new usr/src/cnd/ cnd-i net/ usr. sbin/ipadnipadmc 1 new usr/src/cnd/ cnd-i net/ usr. sbin/ipadnipadmc
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
57122 Wed Jun 13 12:04: 11 2012 874 opterr = 0;
new usr/src/cnd/ cnd-i net/ usr. sbin/ipadnlipadm c 875 bzero(&state, sizeof (state));
78 876 state.sps_propval = NULL;
LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE] 877 SIaIe.SpS_parsame = _B_FALSE,
__unchanged_portion_onitted_ 878 state.sps_nodprop = _B TRUE;
879 state.sps_status = state.sps_retstatus = | PADM SUCCESS;
634 /* 880 while ((option = getopt_long(argc, argv, ":p:co:", show_ prop_| ongopts,
635 * Properties to be displayed is in ‘statep->sps_proplist’. If it is NULL, 881 NULL)) !'= -1)
636 * for all the properties for the specified object, relevant information, wll 882 switch (option) {
636 * for all the properties for the specified object, relavant information, wll 883 case 'p’:
637 * be displayed. Qtherwise, for the selected property set, display relevant 884 if (p_ar g)
638 * information 885 die("-p nmust be specified once only");
639 */ 886 p_arg = _B TRUE;
640 static void 887 if (ipadmstr2nvlist(optarg, &proplist,
641 show_properties(void *arg, int prop_class) 888 | PADM_NORVAL) !'= 0
642 { 889 die("invalid protocol properties specified");
643 show_prop_state_t *statep = arg; 890 br eak;
644 nvlist_t *nvl = statep->sps_proplist; 891 case 'c’:
645 uint_t proto = statep->sps_proto; 892 state.sps_parsable = _B TRUE;
646 nvpair_t *curr_nvp; 893 br eak;
647 char *buf, *nane; 894 case '0':
648 i padm status_t st at us; 895 fields_str = optarg;
896 br eak;
650 /* allocate sufficient buffer to hold a property value */ 897 defaul t:
651 if ((buf = malloc(MAXPRO?VALLEN)) == NULL) 898 di e_opterr(optopt, option, use);
652 die("insufficient menmory"); 899 br eak;
653 st at ep- >sps_propval = buf; 900 }
901
655 /* if no properties were specified, display all the properties */ 902 if (optind == argc - 1)
656 if (nvl == NULL) { 903 protostr = argv[optind];
657 (void) 1 padmwal k_proptbl (proto, prop_class, show property, 904 1f ((proto = ipadmstr2proto(protostr)) == MOD_PROTO_NONE)
658 statep); 905 die("invalid protocol "%’ specified", protostr);
659 } else { 906 state.sps_proto = proto;
660 for (curr_nvp = nvlist_next_nvpair(nvl, NULL); curr_nvp; 907 } else if (optind != argc) {
661 curr_nvp = nvlist_next_nvpair(nvl, curr_nvp)) { 908 di e("Usage: %", use);
662 nanme = nvpair_nanme(curr_nvp); 909 } else {
663 status = | padm wal k_prop(nanme, proto, prop_class, 910 if (p_arg)
664 show_property, statep); 911 di e("protocol nust be specified when "
665 if (status == | PADM PROP_UNKNOMN) 912 "property nanme is used");
666 (v0| d) show _property(statep, name, proto); 913 state.sps_proto = MOD_PROTO_NONE;
667 } 914 }
668 }
916 state.sps_proplist = proplist;
670 free(buf);
671 } 918 if (state.sps_parsable)
__unchanged_portion_onitted_ 919 of mflags | = OFMI_PARSABLE;
920 el se
856 /* 921 of mflags |= OFMI_WRAP;
857 * Display information for all or specific protocol properties, either for a 922 oferr = ofnt _open(fields_str, nodprop_fields, ofnflags, 0, &ofnt);
858 * given protocol or for supported protocols (IP/|Pv4/I|Pv6/ TCP/ UDP/ SCTP/ DCCP) 923 i padm of nt _check(oferr, st ate. sps_parsabl e, ofnt);
858 * given protocol or for supported protocols (IP/1Pv4/lPv6/ TCP/ UDP/ SCTP) 924 state.sps_ofnm = ofnt;
859 */
860 static void 926 /* handles all the errors */
861 do_show_prop(int argc, char **argv, const char *use) 927 show_properties(&state, | PADMPROP_CLASS_MODULE) ;
862 {
863 char option; 929 nvlist_free(proplist);
864 nvlist_t *proplist = NULL; 930 of mt _cl ose(ofnt);
865 char *fields_str = NULL;
866 char *protostr; 932 if (state.sps_retstatus != | PADM SUCCESS) ({
867 show_prop_state_t state; 933 i padm cl ose(i ph);
868 of mt _handl e_t of nt; 934 exi t (EXI T_FAl LURE ;
869 of m_status_t oferr; 935
870 uint_t of mfi ags = 0; 936 }
871 uint_t proto; __unchanged_portion_onitted_
872 bool ean_t p_arg = _B FALSE;

new

* ok kK

9
new
78

* ok kK

usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c

B R

3952 Wed Jun 13 12:04:13 2012
usr/ src/ cnd/ mdb/ common/ nodul es/ i p/ip.c

B R R R

____unchanged_portion_onitted_

342
343
344
344
345
346
347
348
349
350
351
352
353

/*

* Generic network stack wal ker initialization function. It is used by all

* other network stack wal kers.

* other netwok stack wal kers.

*/

int

ns_wal k_i nit (mdb_wal k_state_t *wsp)

{

if (mdb_l ayered_wal k(" netstack", wsp) == -1) {

mdb_warn("can’t wal k 'netstack’");
return (WALK_ERR);

}
return (WALK_NEXT) ;

354 }
____unchanged_portion_onitted_

376
377
378
379
380

/*
* DCCP network stack wal ker stepping function.
*/

i nt

dccp_stacks_wal k_step(ndb_wal k_state_t *wsp)

381 {

382
383

385
386
387
388
389
390
391
392
393

395
396
397
398
399
400
401
402

404
405
406
407
408

return (ns_wal k_step(wsp, NS_DCCP));
}

/*
#endif /* ! codereview */
* | P network stack wal ker stepping function.
*
/
i nt
i p_stacks_wal k_step(ndb_wal k_state_t *wsp)
{

}

/*
* TCP network stack wal ker stepping function.
*/

return (ns_wal k_step(wsp, NS_IP));

i nt
tcp_stacks_wal k_step(nmdb_wal k_state_t *wsp)
{

}

/*
* SCTP network stack wal ker stepping function.
*/

return (ns_wal k_step(wsp, NS_TCP));

int
sctp_stacks_wal k_step(ndb_wal k_state_t *wsp)

409 {

410
411

413
414
415
416
417
418

return (ns_wal k_step(wsp, NS_SCTP));
}

/*

* UDP network stack wal ker stepping function.
*/

int

udp_st acks_wal k_st ep(nmdb_wal k_state_t *wsp)

{

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

419
420 }

422 |*

return (ns_wal k_step(wsp, NS_UDP));

423 * Initialization function for the per CPU TCP stats counter wal ker of a given
424 * TCP stack.

425 */
426 int

428
429

431
432

434
435
436
437
438
439

441
442
443
444
445
446
447
448 }

450 /*

452
453 int

456
457
458
459

461
462
463
464
465
466
467
468
469
470
471
472

474
475
476
477
478
479
480
481 }

483 int

427 tcps_sc_wal k_i nit (mdb_wal k_state_t *wsp)
{

tcp_stack_t tcps;

if (wsp->wal k_addr == NULL)
return (WALK_ERR);

if (mdb_vread(& cps, sizeof (tcps), wsp->wal k_addr) == -1) {
mdb_warn("failed to read tcp_stack_t at %", wsp->wal k_addr);
return (WALK_ERR);

}
if (tcps.tcps_sc_cnt == 0)
return (WALK_DONE) ;

/*
* Store the tcp_stack_t pointer in walk_data. The stepping function
* used it to calculate if the end of the counter has reached.
*
/
wsp->wal k_dat a (void *)wsp->wal k_addr;
wsp- >wal k_addr (uintptr_t)tcps.tcps_sc;
return (WALK_NEXT) ;

451 * Stepping function for the per CPU TCP stats counterwal ker.
*/

454 tcps_sc_wal k_step(ndb_wal k_state_t *wsp)
{

int status;
tcp_stack_t tcps;
tcp_stats_cpu_t *stats;
char *next, *end;

if (mdb_vread(& cps, sizeof (tcps), (uintptr_t)wsp->wal k_data) == -1)
mdb_warn("failed to read tcp_stack_t at %", wsp->wal k_addr);
return (WALK_ERR);

}
if (mdb_vread(&stats, sizeof (stats), wsp->wal k_addr) == -1) {
midb_warn("failed ot read tcp_stats_cpu_t at %",
wsp->wal k_addr) ;
return (WALK_ERR);

status = wsp->wal k_cal | back((uintptr_t)stats, &stats, wsp->wal k_chdata);
if (status !'= WALK_NEXT)
return (status);

next = (char *)wsp->wal k_addr + sizeof (tcp_stats_cpu_t *);
end = (char *)tcps.tcps_sc + tcps.tcps_sc_cnt *
sizeof (tcp_stats_cpu_t *);
if (next >= end)
return (WALK_DONE) ;
wsp->wal k_addr = (uintptr_t)next;
return (WALK_NEXT) ;

484 th_hash_wal k_i ni t (ndb_wal k_state_t *wsp)

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 3 new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c
485 { 551 int
486 CEl f _Sym sym 552 illif_stack_wal k_step(ndb_wal k_state_t *wsp)
487 l'i st_node_t *next; 553 {
554 uintptr_t addr = wsp->wal k_addr;
489 if (wsp->wal k_addr == NULL) { 555 illif_walk_data_t *iw = wsp- Swal k _dat a;
490 if (mdb_l ookup_by_obj (" |p", "ip_thread_list", &ym == 0) { 556 int st = iw>ll_list;
491 wsp->wal k_addr = sym st_val ue;
492 } else { 558 if (ndb_vread(& w>ill_if, sizeof (ill_if_t), addr) == -1) {
493 ndb_war n("unable to locate ip_thread_list\n"); 559 mdb_warn(“failed to read ill_if_t at %", addr);
494 return (WALK_ERR) ; 560 return (WALK_ERR);
495 } 561 1
496 }
563 wsp->wal k_addr = (uintptr_t)iw>ill_if.illif_next;
498 if (mdb_vread(&next, sizeof (next),
499 wsp->wal k_addr + offsetof (list_t, |ist_head) + 565 if (wsp->wal k_addr ==
500 of fsetof (Iist_node_t, list_next)) == -1 || 566 (uintptr_t)iw>ill_g_heads[list].ill_g_list_head) {
501 next == NULL) {
502 mdb_war n(" non- DEBUG i mage; cannot wal k th_hash Iist\n"); 568 if (++list >= MAX_G HEADS)
503 return (WALK_ERR); 569 return (WALK_DONE) ;
504 }
571 iw>ill_list =1
506 if (mdb_| ayered_wal k("list" V\sp) == -1) { 572 wsp->wal k_addr =
507 mdb_war n("can’ t wal k list'"); 573 (uintptr_t)iw>ill_g_heads[list].ill_g_list_head,;
508 return (WALK_ERR); 574 return (WALK_NEXT);
509 } else { 575 }
510 return (WALK_NEXT);
511 } 577 return (wsp->wal k_cal | back(addr, iw, wsp->wal k_cbdata));
512 } 578 }
514 int 580 void
515 th_hash_wal k_step(ndb_wal k_state_t *wsp) 581 illif_stack_wal k_fini(ndb_wal k_state_t *wsp)
516 { 582 {
517 return (wsp->wal k_cal | back(wsp->wal k_addr, wsp->wal k_| ayer, 583 ndb_free(wsp->wal k_data, sizeof (illif_walk_data_t));
518 wsp- >wal k_chdat a)) ; 584 }
519 }
586 typedef struct illif_cbdata {
521 /* 587 uint_t ill_flags;
522 * Called with wal k_addr being the address of ips_ill_g_heads 588 uintptr_t ill_addr;
523 */ 589 int 11l_printlist; /* list to be printed (MAX_G HEADS for all) */
524 int 590 bool ean t ill_printed;
525 i{l l'if_stack_wal k_i nit(ndb_wal k_state_t *wsp) 591 } illif_chdata_t;
526
527 illif_walk_data_t *iw 593 static int
594 illif b(m ntptr_t addr, const illif_walk_data_t *iw illif_cbdata_t *id)
529 if (wsp->wal k_addr == NULL) { 595 {
530 mdb_warn("illif_stack supports only local wal ks\n"); 596 const char *version;
531 return (WALK_ERR);
532 } 598 if (id->ill_printlist < MAX_G HEADS &&
599 id->i 11 _printlist !=iw>ill_list)
534 iw = mdb_al | oc(sizeof (illif_walk_ data_t), UM SLEEP); 600 return (WALK_NEXT);
536 if (mdb_vread(iw >ill_g_heads, MAX_G HEADS * sizeof (ill_g_head_t), 602 if (id->ill_flags & DCVD_ADDRSPEC && id->ill_addr != addr)
537 wsp->wal k_addr) == -1) { 603 return (WALK_NEXT);
538 mdb_warn("failed to read "ips_ill_g_heads’ at %",
539 wsp- >wal k_addr) ; 605 if (id->ill_flags &DCNDPIPE = QUT) {
540 mdb_free(iw, sizeof (illif_walk_data_t)); 606 mdb_printf("%)\n", addr);
541 return (WALK_ERR); 607 return (WALK_| EXT)
542 } 608 }
544 iw>ill_list = 0; 610 switch (iw>ill_list) {
545 wsp- >wal k_addr = (uintptr_t)iw >i1l_g_heads[O].ill_g_list_head, 611 case | P_V4_G HEAD: version = "v4"; break;
546 wsp->wal k_data = iw 612 case | P_V6_G HEAD: version = "v6"; break;
613 defaul t: version = "??"; break;
548 return (WALK_NEXT); 614 }
549 }
616 mdb_printf("%p Rs %p %0d %p %\n",

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

617 addr, version, addr + offsetof (ill_if_t, illif_avl_by_ppa),
618 iw>ill_if.illif_avl_by_ppa.avl _numodes,

619 iw>ill_if.illif_ppa_arena, iw>ill_if.illif_nane);

621 id->ill_printed = TRUE;

623 return (WALK_NEXT) ;

624 }

626 int

627 ip_stacks_common_wal k_i nit (ndb_wal k_state_t *wsp)

628 {

629 if (mdb_ Iayered wal k("i p_ stacks wsp) == -1) {

630 b_warn("can’t wal k |p stacks’");

631 r et urn (WALK_ERR);

632 }

634 return (WALK_NEXT);

635 }

637 int

638 illif_wal k_step(ndb_wal k_state_t *wsp)

639 {

640 uintptr_t kaddr;

642 kaddr = wsp->wal k_addr + OFFSETOF(i p_stack_t, ips_ill_g_heads);
644 if (ntib_vread(&kaddr sizeof (kaddr), kaddr) == -1) {

645 mdb_warn("can’t read ips_ip_ cache tabI e at %", kaddr);
646 return (WALK_ERR);

647 }

649 if (mdb_pwal k("illif_stack", wsp->wal k_cal | back,

650 wsp- >wal k_cbdat a, kaddr) == -1)

651 mdb_warn("couldn’t walk "illif_stack’ for ips_ill_g_heads %",
652 kaddr) ;

653 return (V\ALK ERR) ;

654 }

655 return (WALK_NEXT) ;

656 }

658 int

659 illif(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
660 {

661 illif_cbdata_t id;

662 P _ift it

663 const char *opt_P = NULL;

664 int printlist = MAX_G HEADS;

666 if (mjb getopts(argc, argv,

667 MDB_OPT_STR, &opt _P, NULL) != argc)

668 ‘return (DCVD_USAGE) ;

670 if (opt_P !'= NULL) {

671 i f (strcmp("v4", opt_P) == 0) {

672 printlist :IPV4GHEAD

673 } else if (strenp("v6e", opt_P) == 0) {

674 printlist -IPVGGHEA

675 } else {

676 mdb_warn("invalid protocol '%’'\n", opt_P);
677 return (DCVD_USAGE);

678 }

679 }

681 i f (DCVD_HDRSPEC(flags) && (flags & DOMD Pl PE_QUT) == 0) {

682 mdb_printf (" %u>%s Rs %@s %0s %®s % 10s%</ u>\n",

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

683 "ADDR', "IP", "AVLADDR', "NUWNCDES"', "ARENA", "NAME");
684 1

686 id.ill_flags = flags;

687 id.ill_addr = addr;

688 id.ill prlntlist:printlist;

689 id.ill_printed = FALSE;

691 if (mdb_wal k("illif", (mdb_wal k_) I'1if_ch, &ld) == -1) {
692 mdb_warn("can’t walk ilT_if_t structures");

693 return (DCVD_ERR);

694 }

696 if (!(flags & DCMD_ADDRSPEC) || opt_P != NULL || id.ill_printed)
697 return (DCVD_OX);

699 /*

700 * |f an address is specified and the wal k doesn’t find it,
701 * print it anyway.

702 */

703 if (mdb_vread(& Il _if, sizeof (ill_if_t), addr) == -1) {
704 mdb_war n(" Failed to read ill_if_t at %", addr);
705 return (DCVD_ERR);

706 }

708 ndb_printf("%p %®s %p %0d %p ¥%s\n",

709 addr, "??", addr + offsetof(ill_if_t, illif_avl_by_ppa),
710 ill_if.illif_avl_by_ppa.avl _numodes,

711 ill_if.illif_ppa_arena, ill_if.illif_name);

713 return (DCVD_OK);

714 }

716 static void

717 illif_hel p(void)

718 {

719 nmdb_printf("Options:\n");

720 mdb_printf("\t-P v4 | vé6"

721 "\tfilter interface structures for the specified protocol\n");
722 }

724 int

725 nce_wal k_i nit (nmdb_wal k_state_t *wsp)

726 {

727 if (mdb_l ayered_wal k("nce_cache" wsp) == -1) {

728 mdb_warn("can’t wal k ' nce_| cache’ ");

729 return (WALK_ERR);

730 }

732 return (WALK_NEXT) ;

733 }

735 int

736 nce_wal k_step(nmdb_wal k_state_t *wsp)

737 {

738 nce_t nce;

740 if (mdb_ vread(&nce 5| zeof (nce), wsp->wal k_addr) == -1)
741 mdb_warn("can’t read nce at %", wsp->wal k_addr);
742 return (WALK_ERR);

743 1

745 return (wsp->wal k_cal | back(wsp->wal k_addr, &nce, wsp->wal k_cbdata));
746 }

748 static int

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

749 nce_format (uintptr_t addr, const nce_t *ncep, void *nce_cb_arg)

750 {

751 nce_chdata_t *nce_cb = nce_cb_arg;

752 ilr_t ill;

753 char ill_nanme[LI FNAMSI Z] ;

754 ncec_t ncec;

756 if (mdb_vread(&ncec, sizeof (ncec),

757 (uintptr_t)ncep->nce_common) == -1) {

758 mdb_warn("can’t read ncec at %", ncep->nce_common);
759 return (WALK_NEXT);

760 }

761 if (nce_cb->nce_ipversion !=0 &&

762 ncec. ncec_i pversi on ! = nce_cbh->nce_i pversi on)
763 return (WALK_NEXT);

765 if (mdb_vread(&!ll, sizeof (ill), (umtptr _t)ncep- >nce|||) == -1) {
766 mdb_snprintf(ill_name, sizeof (ill_nane), "--");
767 } else {

768 (void) nmdb_readstr(ill_nane,

769 M N(LIFNAVSI Z, i ll7i 11 _name_l ength),
770 (uintptr_t)ill.ill_nane);

771 1

773 if (nce_cb->nce_ill_name[0] != "\0’

774 strncnp(nce_ch->nce_i |l _nane, ill_name, LIFNAVSIZ) != 0)
775 return (WALK_NEXT);

777 if (ncec.ncec_ipversion == | PV6_VERSI ON) {

779 mdb_printf("%p %s % 18s 9%@p %d %\ n",
780 addr, ill_nane,

781 nce_ i2 addr(ncep, &ll),

782 ncep- >nce_f p_np,

783 ncep->nce_refcnt,

784 &ncep- >nce_addr) ;

786 } else {

787 struct in_addr nceaddr;

789 I N6_VAMAPPED TO | NADDR(&cep- >nce_addr, &nceaddr);
790 mdb_ pr|ntf("°/67p 9%%s % 18s 9®@p ¥%ed % \n"
791 addr, ill_name,

792 nce_I 2_addr(ncep, &ll),

793 ncep->nce_f p_np,

794 ncep- >nce_refcnt,

795 nceaddr.s_addr);

796 1

798 return (WALK_NEXT) ;

799 }

801 int

802 dce_wal k_ini t (nmdb_wal k_state_t *wsp)

803 {

804 wsp->wal k_data = (void *)wsp->wal k_addr;

806 if (mdb_l ayered_wal k("dce cache wsp) == -1) {
807 mdb_warn("can’t wal k dce cache’ ");

808 return (WALK_ERR);

809 1

811 return (WALK_NEXT) ;

812 }

814 int

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

815 dce_wal k_step(nmdb_wal k_state_t *wsp)

816 {

817 dce_t dce;

819 if (mdb_ vread(&dce si zeof (dce), wsp->wal k_addr) == -1) {

820 mdb_warn("can’t read dce at %", wsp->wal k_addr);

821 return (WALK_ERR);

822 }

824 /* If ip_stack_t is specified, skip DCEs that don't belong to it. */
825 if ((wsp->wal k_data != NULL) && (wsp->wal k_data != dce.dce_ipst))
826 return (WALK_NEXT) ;

828 return (wsp->wal k_cal | back(wsp->wal k_addr, &dce, wsp->wal k_chdata));
829 }

831 int

832 ire_wal k_init(nmdb_wal k_state_t *wsp)

833 {

834 wsp->wal k_data = (void *)wsp->wal k_addr;

836 if (mdb_l ayered_wal k("ire cache", wsp) == -1) {

837 mdb_warn("can’t walk ’ire_cache’ ");

838 return (WALK_ERR) ;

839 }

841 return (WALK_NEXT);

842 }

844 int

845 ire_wal k_step(ndb_wal k_state_t *wsp)

846 {

847 ire_t ire;

849 if (mdb_vread(& re, sizeof (ire), wsp->wal k_addr) == -1) {

850 mdb_warn("can’t read ire at %", wsp->wal k_addr);

851 return (WALK_ERR);

852 }

854 /* 1f ip_stack_t is specified, skip IREs that don’t belong to it. */
855 if ((wsp->wal k_data != NULL) && (wsp->wal k_data != ire.ire_ipst))
856 return (WALK_NEXT);

858 return (wsp->wal k_cal | back(wsp->wal k_addr, & re, wsp->wal k_chdata));
859 }

861 /* ARGSUSED */

862 int

863 ire_next_wal k_init(ndb_wal k_state_t *wsp)

864 {

865 return (WALK_NEXT) ;

866 }

868 int

869 ire_next_wal k_step(ndb_wal k_state_t *wsp)

870 {

871 ire_t ire;

872 int status;

875 if (wsp->wal k_addr == NULL)

876 return (WALK_DONE) ;

878 if (mdb_vread(& re, sizeof (ire), wsp->wal k_addr) ==)

879 mdb_warn("can’t read ire at %", wsp->wal k addr)

880 return (WALK_ERR);

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

881

882 status = wsp->wal k_cal | back(wsp->wal k_addr, &ire,

883 wsp->wal k_chdat a) ;

885 if (status !'= WALK_NEXT)

886 return (status);

888 wsp->wal k_addr = (uintptr_t)ire.ire_next;

889 return (status);

890 }

892 static int

893 ire_format(uintptr_t addr, const void *ire_arg, void *ire_cb_arg)

894 {

895 const ire_t *irep ire_arg;

896 ire_chdata_t *ire_cb = ire_cb_arg;

897 bool - ean_t verbose = ire_ch->verbose;

898 ilr_t ill;

899 char ill nane[LI FNAVSI Z] ;

900 bool ean_t condemmed = irep->ire_generati on == | RE_GENERATI ON_CONDEMN\ED;
902 static const ndb_bitmask_t tmasks[] = {

903 " BROADCAST", | RE_BROADCAST, | RE_BROADCAST s
904 " DEFAULT", | RE_DEFAULT, | RE_DEFAULT s
905 "LOCAL", | RE_LOCAL, | RE_LOCAL f
906 " LOOPBACK" , | RE_LOOPBACK, | RE_LOOPBACK s
907 " PREFI X", | RE_PREFI X, | RE_PREFI X s
908 "MJLTI CAST", | RE_MJLTI CAST | RE_MULTI CAST s
909 " NORQUTE" , | RE_ E, | RE_NOROUTE ,
910 "I F NG?ESG.VER'. | RE_| F_NORESOLVER, | RE_| F_NORESOLVER },
911 "| F_RESOLVER', | RE_|IF_RESOLVER, | RE_| F_RESOLVER
912 "I F_CLONE", | RE_I F_CLONE, | RE_| F_CLONE s
913 " HOST", | RE_ T, | RE_HOST s
914 NULL, 0, 0

915 };

917 static const mjb bi t mask_t frmasks[] = {

918 " UP' RTF_UP, RTF_UP f
919 GATEV\AY' RTF_GATEWAY, RTF_GATEWAY s
920 "HOST", RTF_HOST, RTF_HOST s
921 "REJ ECT") RTF_REJECT, RTF_REJECT s
922 "DYNAM C', RTF_DYNAM C, RTF_DYNAM C ,
923 " MODI FI ED", RTF_MODI Fl ED, RTF_MODI FI ED s
924 " DONE", RTF_DONE, RTF_DONE s
925 " MASK" , RTF_MASK, RTF_MASK s
926 "CLONI NG', RTF_CLONI NG, RTF_CLONI NG)
927 " XRESOLVE", RTF_XRESOLVE, RTF_XRESOLVE s
928 "LLI NFO', RTF_LLI NFO, RTF_LLI NFO s
929 " STATI C', RTF_STATI C, RTF_STATI C s
930 "BLACKHOLE", RTF_BLACKHCLE, RTF_BLACKHOLE 0
931 " PRI VATE", RTF_PRI VATE, RTF_PRI VATE 0
932 " PROTOR" RTF_PROTCR, RTF_PROTCR ,
933 " PROTOL" RTF_PROTOL, RTF_PROTOL ,
934 " MULTI RT" RTF_MULTI RT, RTF_MULTI RT s
935 " SETSRC', RTF_SETSRC, RTF_SETSRC f
936 "1 NDI RECT RTF_| NDI RECT, RTF_| NDI RECT s
937 NULL, 0, 0

938 s

940 if (ire_cb->ire_ipversion != 0 &&

941 irep->ire_ipversion != ire_cb->ire_ipversion)

942 return (WALK_NEXT);

944 if (mdb_vread(& I, sizeof (ill), (uintptr_t)irep- >|re|||) == -1) {
945 mdb_snprintf(ill_name, sizeof (ill_nane), "--");

946 } else {

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

947 (void) nmdb_readstr(ill_nane,

948 M N(LIFNAMSI Z, i ll7ill_name_| ength),

949 (uintptr_t)ill.ill_nane);

950 }

952 if (irep->ire_ipversion == | PV6_VERSI ON && verbose) {

954 mdb_print f (" %b>%®p%/ b>%8s %I0N <%hb%s>\ n"

955 "9®s %ON n"

956 "U®s %40d %ld <%hb> %s\n",

957 addr, condemmed ? "(Q" : "", & rep->ire_setsrc_addr_v6,
958 irep->ire_type, tmasks,

959 (irep->ire_testhidden '7", H DDEN' : ""),

960 ", & rep->ire_addr_ve6,

961 ", ips_to_stackid((uintptr_t)irep->ire_ipst),

962 irep->ire_zoneid,

963 irep->ire_flags, frmasks, ill_nane);

965 } else if (irep->ire_ipversion == | PV6_VERSION) {

967 mdb_printf("%®p¥3s ¥BON O/cBON 9%d %ld %s\n",

968 addr, condemed ? "(Q" : "", & rep->ire_setsrc_addr_v6,
969 & rep->ire_addr_v6,

970 ips_to_stackid((uintptr_t)irep->ire_ipst),

971 irep->ire_zoneid, ill_nane);

973 } else if (verbose) {

975 mdb_pri ntf(" °/$b>°/d7p°/l</ b>%38s %401 <%hb¥%s>\n"

976 "ops o4

977 e %lOd %’1d <%1b> s\ n"

978 addr, condemmed ? "(QO)" 2@ ", irep->ire_setsrc_addr,
979 irep->ire_type, tmasks

980 (irep->ire_testhidden '7", H DDEN' : ""),

981 ", lrep->ire_addr,

982 ", ips_to_ stackld((umtptr _t)irep->ire_ipst),

983 irep->ire_zoneid, irep->re_flags, fnasks, il i _namne) ;
985 } else {

987 mdb_printf (" %p%Bs %30l °/6>‘0I 9%d %ld %s\n", addr,

988 condemed ? "(C)" : "", irep->ire_setsrc_addr,

989 irep->ire_addr, ips_to_stacki d((uintptr_t)irep->ire_ipst),
990 irep->ire_ zoneld iTl _nane);

991 }

993 return (WALK_NEXT) ;

994 }

996 /*

997 * There are faster ways to do this. Gven the interactive nature of this
998 * use | don't think its worth nuch effort.

999 */

1000 static unsigned short

1001 i pcksum(void *p, int len)

1002 {

1003 int32_t sum= 0;

1005 while (len > 1) {

1006 /* alignment */

1007 sum += *(uint16_t *)p;

1008 = (char *)p + sizeof (uintl6_t);

1009 i f (sum & 0x80000000)

1010 sum = (sum & OxFFFF) + (sum >> 16);

1011 len -= 2;

1012 }

10

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 11

1014 if (len)

1015 sum += (uint16_t)*(unsigned char *)p;
1017 while (sum >> 16)

1018 sum = (sum & OxFFFF) + (sum >> 16);
1020 return (~sum;

1021 }

1023 static const ndb_bitmask_t tcp_flags[] = {

1024 { "SYN', TH_SYN, TH SYN 1},
1025 { "ACK", TH_ACK, TH ACK 1},
1026 { "FIN'", TH FI N, THFIN },
1027 { "RST", TH_RST, TH RST },
1028 { "PSH', TH_PUSH, TH PUSH },
1029 { "ECE", TH_ECE, TH ECE },
1030 { "CWR", TH_CVR, TH CWR },
1031 { NULL, 0, 0 }
1032 };

1034 /* TCP option |length */

1035 #define TCPOPT_HEADER LEN 2
1036 #define TCPOPT_MAXSEG LEN 4
1037 #define TCPOPT_WS_LEN 3
1038 #define TCPOPT_TSTAMP_LEN 1
1039 #define TCPOPT_SACK_OK_LEN 2

1041 static void
1042 tcphdr_print_options(uint8_t *opts, uint32_t opts_|en)

1043 {

1044 uint8_t *endp;

1045 uint32_t len, val;

1047 mdb_printf (" %b>0pti ons: %</ b>");

1048 endp = opts + opts_Ien;

1049 while (opts < endp) {

1050 len = endp - opts;

1051 switch (*opts) {

1052 case TCPOPT_EQL:

1053 ndb_printf (" EOL");

1054 opt S++;

1055 break;

1057 case TCPOPT_NOP:

1058 mdb_printf(" NOP");

1059 opt s++;

1060 break;

1062 case TCPOPT_MAXSEG {

1063 uint16_t nss;

1065 if (len < TCPOPT_MAXSEG LEN | |

1066 opts[1] != TCPOPT_MAXSEG LEN) {
1067 mdb_printf(" <Truncated MSS>\n");
1068 return;

1069 }

1070 ndb_nhconvert (&ss, opts + TCPOPT_HEADER LEN,
1071 si zeof (mes));

1072 mdb_printf (" MSS=%", mnsS);

1073 opts += TCPOPT_MAXSEG LEN

1074 br eak;

1075 }

1077 case TCPOPT_WSCALE:

1078 if (len < TCPOPT_ WS LEN || opts[1] != TCPOPT WS LEN) {

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 12
1079 mdb_printf(" <Truncated Ws>\n");

1080 return;

1081 }

1082 mdb_printf(" Ws=%", opts[2]);

1083 opts += TCPOPT_WS_LEN,

1084 break;

1086 case TCPODT TSTAMP: {

1087 f (len < TCPOPT_TSTAWP_LEN ||

1088 opts[1] != TCPOPT_TSTAMP_LEN)

1089 mdb_printf(" <Truncated TS>\n");

1090 return;

1091 }

1093 opts += TCPOPT_HEADER LEN;

1094 ndb_nhconvert (&val, opts, sizeof (val));

1095 ndb_printf(" TS_VAL=%, ", val);

1097 opts += sizeof (val);

1098 ndb_nhconvert (&val, opts, sizeof (val));

1099 ndb_printf (" TS_ECHO=%", val);

1101 opts += sizeof (val);

1102 br eak;

1103 }

1105 case TCPOPT_SACK_PERM TTED:

1106 if (len < TCPOPT_SACK_OK_LEN ||

1107 opts[1] != TCPOPT_SACK_OK_LEN) {

1108 mdb_printf(" <Truncated SACK_OK>\n");
1109 return;

1110 }

1111 mdb_printf (" SACK _OK");

1112 opts += TCPOPT_SACK_OK_LEN;

1113 br eak;

1115 case TCPOPT_SACK: {

1116 ui nt32_t sack_| en;

1118 if (len <= TCPOPT_HEADER LEN || len < opts[1] ||
1119 opts[1] <= TCPOPT_HEADER LEN) {

1120 mdb_printf(" <Truncated SACK>\n");
1121 return;

1122 }

1123 sack_l en = opts[1l] - TCPOPT_HEADER LEN;

1124 opts += TCPOPT_HEADER _LEN;

1126 mdb_printf (" SACK=");

1127 whiTe (sack_len > 0) {

1128 if (opts + 2 * sizeof (val) > endp) {
1129 mdb_printf("<Truncated SACK>\n");
1130 opts = endp;

1131 br eak;

1132 }

1134 mdb_nhconvert (&val , opts sizeof (val));
1135 mdb_printf("<%,", val);

1136 opts += sizeof (val);

1137 ndb_nhconvert (&val, opts, sizeof (val));
1138 mdb_printf("%>", val);

1139 opts += sizeof (val);

1141 sack_len -= 2 * sizeof (val);

1142 }

1143 break;

1144 }

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

1146 defaul t:

1147 ndb_printf(" Opts=<val =%, | en=%u>", *opts,
1148 opts[1]);

1149 opts += opts[1];

1150 break;

1151 }

1152 }

1153 mdb_printf("\n");

1154 }

1156 static void

1157 tcphdr_print(struct tcphdr *tcph)

1158 {

1159 in_port_t sport, dport;

1160 tcp_seq seq, ack;

1161 uint16_t win, urp;

1163 mdb_printf (" %b>TCP header %</ b>\n");

1165 ndb_nhconvert (&sport, &t cph->th_sport, sizeof (sport));
1166 mdb_nhconvert (&dport, & cph->th_dport, sizeof (dport));
1167 mdb_nhconvert (&seq, & cph->th_seq, sizeof (seq));

1168 nmdb_nhconvert (&ck, &tcph->th_ack, sizeof (ack));

1169 ndb_nhconvert (&win, &t cph->th_w n, sizeof (wn));

1170 ndb_nhconvert (&urp, & cph->th_urp, sizeof (urp));

1172 mdb_printf (" %u>%s %s %0s %0s %ls %bs %bs %bs % 15s%/u>\n",
1173 "SPORT", "DPORT", "SEQ', "ACK', "HLEN', "WN', "CSUM,
1174 " FLAGS")

1175 mdb_printf (" Y6hu %hu %40u 940u %d %Bhu %Bhu 9Bhu <%>\n"
1176 sport, dport, seq, ack, tcph->th_off << 2, win,

1177 tcph- Sth _sum urp, tcph >th_flags, tcp_ flags)

1178 mdb_print f ("0x%4x Ox%4x 0x%08x 0x%O8x\n\n",

1179 sport, dport, seq, ack);

1180 }

1182 /* ARGSUSED */

1183 static int

1184 tcphdr(uintptr_t addr, uint_t flags, int ac, const ndb_arg_t *av)
1185 {

1186 struct tcphdr tcph;

1187 ui nt 32_t opt _| en;

1189 if (!(flags & DCVD_ADDRSPEC))

1190 return (DCMD_USAGCE) ;

1192 if (mdb_ vread(&lcph si zeof (tcph), addr) == -1) {

1193 mdb_warn("failed to read TcP header at %", addr);
1194 return (DCMD_ERR);

1195 }

1196 t cphdr _print (&t cph);

1198 /* If there are options, print themout also. */

1199 opt_len = (tcph.th_off << 2) TCP_M N_HEADER_LENGTH;
1200 if (opt_len > 0)

1201 uint8_t *opts, *opt_buf;

1203 opt _buf = ndb_al | oc(opt _| en, UM SLEEP);

1204 opts = (u| nt8_t *)addr + si zeof (tcph);

1205 if (mdb_vread(opt_buf, opt_len, (uintptr_t)opts) == -1) {
1206 mdb_war n(" f ai ied to read TCP options at 0/-p"
1207 return (DCVMD_ERR);

1208 }

1209 t cphdr _print _options(opt_buf, opt_Ien);

1210 nmdb_free(opt _buf, opt_len);

13

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

sport,

sport,

1211 }

1213 return (DCVD_OK);

1214 }

1216 static void

1217 udphdr _print (struct udphdr *udph)

1218 {

1219 in_port_t sport dport;

1220 uint16_t hl en;

1222 mdb_printf (" %b>UDP header %</ b>\n");

1224 mdb_nhconvert (&sport, &udph->uh_sport, sizeof (sport));
1225 mdb_nhconvert (&dport, &udph->uh_dport, sizeof (dport))
1226 mdb_nhconvert (&l en, &udph->uh_ul en, sizeof (hlen));

1228 mdb_printf (" %u>%4s °/¢i4s %Ss Y%6s %</ u>\ n",

1229 "SPORT", "DPORT", "LEN', "CSUM);

1230 mdb_printf ("%hu (0x%04x) 9%hu (OX%)AX) 9%Bhu 0x%4hx\ n\ n",
1231 dport, dport, hlen, udph->uh_sum;

1232 }

1234 /* ARGSUSED */

1235 static int

1236 udphdr(uintptr_t addr, uint_t flags, int ac, const ndb_arg_t *av)
1237 {

1238 struct udphdr udph;

1240 if (!(flags & DCMD_ADDRSPEC))

1241 return (DCVD_USAGCE) ;

1243 if (mdb_vread(&udph, sizeof (udph), addr) == -1) {

1244 mdb_warn("failed to read UDP header at %", addr);
1245 return (DCVD_ERR);

1246 1

1247 udphdr _pri nt (&udph) ;

1248 return (DCVMD_CXK) ;

1249 }

1251 static void

1252 sctphdr_print(sctp_hdr_t *sctph)

1253 {

1254 in_port_t sport, dport;

1256 ndb_printf (" %SCTP header %/ b>\n");

1257 ndb_nhconvert (&sport, &sctph->sh_sport, sizeof (sport));
1258 mdb_nhconvert (&dport, &sctph->sh_dport, sizeof (dport));
1260 ndb_printf (" %u>%4s %4s 9%40s %0s%</ u>\n",

1261 "SPORT", "DPORT", "VTAG', "CHKSUM');

1262 mdb_printf("%hu (0x%4x) %hu (0x%4x) %0u O0x%O8x\ n\n",
1263 dport, dport, sctph->sh_verf, sctph->sh_chksum;
1264 }

1266 /* ARGSUSED */

1267 static int

1268 sctphdr(uintptr_t addr, uint_t flags, int ac, const ndb_arg_t *av)
1269 {

1270 sctp_hdr_t sctph;

1272 if (!(flags & DCVD_ADDRSPEC))

1273 return (DCMD_USAGCE) ;

1275 if (mdb_vread(&sctph, sizeof (sctph), addr) == -1) {
1276 mdb_warn("failed to read SCTP header at %", addr);

spor

14

t,

sport,

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 15

1277 return (DCMD_ERR);
1278 1

1280 sct phdr _pri nt (&sctph);

1281 return (DCVMD_CXK) ;

1282 }

1284 static int
1285 transport_hdr(int proto, uintptr_t addr)
{

1286

1287 mdb_printf("\n");

1288 switch (proto) {

1289 case | PPROTO_TCP:

1290 struct tcphdr tcph;

1292 if (mdb_vread(& cph, sizeof (tcph), addr) == -1) {
1293 ndb_warn("failed to read TCP header at %", addr);
1294 return (DCVMD_ERR);

1295 }

1296 tcphdr _print (& cph);

1297 br eak;

1298 }

1299 case | PPROTO_UDP:

1300 struct udphdr udph;

1302 if (rmdb_vread(&udph, sizeof (udph), addr) == -1) {
1303 mdb_warn("failed to read UDP header at %", addr);
1304 return (DCVD_ERR);

1305 }

1306 udphdr _pri nt (&udph) ;

1307 br eak;

1308 1

1309 case | PPROTO_SCTP: {

1310 sctp_hdr_t sctph;

1312 if (mdb_vread(&sctph, sizeof (sctph), addr) == -1) {
1313 ndb_warn("failed to read SCTP header at %", addr);
1314 return (DCVMD_ERR);

1315 }

1316 sct phdr _pri nt (&sct ph);

1317 br eak;

1318 }

1319 defaul t:

1320 br eak;

1321 }

1323 return (DCVMD_CXK) ;

1324 }

1326 static const ndb_bi tmask_t ip_flags[] = {

1327 { "DF*, IPH DF, |PHDF },

1328 { "MF", IPH.MF, IPH M }

1329 { NULL, O, 0 }

1330 };

1332 /* ARGSUSED */
1333 static int
1334 iphdr(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)

1335 {

1336 uint _t verbose = FALSE, force = FALSE;

1337 i pha t i ph[1];

1338 uint 16 t ver, totlen, hdrlen, ipid, off, csum
1339 ui ntptr nxt _prot o;

1340 char exp_csuni 8] ;

1342 if (mdb_getopts(argc, argv,

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

1343 'v', NMDB_OPT_SETBITS, TRUE, &verbose,

1344 ', MDB_OPT_SETBITS, TRUE, &force, NULL) I'= argc)
1345 return (DCMVD_| USAGE)

1347 if (mdb_vread(iph, sizeof (*iph), addr) == -1) {

1348 mdb_warn("failed to read | Pv4 header at %", addr);
1349 return (DCVD_ERR);

1350 }

1352 ver = (iph->i pha_version_and_hdr_length & 0xf0) >> 4;

1353 if (ver 1= IPV4 VERSION) {

1354 if (ver == I PV6_VERSION) {

1355 return (ip6hdr(addr, flags, argc, argv));
1356 } elseif (!force) {

1357 mdb_war n("unknown | P version: %l\n", ver);
1358 return (DCVD_ERR);

1359 }

1360 }

1362 ndb_print f (" %I Pv4 header %/ b>\n");

1363 ndb_printf ("% 34s % 34s\n"

1364 "Uxu>% 4s % 4s % 5s % 5s % 6s %55 %55 %6s %8s % 6s%</ u>\n",
1365 "SRC', "DST",

1366 "HLEN', "TOCS', "LEN', "ID', "OFFSET", "TTL", "PROTO',
1367 "EXP- CSUM', "FLGS");

1369 hdrlen = (iph->i pha_version_and_hdr_|l ength & 0x0f) << 2;
1370 nmdb_nhconvert (& otl en, & ph->ipha_l ength, sizeof (totlen));
1371 ndb_nhconvert (& pi d, & ph->i pha_ident, sizeof (ipid));

1372 ndb_nhconvert (&of f, & ph->i pha_fragnent_of fset_and_f I ags,
1373 if (hdrlen == | P_SI MPLE_HDR _LENGTH) {

1374 if ((csum = ipcksun(iph, sizeof (*iph))) !'= 0)
AE3i75) csum = ~(~csum + ~i ph->i pha_hdr_checksum;
1376 el se

1377 csum = i ph->i pha_hdr _checksum

1378 mdb_snprintf(exp_csum 8, "%", csum;

1379 } else {

1380 mdb_snprintf(exp_csum 8, "<n/a>");

1381 }

1383 mdb_printf("% 341 % 341%n"

1384 "% 4d % 4d % 5hu % 5hu % 6hu % 5hu % 5hu % 6u % 8s <%hb>\n",
1385 i ph->i pha_src, iph->ipha_dst,

1386 hdrl en, iph->i pha_type_of serw ce, totlen, ipid,

1387 (of f << 3) & Oxffff, iph- >i pha_ ttl i ph->i pha_protocol,
1388 i ph->i pha_hdr checksum exp_csum off, ip_flags);

1390 if (verbose) {

1391 nxt_proto = addr + hdrlen;

1392 return (transport_hdr(iph->i pha_protocol, nxt_proto));
1393 } else {

1394 return (DCVD_OX);

1395 }

1396 }

1398 /* ARGSUSED */
1399 static int

1400 i p6hdr (uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)

1401 {

1402 uint_t verbose = FALSE, force = FALSE;
1403 i p6_t i ph[1];

1404 int ver, class, flow

1405 ui nt16_t pl en;

1406 uintptr_t nxt _prot o;

1408 if (mdb_getopts(argc, argv,

16

si zeof (off));

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

1409 'v', NMDB_OPT_SETBITS, TRUE, &verbose,

1410 ', MDB_OPT_SETBITS, TRUE, &force, NULL) I= argc)
1411 return (DCMVD_| USAGE)

1413 if (mdb_vread(iph, sizeof (*iph), addr) == -1) {

1414 mdb_warn("failed to read | Pv6 header at %", addr);
1415 return (DCVD_ERR);

1416 }

1418 ver = (iph->ip6_vfc & 0xf0) >> 4;

1419 i f (ver I'= | PV6_VERSI ON) {

1420 if (ver == IPV4A_VERSION) {

1421 return (iphdr(addr, flags, argc, argv));
1422 } elseif (!force) {

1423 b_war n("unknown | P version: %l\n", ver);
1424 return (DCVD_ERR);

1425 }

1426 }

1428 mdb_printf (" %b>l Pv6 header %/ b>\n");

1429 ndb prl ntf(" Y<u>% 265 % 265 %s %'s %35 98s %’Bs%/ u>\n"
1430 SRC', "DST", "TCLS', "FLOWID', "PLEN', "NXT" HO");
1432 class = (iph->i p6_vcf & | PV6_FLON NFO TCLASS) >> 20;
1433 mdb_nhconvert (&l ass, &class, sizeof (class));

1434 flow = iph->ip6_vcf & | PV6_| FLOW NFO FLONLABEL;

1435 mdb_nhconvert (&1 ow, &flow, sizeof (fl ow));

1436 nmdb_nhconvert (&pl en, &i ph->i p6_plen, si zeof (plen));
1438 ndb_printf ("% 26N % 26N %d %d %hu %8d %8d\n",

1439 & ph->i p6_src, & ph->ip6_dst,

1440 class, flow, plen, iph->ip6_nxt, iph->ip6_hlim;
1442 if (verbose) {

1443 nxt_proto = addr + sizeof (ip6_t);

1444 return (transport_hdr(iph->i p6_nxt, nxt_proto));
1445 } else {

1446 return (DCMD_CK);

1447 }

1448 }

1450 int

1451 nce(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
1452 {

1453 nce_t nce;

1454 nce_chdata_t nce_cb;

1455 int ipversion = 0;

1456 const char *opt_P = NULL, *opt_ill;

1458 if (mjb getopts(argc, argv,

1459 MDB_OPT_STR, &opt_ill,

1460 ’P‘, MDB_OPT_STR, &opt _P, NULL) != argc)

1461 return (DCVD_USAGE);

1463 if (opt_P !'= NULL)

1464 if (strenp(”v4” opt _P) == 0)

1465 i pversi on = TPV4 _VERSI O\I

1466 } elseif (strcnp("vG" opt_P) == 0) {

1467 i pversion = | PV6_VERSI O\,

1468 } else {

1469 mdb_warn("invalid protocol '%’'\n", opt_P);
1470 return (DCVD_USAGE);

1471 }

1472 }

1474 if ((flags & DCVMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 18
1475 mdb pr| ntf(" 0/$u>°/(1>s %Ss %8s %?s % % l’/&/ u>\ n"

1476 "ADDR', "INTF", "LLADDR', "FP_MP", "REFCNT"

1477 " NCE_ADDR") ;

1478 }

1480 bzero(&nce_ch, sizeof (nce_ch));

1481 if (opt_ilT !'= NULL)

1482 strcpy(nce_cb.nce_ill_nane, opt_ill);

1483

1484 nce_ch. nce_i pversi on = ipversion;

1486 if (flags & DCVD_ADDRSPEC) {

1487 (void) ndb_vread(&nce, sizeof (nce_t), addr);

1488 (void) nce_format(addr, &nce, &nce_cb);

1489 } else if (mdb_wal k(" nce", (rrdb_wal k_cb_t)nce_format, &nce_cb) == -1) {
1490 mib_warn("failed to walk ire table");

1491 return (DCMD_ERR);

1492 }

1494 return (DCVD_OK);

1495 }

1497 /* ARGSUSED */

1498 static int

1499 ?ce_format(ui ntptr_t addr, const dce_t *dcep, void *dce_cb_arg)

1500

1501 static const rrdb bi t mask_t dmasks[] = {

1502 {" , DCEF_DEFAULT, DCEF_DEFAULT 1},

1503 {" P", DCEF_PMIU, DCEF_PMIU },

1504 { "uU', DCEF_U NFOQ, DCEF_UI NFO },

1505 { "S'. DCEF_TOO SMALL_PMTU, DCEF_TOO SMALL_PMTU }

1506 { NULL, O, 0 }

1507 };

1508 char flagsbuf[2 * A _CNT(dmasks)];

1509 int ipversion = *(int *)dce_cb_arg;

1510 bool ean_t condemmed = dcep->dce_generati on == DCE_GENERATI ON_CONDEMNED;
1512 if (ipversion != 0 & ipversion != dcep->dce_i pversion)

1513 return (WALK_NEXT);

1515 mdb_snprintf (flagsbuf, sizeof (flagsbuf), "%", dcep->dce_fl ags,

1516 dmasks) ;

1518 switch (dcep->dce_i pversion) {

1519 case | PV4_VERSI ON:

1520 mdb pr| ntf("°/$u>°/&7p°/85 9Bs 98d 980l %</ u>\n", addr, condemmed ?
1521 "(©" : "", flagsbuf, dcep->dce_pntu, &dcep->dce_v4addr);
1522 br eak;

1523 case | PV6_VERSI O\

1524 mdb pr| ntf("°/$u>°/&7p°/85 9Bs 98d ¥%BON %</ u>\n", addr, condemmed ?
1525 "(©" : "", flagsbuf, dcep->dce_pntu, &dcep >dce _v6addr) ;
1526 br eak;

1527 defaul t:

1528 mdb_printf (" %u>%®p¥Bs ¥Bs ¥Bd 9B0s %</ u>\n", addr, condemmed ?
1529 "(Q" : "", flagsbuf, dcep->dce_pntu, "");

1530 }

1532 return (WALK_NEXT) ;

1533 }

1535 int

1536 ?ce(ui ntptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)

1537

1538 dce_t dce;

1539 const char *opt_P = NULL;

1540 const char *zone_name = NULL;

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 19

1541
1542

1544
1545
1546
1547

1549
1550
1551
1552
1553
1554

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1567
1568
1569
1570

1572
1573
1574
1575
1576
1577
1578
1579

1581
1582

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593

A595]
1596
1597
1598
1599

1601
1602
1603
1604
1605
1606

{

nt
ire(uintptr_t addr,

ip_stack_t *i pst = NULL;
int ipversion = 0O;

if (mjb getopts(argc, argv,
s’, MDB_OPT_STR, &zone name,
"P', MDB_OPT_STR, &opt P, NULL) != argc)
return (DCVD_USAGE);

/* Follow the specified zone nane to find a ip_stack_t*. */
if (zone_nanme != NULL)
i pst = zone_to_i ps(zone_nane);
if (ipst == NULL)
return (DCVD_USAGE);
}

if (opt_P !'= NULL)
if (strcr'rp("v4" opt_P) == 0) {
i pversion = | PV4 VERSI o\
} else if (strenp("ve" opt_P) == 0) {
i pversion = IPV6 _VERSI ON,
} else {
mdb_war n("inval i d protocol

)| "%’\n", opt_P);
return (DCVD_USAGE);

}
}
if ((flags & DCVMD_LOOPFIRST) || !'(flags & DCMD LOOD)) {
nmdb pr| nt (" %u>9%@s%Bs 9Bs YBs ¥B0s %</ u>\n"
"ADDR', "", "FLAGS', "PMIU', "DST ADDR')
}

if (flags & DOMD ADDRSPEC) {
(void) ndb_vread(&dce, sizeof (dce_t), addr);
(void) dce_format(addr, &dce, & pversion);
} else if (ndb_pwalk("dce", (nmdb_wal k_cb_t)dce_| fornat,
(uintptr_t)ipst) == -1) {
mdb_warn("failed to wal k dce cache");
return (DCMD_ERR);

& pversion,

}
return (DCVD_OK);

uint_t flags, int argc, const ndb_arg_t *argv)
uint _t verbose = FALSE;

ire_t ire;

ire_chdata_t ire_cb;

int ipversion = 0O;

const char *opt_P = NULL;

const char *zone_name = NULL;

ip_stack_t *ipst = NULL;

if (ndb getopts(argc, argv,
, MDB_OPT_SETBI TS, TRUE, &verbose,
's', MDB_OPT_STR, &zone_| nane
"P'. MDB_OPT_STR &opt P, NULL) != argc)
return (DCMVD_ USAGE)

/* Follow the specified zone name to find a ip_stack_t*. */
if (zone_ name I'= NULL) {
i pst = zone_to_i ps(zone_nane);
if (ipst == NULL)
return (DCVD_USAGE);

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

1619

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632

1634
1635

1637
1638
1639
1640
1641
1642
1643
1644

1646
1647

1649
1650

1652
1653
1654
1655
1656
1657
1658
1659

1661
1662
1663

1665
1666

1668
1669

}

if (opt_P != NULL)

if (strcn’p(v4" opt _P) ==0) {
i pversi on = TPV4 _VERSI ON,

} elseif (strcnp("ve" opt_P) == 0) {
i pversion = | PV6_VERSI ON;

} else {
ndb_warn("invalid protocol '%’'\n", opt_P);
return (DCVD_USAGE);

}
}
if ((flags & DCVMD_LOCPFIRST) || !(flags & DCVMD_LOOP)) {
if (verbose) {
ndb_printf("%s %0s % 20s% n"
"9®s %0s % 20s% n"
" %:u>°/a>s %4 0s D/<=.¢ls % 20s %%/ u>\n",
"ADDR', "SRC', "TYPE",
wu WDSTY . VARKS'
v’ WSTACK", "ZONE', "FLAGS', "INTE") ;
} else {
mdb pr| ntf(" °/$u>°/c?s %30s O/c'BOs 9%bs %’ls 0/Gl)/$/u>\n
"ADDR', "SRC', "DST", "STACK", "ZONE", INTF]
}
}
ire_cb.verbose = (verbose == TRUE);
ire_ch.ire_ipversion =i pver5| on;
if (flags & DCVD_ADDRSPEC) {
(void) nmdb_vread(& re, sizeof (ire_t), addr)'
void) ire_format(addr, & re, & re_cb
} else if (ndb_pwal k("ire", (rrdb wal k _cb t)lre format, & re_ch,

(uintptr_t)ipst) == -1) {
mdb_warn("failed to walk ire table");
return (DCVD_ERR);

}

return (DCVD_OK);

static size_t
m _osi ze(const queue_t *q)
1651 {

}

/*
* The code in comon/inet/m.c allocates an extra word to store the
* size of the allocation. An m _o_s is thus a size_t plus an m _o_s.

struct m _block {
size_t m _nbytes;
struct m_o_s ni_o;

Im
if (mdb_vread(&m sizeof (m), (uintptr_t)qg->q_ptr -
sizeof (m) == sizeof
return (mm _nbytes - sizeof (m);
return (0);

static void

ipill

1670 {

1671
1672

_qinfo(const queue_t *q, char *buf,

size_t nbytes)

char nane[32];
ilr_t ill;

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 21

1674 if (mdb_vread(& I, sizeof (ill),

1675 (uintptr_t)qg->qg_ptr) == sizeof (ill) &&

1676 ndb_readstr(nane, sizeof (nane), (uintptr t)| I1.ill_name) > 0)
1677 (void) mdb_snprintf (buf, nbyt es, "if: 9" ame);
1678 }

1680 void

1681 i p_qi nfo(const queue_t *q, char *buf, size_t nbytes)

1682 {

1683 size_t size = mi _osize(q);

1685 if (size == sizeof (ill_t))

1686 ip_ill_ginfo(q, buf, nbytes);

1687 }

1689 uintptr_t
1690 i p_rnext (const queue_t *q)

1691 {

1692 size_t size = m _osize(q);

1693 ilr_t ill;

1695 if (size == sizeof (ill t) &&mib _vread(& I, sizeof (ill),
1696 (uintptr_t)qg->q_ptr) == sizeof (ill))

1697 return ((umtptr _t)yill.ill_rq);

1699 return (NULL);

1700 }

1702 uintptr_t

1703 i p_wnext (const queue_t *q)

1704 {

1705 size_t size = m _osize(q);
1706 i_till;

1708 if (size == sizeof (ill_t) && mdb_vread(& I, sizeof (ill),
1709 (uintptr_t)qg->qg_ptr) == sizeof (ill))
1710 return ((uintptr_t)ill.ill_wg);

1712 return (NULL);
1713 }

1715 /*

1716 * Print the core fields in an squeue_t. Wth the "-v" argunent,
1717 * provide nore verbose out put.

1718 */

1719 static int

1720 squeue(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
1721 {

1722 unsi gned i nt i;

1723 unsi gned i nt ver bose = FALSE;

1724 const int SQUEUE_STATEDELT = (int)(sizeof (uintptr_t) + 9);
1725 bool ean_t arm

1726 squeue_t squeue;

1728 if ('(flags & DCOVD_ADDRSPEC))

1729 if (mdb_wal k dcrrd(genuni x‘ squeue_cache", "ip‘'squeue",
1730 argc, argv) == -1) {

1731 ndb_warn("failed to wal k squeue cache");

1732 return (DCVD_ERR);

1733 }

1734 return (DCVD_OX);

1735 }

1737 if (mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL)

1738 I'= argc)

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 22
1739 return (DCMD_USAGE) ;

1741 if (!DCVD_HDRSPEC(fl ags) && verbose)

1742 mdb_printf("\n\n");

1744 if (DCVMD_HDRSPEC(flags) || verbose) {

1745 mdb_printf("9%s %5s %3s %s %s ¥@s\n",

1746 "ADDR', "STATE", "CPU',

1747 "FIRST", "LAST", "WORKER');

1748 }

1750 if (nﬂb_vread(&squeue, si zeof (squeue_t), addr) == -1) {
1751 mdb_war n(" cannot read squeue_t at %", addr);

1752 return (DCVD_E

1753 }

1755 ndb_printf("%0?p %95x %3d 9%©?p %O?p %O?p\n",

1756 addr, squeue.sq_state, squeue.sq_bind,

1757 squeue. sq_first, squeue.sq_l ast, squeue.sq_worker);
1759 if (!verbose)

1760 return (DCVD_CX);

1762 arm = B_TRUE;

1763 for (i = 0; squeue_states[i].bit_name != NULL; i++) {

1764 if (((squeue.sqg_state) & (1 << i)) == 0)

1765 cont i nue;

1767 if (arm {

1768 nmdb_printf("%s|\n", SQUEUE_STATEDELT, "");
1769 mdb_printf("% s+ -> ", SQUEUE STATEDELT, "");
1770 arm = B_FALSE;

1771 } else

1772 ndb_printf("%s ", SQUEUE_STATEDELT, "");
1774 mdb_printf("% 12s %\n", squeue_states[i].bit_nane,
1775 squeue_states[i].bit_descr);

1776 }

1778 return (DCVD_OK);

1779 }

1781 static void
1782 i p_squeue_hel p(voi d)

1783 {

1784 ndb_pri ntf(" Print the core information for a given NCA squeue_t.\n\n");
1785 ndb_printf("Options:\n");

1786 mdb_printf("\t-v\tbe verbose (nore descriptive)\n");

1787 }

1789 /*

1790 * This is called by ::th_trace (via a call back) when wal ki ng the th_hash

1791 * list. It calls nodent to find the entries.

1792 */

1793 /* ARGSUSED */
1794 static int
1795 nodent _sunmmary(uintptr_t addr, const void *data, void *private)

1796 {

1797 th_wal k_data_t *thw = private;

1798 const struct nod_hash_entry *nmhe = data;

1799 th_trace_t th;

1801 if (mdb_vread(&h, sizeof (th), (uintptr_t)nmhe->nhe_val) == -1) {
1802 mdb_warn("failed to read th_trace_t %", nhe->nhe_val);
1803 return (WALK_ERR);

1804 }

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 23 new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c
1871 */
1806 if (th.th_refcnt == 0 && thw >t hw_non_zero_only) 1872 mdb_printf("9%s %s %@s ¥Bs %@s\n",
1807 return (WALK_NEXT); 1873 "1 PSTACK", "OBJECT", "TRACE', "REFCNT", "THREAD');
1874 t hw. t hw_mat ch = B_FALSE;
1809 if (!'thw>thw nmatch) { 1875 } else {
1810 mdb_printf("%p %p %p %Bd %®p\n", thw >thw ipst, mnhe->nmhe_key, 1876 thw. thw_nmatch = B_TRUE;
1811 nmhe- >mhe_val , th. th _refcnt, th th _id); 1877 thw. t hw_mat chkey = addr;
1812 } else if (thw>thw rratchkey =" (uint ptr _t) nhe- >tthe _key) {
1813 int i, j, k; 1879 if ((thwthwlbol = (clock_t)ndb_ get Ibolt()) =-1) {
1814 tr_buf _t *tr; 1880 b_warn("failed to read Ibolt");
1881 return (DCVMD_ERR) ;
1816 mdb_printf("Cbject % in IP stack %:\n", nmhe->nhe_key, 1882 }
1817 thw >t hw_i pst); 1883
1818 i =th.th_trace_|l astref; 1884 i1 f (mdb_pwal k("th_hash", th_hash_summary, &t hw, NULL) == -1) {
1819 mdb_printf(" \tThread % refcnt %:\n", th.th_id, 1885 mdb_warn("can’t wal k th_hash entries");
1820 th.th_refcnt); 1886 return (DCVMD_ERR);
1821 for (j = TR_BUF_ MAX; j >0; j--) { 1887 }
1822 tr = th.th_trbuf + i; 1888 return (DCVD_OK);
1823 if (tr->tr dept h == 0]| tr->tr_depth > TR_STACK_DEPTH) 1889 }
1824 bre
1825 ndb prlntf("\t T%l d:\n", tr->tr_tinme - 1891 static void
1826 t hw >t hw_| bol t); 1892 th_tr ce_hel p(voi d)
1827 for (k = 0; K < tr->tr _depth; k++) 1893 {
1828 mdb_printf("\t\t%\n", tr->tr_stack[k]); 1894 mdb_printf("If given an address of an ill_t, ipif_t, ire_t, or ncec_t,
1829 if (--i <) 1895 "print the\n"
1830 i TR_BUF_MAX - 1; 1896 "corresponding th_trace_t structure in detail. Oherwise, if no "
1831 } 1897 "address is\n"
1832 } 1898 "given, then summarize all th_trace_t structures.\n\n");
1833 return (WALK_NEXT) ; 1899 ndb_printf("Options:\n"
1834 } 1900 "\t-n\tdisplay only entries with non-zero th_refcnt\n");
1901 }
1836 /*
1837 * This is called by ::th_trace (via a callback) when wal king the th_hash 1903 static const ndb_dcnd _t dends[] = {
1838 * list. It calls nodent to find the entries. 1904 {" conn status", ":"
1839 */ 1905 " di spl ay connection structures fromi pcl hash tabl es",
1840 /* ARGSUSED */ 1906 conn_status, conn_status_help },
1841 static int 1907 { "srcid_status", ":"
1842 th_hash_summary(uintptr_t addr, const void *data, void *private) 1908 "di spl ay connection structures fromi pcl hash tabl es",
1843 { 1909 srcid_status },
1844 const th_hash_t *thh = data; 1910 { "ill", "?[-v] [-P v4 | v6] [-s exclusive-ip-zone-nane]",
1845 th_wal k_data_t *thw = private; 1911 "display ill_t structures", ill, ill_help },
1912 { "illif", "?[-P v4 | v6]",
1847 t hw- >t hw_i pst (ui ntptr_t)thh >t hh_i pst; 1913 "display or filter IP Lower Level InterFace structures", illif,
1848 return (mdb_ V\al k(" modent", nodent_summary, private, 1914 illif_help },
1849 (uintptr t)thh >t hh hash)) 1915 { "iphdr", ":[-vf]", "display an | Pv4 header", iphdr },
1850 } 1916 { "ip6hdr", ":[-vf]", "display an | Pv6 header", |p6hdr },
1917 { "ipif", "?[-v] [-P v4 | v6]", "display ipif structures"”,
1852 /* 1918 1pif, ipif_help },
1853 * Print or summarize the th_trace_t structures. 1919 { "ire", "?[-v] [-P v4| v6] [-s exclusive-ip-zone-nanme]",
1854 */ 1920 "display Internet Route Entry structures", ire },
1855 static int 1921 { "nce", "?[-P v4|v6] [-i <interface>]"
1856 th_trace(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv) 1922 "display interface-specific Neighbor Cache structures", nce },
1857 { 1923 { "ncec", "?[-P v4 | v6]", "display Neighbor Cache Entry structures",
1858 th_wal k_data_t thw 1924 ncec },
1925 { "dce", "?[-P v4|v6] [-s exclusive-ip-zone-nane]",
1860 (void) menset (& hw, 0, sizeof (thw)); 1926 "di splay Destination Cache Entry structures", dce },
1927 { "squeue", ":[-v]", "print core squeue_t info", squeue,
1862 if (ndb getopts(argc, argv, 1928 i p_squeue_hel p },
1863 , MDB_OPT_SETBI TS, TRUE, &thw thw non_zero_only, 1929 { "tcphdr", ":", "di splay a TCP header", tcphdr },
1864 NULL) I="argc) 1930 { "udphdr", ":", di splay an UDP header" udphdr 1,
1865 return (DCVD_USAGE) ; 1931 { "sctphdr", ":", "display an SCTP header”, sct phdr },
1932 { "th_trace", "?[-n]", "display th_t race_t structures", th_trace,
1867 if (!(flags & DCVMD_ADDRSPEC)) ({ 1933 th_trace_help },
1868 /* 1934 { NULL }
1869 * No address specified. Walk all of the th_hash_t in the 1935 };
1870 * system and summarize the th_trace_t entries in each.

