /* Default hb_interval */

889 int32_t sctp_autoclose; /* Auto disconnect in ticks */
890 int64_t sctp_active; /* Last time data/sack on this conn */
891 uint32_t sctp_tx_adaptation_code; /* TX adaptation code */
892 uint32_t sctp_rx_adaptation_code; /* RX adaptation code */

894 /* Reliable control chunks */
895 mblk_t *sctp_cxmit_list; /* Xmit list for control chunks */
896 uint32_t sctp_lcsn; /* Our serial number */
897 uint32_t sctp_fcsn; /* Peer serial number */

899 /* Per association receive queue */
900 kmutex_t sctp_recvq_lock;
901 mblk_t *sctp_recvq;
902 mblk_t *sctp_recvq_tail;
903 taskq_t *sctp_recvq_tq;

905 /* IPv6 ancillary data */
906 uint_t sctp_recvifindex; /* last rcvd IPV6_RCVPKTINFO */
907 uint_t sctp_recvhops; /* " IPV6_RECVHOPLIMIT */
908 uint_t sctp_recvtclass; /* " IPV6_RECVTCLASS */
909 ip6_hbh_t *sctp_hopopts; /* " IPV6_RECVHOPOPTS */
910 ip6_dest_t *sctp_dstopts; /* " IPV6_RECVDSTOPTS */
911 ip6_dest_t *sctp_rthdrdstopts; /* " IPV6_RECVRTHDRDSTOPTS */
912 ip6_rthdr_t *sctp_rthdr; /* " IPV6_RECVRTHDR */
913 uint_t sctp_hopoptslen;
914 uint_t sctp_dstoptslen;
915 uint_t sctp_rthdrdstoptslen;
916 uint_t sctp_rthdrlen;

918 /* Stats */
919 uint64_t sctp_msgcount;
920 uint64_t sctp_prsctpdrop;

922 uint_t sctp_v4label_len; /* length of cached v4 label */
923 uint_t sctp_v6label_len; /* length of cached v6 label */
924 uint32_t sctp_rxt_nxttsn; /* Next TSN to be rexmitted */
925 uint32_t sctp_rxt_maxtsn; /* Max TSN sent at time out */

927 int sctp_pd_point; /* Partial delivery point */
928 mblk_t *sctp_err_chunks; /* Error chunks */
929 uint32_t sctp_err_len; /* Total error chunks length */

931 /* additional source data for per endpoint association statistics */
932 uint64_t sctp_outseqtsns; /* TSN rx > expected TSN */
933 uint64_t sctp_osacks; /* total sacks sent */
934 uint64_t sctp_isacks; /* total sacks received */
935 uint64_t sctp_idupchunks; /* rx dups, ord or unord */
936 uint64_t sctp_gapcnt; /* total gap acks rx */
937 /*
938 * Add the current data from the counters which are reset by snmp
939 * to these cumulative counters to use in per endpoint statistics.
940 */
941 uint64_t sctp_cum_obchunks; /* sent control chunks */
942 uint64_t sctp_cum_odchunks; /* sent ordered data chunks */
943 uint64_t sctp_cum_oudchunks; /* sent unord data chunks */
944 uint64_t sctp_cum_rxtchunks; /* retransmitted chunks */
945 uint64_t sctp_cum_ibchunks; /* recv control chunks */
946 uint64_t sctp_cum_idchunks; /* recv ordered data chunks */
947 uint64_t sctp_cum_iudchunks; /* recv unord data chunks */

new/usr/src/uts/common/inet/sctp/sctp_impl.h 9

949 /*
950 * When non-zero, this is the maximum observed RTO since assoc stats
951 * were last requested. When zero, no RTO update has occurred since
952 * the previous user request for stats on this endpoint.
953 */
954 int sctp_maxrto;
955 /*
956 * The stored value of sctp_maxrto passed to user during the previous
957 * user request for stats on this endpoint.
958 */
959 int sctp_prev_maxrto;

961 /* For association counting. */
962 sctp_listen_cnt_t *sctp_listen_cnt;
963 } sctp_t;

965 #define SCTP_TXQ_LEN(sctp) ((sctp)->sctp_unsent + (sctp)->sctp_unacked)
966 #define SCTP_TXQ_UPDATE(sctp) \
967 if ((sctp)->sctp_txq_full && SCTP_TXQ_LEN(sctp) <= \
968 (sctp)->sctp_connp->conn_sndlowat) { \
969 (sctp)->sctp_txq_full = 0; \
970 (sctp)->sctp_ulp_txq_full((sctp)->sctp_ulpd, \
971 B_FALSE); \
972 }

974 #endif /* (defined(_KERNEL) || defined(_KMEMUSER)) */

976 extern void sctp_ack_timer(sctp_t *);
977 extern size_t sctp_adaptation_code_param(sctp_t *, uchar_t *);
978 extern void sctp_adaptation_event(sctp_t *);
979 extern void sctp_add_err(sctp_t *, uint16_t, void *, size_t,
980 sctp_faddr_t *);
981 extern int sctp_add_faddr(sctp_t *, in6_addr_t *, int, boolean_t);
982 extern boolean_t sctp_add_ftsn_set(sctp_ftsn_set_t **, sctp_faddr_t *, mblk_t *,
983 uint_t *, uint32_t *);
984 extern void sctp_add_recvq(sctp_t *, mblk_t *, boolean_t,
985 ip_recv_attr_t *);
986 extern void sctp_add_unrec_parm(sctp_parm_hdr_t *, mblk_t **, boolean_t);
987 extern size_t sctp_addr_params(sctp_t *, int, uchar_t *, boolean_t);
988 extern mblk_t *sctp_add_proto_hdr(sctp_t *, sctp_faddr_t *, mblk_t *, int,
989 int *);
990 extern void sctp_addr_req(sctp_t *, mblk_t *);
991 extern sctp_t *sctp_addrlist2sctp(mblk_t *, sctp_hdr_t *, sctp_chunk_hdr_t *,
992 zoneid_t, sctp_stack_t *);
993 extern void sctp_check_adv_ack_pt(sctp_t *, mblk_t *, mblk_t *);
994 extern void sctp_assoc_event(sctp_t *, uint16_t, uint16_t,
995 sctp_chunk_hdr_t *);

997 extern void sctp_bind_hash_insert(sctp_tf_t *, sctp_t *, int);
998 extern void sctp_bind_hash_remove(sctp_t *);
999 extern int sctp_bindi(sctp_t *, in_port_t, boolean_t, int, in_port_t *);
1000 extern int sctp_bind_add(sctp_t *, const void *, uint32_t, boolean_t,
1001 in_port_t);
1002 extern int sctp_bind_del(sctp_t *, const void *, uint32_t, boolean_t);
1003 extern int sctp_build_hdrs(sctp_t *, int);

1005 extern int sctp_check_abandoned_msg(sctp_t *, mblk_t *);
1006 extern void sctp_clean_death(sctp_t *, int);
1007 extern void sctp_close_eager(sctp_t *);
1008 extern int sctp_compare_faddrsets(sctp_faddr_t *, sctp_faddr_t *);
1009 extern void sctp_congest_reset(sctp_t *);
1010 extern void sctp_conn_hash_insert(sctp_tf_t *, sctp_t *, int);
1011 extern void sctp_conn_hash_remove(sctp_t *);
1012 extern void sctp_conn_init(conn_t *);
1013 extern sctp_t *sctp_conn_match(in6_addr_t **, uint32_t, in6_addr_t *,
1014 uint32_t, zoneid_t, iaflags_t, sctp_stack_t *);

new/usr/src/uts/common/inet/sctp/sctp_impl.h 10

1015 extern void sctp_conn_reclaim(void *);
1016 extern sctp_t *sctp_conn_request(sctp_t *, mblk_t *, uint_t, uint_t,
1017 sctp_init_chunk_t *, ip_recv_attr_t *);
1018 extern uint32_t sctp_cumack(sctp_t *, uint32_t, mblk_t **);
1019 extern sctp_t *sctp_create_eager(sctp_t *);

1021 extern void sctp_dispatch_rput(queue_t *, sctp_t *, sctp_hdr_t *, mblk_t *,
1022 uint_t, uint_t, in6_addr_t);
1023 extern char *sctp_display(sctp_t *, char *);
1024 extern void sctp_display_all(sctp_stack_t *);

1026 extern void sctp_error_event(sctp_t *, sctp_chunk_hdr_t *, boolean_t);

1028 extern void sctp_faddr_alive(sctp_t *, sctp_faddr_t *);
1029 extern int sctp_faddr_dead(sctp_t *, sctp_faddr_t *, int);
1030 extern void sctp_faddr_fini(void);
1031 extern void sctp_faddr_init(void);
1032 extern void sctp_fast_rexmit(sctp_t *);
1033 extern void sctp_fill_sack(sctp_t *, unsigned char *, int);
1034 extern uint32_t sctp_find_listener_conf(sctp_stack_t *, in_port_t);
1035 extern void sctp_free_faddr_timers(sctp_t *);
1036 extern void sctp_free_ftsn_set(sctp_ftsn_set_t *);
1037 extern void sctp_free_msg(mblk_t *);
1038 extern void sctp_free_reass(sctp_instr_t *);
1039 extern void sctp_free_set(sctp_set_t *);
1040 extern void sctp_ftsn_sets_fini(void);
1041 extern void sctp_ftsn_sets_init(void);

1043 extern int sctp_get_addrlist(sctp_t *, const void *, uint32_t *,
1044 uchar_t **, int *, size_t *);
1045 extern int sctp_get_addrparams(sctp_t *, sctp_t *, mblk_t *,
1046 sctp_chunk_hdr_t *, uint_t *);
1047 extern void sctp_get_dest(sctp_t *, sctp_faddr_t *);
1048 extern void sctp_get_faddr_list(sctp_t *, uchar_t *, size_t);
1049 extern mblk_t *sctp_get_first_sent(sctp_t *);
1050 extern mblk_t *sctp_get_msg_to_send(sctp_t *, mblk_t **, mblk_t *, int *,
1051 int32_t, uint32_t, sctp_faddr_t *);
1052 extern void sctp_get_saddr_list(sctp_t *, uchar_t *, size_t);

1054 extern int sctp_handle_error(sctp_t *, sctp_hdr_t *, sctp_chunk_hdr_t *,
1055 mblk_t *, ip_recv_attr_t *);
1056 extern void sctp_hash_destroy(sctp_stack_t *);
1057 extern void sctp_hash_init(sctp_stack_t *);
1058 extern void sctp_heartbeat_timer(sctp_t *);

1060 extern void sctp_icmp_error(sctp_t *, mblk_t *);
1061 extern void sctp_inc_taskq(sctp_stack_t *);
1062 extern void sctp_info_req(sctp_t *, mblk_t *);
1063 extern mblk_t *sctp_init_mp(sctp_t *, sctp_faddr_t *);
1064 extern boolean_t sctp_initialize_params(sctp_t *, sctp_init_chunk_t *,
1065 sctp_init_chunk_t *);
1066 extern uint32_t sctp_init2vtag(sctp_chunk_hdr_t *);
1067 extern void sctp_intf_event(sctp_t *, in6_addr_t, int, int);
1068 extern void sctp_input_data(sctp_t *, mblk_t *, ip_recv_attr_t *);
1069 extern void sctp_instream_cleanup(sctp_t *, boolean_t);
1070 extern boolean_t sctp_is_a_faddr_clean(sctp_t *);

1072 extern void *sctp_kstat_init(netstackid_t);
1073 extern void sctp_kstat_fini(netstackid_t, kstat_t *);
1074 extern void *sctp_kstat2_init(netstackid_t);
1075 extern void sctp_kstat2_fini(netstackid_t, kstat_t *);

1077 extern ssize_t sctp_link_abort(mblk_t *, uint16_t, char *, size_t, int,
1078 boolean_t);
1079 extern void sctp_listen_hash_insert(sctp_tf_t *, sctp_t *);
1080 extern void sctp_listen_hash_remove(sctp_t *);

new/usr/src/uts/common/inet/sctp/sctp_impl.h 11

1081 extern void sctp_listener_conf_cleanup(sctp_stack_t *);
1082 extern sctp_t *sctp_lookup(sctp_t *, in6_addr_t *, sctp_tf_t *, uint32_t *,
1083 int);
1084 extern sctp_faddr_t *sctp_lookup_faddr(sctp_t *, in6_addr_t *);

1086 extern mblk_t *sctp_make_err(sctp_t *, uint16_t, void *, size_t);
1087 extern mblk_t *sctp_make_ftsn_chunk(sctp_t *, sctp_faddr_t *,
1088 sctp_ftsn_set_t *, uint_t, uint32_t);
1089 extern void sctp_make_ftsns(sctp_t *, mblk_t *, mblk_t *, mblk_t **,
1090 sctp_faddr_t *, uint32_t *);
1091 extern mblk_t *sctp_make_mp(sctp_t *, sctp_faddr_t *, int);
1092 extern mblk_t *sctp_make_sack(sctp_t *, sctp_faddr_t *, mblk_t *);
1093 extern void sctp_maxpsz_set(sctp_t *);
1094 extern void sctp_move_faddr_timers(queue_t *, sctp_t *);

1096 extern sctp_parm_hdr_t *sctp_next_parm(sctp_parm_hdr_t *, ssize_t *);

1098 extern void sctp_ootb_shutdown_ack(mblk_t *, uint_t, ip_recv_attr_t *,
1099 ip_stack_t *);
1100 extern size_t sctp_options_param(const sctp_t *, void *, int);
1101 extern size_t sctp_options_param_len(const sctp_t *, int);
1102 extern void sctp_output(sctp_t *, uint_t);

1104 extern void sctp_partial_delivery_event(sctp_t *);
1105 extern int sctp_process_cookie(sctp_t *, sctp_chunk_hdr_t *, mblk_t *,
1106 sctp_init_chunk_t **, sctp_hdr_t *, int *, in6_addr_t *,
1107 ip_recv_attr_t *);
1108 extern void sctp_process_err(sctp_t *);
1109 extern void sctp_process_heartbeat(sctp_t *, sctp_chunk_hdr_t *);
1110 extern void sctp_process_timer(sctp_t *);

1112 extern void sctp_redo_faddr_srcs(sctp_t *);
1113 extern void sctp_regift_xmitlist(sctp_t *);
1114 extern void sctp_return_heartbeat(sctp_t *, sctp_chunk_hdr_t *, mblk_t *);
1115 extern void sctp_rexmit(sctp_t *, sctp_faddr_t *);
1116 extern mblk_t *sctp_rexmit_packet(sctp_t *, mblk_t **, mblk_t **,
1117 sctp_faddr_t *, uint_t *);
1118 extern void sctp_rexmit_timer(sctp_t *, sctp_faddr_t *);
1119 extern sctp_faddr_t *sctp_rotate_faddr(sctp_t *, sctp_faddr_t *);

1121 extern boolean_t sctp_sack(sctp_t *, mblk_t *);
1122 extern int sctp_secure_restart_check(mblk_t *, sctp_chunk_hdr_t *,
1123 uint32_t, int, sctp_stack_t *, ip_recv_attr_t *);
1124 extern void sctp_send_abort(sctp_t *, uint32_t, uint16_t, char *, size_t,
1125 mblk_t *, int, boolean_t, ip_recv_attr_t *);
1126 extern void sctp_ootb_send_abort(uint32_t, uint16_t, char *, size_t,
1127 const mblk_t *, int, boolean_t, ip_recv_attr_t *,
1128 ip_stack_t *);
1129 extern void sctp_send_cookie_ack(sctp_t *);
1130 extern void sctp_send_cookie_echo(sctp_t *, sctp_chunk_hdr_t *, mblk_t *,
1131 ip_recv_attr_t *);
1132 extern void sctp_send_initack(sctp_t *, sctp_hdr_t *, sctp_chunk_hdr_t *,
1133 mblk_t *, ip_recv_attr_t *);
1134 extern void sctp_send_shutdown(sctp_t *, int);
1135 extern void sctp_send_heartbeat(sctp_t *, sctp_faddr_t *);
1136 extern void sctp_sendfail_event(sctp_t *, mblk_t *, int, boolean_t);
1137 extern void sctp_set_faddr_current(sctp_t *, sctp_faddr_t *);
1138 extern int sctp_set_hdraddrs(sctp_t *);
1139 extern void sctp_set_saddr(sctp_t *, sctp_faddr_t *);
1140 extern void sctp_sets_init(void);
1141 extern void sctp_sets_fini(void);
1142 extern void sctp_shutdown_event(sctp_t *);
1143 extern void sctp_stop_faddr_timers(sctp_t *);
1144 extern int sctp_shutdown_received(sctp_t *, sctp_chunk_hdr_t *, boolean_t,
1145 boolean_t, sctp_faddr_t *);
1146 extern void sctp_shutdown_complete(sctp_t *);

new/usr/src/uts/common/inet/sctp/sctp_impl.h 12

1147 extern void sctp_set_if_mtu(sctp_t *);
1148 extern void sctp_set_iplen(sctp_t *, mblk_t *, ip_xmit_attr_t *);
1149 extern void sctp_set_ulp_prop(sctp_t *);
1150 extern void sctp_ss_rexmit(sctp_t *);
1151 extern void sctp_stack_cpu_add(sctp_stack_t *, processorid_t);
1152 extern size_t sctp_supaddr_param_len(sctp_t *);
1153 extern size_t sctp_supaddr_param(sctp_t *, uchar_t *);

1155 extern void sctp_timer(sctp_t *, mblk_t *, clock_t);
1156 extern mblk_t *sctp_timer_alloc(sctp_t *, pfv_t, int);
1157 extern void sctp_timer_call(sctp_t *sctp, mblk_t *);
1158 extern void sctp_timer_free(mblk_t *);
1159 extern void sctp_timer_stop(mblk_t *);
1160 extern void sctp_unlink_faddr(sctp_t *, sctp_faddr_t *);

1162 extern void sctp_update_dce(sctp_t *sctp);
1163 extern in_port_t sctp_update_next_port(in_port_t, zone_t *zone, sctp_stack_t *);
1164 extern void sctp_update_rtt(sctp_t *, sctp_faddr_t *, clock_t);
1165 extern void sctp_user_abort(sctp_t *, mblk_t *);

1167 extern void sctp_validate_peer(sctp_t *);

1169 extern int sctp_xmit_list_clean(sctp_t *, ssize_t);

1171 extern void sctp_zap_addrs(sctp_t *);
1172 extern void sctp_zap_faddrs(sctp_t *, int);
1173 extern sctp_chunk_hdr_t *sctp_first_chunk(uchar_t *, ssize_t);
1174 extern void sctp_send_shutdown_ack(sctp_t *, sctp_faddr_t *, boolean_t);

1176 /* Contract private interface between SCTP and Clustering - PSARC/2005/602 */

1178 extern void (*cl_sctp_listen)(sa_family_t, uchar_t *, uint_t, in_port_t);
1179 extern void (*cl_sctp_unlisten)(sa_family_t, uchar_t *, uint_t, in_port_t);
1180 extern void (*cl_sctp_connect)(sa_family_t, uchar_t *, uint_t, in_port_t,
1181 uchar_t *, uint_t, in_port_t, boolean_t, cl_sctp_handle_t);
1182 extern void (*cl_sctp_disconnect)(sa_family_t, cl_sctp_handle_t);
1183 extern void (*cl_sctp_assoc_change)(sa_family_t, uchar_t *, size_t, uint_t,
1184 uchar_t *, size_t, uint_t, int, cl_sctp_handle_t);
1185 extern void (*cl_sctp_check_addrs)(sa_family_t, in_port_t, uchar_t **,
1186 size_t, uint_t *, boolean_t);

1188 #define RUN_SCTP(sctp) \
1189 { \
1190 mutex_enter(&(sctp)->sctp_lock); \
1191 while ((sctp)->sctp_running) \
1192 cv_wait(&(sctp)->sctp_cv, &(sctp)->sctp_lock); \
1193 (sctp)->sctp_running = B_TRUE; \
1194 mutex_exit(&(sctp)->sctp_lock); \
1195 }

1197 /* Wake up recvq taskq */
1198 #define WAKE_SCTP(sctp) \
1199 { \
1200 mutex_enter(&(sctp)->sctp_lock); \
1201 if ((sctp)->sctp_timer_mp != NULL) \
1202 sctp_process_timer(sctp); \
1203 (sctp)->sctp_running = B_FALSE; \
1204 cv_broadcast(&(sctp)->sctp_cv); \
1205 mutex_exit(&(sctp)->sctp_lock); \
1206 }

1208 #ifdef __cplusplus
1209 }
1210 #endif

1212 #endif /* _INET_SCTP_SCTP_IMPL_H */

new/usr/src/uts/common/inet/tcp/tcp.c 1

**
 129612 Wed Jun 13 12:05:15 2012
new/usr/src/uts/common/inet/tcp/tcp.c
%B
**
______unchanged_portion_omitted_

2594 conn_t *
2595 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2596 int *errorp)
2597 {
2598 tcp_t *tcp = NULL;
2599 conn_t *connp;
2600 zoneid_t zoneid;
2601 tcp_stack_t *tcps;
2602 squeue_t *sqp;

2604 ASSERT(errorp != NULL);
2605 /*
2606 * Find the proper zoneid and netstack.
2607 */
2608 /*
2609 * Special case for install: miniroot needs to be able to
2610 * access files via NFS as though it were always in the
2611 * global zone.
2612 */
2613 if (credp == kcred && nfs_global_client_only != 0) {
2614 zoneid = GLOBAL_ZONEID;
2615 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2616 netstack_tcp;
2617 ASSERT(tcps != NULL);
2618 } else {
2619 netstack_t *ns;
2620 int err;

2622 if ((err = secpolicy_basic_net_access(credp)) != 0) {
2623 *errorp = err;
2624 return (NULL);
2625 }

2627 ns = netstack_find_by_cred(credp);
2628 ASSERT(ns != NULL);
2629 tcps = ns->netstack_tcp;
2630 ASSERT(tcps != NULL);

2632 /*
2633 * For exclusive stacks we set the zoneid to zero
2634 * to make TCP operate as if in the global zone.
2635 */
2636 if (tcps->tcps_netstack->netstack_stackid !=
2637 GLOBAL_NETSTACKID)
2638 zoneid = GLOBAL_ZONEID;
2639 else
2640 zoneid = crgetzoneid(credp);
2641 }

2643 sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2644 connp = (conn_t *)tcp_get_conn(sqp, tcps);
2645 /*
2646 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2647 * so we drop it by one.
2648 */
2649 netstack_rele(tcps->tcps_netstack);
2650 if (connp == NULL) {
2651 *errorp = ENOSR;
2652 return (NULL);

new/usr/src/uts/common/inet/tcp/tcp.c 2

2653 }
2654 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);

2656 connp->conn_sqp = sqp;
2657 connp->conn_initial_sqp = connp->conn_sqp;
2658 connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2659 tcp = connp->conn_tcp;

2661 /*
2662 * Besides asking IP to set the checksum for us, have conn_ip_output
2663 * to do the following checks when necessary:
2664 *
2665 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2666 * IXAF_VERIFY_PMTU: verify PMTU changes
2667 * IXAF_VERIFY_LSO: verify LSO capability changes
2668 */
2669 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2670 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;

2672 if (!tcps->tcps_dev_flow_ctl)
2673 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;

2675 if (isv6) {
2676 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2677 connp->conn_ipversion = IPV6_VERSION;
2678 connp->conn_family = AF_INET6;
2679 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2680 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2681 } else {
2682 connp->conn_ipversion = IPV4_VERSION;
2683 connp->conn_family = AF_INET;
2684 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2685 connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2686 }
2687 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;

2689 crhold(credp);
2690 connp->conn_cred = credp;
2691 connp->conn_cpid = curproc->p_pid;
2692 connp->conn_open_time = ddi_get_lbolt64();

2694 /* Cache things in the ixa without any refhold */
2695 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2696 connp->conn_ixa->ixa_cred = credp;
2697 connp->conn_ixa->ixa_cpid = connp->conn_cpid;

2699 connp->conn_zoneid = zoneid;
2700 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2701 connp->conn_ixa->ixa_zoneid = zoneid;
2702 connp->conn_mlp_type = mlptSingle;
2702 ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2703 ASSERT(tcp->tcp_tcps == tcps);

2705 /*
2706 * If the caller has the process-wide flag set, then default to MAC
2707 * exempt mode. This allows read-down to unlabeled hosts.
2708 */
2709 if (getpflags(NET_MAC_AWARE, credp) != 0)
2710 connp->conn_mac_mode = CONN_MAC_AWARE;

2712 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);

2714 if (issocket) {
2715 tcp->tcp_issocket = 1;
2716 }

new/usr/src/uts/common/inet/tcp/tcp.c 3

2718 connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2719 connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2720 connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2721 connp->conn_so_type = SOCK_STREAM;
2722 connp->conn_wroff = connp->conn_ht_iphc_allocated +
2723 tcps->tcps_wroff_xtra;

2725 SOCK_CONNID_INIT(tcp->tcp_connid);
2726 /* DTrace ignores this - it isn’t a tcp:::state-change */
2727 tcp->tcp_state = TCPS_IDLE;
2728 tcp_init_values(tcp, NULL);
2729 return (connp);
2730 }
______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 1

**
 30240 Wed Jun 13 12:05:20 2012
new/usr/src/uts/common/inet/tcp/tcp_opt_data.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
24 */

26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #define _SUN_TPI_VERSION 2
29 #include <sys/tihdr.h>
30 #include <sys/socket.h>
31 #include <sys/xti_xtiopt.h>
32 #include <sys/xti_inet.h>
33 #include <sys/policy.h>

35 #include <inet/common.h>
36 #include <netinet/ip6.h>
37 #include <inet/ip.h>

39 #include <netinet/in.h>
40 #include <netinet/tcp.h>
41 #include <inet/optcom.h>
42 #include <inet/proto_set.h>
43 #include <inet/tcp_impl.h>

45 static int tcp_opt_default(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);

47 #endif /* ! codereview */
48 /*
49 * Table of all known options handled on a TCP protocol stack.
50 *
51 * Note: This table contains options processed by both TCP and IP levels
52 * and is the superset of options that can be performed on a TCP over IP
53 * stack.
54 */
55 opdes_t tcp_opt_arr[] = {

57 { SO_LINGER, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0,
58 sizeof (struct linger), 0 },

60 { SO_DEBUG, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
61 { SO_KEEPALIVE, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 2

62 { SO_DONTROUTE, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
63 { SO_USELOOPBACK, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
64 },
65 { SO_BROADCAST, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
66 { SO_REUSEADDR, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
67 { SO_OOBINLINE, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
68 { SO_TYPE, SOL_SOCKET, OA_R, OA_R, OP_NP, 0, sizeof (int), 0 },
69 { SO_SNDBUF, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
70 { SO_RCVBUF, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
71 { SO_SNDTIMEO, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0,
72 sizeof (struct timeval), 0 },
73 { SO_RCVTIMEO, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0,
74 sizeof (struct timeval), 0 },
75 { SO_DGRAM_ERRIND, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
76 },
77 { SO_SND_COPYAVOID, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
78 { SO_ANON_MLP, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
79 0 },
80 { SO_MAC_EXEMPT, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
81 0 },
82 { SO_MAC_IMPLICIT, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
83 0 },
84 { SO_ALLZONES, SOL_SOCKET, OA_R, OA_RW, OP_CONFIG, 0, sizeof (int),
85 0 },
86 { SO_EXCLBIND, SOL_SOCKET, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

88 { SO_DOMAIN, SOL_SOCKET, OA_R, OA_R, OP_NP, 0, sizeof (int), 0 },

90 { SO_PROTOTYPE, SOL_SOCKET, OA_R, OA_R, OP_NP, 0, sizeof (int), 0 },

92 { TCP_NODELAY, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
93 },
94 { TCP_MAXSEG, IPPROTO_TCP, OA_R, OA_R, OP_NP, 0, sizeof (uint_t),
95 536 },

97 { TCP_NOTIFY_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
98 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

100 { TCP_ABORT_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
101 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

103 { TCP_CONN_NOTIFY_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
104 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

106 { TCP_CONN_ABORT_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP,
107 OP_DEF_FN, sizeof (int), -1 /* not initialized */ },

109 { TCP_RECVDSTADDR, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int),
110 0 },

112 { TCP_ANONPRIVBIND, IPPROTO_TCP, OA_R, OA_RW, OP_PRIVPORT, 0,
113 sizeof (int), 0 },

115 { TCP_EXCLBIND, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0
116 },

118 { TCP_INIT_CWND, IPPROTO_TCP, OA_RW, OA_RW, OP_CONFIG, 0,
119 sizeof (int), 0 },

121 { TCP_KEEPALIVE_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0,
122 sizeof (int), 0 },

124 { TCP_KEEPIDLE, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

126 { TCP_KEEPCNT, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 3

128 { TCP_KEEPINTVL, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

130 { TCP_KEEPALIVE_ABORT_THRESHOLD, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0,
131 sizeof (int), 0 },

133 { TCP_CORK, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

135 { TCP_RTO_INITIAL, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (uint32_t), 0 },

137 { TCP_RTO_MIN, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (uint32_t), 0 },

139 { TCP_RTO_MAX, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (uint32_t), 0 },

141 { TCP_LINGER2, IPPROTO_TCP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

143 { IP_OPTIONS, IPPROTO_IP, OA_RW, OA_RW, OP_NP,
144 (OP_VARLEN|OP_NODEFAULT),
145 IP_MAX_OPT_LENGTH + IP_ADDR_LEN, -1 /* not initialized */ },
146 { T_IP_OPTIONS, IPPROTO_IP, OA_RW, OA_RW, OP_NP,
147 (OP_VARLEN|OP_NODEFAULT),
148 IP_MAX_OPT_LENGTH + IP_ADDR_LEN, -1 /* not initialized */ },

150 { IP_TOS, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
151 { T_IP_TOS, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },
152 { IP_TTL, IPPROTO_IP, OA_RW, OA_RW, OP_NP, OP_DEF_FN,
153 sizeof (int), -1 /* not initialized */ },

155 { IP_SEC_OPT, IPPROTO_IP, OA_RW, OA_RW, OP_NP, OP_NODEFAULT,
156 sizeof (ipsec_req_t), -1 /* not initialized */ },

158 { IP_BOUND_IF, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0,
159 sizeof (int), 0 /* no ifindex */ },

161 { IP_UNSPEC_SRC, IPPROTO_IP, OA_R, OA_RW, OP_RAW, 0,
162 sizeof (int), 0 },

164 { IPV6_UNICAST_HOPS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, OP_DEF_FN,
165 sizeof (int), -1 /* not initialized */ },

167 { IPV6_BOUND_IF, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
168 sizeof (int), 0 /* no ifindex */ },

170 { IP_DONTFRAG, IPPROTO_IP, OA_RW, OA_RW, OP_NP, 0, sizeof (int), 0 },

172 { IP_NEXTHOP, IPPROTO_IP, OA_R, OA_RW, OP_CONFIG, 0,
173 sizeof (in_addr_t), -1 /* not initialized */ },

175 { IPV6_UNSPEC_SRC, IPPROTO_IPV6, OA_R, OA_RW, OP_RAW, 0,
176 sizeof (int), 0 },

178 { IPV6_PKTINFO, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
179 (OP_NODEFAULT|OP_VARLEN),
180 sizeof (struct in6_pktinfo), -1 /* not initialized */ },
181 { IPV6_NEXTHOP, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
182 OP_NODEFAULT,
183 sizeof (sin6_t), -1 /* not initialized */ },
184 { IPV6_HOPOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
185 (OP_VARLEN|OP_NODEFAULT), 255*8,
186 -1 /* not initialized */ },
187 { IPV6_DSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
188 (OP_VARLEN|OP_NODEFAULT), 255*8,
189 -1 /* not initialized */ },
190 { IPV6_RTHDRDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
191 (OP_VARLEN|OP_NODEFAULT), 255*8,
192 -1 /* not initialized */ },
193 { IPV6_RTHDR, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 4

194 (OP_VARLEN|OP_NODEFAULT), 255*8,
195 -1 /* not initialized */ },
196 { IPV6_TCLASS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
197 OP_NODEFAULT,
198 sizeof (int), -1 /* not initialized */ },
199 { IPV6_PATHMTU, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP,
200 OP_NODEFAULT,
201 sizeof (struct ip6_mtuinfo), -1 /* not initialized */ },
202 { IPV6_DONTFRAG, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
203 sizeof (int), 0 },
204 { IPV6_USE_MIN_MTU, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
205 sizeof (int), 0 },
206 { IPV6_V6ONLY, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
207 sizeof (int), 0 },

209 /* Enable receipt of ancillary data */
210 { IPV6_RECVPKTINFO, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
211 sizeof (int), 0 },
212 { IPV6_RECVHOPLIMIT, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
213 sizeof (int), 0 },
214 { IPV6_RECVHOPOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
215 sizeof (int), 0 },
216 { _OLD_IPV6_RECVDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
217 sizeof (int), 0 },
218 { IPV6_RECVDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
219 sizeof (int), 0 },
220 { IPV6_RECVRTHDR, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
221 sizeof (int), 0 },
222 { IPV6_RECVRTHDRDSTOPTS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
223 sizeof (int), 0 },
224 { IPV6_RECVTCLASS, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
225 sizeof (int), 0 },

227 { IPV6_SEC_OPT, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, OP_NODEFAULT,
228 sizeof (ipsec_req_t), -1 /* not initialized */ },
229 { IPV6_SRC_PREFERENCES, IPPROTO_IPV6, OA_RW, OA_RW, OP_NP, 0,
230 sizeof (uint32_t), IPV6_PREFER_SRC_DEFAULT },
231 };

233 /*
234 * Table of all supported levels
235 * Note: Some levels (e.g. XTI_GENERIC) may be valid but may not have
236 * any supported options so we need this info separately.
237 *
238 * This is needed only for topmost tpi providers and is used only by
239 * XTI interfaces.
240 */
241 optlevel_t tcp_valid_levels_arr[] = {
242 XTI_GENERIC,
243 SOL_SOCKET,
244 IPPROTO_TCP,
245 IPPROTO_IP,
246 IPPROTO_IPV6
247 };

250 #define TCP_OPT_ARR_CNT A_CNT(tcp_opt_arr)
251 #define TCP_VALID_LEVELS_CNT A_CNT(tcp_valid_levels_arr)

253 uint_t tcp_max_optsize; /* initialized when TCP driver is loaded */

255 /*
256 * Initialize option database object for TCP
257 *
258 * This object represents database of options to search passed to
259 * {sock,tpi}optcom_req() interface routine to take care of option

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 5

260 * management and associated methods.
261 */

263 optdb_obj_t tcp_opt_obj = {
264 tcp_opt_default, /* TCP default value function pointer */
265 tcp_tpi_opt_get, /* TCP get function pointer */
266 tcp_tpi_opt_set, /* TCP set function pointer */
267 TCP_OPT_ARR_CNT, /* TCP option database count of entries */
268 tcp_opt_arr, /* TCP option database */
269 TCP_VALID_LEVELS_CNT, /* TCP valid level count of entries */
270 tcp_valid_levels_arr /* TCP valid level array */
271 };

273 /* Maximum TCP initial cwin (start/restart). */
274 #define TCP_MAX_INIT_CWND 16

276 static int tcp_max_init_cwnd = TCP_MAX_INIT_CWND;

278 /*
279 * Some TCP options can be "set" by requesting them in the option
280 * buffer. This is needed for XTI feature test though we do not
281 * allow it in general. We interpret that this mechanism is more
282 * applicable to OSI protocols and need not be allowed in general.
283 * This routine filters out options for which it is not allowed (most)
284 * and lets through those (few) for which it is. [The XTI interface
285 * test suite specifics will imply that any XTI_GENERIC level XTI_* if
286 * ever implemented will have to be allowed here].
287 */
288 static boolean_t
289 tcp_allow_connopt_set(int level, int name)
290 {

292 switch (level) {
293 case IPPROTO_TCP:
294 switch (name) {
295 case TCP_NODELAY:
296 return (B_TRUE);
297 default:
298 return (B_FALSE);
299 }
300 /*NOTREACHED*/
301 default:
302 return (B_FALSE);
303 }
304 /*NOTREACHED*/
305 }

307 /*
308 * This routine gets default values of certain options whose default
309 * values are maintained by protocol specific code
310 */
311 /* ARGSUSED */
312 int
313 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
314 {
315 int32_t *i1 = (int32_t *)ptr;
316 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps;

318 switch (level) {
319 case IPPROTO_TCP:
320 switch (name) {
321 case TCP_NOTIFY_THRESHOLD:
322 *i1 = tcps->tcps_ip_notify_interval;
323 break;
324 case TCP_ABORT_THRESHOLD:
325 *i1 = tcps->tcps_ip_abort_interval;

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 6

326 break;
327 case TCP_CONN_NOTIFY_THRESHOLD:
328 *i1 = tcps->tcps_ip_notify_cinterval;
329 break;
330 case TCP_CONN_ABORT_THRESHOLD:
331 *i1 = tcps->tcps_ip_abort_cinterval;
332 break;
333 default:
334 return (-1);
335 }
336 break;
337 case IPPROTO_IP:
338 switch (name) {
339 case IP_TTL:
340 *i1 = tcps->tcps_ipv4_ttl;
341 break;
342 default:
343 return (-1);
344 }
345 break;
346 case IPPROTO_IPV6:
347 switch (name) {
348 case IPV6_UNICAST_HOPS:
349 *i1 = tcps->tcps_ipv6_hoplimit;
350 break;
351 default:
352 return (-1);
353 }
354 break;
355 default:
356 return (-1);
357 }
358 return (sizeof (int));
359 }

361 /*
362 * TCP routine to get the values of options.
363 */
364 int
365 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
366 {
367 int *i1 = (int *)ptr;
368 tcp_t *tcp = connp->conn_tcp;
369 conn_opt_arg_t coas;
370 int retval;

372 coas.coa_connp = connp;
373 coas.coa_ixa = connp->conn_ixa;
374 coas.coa_ipp = &connp->conn_xmit_ipp;
375 coas.coa_ancillary = B_FALSE;
376 coas.coa_changed = 0;

378 switch (level) {
379 case SOL_SOCKET:
380 switch (name) {
381 case SO_SND_COPYAVOID:
382 *i1 = tcp->tcp_snd_zcopy_on ?
383 SO_SND_COPYAVOID : 0;
384 return (sizeof (int));
385 case SO_ACCEPTCONN:
386 *i1 = (tcp->tcp_state == TCPS_LISTEN);
387 return (sizeof (int));
388 }
389 break;
390 case IPPROTO_TCP:
391 switch (name) {

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 7

392 case TCP_NODELAY:
393 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
394 return (sizeof (int));
395 case TCP_MAXSEG:
396 *i1 = tcp->tcp_mss;
397 return (sizeof (int));
398 case TCP_NOTIFY_THRESHOLD:
399 *i1 = (int)tcp->tcp_first_timer_threshold;
400 return (sizeof (int));
401 case TCP_ABORT_THRESHOLD:
402 *i1 = tcp->tcp_second_timer_threshold;
403 return (sizeof (int));
404 case TCP_CONN_NOTIFY_THRESHOLD:
405 *i1 = tcp->tcp_first_ctimer_threshold;
406 return (sizeof (int));
407 case TCP_CONN_ABORT_THRESHOLD:
408 *i1 = tcp->tcp_second_ctimer_threshold;
409 return (sizeof (int));
410 case TCP_INIT_CWND:
411 *i1 = tcp->tcp_init_cwnd;
412 return (sizeof (int));
413 case TCP_KEEPALIVE_THRESHOLD:
414 *i1 = tcp->tcp_ka_interval;
415 return (sizeof (int));

417 /*
418 * TCP_KEEPIDLE expects value in seconds, but
419 * tcp_ka_interval is in milliseconds.
420 */
421 case TCP_KEEPIDLE:
422 *i1 = tcp->tcp_ka_interval / 1000;
423 return (sizeof (int));
424 case TCP_KEEPCNT:
425 *i1 = tcp->tcp_ka_cnt;
426 return (sizeof (int));

428 /*
429 * TCP_KEEPINTVL expects value in seconds, but
430 * tcp_ka_rinterval is in milliseconds.
431 */
432 case TCP_KEEPINTVL:
433 *i1 = tcp->tcp_ka_rinterval / 1000;
434 return (sizeof (int));
435 case TCP_KEEPALIVE_ABORT_THRESHOLD:
436 *i1 = tcp->tcp_ka_abort_thres;
437 return (sizeof (int));
438 case TCP_CORK:
439 *i1 = tcp->tcp_cork;
440 return (sizeof (int));
441 case TCP_RTO_INITIAL:
442 *i1 = tcp->tcp_rto_initial;
443 return (sizeof (uint32_t));
444 case TCP_RTO_MIN:
445 *i1 = tcp->tcp_rto_min;
446 return (sizeof (uint32_t));
447 case TCP_RTO_MAX:
448 *i1 = tcp->tcp_rto_max;
449 return (sizeof (uint32_t));
450 case TCP_LINGER2:
451 *i1 = tcp->tcp_fin_wait_2_flush_interval / SECONDS;
452 return (sizeof (int));
453 }
454 break;
455 case IPPROTO_IP:
456 if (connp->conn_family != AF_INET)
457 return (-1);

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 8

458 switch (name) {
459 case IP_OPTIONS:
460 case T_IP_OPTIONS:
461 /* Caller ensures enough space */
462 return (ip_opt_get_user(connp, ptr));
463 default:
464 break;
465 }
466 break;

468 case IPPROTO_IPV6:
469 /*
470 * IPPROTO_IPV6 options are only supported for sockets
471 * that are using IPv6 on the wire.
472 */
473 if (connp->conn_ipversion != IPV6_VERSION) {
474 return (-1);
475 }
476 switch (name) {
477 case IPV6_PATHMTU:
478 if (tcp->tcp_state < TCPS_ESTABLISHED)
479 return (-1);
480 break;
481 }
482 break;
483 }
484 mutex_enter(&connp->conn_lock);
485 retval = conn_opt_get(&coas, level, name, ptr);
486 mutex_exit(&connp->conn_lock);
487 return (retval);
488 }

490 /*
491 * We declare as ’int’ rather than ’void’ to satisfy pfi_t arg requirements.
492 * Parameters are assumed to be verified by the caller.
493 */
494 /* ARGSUSED */
495 int
496 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
497 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
498 void *thisdg_attrs, cred_t *cr)
499 {
500 tcp_t *tcp = connp->conn_tcp;
501 int *i1 = (int *)invalp;
502 boolean_t onoff = (*i1 == 0) ? 0 : 1;
503 boolean_t checkonly;
504 int reterr;
505 tcp_stack_t *tcps = tcp->tcp_tcps;
506 conn_opt_arg_t coas;
507 uint32_t val = *((uint32_t *)invalp);

509 coas.coa_connp = connp;
510 coas.coa_ixa = connp->conn_ixa;
511 coas.coa_ipp = &connp->conn_xmit_ipp;
512 coas.coa_ancillary = B_FALSE;
513 coas.coa_changed = 0;

515 switch (optset_context) {
516 case SETFN_OPTCOM_CHECKONLY:
517 checkonly = B_TRUE;
518 /*
519 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
520 * inlen != 0 implies value supplied and
521 * we have to "pretend" to set it.
522 * inlen == 0 implies that there is no
523 * value part in T_CHECK request and just validation

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 9

524 * done elsewhere should be enough, we just return here.
525 */
526 if (inlen == 0) {
527 *outlenp = 0;
528 return (0);
529 }
530 break;
531 case SETFN_OPTCOM_NEGOTIATE:
532 checkonly = B_FALSE;
533 break;
534 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
535 case SETFN_CONN_NEGOTIATE:
536 checkonly = B_FALSE;
537 /*
538 * Negotiating local and "association-related" options
539 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
540 * primitives is allowed by XTI, but we choose
541 * to not implement this style negotiation for Internet
542 * protocols (We interpret it is a must for OSI world but
543 * optional for Internet protocols) for all options.
544 * [Will do only for the few options that enable test
545 * suites that our XTI implementation of this feature
546 * works for transports that do allow it]
547 */
548 if (!tcp_allow_connopt_set(level, name)) {
549 *outlenp = 0;
550 return (EINVAL);
551 }
552 break;
553 default:
554 /*
555 * We should never get here
556 */
557 *outlenp = 0;
558 return (EINVAL);
559 }

561 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
562 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));

564 /*
565 * For TCP, we should have no ancillary data sent down
566 * (sendmsg isn’t supported for SOCK_STREAM), so thisdg_attrs
567 * has to be zero.
568 */
569 ASSERT(thisdg_attrs == NULL);

571 /*
572 * For fixed length options, no sanity check
573 * of passed in length is done. It is assumed *_optcom_req()
574 * routines do the right thing.
575 */
576 switch (level) {
577 case SOL_SOCKET:
578 switch (name) {
579 case SO_KEEPALIVE:
580 if (checkonly) {
581 /* check only case */
582 break;
583 }

585 if (!onoff) {
586 if (connp->conn_keepalive) {
587 if (tcp->tcp_ka_tid != 0) {
588 (void) TCP_TIMER_CANCEL(tcp,
589 tcp->tcp_ka_tid);

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 10

590 tcp->tcp_ka_tid = 0;
591 }
592 connp->conn_keepalive = 0;
593 }
594 break;
595 }
596 if (!connp->conn_keepalive) {
597 /* Crank up the keepalive timer */
598 tcp->tcp_ka_last_intrvl = 0;
599 tcp->tcp_ka_tid = TCP_TIMER(tcp,
600 tcp_keepalive_timer, tcp->tcp_ka_interval);
601 connp->conn_keepalive = 1;
602 }
603 break;
604 case SO_SNDBUF: {
605 if (*i1 > tcps->tcps_max_buf) {
606 *outlenp = 0;
607 return (ENOBUFS);
608 }
609 if (checkonly)
610 break;

612 connp->conn_sndbuf = *i1;
613 if (tcps->tcps_snd_lowat_fraction != 0) {
614 connp->conn_sndlowat = connp->conn_sndbuf /
615 tcps->tcps_snd_lowat_fraction;
616 }
617 (void) tcp_maxpsz_set(tcp, B_TRUE);
618 /*
619 * If we are flow-controlled, recheck the condition.
620 * There are apps that increase SO_SNDBUF size when
621 * flow-controlled (EWOULDBLOCK), and expect the flow
622 * control condition to be lifted right away.
623 */
624 mutex_enter(&tcp->tcp_non_sq_lock);
625 if (tcp->tcp_flow_stopped &&
626 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) {
627 tcp_clrqfull(tcp);
628 }
629 mutex_exit(&tcp->tcp_non_sq_lock);
630 *outlenp = inlen;
631 return (0);
632 }
633 case SO_RCVBUF:
634 if (*i1 > tcps->tcps_max_buf) {
635 *outlenp = 0;
636 return (ENOBUFS);
637 }
638 /* Silently ignore zero */
639 if (!checkonly && *i1 != 0) {
640 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
641 (void) tcp_rwnd_set(tcp, *i1);
642 }
643 /*
644 * XXX should we return the rwnd here
645 * and tcp_opt_get ?
646 */
647 *outlenp = inlen;
648 return (0);
649 case SO_SND_COPYAVOID:
650 if (!checkonly) {
651 if (tcp->tcp_loopback ||
652 (onoff != 1) || !tcp_zcopy_check(tcp)) {
653 *outlenp = 0;
654 return (EOPNOTSUPP);
655 }

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 11

656 tcp->tcp_snd_zcopy_aware = 1;
657 }
658 *outlenp = inlen;
659 return (0);
660 }
661 break;
662 case IPPROTO_TCP:
663 switch (name) {
664 case TCP_NODELAY:
665 if (!checkonly)
666 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
667 break;
668 case TCP_NOTIFY_THRESHOLD:
669 if (!checkonly)
670 tcp->tcp_first_timer_threshold = *i1;
671 break;
672 case TCP_ABORT_THRESHOLD:
673 if (!checkonly)
674 tcp->tcp_second_timer_threshold = *i1;
675 break;
676 case TCP_CONN_NOTIFY_THRESHOLD:
677 if (!checkonly)
678 tcp->tcp_first_ctimer_threshold = *i1;
679 break;
680 case TCP_CONN_ABORT_THRESHOLD:
681 if (!checkonly)
682 tcp->tcp_second_ctimer_threshold = *i1;
683 break;
684 case TCP_RECVDSTADDR:
685 if (tcp->tcp_state > TCPS_LISTEN) {
686 *outlenp = 0;
687 return (EOPNOTSUPP);
688 }
689 /* Setting done in conn_opt_set */
690 break;
691 case TCP_INIT_CWND:
692 if (checkonly)
693 break;

695 /*
696 * Only allow socket with network configuration
697 * privilege to set the initial cwnd to be larger
698 * than allowed by RFC 3390.
699 */
700 if (val > MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
701 if ((reterr = secpolicy_ip_config(cr, B_TRUE))
702 != 0) {
703 *outlenp = 0;
704 return (reterr);
705 }
706 if (val > tcp_max_init_cwnd) {
707 *outlenp = 0;
708 return (EINVAL);
709 }
710 }

712 tcp->tcp_init_cwnd = val;

714 /*
715 * If the socket is connected, AND no outbound data
716 * has been sent, reset the actual cwnd values.
717 */
718 if (tcp->tcp_state == TCPS_ESTABLISHED &&
719 tcp->tcp_iss == tcp->tcp_snxt - 1) {
720 tcp->tcp_cwnd =
721 MIN(tcp->tcp_rwnd, val * tcp->tcp_mss);

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 12

722 }
723 break;

725 /*
726 * TCP_KEEPIDLE is in seconds but TCP_KEEPALIVE_THRESHOLD
727 * is in milliseconds. TCP_KEEPIDLE is introduced for
728 * compatibility with other Unix flavors.
729 * We can fall through TCP_KEEPALIVE_THRESHOLD logic after
730 * converting the input to milliseconds.
731 */
732 case TCP_KEEPIDLE:
733 *i1 *= 1000;
734 /* FALLTHRU */

736 case TCP_KEEPALIVE_THRESHOLD:
737 if (checkonly)
738 break;

740 if (*i1 < tcps->tcps_keepalive_interval_low ||
741 *i1 > tcps->tcps_keepalive_interval_high) {
742 *outlenp = 0;
743 return (EINVAL);
744 }
745 if (*i1 != tcp->tcp_ka_interval) {
746 tcp->tcp_ka_interval = *i1;
747 /*
748 * Check if we need to restart the
749 * keepalive timer.
750 */
751 if (tcp->tcp_ka_tid != 0) {
752 ASSERT(connp->conn_keepalive);
753 (void) TCP_TIMER_CANCEL(tcp,
754 tcp->tcp_ka_tid);
755 tcp->tcp_ka_last_intrvl = 0;
756 tcp->tcp_ka_tid = TCP_TIMER(tcp,
757 tcp_keepalive_timer,
758 tcp->tcp_ka_interval);
759 }
760 }
761 break;

763 /*
764 * tcp_ka_abort_thres = tcp_ka_rinterval * tcp_ka_cnt.
765 * So setting TCP_KEEPCNT or TCP_KEEPINTVL can affect all the
766 * three members - tcp_ka_abort_thres, tcp_ka_rinterval and
767 * tcp_ka_cnt.
768 */
769 case TCP_KEEPCNT:
770 if (checkonly)
771 break;

773 if (*i1 == 0) {
774 return (EINVAL);
775 } else if (tcp->tcp_ka_rinterval == 0) {
776 if ((tcp->tcp_ka_abort_thres / *i1) <
777 tcp->tcp_rto_min ||
778 (tcp->tcp_ka_abort_thres / *i1) >
779 tcp->tcp_rto_max)
780 return (EINVAL);

782 tcp->tcp_ka_rinterval =
783 tcp->tcp_ka_abort_thres / *i1;
784 } else {
785 if ((*i1 * tcp->tcp_ka_rinterval) <
786 tcps->tcps_keepalive_abort_interval_low ||
787 (*i1 * tcp->tcp_ka_rinterval) >

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 13

788 tcps->tcps_keepalive_abort_interval_high)
789 return (EINVAL);
790 tcp->tcp_ka_abort_thres =
791 (*i1 * tcp->tcp_ka_rinterval);
792 }
793 tcp->tcp_ka_cnt = *i1;
794 break;
795 case TCP_KEEPINTVL:
796 /*
797 * TCP_KEEPINTVL is specified in seconds, but
798 * tcp_ka_rinterval is in milliseconds.
799 */

801 if (checkonly)
802 break;

804 if ((*i1 * 1000) < tcp->tcp_rto_min ||
805 (*i1 * 1000) > tcp->tcp_rto_max)
806 return (EINVAL);

808 if (tcp->tcp_ka_cnt == 0) {
809 tcp->tcp_ka_cnt =
810 tcp->tcp_ka_abort_thres / (*i1 * 1000);
811 } else {
812 if ((*i1 * tcp->tcp_ka_cnt * 1000) <
813 tcps->tcps_keepalive_abort_interval_low ||
814 (*i1 * tcp->tcp_ka_cnt * 1000) >
815 tcps->tcps_keepalive_abort_interval_high)
816 return (EINVAL);
817 tcp->tcp_ka_abort_thres =
818 (*i1 * tcp->tcp_ka_cnt * 1000);
819 }
820 tcp->tcp_ka_rinterval = *i1 * 1000;
821 break;
822 case TCP_KEEPALIVE_ABORT_THRESHOLD:
823 if (!checkonly) {
824 if (*i1 <
825 tcps->tcps_keepalive_abort_interval_low ||
826 *i1 >
827 tcps->tcps_keepalive_abort_interval_high) {
828 *outlenp = 0;
829 return (EINVAL);
830 }
831 tcp->tcp_ka_abort_thres = *i1;
832 tcp->tcp_ka_cnt = 0;
833 tcp->tcp_ka_rinterval = 0;
834 }
835 break;
836 case TCP_CORK:
837 if (!checkonly) {
838 /*
839 * if tcp->tcp_cork was set and is now
840 * being unset, we have to make sure that
841 * the remaining data gets sent out. Also
842 * unset tcp->tcp_cork so that tcp_wput_data()
843 * can send data even if it is less than mss
844 */
845 if (tcp->tcp_cork && onoff == 0 &&
846 tcp->tcp_unsent > 0) {
847 tcp->tcp_cork = B_FALSE;
848 tcp_wput_data(tcp, NULL, B_FALSE);
849 }
850 tcp->tcp_cork = onoff;
851 }
852 break;
853 case TCP_RTO_INITIAL: {

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 14

854 clock_t rto;

856 if (checkonly || val == 0)
857 break;

859 /*
860 * Sanity checks
861 *
862 * The initial RTO should be bounded by the minimum
863 * and maximum RTO. And it should also be smaller
864 * than the connect attempt abort timeout. Otherwise,
865 * the connection won’t be aborted in a period
866 * reasonably close to that timeout.
867 */
868 if (val < tcp->tcp_rto_min || val > tcp->tcp_rto_max ||
869 val > tcp->tcp_second_ctimer_threshold ||
870 val < tcps->tcps_rexmit_interval_initial_low ||
871 val > tcps->tcps_rexmit_interval_initial_high) {
872 *outlenp = 0;
873 return (EINVAL);
874 }
875 tcp->tcp_rto_initial = val;

877 /*
878 * If TCP has not sent anything, need to re-calculate
879 * tcp_rto. Otherwise, this option change does not
880 * really affect anything.
881 */
882 if (tcp->tcp_state >= TCPS_SYN_SENT)
883 break;

885 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
886 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
887 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
888 tcps->tcps_rexmit_interval_extra +
889 (tcp->tcp_rtt_sa >> 5) +
890 tcps->tcps_conn_grace_period;
891 TCP_SET_RTO(tcp, rto);
892 break;
893 }
894 case TCP_RTO_MIN:
895 if (checkonly || val == 0)
896 break;

898 if (val < tcps->tcps_rexmit_interval_min_low ||
899 val > tcps->tcps_rexmit_interval_min_high ||
900 val > tcp->tcp_rto_max) {
901 *outlenp = 0;
902 return (EINVAL);
903 }
904 tcp->tcp_rto_min = val;
905 if (tcp->tcp_rto < val)
906 tcp->tcp_rto = val;
907 break;
908 case TCP_RTO_MAX:
909 if (checkonly || val == 0)
910 break;

912 /*
913 * Sanity checks
914 *
915 * The maximum RTO should not be larger than the
916 * connection abort timeout. Otherwise, the
917 * connection won’t be aborted in a period reasonably
918 * close to that timeout.
919 */

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 15

920 if (val < tcps->tcps_rexmit_interval_max_low ||
921 val > tcps->tcps_rexmit_interval_max_high ||
922 val < tcp->tcp_rto_min ||
923 val > tcp->tcp_second_timer_threshold) {
924 *outlenp = 0;
925 return (EINVAL);
926 }
927 tcp->tcp_rto_max = val;
928 if (tcp->tcp_rto > val)
929 tcp->tcp_rto = val;
930 break;
931 case TCP_LINGER2:
932 if (checkonly || *i1 == 0)
933 break;

935 /*
936 * Note that the option value’s unit is second. And
937 * the value should be bigger than the private
938 * parameter tcp_fin_wait_2_flush_interval’s lower
939 * bound and smaller than the current value of that
940 * parameter. It should be smaller than the current
941 * value to avoid an app setting TCP_LINGER2 to a big
942 * value, causing resource to be held up too long in
943 * FIN-WAIT-2 state.
944 */
945 if (*i1 < 0 ||
946 tcps->tcps_fin_wait_2_flush_interval_low/SECONDS >
947 *i1 ||
948 tcps->tcps_fin_wait_2_flush_interval/SECONDS <
949 *i1) {
950 *outlenp = 0;
951 return (EINVAL);
952 }
953 tcp->tcp_fin_wait_2_flush_interval = *i1 * SECONDS;
954 break;
955 default:
956 break;
957 }
958 break;
959 case IPPROTO_IP:
960 if (connp->conn_family != AF_INET) {
961 *outlenp = 0;
962 return (EINVAL);
963 }
964 switch (name) {
965 case IP_SEC_OPT:
966 /*
967 * We should not allow policy setting after
968 * we start listening for connections.
969 */
970 if (tcp->tcp_state == TCPS_LISTEN) {
971 return (EINVAL);
972 }
973 break;
974 }
975 break;
976 case IPPROTO_IPV6:
977 /*
978 * IPPROTO_IPV6 options are only supported for sockets
979 * that are using IPv6 on the wire.
980 */
981 if (connp->conn_ipversion != IPV6_VERSION) {
982 *outlenp = 0;
983 return (EINVAL);
984 }

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 16

986 switch (name) {
987 case IPV6_RECVPKTINFO:
988 if (!checkonly) {
989 /* Force it to be sent up with the next msg */
990 tcp->tcp_recvifindex = 0;
991 }
992 break;
993 case IPV6_RECVTCLASS:
994 if (!checkonly) {
995 /* Force it to be sent up with the next msg */
996 tcp->tcp_recvtclass = 0xffffffffU;
997 }
998 break;
999 case IPV6_RECVHOPLIMIT:

1000 if (!checkonly) {
1001 /* Force it to be sent up with the next msg */
1002 tcp->tcp_recvhops = 0xffffffffU;
1003 }
1004 break;
1005 case IPV6_PKTINFO:
1006 /* This is an extra check for TCP */
1007 if (inlen == sizeof (struct in6_pktinfo)) {
1008 struct in6_pktinfo *pkti;

1010 pkti = (struct in6_pktinfo *)invalp;
1011 /*
1012 * RFC 3542 states that ipi6_addr must be
1013 * the unspecified address when setting the
1014 * IPV6_PKTINFO sticky socket option on a
1015 * TCP socket.
1016 */
1017 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
1018 return (EINVAL);
1019 }
1020 break;
1021 case IPV6_SEC_OPT:
1022 /*
1023 * We should not allow policy setting after
1024 * we start listening for connections.
1025 */
1026 if (tcp->tcp_state == TCPS_LISTEN) {
1027 return (EINVAL);
1028 }
1029 break;
1030 }
1031 break;
1032 }
1033 reterr = conn_opt_set(&coas, level, name, inlen, invalp,
1034 checkonly, cr);
1035 if (reterr != 0) {
1036 *outlenp = 0;
1037 return (reterr);
1038 }