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

1937 static const ndb_wal ker_t wal kers[] = {

1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

e e e]

#endi f /*

e e e

{

"conn_status", "walk list of conn_t structures",

ip_ stacks_common _wal k_init, conn_status_wal k_step, NULL },
"illif", "walk Tist of ill Tnterface types for all stacks",

i p_stacks_common_wal k_init, illif_walk_step, NULL },
“illif_stack", "walk Iist of ill interface types",

ilhif stack _wal k_init, iIIif_stack_\AaI k_step,

|II|f “stack_wal k_fi ni },

"ill", "walk active ilT_t structures for all stacks",

|
ill_walk_init, ill_walk_step, NULL }
"ipif", "walk list of ipif structures for all stacks",
ipif_walk_init, ipif_walk_step, NULL },
"ipif_list", "walk the linked |7st of ipif structures "

"for a givenill",
ip_list_walk_init, ip_list_walk_step,
ip_|l Iist_V\aI k_fini, &pif_walk_arg }

"srcid", "walk list of srcid_nap structures for all stacks",
i p_st acks common_wal k_init, srcid_wal k_step, NULL },
"srcid_list", "walk list of srci d_rmp structures for a stack",

ip_li st _wal k_init, ip_list_walk_step, ip_list_walk_fini,
&rcid_wal k_arg },

"ire", "walk active ire_t structures",

ire vval k_init, ire_wal k_step, NULL },

"ire_next", "walk ire_t structures in the ctable",

i re next _walk_init, ire_next_wal k_step, NULL },
“nce", "wal k active nce_t structures",

nce_wal k_init, nce_wal k_step, NULL },
"dce", "wal k active dce_t structures",

dce_wal k_i nit, dce_wal k_step, NULL }
"dccp_stacks", "walk all the dccp_stack_t"

ns_wal k_init, dccp_stacks_wal k_step, " NULL },
! coderevi ew */

"ip_stacks", "walk all the ip_stack_t

ns_wal k_i nit, ip_stacks_wal k step, NULL },
"tcp_stacks", "wal k alT the tcp_stack_t*"

ns_wal k_init, tcp_stacks_wal k step, NULL },
"sctp_stacks", "walk allT the sctp_stack_ t",

ns_wal k_i nit, sctp_stacks_wal k _step, NULL },
"udp_stacks", "wal k all the udp_stack t"

ns_wal k_init, udp_stacks_wal k_st ep, NULL },
"th_hash™, "walk all the th_hash_t entries",
th_hash_wal k_init, th_hash_wal k_step, NULL },

“ncec", "walk list of ncec structures for all stacks",
|p stacks common_wal k_i nit, ncec_wal k_step, NULL },
"ncec_stack", "walk list of ncec structures”

ncec st ack_wal k_init, ncec_stack_wal k_step,
ncec stack “wal k_fini },

"udp_hash", "walk list of conn_t structures in ips_ipcl_udp_fanout",
i pcl _hash_v\al k_init, ipcl_hash_wal k_step,
i pcl _hash_wal k_fini, &udp_hash_arg},

"conn_hash", "walk |ist of conn_t structures in ips_ipcl_conn_fanout"
i pcl _hash_wal k_i nit, ipcl_hash_wal k_st ep,
i pcl _hash_wal k_fini, &conn_hash_arg},

"bi nd_hash™, "walk list of conn_t structures in ips_ipcl_bind_fanout",
i pcl hash_wal k_init, ipcl_hash_wal k_step,
i pcl hash wal k_fini, &bind_hash_arg},

proto hash”, "walk Tist of conn t structures in "
"ips_ipcl _pr oto_fanout"
i pcl _hash_wal k_i ni t, i pcl _hash_wal k_st ep,
i pcl _hash_wal k_fini, &proto_hash_arg},
proto v6_hash", "walk list of conn_t structures in "
“i ps_i pcl _pr ot o_fanout _v6",
i pcl _hash_wal k_i nit, ipcl_hash_wal k_st ep,
i pcl _hash_wal k_fini, &roto_v6_hash_arg},
"ilb_stacks", "walk all i i b_stack_t",
ns_wal k_i nit, ilb_stacks_wal k_step, NULL },

25

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

2018 };

{ "ilb_rules", "walk ilb rules in a given ilb_stack_t",
ilb_r uI es_vxal k_init, ilb_rules_wal k_step, NULL },

{ "ilb_servers", "walk server in a givenilb_rule_t"
ilb servers wal k_init, ilb_servers_wal k step, NULL },

{ "ilb_nat_src", "wal k NAT source table of a given ilb_stack_t"
il b_nat _sr c_wal k_init, ilb_nat_src_wal k_step,

il b_commn_wal k_fini },

{ "ilb_conns", "wal k NAT table of a given ilb_stack_t",
i1b_conn V\al k_init, ilb_conn_wal k_step, ilb_common_wal k_fini
{ "ilb_stickys", "walk tlckytable of a given ilb_stack_t”
ilb_sti cky_wal k_init, ilb_sticky_walk_step,
i1 b_common_wal k_fini },
{ "tcps_sc", "walk all the per CPU stats counters of a tcp_stack_t"
tcps_sc_wal k_init, tcps_sc_wal k_step, NULL },

{ NULL }

2020 static const ndb_qops_t

2021 static const ndb_nodinfo_t

2023 const ndb_nodi nfo_t *

2024
2025 |
2026

2028
2029

2031
2032 }

“ndb_i ni t (voi d)

GEl f _Sym sym

ip_qops = { ip_qginfo, ip_rnext, ip_wnext };

“nodinfo = { MDB_API _VERSI ON, dcnds, wal kers };

if (ndb_| ookup_by_obj ("ip", "ipwinit", &ym == 0)
(& p_gops, (uintptr_t)sym st_val ue);

mdb_qgops_i nstal |

return (&nmodinfo);

2034 void

2035
2036 |
2037

2039
2040
2041 }

_mdb_fini (void)

CEl f _Sym sym

if (mdb_l ookup_by_obj ("ip",
nd

2043 static char
2044 ncec_state(int ncec_state)

2045 {
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066 }

*

"ipwinit", &ym

= 0)
b_qgops_renove(& p_qops, (ui nt ptr t)sym st _val ue);

| nconpl ete");

)

SW tch (ncec state) {
case UNCHANGED:

“return (unchanged")
case ND_| NCOWPLET

return ("
case ND_REACHABLE:

return (" r eachabl e");
case ND_STALE:

return ("stale");
case ND_DELAY:

return ("delay");
case ND_PROBE:

return ("probe");
case ND_UNREACHABLE

return ("unreach");
case ND_I NI TI AL:

return ("initial"
defaul t:

return ("??");

2068 static char

*

26

b

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 27

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2069 ncec_| 2_addr (const ncec_t *ncec, const ill_t *ill)

2070 {

2071 uchar_t *h;

2072 static char addr_buf[L2ZMAXADDRSTRLEN ;

2074 if (ncec->ncec_lladdr == NULL) {

2075 return ("None")

2076 }

2078 if (ill->1l_net_type == | RE_| F_RESOLVER) {

2080 if (ill->ill_phys_ addr Iength== 0)

2081 return ("None"

2082 h = mdb_zal loc(ill->ill phys addr _| ength, UM SLEEP);
2083 if (mdb_vread(h, ill->iTl_phys_addr_length,

2084 (uintptr_t)ncec->ncec_|laddr) == -1) {

2085 b_warn(“failed to read hwaddr at %",
2086 ncec->ncec_| | addr) ;

2087 return ("Unknown");

2088 }

2089 mdb_mac_addr (h, ill->ill_phys_addr_| ength,

2090 addr _buf, sizeof (addr_buf));

2091 } else {

2092 return ("None");

2093 }

2094 ndb_free(h, ill->ill_phys_addr_| ength);

2095 return (addr_buf);

2096 }

2098 static char *

2099 nce_| 2_addr(const nce_t *nce, const ill_t *ill)

2100 {

2101 uchar_t *h;

2102 static char addr _buf [L2ZMAXADDRSTRLEN] ;

2103 nbl k_t np;

2104 size_t nblen;

2106 if (nce->nce_dlur_nmp == NULL)

2107 return ("None");

2109 if (ill->11_net_type == | RE_| F_RESOLVER) {

2110 if (nmdb_vread(&np, sizeof (nblk_t),

2111 (uintptr_t)nce->nce_dlur_np) == -1) {

2112 mdb_warn("failed to read nce_dlur_np at %",
2113 nce- >nce_dl ur_np);

2114 return ("None");

2115 }

2116 1t (ill->ill phys addr _length == 0)

2117 return ("None");

2118 nmblen = np. b_wptr - rrp.b_rptr,

2119 if (mblen > (sizeof (dl _unitdata req_t) + MAX SAP_LEN) ||
2120 ill->i11_phys_addr_Tength > MAX_SAP_LEN |]
2121 (NCE_LL_ADDR OFFSET(ill) +

2122 il->ill phys addr _I ength) > nblen) {

2123 return ("Unknown");

2124 }

2125 h = mdb_zal | oc(nbl en, UM SLEEP);

2126 if (nmdb_vread(h, nblen, (uintptr_t)(np.b_rptr)) == -1) {
2127 ndb_warn("failed to read hwaddr at %",
2128 np.b_rptr + NCE_LL_ADDR OFFSET(ill));
2129 return ("Unknown");

2130 }

2131 mdb_mac_addr (h + NCE_LL_ADDR OFFSET(ill),

2132 ill=>i Il _phys_addr_Tength, addr_buf, sizeof (addr_buf));
2133 } else {

2134 return ("None");

2135 }

2136 mdb_free(h, nblen);
2137 return (addr_buf);
2138 }

2140 static void
2141 ncec_header (uint_t flags)

2142 {
2143

2145
2146
2147
2148 }

2150 int

if ((flags & DCVMD_LOCPFIRST) || !(flags & DCVMD_LOOP)) {
nmdb pr| ntf(" °/$u>°/r?s % 20s % 10s % 8s % 5s %%/ u>\n"
"ADDR', "HWADDR', "STATE", "FLAGS', "ILL", "IP ADDR)

2151 ncec(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)

2152 {
2153
2154
2155
2156

2158
2159
2160

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171

2173

2175
2176
2177
2178
2179
2180
2181
2182
2183
2184

2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196 }

ncec_t ncec;
ncec_chdata_t id;

int ipversion = 0;

const char *opt_P = NULL;

if (ntib getopts(argc, argv
P, MDB_OPT_STR &opt P, NULL) != argc)
return (DOVD_USAGE);

if (opt_P != NULL)

if (strcr'rp("v4" opt_P) == 0) {
i pversion = TPV4 VERSI o\

} else if (strcnp("v6" opt_P) == 0) {
i pversion = I PV6 _VERSI O\

} else {
ndb_warn("invalid protocol '%’'\n", opt_P);
return (DCVD_USAGE);

}
if (flags & DOMD_ADDRSPEC) {

if (mdb_vread(&ncec, sizeof (ncec_t), addr) == -1)
ndb_warn("failed to read ncec at %\ n" addr)
return (DCVMD_ERR);

}

1f (ipversion != 0 & ncec.ncec_ipversion != ipversion) {
ndb_printf ("I P Version msnmatch\n");
return (DCVD_ERR);

}
ncec_header (fl ags);
return (ncec_fornat(addr, &ncec, ipversion));

} else {
id.ncec_addr = addr;
id.ncec_ipversion = ipversion;
ncec header(fl ags) ;
if (mdb_wal k("ncec", (mdb_wal k_cb_t)ncec_cb, &ld) == -1) {
ndb_war n(" failed to walk ncec table\n"”);
return (DCVD_ERR);

}
Eet urn (DCVD_CK) ;

2198 static int
2199 ncec_fornat (uintptr_t addr, const ncec_t *ncec, int ipversion)

2200 {

28

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 29

2201 static const ndb_bi t mask_t ncec_flags[] = {

2202 { P . NCE_F_NONUD, - F_NONUD }
2203 {" . NCE_F_I SROUTER, NCE_F_| SRQUTER },
2204 {" N', NCE_F_ NONUD, NCE_F_NONUD 1
2205 { "A", NCE_F_ANYCAST, NCE_F_ANYCAST },
2206 { "C', NCE_F_CONDEMNED, NCE_F_CONDEMNED 1},
2207 { "U', NCE_F_UNSOL_ADV, NCE_F_UNSOL_ADV },
2208 { "B", NCE_F_BCAST, NCE_F_BCAST 1,
2209 { NULL, O, 0 }
2210 }i

2211 #define NCE_MAX_FLAGS (sizeof (ncec_flags) / sizeof (ndb_bitmask_t))
2212 struct in_addr nceaddr;

2213 ilr_t ill;

2214 char ill nan'e[LI FNANVSI Z] ;

2215 char fl agsbuf [NCE_MAX FLAGS]

2217 if (mdb_ vread(&lll sizeof (ill), (uintptr t)ncec >ncec_ill) == -1) {
2218 mdb_war n(" failed to read ncec _ill at %",

2219 ncec->ncec_ill);

2220 return (DCMD_ERR);

2221 }

2223 (void) mdb_readstr(ill_name, MN(LIFNAMBI Z, ill.ill_nane_I ength),
2224 (uintptr_t)ill.ill_nane);

2226 ndb_snprintf(flagsbuf, sizeof (flagsbuf), "%b",

2227 ncec- >ncec_fl ags, ncec_flags);

2229 if (ipversion != 0 &k ncec->ncec_i pversion != ipversion)
2230 return (DCMD_OK);

2232 if (ncec->ncec_ipversion == | PV4_VERSION) {

2233 | N6_VANMAPPED_TO INADDR(&ncec >ncec_addr, &nceaddr);
2234 mdb_ pr| ntf("%p % 20s % 10s "

2235 "% 8s "

2236 "%5s %B\n",

2237 addr, ncec_l 2_addr(ncec, &ll),

2238 ncec_stat e(ncec->ncec_state),

2239 f I agsbuf,

2240 ill_name, nceaddr.s_addr);

2241 } else {

2242 mdb_printf("%p % 20s % 10s %8s % 5s %\ n",

2243 addr, ncec_|2_addr(ncec, &ll),

2244 ncec_stat e(ncec- >ncec_state),

2245 f I agsbuf,

2246 ill_name, &ncec->ncec_addr);

2247 }

2249 return (DCVMD_CXK) ;

2250 }

2252 static uintptr
2253 ncec_get _next hash _tbl (uintptr_t start, int *index, struct ndp_g_s ndp)

2254 {
2255
2256

2258

2260
2261
2262
2263
2264
2265
2266 }

uintptr_t addr = start;
int 1 = *index;

while (addr == NULL) {
if (++i >= NCE_TABLE_SI ZE)
break;
addr = (uintptr_t)ndp.nce_hash_tbl[i];

*index = i;
return (addr);

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

2268 static int
2269 ncec_wal k_step(mdb_wal k_state_t *wsp)

2270 {

2271 uintptr_t kaddr4, kaddr6;

2273 kaddr4 = wsp->wal k_addr + OFFSETOF(i p_stack_t, ips_ndp4);

2274 kaddr6 = wsp->wal k_addr + OFFSETOF(i p_stack_t, ips_ndp6);

2276 if (mdb_vread(&addr4, sizeof (kaddr4), kaddr4) == -1) {

2277 mdb_warn("can’t read ips_ip_cache_table at %", kaddr4);
2278 return (WALK_ERR);

2279 }

2280 i1 f (mdb_vread(&addr6, sizeof (kaddr6), kaddr6) == -1) {

2281 mdb_warn("can’t read ips_ip_cache_table at %", kaddr6);
2282 return (WALK_ERR);

2283 }

2284 i1 f (mdb_pwal k(" ncec_stack", wsp->wal k_cal | back, wsp->wal k_cbdat a,
2285 kaddr4) == -1) {

2286 mdb_warn("coul dn’t wal k 'ncec_stack’ for ips_ndp4 %",
2287 kaddr 4) ;

2288 return (WALK_ERR);

2289 1

2290 if (mdb_pwal k(" ncec_stack" wsp-- >wal k_cal | back,

2291 wsp->wal k_chdat a, kaddr6) == -1)

2292 mdb_war n(" couldn’t walk ' ncec_stack’ for ips_ndp6 %",
2293 kaddr 6) ;

2294 return (V\ALK_ERR);

2295 }

2296 return (WALK_NEXT) ;

2297 }

2299 static uintptr_t
2300 i pcl _hash_get _next _connf _tbl (i pcl _hash_wal k_data_t *iw)

2301 {

2302 struct connf_s connf;

2303 uintptr_t addr = NULL, next;

2304 int index = iw >connf_tbl _index;

2306 do {

2307 next = iw >hash_tbl + index * sizeof (struct connf_s);
2308 if (++index >= iw >hash_tbl_size) {

2309 addr = NULL;

2310 break;

2311

2312 1f (mdb_ vread(&connf si zeof (struct connf_s), next) == -
2313 ndb_war n(" failed to read conn _t at %", next);
2314 return (NULL);

2315 }

2316 addr = (uintptr_t)connf.connf_head;

2317 } while (addr == NULL);

2318 i w >connf _tbl _i ndex = index;

2319 return (addr);

2320 }

2322 static int
2323 ipcl _hash_wal k_i nit (ndb_wal k_state_t *wsp)

2324 {

2325 const hash_wal k_arg_t *arg = wsp->wal k_ar g;

2326 i pcl _hash wal k_data_t *iw

2327 uintptr_t tbladdr;

2328 uintptr_t si zeaddr

2330 iw = mdb_ aI | oc(sizeof (ipcl_hash_walk_data_t), UM SLEEP);
2331 i w>conn = ndb_al | oc(si zeof (conn_t), UM SLEEP);

2332 tbl addr = wsp->wal k_addr + arg->tbl off;

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2333

2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356

2358
2359
2360
2361
2362 }

si zeaddr = wsp->wal k_addr + arg->size_off;

if (mdb_vread(& w >hash_tbl, sizeof (uintptr_t), tbladdr) == -1)
mdb_warn("can’t read fanout table addr at %", tbladdr);
mdb_free(iw >conn, sizeof (conn_t));
mdb_free(iw, sizeof (ipcl_hash_walk_data_t));
return (WALK_ERR);

}
if (arg->tbl_off == OFFSETOF(ip_stack_t, ips_ipcl_proto_fanout_v4) ||
arg->tbl _off == OFFSETOF(i p_st ack_t, ips_ipcl_proto_fanout_v6)) {
i w>hash_t bl _size = | PPROTO | MAX

} else {
if (mdb_ vread(&Jw>hash tbl _size, sizeof (int),
si zeaddr) == {
mdb_warn("can’t read fanout table size addr at %",
si zeaddr) ;
ndb_f ree(i w >conn, sizeof (conn_t));
mdb_free(iw, sizeof (ipcl_hash_walk_data_t));
return (WALK_ERR);
}
Iw>connf _tbl _index = O;
wsp->wal k_addr = ipcl_hash_get _next_connf _thl (iw);
wsp->wal k_data = iw

if (wsp->wal k_addr != NULL)
return (WALK_NEXT);
el se
return (WALK_DONE) ;

2364 static int

2365 i pcl
2366 {
2367
2368
2369
2370

2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383

2385
2386
2387
2388
2389

2391
2392 }

_hash_wal k_step(rmdb_wal k_state_t *wsp)

uintptr_t addr = wsp->wal k_addr;

i pcl _hash_wal k_data_t *iw = wsp->wal k_dat a;
conn_t *conn = iw >conn;

int ret = WALK_DONE;

while (addr != NULL) {
if (mdb_vread(conn, sizeof (conn_t), addr) == -1) {
ndb_warn("failed to read conn_t at %", addr);
return (WALK_ERR);

}
ret = wsp->wal k_cal | back(addr, iw, wsp->wal k_cbhdat a) ;
if (ret != WALK_NEXT)

br eak;
addr = (uintptr_t)conn->conn_next;
}
if (ret == WALK_NEXT) {
wsp->wal k_addr = ipcl _hash_get _next_connf_tbl (iw);
if (wsp->wal k_addr != NULL)
return (WALK_NEXT) ;
el se
return (WALK_DONE) ;
}

return (ret);

2394 static void

2395 i pcl
2396 {
2397

_hash_wal k_fini (nmdb_wal k_state_t *wsp)

i pcl _hash_wal k_data_t *iw = wsp->wal k_dat a;

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2399 ndb_f ree(i w >conn, sizeof (conn_t));

2400 mdb_free(iw, sizeof (ipcl_hash_walk data t));
2401 }

2403 [*

2404 * Called with wal k_addr being the address of ips_ndp{4, 6}
2405 */

2406 static int
2407 ncec_stack_wal k_i ni t (nmdb_wal k_state_t *wsp)
{

2408

2409 ncec_wal k_data_t *nw,

2411 if (wsp->wal k_addr == NULL)

2412 mdb_war n("ncec_stack requires ndp_g_s address\n");
2413 return (WALK_ERR);

2414 }

2416 nw = mdb_al | oc(si zeof (ncec_wal k_data_t), UM SLEEP);
2418 if (mdb_vread(&w >ncec i p_ndp, sizeof (struct ndp_g_s),
2419 wsp- >wal k addr) == -1)

2420 mdb_warn("failed to read 'ip_ndp’ at %",

2421 wsp->wal k_addr) ;

2422 mdb_free(nw, sizeof (ncec_walk_data_t));

2423 return (WALK_ERR);

2424 }

2426 /*

2427 * ncec_get_next_hash_tbl () starts at ++i , so initialize index to -1
2428 */

2429 nw >ncec_hash_tbl _i ndex = -1;

2430 wsp->wal k_addr = ncec_get _next_hash_t bl (NULL,

2431 & w >ncec_hash_t bl _i ndex, nw >ncec_i p_ndp);

2432 wsp- >wal k_data = nw;

2434 return (WALK_NEXT);

2435 }

2437 static int
2438 ncec_stack_wal k_step(ndb_wal k_state_t *wsp)

2439 {

2440 uintptr_t addr = wsp->wal k_addr;

2441 ncec_wal k_data_t *nw = wsp->wal k_dat a;

2443 if (addr == NULL)

2444 return (WALK_DONE) ;

2446 if (mdb_vread(&w >ncec, sizeof (ncec_t), addr) ==
2447 midb_warn("failed to read ncec_t at %", addr)
2448 return (WALK_ERR);

2449 }

2451 wsp->wal k_addr = (uintptr_t)nw >ncec. ncec_next;

2453 wsp->wal k_addr = ncec_get _next _hash_t bl (wsp->wal k_addr,
2454 &nw->ncec_hash_t bl _i ndex, nw>ncec_i p_ndp);

2456 return (wsp->wal k_cal | back(addr, nw, wsp->wal k_cbdata));
2457 }

2459 static void
2460 ncec_stack_wal k_fini (ndb_wal k_state_t *wsp)
2461 {

2462 mdb_free(wsp->wal k_data, sizeof (ncec_walk_data_t));

2463 }

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c 33 new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

2465 /* ARGSUSED */ 2531 mdb pr| ntf(" % ?s %85 Y8s %103 % ?s %'75 % lOsf’/$/u>\n
2466 static int 2532 ADDR', "NAME', "VER', "TYPE', "WQ', "IPST" " FLAGS");
2467 ncec_cb(uintptr_t addr, const ncec_wal k_data_t *iw, ncec_cbdata_t *id) 2533 nmdb_pri ntf(% ?s YdsYUds % 2s\n”
2468 { 2534 "PHYI NT", "CNT", "",k " G?CIJP");
2469 ncec_t ncec; 2535 mdb_printf(" Ycu>9BOS YU/ U>\ n", "");
2536 } else {
2471 if (mdb_ vread(&ncec si zeof (ncec_t), addr) == -1) { 2537 mdb_printf("%u>%?s %8s % 3s % 10s %s % ?s % 10s%/u>\n",
2472 mdb_warn("failed to read ncec at %", addr); 2538 "ADDR', "NAME', "VER', "TYPE', "CNT", "WQ', "FLAGS");
2473 return (WALK_NEXT) ; 2539 }
2474 } 2540 }
2475 (void) ncec_fornat(addr, &ncec, id->ncec_ipversion);
2476 return (WALK_NEXT) ; 2542 static int
2477 } 2543 ill _format(uintptr_t addr, const void *illptr, void *ill_cb_arg)
2544 {
2479 static int 2545 il _t o xill = (ill_t *)illptr;
2480 ill _wal k_init(ndb_wal k_state_t *wsp) 2546 ill _chdata t *illcb = ill_cb_arg;
2481 { 2547 bool ean_t verbose = illcbh->verbose;
2482 if (mdb_l ayered_wal k("illif", wsp) == -1) { 2548 phyi nt _t phyi ;
2483 mdb_warn("can’t walk "illif’'"); 2549 static const ndb_bi tmask_t frmasks[] = {
2484 return (WALK_ERR); 2550 "R', PHYI _RUNNI NG, PHYI _RUNNI NG)
2485 } 2551 P, PHYI _PROM SC, PHYI _PROM SC 0
2486 return (WALK_NEXT); 2552 SAVA PHYI _VI RTUAL, PHY! —VI RTUAL ,
2487 } 2553 B PHYI _| PMP, PHYI _| PMP s
2554 e PHYI _FAI LED, PHYI _FAI LED s
2489 static int 2555 "s', PHYI _STANDBY, PHYI _STANDBY 0
2490 ill_wal k_step(nmdb_wal k_state_t *wsp) 2556 iy PHYI _I NACTI VE, PHYI _I NACTI VE ,
2491 { 2557 g, PHYI _OFFLI NE, PHYI _OFFLI NE s
2492 il _if_t ill_if; 2558 T, | LLF_NOTRAI LERS, | LLF_NOTRAI LERS },
2559 "A", | LLF_NOARP, | LLF_NQCARP f
2494 if (mdb_vread(& Il _if, sizeof (ill_if_t), wsp->wal k_addr) == -1) { 2560 "M, I LLF_MULTI CAST, I LLF_MJLTI CAST },
2495 mdb_warn("can’t read ill _ f _t at %", wsp->wal k_addr); 2561 "F, | LLF_ROUTER, | LLF_ROUTER ,
2496 return (WALK_ERR); 2562 "D, I LLF_NONUD, I LLF_NONUD s
2497 } 2563 "X, I LLF_NORTEXCH, I LLF_NORTEXCH s
2498 wsp->wal k_addr = (uintptr_t)(wsp->wal k_addr + 2564 NULL, 0, 0
2499 of fsetof (ill _if_t, ilTif_avl_by ppa)); 2565 };
2500 if (mdb_pwal k(" avl , wsp- >wal k_cal | back, wsp->wal k_cbdat a, 2566 static const ndb_bitmask_t v_fnasks[] = {
2501 wsp->wal k_addr) == -1) { 2567 " RUNNI NG', PHYI _RUNNI NG, PHYI _RUNNI NG ,
2502 ndb_warn(“can’t walk "avl’'"); 2568 "PROM SC', PHYI _PROM SC, PHYI _PROM SC 0
2503 return (WALK_ERR); 2569 " VI RTUAL" PHYI _VI RTUAL, PHY! —VI RTUAL ,
2504 } 2570 "I PMP, PHYI _I PMP, PHYI _I PMP s
2571 "FAl LED", PHYI _FAI LED, PHYI _FAI LED s
2506 return (WALK_NEXT) ; 2572 " STANDBY" , PHYI _STANDBY, PHYI _STANDBY 0
2507 } 2573 "1 NACTI VE", PHYI _I NACTI VE, PHY! _I| NACTI VE s
2574 " OFFLI NE", PHYI _OFFLI NE, PHYI _OFFLI NE s
2509 /* ARGSUSED */ 2575 "NOTRAI LER", | LLF_NOTRAI LERS, | LLF_NOTRAI LERS 1},
2510 static int 2576 " NOARP" I LLF_NOARP, I LLF_NOARP 0
2511 ill _cb(uintptr_t addr, const ill_walk_data_t *iw, ill_chdata_t *id) 2577 “MULTI CAST", | LLF_MJLTI CAST, | LLF_MULTI CAST 1},
2512 { 2578 " ROUTER", | LLF_ROUTER, | LLF_ROUTER s
2513 ilr_t ill; 2579 " NONUD" , I LLF_NONUD, I LLF_NONUD s
2580 " NORTEXCH" , | LLF_NORTEXCH, | LLF_NORTEXCH 0
2515 if (mdb_vread(& I, sizeof (ill_t), (uint ptr _t)addr) == -1) { 2581 NULL, 0, 0
2516 mdb_warn("failed to read i1ll at %", addr); 2582 };
2517 return (WALK_NEXT); 2583 char ill_nane[LI FNAMVSI Z] ;
2518 } 2584 int cnt;
2585 char *typebuf;
2520 /* If ip_stack_t is specified, s ip ILLs that don’t belong to it. */ 2586 char sbuf [DEFCOLS] ;
2521 if (id->ill_ipst I'= NULL & ill.ill_ipst !=1id->ill_ipst) 2587 int ipver = illcb->ill_ipversion;
2522 return (WALK_NEXT) ;
2589 if (ipver !'=0)
2524 return (ill_format((uintptr_t)addr, & ll, id)); 2590 if ((ipver == IPVA_VERSION && ill->ill _isv6) ||
2525 } 2591 (ipver == IPV6_VERSION && !ill->iIT isv6)) {
2592 return (WALK_NEXT);
2527 static void 2593 }
2528 il | _header (bool ean_t verbose) 2594 }
2529 { 2595 if (mdb_vread(&phyi, sizeof (phyint_t),

2530 if (verbose) { 2596 (uintptr _t)ill-5ill _phyint) == -1)

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 35 new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c
2597 mdb_warn("failed to read ill_phyint at %",
2598 (uintptr_t)ill->ill_phyint); 2664 if (mib getopts(argc, argv,
2599 return (WALK_NEXT); 2665 , MDB_OPT_SETBI TS, TRUE, &verbose,
2600 } 2666 ’s’, MDB_OPT_STR, &zone_| nama
2601 (voi d) ndb_readst r(| _name, M N(LIFNAMSI Z, ill->ill_nane_| ength), 2667 "P', MDB_OPT_STR, &opt_P, NULL) 1= argc)
2602 (uintptr_t)ill->ill_nane); 2668 return (DCVD_USAGE);
2604 switch (ill->ill_type) { 2670 /* Follow the specified zone nane to find a ip_stack_t*. */
2605 case O: 2671 if (zone_name != NULL)
2606 typebuf = "LOOPBACK"; 2672 i pst = zone_to_i ps(zone_nane);
2607 br eak; 2673 if (ipst == NULL)
2608 case | FT_ETHER: 2674 return (DCVD_USAGE);
2609 typebuf = "ETHER'; 2675 }
2610 br eak;
2611 case | FT_OTHER: 2677 if (opt_P!= NULL) {
2612 typebuf = "OTHER'; 2678 if (strenp(”v4", opt P ==0) {
2613 br eak; 2679 i pversion = | PV4 VERSI ON;
2614 defaul t: 2680 } else if (strcnp("v6" opt_P) == 0) {
2615 typebuf = NULL; 2681 i pversion = I PV6 _VERSI O\
2616 br eak; 2682 } else {
2617 } 2683 ndb_warn("invalid protocol '%’'\n", opt_P);
2618 cnt = ill->ill_refent + ill->i11_ire_cnt +ill->1l_nce_cnt + 2684 return (DOMD_USAGE);
2619 ill->i11_iTmcnt +|II—>iII_ncec_cnt; 2685 }
2620 ndb_printf("%?p %8s %3s " 2686 }
2621 addr, ill_name, ill->il 1 _isve ? "v6" : "v4");
2622 if (typebuf !'= NULL) 2688 id. verbose = verbose;
2623 mdb_printf ("% 10s ", typebuf); 2689 id.ill_addr = addr;
2624 el se 2690 idoill_i pver5| on = ipversion;
2625 mdb_printf("%10x ", ill->ill_type); 2691 id.ill_ipst = ipst;
2626 if (verbose)
2627 mdb_printf("%?p % ?p %I I1b\n" 2693 ill_he ader(ver bose) ;
2628 PHE=>0 0wy, il ->i 0] |pst 2694 if (flags & DCVD_ADDRSPEC) {
2629 ill->ill_flags | phyi .phylnt _flags, v_fmasks); 2695 if (mdb_vread(& Il _data, sizeof (ill_t), addr) == -1) {
2630 mdb_printf ("% ?p %d%is % ?p\n", 2696 mdb_war n("fai | ed to read ill at %\ n", addr);
2631 111->11_phyint, cnt, "", |II—>|II_grp); 2697 return (DCVMD_ERR);
2632 mdb_snprintf (sbuf, si zeof (sbuf), "%s 98s", 2698 1
2633 si zeof (umtptr _t) * 2, " ""); 2699 (void) ill_format(addr, &Il _data, & d);
2634 mdb pr| ntf("%|\n%+--> 98d % 18s " 2700 } else {
2635 ‘references from active threads\n", 2701 if (mdb_wal k("ill", (nmdb_walk_cb_t)i cb & d) == -1) {
2636 sbuf, sbuf, ill->ill_refcnt, "ill_refcnt"); 2702 ndb_warn("failed to walk ills\n");
2637 mdb_printf("%s %d % 18s ires referencing this ill\n", 2703 return (DCVMD_ERR);
2638 strlen(sbuf) "toodll->ill_ire_ent, "ill_ire cnt") 2704 }
2639 mdb_printf("%s 9%7d % 18s nces referencmg this T11\n" 2705 }
2640 strlen(sbuf), "", ill->ill_nce_cnt, "ill_nce_cnt") 2706 return (DCVMD_CXK);
2641 mdb_printf("%s %d % 18s ncecs referencmg this ill\n" 2707 }
2642 strl en(sbuf) "", ill->1l_ncec_cnt, "ill_ncec_cnt ")
2643 mdb_printf("%s %7d % 18s ilms~ referen0|ngth|5|ll\n 2709 static void
2644 strlen(sbuf), "", ill->ill_ilment, "ill_ilment"); 2710 ill _hel p(void)
2645 } else { 2711 {
2646 mdb_printf("%d % ?p %I1b\n", 2712 ndb_printf("Prints the following fields: ill ptr, name, "
2647 cnt, ill->ill_wqg, 2713 "I P version, count, ill type and ill flags.\n"
2648 ill->11_flags | phyi.phyint_flags, fnasks); 2714 "The count field is a sumof individual refcnts and is expanded "
2649 } 2715 "with the -v option.\n\n");
2650 return (WALK_NEXT) ; 2716 ndb_printf("Options:\n");
2651 } 2717 ndb_printf("\t-P v4 | veé"
2718 "\tfilter ill structures for the specified protocol\n");
2653 static int 2719 }
2654 ill (uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
2655 { 2721 static int
2656 ill_t ill_data; 2722 ip_list_walk_init(ndb_wal k_state_t *wsp)
2657 ill _cbdata_t i d 2723 {
2658 int ipversion = 0O; 2724 const ip_list_walk_arg_t *arg = wsp->wal k_arg;
2659 const char *zone_name = NULL; 2725 ip_list_walk data_t *iw
2660 const char *opt_P = NULL; 2726 uintptr_t addr = (uintptr_t)(wsp->wal k_addr + arg->off);
2661 uint_t verbose = FALSE;
2662 ip_stack_t *ipst = NULL; 2728 if (wsp->wal k_addr == NULL) {

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 37

2729 mdb_warn("only | ocal wal ks supported\n”);

2730 return (WALK_ERR);

2731 1

2732 if (mdb_vread(&wsp->wal k_addr, sizeof (uintptr_t),
2733 addr) == -1

2734 mjb_warn(failed to read list head at %", addr);
2735 return (WALK_ERR);

2736 }

2737 iw = mdb_al | oc(sizeof (ip_list_walk_data_t), UM SLEEP);
2738 i w>nextof f = arg->nextp_off;

2739 wsp->wal k_data = iw

2741 return (WALK_NEXT) ;

2742 }

2744 static int

2745 ip_list_wal k_step(ndb_wal k_state_t *wsp)

2746 {

2747 ip_list_walk _data_t *iw = wsp->wal k_dat a;

2748 uintptr_t addr = wsp->wal k_addr;

2750 if (addr == NULL)

2751 return (WALK_DONE) ;

2752 wsp->wal k_addr = addr + iw >nextoff;

2753 i f (mdb_vread(&wsp- >wa| k_addr, sizeof (uintptr_t),
2754 wsp- >wal k addr) 1)

2755 mdb_war n(" fal I ed to read list node at %", addr);
2756 return (WALK_ERR);

2757

2758 return (wsp->wal k_cal | back(addr, iw, wsp->wal k_cbhdata));
2759 }

2761 static void

2762 ip_list_wal k_fini(ndb_wal k_state_t *wsp)

2763 {

2764 mdb_free(wsp->wal k_data, sizeof (ip_list_walk_data_t));
2765 }

2767 static int

2768 ipif_wal k_init(ndb_wal k_state_t *wsp)

2769 {

2770 if (mdb_l ayered_wal k("ill", wsp) == -1) {

2771 b_warn("can’t walk "i1lls"");

2772 return (WALK_ERR);

2773 }

2774 return (WALK_NEXT) ;

2775 }

2777 static int

2778 ipif_wal k_step(mdb_wal k_state_t *wsp)

2779 {

2780 if (mdb_pwal k("ipif_list", wsp->wal k_cal | back, wsp->wal k_cbdat a,
2781 wsp->wal k_addr) == -1)

2782 ndb_warn("can’t walk "ipif_list’");

2783 return (WALK_ERR);

2784 }

2786 return (WALK_NEXT)

2787 }

2789 /* ARGSUSED */

2790 static int

2791 ipif_cb(uintptr_t addr, const ipif_walk_data_t *iw, ipif_cbdata_t *id)
2792 {

2793 ipif_t ipif;

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806

2808
2809

if (mdb_ vread(&lplf sizeof (ipif_t), (umtptr t)addr) == -1) {
mdb_war n(" failed to read |p|f at %", addr);
return (WALK_NEXT);

}
if (mdb_vread(& d->ill, sizeof (ill_t),
(uintptr t)|p|f ipif_ill) == -1)
mdb_warn("failed to read ill at %", ipif.ipif_ill);
return (WALK_NEXT) ;

}
(void) ipif_format((uintptr_t)addr, & pif, id);
return (WALK_NEXT) ;

}

static void
i pi f_header (bool ean_t verbose)

2810 {

2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822

2824
2825
2826
2827
2828
2829
2830
2831

2833
2834

if (verbose) {
mdb prlntf(% ?s %103 %3s % ?s %85 %305\n
"ADDR', "NAME", "CNT", "ILL", "STFLAGS',
mdb_pri ntf(" %\ N\ n",
" LCLADDR", "BRCADCAST@
mdb_printf(" Y%u>9B0sY%s/ U>\ ", ")
} else {
nmdb pr|ntf(% ?s % 10s %6s % ?s %8s % 30s\n",
"NAME", "CNT", "ILL", "STFLAGS', "FLAGS');
ndb pr| ntf(%6\ NYKU>YBOSY/ us\ n” ., LCLADDR', "");

“FLAGS') ;

}

#i fdef _BI G_ENDI AN
#def i ne i p_nt ohl _32(x)
#el se

#define ip_ntohl _32(x) (ui L) << 24) |\

(uint32_t) << 8) & 0xff0000) | \
(ui) >> 8) & 0xffo0) | \
ui >> 24))

#endi f

int
mask_to_prefixlen(int af, const in6_addr_t *addr)

2835 {

2836
2837
2838

2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855

2857
2858

if (af == AF_INET6) {
for (i =0; 1 < 4; i++)
if (addr->s6_addr32[i]
len += 32;

= OxFPFFFFff) {

} else {
mask = addr->s6_addr32[i];
br eak;

} else {
mask = VA4_PART_OF_V6((*addr));

}
if (mask > 0)

len += (33 - mdb_ffs(ip_ntohl _32(mask)));
return (len);

}

static int

ipif_format(uintptr_t addr, const void *ipifptr, void *ipif_cb_arg)

2859 {

2860

const ipif_t *ipif =ipifptr;

38

2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892

2894
2895
2896
2897
2898
2899
2900
2901
2902
2903

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 39
i pi f _chdata_t *|p|fcb=|p _cb_arg;
bool ean_t verbose = ipifcbh->verbose;
char ilT_nane[LI FNAVSI Z] ;
char buf[LI FNAMSI Z] ;
int cnt;
static const rmb _bi t mask_t sfmisks[] = {
s I Pl F_CONDEMNED, | PI F_CONDEMNED}
"CH', | Pl F_CHANG NG, I Pl F_CHANG NG,
"SL", | Pl F_SET_LI NKLOCAL, | Pl F_SET_LI NKLOCAL},
NULL, 0, 0 }
s
static const ndb_bitmask_t fmasks[] = {
"UP", 1Pl F_| I Pl F_UP o
"UNN', IPIF_UNNUNBERED | PI F_UNNUVBERED} ,
" I Pl F_DHCPRUNNI NG, | PI F_DHCPRUNNI NG} ,
"PRI V', | Pl F_PRI VATE, | Pl F_PRI VATE},
" NOXMT™ I Pl F_NOXM T, I Pl F_NOXM T},
“NOLCL", | Pl F_NOLOCAL, | Pl F_NOLOCAL},
"DEPR', | Pl F_DEPRECATED, | PI F_DEPRECATED} ,
" PREF" , | Pl F_PREFERRED, | PI F_PREFERRED}
"TEMP", | Pl F_TEMPORARY, | Pl F_TEMPORARY} ,
" ACONF" , | PI F_ADDRCONF, | PI F_ADDRCONF} ,
" ANY", | PI F_ANYCAST, | Pl F_ANYCAST} ,
" NFAI L", | Pl F_NOFAI LOVER, | PI F_NOFAI LOVER},
) NULL, 0, 0
char flagsbuf[2 * A CNT(fnasks)];
char bitfields[A CNT(fnasks)];
char sflagsbuf[A CNT(sf nasks)]
char sbuf[DEFCOLS], addr str[INETG ADDRSTRLEN] ;
int ipver = ipi fche >i pi f _i pversi on;
int af;
if (ipver !'=0) {
if ((ipver == IPVA_VERSION && ipifcb->ill.ill_isv6) ||
(ipver == IPV6_VERSION && !ipifcb->ill.ilT_isv6)) {
return (WALK_NEXT);
) }
if ((mdb_readstr(ill_name, M N(LI FNAMSI Z,
ipifcb->ill.ill_name_| ength),
(uintptr_t)i plfcb—> ill.ill nama)) == -1) {
mdb_warn("failed to read ill_nane of ill 9%\n", ipifcb->ill);
return (WALK_NEXT);

2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919

2921

2923
2924
2925
2926

}
if (ipif->ipif_id!=0)
mdb_snpri ntf (buf,
ill_name, ipif->ipif_id);
} else {
mdb_snpri ntf (buf,

}

mdb_snprintf(bitfields, sizeof (bltflelds)
ipif->ipif_addr_ready ? ADR' ,
ipif->ipif_was_up 2 ", W' : ""
ipif->ipif_was_dup ? ", W'

mdb_snprintf(flagsbuf, sizeof (flagsbuf)
ipif->ipif_flags, frmasks, bitfields);

LI FNAMBI Z, " %",

mdb_snpri ntf (sfl agsbuf, si zeof (sfl agsbuf) ,

ipif->ipif_state_flags, sfmasks);
cnt = ipif->ipif_refcnt;

if (ipifcb->ill.ill_isve)

LI FNAMSI Z, " %s: %",

ill_name);

",

"% 1 b%",

"op"

mdb_snprintf(addrstr, sizeof (addrstr), "%\,

&J pi f->i pi f_v6l cl _addr);
af = AF_I| NET6;

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

2927 } else {

2928 mdb_snprintf(addrstr, sizeof (addrstr), "9%"

2929 V4_PART_OF V6((i pif->ipif_v6lcl_addr))):

2930 af = AF_I NET;

2931 }

2933 if (verbose) {

2934 mdb_printf("%?p % 10s %3d % ?p %8s % 30s\n",

2935 addr, buf, cnt, ipif->ipif_ill,

2936 sfl agsbuf , fl agsbuf)

2937 mdb_snprintf(sbuf, si zeof (sbuf) %”s %2s",

2938 sizeof (uintptr_t) * "

2939 mdb prlntf("f’/s [\ n% +--> 94d % 155 "

2940 "Active consistent reader cnt\n"

2941 sbuf, sbuf, ipif->ipif_refcnt, i pif_refcnt");
2942 mdb_printf ("% s/ %\ n",

2943 addrstr, mask_to_prefixlen(af, & pif->ipif_vénet_nask));
2944 |f(|p|fcb>||| ill_isv6)

2945 mdb_printf ("% MNn", & pif->ipif_v6brd_addr);
2946 } else {

2947 ndb_printf("%I\n",

2948 VA_PART_OF_V6((i pif->ipif_vebrd_addr)));
2949

2950 } else {

2951 mdb_printf("%?p % 10s %6d % ?p %8s % 30s\n",

2952 addr, buf, cnt, ipif->ipif_ill,

2953 sfl agsbuf, fl agsbuf)

2954 mdb_printf(" % s/ %l\ n" ,

2955 addrstr, mask_to_prefixlen(af, & pif->ipif_vénet_nask));
2956 }

2958 return (WALK_NEXT) ;

2959 }

2961 static int

2962 ipif(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
2963 {

2964 ipif_tipif;

2965 ipif_chdata_t id;

2966 int ipversion = 0;

2967 const char *opt_P = NULL;

2968 uint _t verbose = FALSE;

2970 if (mib getopts(argc, argv,

2971 v', MDB_OPT_SETBITS, TRUE, &verbose,

2972 P, MDB_OPT_STR, &opt_P, NULL) != argc)

2973 return (DCVMD_USAGE) ;

2975 if (opt_P != NULL)

2976 if (st rcr'rp("v4" opt_P) == 0)

2977 i pversion = | PVA_VERSI O\,

2978 } else if (strcnp("vé" opt_P) == 0) {

2979 i pversion = IPV6 VERSICN

2980 } else {

2981 ndb_warn("invalid protocol '%’'\n", opt_P);
2982 return (DCVD_USAGE);

2983 }

2984 }

2986 id.verbose = verbose;

2987 id.ipif_ipversion = ipversion;

2989 if (flags & DCVMD_ADDRSPEC) {

2990 if (mdb_vread(& plf sizeof (ipif_t), addr) == -1) {
2991 mdb_war n(" failed to read ipif at %\n", addr);
2992 return (DCVD_ERR);

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 41

2993 }

2994 1 pi f_header (verbose);

2995 if (mdb_vread(& d.ill, sizeof (ill_t),

2996 (umtptrt)lplf.ipif_ill) == -1) {

2997 ndb_warn(“failed to read ill at %", ipif.ipif_ill);
2998 return (WALK_NEXT) ;

2999 }

3000 return (ipif_format(addr, & pif, & d));

3001 } else {

3002 i pi f _header (verbose);

3003 if (ndb_wal k("ipif", (mib_walkc t)i |f cb & d) == -1) {
3004 ndb_warn("failed to walk ipif \

3005 return (DCVMD_ERR);

3006 }

3007 }

3008 return (DCVD_OK);

3009 }

3011 static void

3012 i pi f_hel p(voi d)

3013 {

3014 mdb_printf("Prints the following fields: ipif ptr, nane,

3015 "count, ill ptr, state flags and ipif flags.\n"

3016 "The count field is a sumof individual refcnts and is expanded "
3017 "with the -v option.\n"

3018 "The flags field shows the follow ng:"

3019 "\ n\t UNN -> UNNUMBERED, DHCP -> DHCPRUNNI NG PRIV -> PRI VATE, "
3020 "\ n\t NOXMI' -> NOXM T, NOLCL -> NOLOCAL, DEPR -> DEPRECATED, "
3021 "\ n\t PREF -> PREFERRED, TEMP -> TEMPORARY, ACONF -> ADDRCONF, "
3022 "\n\tANY -> ANYCAST, NFAIL -> NOFAI LOVER, "

3023 "\n\tADR -> ipif_addr_ready, MJ -> ipif_multicast_up,

3024 "\mM\tWJ -> ipif_was_up, WD -> ipif_was _dup, "

3025 "JA -> ipif_joi ned_al | hosts.\n\n");

3026 mdb_printf("Qptions:\n");

3027 mdb_printf("\ —P v4 | ve"

3028 "\tfilter ipif structures on ills for the specified protocol\n");
3029 }

3031 static int
3032 conn_status_wal k_fanout (uintptr_t addr, mdb_wal k_state_t *wsp,
3033 const char *wal knane)

3034 {

3035 if (mdb_pwal k(wal kname, wsp->wal k_cal | back, wsp->wal k_cbdat a,
3036 addr) == -1)

3037 mdb_warn("couldn’t walk '%’ at %", wal kname, addr);
3038 return (WALK_ERR);

3039 }

3040 return (WALK_NEXT) ;

3041 }

3043 static int
3044 conn_status_wal k_step(ndb_wal k_state_t *wsp)

3045 {

3046 uintptr_t addr = wsp->wal k_addr;

3048 (voi d) conn_status_wal k_fanout (addr, wsp, "udp_hash");

3049 (voi d) conn_status_wal k_fanout (addr, wsp, "conn_hash");
3050 (voi d) conn_status_wal k_fanout (addr, wsp, "bind_hash");
3051 (void) conn_status_wal k_fanout (addr, wsp, "proto_hash");
3052 (voi d) conn_status_wal k_fanout (addr, wsp, "proto_v6_hash");
3053 return (WALK_NEXT) ;

3054 }

3056 /* ARGSUSED */
3057 static int
3058 conn_status_cb(uintptr_t addr, const void *wal k_dat a,

new usr/ src/ cnd/ mdb/ conmon/ nodul es/ip/ip.c

3059 void *private)

3060 {

3061 netstack_t nss;

3062 char src_addrstr[| NET6_ADDRSTRLEN] ;

3063 char rem addrstr[| NET6_ADDRSTRLEN]

3064 const ipcl_hash_wal k_data_t *iw = wal k_dat a;

3065 conn_t *conn = iw >conn;

3067 if (mdb_ vread(conn sizeof (conn_t), addr) == -1) {

3068 mdb_warn("failed to read conn_t at %", addr);

3069 return (WALK_ERR);

3070 }

3071 if (mdb_vread(&nss, sizeof (nss),

3072 (uintptr_t)conn->conn_netstack) == -1)

3073 mdb_warn("failed to read netstack_t %",

3074 conn- >conn_net st ack) ;

3075 return (WALK_ERR);

3076 }

3077 mdb_printf("%?p % ?p %d %d\n", addr, conn->conn_wqg,

3078 nss. net st ack_stacki d, conn->conn_zonei d);

3080 if (conn->conn_fam |y == AF_| NET6) {

3081 mdb_snpri ntf(src addrstr, sizeof (remaddrstr), "',
3082 &conn->conn_[addr v6)

3083 mdb_snprintf(remaddrstr, sizeof (remaddrstr), "oN',
3084 &conn- >conn_f addr v6)

3085 } else {

3086 mdb_snprintf(src_addrstr, sizeof (src_addrstr), "%",
3087 VA4_PART_OF_V6((conn->conn_| addr _v6)));

3088 mdb_snpri ntf(rem addrstr, sizeof (rem. addrstr) ",
3089 V4_PART_OF_V6((conn->conn_f addr_v6)));

3090 1

3091 nmdb_printf("%: % 5d\ n¥%: % 5d\ n",

3092 src_addrstr, conn->conn Iport rem addrstr, conn->conn_fport);
3093 return (WALK_ NEXT)

3094 }

3096 static void
3097 conn_header (voi d)

3098

3099 mdb prl ntf("%?s %?s %®s 9%s\n¥%\n%\n",

3100 "ADDR', "WQ', "STACK', "ZONE', "SRC P(RT " DEST: PORT") ;
3101 mdb_pri ntf(%u>9B0s Y%/ U\ ", ")

3102 }

3104 /* ARGSUSED*/
3105 static int

3106 conn_status(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)

3107 {

3108 conn_header ();

3109 if (flags & DOMD) ADDRSPEC) {

3110 (void) conn_status_cb(addr, NULL, NULL);

3111 } else {

3112 if (mdb_wal k("conn_status", (ndb_wal k_cb_t)conn_status_cb,
3113 NULL) == -1) {

3114 mdb_warn("failed to wal k conn_fanout");
3115 return (DCVMD_ERR);

3116 }

3117 }

3118 return (DCVD_OK);

3119 }

3121 static void
3122 conn_st at us_hel p(voi d)
3123 {

3124 ndb_printf("Prints conn_t structures fromthe follow ng hash tables:

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 43

3125 "\'n\tips_ipcl_udp_fanout\n\tips_ipcl_bind_fanout"

3126 “\n\tips_ipcl _conn_fanout\n\tips_ipcl_proto_fanout_v4"
3127 "\'n\tips_ipcl_proto_fanout_v6\n");

3128 }

3130 static int
3131 srcid_wal k_step(nmdb_wal k_state_t *wsp)

3132 {

3133 if (mdb_pwal k("srcid_list", wsp->wal k_cal | back, wsp->wal k_chdat a,
3134 wsp->wal k_addr) == -1) {

3135 mdb_warn("can’t walk "srcid_list’");

3136 return (WALK_ERR);

3137 }

3138 return (WALK_NEXT) ;

3139 }

3141 /* ARGSUSED */
3142 static int
3143 srcid_status_cb(uintptr_t addr, const void *wal k_dat a,

3144 void *private)

3145 {

3146 srcid_map_t snp;

3148 if (mdb_vread(&snp, sizeof (srcid_map_t), addr) == -1) {
3149 mdb_warn("failed to read srcid_map at %", addr);
3150 return (WALK_ERR);

3151 1

3152 nob_printf ("% ?p 98d %d %d %\ n",

3153 addr, snp.smsrcid, snp.smzoneid, snp.smrefcnt,
3154 &snp. sm addr) ;

3155 return (WALK | NEXT)

3156 }

3158 static void
3159 srci d_header (voi d)

3160

3161 ndb prl ntf("%?s %8s %s %%s ¥%s\n",

3162 "ADDR', "ID', "ZONE', "REFCNT", "|PADDR');
3163 mdb_printf (" %u>9B0s Y%/ U\ ", ")

3164 }

3166 /* ARGSUSED*/

3167 static int

3168 srcid_status(uintptr_t addr, uint_t flags, int argc, const ndb_arg_t *argv)
3169 {

3170 srci d_header();

3171 if (fTags & DOVD) ADDRSPEC) {

3172 (void) srcid_status_cb(addr, NULL, NULL);
3173 } else {

3174 if (mdb_wal k("srcid", (ndb_walk_cb_t)srcid_status_ch,
3175 NULL) == -1) {

3176 mdb_warn("failed to wal k srcid_map");
3177 return (DCVD_ERR);

3178 }

3179 }

3180 return (DCVD_OK);

3181 }

3183 static int

3184 il b_stacks_wal k_step(ndb_wal k_state_t *wsp)

3185 {

3186 return (ns_wal k_step(wsp, NS_ILB));

3187 }

3189 static int
3190 ilb_rules_wal k_init(ndb_wal k_state_t *wsp)

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 44
3191 {

3192 ilb_stack_t ilbs;

3194 if (wsp->wal k_addr == NULL)

3195 return (V\ALK ERR) ;

3197 if (mdb_ vread(&JIbs sizeof (ilbs), wsp->wal k_addr) == -1) {

3198 mdb_warn("failed to read |Ib stack_t at %", wsp->wal k_addr);
3199 return (WALK_ERR);

3200 }

3201 if ((wsp->wal k_addr = (uintptr_t)ilbs.ilbs_rule_head) != NULL)

3202 return (WALK_NEXT);

3203 el se

3204 return (WALK_DONE) ;

3205 }

3207 static int
3208 il b_rules_wal k_step(ndb_wal k_state_t *wsp)

3209 {

3210 ilb_rule_t rule;

3211 int status;

3213 if (mdb_ vread(&rule sizeof (rule), wsp->wal k_addr) == -1) {

3214 mdb_warn("failed to read |Ib rule_t at %", wsp->wal k_addr);
3215 return (WALK_ERR);

3216

3217 status = wsp->wal k_cal | back(wsp->wal k_addr, &rule, wsp->wal k_chdata);
3218 if (status != WALK_NEXT)

3219 return (stat us)

3220 if ((wsp->wal k_addr = (U| ntptr_t)rule.ir_next) == NULL)

3221 return (WALK_DONE) ;

3222 el se

3223 return (WALK_NEXT) ;

3224 }

3226 static int
3227 ilb_servers_wal k_init(ndb_wal k_state_t *wsp)

3228 {

3229 ilb_rule_t rule;

3231 if (wsp->wal k_addr == NULL)

3232 return (WALK_ERR);

3234 if (mdb_vread(&ule, sizeof (rule), wsp->wal k_addr) == -1) {
3235 mib_warn("failed to read ilb_rule_t at %", wsp->wal k_addr);
3236 return (WALK_ERR);

3237 }

3238 if ((wsp->wal k_addr (umtptr _t)rule.ir_servers) != NULL)
3239 return (V\ALK EXT) ;

3240 el se

3241 return (WALK_DONE) ;

3242 }

3244 static int
3245 il b_servers_wal k_step(nmdb_wal k_state_t *wsp)

3246 {

3247 ilb_server_t server;

3248 int status;

3250 if (mdb_vread(&server, sizeof (server), wsp->wal k_addr) ==) {

3251 mdb_warn("failed to read il b_server_t at %", wsp >vsa| k_addr);
3252 return (WALK_ERR) ;

3253

3254 status = wsp->wal k_cal | back(wsp->wal k_addr, &server, wsp->wal k_chdat a) ;
3255 if (status !|= WALK_NEXT)

3256 return (status);

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 45 new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 46

3257 if ((wsp->wal k_addr = (uintptr_t)server.iser_next) == NULL) 3323 if (entry == NULL)
3258 return (WALK_DONE) ; 3324 return (WALK_DONE) ;
3259 el se
3260 return (WALK_NEXT); 3326 wsp->wal k_addr = (uintptr_t)entry;
3261 } 3327 ns_wal k->i dx = i;
3328 return (WALK_NEXT) ;
3263 /* 3329 }
3264 * Hel per structure for ilb_nat_src walker. It stores the current index of the
3265 * nat src table. 3331 static int
3266 */ 3332 il b_nat_src_wal k_step(ndb_wal k_state_t *wsp)
3267 typedef struct { 3333 {
3268 ilb_stack_t ilbs; 3334 int status;
3269 int idx; 3335 ilb_nat_src_entry_t entry, *next_entry;
3270 } ilb_walk_t; 3336 ilb_wal k_t *ns_wal k;
3337 ilb_stack_t *ilbs;
3272 /* Copy fromlist.c */ 3338 list_t head;
3273 #define |ist_object(a, node) ((void *)(((char *)node) - (a)->list_offset)) 3339 char *khead
3340 int i;
3275 static int
3276 ilb_nat_src_wal k_i ni t (mdb_wal k_state_t *wsp) 3342 if (mdb_vread(&entry, sizeof (ilb_nat_src_entry_t),
3277 { 3343 wsp->wal k_addr) == -1
3278 int i; 3344 midb_warn("failed to read ilb_nat_src_entry_t at %",
3279 ilb_wal k_t *ns_wal k; 3345 wsp->wal k_addr) ;
3280 ilb_nat_src_entry_t *entry = NULL; 3346 return (WALK_ERR);
3347 }
3282 if (wsp->wal k_addr == NULL) 3348 status = wsp->wal k_cal | back(wsp->wal k_addr, &entry, wsp->wal k_cbdat a);
3283 return (WALK_ERR); 3349 if (status != WALK_NEXT)
3350 return (status);
3285 ns_wal k = ndb_al | oc(sizeof (ilb_walk_t), UM SLEEP);
3286 if (mdb_vread(&ns_wal k->i | bs, sizeof (ns_walk->ilbs), 3352 ns_wal k = (ilb_wal k_t *)wsp->wal k_dat a;
3287 wsp->wal k_addr) == -1) { 3353 ilbs = &is_wal k- >i | bs;
3288 mdb_warn("failed to read ilb_stack_t at %", wsp->wal k_addr); 3354 i = ns_wal k- >i dx;
3289 mdb_free(ns_wal k, sizeof (ilb_walk_t));
3290 return (WALK_ERR); 3356 /* Read in the nsh_head in the i-th elenent of the array. */
3291 } 3357 khead = (char *)ilbs->ilbs_nat_src + i * sizeof (ilb_nat_src_hash_t);
3358 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3293 if (ns_walk->ilbs.ilbs_nat_src == NULL) { 3359 mdb_warn("failed to read ilbs_nat_src at %\n", khead);
3294 mdb_free(ns_wal k, sizeof (ilb_walk_t)); 3360 return (WALK_ERR);
3295 return (WALK_DONE) ; 3361 }
3296 }
3363 /*
3298 wsp- >wal k_data = ns_wal k; 3364 * Check if there is still entry in the current |ist.
3299 for (i =0; i < ns_walk->1bs.ilbs_nat_src_hash_size; i++) { 3365 *
3300 list_t head; 3366 * Note that list_next points to a kernel address and we need to
3301 char *khead; 3367 * conpare list_next with the kernel address of the list head.
3368 * So we need to calculate the address nanually.
3303 /* Read in the nsh_head in the i-th elenent of the array. */ 3369 */
3304 khead = (char *)ns_wal k->ilbs.ilbs_nat_src + i * 3370 if ((char *)entry.nse_link.list_next != khead + offsetof (list_t,
3305 si zeof (ilb_nat_src_hash_t); 3371 list_head)) {
3306 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) { 3372 wsp->wal k_addr = (uintptr_t)!list_object(&head,
3307 ndb_warn("failed to read ilbs_nat_src at %\n", khead); 3373 entry.nse_link.list_next);
3308 return (WALK_ERR); 3374 return (WALK_NEXT);
3309 } 3375 }
3311 1= 3377 /* Start with the next bucket in the array. */
3312 * Note that list_next points to a kernel address and we need 3378 next_entry = NULL;
3313 * to conpare list_next with the kernel address of the |ist 3379 for (i++ i < ilbs->i1bs_nat_src_hash_size; i++) {
3314 * head. So we need to cal culate the address manually. 3380 khead = (char *)ilbs->ilbs_nat_src + i *
3315 =[] 3381 si zeof (ilb_nat_src_hash_t);
3316 if ((char *)head.|ist_head.list_next != khead + 3382 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1) {
3317 of fsetof (list_t, list_head)) { 3383 mdb_warn("failed to read ilbs_nat_src at %\n", khead);
3318 entry = |ist_object(&ead, head.list_head.list_next); 3384 return (WALK_ERR) ;
3319 br eak; 3385 }
3320 }
3321 } 3387 if ((char *)head.list_head.list_next != khead +

3388 of fsetof (list_t, list_head)) {

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c 47 new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

3389 next _entry = |ist_object(&head, 3455 if (head.ilb_connp == NULL)
3390 head. | i st_head. |1 st_next); 3456 return (WALK_DONE) ;
3391 br eak;
3392 } 3458 wsp- >wal k_addr = (u| ntptr_t)head.ilb_connp;
3393 } 3459 conn_wal k=>i dx =
3460 return (WALK | NEXT)
3395 if (next_entry == NULL) 3461 }
3396 return (WALK_DONE) ;
3463 static int
3398 wsp->wal k_addr = (uintptr_t)next_entry; 3464 il b_conn_wal k_step(ndb_wal k_state_t *wsp)
3399 ns_wal k->i dx = i; 3465 {
3400 return (WALK_NEXT) ; 3466 int status;
3401 } 3467 ilb_conn_t conn;
3468 il b_wal k_t *conn_wal k;
3403 static void 3469 ilb_stack_t *ilbs;
3404 il b_common_wal k_fini (mdb_wal k_state_t *wsp) 3470 i1 b_conn_hash_t head;
3405 { 3471 char *khead,;
3406 ilb_wal k_t *wal k; 3472 int i;
3408 wal k = (ilb_wal k_t *)wsp->wal k_dat a; 3474 if (mdb_vread(&conn, sizeof (ilb_conn_t), wsp->wal k_addr) == -1) {
3409 if (walk == NULL) 3475 mdb_warn("failed to read ilb_conn_t at %", wsp->wal k_addr);
3410 return; 3476 return (WALK_ERR);
3411 mdb_free(wal k, sizeof (ilb_walk_t *)); 3477 }
3412 }
3479 status = wsp->wal k_cal | back(wsp->wal k_addr, &conn, wsp->wal k_cbdat a) ;
3414 static int 3480 if (status != WALK_NEXT)
3415 il b_conn_wal k_i nit (ndb_wal k_state_t *wsp) 3481 return (status);
3416 {
3417 int i; 3483 conn_wal k = (ilb_wal k_t *)wsp->wal k_dat a;
3418 ilb_wal k_t *conn_wal k; 3484 il bs = &onn_wal k- >i | bs;
3419 i1 b_conn_hash_t head; 3485 i = conn_wal k- >i dx;
3421 if (wsp->wal k_addr == NULL) 3487 /* Check if there is still entry in the current list. */
3422 return (WALK_ERR); 3488 if (conn.conn_c2s_next != NULL) {
3489 wsp->wal k_addr = (uintptr_t)conn.conn_c2s_next;
3424 conn_wal k = ndb_al | oc(sizeof (ilb_walk_t), UM SLEEP); 3490 return (WALK_NEXT);
3425 if (nmdb_vread(&conn_ V\al k->i | bs, sizeof (conn wal k- >i | bs), 3491 }
3426 wsp- >wal k addr) == -1)
3427 mdb_warn("failed to read ilb_stack_t at %", wsp->wal k_addr); 3493 /* Start with the next bucket in the array. */
3428 mdb_free(conn_wal k, sizeof (ilb_walk_t)); 3494 for (i++ i < ilbs->i1bs_conn_hash_size; i|++) {
3429 return (WALK_ERR); 3495 khead = (char *)ilbs->ilbs_c2s_conn_hash + i *
3430 } 3496 si zeof (ilb_conn_hash_t);
3497 if (mdb_vread(&head, sizeof (ilb_conn_hash_t),
3432 if (conn_wal k->ilbs.ilbs_c2s_conn_hash == NULL) { 3498 (uintptr_t)khead) == -1) {
3433 mdb_free(conn_wal k, sizeof (ilb V\al k_t)); 3499 ndb_warn("failed to read ilbs_c2s_conn_hash at %\n",
3434 return (WALK_DONE) ; 3500 khead) ;
3435 } 3501 return (WALK_ERR);
3502 }
3437 wsp->wal k_data = conn_wal k;
3438 for (i =0; i < conn_wal k->ilbs.ilbs_conn_hash_size; i++) { 3504 if (head.ilb_connp != NULL)
3439 char *khead; 3505 br eak;
3506 }
3441 /* Read in the nsh_head in the i-th element of the array. */
3442 khead = (char *)conn_wal k->ilbs.ilbs_c2s_conn_hash + i * 3508 if (head.ilb_connp == NULL)
3443 si zeof (ilb_conn_hash_t); 3509 return (WALK_DONE) ;
3444 if (mdb_vread(&head, SI zeof (| I b_conn_hash_t),
3445 (uintptr_t)khead) == -1) { 3511 wsp->wal k_addr = (u| ntptr_t)head.il b_connp;
3446 ndb_warn("failed to read ilbs_c2s_conn_hash at %\n", 3512 conn_wal k->i dx =
3447 khead) ; 3513 return (WALK_ NEXT)
3448 return (WALK_ERR) ; 3514 }
3449 }
3516 static int
3451 if (head.ilb_connp !'= NULL) 3517 il b_sticky_wal k_init(nmdb_wal k_state_t *wsp)
3452 break; 3518 {
3453 } 3519

int i;
3520 ilb_wal k_t *sticky_walk;

new usr/ src/ cnd/ mdb/ common/ modul es/ i p/ip.c 49

3521 ilb_sticky_t *st = NULL;

3523 if (wsp->wal k_addr == NULL)

3524 return (WALK_ERR);

3526 sticky_wal k = ndb_al | oc(sizeof (ilb_walk_t), UM SLEEP);

3527 if (mdb_ vread(&su cky wal k->i | bs, sizeof (st i cky_wal k->i | bs),

3528 wsp->wal k_addr) == -1) {

3529 mdb_warn("failed to read ilb_stack_t at %", wsp->wal k_addr);
3530 mdb_free(sticky wal k, sizeof (ilb_walk_t));

3531 return (WALK_ERR);

3532 }

3534 if (sticky_walk->ilbs.ilbs_sticky_hash == NULL) ({

3535 mib_free(sticky walk, sizeof (ilb_walk_ t));

3536 return (WALK_DONE) ;

3537 }

3539 wsp->wal k_data = sticky_wal k;

3540 for (i =0; i < sticky_walk->ilbs.ilbs_sticky_hash_size; i++) {
3541 list_t head;

3542 char *khead;

3544 /* Read in the nsh_head in the i-th el enment of the array. */
3545 khead = (char *)stlcky wal k->i | bs.ilbs_sticky_hash + i *
3546 si zeof (ilb_sticky_hash_t);

3547 if (mdb_vread(&head, sizeof (| i st_t), (uintptr_t)khead) == -1) {
3548 ndb_warn("failed to read ilbs_sticky_hash at %\n",
3549 khead) ;

3550 return (WALK_ERR);

3551 }

3553 /*

3554 * Note that |ist_next points to a kernel address and we need
3555 * to conpare |list_next with the kernel address of the I|ist
3556 * head. So we need to calcul ate the address manual | y.
3557 i

3558 if ((char *)head.list_head.list_next != khead +

3559 of fsetof (list_t, list_head)) {

3560 st = |ist_object(&head, head.list_head.list_next);
3561 br eak;

3562 }

3563 }

3565 if (st == NULL)

3566 return (WALK_DONE) ;

3568 wsp->wal k_addr (UI ntptr_t)st;

3569 sticky_wal k- >|dx =f:

3570 return (WALK_NEXT) ;

3571 }

3573 static int

3574 il b_sticky_wal k_step(nmdb_wal k_state_t *wsp)

3575 {

3576 int status;

3577 ilb_sticky_t st, *st_next;

3578 il b_wal k_t *st|cky wal k;

3579 ilb_st ackit *il bs;

3580 list_t head;

3581 char *khead;

3582 int i;

3584 if (mdb_vread(&st, sizeof (ilb_sticky t), wsp->wal k_addr) == -1) {
3585 mdb_warn("failed to read ilb_sticky_t at %", wsp->wal k_addr);
3586 return (WALK_ERR);

new usr/ src/ cnd/ mdb/ common/ nodul es/ip/ip.c

3587 }

3589 status = wsp->wal k_cal | back(wsp->wal k_addr, &st, wsp->wal k_chdat a) ;
3590 if (status != WALK_NEXT)

3591 return (status);

3593 sti cky wal k = (ilb_wal k_t *)wsp->wal k_dat a;

3594 ilbs = &sti cky wal k- >i | bs;

3595 i = t| cky_wal k- >i dx;

3597 /* Read in the nsh_head in the i-th elenment of the array. */
3598 khead = (char *)ilbs->ilbs_sticky _hash + i * sizeof (ilb_sticky_hash_t);
3599 if (mdb_vread(&head, sizeof (list_t), (uintptr_t)khead) == -1)
3600 mdb_warn("failed to read il bs_sticky_hash at %\n", khead);
3601 return (WALK_ERR);

3602 }

3604 /*

3605 * Check if there is still entry in the current list.

3606 *

3607 * Note that list_next points to a kernel address and we need to
3608 * conpare list_next with the kernel address of the |ist head.
3609 * So we need to cal cul ate the address manual ly.

3610 */

3611 if ((char *)st.list.list_next != khead + offsetof (list_t,

3612 list_head)) {

3613 wsp->wal k_addr = (uintptr_t)list_object(&head,

3614 st.list.list_next);

3615 return (WALK_NEXT);

3616 }

3618 /* Start with the next bucket in the array. */

3619 st_next = NULL

3620 for (i++ i < ilbs->ilbs_nat_src_hash size; i++) {

3621 khead = (char *)ilbs->ilbs_sticky_ hash + i *

3622 si zeof (ilb_sticky_hash_t);

3623 if (rmdb_vread(&head, sizeof (I i st _t), (uintptr_t)khead)
3624 ndb_warn(“"failed to read ilbs_sticky_hash at %\n",
3625 khead) ;

3626 return (WALK_ERR);

3627 }

3629 if ((char *)head.|ist_head.list_next != khead +

3630 offsetof(llst t, Tist_head)) {

3631 st_next = Iist _obj | ect (&head,

3632 head. | ist_head.list_next);

3633 br eak;

3634 }

3635 }

3637 if (st_next == NULL)

3638 return (WALK_DONE) ;

3640 wsp->wal k_addr = (uintptr_t)st_next;

3641 sticky_wal k->idx = i;

3642 return (WALK_NEXT);

3643 }

new usr/src/lib/libipadm common/i padm prop. c

R R R R

55005 Wed Jun 13 12:04:19 2012
new usr/src/lib/libi padm common/i padm prop. c
0,
*@**
1/
* CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END
/

NRERRRRRRRRER
COONOUITAWNROW©O~NOUTDWN
LR I I T I R

21/
22 Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.
23 */
25 /*
26 * This file contains routines that are used to nodify/retrieve protocol or
27 * interface property values. It also holds all the supported properties for
28 * both IP interface and protocols in ‘ipadmprop_desc_t’. Follow ng protocols
29 * are supported: |P, IPv4, IPv6, TCP, SCTP, UDP, |CMP and DCCP
29 * are supported: IP, I1Pv4, |IPv6, TCP, SCTP, UDP and | CVP.
30 *
31 * This file also contains wal kers, which wal ks through the property table and
32 * calls the callback function, of the form‘ipadmprop_wunc_t’ , for every
33 * property in the table.

*

/

36 #include <unistd. h>

37 #include <errno. h>

38 #include <ctype. h>

39 #include <fcntl. h>

40 #include <strings. h>

41 #include <stdlib. h>

42 #include <netinet/in.h>
43 #incl ude <arpalinet.h>

44 #incl ude <sys/sockio. h>
45 #incl ude <assert.h>

46 #include <libdllink.h>

47 #incl ude <zone. h>

48 #include "libipadm.inpl.h"
49 #include <inet/tunabl es. h>

51 #define | PADM NONESTR "none"
52 #define DEF_METRI C_VAL 0 /* default netric value */

54 #define A _CNT(arr) (sizeof (arr) / sizeof (arr[0]))

56 static ipadmstatus_t i _ipadmvalidate_if(ipadmhandl e_t, const char *,
57 uint_t, uint_t);
59 /*

60 * Callback functions to retrieve property values fromthe kernel. These

new usr/src/lib/libi padm common/i padm prop. c

61 * functions, when required, translate the values fromthe kernel to a format
62 * suitable for printing. For exanple: boolean values will be translated

63 * to on/off. They also retrieve DEFAULT, PERM and PGCSSI BLE val ues for

64 * a given property.