1040 /*
1041 * Common case of OK return with outval same as inval
1042 */
1043 if (invalp != outvalp) {
1044 /* don’t trust bcopy for identical src/dst */
1045 (void) bcopy(invalp, outvalp, inlen);
1046 }
1047 *outlenp = inlen;

1049 if (coas.coa_changed & COA_HEADER_CHANGED) {
1050 /* If we are connected we rebuilt the headers */
1051 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&

new/usr/src/uts/common/inet/tcp/tcp_opt_data.c 17

1052 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
1053 reterr = tcp_build_hdrs(tcp);
1054 if (reterr != 0)
1055 return (reterr);
1056 }
1057 }
1058 if (coas.coa_changed & COA_ROUTE_CHANGED) {
1059 in6_addr_t nexthop;

1061 /*
1062 * If we are connected we re-cache the information.
1063 * We ignore errors to preserve BSD behavior.
1064 * Note that we don’t redo IPsec policy lookup here
1065 * since the final destination (or source) didn’t change.
1066 */
1067 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa,
1068 &connp->conn_faddr_v6, &nexthop);

1070 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
1071 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
1072 (void) ip_attr_connect(connp, connp->conn_ixa,
1073 &connp->conn_laddr_v6, &connp->conn_faddr_v6,
1074 &nexthop, connp->conn_fport, NULL, NULL,
1075 IPDF_VERIFY_DST);
1076 }
1077 }
1078 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) {
1079 connp->conn_wq->q_hiwat = connp->conn_sndbuf;
1080 }
1081 if (coas.coa_changed & COA_WROFF_CHANGED) {
1082 connp->conn_wroff = connp->conn_ht_iphc_allocated +
1083 tcps->tcps_wroff_xtra;
1084 (void) proto_set_tx_wroff(connp->conn_rq, connp,
1085 connp->conn_wroff);
1086 }
1087 if (coas.coa_changed & COA_OOBINLINE_CHANGED) {
1088 if (IPCL_IS_NONSTR(connp))
1089 proto_set_rx_oob_opt(connp, onoff);
1090 }
1091 return (0);
1092 }

new/usr/src/uts/common/inet/tcp/tcp_socket.c 1

**
 31926 Wed Jun 13 12:05:24 2012
new/usr/src/uts/common/inet/tcp/tcp_socket.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 /* This file contains all TCP kernel socket related functions. */

28 #include <sys/types.h>
29 #include <sys/strlog.h>
30 #include <sys/policy.h>
31 #include <sys/sockio.h>
32 #include <sys/strsubr.h>
33 #include <sys/strsun.h>
34 #include <sys/squeue_impl.h>
35 #include <sys/squeue.h>
36 #define _SUN_TPI_VERSION 2
37 #include <sys/tihdr.h>
38 #include <sys/timod.h>
39 #include <sys/tpicommon.h>
40 #include <sys/socketvar.h>

42 #include <inet/common.h>
43 #include <inet/proto_set.h>
44 #include <inet/ip.h>
45 #include <inet/tcp.h>
46 #include <inet/tcp_impl.h>

48 static void tcp_activate(sock_lower_handle_t, sock_upper_handle_t,
49 sock_upcalls_t *, int, cred_t *);
50 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
51 sock_upper_handle_t, cred_t *);
52 static int tcp_bind(sock_lower_handle_t, struct sockaddr *,
53 socklen_t, cred_t *);
54 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
55 static int tcp_connect(sock_lower_handle_t, const struct sockaddr *,
56 socklen_t, sock_connid_t *, cred_t *);
57 static int tcp_getpeername(sock_lower_handle_t, struct sockaddr *,
58 socklen_t *, cred_t *);
59 static int tcp_getsockname(sock_lower_handle_t, struct sockaddr *,
60 socklen_t *, cred_t *);
61 #endif /* ! codereview */

new/usr/src/uts/common/inet/tcp/tcp_socket.c 2

62 static int tcp_getsockopt(sock_lower_handle_t, int, int, void *,
63 socklen_t *, cred_t *);
64 static int tcp_setsockopt(sock_lower_handle_t, int, int, const void *,
65 socklen_t, cred_t *);
66 static int tcp_sendmsg(sock_lower_handle_t, mblk_t *, struct nmsghdr *,
67 cred_t *);
57 cred_t *cr);
68 static int tcp_shutdown(sock_lower_handle_t, int, cred_t *);
69 static void tcp_clr_flowctrl(sock_lower_handle_t);
70 static int tcp_ioctl(sock_lower_handle_t, int, intptr_t, int, int32_t *,
71 cred_t *);
72 static int tcp_close(sock_lower_handle_t, int, cred_t *);

74 sock_downcalls_t sock_tcp_downcalls = {
75 tcp_activate,
76 tcp_accept,
77 tcp_bind,
78 tcp_listen,
79 tcp_connect,
80 tcp_getpeername,
81 tcp_getsockname,
82 tcp_getsockopt,
83 tcp_setsockopt,
84 tcp_sendmsg,
85 NULL,
86 NULL,
87 NULL,
88 tcp_shutdown,
89 tcp_clr_flowctrl,
90 tcp_ioctl,
91 tcp_close,
92 };

______unchanged_portion_omitted_

753 /* ARGSUSED */
754 sock_lower_handle_t
755 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
756 uint_t *smodep, int *errorp, int flags, cred_t *credp)
757 {
758 conn_t *connp;
759 boolean_t isv6 = family == AF_INET6;

761 #endif /* ! codereview */
762 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
763 (proto != 0 && proto != IPPROTO_TCP)) {
764 *errorp = EPROTONOSUPPORT;
765 return (NULL);
766 }

768 connp = tcp_create_common(credp, isv6, B_TRUE, errorp);
769 if (connp == NULL) {
770 return (NULL);
771 }

773 /*
774 * Put the ref for TCP. Ref for IP was already put
775 * by ipcl_conn_create. Also make the conn_t globally
776 * visible to walkers.
750 * by ipcl_conn_create. Also Make the conn_t globally
751 * visible to walkers
777 */
778 mutex_enter(&connp->conn_lock);
779 CONN_INC_REF_LOCKED(connp);
780 ASSERT(connp->conn_ref == 2);
781 connp->conn_state_flags &= ~CONN_INCIPIENT;

new/usr/src/uts/common/inet/tcp/tcp_socket.c 3

783 connp->conn_flags |= IPCL_NONSTR;
784 mutex_exit(&connp->conn_lock);

786 ASSERT(errorp != NULL);
787 *errorp = 0;
788 *sock_downcalls = &sock_tcp_downcalls;
789 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
790 SM_SENDFILESUPP;

792 return ((sock_lower_handle_t)connp);
793 }

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tcp_impl.h 1

**
 28387 Wed Jun 13 12:05:25 2012
new/usr/src/uts/common/inet/tcp_impl.h
%B
**
______unchanged_portion_omitted_

339 /* Increment and decrement the number of connections in tcp_stack_t. */
340 #define TCPS_CONN_INC(tcps) \
341 atomic_inc_64(\
342 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt)

344 #define TCPS_CONN_DEC(tcps) \
345 atomic_dec_64(\
346 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt)

348 /*
349 * When the system is under memory pressure, stack variable tcps_reclaim is
350 * true, we shorten the connection timeout abort interval to tcp_early_abort
351 * seconds. Defined in tcp.c.
352 */
353 extern uint32_t tcp_early_abort;

355 /*
356 * To reach to an eager in Q0 which can be dropped due to an incoming
357 * new SYN request when Q0 is full, a new doubly linked list is
358 * introduced. This list allows to select an eager from Q0 in O(1) time.
359 * This is needed to avoid spending too much time walking through the
360 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
361 * this new list has to be a member of Q0.
362 * This list is headed by listener’s tcp_t. When the list is empty,
363 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
364 * of listener’s tcp_t point to listener’s tcp_t itself.
365 *
366 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
367 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
368 * These macros do not affect the eager’s membership to Q0.
369 */
370 #define MAKE_DROPPABLE(listener, eager) \
371 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \
372 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
373 = (eager); \
374 (eager)->tcp_eager_prev_drop_q0 = (listener); \
375 (eager)->tcp_eager_next_drop_q0 = \
376 (listener)->tcp_eager_next_drop_q0; \
377 (listener)->tcp_eager_next_drop_q0 = (eager); \
378 }

380 #define MAKE_UNDROPPABLE(eager) \
381 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \
382 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \
383 = (eager)->tcp_eager_prev_drop_q0; \
384 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \
385 = (eager)->tcp_eager_next_drop_q0; \
386 (eager)->tcp_eager_prev_drop_q0 = NULL; \
387 (eager)->tcp_eager_next_drop_q0 = NULL; \
388 }

390 /*
391 * The format argument to pass to tcp_display().
392 * DISP_PORT_ONLY means that the returned string has only port info.
393 * DISP_ADDR_AND_PORT means that the returned string also contains the
394 * remote and local IP address.
395 */
396 #define DISP_PORT_ONLY 1
397 #define DISP_ADDR_AND_PORT 2

new/usr/src/uts/common/inet/tcp_impl.h 2

399 #define IP_ADDR_CACHE_SIZE 2048
400 #define IP_ADDR_CACHE_HASH(faddr) \
401 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))

403 /* TCP cwnd burst factor. */
404 #define TCP_CWND_INFINITE 65535
405 #define TCP_CWND_SS 3
406 #define TCP_CWND_NORMAL 5

408 /*
409 * TCP reassembly macros. We hide starting and ending sequence numbers in
410 * b_next and b_prev of messages on the reassembly queue. The messages are
411 * chained using b_cont. These macros are used in tcp_reass() so we don’t
412 * have to see the ugly casts and assignments.
413 */
414 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next))
415 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \
416 (mblk_t *)(uintptr_t)(u))
417 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev))
418 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \
419 (mblk_t *)(uintptr_t)(u))

421 #define tcps_time_wait_interval tcps_propinfo_tbl[0].prop_cur_uval
422 #define tcps_conn_req_max_q tcps_propinfo_tbl[1].prop_cur_uval
423 #define tcps_conn_req_max_q0 tcps_propinfo_tbl[2].prop_cur_uval
424 #define tcps_conn_req_min tcps_propinfo_tbl[3].prop_cur_uval
425 #define tcps_conn_grace_period tcps_propinfo_tbl[4].prop_cur_uval
426 #define tcps_cwnd_max_ tcps_propinfo_tbl[5].prop_cur_uval
427 #define tcps_dbg tcps_propinfo_tbl[6].prop_cur_uval
428 #define tcps_smallest_nonpriv_port tcps_propinfo_tbl[7].prop_cur_uval
429 #define tcps_ip_abort_cinterval tcps_propinfo_tbl[8].prop_cur_uval
430 #define tcps_ip_abort_linterval tcps_propinfo_tbl[9].prop_cur_uval
431 #define tcps_ip_abort_interval tcps_propinfo_tbl[10].prop_cur_uval
432 #define tcps_ip_notify_cinterval tcps_propinfo_tbl[11].prop_cur_uval
433 #define tcps_ip_notify_interval tcps_propinfo_tbl[12].prop_cur_uval
434 #define tcps_ipv4_ttl tcps_propinfo_tbl[13].prop_cur_uval
435 #define tcps_keepalive_interval_high tcps_propinfo_tbl[14].prop_max_uval
436 #define tcps_keepalive_interval tcps_propinfo_tbl[14].prop_cur_uval
437 #define tcps_keepalive_interval_low tcps_propinfo_tbl[14].prop_min_uval
438 #define tcps_maxpsz_multiplier tcps_propinfo_tbl[15].prop_cur_uval
439 #define tcps_mss_def_ipv4 tcps_propinfo_tbl[16].prop_cur_uval
440 #define tcps_mss_max_ipv4 tcps_propinfo_tbl[17].prop_cur_uval
441 #define tcps_mss_min tcps_propinfo_tbl[18].prop_cur_uval
442 #define tcps_naglim_def tcps_propinfo_tbl[19].prop_cur_uval
443 #define tcps_rexmit_interval_initial_high \
444 tcps_propinfo_tbl[20].prop_max_uval
445 #define tcps_rexmit_interval_initial tcps_propinfo_tbl[20].prop_cur_uval
446 #define tcps_rexmit_interval_initial_low \
447 tcps_propinfo_tbl[20].prop_min_uval
448 #define tcps_rexmit_interval_max_high tcps_propinfo_tbl[21].prop_max_uval
449 #define tcps_rexmit_interval_max tcps_propinfo_tbl[21].prop_cur_uval
450 #define tcps_rexmit_interval_max_low tcps_propinfo_tbl[21].prop_min_uval
451 #define tcps_rexmit_interval_min_high tcps_propinfo_tbl[22].prop_max_uval
452 #define tcps_rexmit_interval_min tcps_propinfo_tbl[22].prop_cur_uval
453 #define tcps_rexmit_interval_min_low tcps_propinfo_tbl[22].prop_min_uval
454 #define tcps_deferred_ack_interval tcps_propinfo_tbl[23].prop_cur_uval
455 #define tcps_snd_lowat_fraction tcps_propinfo_tbl[24].prop_cur_uval
456 #define tcps_dupack_fast_retransmit tcps_propinfo_tbl[25].prop_cur_uval
457 #define tcps_ignore_path_mtu tcps_propinfo_tbl[26].prop_cur_bval
458 #define tcps_smallest_anon_port tcps_propinfo_tbl[27].prop_cur_uval
459 #define tcps_largest_anon_port tcps_propinfo_tbl[28].prop_cur_uval
460 #define tcps_xmit_hiwat tcps_propinfo_tbl[29].prop_cur_uval
461 #define tcps_xmit_lowat tcps_propinfo_tbl[30].prop_cur_uval
462 #define tcps_recv_hiwat tcps_propinfo_tbl[31].prop_cur_uval
463 #define tcps_recv_hiwat_minmss tcps_propinfo_tbl[32].prop_cur_uval

new/usr/src/uts/common/inet/tcp_impl.h 3

464 #define tcps_fin_wait_2_flush_interval_high \
465 tcps_propinfo_tbl[33].prop_max_uval
466 #define tcps_fin_wait_2_flush_interval tcps_propinfo_tbl[33].prop_cur_uval
467 #define tcps_fin_wait_2_flush_interval_low \
468 tcps_propinfo_tbl[33].prop_min_uval
469 #define tcps_max_buf tcps_propinfo_tbl[34].prop_cur_uval
470 #define tcps_strong_iss tcps_propinfo_tbl[35].prop_cur_uval
471 #define tcps_rtt_updates tcps_propinfo_tbl[36].prop_cur_uval
472 #define tcps_wscale_always tcps_propinfo_tbl[37].prop_cur_bval
473 #define tcps_tstamp_always tcps_propinfo_tbl[38].prop_cur_bval
474 #define tcps_tstamp_if_wscale tcps_propinfo_tbl[39].prop_cur_bval
475 #define tcps_rexmit_interval_extra tcps_propinfo_tbl[40].prop_cur_uval
476 #define tcps_deferred_acks_max tcps_propinfo_tbl[41].prop_cur_uval
477 #define tcps_slow_start_after_idle tcps_propinfo_tbl[42].prop_cur_uval
478 #define tcps_slow_start_initial tcps_propinfo_tbl[43].prop_cur_uval
479 #define tcps_sack_permitted tcps_propinfo_tbl[44].prop_cur_uval
480 #define tcps_ipv6_hoplimit tcps_propinfo_tbl[45].prop_cur_uval
481 #define tcps_mss_def_ipv6 tcps_propinfo_tbl[46].prop_cur_uval
482 #define tcps_mss_max_ipv6 tcps_propinfo_tbl[47].prop_cur_uval
483 #define tcps_rev_src_routes tcps_propinfo_tbl[48].prop_cur_bval
484 #define tcps_local_dack_interval tcps_propinfo_tbl[49].prop_cur_uval
485 #define tcps_local_dacks_max tcps_propinfo_tbl[50].prop_cur_uval
486 #define tcps_ecn_permitted tcps_propinfo_tbl[51].prop_cur_uval
487 #define tcps_rst_sent_rate_enabled tcps_propinfo_tbl[52].prop_cur_bval
488 #define tcps_rst_sent_rate tcps_propinfo_tbl[53].prop_cur_uval
489 #define tcps_push_timer_interval tcps_propinfo_tbl[54].prop_cur_uval
490 #define tcps_use_smss_as_mss_opt tcps_propinfo_tbl[55].prop_cur_bval
491 #define tcps_keepalive_abort_interval_high \
492 tcps_propinfo_tbl[56].prop_max_uval
493 #define tcps_keepalive_abort_interval \
494 tcps_propinfo_tbl[56].prop_cur_uval
495 #define tcps_keepalive_abort_interval_low \
496 tcps_propinfo_tbl[56].prop_min_uval
497 #define tcps_wroff_xtra tcps_propinfo_tbl[57].prop_cur_uval
498 #define tcps_dev_flow_ctl tcps_propinfo_tbl[58].prop_cur_bval
499 #define tcps_reass_timeout tcps_propinfo_tbl[59].prop_cur_uval
500 #define tcps_iss_incr tcps_propinfo_tbl[65].prop_cur_uval

502 extern struct qinit tcp_rinitv4, tcp_rinitv6;
503 extern boolean_t do_tcp_fusion;

505 /*
506 * Object to represent database of options to search passed to
507 * {sock,tpi}optcom_req() interface routine to take care of option
508 * management and associated methods.
509 */
510 extern optdb_obj_t tcp_opt_obj;
511 extern uint_t tcp_max_optsize;

513 extern int tcp_squeue_flag;

515 extern uint_t tcp_free_list_max_cnt;

517 /*
518 * Functions in tcp.c.
519 */
520 extern void tcp_acceptor_hash_insert(t_uscalar_t, tcp_t *);
521 extern tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t, tcp_stack_t *);
522 extern void tcp_acceptor_hash_remove(tcp_t *);
523 extern mblk_t *tcp_ack_mp(tcp_t *);
524 extern int tcp_build_hdrs(tcp_t *);
525 extern void tcp_cleanup(tcp_t *);
526 extern int tcp_clean_death(tcp_t *, int);
527 extern void tcp_clean_death_wrapper(void *, mblk_t *, void *,
528 ip_recv_attr_t *);
529 extern void tcp_close_common(conn_t *, int);

new/usr/src/uts/common/inet/tcp_impl.h 4

530 extern void tcp_close_detached(tcp_t *);
531 extern void tcp_close_mpp(mblk_t **);
532 extern void tcp_closei_local(tcp_t *);
533 extern sock_lower_handle_t tcp_create(int, int, int, sock_downcalls_t **,
534 uint_t *, int *, int, cred_t *);
535 extern conn_t *tcp_create_common(cred_t *, boolean_t, boolean_t, int *);
536 extern void tcp_disconnect(tcp_t *, mblk_t *);
537 extern char *tcp_display(tcp_t *, char *, char);
538 extern int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
539 boolean_t);
540 extern int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
541 cred_t *, pid_t);
542 extern int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int,
543 cred_t *, boolean_t);
544 extern int tcp_do_unbind(conn_t *);
545 extern boolean_t tcp_eager_blowoff(tcp_t *, t_scalar_t);
546 extern void tcp_eager_cleanup(tcp_t *, boolean_t);
547 extern void tcp_eager_kill(void *, mblk_t *, void *, ip_recv_attr_t *);
548 extern void tcp_eager_unlink(tcp_t *);
549 extern int tcp_getpeername(sock_lower_handle_t, struct sockaddr *,
550 socklen_t *, cred_t *);
551 extern int tcp_getsockname(sock_lower_handle_t, struct sockaddr *,
552 socklen_t *, cred_t *);
549 extern void tcp_init_values(tcp_t *, tcp_t *);
550 extern void tcp_ipsec_cleanup(tcp_t *);
551 extern int tcp_maxpsz_set(tcp_t *, boolean_t);
552 extern void tcp_mss_set(tcp_t *, uint32_t);
553 extern void tcp_reinput(conn_t *, mblk_t *, ip_recv_attr_t *, ip_stack_t *);
554 extern void tcp_rsrv(queue_t *);
555 extern uint_t tcp_rwnd_reopen(tcp_t *);
556 extern int tcp_rwnd_set(tcp_t *, uint32_t);
557 extern int tcp_set_destination(tcp_t *);
558 extern void tcp_set_ws_value(tcp_t *);
559 extern void tcp_stop_lingering(tcp_t *);
560 extern void tcp_update_pmtu(tcp_t *, boolean_t);
561 extern mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t);
562 extern boolean_t tcp_zcopy_check(tcp_t *);
563 extern void tcp_zcopy_notify(tcp_t *);
564 extern void tcp_get_proto_props(tcp_t *, struct sock_proto_props *);

566 /*
567 * Bind related functions in tcp_bind.c
568 */
569 extern int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t,
570 cred_t *, boolean_t);
571 extern void tcp_bind_hash_insert(tf_t *, tcp_t *, int);
572 extern void tcp_bind_hash_remove(tcp_t *);
573 extern in_port_t tcp_bindi(tcp_t *, in_port_t, const in6_addr_t *,
574 int, boolean_t, boolean_t, boolean_t);
575 extern in_port_t tcp_update_next_port(in_port_t, const tcp_t *,
576 boolean_t);

578 /*
579 * Fusion related functions in tcp_fusion.c.
580 */
581 extern void tcp_fuse(tcp_t *, uchar_t *, tcpha_t *);
582 extern void tcp_unfuse(tcp_t *);
583 extern boolean_t tcp_fuse_output(tcp_t *, mblk_t *, uint32_t);
584 extern void tcp_fuse_output_urg(tcp_t *, mblk_t *);
585 extern boolean_t tcp_fuse_rcv_drain(queue_t *, tcp_t *, mblk_t **);
586 extern size_t tcp_fuse_set_rcv_hiwat(tcp_t *, size_t);
587 extern int tcp_fuse_maxpsz(tcp_t *);
588 extern void tcp_fuse_backenable(tcp_t *);
589 extern void tcp_iss_key_init(uint8_t *, int, tcp_stack_t *);

591 /*

new/usr/src/uts/common/inet/tcp_impl.h 5

592 * Output related functions in tcp_output.c.
593 */
594 extern void tcp_close_output(void *, mblk_t *, void *, ip_recv_attr_t *);
595 extern void tcp_output(void *, mblk_t *, void *, ip_recv_attr_t *);
596 extern void tcp_output_urgent(void *, mblk_t *, void *, ip_recv_attr_t *);
597 extern void tcp_rexmit_after_error(tcp_t *);
598 extern void tcp_sack_rexmit(tcp_t *, uint_t *);
599 extern void tcp_send_data(tcp_t *, mblk_t *);
600 extern void tcp_send_synack(void *, mblk_t *, void *, ip_recv_attr_t *);
601 extern void tcp_shutdown_output(void *, mblk_t *, void *, ip_recv_attr_t *);
602 extern void tcp_ss_rexmit(tcp_t *);
603 extern void tcp_update_xmit_tail(tcp_t *, uint32_t);
604 extern void tcp_wput(queue_t *, mblk_t *);
605 extern void tcp_wput_data(tcp_t *, mblk_t *, boolean_t);
606 extern void tcp_wput_sock(queue_t *, mblk_t *);
607 extern void tcp_wput_fallback(queue_t *, mblk_t *);
608 extern void tcp_xmit_ctl(char *, tcp_t *, uint32_t, uint32_t, int);
609 extern void tcp_xmit_listeners_reset(mblk_t *, ip_recv_attr_t *,
610 ip_stack_t *i, conn_t *);
611 extern mblk_t *tcp_xmit_mp(tcp_t *, mblk_t *, int32_t, int32_t *,
612 mblk_t **, uint32_t, boolean_t, uint32_t *, boolean_t);

614 /*
615 * Input related functions in tcp_input.c.
616 */
617 extern void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
618 extern void tcp_input_data(void *, mblk_t *, void *, ip_recv_attr_t *);
619 extern void tcp_input_listener_unbound(void *, mblk_t *, void *,
620 ip_recv_attr_t *);
621 extern boolean_t tcp_paws_check(tcp_t *, tcpha_t *, tcp_opt_t *);
622 extern uint_t tcp_rcv_drain(tcp_t *);
623 extern void tcp_rcv_enqueue(tcp_t *, mblk_t *, uint_t, cred_t *);
624 extern boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *,
625 ip_recv_attr_t *);

627 /*
628 * Kernel socket related functions in tcp_socket.c.
629 */
630 extern int tcp_fallback(sock_lower_handle_t, queue_t *, boolean_t,
631 so_proto_quiesced_cb_t, sock_quiesce_arg_t *);
632 extern boolean_t tcp_newconn_notify(tcp_t *, ip_recv_attr_t *);

634 /*
635 * Timer related functions in tcp_timers.c.
636 */
637 extern void tcp_ack_timer(void *);
638 extern void tcp_close_linger_timeout(void *);
639 extern void tcp_keepalive_timer(void *);
640 extern void tcp_push_timer(void *);
641 extern void tcp_reass_timer(void *);
642 extern mblk_t *tcp_timermp_alloc(int);
643 extern void tcp_timermp_free(tcp_t *);
644 extern timeout_id_t tcp_timeout(conn_t *, void (*)(void *), hrtime_t);
645 extern clock_t tcp_timeout_cancel(conn_t *, timeout_id_t);
646 extern void tcp_timer(void *arg);
647 extern void tcp_timers_stop(tcp_t *);

649 /*
650 * TCP TPI related functions in tcp_tpi.c.
651 */
652 extern void tcp_addr_req(tcp_t *, mblk_t *);
653 extern void tcp_capability_req(tcp_t *, mblk_t *);
654 extern boolean_t tcp_conn_con(tcp_t *, uchar_t *, mblk_t *,
655 mblk_t **, ip_recv_attr_t *);
656 extern void tcp_err_ack(tcp_t *, mblk_t *, int, int);
657 extern void tcp_err_ack_prim(tcp_t *, mblk_t *, int, int, int);

new/usr/src/uts/common/inet/tcp_impl.h 6

658 extern void tcp_info_req(tcp_t *, mblk_t *);
659 extern void tcp_send_conn_ind(void *, mblk_t *, void *);
660 extern void tcp_send_pending(void *, mblk_t *, void *, ip_recv_attr_t *);
661 extern void tcp_tpi_accept(queue_t *, mblk_t *);
662 extern void tcp_tpi_bind(tcp_t *, mblk_t *);
663 extern int tcp_tpi_close(queue_t *, int);
664 extern int tcp_tpi_close_accept(queue_t *);
665 extern void tcp_tpi_connect(tcp_t *, mblk_t *);
666 extern int tcp_tpi_opt_get(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);
667 extern int tcp_tpi_opt_set(queue_t *, uint_t, int, int, uint_t, uchar_t *,
668 uint_t *, uchar_t *, void *, cred_t *);
669 extern void tcp_tpi_unbind(tcp_t *, mblk_t *);
670 extern void tcp_tli_accept(tcp_t *, mblk_t *);
671 extern void tcp_use_pure_tpi(tcp_t *);
672 extern void tcp_do_capability_ack(tcp_t *, struct T_capability_ack *,
673 t_uscalar_t);

675 /*
676 * TCP option processing related functions in tcp_opt_data.c
677 */
682 extern int tcp_opt_default(queue_t *, t_scalar_t, t_scalar_t, uchar_t *);
678 extern int tcp_opt_get(conn_t *, int, int, uchar_t *);
679 extern int tcp_opt_set(conn_t *, uint_t, int, int, uint_t, uchar_t *,
680 uint_t *, uchar_t *, void *, cred_t *);

682 /*
683 * TCP time wait processing related functions in tcp_time_wait.c.
684 */
685 extern void tcp_time_wait_append(tcp_t *);
686 extern void tcp_time_wait_collector(void *);
687 extern boolean_t tcp_time_wait_remove(tcp_t *, tcp_squeue_priv_t *);
688 extern void tcp_time_wait_processing(tcp_t *, mblk_t *, uint32_t,
689 uint32_t, int, tcpha_t *, ip_recv_attr_t *);

691 /*
692 * Misc functions in tcp_misc.c.
693 */
694 extern uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t);
695 extern void tcp_ioctl_abort_conn(queue_t *, mblk_t *);
696 extern void tcp_listener_conf_cleanup(tcp_stack_t *);
697 extern void tcp_stack_cpu_add(tcp_stack_t *, processorid_t);

699 #endif /* _KERNEL */

701 #ifdef __cplusplus
702 }

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tcp_stats.h 1

**
 7689 Wed Jun 13 12:05:30 2012
new/usr/src/uts/common/inet/tcp_stats.h
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 #ifndef _INET_TCP_STATS_H
27 #define _INET_TCP_STATS_H

29 /*
30 * TCP private kernel statistics declarations.
31 */

33 #ifdef __cplusplus
34 extern "C" {
35 #endif

37 #ifdef _KERNEL

39 /*
40 * TCP Statistics.
41 *
42 * How TCP statistics work.
43 *
44 * There are two types of statistics invoked by two macros.
45 *
46 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
47 * supposed to be used in non MT-hot paths of the code.
48 *
49 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
50 * supposed to be used for DEBUG purposes and may be used on a hot path.
51 * These counters are only available in a debugged kernel. They are grouped
51 * These counters are only available in a debugged kerel. They are grouped
52 * under the TCP_DEBUG_COUNTER C pre-processor condition.
53 *
54 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
55 * (use "kstat tcp" to get them).
56 *
57 * How to add new counters.
58 *
59 * 1) Add a field in the tcp_stat structure describing your counter.
60 * 2) Add a line in the template in tcp_kstat2_init() with the name

new/usr/src/uts/common/inet/tcp_stats.h 2

61 * of the counter.
62 * 3) Update tcp_clr_stats() and tcp_cp_stats() with the new counters.
63 * IMPORTANT!! - make sure that all the above functions are in sync !!
64 * 4) Use either TCP_STAT or TCP_DBGSTAT with the name.
65 *
66 * Please avoid using private counters which are not kstat-exported.
67 *
68 * Implementation note.
69 *
70 * Both the MIB2 and tcp_stat_t counters are kept per CPU in the array
71 * tcps_sc in tcp_stack_t. Each array element is a pointer to a
72 * tcp_stats_cpu_t struct. Once allocated, the tcp_stats_cpu_t struct is
73 * not freed until the tcp_stack_t is going away. So there is no need to
74 * acquire a lock before accessing the stats counters.
75 */

77 #ifndef TCP_DEBUG_COUNTER
78 #ifdef DEBUG
79 #define TCP_DEBUG_COUNTER 1
80 #else
81 #define TCP_DEBUG_COUNTER 0
82 #endif
83 #endif

85 /* Kstats */
86 typedef struct tcp_stat {
87 kstat_named_t tcp_time_wait_syn_success;
88 kstat_named_t tcp_clean_death_nondetached;
89 kstat_named_t tcp_eager_blowoff_q;
90 kstat_named_t tcp_eager_blowoff_q0;
91 kstat_named_t tcp_no_listener;
92 kstat_named_t tcp_listendrop;
93 kstat_named_t tcp_listendropq0;
94 kstat_named_t tcp_wsrv_called;
95 kstat_named_t tcp_flwctl_on;
96 kstat_named_t tcp_timer_fire_early;
97 kstat_named_t tcp_timer_fire_miss;
98 kstat_named_t tcp_zcopy_on;
99 kstat_named_t tcp_zcopy_off;
100 kstat_named_t tcp_zcopy_backoff;
101 kstat_named_t tcp_fusion_flowctl;
102 kstat_named_t tcp_fusion_backenabled;
103 kstat_named_t tcp_fusion_urg;
104 kstat_named_t tcp_fusion_putnext;
105 kstat_named_t tcp_fusion_unfusable;
106 kstat_named_t tcp_fusion_aborted;
107 kstat_named_t tcp_fusion_unqualified;
108 kstat_named_t tcp_fusion_rrw_busy;
109 kstat_named_t tcp_fusion_rrw_msgcnt;
110 kstat_named_t tcp_fusion_rrw_plugged;
111 kstat_named_t tcp_in_ack_unsent_drop;
112 kstat_named_t tcp_sock_fallback;
113 kstat_named_t tcp_lso_enabled;
114 kstat_named_t tcp_lso_disabled;
115 kstat_named_t tcp_lso_times;
116 kstat_named_t tcp_lso_pkt_out;
117 kstat_named_t tcp_listen_cnt_drop;
118 kstat_named_t tcp_listen_mem_drop;
119 kstat_named_t tcp_zwin_mem_drop;
120 kstat_named_t tcp_zwin_ack_syn;
121 kstat_named_t tcp_rst_unsent;
122 kstat_named_t tcp_reclaim_cnt;
123 kstat_named_t tcp_reass_timeout;
124 #ifdef TCP_DEBUG_COUNTER
125 kstat_named_t tcp_time_wait;
126 kstat_named_t tcp_rput_time_wait;

new/usr/src/uts/common/inet/tcp_stats.h 3

127 kstat_named_t tcp_detach_time_wait;
128 kstat_named_t tcp_timeout_calls;
129 kstat_named_t tcp_timeout_cached_alloc;
130 kstat_named_t tcp_timeout_cancel_reqs;
131 kstat_named_t tcp_timeout_canceled;
132 kstat_named_t tcp_timermp_freed;
133 kstat_named_t tcp_push_timer_cnt;
134 kstat_named_t tcp_ack_timer_cnt;
135 #endif
136 } tcp_stat_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/tunables.c 1

**
 11297 Wed Jun 13 12:05:32 2012
new/usr/src/uts/common/inet/tunables.c
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
24 */

26 #include <inet/tunables.h>
27 #include <sys/md5.h>
28 #include <inet/common.h>
29 #include <inet/ip.h>
30 #include <inet/ip6.h>
31 #include <netinet/icmp6.h>
32 #include <inet/ip_stack.h>
33 #include <inet/rawip_impl.h>
34 #include <inet/tcp_stack.h>
35 #include <inet/tcp_impl.h>
36 #include <inet/udp_impl.h>
37 #include <inet/dccp/dccp_stack.h>
38 #include <inet/dccp/dccp_impl.h>
39 #endif /* ! codereview */
40 #include <inet/sctp/sctp_stack.h>
41 #include <inet/sctp/sctp_impl.h>
42 #include <inet/tunables.h>

44 static int
45 prop_perm2const(mod_prop_info_t *pinfo)
46 {
47 if (pinfo->mpi_setf == NULL)
48 return (MOD_PROP_PERM_READ);
49 if (pinfo->mpi_getf == NULL)
50 return (MOD_PROP_PERM_WRITE);
51 return (MOD_PROP_PERM_RW);
52 }

54 /*
55 * Modifies the value of the property to default value or to the ‘pval’
56 * specified by the user.
57 */
58 /* ARGSUSED */
59 int
60 mod_set_boolean(void *cbarg, cred_t *cr, mod_prop_info_t *pinfo,
61 const char *ifname, const void* pval, uint_t flags)

new/usr/src/uts/common/inet/tunables.c 2

62 {
63 char *end;
64 unsigned long new_value;

66 if (flags & MOD_PROP_DEFAULT) {
67 pinfo->prop_cur_bval = pinfo->prop_def_bval;
68 return (0);
69 }

71 if (ddi_strtoul(pval, &end, 10, &new_value) != 0 || *end != ’\0’)
72 return (EINVAL);
73 if (new_value != B_TRUE && new_value != B_FALSE)
74 return (EINVAL);
75 pinfo->prop_cur_bval = new_value;
76 return (0);
77 }

79 /*
80 * Retrieves property permission, default value, current value or possible
81 * values for those properties whose value type is boolean_t.
82 */
83 /* ARGSUSED */
84 int
85 mod_get_boolean(void *cbarg, mod_prop_info_t *pinfo, const char *ifname,
86 void *pval, uint_t psize, uint_t flags)
87 {
88 boolean_t get_def = (flags & MOD_PROP_DEFAULT);
89 boolean_t get_perm = (flags & MOD_PROP_PERM);
90 boolean_t get_range = (flags & MOD_PROP_POSSIBLE);
91 size_t nbytes;

93 bzero(pval, psize);
94 if (get_perm)
95 nbytes = snprintf(pval, psize, "%u", prop_perm2const(pinfo));
96 else if (get_range)
97 nbytes = snprintf(pval, psize, "%u,%u", B_FALSE, B_TRUE);
98 else if (get_def)
99 nbytes = snprintf(pval, psize, "%u", pinfo->prop_def_bval);
100 else
101 nbytes = snprintf(pval, psize, "%u", pinfo->prop_cur_bval);
102 if (nbytes >= psize)
103 return (ENOBUFS);
104 return (0);
105 }

107 int
108 mod_uint32_value(const void *pval, mod_prop_info_t *pinfo, uint_t flags,
109 ulong_t *new_value)
110 {
111 char *end;

113 if (flags & MOD_PROP_DEFAULT) {
114 *new_value = pinfo->prop_def_uval;
115 return (0);
116 }

118 if (ddi_strtoul(pval, &end, 10, (ulong_t *)new_value) != 0 ||
119 *end != ’\0’)
120 return (EINVAL);
121 if (*new_value < pinfo->prop_min_uval ||
122 *new_value > pinfo->prop_max_uval) {
123 return (ERANGE);
124 }
125 return (0);
126 }

new/usr/src/uts/common/inet/tunables.c 3

128 /*
129 * Modifies the value of the property to default value or to the ‘pval’
130 * specified by the user.
131 */
132 /* ARGSUSED */
133 int
134 mod_set_uint32(void *cbarg, cred_t *cr, mod_prop_info_t *pinfo,
135 const char *ifname, const void *pval, uint_t flags)
136 {
137 unsigned long new_value;
138 int err;

140 if ((err = mod_uint32_value(pval, pinfo, flags, &new_value)) != 0)
141 return (err);
142 pinfo->prop_cur_uval = (uint32_t)new_value;
143 return (0);
144 }

146 /*
147 * Rounds up the value to make it multiple of 8.
148 */
149 /* ARGSUSED */
150 int
151 mod_set_aligned(void *cbarg, cred_t *cr, mod_prop_info_t *pinfo,
152 const char *ifname, const void* pval, uint_t flags)
153 {
154 int err;

156 if ((err = mod_set_uint32(cbarg, cr, pinfo, ifname, pval, flags)) != 0)
157 return (err);

159 /* if required, align the value to multiple of 8 */
160 if (pinfo->prop_cur_uval & 0x7) {
161 pinfo->prop_cur_uval &= ~0x7;
162 pinfo->prop_cur_uval += 0x8;
163 }

165 return (0);
166 }

168 /*
169 * Retrieves property permission, default value, current value or possible
170 * values for those properties whose value type is uint32_t.
171 */
172 /* ARGSUSED */
173 int
174 mod_get_uint32(void *cbarg, mod_prop_info_t *pinfo, const char *ifname,
175 void *pval, uint_t psize, uint_t flags)
176 {
177 boolean_t get_def = (flags & MOD_PROP_DEFAULT);
178 boolean_t get_perm = (flags & MOD_PROP_PERM);
179 boolean_t get_range = (flags & MOD_PROP_POSSIBLE);
180 size_t nbytes;

182 bzero(pval, psize);
183 if (get_perm)
184 nbytes = snprintf(pval, psize, "%u", prop_perm2const(pinfo));
185 else if (get_range)
186 nbytes = snprintf(pval, psize, "%u-%u",
187 pinfo->prop_min_uval, pinfo->prop_max_uval);
188 else if (get_def)
189 nbytes = snprintf(pval, psize, "%u", pinfo->prop_def_uval);
190 else
191 nbytes = snprintf(pval, psize, "%u", pinfo->prop_cur_uval);
192 if (nbytes >= psize)
193 return (ENOBUFS);

new/usr/src/uts/common/inet/tunables.c 4

194 return (0);
195 }

197 /*
198 * Implements /sbin/ndd -get /dev/ip ?, for all the modules. Needed for
199 * backward compatibility with /sbin/ndd.
200 */
201 /* ARGSUSED */
202 int
203 mod_get_allprop(void *cbarg, mod_prop_info_t *pinfo, const char *ifname,
204 void *val, uint_t psize, uint_t flags)
205 {
206 char *pval = val;
207 mod_prop_info_t *ptbl, *prop;
208 ip_stack_t *ipst;
209 tcp_stack_t *tcps;
210 sctp_stack_t *sctps;
211 dccp_stack_t *dccps;
212 #endif /* ! codereview */
213 udp_stack_t *us;
214 icmp_stack_t *is;
215 uint_t size;
216 size_t nbytes = 0, tbytes = 0;

218 bzero(pval, psize);
219 size = psize;

221 switch (pinfo->mpi_proto) {
222 case MOD_PROTO_IP:
223 case MOD_PROTO_IPV4:
224 case MOD_PROTO_IPV6:
225 ipst = (ip_stack_t *)cbarg;
226 ptbl = ipst->ips_propinfo_tbl;
227 break;
228 case MOD_PROTO_RAWIP:
229 is = (icmp_stack_t *)cbarg;
230 ptbl = is->is_propinfo_tbl;
231 break;
232 case MOD_PROTO_TCP:
233 tcps = (tcp_stack_t *)cbarg;
234 ptbl = tcps->tcps_propinfo_tbl;
235 break;
236 case MOD_PROTO_UDP:
237 us = (udp_stack_t *)cbarg;
238 ptbl = us->us_propinfo_tbl;
239 break;
240 case MOD_PROTO_SCTP:
241 sctps = (sctp_stack_t *)cbarg;
242 ptbl = sctps->sctps_propinfo_tbl;
243 break;
244 case MOD_PROTO_DCCP:
245 dccps = (dccp_stack_t *)cbarg;
246 ptbl = dccps->dccps_propinfo_tbl;
247 break;
248 #endif /* ! codereview */
249 default:
250 return (EINVAL);
251 }

253 for (prop = ptbl; prop->mpi_name != NULL; prop++) {
254 if (prop->mpi_name[0] == ’\0’ ||
255 strcmp(prop->mpi_name, "?") == 0) {
256 continue;
257 }
258 nbytes = snprintf(pval, size, "%s %d %d", prop->mpi_name,
259 prop->mpi_proto, prop_perm2const(prop));

new/usr/src/uts/common/inet/tunables.c 5

260 size -= nbytes + 1;
261 pval += nbytes + 1;
262 tbytes += nbytes + 1;
263 if (tbytes >= psize) {
264 /* Buffer overflow, stop copying information */
265 return (ENOBUFS);
266 }
267 }
268 return (0);
269 }

271 /*
272 * Hold a lock while changing *_epriv_ports to prevent multiple
273 * threads from changing it at the same time.
274 */
275 /* ARGSUSED */
276 int
277 mod_set_extra_privports(void *cbarg, cred_t *cr, mod_prop_info_t *pinfo,
278 const char *ifname, const void* val, uint_t flags)
279 {
280 uint_t proto = pinfo->mpi_proto;
281 tcp_stack_t *tcps;
282 sctp_stack_t *sctps;
283 udp_stack_t *us;
284 unsigned long new_value;
285 char *end;
286 kmutex_t *lock;
287 uint_t i, nports;
288 in_port_t *ports;
289 boolean_t def = (flags & MOD_PROP_DEFAULT);
290 const char *pval = val;

292 if (!def) {
293 if (ddi_strtoul(pval, &end, 10, &new_value) != 0 ||
294 *end != ’\0’) {
295 return (EINVAL);
296 }

298 if (new_value < pinfo->prop_min_uval ||
299 new_value > pinfo->prop_max_uval) {
300 return (ERANGE);
301 }
302 }

304 switch (proto) {
305 case MOD_PROTO_TCP:
306 tcps = (tcp_stack_t *)cbarg;
307 lock = &tcps->tcps_epriv_port_lock;
308 ports = tcps->tcps_g_epriv_ports;
309 nports = tcps->tcps_g_num_epriv_ports;
310 break;
311 case MOD_PROTO_UDP:
312 us = (udp_stack_t *)cbarg;
313 lock = &us->us_epriv_port_lock;
314 ports = us->us_epriv_ports;
315 nports = us->us_num_epriv_ports;
316 break;
317 case MOD_PROTO_SCTP:
318 sctps = (sctp_stack_t *)cbarg;
319 lock = &sctps->sctps_epriv_port_lock;
320 ports = sctps->sctps_g_epriv_ports;
321 nports = sctps->sctps_g_num_epriv_ports;
322 break;
323 default:
324 return (ENOTSUP);
325 }

new/usr/src/uts/common/inet/tunables.c 6

327 mutex_enter(lock);

329 /* if MOD_PROP_DEFAULT is set then reset the ports list to default */
330 if (def) {
331 for (i = 0; i < nports; i++)
332 ports[i] = 0;
333 ports[0] = ULP_DEF_EPRIV_PORT1;
334 ports[1] = ULP_DEF_EPRIV_PORT2;
335 mutex_exit(lock);
336 return (0);
337 }

339 /* Check if the value is already in the list */
340 for (i = 0; i < nports; i++) {
341 if (new_value == ports[i])
342 break;
343 }

345 if (flags & MOD_PROP_REMOVE) {
346 if (i == nports) {
347 mutex_exit(lock);
348 return (ESRCH);
349 }
350 /* Clear the value */
351 ports[i] = 0;
352 } else if (flags & MOD_PROP_APPEND) {
353 if (i != nports) {
354 mutex_exit(lock);
355 return (EEXIST);
356 }

358 /* Find an empty slot */
359 for (i = 0; i < nports; i++) {
360 if (ports[i] == 0)
361 break;
362 }
363 if (i == nports) {
364 mutex_exit(lock);
365 return (EOVERFLOW);
366 }
367 /* Set the new value */
368 ports[i] = (in_port_t)new_value;
369 } else {
370 /*
371 * If the user used ’assignment’ modifier.
372 * For eg:
373 * # ipadm set-prop -p extra_priv_ports=3001 tcp
374 *
375 * We clear all the ports and then just add 3001.
376 */
377 ASSERT(flags == MOD_PROP_ACTIVE);
378 for (i = 0; i < nports; i++)
379 ports[i] = 0;
380 ports[0] = (in_port_t)new_value;
381 }

383 mutex_exit(lock);
384 return (0);
385 }

387 /*
388 * Note: No locks are held when inspecting *_epriv_ports
389 * but instead the code relies on:
390 * - the fact that the address of the array and its size never changes
391 * - the atomic assignment of the elements of the array

new/usr/src/uts/common/inet/tunables.c 7

392 */
393 /* ARGSUSED */
394 int
395 mod_get_extra_privports(void *cbarg, mod_prop_info_t *pinfo, const char *ifname,
396 void *val, uint_t psize, uint_t flags)
397 {
398 uint_t proto = pinfo->mpi_proto;
399 tcp_stack_t *tcps;
400 sctp_stack_t *sctps;
401 udp_stack_t *us;
402 uint_t i, nports, size;
403 in_port_t *ports;
404 char *pval = val;
405 size_t nbytes = 0, tbytes = 0;
406 boolean_t get_def = (flags & MOD_PROP_DEFAULT);
407 boolean_t get_perm = (flags & MOD_PROP_PERM);
408 boolean_t get_range = (flags & MOD_PROP_POSSIBLE);

410 bzero(pval, psize);
411 size = psize;

413 if (get_def) {
414 tbytes = snprintf(pval, psize, "%u,%u", ULP_DEF_EPRIV_PORT1,
415 ULP_DEF_EPRIV_PORT2);
416 goto ret;
417 } else if (get_perm) {
418 tbytes = snprintf(pval, psize, "%u", MOD_PROP_PERM_RW);
419 goto ret;
420 }

422 switch (proto) {
423 case MOD_PROTO_TCP:
424 tcps = (tcp_stack_t *)cbarg;
425 ports = tcps->tcps_g_epriv_ports;
426 nports = tcps->tcps_g_num_epriv_ports;
427 break;
428 case MOD_PROTO_UDP:
429 us = (udp_stack_t *)cbarg;
430 ports = us->us_epriv_ports;
431 nports = us->us_num_epriv_ports;
432 break;
433 case MOD_PROTO_SCTP:
434 sctps = (sctp_stack_t *)cbarg;
435 ports = sctps->sctps_g_epriv_ports;
436 nports = sctps->sctps_g_num_epriv_ports;
437 break;
438 default:
439 return (ENOTSUP);
440 }

442 if (get_range) {
443 tbytes = snprintf(pval, psize, "%u-%u", pinfo->prop_min_uval,
444 pinfo->prop_max_uval);
445 goto ret;
446 }

448 for (i = 0; i < nports; i++) {
449 if (ports[i] != 0) {
450 if (psize == size)
451 nbytes = snprintf(pval, size, "%u", ports[i]);
452 else
453 nbytes = snprintf(pval, size, ",%u", ports[i]);
454 size -= nbytes;
455 pval += nbytes;
456 tbytes += nbytes;
457 if (tbytes >= psize)

new/usr/src/uts/common/inet/tunables.c 8

458 return (ENOBUFS);
459 }
460 }
461 return (0);
462 ret:
463 if (tbytes >= psize)
464 return (ENOBUFS);
465 return (0);
466 }

new/usr/src/uts/common/inet/tunables.h 1

**
 6181 Wed Jun 13 12:05:33 2012
new/usr/src/uts/common/inet/tunables.h
%B
**
______unchanged_portion_omitted_

59 #define MOD_PROP_VERSION 1

61 /* permission flags for properties */
62 #define MOD_PROP_PERM_READ 0x1
63 #define MOD_PROP_PERM_WRITE 0x2
64 #define MOD_PROP_PERM_RW (MOD_PROP_PERM_READ|MOD_PROP_PERM_WRITE)

66 /* mpr_flags values */
67 #define MOD_PROP_ACTIVE 0x01 /* current value of the property */
68 #define MOD_PROP_DEFAULT 0x02 /* default value of the property */
69 #define MOD_PROP_POSSIBLE 0x04 /* possible values for the property */
70 #define MOD_PROP_PERM 0x08 /* read/write permission for property */
71 #define MOD_PROP_APPEND 0x10 /* append to multi-valued property */
72 #define MOD_PROP_REMOVE 0x20 /* remove from multi-valued property */

74 /* mpr_proto values */
75 #define MOD_PROTO_NONE 0x00
76 #define MOD_PROTO_IPV4 0x01 /* property is applicable to IPV4 */
77 #define MOD_PROTO_IPV6 0x02 /* property is applicable to IPV6 */
78 #define MOD_PROTO_RAWIP 0x04 /* property is applicable to ICMP */
79 #define MOD_PROTO_TCP 0x08 /* property is applicable to TCP */
80 #define MOD_PROTO_UDP 0x10 /* property is applicable to UDP */
81 #define MOD_PROTO_SCTP 0x20 /* property is applicable to SCTP */
82 #define MOD_PROTO_DCCP 0x40 /* property is applicable to DCCP */
83 #endif /* ! codereview */

85 /* property is applicable to both IPV[4|6] */
86 #define MOD_PROTO_IP (MOD_PROTO_IPV4|MOD_PROTO_IPV6)

88 #ifdef _KERNEL

90 typedef struct mod_prop_info_s mod_prop_info_t;

92 /* set/get property callback functions */
93 typedef int mod_prop_setf_t(void *, cred_t *, mod_prop_info_t *,
94 const char *, const void *, uint_t);
95 typedef int mod_prop_getf_t(void *, mod_prop_info_t *, const char *,
96 void *val, uint_t, uint_t);

98 typedef struct mod_propval_uint32_s {
99 uint32_t mod_propval_umin;
100 uint32_t mod_propval_umax;
101 uint32_t mod_propval_ucur;
102 } mod_propval_uint32_t;

104 /*
105 * protocol property information
106 */
107 struct mod_prop_info_s {
108 char *mpi_name; /* property name */
109 uint_t mpi_proto; /* property protocol */
110 mod_prop_setf_t *mpi_setf; /* sets the property value */
111 mod_prop_getf_t *mpi_getf; /* gets the property value */
112 /*
113 * Holds the current value of the property. Whenever applicable
114 * holds the min/max value too.
115 */
116 union {
117 mod_propval_uint32_t mpi_uval;

new/usr/src/uts/common/inet/tunables.h 2

118 boolean_t mpi_bval;
119 uint64_t _pad[2];
120 } u;
121 /*
122 * Holds the default value of the property, that is value of
123 * the property at boot time.
124 */
125 union {
126 uint32_t mpi_def_uval;
127 boolean_t mpi_def_bval;
128 } u_def;
129 };

131 /* shortcuts to access current/default values */
132 #define prop_min_uval u.mpi_uval.mod_propval_umin
133 #define prop_max_uval u.mpi_uval.mod_propval_umax
134 #define prop_cur_uval u.mpi_uval.mod_propval_ucur
135 #define prop_cur_bval u.mpi_bval
136 #define prop_def_uval u_def.mpi_def_uval
137 #define prop_def_bval u_def.mpi_def_bval

139 #define MS 1L
140 #define SECONDS (1000 * MS)
141 #define MINUTES (60 * SECONDS)
142 #define HOURS (60 * MINUTES)
143 #define DAYS (24 * HOURS)

145 #define MB (1024 * 1024)

147 /* Largest TCP/UDP/SCTP port number */
148 #define ULP_MAX_PORT (64 * 1024 - 1)

150 /* extra privilege ports for upper layer protocols, tcp, sctp and udp */
151 #define ULP_DEF_EPRIV_PORT1 2049
152 #define ULP_DEF_EPRIV_PORT2 4045

154 /* generic function to set/get global module properties */
155 extern mod_prop_setf_t mod_set_boolean, mod_set_uint32,
156 mod_set_aligned, mod_set_extra_privports;

158 extern mod_prop_getf_t mod_get_boolean, mod_get_uint32,
159 mod_get_allprop, mod_get_extra_privports;

161 extern int mod_uint32_value(const void *, mod_prop_info_t *, uint_t,
162 unsigned long *);

164 #endif /* _KERNEL */

166 /*
167 * End-system model definitions that include the weak/strong end-system
168 * definitions in RFC 1122, Section 3.3.4.5. IP_WEAK_ES and IP_STRONG_ES
169 * conform to the corresponding RFC 1122 definitions. The IP_SRC_PRI_ES
170 * hostmodel is similar to IP_WEAK_ES with one additional enhancement: for
171 * a packet with source S2, destination D2, the route selection algorithm
172 * will first attempt to find a route for the destination that goes out
173 * through an interface where S2 is configured and marked UP. If such
174 * a route cannot be found, then the best-matching route for D2 will be
175 * selected, ignoring any mismatches between S2 and the interface addresses
176 * on the outgoing interface implied by the route.
177 */
178 typedef enum {
179 IP_WEAK_ES = 0,
180 IP_SRC_PRI_ES,
181 IP_STRONG_ES,
182 IP_MAXVAL_ES
183 } ip_hostmodel_t;

new/usr/src/uts/common/inet/tunables.h 3

185 #ifdef __cplusplus
186 }
187 #endif

189 #endif /* _INET_TUNABLES_H */

new/usr/src/uts/common/netinet/dccp.h 1

**
 795 Wed Jun 13 12:05:35 2012
new/usr/src/uts/common/netinet/dccp.h
%B
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _NETINET_DCCP_H
17 #define _NETINET_DCCP_H

19 #ifdef __cplusplus
20 extern "C" {
21 #endif

23 /*
24 * DCCP states
25 */
26 #define DCCPS_CLOSED -5
27 #define DCCPS_BOUND -4
28 #define DCCPS_LISTEN -3
29 #define DCCPS_REQUEST -2
30 #define DCCPS_RESPOND -1
31 #define DCCPS_PARTOPEN 0

34 #ifdef __cplusplus
35 }
36 #endif

38 #endif /* _NETINET_DCCP_H */
39 #endif /* ! codereview */

new/usr/src/uts/common/netinet/in.h 1

**
 44002 Wed Jun 13 12:05:36 2012
new/usr/src/uts/common/netinet/in.h
%B
**
______unchanged_portion_omitted_
128 #define s6_addr _S6_un._S6_u8

130 #ifdef _KERNEL
131 #define s6_addr8 _S6_un._S6_u8
132 #define s6_addr32 _S6_un._S6_u32
133 #endif

135 typedef struct in6_addr in6_addr_t;

137 #endif /* !defined(_XPG4_2) || defined(_XPG6) || defined(__EXTENSIONS__) */

139 #ifndef _SA_FAMILY_T
140 #define _SA_FAMILY_T
141 typedef uint16_t sa_family_t;
142 #endif

144 /*
145 * Protocols
146 *
147 * Some of these constant names are copied for the DTrace IP provider in
148 * usr/src/lib/libdtrace/common/{ip.d.in, ip.sed.in}, which should be kept
149 * in sync.
150 */
151 #define IPPROTO_IP 0 /* dummy for IP */
152 #define IPPROTO_HOPOPTS 0 /* Hop by hop header for IPv6 */
153 #define IPPROTO_ICMP 1 /* control message protocol */
154 #define IPPROTO_IGMP 2 /* group control protocol */
155 #define IPPROTO_GGP 3 /* gateway^2 (deprecated) */
156 #define IPPROTO_ENCAP 4 /* IP in IP encapsulation */
157 #define IPPROTO_TCP 6 /* tcp */
158 #define IPPROTO_EGP 8 /* exterior gateway protocol */
159 #define IPPROTO_PUP 12 /* pup */
160 #define IPPROTO_UDP 17 /* user datagram protocol */
161 #define IPPROTO_IDP 22 /* xns idp */
162 #define IPPROTO_DCCP 33 /* DCCP */
163 #endif /* ! codereview */
164 #define IPPROTO_IPV6 41 /* IPv6 encapsulated in IP */
165 #define IPPROTO_ROUTING 43 /* Routing header for IPv6 */
166 #define IPPROTO_FRAGMENT 44 /* Fragment header for IPv6 */
167 #define IPPROTO_RSVP 46 /* rsvp */
168 #define IPPROTO_ESP 50 /* IPsec Encap. Sec. Payload */
169 #define IPPROTO_AH 51 /* IPsec Authentication Hdr. */
170 #define IPPROTO_ICMPV6 58 /* ICMP for IPv6 */
171 #define IPPROTO_NONE 59 /* No next header for IPv6 */
172 #define IPPROTO_DSTOPTS 60 /* Destination options */
173 #define IPPROTO_HELLO 63 /* "hello" routing protocol */
174 #define IPPROTO_ND 77 /* UNOFFICIAL net disk proto */
175 #define IPPROTO_EON 80 /* ISO clnp */
176 #define IPPROTO_OSPF 89 /* OSPF */
177 #define IPPROTO_PIM 103 /* PIM routing protocol */
178 #define IPPROTO_SCTP 132 /* Stream Control */
179 /* Transmission Protocol */

181 #define IPPROTO_RAW 255 /* raw IP packet */
182 #define IPPROTO_MAX 256

184 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
185 #define PROTO_SDP 257 /* Sockets Direct Protocol */
186 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

new/usr/src/uts/common/netinet/in.h 2

188 /*
189 * Port/socket numbers: network standard functions
190 *
191 * Entries should exist here for each port number compiled into an ON
192 * component, such as snoop.
193 */
194 #define IPPORT_ECHO 7
195 #define IPPORT_DISCARD 9
196 #define IPPORT_SYSTAT 11
197 #define IPPORT_DAYTIME 13
198 #define IPPORT_NETSTAT 15
199 #define IPPORT_CHARGEN 19
200 #define IPPORT_FTP 21
201 #define IPPORT_TELNET 23
202 #define IPPORT_SMTP 25
203 #define IPPORT_TIMESERVER 37
204 #define IPPORT_NAMESERVER 42
205 #define IPPORT_WHOIS 43
206 #define IPPORT_DOMAIN 53
207 #define IPPORT_MDNS 5353
208 #define IPPORT_MTP 57