65 */

66 static ipadmpd_getf_t i _ipadmget_prop, i_ipadmget_ifprop_flags,

67 i _ipadmaget_ntu, i padm_get _netric,

68 i _i padm get _usesrc, i_i padm get_forwardi ng,

69 i _i padm get _ ecnsack i_i padm get _host nodel ;

71 /*

72 * Callback function to set property values. These functions translate the
73 * values to a format suitable for kernel consunption, allocates the necessary
74 * ioctl buffers and then invokes ioctl ()

*/

75
76 static ipadmpd_setf_t i_ipadmset_prop, i_ipadmset_ntu,
77 i |padm set _ifprop_ flags
78 i _ipadmset _metric, i_ipadmset_usesrc,
79 i _i padm set “forvar di ng, i _i padm set _eprivport,
80 i _i padm set _ecnsack, 1 _i padm set_host nodel ;
82 /* array of protocols we support */
83 static int protocols[] = { MOD_PROTO | P, MOD PROTO RAW P,
84 MOD_PROTO_TCP, MOD_PROTO_UDP,
85 MOD_PROTO_SCTP, MOD_PROTO_DCCP };
85 MOD_PROTO_SCTP };
87 /*
88 * Supported | P protocol properties.
89 */
90 static ipadmprop_desc_t ipadm.ip_prop_table[] = {
91 { "arp", TPADMPROP_CLASS TF, MOD PROTO | PV4, 0,
92 i _ipadm set _ifprop_fTags, i_ipadm get_onoff,
93 i _ipadmget_ifprop_flags },
95 { "forwarding", | PADMPROP_CLASS MODIF, MOD_PROTO | PV4, O,
96 i _i padm set_forwarding, i_ipadm get_onoff,
97 i _i padm get _forwarding },
99 { "netric", | PADMPROP_CLASS |F, MOD_PROTO | PV4, O,
100 i |padm set_metric, NULL, i _ipadm get _netric },
102 { "mtu", | PADVPROP_CLASS_| F, MOD_PROTO | PV4, O,
103 i padm set_mtu, i_ipadmaget_ntu, i_ipadmget_ntu },
105 { "exchange_routes", |PADMPROP_CLASS_| F, MOD_PROTO | PV4, 0,
106 i _ipadmset _ifprop_flags, i_ipadmget_onoff,
107 i_ipadmget _ifprop_flags },
109 { "usesrc", |PADMPROP_CLASS |F, MOD_PROTO_I PV4, O,
110 i _ipadm set _usesrc, NULL, i_ipadmget_usesrc },
112 { "ttl", | PADMPROP_CLASS MODULE, MOD PROTO | PV4, 0,
113 i _i padm set_prop, i_ipadmget_prop, i_ipadmget_prop },
115 { "forwarding", |PADMPROP_CLASS MODI F, MOD_PROTO | PV6, O,
116 i _i padm set _forwarding, i_i padm get_onoff,
117 i _i padm_ get _forwarding },
119 { "hoplimt", |PADVMPROP_CLASS MODULE, MOD_PROTO I PV6, O,
120 i _i padm set _prop, i_ipadmget _prop, i_ipadmget_prop },
122 {" matrl c", | PADMPROP_CLASS_| F, MOD_PROTO_I PV6, O,
123 |padm set_netric, NULL, i_ipadmget _netric },
125 { "ntu", | PADMPROP_CLASS |F, MOD_PROTO | PV6, O,

new usr/src/lib/libipadm common/i padm prop. c

126 i_ipadmset_ntu, i_ipadmget_ntu, i_ipadmaget_ntu },
128 { "nud", | PADMPROP_CLASS |F, MOD _PROTO | PV6, O,

129 i _ipadmset_ifprop_flags, i_ipadmget_onoff,

130 i _ipadmaget _ifprop_flags },

132 { "exchange_routes", | PADVPROP_CLASS | F, MOD_PROTO | PV6, O,
133 i _ipadm set_ifprop_flags, i_ipadmget_onoff,

134 i _ipadmaget i fprop_flags },

136 { "usesrc”, | PADMPROP_CLASS |F, MOD PROTO | PV6, O,

137 i _ipadm set_usesrc, NULL, i_ipadmget_usesrc },

139 { "hostnodel ", | PADMPROP_CLASS MODULE, MOD_PROTO | PV6, O,
140 i _i padm set _hostnodel, i_i padm get_host nodel ,

141 i _i padm get _host nodel },

143 { "hostnodel ", | PADMPROP_CLASS_MODULE, MOD PROTO | PV4, O,
144 i _i padm set _hostnodel, i_i padm get_host nodel ,

145 i _i padm get _host nodel },

147 { NULL, O, O, O, NULL, NULL, NULL }

148 };

_hnchanged_port ion_omtted_

242 | * Supported DCCP protocol properties */
243 static ipadmprop_desc_t ipadmdccp_prop_table[] = {

244 { "extra_priv_ports", | PADMPROP_CLASS MODULE, MOD_PROTO_DCCP,

245 | PADVPROP_MULVAL, i _i padm set _eprivport, i_i padm get_prop,

246 i _i padm get _prop },

248 { "largest_anon_port", | PADMPROP_CLASS MODULE, MOD_PROTO DCCP, O,
249 i _I padm set _prop, i_i padm get _prop, i_i padmget_prop },

251 { "recv_maxbuf", | PADMPROP_CLASS MODULE, MOD_PROTO _DCCP, O,

252 i i padm set _prop, i_ipadmget _prop, i_ipadmget prop },

254 { "send_maxbuf", | PADMPROP_CLASS_MODULE, MOD_PROTO DCCP, O,

255 i _i padm set_prop, i_ipadmget_prop, i_ipadmget_prop },

257 {" smal | est _anon_port", | PADMPROP_CLASS_MODULE, MOD_PROTO _DCCP, O,
258 _i padm set _prop, i _ipadm get _prop, i_ipadmget_prop },

260 { "smallest_nonpriv_port", |PADVMPROP_CLASS_MODULE, MOD_PROTO_DCCP, O,
261 i _ipadmset_prop, i_i padm get_prop, i_i padmget _prop },

263 { NULL, O, 0, O, NULL, NULL, NULL }

264 };

266 #endif /* ! codereview */

267 | *

268 * A dummy private property structure, used while handling private
269 */prot ocol properties (properties not yet supported by Iibipadn).
270 *

271 static ipadm prop_desc_t i padm privprop =\

272 { NULL, |PADVPROP_CLASS_MODULE, MOD_PROTO NONE, O,
273 i_ipadmset_prop, i_ipadmget_prop, i_ipadmget_prop };
275 [*

276 * Returns the property description table, for the given protocol
277 *|

278 static ipadmprop_desc_t *

279 i _i padm get _propdesc_t abl e(uint_t proto)

280 {
281 switch (proto) {
282 case MOD_PROTO I P:

new usr/src/lib/libipadm common/i padm prop. c

283 case MOD_PROTO | PV4:

284 case MOD_PROTO | PV6:

285 return (|padm|p prop_table);
286 case MOD_PROTO_RAW

287 return (|padm|crrp prop_table);
288 case MOD_PROTO T

289 return (| padmtcp prop_table);
290 case MOD_PROTO_Ul

291 return (| padm udp_prop_tabl e);
292 case MOD_PROTO_ S

293 return (| padm sctp_prop_table);
294 case MOD_PROTO_DCCP:

295 return (i padmdccp_prop_table);
296 #endif /* | codereview */

297

299 return (NULL);

300 }

302 statl c ipadm prop_desc_t *

304

305 int err = 0;

306 bool ean_t mat ched_name = B_FALSE;

307 i padm prop_desc_t *ipdp = NULL *i pdtbl ;

309 if ((ipdtbl = i_ipadmget_propdesc_table(proto)) ==
310 err = EI'NVAL;

311 goto ret;

312

313 for (ipdp = ipdtbl; ipdp->ipd_name != NULL; ipdp++)
314 1 f (strcrrp(pnarre |pdp >ji pd_nanme) == 0) {
315 mat ched_name = B_TRUE;

316 if (ipdp->ipd_proto == proto)
317 br eak;

318 }

319 }

320 if (ipdp->ipd_name == NULL) {

321 err = EN@NT

322 /* |f we mat ched nane, but failed protocol
323 if (matched_nane)

324 err = EPROTO

325 i pdp = NULL;

326 1

327 ret:

328 if (errp !'= NULL)

329 *errp = err;

330 return (ipdp);

331}

333 char *

334 ipadm proto2str(uint_t proto)

335 {

336 switch (proto) {

337 case MOD_PROTO | P:

338 return ("ip");

339 case MOD_PROTO | Pv4:

340 return ("ipva");

341 case MOD_PROTO | PV6:

342 return ("ipve");

343 case MOD_PROTO_RAW P:

344 return ("icnp");

345 case MOD_PROTO_TCP:

346 return ("tcp");

347 case MOD_PROTO_UDP:

348 return ("udp");

303 i _i padm get _prop_desc(const char *pnane, uint_t proto, int *errp)
{

NULL) {

{

check

*/

new usr/src/lib/libipadm common/i padm prop. c

349 case MJD_PROTO_SCTP:

350 return ("sctp");

351 case MOD_PROTO _DCCP:

352 return ("dccp");

353 #endif /* ! codereview */

354

356 return (NULL);

357 }

359 uint t

360 i{padm_sterroto(const char *protostr)

361

362 if (protostr == NULL)

363 return (MOD_PROTO NONE) ;

364 if (strcnp(protostr, "tcp") == 0)

365 return (MOD_PROTO TCP);

366 else if (strcnp(protostr, "udp") == 0)
367 return (MOD_PROTO UDP);

368 else if (strcnp(protostr, "ip") == 0)
369 return (MOD_PROTO I P);

370 else if (strcnp(protostr, "ipv4") == 0)
371 return (MOD_PROTO I PV4);

372 else if (strcnp(protostr, "ipvée") == 0)
373 return (MOD_PROTO I PV6);

374 else if (strcnp(protostr, "icnp") == 0)
375 return (MOD_PROTO RAW P) ;

376 else if (strcnp(protostr, "sctp") == 0)
377 return (MOD_PROTO_SCTP);

378 else if (strcnp(protostr, "arp") == 0)
379 return (MOD_PROTO I P);

380 else if (strcnp(protostr, "dccp") == 0)
381 return (MOD_PROTO_DCCP);

382 #endif /* ! codereview */

384 return (MOD_PROTO NONE) ;

385 }

387 /* ARGSUSED */
388 static ipadmstatus_t

389 i _i padm set _nt u(i padm | handl e_t iph, const void *arg,

390 i padm prop_desc_t *pdp, const void *pval, uint_t proto,
391 {

392 struct lifreq lifr;

393 char *endp;

394 uint_t nt u;

395 int S;

396 const char *i f name = arg;

397 char val [MAXPROPVALLEN] ;

399 /* to reset MIU first retrieve the default MIU and then set
400 if (flags & | PADM OPT_DEFAULT) {

401 i padm status_t status;

402 uint_t si ze = MAXPROPVALLEN;

404 status = i_i padm get _prop(i ph, arg, pdp, val, &size,
405 pr oto MOD_PROP_DEFAULT) ;

406 if (status != TPADM SUCCESS)

407 return (status);

408 pval = val;

409 1

411 errno = O;

412 mu = (uint_t)strtol (pval, &endp, 10);

413 if (errno!=0 || *endp !="\0")

414 return (1 PADM | NVALI D_ARG) ;

it

uint_t flags)

*/

new usr/src/lib/libi padm common/i padm prop. c

416 bzero(& ifr, sizeof (lifr));

417 (void) strlicpy(lifr.lifr_nane, ifnane,

418 lifr.lifr_mu = nu;

420 = (proto == MOD_PROTO_ | PV6 ? iph->i ph_sock6 :
421 |f (|octl(s SIOCSLIFMTU (caddr_t)&ifr) < 0)
422 return (i padmerrno2status(errno));

424 return (| PADM SUCCESS) ;

425 }

427 | * ARGSUSED */
428 static ipadmstatus_t

sizeof (lifr.lifr_nane));

i ph->i ph_sock) ;

uint_t flags)

sizeof (lifr.lifr_nane));

i ph->i ph_sock);

429 i _i padm set _netric(i padm handl e_t iph, const void *arg,
430 i padm prop_desc_t *pdp, const void *pval, uint_t proto,
431 {

432 struct lifreq lifr;

433 char *endp;

434 int netric;

435 const char *ifnane = arg;

436 int S5

438 /* if we are resetting, set the value to its default value */
439 if (flags & | PADM OPT_DEFAULT)

440 metric = DEF_METRI C_VAL;

441 } else {

442 errno = 0;

443 metric = (uint t)strtol(pval &endp, 10);
444 if (errno!=0]| *endp !=)

445 return (1 PADM | NVALI D_ARG) ;

446 }

448 bzero(&ifr, sizeof (lifr));

449 (void) strlcpy(lifr.lifr_name, ifnane,

450 lifr.lifr_metric = nmetric;

452 s = (proto == MOD_PROTO_| PV6 ? iph->i ph_sock6 :
454 if (ioctl(s, SIOCSLIFMETRIC, (caddr_t)&ifr) < 0)
455 return (i padm errno2status(errno));

457 return (| PADM SUCCESS) ;

458 }

460 /* ARGSUSED */

461 statl c i padm status_t
462 i _i padm set _usesrc(i padm handl e_t iph, const void *arg,
463{ i padm prop_desc_t *pdp, const void *pval,

464

uint_t proto,

uint_t flags)

_ipadmyvalidate_ifnane().

465 struct lifreq lifr;

466 const char *ifnane = arg;

467 int S;

468 uint_t ifindex = 0;

470 /* if we are resetting, set the value to its default value */
471 if (flags & | PADM OPT_DEFAULT)

472 pval = | PADM NONESTR;

474 /*

475 * cannot specify logical interface nane. We can also filter out other
476 * bogus interface names here itself through i

477 */

478 if (strcnp(pval, |PADM NONESTR) != 0 &&

479 li _i padm_ val i date_i fnane(i ph, pval))

480 return (1 PADM | NVALI D_ARG) ;

new usr/src/lib/libipadm common/i padm prop. c

482 bzero(& ifr, sizeof (lifr));

483 (void) stricpy(lifr.lifr_nane, ifnane, sizeof (lifr.lifr_name));
485 = (proto == MOD_PROTO_|I PV6 ? iph->i ph_sock6 : iph->i ph_sock);
487 if (strcnp(pval, | PADM NONESTR) != 0) {

488 if ((ifindex = if_nanetoindex(pval)) ==
489 return (i padm errno2st at us(errno))
490 lifr.lifr_index = ifindex;

491 } else {

492 if (ioctl(s, SIOCGLI FUSESRC, (caddr_t)&ifr) < 0)
493 return (ipadmerrno2status(errno));
494 lifr.lifr_index = O;

495 1

496 if (ioctl(s, SIOCSLIFUSESRC, (caddr_t)&ifr) < 0)
497 return (i padmerrno2status(errno));

499 return (1 PADM SUCCESS);

500 }

502 static struct hostnodel _strval {

503 char *esmstr;

504 i p_hostnodel _t esmval;

505 } esmarr[] = {

506 "weak", | P_WEAK ES},

507 {"src-priority", IPSRC PRI _ES},

508 {"strong", IP_ STRONG 5 ES},

509 {"custont, |P_MAXVAL_ES}

510 };

512 static ip_hostnodel _t

513 i _i padm host nodel _str2val (const char *pval)

514 {

515 int i;

517 for (i =0; i < ACNT(esmarr); i++) {

518 if (esmarr[i].esmstr !'= NULL &&

519 strcnp(pval, esmarr[i].esmstr) == 0) {
520 return (esmarr[i].esmuval);

521 }

522 }

523 return (| P_MAXVAL_ES);

524 }

526 static char *

527 i _i padm host nodel _val 2str (i p_host nodel _t pval)

528 {

529 int i;

531 (i =0; i <ACNT(esmarr); i++) {

532 if (esmarr[i].esmval == pval)

533 return (esmarr[i].esmstr);

534 }

535 return (NULL);

536 }

538 /* ARGSUSED */

539 statl c i padmstatus_t

540 i _i padm set _host nodel (i padm handl e_t iph, const void *arg,
541 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
542 {

543 i p_host nodel _t host nodel ;

544 char val[11]; /* covers uint32_nax as a string */
546 if ((flags & | PADM OPT_DEFAULT) == 0) {

new usr/src/lib/libipadm common/i padm prop. c

547 host model =i _i padm host nodel _str2val (pval);

548 if (hostm)del == | P_MAXVAL_ES)

549 return (1 PADM | NVALI D_ARG) ;

550 (void) snprintf(val, sizeof (val), "%l", hostnodel);
551 pval = val;

552 }

553 return (i_ipadmset_prop(iph, NULL, pdp, pval, proto, flags));
554 }

556 /* ARGSUSED */
557 static ipadmstatus_t
558 i _i padm get host nodel (i padm handl e_t iph, const void *arg

559 i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
560 uint_t valtype)

561 {

562 i p_host nodel _t host nodel ;

563 char *cp;

564 size_t nbytes;

565 i padm status_t status;

567 switch (valtype) {

568 case MOD_PROP_PERM

569 nbytes = snprintf(buf, *bufsize, "%", MOD_PROP_PERM RW ;
570 br eak;

571 case N[D_PROD_DEFAULT:

572 nbytes = snprintf(buf, *bufsize, "weak");

573 br eak;

574 case MOD_PROP_ACTI VE:

575 status = i_i padm get_prop(iph, arg, pdp, buf, bufsize, proto,
576 val type);

577 if (status != | PADM SUCCESS)

578 return (status);

579 bcopy(buf &host nodel , sizeof (hostnodel));

580 cp = i_i padm host model _val 2str (host nodel);

581 nbytes = snprintf(buf, *bufS| ze, "U%",

582 (cp I'= NULL ? cp : "?"));

583 bre

584 case MOD PR(P PCSSI BLE:

585 nbytes = snprintf(buf, *bufsize, "strong,src-priority,weak");
586 br eak;

587 defaul t:

588 return (1 PADM | NVALI D_ARG);

589 }

590 if (nbytes >= *bufsize) {

591 /* insufficient buffer space */

592 *bufsize = nbytes + 1;

593 return (1 PADM NO BUFS);

594 }

595 return (I PADM SUCCESS);

596 }

598 /* ARGSUSED */
599 static ipadmstatus_t
600 i _i padm set _ifprop_flags(i padm handl e_t iph, const void *arg,

601 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
602 {

603 i padm status_t status = | PADM SUCCESS;

604 const char *ifname = arg;

605 ui nt64_t on_flags = 0, off_flags = 0;

606 bool ean_t on = B_FALSE;

607 sa fam Ty _t af = (proto == MOD_PROTO | PV6 ? AF_INET6 : AF | NET);
609 /* if we are resetting, set the value to its default value */
610 if (flags & | PADM OPT_DEFAULT) {

611 if (strcnp(pdp->i pd_nane, "exchange_routes") == 0 ||

612 strcnp(pdp->i pd_narme, "arp") == 0 ||

new usr/src/lib/libipadm common/i padm prop. c 9 new usr/src/lib/libipadm common/i padm prop. c 10
613 strcnp(pdp->i pd_nanme, "nud") == 0) { 679 nvp = nvlist_next_nvpair(portsnvl, nvp)) {
614 pval = | PADM ONSTR; 680 ++count ;
615 } else if (strcnp(pdp->ipd_nanme, "forwarding") == 0) { 681 }
616 pval = | PADM OFFSTR,
617 } else { 683 if (iph- >|phf|ags&IPHINIT){
618 return (1 PADM PROP_UNKNOVW) ; 684 | ags | = | PADM OPT_APPEND;
619 } 685 } else i f (count > 1) {
620 } 686 /*
687 * W allow only one port to be added, renoved or
622 if (strcnp(pval, | PADM ONSTR) == 0) 688 * assigned at a tine.
623 on = B TRUE 689 *
624 else if (strcrrp(pval | PADM OFFSTR) == 0) 690 * However on reboot, while initializing protocol
625 on = B_FALSE 691 * properties, extra_priv_ports mght have nultiple
626 el se 692 * val ues. Oﬁly in that case we allow setting nultiple
627 return (1 PADM | NVALI D ARG ; 693 * val ues.
694 */
629 if (strcnp(pdp->i pd_nane, "exchange_routes") == 0) { 695 nvlist_free(portsnvl);
630 if (on) 696 return (| PADM | NVALI D_ARG);
631 off_flags = | FF_NORTEXCH; 697 1
632 el se
633 on_flags = | FF_NORTEXCH, 699 for (nvp = nvlist_next_nvpair(portsnvl, NULL) nvp !'= NULL;
634 } else |f (strcnp(pdp- >i pd name, “arp") == 0) { 700 nvp = nvlist_next_nvpair(portsnvl, nvp))
635 (on) 701 status = i _i padm set _prop(iph, arg, pdp, nvpai r _nanme(nvp),
636 of f _flags = | FF_NOARP; 702 proto, flags);
637 el se 703 if (status != | PADM SUCCESS)
638 on_flags = | FF_NOARP; 704 br eak;
639 } else if (strcnp(pdp->i pd_nanme, "nud") == 0) { 705 }
640 if (on) 706 nvlist_free(portsnvl);
641 of f _flags = | FF_NONUD; 707 return (status);
642 el se 708 }
643 on_flags = | FF_NONUD,
644 } else |f (strcrrp(pdp->i pd_nane, "forwarding") == 0) { 710 /* ARGSUSED */
645 (on) 711 static ipadmstatus_t
646 on_flags = | FF_ROUTER, 712 i _i padm set _forwardi ng(i padm handl e_t iph, const void *arg,
647 el se 713 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
648 off_flags = | FF_ROUTER 714 {
649 } 715 const char *ifname = arg;
716 i padm status_t status;
651 if (on_flags || off _flags) {
652 status = i _i padm set _flags(iph, ifnanme, af, on_flags, 718 /*
653 of f_flags); 719 * if interface nane is provided, then set forwarding using the
654 } 720 * | FF_ROUTER f | ag
655 return (status); 721 */
656 } 722 if (ifname !'= NULL) {
723 status = i _i padmset_ifprop_flags(iph, ifnane, pdp, pval,
658 /* ARGSUSED */ 724 proto, flags);
659 st atic ipadmstatus_t 725 } else {
660 i _i padm set _eprivport (i padm handl e_t i ph const void *arg, 726 char *val = NULL;
661 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
662 { 728 /*
663 nvlist_t *portsnvl = NULL; 729 * if the caller is IPH LEGACY, ‘pval’ already contains
664 nvpair_t *nvp; 730 * numeric val ues.
665 i padmstatus_t status = | PADM SUCCESS; 731 */
666 i nt err; 732 if (!(flags & | PADM OPT_DEFAULT) &&
667 ui nt _t count = 0; 733 ! (i ph->i ph_flags & | PH_LEGACY)) {
669 if (flags & | PADM OPT_DEFAULT) { 735 if (strcnp(pval, |PADM ONSTR) == 0)
670 assert(pval == NULL); 736 val = "1
671 return (i_ipadm set_prop(iph, arg, pdp, pval, proto, flags)); 737 else if (st rcrrp(pval | PADM OFFSTR) == 0)
672 } 738 al = "0";
739 el se
674 if ((err = ipadmstr2nvlist(pval, &portsnvl, | PADM NORVAL)) != 0) 740 return (1 PADM | NVALI D_ARG) ;
675 return (i padmerrno2status(err)); 741 pval = val;
742 }
677 /* count the nunber of ports */
678 for (nvp = nvlist_next_nvpair(portsnvl, NULL); nvp != NULL; 744 status = i _i padm set _prop(i ph, ifname, pdp, pval, proto, flags);

new usr/src/lib/libipadm common/i padm prop. c

745 }

747 return (status);

748 }

750 /* ARGSUSED */

751 static ipadmstatus_t

752 i _i padm set _ecnsack(i padm handl e_t iph, const void *arg,

753 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
754 {

755 uint_t i;

756 char val [MAXPROPVALLEN] ;

758 /* if |PH LEGACY is set, ‘pval’ already contains nuneric values */
759 if (1(flags & | PADM OPT DEFAULT) && ! (i ph->iph_flags & | PH LEGACY)) {
760 for (i = 0; ecn_sack_vals[i] != NULL; i++)

761 if (str crrp(pvaI ecn_sack_vals[i]) == 0)

762 br eal

763 }

764 1f (ecn_sack_val s[i] == NULL)

765 return (1 PADM | NVALI D_ARG) ;

766 (void) snprintf(val, MAXPROPVALLEN, "%", i);

767 pval = val;

768 }

770 return (i_ipadmset_prop(iph, arg, pdp, pval, proto, flags));

771 }

773 [* ARGSUSED */

774 ipadm status_t

775 i _i padm get _ecnsack(i padm handl e_t iph, const void *arg

776 i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,

777 uint _t val type)

778 {

779 i padm status_t status = | PADM SUCCESS;

780 uint _t i, nbytes = 0;

782 switch (valtype) {

783 case MOD_PROP_PCSSI BLE:

784 for (i = 0; ecn_sack_vals[i] != NULL; i++) {

785 if (i ==0)

786 nbytes += snprintf(buf + nbytes,

787 *puf size - nbytes, "%", ecn_sack_vals[i]);
788 el se

789 nbytes += snprintf(buf + nbytes,

790 *bufsize - nbytes, ",%", ecn_sack_vals[i]);
791 if (nbytes >= *bufsize)

792 r ;

793 }

794 br eak;

795 case MOD_PROP_PERM

796 case MOD_PROP_DEFAULT:

797 case MOD_PROP_ACTI VE:

798 status = i_i padm get_prop(iph, arg, pdp, buf, bufsize, proto,
799 val type);

801 /*

802 * |f IPH_LEGACY is set, do not convert the val ue returned
803 * from kernel ,

804 */

805 if (iph->iph_flags & | PH_LEGACY)

806 br eak;

808 /*

809 * For current and default value, convert the val ue returned
810 * fromkernel to nore discrete representation.

11

new usr/src/lib/libi padm common/i padm prop. c

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

829
830

832
833
834
835
836
837
838
839

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859

861
862
863
864

866
867
868

870
871
872

*
/
if (status == | PADM SUCCESS && (val type == MOD_PROP_ACTI VE | |
val type == MOD_PROP_DEFAULT)) {
i = atoi(buf);
assert(i < 3);
nbytes = snprintf(buf, *bufsize, "%",
ecn_sack_vals[i]);
}
br eak;
defaul t:
return (1 PADM | NVALI D _ARG);
}
if (nbytes >= *bufsize) {
/* insufficient buffer space */
*buf size = nbytes + 1;
return (| PADM NO BUFS);
}
return (status);
}
/* ARGSUSED */

static i padmstatus_t

i _i padm get _f orwardi ng(| padm handl e_t iph, const void *arg

i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, ui ht_t proto,
uint_t valtype)
{
const char *ifnane = arg;
i padm status_t status = | PADM SUCCESS;
/*
* if interface nane is provided, then get forwardi ng status using
* Sl OCGLI FFLAGS
*/
if (ifname !'= NULL) {
status = i_i padmget _ifprop_flags(iph, ifnane, pdp,
buf, bufsize, pdp->i pd_proto, valtype);
} else {
status = i _i padm get _prop(iph, ifname, pdp, buf,
buf si ze, proto, valtype);
*
* |f IPH_LEGACY is set, do not convert the val ue returned
* from ker nel ,
*/
if (iph->iph_flags & | PH LEGACY)
goto ret;
if (status == | PADM SUCCESS && (val type == MOD_PROP_ACTI VE | |
val type == MOD_PROP_DEFAULT)) {
uint_t val = atoi (buf);
(void) snprintf(buf, *bufsize,
(val == 1 ? | PADM ONSTR : | PADM OFFSTR)) ;
}
}
ret:
return (status);
}
/* ARGSUSED */

static i padmstatus_t

i _ipadm get _ntu(i padmhandle_t iph, const void *arg,

873 i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
874 uint_t valtype)

875 {

876 struct lifreq lifr;

12

new usr/src/lib/libipadm common/i padm prop. c

877
878
879

881
882
883
884
885
886
887
888
889
890
891
892

894
895
896
897
898
899
900
901
902
903
904
905
906
907

909
910
911
912
913

914 {

915
916
917
918

920
921
922
923
924
925
926
927
928
929

931
932
933
934
935
936
937
938
939
940
941
942

const char *ifname = arg;
size_t nbyt es;
int S;

switch (valtype) {
case MOD_PROP_PERM
nbytes = snprintf(buf, *bufsize, "%l", MOD_PROP_PERM RW;
br eak;
case MOD_PROP_DEFAULT:
case MOD_PROP_POSSI BLE:
return (i_ipadmget_prop(iph, arg, pdp, buf, bufsize,
proto, valtype));
case MOD_PROP_ACTI VE:
bzero(& ifr, sizeof (lifr));
(void) stricpy(lifr.lifr_nane, ifnane, sizeof (lifr.lifr_name));
s = (proto == MOD PROTO I PV6 ? iph->i ph_sock6 : iph->i ph_sock);

if (ioctl(s, SIOCGLIFMIU, (caddr_t)&ifr) < 0)
return (i padm errno2status(errno));
nbytes = snprintf(buf, *bufsize, "%", lifr.lifr_ntu);
br eak;
defaul t:
return (| PADM | NVALI D_ARG);

}

if (nbytes >= *bufsize) {
/* insufficient buffer space */
*buf size = nbytes + 1,
return (1 PADM NO _BUFS);

}
return (1 PADM SUCCESS);

ARGSUSED */

static ipadmstatus_t

i _ipadmget_nmnetric(ipadmhandl e_t iph, const void *arg,

i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
uint_t valtype)

struct lifreq lifr;

const char *ifnane = arg;
size_t nbyt es;

int s, val;

switch (valtype) {
case MOD_PROP_PERM
val = MOD_PROP_PERM RW
br eak;
case MOD_PROP_DEFAULT:
val = DEF_METRI C_VAL;
br eak;
case MOD_PROP_ACTI VE:
bzero(& ifr, sizeof (lifr));
(void) stricpy(lifr.lifr_name, ifnane, sizeof (lifr.lifr_name));

s = (proto == MOD_PROTO_ | PV6 ? iph->i ph_sock6 : iph->i ph_sock);
if (ioctl(s, SIOCGLI FMETRIC, (caddr_t)&ifr) < 0)
return (i padmerrno2status(errno));
val = lifr.lifr_nmetric;
br eak;
defaul t:
return (1 PADM | NVALI D ARG ;

}
nbytes = snprintf(buf, *bufsize, "%", val);
if (nbytes >= *bufsize)

/* insufficient buffer space */

*buf size = nbytes + 1;

13

new usr/src/lib/libi padm common/i padm prop. c

943
944

946
947

949
950
951
952
953
954
955
956
957
958
959

961
962
963
964
965
966
967
968
969
970

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

1008

return (1 PADM NO BUFS);
}

return (1 PADM SUCCESS) ;
}

/* ARGSUSED */

static i padmstatus_t

i _i padm get _usesrc(i padm handl e_t iph, const void *arg,
i padm prop_desc_t *ipd, char *buf, uint_t *bufsize, uint_t proto,
uint_t valtype)

14

{
struct lifreq lifr;
const char *ifnanme = arg;
int S;
char i f _name[| F_NAMESI ZE] ;
size_t nbyt es;
switch (valtype) {
case MOD_PROP_PERM
nbytes = snprintf(buf, *bufsize, "9%", MOD_PROP_PERM RW;
br eak;
case MOD_PROP_DEFAULT:
nbytes = snprintf(buf, *bufsize, "%", |PADM NONESTR);
br eak;
case MOD_PROP_ACTI VE:
bzero(& ifr, sizeof (lifr));
(void) stricpy(lifr.lifr_name, ifnane, sizeof (lifr.lifr_name));
s = (proto == MOD_PROTO_| PV6 ? iph->i ph_sock6 : iph->i ph_sock);
if (ioctl(s, SIOCGLI FUSESRC, (caddr_t)&ifr) < 0)
return (i padmerrno2status(errno));
if (lifr.lifr_index == 0
/* no src address was set, so print 'none’ */
(void) strlcpy(if_name, |PADM NONESTR,
si zeof (1f_nane));
} else if (if_indextonane(lifr.lifr_index, if_name) == NULL) {
return (ipadmerrno2status(errno));
nbytes = snprintf(buf, *bufsize, "%", if_nane);
br eak;
defaul t:
return (1 PADM | NVALI D_ARG) ;
}
if (nbytes >= *bufsize) {
/* insufficient buffer space */
*bufsize = nbytes + 1;
return (| PADM NO BUFS);
}
) return (| PADM _SUCCESS) ;

/* ARGSUSED */

static ipadmstatus_t

i _ipadmget_ifprop_flags(i padmhandle_t iph, const void *arg,
i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
uint_t valtype)

{
uint64_t intf_flags;
char *val ;
size_t nbyt es;
const char *ifname = arg;
sa_famly_t af ;

i padm status_t status = | PADM SUCCESS;

switch (valtype) {

new usr/src/lib/libipadm comron/i padm prop.c 15

1009 case MOD_PROP_PERM

1010 nbytes = snprintf(buf, *bufsize, "%", MOD_PROP_PERM RW;
1011 br eak;

1012 case MOD_PROP_DEFAULT:

1013 if (strcnp(pdp->i pd_nane, exchange routes") == 0 ||
1014 strcnp(pdp->i pd_nane, "arp") == 0 ||

1015 strcnp(pdp->i pd_nane, "nud") == 0) {

1016 val = | PADM ONSTR;

1017 } else if (strcnmp(pdp->i pd_nanme, "forwarding") == 0) {
1018 val = | PADM OFFSTR;

1019 } else {

1020 return (1 PADM PROP_UNKNOWW) ;

1021 }

1022 nbytes = snprintf(buf, *bufsize, "%", val);

1023 br eak;

1024 case MOD_PROP_ACTI VE:

1025 af = (proto == MOD_PROTO_| PV6 ? AF_I NET6 : AF_I NET);
1026 status = i_i padm get _flags(iph, ifname, af, & ntf flags)
1027 if (status != | PADM SUCCESS)

1028 return (status);

1030 val = | PADM OFFSTR;

1031 if (strcnp(pdp->i pd_nane, "exchange_routes") == 0) {
1032 if (1(intf_flags & I FF_NORTEXCH))

1033 val = | PADM_ CNSTR

1034 } else if (strcmp(pdp->i pd_nanme, "forwarding") == 0) {
1035 |f(|ntff|ags&IFFR(1JT R)

1036 val = | PADM_ O\ISTR

1037 } else if (strcnp(pdp->i pd_nane, "arp") == 0) {
1038 if (!(intf_flags & | FF_ NOC\RP))

1039 val = | PADM_ O\ISTR

1040 } else if (strcnp(pdp->i pd_name, "nud") == 0) {
1041 if (!(intf fIags&IFF NO\IUD))

1042 val = | PADM ONSTR;

1043 }

1044 nbytes = snprintf(buf, *bufsize, "%", val);

1045 br eak;

1046 defaul t:

1047 return (| PADM | NVALI D_ARG);

1048 1

1049 if (nbytes >= *bufsize) {

1050 /* insufficient buffer space */

1051 *buf size = nbytes + 1;

1052 status = | PADM_NO_BUFS;

1053 }

1055 return (status);

1056 }

1058 static void
1059 i _i padm pern®2str(char *buf, uint_t *bufsize)

1060 {

1061 uint_t perm= atoi (buf);

1063 (void) snprintf(buf, *bufsize, "%%",

1064 ((perm & MOD_PROP_PERM READ) !=0) 2?2 'r’ : '-",
1065 ((perm & MOD_PROP_PERMWRITE) 1= 0) ? 'wW : '-');
1066 }

1068 /* ARGSUSED */
1069 static ipadmstatus_t

1070 i _i padm get _prop(i padm handl e_t iph, const void *arg,

1071 i padm prop_desc_t *pdp, char *buf, uint_t *bufsize, uint_t proto,
1072 uint_t valtype)

1073 {

1074 i padm status_t status = | PADM SUCCESS;

new usr/src/lib/libipadm common/i padm prop. c

1075 const char *ifname = arg;

1076 nmod_i oc_prop_t *m p;

1077 char *pnane = pdp->i pd_nane;

1078 uint_t i ocsi ze;

1080 /* allocate sufficient ioctl buffer to retrieve value */

1081 iocsize = sizeof (nod_ioc_prop_t) + *bufsize - 1;

1082 if ((mp = calloc(1, iocsize)) == NULL)

1083 return (1 PADM NO BUFS);

1085 ni p- >npr _versi on = MOD_PROP_VERSI ON;

1086 m p->npr_flags = val type;

1087 m p->nmpr_proto = proto;

1088 if (ifname !'= NULL) {

1089 (void) strlcpy(m p->npr_ifnane, ifnane,

1090 si zeof (m p->npr_ifnane));

1091

1092 (void) strlcpy(m p->npr_name, pnane, sizeof (m p->npr_nane));

1093 m p- >npr _val si ze = *bufsi ze;

1095 if (i_ipadmstrioctl (iph->i ph_sock, SIOCGETPROP, (char *)nmip,

1096 iocsize) < 0) {

1097 if (errno == ENCENT)

1098 status = | PADM_PROP_UNKNOMN;

1099 el se

1100 status = i padm errno2status(errno);

1101 } else {

1102 bcopy(m p->npr_val, buf, *bufsize);

1103 }

1105 free(mp);

1106 return (status);

1107 }

1109 /*

1110 * Popul ates the ipnmgnmt _prop_arg_t based on the class of property.

1111 *

1112 * For private protocol properties, while persisting information in ipadm
1113 * data store, to ensure there is no collision of nanespace between i padm
1114 * private nvpair nanes (which also starts with '_', see ipadm.ipngnt.h)
1115 * and private protocol property names, we will prepend | PADM PRI V_PROP_PREFI X
1116 * to property names.

1117 */

1118 static void

1119 i _i padm popul at e_proparg(i pmgnt _prop_arg_t *pargp, ipadm prop_desc_t *pdp,
1120 const char *pval, const void *object)

1121 {

1122 const struct ipadm addrobj_s *ipaddr;

1123 uint_t cl ass = pdp->i pd_cl ass;

1124 uint _t proto = pdp->i pd_proto;

1126 (void) strlcpy(pargp->i a_pnane, pdp->ipd_nane,

1127 si zeof (pargp->i a_pnane));

1128 if (pval != NULL)

1129 (void) strlcpy(pargp->ia_pval, pval, sizeof (pargp->ia_pval));
1131 switch (class) {

1132 case | PADMPROP_CLASS_MODULE:

1133 /* if it’s a private property then add the prefix. */
1134 if (pdp->i pd_nane[0] ==

1135 (void) snpri ntf(par gp->i a_pnarne,

1136) si zeof (pargp->i a_pnanme), "_ %", pdp->i pd_nane);
1137

1138 (void) strlcpy(pargp->ia_nodul e, object,

1139 si zeof (pargp->i a_nodul e));

1140 br eak;

new usr/src/lib/libipadm common/i padm prop. c 17 new usr/src/lib/libi padm common/i padm prop. c 18
1141 case | PADMPROP_CLASS_MODI F: 1207 return (1 PADM | NVALI D_ARG) ;
1142 /* check if object is protostr or an ifname */
1143 if (ipadmstr2proto(object) != MOD PROTO NONE) { 1209 } else {
1144 (void) strlcpy(pargp->ia_| modul e, obj ect, 1210 /* private protocol properties, pass it to kernel directly */
1145 si zeof (pargp->i a_nodule)); 1211 pdp = & padm pri vprop;
1146 br eak; 1212 (void) strlcpy(priv_propnanme, pnane, sizeof (priv_propnane));
1147 } 1213 pdp->I pd_name = priv_propnang;
1148 /* it’s an interface property, fall through */ 1214
1149 /* FALLTHRU */
1150 case | PADMPROP_CLASS | F: 1216 switch (valtype) {
1151 (void) strlcpy(pargp->ia_ifnanme, object, 1217 case | PADM OPT_ PERM
1152 si zeof (pargp->ia_ifname)); 1218 st atus pdp- >i pd_get (i ph, ifname, pdp, buf, bufsize, proto,
1153 (void) strlcpy(pargp->i a_nodul e, ipadm proto2str(proto), 1219 I\/(D PROP_PERM ;
1154 si zeof (pargp->i a_nodule)); 1220 if (status == | PADM SUCCESS)
1155 br eak; 1221 i _i padm pern2str(buf, bufsize);
1156 case | PADNPRCP CLASS_ADDR: 1222 br eak;
1157 i paddr = obj ect; 1223 case | PADM OPT_ACTI VE:
1158 (void) strl cpy(pargp— > a_i f name, i paddr->i padm i f nane, 1224 status = pdp->i pd_get (i ph, ifname, pdp, buf, bufsize, proto,
1159 si zeof (pargp->ia_ifname)); 1225 I\/ED PROP_ACTI VE) ;
1160 (void) strlcpy(pargp->i a_aobj nanme, ipaddr->i padm aobj nane, 1226 br eak;
1161 si zeof (pargp->i a_aobjnane)); 1227 case | PADM_(PT_DEFAULT:
1162 br eak; 1228 status = pdp->i pd_get (i ph, ifname, pdp, buf, bufsize, proto,
1163 1 1229 MOD_PROP_DEFAULT) ;
1164 } 1230 br eak;
1231 case | PADM OPT_PGSSI BLE:
1166 /* 1232 if (pdp->i pd_get_range != NULL) {
1167 * Common function to retrieve property value for a given interface ‘ifname’ or 1233 status = pdp->i pd_get _range(i ph, ifnane, pdp, buf,
1168 * for a given protocol ‘proto’. The property nane is in ‘pnanme’ . 1234 buf si ze, proto, MOD_PROP_PGCSSI BLE) ;
1169 * 1235 br eak;
1170 * ‘valtype’ determnes the type of value that will be retrieved. 1236 }
1171 * | PADM _OPT_ACTI VE - current value of the property (active config) 1237 buf[0] ="'\0";
1172 * | PADM _OPT_PERSI ST - val ue of the property from persistent store 1238 br eak;
1173 * | PADM_OPT_DEFAULT - default hard coded val ue (boot-tinme val ue) 1239 case | PADM. CPT PERSI ST:
1174 * | PADM_OPT_PERM - read/write permissions for the value 1240 /* retrieve from database */
1175 * | PADM_OPT_PGCSSI BLE - range of val ues 1241 if (is_if)
1176 */ 1242 status = i _i padm get _persist_propval (i ph, pdp, buf,
1177 static ipadmstatus_t 1243 buf si ze, ifnane);
1178 i _i padm get prop_common(i padm handl e_t iph, const char *ifnane, 1244 el se
1179 const char *pnane, char *buf, uint_t *bufsize, uint_t proto, 1245 status = i _i padm get _persist_propval (i ph, pdp, buf,
1180 uint_t valtype) 1246 buf si ze, ipadm proto2str(proto));
1181 { 1247 br eak;
1182 i padm st at us_t status = | PADM SUCCESS; 1248 defaul t:
1183 i padm prop_desc_t *pdp; 1249 status = | PADM | NVALI D_ARG
1184 char pr| v _pr opnane[MAXPROPNAMELEN] ; 1250 br eak;
1185 bool ean_t = (ifname !'= NULL); 1251 }
1186 int err = 0; 1252 return (status);
1253 }
1188 pdp = i_i padm get _prop_desc(pnane, proto, &err);
1189 if (err == EPROTO 1255 /*
1190 return (1 PADM BAD_PROTOCQOL) ; 1256 * Get protocol property of the specified protocol.
1191 /* there are no private interface properties */ 1257 */
1192 if (is_if & & err == ENOCENT) 1258 i padm stat us_t
1193 return (1 PADM _PROP_UNKNOW) ; 1259 i padm get _prop(i padm handl e_t iph, const char *pnane, char *buf,
1260 uint_t *bufsize, uint_t proto, uint_t valtype)
1195 if (pdp !'= NULL) { 1261 {
1196 /* 1262 /*
1197 * check whether the property can be 1263 * validate the argunents of the function.
1198 * applied on an interface 1264 */
1199 */ 1265 if (iph == NULL || pnanme == NULL || buf == NULL ||
1200 if (is_if && !(pdp->ipd_class & | PADVPROP_CLASS | F)) 1266 bufsize == NULL || *bufsize == 0) {
1201 return (1 PADM | NVALI D _ARG) ; 1267 return (1 PADM | NVALI D ARG ;
1202 /* 1268 }
1203 * check whether the property can be 1269 /*
1204 * applied on a nodul e 1270 * Do we support this proto, if not return error.
1205 */ 1271 */
1206 if (lis_if & ! (pdp->ipd_class & | PADMPROP_CLASS_MCODULE)) 1272 if (ipadmproto2str(proto) == NULL)

new usr/src/lib/libipadm common/i padm prop. c

1273 return (1 PADM NOTSUP);

1275 return (i_ipadm getprop_common(iph, NULL, pnane, buf, bufsize,
1276 proto, valtype));

1277 }

1279 /*

1280 * Cet interface property of the specified interface.

1281 */

1282 i padm stat us_t

1283 i padm get _i f prop(i padm handl e_t iph, const char *ifnane, const char *pnane,
1284 (char *buf, uint_t *bufsize, uint_t proto, uint_t valtype)

1285

1286 /* validate the arguments of the function. */

1287 if (iph == NULL || pname == NULL || buf == NULL |

1288 bufsize == NULL || *bufsize == 0) {

1289 return (I PADM_| NVALI D_ARG) ;

1290 }

1292 /* Do we support this proto, if not return error. */

1293 if (ipadm.proto2str(proto) == NULL)

1294 return (| PADM NOTSUP) ;

1296 *

1297 * check if interface nane is provided for interface property and
1298 * is valid.

1299 */

1300 if (!i_ipadmvalidate_ifnanme(iph, ifname))

1301 return (I PADM | NVALI D_ARG) ;

1303 return (i_ipadm getprop_common(iph, ifnane, pnane, buf, bufsize,
1304 proto, valtype));

1305 }

1307 /*

1308 * Allocates sufficient ioctl buffers and copies property name and the
1309 * value, anong other things. If the flag | PADM OPT_DEFAULT is set, then
1310 * ‘pval’ will be NULL and it instructs the kernel to reset the current
1311 * value to property’s default val ue.

1312 */

1313 st atic i padmstatus_t

1314 i _i padm set _prop(i padm handl e_t iph, const void *arg,

1315 i padm prop_desc_t *pdp, const void *pval, uint_t proto, uint_t flags)
1316 {

1317 i padm status_t status = | PADM SUCCESS;

1318 const char *ifnane = arg;

1319 nod_i oc_prop_t *m p;

1320 char *pname = pdp->i pd_nane;

1321 ui nt _t val si ze, 10csize;

1322 ui nt _t iocflags = 0;

1324 if (flags & | PADM OPT_DEFAULT) {

1325 i ocflags [= MOD_PROP_DEFAULT;

1326 } else if (flags & | PADM OPT_ACTI VE) {

1327 iocflags | = MOD_PROP_ACTI VE;

1328 if (flags & | PADM OPT_APPEND)

1329 i ocfl ags [= MOD_PROP_APPEND,

1330 else if (flags & | PADM OPT_REMOVE)

1331 i ocfiags | = MOD_PROP_REMOVE;

1332 }

1334 if (pval != NULL) {

1335 val size = strlen(pval)

1336 iocsize = sizeof (nod_ioc_prop_t) + valsize - 1;

1337 } else {

1338 val size = 0;

19

new usr/src/lib/libi padm common/i padm prop. c

1339
1340

1342
1343

1345
1346
1347
1348
1349
1350
1351

1353
1354
1355
1356

1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379

* Ok kR %k F

*/

iocsize = sizeof (nod_ioc_prop_t);

}

if ((m'p=ca||o(iocsize)) == NULL)
return (I PAl DM_NO_BUFS);

m p- >npr_versi on = MOD_PROP_VERSI ON,
m p->npr _flags = iocflags;
m p- >npr_proto = proto;
if (ifname !'= NULL) {
(void) strlcpy(m p->npr_ifnane,
si zeof (m p->npr_ifnane));

i f nane,

}

(void) strlcpy(m p->npr_nane, pnane,

m p- >npr_val si ze = val si ze;

if (pval !'= NULL)
bcopy(pval ,

si zeof (m p->npr_nane));

m p->nmpr_val , val size);
if (i_ipadmstrioctl(iph->iph_sock,
iocsize) <0
if (errno == ENCENT)
status = | PADM_PROP_UNKNOW\;

SI OCSETPROP, (char *)m p,

el se
status = i padm errno2status(errno);

free(mp);
return (status);

Common function for nodifying both protocol/interface property.

'PADM_CPT_PERSI ST is set then the value is persisted.

PADM OPT_DEFAULT is set then the default value for the property wll
be appli ed.

static ipadmstatus_t

1380 {

1381
1382
1383
1384
1385
1386
1387

1389
1390
1391

1393
1394
1395
1396
1397
1398

1400
1401
1402
1403
1404

_i padm set prop_common(i padm handl e_t i ph,
const char *pnaneg,

const char *ifnane,
const char *buf, uint_t proto, uint_t pflags)

i padm st at us_t status = I PADM_SUCCESS;

bool ean_t persi st = (pflags & | PADM OPT_PERSI ST) ;
bool ean_t reset = (pflags & | PADM OPT_DEFAULT);

i padm prop_desc_t *pdp;

bool ean_t is_if = (ifname !'= NULL);

char priv _pr opname[MAXPRCPNANELEN]

int err = 0;

/* Check that property value is within the allowed size */
if (!reset & strnlen(buf, MAXPROPVALLEN) >= MAXPROPVALLEN)
return (1 PADM I NVALI D_ARG) ;
pdp = i_i padm_get_prop_desc(pnane, proto, &err);
1f (err == EPROT
return (1 PADM BAD_PROTOCOL) ;
/* there are no private interface properties */
if (is_if & & err == ENCENT)
return (| PADM PROP_UNKNOW) ;

if (pdp !'= NULL) {
/* do some sanity checks */
if (is_if) {
if (!(pdp->ipd_class & | PADMPROP_CLASS | F))
return (1 PADM | NVALI D_ARG ;

20

new usr/src/lib/libipadm comron/i padm prop.c 21

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

1424
1425
1426

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

1439
1440
1441
1442
1443
1444

}
/*

} else {
if (!(pdp->ipd _class & | PADMPROP_CLASS MODULE))
return (1 PADM | NVALI D_ARG ;

*

* if the property is not nulti-valued and | PADM OPT_APPEND or
* I PADM OPT_REMOVE i s specified, return | PADM I NVALTD ARG
*
if

('(pdp >i pd_fl ags & | PADVPROP_MJLVAL) && (pflags &
| PADM_OPT_APPEND| | PADM OPT_REMOVE)))
return (1 PADM | N\VALT D_ARG) ;

} else {
/* private protocol property, pass it to kernel directly */
pdp = & padm pri vprop;
(voi d) strlcpy(pr|v propnanme, pnane, sizeof (priv_propnane))
pdp->i pd_name = priv_propnang;

}

status = pdp->i pd_set (i ph, ifnane, pdp, buf, proto, pflags);

if (status != | PADM SUCCESS)
return (status);

if (per5|fst) {

(is_if)
status = i _i padm persist_propval (i ph, pdp, buf, ifnane,
pflags);
el se
status = i _i padm persist_propval (i ph, pdp, buf,
i padm proto2str(proto), pflags);

}
return (status);

* Sets the property value of the specified interface
*/

i padm st at us_t
i padm set _i f prop(i padm handl e_t iph, const char *ifnane, const char *pnane,

1445 {

1446
1447

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459

1461
1462
1463
1464
1465

1467
1468
1469
1470

const char *buf,

uint_t proto, uint_t pflags)

bool ean_t reset = (pflags & | PADM OPT_DEFAULT);
i padm status_t status;

/* check for solaris.network.interface.config authorization */
if (!ipadmcheck_auth())
return (1 PADM EAUTH);
/*
* validate the argunents of the function.
*/

if (iph == NULL || pname == NULL || (!reset && buf == NULL) ||
pflags == || pflags == | PADM OPT_PERSI ST | |
(pflags & ~(1 PADM COVMON OPT_MASK| TPADM OPT_DEFAULT))) {
return (1 PADM | NVALI D_ARG) ;

}

/*
* Do we support this protocol, if not return error.
*/
if (ipadm proto2str(proto) == NULL)
return (| PADM NOTSUP) ;

/*

* Validate the interface and check if a persistent
* operation is perforned on a tenporary object.

*/

new usr/src/lib/libipadm common/i padm prop. c

1471 status = i _ipadmvalidate_if(iph, ifname, proto, pflags);
1472 if (Status | = | PADM_SUCCESS)

1473 return (status);

1475 return (i_i padm setprop_comon(iph, ifnane, pnane, buf, proto,
1476 pfl ags));

1477 }

1479 /*

1480 * Sets the property value of the specified protocol.

1481 */

1482 i padm status_t

1483 i padm set _prop(i padm | handle _t iph, const char *pnanme, const char *buf,
1484 uint_t proto, uint_t I ags)

1485 {

1486 bool ean_t reset = (pflags & | PADM OPT_DEFAULT);

1488 /* check for solaris.network.interface.config authorization */
1489 if (!ipadmcheck_auth())

1490 return (1 PADM EAUTH);

1491 I

1492 * validate the argunents of the function.

1493 */

1494 if (iph == NULL || pname == NULL || (Yreset && buf == NULL) ||
1495 pflags == 0 || pflags == | PADM OPT_PERSI ST | |

1496 (pflags & ~(| PADM | CCNWCN OPT_MASK| T PADM_OPT_DEFAULT

1497 | PADM_OPT_APPEND| T PADM OPT_REMOVE))) {

1498 return (1 PADM I NVALI D_ARG) ;

1499 }

1501 /*

1502 * Do we support this proto, if not return error.

1503 *

1504 if (ipadm.proto2str(proto) == NULL)

1505 return (| PADM NOTSUP) ;

1507 return (i_ipadm setprop_comon(iph, NULL, pnane, buf, proto,
1508 pflags))

1509 }

1511 /* hel per function for ipadmwal k_propthbl */

1512 st atic void

1513 i _i padm wal k_pr opt bl (i padm prop_desc_t *pdtbl, uint_t proto, uint_t class,
1514 i padm prop_wfunc_t *func, void *arg)

1515 {

1516 i padm prop_desc_t *pdp;

1518 for (pdp = pdtbl; pdp->i pd_nanme != NULL; pdp++) {

1519 if (!(pdp->ipd_class & class))

1520 cont i nue;

1522 if (proto !'= MOD_PROTO NONE && ! (pdp->ipd_proto & proto))
1523 conti nue;

1525 /*

1526 * we found a class specific match, call the

1527 * user callback function.

1528 */

1529 if (func(arg, pdp->ipd_nanme, pdp->i pd_proto) == B_FALSE)
1530 br eal

1531 }

1532 }

1534 /*

1535 * Wal ks through all the properties, for a given protocol and property class
1536 * (protocol or interface)

22

new usr/src/lib/libipadm comron/i padm prop.c 23

1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548

1550
1551

1553
1554
555]
1556
1657
1558
1559
1560
1561
1562
1563
1564
1565

1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

*
*
*
*

Further if proto == MOD_PROTO NONE, then it wal ks through all the supported

protocol property tables.
/

i padm st at us_t
i padm wal k_propt bl (uint_t proto, uint_t class, ipadmprop_wfunc_t *func,

{

* Ok ok k% ok *

*/

voi d *arg)
i padm prop_desc_t *pdt bl ;
i padm st atus_t status = | PADM _SUCCESS;
int i;
int count = A CNT(protocols);

if (func == NULL)
return (I PADM | NVALI D_ARG) ;

switch (class) {

case | PADMPROP_CLASS_ADDR
pdtbl = i padm addr prop_t abl e;
br eak;

case IPADNPRCP CLASS | F:

case | PADMPROP_ CLASS MODULE:

pdtbl =i |padm get _propdesc_t abl e(proto);
1 f (pdtbl == NULL && proto != MOD_PROTO NG\IE)
return (1 PADM | NVALI D_ARG);
br eak;
defaul t:
return (I PADM | NVALI D_ARG) ;
}

if (pdtbl != NULL) {
/ *

* proto will be MOD_PROTO NONE in the case of

* | PADMPROP_CLASS_ADDR.

*

/
i _i padm wal k_proptbl (pdtbl, proto, class, func, arg);
} else {

/* Walk thru all the protocol tables, we support */

for (i =0; i < count; i++)
pdtbl =i _i padm get _propdesc_t abl e(protocol s[i]);
i padm)vxal k_proptbl (pdthbl, protocols[i], class, func,

arg

}

}
return (status);

G ven a property name, wal ks through all the instances of a property nane.
Sone properties have two instances one for v4 interfaces and another for v6
interfaces. For exanple: MIU. MIU can have different values for v4 and v6.
Therefore there are two properties for 'MIU .

This function invokes ‘func’ for every instance of property ‘pnange’

i padm st at us_t
i padm wal k_prop(const char *pnane, uint_t proto, uint_t class,

1595 {

1596
1597
1598

1600
1601

i padm prop_wfunc_t *func, void *arg)

i padm prop_desc_t *pdtbl, *pdp;
i padm st at us_t status = | PADM SUCCESS;
bool ean_t mat ched = B_FALSE;

if (pname == NULL || func == NULL)
return (I PADM | NVALI D_ARG) ;

new usr/src/lib/libipadm comron/i padm prop.c 24
1603 switch (class) {

1604 case | PADMPROP_CLASS_ADDR:

1605 pdtbl = i padm addr prop_t abl e;

1606 br eak;

1607 case | PADVPROP_CLASS | F:

1608 case IPADNPRCP_CLASS MODULE:

1609 pdtbl = i _i padm get_propdesc_tabl e(proto);

1610 br eak;

1611 defaul t:

1612 return (| PADM | NVALI D_ARG);

1613 1

1615 if (pdtbl == NULL)

1616 return (| PADM | NVALI D_ARG) ;

1618 for (pdp = pdtbl; pdp->ipd_nanme != NULL; pdp++) {

1619 if (strcr’rp(pnama pdp- >i pd_ nanE) 1= 0)

1620 conti nue;

1621 if (!(pdp->i pd_pr oto & proto))

1622 conti nue;

1623 mat ched = B_TRUE;

1624 /* we found a match, call the call back function */

1625 if (func(arg, pdp->ipd_name, pdp->ipd_proto) == B_FALSE)
1626 br eak;

1627 }

1628 if (!matched)

1629 status = | PADM_PROP_UNKNOWN;

1630 return (status);

1631

1633 ARGSUSED */

1634 i padm status_t

1635 i _i padm get onoff(l padm handl e_t iph, const void *arg, ipadmprop_desc_t *dp,
1636 char *buf, uint_t *bufsize, uint_t proto, uint_t valtype)

1637

1638 (void) snprintf(buf, *bufsize, "%, %", |PADM ONSTR | PADM OFFSTR);
1639 return (| PADM SUCCESS);

1640

1642

1643 /Makes a door call to ipngntd to retrieve the persisted property val ue
1644 *

1645 i padm status_t

1646 i _i padm get _persi st_propval (i padm handl e_t iph, ipadm prop_desc_t *pdp,
1647 char *gbuf, uint_t *gbufsize, const void *object)

1648 {

1649 i pmgnt _prop_arg_t parg;

1650 |pngm _getprop_rval _t rval, *rvalp;

1651 size_| nbyt es;

1652 int err = 0;

1654 bzero(&parg, sizeof (parg));

1655 parg.ia_cnd = | PMGMI_CMVD_GET! ;

1656 I _i padm popul at e_proparg(&parg, pdp, NULL, object);

1658 rval P = &rval ;

1659 err = i padm_ door _cal | (i ph, &parg, sizeof (parg), (void **)&rvalp,
1660 si zeof (rval), B_FALSE);

1661 if (err ==

1662 /* assert that rvalp was not reallocated */

1663 assert(rvalp == &val);

1665 /* “ir_pval’ contains the property value */

1666 nbytes = snprintf(gbuf, *gbufsize, "%", rvalp->ir_pval);
1667 if (nbyt es >= gbufS|ze)

1668 /* insufficient buffer space */

new usr/src/lib/libipadm common/i padm prop. c

1669 *gbufsi ze = nbytes + 1;

1670 err = ENOBUFS;

1671 }

1672 }

1673 return (ipadmerrno2status(err));

1674 }

1676 /*

1677 * Persists the property value for a given property in the data store
1678 */

1679 i padm status_t

1680 i _i padm persi st_propval (i padm handl e_t iph, ipadm prop_desc_t *pdp,
1681 const char *pval, const void *object, uint_t flags)

1682 {

1683 i pmgnt _prop_arg_t parg;

1684 int err = 0;

1686 bzero(&parg, sizeof (parg));

1687 i _i padm popul at e_proparg(&arg, pdp, pval, object);

1688 /*

1689 * Check if value to be persisted need to be appended or renopved. This
1690 * is required for nulti-val ued property.

1691 */

1692 if (flags & | PADM OPT_APPEND)

1693 parg.ia_flags | = | PMGMI_APPEND,

1694 if (flags & | PADM OPT_REMOVE)

1695 parg.ia_flags | = | PMGMI_REMOVE;

1697 if (flags & (| PADM. (PT __DEFAULT]| | PADM_OPT_REMOVE))

1698 parg.ia_cnd = TPMGMI_CVD_RESETPROP,

1699 el se

1700 parg.ia_cnd = | PMGMI_CVD_SETPROP,

1702 err = ipadmdoor_call (i ph, &parg, sizeof (parg), NULL, 0, B_FALSE);
1704 I*

1705 * its fine if there were no entry in the DB to del ete. The user
1706 * mght be changing property val ue, which was not changed
1707 * persistently.

1708

1709 if (err == ENCENT)

1710 err = 0;

1711 return (ipadmerrno2status(err));

1712 }

1714 /*

1715 * This is called fromipadmset_ifprop() to validate the set operation.
1716 * It does the foll ow ng steps:

1717 * 1. Validates the interface nanme.

1718 * 2. Fails if it is an IPMP neta-interface or an underlying interface.
1719 * 3. In case of a persistent operation, verifies that the

1720 * interface is persistent.

1721 *

1722 static ipadmstatus_t

1723 i_i padmvalidate_if (i padm handl e_t iph, const char *ifnane,

1724 uint_t proto, uint_t flags)

1725 {

1726 sa_famly_t af, other_af;

1727 i padm status_t status;

1728 bool ean_t p_exi sts;

1729 bool ean_t af _exi sts, other_af_exists, a_exists;

1731 /* Check if the interface nane is valid. */

1732 if (!i_ipadmyvalidate_ifname(iph, ifnane))

1733 return (| PADM | NVALI D_ARG);

25

new usr/src/lib/libipadm comron/i padm prop.c 26
1735 af = (proto == MOD_PROTO_ | PV6 ? AF_I NET6 : AF_I NET);

1736 /*

1737 * Se ting properties on an | PVP neta-interface or underlying

1738 * interface is not supported.

1739 */

1740 if (i_ipadm.is_ipnp(iph, ifname) || i_ipadm.is_under_ipnp(iph, ifnane))
1741 return (1 PADM NOTSUP);

1743 /* Check if interface exists in the persistent configuration. */
1744 status = i_ipadm.if_pexists(iph, ifname, af, &p_exists);

1745 if (status != | PADM SUCCESS)

1746 return (status);

1748 /* Check if interface exists in the active configuration. */

1749 af _exi st s = i padm i f_enabl ed(i ph, ifnanme, af);

1750 ot her _af = (af == AF_I NET ? AF_I NET6 : AF INEI')

1751 ot her _af eX|sts = i padm.if_enabl ed(i ph, i fname, other_af);

1752 a_exists = (af _exists || other_af_exists);

1753 if (la_exists & p_exists)

1754 return (1 PADM OP_DI SABLE_OBJ)

1755 if (!af_exists)

1756 return (| PADM ENXI O ;

1758 /*

1759 * |If a persistent operation is requested, check if the underlying
1760 * |Pinterface is persistent.

1761 */

1762 if ((flags & | PADM OPT_PERSI ST) && !p_exists)

1763 return (1 PADM TEMPORARY_OBJ) ;

1764 return (1 PADM SUCCESS);

1765 }

1767 /*

1768 * Private protocol properties namespace schene:

1769 *

1770 * PSARC 2010/080 identified the private protocol property nanes to be the
1771 * |eading protocol names. For e.g. tcp_strong_iss, ip_strict_src_nultihoning,
1772 * et al,. However to be consistent with private data-1i nk property nanes,
1773 * which starts with ' _’, private protocol property names wll start with '_
1774 * For e.g. _strong_iss, _strict_src_nultihom ng, et al,

1775 */

1777 /* maps new private protocol property nane to the old private property name */
1778 typedef struct ipadm oname2nnanme_map {

1779 char *i om onane;

1780 char *i om _nnane;

1781 uint_t iomproto;

1782 } i padm onane2nname_map_t ;

1784 /*

1785 * IPis a special case. It isn't straight forward to derive the | egacy nane
1786 * fromthe new name and vice versa. No set standard was followed in nam ng
1787 * the properties and hence we need a table to capture the mapping.

1788

1789 static ipadm_onaneZnnarTe_nap_t name_map[] = {

1790 { "arp_probe_del ay" ' _arp_probe_del ay",

1791 MOD_PROTO | P },

1792 { "arp_fast probe del ay" "_arp_fastprobe_del ay",

1793 MOD_PROTO | P},

1794 { "arp_probe_interval ", _arp_probe_interval ",

1795 MOD_PROTO | P Je

1796 { "arp_fastprobe_interval" "_arp_fastprobe_interval",

1797 MOD_PROTO | P }

1798 { "arp_probe_count" _arp_probe_count",

1799 MOD_PROTO | P },

1800 { "arp_fastprobe_count" " _arp_fastprobe_count",

new usr/src/lib/libipadm common/i padm prop. c

27

1801 MOD_PROTO | P },

1802 { "arp_defend_int erval " _arp_defend_interval ",

1803 MOD_PROTO | P },

1804 { "arp_defend_rate" "_arp_defend_rate",

1805 MOD_PROTO _| P },

1806 { "arp_defend_period", _arp_def end_peri od",

1807 MOD_PROTO | P },

1808 { "ndp_defend_interval ", "_ndp_defend_interval ",

1809 MOD_PROTO | P }

1810 { "ndp_defend_rate" _ndp_defend_rate",

1811 MOD_PROTO | P },

1812 { "ndp_def end_peri od", "_ndp_def end_period",

1813 MOD_PROTO | P },

1814 { "ignp_max_version" _ignp_max_version",

1815 MOD_PRCTO | P },

1816 { "nl d_max_version" "_m d_max_version",

1817 MOD_PROTO _| P },

1818 { "ipsec_override_persocket_policy", "_ipsec_override_persocket_policy",
1819 MOD _PROTO | P |

1820 { "ipsec_policy_log_interval", "_ipsec_policy_log_interval",
1821 MOD_PROTO_| P

1822 { "icnp_accept_cl ear_messages", "_icnp_accept_cl ear_nessages",
1823 MOD_PROTO TP },

1824 { "ignp_accept_cl ear_nessages", "_ignp_accept_cl ear_nessages",
1825 MOD_PROTO | P },

1826 { "pi maccept_cl ear _nessages”, _pi m accept _cl ear _nessages"”,
1827 MOD_PROTO | P },

1828 { "ip_respond_to_echo_multicast", "_respond_to_echo_multicast",
1829 MOD_PROTO | PV4 },

1830 { "ip_send_redirects", "_send_redirects",

1831 MOD_PROTO | PV4 },

1832 { "ip_forward_src_routed", ' _forward_src_routed",

1833 MOD_PROTO | PV4 1},

1834 { "ip_icnp_return_data_bytes", "_icnp_return_data_bytes",
1835 MOD_PROTO | PV4 1},

1836 { "ip_ignore_redirect", _ignore_redirect",

1837 MOD_PROTO | PV4 1},

1838 { "ip_strict_dst_multihom ng", "_strict_dst_nultihom ng",
1839 MOD_PROTO_| PV4 },

1840 { "ip_reasmtineout", _reasmtineout"”,

1841 MOD_PROTO | PV4 1},

1842 { "ip_strict_src_nultihom ng", "_strict_src_multihom ng",
1843 MOD_PROTO | PV4 }

1844 { "ipv4_dad_announce_interval", "_dad_announce_interval",
1845 MOD_PROTO | PV4 1}

1846 { "ipv4_icnp_return_pntu", "_icnp_return_pntu",

1847 MOD_PROTO | PV4 }

1848 { "ipv6_dad_announce_interval", "_dad_announce_interval",
1849 MOD_PROTO | PV6 1},

1850 { "ipv6_icnp_return_pntu", "_icnp_return_pntu",

1851 MOD_PROTO | PV6 },

1852 { NULL, NULL, MOD_PROTO NONE }

1853 };

1855 /*

1856 * Following APl returns a new property nane in ‘nnanme’ for the given | egacy
1857 * property nanme in ‘onane’.

1858 */

1859 int

1860 i padm | egacy2new propnane(const char *oname, char *nnane, uint_t nnanel en,
1861 uint_t *proto)

1862 {

1863 const char *str;

1864 i padm onanme2nnane_map_t *i onnp;

1866 /* if it’s a public property, there is nothing to return */

new usr/src/lib/libipadm common/i padm prop. c

1867
1868

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908

1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921 }

/

if (i_

/*
* we di

i padm get _prop_desc(onane,

*pro
return (-1);

dn't find the ‘oname’ in the

to, NULL) != NULL)

tabl e, check if the property

nane begins with a | eading protocol.

*/

str =

onane;

switch (* proto) {
PROTO

case

case MOD_PROTO_SCTP:
if (strstr(onane, "sctp_ ") ==
str += strlen("sctp");
br eak;
case MOD_PROTO_UDP:
if (strstr(onanme, "udp_") ==
str += strl en("udp")
br eak;
case MOD_PROTO RAW P:
if (strstr(onane, "icnp ") ==
str += strlen("icnp")
br eak;
case MOD_PROTO | P:
case MOD_PROTO | PV4:
case MOD_PROTO | PV6:
if (strstr(onane "ip6_") ==

defaul t:

}
(void) snprintf(nnane,

MOD

if (strstr(onarm "tep_")
str += strlen(tcp");

br eak;

onane)

onane)

onane)

onane)

onane) {

*proto = MOD_PROTO | PV6;

; ionnp->i omonanme != NULL;

ame, ionnp->i omoname) == 0) {
i onnp- >j om nnane;

0 = i onnp->i om proto;

= NULL)

") == onarre) {
PROTO I P,

("ip");

str += strlen("ip6™);
} else {
for (ionmp = name_nap
ionmp++) {
I1f (strcrmp(on
str =
*prot
br eak;
}
oo .
if (ionnmp->i omonane
br eak;
if (strstr(oname "ip_
*proto = MOD_
str += strlen
}
}
br eak;

return (-1);

nnanel en, " %"

return (0);

Fol | owi ng API

conpatibility with ndd output,

is required for ndd.c al one.
we need to

for the new nane.

dm new2| egacy_pr opnane(const char *onane,

uint _t nnanel en,

char

uint_t proto)

*prefix;

, str);

To mai ntai n backward
print the | egacy nanme

char *nnane,

new usr/src/lib/libipadm comron/i padm prop.c 29

1933 i padm onane2nnanme_map_t *i onnp;

1935 /* if it’s a public property, there is nothing to prepend */
1936 if (i_ipadmget_prop_desc(onane, proto, NULL) != NULL)

1937 return (-1);

1939 switch (proto) {

1940 case MOD_PROTO _TCP:

1941 prefix = "tcp";

1942 br eak;

1943 case MOD_PROTO_SCTP:

1944 prefix = "sctp";

1945 br eak;

1946 case MOD_PROTO_UDP:

1947 prefix = "udp";

1948 br eak;

1949 case MOD_PROTO_RAW P:

1950 prefix = "icnp";

1951 br eak;

1952 case MOD_PROTO | P:

1953 case MOD_PROTO | PV4:

1954 case MOD_PROTO | PV6:

1955 /* handl e special case for IP */

1956 for (ionnp = nane_nmap; ionnp->i omonane != NULL; ionnp++) {
1957 if (strcnp(onane, ionnp->iomnnane) == 0 &&
1958 i onmp->i om proto == proto) {

1959 (void) strlcpy(nnanme, ionnp->i omonane,
1960 nnanel en) ;

1961 return (0);

1962 }

1963 }

1964 if (proto == MOD_PROTO | PV6)

1965 prefix = "ip6";

1966 el se

1967 prefix = "ip";

1968 br eak;

1969 defaul t:

1970 return (-1);

1971

1972 (void) snprintf(nname, nnanelen, "%%", prefix, onane);
1973 return (0);

1974 }

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf 1 new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 dlr path kernellcrypto group S S
45632 Wed Jun 13 12:04:20 2012 63 dir path=kernel/crypto/ $(ARCH64) gr oup=sys
new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf 64 dir path=kernel/dacf group=sys
7B 65 dir path=kernel /dacf/$(ARCH64) group=sys
LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE] 66 d|r path:kernelldrv grOUp=SyS
1 # 67 dir path=kernel /drv/$(ARCH64) group=sys
2 # CDDL HEADER START 68 dir path=kernel /exec group=sys
3 # 69 dir pat h=kernel / exec/ $(ARCH64) group=sys
4 # The contents of this file are subject to the terns of the 70 dir path=kernel/fs group=sys
5 # Common Devel opnent and Distribution License (the "License"). 71 dir path=kernel /fs/$(ARCH64) group=sys
6 # You may not use this file except in conpliance with the License. 72 dir path=kernel/ipp group=sys
7 # 73 dir path=kernel /i pp/ $(ARCH64) group=sys
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 dir path=kernel / ki conv group=sys
9 # or http://ww. opensol aris.org/os/licensing. 75 dir pat h=kernel / ki conv/ $(ARCH64) gr oup=sys
10 # See the License for the specific |anguage governing perni ssions 76 dir path=kernel /mac group=sys
11 # and limtations under the License. 77 dir path=kernel / mac/ $(ARCH64) group=sys
12 # 78 dir path=kernel /m sc group=sys
13 # Wen distributing Covered Code, include this CDDL HEADER in each 79 dir path=kernel /m sc/ $(ARCH64) group=sys
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 dir path=kernel/m sc/scsi_vhci group=sys
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the 81 dir path=kernel/m sc/scsi_vhci/$(ARCH64) group=sys
16 # fields enclosed by brackets "[]" replaced with your own identifying 82 dir path=kernel/sched group=sys
17 # information: Portions Copyright [yyyy]l [nane of copyright owner] 83 dir path=kernel/sched/ $(ARCH64) group=sys
18 # 84 dir path=kernel /socket nod group=sys
19 # CDDL HEADER END 85 dir pat h=kernel / socket nod/ $(ARCH64) gr oup=sys
20 # 86 dir path=kernel/strnpd group=sys
87 dir path=kernel/strnod/ $(ARCH64) group=sys
22 # 88 dir path=kernel/sys group=sys
23 # Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved. 89 dir path=kernel/sys/$(ARCH64) group=sys
24 # 90 dir path=lib
91 dir path=lib/svc
26 # 92 dir path=lib/svc/nmanifest group=sys
27 # The default for payl oad-bearing actions in this package is to appear in the 93 dir path=lib/svc/ mani fest/system group=sys
28 # global zone only. See the include file for greater detail, as well as 94 dir path=lib/svc/ method
29 # information about overriding the defaults. 95 dir path=usr/share/ man
30 # 96 dir pat h=usr/share/ man/ manlm
31 <include gl obal _zone_onl y_conponent > 97 dir pat h=usr/ share/ man/ man2
32 <include systemkernel.manlminc> 98 dir path=usr/share/ man/ man3
33 <include systemkernel.man2.inc> 99 dir path=usr/share/ man/ man4
34 <include systemkernel.man4.inc> 100 dir pat h=usr/share/ man/ man5
35 <include systemkernel.nman5.inc> 101 dir pat h=usr/share/ man/ man7d
36 <include systemkernel.man7.inc> 102 dir pat h=usr/share/ man/ nan7fs
37 <include systemkernel.man7d.inc> 103 dir pat h=usr/share/ man/ man7m
38 <include systemkernel.man7fs.inc> 104 dir path=usr/share/ man/ man7p
39 <include systemkernel.man7minc> 105 dir pat h=usr/shar e/ man/ man9
40 <include system kernel . man7p.inc> 106 dir pat h=usr/share/ man/ man9e
41 <include system kernel.man9.inc> 107 dir pat h=usr/share/ man/ man9f
42 <include system kernel . man9e. i nc> 108 di r pat h=usr/shar e/ man/ man9p
43 <include system kernel . man9f.inc> 109 dir path=usr/share/ man/ man9s
44 <include system kernel . man9p. i nc> 110 $(| 386_ONLY)driver nane=acpi _drv pernms="* 0666 root sys"
45 <include system kernel.man9s.inc> 111 driver nane=aggr perns="* 0666 root sys"
46 set nane=pkg.fnri val ue=pkg:/systenm ker nel @(PKGVERS) 112 driver nane=arp perns="arp 0666 root sys"
47 set name=pkg. description \ 113 driver nanme=bl perms="* 0666 root sys"
48 val ue="core kernel software for a specific instruction-set architecture" 114 driver nane=bridge clone_perns="bri dge 0666 root sys" \
49 set nane=pkg. summary val ue="Core Sol aris Kernel" 115 policy="read_priv_set=net_rawaccess wite_priv_set=net_rawaccess"
50 set nane=info.classification val ue=org. opensol aris. cat egory. 2008: Syst enf Cor e 116 $(sparc_ONLY)driver nane=bscbus al i as=SUNW bscbus
51 set name=variant.arch val ue=$(ARCH) 117 $(i386_ONLY)driver nane=bscbus alias=SvI 0101
52 dir path=boot group=sys 118 $(sparc_ONLY)driver name=bscv alias=SUNW bscv perns="* 0644 root sys"
53 $(i386_ONLY)dir path=boot/acpi group=sys 119 $(i 386_ONLY)driver name=bscv
54 $(i386_ONLY)dir path=boot/acpi/tables group=sys 120 driver nane=cl one
55 dir path=boot/sol aris group=sys 121 driver nanme=cn perms="* 0620 root tty
56 dir path=boot/sol ari s/ bin group=sys 122 driver nanme=conskbd pernms="kbd 0666 root sys"
57 dir path=etc group=sys 123 driver nane=consns perns="nouse 0666 root sys"
58 dir path=etc/crypto group=sys 124 driver nane=cpuid perns="self 0644 root sys"
59 dir path=etc/sock2path.d group=sys 125 $(i 386_ONLY)driver name=cpunex alias=cpus
60 dir path=kernel group=sys 126 driver nanme=crypto pernms="crypto 0666 root sys"

61 $(i386_ONLY)dir path=kernel/$(ARCH64) group=sys

driver name=cryptoadm per ns="crypt oadm 0644 r oot

sys

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf

128 $(sparc_ONLY)driver name= dad al i as=i de-di sk perms="* 0640 root sys"
129 driver nane=dccp pernms= dccp 0666 root sys"

130 driver nanme=dccp6 perns="dccp6 0666 root sys"

131 #endif /* | codereview */

132 driver nane=devi nfo perns="devinfo 0640 root sys" \

133 per ms="devi nfo, ro 0444 root sys"

134 driver nane=dld perms="* 0666 root sys"

135 driver nane=dl pi stub pernms="* 0666 root sys"

136 $(sparc_ONLY)driver nane=i 8042 al i as=8042

137 $(i 386_ONLY)driver nane=i 8042

138 driver nane=icnp pernms="icnp 0666 root sys" \

139 policy="read_priv_set=net_icnpaccess wite_priv_set=net_icnpaccess"
140 driver nane=i cnp6 perns="icnp6 0666 root sys" \

141 pol i cy="read_priv_set=net_icnpaccess wite_priv_set=net_icnpaccess"
142 $(i386_ONLY)driver nane=intel _nb5000 \

143 al i as=pci 8086, 25c0 \

144 al i as=pci 8086, 25d0 \

145 al i as=pci 8086, 25d4 \

146 al i as=pci 8086, 25d8 \

147 al i as=pci 8086, 3600 \

148 al i as=pci 8086, 4000 \

149 al i as=pci 8086, 4001 \

150 al i as=pci 8086, 4003 \

151 al i as=pci 8086, 65c0

152 $(i386_ONLY)driver nane=intel _nhm\

153 al i as=pci 8086, 3423 \

154 al i as=pci 8086, 372a

155 $(i 386_ONLY) dri ver name= i ntel _nhnex al | as=pci 8086, 3438

156 driver name= =ip perms="ip 0666 root sys" \

157 policy="read_priv_: set =net _r awaccess wrlte _priv_set=net_rawaccess"
158 driver name=i p6 perns="i p6 0666 root sys" \

159 pol i cy="read_priv_set=net_rawaccess wite_priv_set=net_rawaccess"
160 driver nanme=i pnet perns="|00 0666 root sys" \

161 policy="read_priv_set=net_observability wite_priv_set=net_observability"
162 driver nane=ippctl

163 driver nanme=i psecah perms="ipsecah 0666 root sys" \

164 policy="read_priv_set= =sys_ ip_config wite prlv set =sys_i p_config"
165 driver nane=i psecesp perns="i psecesp 0666 root sys"

166 policy="read_priv_set=sys_ip_config wite_priv_set=sys_ip_config"
167 driver nane=iptun

168 driver nane=i wscn

169 driver nane=kb8042 al i as=pnpPNP, 303

170 driver name=keysock pernms="keysock 0666 root sys" \

171 policy="read_priv_set=sys_ip_config wite_priv_set=sys_ip_config"
172 driver nane=knmdb

173 driver nane=kssl| pernms="* 0666 root sys"

174 driver nane=llcl clone_pernms="Ilcl 0666 root sys"

175 driver nane=lofi perms="* 0600 root sys" perns="ctl 0644 root sys"
176 driver nane=l og perns="consl og 0666 root sys" perns="|og 0640 root sys"
177 $(i386_ONLY)driver nanme=nt-and \

178 al i as=pci 1022, 1100 \

179 al i as=pci 1022, 1101 \

180 al i as=pci 1022, 1102

181 driver nanme=nmm perns="al | kmem 0600 root sys" perns="kmem 0640 root sys" \
182 per ms="nem 0640 root sys" pernms="null 0666 root sys" \

183 perms="zero 0666 root sys" \

184 policy="all kmemread_priv_set=all wite_priv_set=all" \

185 pol i cy="kmem read_priv_set=none wite_priv_set=all" \

186 pol i cy="nmem read_priv_set=none wite_priv_set=all"

187 driver name=npuse8042 alias=pnpPNP, f 03

188 $(i386_ONLY)driver nane=npt class=scsi \

189 al i as=pci 1000, 30 \

190 al i as=pci 1000, 50 \

191 al i as=pci 1000, 54 \

192 al i as=pci 1000, 56 \

193 al i as=pci 1000, 58 \

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

al i as=pci 1000, 62 \
al i as=pci ex1000, 56 \
al i as=pci ex1000, 58 \
al i as=pci ex1000, 62
driver name=nul | driver \
al i as=scsa, nodev \
al i as=scsa, probe
driver nane=openeepr perns="openprom 0640 root sys" policy=wite_priv_set=all
driver nane=options
$(sparc_ONLY)driver name=pci_pci class=pci \
al i as=pci 1011, 1 \
al i as=pci 1011, 21 \
al i as=pci 1011, 24 \
al i as=pci 1011, 25 \
al i as=pci 1011, 26 \
al i as=pci 1014, 22 \
al i as=pci cl ass, 060400
$(i 386_ONLY)driver nane=pci_pci class=pci \
al i as=pci 1011, 1 \
al i as=pci 1011, 21 \
al i as=pci 1014, 22 \
al i as=pci cl ass, 060400 \
al i as=pci cl ass, 060401
$(sparc_ONLY) driver name=pcieb \
al i as=pci ex108e, 9010
al i as=pci ex108e, 9020
al i as=pci ex10b5, 8114
al i as=pci ex10b5, 8516
al i as=pci ex10b5, 8517
al i as=pci ex10b5, 8518
al i as=pci ex10b5, 8532
ali as:pci ex10b5, 8533
al i as=pci ex10b5, 8548
al i as=pci excl ass, 060400
$(i 386 O\ILY) driver nanme=pcieb \
al i as=pci excl ass, 060400 \
al i as=pci excl ass, 060401
$(sparc_ONLY) driver name=pci eb_bcm al i as=pci ex1166, 103
driver name=physnem perns="* 0600 root sys"
driver name=pol| perns="* 0666 root sys"
$(sparc_ONLY)driver nane=power alias=ali 1535d+- power
$(i 386_ONLY) dri ver name=power
driver name=pseudo al i as=zconsnex
driver name=ptc perns="* 0666 root sys"
driver name=ptsl perns="* 0666 root sys"
$(sparc_ONLY)driver name=randi sk al i as=SUNW r andi sk pernms="* 0600 root sys" \
perms="ct| 0644 root sys"
$(i 386_ONLY)driver nane=randi sk perms="* 0600 root sys" \
pernms="ctl 0644 root sys"
dri ver nane=random perns="* 0644 root sys" policy=wite_priv_set=sys_devices
driver nane=rts perns="rts 0666 root sys"
driver name=sad perns="adnmi n 0666 root sys" perms="user 0666 root sys"
driver name=scsi_vhci class=scsi-self-identifying pernms="* 0666 root sys" \
policy="devctl wite_priv_set=sys_devices"
$(sparc_ONLY)driver name=sd perns="* 0640 root sys" \
al i as=i de-cdrom\
al i as=scsi cl ass, 00 \
al i as=scsi cl ass, 05
$(i386_ONLY)driver nane=sd perns="* 0640 root sys" \
al i as=scsi cl ass, 00 \
al i as=scsi cl ass, 05
driver name=sgen perns="* 0600 root sys" \
al i as=scsa, 08. bfcp \
al i as=scsa, 08. bvhci
driver name=si met cl one_perns="si met 0666 root sys" perms="* 0666 root sys"
$(i 386_ONLY)driver name=snbi os perns="snbi os 0444 root sys"

P

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

driver name=softmac
driver name=spdsock perns="spdsock 0666 root sys" \
policy="read_priv_set=sys_ip_config wite_priv_set=sys_ip_config"
driver nane=st alias=scsiclass, 01 perns="* 0666 root sys"
driver nane=sy pernms="tty 0666 root tty"
driver name=sysevent perns="* 0600 root sys"
driver name=sysmsg perns="nsgl og 0600 root sys" perns="sysnsg 0600 root sys"
driver nane=tcp perms="tcp 0666 root sys"
driver nane=tcp6 perns="tcp6 0666 root sys"
driver name=t| perns="* 0666 root sys" clone_perms="ticlts 0666 root sys" \
cl one_pernms="ticots 0666 root sys" clone_perns="ticotsord 0666 root sys"
$(sparc_ONLY)driver name=ttynux alias=nultiplexer
$(i 386_ONLY) dri ver name=tznon
$(sparc_ONLY)driver name=uata \
al i as=pci 1095, 646 \
al i as=pci 1095, 649 \
al i as=pci 1095, 680 \
al i as=pci 10b9, 5229 \
al i as=pci 10b9, 5288 cl ass=dada cl ass=scsi
$(i 386_ONLY)driver name=ucode perns="* 0644 root sys"
driver nane=udp perns="udp 0666 root sys"
driver name=udp6 perns="udp6 0666 root sys"
$(i 386_ONLY)driver name=vgatext \
al i as=pci cl ass, 000100 \
al i as=pci cl ass, 030000 \
al i as=pci cl ass, 030001 \
al i as=pnpPNP, 900
driver name=vnic clone_perns="vnic 0666 root sys" perns="* 0666 root sys"
driver nane=wc perms="* 0600 root sys"
$(i 386_ONLY)file path=boot/sol aris/bin/create_di sknap group=sys npode=0555
file path=boot/sol aris/bin/create_randi sk group sys node=0555
file path=boot/solaris/bin/extract_boot filelist group=sys npde=0555
$(i 386_ONLY)file path=boot/sol aris/bin/mbr group=sys node=0555
$(i 386_ONLY)file path=boot/sol ari s/ bi n/ syndef group=sys npde=0555
$(i 386_ONLY)fil e path=boot/sol ari s/ bi n/update_grub group=sys node=0555
| e pat h=boot/sol aris/filelist.randi sk group=sys
| e path=boot/solaris/filelist.safe group=sys
I e path=etc/crypto/kcf.conf group=sys \
ori gi nal _nanme=SUNWKr : et c/ crypt o/ kcf. conf preserve=true
file path= et ¢/ name_t o_sysnum group=sys \
ori gi nal _name=SUNW¢kr : et c/ nane_t o_sysnum pr eser ve=r enaneol d
pat h=et ¢/ sock2pat h. d/systerr?/aerrneI group=sys
pat h=et ¢/ syst em group=sys ori gi nal _nane=SUNWKkr : et c/ syst em preserve=true
86_ONLY)file path=kernel / $(ARCH64)/ genuni x gr oup=sys node=0755
pat h=ker nel / crypt o/ $(ARCH64) / aes gr oup=sys npde=0755
pat h=ker nel / crypt o/ $(ARCH64) / ar cf our group=sys node=0755
pat h=ker nel / crypt o/ $(ARCH64) / bl owf i sh group=sys npde=0755
pat h=ker nel / crypt o/ $(ARCH64) / des gr oup=sys node=0755
pat h=ker nel / crypt o/ $(ARCH64) / ecc group=sys node=0755
pat h=ker nel / crypt o/ $(ARCH64) / nd4 gr oup=sys node=0755
pat h=ker nel / crypt o/ $(ARCH64) / nd5 gr oup=sys node=0755
pat h=ker nel / crypt o/ $(ARCH64) / r sa gr oup=sys node=0755
pat h=ker nel / crypt o/ $(ARCH64) / shal group=sys npde=0755
pat h=ker nel / crypt o/ $(ARCH64) / sha2 gr oup=sys npde=0755
pat h=ker nel / crypt o/ $(ARCH64) / swr and gr oup=sys node=0755
86_ONLY)file path=kernel/crypto/aes group=sys node=0755
pat h=ker nel / crypt o/ ar cf our group=sys node=0755
pat h=kernel / crypt o/ bl owfi sh group=sys npde=0755
pat h=ker nel / crypt o/ des group=sys npde=0755
pat h=ker nel / crypt o/ ecc group=sys node=0755
pat h=ker nel / crypt o/ nmd4 group=sys node=0755
pat h=ker nel / crypt o/ nmd5 group=sys node=0755
pat h=kernel / crypto/ rsa group=sys npde=0755
pat h=ker nel / crypt o/ shal group=sys npde=0755
pat h=ker nel / crypt o/ sha2 group=sys node=0755
pat h=ker nel / crypt o/ swand group=sys node=0755

fi
fi
fi

WODODODD®DDDDDDDWD D

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

$(sparc_ G\JLY)fl | e pat h=ker nel / dacf/ $(ARCH64) / consconfi g_dacf group=sys \
node=075
file path= ker nel / dacf/ $(ARCH64) / net _dacf group=sys npde=0755
$(i 386_ONLY)fil e path=kernel/dacf/net_dacf group=sys npde=0755
$(i 386_ONLY)file path=kernel /drv/$(ARCH64) / acpi _drv group=sys
$(i 386_ONLY)file path=kernel /drv/$(ARCH64) / acpi _ “toshi ba group=sys
e pat h=kernel / drv/ $(ARCH64) / aggr gr oup=sys
pat h=ker nel / drv/ $(ARCH64) / arp gr oup=sys
at h=ker nel / dr v/ $(ARCH64) / bl gr oup=sys
at h=ker nel / dr v/ $(ARCH64) / bri dge gr oup=sys
_ONLY) fil e path=kernel/drv/$(ARCH64)/bscbus group=sys
_ONLY)file path=kernel/drv/$(ARCH64)/ bscv group=sys
at h=ker nel / dr v/ $(ARCH64) / cl one group=sys
at h=ker nel / dr v/ $(ARCH64) / cn group=sys
at h=ker nel / dr v/ $(ARCH64) / conskbd gr oup=sys
a
a

00

t h=ker nel / dr v/ $(ARCH64) / consns gr oup=sys

t h=ker nel / dr v/ $(ARCH64) / cpui d gr oup=sys

ONLY)fil e path=kernel /drv/$(ARCH64)/cpunex group=sys
at h=ker nel / dr v/ $(ARCH64) / crypt 0 gr oup=sys

at h=ker nel / dr v/ $(ARCH64) / cr ypt oadm gr oup=sys
c_ONLY)fil e path=kernel/drv/$(ARCH64)/dad group=sys

a

a

©
jehehohohoholnsohoRphohoNohohohohoholo Yo kool

QD

t h=ker nel / dr v/ $(ARCH64) / dccp group=sys

t h=ker nel / dr v/ $(ARCH64) / dccp6 gr oup=sys
/* 1 codereview */

t h=ker nel / dr v/ $(ARCH64) / devi nf o gr oup=sys
t

t

t

t

h=ker nel / drv/ $(ARCH64) / dl d gr oup=sys
h=ker nel / dr v/ $(ARCH64) / dl pi st ub group=sys
h=ker nel / drv/ $(ARCH64) / i 8042 gr oup=sys
h=ker nel / drv/ $(ARCH64) /i cnp gr oup=sys
t h=ker nel / drv/ $(ARCH64) / i cnp6 gr oup=sys
86_ONLY)fil e path=kernel/drv/$(ARCH64)/intel _nb5000 group=sys
86_ONLY)fil e path=kernel/drv/$(ARCH64) /i nt el _nhm gr oup=sys
86_ONLY)fil e path=kernel/drv/$(ARCH64) /i nt el _nhmex group=sys
pat h=kernel / drv/ $(ARCH64) /i p group=sys
pat h=ker nel / dr v/ $(ARCH64) / i p6 gr oup=sys
pat h=ker nel / drv/ $(ARCH64) / i pnet group=sys
pat h=ker nel / drv/ $(ARCH64) / i ppct| group=sys
pat h=ker nel / drv/ $(ARCH64) / i psecah group=sys
pat h=ker nel / dr v/ $(ARCH64) / i psecesp gr oup=sys
pat h=ker nel / dr v/ $(ARCH64) / i pt un group=sys
pat h=ker nel / dr v/ $(ARCH64) / i wscn gr oup=sys
pat h=ker nel / dr v/ $(ARCH64) / kb8042 gr oup=sys
pat h=ker nel / dr v/ $(ARCH64) / keysock group=sys
pat h=ker nel / dr v/ $(ARCH64) / kndb gr oup=sys
pat h=ker nel / dr v/ $(ARCH64) / kssl group=sys
pat h=ker nel / drv/ $(ARCH64) /11 c1 group=sys
pat h=ker nel / drv/ $(ARCH64) /| of i group=sys
pat h=ker nel / drv/ $(ARCH64) /| og gr oup=sys
86_ONLY)file path=kernel/drv/$(ARCH64)/ nc-and gr oup=sys
at h=ker nel / dr v/ $(ARCH64) / mm gr oup=sys
at h=ker nel / dr v/ $(ARCH64) / rouse8042 gr oup=sys
ONLY) fil e path=kernel/drv/$(ARCH64)/ npt group=sys
t h=ker nel / dr v/ $(ARCH64) / nul | dri ver group=sys
t h=ker nel / dr v/ $(ARCH64) / openeepr group=sys
t h=ker nel / dr v/ $(ARCH64) / opti ons gr oup=sys
t h=ker nel / dr v/ $(ARCH64) / pci _pci group=sys
t h=ker nel / dr v/ $(ARCH64) / pci eb gr oup=sys
_ONLY)fil e path=kernel/drv/$(ARCH64)/ pci eb_bcm gr oup=sys
t h=ker nel / dr v/ $(ARCH64) / physmem gr oup=sys
t h=ker nel / dr v/ $(ARCH64) / pol | gr oup=sys
_ONLY)file path=kernel /drv/$(ARCH64)/ power group=sys
at h=ker nel / dr v/ $(ARCH64) / pseudo gr oup=sys
at h=ker nel / drv/ $(ARCH64) / pt ¢ gr oup=sys
at h=ker nel / drv/ $(ARCH64) / pt sl gr oup=sys
a
a

a
a
a
al
a
a

[e<]
LDODYLODLDYY|

© Q
jeheheohohoNohohoRphohohohoholNo kool

t h=ker nel / dr v/ $(ARCH64) / r andi sk group=sys

fi
fi
fi
f
$
$
fi
fi
fi
fi
f
$
fi
fi
$
fi
fi
#
fi
fi
fi
fi
fi
f
$
$
$
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
f
f
$
fi
fi
$
fi
fi
fi
f
f
$
fi
fi
$
fi
fi
fi
fi
fi t h=ker nel / dr v/ $(ARCH64) / r andom gr oup=sys

i
i
i
(i
(i
i
i
i
i
(i
i
i
(
i
i
e
i
i
i
i
!
(i
(i
(i
i
i
i
i
i
i
i
i
i
i
i
i
i
|
(i
i
i
(i
i
i
i
:
(
i
i
(i
i
i
i
i
i

|
|
|
|
i
i
|
|
|
|
|
|
|
|
S
|
|
n
|
|
|
|
|
|
|
i
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
S
|
|
i
|
|
|
|
|

mmmmmwmmﬁmmmmmwmmwmmmmmmmmmmmmmmmwwwmmmmmmammummmmmmmmwwmmm

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

pat h=ker nel / drv/ $(ARCH64) /rts group=sys
at h=ker nel / dr v/ $(ARCH64) / sad gr oup=sys
at h=ker nel / drv/ $(ARCH64) / scsi _vhci group=sys
at h=ker nel / drv/ $(ARCH64) / sd gr oup=sys
at h=ker nel / drv/ $(ARCH64) / sgen group=sys
at h=ker nel / dr v/ $(ARCH64) / si rmet gr oup=sys
_ONLY)file path=kernel/drv/$(ARCH64)/ snbi os group=sys
pat h=ker nel / dr v/ $(ARCH64) / sof t mac gr oup=sys
pat h=ker nel / dr v/ $(ARCH64) / spdsock group=sys
pat h=ker nel / drv/ $(ARCH64) / st gr oup=sys
pat h=ker nel / dr v/ $(ARCH64) / sy group=sys
pat h=ker nel / dr v/ $(ARCH64) / sysevent gr oup=sys
pat h=ker nel / dr v/ $(ARCH64) / sysnsg gr oup=sys
pat h=ker nel / drv/ $(ARCH64) /t cp group=sys
pat h=ker nel / drv/ $(ARCH64) / t cp6 group=sys
pat h=ker nel / drv/ $(ARCH64) / t| gr oup=sys
arc_ONLY)fil e path=kernel /drv/$(ARCH64)/ttynux group=sys
86_ONLY)file path=kernel/drv/$(ARCH64)/tznon group=sys
arc_ONLY)fil e path=kernel /drv/$(ARCH64)/uata group=sys
86_ONLY)fil e path=kernel /drv/$(ARCH64)/ ucode group=sys
pat h=ker nel / dr v/ $(ARCH64) / udp group=sys
at h=ker nel / dr v/ $(ARCH64) / udp6 gr oup=sys
ONLY) fil e path=kernel /drv/$(ARCH64)/vgat ext group=sys
t h=ker nel / drv/ $(ARCH64) / vni ¢ gr oup=sys
t h=ker nel / drv/ $(ARCH64) / wc gr oup=sys
LY)file path=kernel/drv/acpi_drv group=sys
il e path=kernel /drv/acpi _ “drv. conf group=sys
il e path=kernel /drv/acpi _toshi ba group=sys
il e path=kernel /drv/aggr group=sys
nel / drv/ aggr. conf group=sys
L il e path=kernel/drv/arp group=sys
h=ker nel / drv/ arp. conf group=sys
LY)file path=kernel/drv/bl group=sys
at h=ker nel / drv/ bl . conf group=sys
86_ONLY)fil e path=kernel/drv/bridge group=sys
pat h=ker nel / drv/ bri dge. conf group=sys
86_ONLY)fil e path=kernel /drv/bscbus group=sys
86_ONLY)fil e path=kernel /drv/bscbus. conf group=sys
i 386_ONLY)file path=kernel/drv/bscv group=sys
i 386_ONLY)file path=kernel/drv/bscv.conf group=sys
i 386_ONLY)file path=kernel/drv/clone group=sys
pat h=ker nel / drv/ cl one. conf group=sys
86_ONLY)fil e path=kernel/drv/cn group=sys
pat h=ker nel / drv/cn. conf group=sys
86_ONLY)fil e pat h=kernel /drv/conskbd group=sys
at h=ker nel / drv/ conskbd. conf group=sys
86_ONLY)fil e path=kernel/drv/consnms group=sys
at h=ker nel / drv/ consns. conf group=sys
_ONLY)file path=kernel/drv/cpuid group=sys
at h=ker nel / drv/ cpui d. conf group=sys
a

p
P
%
P
P
6

8

8

Lo

p
6
p
p
86_
8 _

ONI
6_ONLY) f
6_ONLY) fi
_ONLY) fi
at h=ker
_ONLY) f
at
ONI

6
P
86
P
86_
P

wwmwmwmwmwwwmmmwmmwﬁmummmmmmmmmwmmmmmm

P

P
86

P

86_ONLY)fil e path=kernel /drv/cpunex group=sys

86_ONLY)fil e path=kernel/drv/crypto group=sys

pat h=ker nel /drv/crypto. conf group=sys
86_ONLY)fil e path=kernel/drv/cryptoadm group=sys
at h=ker nel / drv/ crypt oadm conf group=sys
rc_ONLY)fil e path=kernel/drv/dad. conf group=sys
_ONLY)file path=kernel/drv/dccp group=sys

p
pat h=ker nel / drv/ dccp. conf group=sys
p

oL

8

ONLY) fil e path=kernel/drv/dccp6 group=sys

t h=ker nel / drv/ dccp6. conf group=sys

/* 1 codereview */

_ONLY)file path= kernel / drv/ devi nfo group=sys
at h=ker nel / dr v/ devi nf 0. conf group=sys
_ONLY)file path=kernel/drv/dld group=sys

t h=kernel /drv/dl d. conf group=sys

_ONLY)file path=kernel/drv/dl pistub group=sys

o=

pa
P

a
8
a

- S, - ——nh - —_——_——_—_ e ———— T =

WO WD WADWD WD ® WD (AJU)(D (}JfD CA)(D (}.JfD w o

6
6
6
6
6

8

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

e pat h=kernel /drv/dl pi stub. conf group=sys

i 386_ONLY)file path=kernel/drv/i8042 group=sys
i 386_ONLY)file path=kernel/drv/icnp group=sys
e pat h=kernel /drv/icnp. conf group=sys

i 386_ONLY)file path=kernel/drv/icnp6 group=sys
e pat h=kernel /drv/icnp6. conf group=sys

386_ONLY) fil e path=kernel/drv/intel _nb5000 group=sys
386_ONLY)fil e path=kernel /drv/intel _nb5000. conf group=sys
386_ONLY)fil e path=kernel /drv/intel _nhm group=sys
386_ONLY)fil e path=kernel /drv/intel _nhm conf group=sys
386_ONLY)fil e path=kernel/drv/intel _nhnex group=sys
386_ONLY)fil e path=kernel/drv/intel _nhnex.conf group=sys
386_ONLY)fil e path=kernel/drv/ip group=sys

e path=kernel /drv/ip.conf group=sys
i 386_ONLY)file path=kernel/drv/ip6 group=sys
e pat h=kernel /drv/ip6.conf group=sys
i 386_ONLY)file path=kernel/drv/ipnet group=sys
pat h=ker nel / drv/i pnet. conf group=sys
86_ONLY)fil e path=kernel/drv/ippctl group=sys
pat h=kernel /drv/i ppctl.conf group=sys
86_ONLY)fil e path=kernel/drv/ipsecah group=sys
pat h=ker nel / drv/i psecah. conf group=sys
86_ONLY)fil e path=kernel /drv/ipsecesp group=sys
pat h=ker nel / drv/i psecesp. conf group=sys
86_ONLY)fil e path=kernel/drv/iptun group=sys
pat h=kernel / drv/iptun. conf group=sys
86_ONLY)fil e path=kernel/drv/iwscn group=sys
pat h=ker nel / drv/iwscn. conf group=sys
86_ONLY)fil e path=kernel/drv/kb8042 group=sys
86_ONLY)fil e path=kernel/drv/keysock group=sys
pat h=ker nel / dr v/ keysock. conf group=sys
86_ONLY)fil e pat h=kernel /drv/kndb group=sys
pat h=ker nel / dr v/ kndb. conf group=sys
86_ONLY)fil e path=kernel/drv/kssl group=sys
pat h=ker nel / drv/ kssl . conf group=sys
86_ONLY)file path=kernel/drv/Ilcl group=sys
pat h=kernel /drv/I|cl. conf group=sys
86_ONLY)file path=kernel/drv/lofi group=sys
pat h=kernel /drv/| of i .conf group=sys
86_ONLY)fil e path=kernel/drv/|og group=sys
pat h=kernel /drv/1 og. conf group=sys \
ori gi nal _name=SUNWkr : kernel /drv/ 1 og. conf preserve=true
386_ONLY) il e path=kernel /drv/nmc-anmd group=sys
386_ONLY)fil e path=kernel /drv/nt-and. conf group=sys

('D(AJ(D (D(D w ® (D(D (AJfD WWDd WD WD (AJfD (A)('D w o

i
i

i 386_ONLY) fil e path=kernel/drv/mm group=sys

il e path=kernel/drv/mm conf group=sys

i 386_ONLY) fil e path=kernel/drv/muse8042 group=sys
i
i

386_ONLY)fil e path=kernel /drv/npt group=sys
386_ONLY)file path=kernel/drv/npt.conf group=sys \
ori gi nal _name=SUNWkr : kernel / drv/ npt . conf preserve=true
i 386_ONLY)fil e path=kernel /drv/nul |l driver group=sys
i 386_ONLY)file path=kernel/drv/openeepr group=sys
e pat h=ker nel / drv/ openeepr. conf group=sys
i 386_ONLY) file path=kernel/drv/options group=sys
e pat h=kernel /drv/options. conf group=sys
i 386_ONLY)fil e path=kernel /drv/pci_pci group=sys
i 386_ONLY)fil e path=kernel /drv/pcieb group=sys
pat h=ker nel / drv/ pci eb. conf group=sys
86_ONLY)fil e path=kernel/drv/physmem group=sys
pat h=ker nel / dr v/ physmem conf group=sys
86_ONLY)fil e path=kernel/drv/poll group=sys
pat h=ker nel /drv/ pol | . conf group=sys
86_ONLY)fil e path=kernel /drv/power group=sys
86_ONLY) fil e pat h=kernel /drv/power.conf group=sys
86_ONLY)fil e pat h=kernel/drv/pseudo group=sys
pat h=ker nel / dr v/ pseudo. conf group=sys

D WWW®D (AJfD w o

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544 $
545
546
547
548
549
550
551
552
553
554
555
556
551
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
5145]
576
577
578
579
580
581
582
583
584
585
586
587
588
589

386_ONLY)fil e path=kernel/drv/ptc group=sys
e pat h=kernel /drv/ptc.conf group=sys
i 386_ONLY)file path=kernel/drv/ptsl group=sys
I'e path=kernel/drv/ptsl.conf group=sys
86_ONLY)file path= kernel / dr v/ r andi sk group=sys
pat h=ker nel / dr v/ r andi sk. conf group=sys
86_ONLY)fil e path=kernel/drv/random group=sys
at h=ker nel / drv/ random conf group=sys
_ONLY)file path=kernel/drv/rts group=sys
at h=kernel /drv/rts. conf group=sys
_ONLY)fil e path=kernel/drv/sad group=sys
at h=kernel /drv/ sad. conf group=sys
_ONLY)file path=kernel/drv/scsi_vhci group=sys
pat h=ker nel / dr v/ scsi _vhci . conf group=sys \
ori gi nal _name=SUNWtkr T ker nel / drv/ scsi _vhci . conf preserve=true
$(spar c_O\ILY) file path=kernel/drv/sd.conf group=sys \
ori gi nal _name=SUNWkr : ker nel / drv/ sd. conf preserve=true
$(i 386_ONLY)Tile path=kernel /drv/sgen group=sys
file path=kernel/drv/sgen.conf group=sys \
origi nal _name=SUNWKkr : ker nel / drv/sgen. conf preserve=true
i 386_ONLY)fil e path=kernel/drv/si met group=sys
e pat h=kernel / drv/si met. conf group=sys
i 386_ONLY)file path=kernel/drv/snbios group=sys
i 386_ONLY)file path=kernel/drv/snbios.conf group=sys
i 386_ONLY) file path=kernel/drv/softmac group=sys
pat h=ker nel / drv/ sof t mac. conf group=sys
6_ONLY)fil e path=kernel/drv/spdsock group=sys
pat h=ker nel / dr v/ spdsock. conf group=sys
6_ONLY)file path=kernel/drv/st group=sys
pat h=kernel /drv/ st.conf group=sys \
ori gi nal _name=SUNWEKkr : kernel / drv/ st.conf preserve=true
86_ONLY)file path=kernel/drv/sy group=sys
pat h=kernel / drv/ sy. conf group=sys
86_ONLY)fil e path=kernel/drv/sysevent group=sys
P
6
P
86
P
86
P

P
86
P
86
P
86

mwmwmwmwmw

e
i 38
e
i 38
e

(i

i

(i

i at h=ker nel / drv/ sysevent . conf group=sys
(1386_ONLY)fil e path=kernel/drv/sysnsg group=sys
i at h=ker nel / drv/ sysnsg. conf group=sys

(i _ONLY)file path=kernel/drv/tcp group=sys

i at h=kernel /drv/tcp. conf group=sys

(i _ONLY)file path=kernel/drv/tcp6 group=sys
i at h=kernel /drv/tcp6. conf group=sys

(i1 386_ONLY)file path=kernel/drv/tl group=sys

i pat h=kernel /drv/tl.conf group=sys
(1386_ONLY)fil e path=kernel /drv/tznon group=sys

(i 386_ONLY)fil e path=kernel/drv/tznon.conf group=sys
(sparc_ONLY)fil e path=kernel/drv/uata.conf group=sys \

ori gi nal _name=SUNWkr : ker nel / drv/ uat a. conf preserve=true
(1386_ONLY)file path=kernel/drv/ucode group=sys
(i

(i

i

(i

i

(i

(i

i

(i

i

(

i

i

(i

(i

i

i

i

wmwmwmwmwmwmw

Py N S UL R

i 386_ONLY) fil e path=kernel/drv/ucode.conf group=sys
386_ONLY)fil e path=kernel/drv/udp group=sys
e pat h=kernel /drv/udp. conf group=sys
386_ONLY)fil e path=kernel /drv/udp6 group=sys
e pat h=kernel / drv/ udp6. conf group=sys
386_ONLY)fil e pat h=kernel/drv/vgatext group=sys
86_ONLY)fil e path=kernel/drv/vnic group=sys
pat h=ker nel / drv/ vni c. conf group=sys
86_ONLY)fil e path=kernel/drv/wc group=sys
pat h=ker nel / drv/wc. conf group=sys
arc_ONLY)fil e path=kernel / exec/ $(ARCH64) / aout exec group=sys npde=0755
pat h=ker nel / exec/ $(ARCH64) / el f exec group=sys npde=0755
pat h=ker nel / exec/ $(ARCH64) / i nt pexec group=sys node=0755
86_ONLY)fil e pat h=kernel / exec/ el f exec group=sys npde=0755
86_ONLY)fil e path=kernel/exec/intpexec group=sys npde=0755
pat h=ker nel / f s/ $(ARCH64) / aut of s gr oup=sys npde=0755
pat h=ker nel / f s/ $(ARCH64) / cachef s gr oup=sys node=0755
pa

i
|
i
|
i
i
|
i
|
s
|
|
i
i
|
|
| t h=kernel / f s/ $(ARCH64) / ct fs group=sys npde=0755

mmmwwmmumwmw

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf 10
590 file path=kernel/fs/$(ARCH64)/dcfs group=sys npde=0755
591 file path=kernel/fs/$(ARCH64)/dev group=sys npde=0755
592 file path=kernel/fs/$(ARCH64)/devfs group=sys node=0755
593 file path=kernel/fs/$(ARCH64)/fifofs group=sys npde=0755
594 file path=kernel/fs/$(ARCH64)/ hsfs group=sys node=0755
595 file path=kernel/fs/$(ARCH64) /| of s group=sys node=0755
596 file path=kernel/fs/$(ARCH64)/ mtfs group=sys node=0755
597 file path=kernel/fs/$(ARCH64)/ nanefs group=sys node=0755
598 file path=kernel/fs/$(ARCH64)/objfs group=sys node=0755
599 file path=kernel/fs/$(ARCH64)/procfs group=sys npde=0755
600 file path=kernel/fs/$(ARCH64)/sharefs group=sys npde=0755
601 file path=kernel/fs/$(ARCH64)/sockfs group=sys nbde=0755
602 file path=kernel/fs/$(ARCH64)/specfs group=sys npde=0755
603 file path=kernel/fs/$(ARCH64)/tnpfs group=sys node=0755
604 file path=kernel/fs/$(ARCH64)/ ufs group=sys npde=0755
605 $(i386_ONLY)fil e path=kernel/fs/autofs group=sys nbde=0755
606 $(i386_ONLY)file path=kernel/fs/cachefs group=sys node=0755
607 $(i386_ONLY)file path=kernel/fs/ctfs group=sys npde=0755
608 $(i386_ONLY)file path=kernel/fs/dcfs group=sys npde=0755
609 $(i386_ONLY)file path=kernel/fs/dev group=sys npbde=0755
610 $(i386_ONLY)file path=kernel/fs/devfs group=sys npde=0755
611 $(i386_ONLY)file path=kernel/fs/fifofs group=sys npde=0755
612 $(i386_ONLY)file path=kernel/fs/hsfs group=sys npde=0755
613 $(i386_ONLY)file path=kernel/fs/lofs group=sys npde=0755
614 $(i386_ONLY)file path=kernel/fs/mtfs group=sys npde=0755
615 $(i386_ONLY)file path=kernel/fs/namefs group=sys npde=0755
616 $(i386_ONLY)file path=kernel/fs/objfs group=sys npde=0755
617 $(i386_ONLY)file path=kernel/fs/procfs group=sys npde=0755
618 $(i386_ONLY)file path=kernel/fs/sharefs group=sys node=0755
619 $(i386_ONLY)file path=kernel/fs/sockfs group=sys nopde=0755
620 $(i386_ONLY)file path=kernel/fs/specfs group=sys node=0755
621 $(i386_ONLY)file path=kernel/fs/tnmpfs group=sys npde=0755
622 $(i386_ONLY)file path=kernel/fs/ufs group=sys node=0755
623 $(i386_ONLY)file path=kernel/genunix group=sys node=0755
624 file path=kernel/ipp/ $(ARCH64)/i pgpc group=sys npde=0755
625 $(i386_ONLY)file path=kernel/ipp/ipgpc group=sys node=0755
626 file path=kernel/kiconv/$(ARCH64)/ ki conv_enea group=sys nopde=0755
627 file path=kernel/kiconv/$(ARCH64)/ ki conv_j a group=sys npde=0755
628 file path=kernel/ki conv/ $(ARCH64)/ ki conv_ko group=sys npde=0755
629 file path=kernel/kiconv/$(ARCH64)/ ki conv_sc group=sys npde=0755
630 fil e path=kernel/kiconv/$(ARCH64)/ ki conv_tc group=sys node=0755
631 $(i386_ONLY)file path=kernel/kiconv/kiconv_enea group=sys node=0755
632 $(i386_ONLY)file path=kernel/kiconv/kiconv_ja group=sys npde=0755
633 $(i386_ONLY)file path=kernel/kiconv/kiconv_ko group=sys nopde=0755
634 $(i386_ONLY)fil e path=kernel/kiconv/kiconv_sc group=sys node=0755
635 $(i 386_ONLY)file path=kernel /kiconv/kiconv_tc group=sys node=0755
636 file path=kernel/mac/ $(ARCH64) / mac_6t 04 group=sys npde=0755
637 file path=kernel /mac/ $(ARCH64) / mac_et her group=sys npde=0755
638 fil e path=kernel /mac/ $(ARCH64) / mac_i b group=sys npde=0755
639 file path=kernel/mac/ $(ARCH64) / mac_i pv4 group=sys npde=0755
640 file path=kernel/mac/ $(ARCH64) / mac_i pv6 group=sys npde=0755
641 file path=kernel/mac/ $(ARCH64) / mac_wi fi group=sys npde=0755
642 $(i386_ONLY)file path=kernel/mac/ mac_6t o4 group=sys node=0755
643 $(i386_ONLY)file path=kernel/mac/ mac_et her group=sys npde=0755
644 $(i386_ONLY)file path=kernel/nmac/mac_i b group=sys node=0755
645 $(i386_ONLY)file path=kernel /mac/ mac_i pv4 group=sys node=0755
646 $(i386_ONLY)file path=kernel /mac/ mac_i pv6 group=sys node=0755
647 $(i386_ONLY)file path=kernel/mac/mac_w fi group=sys node=0755
648 $(i386_ONLY)file path=kernel/m sc/ $(ARCH64)/ acpi ca group=sys npde=0755
649 $(i386_ONLY)file path=kernel/m sc/$(ARCH64)/ agpmast er group=sys nmode=0755
650 file path=kernel/m sc/$(ARCH64) / bi gnum gr oup=sys nmode=0755
651 $(i386_ONLY)file path=kernel/m sc/$(ARCHG4)/bootdev group=sys node=0755
652 file path=kernel/m sc/$(ARCH64)/busra group=sys npde=0755
653 file path=kernel/m sc/$(ARCH64)/ cardbus group=sys npde=0755
654 file path=kernel/m sc/$(ARCH64)/cm b group=sys npde=0755
655 fil e path=kernel/m sc/ $(ARCH64)/ consconfi g group=sys nbde=0755

new usr/ src/ pkg/ mani f est s/ syst em ker nel .

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

nf

pat h=ker nel / m sc/ $(ARCH64) / ctf group=sys mode=0755
arc_ONLY)fil e path=kernel /m sc/ $(ARCH64) / dada gr oup=sys node=0755
at h=ker nel / m sc/ $(ARCH64) / dl s gr oup=sys nopde=0755
at h=ker nel / m sc/ $(ARCH64) / f ssnap_i f group=sys npde=0755
t h=kernel / m sc/ $(ARCH64) / gl d group=sys npde=0755
t h=ker nel / m sc/ $(ARCH64) / hook group=sys npde=0755
t h=ker nel / m sc/ $(ARCH64) / hpcsvc group=sys npde=0755
t h=kernel / m sc/ $(ARCH64) / i dmap gr oup=sys npde=0755
_ONLY)fil e path=kernel/m sc/$(ARCH64)/iommulib group=sys npde=0755
at h=ker nel / mi sc/ $(ARCH64) /i pc gr oup=sys npde=0755
at h=ker nel / mi sc/ $(ARCH64) / kbt r ans gr oup=sys node=0755
at h=ker nel / m sc/ $(ARCH64) / kcf group=sys npde=0755
_ONLY)fil e path=kernel /m sc/$(ARCH64) / kndbnod group=sys npde=0755
at h=ker nel / mi sc/ $(ARCH64) / ksocket group=sys node=0755
at h=ker nel / mi sc/ $(ARCH64) / mac gr oup=sys node=0755
at h=ker nel / mi sc/ $(ARCH64) / mi i group=sys nmode=0755
_ONLY)file path=kernel /m sc/$(ARCH64)/ net 80211 group=sys nmode=0755
at h=ker nel / m sc/ $(ARCH64) / neti group=sys node=0755
86_ONLY)fil e path=kernel /m sc/$(ARCH64)/pci _autoconfi g group=sys npde=0755
86_ONLY)fil e path=kernel/m sc/$(ARCH64)/ pci cfg group=sys node=0755
86_ONLY)file path=kernel/m sc/$(ARCH64)/pci e group=sys node=0755
at h=ker nel / mi sc/ $(ARCH64) / pci hp group=sys npde=0755
at h=ker nel / mi sc/ $(ARCH64) / pcnti a group=sys node=0755
at h=ker nel / m sc/ $(ARCH64) / r pcsec gr oup=sys npde=0755
_ONLY)file path=kernel /m sc/$(ARCH64)/sata group=sys mode=0755
at h=ker nel / mi sc/ $(ARCH64) / scsi group=sys npde=0755
at h=ker nel / mi sc/ $(ARCH64) / strpl unb group=sys npde=0755
arc_ONLY)fil e path=kernel / m sc/ $(ARCH64) / swapgeneri c group=sys node=0755
at h=ker nel / m sc/ $(ARCH64) / t em gr oup=sys npde=0755
pat h=ker nel / mi sc/ $(ARCH64) / t| i mod group=sys node=0755

P
p
P
86
P
p
r
P

wmmnmmwmmmwwwmgmmmwmmmwmmmmmmum

86_ONLY)file path=kernel/m sc/acpica group=sys mode=0755
386_CNLY) file path=kernel/m sc/agpmast er group=sys node=0755
386_ONLY) fil e path=kernel/m sc/bi gnum group=sys node=0755
386_ONLY)fil e pat h=kernel/m sc/bootdev group=sys node=0755
386_ONLY)fil e path=kernel /m sc/busra group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/cardbus group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/cm b group=sys node=0755
i 386_ONLY) file path=kernel/m sc/consconfig group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/ctf group=sys npde=0755
_ONLY)file path=kernel /m sc/dls group=sys node=0755
i 386_ONLY)file path=kernel/m sc/fssnap_if group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/gld group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/hook group=sys node=0755
i 386_ONLY)file path=kernel/m sc/hpcsvc group=sys node=0755
i 386_ONLY)file path=kernel/m sc/idmap group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/ionmmulib group=sys npbde=0755
i 386_ONLY)file path=kernel/m sc/ipc group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/kbtrans group=sys npde=0755
i 386_ONLY) file path=kernel/m sc/kcf group=sys npde=0755
i 386_ONLY) file path=kernel/m sc/kndbnod group=sys node=0755
i 386_ONLY) fil e path=kernel/m sc/ ksocket group=sys node=0755
i 386_ONLY)file path=kernel/m sc/mac group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/mi group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/net80211 group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/neti group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/pci_autoconfig group=sys npde=0755
i 386_ONLY)file path=kernel/m sc/pcicfg group=sys node=0755
i 386_ONLY) file path=kernel/m sc/pcie group=sys node=0755
i 386_ONLY) fil e path=kernel/m sc/pci hp group=sys node=0755
i 386_ONLY)file path=kernel/m sc/pcntia group=sys node=0755
i 386_ONLY)file path=kernel/m sc/rpcsec group=sys node=0755
i 386_ONLY)file path=kernel/m sc/sata group=sys node=0755
i 386_ONLY) file path=kernel/m sc/scsi group=sys npde=0755
il e path=kernel /m sc/scsi_vhci/$(ARCH64)/ scsi _vhci _f_asym ent group=sys \
node=0755
file path=kernel/m sc/scsi_vhci/$(ARCH64)/scsi_vhci _f_asym|si group=sys \

11 new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf
722 node=0755
723 file path=kernel /m sc/scsi_vhci/$(ARCH64)/scsi _vhci _f_asym sun group=sys \
724 node=0755
725 file path=kernel/m sc/scsi_vhci/$(ARCH64)/scsi _vhci _f _sym group=sys npde=0755
726 file path=kernel/m sc/scsi_vhci/$(ARCH64)/scsi _vhci_f_sym ent group=sys \
727 node=0755
728 file path=kernel/m sc/scsi_vhci/$(ARCH64)/scsi _vhci _f_sym hds group=sys \
729 node=0755
730 file path=kernel/m sc/scsi_vhci/$(ARCH64)/scsi _vhci _f _tape group=sys npde=0755
731 file path=kernel/m sc/scsi_vhci/$(ARCH64)/scsi _vhci _f_tpgs group=sys npde=0755
732 file path=kernel/nisc/scsi_vhci/$(ARCH64)/scsi _vhci_f_tpgs_tape group=sys \
733 nmode=0755
734 $(i386_ONLY)file path=kernel/m sc/scsi_vhci/scsi_vhci_f_asyment group=sys \
735 node=0755
736 $(i386_ONLY)file path=kernel/m sc/scsi_vhci/scsi_vhci_f_asym|si group=sys \
737 node=0755
738 $(i386_ONLY)file path=kernel/m sc/scsi_vhci/scsi_vhci_f_asym sun group=sys \
739 node=0755
740 $(i386_ONLY)file path=kernel/m sc/scsi_vhci/scsi_vhci_f_sym group=sys \
741 node=0755
742 $(i386_ONLY)file path=kernel/m sc/scsi_vhci/scsi_vhci_f_syment group=sys \
743 node=0755
744 $(i386_ONLY)file path=kernel/m sc/scsi_vhci/scsi_vhci_f_sym hds group=sys \
745 node=0755
746 $(i386_ONLY)file path=kernel/m sc/scsi_vhci/scsi_vhci_f_tape group=sys \
747 node=0755
748 $(i386_ONLY)file path=kernel/m sc/scsi_vhci/scsi_vhci_f_tpgs group=sys \
749 node=0755
750 $(i386_ONLY) f i | e pat h=kernel /m sc/scsi_vhci/scsi_vhci _f_tpgs_tape group=sys \
751 node=075
752 $(i 386_O\ILY) f| | e path=kernel/m sc/strplunb group=sys npde=0755
753 $(i386_ONLY)file path=kernel/m sc/tem group=sys npde=0755
754 $(i386_ONLY)file path=kernel/misc/tlinpd group=sys node=0755
755 file path=kernel/sched/ $(ARCH64)/ SDC gr oup=sys npde=0755
756 file path=kernel/sched/ $(ARCH64)/ TS gr oup=sys node=0755
757 file path=kernel/sched/ $(ARCH64)/ TS_DPTBL group=sys node=0755
758 $(i386_ONLY)fil e path=kernel/sched/ SDC gr oup=sys nbde=0755
759 $(i386_ONLY)file path=kernel/sched/ TS group=sys npde=0755
760 $(i386_ONLY)file path=kernel/sched/ TS_DPTBL group=sys npde=0755
761 file path=kernel /socket mod/ $(ARCH64) / kssl f group=sys nmode=0755
762 fil e path=kernel /socket nod/ $(ARCH64) / socksct p group=sys node=0755
763 file path=kernel/socketnod/ $(ARCH64)/trill group=sys node=0755
764 $(i386_ONLY)file path=kernel/socketnod/ ksslf group=sys node=0755
765 $(i386_ONLY)file path=kernel/socketnod/ socksctp group=sys npde=0755
766 $(i386_ONLY)file path=kernel/socketmod/trill group=sys npde=0755
767 file path=kernel/strnod/ $(ARCH64)/ buf nod group=sys npde=0755
768 file path=kernel/strnod/ $(ARCH64)/connl d group=sys npde=0755
769 file path=kernel/strnod/ $(ARCH64)/ dedunp group=sys npde=0755
770 file path=kernel/strnod/ $(ARCH64)/dr conpat group=sys nbde=0755
771 file path=kernel/strnod/ $(ARCH64) /| dt er m gr oup=sys npde=0755
772 $(sparc_ONLY)file path=kernel/strnmod/ $(ARCH64)/ ms group=sys npde=0755
773 file path=kernel /strnmod/ $(ARCH64) / pckt group=sys npde=0755
774 file path=kernel/strnmod/ $(ARCH64)/ pf nod gr oup=sys npde=0755
775 file path=kernel/strnod/ $(ARCH64)/ pi penod group=sys node=0755
776 file path=kernel/strnod/ $(ARCH64)/ pt em gr oup=sys npde=0755
777 file path=kernel/strnod/ $(ARCH64)/redi rnod group=sys npde=0755
778 file path=kernel/strnod/ $(ARCH64)/rpcnod group=sys npde=0755
779 file path=kernel/strnmod/ $(ARCH64)/t1 nmbd group=sys npde=0755
780 file path=kernel/strnod/ $(ARCH64)/tirdw group=sys npde=0755
781 file path=kernel/strnod/ $(ARCH64)/ttconpat group=sys npde=0755
782 $(sparc_ONLY)file path=kernel/strnod/ $(ARCH64)/ vui d3ps2 group=sys npde=0755
783 $(i 386_ONLY)fil e path=kernel/strnod/buf nod group=sys nbde=0755
784 $(i386_ONLY)file path=kernel/strnod/ connld group=sys node=0755
785 $(i386_ONLY)file path=kernel/strnod/ dedunp group=sys npde=0755
786 $(i386_ONLY)file path=kernel/strnod/drconpat group=sys node=0755
787 $(i386_ONLY)file path=kernel/strnod/|dterm group=sys node=0755

12

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf 13

788 $(i386_ONLY)file path=kernel/strnod/ pckt group=sys npde=0755

789 $(i386_ONLY)file path=kernel/strnod/pfnod group=sys node=0755

790 $(i386_ONLY)file path=kernel/strnod/ pi penod group=sys node=0755

791 $(i386_ONLY)file path=kernel/strnod/ ptem group=sys npde=0755

792 $(i386_ONLY)file path=kernel/strnod/redirnmod group=sys node=0755

793 $(i386_ONLY)file path=kernel/strnod/rpcnod group=sys node=0755

794 $(i386_ONLY)file path=kernel/strnod/tinod group=sys node=0755

795 $(i386_ONLY)file path=kernel/strnod/tirdw group=sys node=0755

796 $(i386_ONLY)file path=kernel/strnod/ttconpat group=sys node=0755

797 file path=kernel/sys/$(ARCH64)/ c2audit group=sys npde=0755

798 file path=kernel/sys/$(ARCH64)/ doorfs group=sys npde=0755

799 file path=kernel/sys/$(ARCH64)/i nst_sync group=sys nbde=0755

800 file path=kernel/sys/$(ARCH64)/ kai o group=sys npde=0755

801 file path=kernel/sys/$(ARCH64)/ msgsys group=sys npde=0755

802 file path=kernel/sys/$(ARCH64)/ pi pe group=sys node=0755

803 fil e path=kernel/sys/$(ARCH64)/ portfs group=sys node=0755

804 file path=kernel/sys/$(ARCH64)/ pset group=sys npode=0755

805 file path=kernel/sys/$(ARCH64)/semsys group=sys npde=0755

806 file path=kernel/sys/$(ARCH64)/shmsys group=sys npde=0755

807 $(i386_ONLY)file path=kernel/sys/c2audit group=sys nbde=0755

808 $(i386_ONLY)file path=kernel/sys/doorfs group=sys node=0755

809 $(i386_ONLY)file path=kernel/sys/inst_sync group=sys npde=0755

810 $(i386_ONLY)file path=kernel/sys/kaio group=sys npde=0755

811 $(i386_ONLY)fil e path=kernel/sys/nsgsys group=sys nopde=0755

812 $(i386_ONLY)file path=kernel/sys/pipe group=sys npde=0755

813 $(i386_ONLY)file path=kernel/sys/portfs group=sys npde=0755

814 $(i386_ONLY)file path=kernel/sys/pset group=sys npde=0755

815 $(i386_ONLY)file path=kernel/sys/sensys group=sys npde=0755

816 $(i386_ONLY)file path=kernel/sys/shnsys group=sys node=0755

817 file path=lib/svc/ manifest/system dunpadm xm group=sys npde=0444

818 file path=lib/svc/manifest/systenlintrd.xm group=sys node=0444

819 file path=lib/svc/ manifest/systen schedul er.xm group=sys node=0444

820 file path=lib/svc/method/ svc-dunpadm mode=0555

821 file path=lib/svc/nmethod/ svc-intrd node=0555

822 file path=lib/svc/method/svc-schedul er node=0555

823 $(sparc_ONLY)file path=usr/share/ man/ manln monitor.1im

824 $(sparc_ONLY)file path=usr/share/ man/ manlm obpsym 1m

825 # On SPARC driver/bscv is Serverbladel specific, and in systeni kernel/platform
826 # We keep the nanual page generic

827 $(sparc_ONLY)file path=usr/share/ man/ man7d/ dad. 7d

828 $(i386_ONLY)file path=usr/share/ man/ man7d/ snbi os. 7d

829 # Sadly vuid nouse support is in different packages on different platforns
830 # While kstat(7D) is in SUNWs, the structures are general

831 hardl i nk path=kernel /m sc/ $(ARCH64) / md5 \

832 target=../../../kernel/crypto/ $(ARCH64)/ md5

833 hardli nk pat h=ker nel / i sc/ $(ARCH64) / shal \

834 target=../../../kernel/crypto/ $(ARCH64)/ shal

835 hardlink pat h=ker nel / i sc/ $(ARCH64) / sha2 \

836 target=../../../kernel/crypto/ $(ARCH64)/sha2

837 $(i386_ONLY)hardlink path=kernel/m sc/nd5 target=../../kernel/crypto/nd5
838 $(i386_ONLY) hardlink path=kernel/m sc/shal target=../../kernel/crypto/shal
839 $(i386_ONLY)hardlink path=kernel/misc/sha2 target=../../kernel/crypto/sha2
840 hardl i nk pat h=kernel / socket nmod/ $(ARCH64) / dccp \

841 target=../../../kernel /drv/$(ARCH64)/dccp

842 #endif /* | codereview */

843 hardl i nk pat h=ker nel / socket mod/ $(ARCH64) /i cnp \

844 target=../../../kernel/drv/$(ARCH64)/icnp

845 hardl i nk pat h=kernel / socket nod/ $(ARCH64) /rts \

846 target=../../../kernel/drv/$(ARCH64)/rts

847 hardl i nk pat h=kernel / socket mod/ $(ARCH64) /tcp \

848 target=../../../kernel/drv/$(ARCH64)/tcp

849 hardl i nk pat h=ker nel / socket nod/ $(ARCH64) / udp \

850 target=../../../kernel/drv/$(ARCH64)/ udp

851 $(i386_ONLY)hardlink path=kernel/socketnod/dccp target=../../kernel/drv/dccp
852 #endif /* | codereview */

853 $(i 386_ONLY) hardl i nk pat h=ker nel / socket nod/icnp target=../../kernel/drv/icnp

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf 14

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

.lkernel/drvirts
../kernel/drv/tcp
.l kernel /drv/udp

$(i 386_ONLY) hardl i nk pat h=kernel / socketnod/rts target= /
$(i 386_ONLY) hardl i nk pat h=kernel / socket nod/tcp target=
$(i 386_ONLY) hardl i nk pat h=ker nel / socket nod/ udp tar get— /
har dI i nk pat h=ker nel / strnod/ $(ARCH64) /arp \
arget=../../../kernel /drv/$(ARCH64)/arp
har dI i nk pat h=ker nel / st r mod/ $(ARCH64) / dccp \
target=../../../kernel/drv/$(ARCH64)/ dccp
#endif /* | codereview */
hardl i nk pat h=ker nel / strnod/ $(ARCH64) /i cnp \
target=../../../kernel/drv/$(ARCH64)/icnp
hardl i nk pat h=kernel / strnod/ $(ARCH64) /i p \
arget=../../../kernel /drv/ $(ARCH64) /i p
hardl i nk pat h=ker nel / st r mod/ $(ARCHB4) / i psecah \
target=../. ./ kernel /drv/ $(ARCH64) / i psecah
hardl i nk pat h=ker nel / st r mod/ $(ARCH64) / i psecesp \
arget=../../../kernel /drv/ $(ARCH64) /i psecesp
har dI i nk pat h=ker nel / st r mod/ $(ARCH64) / keysock \
target=../. ./ kernel / drv/ $(ARCH64) / keysock
hardl i nk pat h=ker nel / st r mod/ $(ARCHB4) /tcp \
arget=../../../kernel/drv/$(ARCH64)/tcp
har dI i nk pat h=ker nel / st r mod/ $(ARCH64) / udp \
target= ./ kernel / drv/ $(ARCH64) / udp
$(i 386_O\ILY) har dl i nk pat h=kernel /strnod/arp target= ../kernel /drv/arp
$(i386_ONLY) hardl i nk pat h=kernel /strnod/ dccp target=../../kernel/drv/dccp
#endif /* | codereview */
$(i 386_ONLY) hardl i nk pat h=kernel /strnod/icnp target— /..lkernel /drv/icnp
$(i 386_ONLY) hardl i nk path=kernel /strnod/ip target=../../kernel/drv/ip
$(i 386 _ONLY) hardl i nk pat h=kernel /strnod/i psecah \
arget=../../kernel/drv/ipsecah
$(i 386 O\ILY) har dl i nk pat h=ker nel / strnod/ i psecesp \
target=../../kernel/drv/ipsecesp
$(i 386_CNLY) har dl i nk pat h=ker nel / st r rod/ keysock \
target=../../kernel/drv/keysock
$(i 386_ONLY) har dl i nk pat h=kernel /strnod/tcp target= /
$(i 386_ONLY) hardl i nk pat h=kernel /strnod/ udp target=
hardl i nk pat h=ker nel / sys/ $(ARCH64) / aut of s \
target=../../../kernel/fs/$(ARCH64)/ aut of s
hardl i nk pat h=ker nel / sys/ $(ARCH64) / r pcnod \
target=../../../kernel /strerd/$(ARC|—|64)/rpand
$(i 386_ONLY) har dl i nk pat h=ker nel / sys/ aut of s tar get
$(i 386_ONLY) hardl i nk pat h=ker nel / sys/rpcnod tar get
| egacy pkg=SUNWkr \
desc="core kernel software for a specific instruction-set architecture" \
name="Core Sol ari s Kernel (Root)"
l'icense cr_Sun |license=cr_Sun
license lic_CDDL |icense=lic_CDDL
|'i cense usr/src/cnmd/ mdb/ common/ | i bst and/ THI RDPARTYLI CENSE \
I'i cense=usr/ src/crmd/ ndb/ common/ | i bst and/ TH RDPARTYLI CENSE
I'i cense usr/src/comon/ bzi p2/ LI CENSE | i cense=usr/ src/comon/ bzi p2/ LI CENSE
|'i cense usr/src/comon/crypto/ TH RDPARTYLI CENSE. cr ypt ogans \
I'i cense=usr/ src/common/ crypt o/ TH RDPARTYLI CENSE. cr ypt ogans
$(i 386_ONLY) | i cense usr/src/comon/crypto/ aes/ and64/ THI RDPARTYLI CENSE. gl adman \
I'i cense=usr/src/ common/ crypt o/ aes/ and64/ THI RDPARTYLI CENSE. gl adman
$(i 386_ONLY) | i cense usr/src/commmon/crypto/ aes/ amd64/ THI RDPARTYLI CENSE. openss| \
I'i cense=usr/ src/ common/ crypt o/ aes/ and64/ THI RDPARTYLI| CENSE. openssl
|'i cense usr/src/comon/crypto/ ecc/ TH RDPARTYLI CENSE \
I'i cense=usr/src/ comon/ crypt o/ ecc/ THH RDPARTYLI CENSE
$(i1386_ONLY) | icense usr/src/comon/crypto/ md5/ and64/ TH RDPARTYLI CENSE \
I'i cense=usr/ src/ common/ crypt o/ nd5/ and64/ TH RDPARTYLI| CENSE
I'i cense usr/src/comon/ npi / TH RDPARTYLI CENSE \
I'i cense=usr/ src/ common/ npi / TH RDPARTYLI CENSE
I'i cense usr/src/uts/comon/inet/ip/ TH RDPARTYLI CENSE.rts \
I'i cense=usr/ src/uts/comon/inet/ip/ TH RDPARTYLI CENSE. rts
I'i cense usr/src/uts/comon/inet/tcp/ TH RDPARTYLI CENSE \
I'i cense=usr/src/uts/comon/inet/tcp/ TH RDPARTYLI CENSE
l'i cense usr/src/uts/common/i o/ TH RDPARTYLI CENSE. et her addr \

.Ikernel /drv/tcp
../ kernel /drv/udp

..l kernel /fs/autofs
/ ./ kernel / strnod/ rpcnod

new usr/ src/ pkg/ mani f est s/ syst em ker nel . nf 15

920 |'i cense=usr/ src/uts/common/i o/ TH RDPARTYLI CENSE. et her addr
921 license usr/src/uts/comon/sys/ TH RDPARTYLI CENSE. i cu \
922 I'i cense=usr/src/ uts/common/sys/ TH RDPARTYLI CENSE. i cu

923 license usr/src/uts/comon/sys/ TH RDPARTYLI CENSE. uni code \
924 I'i cense=usr/ src/uts/comon/sys/ TH RDPARTYLI CENSE. uni code
925 $(i386_ONLY)license usr/src/uts/intel/iolacpical/ TH RDPARTYLI CENSE \

926 I'i cense=usr/src/uts/intel/iolacpical TH RDPARTYLI CENSE
927 $(i386_ONLY)!ink path=boot/sol aris/bin/root_archive \
928 target=../../../usr/sbin/root_archive

929 |ink path=dev/dld target=../devices/pseudo/dl d@: ctl

930 |ink path=kernel /ni sc/ $(ARCH64) / des \

931 target=../../../kernel/crypto/ $(ARCH64)/ des

932 $(i386_ONLY)!ink path=kernel/m sc/des target=../../kernel/crypto/des

new usr/src/uts/comon/ Makefile.files

R R R R

42921 Wed Jun 13 12:04:22 2012
new usr/src/uts/comon/ Makefile.files
7B

R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. Al rights reserved.
24 #

26 #

27 # Copyright 2011 Nexenta Systens, Inc. All rights reserved.

28 #

30 #

31 # This Makefile defines all file nodules for the directory uts/common
32 # and its children. These are the source files which may be considered
33 # common to all SunCS systens.