210 /*
211 * Port/socket numbers: host specific functions
212 */
213 #define IPPORT_BOOTPS 67
214 #define IPPORT_BOOTPC 68
215 #define IPPORT_TFTP 69
216 #define IPPORT_RJE 77
217 #define IPPORT_FINGER 79
218 #define IPPORT_HTTP 80
219 #define IPPORT_HTTP_ALT 8080
220 #define IPPORT_TTYLINK 87
221 #define IPPORT_SUPDUP 95
222 #define IPPORT_NTP 123
223 #define IPPORT_NETBIOS_NS 137
224 #define IPPORT_NETBIOS_DGM 138
225 #define IPPORT_NETBIOS_SSN 139
226 #define IPPORT_LDAP 389
227 #define IPPORT_SLP 427
228 #define IPPORT_MIP 434
229 #define IPPORT_SMB 445 /* a.k.a. microsoft-ds */

231 /*
232 * Internet Key Exchange (IKE) ports
233 */
234 #define IPPORT_IKE 500
235 #define IPPORT_IKE_NATT 4500

237 /*
238 * UNIX TCP sockets
239 */
240 #define IPPORT_EXECSERVER 512
241 #define IPPORT_LOGINSERVER 513
242 #define IPPORT_CMDSERVER 514
243 #define IPPORT_PRINTER 515
244 #define IPPORT_EFSSERVER 520

246 /*
247 * UNIX UDP sockets
248 */
249 #define IPPORT_BIFFUDP 512
250 #define IPPORT_WHOSERVER 513
251 #define IPPORT_SYSLOG 514
252 #define IPPORT_TALK 517
253 #define IPPORT_ROUTESERVER 520

new/usr/src/uts/common/netinet/in.h 3

254 #define IPPORT_RIPNG 521

256 /*
257 * DHCPv6 UDP ports
258 */
259 #define IPPORT_DHCPV6C 546
260 #define IPPORT_DHCPV6S 547

262 #define IPPORT_SOCKS 1080

264 /*
265 * Ports < IPPORT_RESERVED are reserved for
266 * privileged processes (e.g. root).
267 * Ports > IPPORT_USERRESERVED are reserved
268 * for servers, not necessarily privileged.
269 */
270 #define IPPORT_RESERVED 1024
271 #define IPPORT_USERRESERVED 5000

273 /*
274 * Link numbers
275 */
276 #define IMPLINK_IP 155
277 #define IMPLINK_LOWEXPER 156
278 #define IMPLINK_HIGHEXPER 158

280 /*
281 * IPv4 Internet address
282 * This definition contains obsolete fields for compatibility
283 * with SunOS 3.x and 4.2bsd. The presence of subnets renders
284 * divisions into fixed fields misleading at best. New code
285 * should use only the s_addr field.
286 */

288 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
289 #define _S_un_b S_un_b
290 #define _S_un_w S_un_w
291 #define _S_addr S_addr
292 #define _S_un S_un
293 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

295 struct in_addr {
296 union {
297 struct { uint8_t s_b1, s_b2, s_b3, s_b4; } _S_un_b;
298 struct { uint16_t s_w1, s_w2; } _S_un_w;
299 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
300 uint32_t _S_addr;
301 #else
302 in_addr_t _S_addr;
303 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */
304 } _S_un;
305 #define s_addr _S_un._S_addr /* should be used for all code */
306 #define s_host _S_un._S_un_b.s_b2 /* OBSOLETE: host on imp */
307 #define s_net _S_un._S_un_b.s_b1 /* OBSOLETE: network */
308 #define s_imp _S_un._S_un_w.s_w2 /* OBSOLETE: imp */
309 #define s_impno _S_un._S_un_b.s_b4 /* OBSOLETE: imp # */
310 #define s_lh _S_un._S_un_b.s_b3 /* OBSOLETE: logical host */
311 };

313 /*
314 * Definitions of bits in internet address integers.
315 * On subnets, the decomposition of addresses to host and net parts
316 * is done according to subnet mask, not the masks here.
317 *
318 * Note that with the introduction of CIDR, IN_CLASSA, IN_CLASSB,
319 * IN_CLASSC, IN_CLASSD and IN_CLASSE macros have become "de-facto

new/usr/src/uts/common/netinet/in.h 4

320 * obsolete". IN_MULTICAST macro should be used to test if a address
321 * is a multicast address.
322 */
323 #define IN_CLASSA(i) (((i) & 0x80000000U) == 0)
324 #define IN_CLASSA_NET 0xff000000U
325 #define IN_CLASSA_NSHIFT 24
326 #define IN_CLASSA_HOST 0x00ffffffU
327 #define IN_CLASSA_MAX 128

329 #define IN_CLASSB(i) (((i) & 0xc0000000U) == 0x80000000U)
330 #define IN_CLASSB_NET 0xffff0000U
331 #define IN_CLASSB_NSHIFT 16
332 #define IN_CLASSB_HOST 0x0000ffffU
333 #define IN_CLASSB_MAX 65536

335 #define IN_CLASSC(i) (((i) & 0xe0000000U) == 0xc0000000U)
336 #define IN_CLASSC_NET 0xffffff00U
337 #define IN_CLASSC_NSHIFT 8
338 #define IN_CLASSC_HOST 0x000000ffU

340 #define IN_CLASSD(i) (((i) & 0xf0000000U) == 0xe0000000U)
341 #define IN_CLASSD_NET 0xf0000000U /* These aren’t really */
342 #define IN_CLASSD_NSHIFT 28 /* net and host fields, but */
343 #define IN_CLASSD_HOST 0x0fffffffU /* routing needn’t know */

345 #define IN_CLASSE(i) (((i) & 0xf0000000U) == 0xf0000000U)
346 #define IN_CLASSE_NET 0xffffffffU

348 #define IN_MULTICAST(i) IN_CLASSD(i)

350 /*
351 * We have removed CLASS E checks from the kernel
352 * But we preserve these defines for userland in order
353 * to avoid compile breakage of some 3rd party piece of software
354 */
355 #ifndef _KERNEL
356 #define IN_EXPERIMENTAL(i) (((i) & 0xe0000000U) == 0xe0000000U)
357 #define IN_BADCLASS(i) (((i) & 0xf0000000U) == 0xf0000000U)
358 #endif

360 #define INADDR_ANY 0x00000000U
361 #define INADDR_LOOPBACK 0x7F000001U
362 #define INADDR_BROADCAST 0xffffffffU /* must be masked */
363 #define INADDR_NONE 0xffffffffU

365 #define INADDR_UNSPEC_GROUP 0xe0000000U /* 224.0.0.0 */
366 #define INADDR_ALLHOSTS_GROUP 0xe0000001U /* 224.0.0.1 */
367 #define INADDR_ALLRTRS_GROUP 0xe0000002U /* 224.0.0.2 */
368 #define INADDR_ALLRPTS_GROUP 0xe0000016U /* 224.0.0.22, IGMPv3 */
369 #define INADDR_MAX_LOCAL_GROUP 0xe00000ffU /* 224.0.0.255 */

371 /* Scoped IPv4 prefixes (in host byte-order) */
372 #define IN_AUTOCONF_NET 0xa9fe0000U /* 169.254/16 */
373 #define IN_AUTOCONF_MASK 0xffff0000U
374 #define IN_PRIVATE8_NET 0x0a000000U /* 10/8 */
375 #define IN_PRIVATE8_MASK 0xff000000U
376 #define IN_PRIVATE12_NET 0xac100000U /* 172.16/12 */
377 #define IN_PRIVATE12_MASK 0xfff00000U
378 #define IN_PRIVATE16_NET 0xc0a80000U /* 192.168/16 */
379 #define IN_PRIVATE16_MASK 0xffff0000U

381 /* RFC 3927 IPv4 link local address (i in host byte-order) */
382 #define IN_LINKLOCAL(i) (((i) & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET)

384 /* Well known 6to4 Relay Router Anycast address defined in RFC 3068 */
385 #if !defined(_XPG4_2) || !defined(__EXTENSIONS__)

new/usr/src/uts/common/netinet/in.h 5

386 #define INADDR_6TO4RRANYCAST 0xc0586301U /* 192.88.99.1 */
387 #endif /* !defined(_XPG4_2) || !defined(__EXTENSIONS__) */

389 #define IN_LOOPBACKNET 127 /* official! */

391 /*
392 * Define a macro to stuff the loopback address into an Internet address
393 */
394 #if !defined(_XPG4_2) || !defined(__EXTENSIONS__)
395 #define IN_SET_LOOPBACK_ADDR(a) \
396 { (a)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); \
397 (a)->sin_family = AF_INET; }
398 #endif /* !defined(_XPG4_2) || !defined(__EXTENSIONS__) */

400 /*
401 * IPv4 Socket address.
402 */
403 struct sockaddr_in {
404 sa_family_t sin_family;
405 in_port_t sin_port;
406 struct in_addr sin_addr;
407 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
408 char sin_zero[8];
409 #else
410 unsigned char sin_zero[8];
411 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */
412 };

414 #if !defined(_XPG4_2) || defined(_XPG6) || defined(__EXTENSIONS__)
415 /*
416 * IPv6 socket address.
417 */
418 struct sockaddr_in6 {
419 sa_family_t sin6_family;
420 in_port_t sin6_port;
421 uint32_t sin6_flowinfo;
422 struct in6_addr sin6_addr;
423 uint32_t sin6_scope_id; /* Depends on scope of sin6_addr */
424 uint32_t __sin6_src_id; /* Impl. specific - UDP replies */
425 };

427 /*
428 * Macros for accessing the traffic class and flow label fields from
429 * sin6_flowinfo.
430 * These are designed to be applied to a 32-bit value.
431 */
432 #ifdef _BIG_ENDIAN

434 /* masks */
435 #define IPV6_FLOWINFO_FLOWLABEL 0x000fffffU
436 #define IPV6_FLOWINFO_TCLASS 0x0ff00000U

438 #else /* _BIG_ENDIAN */

440 /* masks */
441 #define IPV6_FLOWINFO_FLOWLABEL 0xffff0f00U
442 #define IPV6_FLOWINFO_TCLASS 0x0000f00fU

444 #endif /* _BIG_ENDIAN */

446 /*
447 * Note: Macros IN6ADDR_ANY_INIT and IN6ADDR_LOOPBACK_INIT are for
448 * use as RHS of Static initializers of "struct in6_addr" (or in6_addr_t)
449 * only. They need to be different for User/Kernel versions because union
450 * component data structure is defined differently (it is identical at
451 * binary representation level).

new/usr/src/uts/common/netinet/in.h 6

452 *
453 * const struct in6_addr IN6ADDR_ANY_INIT;
454 * const struct in6_addr IN6ADDR_LOOPBACK_INIT;
455 */

458 #ifdef _KERNEL
459 #define IN6ADDR_ANY_INIT { 0, 0, 0, 0 }

461 #ifdef _BIG_ENDIAN
462 #define IN6ADDR_LOOPBACK_INIT { 0, 0, 0, 0x00000001U }
463 #else /* _BIG_ENDIAN */
464 #define IN6ADDR_LOOPBACK_INIT { 0, 0, 0, 0x01000000U }
465 #endif /* _BIG_ENDIAN */

467 #else

469 #define IN6ADDR_ANY_INIT { 0, 0, 0, 0, \
470 0, 0, 0, 0, \
471 0, 0, 0, 0, \
472 0, 0, 0, 0 }

474 #define IN6ADDR_LOOPBACK_INIT { 0, 0, 0, 0, \
475 0, 0, 0, 0, \
476 0, 0, 0, 0, \
477 0, 0, 0, 0x1U }
478 #endif /* _KERNEL */

480 /*
481 * RFC 2553 specifies the following macros. Their type is defined
482 * as "int" in the RFC but they only have boolean significance
483 * (zero or non-zero). For the purposes of our comment notation,
484 * we assume a hypothetical type "bool" defined as follows to
485 * write the prototypes assumed for macros in our comments better.
486 *
487 * typedef int bool;
488 */

490 /*
491 * IN6 macros used to test for special IPv6 addresses
492 * (Mostly from spec)
493 *
494 * bool IN6_IS_ADDR_UNSPECIFIED (const struct in6_addr *);
495 * bool IN6_IS_ADDR_LOOPBACK (const struct in6_addr *);
496 * bool IN6_IS_ADDR_MULTICAST (const struct in6_addr *);
497 * bool IN6_IS_ADDR_LINKLOCAL (const struct in6_addr *);
498 * bool IN6_IS_ADDR_SITELOCAL (const struct in6_addr *);
499 * bool IN6_IS_ADDR_V4MAPPED (const struct in6_addr *);
500 * bool IN6_IS_ADDR_V4MAPPED_ANY(const struct in6_addr *); -- Not from RFC2553
501 * bool IN6_IS_ADDR_V4COMPAT (const struct in6_addr *);
502 * bool IN6_IS_ADDR_MC_RESERVED (const struct in6_addr *); -- Not from RFC2553
503 * bool IN6_IS_ADDR_MC_NODELOCAL(const struct in6_addr *);
504 * bool IN6_IS_ADDR_MC_LINKLOCAL(const struct in6_addr *);
505 * bool IN6_IS_ADDR_MC_SITELOCAL(const struct in6_addr *);
506 * bool IN6_IS_ADDR_MC_ORGLOCAL (const struct in6_addr *);
507 * bool IN6_IS_ADDR_MC_GLOBAL (const struct in6_addr *);
508 * bool IN6_IS_ADDR_6TO4 (const struct in6_addr *); -- Not from RFC2553
509 * bool IN6_ARE_6TO4_PREFIX_EQUAL(const struct in6_addr *,
510 * const struct in6_addr *); -- Not from RFC2553
511 * bool IN6_IS_ADDR_LINKSCOPE (const struct in6addr *); -- Not from RFC2553
512 */

514 #define IN6_IS_ADDR_UNSPECIFIED(addr) \
515 (((addr)->_S6_un._S6_u32[3] == 0) && \
516 ((addr)->_S6_un._S6_u32[2] == 0) && \
517 ((addr)->_S6_un._S6_u32[1] == 0) && \

new/usr/src/uts/common/netinet/in.h 7

518 ((addr)->_S6_un._S6_u32[0] == 0))

520 #ifdef _BIG_ENDIAN
521 #define IN6_IS_ADDR_LOOPBACK(addr) \
522 (((addr)->_S6_un._S6_u32[3] == 0x00000001) && \
523 ((addr)->_S6_un._S6_u32[2] == 0) && \
524 ((addr)->_S6_un._S6_u32[1] == 0) && \
525 ((addr)->_S6_un._S6_u32[0] == 0))
526 #else /* _BIG_ENDIAN */
527 #define IN6_IS_ADDR_LOOPBACK(addr) \
528 (((addr)->_S6_un._S6_u32[3] == 0x01000000) && \
529 ((addr)->_S6_un._S6_u32[2] == 0) && \
530 ((addr)->_S6_un._S6_u32[1] == 0) && \
531 ((addr)->_S6_un._S6_u32[0] == 0))
532 #endif /* _BIG_ENDIAN */

534 #ifdef _BIG_ENDIAN
535 #define IN6_IS_ADDR_MULTICAST(addr) \
536 (((addr)->_S6_un._S6_u32[0] & 0xff000000) == 0xff000000)
537 #else /* _BIG_ENDIAN */
538 #define IN6_IS_ADDR_MULTICAST(addr) \
539 (((addr)->_S6_un._S6_u32[0] & 0x000000ff) == 0x000000ff)
540 #endif /* _BIG_ENDIAN */

542 #ifdef _BIG_ENDIAN
543 #define IN6_IS_ADDR_LINKLOCAL(addr) \
544 (((addr)->_S6_un._S6_u32[0] & 0xffc00000) == 0xfe800000)
545 #else /* _BIG_ENDIAN */
546 #define IN6_IS_ADDR_LINKLOCAL(addr) \
547 (((addr)->_S6_un._S6_u32[0] & 0x0000c0ff) == 0x000080fe)
548 #endif /* _BIG_ENDIAN */

550 #ifdef _BIG_ENDIAN
551 #define IN6_IS_ADDR_SITELOCAL(addr) \
552 (((addr)->_S6_un._S6_u32[0] & 0xffc00000) == 0xfec00000)
553 #else /* _BIG_ENDIAN */
554 #define IN6_IS_ADDR_SITELOCAL(addr) \
555 (((addr)->_S6_un._S6_u32[0] & 0x0000c0ff) == 0x0000c0fe)
556 #endif /* _BIG_ENDIAN */

558 #ifdef _BIG_ENDIAN
559 #define IN6_IS_ADDR_V4MAPPED(addr) \
560 (((addr)->_S6_un._S6_u32[2] == 0x0000ffff) && \
561 ((addr)->_S6_un._S6_u32[1] == 0) && \
562 ((addr)->_S6_un._S6_u32[0] == 0))
563 #else /* _BIG_ENDIAN */
564 #define IN6_IS_ADDR_V4MAPPED(addr) \
565 (((addr)->_S6_un._S6_u32[2] == 0xffff0000U) && \
566 ((addr)->_S6_un._S6_u32[1] == 0) && \
567 ((addr)->_S6_un._S6_u32[0] == 0))
568 #endif /* _BIG_ENDIAN */

570 /*
571 * IN6_IS_ADDR_V4MAPPED - A IPv4 mapped INADDR_ANY
572 * Note: This macro is currently NOT defined in RFC2553 specification
573 * and not a standard macro that portable applications should use.
574 */
575 #ifdef _BIG_ENDIAN
576 #define IN6_IS_ADDR_V4MAPPED_ANY(addr) \
577 (((addr)->_S6_un._S6_u32[3] == 0) && \
578 ((addr)->_S6_un._S6_u32[2] == 0x0000ffff) && \
579 ((addr)->_S6_un._S6_u32[1] == 0) && \
580 ((addr)->_S6_un._S6_u32[0] == 0))
581 #else /* _BIG_ENDIAN */
582 #define IN6_IS_ADDR_V4MAPPED_ANY(addr) \
583 (((addr)->_S6_un._S6_u32[3] == 0) && \

new/usr/src/uts/common/netinet/in.h 8

584 ((addr)->_S6_un._S6_u32[2] == 0xffff0000U) && \
585 ((addr)->_S6_un._S6_u32[1] == 0) && \
586 ((addr)->_S6_un._S6_u32[0] == 0))
587 #endif /* _BIG_ENDIAN */

589 /* Exclude loopback and unspecified address */
590 #ifdef _BIG_ENDIAN
591 #define IN6_IS_ADDR_V4COMPAT(addr) \
592 (((addr)->_S6_un._S6_u32[2] == 0) && \
593 ((addr)->_S6_un._S6_u32[1] == 0) && \
594 ((addr)->_S6_un._S6_u32[0] == 0) && \
595 !((addr)->_S6_un._S6_u32[3] == 0) && \
596 !((addr)->_S6_un._S6_u32[3] == 0x00000001))

598 #else /* _BIG_ENDIAN */
599 #define IN6_IS_ADDR_V4COMPAT(addr) \
600 (((addr)->_S6_un._S6_u32[2] == 0) && \
601 ((addr)->_S6_un._S6_u32[1] == 0) && \
602 ((addr)->_S6_un._S6_u32[0] == 0) && \
603 !((addr)->_S6_un._S6_u32[3] == 0) && \
604 !((addr)->_S6_un._S6_u32[3] == 0x01000000))
605 #endif /* _BIG_ENDIAN */

607 /*
608 * Note:
609 * IN6_IS_ADDR_MC_RESERVED macro is currently NOT defined in RFC2553
610 * specification and not a standard macro that portable applications
611 * should use.
612 */
613 #ifdef _BIG_ENDIAN
614 #define IN6_IS_ADDR_MC_RESERVED(addr) \
615 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff000000)

617 #else /* _BIG_ENDIAN */
618 #define IN6_IS_ADDR_MC_RESERVED(addr) \
619 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x000000ff)
620 #endif /* _BIG_ENDIAN */

622 #ifdef _BIG_ENDIAN
623 #define IN6_IS_ADDR_MC_NODELOCAL(addr) \
624 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff010000)
625 #else /* _BIG_ENDIAN */
626 #define IN6_IS_ADDR_MC_NODELOCAL(addr) \
627 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x000001ff)
628 #endif /* _BIG_ENDIAN */

630 #ifdef _BIG_ENDIAN
631 #define IN6_IS_ADDR_MC_LINKLOCAL(addr) \
632 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff020000)
633 #else /* _BIG_ENDIAN */
634 #define IN6_IS_ADDR_MC_LINKLOCAL(addr) \
635 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x000002ff)
636 #endif /* _BIG_ENDIAN */

638 #ifdef _BIG_ENDIAN
639 #define IN6_IS_ADDR_MC_SITELOCAL(addr) \
640 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff050000)
641 #else /* _BIG_ENDIAN */
642 #define IN6_IS_ADDR_MC_SITELOCAL(addr) \
643 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x000005ff)
644 #endif /* _BIG_ENDIAN */

646 #ifdef _BIG_ENDIAN
647 #define IN6_IS_ADDR_MC_ORGLOCAL(addr) \
648 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff080000)
649 #else /* _BIG_ENDIAN */

new/usr/src/uts/common/netinet/in.h 9

650 #define IN6_IS_ADDR_MC_ORGLOCAL(addr) \
651 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x000008ff)
652 #endif /* _BIG_ENDIAN */

654 #ifdef _BIG_ENDIAN
655 #define IN6_IS_ADDR_MC_GLOBAL(addr) \
656 (((addr)->_S6_un._S6_u32[0] & 0xff0f0000) == 0xff0e0000)
657 #else /* _BIG_ENDIAN */
658 #define IN6_IS_ADDR_MC_GLOBAL(addr) \
659 (((addr)->_S6_un._S6_u32[0] & 0x00000fff) == 0x00000eff)
660 #endif /* _BIG_ENDIAN */

662 /*
663 * The IN6_IS_ADDR_MC_SOLICITEDNODE macro is not defined in any standard or
664 * RFC, and shouldn’t be used by portable applications. It is used to see
665 * if an address is a solicited-node multicast address, which is prefixed
666 * with ff02:0:0:0:0:1:ff00::/104.
667 */
668 #ifdef _BIG_ENDIAN
669 #define IN6_IS_ADDR_MC_SOLICITEDNODE(addr) \
670 (((addr)->_S6_un._S6_u32[0] == 0xff020000) && \
671 ((addr)->_S6_un._S6_u32[1] == 0x00000000) && \
672 ((addr)->_S6_un._S6_u32[2] == 0x00000001) && \
673 (((addr)->_S6_un._S6_u32[3] & 0xff000000) == 0xff000000))
674 #else
675 #define IN6_IS_ADDR_MC_SOLICITEDNODE(addr) \
676 (((addr)->_S6_un._S6_u32[0] == 0x000002ff) && \
677 ((addr)->_S6_un._S6_u32[1] == 0x00000000) && \
678 ((addr)->_S6_un._S6_u32[2] == 0x01000000) && \
679 (((addr)->_S6_un._S6_u32[3] & 0x000000ff) == 0x000000ff))
680 #endif

682 /*
683 * Macros to a) test for 6to4 IPv6 address, and b) to test if two
684 * 6to4 addresses have the same /48 prefix, and, hence, are from the
685 * same 6to4 site.
686 */

688 #ifdef _BIG_ENDIAN
689 #define IN6_IS_ADDR_6TO4(addr) \
690 (((addr)->_S6_un._S6_u32[0] & 0xffff0000) == 0x20020000)
691 #else /* _BIG_ENDIAN */
692 #define IN6_IS_ADDR_6TO4(addr) \
693 (((addr)->_S6_un._S6_u32[0] & 0x0000ffff) == 0x00000220)
694 #endif /* _BIG_ENDIAN */

696 #define IN6_ARE_6TO4_PREFIX_EQUAL(addr1, addr2) \
697 (((addr1)->_S6_un._S6_u32[0] == (addr2)->_S6_un._S6_u32[0]) && \
698 ((addr1)->_S6_un._S6_u8[4] == (addr2)->_S6_un._S6_u8[4]) && \
699 ((addr1)->_S6_un._S6_u8[5] == (addr2)->_S6_un._S6_u8[5]))

701 /*
702 * IN6_IS_ADDR_LINKSCOPE
703 * Identifies an address as being either link-local, link-local multicast or
704 * node-local multicast. All types of addresses are considered to be unique
705 * within the scope of a given link.
706 */
707 #define IN6_IS_ADDR_LINKSCOPE(addr) \
708 (IN6_IS_ADDR_LINKLOCAL(addr) || IN6_IS_ADDR_MC_LINKLOCAL(addr) || \
709 IN6_IS_ADDR_MC_NODELOCAL(addr))

711 /*
712 * Useful utility macros for operations with IPv6 addresses
713 * Note: These macros are NOT defined in the RFC2553 or any other
714 * standard specification and are not standard macros that portable
715 * applications should use.

new/usr/src/uts/common/netinet/in.h 10

716 */

718 /*
719 * IN6_V4MAPPED_TO_INADDR
720 * IN6_V4MAPPED_TO_IPADDR
721 * Assign a IPv4-Mapped IPv6 address to an IPv4 address.
722 * Note: These macros are NOT defined in RFC2553 or any other standard
723 * specification and are not macros that portable applications should
724 * use.
725 *
726 * void IN6_V4MAPPED_TO_INADDR(const in6_addr_t *v6, struct in_addr *v4);
727 * void IN6_V4MAPPED_TO_IPADDR(const in6_addr_t *v6, ipaddr_t v4);
728 *
729 */
730 #define IN6_V4MAPPED_TO_INADDR(v6, v4) \
731 ((v4)->s_addr = (v6)->_S6_un._S6_u32[3])
732 #define IN6_V4MAPPED_TO_IPADDR(v6, v4) \
733 ((v4) = (v6)->_S6_un._S6_u32[3])

735 /*
736 * IN6_INADDR_TO_V4MAPPED
737 * IN6_IPADDR_TO_V4MAPPED
738 * Assign a IPv4 address address to an IPv6 address as a IPv4-mapped
739 * address.
740 * Note: These macros are NOT defined in RFC2553 or any other standard
741 * specification and are not macros that portable applications should
742 * use.
743 *
744 * void IN6_INADDR_TO_V4MAPPED(const struct in_addr *v4, in6_addr_t *v6);
745 * void IN6_IPADDR_TO_V4MAPPED(const ipaddr_t v4, in6_addr_t *v6);
746 *
747 */
748 #ifdef _BIG_ENDIAN
749 #define IN6_INADDR_TO_V4MAPPED(v4, v6) \
750 ((v6)->_S6_un._S6_u32[3] = (v4)->s_addr, \
751 (v6)->_S6_un._S6_u32[2] = 0x0000ffff, \
752 (v6)->_S6_un._S6_u32[1] = 0, \
753 (v6)->_S6_un._S6_u32[0] = 0)
754 #define IN6_IPADDR_TO_V4MAPPED(v4, v6) \
755 ((v6)->_S6_un._S6_u32[3] = (v4), \
756 (v6)->_S6_un._S6_u32[2] = 0x0000ffff, \
757 (v6)->_S6_un._S6_u32[1] = 0, \
758 (v6)->_S6_un._S6_u32[0] = 0)
759 #else /* _BIG_ENDIAN */
760 #define IN6_INADDR_TO_V4MAPPED(v4, v6) \
761 ((v6)->_S6_un._S6_u32[3] = (v4)->s_addr, \
762 (v6)->_S6_un._S6_u32[2] = 0xffff0000U, \
763 (v6)->_S6_un._S6_u32[1] = 0, \
764 (v6)->_S6_un._S6_u32[0] = 0)
765 #define IN6_IPADDR_TO_V4MAPPED(v4, v6) \
766 ((v6)->_S6_un._S6_u32[3] = (v4), \
767 (v6)->_S6_un._S6_u32[2] = 0xffff0000U, \
768 (v6)->_S6_un._S6_u32[1] = 0, \
769 (v6)->_S6_un._S6_u32[0] = 0)
770 #endif /* _BIG_ENDIAN */

772 /*
773 * IN6_6TO4_TO_V4ADDR
774 * Extract the embedded IPv4 address from the prefix to a 6to4 IPv6
775 * address.
776 * Note: This macro is NOT defined in RFC2553 or any other standard
777 * specification and is not a macro that portable applications should
778 * use.
779 * Note: we don’t use the IPADDR form of the macro because we need
780 * to do a bytewise copy; the V4ADDR in the 6to4 address is not
781 * 32-bit aligned.

new/usr/src/uts/common/netinet/in.h 11

782 *
783 * void IN6_6TO4_TO_V4ADDR(const in6_addr_t *v6, struct in_addr *v4);
784 *
785 */
786 #define IN6_6TO4_TO_V4ADDR(v6, v4) \
787 ((v4)->_S_un._S_un_b.s_b1 = (v6)->_S6_un._S6_u8[2], \
788 (v4)->_S_un._S_un_b.s_b2 = (v6)->_S6_un._S6_u8[3], \
789 (v4)->_S_un._S_un_b.s_b3 = (v6)->_S6_un._S6_u8[4], \
790 (v4)->_S_un._S_un_b.s_b4 = (v6)->_S6_un._S6_u8[5])