35 i 386_CORE_OBJS += \

36 atom c.o \

37 avintr.o \

38 pic.o

40 sparc_CORE_OBJS +=

42 COMVON_CORE_OBJS += \
43 beep. o \
44 bitset.o \
45 bp_nap. o \
46 brand. o \
a7 cpucaps. o \
48 cnt.o \
49 cnt _policy.o \
50 cpu. o \
51 cpu_event. o \
52 cpu_intr.o \
53 cpu_pm o \
54 cpupart.o \
55 cap_util.o \
56 disp.o \
57 group. o \
58 kstat _fr.o \
59 i scsi boot_prop.o \
60 lgrp.o \

61 I grp_topo.o \

new usr/src/uts/comon/ Makefile.files

86 CORE_OBJS +=
88 ZLIB_OBIS =
89
90

92 GENUNI X_OBJS +=

mapobj . o

nut ex. o
page_l ock. o
page_retire.o
panic.o
param o

pPg. o

pghw. o

put next.o
rctl_proc.o
rw ock. o
seg_knmem o
softint.o
string.o
strtol.o
strtoul .o
strtoll.o
strtoull.o
thread_intr.o
vm page. o

vm pagel i st. o
zlib_obj.o
clock_tick.o

$(COMVON_CORE_CBJS) $($(MACH) _CORE_OBJS)

i

zutil.o znod.o znod_subr.o \
adl er32.0 crc32.0 deflate.o inffast.o \
inflate.o inftrees.o trees.o

\

access. 0

acl .o

acl _common. o
adjtime.o
alarmo

ai o_subr.o

audi tsys. o
audit_core.o
audi t _zone. o
audi t _nmenory. o
aut oconf. o

avl .o
bdev_dsort. o

bi 0.0

bi t map. o

bl abel . o
brandsys. o
bz2bl ocksort. o
bz2conpress. o
bz2deconpress. o
bz2randtabl e. o
bz2bzlib.o
bz2crctable.o
bz2huf f man. o
callb.o
callout.o
chdir.o

chnod. o

chown. o

cladm o

class.o

cl ock. o

cl ock_hi ghres. o \
cl ock_real tine. o\
close.o \

Pt e

new usr/src/uts/common/ Makefile.files 3 new usr/src/uts/comon/ Makefile.files
128 conpr ess. o \ 194 gid.o \
129 condvar. o \ 195 groups. o \
130 conf.o \ 196 grow. o \
131 consol e. o \ 197 hat _refnod. o \
132 contract.o \ 198 id32.0 \
133 copyops. 0 \ 199 i d_space. o \
134 core.o \ 200 inet_ntop.o \
135 corectl.o \ 201 instance. o \
136 cred.o \ 202 ioctl.o \
137 cs_stubs. o \ 203 i p_cksum o \
138 dacf.o \ 204 i ssetugid.o \
139 dacf_clnt.o \ 205 i ppconf.o \
140 danmap. o \ 206 kcpc. o \
141 cyclic.o \ 207 kdi . o \
142 ddi.o \ 208 ki conv. o \
143 ddifmo \ 209 kl pd. o \
144 ddi _hp_inpl.o \ 210 knmem o \
145 ddi _hp_ndi .o \ 211 ksyms_snapshot . o
146 ddi _intr.o \ 212 | _strplunb.o \
147 ddi _intr_inpl.o \ 213 | abel sys. o \
148 ddi _intr_irmo \ 214 link.o \
149 ddi _nodei d. o \ 215 list.o \
150 ddi _timer.o \ 216 | ockstat_subr.o \
151 devcfg. o \ 217 | og_sysevent.o \
152 devcache. o \ 218 | ogsubr. o \
153 device. o \ 219 | ookup. o \
154 devid. o \ 220 | seek. o \
155 devi d_cache. o \ 221 Itos.o \
156 devi d_scsi.o \ 222 I wp. o \
157 devi d_snp. o \ 223 | wp_create. o \
158 devpolicy.o \ 224 Iwp_info.o \
159 di sp_l ock. o \ 225 lwp_self.o \
160 dnlc.o \ 226 I wp_sobj .o \
161 driver.o \ 227 Iwp_timer.o \
162 dunpsubr. o \ 228 | wpsys. o \
163 driver_lyr.o \ 229 mai n. o \
164 dtrace_subr.o \ 230 mrapobj sys. o \
165 errorg. o \ 231 mencntl. o \
166 et heraddr. o \ 232 menstr. o \
167 evchannel s. o \ 233 | grpsys.o \
168 exacct. o \ 234 nkdir.o \
169 exacct_core. o \ 235 nmknod. o \
170 exec. o \ 236 mount . o \
171 exit.o \ 237 nove. o \
172 fbio.o \ 238 nmsacct . o \
173 fentl.o \ 239 mul tidata.o \
174 fdbuffer.o \ 240 nbm ock. o \
175 fdsync. o \ 241 ndifmo \
176 femo \ 242 nice.o \
177 ffs.o \ 243 net stack. o \
178 fio.o \ 244 ntptinme. o \
179 flock.o \ 245 nvpair.o \
180 fmo \ 246 nvpair_all oc_systemo
181 fork.o \ 247 nvpair_al l oc_fixed. o
182 vpm o \ 248 octet.o \
183 fs_reparse.o \ 249 open. o \
184 fs_subr.o \ 250 p_online.o \
185 fsflush.o \ 251 pat hconf. o \
186 ftrace.o \ 252 pat hnane. o \
187 getcwd. o \ 253 pause. o \
188 getdents. o \ 254 serializer.o \
189 get | oadavg. o \ 255 pci_intr_lib.o \
190 get pagesi zes.o \ 256 pci _cap. o \
191 getpid.o \ 257 pcifmo \
192 gfs.o \ 258 pgrp.o \
193 rusagesys. o \ 259 pgr psys. o \

new usr/src/uts/comon/ Makefile.files

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

pid.o
pkp_hash. o
policy.o
poll.o

pool . o

pool _pset.o
port_subr.o
ppriv.o
printf.o
priocntl.o
priv.o
priv_const.o
proc.o
procset.o
processor_bind. o
processor_info.o
profil.o
project.o
gsort.o
rctl.o
rctlsys.o
readl 1 nk. o
refstr.o
renane. o
resol vepath. o
retire_store.o
process. o
rlimt.o
rmap. o

rw. o

rwstl ock. o
sad_conf. o
sid.o

si dsys. o
sched. o
schedctl .o
sctp_crc32.0
seg_dev. o
seg_kp. o
seg_kpm o

P

sendfile.o
session. o
share. o
shuttle.o
sig.o

si gaction.o
sigal tstack.o
signotify.o
si gpendi ng. o
si gprocrmask. o
si gqueue. o

si gsendset. o
si gsuspend. o
sigtinedwait.o
sl eepg. o
sock_conf.o
space. o
sscanf. o
stat.o
statfs.o
statvfs.o
stol.o

1%
(0]
«
©
o
o o e e e e e e e e e e e e e

new usr/src/uts/comon/ Makefile.files

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

str_conf.o
strcalls.o
streamo
stream 0.0
strext.o
strsubr.o
strsun.
subr.o
sunddi
sunndi
sunndi
sunpci
sunpm o
sundl pi . o
suntpi.o
swap_subr. o
swap_vnops. o
symink.o
sync. o

syscl ass. o
sysconfig.o
sysent. o
sysfs.o
system nfo.o
task.o
taskq. o
tasksys. o
time.o
timer.o
times.o
tinmers.o
thread. o
tlabel .o
tnf_res.o
turnstile.o
tty_conmon. o
u8_t extprep.o
uadmi n. o
uconv. o
ucredsys. o
uid.o
unask. o
unount . o
unane. o

uni x_bb. o
unl i nk. o
urw. o
utinme.o

ut ssys. o
uucopy. 0
vfs.o
vfs_conf.o
virem o

vm anon. o

vm as. o

vm neter. o
vm pageout . o
vm pvn. o
vmrmo

vm seg. o

vm subr. o

vm swap. o

vm usage. 0
vnode. o

vui d_queue. o
vuid_store.o

o

[eNeNeNe]

o e o e e o o o o o o o o e o o o o e e e e

new usr/src/uts/comon/ Makefile.files

392 waitqg.o \
393 wat chpoi nt . o \
394 yield.o \
395 scsi_confdata.o \
396 xattr.o \
397 xattr_comon.o \
398 xdr _nbl k. o \
399 xdr _mem o \
400 xdr. o \
401 xdr _array. o \
402 xdr _refer.o \
403 xhat . o \
404 zone. o

406 #

407 # Stubs for the stand-al one |inker/|oader
408 #

409 sparc_GENSTUBS _OBJS = \

410 kobj _stubs. o

412 i386_CGENSTUBS_OBJS =

414 COVMON_GENSTUBS_OBIJS =

416 GENSTUBS_OBJS += $(COMMON_GENSTUBS_OBJS) $($(MACH) _GENSTUBS_OBJS)
418 #

419 # DTrace and DTrace Providers

420 #

421 DTRACE_OBJS += dtrace.o dtrace_isa.o dtrace_asmo
423 SDT_OBJS += sdt _subr.o

425 PROFILE_OBJS += profile.o

427 SYSTRACE OBJS += systrace.o

429 LOCKSTAT_OBJS += | ockstat.o

431 FASTTRAP_OBJS += fasttrap.o fasttrap_isa.o

433 DCPC_OBJS += dcpc. o

435 #

436 # Driver (pseudo-driver) Mdul es

437 #

438 | PP_OBJS += ippctl.o

440 AUDI O OBJS += audio_client.o audio_ddi.o audio_engine.o \
441 audi o_fltdata.o audio_format.o audio_ctrl.o \
442 audi o_grc3. 0 audi o_output.o audio_input.o \
443 audi o_oss. o audi o_sun. o

445 AUDI OEMJL0OK_OBJS += audi oenul0Ok. o
447 AUDI CENS_OBJS += audi oens. o

449 AUDI OVl AB23X_0BJS += audi ovi a823x. 0
451 AUDI OVl A97_0BJS += audi ovi a97. 0

453 AUDI O1575_0BJS += audi 01575. 0

455 AUDI 0810_0OBJS += audi 0810. 0

457 AUDI OCM _0BJS += audi ocm .o

new usr/src/uts/comon/ Makefile.files

459 AUDI OCM HD_0BJS += audi ocm hd. o

461 AUDI OHD_OBJS += audi ohd. o

463 AUDI O XP_0OBJS += audi oi xp. 0

465 AUDI OLS _OBJS += audiols.o

467 AUDI OP16X_0OBJS += audi op16x. 0

469 AUDI OPCl _0BJS += audi opci.o

471 AUDI OSOLO OBJS += audi osol 0.0

473 AUDI OTS_OBJS += audiots.o

475 AC97_0OBJS += ac97.0 ac97_ad.o ac97_alc.o ac97_cm .o
477 BLKDEV_OBJS += bl kdev. o

479 CARDBUS_OBJS += cardbus. o cardbus_hp. o cardbus_cfg.o
481 CONSKBD_OBJS += conskbd. o

483 CONSMS_OBJS += consns. 0

485 OLDPTY_OBJS += tty_ptyconf.o

487 PTC_OBJS += tty_pty.o

489 PTSL_OBJS += tty pts.o

491 PTM OBJS += ptmo

493 M1 _QOBJS += mi.o mi_cicada.o mi_natsem .o mi_intel.o mi_qualsem .o \
494 mi_marvell.o mi_realtek.o nmii_other.o
496 PTS_OBJS += pts.o

498 PTY_OBJS += ptms_conf. o

500 SAD_OBIJS += sad. o

502 MX4_OBJS += nd4. o nd4_nod. o

504 MD5_OBJS += md5. o md5_nod. o

506 SHA1_OBJS += shal. o shal_nod. o

508 SHA2_OBJS += sha2. o0 sha2_nod. o

510 | PGPC_OBIJS += classifierddi.o classifier.o filters.o trie.o table.o \
511 ba_table.o

513 DSCPMK_OBJS += dscpnk.o dscpnkddi .o

515 DLCOSMK_OBJS += dl cosnk. o dl cosnkddi . o

517 FLOMCCT_OBJS += flowacctddi .o flowacct.o
519 TOKENMI_OBJS += tokennt.o tokenntddi.o

521 TSWICL_OBJS += tswtcl.o tswtclddi.o

523 ARP_OBIJS += arpddi . o

new usr/src/uts/comon/ Makefile.files 9

525
527
529

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

550
551
552
553
554
555
556
5514
558
559
560
561
562
563
564
565
546

567
569
571
573
575
577
579
581
583
585
587

| CVP_OBJS += icnpddi.o
| CMP6_OBJS += icnp6ddi.o
RTS_OBJS += rtsddi.o
IP_ICVMP_OBJS = icnp.o icnp_opt_data.o
IP_RTS OBJS = rts.o rts_opt_data.o
| P_TCP_OBJS = tcp.o tcp_fusion.o tcp_opt_data.o tcp_sack.o tcp_stats.o \
tcp_misc.o tcp_tiners.o tcp_tinme_wait.o tcp_tpi.o tcp_output.o \
tcp_input.o tcp_socket.o tcp_bind.o tcp_cluster.o tcp_tunables.o
| P_UDP_OBJS = udp. o udp_opt_data. o udp_tunabl es.o udp_stats.o
| P_SCTP_OBJS = sctp.o sctp_opt_data.o sctp_output.o
sctp_init.o sctp_input.o sctp_cookie.o \
sctp_conn.o sctp_error.o sctp_snnmp.o \
sctp_tunabl es. o sctp_shutdown. o sctp_conmmon.o \
sctp_tiner.o sctp_heartbeat.o sctp_hash.o \
sctp_bind.o sctp_notify.o sctp_asconf.o \
sctp_addr.o tn_ipopt.o tnet.o ip_netinfo.o \
sctp_m sc.o
IP_ILB.OBJS = ilb.oilb_nat.o ilb_conn.o ilb_alg_hash.o ilb_alg_ rr.o
| P_DCCP_OBJS = dccp. o decp_bind. o dccp_i nput.o dccp_opt _data. o dccp_output.o \

dccp_stats. o dccp_socket.o dccp_tpi.o dccp_tunables. o
#endif /* | codereview */
| P_OBJS += oip
e.o
ndp.o i
ipddi.o ipdrop.o m.o nd.o tun
i psec_|l oader. o spd.o ipclassif
squeue. 0 ip_sadb.o ip_ftable. o
i p_hel per_streamo ip_tunabl es.
ip_output.o ip_input.o ip6_inpu
conn_opt.o ip_attr.o ip_dce.o \

ignp.o ipnp.o ip.o i
ip6_rts.o ip_if.o ip_
ip_nulti.o ip2mac.o i

p6. _asp. p6_ire.o \
ir p_li nroute.o \
p_ p id.o\

a

i

UU

tcomo snnpcom o \
i net _conmon. o | p_squeue. o \
o_set.o radix.o I p_dumy.o \

6 0
i stu
oip_rts.
tunabl es.
sifier.o
pr ot
o\
t.o ip6_output.o ip_arp.o \

| P6_OBJS +=
HOOK_OBJS +=
NETI _OBJS += neti_inpl.o neti_nod.o neti_stack.o
KEYSOCK_OBJS += keysockddi .o keysock.o keysock_opt_data. o
| PNET_OBJS += ipnet.o ipnet_bpf.o

SPDSOCK_0OBJS += spdsockddi . o spdsock.o spdsock_opt_data. o
| PSECESP_OBJS += i psecespddi .o i psecesp.o

| PSECAH_OBJS += i psecahddi .o ipsecah.o sadb.o

SPPP_OBJS += sppp. 0 sppp_dl pi.o sppp_nod. o s_common. o
SPPPTUN_OBJS += sppptun. o sppptun_nod. o

SPPPASYN_OBJS += spppasyn. o spppasyn_nod. o

new usr/src/uts/comon/ Makefile.files 10

589
590

592
594
596
598
600
602
604
606

608
609

611
612
613
614
615

617
618

620
622
624
626

628
629

631
633
635
637
639
641
643
645
647
649
651

653
654

SPPPCOVP_OBJS += spppconp. o spppconp_nod. o defl ate. o bsd-conp.o vjconpress.o \
zlib.o

TCP_OBJS += tcpddi. o

TCP6_OBJS += t cp6ddi . o

NCA _OBJS += ncaddi . o

SDP_SOCK_MOD_(OBJS += socknpd_sdp. o socksdp. o socksdpsubr. o

SCTP_SOCK_MOD_OBJS += socknod_sctp. o socksctp. o socksct psubr. o
PFP_SOCK_MOD_0OBJS += socknod_pfp. o
RDS_SOCK_MOD OBJS += socknod_rds. o

RDS_OBJS += rdsddi.o rdssubr.o rds_opt.o rds_ioctl.o

RDSIB_OBJS += rdsib.o rdsib_ib.o rdsib_cmo rdsib_ep.o rdsib_buf.o \
rdsi b_debug. o rdsib_sc.o

RDSV3_OBJS += af _rds.o rdsv3_ddi.o bind.o | oop.o threads.o connection.o \

transport.o cong.o sysctl.o nessage.o rds_recv.o send.o \
stats.o info.o page.o rdma_transport.o ib_ring.o ib_rdm.o \
ib_recv.o ib.o ib_send.o ib_sysctl.o ib_stats.o ib_cmo \
rdsv3_sc.o rdsv3_debug.o rdsv3_inpl.o rdma.o rdsv3_af_thr.

| SER_ OBJS += iser.o iser_cmo iser_cq.o iser_ib.o iser_idmo \
iser_resource.o iser_xfer.o

UDP_OBJS += udpddi . o

UDP6_OBJS += udp6éddi . o

DCCP_OBJS += dccpddi . o

DCCP6_0OBJS += dccp6ddi. o

#endif /* | codereview */

SY_OBIJS += gentty. o

TCO _OBJIS += ticots.o

TCOO OBJS += ticotsord. o

TCL_OBJS += ticlts.o

TL_OBIS += tl.o

DUMP_OBJS += dunp. o

BPF_OBJS += bpf.o bpf_filter.o bpf_nod.o bpf_dlt.o bpf_nac.o

CLONE_OBJS += clone.o

CN_OBJS += cons. o

DLD OBJS += dld_drv.o dld_proto.o dld_str.o dld_flow o

DLS OBJS += dls.o dls_link.o dls_nod.o dls_stat.o dls_ngnt.o

GLD OBJS += gld.o gldutil.o

MAC_OBJS += mac. o mac_bcast.o mac_client.o nac_dat apath_setup.o mac_fl ow o
mac_hi 0. 0 mac_nod. o mac_ndd. o nmac_provi der.o nmac_sched. o \

new usr/src/uts/comon/ Makefile.files 11

655
657
659
661
663
665
667
669

671
672

674
675

677
678
679
680
681

683
685
687

689
690

692
694

696
697
698
699

701
702
703

705
706
707
708

710
711
712
713
714

718
719
720

MAC_6TO4_OBJS +=
MAC_ETHER OBJS +
MAC | PV4_OBJS +=
MAC_| PV6_OBJS +=
MAC W FI_OBJS +=
MAC_| B_OBJS +=

I PTUN_OBJS +=

AGGR_OBJS +=

SOFTVAC_OBJS +=

NET80211_0BJS +=

VNI C_OBJS +=
SI MNET_OBJS +=
| B_OBJS +=

| BCM OBJS +=

| BDM OBJS +=
| BDMA_OBJS +=
| BVF_OBJS +=

| BTL_OBJS +=

TAVOR_OBJS +=

HERMON_OBJS +=

DAPLT_OBJS +=
SOL_OFS OBJS +=

mac_protect.o mac_soft_ring.o mac_stat.o mac_util.o
mac_6t 04. o

= mac_et her. o
nmac_i pv4. o
mac_i pv6. o
mac_wifi.o
mac_i b. o

iptun_dev.o iptun_ctl.o iptun.o

aggr _dev. o aggr_ctl.o aggr grp 0 aggr_port.o \
aggr_send. o aggr _recv.o aggr_| acp.o

sof tmac_nmin.o softmac_ctl.o softmac_capab.o \
sof t mac_dev. o softmac_stat.o softmac_pkt.o softmac_fp. o

net 80211. o net 80211_proto. o net 80211_i nput.

net 80211_out put. o net 80211_node. o net 80211 crypto o\

net 80211_crypt o_none. o net80211_crypto_wep. o net 80211 ioctl.o \
net 80211 crypto tkip.o net80211_crypto_ccnp.o \

net 80211_ht.

vnic_ctl.o vnic_dev.o

simet. o

i bnex. o i bnex_ioctl.o ibnex_hca.o

ibcminpl.o ibcmsmo ibcmti.o ibcmutils.o ibcmpath.o \
ibcmarp.o ibcmarp_link.o

i bdm o

i bdna. o

ibnf.o ibnf_inmpl.o ibnf_dr.o ibnf_wge.o ibnf_ud_dest.o ibnf_nod.

ibnf_send. o ibnf_recv.o ibnf_handlers.o ibnf_trans.o \
ibnf timers.o ibnf_nsg.o ibnf_utils.o ibnf_rnpp.o \
i bnf _saa. o ibnf_saa_inpl.o ibnf_saa utils.o ibnf_saa_events.o

_inpl.o ibtl_util.o ibtl_memo ibtl_handlers.o ibtl
“cg.o ibtl_w.o ibtl_hca. o ibtl_chan.o ibtl_cmo \
“ntg.o ibtl_ibnex.o ibtl_srg.o ibtl_part.o

ibtl _qp.o \
ibtl
ibtl

tavor.o tavor_agents.o tavor_cfg.o tavor_ci.o tavor_cnd.o \
tavor_cq.o tavor_event.o tavor_ioctl.o tavor_misc.o \
tavor_nr.o tavor_gp.o tavor_gpnod.o tavor_rsrc.o \
tavor_srqg.o tavor_stats.o tavor_umap.o tavor_w .o

hernon. o hernon_agents. o hernon_cfg.o hernon_ci.o hernmon_cnd. o \
hernon_cq. o hernon_event.o hernon_ioctl.o hernon_nisc.o \
hermon_nr. o hermon_gp. o her non_gpnod. o hernon_rsrc.o \
hermon_srqg. o hernon_stats.o hernon_umap. o hermon_wr.o \

her mon_f coi b. o hernmon_fm o

daplt.o
sol _cna. o sol _ib_cma. o sol

sol _of s_debug_util.o sol
sol _kverbs. o

_uobj .
_ofs_gen_ ut|| o\

new usr/src/uts/comon/ Makefile.files

SOL_UCVA_OBJS += sol _ucna. o

SOL_UVERBS_OBJS += sol _uverbs. o sol _uverbs_conp.o sol _uverbs_event.o \
sol _uverbs_hca. o sol _uverbs_gp.o

SOL_UMAD OBJS += sol _unad. o

KSTAT_OBJS += kstat.o

KSYMS_OBJS += ksyms. o

| NSTANCE_OBJS += inst_sync.o

I WBCN_OBJS += iwscons. o

LOFI _OBJS += lofi.o LzmaDec. o
FSSNAP_OBJS += fssnap.o

FSSNAPI F_OBJS += fssnap_if.o
MM OBJS += mem o
PHYSMEM OBJS += physnem o
OPTI ONS_OBJS += options. o

W NLOCK_OBJS += wi nl ocki 0. 0

PM OBJS += pm o
SRN_OBJS += srn. o
PSEUDO OBJS += pseudonex. o

RAMDI SK_OBJS += randi sk. o
LLC1_OBJS += llcl.0
USBKBM OBJS += usbkbm o
USBWCM OBJS += usbwcm o
BOFI _OBJS += bofi.o

H D_OBJS += hid.o

HWA_RC OBJS += hwarc. o
USBSKEL_OBJS += usbskel . 0
USBVC_OBJS += ushvc. o ushvc_v4l 2.0
HI DPARSER_OBJS += hi dparser. o
USB_AC OBJS += ush_ac. o

USB_AS OBJS += usb_as. o

USB_AH OBJS += ushb_ah. o
USBMS_OBJS += ushbns. o

USBPRN_OBJS += ushprn. o

UGEN_OBJS += ugen. o

12

new usr/src/uts/comon/ Makefile.files 13

788
790
792
794
796

800
802
804
806
808
809
810
811
813
815
817
819
821
823
825
827
829
831
833
834
835
836
837
838
840
842
844
846
847
848
849

851
852

USBSER _OBJS += ushser. o usbser_rseq. o

USBSACM OBJS += usbsacm o

USBSER_KEYSPAN _OBJS += ushser_keyspan. o keyspan_dsd. o keyspan_pi pe. o
USBS49_FW OBJS += keyspan_49f w. o

USBSPRL_OBJS += ushser_pl 2303. o pl 2303_dsd. o

WUSB_CA OBJS += wusb_ca.o

USBFTDI _OBJS += usbhser_uftdi.o uftdi_dsd.o

USBECM OBJS += ushecm o

WC_OBJS += wscoONns. 0 vCOons. o

VCONS_CONF_OBJS += vcons_conf. o

SCSI _OBJS += scsi _capabilities.o scsi_confsubr.o scsi_control.o \

scsi_data.o scsi_fmo scsi_hba.o scsi_reset_notify.o \
Scsi _resource. o scsi_subr.o scsi_transport.o scsi_watch.o \
snp_transport.o

SCSI _VHCI _OBJS += scsi _vhci .o npapi _i npl .o scsi_vhci _tpgs.o

SCSI _VHCI _F_SYM OBJS += sym o
SCSI _VHCI _F_TPGS_OBJS += t pgs. o

SCSI _VHCl _F_ASYM SUN _OBJS += asym sun. o

SCSI_VHCI _F_SYM HDS_OBJS += sym hds. o
SCSI _VHCI _F_TAPE_OBJS += tape. o
SCSI _VHCI _F_TPGS_TAPE_OBJS += tpgs_tape.o
SGEN_OBJS += sgen. o
SMP_OBIJS += snp. o
SATA_OBJS += sata.o
USBA_OBJS += hcdi .o wusba.o wusbai.o hubdi.o parser.o genconsole.o \
usbai _pi pe_ngnt.o usbai _req.o usbai _util.o usbai _register.o \

usba_devdb. o usbalO_cal I s. o usba_ugen. o whcdi.o wa. o

USBA W THOUT_WUSB_OBJS += hcdi .o wusba.o wusbai.o hubdi.o parser.o gencons
usbai _pi pe_nmgnt. o usbai _req.o usbai _util.o usbai _register.o \
usba_devdb. o usbalO_cal I s. o usba_ugen. o

USBA10_OBJS += usbal0.o

RSM OBJS += rsmo rsmka_pat hmanager . o rsmka_util.o

RSMOPS_OBJS += rsnops. 0

S1394_COBIJS += t1394.0 t1394_errnsg. o0 s1394.0 s1394_addr.o s1394_asynch.o \
s1394_bus_reset. o s1394_cnp.o s1394_csr.o s1394_dev_disc.o \
s1394 fa.o s1394_fcp.o \

s1394_hot pl ug. o0 s1394_isoch. o0 s1394_nm sc. o0 h1394.0 nx1394.0

HCl 1394_0BJS += hci 1394. 0 hci 1394_async. o hci 1394_attach. o hci 1394_buf. o \
hci 1394_csr. o hci 1394_det ach. o hci 1394_extern.o \

new usr/src/uts/comon/ Makefile.files 14

853
854
855
856
857

859
860
861
862

864
865

867
869
871
873

875
876

878
879
880
881
882
883
884
885
886
887

889
891

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912

914
915
916
917
918

hci 1394_i octl .o hci 1394_i soch. o hci 1394 _isr.o \
hci 1394 _i x| _conp. o hci 1394_i x| _isr.o hci 1394_i xI _m sc.o \
hci 1394_i x| _update. o hci 1394_m sc. 0 hci 1394_ohci .o \
hci 1394_q. 0 hci 1394_s1394if. o hci 1394_t | abel .0 \
hci 1394_tlist.o hci 1394_vendor. o
AV1394_0OBJS += av1394.0 av1394_as.o av1394_async.o av1394_cfgromo \
av1394 cnp.o av1394 fcp.o avl394_isoch.o av1394_isoch_chan.o \
av1394 _isoch_recv.o av1394_isoch_xmt.o avl394 |ist.o \
av1394_queue. o

DCAML394_0BJS += dcam o dcam franme. o dcam param o dcamreg.o \
dcamring_buff.o

SCSA1394_OBJS += hba.o sbp2_driver.o sbp2_bus. o

SBP2_OBJS += cfgrom o sbp2.o0

PMODEM OBJS += pnpbdem o pnodemcis.o cis.o cis_callout.o cis_handlers.o cis_para
DSW OBJS += dsw. o dsw dev.o ii_tree.o

ncall.o \
ncal | _stub. o

NCALL_OBJS +=

rdc.o \
rdc_dev.o \
rdc_io.o \
rdc_clnt.o \
rdc_prot_xdr.o \
rdc_svc.o \
rdc_bitmap. o \
rdc_health.o \
rdc_subr.o \
rdc_di skqg. o

RDC_OBJS +=

RDCSRV_OBJS += rdcsrv.o

RDCSTUB_OBJS += rdc_stub. o
SDBC_OBJS += sd_bcache. o \
sd_bio.o \
sd_conf.o \
sd_ft.o \
sd_hash.o \
sd_io.o \
sd_m sc.o \
sd_pcu.o \
sd_t daenon. o \
sd_trace.o \
sd_i i

|
i
3

»
o
o
o

NogorwWNRO

w
o
o
o

1%
o
o
o

58885
333333

00000000
——— e — —

sd_i ob_i npl 7.
safestore.o \
saf estore_ram o
NSCTL_OBJS += nsctl.o \
nsc_cache. o \
nsc_di sk.o \
nsc_dev.o \
nsc_freeze.o \

new usr/src/uts/comon/ Makefile.files 15

919
920
921
922
923
924
925
926
927
928
929

931
932
933
934
935

937

939
940

942
943

945
946

948

950
951
952
953

975
976

978
979
980
981

983

nsc_gen.o \
nsc_nmemo \
nsc_ncallio.o \
nsc_power.o \
nsc_resv.o \
nsc_rmspin.o \
nsc_solaris.o \
nsc_trap.o \
nsc_list.o
UNI STAT_OBJS += spuni.o \
spcs_s_k. o
NSKERN_OBJS += nsc_ddi.o \
nsc_proc.o \
nsc_raw. o \
nsc_thread.o \
nskernd. o

SV_OBIS += sv. 0

PMCS_OBJS += pnts_attach. o pnts_ds.o pnts_intr.o pncs_nvramo pnts_sata.o \
pnts_scsa. o pnts_snmhba. o pnts_subr.o pnts_fw og. o

PMCS8001FW C_OBJS +=
PMCS8001FW OBJS +=

pncs_fw hdr. o
$(PMCS8001FW C_OBJS) SPCBoot.o ila.o firmware. o

#
Buil d up defines and paths.
ST_OBJS += st.o st_conf.o

EMLXS_OBJS += em xs_cl ock. o em xs_dfc. o enl xs_dhchap. o enl xs_di ag.o \

enm xs_downl oad. o em xs_dunp.o em xs_els. o enl xs_event.o \
em xs_fcf.o em xs_fcp.o em xs_fct.o em xs_hba. o enl xs_ip.o \
em xs_nbox. o em xs_mem o enl xs_nsg. o enl xs_node. o \

em xs_pkt.o em xs_sli3.0 em xs_sli4.0 enm xs_solaris.o \

enm xs_t hread. o

EMLXS_FW OBJS += em xs_fw. o

OCE_OBJS += oce_buf.o oce_fmo oce_gld.o oce_hw.o oce_intr.o oce_nain.o \
o\

oce_nbx. o oce_ng. o oce_queue.0 oce_rx.o oce_stat.o oce_tx.
oce_utils.o

FCT_OBJS += discovery.o fct.o

QLT_OBJS += 2400.0 2500.0 8100.0 glt.o glt_dma. o

SRPT_OBJS += srpt_nod.o srpt_ch.o srpt_cmo srpt_ioc.o srpt_stp.o

FCCE_OBJS += fcoe.o fcoe_eth.o fcoe_fc.o

FCOET_OBJS += fcoet.o fcoet_eth.o fcoet_fc.o

FCCEI _0OBJS += fcoei.o fcoei _eth.o fcoei_lv.o

| SCSI T_SHARED OBJS += \
i scsit_common. o

| SCSI T_OBJS += $(1SCSI T_SHARED OBJS) \
iscsit.o iscsit_tgt.o iscsit_sess.o iscsit_login.o \
iscsit_text.o iscsit_isns.o iscsit_radiusauth.o \
i scsit_radiuspacket.o iscsit_auth.o iscsit_authclient.o
PPPT_OBJS += alua_ic_if.o pppt.o pppt_nsg.o pppt_tgt.o

new usr/src/uts/comon/ Makefile.files 16

STMF_OBJS += lun_nmap.o stnf.o
STMF_SBD_OBJS += sbd. o sbd_scsi.o sbd_pgr.o shd_zvol.o

SYSMSG _OBJS += sysnsg. 0

SES_OBJS += ses. 0 ses_sen.o ses_safte.o ses_ses.o

TNF_OBJS += tnf_buf.o tnf_trace.o tnf_witer.o trace_init.o \
trace_funcs. o tnf _probe. o tnf.o

LOG NDMUX_OBJS += | ogi ndnmux. o

DEVI NFO_OBJS += devi nfo. o
DEVPOLL_OBJS += devpoll.o
DEVPOOL_OBJS += devpool . 0
18042_0BJS += 18042. 0
KB8042_OBJS += \
at _keyprocess.o \
kb8042. o \
kb8042_keyt abl es. o

MOUSE8042_0OBJS += npuse8042. 0

FDC_OBJS += fdc.o

ASY_OBJS += asy. o

ECPP_OBJS += ecpp. o

VUl DMBP_OBJS += vui dmi ce. o vui dnBp. o

VUl DMAP_OBJS += vui dm ce. o vui dmidp. o
VUl DVBP_OBJS += vui dmi ce. o vui dnbp. o
VUl DPS2_0BJS += vui dm ce.o vuidps2.o0
HPCSVC_0OBJS += hpcsvc. o

PCI E_M SC OBJS += pcie.o pcie_fault.o pcie_hp.o pciehpc.o pcishpc.o pcie_pw.o p
PCI HPNEXUS_OBJS += pci hp. o
OPENEEPR_OBJS += openprom o

RANDOM OBJS += random o

PSHOT_OBJS += pshot. o

GEN_DRV_OBJS += gen_drv.o

TCLI ENT_OBJS += tclient.o

TPHCI _OBJS += tphci.o

TVHCI _OBJS += tvhci.o

EMUL64_0BJS += enul 64. 0 enul 64_bsd. o
FCP_OBJS += fcp.o

new usr/src/uts/comon/ Makefile.files

1051
1053
1055
1057

1059
1060

1062
1064
1066
1068
1070
1072
1074
1076
1078
1080
1082
1084
1086
1088
1090
1092
1094
1096
1097
1098
1099
1100
1102
1104
1106
1107
1108
1109
1111
1113

1115

FCI P_OBJS += fcip.o
FCSM_OBJS += fcsmo
FCTL_OBJS += fctl.o
FP_OBJS += fp.o

Q.C OBIS += (I apl o qI _debug.o gl _hba_fru.o gl _init.o gl _iocbh.o gl _ioctl.
gl _isr.o gl _nmbx.o gl _nx.o gl _xioctl.o gl _fw table. o
QLC_FW 2200_0BJS += gl _fw_2200. 0
QLC_FW 2300_0BJS += gl _fw 2300.0
QLC_FW 2400_0BJS += gl _fw_2400. 0
QLC_FW 2500_0BJS += gl _fw_2500. 0
QLC FW 6322 _OBJS += gl _fw 6322.0
Q.C_FW 8100_0BJS += gl _fw 8100.0

QLGE_OBJS += glge.o qlge_dbg.o glge_flash.o glge_fmo qglge_gld.o gl ge_npi.

ZCONS_OBJS += zcons. o

NV_SATA OBJS += nv_sata.o

Sl 3124_0BJS += si3124.0

AHCI _OBJS += ahci.o

PCl | DE_OBJS += pci-ide.o

PCEPP_OBJS += pcepp. 0

CPC_OBJS += cpc. o

CPUI D_OBJS += cpuid_drv.o

SYSEVENT_OBJS += sysevent.o

BL_OBJS += bl.o

DRM OBJS += drm sunnod. o drm kstat.o drm agpsupport.o \
drmauth.o drmbufs.o drmcontext.o drmdma. o \
drmdrav\ableodrmdrvodrmfopsodrmloctl odrmirg.o \
drm| ock.o drmnenbry.o drmnsg.o drmpci.o drmscatter.o \
drm cache.o drmgemo drmmmo ati_pcigart.o

FM OBJS += devfm o devfm machdep. o

RTLS_OBJS += rtls.o

#

exec nodul es

ﬁ&)TEXECﬁGBJS +=aout. o

ELFEXEC OBJS += elf.o el f_notes.o old_notes.o

| NTPEXEC_OBJS +=i ntp. o

SHBI NEXEC_OBJS +=shbi n. o

17

new usr/src/uts/comon/ Makefile.files

1117

1119
1120
1121
1122

1124
1125
1126
1127
1128
1129
1130
1131

1133
1135

1137
1138
1139
1140
1141

1143
1144

1146
1147

1149
1151
1153

1155
1156

1158
1160

1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

1175
1176
1177
1178
1179
1180

1182

JAVAEXEC OBJS +=j ava. o

#
file system nodul es
#

AUTOFS OBJS +=

aut o_vfsops. o auto_vnops.o auto_subr.o auto_xdr.o auto_sys.o

CACHEFS_OBJS += cachefs_cnode. o cachefs_cod.o \

cachefs_dir.o cachefs_dlog. o cachefs_fil egrp o\
cachefs_fscache. o cachefs_ioctl.o cachefs_| og. o
cachefs_nodule.o \
cachefs_noopc. o cachefs_resource.o \
cachefs_strict.o \
cachefs_subr.o cachefs_vfsops.o \
cachefs_vnops. o

DCFS_OBJS += dc_vnops. o

DEVFS_OBJS += devfs_subr.o devfs_vfsops.o devfs_vnops.o

DEV_OBJS += sdev_subr. o sdev_vfsops. o sdev_vnops. o \
sdev_pt sops. o sdev_zvol ops. 0 sdev_conm o \
sdev_profile.o sdev_ncache.o sdev_netops. o \
sdev_i pnetops. o \
sdev_vtops.o

CTFS_OBJS += ctfs_all.o ctfs_cdir.o ctfs_ctl.o ctfs_event.o \
ctfs_latest.o ctfs_root.o ctfs_symo ctfs_tdir.o ctfs_tnpl.o

OBJFS_OBJS += objfs_vfs.o objfs_root.o obj fs_comon. o \
objfs_odir.o obj fs_data. o

FDFS_OBJS += fdops. o

FI FO_OBJS += fifosubr.o fifovnops. o

PI PE_OBJS += pi pe.o

HSFS_OBJS += hsfs_node. o hsfs_subr. o hsfs_vfsops. o hsfs_vnops.o \
hsfs_susp. o hsfs_rrip.o hsfs_susp_subr. o

LOFS _OBJS += | of s_subr.o | of s_vfsops. o | of s_vnops. o

NAVEFS_OBJS += nanevfs. o namevno. o

NFS_OBJS += nfs_client.o nfs_commmon. o nfs_dunp.o \
nfs_subr.o nfs_vfsops. o nfs_vnops.o \
nfs_xdr.o nfs_sys.o nfs_strerror.o \
nfs3_vfsops. o nfs3_vnops. o nfs3_xdr.o \
nfs_acl _vnops.o nfs_acl _xdr.o nfs4_vfsops.o \
nfs4_vnops. o nfs4_xdr.o nfs4_idmap.o \
nf s4_shadow. o nfs4_subr.o \
nfs4_attr.o nfs4_rnode. o nfs4_client.o \
nfs4_acache. o nfs4_common. o nfs4_client_state.o \
nfs4_cal | back. o nfs4_recovery.o nfs4_client_secinfo.o \
nfs4_client_debug. o nfs_stats.o \
nfs4_acl.o nf s4_stub_vnops. o nfs_cnd. o

NFSSRV_OBJS += nfs_server.o nfs_srv.o nfs3 srv.o \
nfs_acl _srv.o nfs_auth. o nfs_auth_xdr.o \
nfs_export.o nfs_log.o nfs_log_xdr.o \
nfs4_srv.o nfs4_state.o nfs4_srv_attr.o \
nfs4_srv_ns.o nfs4_db. o nfs4_srv_del eg. o \

nfs4_del eg_ops.o nfs4_srv_readdir.o nfs4_dispatch.o

SMBSRV_SHARED _OBJS += \

new usr/src/uts/comon/ Makefile.files

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248

SVBSRV_OBJS +=

snb_inet.o \
snb_match. o \
snb_nsgbuf.o \
snb_oemo \
smb_string.o \

snb_utf8.0 \
snb_door _| egacy. o \
snmb_xdr.o \

snmb_t oken. o \

snb_t oken_xdr.o \
snb_sid.o \
snb_native.o \
snb_net bios_util.o

$(SMBSRV_SHARED_OBJS)
snb_acl .o
snb_al l oc. o

snb_cl ose. o
snb_common_open. o
snb_common_t r ansact . o
snb_create. o

snb_del ete. o
snb_directory. o
snb_di spat ch. o
snb_echo. o

snmb_fem o

snb_find.o
snb_flush.o
snb_fsinfo.o

snmb_f sops. o
snb_init.o
snb_kdoor. o
snb_kshare. o
smb_kutil.o

snb_| ock. o

snb_| ock_byt e_range. o
snmb_| ocki ng_andx. o
snb_| ogof f _andx. o
snb_nangl e_nane. o
snb_nbuf _nmar shal i ng. o
snb_nbuf _util.o
smb_negotiate. o
snb_net. o

snb_node. o

snb_nt _cancel . o
snb_nt _creat e_andx. o

snb_nt _transact_create. o

snb_nt _transact _ioctl.o

smb_nt _transact_notify_change. o
snb_nt _transact _quota. o

smb_nt _transact_security.o

snb_odir.o
snb_ofile.o
smb_open_andx. o
snmb_opi pe. o
snb_opl ock. o
snb_pat hnane. o
snb_print.o
smb_process_exit.o
snb_query_fileinfo.o
snb_read. o
snb_renane. o
snb_sd. o
snb_seek. o
snb_server. o
snb_sessi on. o

o o e e e e e e e e e e

19

new usr/src/uts/comon/ Makefile.files

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

1265
1266

1268
1269

1271
1273
1275

1277
1278
1279
1280
1281
1282
1283

1285
1286

1288
1289
1290

1292
1293
1294
1295
1296
1297
1298
1299

1301
1302
1303
1304

1306
1307
1308
1309
1310
1311

1314

PCFS_OBJS +=

PROC_OBJS +=

MNTFS OBJS +=
SHAREFS_OBJS +=
SPEC OBJS +=
SOCK_OBJS +=

TMPFS OBJS +=

UDFS_OBJS +=

UFS_OBJS +=

VSCAN_OBJS +=
NSMB_OBJS +=

snmb_sessi on_set up_andx. o

snb_set _fileinfo.o
smb_si gni ng. o
snb_tree. o

snb_trans2_create_directory.o

smb_trans2_dfs. o
smb_trans2_find. o
snb_tree_connect. o

smb_unl ock_byte_range. o

snb_user. o
snb_vfs.o
snb_vops. o
snb_vss. o
snb_wite.o
snmb_wite_raw. o

pc_alloc.o
pc_vfsops. o

prcontrol .o
prvfsops.o

mt vf sops. o
sharetab. o
specsubr. o
socksubr. o

sockcomon_vnops. 0

sockconmon_sops. 0 sockconmon. o \
sock_not supp. o socknotify.o \

nl 7c. o nl 7curi.o nl 7chttp.o
nl 7cnca. o sodirect.o sockfilter.o
tnp_dir.o tnp_subr.o t np_t node. o
t np_vnops. o

udf _alloc. o udf _bmap. o udf _dir.o
udf _i node. o udf _subr. o udf _vfsops. o
udf _vnops. o

ufs_alloc.o uf s_bmap. o ufs_dir.o

uf s_i node. o ufs_subr.o ufs_tables.o
ufs_vnops. o quot a. o quotacal I s. o
ufs_filio.o ufs_l ockfs.o ufs_thread. o
ufs_acl .o ufs_panic.o ufs_directio.
ufs_extvnops.o ufs_snap.o lufs.o
lufs_log.o lufs_map. o lufs_top.o
vscan_drv. o vscan_svc. o vscan_door. o
snb_conn. o snb_dev. o snb_i od. o
smb_rq.o snmb_sign. o snb_snb. o

smb_tine.o
subr _nthai n. o

SMBFS_COWON_OBJS += snbfs_ntacl .o

SVBFS_OBJS +=

snbfs_vfsops.o snbfs_vnops.o
smbfs_client.o
snbf s_subr 2. o
smbfs_rw ock.o snbfs_xattr.o

snbfs_acl .o
snbf s_subr. o

$(SMBFS_COMMON_OBJS)

pc_dir.o
pc_vnops. o

prioctl.o
prvnops. o

mt vnops. o
sharef s_vfsops. o
specvfsops. o
sockvfsops. o

socksyscal ls.o socktpi.o
sockcomon_subr. o \

snb_tran. o

e —

pc_node. o

prsubr. o

20

pc_subr.o \

prusrio.o \

sharef s_vnops. o

specvnops. o

sockpar ans. o
sockstr.o \

snb_trantcp. o

snmbf s_node. o
snbf s_snb. o

\

nl 7cl ogd. o \

tnp_vfsops.o \

—

ufs_xattr.o \
ufs_vfsops.o \
quota_ufs.o \
ufs_trans.o \
ufs_log.o \
lufs_thread. o \
| uf s_debug. o

snb_pass. o \
snb_subrs. o \
smb_usr.o \

new usr/src/uts/comon/ Makefile.files 21 new usr/src/uts/comon/ Makefile.files

1315 # LVM nodul es 1381 vdev_| abel . o \

1316 # 1382 vdev_mirror.o \

1317 MD_OBJS += nd.o nd_error.o nd_ioctl.o nd_nddb.o nd_nanes.o \ 1383 vdev_mi ssi ng. o \

1318 md_nmed. o nd_renane. o nd_subr. o 1384 vdev_queue. 0 \
1385 vdev_raidz. o \

1320 MD_COMMON _OBJS = nd_convert.o nd_crc.o nd_revchk. o 1386 vdev_root. o \
1387 zap. o \

1322 MD_DERI VED _OBJS = netaned_xdr.o neta_basic_xdr.o 1388 zap_l eaf.o \
1389 zap_mi cro.o \

1324 SOFTPART_OBJS += sp.o sp_ioctl.o 1390 zf s_byt eswap. o \
1391 zf s_debug. o \

1326 STRIPE_OBJS += stripe.o stripe_ioctl.o 1392 zfs_fmo \
1393 zfs_fuid.o \

1328 HOTSPARES OBJS += hotspares. o 1394 zfs_sa.o \
1395 zfs_znode. o \

1330 RAID OBJS +=raid.o raid_ioctl.o raid_replay.o raid_resync.o rai d_hotspare.o 1396 zil.o t
1397 zio.0

1332 MRROR_OBJS += mirror.o mirror_ioctl.o mirror_resync.o 1398 zi o_checksum o \
1399 zi o_conpress. 0 \

1334 NOTI FY_OBJS += nd_notify. o 1400 zio_inject.o \
1401 zle.o \

1336 TRANS OBJS += ndtrans.o trans_ioctl.o trans_| og.o 1402 zrl ock. o

1338 ZFS_COMMON_OBJS += \ 1404 ZFS SHARED OBJS += \

1339 arc.o \ 1405 zf s_namecheck. o \

1340 bplist.o \ 1406 zfs_del eg. 0 \

1341 bpobj . o \ 1407 zfs_prop.o \

1342 dbuf . o \ 1408 zfs_conutil.o \

1343 ddt. o \ 1409 zfs_fletcher.o \

1344 ddt _zap. o \ 1410 zpool _prop.o \

1345 dru. o \ 1411 Zpr op_conmmon. 0

1346 dnu_diff.o \

1347 dmu_send. o \ 1413 ZFS_OBJS += \

1348 dnu_obj ect. o \ 1414 $(ZFS_COWON_OBJS) \

1349 dmu_obj set. o \ 1415 $(ZFS_SHARED_OBJS) \

1350 dmu_traverse. o \ 1416 vdev_di sk. o \

1351 dmu_tx. o \ 1417 zfs_acl.o \

1352 dnode. o \ 1418 zfs_ctldir.o \

1353 dnode_sync. o \ 1419 zfs_dir.o \

1354 dsl _dir.o \ 1420 zfs_ioctl.o \

1355 dsl _dat aset. o \ 1421 zfs_l og. o \

1356 dsl _deadlist.o \ 1422 zfs_onexit.o \

1357 dsl _pool . 0 \ 1423 zfs_replay. o \

1358 dsl _synct ask. o \ 1424 zfs_rlock. o \

1359 dmu_zfetch. o \ 1425 rrw ock. o \

1360 dsl _del eg. o \ 1426 zfs_vfsops.o \

1361 dsl _prop.o \ 1427 zfs_vnops. o \

1362 dsl _scan. o \ 1428 zvol . o

1363 gzip.o \

1364 I'zjb.o \ 1430 ZUT_OBIJS += \

1365 net asl ab. o \ 1431 zut. o

1366 refcount.o \

1367 sa. o \ 1433 #

1368 sha256. o \ 1434 # streanms nodul es

1369 spa. o \ 1435 #

1370 spa_config.o \ 1436 BUFMOD_OBJS += buf nod. o

1371 spa_errlog.o \

1372 spa_history.o \ 1438 CONNLD_OBJS += connld.o

1373 spa_mi sc. o \

1374 space_nap. 0 \ 1440 DEDUMP_OBJS += dedunp. o

1375 txg. o \

1376 uber bl ock. o \ 1442 DRCOVWPAT_OBJS += drconpat. o

1377 uni que. o \

1378 vdev. o \ 1444 LDLI NUX_OBJS += | dlinux.o

1379 vdev_cache. o \

1380 vdev_file.o \ 1446 LDTERM OBJS += |dtermo uwidth.o

new usr/src/uts/comon/ Makefile.files

1448
1450
1452
1454
1456
1458
1460
1462
1464
1466
1467
1468
1469
1470
1471
1473
1474
1475
1476
1478
1480
1482
1484
1486
1487
1488
1489
1491
1492
1493
1494

1496
1497

1499
1500

1502
1504

1506
1507

1509
1510
1511
1512

PCKT_OBIS +=
PFMOD_OBJS +=
PTEM OBJS +=
REDI RMOD_OBJS +=
TI MOD_OBJS +=

TI RDWR_OBJS +=
TTCOWPAT_OBJS +=
LOG OBJS +=

Pl PEMOD_OBJS +=
RPCMOD_OBJS +=

TLI MOD_OBJS +=

RLMOD_OBJS += rl
TELMOD_OBJS += t
CRYPTMOD_OBJS +=
KB_OBJS +=

#
#
#
| DVAP_OBJS +=

#
#
#
SDC_OBJS +=

RT_OBJS +=
RT_DPTBL_OBJS +=

TS _OBIS +=
TS_DPTBL_OBJS +=

I A OBJS +=
FSS_OBJS +=

FX_OBJS +=
FX_DPTBL_OBJS +=

#
#
#
I PC_OBJS +=

pckt. o
pfnod. o
ptem o
strredirmo
tinmod. o
tirdw.o
ttconpat. o
log. o

pi penod. o
rpcnod. o
clnt_gen.o
rpc_prot.o
svc. o

rpcsys. o
xdr _rdma. o

clnt_cots.o
clnt_perr.o
rpc_sztypes.o
svc_clts.o
xdr _si zeof . 0
rdma_subr. o

clnt_clts.o \
nt_rpcinit.o
rpc_subr.o
svc_gen. o
clnt_rdma. o
xdrrdma_si zeof . o

rpc_cal nsg.o \
rpcb_prot.o \
svc_cots. o \
svc_rdma. o \

tlinod.o t_kalloc.o t _kbind. o t_kclose.o \
t _kconnect. o t_kfree.o t_kgtstate.o t _kopen. o \

t _krcvudat. o t _ksndudat . o t_kspoll.o t _kunbind.o \
t_kutil.o

nod. o

el nod. o

cryptnod. o

kbd. o keyt abl es. o

I D mappi ng nodul e

i dmap_nod. o i dmap_kapi . o i dmap_xdr. o i dmap_cache. o

schedul i ng cl ass nodul es
sysdc. o

rt.o
rt_dpthbl.o

ts.o
ts_dpthl.o

ia.o

fss.o

fx.o

fx_dpthbl.o

I nter-Process Conmuni cation (IPC) nodul es

ipc.o

23

new usr/src/uts/comon/ Makefile.files 24
1514 | PCMSG OBJS += nsg. 0

1516 | PCSEM OBJS += semo

1518 | PCSHM OBJS += shmo

1520 #

1521 # bi gnum nodul e

1522 #

1523 COVMON_BI GNUM OBJS += bi gnum nod. o bi gnumi npl . o
1525 Bl GNUM OBJS += $(COMMON_BI GNUM OBJS) $(Bl GNUM_PSR_0OBJS)

1527 #

1528 # kernel cryptographic framework

1529 #

1530 KCF_OBJS += kcf. o kcf_call prov. o kcf _cbufcall.o kcf_cipher.o kcf_crypto.o \
1531 kcf _crypt oadm o kcf _ctxops. o kcf _digest.o kcf_dual.o \

1532 kcf _keys. o kcf _mac. o kcf _nech_tabs. o kcf_mi scapi.o \

1533 kcf _object.o kcf_policy.o kcf_prov_lib.o kcf_prov_tabs.o \

1534 kcf _sched. o kcf _session.o kcf_sign.o kcf_spi.o kcf_verify.o \
1535 kcf _random o nodes. o ecb.o cbc.o ctr.o ccmo gcmo \

1536 fips_random o

1538 CRYPTQOADM OBJS += cryptoadm o
1540 CRYPTO_OBJS += crypto.o
1542 DPROV_OBJS += dprov.o

1544 DCA _OBJS +=
1545

dca. o dca_3des. o dca_debug. o dca_dsa.o dca_kstat.o dca_rng.o \
dca_rsa.o

1547 AESPROV_OBJS += aes. o0 aes_inpl.o aes_nodes. o

1549 ARCFOURPROV_OBJS += arcfour.o arcfour_crypt.o

1551 BLOWFI SHPROV_OBJS += bl owfi sh. o bl owfish_inpl.o

1553 ECCPROV_OBJS += ecc.0 ec.0 ec2_163.0 ec2_nont.o ecdecode.o ecl_mult.o \

1554 ecp_384.0 ecp_jac.o ec2_193.0 ecl.o ecp_192.0 ecp_521.0 \
1555 ecp_jmo ec2_233.0 ecl_curve.o ecp_224.0 ecp_aff.o \

1556 ecp_nont.o ec2_aff.o ec_naf.o ecl _gf.o ecp_256.0 np_gf2mo \
1557 npi .o nplogic.o npnmontg.o npprine.o oid.o \

1558 secitemo ec2_test.o ecp_test.o

1560 RSAPROV_OBJS += rsa.o rsa_inpl.o pkcsl.o
1562 SWRANDPROV_OBJS += swrand. o

1564 #
1565 #
1566 #
1567 KSSL_OBIJS +=

kernel SSL

kssl .o ksslioctl.o
1569 KSSL_SOCKFI L_MOD_OBJS += ksslfilter.o ksslapi.o ksslrec.o
1571 #

1572 #
1573 #

m sc. nodul es

1575 C2AUDI T_OBJS += adr.o audit.o audit_event.o audit_io.o \
1576 audit_path.o audit_start.o audit_syscalls.o audit_token.o \
1577 audi t _mem o

new usr/src/uts/comon/ Makefile.files 25

1579

1581
1582
1583
1584

1586
1587

1589
1591
1593
A595]
1596
1597
1598
1599
1600
1602
1603
1604
1606
1608
1610
1612
1613
1614

1616
1617

1619
1621

1623
1624

1626
1627

1629
1630

1632
1633

1635
1636

1638
1639

1641
1642
1643
1644

PCI C_OBJS += pcic.o

RPCSEC_OBJS += secnod. o

aut h_des. o
aut hdesprt. o
key_call.o

sec_clnt.o
aut h_kern. o
aut hdesubr. o
key_prot.o

Sec_svc. 0
aut h_none. o
authu_prot.o \
svc_aut hu. o

sec_gen.o \
aut h_| oopb. o\

svcaut hdes. o

RPCSEC_GSS_0OBJS += rpcsec_gssnod. 0 rpcsec_gss. 0 rpcsec_gss_msc.o \
rpcsec_gss_utils.o svc_rpcsec_gss. o

CONSCONFI G_OBJS += consconfig. o

CONSCONFI G_DACF_OBJS += consconfig_dacf.o consplat.o

TEM OBJS += temo temsafe.o 6x10.0 7x14.0 12x22.0

KBTRANS_OBJS +=
kbtrans. o
kbt rans_keyt abl es. o
kbt rans_pol | ed. o
kbt rans_streans. o
usb_keyt abl es. o

—— - ——

KGSSD_OBJS += gssd_cl nt _stubs. o gssd_handle.o gssd_prot.o \

gss_di spl ay_nane. o gss_rel ease_nane.o gss_inport_nanme.o \
gss_rel ease_buffer.o gss_rel ease_oi d_set.o gen_oids.o gssdnod. o
KGSSD_DERI VED_OBJS = gssd_xdr. o
KGSS_DUMW_OBJS += dnech. o
KSOCKET_OBJS += ksocket.o ksocket _nod. o
CRYPTO= cksuntypes. o decrypt.o encrypt.o encrypt_|length.o etypes.o \
nfold.o verify_checksum o prng.o bl ock_size.o nake_checksum o\
checksum | ength. o hnac. o default_state.o mandatory_suntype. o

cryptol/ des
CRYPTO_DES= f_cbc.o f_cksumo f_parity.o weak_key.o d3_chc.o ef _crypto.o

CRYPTO_DK= checksum o derive.o dk_decrypt.o dk_encrypt.o
CRYPTO_ARCFQUR= k5_arcfour.o

crypto/ enc_provider
CRYPTO _ENC= des. o des3.0 arcfour_provider.o aes_provider.o

crypto/ hash_provi der
CRYPTO_HASH= hash_kef _generic.o hash_knd5. 0 hash_crc32. o hash_kshal. o

crypt o/ keyhash_provi der
CRYPTO_KEYHASH= descbc. o k5_knd5des. o k_hmac_nd5. o

crypto/crc32
CRYPTO_CRC32= crc32.0

crypto/old
CRYPTO_OLD= ol d_decrypt.o ol d_encrypt.o

crypto/raw
CRYPTO_RAWE raw_decrypt.o raw encrypt. o

K5_KRB= kfree.o copy_key.o \
parse.o init_ctx.o \
ser_adata.o ser_addr.o \
ser_auth.o ser_cksumo \

new usr/src/uts/comon/ Makefile.files

1645
1646
1647

1649
1650

1652
1653
1654
1655

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

1670

1673
1674
1675
1676
1677
1678
1679
1681
1683

1685
1686

1688
1690
1692
1693
1694
1696
1698
1700
1702
1704
1706
1708
1710

ser_key.o ser_princ.o \
serialize.o unparse.o \
ser_actx.o

K5_0OS= tineofday.o toffset.o \
init_os_ctx.o c_ustinme.o

SEAL=

EXPORT DELETE START

SEAL= seal .0 unseal .o
EXPORT DELETE END
MECH= del ete_sec_context.o \

i mport_sec_context.o \

gssapi _krb5.0 \

k5seal . 0 k5Sunseal . 0 k5seal v3.0 \
ser_sctx.o \

sign.o \

util_crypt.o \

util_validate.o wutil_ordering.o \
util_segqnumo util_set.o util_seed.o \
wap_size_|limt.o verify.o

MECH _GEN= util _token.o

KGSS_KRB5_CBJS += krb5mech. o \
${MECH) $(SEAL) $(MECH GEN) \
$(CRYPTO) $(CRYPTO DES) $(CRYPTO DK) $(CRYPTO ARCFOUR) \
$(CRYPTO ENC) $(CRYPTO HASH) \
$(CRYPTO_KEYHASH) $(CRYPTO_CRC32) \
$(CRYPTO_OLD) \
$(CRYPTO_RAW $(K5_KRB) $(K5_OS)

DES OBJS += des_crypt.o des_inpl.o des_ks.o des_soft.o

DLBOOT_OBJS += boot param xdr.o nfs_dlinet.o scan.o

KRTLD OBJS += kobj _bootfl ags. o getoptstr.o \

kobj . o kobj _kdi .o kobj _I mo kobj_subr.o
MOD_OBJS += nmodct! . o nodsubr. o nodsysfile.o nodconf.o nbdhash. o
STRPLUMB_OBJS += strplunb. o

CPR_OBJS += cpr_driver.o cpr_dunp.o \
cpr_main.o cpr_misc.o cpr_nod.o cpr_stat.o \
cpr_uthread. o

PROF_OBJS += prf.o

SE_OBJS += se_driver.o

SYSACCT_OBJS += acct.o

ACCTCTL_OBJS += acctctl.o

EXACCTSYS_OBJS += exacctsys. o

KAl O OBJS += aio.o0

PCMCI A_OBJS += pcntia.o cs.o cis.o cis_callout.o cis_handl ers.o cis_parans.o

BUSRA OBJS += busra.o

26

new usr/src/uts/comon/ Makefile.files 27

1712
1714
1716
1718
1720
1722
1724
1726
1728
1730
1732
1734
1736
1738
1740

1742
1743

1745
1746
1747
1749

1751
1752

1754
1755
1756
1758
1760
1762

1764
1765

1767
1769
1771
1773

1775
1776

PCS_OBJS += pcs. o
PCAN_OBJS += pcan. o

PCATA_OBJS += pcide. o pcdi sk.o pcl abel .o pcata.o
PCSER_OBJS += pcser.o pcser_cis.o

PCW._OBJS += pcw .0

PSET_OBJS += pset.o

OHCI _OBJS += ohci .o ohci _hub. o ohci _polled.o

UHCI _OBJS += uhci.o uhciutil.o uhcitgt.o uhci hub.o uhcipolled.o

EHCl _OBJS += ehci.o ehci_hub. o ehci_xfer.o ehci_intr.o ehci_util.o ehci_polled.o
HUBD_OBJS += hubd. o

USB_M D OBJS += usb_mid.o

USB | A OBJS += ush_ia.o

UWBA_OBJS += uwba. o uwbai.o

SCSA2USB_OBJS += scsa2usb. o usb_ns_bul konly. o usb_ns_chi.o

HWAHC OBJS += hwahc. o hwahc_util.o

WUSB_DF_OBJS += wusb_df.o
WUSB_FWVOD_OBJS += wusb_f wrod. o

IPF_OBJS += ip_fil_solaris.o fil.o solaris.o ip_state.o ip_frag.o ip_nat.o \

ip_proxy.o ip_auth.o ip_pool.o ip_htable.o ip_Ilookup.o \
ip_log.o misc.o ip_conpat.o ip_nat6.o drand48.o
| BD_OBJS += ibd.o ibd_cmo
El BNX_OBJS += enx_main.o enx_hdlrs.o enx_ibt.o enx_log.o enx_fip.o \
enx_m sc.0 enx_g.o0 enx_ctl.o
EQ B_OBJS += eib_admo eib_chan.o eib_cm.o eib_ctl.o eib_data.o \

eib fip.o eib_ibt.o eib_log.o eib_nac.o eib_nain.o \
eib_rsrc.o eib_svc.o eib_vnic.o
DLPI STUB_OBJS += dI pi stub. o
SDP_OBJS += sdpddi . o
TRILL_OBJS += trill.o

CTF_OBJS += ctf_create.o ctf_decl.o ctf_error.o ctf_hash.o ctf_labels.o \
ctf_l ookup.o ctf_open.o ctf_types.o ctf_util.o ctf_subr.o ctf_nod.o

SMBI OS_OBJS += snb_error.o snb_info.o snb_open. o snb_subr.o snb_dev. o
RPCI B_OBJS += rpcib.o

KVDB_OBJS += kdrv. o

AFE_OBJS += afe.o

BGE_OBJS += bge_mmi n2. 0 bge_chi p2. 0 bge_kstats.o bge_|l og.o bge_ndd.o \
bge_atomic.o bge_mii.o bge_send.o bge_recv2.o0 bge_nii_5906. 0

new usr/src/uts/comon/ Makefile.files 28

1778
1780
1782
1784

1786
1787

1789
1790

1792
1794
1796

1798
1799

1801
1803
1805
1807
1809
1811
1813
1815
1817
1819
1821
1823
1825
1827
1829
1831
1833
1835
1837
1839
1841

DMFE_OBJS += dnfe_log.o dnfe_main.o dnfe_nii.o
EFE_OBJS += efe.o0

ELXL_OBJS += el xl.o

HVE_OBJS += hne. o

| XGB_OBJS += ixgh.o ixgb_atom c.o ixgb_chip.o ixgb_gld.o ixgbh_kstats.o \
ixgb_l og.0 ixgb_ndd.o ixgb_rx.o ixgbh_tx.o ixgbh_xmi.o

NGE_OBJS += nge_mmi n. o nge_atom c.o nge_chip.o nge_ndd.o nge_kstats.o \
nge_l 0g. 0 nge_rx. 0 nge_tx.o nge_xmi.o

PCN_OBJS += pcn. o
RGE_OBJS += rge_main.o rge_chip.o rge_ndd.o rge_kstats.o rge_|l 0g.o rge_rxtx.o
URTW.OBJS += urtw. o

ARN_OBJS += arn_hw.o arn_eepromo arn_mac.o arn_calib.o arn_ani.o arn_phy.o arn_
arn_mein.o arn_recv.o arn_xmit.o arn_rc.o

ATH OBJS += ath_aux.o ath_nmain.o ath_osdep.o ath_rate.o
ATU OBJS += atu.o

| PW OBJS += i pw2100_hw. o i pw2100. o

| W_0OBJS += i pw2200_hw. o i pw2200. 0o

I WH_OBJS += iwh.o

| VK_OBJS += iwk2.0

I WP_OBJS += iwp.o

MAL_OBJS += mWl . o

MALFW OBJS += mwl f w_npde. o

WPl _OBJS += wpi .o

RAL_OBJS += rt2560.0 ral _rate.o

RUM OBJS += rum o

RWD_OBJS += rt2661.0

RWN_OBJS += rt2860.0

UATH OBJS += uath.o

UATHFW OBJS += uat hf w_nod. o

URAL_OBJS += ural .o

RTW OBJS += rtw. 0 snt93cx6.0 rtwphy.o rtwphyio.o
ZYD_OBJS += zyd.o zyd_usb.o zyd_hw.o zyd_fw o
MXFE_OBJS += nxfe.o

MPTSAS_OBJS += nptsas.o nptsas_inpl.o nptsas_init.o nptsas_raid.o nptsas_snhba. o

new usr/src/uts/common/ Makefile.files 29
1843 SFE_OBJS += sfe.o sfe_util.o

1845 BFE_OBJS += bfe.o

1847 BRI DGE_OBJS += bridge. o

1849 | DM SHARED OBJS += base64. 0

1851 | DM OBJS += $(1 DM_SHARED _OBJS) \
1852 idmo idminpl.o idmtext.o idmconn_smo idmso.o

1854 VR OBJS += vr.o
1856 ATGE _OBJS += atge_mmin.o atge_|lle.o atge_nmii.o atge_| 1.0
1858 YGE_OBJS = yge.o

1860 #

1861 # Build up defines and paths.

1862 #

1863 LI NT_DEFS += - Duni x

1865 #

1866 # This duality can be renpved when the native and target conpilers
1867 # are the sane (or at |east recognize the sane command |ine syntax!)
1868 # It is a bug in the current conpilation systemthat the assenber
1869 # can’t process the -Y I, flag.

1870 #

1871 NATI VE_|I NC_PATH += $(INC PATH) $(CCYFLAG) $(UTSBASE) / common
1872 AS_| NC_PATH += $(I NC_PATH) - | $(UTSBASE)/ conmon
1873 I NCLUDE_PATH += $(I NC_PATH) $(CCYFLAG) $(UTSBASE) / common

1875 PCl EB_OBJS += pcieb.o

1877 # Chel sio N110 10G NI C driver nodul e

1878 #

1879 CH OBJS = ch.o glue.o pe.o sge.o

1881 CH COM OBJS = ch_mac. o ch_subr.o cspi.o espi.o ixf1010.0 nt3.o0 n'c4 nc5.0 \
1882 nmv88elxxx. 0 mv88x201x.0 my3126.0 pnB393.0 tp.o ulp.o

1883 vsc7321. 0 vsc7326.0 xpak.o

1885 #

1886 # PCl strings file

1887 #
1888 PCl _STRI NG OBJS = pci_strings.o

1890 NET_DACF_OBJS += net_dacf.o

1892 #
1893 #
1894 #
1895 XGE_OBJS = xge.o xgell.o

Xframe 10G NI C driver nodul e

1897 XGE_HAL_OBJS = xgehal -channel .o xgehal -fifo.o xgehal -ring.o xgehal-config.o \

1898 xgehal -driver.o xgehal -nmm o xgehal -stats.o xgehal -device.o \
1899 xge- queue. o xgehal -ngnt. o xgehal - ngnt aux. o

1901 #

1902 # €1000g nodul e

1903 #

1904 E1000G OBJS += e1000_80003es2l an.o e1000_82540. 0 €1000_82541. 0 e1000_82542.0 \
1905 e1000_82543. 0 €1000_82571. 0 €1000_api .o €1000_i ch8l an.o \

1906 €1000_rac. o e1000_nanage. 0 €1000_nvm o e1000_osdep. o \

1907 €1000_phy. o €1000g_debug. o €1000g_nmi n. o0 €1000g_al | oc. 0 \

1908 €1000g_t x. 0 e1000g_rx. o0 e1000g_stat.o

new usr/src/uts/common/ Makefile.files

1910 #

1911 # Intel 82575 1G NIC driver nodul e

1912 #

1913 |1 GB_OBIS = igb_82575.0 igbh_api.o igb_mac.o igb_nanage.o \
1914 igb_nvmo igb_osdep.o igb_phy.o igb_buf.o \

1915 igb_debug.o igb_gld.o igb_log.o igb_nain.o \

1916 igb_rx.o igb_stat.o igbh_tx.o

1918 #

1919 # Intel Pro/100 NI C driver nodul e

1920 #

1921 | PRB_OBJS = iprb.o

1923 #

1924 # Intel 10GE PCIE NIC driver nodule

1925 #

1926 | XGBE_OBJS = i xgbe_82598. 0 i xgbe_82599. o i xgbe_api . o \
1927 i xgbe_conmmon. o i xgbe_phy. o \
1928 i xgbe_buf . o i xgbe_debug. o i xgbe_gl d. o \
1929 i xgbe_l 0g. 0 i xgbe_main. o \
1930 i xgbe_osdep. o i xgbe_rx. o ixgbe_stat.o \
1931 i xghe_tx. o

1933 #

1934 # NI'U 10G 1G driver nodul e

1935 #

1936 NXCGE_OBJS = nxge_mac. o nxge_i pp. 0 nxge_r xdnma. o \
1937 nxge_t xdnma. 0 nxge_t Xxc. 0 nxge_ngi n. o \
1938 nxge_hw. o nxge_fzc.o nxge_virtual.o \
1939 nxge_send. o nxge_cl assify.o nxge_fflp.o \
1940 nxge_ffl p_hash. o nxge_ndd. o nxge_kstats.o \
1941 nxge_zcp. o nxge_fm o nxge_espc. o nxge_hv. o \
1942 nxge_hi 0. 0 nxge_hi o_guest.o nxge_intr.o

1944 NXGE_NPI _OBJS =\

1945 npi .o npi _mac.o npi_ipp.o \
1946 npi _txdma. o npi _rxdma. o npi_txc.o \
1947 npi _zcp. o npi_espc.o npi_fflp.o \
1948 npi _vir.o

1950 NXGE_HCALL_OBJS = \

1951 nxge_hcal | . o

1953 #

1954 # ki conv nodul es

1955 #
1956 KI CONV_EMEA OBJS += ki conv_enea. 0

1958 KI CONV_JA OBJS += kiconv_ja.o

1960 KI CONV_KO OBJS += ki conv_cck_comon. o ki conv_ko. o
1962 KI CONV_SC OBJS += ki conv_cck_common. o ki conv_sc. o
1964 KI CONV_TC OBJS += ki conv_cck_comon. o kiconv_tc.o
1966 #
1967 #

1968 #
1969 AAC OBJS = aac.0 aac_ioctl.o

AAC nodul e

1971 #
1972 #
1973 #
1974 SDA _OBJS =

sdcard nodul es

sda_cnd. o sda_host.o sda_init.o sda_nmem o sda_nod.o sda_slot.o

30

new usr/src/uts/comon/ Makefile.files

1975 SDHOST_OBJS = sdhost. o

1977 #

1978 # hxge 10G driver nodul e

1979 #

1980 HXGE_OBJS = hxge_mai n. o hxge_vnmac. o hxge_send. o \
1981 hxge_t xdnma. o hxge_rxdnma. o hxge_virtual .o \
1982 hxge_fm o hxge_fzc.o hxge_hw o hxge_kstats.o \
1983 hxge_ndd. o hxge_pfc.o \
1984 hpi .o hpi _vrmac. o hpi _rxdma. o hpi _t xdna. o \
1985 hpi _vir.o hpi_pfc.o

1987 #

1988 # MEGARAI D_SAS nodul e

1989 #

1990 MEGA _SAS OBJS = negarai d_sas. o

1992 #

1993 # MR_SAS nodul e

1994 #

1995 MR_SAS OBJS = nr_sas.o

1997 #

1998 # I SCSI _I NI TI ATOR nodul e

1999 #

2000 |1 SCSI _I NI TIATOR_OBJS = chap.o iscsi_io.o iscsi_thread.o \
2001 iscsi_ioctl.o iscsid.o iscsi.o \
2002 iscsi_login.o isns_client.o iscsiAuthCient.o
2003 iscsi_lun.o iscsiAuthCientd ue.o

2004 iscsi_net.o nvfile.o iscsi_cnd.o \
2005 i scsi _queue. 0 persistent.o iscsi_conn.o \
2006 i scsi_sess.o radius_auth.o iscsi_crc.o \
2007 i scsi_stats.o radi us_packet.o iscsi_doorclt.o
2008 iscsi_targetparamo utils.o kifconf.o
2010 #

2011 # ntxn 10Gb/1Go NI C driver nodul e

2012 #

2013 NTXN_OBIS = unmnic_init.o unmgemo unmnic_hw. o unmndd.o \
2014 unmoni c_main.o unmnic_isr.o unmnic_ctx.o niu.o
2016 #

2017 # Myricom 10G N C driver nodul e

2018 #

2019 MYRI 10GE_OBJS = nyri 10ge. o nyri 10ge_lro.o0

2021 # nul I driver nodul e
2022 #
2023 NULLDRI VER_OBJS = nul Il driver.o

2025 TPM OBJS = tpmo tpmhcall.o

\

\

31

new usr/src/uts/comon/ Makefile.rul es

R R R R

72399 Wed Jun 13 12:04:24 2012
new usr/src/uts/common/ Makefile.rul es

0,
*@**
1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.
12 #
13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
22 #
23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. Al rights reserved.
24 #
26 #
27 # Copyright 2011 Nexenta Systens, Inc. All rights reserved.
28 #
30 #
31 # uts/conmon/ Makefile.rules
32 #
33 # This Makefile defines all the file build rules for the directory
34 # uts/comon and its children. These are the source files which may
35 # be considered common to all SunCS systens.
36 #
37 # The following two-level ordering nmust be maintained in this file.
38 # Lines are sorted first in order of decreasing specificity based on
39 # the first directory conponent. That is, sundu rules cone before
40 # sparc rul es come before common rul es.
41 #
42 # Li nes whose initial directory conponents are equal are sorted
43 # al phabetically by the renaini ng conponents.
45 #
46 # Section la: C objects build rules
47 #
48 $(OBJS DI R)/ % o: $(COMMONBASE) / crypt o/ aes/ % ¢
49 $(COWILE.c) -0 $@ $<
50 $(CTFCONVERT_O)
52 $(OBIS_ DI R)/ % o: $(COMMONBASE) / crypt o/ arcfour/ % c
53 $(COWILE.c) -0 $@ $<
54 $(CTFCONVERT_O)
56 $(OBIS_DIR)/ % o: $(COVMONBASE) / cr ypt o/ bl owfi sh/ % ¢
57 $(COWILE.c) -0 $@ $<
58 $(CTFCONVERT_O)
60 $(OBJS_DIR)/ % o: $(COMMONBASE) / crypt o/ ecc/ % ¢

61 $(COVPILE. ¢) -0 $@ $<

new usr/src/uts/comon/ Makefile.rul es

62 $(CTFCONVERT_O)
64 $(OBIS_ DIR)/ % o: $(COMMONBASE) / cr ypt o/ nodes/ % ¢
65 $(COWPI LE. c) -0 $@ $<
66 $(CTFCONVERT_O)
68 $(O0BJS DI R)/ % o: $(COMMONBASE) / cr ypt o/ paddi ng/ % c
69 $(COWPI LE. c) -0 $@ $<
70 $(CTFCONVERT_O)
72 $(OBIS_ DI R)/ % o: $(COMMONBASE) / crypt o/ rng/ % c
73 $(COVPI LE. c) -0 $@ $<
74 $(CTFCONVERT_O)
76 $(OBJS_DIR)/ % o: $(COMMONBASE) / crypt o/ rsal/ % c
77 $(COWILE. c) -0 $@ $<
78 $(CTFCONVERT_O)
80 $(OBIS_DIR)/ % o: $(COVMMONBASE) / bi gnum % c
81 $(COVPI LE. c) -0 $@ $<
82 $(CTFCONVERT_O)
84 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ bi gnun % ¢
85 $(COWPI LE. ¢) -0 $@ $<
86 $(CTFCONVERT_O)
88 $(OBIS_DIR)/ % o: $(COMVONBASE) / npi / % ¢
89 $(COWPI LE. ¢) -0 $@ $<
90 $(CTFCONVERT_O)
92 $(OBIS_DIR)/ % o: $(COMVONBASE) / acl / % ¢
93 $(COWPILE. ¢) -0 $@ $<
94 $(CTFCONVERT_O)
96 $(OBJS_DIR)/ % o: $(COMVONBASE) / avl / % ¢
97 $(COWPILE. ¢) -0 $@ $<
98 $(CTFCONVERT_O)
100 $(OBIS_DI R/ % o: $(COMMONBASE) / ucode/ % ¢
101 $(COWPILE.c) -0 $@ $<
102 $(CTFCONVERT_O)
104 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ br and/ sn1/ % c
105 $(COWPILE.c) -0 $@ $<
106 $(CTFCONVERT_O)
108 $(OBJS_DIR)/ % o: $(UTSBASE) / common/ br and/ sol ari s10/ % c
109 $(COWPILE.c) -0 $@ $<
110 $(CTECONVERT_O)
112 $(OBIS_DI R/ % o: $(UTSBASE) / cormon/ c2/ % ¢
113 $(COWPI LE. ¢) -0 $@ $<
114 $(CTFOONVERT_O)
116 $(OBJIS_DIR)/ % o: $(UTSBASE) / cormon/ conf/ % ¢
117 $(COWPI LE.¢) -0 $@ $<
118 $(CTFOONVERT_O)
120 $(OBJS_DIR)/ % o: $(UTSBASE) / commpn/ contract/ % ¢
121 $(COVPI LE.¢) -0 $@ $<
122 $(CTFOONVERT_O)
124 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ cpr/ % c
125 $(COVPI LE. ¢) -0 $@ $<
126 $(CTFOONVERT_O)

new usr/src/uts/comon/ Makefile.rul es

128
129
130

132
133
134

136
137
138

140
141
142

144
145
146

148
149
150

152
153
154

156
157
158

160
161
162

164
165
166

168
169
170

172
173
174

176
177
178

180
181
182

184
185
186

188
189
190

192
193

$(OBIS_DI R)/ % o:

$(COWPILE.c) -0
(CTFCCNVERTO)

$(0BJS | DIR)/%o

$(COWPILE.c) -0
$(CTFCCNVERTO)

$(0BJS | DIR)/%o

$(COWPILE.c) -0
$(CTFOO\IVERTO)

$(0BJS_DI R)/%o

$(COWPILE.c) -0
$(CTFOO\IVERTO)

$(0BJS | DIR)/%o

$(COWPILE.c) -0
$(CTFOCNVERTO)

$(0BJS_DI R)/%o

$(COWPILE.c) -0
$(CTFOCNVERTO)

$(0BIS_ DIR)/%o

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(0BJS | DI?)/%O

COWPI LE.c) -0
$(CTFCONVERT_O)

$(0BIS_ DIR)/%o

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE.) -0
$(CTFCOWERT_O)

$(OBJS_DIR)/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBIS_DIR)/ % o:

$(COWI LE.c) -0

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ ctf/ % ¢

$(COMMONBASE) / ct f/ % ¢

$(COVMONBASE) / crypt o/ des/ % ¢

$(COVMONBASE) / sibi 0s/ % ¢

$(UTSBASE) / common/ des/ % ¢

$(UTSBASE) / cormon/ crypt o/ api / % ¢

$(UTSBASE) / comrmon/ crypt o/ core/ % c

$(UTSBASE) / common/ crypto/i o/ % c

$(UTSBASE) / cormon/ crypt o/ spi / % c

$(COVMONBASE) / pci / % ¢

$(COMMONBASE) / devi d/ % ¢

$(UTSBASE) / common/ di sp/ % ¢

$(UTSBASE) / common/ dt r ace/ % ¢

$(COVMONBASE) / exacct / % ¢

$(UTSBASE) / common/ exec/ aout/ % ¢

$(UTSBASE) / common/ exec/ el f/ % ¢

$(UTSBASE) / common/ exec/intp/ % c

new usr/src/uts/comon/ Makefile.rul es

194

196
197
198

200
201
202

204
205
206

208
209
210

212
213
214

216
217
218

220
221
222

224
225
226

228
229
230

232
233
234

236
237
238

240
241
242

244
245
246

248
249
250

252
253
254

256
257
258

$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(OBIJS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COMPI LE. c)

$(CTFCONVERT_

$(0BIS DIR)/ % o:
$(COMPI LE. c)

$(CTFCONVERT_

$(0BIS DIR)/ % o:
$(COWPI LE. c¢)

$(CTFCONVERT_

$(0BIS DIR)/ % o:
$(COWPI LE. c¢)

$(CTFCONVERT_

$(OBIS_ DR/ % o:
$(COWPI LE. ¢)

$(CTFCONVERT_

$(OBIS_ DR/ % o:
$(COMPI LE. c¢)
$(CTFCOWERT

$(OBIS_ DR/ % o:
$(COMPI LE. c¢)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COMPI LE. c¢)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(0BJS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(OBJS DIR)/ % o:
$(COMPI LE. ¢)
$(CTFCONVERT

0

-0

o)

-0

_0

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

_0

-0

e

-0

o)

-0

o)

-0

o)

-0

o)

-0

_0

-0

_0

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

3@ $<

$(UTSBASE) / cormon/ exec/ shbin/ % ¢

$(UTSBASE) / common/ exec/ j aval % ¢

$(UTSBASE) / common/ fs/ % ¢

$(UTSBASE) / common/ f s/ aut of s/ % ¢

$(UTSBASE) / common/ f s/ cachefs/ % ¢

$(UTSBASE) / common/ fs/ dcfs/ % c

$(UTSBASE) / common/ f s/ devfs/ % c

$(UTSBASE) / common/ fs/ctfs/ % c

$(UTSBASE) / common/ f s/ doorfs/ % ¢

$(UTSBASE) / common/ f s/ dev/ % c

$(UTSBASE) / common/ fs/fd/ % c

$(UTSBASE) / common/ fs/fifofs/%c

$(UTSBASE) / common/ fs/ hsfs/ % ¢

$(UTSBASE) / common/ fs/ | of s/ % ¢

$(UTSBASE) / common/ fs/ mtfs/ % c

$(UTSBASE) / common/ f s/ namef s/ % ¢

new usr/ src/uts/ common/ Makefile.rul es 5 new usr/ src/uts/ common/ Makefile.rul es

260 $(O0BJS DIR)/ % o: $(UTSBASE) / common/ fs/nfs/ % c 326 $(CTFCONVERT_O)

261 $(COWPILE.c) -0 $@ $<

262 $(CTFCONVERT_O) 328 $(0OBIS DI R)/ % o: $(UTSBASE) / commmon/ i o/ vscan/ % ¢
329 $(COWPI LE. c) -0 $@ $<

264 $(0BJS_DI R) 1% o: $(COVMONBASE) / snbsr v/ % ¢ 330 $(CTFCONVERT_O)

265 $(COVPI LE.¢) -0 $@ $<

266 $(CTFCONVERT_O) 332 $(OBIS DIR)/ % o: $(UTSBASE) / conmon/ f s/ zf s/ % ¢
333 $(COWPI LE. c) -0 $@ $<

268 $(0BJS_DI R) /% o: $(UTSBASE) / common/ f s/ snbsrv/ % c 334 $(CTFCONVERT_O)

269 $(COWPILE.c) -0 $@ $<

270 $(CTFCONVERT_O) 336 $(OBIS DIR)/ % o: $(UTSBASE) / conmon/ f s/ zut/ % ¢
337 $(COVPI LE. c) -0 $@ $<

272 $(OBIS DI R) /% o: $(UTSBASE) / common/ f s/ obj f s/ % ¢ 338 $(CTFCONVERT_O)

273 $(COVPI LE.¢) -0 $@ $<

274 $(CTFCONVERT_O) 340 $(OBIS DIR)/ % o: $(COVMMONBASE) / xat t r/ % c
341 $(COVPI LE. c) -0 $@ $<

276 $(0BJS_DI R) /% o: $(UTSBASE) / common/ f s/ pcfs/ % c 342 $(CTFCONVERT_O)

277 $(COVPI LE.¢) -0 $@ $<

278 $(CTFCONVERT_O) 344 $(OBIS DIR)/ % o: $(COVMONBASE) / zf s/ % ¢
345 $(COWPI LE. ¢) -0 $@ $<

280 $(0BJS_DI R) / % o: $(UTSBASE) / common/ f s/ portfs/%c 346 $(CTFCONVERT_O)

281 $(COVPI LE.¢) -0 $@ $<

282 $(CTFCONVERT_O) 348 $(O0BJS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ scsi / adapt er s/ pncs/ % ¢
349 $(COWPI LE. ¢) -0 $@ $<

284 $(O0BJS DI R)/ % o: $(UTSBASE) / comrmon/ f s/ proc/ % c 350 $(CTFCONVERT_O)

285 $(COVPI LE.¢) -0 $@ $<

286 $(CTFCONVERT O) 352 $(O0BJS_DIR)/ % o: $(UTSBASE) / common/ i o/ scsi / adapt er s/ pncs/ % bin
353 $(COWPI LE. b) -0 $@ $<

288 $(O0BJS_DIR)/ % o: $(UTSBASE) / common/ f s/ sharefs/ % c 354 $(CTFCONVERT_O)

289 $(COVPI LE.¢) -0 $@ $<

290 $(CTFCONVERT O) 356 $(OBJS DI R)/ % o: $(COMMONBASE) / f sr epar se/ % ¢
357 $(COWPILE.c) -0 $@ $<

292 $(OBIS DIR)/ % o0: $(COVMONBASE) / snbel nt / % ¢ 358 $(CTFCONVERT_O)

293 $(COVPI LE. ¢) -0 $@ $<

294 $(CTFCONVERT_O) 360 KMECHKRB5_BASE=$(UTSBASE) / common/ gssapi / mechs/ kr b5

296 $(OBJS_DIR)/ % o: $(UTSBASE) / common/ f s/ snbcl nt/ net smb/ % ¢ 362 KGSSDFLAGS=-1 $(UTSBASE)/common/ gssapi/incl ude

297 $(COWPI LE. c) -0 $@ $<

298 $(CTFCONVERT_O) 364 # Note, KRB5_DEFS can be assigned various preprocessor flags,
365 # typically -D defines on the nake invocation. The standard conpiler

300 $(OBIS_ DIR)/ % o: $(UTSBASE) / cormon/ f s/ snbcl nt/ snbfs/ % ¢ 366 # flags will not be overwitten.

301 $(COWPI LE. c) -0 $@ $< 367 KGSSDFLAGS += $(KRB5_DEFS)

302 $(CTFCONVERT_0O)
369 $(OBJS DIR)/ % o: $(UTSBASE) / common/ gssapi / % ¢

304 $(OBIS DIR)/ % o: $(UTSBASE) / common/ f s/ sockf s/ % ¢ 370 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@$

305 $(COWPI LE. c) -0 $@ $< 371 $(CTFCONVERT_O)

306 $(CTFCONVERT_O)
373 $(O0BIS_DIR)/ % o: $(UTSBASE) / common/ gssapi / nechs/ dumy/ % c

308 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ f s/ specfs/ % c 374 $(COWPI LE. c) $(KGSSDFLAGS) -0 $@$

309 $(COWPI LE. c) -0 $@ $< 375 $(CTFCONVERT_O)

310 $(CTFCONVERT_O)
377 $(OBIS DIR)/ % o: $(KMECHKRB5_BASE) / % ¢

312 $(OBIJS DIR)/ % o: $(UTSBASE) / common/ f s/ swapf s/ % ¢ 378 $(COWVPI LE. c) $(KGSSDFLAGS) -0 $@ $<

313 $(COWPI LE. c) -0 $@ $< 379 $(CTFCONVERT_O)

314 $(CTFCONVERT_O)
381 $(OBJS DI R)/ % o: $(KMECHKRB5_BASE) / crypt o/ % ¢

316 $(OBIS DIR)/ % o: $(UTSBASE) / conmon/ f s/ t npf s/ % ¢ 382 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

317 $(COWPI LE. c) -0 $@ $< 383 $(CTFCONVERT_O)

318 $(CTFCONVERT_O)
385 $(0OBJS DI R)/ % o: $(KMECHKRB5_BASE) / cr ypt o/ des/ % ¢

320 $(OBIS DIR)/ % o: $(UTSBASE) / conmon/ f s/ udf s/ % ¢ 386 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

321 $(COVPI LE. c) -0 $@ $< 387 $(CTFCONVERT_O)

322 $(CTFCONVERT_O)
389 $(0OBJS DIR)/ % o: $(KMECHKRB5_BASE) / crypt o/ arcfour/ % c

324 $(OBIS DIR)/ % o: $(UTSBASE) / conmon/ f s/ uf s/ % ¢ 390 $(COMVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

325 $(COWPI LE. c) -0 $@ $< 391 $(CTFCONVERT_O)

new usr/src/uts/comon/ Makefile.rul es

393
394
395

397
398
399

401
402
403

405
406
407

409
410
411

413
414
415

417
418
419

421
422
423

425

427
428
429

431
432
433

435
436
437

439
440
441

443
444
445

447
448
449

451
452
453

455
456
457

$(0BIS_DIR)/ % 0:
$(COWPI LE. c¢)

$(KMECHKRB5_BASE) / crypt o/ dk/ % ¢
$(KGSSDFLAGS) -0 $@ $<

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)

$(KMECHKRB5_BASE) / cr ypt o/ enc_provi der/ % c
$(KGSSDFLAGS) -0 $@ $<

$(CTFCONVERT_O

$(OBIS_ DR/ % o:
$(COWPI LE. c¢)

$(KMECHKRB5_BASE) / cr ypt o/ hash_pr ovi der/ % c
$(KGSSDFLAGS) -0 $@ $<

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)

$(KMECHKRB5_BASE) / cr ypt o/ keyhash_provi der/ % c
$(KGSSDFLAGS) -0 $@ $<

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE. c)

$(KMECHKRB5_BASE) / crypt o/ raw % c
$(KGSSDFLAGS) -0 $@ $<

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)

$(KMECHKRB5_BASE) / crypt o/ ol d/ % ¢
$(KGSSDFLAGS) -0 $@ $<

$(CTFCONVERT_O)

$(O0BIS_ DR/ % o:
$(COWPI LE. c)

$(KMECHKRB5_BASE) / kr b5/ kr b/ % ¢
$(KGSSDFLAGS) -0 $@ $<

$(CTFCONVERT_O)

$(0BJS_DIR)/ % 0:
$(COMPI LE. c)

$(KMECHKRBS5_BASE) / kr b5/ 0s/ % ¢
$(KGSSDFLAGS) -0 $@ $<

$(CTFCONVERT_O)

$(O0BIS_DI R)/ser_sctx.

$(0BIS DIR)/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(OBJS_DIR)/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT

$(OBJS_DIR)/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT

$(OBIS_DIR)/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COWPI LE. ¢)

0 := CPPFLAGS += - DPROVI DE_KERNEL_| MPORT=1

$(KMECHKRB5_BASE) / mech/ % ¢
gKGSSDFLA$) -0 $@$%<

$(KMECHKRB5_BASE) / profile/ % c
g)(KGSSDFLAGS) -0 $@ $<

$(UTSBASE) / common/ avs/ ncal | / % ¢

-0 $@ $<
0

$(UTSBASE) / common/ avs/ ns/ dsw % ¢
-0 $@ $<
0O

$(UTSBASE) / commpn/ avs/ ns/ nsctl/%c
-0 $@$<

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE. c¢)

$(UTSBASE) / common/ avs/ ns/rdc/ % c
-0 $@$<

$(CTFCOWERT_O)

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)

$(UTSBASE) / common/ avs/ ns/ sdbc/ % ¢
-0 $@$<

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE. c)

$(UTSBASE) / cormon/ avs/ ns/ sol aris/ % c
-0 $@$<

$(CTFCONVERT_O)

new usr/src/uts/comon/ Makefile.rul es

459
460
461

463
464
465

467
468
469

471
472
473

475
476
477

479
480
481

483
484
485
486

488
489
490

492
493
494

496
497
498

500
501
502

504
505
506

508
509
510

512
513
514

516
517
518

520
521
522

$(OBJS_DIR)/ % o:

$(COVPILE. ¢) -0 $@ $<

$(CTFCONVERT
$(OBIS_ DR/ % o:

o)

$(COMWPI LE. ¢) -0 $@ $<

$(CTFCOWERT
$(OBIS_ DR/ % o:

o)

$(COWPILE.c) -0 $@ $<

$(CTFCONVERT
$(OBIS_ DR/ % o:

_0

$(COWPILE.c) -0 $@ $<

$(CTFCONVERT
$(OBIS_ DR/ % o:

e

$(COVPI LE.c) -0 $@ $<

$(CTFCONVERT
$(O0BIS_ DI R/ % o:

e

$(COVPILE.c) -0 $@ $<

$(CTFCONVERT

#endi f /* !
$(OBIS_ DR/ % o:

_0

coderevi ew */

$(COWILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COMPI LE. c¢)
$(CTFCOWERT

$(OBIS_ DR/ % o:
$(COMPI LE. c¢)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(OBJS DIR)/ % o:
$(COMPI LE. ¢)
$(CTFCONVERT

-0

o)

-0

_0

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

_0

$@ $<

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

$@$<

3@ $<

3@ $<

$(UTSBASE) / common/ avs/ ns/ sv/ % c

$(UTSBASE) / common/ avs/ ns/ uni stat/ % c

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

dmap/ % ¢

net/ %c

net/arp/%c

net/dccp/ % c

net/ip/%c

net/ipnet/%c

net/iptun/%c

net/kssl/%c

net/sctp/%c

net/tcp/%c

net/ilb/%c

net/ipf/%c

$(COVMONBASE) / net / patricial/ % c

$(UTSBASE) / common/ i

net/udp/ % c

new usr/src/uts/comon/ Makefile.rul es

524
525
526

528
529
530

532
533
534

536
537
538

540
541
542

544
545
546

548
549
550

552
553
554

556
551
558

560
561
562

564
565
566

568
569
570

572
573
574

576
577
578

580
581
582

584
585
586

588
589

$(O0BIS_DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCCNVERT

$(0BJS DI R)/%o
$(COMPI LE. ¢)
$(CTFCONVERT

$(0BJS DI R)/%o
$(COMPI LE. ¢)
$(CTFCONVERT

$(0BJS DI R)/%o
$(COMPI LE. ¢)
$(CTFOO\NERT

$(0BJS DI R)/%o
$(COMPI LE. ¢)
$(CTFCONVERT

$(0BJS DI R)/%o
$(COMPI LE. ¢)
$(CTFCONVERT

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -
$(CTFCONVERT _

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -
$(CTFCONVERT _

$(OBJS DIR)/ % o:
$(COWPI LE.) -
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)

$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COVPI LE. c)
$(CTFCONVERT

$(0BIS_DIR)/ % o:
$(COMPI LE.)

-0

°)

-0

o)

-0

o)

-0

°)

-0

_0

-0

_0

O)

O)

0)

-0
o)

3@ $<

$@ $<

3@ $<

$@ $<

3@ $<

$@ $<

0 $@$<

0 $@$<

0 $@$<

$@ $<

-0 $@3%<

e

-0 $@3%<

o)

-0 $@3$<

o)

-0 $@$<

o)

-0 $@ $<

o)

-0

o)

-0

$@ $<

$@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common!/ i

$(UTSBASE) / cormon!/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

net/ncal/ %c

net/socknods/ % c

net/dl pi stub/ % c

o/ %c

0/ 1394/ % c

o/ 1394/ adapt ers/ % c

o/ 1394/ target s/ avl394/ % c

o/ 1394/t ar get s/ dcaml394/ % c

o/ 1394/t arget s/ scsal394/ % c

o/ shp2/ % c

o/ aac/ % c

o/afe/%c

o/ atge/ % c

o/arn/%c

$(UTSBASE) / common/ i o/ at h/ % ¢

$(UTSBASE) / conmon/ i o/ at u/ % ¢

$(UTSBASE) / common/ i

o/ audio/inmpl/%c

new usr/src/uts/comon/ Makefile.rul es

590

$(CTFCONVERT_O)

592 $(0BJS DI R)/ % o:

593
594

596
597
598

600
601
602

604
605
606

608
609
610

612
613
614

616
617
618

620
621
622

624
625
626

628
629
630

632
633
634

636
637
638

640
641
642

644
645
646

648
649
650

652
653
654

$(COWPI LE. ¢)
$(CTFCOWERT_O)

$(OBIS_DIR)/ % o:

$(COVPI LE. ¢)
$(CTFCONERT_O)

$(OBJS_DIR)/ % o:

$(COWI LE.c) -0
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:

$(COWI LE.c) -0
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:

$(COWPI LE.) -0
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPI LE. c) -0
$(CTFCOWERT_O)

$(OBIS_ DR/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(O0BIS_ DR/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

-0 $@$<

-0 $@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

$@$<

3@ $<

3@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ audi

o/ ac97/ % c

o/ dr v/ audi

o/ dr v/ audi

o/ drv/ audi

o/ dr v/ audi

o/ drv/ audi

o/ dr v/ audi

o/ dr v/ audi

o/ dr v/ audi

o/ drv/ audi

o/ drv/ audi

o/ dr v/ audi

o/ dr v/ audi

o/ dr v/ audi

o/ dr v/ audi

o/ dr v/ audi

10

oens/ % c

oenulOk/ % c

01575/ % c

0810/ % c

ocm/%c

ocm hd/ % c

ohd/ % c

oi xp/ % c

ols/%c

opci/%c

opl6x/ % c

osol o/ % c

ots/%c

ovi a823x/ % c

ovi ag97/ % c

new usr/src/uts/comon/ Makefile.rul es

656
657
658

660
661
662

664
665
666

668
669
670

672
673
674

676
677
678

680
681
682

684
685
686

688
689
690

692
693
694

696
697
698

700
701
702

704
705
706

708
709
710

712
713
714

716
717
718

720
721

$(OBJIS_DI R)/ % o:
$(COMWPI LE.c) -0
(CTFCCNVERTO)

$(0BJIS_DI R)/%o
$(COWPILE.c) -0
$(CTFCCNVERTO)

$(0BJIS_DI R)/%o
$(COWPILE.c) -0
$(CTFOO\IVERTO)

$(0BJIS_DI R)/%o
$(COWPILE.c) -0
$(CTFOO\IVERTO)

$(0BJS_DI R)/%o
$(COWPILE.c) -0
$(CTFOO\IVERTO)

$(0BJS_DI R)/%o
$(COWPILE.c) -0
$(CTFOCNVERTO)

$(O0BIS_DI R/ % o:
$(COWPILE.c) -0
$(CTFCONVERT_O)

$(0BJS | DIR)/%o
$(COMPI LE. ¢) -0
$(CTFCONERT_O)

$(0BJS_ DIR)/%o
$(COVPI LE.) -0
$(CTFCONERT_O)

$(0BIS DIR)/ % o:
$(COWPI LE.) -0
$(CTFCONVERT_O)

$(OBIS_DIR)/ % o:
$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % o:
$(COWPILE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COWPI LE. C) -0
$(CTFCONVERT_O)

$(OBIS DIR)/ % o:
$(COWPI LE. C) -0
$(CTFCOWERT_O)

$(O0BJS_DIR)/ % o:
$(COWILE.c) -0
$(CTFCONVERT_O)

$(O0BJS_DIR)/ % o:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(O0BJS_DIR)/ % o:
$(COWI LE.c) -0

3@ $<

$@ $<

3@ $<

$@ $<

3@ $<

$@ $<

$@ $<

$@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common!/ i

$(UTSBASE) / cormon!/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(COWONBASE) / i scsi

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/ bfel/ % c

o/ bge/ % c

o/ bl kdev/ % c

o/ bpf/ % c

o/ cardbus/ % c

o/ conmstar/stnf/%c

o/ conmstar/port/fct/%c

o/ comstar/port/qlt/%c

o/ constar/port/srpt/%c

o/ constar/port/fcoet/%c

t/%c

o/ constar/port/iscsit/%c

o/ const ar/ port/ pppt/ %c

o/ conmstar/ |l u/stnf_sbd/ %c

o/dld/%c

o/dls/%c

o/ dnfel/ % c

11

new usr/src/uts/comon/ Makefile.rul es

722

724
725
726

728
729
730

732
733
734

736
737
738

740
741
742

744
745
746

748
749
750

752
753
754

756
757
758

760
761
762

764
765
766

768
769
770

772
773
774

776
777
778

780
781
782

784
785
786

$(CTFCONVERT_O)

$(OBIS_DIR)/ % o:
$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COWPILE. c) -0
$(CTFCONVERT_O)

$(O0BJS_DIR)/ % o:
$(COWI LE.c) -0
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:
$(COWI LE.c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % o:
$(COWPI LE.) -0
$(CTFCONVERT_O)

$(OBIS_DIR) /% o:
$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE. c) -0
$(CTFCOWERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(O0BIS_ DR/ % o:
$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COWPILE.c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

$@$<

3@ $<

3@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/drm % c

o/efel%c

o/elxl/%c

o/ fcoel % c

o/ hme/ % c

o/ pciex/ %c

o/ hot pl ug/ hpcsve/ % c

o/ pci ex/ hot pl ug/ % c

o/ hot pl ug/ pci hp/ % c

o/ibl/clients/rds/%c

o/ib/clients/rdsv3/%c

o/ib/clients/iser/%c

o/ib/clients/ibd/ %c

o/ibl/clients/eoibl%c

o/ib/clients/of/sol

o/ib/clients/of/sol

_ofs/%c

12

_ucma/ % c

new usr/src/uts/comon/ Makefile.rul es

788
789
790

792
793
794

796
797
798

800
801
802

804
805
806

808
809
810

812
813
814

816
817
818

820
821
822

824
825
826

828
829
830

832
833
834

836
837
838

840
841
842

844
845
846

848
849
850

852
853

$(O0BIS_DIR)/ % o:
$(COVPI LE. ¢)
(CTFCCNVERT

$(0BJS DI R)/%o
$(COMPI LE. ¢)
$(CTFCONVERT

$(0BJS DI R)/%o
$(COMPI LE. ¢)
$(CTFCONVERT

$(0BJS DI R)/%o
$(COMPI LE. ¢)
$(CTFCONVERT

$(0BJS DI R)/%o
$(COMPI LE. ¢)
$(CTFCONVERT

$(0BJS DI R)/%o
$(COMPI LE. ¢)
$(CTFCONVERT

$(OBJS DIR)/ % o:
$(COMPI LE. c)
$(CTFCONVERT _

$(OBJS DIR)/ % o:
$(COMPI LE. ¢)
$(CTFCONVERT _

$(OBJS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)

$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COVPI LE. c)
$(CTFCONVERT

$(0BIS_DIR)/ % o:
$(COMPI LE.)

-0

°)

-0

_0

-0

e

-0

e

-0

e

-0

e

-0

°)

-0

°)

-0

°)

-0
0

-0

e

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

3@ $<

$@ $<

3@ $<

$@ $<

3@ $<

$@ $<

$@ $<

$@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common!/ i

$(UTSBASE) / cormon!/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(COVMONBASE) / i scsi

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/ib/clients/of/sol

o/ib/clients/of/sol

o/ib/clients/sdp/%c

o/ib/mgt/ibcm %c

o/ib/mgt/ibdm % c

o/i b/ mgt/ibdma/ % c

o/ib/mgt/ibnf/%c

o/ i b/ibnex/ % c

o/iblibtl/%c

o/ i b/ adapt ers/tavor/

o/ i b/ adapt er s/ her mon

13

_umad/ % c

_uverbs/ %

% c

/%c

o/ib/clients/daplt/%c

/%c

o/idm %c

o/ipw %c

o/iwh/ % c

o/iwi/%c

new usr/src/uts/comon/ Makefile.rul es

854

856
857
858

860
861
862

864
865
866

868
869
870

872
873
874

876
877
878

880
881
882

884
885
886

888
889
890

892
893
894

896
897
898

900
901
902

904
905
906

908
909
910

912
913
914

916
917
918

$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COWPI LE. c)

-0

$(CTFCOWERT_O)

$(0BIS DIR)/ % o:
$(COWPI LE. c)

-0

$(CTFCONERT_O)

$(0BIS DIR)/ % o:
$(COMPI LE. c)

-0

$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COMPI LE. c)

-0

$(CTFCONVERT_O)

$(0BIS_DIR)/ % o:
$(COMPI LE. c)

-0

$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COWPI LE. c)

-0

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE. c)

-0

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COMPI LE. c¢)

-0

$(CTFCOWERT_O)

$(OBIS_ DR/ % o:
$(COMPI LE. c¢)

-0

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COMPI LE. c)

-0

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COMPI LE. c)

-0

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COMPI LE. c)

-0

$(CTFCONVERT_O)

$(O0BIS_ DR/ % o:
$(COMPI LE. c)

-0

$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)

-0

$(CTFCONVERT_O)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢)

-0

$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)

-0

$(CTFCONVERT_O)

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

$@$<

3@ $<

3@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/iwk/ % c

o/iwp/ %c

o/ kb8042/ % c

o/ kbtrans/ % c

o/ ksocket/ % c

o/ aggr/ % c

o/lp/%c

o/l v hot spares/ % c

o/l vm md/ % c

o/lvmmrror/%c

o/ lvm notify/%c

o/lvmraid/ %c

o/l vm softpart/%c

o/lvm stripel %c

o/lvmtrans/ %c

o/ mac/ % c

14

new usr/src/uts/comon/ Makefile.rul es

920
921
922

924
925
926

928
929
930

932
933
934

936
937
938

940
941
942

944
945
946

948
949
950

952
953
954

956
957
958

960
961
962

964
965
966

968
969

971
972
973

975
976
977

979
980
981

983
984
985

$(O0BIS_DIR)/ % o:
$(COVPI LE. ¢)
(CTFCI»NERT

$(0BJS | D|m/q@o
$(COMPI LE. ¢)
$(CTFCCNVERT

$(0BJS | D|mlgeo
$(COMPI LE. ¢)
$(CTFCEBNERT

$(0BJS | D|m/960
$(COMPI LE. ¢)
$(c7Fcr»NERT

$(0BJS | D|m/960
$(COMPI LE. ¢)
$(CTFCEANERT

$(0BJS | D|m/9@o
$(COMPI LE. ¢)
$(CTFCEBNERT

$(0BJS_ D|m/9@o
$(COMPI LE. c)
$(CTFCONVERT _

$(0BJS | D|m/9@o
$(COMPI LE. ¢)
$(CTFCONVERT _

$(0BJS_ Dlm/96o
$(COMPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)

$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. s)

$(OBIS_ DR/ % o:
$(COWPI LE. ¢)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCOWVERT

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

-0

°)

-0

°)

-0

°)

-0

°)

-0

°)

-0

°)

-0

°)

-0

°)

-0
0

-0
0

-0

e

-0

o)

-0

-0

o)

-0

o)

-0

o)

-0

o)

3@ $<

$@ $<

3@ $<

$@ $<

3@ $<

$@ $<

$@ $<

$@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common!/ i

$(UTSBASE) / cormon!/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

o/ mac/ pl ugi ns/ % c

o/ mega_sas/ % c

o/mil%c

o/ nr_sas/%c

o/ scsi / adapt ers/ npt _sas/ % c

o/ nxfel%c

o/mM /% c

o/md /mM _fw %c

o/ net 80211/ % c

o/ nge/ % c

o/ nxgel/ % c

o/ nxge/ npi/ % c

o/ nxgel/ % s

o/ pci-ide/%c

o/ pcntial % c

o/ pcan/ % c

o/ pcn/ % c

15

new usr/src/uts/comon/ Makefile.rul es

987
988
989

991
992
993

995
996
997

999
1000
1001

1003
1004
1005

1007
1008
1009

1011
1012
1013

1015
1016
1017

1019
1020
1021

1023
1024
1025

1027
1028
1029

1031
1032
1033

1035
1036
1037

1039
1040
1041

1043
1044
1045

1047
1048
1049

1051

$(0BIS_DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COWPI LE. c)
$(CTFCOWERT

$(OBIS_ DR/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(O0BIS_DI R/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(OBIS DIR) /%0
$(COMPI LE. ¢)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(OBJS DIR)/ % o:
$(COMPI LE. ¢)
$(CTFCONVERT

$(OBJS DIR)/ % o:
$(COVPI LE. ¢)

$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COWPI LE. c)

$(CTFCONVERT _

$(0BIS DIR)/ % o:

-0 $@ $<

)

-0 $@ $<

o)

-0 $@ $<

_0

-0 $@ $<

o)

-0 $@ $<

o)

-0 $@ $<

o)

-0 $@ $<

o)

-0 $@ $<

o)

-0 $@ $<

_0

-0 $@ $<

_0

-0 $@ $<

_0

-0 $@ $<

_0

-0 $@3%<

_0

-0 $@3%<

e

-0 $@$<
o)

-0 $@$<
o)

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/ pcwW /% c

o/ ppp/ sppp/ % ¢

o/ ppp/ spppasyn/ % c

o/ ppp/ sppptun/ % c

o/ral/%c

o/rge/ % c

o/rtls/%c

o/rsm%c

o/rtw %c

o/ rum %c

o/ rwd/ % c

o/rwn/ % c

o/ sat a/ adapt ers/ ahci/%c

o/ sat a/ adapt ers/nv_sata/ % c

o/ sat a/ adapt ers/ si 3124/ % c

o/satalinpl/%c

o/ scsi/conf/%c

16

new usr/src/uts/comon/ Makefile.rul es

1052
1053

1055
1056
1057

1059
1060
1061

1063
1064
1065

1067
1068
1069

1071
1072
1073

1075
1076
1077

1079
1080
1081

1083
1084
1085

1087
1088
1089

1091
1092
1093

1095
1096
1097

1099
1100
1101

1103
1104
1105

1107
1108
1109

1111
1112
1113

1115
1116
1117

$(COWPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_DIR)/ % 0:
2(COWPI LE. c)

$(OBJS DIR)/ % o:
2(COWPI LE. ¢)

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
g(COMPI LE. ¢)

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(OBJS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COMPI LE. c)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COMPI LE. c)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COMPI LE. c)
$(CTFCONVERT _

$(0BIS DIR)/ % 0:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COVPI LE. c)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COWPI LE. c)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

-0

-0

-0
o)

-0
(©]

-0

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

°)

-0

°)

$@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / cormon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / commmon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

17

o/scsilinpl/%c

o/ scsi/targets/ %c

o/ scsi/adapters/%c

o/ scsi/ adapt ers/ bl k2scsa/ % c

o/ scsi/ adapters/scsi _vhci/%c

o/ scsi / adapt er s/ scsi _vhci / f op

o/ fibre-channel /ul p/%c

o/ fibre-channel /inpl/%c

o/ fibre-channel/fca/qlc/%c

o/ fibre-channel /fcalql ge/ % c

o/ fibre-channel /fcal/enm xs/%c

o/ fibre-channel /fcal oce/ % c

o/ fibre-channel /fcal/fcoei/%c

o/ sdcar d/ adapt er s/ sdhost/ % c

o/ sdcard/inpl/%c

o/ sdcard/ targets/sdcard/ %c

new usr/src/uts/comon/ Makefile.rul es

1119
1120
1121

1123
1124
1125

1127
1128
1129

1131
1132
1133

1135
1136
1137

1139
1140
1141

1143
1144
1145

1147
1148
1149

1151
1152
1153

1155
1156
1157

1159
1160
1161

1163
1164
1165

1167
1168
1169

1171
1172
1173

1175
1176
1177

1179
1180
1181

1183

$(O0BJS_DIR)/ % o:
$(COWPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPILE. ¢) -0
$(CTFCOWERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(O0BIS_ DR/ % o:
$(COWPILE. c) -0
$(CTFCONVERT_O)

$(O0BIS_DI R/ % o:
$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COWPILE.c) -0
$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COWPILE.c) -0
$(CTFCONVERT_O)

$@ $<

$@ $<

$@ $<

3@ $<

$@ $<

3@ $<

3@ $<

$@ $<

3@ $<

$@ $<

@ $<

$@ $<

$(OBIS_DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$@ $<

$(0BIS DIR)/ % o:
$(COWPI LE. c) -0
$(CTFCONVERT_O)

$@ $<

$(0BIS DIR)/ % o:
$(COWPI LE. C) -0
$(CTFCONVERT_O)

$@ $<

$(0BIS DIR)/ % o:

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

18

o/ sfel%c

o/ simet/ % c

o/ softmac/ % c

o/ uath/ % c

o/ uat h/ uath_fw % c

o/ural/%c

o/urtw %c

o/ usb/ cli ent s/ audi o/ usb_ac/ %

o/ usb/ cli ent s/ audi o/ usb_as/ %

o/ usb/ cl i ent s/ audi o/ usb_ah/ %

o/ usb/ cli ents/ usbskel /% c

o/ usb/ cli ents/vi deo/ usbvc/ % c

o/ usb/clients/hwarc/ % c

o/ usb/clients/hid/ %c

o/ usb/ cli ent s/ hi dparser/ % c

o/usb/clients/printer/%c

o/ usb/ cli ent s/ usbkbnm % c

new usr/src/uts/comon/ Makefile.rul es

1184
1185

1187
1188
1189

1191
1192
1193

1195
1196
1197

1199
1200
1201

1203
1204
1205

1207
1208
1209

1211
1212
1213

1215
1216
1217

1219
1220
1221

1223
1224
1225

1227
1228
1229

1231
1232
1233

1235
1236
1237

1239
1240
1241

1243
1244
1245

1247
1248
1249

$(COWPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:
2(COWPI LE. c) -0 $@ $<

$(OBJS DIR)/ % o:
2(COWPI LE. c) -0 $@ $<

$(0BIS DIR)/ % o:
$(COWPILE. c) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COWPILE. c) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
g(COMVPI LE. c) -0 $@ $<

$(0BIS DIR)/ % o:
$(COWPI LE. c) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COWPI LE. c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:
$(COWPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0 $@ $<
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COMPI LE. ¢) -1I.
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COVPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(UTSBASE) / cormon/ i
$(UTSBASE) / common/ i
$(UTSBASE) / common/ i
$(UTSBASE) / common/ i
$(UTSBASE) / common/ i
$(UTSBASE) / commmon/ i
$(UTSBASE) / common/ i
$(UTSBASE) / common/ i
$(UTSBASE) / common/ i
$(UTSBASE) / common/ i
$(UTSBASE) / common/ i
$(UTSBASE) / common/ i
$(UTSBASE) / common/ i
$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i
<

./../comon -0 $@$%

$(UTSBASE) / comon/ i

19

o/ usb/ cli ents/usbnms/ % c

o/ usb/ cl i ent s/ usbi nput/ usbwem

o/ usb/ clients/ugen/ %c

o/ usb/ clients/usbser/%c

o/ usb/ cli ents/ usbser/usbsacm

o/ usb/ cli ents/usbser/usbftdi/

o/ usb/ cli ents/ usbser/usbser_k

o/ usb/ cli ent s/ usbser/usbsprl/

o/ usb/clients/wisb_df/%c

o/ usb/ clients/ hwal480_fw % c

o/ usb/clients/wisb_ca/%c

o/ usb/ cl i ents/usbecm % c

o/ usb/ hcd/ openhci / % c

o/ usb/ hcd/ ehci/ % c

o/ usb/ hcd/ uhci /% c

o/ usb/ hubd/ % c

new usr/src/uts/comon/ Makefile.rul es

1251
1252
1253

1255
1256
1257

1259
1260
1261

1263
1264
1265

1267
1268
1269

1271
1272
1273

1275
1276
1277

1279
1280
1281

1283
1284
1285

1287
1288
1289

1291
1292
1293

1295
1296
1297

1299
1300
1301

1303
1304
1305

1307
1308
1309

1311
1312
1313

1315

$(O0BJS_DIR)/ % o:
$(COWPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPILE. ¢) -0 $@ $<
$(CTFCOWERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COVPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(O0BIS_ DR/ % o:
$(COVPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(O0BIS_DI R/ % o:
$(COWPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONVERT O)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONERT_O)

$(0BIS_DIR)/ % 0:
$(COVPI LE. ¢) -0 $@$<
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONVERT _O)

$(OBJS DIR)/ % o:
$(COVPI LE. ¢) -0 $@$<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COMWPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COWPI LE. ¢) -0 $@ $<
$(CTFCONERT_O)

$(0BIS DIR)/ % o:
$(COWPILE. c) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

20

o/ ush/ scsa2ush/ % c

o/ usb/usb_m d/ % c

o/ usb/usb_ial % c

o/ usb/ usbhal/ % c

o/ usb/ usbal0/ % c

o/ usb/ hwa/ hwahc/ % c

o/ uwb/ uwba/ % c

o/ vui dmice/ % c

o/vnic/%c

o/ wpi/ % c

o/ zyd/ % c

o/ chxge/ com % ¢

o/ chxge/ % c

o/ ixgb/%c

o/ xge/ drv/ % c

o/ xge/ hal / xgehal / % ¢

o/ €1000g/ % c

new usr/src/uts/comon/ Makefile.rul es 21 new usr/src/uts/comon/ Makefile.rul es
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

1319 $(OBJS DI R)/ % o:
1320 $(COMPI LE. ¢) -0 $@ $<
1321 $

1316
1317 1383 $(OBJS_DI R)/ % o:
1384 $(COMWPI LE. ¢) -0 $@ $<

1385 $(CTFCONVERT_O)

1387 $(OBJS DI R)/ % o:
1388 $(COWPILE.c) -0 $@ $<
1389 $(CTFCONVERT_O)

$(UTSBASE) / common/ kndb/ % ¢
$(UTSBASE) / common/ i o/ i gb/ % ¢
$(UTSBASE) / common/ kt i /% c

1323 $(OBIS_DI R)/ % o: $(UTSBASE) / common/ i o/ i prb/ % c

1324 $(COVPI LE. ¢) -0 $@ $<

1325 $(CTFCONVERT 1391 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ scsi / adapters/iscsi/%c
1392 $(COWPILE.c) -0 $@ $<

1327 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ i xgbe/ % ¢ 1393 $(CTFCONVERT_O)

1328
1329

$(COWPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O) 1395 $(OBJS DI R)/ % o:
1396 $(COMPI LE. ¢) -0 $@ $<

1397 $(CTFCONVERT_O)

1399 $(OBIS DI R)/ % o:
1400 $(COWPI LE.c) -0 $@ $<
1401 $(CTFCONVERT_O)

$(COVMONBASE) / i scsi/ % ¢

1331 $(OBJS DIR)/ % o:
1332 $(COWPILE. c) -0 $@ $<
1333 $(CTFCONVERT_O)

$(UTSBASE) / common/ i o/ nt xn/ % ¢
$(UTSBASE) / common/ i net/ ki f conf/ % ¢

1335 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ nyri 10ge/ drv/ % ¢

1336 $(COVPI LE. c) -0 $@ $<

1337 $(CTFCONVERT 1403 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ vr/ % ¢
1404 $(COWPILE.c) -0 $@ $<

1339 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i pp/ % ¢ 1405 $(CTFCONVERT_O)

1340
1341

$(COWPI LE. c) -0 $@ $<

$(CTFCONVERT_O) 1407 $(OBJS DI R)/ % o: $(UTSBASE) / common/ i o/ yge/ % ¢

1408 $(COWPI LE. c) -0 $@ $<
1343 $(OBIS_ DI R)/ % o: $(UTSBASE) / common/ i pp/ i pgpc/ % ¢ 1409 $(CTFCONVERT_O)
1344 $(COWILE.c) -0 $@ $<
1345 $(CTFCONVERT_O) 1411 #
1412 # krtld nmust refer to its own bzero/bcopy until the kernel is fully |inked
1347 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i pp/ dl cosnk/ % ¢ 1413

#
1414 $(OBJS_DI R)/ bootrd. o

1348 $(COWILE.c) -0 $@ $< | = CPPFLAGS += - DKOBJ_OVERRI DES
1349 $(CTFCONVERT_O) 1415 $(OBJS_DI R)/dorel oc. o = CPPFLAGS += - DKOBJ_OVERRI DES

1416 $(OBJIS_DI R)/ kobj .o = CPPFLAGS += - DKOBJ_OVERRI DES
1351 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i pp/ f | owacct /% ¢ 1417 $(OBJIS_DI R)/ kobj _boot . o = CPPFLAGS += - DKOBJ_OVERRI DES
1352 $(COWILE. c) -0 $@ $< 1418 $(0OBJS DI R)/ kobj _bootfl ags. o = CPPFLAGS += - DKOBJ_OVERRI DES
1353 $(CTFCONVERT_O) 1419 $(0OBJS_DI R)/ kobj _convrel str.o = CPPFLAGS += - DKOBJ_OVERRI DES

1420 $(OBJIS_DI R)/ kobj _isa.o = CPPFLAGS += - DKOBJ_OVERRI DES
1355 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i pp/ dscpnk/ % c 1421 $(OBIS_DI R)/ kobj _kdi . o = CPPFLAGS += - DKOBJ_OVERRI DES
1356 $(COWILE. c) -0 $@ $< 1422 $(0OBIS_DI R)/kobj _Imo = CPPFLAGS += - DKOBJ_OVERRI DES
1357 $(CTFCONVERT_O) 1423 $(OBJIS_DI R)/ kobj _rel oc. o = CPPFLAGS += - DKOBJ_OVERRI DES

1424 $(OBJS_DI R)/ kobj _stubs. o = CPPFLAGS += - DKOBJ_OVERRI DES
1359 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i pp/ meters/ % c 1425 $(OBJIS_DI R)/ kobj _subr. o = CPPFLAGS += - DKOBJ_OVERRI DES

1360 $(COWPI LE. c) -0 $@ $<

1361 $(CTFCONVERT_O) 1427 $(OBJIS_DIR)/ % o: $(UTSBASE) / common/ krt | d/ % ¢
1428 $(COVPI LE. ¢) -0 $@ $<

1363 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ ki conv/ ki conv_eneal/ % ¢ 1429 $(CTFCONVERT_O)

1364 $(COWPI LE. ¢) -0 $@ $<

1365 $(CTFCONVERT_O) 1431 $(OBJIS_DI R)/ % o: $(COMMONBASE) / | i st/ % ¢
1432 $(COVPI LE.¢) -0 $@ $<

1367 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ ki conv/ ki conv_j a/ % ¢ 1433 $(CTFCONVERT_O)

1368 $(COWPI LE. ¢) -0 $@ $<

1369 $(CTFCONVERT_O) 1435 $(OBJS_DIR)/ % o: $(COMMONBASE) / | vl % ¢
1436 $(COVPI LE.c) -0 $@ $<

1371 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ ki conv/ ki conv_ko/ % ¢ 1437 $(CTFCONVERT_O)

1372 $(COWPILE.c) -0 $@ $<

1373 $(CTFCONVERT_O) 1439 $(OBJS_DI R)/ % o: $(COVMONBASE) / | zma/ % ¢
1440 $(COWPILE. c) -0 $@ $<

1375 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ ki conv/ ki conv_sc/ % ¢ 1441 $(CTFCONVERT_O)

1376 $(COWPI LE. ¢) -0 $@ $<

1377 $(CTFCONVERT_O) 1443 $(OBIS_DI R)/ % o: $(COMMONBASE) / crypt o/ md4/ % ¢
1444 $(COWPILE.c) -0 $@$<

1379 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ ki conv/ ki conv_tc/ % c 1445 $(CTFCONVERT_O)

1380 $(COWPI LE. c) -0 $@ $<

1381 $(CTFCONVERT_O) 1447 $(0BIS_DIR)/ % o: $(COMMONBASE) / cr ypt o/ md5/ % ¢

new usr/ src/uts/ common/ Makefile.rul es 23 new usr/ src/uts/ common/ Makefile.rul es 24
1448 $(COWILE.c) -0 $@ $<
1449 $(CTFCONVERT_O) 1515 $(OBJS_DIR)/ % o: $(COMMONBASE) / uni code/ % c
1516 $(COWPILE.c) -0 $@ $<
1451 $(OBJS_DI R)/ % o: $(COMMONBASE) / net / dhep/ % ¢ 1517 $(CTFCONVERT_O)
1452 $(COWPILE.c) -0 $@ $<
1453 $(CTFCONVERT_O) 1519 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ v % ¢
1520 $(COWPILE.c) -0 $@ $<
1455 $(OBJS_DI R)/ % o: $(COVMONBASE) / nvpai 1/ % ¢ 1521 $(CTFCONVERT_O)
1456 $(COWILE. c) -0 $@ $<
1457 $(CTFCONVERT_O) 1523 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ znod/ % ¢
1524 $(COWPI LE.c) -0 $@ $<
1459 $(OBJS_DI R)/ % o: $(UTSBASE) / commmon/ os/ % ¢ 1525 $(CTFCONVERT_O)
1460 $(COWPILE. c) -0 $@ $<
1461 $(CTFCONVERT_O) 1527 $(O0BJS_DIR)/ zli b_obj . o: $(ZLI B_OBIS: %=$(OBIS DIR) / %
1528 $(LD) -r -Breduce - Mb(UTSBASE)/common/znod/ napfile -0 $@\
1463 $(OBIS_DI R)/ % o: $(UTSBASE) / cormon/ pcnti a/ ci s/ % ¢ 1529 $(ZLI B_OBIS: %=$(OBIS DI R)/ %
1464 $(COWPI LE. c) -0 $@ $< 1530 $(CTFMERGE) -t -f -L VERSION -0 $@ $(ZLI B_OBIS: %$(OBIS_DIR)/ %
1465 $(CTFCONVERT_O)
1532 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ hxge/ % ¢
1467 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ pcnti a/ cs/ % ¢ 1533 $(COWILE. c) -0 $@ $<
1468 $(COWPI LE. c) -0 $@ $< 1534 $(CTFCONVERT_O)
1469 $(CTFCONVERT_O)
1536 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ t pn % ¢
1471 $(OBIS_DI R)/ % o: $(UTSBASE) / common/ pcnti a/ nexus/ % ¢ 1537 $(COWPILE.c) -0 $@ $<
1472 $(COWPI LE. c) -0 $@ $< 1538 $(CTFCONVERT_O)
1473 $(CTFCONVERT_O)
1540 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ t pml % s
1475 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ pcnti a/ pcs/ % ¢ 1541 $(COWILE.s) -0 $@ $<
1476 $(COWPI LE. c) -0 $@ $<
1477 $(CTFCONVERT_O) 1543 $(OBJS_DI R)/ bz2% o: $(COMVONBASE) / bzi p2/ % ¢
1544 $(COWPI LE. ¢) -0 $@ - | $(COMVONBASE) / bzi p2 $<
1479 $(OBJS_DIR)/ % o: $(UTSBASE) / conmon/ r pc/ % c 1545 $(CTFCONVERT_O)
1480 $(COWPI LE. c) -0 $@ $<
1481 $(CTFCONVERT_O) 1547 BZ2LINT = -erroff=%l| -1$(UTSBASE)/conmmon/ bzi p2
1483 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ r pc/ sec/ % ¢ 1549 $(LINTS_DI R)/ bz2% | n: $(COVMONBASE) / bzi p2/ % ¢
1484 $(COWILE. c) -0 $@ $< 1550 @$(LHEAD) $(LINT.c) -C $(LINTS DI R)/‘basenanme $@.1n° $(BZ2LINT) $< $(
1485 $(CTFCONVERT_O)
1552 #
1487 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ r pc/ sec_gss/ % ¢ 1553 # SVM
1488 $(COVPI LE. c) -0 $@ $< 1554 #
1489 $(CTFCONVERT_O)
1556 MD_XDR_CSRC = $(UTSBASE) / common/ i o/ | v nmd
1491 $(OBIS_DIR)/ % o: $(COVMONBASE) / cr ypt o/ shal/ % c 1557 MD_XDR_XSRC = $(UTSBASE) / common/ sys/ | vm
1492 $(COWPI LE.c) -0 $@ $< 1558 RPCGENFLAGS += -C -M -D_KERNEL - DSYSV
1493 $(CTFCONVERT_O)
1560 $(MD_XDR_CSRC)/ net a_basi c_xdr. c: $(MD_XDR_XSRC) / net a_basi c
1495 $(O0BJS_DIR)/ % o: $(COVMONBASE) / cr ypt o/ sha2/ % ¢ 1561 $(RPCGEN) ${RPCGENFLAGS) -¢ -i 100 ${MD_XDR XSRC)/neta_ba s c.x | \
1496 $(COWPI LE.c) -0 $@ $< 1562 nawk ' {sub(/~#include "(\.\.\/\. N\ \/)/, T#include V"V VLNV VLV VN
1497 $(CTFCONVERT_O) 1563 nawk '{sub(/neta_basic.h/, "nd_basic. h") print $$0}’ >$@
1499 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ syscal | / % ¢ 1565 $(MD_XDR_CSRC) / met amed_xdr . c: $(MD_XDR_XSRC) / met anmed. x
1500 $(COWPI LE. ¢) -0 $@ $< 1566 $(RPCGEN) $(RPCGENFLAGS) -c -i 100 $(MD XDR XSRO)/metamed. x | \
1501 $(CTFCONVERT_O) 1567 nawk ' {sub(/~#include "(\.\.\/\. A\ \/)/, T#include V"V VL VNV VLV
1568 nawk ' {sub(/metanmed. h/, "mdned.h"); print $$0}' >$@
1503 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ t nf/ % ¢
1504 $(COWPILE.c) -0 $@ $< 1570 #
1505 $(CTFCONVERT_O) 1571 # Section 1b: Lint ‘objects’
1572 #
1507 $(OBIS_DIR)/ % o: $(COMMONBASE) / t sol / % ¢ 1573 $(LINTS_ DIR)/ %I n: $(COVMONBASE) / crypt o/ aes/ % ¢
1508 $(COWPI LE.c) -0 $@ $< 1574 @$(LHEAD) $(LINT.c) $< $(LTAIL))
1509 $(CTFCONVERT_O)
1576 $(LINTS_ DI R)/ %I n: $(COMMONBASE) / crypt o/ arcfour/ % c
1511 $(OBJS_DIR)/ % o: $(COMMONBASE) / ut i | / % ¢ 1577 @$(LHEAD) $(LINT.c) $< $(LTAIL))
1512 $(COWPILE.c) -0 $@ $<
1513 $(CTFCONVERT_O) 1579 $(LINTS DR/ %I n: $(COWONBASE) / cr ypt o/ bl owfi sh/ % ¢

new usr/src/uts/comon/ Makefile.rul es

1580

1582
1583

1585
1586

1588
1589

1591
1592

1594
1595

1597
1598

1600
1601

1603
1604

1606
1607

1609
1610

1612
1613

1615
1616

1618
1619

1621
1622

1624
1625

1627
1628

1630
1631

1633
1634

1636
1637

1639
1640

1642
1643

1645

@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:

@ $(LHEAD)
$(LINTS_. DR/ % n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % I n
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR)/ % I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)
$(LINTS DIR) /%I n:

$(LINT.c) $< $(LTAIL))

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(COVMONBASE) / crypt o/ ecc/ % ¢
$(LTAIL))

$(COVMONBASE) / cr ypt o/ modes/ % ¢
$(LTAIL))

$(COVMONBASE) / cr ypt o/ paddi ng/ % c
$(LTAIL))

$(COMMONBASE) / crypt o/ rng/ % ¢
$(LTAIL))

$(COVMONBASE) / crypt o/ rsal % c
$(LTAIL))

$(COMMONBASE) / bi gnum % c
$(LTAIL))

$(UTSBASE) / common/ bi gnum % c
$(LTAIL))

$(COMVONBASE) / npi / % ¢
S(LTAIL))

$(COMMONBASE) / acl / % ¢
$(LTAIL))

$(COMMONBASE) / avl / % ¢
$(LTAIL))

$(COVMONBASE) / ucode/ % ¢
$(LTAIL))

$(UTSBASE) / common/ br and/ sn1/ % c
$(LTAIL))

$(UTSBASE) / cormon/ br and/ sol ari s10/ % c
$(LTAIL))

$(UTSBASE) / common/ ¢2/ % ¢
$(LTAIL))

$(UTSBASE) / common/ conf / % ¢
$(LTAI L))

$(UTSBASE) / common/ contract/ % c

$(LTAIL))

$(UTSBASE) / common/ cpr/ % ¢
$(LTAIL))

$(UTSBASE) / common/ ctf/ % ¢
$(LTAIL))

$(COMVONBASE) / ct f/ % ¢
$(LTAIL))

$(COVMONBASE) / pci / % ¢
$(LTAIL))

$(COVMONBASE) / devi d/ % ¢
$(LTAIL))

$(COMMONBASE) / crypt o/ des/ % ¢

25

new usr/src/uts/comon/ Makefile.rul es

1646

1648
1649

1651
1652

1654
1655

1657
1658

1660
1661

1663
1664

1666
1667

1669
1670

1672
1673

1675
1676

1678
1679

1681
1682

1684
1685

1687
1688

1690
1691

1693
1694

1696
1697

1699
1700

1702
1703

1705
1706

1708
1709

1711

@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ %I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:

@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR)/ % I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % I n
@ $(LHEAD)
$(LINTS_.DIR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR)/ % I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR) /%I n:

26

$(LINT.c) $< $(LTAIL))

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

c)

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(COVMONBASE) / snbi 0s/ % ¢
$(LTAIL))

$(UTSBASE) / common/ avs/ ncal | / % ¢
$(LTAIL))

$(UTSBASE) / comon/ avs/ ns/ dsw % c
$(LTAIL))

$(UTSBASE) / cormon/ avs/ ns/ nsctl /% c
$(LTAIL))

$(UTSBASE) / common/ avs/ ns/ rdc/ % c
$(LTAIL))

$(UTSBASE) / common/ avs/ ns/ sdbc/ % ¢
$(LTAIL))

$(UTSBASE) / commpn/ avs/ ns/ sol ari s/ % c
$(LTAIL))

$(UTSBASE) / common/ avs/ ns/ sv/ % ¢
$(LTAI L))

$(UTSBASE) / common/ avs/ ns/ uni stat/ % c
$(LTAIL))

$(UTSBASE) / common/ des/ % ¢
$(LTAIL))

$(UTSBASE) / cormon/ crypt o/ api / % ¢
$(LTAIL))

$(UTSBASE) / cormon/ crypt o/ core/ % ¢
$(LTAIL))

$(UTSBASE) / common/ crypto/i o/ % c
$(LTAIL))

$(UTSBASE) / cormon/ crypt o/ spi / % ¢
$(LTAIL))

$(UTSBASE) / common/ di sp/ % ¢
$(LTAI L))

$(UTSBASE) / common/ dt race/ % c
$(LTAIL))

$(COVMONBASE) / exacct/ % c
$(LTAIL))

$(UTSBASE) / common/ exec/ aout / % ¢
$(LTAIL))

$(UTSBASE) / common/ exec/ el f/ % ¢
$(LTAIL))

$(UTSBASE) / common/ exec/ i ntp/ % c
$(LTAIL))

$(UTSBASE) / common/ exec/ shbin/ % c
$(LTAIL))

$(UTSBASE) / common/ exec/ j aval % ¢

new usr/src/uts/comon/ Makefile.rul es

1712

1714
1715

1717
1718

1720
1721

1723
1724

1726
1727

1729
1730

1732
1733

1735
1736

1738
1739

1741
1742

1744
1745

1747
1748

1750
1751

1753
1754

1756
1757

1759
1760

1762
1763

1765
1766

1768
1769

1771
1772

1774
1775

1777

@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_DIR)/% | n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_DIR)/ %I n:

@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_.DR)/%In
@ $(LHEAD)
$(LINTS_ DIR)/ % I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS_ DIR)/ %I n:

$(LINT.c) $< $(LTAIL))

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / cormon/ fs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ aut of s/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ cachef s/ % c
$(LTAIL))

$(UTSBASE) / common/ fs/ ctfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ door fs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ dcfs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ devfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ dev/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/fd/ % c
$(LTAIL))

$(UTSBASE) / common/ fs/fifofs/%c
$(LTAIL))

$(UTSBASE) / common/ f s/ hsfs/ % c
$(LTAIL))

$(UTSBASE) / common/ fs/ | of s/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ mtfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ namef s/ % ¢
$(LTAIL))

$(COMMONBASE) / snbsrv/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ snbsrv/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ nfs/ % c
$(LTAIL))

$(UTSBASE) / cormon/ f s/ obj fs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ pcfs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ portfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ proc/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ sharef s/ % ¢

27

new usr/src/uts/comon/ Makefile.rul es

$(LINT.

1778

1780
1781

1783
1784

1786
1787

1789
1790

1792
1793

1795
1796

1798
1799

1801
1802

1804
1805

1807
1808

1810
1811

1813
1814

1816
1817

1819
1820

1822
1823

1825
1826

1828
1829

1831
1832

1834
1835

1837
1838

1840
1841

1843

@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ %I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_DIR)/ %I n:

@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/%In
@ $(LHEAD)
$(LINTS_ DIR)/ % I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS_ DIR)/ %I n:

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

c)

c)

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(LTAIL))

$(COVMONBASE) / smbcl nt/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ snbcl nt/ net snb/ % ¢

$(LTAIL))

$(UTSBASE) / common/ f s/ smbcl nt/ snbfs/ % ¢

$(LTAIL))

$(UTSBASE) / common/ f s/ sockfs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ specfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ swapf s/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/t npfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ udf s/ % ¢
$(LTAI L))

$(UTSBASE) / common/ f s/ uf s/ % c
$(LTAIL))

$(UTSBASE) / common/ fs/ ufs_| og/ % c
$(LTAIL))

$(UTSBASE) / cormon/ i o/ vscan/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ zfs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ zut/ % c
$(LTAIL))

$(COVMONBASE) / xattr/ % c
$(LTAIL))

$(COMVMONBASE) / zf s/ % ¢
S(LTAIL))

$(UTSBASE) / common/ gssapi / % ¢

$(KGSSDFLAGS) $< $(LTAIL))

$(UTSBASE) / cormon/ gssapi / mechs/ dumy/ % c

$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / % ¢

$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypt o/ % ¢

$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypt o/ des/ % ¢

$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypt o/ dk/ % ¢

$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / cr ypt o/ os/ % ¢

28

new usr/src/uts/comon/ Makefile.rul es

$(LINT.

1844

1846
1847

1849
1850

1852
1853

1855
1856

1858
1859

1861
1862

1864
1865

1867
1868

1870
1871

1873
1874

1876
1877

1879
1880

1882
1883

1885
1886

1888
1889
1890

1892
1893

1895
1896

1898
1899

1901
1902

1904
1905

1907
1908

@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_DIR)/% | n:
$(LHEAD)

$(LINTS_
$(LINTS_
LHEAD)
$(LINTS_

$(LINTS_

$(LINTS_
LHEAD)

$(LINTS_
LHEAD)

$(LINTS_

$(LINTS_

QY QY QU QU QU QU QU QU @

#endif /* |
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS DIR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.
coder evi ew */

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

29

$(KGSSDFLAGS) $< $(LTAIL))

$<

$<

$<

$<

$<

$<

$<

$<

$(KMECHKRB5_BASE) / cr ypt o/ ar cfour/ % c
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / cr ypt o/ enc_provi der/ % c
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / cr ypt o/ hash_pr ovi der/ % c
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / cr ypt o/ keyhash_provi der/ % c
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypt o/ raw % c
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypt o/ ol d/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / kr b5/ kr b/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / kr b5/ 0s/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / mech/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))
$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAI L))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i

dmap/ % c

net/%ec

net/ socknmods/ % c

net/arp/ %c

net/dccp/ % c

net/ip/%c

net/ipnet/%c

net/iptun/%c

net/ipf/%c

$(| PFFLAGS) $< $(LTAIL))

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

net/kssl/%c

$(COVMONBASE) / net / patricial %c
$(1 PFFLAGS) $< $(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

net/udp/ % c

new usr/src/uts/comon/ Makefile.rul es

1910
1911

1913
1914

1916
1917

1919
1920

1922
1923

1925
1926

1928
1929

1931
1932

1934
1935

1937
1938

1940
1941

1943
1944

1946
1947

1949
1950

1952
1953

1955
1956

1958
1959

1961
1962

1964
1965

1967
1968

1970
1971

1973
1974

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common!/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common!/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAI L))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comrmon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

30

net/sctp/%c

net/tcp/%c

net/ilb/%c

net/ncal % c

net/dl pi stub/ % c

o/ %c

0/ 1394/ % c

o/ 1394/ adapters/ % c

o/ 1394/ target s/ avl394/ % c

0/ 1394/t ar get s/ dcanml394/ % c

0/ 1394/t arget s/ scsal394/ % c

o/ shp2/ % c

o/ aac/ % c

o/ afe/ % c

o/ atge/ % c

o/arn/%c

o/ath/%c

o/atu/ % c

o/ audi o/ inpl /% c

o/ audi o/ ac97/ % c

o/ audi o/ dr v/ audi 01575/ % c

o/ audi o/ dr v/ audi 0810/ % c

new usr/src/uts/comon/ Makefile.rul es

1976
1977

1979
1980

1982
1983

1985
1986

1988
1989

1991
1992

1994
1995

1997
1998

2000
2001

2003
2004

2006
2007

2009
2010

2012
2013

2015
2016

2018
2019

2021
2022

2024
2025

2027
2028

2030
2031

2033
2034

2036
2037

2039
2040

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT.c) $<

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAI L))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

31

o/ audi o/ dr v/ audi ocm / % c

o/ audi o/ dr v/ audi ocm hd/ % c

o/ audi o/ dr v/ audi oens/ % c

o/ audi o/ dr v/ audi oenul0k/ % c

o/ audi o/ dr v/ audi ohd/ % c

o/ audi o/ dr v/ audi oi xp/ % c

o/ audi o/ drv/ audi ol s/ % c

o/ audi o/ dr v/ audi opci / % c

o/ audi o/ dr v/ audi op16x/ % c

o/ audi o/ dr v/ audi osol o/ % c

o/ audi o/ drv/ audi ot s/ % c

o/ audi o/ dr v/ audi ovi a823x/ % c

o/ audi o/ dr v/ audi ovi a97/ % c

o/ bfe/ % c

o/ bpf/ % c

o/ bge/ % c

o/ bl kdev/ % c

o/ cardbus/ % c

o/ conmstar/ | u/ stnf_sbhd/ % c

o/ comstar/port/fct/%c

o/ conmstar/port/qlt/%c

o/ conmstar/port/srpt/%c

new usr/src/uts/comon/ Makefile.rul es

2042
2043

2045
2046

2048
2049

2051
2052

2054
2055

2057
2058

2060
2061

2063
2064

2066
2067

2069
2070

2072
2073

2075
2076

2078
2079

2081
2082

2084
2085

2087
2088

2090
2091

2093
2094

2096
2097

2099
2100

2102
2103

2105
2106

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(COVMONBASE) / i scsi
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common!/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAI L))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comrmon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

t/%c

o/ conmstar/ port/fcoet/%c

o/ conmstar/port/iscsit/%c

o/ conmst ar/ port/ pppt/ % c

o/ conmstar/stnf/%c

o/dld/%c

o/dls/%c

o/ dnfel/ % c

o/drm % c

o/efel/%c

o/elxl/%c

o/ fcoel %c

o/ hne/ % c

o/ pciex/ %c

o/ hot pl ug/ hpcsve/ % ¢

o/ pci ex/ hot pl ug/ % c

o/ hot pl ug/ pci hp/ % c

o/ibl/clients/rds/%c

o/ibl/clients/rdsv3/ %c

o/ib/clients/iser/%c

o/ib/clients/ibd/ %c

o/ib/clients/eoibl/%c

new usr/src/uts/comon/ Makefile.rul es

2108
2109

2111
2112

2114
2115

2117
2118

2120
2121

2123
2124

2126
2127

2129
2130

2132
2133

2135
2136

2138
2139

2141
2142

2144
2145

2147
2148

2150
2151

2153
2154

2156
2157

2159
2160

2162
2163

2165
2166

2168
2169

2171
2172

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT.c) $<

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(COVMONBASE) / i scsi
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comrmon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

33

o/ibl/clients/of/sol_ofs/%c

o/ib/clients/of/sol _ucma/ %c

o/ib/clients/of/sol _umad/ % c

o/ib/clients/of/sol _uverbs/ %

o/ib/clients/sdp/%c

o/ib/mgt/ibcm %c

o/ib/mgt/ibdm % c

o/ ib/nmgt/ibdmal/ % c

o/ib/mgt/ibnf/%c

o/ i b/ibnex/ % c

o/iblibtl/%c

o/ i b/ adapters/tavor/%c

o/ i b/ adapt er s/ hermon/ % c

o/ib/clients/daplt/%c

/% c

o/idm %c

o/ipw %c

o/iwh/ % c

oliwi/%c

o/iwk/ %c

o/ iwp/ %c

o/ kb8042/ % ¢

new usr/src/uts/comon/ Makefile.rul es

2174
2175

2177
2178

2180
2181

2183
2184

2186
2187

2189
2190

2192
2193

2195
2196

2198
2199

2201
2202

2204
2205

2207
2208

2210
2211

2213
2214

2216
2217

2219
2220

2222
2223

2225
2226

2228
2229

2231
2232

2234
2235

2237
2238

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common!/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAI L))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comrmon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

o/ kbtrans/ % c

o/ ksocket/ % c

o/ aggr/ % c

o/l p/%c

o/ | v hot spares/ % c

o/l vmi md/ % c

o/lvmmrror/%c

o/lvmraid/ %c

o/l vm softpart/ % c

o/lvim stripel/ %c

o/lvm notify/%c

o/lvmtrans/ %c

o/ mac/ % c

o/ mac/ pl ugi ns/ % c

o/ mega_sas/ % c

o/mil%c

o/ nr_sas/%c

o/ scsi/ adapt ers/ npt _sas/ % c

o/ nxfel%c

o/mmM /% c

o/ mi /il _fw % c

o/ net 80211/ % c

new usr/src/uts/comon/ Makefile.rul es

2240
2241

2243
2244

2246
2247

2249
2250

2252
2253

2255
2256

2258
2259

2261
2262

2264
2265

2267
2268

2270
2271

2273
2274

2276
2277

2279
2280

2282
2283

2285
2286

2288
2289

2291
2292

2294
2295

2297
2298

2300
2301

2303
2304

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT.c) $<

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAI L))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

o/ nge/ % c

o/ nxge/ % c

o/ nxgel/ % s

o/ nxge/ npi/ % c

o/ pci-ide/%c

o/ pcntial % c

o/ pcan/ % c

o/ pcn/ % c

o/ pcw /% c

o/ ppp/ sppp/ % ¢

o/ ppp/ spppasyn/ % c

o/ ppp/ sppptun/ % c

o/ral/%c

o/rge/ %c

o/rtls/%c

o/rsm%c

o/rtw %c

o/ rum % c

o/ rwd/ % c

o/rwn/ % c

o/ sat a/ adapters/ ahci/%c

o/ sat a/ adapters/nv_sata/ % c

35

new usr/src/uts/comon/ Makefile.rul es

2306
2307

2309
2310

2312
2313

2315
2316

2318
2319

2321
2322

2324
2325

2327
2328

2330
2331

2333
2334

2336
2337

2339
2340

2342
2343

2345
2346

2348
2349

2351
2352

2354
2355

2357
2358

2360
2361

2363
2364

2366
2367

2369
2370

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common!/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAI L))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comrmon/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

36
o/ sat a/ adapt ers/ si 3124/ % c

o/satalinpl/%c

o/ scsi / adapters/ % c

o/ scsi / adapt ers/ bl k2scsal/ % c

o/ scsi / adapt ers/ pnts/ % c

o/ scsi/ adapt ers/scsi _vhci/%c

o/ scsi / adapt ers/ scsi _vhci/ fop

o/ fibre-channel /ul p/ % c

o/ fibre-channel /inpl/%c

o/ fibre-channel/fca/qlc/%c

o/ fibre-channel /fcalql ge/ % c

o/ fibre-channel /fcalenm xs/%c

o/ fibre-channel /fcal oce/ %c

o/ fibre-channel /fcal/fcoei/%c

o/ scsi/conf/%c

o/scsilinpl/%c

o/ scsi/targets/ %c

o/ sdcar d/ adapt er s/ sdhost/ % c

o/ sdcard/inpl/%c

o/ sdcard/targets/sdcard/ % c

o/ sfel%c

o/ simet/ % c

new usr/src/uts/comon/ Makefile.rul es

2372
2373

2375
2376

2378
2379

2381
2382

2384
2385

2387
2388

2390
2391

2393
2394

2396
2397

2399
2400

2402
2403

2405
2406

2408
2409

2411
2412

2414
2415

2417
2418

2420
2421

2423
2424

2426
2427

2429
2430

2432
2433

2435
2436

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT.c) $<

$(LINT

$(LI NT

$(LINT

$(LINT

$(LI NT

$(LINT

$(LINT

$(LINT

$(LI NT

$(LINT

$(LINT

$(LINT

$(LINT

$(LINT

$(LINT

$(LI NT

$(LINT

$(LINT

$(LI NT

$(LINT

$(LINT

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAI L))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

37

o/ sof t mac/ % c

o/uath/%c

o/ uath/uath_fw % c

o/ural/%c

o/urtw %c

o/ usb/ cl i ent s/ audi o/ usb_ac/ %

o/ usb/ cl i ent s/ audi o/ usb_as/ %

o/ usb/ cl i ent s/ audi o/ usb_ah/ %

o/ usb/ cli ents/ usbskel /% c

o/ usb/ cli ents/vi deo/ usbvc/ % c

o/ usb/ clients/hwarc/ % c

o/ usb/clients/hid/ %c

o/ usb/ cli ents/ hidparser/ % c

o/ usb/ cl i ent s/ usbkbm % c

o/ usb/ cl i ents/usbnms/ % c

o/ usb/ cl i ent s/ usbi nput/ usbwem

o/ usb/ cli ents/ugen/ % c

o/usb/clients/printer/%c

o/ usb/ clients/usbser/%c

o/ usb/ cli ents/ usbser/usbsacm

o/ usb/ cli ents/ usbser/usbftdi/

o/ usb/ cl i ent s/ usbser/ usbser _k

new usr/src/uts/comon/ Makefile.rul es

2438
2439

2441
2442

2444
2445

2447
2448

2450
2451

2453
2454

2456
2457

2459
2460

2462
2463

2465
2466

2468
2469

2471
2472

2474
2475

2477
2478

2480
2481

2483
2484

2486
2487

2489
2490

2492
2493

2495
2496

2498
2499

2501
2502

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT

$(LINT

$(LI NT

$(LINT

$(LINT

$(LI NT

$(LINT

$(LINT

$(LINT

$(LI NT

$(LINT

$(LINT

$(LI NT

$(LINT

$(LINT

$(LINT

$(LI NT

$(LINT

$(LINT

$(LI NT

$(LINT

$(LINT

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common!/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAI L))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comrmon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

38

o/ usb/ cli ents/ usbser/usbsprl/

o/ usb/clients/wisbh_df/%c

o/ usb/ clients/ hwal480_fw % c

o/ usb/ clients/wisb_ca/%c

o/ usb/ cli ents/ usbecm % c

o/ usb/ hcd/ openhci / % c

o/ usb/ hcd/ ehci/ % c

o/ usb/ hcd/ uhci/ % c

o/ usb/ hubd/ % c

o/ usb/ scsa2usb/ % c

o/ usb/usb_m d/ % c

o/ usb/usb_ial %c

o/ usb/ usbal/ % c

o/ usb/ usbal0/ % c

o/ uwb/ uwbal/ % c

o/ usb/ hwa/ hwahc/ % c

o/ vui dmice/ % ¢

o/vnic/%c

o/ wpi/ % c

o/ zyd/ % c

o/ chxge/ com % c

o/ chxgel/ % c

new usr/src/uts/comon/ Makefile.rul es

2504
2505

2507
2508

2510
2511

2513
2514

2516
2517

2519
2520

2522
2523

2525
2526

2528
2529

2531
2532

2534
2535

2537
2538

2540
2541

2543
2544

2546
2547

2549
2550

2552
2553

2555
2556

2558
2559

2561
2562

2564
2565

2567
2568

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT.c) $<

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / cormon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / conmon/ ki conv/ ki conv_enea/ % ¢

$(LTAIL))

$(UTSBASE) / cormon/ ki conv/ ki conv_j a/ % ¢

S(LTAIL))

$(UTSBASE) / common/ ki conv/ ki conv_ko/ % c

$(LTAIL))

$(UTSBASE) / common/ ki conv/ ki conv_sc/ % c

$(LTAIL))

$(UTSBASE) / cormon/ ki conv/ ki conv_tc/ % c

S(LTAIL))

o/ ixgb/%c

o/ xge/ drv/ % c

o/ xge/ hal / xgehal / % ¢

0/ e1000g/ % c

o/igb/%c

o/iprb/%c

o/ i xghe/ % c

o/ ntxn/ % c

o/ nyri 10ge/ drv/ % c

pp/ % c

pp/ i pgpc/ % c

pp/ dl cosnk/ % c

pp/ fl owacct/ % c

pp/ dscpnk/ % c

pp/ meters/ % c

$(UTSBASE) / common/ kndb/ % ¢

$(LTAIL))

$(UTSBASE) / common/ krt | d/ % c

$(LTAIL))

39

new usr/src/uts/comon/ Makefile.rul es

2570
2571

2573
2574

2576
2577

2579
2580

2582
2583

2585
2586

2588
2589

2591
2592

2594
2595

2597
2598

2600
2601

2603
2604

2606
2607

2609
2610

2612
2613

2615
2616

2618
2619

2621
2622

2624
2625

2627
2628

2630
2631

2633
2634

$(LINTS_DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ kt i/ % c
$(LTAIL))

$(COVMONBASE) / i st/ % c
S(LTAIL))

$(COVMONBASE) / | vird % ¢
$(LTAIL))

$(COMVMONBASE) / | zma/ % ¢
$S(LTAIL))

$(COVMONBASE) / cr ypt o/ md4/ % c
$(LTAIL))

$(COMMONBASE) / cr ypt o/ md5/ % ¢
$(LTAIL))

$(COVMONBASE) / net / dhcp/ % ¢
$(LTAIL))

$(COVMONBASE) / nvpai r/ % c
$(LTAIL))

$(UTSBASE) / common/ os/ % ¢
$(LTAIL))

$(UTSBASE) / common/ r pc/ % ¢
$(LTAIL))

$(UTSBASE) / common/ pcnti a/ cs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ pcnti a/ ci s/ % ¢
$(LTAIL))

$(UTSBASE) / cormon/ pcnti a/ nexus/ % ¢
$(LTAIL))

$(UTSBASE) / common/ pcnti a/ pcs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ r pc/ % ¢
$(LTAIL))

$(UTSBASE) / common/ r pc/ sec/ % ¢
$(LTAIL))

$(UTSBASE) / common/ r pc/ sec_gss/ % ¢
$(LTAI L))

$(COVMONBASE) / cr ypt o/ shal/ % c
$(LTAIL))

$(COVMONBASE) / cr ypt o/ sha2/ % c
$(LTAIL))

$(UTSBASE) / cormon/ syscal | / % ¢
$(LTAIL))

$(UTSBASE) / common/ tnf/ % ¢
$(LTAIL))

$(COMVMONBASE) / t sol / % ¢
$(LTAIL))

40

new usr/src/uts/comon/ Makefile.rul es

2636

2637

$(LINTS_DIR)/ % | n:
@$($<

LHEAD) $(LINT. c)
2639

$(LINTS_DIR)/ % | n:
2640 as

(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINT.c) $<
2642

2643 $(LINT. c) $<
2645

2646 $(LINT.c) $<
2648

2649 $(LINT. c) $<
2651
2652

$(LI NTS_DI

R/ % n:
as

(LHEAD) $(LINT.c) $<

2654

2656
2657

$(LINTS_DIR)/ % | n:

2659
2660

$(LINTS_DIR)/zlib_obj.In:

$(COMMONBASE) / ut i | / % ¢
$(LTAIL))

$(COMMONBASE) / uni code/ % c
$(LTAIL))

$(UTSBASE) / cormon/ v % ¢
$(LTAIL))

$(UTSBASE) / cormon/ i o/ scsi / adapters/iscsi/%c
$(LTAIL))

$(COVMONBASE) / i scsi/ % ¢
$(LTAIL))

$(UTSBASE) / common/ i net / ki f conf/ % ¢
$(LTAIL))

ZMODLI NTFLAGS = -errof f =E_CONSTANT_CONDI TI ON

$(UTSBASE) / common/ zmod/ %

@S$(LHEAD) $(LINT.c) $(ZMODLI NTFLAGS) $< $(LTAI |_))C

%1n) \

$(ZLI B_OBJIS: % 0=$(LI NTS_DI R)/
lib_lint.c

$(UTSBASE) / common/ znod/ z

2661 @ $(LHEAD) $(LINT.c) -C $(LINTS_DIR)/zlib_obj \

2662 $(UTSBASE) / common/ zmod/ zlib_lint.c $(LTAIL))
2664 $(LINTS_DIR)/% I n: $(UTSBASE) / comrmon/ i o/ hxge/ % c
2665 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

2667 $(LINTS_DIR)/% I n: $(UTSBASE) / cormon/ i o/ t pn % ¢
2668 @$(LHEAD) $(LINT.c) $< $(LTAIL))

2670 $(LINTS_ DR /%I n: $(UTSBASE) / cormon/ i o/ t pml % s
2671 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2673 $(LINTS_DIR)/% I n: $(UTSBASE) / cormon/ i o/ vr/ % ¢
2674 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2676 $(LINTS_ DR/ %I n: $(UTSBASE) / cormon/ i o/ yge/ % ¢
2677 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

2679 $(LINTS_ DR/ %I n: $(COMMONBASE) / f sr epar se/ % ¢
2680 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

41

new usr/src/uts/comon/inet/dccp/dccp. c

R R R R

19475 Wed Jun 13 12: 04: 29 2012
new usr/src/uts/comon/inet/dccp/dccp. ¢
0,
*@**
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and |imtations under the License.
*

*

*

*

*

*

*

*

*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

NRERRRRRRR R
COONOUIAWNROW©O~NOUTDWN

CDDL HEADER END
/

23 * Copyright 2010 Sun M crosystens, Inc. Al rights reserved.
24 * Copyright 2012 David Hoeppner. Al rights reserved.
*/

27 | *
28 * This file inplements the Data Congestion Control Protocol (DCCP).
*/

31 #include <sys/types. h>

32 #include <sys/stream h>

33 #include <sys/stropts. h>
34 #include <sys/strlog. h>

35 #include <sys/strsun. h>

36 #define _SUN TPl _VERSI ON 2
37 #include <sys/tihdr.h>

38 #include <sys/socket.h>

39 #include <sys/socketvar. h>
40 #i ncl ude <sys/sockio. h>

41 #incl ude <sys/vtrace. h>

42 #include <sys/sdt.h>

43 #incl ude <sys/debug. h>

44 #include <sys/isa_defs. h>
45 #include <sys/tsol /| abel.h>
46 #include <sys/tsol/tnet.h>
47 #include <inet/kstatcom h>
48 #incl ude <i net/snnpcom h>

50 #include <sys/cm_err. h>

52 #include "dccp_inpl.h"
53 #include "dccp_stack. h"

55 /* Setable in /etc/system*/
56 uint_t dccp_bind_fanout _size = DCCP_BI ND_FANOUT_SI ZE;

58 static void dccp_notify(void *, ip_xmt_attr_t *, ixa_notify_type_t,
59 ixa_notify_arg_t);

61 /* Functions to register netstack */

new usr/src/uts/comon/inet/dccp/dccp. c

62 static void *dccp_stack_init(netstackid_t, netstack_t *);

63 static void dccp_stack_fini (netstackid_t, void *);

65 static int dccp_openv4(queue_t *, dev_t *, int, int, cred_t *);

66 static int dccp_openv6(queue_t *, dev_t *, int, int, cred_t *);

68 /* Wite service routine */

69 static void dccp_wsrv(queue_t *);

71 /* Connection related functions */

72 static int dccp_connect _i pv4(dccp_t *, ipaddr_t *, in_port_t, uint_t);
73 static int dccp_connect _i pv6(dccp_t *, in6_addr_t *, in_port_t, uint32_t,
74 uint_t, uint32_t);

76 struct nmodul e_info dccp_rinfo = {

77 DCCP_MOD_| D, DCCP_MOD_NAME, 0, | NFPSZ, DCCP_RECV_H WATER,

78 DCCP_RECV_LOMTER

79}

81 static struct nodul e_info dccp_winfo = {

82 DCCP_MOD_I D, DCCP_MOD_NAME, 0, |NFPSZ, 127, 16

83 };

85 /*

86 * Queue information structure with DCCP entry points.