792 /*
793 * IN6_V4ADDR_TO_6TO4
794 * Given an IPv4 address and an IPv6 address for output, a 6to4 address
795 * will be created from the IPv4 Address.
796 * Note: This method for creating 6to4 addresses is not standardized
797 * outside of Solaris. The newly created 6to4 address will be of the form
798 * 2002:<V4ADDR>:<SUBNETID>::<HOSTID>, where SUBNETID will equal 0 and
799 * HOSTID will equal 1.
800 *
801 * void IN6_V4ADDR_TO_6TO4(const struct in_addr *v4, in6_addr_t *v6)
802 *
803 */
804 #ifdef _BIG_ENDIAN
805 #define IN6_V4ADDR_TO_6TO4(v4, v6) \
806 ((v6)->_S6_un._S6_u8[0] = 0x20, \
807 (v6)->_S6_un._S6_u8[1] = 0x02, \
808 (v6)->_S6_un._S6_u8[2] = (v4)->_S_un._S_un_b.s_b1, \
809 (v6)->_S6_un._S6_u8[3] = (v4)->_S_un._S_un_b.s_b2, \
810 (v6)->_S6_un._S6_u8[4] = (v4)->_S_un._S_un_b.s_b3, \
811 (v6)->_S6_un._S6_u8[5] = (v4)->_S_un._S_un_b.s_b4, \
812 (v6)->_S6_un._S6_u8[6] = 0, \
813 (v6)->_S6_un._S6_u8[7] = 0, \
814 (v6)->_S6_un._S6_u32[2] = 0, \
815 (v6)->_S6_un._S6_u32[3] = 0x00000001U)
816 #else
817 #define IN6_V4ADDR_TO_6TO4(v4, v6) \
818 ((v6)->_S6_un._S6_u8[0] = 0x20, \
819 (v6)->_S6_un._S6_u8[1] = 0x02, \
820 (v6)->_S6_un._S6_u8[2] = (v4)->_S_un._S_un_b.s_b1, \
821 (v6)->_S6_un._S6_u8[3] = (v4)->_S_un._S_un_b.s_b2, \
822 (v6)->_S6_un._S6_u8[4] = (v4)->_S_un._S_un_b.s_b3, \
823 (v6)->_S6_un._S6_u8[5] = (v4)->_S_un._S_un_b.s_b4, \
824 (v6)->_S6_un._S6_u8[6] = 0, \
825 (v6)->_S6_un._S6_u8[7] = 0, \
826 (v6)->_S6_un._S6_u32[2] = 0, \
827 (v6)->_S6_un._S6_u32[3] = 0x01000000U)
828 #endif /* _BIG_ENDIAN */

830 /*
831 * IN6_ARE_ADDR_EQUAL (defined in RFC2292)
832 * Compares if IPv6 addresses are equal.
833 * Note: Compares in order of high likelyhood of a miss so we minimize
834 * compares. (Current heuristic order, compare in reverse order of
835 * uint32_t units)
836 *
837 * bool IN6_ARE_ADDR_EQUAL(const struct in6_addr *,
838 * const struct in6_addr *);
839 */
840 #define IN6_ARE_ADDR_EQUAL(addr1, addr2) \
841 (((addr1)->_S6_un._S6_u32[3] == (addr2)->_S6_un._S6_u32[3]) && \
842 ((addr1)->_S6_un._S6_u32[2] == (addr2)->_S6_un._S6_u32[2]) && \
843 ((addr1)->_S6_un._S6_u32[1] == (addr2)->_S6_un._S6_u32[1]) && \
844 ((addr1)->_S6_un._S6_u32[0] == (addr2)->_S6_un._S6_u32[0]))

846 /*
847 * IN6_ARE_PREFIXEDADDR_EQUAL (not defined in RFCs)

new/usr/src/uts/common/netinet/in.h 12

848 * Compares if prefixed parts of IPv6 addresses are equal.
849 *
850 * uint32_t IN6_MASK_FROM_PREFIX(int, int);
851 * bool IN6_ARE_PREFIXEDADDR_EQUAL(const struct in6_addr *,
852 * const struct in6_addr *,
853 * int);
854 */
855 #define IN6_MASK_FROM_PREFIX(qoctet, prefix) \
856 ((((qoctet) + 1) * 32 < (prefix)) ? 0xFFFFFFFFu : \
857 ((((qoctet) * 32) >= (prefix)) ? 0x00000000u : \
858 0xFFFFFFFFu << (((qoctet) + 1) * 32 - (prefix))))

860 #define IN6_ARE_PREFIXEDADDR_EQUAL(addr1, addr2, prefix) \
861 (((ntohl((addr1)->_S6_un._S6_u32[0]) & \
862 IN6_MASK_FROM_PREFIX(0, prefix)) == \
863 (ntohl((addr2)->_S6_un._S6_u32[0]) & \
864 IN6_MASK_FROM_PREFIX(0, prefix))) && \
865 ((ntohl((addr1)->_S6_un._S6_u32[1]) & \
866 IN6_MASK_FROM_PREFIX(1, prefix)) == \
867 (ntohl((addr2)->_S6_un._S6_u32[1]) & \
868 IN6_MASK_FROM_PREFIX(1, prefix))) && \
869 ((ntohl((addr1)->_S6_un._S6_u32[2]) & \
870 IN6_MASK_FROM_PREFIX(2, prefix)) == \
871 (ntohl((addr2)->_S6_un._S6_u32[2]) & \
872 IN6_MASK_FROM_PREFIX(2, prefix))) && \
873 ((ntohl((addr1)->_S6_un._S6_u32[3]) & \
874 IN6_MASK_FROM_PREFIX(3, prefix)) == \
875 (ntohl((addr2)->_S6_un._S6_u32[3]) & \
876 IN6_MASK_FROM_PREFIX(3, prefix))))

878 #endif /* !defined(_XPG4_2) || defined(_XPG6) || defined(__EXTENSIONS__) */

881 /*
882 * Options for use with [gs]etsockopt at the IP level.
883 *
884 * Note: Some of the IP_ namespace has conflict with and
885 * and is exposed through <xti.h>. (It also requires exposing
886 * options not implemented). The options with potential
887 * for conflicts use #ifndef guards.
888 */
889 #ifndef IP_OPTIONS
890 #define IP_OPTIONS 1 /* set/get IP per-packet options */
891 #endif

893 #define IP_HDRINCL 2 /* int; header is included with data (raw) */

895 #ifndef IP_TOS
896 #define IP_TOS 3 /* int; IP type of service and precedence */
897 #endif

899 #ifndef IP_TTL
900 #define IP_TTL 4 /* int; IP time to live */
901 #endif

903 #define IP_RECVOPTS 0x5 /* int; receive all IP options w/datagram */
904 #define IP_RECVRETOPTS 0x6 /* int; receive IP options for response */
905 #define IP_RECVDSTADDR 0x7 /* int; receive IP dst addr w/datagram */
906 #define IP_RETOPTS 0x8 /* ip_opts; set/get IP per-packet options */
907 #define IP_RECVIF 0x9 /* int; receive the inbound interface index */
908 #define IP_RECVSLLA 0xa /* sockaddr_dl; get source link layer address */
909 #define IP_RECVTTL 0xb /* uint8_t; get TTL for inbound packet */

911 #define IP_MULTICAST_IF 0x10 /* set/get IP multicast interface */
912 #define IP_MULTICAST_TTL 0x11 /* set/get IP multicast timetolive */
913 #define IP_MULTICAST_LOOP 0x12 /* set/get IP multicast loopback */

new/usr/src/uts/common/netinet/in.h 13

914 #define IP_ADD_MEMBERSHIP 0x13 /* add an IP group membership */
915 #define IP_DROP_MEMBERSHIP 0x14 /* drop an IP group membership */
916 #define IP_BLOCK_SOURCE 0x15 /* block mcast pkts from source */
917 #define IP_UNBLOCK_SOURCE 0x16 /* unblock mcast pkts from source */
918 #define IP_ADD_SOURCE_MEMBERSHIP 0x17 /* add mcast group/source pair */
919 #define IP_DROP_SOURCE_MEMBERSHIP 0x18 /* drop mcast group/source pair */
920 #define IP_NEXTHOP 0x19 /* send directly to next hop */
921 /*
922 * IP_PKTINFO and IP_RECVPKTINFO have same value. Size of argument passed in
923 * is used to differentiate b/w the two.
924 */
925 #define IP_PKTINFO 0x1a /* specify src address and/or index */
926 #define IP_RECVPKTINFO 0x1a /* recv dest/matched addr and index */
927 #define IP_DONTFRAG 0x1b /* don’t fragment packets */

929 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
930 /*
931 * Different preferences that can be requested from IPSEC protocols.
932 */
933 #define IP_SEC_OPT 0x22 /* Used to set IPSEC options */
934 #define IPSEC_PREF_NEVER 0x01
935 #define IPSEC_PREF_REQUIRED 0x02
936 #define IPSEC_PREF_UNIQUE 0x04
937 /*
938 * This can be used with the setsockopt() call to set per socket security
939 * options. When the application uses per-socket API, we will reflect
940 * the request on both outbound and inbound packets.
941 */

943 typedef struct ipsec_req {
944 uint_t ipsr_ah_req; /* AH request */
945 uint_t ipsr_esp_req; /* ESP request */
946 uint_t ipsr_self_encap_req; /* Self-Encap request */
947 uint8_t ipsr_auth_alg; /* Auth algs for AH */
948 uint8_t ipsr_esp_alg; /* Encr algs for ESP */
949 uint8_t ipsr_esp_auth_alg; /* Auth algs for ESP */
950 } ipsec_req_t;

952 /*
953 * MCAST_* options are protocol-independent. The actual definitions
954 * are with the v6 options below; this comment is here to note the
955 * namespace usage.
956 *
957 * #define MCAST_JOIN_GROUP 0x29
958 * #define MCAST_LEAVE_GROUP 0x2a
959 * #define MCAST_BLOCK_SOURCE 0x2b
960 * #define MCAST_UNBLOCK_SOURCE 0x2c
961 * #define MCAST_JOIN_SOURCE_GROUP 0x2d
962 * #define MCAST_LEAVE_SOURCE_GROUP 0x2e
963 */
964 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

966 /*
967 * SunOS private (potentially not portable) IP_ option names
968 */
969 #define IP_BOUND_IF 0x41 /* bind socket to an ifindex */
970 #define IP_UNSPEC_SRC 0x42 /* use unspecified source address */
971 #define IP_BROADCAST_TTL 0x43 /* use specific TTL for broadcast */
972 /* can be reused 0x44 */
973 #define IP_DHCPINIT_IF 0x45 /* accept all unicast DHCP traffic */

975 /*
976 * Option values and names (when !_XPG5) shared with <xti_inet.h>
977 */
978 #ifndef IP_REUSEADDR
979 #define IP_REUSEADDR 0x104

new/usr/src/uts/common/netinet/in.h 14

980 #endif

982 #ifndef IP_DONTROUTE
983 #define IP_DONTROUTE 0x105
984 #endif

986 #ifndef IP_BROADCAST
987 #define IP_BROADCAST 0x106
988 #endif

990 /*
991 * The following option values are reserved by <xti_inet.h>
992 *
993 * T_IP_OPTIONS 0x107 - IP per-packet options
994 * T_IP_TOS 0x108 - IP per packet type of service
995 */

997 /*
998 * Default value constants for multicast attributes controlled by
999 * IP*_MULTICAST_LOOP and IP*_MULTICAST_{TTL,HOPS} options.

1000 */
1001 #define IP_DEFAULT_MULTICAST_TTL 1 /* normally limit m’casts to 1 hop */
1002 #define IP_DEFAULT_MULTICAST_LOOP 1 /* normally hear sends if a member */

1004 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
1005 /*
1006 * Argument structure for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP.
1007 */
1008 struct ip_mreq {
1009 struct in_addr imr_multiaddr; /* IP multicast address of group */
1010 struct in_addr imr_interface; /* local IP address of interface */
1011 };

1013 /*
1014 * Argument structure for IP_BLOCK_SOURCE, IP_UNBLOCK_SOURCE,
1015 * IP_ADD_SOURCE_MEMBERSHIP, and IP_DROP_SOURCE_MEMBERSHIP.
1016 */
1017 struct ip_mreq_source {
1018 struct in_addr imr_multiaddr; /* IP address of group */
1019 struct in_addr imr_sourceaddr; /* IP address of source */
1020 struct in_addr imr_interface; /* IP address of interface */
1021 };

1023 /*
1024 * Argument structure for IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP on
1025 * IPv6 addresses.
1026 */
1027 struct ipv6_mreq {
1028 struct in6_addr ipv6mr_multiaddr; /* IPv6 multicast addr */
1029 unsigned int ipv6mr_interface; /* interface index */
1030 };

1032 /*
1033 * Use #pragma pack() construct to force 32-bit alignment on amd64.
1034 * This is needed to keep the structure size and offsets consistent
1035 * between a 32-bit app and the 64-bit amd64 kernel in structures
1036 * where 64-bit alignment would create gaps (in this case, structures
1037 * which have a uint32_t followed by a struct sockaddr_storage).
1038 */
1039 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1040 #pragma pack(4)
1041 #endif

1043 /*
1044 * Argument structure for MCAST_JOIN_GROUP and MCAST_LEAVE_GROUP.
1045 */

new/usr/src/uts/common/netinet/in.h 15

1046 struct group_req {
1047 uint32_t gr_interface; /* interface index */
1048 struct sockaddr_storage gr_group; /* group address */
1049 };

1051 /*
1052 * Argument structure for MCAST_BLOCK_SOURCE, MCAST_UNBLOCK_SOURCE,
1053 * MCAST_JOIN_SOURCE_GROUP, MCAST_LEAVE_SOURCE_GROUP.
1054 */
1055 struct group_source_req {
1056 uint32_t gsr_interface; /* interface index */
1057 struct sockaddr_storage gsr_group; /* group address */
1058 struct sockaddr_storage gsr_source; /* source address */
1059 };

1061 /*
1062 * Argument for SIOC[GS]MSFILTER ioctls
1063 */
1064 struct group_filter {
1065 uint32_t gf_interface; /* interface index */
1066 struct sockaddr_storage gf_group; /* multicast address */
1067 uint32_t gf_fmode; /* filter mode */
1068 uint32_t gf_numsrc; /* number of sources */
1069 struct sockaddr_storage gf_slist[1]; /* source address */
1070 };

1072 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1073 #pragma pack()
1074 #endif

1076 #define GROUP_FILTER_SIZE(numsrc) \
1077 (sizeof (struct group_filter) - sizeof (struct sockaddr_storage) \
1078 + (numsrc) * sizeof (struct sockaddr_storage))

1080 /*
1081 * Argument for SIOC[GS]IPMSFILTER ioctls (IPv4-specific)
1082 */
1083 struct ip_msfilter {
1084 struct in_addr imsf_multiaddr; /* IP multicast address of group */
1085 struct in_addr imsf_interface; /* local IP address of interface */
1086 uint32_t imsf_fmode; /* filter mode */
1087 uint32_t imsf_numsrc; /* number of sources in src_list */
1088 struct in_addr imsf_slist[1]; /* start of source list */
1089 };

1091 #define IP_MSFILTER_SIZE(numsrc) \
1092 (sizeof (struct ip_msfilter) - sizeof (struct in_addr) \
1093 + (numsrc) * sizeof (struct in_addr))

1095 /*
1096 * Multicast source filter manipulation functions in libsocket;
1097 * defined in RFC 3678.
1098 */
1099 int setsourcefilter(int, uint32_t, struct sockaddr *, socklen_t, uint32_t,
1100 uint_t, struct sockaddr_storage *);

1102 int getsourcefilter(int, uint32_t, struct sockaddr *, socklen_t, uint32_t *,
1103 uint_t *, struct sockaddr_storage *);

1105 int setipv4sourcefilter(int, struct in_addr, struct in_addr, uint32_t,
1106 uint32_t, struct in_addr *);

1108 int getipv4sourcefilter(int, struct in_addr, struct in_addr, uint32_t *,
1109 uint32_t *, struct in_addr *);

1111 /*

new/usr/src/uts/common/netinet/in.h 16

1112 * Definitions needed for [gs]etsourcefilter(), [gs]etipv4sourcefilter()
1113 */
1114 #define MCAST_INCLUDE 1
1115 #define MCAST_EXCLUDE 2

1117 /*
1118 * Argument struct for IP_PKTINFO option
1119 */
1120 typedef struct in_pktinfo {
1121 unsigned int ipi_ifindex; /* send/recv interface index */
1122 struct in_addr ipi_spec_dst; /* matched source address */
1123 struct in_addr ipi_addr; /* src/dst address in IP hdr */
1124 } in_pktinfo_t;

1126 /*
1127 * Argument struct for IPV6_PKTINFO option
1128 */
1129 struct in6_pktinfo {
1130 struct in6_addr ipi6_addr; /* src/dst IPv6 address */
1131 unsigned int ipi6_ifindex; /* send/recv interface index */
1132 };

1134 /*
1135 * Argument struct for IPV6_MTUINFO option
1136 */
1137 struct ip6_mtuinfo {
1138 struct sockaddr_in6 ip6m_addr; /* dst address including zone ID */
1139 uint32_t ip6m_mtu; /* path MTU in host byte order */
1140 };

1142 /*
1143 * IPv6 routing header types
1144 */
1145 #define IPV6_RTHDR_TYPE_0 0

1147 extern socklen_t inet6_rth_space(int type, int segments);
1148 extern void *inet6_rth_init(void *bp, socklen_t bp_len, int type, int segments);
1149 extern int inet6_rth_add(void *bp, const struct in6_addr *addr);
1150 extern int inet6_rth_reverse(const void *in, void *out);
1151 extern int inet6_rth_segments(const void *bp);
1152 extern struct in6_addr *inet6_rth_getaddr(const void *bp, int index);

1154 extern int inet6_opt_init(void *extbuf, socklen_t extlen);
1155 extern int inet6_opt_append(void *extbuf, socklen_t extlen, int offset,
1156 uint8_t type, socklen_t len, uint_t align, void **databufp);
1157 extern int inet6_opt_finish(void *extbuf, socklen_t extlen, int offset);
1158 extern int inet6_opt_set_val(void *databuf, int offset, void *val,
1159 socklen_t vallen);
1160 extern int inet6_opt_next(void *extbuf, socklen_t extlen, int offset,
1161 uint8_t *typep, socklen_t *lenp, void **databufp);
1162 extern int inet6_opt_find(void *extbufp, socklen_t extlen, int offset,
1163 uint8_t type, socklen_t *lenp, void **databufp);
1164 extern int inet6_opt_get_val(void *databuf, int offset, void *val,
1165 socklen_t vallen);
1166 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

1168 /*
1169 * Argument structure for IP_ADD_PROXY_ADDR.
1170 * Note that this is an unstable, experimental interface. It may change
1171 * later. Don’t use it unless you know what it is.
1172 */
1173 typedef struct {
1174 struct in_addr in_prefix_addr;
1175 unsigned int in_prefix_len;
1176 } in_prefix_t;

new/usr/src/uts/common/netinet/in.h 17

1179 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
1180 /*
1181 * IPv6 options
1182 */
1183 #define IPV6_UNICAST_HOPS 0x5 /* hop limit value for unicast */
1184 /* packets. */
1185 /* argument type: uint_t */
1186 #define IPV6_MULTICAST_IF 0x6 /* outgoing interface for */
1187 /* multicast packets. */
1188 /* argument type: struct in6_addr */
1189 #define IPV6_MULTICAST_HOPS 0x7 /* hop limit value to use for */
1190 /* multicast packets. */
1191 /* argument type: uint_t */
1192 #define IPV6_MULTICAST_LOOP 0x8 /* enable/disable delivery of */
1193 /* multicast packets on same socket. */
1194 /* argument type: uint_t */
1195 #define IPV6_JOIN_GROUP 0x9 /* join an IPv6 multicast group. */
1196 /* argument type: struct ipv6_mreq */
1197 #define IPV6_LEAVE_GROUP 0xa /* leave an IPv6 multicast group */
1198 /* argument type: struct ipv6_mreq */
1199 /*
1200 * IPV6_ADD_MEMBERSHIP and IPV6_DROP_MEMBERSHIP are being kept
1201 * for backward compatibility. They have the same meaning as IPV6_JOIN_GROUP
1202 * and IPV6_LEAVE_GROUP respectively.
1203 */
1204 #define IPV6_ADD_MEMBERSHIP 0x9 /* join an IPv6 multicast group. */
1205 /* argument type: struct ipv6_mreq */
1206 #define IPV6_DROP_MEMBERSHIP 0xa /* leave an IPv6 multicast group */
1207 /* argument type: struct ipv6_mreq */

1209 #define IPV6_PKTINFO 0xb /* addr plus interface index */
1210 /* arg type: "struct in6_pktingo" - */
1211 #define IPV6_HOPLIMIT 0xc /* hoplimit for datagram */
1212 #define IPV6_NEXTHOP 0xd /* next hop address */
1213 #define IPV6_HOPOPTS 0xe /* hop by hop options */
1214 #define IPV6_DSTOPTS 0xf /* destination options - after */
1215 /* the routing header */
1216 #define IPV6_RTHDR 0x10 /* routing header */
1217 #define IPV6_RTHDRDSTOPTS 0x11 /* destination options - before */
1218 /* the routing header */
1219 #define IPV6_RECVPKTINFO 0x12 /* enable/disable IPV6_PKTINFO */
1220 #define IPV6_RECVHOPLIMIT 0x13 /* enable/disable IPV6_HOPLIMIT */
1221 #define IPV6_RECVHOPOPTS 0x14 /* enable/disable IPV6_HOPOPTS */

1223 /*
1224 * This options exists for backwards compatability and should no longer be
1225 * used. Use IPV6_RECVDSTOPTS instead.
1226 */
1227 #define _OLD_IPV6_RECVDSTOPTS 0x15

1229 #define IPV6_RECVRTHDR 0x16 /* enable/disable IPV6_RTHDR */

1231 /*
1232 * enable/disable IPV6_RTHDRDSTOPTS. Now obsolete. IPV6_RECVDSTOPTS enables
1233 * the receipt of both headers.
1234 */
1235 #define IPV6_RECVRTHDRDSTOPTS 0x17

1237 #define IPV6_CHECKSUM 0x18 /* Control checksum on raw sockets */
1238 #define IPV6_RECVTCLASS 0x19 /* enable/disable IPV6_CLASS */
1239 #define IPV6_USE_MIN_MTU 0x20 /* send packets with minimum MTU */
1240 #define IPV6_DONTFRAG 0x21 /* don’t fragment packets */
1241 #define IPV6_SEC_OPT 0x22 /* Used to set IPSEC options */
1242 #define IPV6_SRC_PREFERENCES 0x23 /* Control socket’s src addr select */
1243 #define IPV6_RECVPATHMTU 0x24 /* receive PMTU info */

new/usr/src/uts/common/netinet/in.h 18

1244 #define IPV6_PATHMTU 0x25 /* get the PMTU */
1245 #define IPV6_TCLASS 0x26 /* traffic class */
1246 #define IPV6_V6ONLY 0x27 /* v6 only socket option */

1248 /*
1249 * enable/disable receipt of both both IPV6_DSTOPTS headers.
1250 */
1251 #define IPV6_RECVDSTOPTS 0x28

1253 /*
1254 * protocol-independent multicast membership options.
1255 */
1256 #define MCAST_JOIN_GROUP 0x29 /* join group for all sources */
1257 #define MCAST_LEAVE_GROUP 0x2a /* leave group */
1258 #define MCAST_BLOCK_SOURCE 0x2b /* block specified source */
1259 #define MCAST_UNBLOCK_SOURCE 0x2c /* unblock specified source */
1260 #define MCAST_JOIN_SOURCE_GROUP 0x2d /* join group for specified source */
1261 #define MCAST_LEAVE_SOURCE_GROUP 0x2e /* leave source/group pair */

1263 /* 32Bit field for IPV6_SRC_PREFERENCES */
1264 #define IPV6_PREFER_SRC_HOME 0x00000001
1265 #define IPV6_PREFER_SRC_COA 0x00000002
1266 #define IPV6_PREFER_SRC_PUBLIC 0x00000004
1267 #define IPV6_PREFER_SRC_TMP 0x00000008
1268 #define IPV6_PREFER_SRC_NONCGA 0x00000010
1269 #define IPV6_PREFER_SRC_CGA 0x00000020

1271 #define IPV6_PREFER_SRC_MIPMASK (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)
1272 #define IPV6_PREFER_SRC_MIPDEFAULT IPV6_PREFER_SRC_HOME
1273 #define IPV6_PREFER_SRC_TMPMASK (IPV6_PREFER_SRC_PUBLIC | IPV6_PREFER_SRC_TMP)
1274 #define IPV6_PREFER_SRC_TMPDEFAULT IPV6_PREFER_SRC_PUBLIC
1275 #define IPV6_PREFER_SRC_CGAMASK (IPV6_PREFER_SRC_NONCGA | IPV6_PREFER_SRC_CGA)
1276 #define IPV6_PREFER_SRC_CGADEFAULT IPV6_PREFER_SRC_NONCGA

1278 #define IPV6_PREFER_SRC_MASK (IPV6_PREFER_SRC_MIPMASK |\
1279 IPV6_PREFER_SRC_TMPMASK | IPV6_PREFER_SRC_CGAMASK)

1281 #define IPV6_PREFER_SRC_DEFAULT (IPV6_PREFER_SRC_MIPDEFAULT |\
1282 IPV6_PREFER_SRC_TMPDEFAULT | IPV6_PREFER_SRC_CGADEFAULT)

1284 /*
1285 * SunOS private (potentially not portable) IPV6_ option names
1286 */
1287 #define IPV6_BOUND_IF 0x41 /* bind to an ifindex */
1288 #define IPV6_UNSPEC_SRC 0x42 /* source of packets set to */
1289 /* unspecified (all zeros) */

1291 /*
1292 * Miscellaneous IPv6 constants.
1293 */
1294 #define INET_ADDRSTRLEN 16 /* max len IPv4 addr in ascii dotted */
1295 /* decimal notation. */
1296 #define INET6_ADDRSTRLEN 46 /* max len of IPv6 addr in ascii */
1297 /* standard colon-hex notation. */
1298 #define IPV6_PAD1_OPT 0 /* pad byte in IPv6 extension hdrs */

1300 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

1302 /*
1303 * Extern declarations for pre-defined global const variables
1304 */
1305 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
1306 #ifndef _KERNEL
1307 #ifdef __STDC__
1308 extern const struct in6_addr in6addr_any;
1309 extern const struct in6_addr in6addr_loopback;

new/usr/src/uts/common/netinet/in.h 19

1310 #else
1311 extern struct in6_addr in6addr_any;
1312 extern struct in6_addr in6addr_loopback;
1313 #endif
1314 #endif
1315 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

1317 #ifdef __cplusplus
1318 }
1319 #endif

1321 #endif /* _NETINET_IN_H */

new/usr/src/uts/common/sys/netstack.h 1

**
 9019 Wed Jun 13 12:05:41 2012
new/usr/src/uts/common/sys/netstack.h
%B
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 #ifndef _SYS_NETSTACK_H
27 #define _SYS_NETSTACK_H

29 #include <sys/kstat.h>

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 /*
36 * This allows various pieces in and around IP to have a separate instance
37 * for each instance of IP. This is used to support zones that have an
38 * exclusive stack.
39 * Pieces of software far removed from IP (e.g., kernel software
40 * sitting on top of TCP or UDP) probably should not use the netstack
41 * support; if such software wants to support separate zones it
42 * can do that using the zones framework (zone_key_create() etc)
43 * whether there is a shared IP stack or and exclusive IP stack underneath.
44 */

46 /*
47 * Each netstack has an identifier. We reuse the zoneid allocation for
48 * this but have a separate typedef. Thus the shared stack (used by
49 * the global zone and other shared stack zones) have a zero ID, and
50 * the exclusive stacks have a netstackid that is the same as their zoneid.
51 */
52 typedef id_t netstackid_t;

54 #define GLOBAL_NETSTACKID 0

56 /*
57 * One for each module which uses netstack support.
58 * Used in netstack_register().
59 *
60 * The order of these is important for some modules both for
61 * the creation (which done in ascending order) and destruction (which is

new/usr/src/uts/common/sys/netstack.h 2

62 * done in in decending order).
63 */
64 #define NS_ALL -1 /* Match all */
65 #define NS_DLS 0
66 #define NS_IPTUN 1
67 #define NS_STR 2 /* autopush list etc */
68 #define NS_HOOK 3
69 #define NS_NETI 4
70 #define NS_ARP 5
71 #define NS_IP 6
72 #define NS_ICMP 7
73 #define NS_UDP 8
74 #define NS_TCP 9
75 #define NS_SCTP 10
76 #define NS_RTS 11
77 #define NS_IPSEC 12
78 #define NS_KEYSOCK 13
79 #define NS_SPDSOCK 14
80 #define NS_IPSECAH 15
81 #define NS_IPSECESP 16
82 #define NS_IPNET 17
83 #define NS_ILB 18
84 #define NS_DCCP 19
85 #define NS_MAX (NS_DCCP+1)
84 #define NS_MAX (NS_ILB+1)

87 /*
88 * State maintained for each module which tracks the state of
89 * the create, shutdown and destroy callbacks.
90 *
91 * Keeps track of pending actions to avoid holding locks when
92 * calling into the create/shutdown/destroy functions in the module.
93 */
94 #ifdef _KERNEL
95 typedef struct {
96 uint16_t nms_flags;
97 kcondvar_t nms_cv;
98 } nm_state_t;

100 /*
101 * nms_flags
102 */
103 #define NSS_CREATE_NEEDED 0x0001
104 #define NSS_CREATE_INPROGRESS 0x0002
105 #define NSS_CREATE_COMPLETED 0x0004
106 #define NSS_SHUTDOWN_NEEDED 0x0010
107 #define NSS_SHUTDOWN_INPROGRESS 0x0020
108 #define NSS_SHUTDOWN_COMPLETED 0x0040
109 #define NSS_DESTROY_NEEDED 0x0100
110 #define NSS_DESTROY_INPROGRESS 0x0200
111 #define NSS_DESTROY_COMPLETED 0x0400

113 #define NSS_CREATE_ALL \
114 (NSS_CREATE_NEEDED|NSS_CREATE_INPROGRESS|NSS_CREATE_COMPLETED)
115 #define NSS_SHUTDOWN_ALL \
116 (NSS_SHUTDOWN_NEEDED|NSS_SHUTDOWN_INPROGRESS|NSS_SHUTDOWN_COMPLETED)
117 #define NSS_DESTROY_ALL \
118 (NSS_DESTROY_NEEDED|NSS_DESTROY_INPROGRESS|NSS_DESTROY_COMPLETED)

120 #define NSS_ALL_INPROGRESS \
121 (NSS_CREATE_INPROGRESS|NSS_SHUTDOWN_INPROGRESS|NSS_DESTROY_INPROGRESS)
122 #else
123 /* User-level compile like IP Filter needs a netstack_t. Dummy */
124 typedef uint_t nm_state_t;
125 #endif /* _KERNEL */

new/usr/src/uts/common/sys/netstack.h 3

127 /*
128 * One for every netstack in the system.
129 * We use a union so that the compilar and lint can provide type checking -
130 * in principle we could have
131 * #define netstack_arp netstack_modules[NS_ARP]
132 * etc, but that would imply void * types hence no type checking by the
133 * compiler.
134 *
135 * All the fields in netstack_t except netstack_next are protected by
136 * netstack_lock. netstack_next is protected by netstack_g_lock.
137 */
138 struct netstack {
139 union {
140 void *nu_modules[NS_MAX];
141 struct {
142 struct dls_stack *nu_dls;
143 struct iptun_stack *nu_iptun;
144 struct str_stack *nu_str;
145 struct hook_stack *nu_hook;
146 struct neti_stack *nu_neti;
147 struct arp_stack *nu_arp;
148 struct ip_stack *nu_ip;
149 struct icmp_stack *nu_icmp;
150 struct udp_stack *nu_udp;
151 struct tcp_stack *nu_tcp;
152 struct sctp_stack *nu_sctp;
153 struct rts_stack *nu_rts;
154 struct ipsec_stack *nu_ipsec;
155 struct keysock_stack *nu_keysock;
156 struct spd_stack *nu_spdsock;
157 struct ipsecah_stack *nu_ipsecah;
158 struct ipsecesp_stack *nu_ipsecesp;
159 struct ipnet_stack *nu_ipnet;
160 struct ilb_stack *nu_ilb;
161 struct dccp_stack *nu_dccp;
162 #endif /* ! codereview */
163 } nu_s;
164 } netstack_u;
165 #define netstack_modules netstack_u.nu_modules
166 #define netstack_dls netstack_u.nu_s.nu_dls
167 #define netstack_iptun netstack_u.nu_s.nu_iptun
168 #define netstack_str netstack_u.nu_s.nu_str
169 #define netstack_hook netstack_u.nu_s.nu_hook
170 #define netstack_neti netstack_u.nu_s.nu_neti
171 #define netstack_arp netstack_u.nu_s.nu_arp
172 #define netstack_ip netstack_u.nu_s.nu_ip
173 #define netstack_icmp netstack_u.nu_s.nu_icmp
174 #define netstack_udp netstack_u.nu_s.nu_udp
175 #define netstack_tcp netstack_u.nu_s.nu_tcp
176 #define netstack_sctp netstack_u.nu_s.nu_sctp
177 #define netstack_rts netstack_u.nu_s.nu_rts
178 #define netstack_ipsec netstack_u.nu_s.nu_ipsec
179 #define netstack_keysock netstack_u.nu_s.nu_keysock
180 #define netstack_spdsock netstack_u.nu_s.nu_spdsock
181 #define netstack_ipsecah netstack_u.nu_s.nu_ipsecah
182 #define netstack_ipsecesp netstack_u.nu_s.nu_ipsecesp
183 #define netstack_ipnet netstack_u.nu_s.nu_ipnet
184 #define netstack_ilb netstack_u.nu_s.nu_ilb
185 #define netstack_dccp netstack_u.nu_s.nu_dccp
186 #endif /* ! codereview */

188 nm_state_t netstack_m_state[NS_MAX]; /* module state */

190 kmutex_t netstack_lock;
191 struct netstack *netstack_next;
192 netstackid_t netstack_stackid;

new/usr/src/uts/common/sys/netstack.h 4

193 int netstack_numzones; /* Number of zones using this */
194 int netstack_refcnt; /* Number of hold-rele */
195 int netstack_flags; /* See below */

197 #ifdef _KERNEL
198 /* Needed to ensure that we run the callback functions in order */
199 kcondvar_t netstack_cv;
200 #endif
201 };
202 typedef struct netstack netstack_t;

204 /* netstack_flags values */
205 #define NSF_UNINIT 0x01 /* Not initialized */
206 #define NSF_CLOSING 0x02 /* Going away */
207 #define NSF_ZONE_CREATE 0x04 /* create callbacks inprog */
208 #define NSF_ZONE_SHUTDOWN 0x08 /* shutdown callbacks */
209 #define NSF_ZONE_DESTROY 0x10 /* destroy callbacks */

211 #define NSF_ZONE_INPROGRESS \
212 (NSF_ZONE_CREATE|NSF_ZONE_SHUTDOWN|NSF_ZONE_DESTROY)

214 /*
215 * One for each of the NS_* values.
216 */
217 struct netstack_registry {
218 int nr_flags; /* 0 if nothing registered */
219 void *(*nr_create)(netstackid_t, netstack_t *);
220 void (*nr_shutdown)(netstackid_t, void *);
221 void (*nr_destroy)(netstackid_t, void *);
222 };

224 /* nr_flags values */
225 #define NRF_REGISTERED 0x01
226 #define NRF_DYING 0x02 /* No new creates */

228 /*
229 * To support kstat_create_netstack() using kstat_add_zone we need
230 * to track both
231 * - all zoneids that use the global/shared stack
232 * - all kstats that have been added for the shared stack
233 */

235 extern void netstack_init(void);
236 extern void netstack_hold(netstack_t *);
237 extern void netstack_rele(netstack_t *);
238 extern netstack_t *netstack_find_by_cred(const cred_t *);
239 extern netstack_t *netstack_find_by_stackid(netstackid_t);
240 extern netstack_t *netstack_find_by_zoneid(zoneid_t);

242 extern zoneid_t netstackid_to_zoneid(netstackid_t);
243 extern zoneid_t netstack_get_zoneid(netstack_t *);
244 extern netstackid_t zoneid_to_netstackid(zoneid_t);

246 extern netstack_t *netstack_get_current(void);

248 /*
249 * Register interest in changes to the set of netstacks.
250 * The createfn and destroyfn are required, but the shutdownfn can be
251 * NULL.
252 * Note that due to the current zsd implementation, when the create
253 * function is called the zone isn’t fully present, thus functions
254 * like zone_find_by_* will fail, hence the create function can not
255 * use many zones kernel functions including zcmn_err().
256 */
257 extern void netstack_register(int,
258 void *(*)(netstackid_t, netstack_t *),

new/usr/src/uts/common/sys/netstack.h 5

259 void (*)(netstackid_t, void *),
260 void (*)(netstackid_t, void *));
261 extern void netstack_unregister(int);
262 extern kstat_t *kstat_create_netstack(char *, int, char *, char *, uchar_t,
263 uint_t, uchar_t, netstackid_t);
264 extern void kstat_delete_netstack(kstat_t *, netstackid_t);

266 /*
267 * Simple support for walking all the netstacks.
268 * The caller of netstack_next() needs to call netstack_rele() when
269 * done with a netstack.
270 */
271 typedef int netstack_handle_t;

273 extern void netstack_next_init(netstack_handle_t *);
274 extern void netstack_next_fini(netstack_handle_t *);
275 extern netstack_t *netstack_next(netstack_handle_t *);

277 #ifdef __cplusplus
278 }
279 #endif

282 #endif /* _SYS_NETSTACK_H */

new/usr/src/uts/intel/Makefile.intel.shared 1

**
 16821 Wed Jun 13 12:05:42 2012
new/usr/src/uts/intel/Makefile.intel.shared
%B
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.

24 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.

26 #
27 # This makefile contains the common definitions for all intel
28 # implementation architecture independent modules.
29 #

31 #
32 # Machine type (implementation architecture):
33 #
34 PLATFORM = i86pc

36 #
37 # Everybody needs to know how to build modstubs.o and to locate unix.o.
38 # Note that unix.o must currently be selected from among the possible
39 # "implementation architectures". Note further, that unix.o is only
40 # used as an optional error check for undefines so (theoretically)
41 # any "implementation architectures" could be used. We choose i86pc
42 # because it is the reference port.
43 #
44 UNIX_DIR = $(UTSBASE)/i86pc/unix
45 GENLIB_DIR = $(UTSBASE)/intel/genunix
46 IPDRV_DIR = $(UTSBASE)/intel/ip
47 MODSTUBS_DIR = $(UNIX_DIR)
48 DSF_DIR = $(UTSBASE)/$(PLATFORM)/genassym
49 LINTS_DIR = $(OBJS_DIR)
50 LINT_LIB_DIR = $(UTSBASE)/intel/lint-libs/$(OBJS_DIR)

52 UNIX_O = $(UNIX_DIR)/$(OBJS_DIR)/unix.o
53 GENLIB = $(GENLIB_DIR)/$(OBJS_DIR)/libgenunix.so
54 MODSTUBS_O = $(MODSTUBS_DIR)/$(OBJS_DIR)/modstubs.o
55 LINT_LIB = $(UTSBASE)/i86pc/lint-libs/$(OBJS_DIR)/llib-lunix.ln
56 GEN_LINT_LIB = $(UTSBASE)/intel/lint-libs/$(OBJS_DIR)/llib-lgenunix.ln

58 #
59 # Include the makefiles which define build rule templates, the
60 # collection of files per module, and a few specific flags. Note
61 # that order is significant, just as with an include path. The

new/usr/src/uts/intel/Makefile.intel.shared 2

62 # first build rule template which matches the files name will be
63 # used. By including these in order from most machine dependent
64 # to most machine independent, we allow a machine dependent file
65 # to be used in preference over a machine independent version
66 # (Such as a machine specific optimization, which preserves the
67 # interfaces.)
68 #
69 include $(UTSTREE)/intel/Makefile.files
70 include $(UTSTREE)/common/Makefile.files

72 #
73 # ----- TRANSITIONAL SECTION --
74 #

76 #
77 # Not everything which *should* be a module is a module yet. The
78 # following is a list of such objects which are currently part of
79 # genunix but which might someday become kmods. This must be
80 # defined before we include Makefile.uts, or else genunix’s build
81 # won’t be as parallel as we might like.
82 #
83 NOT_YET_KMODS = $(OLDPTY_OBJS) $(PTY_OBJS) $(VCONS_CONF_OBJS) $(MOD_OBJS)

85 #
86 # ----- END OF TRANSITIONAL SECTION ---
87 #
88 # Include machine independent rules. Note that this does not imply
89 # that the resulting module from rules in Makefile.uts is machine
90 # independent. Only that the build rules are machine independent.
91 #
92 include $(UTSBASE)/Makefile.uts

94 #
95 # The following must be defined for all implementations:
96 #
97 MODSTUBS = $(UTSBASE)/intel/ia32/ml/modstubs.s

99 #
100 # Define supported builds
101 #
102 DEF_BUILDS = $(DEF_BUILDS64) $(DEF_BUILDS32)
103 ALL_BUILDS = $(ALL_BUILDS64) $(ALL_BUILDS32)

105 #
106 # x86 or amd64 inline templates
107 #
108 INLINES_32 = $(UTSBASE)/intel/ia32/ml/ia32.il
109 INLINES_64 = $(UTSBASE)/intel/amd64/ml/amd64.il
110 INLINES += $(INLINES_$(CLASS))

112 #
113 # kernel-specific optimizations; override default in Makefile.master
114 #

116 CFLAGS_XARCH_32 = $(i386_CFLAGS)
117 CFLAGS_XARCH_64 = $(amd64_CFLAGS)
118 CFLAGS_XARCH = $(CFLAGS_XARCH_$(CLASS))

120 COPTFLAG_32 = $(COPTFLAG)
121 COPTFLAG_64 = $(COPTFLAG64)
122 COPTIMIZE = $(COPTFLAG_$(CLASS))

124 CFLAGS = $(CFLAGS_XARCH)
125 CFLAGS += $(COPTIMIZE)
126 CFLAGS += $(INLINES) -D_ASM_INLINES
127 CFLAGS += $(CCMODE)

new/usr/src/uts/intel/Makefile.intel.shared 3

128 CFLAGS += $(SPACEFLAG)
129 CFLAGS += $(CCUNBOUND)
130 CFLAGS += $(CFLAGS_uts)
131 CFLAGS += -xstrconst

133 ASFLAGS_XARCH_32 = $(i386_ASFLAGS)
134 ASFLAGS_XARCH_64 = $(amd64_ASFLAGS)
135 ASFLAGS_XARCH = $(ASFLAGS_XARCH_$(CLASS))

137 ASFLAGS += $(ASFLAGS_XARCH)

139 #
140 # Define the base directory for installation.
141 #
142 BASE_INS_DIR = $(ROOT)

144 #
145 # Debugging level
146 #
147 # Special knowledge of which special debugging options affect which
148 # file is used to optimize the build if these flags are changed.
149 #
150 DEBUG_DEFS_OBJ32 =
151 DEBUG_DEFS_DBG32 = -DDEBUG
152 DEBUG_DEFS_OBJ64 =
153 DEBUG_DEFS_DBG64 = -DDEBUG
154 DEBUG_DEFS = $(DEBUG_DEFS_$(BUILD_TYPE))

156 DEBUG_COND_OBJ32 :sh = echo \\043
157 DEBUG_COND_DBG32 =
158 DEBUG_COND_OBJ64 :sh = echo \\043
159 DEBUG_COND_DBG64 =
160 IF_DEBUG_OBJ = $(DEBUG_COND_$(BUILD_TYPE))$(OBJS_DIR)/

162 $(IF_DEBUG_OBJ)syscall.o := DEBUG_DEFS += -DSYSCALLTRACE
163 $(IF_DEBUG_OBJ)clock.o := DEBUG_DEFS += -DKSLICE=1

165 #
166 # Collect the preprocessor definitions to be associated with *all*
167 # files.
168 #
169 ALL_DEFS = $(DEBUG_DEFS) $(OPTION_DEFS)

171 #
172 # The kernels modules which are "implementation architecture"
173 # specific for this machine are enumerated below. Note that most
174 # of these modules must exist (in one form or another) for each
175 # architecture.
176 #
177 # Common Drivers (usually pseudo drivers) (/kernel/drv)
178 # DRV_KMODS are built both 32-bit and 64-bit
179 # DRV_KMODS_32 are built only 32-bit
180 # DRV_KMODS_64 are built only 64-bit
181 #
182 DRV_KMODS += aac
183 DRV_KMODS += aggr
184 DRV_KMODS += ahci
185 DRV_KMODS += amd64_gart
186 DRV_KMODS += amr
187 DRV_KMODS += agpgart
188 DRV_KMODS += srn
189 DRV_KMODS += agptarget
190 DRV_KMODS += arn
191 DRV_KMODS += arp
192 DRV_KMODS += asy
193 DRV_KMODS += ata

new/usr/src/uts/intel/Makefile.intel.shared 4

194 DRV_KMODS += ath
195 DRV_KMODS += atu
196 DRV_KMODS += audio
197 DRV_KMODS += audio1575
198 DRV_KMODS += audio810
199 DRV_KMODS += audiocmi
200 DRV_KMODS += audiocmihd
201 DRV_KMODS += audioemu10k
202 DRV_KMODS += audioens
203 DRV_KMODS += audiohd
204 DRV_KMODS += audioixp
205 DRV_KMODS += audiols
206 DRV_KMODS += audiop16x
207 DRV_KMODS += audiopci
208 DRV_KMODS += audiosolo
209 DRV_KMODS += audiots
210 DRV_KMODS += audiovia823x
211 DRV_KMODS_32 += audiovia97
212 DRV_KMODS += bl
213 DRV_KMODS += blkdev
214 DRV_KMODS += bge
215 DRV_KMODS += bofi
216 DRV_KMODS += bpf
217 DRV_KMODS += bridge
218 DRV_KMODS += bscbus
219 DRV_KMODS += bscv
220 DRV_KMODS += chxge
221 DRV_KMODS += ntxn
222 DRV_KMODS += myri10ge
223 DRV_KMODS += clone
224 DRV_KMODS += cmdk
225 DRV_KMODS += cn
226 DRV_KMODS += conskbd
227 DRV_KMODS += consms
228 DRV_KMODS += cpuid
229 DRV_KMODS += cpunex
230 DRV_KMODS += crypto
231 DRV_KMODS += cryptoadm
232 DRV_KMODS += dca
233 DRV_KMODS += dccp
234 #endif /* ! codereview */
235 DRV_KMODS += devinfo
236 DRV_KMODS += dld
237 DRV_KMODS += dlpistub
238 DRV_KMODS_32 += dnet
239 DRV_KMODS += dump
240 DRV_KMODS += ecpp
241 DRV_KMODS += emlxs
242 DRV_KMODS += fd
243 DRV_KMODS += fdc
244 DRV_KMODS += fm
245 DRV_KMODS += fssnap
246 DRV_KMODS += hxge
247 DRV_KMODS += i8042
248 DRV_KMODS += i915
249 DRV_KMODS += icmp
250 DRV_KMODS += icmp6
251 DRV_KMODS += intel_nb5000
252 DRV_KMODS += intel_nhm
253 DRV_KMODS += ip
254 DRV_KMODS += ip6
255 DRV_KMODS += ipf
256 DRV_KMODS += ipnet
257 DRV_KMODS += ippctl
258 DRV_KMODS += ipsecah
259 DRV_KMODS += ipsecesp

new/usr/src/uts/intel/Makefile.intel.shared 5

260 DRV_KMODS += ipw
261 DRV_KMODS += iwh
262 DRV_KMODS += iwi
263 DRV_KMODS += iwk
264 DRV_KMODS += iwp
265 DRV_KMODS += iwscn
266 DRV_KMODS += kb8042
267 DRV_KMODS += keysock
268 DRV_KMODS += kssl
269 DRV_KMODS += kstat
270 DRV_KMODS += ksyms
271 DRV_KMODS += kmdb
272 DRV_KMODS += llc1
273 DRV_KMODS += lofi
274 DRV_KMODS += log
275 DRV_KMODS += logindmux
276 DRV_KMODS += mega_sas
277 DRV_KMODS += mc-amd
278 DRV_KMODS += mm
279 DRV_KMODS += mouse8042
280 DRV_KMODS += mpt_sas
281 DRV_KMODS += mr_sas
282 DRV_KMODS += mwl
283 DRV_KMODS += nca
284 DRV_KMODS += nsmb
285 DRV_KMODS += nulldriver
286 DRV_KMODS += nv_sata
287 DRV_KMODS += nxge
288 DRV_KMODS += oce
289 DRV_KMODS += openeepr
290 DRV_KMODS += pci_pci
291 DRV_KMODS += pcic
292 DRV_KMODS += pcieb
293 DRV_KMODS += physmem
294 DRV_KMODS += pcan
295 DRV_KMODS += pcwl
296 DRV_KMODS += pit_beep
297 DRV_KMODS += pm
298 DRV_KMODS += poll
299 DRV_KMODS += pool
300 DRV_KMODS += power
301 DRV_KMODS += pseudo
302 DRV_KMODS += ptc
303 DRV_KMODS += ptm
304 DRV_KMODS += pts
305 DRV_KMODS += ptsl
306 DRV_KMODS += qlge
307 DRV_KMODS += radeon
308 DRV_KMODS += ral
309 DRV_KMODS += ramdisk
310 DRV_KMODS += random
311 DRV_KMODS += rds
312 DRV_KMODS += rdsv3
313 DRV_KMODS += rpcib
314 DRV_KMODS += rsm
315 DRV_KMODS += rts
316 DRV_KMODS += rtw
317 DRV_KMODS += rum
318 DRV_KMODS += rwd
319 DRV_KMODS += rwn
320 DRV_KMODS += sad
321 DRV_KMODS += sd
322 DRV_KMODS += sdhost
323 DRV_KMODS += sgen
324 DRV_KMODS += si3124
325 DRV_KMODS += smbios

new/usr/src/uts/intel/Makefile.intel.shared 6

326 DRV_KMODS += softmac
327 DRV_KMODS += spdsock
328 DRV_KMODS += smbsrv
329 DRV_KMODS += smp
330 DRV_KMODS += sppp
331 DRV_KMODS += sppptun
332 DRV_KMODS += srpt
333 DRV_KMODS += st
334 DRV_KMODS += sy
335 DRV_KMODS += sysevent
336 DRV_KMODS += sysmsg
337 DRV_KMODS += tcp
338 DRV_KMODS += tcp6
339 DRV_KMODS += tl
340 DRV_KMODS += tnf
341 DRV_KMODS += tpm
342 DRV_KMODS += trill
343 DRV_KMODS += udp
344 DRV_KMODS += udp6
345 DRV_KMODS += ucode
346 DRV_KMODS += ural
347 DRV_KMODS += uath
348 DRV_KMODS += urtw
349 DRV_KMODS += vgatext
350 DRV_KMODS += heci
351 DRV_KMODS += vnic
352 DRV_KMODS += vscan
353 DRV_KMODS += wc
354 DRV_KMODS += winlock
355 DRV_KMODS += wpi
356 DRV_KMODS += xge
357 DRV_KMODS += yge
358 DRV_KMODS += zcons
359 DRV_KMODS += zyd
360 DRV_KMODS += simnet
361 DRV_KMODS += stmf
362 DRV_KMODS += stmf_sbd
363 DRV_KMODS += fct
364 DRV_KMODS += fcoe
365 DRV_KMODS += fcoet
366 DRV_KMODS += fcoei
367 DRV_KMODS += qlt
368 DRV_KMODS += iscsit
369 DRV_KMODS += pppt
370 DRV_KMODS += ncall nsctl sdbc nskern sv
371 DRV_KMODS += ii rdc rdcsrv rdcstub
372 DRV_KMODS += iptun

374 $(CLOSED_BUILD)CLOSED_DRV_KMODS += bmc
375 $(CLOSED_BUILD)CLOSED_DRV_KMODS += glm
376 $(CLOSED_BUILD)CLOSED_DRV_KMODS += intel_nhmex
377 $(CLOSED_BUILD)CLOSED_DRV_KMODS += cpqary3
378 $(CLOSED_BUILD)CLOSED_DRV_KMODS += marvell88sx
379 $(CLOSED_BUILD)CLOSED_DRV_KMODS += bcm_sata
380 $(CLOSED_BUILD)CLOSED_DRV_KMODS += memtest
381 $(CLOSED_BUILD)CLOSED_DRV_KMODS += mpt
382 $(CLOSED_BUILD)CLOSED_DRV_KMODS += atiatom
383 $(CLOSED_BUILD)CLOSED_DRV_KMODS += acpi_toshiba

385 #
386 # Common code drivers
387 #

389 DRV_KMODS += afe
390 DRV_KMODS += atge
391 DRV_KMODS += bfe

new/usr/src/uts/intel/Makefile.intel.shared 7

392 DRV_KMODS += dmfe
393 DRV_KMODS += e1000g
394 DRV_KMODS += efe
395 DRV_KMODS += elxl
396 DRV_KMODS += hme
397 DRV_KMODS += mxfe
398 DRV_KMODS += nge
399 DRV_KMODS += pcn
400 DRV_KMODS += rge
401 DRV_KMODS += rtls
402 DRV_KMODS += sfe
403 DRV_KMODS += amd8111s
404 DRV_KMODS += igb
405 DRV_KMODS += iprb
406 DRV_KMODS += ixgbe
407 DRV_KMODS += vr
408 $(CLOSED_BUILD)CLOSED_DRV_KMODS += ixgb

410 #
411 # DTrace and DTrace Providers
412 #
413 DRV_KMODS += dtrace
414 DRV_KMODS += fbt
415 DRV_KMODS += lockstat
416 DRV_KMODS += profile
417 DRV_KMODS += sdt
418 DRV_KMODS += systrace
419 DRV_KMODS += fasttrap
420 DRV_KMODS += dcpc

422 #
423 # I/O framework test drivers
424 #
425 DRV_KMODS += pshot
426 DRV_KMODS += gen_drv
427 DRV_KMODS += tvhci tphci tclient
428 DRV_KMODS += emul64

430 #
431 # Machine Specific Driver Modules (/kernel/drv):
432 #
433 DRV_KMODS += options
434 DRV_KMODS += scsi_vhci
435 DRV_KMODS += pmcs
436 DRV_KMODS += pmcs8001fw
437 DRV_KMODS += arcmsr
438 DRV_KMODS += fcp
439 DRV_KMODS += fcip
440 DRV_KMODS += fcsm
441 DRV_KMODS += fp
442 DRV_KMODS += qlc
443 DRV_KMODS += iscsi

445 #
446 # PCMCIA specific module(s)
447 #
448 DRV_KMODS += pcs
449 DRV_KMODS += pcata
450 MISC_KMODS += cardbus
451 $(CLOSED_BUILD)CLOSED_DRV_KMODS += pcser

453 #
454 # SCSI Enclosure Services driver
455 #
456 DRV_KMODS += ses

new/usr/src/uts/intel/Makefile.intel.shared 8

458 #
459 # USB specific modules
460 #
461 DRV_KMODS += hid
462 DRV_KMODS += hwarc hwahc
463 DRV_KMODS += hubd
464 DRV_KMODS += uhci
465 DRV_KMODS += ehci
466 DRV_KMODS += ohci
467 DRV_KMODS += usb_mid
468 DRV_KMODS += usb_ia
469 DRV_KMODS += scsa2usb
470 DRV_KMODS += usbprn
471 DRV_KMODS += ugen
472 DRV_KMODS += usbser
473 DRV_KMODS += usbsacm
474 DRV_KMODS += usbsksp
475 DRV_KMODS += usbsprl
476 DRV_KMODS += usb_ac
477 DRV_KMODS += usb_as
478 DRV_KMODS += usbskel
479 DRV_KMODS += usbvc
480 DRV_KMODS += usbftdi
481 DRV_KMODS += wusb_df
482 DRV_KMODS += wusb_ca
483 DRV_KMODS += usbecm

485 $(CLOSED_BUILD)CLOSED_DRV_KMODS += usbser_edge

487 #
488 # 1394 modules
489 #
490 MISC_KMODS += s1394 sbp2
491 DRV_KMODS += hci1394 scsa1394
492 DRV_KMODS += av1394
493 DRV_KMODS += dcam1394

495 #
496 # InfiniBand pseudo drivers
497 #
498 DRV_KMODS += ib ibp eibnx eoib rdsib sdp iser daplt hermon tavor sol_ucma
499 DRV_KMODS += sol_umad

501 #
502 # LVM modules
503 #
504 DRV_KMODS += md
505 MISC_KMODS += md_stripe md_hotspares md_mirror md_raid md_trans md_notify
506 MISC_KMODS += md_sp

508 #
509 # Brand modules
510 #
511 BRAND_KMODS += sn1_brand s10_brand

513 #
514 # Exec Class Modules (/kernel/exec):
515 #
516 EXEC_KMODS += elfexec intpexec shbinexec javaexec

518 #
519 # Scheduling Class Modules (/kernel/sched):
520 #
521 SCHED_KMODS += IA RT TS RT_DPTBL TS_DPTBL FSS FX FX_DPTBL SDC

523 #

new/usr/src/uts/intel/Makefile.intel.shared 9

524 # File System Modules (/kernel/fs):
525 #
526 FS_KMODS += autofs cachefs ctfs dcfs dev devfs fdfs fifofs hsfs lofs
527 FS_KMODS += mntfs namefs nfs objfs zfs zut
528 FS_KMODS += pcfs procfs sockfs specfs tmpfs udfs ufs sharefs
529 FS_KMODS += smbfs

531 #
532 # Streams Modules (/kernel/strmod):
533 #
534 STRMOD_KMODS += bufmod connld dedump ldterm pckt pfmod pipemod
535 STRMOD_KMODS += ptem redirmod rpcmod rlmod telmod timod
536 STRMOD_KMODS += spppasyn spppcomp
537 STRMOD_KMODS += tirdwr ttcompat
538 STRMOD_KMODS += usbkbm
539 STRMOD_KMODS += usbms
540 STRMOD_KMODS += usbwcm
541 STRMOD_KMODS += usb_ah
542 STRMOD_KMODS += drcompat
543 STRMOD_KMODS += cryptmod
544 STRMOD_KMODS += vuid2ps2
545 STRMOD_KMODS += vuid3ps2
546 STRMOD_KMODS += vuidm3p
547 STRMOD_KMODS += vuidm4p
548 STRMOD_KMODS += vuidm5p

550 #
551 # ’System’ Modules (/kernel/sys):
552 #
553 SYS_KMODS += c2audit
554 SYS_KMODS += doorfs
555 SYS_KMODS += exacctsys
556 SYS_KMODS += inst_sync
557 SYS_KMODS += kaio
558 SYS_KMODS += msgsys
559 SYS_KMODS += pipe
560 SYS_KMODS += portfs
561 SYS_KMODS += pset
562 SYS_KMODS += semsys
563 SYS_KMODS += shmsys
564 SYS_KMODS += sysacct
565 SYS_KMODS += acctctl

567 #
568 # ’Misc’ Modules (/kernel/misc)
569 # MISC_KMODS are built both 32-bit and 64-bit
570 # MISC_KMODS_32 are built only 32-bit
571 # MISC_KMODS_64 are built only 64-bit
572 #
573 MISC_KMODS += ac97
574 MISC_KMODS += acpica
575 MISC_KMODS += agpmaster
576 MISC_KMODS += bignum
577 MISC_KMODS += bootdev
578 MISC_KMODS += busra
579 MISC_KMODS += cmlb
580 MISC_KMODS += consconfig
581 MISC_KMODS += ctf
582 MISC_KMODS += dadk
583 MISC_KMODS += dcopy
584 MISC_KMODS += dls
585 MISC_KMODS += drm
586 MISC_KMODS += fssnap_if
587 MISC_KMODS += gda
588 MISC_KMODS += gld
589 MISC_KMODS += hidparser

new/usr/src/uts/intel/Makefile.intel.shared 10

590 MISC_KMODS += hook
591 MISC_KMODS += hpcsvc
592 MISC_KMODS += ibcm
593 MISC_KMODS += ibdm
594 MISC_KMODS += ibdma
595 MISC_KMODS += ibmf
596 MISC_KMODS += ibtl
597 MISC_KMODS += idm
598 MISC_KMODS += idmap
599 MISC_KMODS += iommulib
600 MISC_KMODS += ipc
601 MISC_KMODS += kbtrans
602 MISC_KMODS += kcf
603 MISC_KMODS += kgssapi
604 MISC_KMODS += kmech_dummy
605 MISC_KMODS += kmech_krb5
606 MISC_KMODS += ksocket
607 MISC_KMODS += mac
608 MISC_KMODS += mii
609 MISC_KMODS += mwlfw
610 MISC_KMODS += net80211
611 MISC_KMODS += nfs_dlboot
612 MISC_KMODS += nfssrv
613 MISC_KMODS += neti
614 MISC_KMODS += pci_autoconfig
615 MISC_KMODS += pcicfg
616 MISC_KMODS += pcihp
617 MISC_KMODS += pcmcia
618 MISC_KMODS += rpcsec
619 MISC_KMODS += rpcsec_gss
620 MISC_KMODS += rsmops
621 MISC_KMODS += sata
622 MISC_KMODS += scsi
623 MISC_KMODS += sda
624 MISC_KMODS += sol_ofs
625 MISC_KMODS += spuni
626 MISC_KMODS += strategy
627 MISC_KMODS += strplumb
628 MISC_KMODS += tem
629 MISC_KMODS += tlimod
630 MISC_KMODS += usba usba10 usbs49_fw
631 MISC_KMODS += scsi_vhci_f_sym_hds
632 MISC_KMODS += scsi_vhci_f_sym
633 MISC_KMODS += scsi_vhci_f_tpgs
634 MISC_KMODS += scsi_vhci_f_asym_sun
635 MISC_KMODS += scsi_vhci_f_tape
636 MISC_KMODS += scsi_vhci_f_tpgs_tape
637 MISC_KMODS += fctl
638 MISC_KMODS += emlxs_fw
639 MISC_KMODS += qlc_fw_2200
640 MISC_KMODS += qlc_fw_2300
641 MISC_KMODS += qlc_fw_2400
642 MISC_KMODS += qlc_fw_2500
643 MISC_KMODS += qlc_fw_6322
644 MISC_KMODS += qlc_fw_8100
645 MISC_KMODS += hwa1480_fw
646 MISC_KMODS += uathfw
647 MISC_KMODS += uwba