87 */

88 struct qinit dccp_rinitvd = {

89 NULL, (pfi_t)dccp_rsrv, dccp_openv4, dccp_tpi_close, NULL, &dccp_rinfo
90 };

92 struct qinit dccp_rinitve = {

93 NULL, (pfi_t)dccp_rsrv, dccp_openv6, dccp_tpi_close, NULL, &dccp_rinfo
94 };

96 struct qginit dccp_winit = {

97 (pfi_t)dccp_wput, (pfi_t)dccp_wsrv, NULL, NULL, NULL, &dccp_winfo
98 };

100 /* AF_I NET /dev/dccp */

101 struct streantab dccpinfovd = {

102 &dccp_rinitv4, &ccp_wi nit

103 };

105 /* AF_INET6 /dev/dccp6 */

106 struct streantab dccpinfové = {

107 &dccp_rinitve, &dccp_wi nit

108 };

110 /*

111 * Tunabl es.

112 */

113 extern mod_prop_info_t dccp_propinfo_tbl[];

114 extern int dccp_propinfo_count;

116 /*

117 * Regi ster DCCP net st ack.

118 */

119 void

120 dccp_ddi _g_init(void)

121 {

122 net st ack_regi ster (NS_DCCP, dccp_stack_init, NULL, dccp_stack_fini);
123 }

125 #define | NET_NAME "ip"

127 | *

new usr/src/uts/comon/inet/dccp/dccp. c

128
129

* |Initialize the DCCP stack instance.

*/

130 static void *
131 dccp_stack_init(netstackid_t stackid, netstack_t *ns)

132 {
133
134
135
136
137

139
140
141
142
143

145
146
147
148
149
150

154
155
156
157
158
159
160

162
163
164
165
166
167
168
169

171
172
173
174

176
177
178
179
180
181

183
184
185
186

188
189 }

191 /
192
193

dccp_stack_t *dccps;
maj or _t maj or;
size_t arrsz;
int error;
int i;

dccps = knem zal | oc(sizeof (*dccps), KM SLEEP);
if (dccps == NULL) {
return (NULL);

dccps->dccps_net stack = ns;

/* Ports */

mut ex_i nit (&dccps->dccps_epriv_port_| ock, NULL, MJUTEX DEFAULT, NULL);
dccps->dccps_num epriv_ports = DCCP_NUM EPRI V_PORTS;
dccps->dccps_epriv_ports[0] ULP_DEF_EPRI V_PORT1;
dccps->dccps_epriv_ports|[1] ULP_DEF_EPRI V_PORT2;

dccps->dccps_m n_anonpriv_port = 512;

dccps->dccps_bi nd_f anout _si ze = dccp_bi nd_f anout _si ze;

/* Bind fanout */
dccps->dccps_bi nd_fanout = knem zal | oc(dccps->dccps_bi nd_f anout _si ze *
si zeof (dccp_df_t), KM SLEEP);
for (i = 0; i < dccps->dccps_bind_fanout _size; i++)
mut ex_i ni t (&Jccps->dccps_bind_fanout[i].df _| ock, NULL,
MUTEX_DEFAULT, NULL);
}

/* Tunabl e properties */
arrsz = dccp_propi nfo_count * sizeof (nod_prop_info_t);
dccps->dccps_propinfo_tbl = knem all oc(arrsz, KM SLEEP);
if (dccps->dccps_propinfo_tbl == NULL) {

kmem free(dccps, sizeof (*dccps));

return (NULL);

}
bcopy(dccp_propinfo_tbl, dccps->dccps_propinfo_thl, arrsz);

/* Allocate per netstack cpu stats */

mut ex_ent er (&cpu_l ock) ;

dccps->dceps_sc_cnt = MAX(ncpus, boot_ncpus);
mut ex_exi t (&cpu_I ock);

dcecps->dceps_sc = kmem zal | oc(max_ncpus * sizeof (dccp_stats_cpu_t *),
KM _SLEEP) ;

for (i = 0; | < dccps->dccps_sc_cnt; i++) {
dccps->dceps_sc[i] = kmem zal | oc(si zeof (dccp_stats_cpu_t),
KM_SLEEP) ;
}

/* Driver major nunber */

maj or = nod_nane_t o_maj or (| NET_NAME) ;

error = |di_ident_fromnajor(ngjor, &ccps->dccps_|di_ident);
ASSERT(error == 0);

return (dccps);

*

* Destroy the DCCP stack instance.
*/

new usr/src/uts/comon/inet/dccp/dccp. c

194 void

195 dccp_ddi _g_destroy(voi d)

196 {

197 cmm_err (CE_NOTE, "dccp.c: dccp_ddi _g_destroy\n");

199 net st ack_unr egi st er (NS_DCCP) ;

200 }

202 static void

203 dccp_stack_fini (netstackid_t stackid, void *arg)

204 {

205 dccp_stack_t *dccps = (dccp_stack_t *)arg;

206 int i;

208 /* Cpu stats */

209 for (i = 0; i < dccps->dccps_sc_cnt; i++) {

210 kmem free(dccps->dccps_sc[i], sizeof (dccp_stats_cpu_t));
211

212 kmem free(dccps->dccps_sc, max_ncpus * sizeof (dccp_stats_cpu_t *));
214 /* Tunabl e properties */

215 kmem f ree(dccps->dccps_propi nfo_thbl,

216 dccp_propi nfo_count * sizeof (nmpd_prop_info_t));

217 dccps->dccps_propi nfo_tbl = NULL;

219 /* Bind fanout */

220 for (i = 0; i < dccps->dccps_bind_fanout_size; i++) {

221 ASSERT(dccps->dccps_bi nd_fanout[i].df _dccp == NULL);
222 nmut ex_destroy(&dccps->dccps_bi nd_fanout[i].df _| ock);
223

224 kmem f ree(dccps->dccps_bi nd_f anout, dccps->dccps_bi nd_f anout _si ze *
225 si zeof (dccp_df_t));

226 dccps->dccps_bi nd_fanout = NULL;

228 kmem free(dccps, sizeof (*dccps));

229 }

231 /* /dev/dccp */

232 static int

233 dccp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
234 {

235 cmm_err (CE_NOTE, "dccp.c: dccp_openv4\n");

237 return (ENOTSUP);

238 }

240 /* /dev/dccp6 */

241 static int

242 dccp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
243 {

244 cmm_err (CE_NOTE, "dccp.c: dccp_openvé\n");

246 return (ENOTSUP);

247 }

249 | *

250 * IXA notify

251 */

252 static void

253 dccp_notify(void *arg, ip_xmt_attr_t *ixa, ixa_notify_ type_t ntype,
254 ixa_notify_arg_t narg)

255 {

256 cmm_err (CE_NOTE, "dccp.c: dccp_notify");

257 }

259 /[*

new usr/src/uts/comon/inet/dccp/dccp. c

260 * Build the tenplate headers.

261 */
262 int

263 dccp_buil d_hdrs(dccp_t *dccp)

264 {
265
266
267
268
269
270
271
272
273

275

277
278
279
280
281
282
283

285
286
287
288
289
290
291
292

294
295

297
298
299
300
301
302
303

305
306
307
308
309

311
312 }

314 /| *
315 *
316 */

dccp_stack_t *dccps = dccp->dccp_dccps;
conn_t *connp = dccp->dccp_connp;
dccpha_t *dccpha;

ui nt 32_t cksum

char buf [DCCP_MAX_HDR_LENGTH] ;
uint_t bufl en;

ui nt _t ul plen = 12;

uint_t extralen = 0;

int error;

cmm_err (CE_NOTE, "dccp.c: dccp_build_hdrs");
bufl en = connp->conn_ht _ul p_| en;
if (buflen I'= 0)
cmm_err (CE_NOTE, "buflen != 0");
bcopy(connp->conn_ht _ul p, buf, buflen);
extralen -= buflen - ulplen;
ul pl en = bufl en;

}

nmut ex_ent er (&connp- >conn_| ock) ;
error = conn_buil d_hdr_tenpl ate(connp, ul plen, extralen,
&connp->conn_| addr _v6, &connp->conn_faddr_v6, connp->conn_fl ow nfo);
mut ex_exi t (& onnp- >conn_| ock) ;
if (error I'=0)
cmm_err (CE_NOTE, "conn_build_hdr_tenplate failed");
return (error);

}

dccpha = (dccpha_t *)connp->conn_ht _ul p;
dccp->dccp_dccpha = dccpha;

if (buflen I'= 0)
bcopy(buf,
} else {
dccpha- >dha_sum = 0;
dccpha- >dha_| port =
dccpha- >dha_f port =

connp->conn_ht _ul p, buflen);

connp- >conn_| port;
connp- >conn_f port;

}

cksum = si zeof (dccpha_t) + connp->conn_sum
cksum = (cksum >> 16) + (cksum & OxFFFF);
dccpha- >dha_sum = ht ons(cksum ;

dccpha- >dha_of fset = 7;

dccpha- >dha_x = 1;

return (0);

DCCP write service routine.

317 static void
318 dccp_wsrv(queue_t *q)

319 {
320
321 }

323 /*

/* XXX: DCCP */

324 * Common create function for streans and sockets.

325 */

new usr/src/uts/comon/inet/dccp/dccp. c

326 conn_t

327 dccp_create_conmon(cred_t *credp,

328
329
330
331
332
333
334
335

337
339

341
342
343
344

346
347
348
349
350
351
352

354
355
356
357
358
359
360
361

363
364
365
366
367
368
369
370

372
373
374
375

377
378
379

381
382
383

385
386
387
388
389
390
391

{

int

*

bool ean_t isv6, bool ean_t issocket,

*errorp)

conn_t *connp;
dcep_t *dccp;
dcep_stack_t *dccps;
net st ack_t *ns;
squeue_t *sqp;
zonei d_t zonei d;

cmm_err (CE_NOTE, "dccp.c: dccp_create_common\n");

ASSERT(errorp != NULL);

*errorp = secpolicy_basic_net_access(credp);
if (*errorp!=0

return (NULL);
}

*

* Find the right netstack

*

/
ns = netstack_find_by_cred(credp);
ASSERT(ns !'= NULL);
dccps = ns->netstack_dccp;
ASSERT(dccps != NULL);

if (ns->netstack_stackid != GLOBAL_NETSTACKI D) {
zonei d = GLOBAL_ZONEI D

} else {
zonei d = crgetzonei d(credp);

}

sqp = | P_SQUEUE_GET((uint_t)gethrtine());
connp = (conn_t *)dccp_get_conn(sqgp, dccps);
net st ack_rel e(dccps- >dccps_net st ack) ;
if (connp == NULL) {

*errorp = ENOSR;

return (NULL);

}
ASSERT(connp->conn_i xa- >i xa_protocol == connp->conn_proto);

connp->conn_sqgp = sqp;

connp->conn_initial _sgp = connp->conn_sqp;
connp->conn_i xa->i xa_sqp = connp->conn_sqp;
dccp = connp->conn_dccp;

/* Setting flags for ip output */

connp->conn_i xa->i xa_flags | = | XAF_SET_ULP_CKSUM | | XAF_VERI FY_SOURCE |
| XAF_VERI FY_PMIU | | XAF_VERI FY_LSO,

ASSERT(connp->conn_proto == | PPROTO_DCCP) ;

ASSERT(connp->conn_dccp == dccp);

ASSERT(dccp->dccp_connp == connp);

if (isve) {
connp- >conn_i xa- >i xa_src_preferences = | PV6_PREFER SRC DEFAULT;
connp- >conn_i pversi on = | PV6_VERS| ON,
connp->conn_fam |y = AF_I NET6;
[* XXX ms, ttl */
} else {
connp- >conn_i pversi on = | PV4_VERS| ON,

new usr/src/uts/comon/inet/dccp/dccp. c

392
393
394
395

397
398
399
400

402
403
404

406
407

408
409

412
413

415
416

418

420
421

423
424 }

426 [*

connp->conn_fam |y = AF_I NET;
/* XXX s, " ttl */

connp->conn_xm t _i pp. i pp_uni cast _hops = connp->conn_defaul t _ttl;

crhol d(credp);

connp->conn_cred = credp;
connp->conn_cpid = cur proc-> _pi d;
connp->conn_open_tinme = ddi _get Ibolt64()

ASSERT(! (connp->conn_i xa->i xa_free_flags & | XA_FREE_CRED));
connp->conn_i xa- >i xa_cred = credp;
connp- >conn_i xa- >i xa_cpi d = connp- >conn_cpi d;

connp->conn_zonei d = zonei d

connp->conn_zone_i s_gl obal = (crgetzoneid(credp) == GLOBAL_ZONEID);
connp- >conn_i xa- >i xa_zonei d = zonei d;

connp->conn_ni p_type = ni pt Si ngl e;

dccp->dccp_dccps
dccp->dccp_state

dccps;
DCCPS_CLOSED;

ASSERT(connp- >conn_net st ack == dccps->dccps_net st ack);
ASSERT(dccp->dccp_dccps == dccps);

/* XXX rcvbuf, sndbuf etc */

SOCK_CONNI D_I NI T(dccp->dccp_conni d);
dccp_ini t _val ues(dccp, NULL);

return (connp);

427 * Common close function for streams and sockets.

428 */
429 void

430 dccp_cl ose_common(conn_t *connp)

431 {
432
433

435

437
438
439
440
441

443
444

446
447 }

449 |*

dcep_t *dccp = connp->conn_dccp;
bool ean_t conn_i octl _cl eanup_reqd = B_FALSE;

ASSERT(connp->conn_ref >= 2);
nmut ex_ent er (&connp- >conn_| ock) ;
connp->conn_state_flags [= CONN_CLOSI NG

i f (connp->conn_oper _pending_ilT !'= NULL) {
conn_i octl _cl eanup_reqd = B_TRUE;
}

CONN_I NC_REF_LOCKED(connp) ;
mut ex_exi t (& onnp->conn Iock);

/i pcl _conn_destroy(connp);

450 * Common bind function.

451 */
452 int

453 dccp_do_bi nd(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,

454
455 {
456
457

bool ean_t bind_to_req_port_only)

dccp_t *dccp = connp->conn_dccp;
int error;

new usr/src/uts/comon/inet/dccp/dccp. c

459 cm_err (CE_NOTE, "dccp.c: dccp_do_bind");

461 if (dccp->dccp_state >= DCCPS_BOUND) {

462 i f (connp->conn_debug) {

463 (void) strlog(DCCP_MOXD_ID, 0, 1, SL_ERROR| SL_TRACE,
464 "dccp_bi nd: bad state, o dccp->dccp_state);
465 }

466 return (-TOUTSTATE);

467 }

469 error = dccp_bi nd_check(connp, sa, len, cr, bind_to_reqg_port_only);
470 if (error 1= 0)

471 return (error);

472 1

474 ASSERT(dccp->dccp_state == DCCPS_LI STEN);

475 /* XXX dccp_conn_req_max = 0 */

477 return (0);

478 }

480 /*

481 * Conmon unbind function.

482 */

483 int

484 dccp_do_unbi nd(conn_t *connp)

485 {

486 dccp_t *dccp = connp->conn_dccp;

488 cm_err (CE_NOTE, "dccp.c: dccp_do_unbind");

490 switch (dccp >dccp state) {

491 case DCCPS_B

492 case DCCPS_LI STEN

493 br eak;

494 defaul t:

495 return (- TOUTSTATE);

496 }

498 /* XXX: DCCP */

500 return (0);

501 }

503 /*

504 * Common |isten function.

505 */

506 int

507 dccp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t |en,
508 int backlog, cred_t *cr, boolean_t bind_to_req_port_only)

509 {

510 dcep_t *dccp = connp->conn_dccp;

511 dccp_stack_t *dccps = dccp->dccp_dccps;

512 int32_t ol dstate;

513 int error;

515 cmm_err (CE_NOTE, "dccp.c: dccp_do_listen");

517 /* Al Solaris conmponents should pass a cred for this operation */
518 ASSERT(cr !'= NULL);

520 if (dccp->dccp_state >= DCCPS_BOUND) {

522 if ((dccp->dccp_state == DCCPS_BOUND | |

523 dccp->dccp_state == DOCPS LI STEN) && backl og > 0) {

new usr/src/uts/comon/inet/dccp/dccp. c

524
525
526

528
529
530
531
532
533
534
535
536
537

539

541
542
543
544
545
546
547

549
550
551
552
553

555
556

558
559
560
561
562
563
564
565

567
569
571
573
5145]
576
577
578
579
580
582
584
585
586

588
589

goto do_listen;
cmm_err (CE_NOTE, "DCCPS_BOUND, bad state");

if (connp->conn_debug)

{
(void) strlog(DCCP_MOD ID, 0, 1, SL_ERROR| SL_TRACE,
"dccp_listen: bad state, %", dccp->dccp_state);

}
return (- TOUTSTATE);

} else {
if (sa == NULL) {
sin6_t addr;
sin6_t *sin6;
sin_t *sin;
ASSERT(| PCL_I S_NONSTR(connp)) ;
if (connp->conn_famly == AF_I NET) {
len = sizeof (sin_t);
sin = (sin_t *)&addr;
*sin = sin_null;
sin->sin_fam |y = AF_I NET;
} else {
ASSERT(connp->conn_fam |y == AF_| NET6) ;
len = sizeof (sin6_t);
siné = (sin6_t *)&addr;
*sin6 = sin6_null;
) sin6->sin6_famly = AF_| NET6;
sa = (struct sockaddr *)&addr;
}

error = dccp_bi nd_check(connp, sa, len, cr,
bind_to_req_port_only);
if (error 1=0) {

cmm_err (CE_NOTE, "dccp_bi nd_check failed");

return (error);

}
/* Fall through and do the fanout insertion */

}

do_listen:

ASSERT(dccp->dccp_state == DCCPS_BOUND | |
dccp->dccp_state == DCCPS_LI STEN);

/* XXX backl og */
connp->conn_recv = dccp_i nput_| i stener_unbound;

/* Insert into the classifier table */
error = ip_laddr_fanout_insert(connp);
if (error 1=0)

/* Error - undo the bind */

ol dstate = dccp->dccp_state;

dccp- >dccp_state = DCCPS_CLOSED;

connp- >conn_bound_addr _v6 = ipv6_all _zeros;
connp->conn_| addr _v6

connp- >conn_saddr _v6
connp->conn_ports = 0;

i pv6_al | _zeros;
i pvé_all _zeros;

if (connp->conn_anon_port) {
zone_t *zone;

new usr/src/uts/comon/inet/dccp/dccp. c

591
592
593
594
595
596

598

600
601
602
603

605
606

608
609
610
611
612

connp->conn_proto, connp->conn_| port, B_FALSE);

connp->conn_m p_t ype,

zone = crgetzone(cr);
connp- >conn_anon_port = B_FALSE;
(void) tsol _m p_anon(zone,
} .
connp->conn_ml p_type = ni pt Si ngl e;
/* XXX dccp_bi nd_hash_renove */
return (error);
} else {
[* XXX connection limts */
}
return (error);
}
/*
* Common connect function.
*/
int
dccp_do_connect (conn_t *connp, const struct sockaddr *sa, socklen_t

613 cred_t *cr, pid_t pid)

614 {

615 dcep_t *dccp = connp->conn_dccp;
616 dccp_stack_t *dccps = dccp->dccp_dccps;
617 ip_xmt_attr_t *ixa = connp->conn_ixa;
618 sin_t *sin = (sin_t *)sa;

619 sin6_t *sin6 = (sin6_t *)sa;

620 i paddr _t *dst addr p;

621 in_port_t dst port;

622 int32_t ol dst at e;

623 ui nt _t srcid;

624 int error;

626 cmm_err (CE_NOTE, "dccp.c: dccp_do_connect");
628 ol dstate = dccp->dccp_st at e;

630 switch (len) {

631 case sizeof (sin_t):

632 sin = (sin_t *)sa;

633 if (sin->sin_port == 0) {

634 return (- TBADADDR);

635

636 if (connp->conn_i pv6_véonly) {

637 return (EAFNOSUPPORT) ;

638

639 br eak;

641 case sizeof (sin6_t):

642 siné = (sin6_t *)sa;

643 if (sin6->sin6_port == 0) {

644 return (- TBADADDR);

645 }

646 br eak;

648 defaul t:

649 return (EINVAL);

650 1

652 if (connp->conn_famly == AF_|I NET6 &&

653 connp->conn_i pversi on == | PV6_VERS| ON &&
654 IN6_| S_ADDR_VAMAPPED(&si n6- >si n6_addr)) {
655 if (connp->conn_ipv6_véonly) {

|l en,

10

new usr/src/uts/comon/inet/dccp/dccp. c

656
657

659
660

662
663
664
665
666

668
669
670

672
673
674

676
677
678
679
680
681

683
684
685

687
688
689

691
692
693
694
695
696
697
698
699
700
701
702
703
704

706
707
708
710
712
714

716
717

719
720
721

return (EADDRNOTAVAI L) ;
}

connp- >conn_i pversi on = | PV4_VERS| ON,
}

switch (dccp->dccp_state) {
case DCCPS_LI STEN:
if (IPCL_I S_NONSTR(connp)) {
return (EOPNOTSUPP) ;

}
case DCCPS_CLOSED:
[* XXX */
br eak;
defaul t:
return (- TOUTSTATE);
}
if (connp->conn_cred != cr) {

crhold(cr);
crfree(connp->conn_cred);
connp->conn_cred = cr;

connp->conn_cpid = pid;

ASSERT(! (i xa->i xa_free_flags & | XA_FREE_CRED)) ;
i xa->i xa_cred = cr;
i xa->i xa_cpid = pid;

if (is_systemlabeled())
Ip_xmt_attr_restore_tsl(ixa, ixa->ixa_cred);
}

if (connp->conn_famly == AF_I NET6)
if (!1N6_I S_ADDR VAMAPPED(&si n6- >si n6_addr)) {
error = dccp_connect _i pv6(dccp, &sin6->sin6_addr,
si n6->si n6_port, sin6->sin6_flow nfo,
sin6->__sin6_src_id, sin6->sin6_scope_id);
} else {
[* XXX */

} else {
dstaddrp = &sin->sin_addr.s_addr;
dstport = sin->sin_port;
srcid = 0;
error = dccp_connect _i pv4(dccp, dstaddrp, dstport, srcid);

}
if (error 1= 0)
got o connect_fail ed;
}
/* XXX cluster */
/1 DCCPS_BUWMP_M B(dccps, dccpActiveQOpens);

return (0);

connect _fail ed:

cmm_err (CE_NOTE, "dccp_do_connect failed");

connp->conn_faddr_v6 = ipv6_all_zeros;
connp->conn_fport = O;
dccp->dccp_state = ol dstate;

11 new usr/src/uts/comon/inet/dccp/dccp. c
723 return (error);
724 }
726 [*
727 * Init values of a connection.
728 */
729 void
730 dccp_init_values(dccp_t *dccp, dccp_t *parent)
731 {
732 conn_t *connp = dccp->dccp_connp;
733 dccp_stack_t *dccps = dccp->dccp_dccps;
735 connp->conn_nl p_type = nl pt Si ngl e;
736 }
738 void *
739 dccp_get _conn(void *arg, dccp_stack_t *dccps)
740 {
741 dcep_t *dccp = NULL;
742 conn_t *connp;
743 squeue_t *sqp = (squeue_t *)arg;
744 net st ack_t *ns;
746 [* XXX tinewait */
748 connp = ipcl_conn_creat e(| PCL_DCCPCONN, KM NOSLEEP,
749 dccps->dcecps_net st ack) ;
750 if (connp == NULL)
751 return (NULL);
752 }
754 dccp = connp->conn_dccp;
755 dccp->dccp_dccps = dceps;
757 connp->conn_recv = dccp_i nput _dat a;
758 connp->conn_recvicnp = dccp_i cnp_i nput ;
759 connp->conn_verifyicnp = dccp_verifyicnp;
761 connp->conn_i xa->i xa_notify = dccp_notify;
762 connp- >conn_i xa- >i xa_noti fy_cooki e = dccp;
764 return ((void *)connp);
765 }
767 [*
768 * | Pv4 connect.
769 */
770 static int
771 dccp_connect _i pv4(dccp_t *dccp, ipaddr_t *dstaddrp, in_port_t
772 uint_t srcid)
773 {
774 conn_t *connp = dccp->dccp_connp;
775 dccp_stack_t *dccps = dccp->dccp_dccps;
776 i paddr _t dstaddr = *dstaddrp;
777 uint16_t | port;
778 int error;
780 cmm_err (CE_NOTE, "dccp.c: dccp_connect _i pv4");
782 ASSERT(connp->conn_i pver si on == | PV4_VERSI ON) ;
784 if (dstaddr == | NADDR_ANY) {
785 dstaddr = htonl (| NADDR_LOOPBACK) ;
786 *dstaddrp = dstaddr;
787 }

dstport,

12

new usr/src/uts/comon/inet/dccp/dccp. c

789 if (srcid != 0 && connp->conn_| addr _v4 == | NADDR_ANY) {
790 ip_srcid_find_id(srcid, &connp->conn_| addr_v6,
791 | PCL_ZONEI D(connp), dccps->dccps_net st ack);
792 connp- >conn_saddr _v6 = connp->conn_| addr_v6;
793 }

795 I N6_| PADDR_TO_VAMAPPED(dst addr, &connp->conn_faddr_v6);
796 connp->conn_f port = dstport;

798 if (dccp->dccp_state == DCCPS_CLOSED)

799 | port = dccp_updat e_next _port (dccps->dccps_next_port_to_try,
800 dccp, B _TRUE);

801 | port = dccp_bindi (dccp, |port, &connp->conn_| addr_v6, O,
802 B TRUE, B FALSE, B FALSE);

804 if (lport == 0) {

805 return (- TNOADDR);

806 }

807 }

809 error = dccp_set_destination(dccp);

810 if (error 1= 0)

811 return (error);

812 }

814 /*

815 * Don’t connect to oneself.

816 *

817 if (connp->conn_faddr_v4 == connp->conn_| addr_v4 &&
818 connp->conn_f port == connp->conn_| port) {

819 return (- TBADADDR);

820 }

822 /* XXX state */

824 return (ipcl_conn_insert_v4(connp));

825 }

827 | *

828 * |Pv6 connect.

829 */

830 static int

831 dccp_connect _i pv6(dccp_t *dccp, in6_addr_t *dstaddrp, in_port_t dstport,
832 (uint32_t flowinfo, uint_t srcid, uint32_t scope_id

833

834 cmm_err (CE_NOTE, "dccp.c: dccp_connect _i pv6");

836 return (0);

837 }

839 /*

840 * Set the ports via conn_connect and build the tenplate

841 * headers.

842 */

843 int

844 dccp_set_destination(dccp_t *dccp)

845 {

846 conn_t *connp = dccp->dccp_connp;

847 dccp_stack_t *dccps = dccp->dccp_dcceps;

848 iulp_t ui nf o;

849 ui nt 32_t fl ags;

850 int error;

852 flags = | PDF_LSO | | PDF_ZCOPY;

853 flags | = | PDF_UNI QUE_DCE;

13

new usr/src/uts/comon/inet/dccp/dccp. c 14
855 mut ex_ent er (& onnp- >conn_| ock) ;
856 error = conn_connect (connp, &uinfo, flags);
857 nmut ex_exi t (& onnp- >conn_| ock) ;
858 if (error 1= 0)
859 cmm_err (CE_NOTE, "conn_connect failed");
860 return (error);
861 }
863 error = dccp_buil d_hdrs(dccp);
864 if (error 1= 0)
865 cmm_err (CE_NOTE, "dccp_build_hdrs failed");
866 return (error);
867 }
869 [* XXX */
871 mut ex_ent er (&onnp- >conn_| ock) ;
872 connp->conn_state_fl ags & ~CONN_I NCI Pl ENT;
873 mut ex_exi t (& onnp- >conn_| ock) ;
875 return (0);
876 }

877 #endif /* | codereview */

new usr/src/uts/comon/inet/dccp/ dccp. conf

R R R R

913 Wed Jun 13 12:04:29 2012
new usr/src/uts/comon/inet/dccp/ dccp. conf

9B

R R R R R

HEHHHHHHFHFH T TR

CDDL HEADER START

The contents of this file are subject to the terns of the
Common Devel opnent and Di stribution License, Version 1.0 only
(the "License"). You may not use this file except in conpliance
with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 1992, by Sun Mcrosystens, Inc.

nanme="dccp" parent ="pseudo" instance=0;
#endif /* | codereview */

new usr/src/uts/comon/inet/dccp/ dccp6. conf

R R R R

914 Wed Jun 13 12:04: 30 2012
new usr/src/uts/comon/inet/dccp/ dccp6. conf

9B

R R R R R

HEHHHHHHFHFH T TR

CDDL HEADER START

The contents of this file are subject to the terns of the
Common Devel opnent and Di stribution License, Version 1.0 only
(the "License"). You may not use this file except in conpliance
with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 1992, by Sun Mcrosystens, Inc.

nane="dccp6" parent="pseudo" instance=0;
#endif /* | codereview */

new usr/src/uts/comon/inet/dccp/ dccpéddi . c

R R R R

1578 Wed Jun 13 12:04:31 2012
new usr/src/uts/comron/inet/dccp/ dccpéddi . c
0,
*@**
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END
/

NRERRRRRRR R
COONOUIAWNROW©O~NOUTDWN
H %k 3k ok k3 ok 3k Ok Xk 3k X 3k % X 3k Xk Xk ¥

21/
22 Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 Use is subject to license terns.

/

26 #include <sys/types. h>
27 #include <sys/conf.h>

28 #include <sys/nodctl.h>
29 #include <inet/common. h>
30 #include <inet/ip.h>

32 #define | NET_NAME "dccp6”

33 #define | NET_DEVSTRTAB dccpi nfov6

34 #define | NET_DEVDESC " DCCP6 STREAMS dri ver"
35 #define | NET_DEVM NOR 0

36 #define | NET_DEVMIFLAGS (D_MP| _D_DI RECT)

38 #include "../inetddi.c"

40 int

41 _init(void)

42

43 I*

44 * device initialization happens when the actual code contai ning
45 * modul e (/kernel/drv/ip) is |loaded, and driven fromip_ddi_init()
46 */

47 return (nmod_install (&odlinkage));

48 }

50 int

51 _fini(void)

52

53 return (nod_renove(&mdlinkage));

54 }

56 int

57 _info(struct nodinfo *nodi nfop)

58 {

59 return (nod_i nf o(&odl i nkage, nodi nfop));

60 }

61 #endif /* | codereview */

new usr/src/uts/ common/inet/dccp/ dccp_bind. c 1

R R R R

10340 Wed Jun 13 12: 04: 32 2012
new usr/src/uts/comon/inet/dccp/ dccp_bind. c
0,
*@**
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and |imtations under the License.
*

*

*

*

*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

NRERRRRRRR R
COONOUIAWNROW©O~NOUTDWN

CDDL HEADER END
/

23 * Copyright 2010 Sun M crosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.

25 */

27 | *

28 * Copyright 2012 David Hoeppner. Al rights reserved.
29 */

31 /*

32 * This file contains function related to binding.

33 */

35 #include <sys/types. h>

36 #include <sys/stream h>

37 #include <sys/strsun. h>

38 #include <sys/strsubr.h>
39 #include <sys/stropts. h>
40 #include <sys/strl og. h>

41 #define _SUN_TPI _VERSI ON 2
42 #include <sys/tihdr. h>

43 #incl ude <sys/suntpi.h>

44 #include <sys/xti_inet.h>
45 #incl ude <sys/squeue_i npl.h>
46 #incl ude <sys/squeue. h>

47 #include <sys/tsol/tnet.h>

49 #include <inet/common. h>

50 #include <inet/ip.h>

51 #include <inet/proto_set.h>
53 #include <sys/cm_err. h>

55 #i nclude "dccp_inpl.h"

57 /* Setable in /etc/system*/
58 static uint32_t dccp_random anon_port = 1;

60 static int dccp_bind_select_I|port(dccp_t *, in_port_t *, boolean_t,
61 cred_t *);

new usr/src/uts/comon/inet/dccp/ dccp_bind. c

63 void

64 ?ccp_bi nd_hash_i nsert (dccp_df _t *tbf, dccp_t *dccp, int caller_holds_I ock)
65

66 conn_t *connp = dccp->dccp_connp;

67 conn_t *connext;

68 dccp_t **dccpp;

69 dccp_t *dccpnext;

70 dccp_t *dccphash;

72 cm_err (CE_NOTE, "dccp_bind.c: dccp_bind_hash_insert");
74 /* XXX: DCCP */

76 dccpp = &t bf->df _dccp;

77 if (lcaller_holds_lock) {

78 mut ex_ent er (& bf - >df _| ock) ;

79 } else {

80 ASSERT(MUTEX_HELD(&t bf - >df | ock));

81 }

82 dccphash = dccpp[0];

83 dccpnext = NULL;

85 if (dccphash !'= NULL) {

86 [* XXX: DCCP */

87 }

89 insert:

90 dccp->dccp_bi nd_hash_port = dccpnext;

91 dccp->dccp_bi nd_hash = dccphash;

92 dccp->dccp_pt pbhn = dccpp;

93 dccpp[0] = dccp;

95 if (!caller_holds_lock) {

96 mut ex_exi t (& bf - >df _| ock) ;

97 1

98 }

100 void

101 dccp_bi nd_hash_renove(dccp_t *dccp)

102 {

103 }

105 /*

106 * Check for a valid address and get a | ocal port.
107 */

108 int

109 dccp_bi nd_check(conn_t *connp, struct sockaddr *sa, socklen_t |en,
110 bool ean_t bind_to_req_port_only)

111 {

112 dcep_t *dccp = connp->conn_dccp;

113 i p_stack_t *i ps = connp->conn_net st ack- >net stack_i p;
114 ip_xmt_attr_t *ixa = connp->conn_ixa;

115 sin_t *sin;

116 sin6_t *sin6

117 i paddr _t v4addr ;

118 i n6_addr _t v6addr ;

119 ip_laddr_t | addr _type = | PVL_UNI CAST_UP;
120 zonei d_t zonei d = | PCL_ZONEI D(connp) ;
121 in_port_t request ed_port;

122 uint_t scopeid = O;

123 int error;

125 cm_err (CE_NOTE, "dccp_bind.c: dccp_bind_check");
127 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);

cred_t

Sc

new usr/src/uts/comon/inet/dccp/ dccp_bind. c

129
130
131
132
133
134
135
136
137
138
139
140

142
143
144
145
146
147
148
149
150
151
152
153
154

156
157
158
159

161
162
163
164
165
166
167
168
169
170
171

173
174
175
176
177
178
179
180

182
183
184
185
186
187
188
189
190
191
192
193

/*
* We should be in a pre-listen state.
*

if (dccp->dccp_state == DCCPS_LI STEN) {
return (0);
} else if (dccp->dccp_state > DCCPS_LI STEN) {
if (connp->conn_debug) {
(voi d) strlog(DCCP MOD_ID, 0, 1, SL_ERROR| SL_TRACE,
dccp_bind: bad state, %", dccp->dccp_state);

}
return (- TOUTSTATE);
}

/*

* Check for a valid address paraneter. Then validate the
* addresses and copy them and the required port in.

*/

ASSERT(sa != NULL & len != 0);
if (!OK 32PTR((char *)sa)) {
if (connp->conn_debug)
(voi d) strlog(DCCP_MOD I D, 0, 1, SL_ERROR| SL_TRACE,
"dccp_bind: bad address paraneter, "
"address %, len %", (void *)sa, len);

; Eeturn(—TPROTO);

error = proto_verify_ip_addr(connp->conn_fanmily, sa, len);
if (error '=0) {

return (error);
}

switch (len) {
case si zeof (SI n_t):
sin = (S|n t *)sa;
vdaddr = sin- >SI n_addr.s_addr;
requested_port = ntohs(sin->sin_port);
I N6_| PADDR_TO VAMAPPED(v4addr, &v6addr);
i f (v4addr !="1 NADDR _ANY) {
Iaddr _type = ip_laddr_verify_v4(v4addr, zoneid, ips,
B_FALSE) ;

}
br eak;

case sizeof (sin6_t):
siné = (sin6_t *)sa;
v6addr = sin6- >5| n6_addr;
requested_port = nt ohs(5| n6->si n6_port);
if (IN6_|I S _ADDR VAMAPPED(& 6addr)) {
i f (connp->conn_i pv6_v6only) {
return (EADDRNOTAVAIL);

}
| N6_VANMAPPED_TO | PADDR(& 6addr, v4addr);
if (vdaddr != | NADDR_ANY) {
| addr _type = ip_laddr_verify_v4(v4addr, zoneid,
ips, B_FALSE);
} else {
if ('INe_I S_ADDR_UNSPECI FI ED(& 6addr)) {
if (IN6_T'S_ADDR LI NKSCOPE(&v6addr)) {

scopei d = sin6->sin6_scope_i d;

l'addr _type = ip_laddr_verify_: v6(&v6addr

zonei d, ips, B_FALSE, scopeid);

new usr/src/uts/comon/inet/dccp/ dccp_bind. c

194
195
196

198
199
200
201
202
203
204

206
207
208

210
211
212
213
214
215
216
217
218

220
221

225
226
227
228
229
230
231

233
234

236
237
238
239
240
241

}
/*

}
br eak;

defaul t:
if (connp->conn_debug) {
(void) strlog(DCCP_MOD ID, 0, 1, SL_ERROR| SL_TRACE,
"dccp_bind: bad address |ength, %", len);

}
return (EAFNOSUPPORT) ;
}

if (laddr_type == | PVL_BAD) {
return (EADDRNOTAVAIL);
}

connp- >conn_bound_addr _v6 = v6addr;
if (scopeid !=0) {
i xa->i xa_flags | = | XAF_SCOPEI D_SET;
i xa- >i xa_scopei d = scopei d;
connp- >conn_i ncom ng_i fi ndex = scopei d;
} else {
i xa->i xa_fl ags & ~I XAF_SCOPEI D_SET;
connp- >conn_i ncom ng_i fi ndex = connp->conn_bound_i f;

}

connp->conn_| addr _v6 = v6addr;

connp->conn_saddr _v6 = v6addr;

bi nd_to_req_port_only = requested_port != 0 & bind_to_req_port_only;

error = dccp_bi nd_sel ect _| port (dccp, &requested_port,
bind_to_req_port_only, cr);
if (error '=0) {

connp->conn_| addr _v6 = ipv6_al |l _zeros
connp- >conn_saddr_v6 = ipv6_all _zeros;
connp- >conn_bound_addr _v6 = ipv6_all _zeros

}

return (error);

* Bind to a local port.
*/

static int
dccp_bi nd_sel ect _| port(dccp_t *dccp, in_port_t *requested_port_ptr,

242 {

243
244
245
246
247
248
249

253

255
256
257
258
259

bool ean_t bind_to_req_port_only, cred_t *cr)

dccp_stack_t *dccps = dccp->dccp_dcceps;

conn_t *connp = dccp->dccp_connp;

zone_t *zone;

in_port_t al | ocat ed_port;

in_port_t requested_port = *requested_port_ptr;
in6_addr _t v6addr = connp->conn_| addr _v6;

bool ean_t user _speci fi ed;

cmm_err (CE_NOTE, "dccp_bind.c: dccp_bind_sel ect_lport");
ASSERT(cr != NULL);

if (requested_port == 0) {
requested_port =
dccp_updat e_next _port (dccps->dccps_next _port_to_try,
dccp, B_TRUE);
if (requested_port == 0) {

new usr/src/uts/ common/inet/dccp/ dccp_bind. c 5 new usr/src/uts/ common/inet/dccp/ dccp_bind. c
260 return (- TNOADDR) ; 326 in_port_t
261 } 327 dccp_bindi (dccp_t *dccp, in_port_t port, const in6_addr_t *|addr,
262 user _specified = B_FALSE; 328 int reuseaddr, boolean_t quick_connect, bool ean_t bind_to_req_port_only,
329 bool ean_t user_speci fied)
264 } else { 330 {
265 i nt i 331 dccp_stack_t *dccps = dccp->dccp_dccps;
266 bool ean_t priv = B_FALSE; 332 conn_t *connp = dccp->dccp_connp;
333 int count = 0;
268 if (requested port < dccps->dccps_snal | est _nonpriv_port) { 334 int | oopmax;
269 priv = B_TRUE;
270 } else { 336 cm_err (CE_NOTE, "dccp_bind.c: dccp_bindi");
271 for (i = 0; i < dccps->dccps_numepriv_ports; i++) {
272 if (requested port == 338 if (bind_to_req_port_only) {
273 dccps->dccps_epriv_ports[i]) { 339 Toopmax = 1;
274 priv = B_TRUE; 340 } else {
275 br eak; 341 if (connp->conn_anon_priv_bind) {
276 } 342 | oopmax = | PPORT_RESERVED -
277 } 343 dccps->dccps_ni n_anonpri v_port;
278 1 344 } else {
345 | oopmax = (dccps->dccps_| argest_anon_port -
280 if (priv) { 346 dccps- >dccps_smal | est _anon_port + 1);
281 I f (secpolicy_net_privaddr(cr, requested_port, 347 }
282 | PPROTO DCCP) “I'= 0) { 348 }
283 if (connp->conn_debug) {
284 (voi d) strlog(DCCP_MOD I D, 0, 1, 350 do {
285 SL_ERROR| SL_TRACE, 351 conn_t *| connp;
286 "tcp_bind: no priv for port 9%l", 352 dcep_t *| dcep;
287 requested_port); 353 dccp_df _t *| df;
288 } 354 uint 16_t I port;
289 return (-TACCES);
290 } 356 | port = htons(port);
291 }
358 dccp_bi nd_hash_r enove(dccp);
293 user _specified = B_TRUE; 359 I df = &dccps->dccps_bi nd_f anout [DCCP_BI ND_HASH(| port,
294 //connp = dccp->dccp_connp; 360 dccps->dccps_bi nd_fanout _si ze)];
361 nmut ex enter(&] df =>df _Tock);
296 [* XXX */ 362 for (Idccp = I df->df _dccp; |dccp !'= NULL;
297 } 363 I dccp = I dccp->dccp_bi nd_hash) {
364 1 f (Iport == |dccp->dccp_connp->conn_| port) {
299 al | ocat ed_port = dccp_bi ndi (dccp, requested_port, &v6addr, 365 br eak;
300 connp->conn_r euseaddr, B_FALSE, bind_to_req_port_only, 366 }
301 user _speci fied); 367 }
303 if (allocated_port == 0) { 369 if (ldccp !'= NULL) {
304 [* XXX */ 370 nmut ex_exi t (& df - >df _| ock) ;
305 if (bind_to_req_port_only) { 371 } else {
306 i f (connp->conn_debug) { 372 dccp->dccp_state = DCCPS_BOUND;
307 (void) strlog(DCCP_MOD_ID, 0O, 1,
308 SL_ERROR| SL_TRACE, 374 connp->conn_| port = htons(port);
309 "dccp_bi nd: requested addr busy");
310 } 376 ASSERT(&dccps- >dccps_bi nd_f anout [DCCP_BI ND_HASH(
311 return (- TADDRBUSY) ; 377 connp- >conn_| port,
312 } else { 378 dccps- >dccps_bi nd_f anout _si ze)] == Idf);
313 i f (connp->conn_debug) { 379 dccp_bi nd_hash_i nsert (1df, dccp, 1);
314 (voi d) strlog(DCCP_MOD I D, 0, 1,
315 SL_ERROR| SL_TRACE, 381 mut ex_exi t (& df - >df _| ock) ;
316 "dccp_bi nd: “out of ports?");
317 } 383 if (user_specified) {
318 return (- TNOADDR) ; 384 return (port);
319 } 385 }
320 1
387 if (!connp->conn_anon_priv_bind) {
322 *requested_port_ptr = allocated_port; 388 dccps->dccps_next _port_to_try = port + 1;
323 return (0); 389 }
324 }
391 return (port);

new usr/src/uts/comon/inet/dccp/ dccp_bind. c

392 }

394 if (port == 0) {

395 br eak;

396 }

398 } while (++count < | oopmax);

400 cmm_err (CE_NOTE, "dccp_bind.c: dccp_bindi exit");

402 return (0);

403 }

405 in_port _t

406 dccp_updat e_next _port (i n_port_t port, const dccp_t *dccp, bool ean_t randon)
407 {

408 dccp_stack_t *dccps = dccp->dccp_dcceps;

409 bool ean_t restart = B_FALSE;

410 int i;

412 cmm_err (CE_NOTE, "dccp_bind.c: dccp_update_next_port");
414 if (random && dccp_random anon_port != 0

415 (voi d) random get _pseudo_bytes((uint8_t *)&port,
416 sizeof (in_port_t));

418 if (port < dccps->dccps_snall est_anon_port) {

419 port = dccps->dccps_snal | est_anon_port +
420 port % (dccps->dccps_| argest _anon_port -
421 dccps- >dccps_smal | est _anon_port);

422 }

423 1

425 retry:

426 if (port < dccps->dccps_smal |l est_anon_port) {

427 port = (in_port_t)dccps->dccps_snul |l est_anon_port;
428 }

430 if (port > dccps->dccps_| argest _anon_port) {

431 if (restart) {

432 return (0);

433 }

434 restart = B_TRUE;

435 port = (in_port_t)dccps->dccps_snall est_anon_port;
436 }

438 if (port < dccps->dccps_smallest_nonpriv_port) {

439 port = (in_port_t)dccps->dccps_snal |l est_nonpriv_port;
440 1

442 for (i = 0; i < dccps->dccps_numepriv_ports; i++) {

443 if (port == dccps->dccps_epriv_ports[i]) {

444 port ++;

445 goto retry;

446 }

447 }

449 return (port);

450 }

451 #endif /* | codereview */

new usr/src/uts/comon/inet/dccp/dccp_inpl.h

R R R R

7135 Wed Jun 13 12: 04: 32 2012
new usr/src/uts/comon/inet/dccp/dccp_inpl.h
7B

R R R R R

1/*
* This file and its contents are suppli

1.0 of the

source. A copy
http://wwm illunmos. org/license/ CDDL.

=
QOWONOUTAWN
* Ok Ok ok % Ok kO

13 * Copyright 2012 Davi d Hoeppner. All ri
*
/

16 #if ndef
17 #define

_INET_DCCP_| MPL_H
~I NET_DCCP_| MPL_H

19 #include <sys/int_types. h>

20 #include <sys/netstack. h>

21 #include <sys/socket. h>

22 #include <sys/socket _proto. h>

24 #include <netinet/in.h>
25 #include <netinet/ip6.h>
26 #include <netinet/dccp. h>

28 #incl ude <inet/common. h>
29 #include <inet/ip.h>

30 #include <inet/ip6.h>

31 #include <inet/optcom h>
32 #include <inet/tunables.h>

34 #include "dccp_stack. h"
36 #ifdef _ cplusplus

37 extern "C' {

38 #endi f

40 #ifdef _KERNEL

42 #define DCCP_MOD_| D 5999 /* XXX */

Common Devel opnent and Distribution License
You may only use this file in accordance with the terms of version
CDDL.

ed under the terns of the
("CbDL"), version 1.0.

A full copy of the text of the CDDL shoul d have acconpanied this
of the CDDL is also available via the Internet at

ghts reserved.

44 #define DOCP_XM T_LOMATER (4 * 1024)
45 #define DOCP_XM T_H WATER 49152
46 #defi ne DOCP_RECV_LOMTER (2 * 1024)
47 #define DOCP_RECV_H WATER 128000

49 /*

50 * Bind hash array size and hash function.

51 */
52 #define DCCP_BI ND_FANOUT_SI ZE

53 #define DCCP_BI ND_HASH(I port, size)

56 #defi ne DCCP_HDR_LENGTH(dccph)
57 #define DCCP_MAX_HDR_LENGTH
58 #define DCCP_M N_HEADER LENGTH

60 /* Packet types (RFC 4340, Section 5.1.)
61 #defi ne DCCP_PKT_REQUEST

128

((ntohs((uint16_t)lport)) & (size -
(dceph_t *)dccph->dh_of f set

1020

12

*/

1))

new usr/src/uts/comon/inet/dccp/dccp_inpl.h

62 #define DOCP_PKT_RESPONSE 1
63 #define DOCP_PKT_DATA

64 #define DCCP_PKT_ACK 3
65 #define DOCP_PKT_DATAACK 4
66 #define DOCP_PKT_CLOSEREQ 5
67 #define DOCP_PKT_CLOSE 6
68 #define DOCP_PKT_RESET 7
69 #define DOCP_PKT_SYNC 8
70 #define DOCP_PKT_SYNCACK 9

72 /* Generic protocol header (RFC 4340, Section 5.1.)

73 typedef struct dccphdr_s {

74 ui nt 8_t dh_I port[2];
75 ui nt 8_t dh_fport[2];
76 uint8_t dh_of f set;
77 ui nt 8_t dh_ccval : 4
78 dh_cscov: 4;
79 ui nt8_t db_suni 2] ;
80 uint8_t dh_reserved: 3,
81 dh_type: 4,
82 dh_x: 1;

83 ui nt8_t dhres _seq;
84 uint8_t dh_seq[2] ;
85 } dccph_t;

*/

88 /* Ceneric protocol header aligned (RFC 4340, Section 5.1.) */

89 typedef struct dccphdra_s {

90 in_port_t dha_| port;
91 in_port_t dha_f port;
92 uint8_t dha_of f set;
93 uint8_t dha_ccval : 4
94 dha_cscov: 4;
95 ui nt16_t dha_sum
96 uint8_t dha_x: 1,
97 dha_t ype: 4,
98 dha_reserved: 3;
99 uint8_t dha_res_seq;
100 uint16_t dha_seq;

101 } dccpha_t;

103 typedef struct dccphdra_ext_s {
104 ui nt 32_t dha_ext _seq;
105 } dccpha_ext _t;

107 /* Acknow edgenment nunber */
108 typedef struct dccphdra_ack {

109 uint16_t dha_ack_reserved;
110 uint16_t dha_ack_hi gh;
111 ui nt 32_t dha_ack_| ow;

112 } dccpha_ack_t;

114 typedef struct dccphdra_srv {
115 ui nt32_t dha_srv_code;
116 } dccpha_srv_t;

118 typedef struct dccphdra_reset {

119 uint8_t dha_r eset _code;
120 uint8_t
121 } dccpha_reset_t;

123 /* Internal DCCP structure */
124 typedef struct dccp_s {

126 conn_t

L *dccp_connp;
127 dccp_stack_t

*dccp_dccps;

dha_reset _data[3] ;

*

/*

/*
| *

Source port */
Destination port */
Dat a of fset */

*/

*/

Checksum */
Reserved */

Packet type */
Header type */

Partial sequence nunmber */

Backpoi nter to conn_t

Backpoi nter to dccp_stack_t *

*/

new usr/src/uts/comon/inet/dccp/dccp_inpl.h

129 ui nt 32_t dccp_state;

131 /* Bind related */

132 struct dccp_s *dccp_bi nd_hash; /* Bind hash chain */

133 struct dccp_s *dccp_bi nd_hash_port; /* Bound to the sane port */
134 struct dccp_s **dccp_pt pbhn;

136 struct dccphdra_s *dccp_dccpha; /* Tenpl ate header */

138 bl k_t *dccp_xm t _head;

140 sock_conni d_t dccp_conni d;

141 } dccp_t;

143 #define dccps_smal | est_nonpriv_port dccps_propinfo_tbl [0] . prop_cur_uval
144 #define dccps_snal | est _anon_port dccps_pr opi nf o —tbl[1].prop_cur_uval
145 #define dccps_| argest_anon_port dccps_propi nfo_tbl [2] . prop_cur_uval
147 #define dccps_dbg dccps_propinfo_tbl [4].prop_cur_uval
148 #define dccps_ rst _sent_rate_enabl ed dccps_pr opi nf o —tbl [5].prop_cur_uval
149 #define dccps_rst_sent_rate dccps_propi nfo_t bl [6] . prop_cur_uval
151 typedef struct dccp_df_s {

152 struct dccp_s *df _dccp;

153 kmut ex_t df _I ock;

154 uchar _t df_pad[TF_CACHEL_PAD— (sizeof (dccp_t *) +

155 sizeof (knutex_t))];

156 } dccp_df _t;

158 extern struct qginit dccp_rinitv4, dccp_rinitve6;

160 extern optdb_obj _t dccp_opt _obj ;

161 extern uint_t dccp_max_opt si ze;

163 /*

164 * Functions in dccp.c

165 */

166 extern int dccp_bui l d_hdrs(dccp_t *);

167 extern conn_t *dccp_create_comon(cred_t *, bool ean_t, boolean_t, int *);
168 extern void dccp_cl ose_comon(conn_t *);

169 extern int dccp_do_bi nd(conn_t *, struct sockaddr *, socklen_t, cred_t *,
170 bool ean_t);

171 extern int dccp_do_unbi nd(conn t *);

172 extern int dccp_do_listen(conn_t *, struct sockaddr *, socklen_t, int,
173 cred_t *, boolean_t);

174 extern int dccp_do_connect (conn_t *, const struct sockaddr *, socklen_t,
175 cred_t *, pid_t);

176 extern void dccp_ini t_val ues(dccp t *, dccp_t *);

177 extern void *dccp_get _conn(void *, dccp_stack_t *);

178 extern int dccp_set _destination(dccp_t *dccp);

180 /*

181 * Bind related functions in dccp_bind.c

182 */

183 extern void dccp_bi nd_hash_i nsert(dccp_df _t *, dccp_t *, int);

184 extern void dcecp_bi nd_hash_renmove(dccp_t *);

185 extern int dccp_bi nd_check(conn_t *, struct sockaddr *, socklen_t, cred_t
186 bool ean_t);

187 extern in_port_t dccp bi ndi (dccp t *, in_port_t, const in6_addr_t *, int,
188 bool ean_t, bool ean_t, boolean_t);

189 extern in_port_t dccp_updat e_next_port(l n_port_t, const dccp_t *, boolean_t);
191 /*

192 * MB-I1 and kstat related functions.

193 */

*

new usr/src/uts/comon/inet/dccp/dccp_inpl.h

*
f

194 extern nbl k_t *dccp_snnp_get (queue_t *, nblk_t *);

196 /*

197 * Socket related functions in dccp_socket.c

198 */

199 extern sock_| ower_handl e_t dccp_create(int, int, int, sock_downcalls_t **
200 uint_t *, int *, int, cred_t *);

201 extern int dccp_fal | back(sock_l ower _handl e_t, queue_t *, bool ean_t,

202 so_proto_qui esced_cb_t, sock_quiesce_arg_t *);

204 | *

205 * Input path related functions in dccp_input.c

206 */

207 extern void dccp_icnp_input(void *, nblk_t *, void *, ip_recv_attr_t *);
208 extern void dccp_input _data(void *, nblk_t *, void *, ip_recv_attr_t *);
209 extern void dccp_rsrv(queue_t ;

210 extern void dccp_i nput _I i stener unbound(v0| d*, nblk_t *, void *,

211 Ip_recv_attr_t *);

212 extern bool ean_t dccp_verifyicnp(conn_t *, void *, icnph_t *, icnp6_t *
213 ip_recv_attr_t *);

214 | *

215 * Qutput path related functions in dccp_output.c

216 */

217 extern void dccp_wput (queue_t *, nblk_t *);

218 extern void dccp_xmit_l'isteners_reset(mblk_t *, ip_recv_attr_t *,

219 ip_stack_t *, conn_t *);

220 extern void dccp_send_synack(void *, nblk_t *, void *, ip_recv_attr_t *);
221 extern nbl k_t *decp_xmit_np(dccp_t *, mblk_t *, int32_t, int32_t *

222 mbl k_t **, uint32_t, boolean_t, uint32_t *, boolean_t)
223 extern nbl k_t *dccp_generate_| packet(conn t *, nblk_t *);

224 | *

225 * Options related functions in dccp_opt_data.c

226 */

227 extern int dccp_opt_get(conn_t *, int, int, uchar_t *);

228 extern int dccp_opt_set(conn_t *, uint_t, int, int, uint_t, uchar_t *,
229 uint_t *, uchar_t *, void *, cred_t *);

231 [*

232 * dccp_tpi.c

233 */

234 extern void dccp_err_ack(dccp_t *, nmblk_t *, int, int);

235 extern void dccp_t pi _connect (dccp_t *, nblk_t *);

236 extern int dccp_tpi _cl ose(queue_t *, int);

237 extern int dccp_t pi _opt _get (queue_t *, t_scalar_t, t_scalar_t, uchar_t *);
238 extern int dccp_tpi _opt_set(queue_t *, uint_t, int, int, uint_t, uchar_t
239 uint_t *, uchar_t *, void *, cred_t *);

241 #endif [/* _KERNEL */

243 #ifdef __cplusplus

244 }

245 #endi f

247 #endif /* _INET_DCCP_I MPL_H */

248 #endif /* | codereview */

new usr/src/uts/comon/inet/dccp/dccp_i nput.c 1

R R R R

8662 Wed Jun 13 12:04:33 2012
new usr/src/uts/comon/inet/dccp/ dccp_input.c
0,
*@**
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and |imtations under the License.
*

*

*

*

*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

NRERRRRRRR R
COONOUIAWNROW©O~NOUTDWN

CDDL HEADER END
/

23 * Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.

25 */
27 |*
28 * Copyright 2012 David Hoeppner. Al rights reserved.
29 */

31 #include <sys/types. h>

32 #include <sys/stream h>

33 #include <sys/strsun. h>

34 #include <sys/strsubr.h>
35 #include <sys/stropts. h>
36 #include <sys/strlog. h>

37 #define _SUN_TPI _VERSI ON 2
38 #include <sys/tihdr.h>

39 #include <sys/suntpi.h>

40 #include <sys/xti_inet.h>
41 #incl ude <sys/squeue_inpl.h>
42 #incl ude <sys/squeue. h>

43 #include <sys/tsol/tnet.h>

45 #i ncl ude <i net/common. h>
46 #include <inet/ip.h>

48 #i

ncl ude <sys/cmm_err. h>
50 #include "dccp_inpl.h"

52 static nblk_t *dccp_conn_create_v4(conn_t *, conn_t *, nblk_t *,

53 Ip_recv_attr_t *);
54 static nblk_t *dccp_conn_create_v6(conn_t *, conn_t *, nblk_t *,
55 Ip_recv_attr_t *);

56 static void dccp_input _Tistener(void *, nblk_t *, void *, ip_recv_attr_t *);

58 void
59 dccp_i nput _data(void *arg, nblk_t *np, void *arg2, ip_recv_attr_t *ira)
{

61 cmm_err (CE_NOTE, "dccp_input.c: dccp_input_data");

new usr/src/uts/comon/inet/dccp/ dccp_input.c
62 }
64 void
67 cm_er r (CE_NOTE,
68 }

70 void
71 dccp_rsrv(queue_t *q)
{

"dccp_input.c: dccp_icnp_input");

73 cmm_err (CE_NOTE, "dccp_input.c: dccp_rsrv");
74 }

76 static nmblk_t *

65 dccp_icnp_input(void *argl, mblk_t *np, void *arg2, ip_recv_attr_t *ira)
{

77 dccp_conn_create_v6(conn_t *lconnp, conn_t *connp, nblk_t *np,

78 ip_recv_attr_t *ira)
79

80 return (NULL);
81 }

83 static nblk_t *

84 dccp_conn_create_v4(conn_t *Iconnp, conn_t *connp, nblk_t *np,

85 ip_recv_attr_t *ira)

86 {

87 dcep_t *| dccp = | connp- >conn_dccp;
88 dcep_t *dccp = connp->conn_dccp;
89 dccp_stack_t *dccps = dccp->dccp_dccps;

90 i pha_t *i pha;

91 bl k_t *tpi _np;

92 sin_t si n;

94 ASSERT(ira->ira_flags & | RAF_IS_| PV4);

95 ipha = (ipha_t *)nmp->b_rptr;

97 connp->conn_i pver si on = | PV4_VERSI O\;

98 I N6_| PADDR_TO V4MAPPED(| pha- >i pha_dst, &connp->conn_| addr_v6);
99 I N6_| PADDR_TO_V4MAPPED(i pha- >i pha_src, &connp->conn_f addr _v6);
100 connp- >conn_saddr_v6 = connp->conn_| addr_v6;

102 in =sin_null;

103 sin.sin_addr.s_addr = connp->conn_faddr_v4;

104 sin.sin_port = connp->conn_fport;

105 sin.sin_famly = AF_I NET;

107 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {

108 cmm_err (CE_NOTE, "ancillary");

110 sin_t si nd;

112 sind = sin_null;

113 si nd. si n_addr . s _addr = connp->conn_| addr _v4;

114 sind.sin_port = connp- >conn_| port;

115 sind.sin_fam |y = AF_I NET;

117 tpi _ = m _tpi_extconn_i nd(NULL,

118 (char *)&sind, sizeof (sin_t), (char *)&dccp,
119 (t_scal ar_t)5| zeof (int ptr_t), (char *)&sind,
120 sizeof (sin_t), (t_scalar_t) 1); /* XXX */

122 } else {

123 tpi_np = m _tpi_conn_i nd(NULL,

124 (char *)&sin, sizeof (sin_t),

125 (char *)&dccp, (t_scalar t)S|zeof (intptr_t),

126 (t_scalar_t) 1); 7* XXX *

127 }

new usr/src/uts/comon/inet/dccp/dccp_i nput.c 3 new usr/src/uts/comon/inet/dccp/ dccp_i nput.c
129 return (tpi_np); 195 ASSERT(OK_32PTR(np->b_rptr));
130 } 196 ASSERT(| PH_HDR_VERSI ON(np->b_rptr) == | PV4_VERSI ON | |
197 | PH_HDR_VERSI ON(mp->b_rptr) == | PV6_VERSI ON);
132 static void
133 dccp_input _listener(void *arg, nmblk_t *np, void *arg2, ip_recv_attr_t *ira) 199 if (lconnp->conn_famly == AF_I NET) {
134 { 200 ASSERT(I PH_HDR VERSI ON(np->b_rptr) == | PV4_VERSI ON) ;
135 conn_t *| connp = (conn_t *)arg; 201 tpi _np = dccp_conn_create_v4(l connp, econnp, np, ira);
136 conn_t *econnp; 202 } else {
137 dcep_t *|i stener = | connp->conn_dccp; 203 tpi _np = dccp_conn_create_v6(lconnp, econnp, np, ira);
138 dcep_t *eager ; 204
139 dccp_stack_t *dccps = |istener->dccp_dccps;
140 i p_stack_t *ipst = dccps->dccps_net st ack- >net stack_i p; 206 if (tpi_np == NULL) {
141 dccpha_t *dccpha; 207 cmm_err (CE_NOTE, "tpi_nmo == NULL");
142 squeue_t *new_sqp; 208 goto error3;
143 bl k_t *tpi _np; 209 }
144 bl k_t *mpl;
145 uint_t i p_hdr_l en; 211 eager = econnp->conn_dccp;
146 uint_t type; 212 SOCK_CONNI D_| NI T(eager - >dccp_conni d) ;
147 int error;
214 dccp_init_val ues(eager, listener);
149 cmm_err (CE_NOTE, "dccp_input.c: dccp_input_listener");
216 ASSERT((econnp >conn_i xa->i xa_flags &
151 ip_hdr_len = ira->ira_ip_hdr_|ength; 217 (1 XAF_SET_ULP_CKSUM | | XAF_VERI FY_SOURCE |
152 dccpha = (dccpha_t *)&mp->b rptr[lp hdr _l en]; 218 | XAF_VERI FY_PMIU | | XAF_VERI FY_LSO)) ==
153 type = (uint_t)dccpha->dha_type; 219 (I XAF_SET_ULP_CKSUM | | XAF_VERI FY_SOURCE |
220 | XAF_VERI FY_PMIU | | XAF_VERI FY_LSO));
155 if (type != DCCP_PKT_REQUEST) {
156 cmm_err (CE_NOTE, "not request pkt"); 222 if (ira->ira_cred !'= NULL)
223 mbl k_setcred(tpi _np, ira->ra_cred, ira->ra_cpid);
158 /* XXX do sonething with a reset packet sent? */ 224 }
159 freensg(np);
160 return; 226 if (1PCL_I S_NONSTR(Iconnp)) {
161 } 227 econnp- >conn_fl ags | = | PCL_NONSTR;
228 }
163 [* XXX nenory pressure */
230 /* XXX dccps is right? */
165 /* XXX request defense */ 231 dccp_bi nd_hash_i nsert (&dccps- >dccps_bi nd_f anout [
232 DCCP_BI ND_HASH(econnp- >conn_| port, dccps->dccps_bi nd_fanout _si ze)],
167 /* XXX nunber of connections per |listener */
234 SOCK_CONNI D_BUMP(eager - >dccp_conni d) ;
169 ASSERT(ira->ira_sgp != NULL);
170 new_sqgp = ira->ira_sqp; 236 error = dccp_set_destination(eager);
237 if (error 1= 0)
172 econnp = (conn_t *)dccp_get_conn(arg2, dccps); 238 cmm_err (CE_NOTE, "dccp_set_destination failed.");
173 if (econnp == NULL) { 239 dccp_bi nd_hash_r enove(eager);
174 cmm_err (CE_NOTE, "econnp not found (eager)"); 240 goto error3;
175 goto error?2; 241 }
176 }
243 CONN_I NC_REF(| connp) ;
178 ASSERT(econnp->conn_net stack == | connp->conn_net st ack);
179 econnp->conn_sqgp = new L Sqp; 245 | *
180 econnp->conn_initial _sqp = new_sqp; 246 mpl = dccp_xm t_np(eager, eager->dccp_xmit_head, O,
181 econnp- >conn_i xa- >i xa_sqp = new_sqp; 247 NULL, NULL, 0, B_FALSE, NULL, B _FALSE);
248 */
183 econnp->conn_f port = dccpha->dha_l port; 249 mpl = dccp_gener at e_packet (I connp, np);
184 econnp- >conn_| port = dccpha->dha_f port; 250 if (mpl == NULL) {
251 cmm_err (CE_NOTE, "dccp_xmt_np failed");
186 error = conn_inherit_parent(lconnp, econnp);
187 if (error 1'=0) { 253 CONN_I NC_REF(econnp) ;
188 cmm_err (CE_NOTE, "conn_inherit_parent failed"); 254 goto error;
189 goto error3; 255 }
190 }
257 CONN_I NC_REF(econnp) ;
192 econnp->conn_i xa- >i xa_src_generation = i pst->i ps_src_generation;
259 error = ipcl_conn_insert(econnp);

new usr/src/uts/comon/inet/dccp/ dccp_input.c

260 if (error 1= 0)

261 cmm_err (CE_NOTE, "ipcl_conn_insert(econnp) failed");
262 goto error;

263 }

265 freensg(np);

267 if (econnp->conn_sgp == | connp->conn_sqgp) {

268 (voi d) conn_i p_out put (npl, econnp->conn_i xa);

269 CONN_DEC_REF(econnp) ;

270 } else {

271 SQUEUE_ENTER_ONE(econnp- >conn_sqp, npl, dccp_send_synack,
272 econnp, NULL, SQ PROCESS, SQIAG_TCP_SEND_SYNACK);
273 }

275 return;

276 error:

277 error2:

278 error3:

279 freemsg(np);

280 }

282 void

283 dccp_i nput _l i st ener _unbound(void *arg, nblk_t *np, void *arg2,

284 ip_recv_attr_t *ira)

285 {

286 conn_t *connp = (conn_t *)arg;

287 squeue_t *sqp = (squeue_t *)arg2;

288 squeue_t *new_sqp;

289 ui nt32_t conn_f | ags;

291 cmm_err (CE_NOTE, "dccp_input.c: dccp_input_listener_unbound");
293 ASSERT(ira->ira_sgp != NULL);

294 new_sgp = ira->ira_sqp;

296 if (connp->conn_fanout == NULL) {

297 goto done;

298 }

300 /*

301 * Bind to correct squeue.