649 $(CLOSED_BUILD)CLOSED_MISC_KMODS += klmmod klmops
650 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_asym_lsi
651 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_asym_emc
652 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_sym_emc

654 #
655 # Software Cryptographic Providers (/kernel/crypto):

new/usr/src/uts/intel/Makefile.intel.shared 11

656 #
657 CRYPTO_KMODS += aes
658 CRYPTO_KMODS += arcfour
659 CRYPTO_KMODS += blowfish
660 CRYPTO_KMODS += des
661 CRYPTO_KMODS += ecc
662 CRYPTO_KMODS += md4
663 CRYPTO_KMODS += md5
664 CRYPTO_KMODS += rsa
665 CRYPTO_KMODS += sha1
666 CRYPTO_KMODS += sha2
667 CRYPTO_KMODS += swrand

669 #
670 # IP Policy Modules (/kernel/ipp)
671 #
672 IPP_KMODS += dlcosmk
673 IPP_KMODS += flowacct
674 IPP_KMODS += ipgpc
675 IPP_KMODS += dscpmk
676 IPP_KMODS += tokenmt
677 IPP_KMODS += tswtclmt

679 #
680 # generic-unix module (/kernel/genunix):
681 #
682 GENUNIX_KMODS += genunix

684 #
685 # SVVS Testing Modules (/kernel/strmod):
686 #
687 # These are streams and driver modules which are not to be
688 # delivered with a released system. However, during development
689 # it is convenient to build and install the SVVS kernel modules.
690 #
691 SVVS_KMODS += lmodb lmode lmodr lmodt svvslo tidg tivc tmux

693 $(CLOSED_BUILD)SVVS += svvs

695 #
696 # Modules eXcluded from the product:
697 #
698 $(CLOSED_BUILD)CLOSED_XMODS = \
699 adpu320 \
700 bnx \
701 bnxe \
702 lsimega \
703 sdpib

706 #
707 # ’Dacf’ Modules (/kernel/dacf):
708 #

710 #
711 # Performance Counter BackEnd modules (/usr/kernel/pcbe)
712 #
713 PCBE_KMODS += p123_pcbe p4_pcbe opteron_pcbe core_pcbe

715 #
716 # MAC-Type Plugin Modules (/kernel/mac)
717 #
718 MAC_KMODS += mac_6to4
719 MAC_KMODS += mac_ether
720 MAC_KMODS += mac_ipv4
721 MAC_KMODS += mac_ipv6

new/usr/src/uts/intel/Makefile.intel.shared 12

722 MAC_KMODS += mac_wifi
723 MAC_KMODS += mac_ib

725 #
726 # socketmod (kernel/socketmod)
727 #
728 SOCKET_KMODS += sockpfp
729 SOCKET_KMODS += socksctp
730 SOCKET_KMODS += socksdp
731 SOCKET_KMODS += sockrds
732 SOCKET_KMODS += ksslf

734 #
735 # kiconv modules (/kernel/kiconv):
736 #
737 KICONV_KMODS += kiconv_emea kiconv_ja kiconv_ko kiconv_sc kiconv_tc

739 #
740 # ’Dacf’ Modules (/kernel/dacf):
741 #
742 DACF_KMODS += net_dacf

new/usr/src/uts/intel/dccp/Makefile 1

**
 2348 Wed Jun 13 12:05:44 2012
new/usr/src/uts/intel/dccp/Makefile
%B
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # uts/intel/dccp/Makefile
23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #
27 # This makefile drives the production of the dccp driver kernel module.
28 #
29 # intel implementation architecture dependent
30 #

32 #
33 # Path to the base of the uts directory tree (usually /usr/src/uts).
34 #
35 UTSBASE = ../..

37 #
38 # Define the module and object file sets.
39 #
40 MODULE = dccp
41 OBJECTS = $(DCCP_OBJS:%=$(OBJS_DIR)/%)
42 LINTS = $(DCCP_OBJS:%.o=$(LINTS_DIR)/%.ln)
43 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
44 ROOTLINK = $(ROOT_STRMOD_DIR)/$(MODULE) $(ROOT_SOCK_DIR)/$(MODULE)
45 CONF_SRCDIR = $(UTSBASE)/common/inet/dccp

47 #
48 # Extra for $(MODULE).check target
49 #
50 # Need to remove ipddi.o since it has non-static defines for _init etc.
51 IP_CHECK_OBJS = $(IP_OBJS:ipddi.o=ip.o)
52 EXTRA_CHECK_OBJS = $(IP_CHECK_OBJS:%=../ip/$(OBJS_DIR)/%)

54 #
55 # Include common rules.
56 #
57 include $(UTSBASE)/intel/Makefile.intel

59 #
60 # Define targets
61 #

new/usr/src/uts/intel/dccp/Makefile 2

62 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
63 LINT_TARGET = $(MODULE).lint
64 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOTLINK) $(ROOT_CONFFILE)

66 #
67 # depends on ip and sockfs
68 #
69 LDFLAGS += -dy -Ndrv/ip -Nfs/sockfs

71 #
72 # Default build targets.
73 #
74 .KEEP_STATE:

76 def: $(DEF_DEPS)

78 all: $(ALL_DEPS)

80 clean: $(CLEAN_DEPS)

82 clobber: $(CLOBBER_DEPS)

84 lint: $(LINT_DEPS)

86 modlintlib: $(MODLINTLIB_DEPS)

88 clean.lint: $(CLEAN_LINT_DEPS)

90 install: $(INSTALL_DEPS)

92 $(ROOTLINK): $(ROOT_STRMOD_DIR) $(ROOT_SOCK_DIR) $(ROOTMODULE)
93 -$(RM) $@; ln $(ROOTMODULE) $@

95 #
96 # Include common targets.
97 #
98 include $(UTSBASE)/intel/Makefile.targ
99 #endif /* ! codereview */

new/usr/src/uts/intel/dccp6/Makefile 1

**
 2178 Wed Jun 13 12:05:44 2012
new/usr/src/uts/intel/dccp6/Makefile
%B
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License, Version 1.0 only
6 # (the "License"). You may not use this file except in compliance
7 # with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # This makefile drives the production of the dccp6 driver kernel module.
27 #
28 # intel implementation architecture dependent
29 #

31 #
32 # Path to the base of the uts directory tree (usually /usr/src/uts).
33 #
34 UTSBASE = ../..

36 #
37 # Define the module and object file sets.
38 #
39 MODULE = dccp6
40 OBJECTS = $(TCP6_OBJS:%=$(OBJS_DIR)/%)
41 LINTS = $(TCP6_OBJS:%.o=$(LINTS_DIR)/%.ln)
42 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
43 CONF_SRCDIR = $(UTSBASE)/common/inet/dccp

45 #
46 # Extra for $(MODULE).check target
47 #
48 # Need to remove ipddi.o since it has non-static defines for _init etc.
49 IP_CHECK_OBJS = $(IP_OBJS:ipddi.o=ip.o)
50 EXTRA_CHECK_OBJS = $(IP_CHECK_OBJS:%=../ip/$(OBJS_DIR)/%)

52 #
53 # Include common rules.
54 #
55 include $(UTSBASE)/intel/Makefile.intel

57 #
58 # Define targets
59 #
60 ALL_TARGET = $(BINARY) $(SRC_CONFFILE)
61 LINT_TARGET = $(MODULE).lint

new/usr/src/uts/intel/dccp6/Makefile 2

62 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)

64 #
65 # depends on tcp ip and ip6
66 #
67 LDFLAGS += -dy -Ndrv/tcp -Ndrv/ip -Ndrv/ip6

69 #
70 # Default build targets.
71 #
72 .KEEP_STATE:

74 def: $(DEF_DEPS)

76 all: $(ALL_DEPS)

78 clean: $(CLEAN_DEPS)

80 clobber: $(CLOBBER_DEPS)

82 lint: $(LINT_DEPS)

84 modlintlib: $(MODLINTLIB_DEPS)

86 clean.lint: $(CLEAN_LINT_DEPS)

88 install: $(INSTALL_DEPS)

90 #
91 # Include common targets.
92 #
93 include $(UTSBASE)/intel/Makefile.targ
94 #endif /* ! codereview */

new/usr/src/uts/intel/ip/ip.global-objs.debug64 1

**
 6046 Wed Jun 13 12:05:45 2012
new/usr/src/uts/intel/ip/ip.global-objs.debug64
%B
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2011 Nexenta Systems, Inc. All rights reserved
24 #

26 arp_m_tbl
27 arp_mod_info
28 arp_netinfo
29 arp_no_defense
30 arpinfo
31 cb_inet_devops
32 cl_inet_bind
33 cl_inet_checkspi
34 cl_inet_connect2
35 cl_inet_deletespi
36 cl_inet_disconnect
37 cl_inet_getspi
38 cl_inet_idlesa
39 cl_inet_ipident
40 cl_inet_isclusterwide
41 cl_inet_listen
42 cl_inet_unbind
43 cl_inet_unlisten
44 cl_sctp_assoc_change
45 cl_sctp_check_addrs
46 cl_sctp_connect
47 cl_sctp_disconnect
48 cl_sctp_listen
49 cl_sctp_unlisten
50 conn_drain_nthreads
51 dccp_bind_fanout_size
52 dccp_conn_cache
53 dccp_max_optsize
54 dccp_opt_arr
55 dccp_opt_obj
56 dccp_propinfo_count
57 dccp_propinfo_tbl
58 dccp_random_anon_port
59 dccp_rinfo
60 dccp_rinitv4
61 dccp_rinitv6

new/usr/src/uts/intel/ip/ip.global-objs.debug64 2

62 dccp_valid_levels_arr
63 dccp_winfo
64 dccp_winit
65 dccpinfov4
66 dccpinfov6
67 #endif /* ! codereview */
68 dce_cache
69 default_ip6_asp_table
70 do_tcp_fusion
71 do_tcpzcopy
72 dohwcksum
73 dummy_mod_info
74 dummymodinfo
75 dummyrmodinit
76 dummywmodinit
77 eventq_queue_in
78 eventq_queue_nic
79 eventq_queue_out
80 fsw
81 gcdb_hash
82 gcdb_hash_size
83 gcdb_lock
84 gcgrp4_hash
85 gcgrp6_hash
86 gcgrp_hash_size
87 gcgrp_lock
88 icmp_fallback_sock_winit
89 icmp_frag_size_table
90 icmp_g_t_info_ack
91 icmp_ipha
92 icmp_max_optsize
93 icmp_mod_info
94 icmp_opt_arr
95 icmp_opt_obj
96 icmp_propinfo_tbl
97 icmp_valid_levels_arr
98 icmpinfov4
99 icmpinfov6
100 icmprinitv4
101 icmprinitv6
102 icmpwinit
103 ilb_conn_cache
104 ilb_conn_cache_timeout
105 ilb_conn_hash_size
106 ilb_conn_tcp_expiry
107 ilb_conn_timer_size
108 ilb_conn_udp_expiry
109 ilb_kstat_instance
110 ilb_kmem_flags
111 ilb_nat_src_hash_size
112 ilb_nat_src_instance
113 ilb_rule_hash_size
114 ilb_sticky_cache
115 ilb_sticky_hash_size
116 ilb_sticky_expiry
117 ilb_sticky_timer_size
118 ilb_sticky_timeout
119 ill_no_arena
120 ill_null
121 inet_dev_info
122 inet_devops
123 ip6_ftable_hash_size
124 ip6opt_ls
125 ip_cgtp_filter_rev
126 ip_conn_cache
127 ip_debug

new/usr/src/uts/intel/ip/ip.global-objs.debug64 3

128 ip_g_all_ones
129 ip_helper_stream_info
130 ip_helper_stream_rinit
131 ip_helper_stream_winit
132 ip_ioctl_ftbl
133 ip_loopback_mtu_v6plus
134 ip_loopback_mtuplus
135 ip_m_tbl
136 ip_max_frag_dups
137 ip_min_frag_prune_time
138 ip_minor_arena_la
139 ip_minor_arena_sa
140 ip_misc_ioctl_count
141 ip_misc_ioctl_table
142 ip_mod_info
143 ip_modclose_ackwait_ms
144 ip_ndx_ioctl_count
145 ip_ndx_ioctl_table
146 ip_poll_normal_ms
147 ip_poll_normal_ticks
148 ip_propinfo_tbl
149 ip_propinfo_count
150 ip_rput_pullups
151 ip_six_byte_all_ones
152 ip_squeue_create_callback
153 ip_squeue_enter
154 ip_squeue_fanout
155 ip_squeue_flag
156 ip_squeue_worker_wait
157 ip_thread_data
158 ip_thread_list
159 ip_thread_rwlock
160 ipcl_bind_fanout_size
161 ipcl_conn_hash_maxsize
162 ipcl_conn_hash_memfactor
163 ipcl_conn_hash_size
164 ipcl_dccp_fanout_size
165 #endif /* ! codereview */
166 ipcl_iptun_fanout_size
167 ipcl_raw_fanout_size
168 ipcl_udp_fanout_size
169 ipif_loopback_name
170 ipif_zero
171 ipinfov4
172 ipinfov6
173 iplrinit
174 iplwinit
175 ipmp_kstats
176 iprinitv4
177 iprinitv6
178 ipsec_action_cache
179 ipsec_hdr_pullup_needed
180 ipsec_pol_cache
181 ipsec_policy_failure_msgs
182 ipsec_sel_cache
183 ipsec_spd_hashsize
184 ipsec_weird_null_inbound_policy
185 ipv4info
186 ipv6_all_hosts_mcast
187 ipv6_all_ones
188 ipv6_all_rtrs_mcast
189 ipv6_all_v2rtrs_mcast
190 ipv6_all_zeros
191 ipv6_ll_template
192 ipv6_loopback
193 ipv6_solicited_node_mcast

new/usr/src/uts/intel/ip/ip.global-objs.debug64 4

194 ipv6_unspecified_group
195 ipv6info
196 ipwinit
197 ire_cache
198 ire_gw_secattr_cache
199 ire_null
200 ire_nv_arr
201 ire_nv_tbl
202 lcl_param_arr
203 mask_rnhead
204 max_keylen
205 modldrv
206 modlinkage
207 modlstrmod
208 multicast_encap_iphdr
209 nce_cache
210 ncec_cache
211 netdev_privs
212 prov_update_handle
213 radix_mask_cache
214 radix_node_cache
215 rawip_conn_cache
216 recvq_call
217 recvq_loop_cnt
218 req_arr
219 rinit_arp
220 rn_mkfreelist
221 rn_ones
222 rn_zeros
223 rt_entry_cache
224 rts_conn_cache
225 rts_g_t_info_ack
226 rts_max_optsize
227 rts_mod_info
228 rts_opt_arr
229 rts_opt_obj
230 rts_valid_levels_arr
231 rtsinfo
232 rtsrinit
233 rtswinit
234 sctp_asconf_default_dispatch
235 sctp_asconf_dispatch_tbl
236 sctp_conn_cache
237 sctp_conn_hash_size
238 sctp_do_reclaim
239 sctp_kmem_faddr_cache
240 sctp_kmem_ftsn_set_cache
241 sctp_kmem_set_cache
242 sctp_min_assoc_listener
243 sctp_opt_arr
244 sctp_opt_arr_size
245 sctp_pa_early_abort
246 sctp_pp_early_abort
247 sctp_propinfo_tbl
248 sctp_propinfo_count
249 sctp_recvq_tq_list_max
250 sctp_recvq_tq_task_min
251 sctp_recvq_tq_thr_max
252 sctp_recvq_tq_thr_min
253 sctp_sin6_null
254 sctpdebug
255 sin6_null
256 sin_null
257 skip_sctp_cksum
258 sock_dccp_downcalls
259 #endif /* ! codereview */

new/usr/src/uts/intel/ip/ip.global-objs.debug64 5

260 sock_rawip_downcalls
261 sock_rts_downcalls
262 sock_tcp_downcalls
263 sock_udp_downcalls
264 sqset_global_list
265 sqset_global_size
266 sqset_lock
267 squeue_cache
268 squeue_drain_ms
269 squeue_drain_ns
270 squeue_workerwait_ms
271 squeue_workerwait_tick
272 tcp_acceptor_rinit
273 tcp_acceptor_winit
274 tcp_conn_cache
275 tcp_conn_hash_size
276 tcp_do_reclaim
277 tcp_drop_ack_unsent_cnt
278 tcp_dummy_upcalls
279 tcp_early_abort
280 tcp_fallback_sock_winit
281 tcp_free_list_max_cnt
282 tcp_g_kstat
283 tcp_g_statistics
284 tcp_g_t_info_ack
285 tcp_g_t_info_ack_v6
286 tcp_icmp_source_quench
287 tcp_init_wnd_chk
288 tcp_max_init_cwnd
289 tcp_max_optsize
290 tcp_min_conn_listener
291 tcp_notsack_blk_cache
292 tcp_opt_arr
293 tcp_opt_obj
294 tcp_outbound_squeue_switch
295 tcp_propinfo_tbl
296 tcp_propinfo_count
297 tcp_random_anon_port
298 tcp_random_end_ptr
299 tcp_random_fptr
300 tcp_random_lock
301 tcp_random_rptr
302 tcp_random_state
303 tcp_randtbl
304 tcp_rinfo
305 tcp_rinitv4
306 tcp_rinitv6
307 tcp_sock_winit
308 tcp_squeue_flag
309 tcp_squeue_wput
310 tcp_static_maxpsz
311 tcp_timercache
312 tcp_tx_pull_len
313 tcp_valid_levels_arr
314 tcp_winfo
315 tcp_winit
316 tcpinfov4
317 tcpinfov6
318 tli_errs
319 tsol_strict_error
320 tun_spd_hashsize
321 udp_bind_fanout_size
322 udp_conn_cache
323 udp_fallback_sock_winit
324 udp_g_t_info_ack_ipv4
325 udp_g_t_info_ack_ipv6

new/usr/src/uts/intel/ip/ip.global-objs.debug64 6

326 udp_lrinit
327 udp_lwinit
328 udp_max_optsize
329 udp_mod_info
330 udp_opt_arr
331 udp_opt_obj
332 udp_propinfo_tbl
333 udp_propinfo_count
334 udp_random_anon_port
335 udp_rinitv4
336 udp_rinitv6
337 udp_valid_levels_arr
338 udp_winit
339 udpinfov4
340 udpinfov6
341 winit_arp
342 nxge_cksum_workaround

new/usr/src/uts/intel/ip/ip.global-objs.obj64 1

**
 6004 Wed Jun 13 12:05:47 2012
new/usr/src/uts/intel/ip/ip.global-objs.obj64
%B
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2011 Nexenta Systems, Inc. All rights reserved
24 #

26 arp_m_tbl
27 arp_mod_info
28 arp_netinfo
29 arp_no_defense
30 arpinfo
31 cb_inet_devops
32 cl_inet_bind
33 cl_inet_checkspi
34 cl_inet_connect2
35 cl_inet_deletespi
36 cl_inet_disconnect
37 cl_inet_getspi
38 cl_inet_idlesa
39 cl_inet_ipident
40 cl_inet_isclusterwide
41 cl_inet_listen
42 cl_inet_unbind
43 cl_inet_unlisten
44 cl_sctp_assoc_change
45 cl_sctp_check_addrs
46 cl_sctp_connect
47 cl_sctp_disconnect
48 cl_sctp_listen
49 cl_sctp_unlisten
50 conn_drain_nthreads
51 dccp_bind_fanout_size
52 dccp_conn_cache
53 dccp_max_optsize
54 dccp_opt_arr
55 dccp_opt_obj
56 dccp_propinfo_count
57 dccp_propinfo_tbl
58 dccp_random_anon_port
59 dccp_rinfo
60 dccp_rinitv4
61 dccp_rinitv6

new/usr/src/uts/intel/ip/ip.global-objs.obj64 2

62 dccp_valid_levels_arr
63 dccp_winfo
64 dccp_winit
65 dccpinfov4
66 dccpinfov6
67 #endif /* ! codereview */
68 dce_cache
69 default_ip6_asp_table
70 do_tcp_fusion
71 do_tcpzcopy
72 dohwcksum
73 dummy_mod_info
74 dummymodinfo
75 dummyrmodinit
76 dummywmodinit
77 eventq_queue_in
78 eventq_queue_nic
79 eventq_queue_out
80 fsw
81 gcdb_hash
82 gcdb_hash_size
83 gcdb_lock
84 gcgrp4_hash
85 gcgrp6_hash
86 gcgrp_hash_size
87 gcgrp_lock
88 icmp_fallback_sock_winit
89 icmp_frag_size_table
90 icmp_g_t_info_ack
91 icmp_ipha
92 icmp_max_optsize
93 icmp_mod_info
94 icmp_opt_arr
95 icmp_opt_obj
96 icmp_propinfo_tbl
97 icmp_valid_levels_arr
98 icmpinfov4
99 icmpinfov6
100 icmprinitv4
101 icmprinitv6
102 icmpwinit
103 ilb_conn_cache
104 ilb_conn_cache_timeout
105 ilb_conn_hash_size
106 ilb_conn_tcp_expiry
107 ilb_conn_timer_size
108 ilb_conn_udp_expiry
109 ilb_kstat_instance
110 ilb_kmem_flags
111 ilb_nat_src_hash_size
112 ilb_nat_src_instance
113 ilb_rule_hash_size
114 ilb_sticky_cache
115 ilb_sticky_hash_size
116 ilb_sticky_expiry
117 ilb_sticky_timer_size
118 ilb_sticky_timeout
119 ill_no_arena
120 ill_null
121 inet_dev_info
122 inet_devops
123 ip6_ftable_hash_size
124 ip6opt_ls
125 ip_cgtp_filter_rev
126 ip_conn_cache
127 ip_debug

new/usr/src/uts/intel/ip/ip.global-objs.obj64 3

128 ip_g_all_ones
129 ip_helper_stream_info
130 ip_helper_stream_rinit
131 ip_helper_stream_winit
132 ip_ioctl_ftbl
133 ip_loopback_mtu_v6plus
134 ip_loopback_mtuplus
135 ip_m_tbl
136 ip_max_frag_dups
137 ip_min_frag_prune_time
138 ip_minor_arena_la
139 ip_minor_arena_sa
140 ip_misc_ioctl_count
141 ip_misc_ioctl_table
142 ip_mod_info
143 ip_modclose_ackwait_ms
144 ip_ndx_ioctl_count
145 ip_ndx_ioctl_table
146 ip_poll_normal_ms
147 ip_poll_normal_ticks
148 ip_propinfo_tbl
149 ip_propinfo_count
150 ip_rput_pullups
151 ip_six_byte_all_ones
152 ip_squeue_create_callback
153 ip_squeue_enter
154 ip_squeue_fanout
155 ip_squeue_flag
156 ip_squeue_worker_wait
157 ip_thread_data
158 ip_thread_list
159 ip_thread_rwlock
160 ipcl_bind_fanout_size
161 ipcl_conn_hash_maxsize
162 ipcl_conn_hash_memfactor
163 ipcl_conn_hash_size
164 ipcl_dccp_fanout_size
165 #endif /* ! codereview */
166 ipcl_iptun_fanout_size
167 ipcl_raw_fanout_size
168 ipcl_udp_fanout_size
169 ipif_loopback_name
170 ipif_zero
171 ipinfov4
172 ipinfov6
173 iplrinit
174 iplwinit
175 ipmp_kstats
176 iprinitv4
177 iprinitv6
178 ipsec_action_cache
179 ipsec_hdr_pullup_needed
180 ipsec_pol_cache
181 ipsec_policy_failure_msgs
182 ipsec_sel_cache
183 ipsec_spd_hashsize
184 ipsec_weird_null_inbound_policy
185 ipv4info
186 ipv6_all_hosts_mcast
187 ipv6_all_ones
188 ipv6_all_rtrs_mcast
189 ipv6_all_v2rtrs_mcast
190 ipv6_all_zeros
191 ipv6_ll_template
192 ipv6_loopback
193 ipv6_solicited_node_mcast

new/usr/src/uts/intel/ip/ip.global-objs.obj64 4

194 ipv6_unspecified_group
195 ipv6info
196 ipwinit
197 ire_cache
198 ire_gw_secattr_cache
199 ire_null
200 ire_nv_arr
201 ire_nv_tbl
202 lcl_param_arr
203 mask_rnhead
204 max_keylen
205 modldrv
206 modlinkage
207 modlstrmod
208 multicast_encap_iphdr
209 nce_cache
210 ncec_cache
211 netdev_privs
212 prov_update_handle
213 radix_mask_cache
214 radix_node_cache
215 rawip_conn_cache
216 req_arr
217 rinit_arp
218 rn_mkfreelist
219 rn_ones
220 rn_zeros
221 rt_entry_cache
222 rts_conn_cache
223 rts_g_t_info_ack
224 rts_max_optsize
225 rts_mod_info
226 rts_opt_arr
227 rts_opt_obj
228 rts_valid_levels_arr
229 rtsinfo
230 rtsrinit
231 rtswinit
232 sctp_asconf_default_dispatch
233 sctp_asconf_dispatch_tbl
234 sctp_conn_cache
235 sctp_conn_hash_size
236 sctp_do_reclaim
237 sctp_kmem_faddr_cache
238 sctp_kmem_ftsn_set_cache
239 sctp_kmem_set_cache
240 sctp_min_assoc_listener
241 sctp_opt_arr
242 sctp_opt_arr_size
243 sctp_pa_early_abort
244 sctp_pp_early_abort
245 sctp_propinfo_tbl
246 sctp_propinfo_count
247 sctp_recvq_tq_list_max
248 sctp_recvq_tq_task_min
249 sctp_recvq_tq_thr_max
250 sctp_recvq_tq_thr_min
251 sctp_sin6_null
252 sctpdebug
253 sin6_null
254 sin_null
255 sock_dccp_downcalls
256 #endif /* ! codereview */
257 sock_rawip_downcalls
258 sock_rts_downcalls
259 sock_tcp_downcalls

new/usr/src/uts/intel/ip/ip.global-objs.obj64 5

260 sock_udp_downcalls
261 sqset_global_list
262 sqset_global_size
263 sqset_lock
264 squeue_cache
265 squeue_drain_ms
266 squeue_drain_ns
267 squeue_workerwait_ms
268 squeue_workerwait_tick
269 tcp_acceptor_rinit
270 tcp_acceptor_winit
271 tcp_conn_cache
272 tcp_conn_hash_size
273 tcp_do_reclaim
274 tcp_drop_ack_unsent_cnt
275 tcp_dummy_upcalls
276 tcp_early_abort
277 tcp_fallback_sock_winit
278 tcp_free_list_max_cnt
279 tcp_g_kstat
280 tcp_g_statistics
281 tcp_g_t_info_ack
282 tcp_g_t_info_ack_v6
283 tcp_icmp_source_quench
284 tcp_init_wnd_chk
285 tcp_max_init_cwnd
286 tcp_max_optsize
287 tcp_min_conn_listener
288 tcp_notsack_blk_cache
289 tcp_opt_arr
290 tcp_opt_obj
291 tcp_outbound_squeue_switch
292 tcp_propinfo_tbl
293 tcp_propinfo_count
294 tcp_random_anon_port
295 tcp_random_end_ptr
296 tcp_random_fptr
297 tcp_random_lock
298 tcp_random_rptr
299 tcp_random_state
300 tcp_randtbl
301 tcp_rinfo
302 tcp_rinitv4
303 tcp_rinitv6
304 tcp_sock_winit
305 tcp_squeue_flag
306 tcp_squeue_wput
307 tcp_static_maxpsz
308 tcp_timercache
309 tcp_tx_pull_len
310 tcp_valid_levels_arr
311 tcp_winfo
312 tcp_winit
313 tcpinfov4
314 tcpinfov6
315 tli_errs
316 tsol_strict_error
317 tun_spd_hashsize
318 udp_bind_fanout_size
319 udp_conn_cache
320 udp_fallback_sock_winit
321 udp_g_t_info_ack_ipv4
322 udp_g_t_info_ack_ipv6
323 udp_lrinit
324 udp_lwinit
325 udp_max_optsize

new/usr/src/uts/intel/ip/ip.global-objs.obj64 6

326 udp_mod_info
327 udp_opt_arr
328 udp_opt_obj
329 udp_propinfo_tbl
330 udp_propinfo_count
331 udp_random_anon_port
332 udp_rinitv4
333 udp_rinitv6
334 udp_valid_levels_arr
335 udp_winit
336 udpinfov4
337 udpinfov6
338 winit_arp
339 nxge_cksum_workaround