302 */

303 if (!(connp->conn_flags & | PCL_FULLY_BOUND)) {

304 cmm_err (CE_NOTE, "not fully bound");

306 mut ex_ent er (& onnp- >conn_f anout - >connf _| ock) ;

307 mut ex_ent er (& onnp- >conn_| ock) ;

309 if (connp->conn_ref !=4 ||

310 connp- >conn_dccp->dccp_state != DCCPS_LI STEN) {
311 mut ex_exi t (&onnp- >conn_| ock) ;

312 nut ex_exi t (& onnp- >conn fanout >connf _| ock);
313 goto done;

314 }

316 if (connp->conn_sqgp != new_sqp) {

317 whi l e (connp->conn_sqp != new_sqp) {

318 (voi d) casptr(&onnp->conn_sqp, sqp,
319

320 connp- >conn_i xa- >i xa_sqp = new_sqp;

321 }

323 do {

324 conn_fl ags = connp->conn_f I ags;

325 conn_flags |= | PCL_FULLY_BOUND;

new usr/src/uts/comon/inet/dccp/ dccp_input.c

326 (void) cas32(&connp- >conn_f | ags, connp->conn_fI ags,
327 conn_f |l ags) ;

328 } while (!(connp->conn fI ags & | PCL_FULLY_BOUND));

330 mut ex_exi t (& onnp- >conn_| ock) ;

331 mut ex_exi t (&onnp->conn fanout—>connf _lock);

333 connp->conn_recv = dccp_i nput _|istener;

334 }

336 done:

337 if (connp->conn_sqgp != sqgp) {

338 CONN_I NC_REF(connp) ;

339 SQJEUE ENTER O\IE(connp >conn_sqp, np, connp->conn_recv, connp,
340 ira, SQFILL, SQTrAG DCCP_CONN_REQ UNBOUND) ;

341 } else {

342 dccp_i nput _| i stener(connp, np, sqgp, ira);

343 }

344 }

346 bool ean_t
347 dccp_verifyicnp(conn_t *connp, void *arg2, icnph_t *icnph, icnp6_t
348 ip_recv_attr_t *ira)

349 {

350 cmm_err (CE_NOTE, "dccp_input.c: dccp_verifyicnmp");
352 return (B_TRUE);

358

}
354 #endif /* | codereview */

*i cnp6,

new usr/src/uts/comon/inet/dccp/dccp_ip.h

R R R R

807 Wed Jun 13 12: 04: 34 2012
new usr/src/uts/comon/inet/dccp/dccp_ip.h

0,

*@**
1/*
2 * This file and its contents are supplied under the terms of the
3 * Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.
6 *
7 * Afull copy of the text of the CDDL shoul d have acconpanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illunos.org/license/ CDDL.
10 */
12 /*

13 * Copyright 2012 Davi d Hoeppner. All rights reserved.
*
/

16 #i fndef _I NET_DCCP_DCCP_| P_H
17 #define _I NET_DCCP_DCCP_| P_H

19 #include <netinet/dccp. h>
20 #include <inet/dccp/dccp_stack. h>

22 #ifdef __cplusplus
23 extern "C' {
24 #endi f

26 /*

27 * DCCP functions for IP

28 */

29 extern void dccp_ddi _g_init(void);

30 extern void dccp_ddi _g_destroy(void);

33 #ifdef __cplusplus

}
35 #endif

37 #endif /* _|I NET_DCCP_DCCP_IP_H */
38 #endif /* | codereview */

new usr/src/uts/ common/inet/dccp/ dccp_opt _data.c 1

R R R R

3415 Wed Jun 13 12:04:35 2012
new usr/src/uts/comon/inet/dccp/ dccp_opt_data.c
0,
*@**
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and |imtations under the License.
*

*

*

*

*

*

*

*

*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

NRERRRRRRR R
COONOUIAWNROW©O~NOUTDWN

CDDL HEADER END
/

23 * Copyright 2010 Sun M crosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.
*/

27 |*
28 * Copyright 2012 David Hoeppner. Al rights reserved.
*/

31 /*
* This file contains functions related to getting and setting options
33 * thought the getsockopt and setsockopt socket functions.
&/

36 #include <sys/types. h>

37 #include <sys/stream h>

38 #define _SUN TPl VERSI ON 2
39 #include <sys/tihdr.h>

40 #include <sys/xti _xtiopt.h>
41 #include <sys/xti_inet.h>
42 #incl ude <sys/policy. h>

44 #include <inet/common. h>
45 #include <inet/ip.h>

46 #incl ude <inet/optcom h>
47 #include <netinet/ip.h>
49 #include <sys/cm_err. h>
51 #include "dccp_inpl.h"

53 static int dccp_opt_default(queue_t *, int, int, uchar_t *);

55 /*
56 * Supported options.
57 */

58 opdes_t dccp_opt_arr[] = {
59 { SO DEBUG SOL_SOCKET, QA RW OA RW OP_NP, 0, sizeof (int), 0},
60 };

new usr/src/uts/ common/inet/dccp/ dccp_opt _data.c

110

112
113
114
115
116
117
118
119
120
121

123
124
125

/*

* Supported |evels.
*

/

optlevel _t dccp_valid_levels_arr[] = {
SOL_ SOCKET,

#def i ne DCCP_OPT_ARR_CNT A _CNT(dccp_opt _arr)
#defi ne DCCP_VALID LEVELS CNT A CNT(dccp_valid_levels_arr)

uint _t dccp_nmax_optsi ze;

/*
* Options database object.
*
/
opt db_obj _t dccp_opt _obj = {

dccp_opt _defaul t,
dccp_t pi _opt _get,
dccp_t pi _opt _set,
DCCP_COPT_ARR_CNT,
dccp_opt _arr,
DCCP_VAL| D_LEVELS_CNT,
dccp_valid_levels_arr,
e
/*
* Default value for certain options.
*/
i nt
dccp_opt _defaul t (queue_t *qg, int level, int name, uchar_t *ptr)
dccp_stack_t *dccps = Q_TO DCCP(q)->dccp_dccps;
int32_t *il = (int32_t *)ptr;
return (sizeof (int));
}
i nt
dccp_opt _get(conn_t *connp, int level, int name, uchar_t *ptr)
{
dcep_t *dccp = connp->conn_dccp;
conn_opt _arg_t coas;
int retval;
coas. coa_connp = connp;
coas.coa_i xa = connp->conn_i Xa;
coas. coa_i pp = &connp->conn_xm t _i pp;
coas.coa_ancillary = B_FALSE;
coas. coa_changed = 0;
switch (level) {
case SOL_SOCKET:
br eak;
case | PPROTO_TCP:
br eak;
case | PPROTO | P:
br eak;
case | PPROTO_| PV6:
br eak;
}
mut ex_ent er (&connp- >conn_| ock) ;
retval = conn_opt_get (&coas, |evel, nanme, ptr);
mut ex_exi t (&onnp->conn_| ock) ;
return (retval);

new usr/src/uts/ common/inet/dccp/ dccp_opt _data.c

128 }

130 /* ARGSUSED */

131 int

132 dccp_opt_set(conn_t *connp, uint_t optset_context, int level, int nane,
133 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
134 voi d *thisdg_attrs, cred_t *cr)

135 {

136 dcep_t *dccp = connp->conn_dccp;

137 dccp_stack_t *dccps = dccp->dccp_dccps;

138 conn_opt _arg_t coas;

139 int *il = (int *)invalp;

140 int error;

142 coas. coa_connp = connp;

143 coas. coa_ancil | ary = B FALSE;

144 coas. coa_changed =

146 error = conn_opt_set (&coas, |level, nane, inlen, invalp,
147 B FALSE cr);

148 if (error 1=0)

149 *outlenp = O;

150 return (error);

151 }

153 return (0);

154 }

155 #endif /* | codereview */

new usr/src/uts/ common/inet/dccp/ dccp_out put.c

R R R R

9965 Wed Jun 13 12: 04: 35 2012
new usr/src/uts/comon/inet/dccp/ dccp_output.c
0,
*@**
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and |imtations under the License.
*

*

*

*

*

*

*

*

*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

NRERRRRRRR R
COONOUIAWNROW©O~NOUTDWN

CDDL HEADER END
/

23 * Copyright 2010 Sun M crosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.

25 */

27 | *

28 * Copyright 2012 David Hoeppner. Al rights reserved.
29 */

31 /*

32 * Functions related to the output path.

33 */

35 #include <sys/types. h>

36 #include <sys/stream h>

37 #include <sys/strsun. h>

38 #include <sys/strsubr.h>
39 #include <sys/stropts. h>
40 #include <sys/strl og. h>

41 #define _SUN_TPI _VERSI ON 2
42 #include <sys/tihdr. h>

43 #incl ude <sys/suntpi.h>

44 #include <sys/xti_inet.h>
45 #incl ude <sys/squeue_i npl.h>
46 #incl ude <sys/squeue. h>

47 #include <sys/tsol/tnet.h>

49 #i ncl ude <i net/comon. h>
50 #include <inet/ip.h>

52 #include <sys/cmm_err. h>

54 #include "dccp_inpl . h"
55 #include "dccp_stack. h"

57 static void dccp_xmt_early_reset(char *, nblk_t *, uint32_t, uint32_t,
58 int, ip_recv_attr_t *, ip_stack_t *, conn_t *);
59 static bool ean_t dccp_send_rst_chk(dccp_stack_t *);

61 /*

new usr/src/uts/ common/inet/dccp/ dccp_out put.c

62 * STREAMS

63 */

64 void

65 ?ccp_wput(queue_t *q, nblk_t *np)
66

67 cmm_err (CE_NOTE, "dccp_output.c: dccp_wput\n");
68 }

70 [*
71 * Send a reset as response to an incom ng packet or
72 * reset a connection.

*/

73
74 void
75 dccp_xmt_listeners_reset(nmblk_t *np, ip_recv_attr_t *ira, ip_stack_t *ipst,
76 conn_t *connp)
77
78 dccpha_t *dccpha;
79 ui nt 32_t seg_seq;
80 ui nt 32_t seg_ack;
81 ui nt 32_t seq_l en;
82 uint_t ip_hdr_len = ira->ira_ip_hdr_| ength;
83 uchar _t *rptr;
85 cmm_err (CE_NOTE, "dccp_output.c: dccp_xmit_|isteners_reset");
87 rptr = np->b_rptr;
89 dccpha = (dccpha_t *)&ptr[ip_hdr_len];
91 !/ seg_seq = ntonl (dccpha->dha_seq);
92 //seg_ack = htonl (dccpha->dha_ack);
94 seq_l en = nsgdsi ze(nmp) - (ip_hdr_len);
96 dccp_xmit_early_reset("no dccp, reset", np, O,
97 0, O, ira, ipst, connp);
98 }
100 /*
101 * RFC 4340, Section 8.1.3
102 */

103 static void
104 dccp_xmit_early_reset(char *str, nblk_t *np, uint32_t seq, uint32_t ack,

105 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp)
106 {

107 dccpha_t *dccpha;

108 dccpha_t *nnp_dccpha;

109 dccpha_ack_t *nnp_dccpha_ack;

110 dccpha_reset _t *dccpha_reset;

111 dccpha_reset _t *nnp_dccpha_reset;

112 dccpha_ext _t *dccpha_ext;

113 dccpha_ext _t *nnp_dccpha_ext ;

114 net stack_t *ns = ipst->i ps_netstack;
115 dcecp_stack_t *dccps = ns->netstack_dccp;
116 i p6_t *i p6h;

117 i pha_t *i pha;

118 i pha_t *nnp_i pha;

119 ip_xmt_attr_t ixas;

120 ip_xmt_attr_t *ixa;

121 i n6_addr _t véaddr ;

122 i paddr _t v4addr ;

123 mbl k_t *nnp;

124 ui nt64_t pkt _ack;

125 uint_t Ip_hdr_len = ira->ra_ip_hdr_| ength;
126 ushort _t port;

127 ushort _t | en;

int

ctl

new usr/src/uts/ common/inet/dccp/ dccp_out put.c

129 cm_err (CE_NOTE, "dccp_output.c: dccp_xmt_early_reset");
131 if (!dccp_send_rst_chk(dccps)) {

132 cm_err (CE_NOTE, "dccp_output.c: not sending reset packet");
133 DCCP_STAT(dccps, dccp_rst_unsent);

134 freemsg(np);

135 return;

136 }

138 bzero(& xas, sizeof (ixas));

139 ixa = & xas;

141 i xa->i xa_flags | = | XAF_SET_ULP_CKSUM | | XAF_VERI FY_SOURCE;
142 i xa- >i xa_protocol = | PPROTO_DCCP;

143 i xa->i xa_zoneid = ira->ira_zoneid;

144 i xa->i xa_i findex = 0;

145 i xa->i xa_i pst = ipst;

146 i xa->i xa_cred = kcred;

147 i xa- >i xa_cpi d = NOPI D;

149 if (str &% dccps->dccps_dbg) {

150 (v0|d) strlog(DCCP_MOD_I D, 0, 1, SL_TRACE,

151 "dccp_xmt_early_reset: s seq Ox%, ack Ox%,
152 "flags Ox¥%",

153 str, seq, ack, ctl);

154 1

156 if (1PH_HDR VERSI O\l(np >b_rptr) == I PV4A_VERSION) {

157 “ipha = (ipha_t *)np>brpr

159 } else {

160 [* XXX */

161 }

163 I*

164 * Allocate a new DCCP reset nessage

165 */

166 len = ip_hdr_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t) + sizeof (d
167 nnp = al Tocb(len, BPRI _MED);

168 if (nmp == NULL)

169 cnm_err (CE_NOTE, "alloc failed");

170 return;

171 1

172 bcopy(np->b_rptr, nnmp->b_wptr, ip_hdr_len + sizeof (dccpha_t));
174 nnp_dccpha = (dccpha_t *)&nrrp >b_rptr[ip_hdr_len];

175 nnp_dccpha- >dha_of fset = 7;

177 if (1PH_HDR VERSI ON(np->b_rptr) == | PV4_VERSI ON) {

178 nnp_i pha = (i pha_t *)nnp->b_rptr;

180 nnp_i pha->i pha_l ength = htons(len);

181 nnp_i pha- >i pha_src = i pha->i pha_dst;

182 nnp_i pha- >i pha_dst = i pha->i pha_src;

184 i xa->ixa_flags | = | XAF_I S_| PV4;

185 i xa->i xa_i p_hdr_length = ip_hdr_len;

186 } else {

187 cmm_err (CE_NOTE, "not v4");

188 1

190 dccpha = (dccpha_t *)&mp->b_rptr[ip_hdr_len];

192 nnmp->b_wptr = &np->b_rptr[len];

new usr/src/ uts/ common/inet/dccp/ dccp_out put.c

194 i xa->i xa_pktlen = len; // ?

196 nnp_dccpha- >dha_f port = dccpha->dha_l port;

197 nnp_dccpha- >dha_| port = dccpha- >dha_f port;

198 nnp_dccpha- >dha_t ype = DCCP_PKT_RESET;

199 nnp_dccpha- >dha_x = 1;

200 nnp_dccpha- >dha_res_seq = O;

201 nnp_dccpha- >dha_seq = O;

203 nnp_dccpha- >dha_sum = htons(si zeof (dccpha_t) + sizeof (dccpha_ext_t) +
205 dccpha_ext (dccpha ext _t *)&trp >b_rptr[ip_hdr_len + sizeof (dccpha_t)]
206 nnp_dccpha_ ext = (dccpha_ext_t *)&nnp->b_rptr[ip_hdr_|len + sizeof (dccph
207 nnp_dccpha_ext - >dha_ext _seq = O;

209 len = ip_hdr Ien + si zeof (dccpha t) + sizeof (dccpha_ext_t);

210 nnp_dccpha_ack = (dccpha_ack_t *)&np->b_rptr[len];

211 nnmp_dccpha_ack- >dha_ack_hi gh = dccpha->dha_seq;

212 nnp_dccpha_ack->dha_ack_| ow = dccpha_ext - >dha_ext _seq;

214 len = ip_hdr_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t) + sizeof (d
215 nnmp_dccpha_reset = (dccpha_reset_t *)&nnp->b_rptr[len];

216 nnp_dccpha_r eset->dha reset_code = 7;

217 nnp_dccpha_reset - >dha_reset _data[0] = O;

218 nnp_dccpha_reset - >dha_reset _data[1] = 0;

219 nnp_dccpha_reset - >dha_reset _data[2] = 0;

221 (void) ip_output_sinple(nnp, ixa);

223 i xa_cl eanup(i xa);

224 }

226 | *

227 *

228 */

229 static bool ean_t
230 dccp_send_rst_chk(dccp_stack_t *dccps)
{

231

232 int64_t now,

234 if (dccps->dccps_rst_sent_rate_enabled !'= 0) {

235 now = ddi _get_| bol t 64();

236 if (TICK_TO MSEC(now - dccps->dccps_last_rst_intrvl) >
237 1 * SECONDS) {

238 dccps->dccps_l ast _rst_intrvl = now

239 dccps- >dceps_rst_cnt = 1;

240 } else if (++dccps->dccps_rst_cnt > dccps->dccps_rst_sent_
241 return (B_FALSE);

242 }

243 }

245 return (B_TRUE);

246 }

248 void

249 dccp_send_synack(void *arg, nblk_t *np, void *arg2, ip_recv_attr_t *dunmy)
250 {

251 cmm_err (CE_NOTE, "dccp_output.c: dccp_send_synack");

252 }

254 mbl k_t *

255 dccp_xmit_np(dccp_t *dccp, nblk_t *np, int32_t max_to_send, int32_t *offset,
256 mbl k_t **end_np, uint32_t seq, boolean_t sendall, uint32_t *seg_|len,
257 bool ean_t rexmt)

258 {

259 conn_t *connp = dccp->dccp_connp;

new usr/src/uts/ common/inet/dccp/ dccp_out put.c 5

260
261
262
263
264
265
266
267
268
269

271

273
274

276
277
278
279
280
281

285
286
287
288
289
290
291
292
293
294
295
296

298
299

301
302
303
304

306
307

309
310

312
313

315
316
317
318
319
320
321
322
323
324
325

}

nbl k_t

dccp_stack_t
dccpha_t
dccpha_ext _t
dccpha_ack_t
dccpha_srv_t
ip_xmt_attr_t

*dccps = dccp->dccp_dcceps;
*dccpha;

*dccpha_ext ;

*dccpha_ack;

*dccpha_srv;

*jxa = connp->conn_i Xa;

bl k_t *nmpl;

uchar _t *rptr

ushort _t | en;

int dat a_l engt h;

cmm_err (CE_NOTE, "dccp_output.c: dccp_xmt_np");
/1 dccpha_t already in iphc_|len?
I en = connp->conn_ht _i phc_l en + sizeof (dccpha_ext_t) + sizeof (dccpha_a

//mpl = dccp_generat e_packet (connp, np);
mpl = all ocb(len, BPRI_MED);
if (nmpl == NULL) {
crm_err (CE_NOTE, "allocb failed");
return (NULL);
}

data_l ength = 0;

rptr = npl->b_rptr;

mpl->b_wptr = &mpl->b_rptr[len];
bcopy(connp->conn_ht _i phc, rptr, connp->conn_ht _i phc_| en) ;
dccpha = (dccpha_t *) & ptr[ixa->i xa |p hdr _I ength] ;
dccpha- >dha_t ype = DCCP_PKT_RESPONSE;

dccpha- >dha offset = 8;

dccpha- >dha_x = 1;

dccpha- >dha_ccval 0;

dccpha- >dha_cscov 0;

dccpha- >dha_reserved = O

dccpha->dha_res_seq =

dccpha- >dha_seq = O;

dccpha_ext = (dccpha_ext _t *)&rptr[ixa— >j xa_i p_hdr_l ength + sizeof (dccp
dccpha_ext - >dha ext_seq =

dccpha_ack = (dccpha_ack_t *)&ptr[ixa->ixa_ip_hdr_length + sizeof (dccp
dccpha_ack->dha_ack_reserved = O;

dccpha_ack->dha_ack_hi gh = 0;

dccpha_ack->dha_ack_I ow = 0;

dccpha_srv = (dccpha_srv_t *)&ptr[ixa->ixa_ip_hdr_length + sizeof (dccp
dccpha_srv->dha_srv_code = O;

return (npl);

*

dccp_gener at e_packet (conn_t *connp, nblk_t *np)
314 {

dccpha_t
dccpha_ext _t
dccpha_ack_t

*dccpha;
*dccpha_ext ;
*dccpha_ack;

bl k_t *mpl;

uint16_t ack_hi gh;

ui nt 32_t ack_l ow,

ui nt _t ip_hdr_len = ira->ira_ip_hdr_|l ength;

ip_xmt_attr_t *ixa = connp->conn_ixa;
uint_t i p_hdr_| en;

uint_t |l en;

uchar _t *rptr;

new usr/src/uts/ common/inet/dccp/ dccp_out put.c

327 cm_err (CE_NOTE, "dccp_output.c: dccp_generate_packet");
329 ip_hdr_len = ixa->ixa_ip_hdr_length;

331 if (nmp == NULL) {

332 cmm_err (CE_NOTE, "NULL pointer nmp");

333 return (NULL);

334 }

336 dccpha = (dccpha_t *)&np->b_rptr[ip_hdr_len];

337 dccpha_ext = (dccpha_ext _t *)&mp->b_rptr[ip_hdr_len + sizeof (dccpha_t)]
339 ack_hi gh = dccpha->dha_seq;

340 ack_| ow = dccpha_ext - >dha_ext _seq;

342 I'en = connp->conn_ht _i phc_l en + sizeof (dccpha_t) + sizeof (dccpha_ext _t
343 /llen = ip_hdr_len + sizeof (dccpha_t) + sizeof (dccpha_ext_t) + sizeof
344 mpl = all ocb(l en, BPRI _MED);

345 if (nmpl == NULL)

346 cnm_err (CE_NOTE, "allocb failed");

347 return (NULL);

348 }

350 rptr = npl->b_rptr;

351 npl->b_wptr = &npl->b_rptr[len];

353 bcopy(connp->conn_ht _i phc, rptr, connp->conn_ht_iphc_len);

354 dccpha = (dccpha_t *) & ptr[ixa->ixa_ip_hdr_|ength];

355 //dccpha = (dccpha_t *)&ml->b_rptr[ip_hdr_len];

357 dccpha- >dha_t ype = DCCP_PKT_RESPONSE;

358 dccpha- >dha_of fset = 8;

359 dccpha- >dha_x = 1;

360 dccpha- >dha_ccval = 0;

361 dccpha- >dha_cscov = 0;

362 dccpha- >dha_reserved = O

363 dccpha- >dha_res_seq =

364 dccpha- >dha_seq = 1,

365 dccpha- >dha_sum = htons(Ilen);

367 dccpha_ext = (dccpha_ext_t *)&mpl->b_rptr[ip_hdr_|len + sizeof (dccpha_t)
368 dccpha_ext - >dha_ext _seq = 1;

370 dccpha_ack = (dccpha_ack_t *)&mpl->b_rptr[ip_hdr_len + sizeof (dccpha_t)
371 dccpha_ack->dha_ack_hi gh = ack_hi gh;

372 dccpha_ack->dha_ack_| ow = ack_| ow;

374 return (npl);

375 }

376 #endif /* ! codereview */

new usr/src/uts/ common/inet/dccp/ dccp_socket.c

R R R R

13439 Wed Jun 13 12: 04: 36 2012
new usr/src/uts/comon/inet/dccp/ dccp_socket. c
0,
*@**
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and |imtations under the License.
*

*

*

*

*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

NRERRRRRRR R
COONOUIAWNROW©O~NOUTDWN

CDDL HEADER END
/

23 * Copyright 2010 Sun M crosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.
25 */

27 |*
28 * Copyright 2012 David Hoeppner. Al rights reserved.
*/

31 /*
32 * This file contains function related to the socket interface.
S

35 #include <sys/types. h>

36 #include <sys/strlog. h>

37 #include <sys/policy.h>

38 #include <sys/sockio. h>

39 #include <sys/strsubr.h>
40 #i ncl ude <sys/strsun. h>

41 #define _SUN_TPI _VERSI ON 2
42 #include <sys/tihdr.h>

43 #incl ude <sys/squeue_i npl . h>
44 #incl ude <sys/squeue. h>

45 #incl ude <sys/socketvar.h>

47 #incl ude <inet/common. h>

48 #include <inet/proto_set.h>
49 #include <inet/ip.h>

51 #include <sys/cm_err. h>

53 #include "dccp_i npl . h"
54 #include "dccp_stack. h"

56 static void dccp_activat e(sock_| ower _handl e_t, sock_upper_handl e_t,

57 sock_upcalls_t *, int, cred_t *);
58 static int dccp_accept (sock_| ower _handl e_t, sock_| ower_handl e_t,
59 sock_upper_handl e t, cred_t *);

60 static int dccp_bi nd(sock”| ower handl e _t, struct sockaddr *,
61 socklen_t, cred_t *);

new usr/src/uts/ common/inet/dccp/ dccp_socket.c

62 static int
63 static int

dccp_l i sten(sock_| ower _handle_t, int,

cred_t *

dccp_connect (sock_| ower _handl e_t, const struct sockaddr *,

*

struct sockaddr *,
struct sockaddr *,
nt, int, void *,

nt, int, const void *,

64 sockl en_t, sock_connid_t *, cred t
65 static int dccp_get peer nane(sock | ower _handl e_t,
66 socklen_t *, cred_t *);

67 static int dccp_get socknanme(sock_ | ower _handl e_t,
68 socklen_t *, cred_t *);

69 static int dccp_get sockopt (sock_Tower _handl e_t, i
70 socklen_t *, cred_t *

71 static int dccp_set sockopt (sock_T ower_handl e_t, i
72 socklen_t, cred_t *);

73 static int dccp_ sendm;g(sock | ower _handle_t, nblk_t *, struct nmsghdr *,
74 cred_t *);

75 static int
76 static void
77 static int dccp_i oct! (sock_| ower _handle_t, int, i
78 cred_t *);

79 static int

81 sock_downcal I s_t sock_dccp_downcal Is = {

82 dccp_activate,

83 dccp_accept,

84 dccp_bi nd,

85 dccp_listen,

86 dccp_connect,

87 dccp_get peer nane,
88 dccp_get socknane,
89 dccp_get sockopt ,
90 dccp_set sockopt,
91 dccp_sendnsg,

92 NULL,

93 NULL,

94 NULL,

95 dccp_shut down,

96 dcep_clr_flowetrl,
97 dccp_ioctl,

98 dccp_cl ose,

99 };

101 /* ARGSUSED */
102 static void

103 dccp_acti vat e(sock_| ower _handl e_t proto_handl e, sock_upper_handl e_t sock_handl e,

dccp_shut down(sock | ower _handl e_t, int,
deccp_clr_flowctrl (sock_| ower _handle_t);

cred_t *);

ntptr_t, int, int32_t *

dcep_ cIose(sock | ower _handle_t, int, cred_t *);

104 sock_upcal | s_t *sock_upcalls, int flags, cred_t *cr)

105 {

106 conn_t *connp = (conn_t *)proto_handl e;

107 struct sock_proto_props sopp;

108 //extern struct nodul e_info tcp_rinfo;

110 cm_err (CE_NOTE, "dccp_socket.c: dccp_activate");

112 ASSERT(cr !'= NULL);

114 sopp. sopp_flags = SOCKOPT_RCVH WAT | SOCKOPT_RCVLOMAT |
115 SOCKCPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTI MER |
116 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_M NPSZ;
119 sopp. sopp_r xhi wat = SOCKET_RECVH WATER;

120 sopp. sopp_r x| owat = SOCKET_RECVLOMTER;

121 sopp. sopp_nmexpsz = | NFPSZ;

122 sopp. sopp_nmaxbl k = | NFPSZ;

123 sopp. sopp_rcvtimer = SOCKET_TI MER | NTERVAL;

124 sopp. sopp_rcvt hresh = SOCKET_RECVH WATER >> 3;

125 sopp. sopp_nexaddr |l en = sizeof (sin6_t);

126 /*

127 sopp. sopp_mi npsz = (dccp_rinfo.m _nminpsz == 1) ? 0 :

new usr/src/uts/ common/inet/dccp/ dccp_socket.c

128 dccp_rinfo.m _mnpsz;

129 */

130 connp->conn_upcal I s = sock_upcall s;

131 connp- >conn_upper _handl e = sock_handl e;

133 [* XXX */

134 (*connp->conn_upcal | s->su_set _prot o_props) (connp->conn_upper _handl e,
135 &sopp) ;

136 }

138 /* ARGSUSED*/

139 static int

140 dccp_accept (sock_| ower _handl e_t | proto_handl e,

141 sock_| ower _handl e_t eproto_handl e, sock_upper_handl e_t sock_handl e,
142 cred_t *cr)

143 {

144 cmm_err (CE_NOTE, "dccp_socket.c: dccp_accept”);

146 return (ENOTSUP);

147 }

149 static int

150 dccp_bi nd(sock_| ower _handl e_t proto_handl e, struct sockaddr *sa,
151 socklen_t len, cred_t *cr)

152 {

153 conn_t *connp = (conn_t *)proto_handl e;

154 int error;

156 cmm_err (CE_NOTE, "dccp_socket.c: dccp_bind");

158 ASSERT(cr != NULL);

159 ASSERT(connp- >conn_upper _handl e ! = NULL);

161 error = squeue_synch_enter(connp, NULL);

162 if (error 1= 0)

163 /* Failed to enter */

164 return (ENOSR);

165 }

167 /* Binding to NULL address neans unbind */

168 if (sa == NULL) {

169 if (connp->conn_dccp->dccp_state < DCCPS_LI STEN) {
170 error = dccp_do_unbi nd(connp);

171 } else {

172 error = EINVAL;

173

174 } else {

175 error = dccp_do_bi nd(connp, sa, len, cr, B TRUE);
176 }

178 squeue_synch_exit (connp);

180 if (error < 0) {

181 if (error == -TOUTSTATE) {

182 error = EINVAL;

183 } else {

184 error = proto_tlitosyserr(-error);

185 }

186 }

188 return (error);

189 }

191 /* ARGSUSED */

192 static int

193 dccp_listen(sock_| ower_handl e_t proto_handle, int backlog, cred_t *cr)

new usr/src/uts/ common/inet/dccp/ dccp_socket.c

194
195
196
197

199

201
202

204
205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222

226
227

229
230
231
232
233
234

238
239

241
242
243
244

246
247
248
249
250

252
253
254
255
256
257
258
259

{
conn_t *connp = (conn_t *)proto_handle;
dccp_t *dccp = connp->conn_dccp;
int error;
cmm_err (CE_NOTE, "dccp_socket.c: dccp_listen");
ASSERT(connp->conn_upper _handl e ! = NULL);
ASSERT(cr !'= NULL);
error = squeue_synch_enter(connp, NULL);
if (error 1=0
/* Failed to enter */
return (ENOBUFS);
}
error = dccp_do_|isten(connp, NULL, O, backlog, cr, B_FALSE);
if (error == 0)
/* XXX: DCCP */
(*connp- >conn_upcal | s->su_opct |) (connp->conn_upper _handl e,
SOCK_OPCTL_ENAB_ACCEPT,
(uintptr_t)(10));
} else if (error < 0)
if (error == -TOUTSTATE) {
error = EINVAL;
} else {
error = proto_tlitosyserr(-error);
}
}
squeue_synch_exi t (connp);
return (error);
}
static int
dccp_connect (sock_| ower _handl e_t proto_handl e, const struct sockaddr *sa,
socklen_t len, sock_connid_t *id, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
int error;
cm_err (CE_NOTE, "dccp_socket.c: dccp_connect");
ASSERT(connp->conn_upper _handl e ! = NULL);
ASSERT(cr !'= NULL);
error = proto_verify_ip_addr(connp->conn_famly, sa, len);
if (error 1=0) {
return (error);
}
error = squeue_synch_enter(connp, NULL);
if (error 1= 0)
/* Failed to enter */
return (ENGCSR);
}
error = dccp_do_connect (connp, sa, len, cr, curproc->p_pid);
if (error == 0)
*id = connp->conn_dccp->dccp_conni d;
} else if (error < 0) {
if (error == - TOUTSTATE)
swi tch (connp->conn_dccp->dccp_state) {
[* XXX */
case DCCPS_LI STEN:

new usr/src/uts/ common/inet/dccp/ dccp_socket.c

260 error = EOPNOTSUPP;

261 break;

262 defaul t:

263 error = EINVAL;

264 br eak;

265 }

266 } else {

267 error = proto_tlitosyserr(-error);
268 }

269 }

271 squeue_synch_exit (connp);

273 cmm_err (CE_NOTE, "dccp_connect.c: exit %", error);
274 return ((error == 0) ? EINPROGRESS : error);

275 }

277 | * ARGSUSED3 */
278 static int

279 dccp_get peer nane(sock_| ower _handl e_t proto_handl e, struct sockaddr *addr,

280 sockl en_t *addrlenp, cred_t *cr)

281

282 conn_t *connp = (conn_t *)proto_handle;

283 dccp_t *dccp = connp->conn_dccp;

285 cmm_err (CE_NOTE, "dccp_socket.c: dccp_get peernane");
287 ASSERT(cr != NULL);

289 ASSERT(dccp != NULL);

290 /* XXX: DCCP */

292 return (conn_get peernane(connp, addr, addrlenp));
293 }

295 /* ARGSUSED3 */
296 static int

297 dccp_get sockname(sock_| ower _handl e_t proto_handl e, struct sockaddr *addr,

298 sockl en_t *addrlenp, cred_t *cr)

299 {

300 conn_t *connp = (conn_t *)proto_handl e;

301 int error;

303 cm_err (CE_NOTE, "dccp_socket.c: dccp_getsocknane");
305 ASSERT(cr !'= NULL);

307 /* XXX UDP has | ocks here, TCP not */

308 mut ex_ent er (& onnp- >conn_| ock) ;

309 error = conn_getsocknane(connp, addr, addrlenp);
310 mut ex_exi t (& onnp- >conn_| ock) ;

312 return (error);

313 }

315 static int
316 dccp_get sockopt (sock_| ower _handl e_t proto_handle, int |evel,

317 voi d *optval p, socklen_t *optlen, cred_t *cr)

318 {

319 conn_t *connp = (conn_t *)proto_handl e;
320 t _uscal ar _t max_opt buf _| en;

321 voi d *opt val p_buf;

322 int | en;

323 int error;

325 cmm_err (CE_NOTE, "dccp_socket.c: dccp_getsockopt");

int option_nane,

new usr/src/uts/ common/inet/dccp/ dccp_socket.c

327 ASSERT(connp- >conn_upper _handl e ! = NULL);

329 error = proto_opt_check(level, option_name, *optlen,
330 dccp_opt _obj . odb_opt _des_arr,

331 dccp_opt _obj . odb_opt _arr_cnt,

332 B_FALSE, "B_TRUE, cr);

333 if (error '=0) {

334 if (error < 0)

335 error = proto_tlitosyserr(-error);
336

337 return (error);

338 }

340 optval p_buf = knem al | oc(nax_opt buf _| en, KM SLEEP);
341 if (optval p_buf == NULL) {

342 return (ENOVEM ;

343 }

345 error = squeue_synch_enter(connp, NULL);

346 if (error == ENOME

347 kmem f ree(optval p_buf, max_optbuf_Ien);
348 return (ENOVEM ;

349 }

351 len = dccp_opt _get (connp, |evel, option_nane, optval
352 squeue_synch_exi t (connp);

354 if (len ==-1) {

355 kmem free(optval p_buf, max_optbuf_|en);
356 return (EINVAL);

357 1

359 t_uscalar_t size = MN(len, *optlen);

361 bcopy(optval p_buf, optval p, size);

362 bcopy(&si ze, optlen, sizeof (size));

364 kmem f ree(optval p_buf, max_optbuf_|en);

366 return (0);

367 }

369 static int
370 dccp_setsockopt (sock_| ower _handl e_t proto_handle, int |evel,

371 const void *optval p, socklen_t optlen, cred_t *cr)

372 {

373 conn_t *connp = (conn_t *)proto_handl e;

374 int error;

376 cmm_err (CE_NOTE, "dccp_socket.c: dccp_setsockopt");
378 ASSERT(connp->conn_upper _handl e ! = NULL);

380 error = squeue_synch_enter(connp, NULL);

381 if (error = ENOVEM {

382 return (ENOVEM ;

383 }

385 error = proto_opt_check(level, option_nane, optlen,
386 dccp_opt _obj . odb_opt _des_arr,

387 dccp_opt _obj . odb_opt _arr_cnt,

388 B_TRUE, B_FALSE, cr);

389 if (error 1'=0) {

390 if (error <0)

391 error = proto_tlitosyserr(-error);

&max_opt buf _| en,

p_buf);

int option_nane,

NULL,

new usr/src/uts/ common/inet/dccp/ dccp_socket.c

392

393 squeue_synch_exi t (connp);

394 return (error);

395 }

397 error = dccp_opt_set (connp, SETFN_OPTCOM NEGOTI ATE, |evel, option_nane,
398 optlen (uchar _t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
399 NULL, cr);

400 squeue_synch_exit (connp);

402 ASSERT(error >= 0);

404 return (error);

405 }

407 [* ARGSUSED */

408 static int

409 dccp_sendnsg(sock_| ower _handl e_t proto_handl e, nblk_t *nmp, struct nmsghdr *nsg,
410 cred_t *cr)

411 {

412 conn_t *connp = (conn_t *)proto_handl e;

413 dccp_t *dccp;

414 uint32_t msize;

415 int32_t dccpstate;

417 cmm_err (CE_NOTE, "dccp_socket.c: dccp_sendnsg");

419 /* Al Solaris conponents should pass a cred for this operation. */
420 ASSERT(cr !'= NULL);

422 ASSERT(connp->conn_ref >= 2);

423 ASSERT(connp- >conn_upper _| handl e != NULL) ;

425 if (msg->nsg_controllen !'= 0) {

426 freensg(np);

427 return (EOPNOTSUPP) :

428 }

430 switch (DB_TYPE(np)) {

431 case M DATA:

432 dccp = connp->conn_dccp;

433 ASSERT(dccp != NULL);

435 dccpstate = dccp->dccp_state;

437 [* XXX */

439 return (0);

441 defaul t:

442 ASSERT(0) ;

443 }

445 freenmsg(np);

447 return (0);

448 }

450 /* ARGSUSED */

451 static int

452 dccp_shut down(sock_| ower _handl e_t proto_handl e, int how, cred_t *cr)
453 {

454 conn_t *connp = (conn_t *)proto_handl e;

455 dccp_t *dccp = connp->conn_dccp;

457 cmm_err (CE_NOTE, "dccp_socket.c: dccp_shutdown");

new usr/src/uts/ common/inet/dccp/ dccp_socket.c

459 /* Al Solaris conmponents should pass a cred for this operation.
460 ASSERT(cr !'= NULL);

462 ASSERT(connp->conn_upper _handl e ! = NULL);

465 return (ENOTSUP);

466 }

468 static void

469 dccp_clr_flowtrl (sock_| ower _handl e_t proto_handl e)

470 {

471 conn_t *connp = (conn_t *)proto_handle;

472 dccp_t *dccp = connp->conn_dccp;

473 mbl k_t *np;

474 int error;

476 ASSERT(connp- >conn_upper _handl e ! = NULL);

478 cmm_err (CE_NOTE, "dccp_socket.c: dccp_clr_flowctrl™);

480 error = squeue_synch_enter(connp, np);

482 squeue_synch_exit (connp);

483 }

485 /* ARGSUSED */

486 static int

487 dccp_ioctl (sock_| ower _handl e_t proto_handle, int cnd, intptr_t arg,
488 int nmode, int32_t *rvalp, cred_t *cr)

489 {

490 conn_t *connp = (conn_t *)proto_handl e;

491 int error;

493 cm_err (CE_NOTE, "dccp_socket.c: dccp_ioctl");

495 ASSERT(connp->conn_upper _handl e ! = NULL);

497 /* Al Solaris conmponents should pass a cred for this operation.
498 ASSERT(cr !'= NULL);

500 return (ENOTSUP);

501 }

503 /* ARGSUSED */

504 static int

505 dccp_cl ose(sock_| ower _handl e_t proto_handle, int flags, cred_t *cr)
506 {

507 conn_t *connp = (conn_t *)proto_handl e;

509 cm_err (CE_NOTE, "dccp_socket.c: dccp_close\n");

511 ASSERT(connp- >conn_upper _handl e != NULL);

513 /* Al Solaris conmponents should pass a cred for this operation.
515 ASSERT(cr !'= NULL);

517 dccp_cl ose_common(connp) ;

519 i p_free_hel per_strean(connp);

521 CONN_DEC_REF(connp) ;

523 return (El NPROGRESS) ;

*/

*/

*/

new usr/src/uts/ common/inet/dccp/ dccp_socket.c

524 }

527 | *

528 * Socket create function.
529 */

530 sock_| ower _handl e_t

531 dccp_create(int famly, int type, int proto, sock_downcalls_t **sockdowncalls,

532 uint_t *snodep, int *errorp, int flags, cred_t *credp)
533 {

534 conn_t *connp;

535 bool ean_t i sv6;

537 /* XXX (type != SOCK_STREAM */

538 if ((famiy != AF_INET & family != AF_I NET6) ||
539 (proto !'= 0 & proto != | PPROTO DCCP)) {

540 *errorp = EPROTONOSUPPORT;

541 return (NULL);

542 1

544 cmm_err (CE_NOTE, "dccp_socket: dccp_create\n");
546 isve = family == AF_INET6 ? B TRUE: B FALSE;

547 connp = dccp_create_comon(credp, isv6, B TRUE, errorp);
548 if (connp == NULL)

549 return (NULL);

550 }

552 /*

553 * Increment ref for DCCP connection.

554 */

555 mut ex_ent er (& onnp- >conn_| ock) ;

556 CONN_T'NC_REF_L OCKED(connp)

557 ASSERT(connp->conn_ref == ;

558 connp->conn_state_fl ags & ~CO\JN I NCI PI ENT;

559 connp->conn_fl ags | = I PCL_NONSTR,

560 mut ex_exi t (&onnp- >conn_l ock) ;

562 ASSERT(errorp != NULL);

563 *errorp = 0;

564 *sockdowncal I's = &sock _dccp_downcal | s;

565 *snmodep = SM CONNREQUI RED | SM EXDATA | SM ACCEPTSUPP |
566 SM_SENDFI LESUPP;

568 return ((sock_|l ower_handl e_t)connp);

569 }

571 int

572 dccp_fal |l back(sock_| ower _handl e_t proto_handl e, queue_t *q,
573 bool ean_t issocket, so_proto_qui esced_cbh_t quiesced_cb,
574 sock_qui esce_arg_t *arg)

575 {

576 cmm_err (CE_NOTE, "dccp_socket: dccp_fallback\n");
578 return (0);

579

}
580 #endif /* | codereview */

new usr/src/uts/comon/inet/dccp/dccp_stack. h 1

R R R R

1677 Wed Jun 13 12: 04: 40 2012
new usr/src/uts/comon/inet/dccp/ dccp_stack. h

0,

*@**
1/*
2 * This file and its contents are supplied under the terms of the
3 * Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.
6 *
7 * Afull copy of the text of the CDDL shoul d have acconpanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illunos.org/license/ CDDL.
10 */
12 /*
13 * Copyright 2012 David Hoeppner. All rights reserved.
14 */

16 #ifndef _| NET_DCCP_DCCP_STACK_H
17 #define _I NET_DCCP_DCCP_STACK_H

19 #incl ude <sys/netstack. h>
20 #include <sys/cpuvar. h>

22 #ifdef __cplusplus
23 extern "C' {
24 #endi f

26 typedef struct dccp_stat_counter_s {
27 ui nt 64_t dccp_rst_unsent;
28 } dccp_stat_counter_t;

30 typedef struct {

31 ui nt 64_t dccp_stats_cnt;

32 dccp_stat _counter _t dccp_sc_stats;

33 } dccp_stats_cpu_t;

35 #define DCCP_STAT(dccps, X) \

36 ((dccps) - >dccps_sc[CPU- >cpu_seqi d] - >dccp_sc_st at s. x++)
38 /*

39 * DCCP stack instances

40 */

41 typedef struct dccp_stack {

42 net stack_t *dccps_net st ack; /* Common netstack */
44 ui nt _t dccps_bi nd_f anout _si ze;

45 struct dccp_df_s *dccps_bi nd_f anout ;

47 /* Ports */

48 #defi ne DCCP_NUM EPRI V_PORTS 64

49 int dccps_num epriv_ports;

50 in_port_t dccps_epri v_ports[DCCP_NUM EPRI V_PORTS] ;
51 kmut ex_t dccps_epriv_port _| ock;

53 uint_t dccps_next _port_to_try;

55 in_port_t dccps_mi n_anonpri v_port;

57 /* Reset rate control */

58 int64_t dccps_last_rst_intrvl;

59 ui nt 32_t dccps_rst_cnt;

61 /* Tunabl es table */

new usr/src/uts/comon/inet/dccp/ dccp_stack. h

62 struct nod_prop_info_s *dccps_propinfo_tbl;
64 I di _i dent _t dcecps_I di _ident;

66 /* Cpu stats counter */

67 dccp_stats_cpu_t **dccps_sc;

68 int dccps_sc_cnt;

69 } dccp_stack_t;

71 #ifdef __ cplusplus
}

73 #endi f

75 #tendif /* _| NET_DCCP_DCCP_STACK_H */
76 #endif /* | codereview */

new usr/src/uts/comon/inet/dccp/dccp_stats.c 1

R R R R

3624 Wed Jun 13 12:04:40 2012
new usr/src/uts/comon/inet/dccp/ dccp_stats. c
0,
*@**
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and |imtations under the License.
*

*

*

*

*

*

*

*

*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

NRERRRRRRR R
COONOUIAWNROW©O~NOUTDWN

CDDL HEADER END
/

23 * Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.

25 */

27 | *

28 * Copyright 2012 David Hoeppner. Al rights reserved.
29 */

31 /*

32 * Functions related to MB-11 and kstat.

33 */

35 #include <sys/types. h>

36 #include <sys/tihdr.h>

37 #include <sys/policy.h>

38 #include <sys/tsol/tnet.h>

40 #i ncl ude <inet/common. h>

41 #include <inet/ip.h>

42 #include <inet/kstatcom h>

43 #i ncl ude <i net/snnpcom h>

45 #include <sys/cm_err. h>

47 #include "dccp_inpl.h

49 static int dccp_snnp_state(dccp_t *);

51 static int
52 dccp_snnp_state(dccp_t *dccp)
{

53

54 if (dccp == NULL) {

55 return (0);

56 1

58 swi tch(dccp- >dccp state) {

59 case DCCPS_CLGCs|

60 return (M B2_DCCP_cl osed) ;
61 defaul t:

new usr/src/uts/comon/inet/dccp/dccp_stats.c

62 return (0);

63 }

64 }

66 /*

67 * Get the MB-IIl stats.

68 */

69 nbl k_t *

70 dccp_snnp_get (queue_t *qg, nblk_t *npctl)

71 {

72 conn_t *connp = Q TO CONN(Q) ;

73 connf _t *connf p;

74 i p_stack_t *ips;

75 dccp_stack_t *dccps;

76 struct opthdr *opt p;

77 bl k_t *mp2ct | ;

78 bl k_t *npdat a;

79 mbl k_t *np_conn_ctl = NULL;

80 bl k_t *np_conn_tail;

81 mbl k_t *mp_attr_ctl = NULL;

82 bl k_t *nmp_attr_tail;

83 size_t dccp_m b_si ze;

84 size_t dce_si ze;

85 zonei d_t zone| d;

86 in

87 m b2 _dccpConnEnt ry t dce;

89 mp2ct| = copynsg(npctl);

91 if (npctl == NULL ||

92 (mpdata = npctl->b_cont) == NULL ||

93 (mp_conn_ctl = copynmsg(npctl)) == NULL ||

94 (np_attr_ctl = copynsg(npctl)) == NULL) {

95 freemsg(np_conn_ctl);

96 freemsg(np_attr_ctl);

97 freensg(npctl);

98 freensg(np2ctl);

99 return (NULL);

100 }

102 ips = = connp- >conn_net st ack- >net st ack_i p;

103 dccps = connp- >conn_net st ack- >net st ack_dccp;

104 dce_size = sizeof (m b2_dccpConnEntry t);

105 zoneid = QTO_OCNN(g) - >conn_zonei d;

107 for (i = 0; i < CONN_G HASH SI ZE; i++) {

108 i ps = dccps->dccps_net st ack- >net st ack_i p;
110 connfp = & ps->i ps_i pcl _gl obal hash_fanout[i];
111 connp = LL;

113 whi | e ((connp = ipcl _get _next _conn(connfp,
114 PCL_DCCPCONN)) T= NULL) {

115 dccp_t *dccp;

117 i f (connp->conn_zoneid != zoneid) {
118 cont i nue;

119 }

121 dccp = connp->conn_dccp;

123 dce. dccpConnState = dccp_snnp_st at e(dccp) ;
125 i f (connp->conn_ipversion == | PV4_VERSI ON | |
126 (dccp->dccp_state <= DCCPS_LI STEN)) {

127 dce. dccpConnRemAddr ess™ =

new usr/src/uts/comon/inet/dccp/dccp_stats.c

128 connp->conn_f addr _v4;

129 dce. dccpConnLocal Address =

130 connp->conn_| addr _v4;

131 }

133 dce. dccpConnLocal Port = nt ohs(connp->conn_| port);
134 dce. dccpConnRenPort = nt ohs(connp->conn_fport);
136 dce. dccpConnCr eat i onProcess = (connp->conn_cpid < 0) ?
137 M B2_UNKNOWN_PROCESS : connp->conn_cpi d;

138 dce. dccpConnCreati onTi me = connp->conn_open_ti ne;
140 (voi d) snnp_append_dat a2(np_conn_ct!->b_cont,

141 &mp_conn_tail, (char *)&dce, dce_size);

142 }

143 }

145 optp = (struct opthdr *)&np_conn_ctl->b_rptr]

146 si zeof (struct T_optngnt_ack)];

147 opt p->l evel = M B2_DCCP;

148 opt p->nanme = M B2_DCCP_CONN,

149 opt p->l en = nsgdsi ze(np_conn_ctl->b_cont);

150 qreply(q, np_conn_ctl);

152 return (np2ctl);

153 }

154 #endif /* | codereview */

new usr/src/uts/comon/inet/dccp/ dccp_tpi.c

R R R R

2671 Wed Jun 13 12: 04:41 2012
new usr/src/uts/comon/inet/dccp/ dccp_tpi.c

0,

*@**
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
22 /*
23 * Functions related to TPI.
24 */

26 #include <sys/types. h>

27 #include <sys/stream h>

28 #include <sys/strsun. h>

29 #include <sys/strsubr. h>
30 #include <sys/stropts. h>
31 #include <sys/strlog. h>

32 #define _SUN TPl _VERSI ON 2
33 #include <sys/tihdr.h>

34 #include <sys/suntpi.h>

35 #include <sys/xti_inet.h>
36 #include <sys/squeue_inpl.h>
37 #include <sys/squeue. h>

38 #include <sys/tsol/tnet.h>

40 #i ncl ude <inet/common. h>
41 #include <inet/ip.h>

43 #include <sys/cmm_err. h>
45 #incl ude "dccp_i npl . h"

47 | *
48 * Hel per function to generate TPl errors acks.
*/

50 void
51 dccp_err_ack(dccp_t *dccp, nblk_t *np, int t_error, int sys_error)

53 if ((mp = m_tpi_err_ack_alloc(nmp, t_error, sys_error)) != NULL) {
54 put next (dccp- >dccp_connp- >conn_rq, np);

55 }

56 }

58 void
59 dccp_t pi _connect (dccp_t *dccp, nblk_t *np)
{

61 struct T_conn_req *tcr;

new usr/src/uts/comon/inet/dccp/ dccp_tpi.c

62 conn_t *connp = dccp->dccp_connp;

63 sin_t *sin;

64 sin6_t *sin6;

65 cred_t *cr;

66 pid_t cpid

67 I nt error;

69 cmm_err (CE_NOTE, "dccp_tpi.c: dccp_tpi_connect");

71 cr = msg_getcred(np, &cpid);

72 ASSERT(cr !'= NULL);

73 if (cr == NULL) {

74 dccp_err_ack(dccp, np, TSYSERR, EINVAL);

75 return;

76 1

78 tcr = (struct T_conn_req *)np->b_rptr;

80 ASSERT((uintptr_t)(nmp->b_wptr - np->b_rptr) <= (uintptr_t)INT_MAX);
81 if ((mp->b_wptr - nmp->b_rptr) < sizeof (*tcr)) {

82 dccp_err_ack(dccp, nmp, TPROTO, 0);

83 return;

84 }

86 }

88 int

89 dccp_tpi _close(queue_t *q, int flags)

90 {

91 return (0);

92 }

94 /*

95 * Options related functions.

96 */

97 int

98 dccp_tpi _opt _get (queue_t *qg, int level, int name, uchar_t *ptr)
99 {

100 return (tcp_opt_get(QTO CONN(q), |evel, nane, ptr));
101 }

103 /* ARGSUSED */

104 int

105 dccp_t pi _opt_set(queue_t *qg, uint_t optset_context, int level, int nane,
106 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
107 void *thisdg_attrs, cred_t *cr)

108 {

109 conn_t *connp = Q TO CONN(Q);

111 return (tcp_opt_set(connp, optset_context, |evel, name, inlen, invalp,
112 outl enp, outvalp, thisdg_attrs, cr));

113

}
114 #endif /* | codereview */

new usr/src/uts/ common/inet/dccp/ dccp_tunables.c

R R R R

1647 Wed Jun 13 12: 04: 42 2012
new usr/src/uts/comon/inet/dccp/ dccp_tunables.c
0,
*@**

1/*
* This file and its contents are supplied under the ternms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://wwm illunmos. org/license/ CDDL.

=
QCQOONOUTAWN
* Ok Ok ok % Ok kO

13 * Copyright 2012 David Hoeppner. All rights reserved.
*
/

16 /*
17 * This file contains tunable properties for DCCP.
*/

19 #include <inet/ip.h>

20 #include <inet/ip6.h>

21 #include <inet/dccp/dccp_inpl.h>
22 #include <sys/sunddi . h>

24 nod_prop_info_t dccp_propinfo_tbl[] = {
/* tunable - 0 */

25

26 { "small est_nonpriv_port", MOD_PROTO DCCP,
27 nmod_set _ui nt 32, nod get ui nt 32,

28 {1024, (32 * 1024) 1024}, {1024} },
30 { "small est_anon_port", MOD PROTO _DCCP,

31 nod_set _ui nt 32, mod _get _ui nt 32,

32 {1024, ULP_MAX_PORT, 32%1024}, {32*1024} },
34 { "largest_anon_port", MOD_PROTO _DCCP,

35 nmod_set _ui nt 32, mod _get _ui nt 32,

36 {1024, ULP_MAX_PORT, ULP_MAX P(RT} { ULP_MAX_PORT} 1},
38 { "_xmt_lowat", MOD_PROTO DCCP,

39 nmod_set _ui nt 32, nod_get _ui nt 32,

40 {0, 7(1<<30), DOCP XM T LO/\ATER}

41 {DCCP_XM T LO/\ATER} 1,

43 { "_debug", MOD _PROTO DCCP,

44 mod_set _ui nt 32, nod_get _ui nt 32,

45 {0, 10, 0}, {O} },

47 { "_rst_sent_rate_enabl ed", MOD _PROTO DCCP,
48 mod_set _bool ean, nod get bool ean,

49 {B_TRUE}, {B_TR E} },

51 { "_rst_sent_rate", MOD_PROTO DCCP,

52 nod_set _ui nt 32 mod_get _ui nt 32,

53 {0, TUI NT32_MAX, 40}, {40} },

55 /* tunable - 10 */

57 { NULL, O, NULL, NuLL, {0}, {0} }

58 };

60 int dccp_propinfo_count = A CNT(dccp_propinfo_tbl);
61 #endif /* | codereview */

new usr/src/uts/ common/inet/dccp/ dccpddi.c

R R R R

1439 Wed Jun 13 12:04: 42 2012
new usr/src/ uts/ comon/inet/dccp/ dccpddi.c

0,

*@**
1/*
2 * This file and its contents are supplied under the terms of the
3 * Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.
6 *
7 * Afull copy of the text of the CDDL shoul d have acconpanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illunos.org/license/ CDDL.
10 */
12 /*

13 * Copyright 2012 David Hoeppner. All rights reserved.
*
/

16 #i nclude <sys/types. h>

17 #incl ude <sys/conf.h>

18 #incl ude <sys/nodctl . h>

19 #incl ude <inet/conmon. h>
20 #include <inet/ip.h>

21 #include <sys/strsubr. h>
22 #include <sys/socketvar.h>

24 #include "dccp_inpl.h"

26 #define | NET_NAME "dccp"”

27 #define | NET_MODDESC "DCCP dummy STREAMS nodul e”

28 #define | NET_DEVDESC "DCCP STREAMS driver"

29 #define | NET_SOCKDESC "DCCP socket nodul e"

30 #define | NET_MODSTRTAB dummynodi nfo

31 #define | NET_DEVSTRTAB dccpi nfov4

32 #define | NET_MODMIFLAGS D_MP

33 #define | NET_SOCK_PROTO CREATE_FUNC (*dccp_create)
34 #define | NET_SOCK_PROTO FB_FUNC (*dccp_fal | back)
35 #define | NET_SOCK_FALLBACK_DEV_V4 "/ dev/ dccp”
36 #define | NET_SOCK_FALLBACK DEV_V6 "/ dev/ dccp6”
37 #define INET_DEVM NOR 0

38 #define | NET_MODMIFLAGS D_MP

39 #define | NET_DEVMIFLAGS (D _MP| _D DI RECT)
41 #include "../inetddi.c"

43 int
44 _init(void)

return (nod_install (&mwodlinkage));

N
o
e ad f-"al

49 int
50 _fini(void)

return (nod_renove(&odl i nkage));

(63}
=
o~

55 int
56 _info(struct nodinfo *nodi nfop)

T
return (nod_i nfo(&modl i nkage, nodinfop));
59 }
#endif /* | codereview */

new usr/src/uts/common/inet/ip.h 1

R R R R

140153 Wed Jun 13 12: 04: 43 2012
new usr/src/uts/comon/inet/ip.h
0,
*@**
1/
* CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*

*

*

*

*

*

*

*

*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: [name of copyright owner]

Portions Copyright [yyyy]

NRERRRRRRRRER
COONOUITAWNROW©O~NOUTDWN

CDDL HEADER END
/

23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. Al rights reserved.

24 * Copyright (c) 1990 Mentat Inc.
25 */

27 #ifndef _INET_IP_H

28 #define _INET_IP_H

30 #ifdef __cplusplus

31 extern "C' {

32 #endif

34 #include <sys/isa_defs. h>
35 #include <sys/types. h>

36 #include <inet/m b2. h>

37 #include <inet/nd. h>

38 #include <sys/atonic. h>

39 #include <net/if_dl.h>

40 #include <net/if.h>

41 #include <netinet/ip.h>

42 #include <netinet/ignp. h>
43 #include <sys/neti.h>

44 #incl ude <sys/hook. h>

45 #incl ude <sys/ hook_event. h>
46 #incl ude <sys/hook_i npl.h>
47 #include <inet/ip_stack. h>

49 #ifdef _KERNEL

50 #include <netinet/ip6.h>
51 #include <sys/avl.h>

52 #include <sys/list.h>

53 #include <sys/vmem h>

54 #incl ude <sys/squeue. h>
55 #include <net/route. h>
56 #i nclude <sys/systm h>
57 #i nclude <net/radix. h>
58 #i ncl ude <sys/nodhash. h>

60 #ifdef DEBUG
61 #define CONN_DEBUG

new usr/src/uts/comon/inet/ip.h

62

120

124

126
127

#endi

f

#def i ne | P_DEBUG
/*

* The nt-streans(9F) flags for the | P nodule; put

* "drivers" that are actually IP (e.qg.,
* of flags.
*/
#defi ne | P_DEVMIFLAGS D_MP
#endi f /* _KERNEL */
#define | P_MOD_NAME "ip"
#defi ne | P_DEV_NAMVE "/ dev/ip"
#defi ne | P6_DEV_NAVE "/ dev/ip6"
#def i ne UDP_MOD_NAME "udp"
#def i ne UDP_DEV_NAME "/ dev/ udp"
#define UDP6_DEV_NAME "/dev/udp6"
#def i ne TCP_MOD_NAME "tcp"
#def i ne TCP_DEV_NAME "/ dev/tcp"
#define TCP6_DEV_NAME "/dev/tcp6"
#define SCTP_MOD_NAME "sctp"
#defi ne DCCP_MOD_NAME "dccp”
#defi ne DCCP_DEV_NAME "/dev/dccp”
#def i ne DCCP6_DEV_NAME "/ dev/dccp6”
#endif /* | codereview */
#i fndef | PADDR T
#define _| PADDR T

typedef uint32_t ipaddr_t;

#endi f
/* Nunber of bits in an address */
#define | P_ABI TS 32
#define | PV4A_ABI TS I P_ABI TS
#define | PV6_ABI TS 128
#define | P_MAX HWLEN 40
#def i ne | P_HOST_MASK (ipaddr_t)Oxffffffffu
#define | P_CSUM np, off, sum (~i p_cksum(nmp, off,
#define | P_CSUM PARTI AL(np, off, sum i p_cksun(np, off, sun
#defi ne | P_BCSUM PARTI AL(bp, len, sun) bcksun(bp, len, sum
#define | LL_FRAG HASH TBL_COUNT ((unsigned int)64)
#define | LL_FRAG HASH TBL_SI ZE (I LL_FRAG HASH TBL_COUNT * sizeof (ipfb_t))
#define | Pv4_ADDR LEN 4
#define | P_ADDR LEN | PV4_ADDR _LEN
#define | P_ARP_PROTO TYPE 0x0800
#define | PV4_VERSI ON 4
#defi ne | P_VERSI ON | PV4_VERS| ON
#define | P_SI MPLE_ HDR LENGTH I N WORDS 5
#define | P_SI MPLE_HDR_LENGTH 20
#defi ne | P_MAX_HDR _LENGTH 60
#define | P_MAX_OPT_LENGTH (1 P_MAX _HDR LENGTH- | P_SI MPLE_HDR LENGTH)
#define | P_M N_MrU (1 P_MAX_HDR LENGTH + 8) /* 68 bytes */
/*
* XXX | P_MAXPACKET is defined in <netinet/ip.h> as well.

here so that

ot her

| CWP, UDP) can use the sane set

sum) & OXFFFF)

At sone point the

new usr/src/uts/comon/inet/ip.h

128 * 2 files should be cleaned up to renove all redundant definitions.
129 */

130 #define | P_MAXPACKET 65535

131 #define | P_SI MPLE_HDR VERSI ON \

132 ((I'P_VERSION << 4) | |P_SI MPLE_HDR_LENGTH_| N_WORDS)

134 #define UDPH_SI ZE 8

136 /*

137 * Constants and type definitions to support |IP I OCTL conmands

138 */

139 #define | P_I OCTL ((i'<<8)|'p")

140 #define | P_| OC | RE_DELETE 4

141 #define | P_| OC_| RE_DELETE_NO REPLY 5

142 #define | P_| OC_RTS_REQUEST 7

144 |/* Cormmon definitions used by IP I OCTL data structures */

145 typedef struct ipllcnd_

146 uint_t 1pllc_i crm

147 uint_t ipllc_name_offset;

148 uint_t ipllc_name_| ength;

149 } ipllc_t;

151 /* 1P | RE Del ete Command Structure. */

152 typedef struct ipi d_s {

153 ipllc 1pid_ipllc;

154 ui nt t ipid_ire_type;

155 uint_t i pi d_addr _of f set ;

156 uint_t ipid_addr_l ength;

157 uint_t ipid_mask_of fset;

158 uint_t ipid_mask_length;

159 } ipid_t;

161 #define ipid_cnmd ipid_ipllc.ipllc_cmd

163 #i fdef _KERNEL

164 /*

165 * Tenporary state for ip options parser.

166 */

167 typedef struct ipoptp_s

168 {

169 ui nt 8_t *i popt p_next; /* next option to | ook at */
170 ui nt8_t *i popt p_end; /* end of options */

171 uint8_t *| popt p_cur; /* start of current option */
172 uint8_t i poptp_I en; /* length of current option */
173 ui nt32_t i popt p_fl ags;

174 } ipoptp_t;

176 /*

177 * Flag(s) for ipoptp_flags

178 */

179 #define | POPTP_ERROR 0x00000001

180 #endif /* _KERNEL */

182 /* Controls forwarding of |P packets, set via ipadm(1M/ndd(1M

183 #define | P_FORWARD NEVER 0

184 #define | P_FORWARD_ALWAYS 1

186 #define WE_ARE FORWARDI NG(i pst) ((ipst)->ips_ip_forwardi ng == | P_FORWARD_ALWAYS)
188 #define | PH HDR LENGTH(i pha) \
189 ((int)(((ipha_t *)ipha)->i pha_version_and_hdr_|l ength & OxF) << 2)
191 #define | PH DR_VERSI ON(i pha)

192 ((int)(((ipha_t *)ipha)->i pha_version_and_hdr_I ength) >> 4)

new usr/src/uts/comon/inet/ip.h

194 #ifdef _KERNEL

195 /*

196 * IP reassenbly nmacros. W hide starting and ending offsets in b_next and
197 * b_prev of nmessages on the reassenbly queue. The nessages are chai ned using
198 * b_cont. These macros are used in ip_reassenble() so we don't have to see
199 * the ugly casts and assignnments.

200 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent
201 * them

202 */

203 #define | P_REASS_START(np) ((ui nt_t)(uintptr_t)((np)->b_next))
204 #define | P_REASS SET _START(np, u)

205 ((mp) - >b_next (bl k_t *)(umtptr _t)(u))

206 #define IP REASS_END(rrp) ((UI nt_t)(uintptr_t)((mp)->b_prev))
207 #define | P_REASS_SET_END(np, u)

208 ((mp)->b_prev = (nbl k_t *)(uintptr_t)(u))

210 #define | P_REASS COVWPLETE 0x1

211 #define | P_REASS_PARTI AL 0x2

212 #define | P_REASS FAI LED 0x4

214 | *

215 * Test to determine whether this is a nodule instance of IP or a

216 * driver instance of I|P.

217 */

218 #define CONN_QQq) (WR(Qg) ->q_next == NULL)

220 #define Q TO CONN(Qq) ((conn_t *)(q)->q_ptr)

221 #define Q_TO TCP(Q) (Q_TO CONN((q))->conn_tcp)

222 #define Q_TO UDP(Qq) (Q_.TO CONN((q))->conn_udp)

223 #define Q_TO | CVP(Qq) (Q_TO_CONN((q))->conn_i cnp)

224 #define Q. TO RTS(q) (Q_TO_CONN((q))->conn_rts)

225 #define Q TO DCCP(q) (Q_TO_CONN((q))->conn_dccp)

226 #endif /* | codereview */

228 #define CONNP_TO WY connp) ((connp) - >conn_wq)

229 #define CONNP_TO _RQ connp) ((connp) - >conn_rq)

231 #define GRAB_CONN_LOCK(q) { \

232 if (g !'= NULL & CONN Q(q)) \

233 mut ex_ent er (& Q_TO_CONN(q)) - >conn_|I ock) ; \

234 }

236 #define RELEASE_CONN_LOCK(q) { \

237 if (g != NULL && CONN Q(q)) \

238 mut ex_exi t (& Q_TO _CONN(q)) - >conn_]| ock) ; \

239 }

241 | *

242 * Ref counter nmacros for ioctls. This provides a guard for TCP to stop

243 * tcp_close fromrenoving the rg/wg whilst an ioctl is still in flight on the
244 * stream The ioctl could have been queued on e.g. an ipsq. tcp_close will wait
245 * until the ioctlref count is zero before proceeding.

246 * ldeally conn_oper_pending_ill would be used for this purpose. However, in the
247 * case where an 1octl is aborted or interrupted, it can be cleared prenaturely.
248 * There are al so sonme race possibilities between ip and the stream head which
249 * can also end up with conn_oper_pending_ill being cleared prematurely. So, to
250 * avoid these situations, we use a dedicated ref counter for ioctls which is
251 */used in addition to and in parallel with the normal conn_ref count.

252 *

253 #define CONN_I NC_| OCTLREF_LOCKED(connp) { \

254 ASSERT(MJTEX_HELD(. &(connp) - >conn_| ock)) ; \

255 DTRACE_PROBEI(conn__inc__ioctlref, conn_t *, (connp)); \

256 (connp) - >conn_i octTref ++; \

257 mut ex_exi t (& connp) - >conn_| ock) ; \

258 }

new usr/src/uts/comon/inet/ip.h 5 new usr/src/uts/comon/inet/ip.h
260 #define CONN_I NC_| OCTLREF(connp) { \ 326 */
261 mut ex_ent er (& connp) - >conn_| ock) ; \ 327 #define | S_VA_FRAGMVENT(i pha_fragnent _of fset_and_fl ags) \
262 CONN_T NC_| OCTLREF_LOCKED(connp) ; \ 328 (((ntohs(i pha_fragnent _of fset _and_fTags) & IPH OFFSET) != 0) || \
263 } 329 ((ntohs(ipha_fragment_of fset_and_flags) & IPH M) = 0))
265 #define CONN_DEC_| OCTLREF(connp) \ 331 #define ipf_src VA_PART_OF_V6(i pf_v6src)
266 nmut ex_ent er (&(connp) - >conn_| ock) ; \ 332 #define ipf_dst V4_PART_OF_V6(i pf_v6dst)
267 DTRACE_PROBE1(conn__dec__ioctlref, conn_t *, (connp)); \
268 /* Make sure conn_ioctlref wll not under fl ow. */ \ 334 #endif /* _KERNEL */
269 ASSERT((connp) - >conn_i octlref != 0); \
270 if ((--(connp)->conn_ioctlref == 0) && \ 336 /* | CWP types */
271 ((connp) ->conn_state_flags & CONN_CLOSING) { \ 337 #define | CMP_ECHO REPLY 0
272 cv_broadcast (& connp) - >conn_cv); \ 338 #define | CMP_DEST_UNREACHABLE 3
273 \ 339 #define | CMP_SOURCE_QUENCH 4
274 mut ex_exi t (& connp) - >conn_l| ock) ; \ 340 #define | CMP_REDI RECT 5
275 } 341 #define | CMP_ECHO REQUEST 8
342 #define | CVP_ROUTER ADVERTI SEMENT 9
343 #define | CMP_ROUTER_SCLI Cl TATI ON 10
278 | * 344 #define | CMP_TI ME_EXCEEDED 11
279 * Conplete the pending operation. Usually an ioctl. Can also 345 #defi ne | CMP_PARAM PROBLEM 12
280 * be a bind or option managenment request that got enqueued 346 #define | CVMP_TI ME_STAMP_REQUEST 13
281 * in an ipsq_t. Called on conpletion of the operation. 347 #define | CMP_TI ME_STAMP_REPLY 14
282 */ 348 #define | CVP_I NFO_ REQUEST 15
283 #defi ne CONN_OPER_PENDI NG_DONE(connp) { \ 349 #define | CVP_I NFO_REPLY 16
284 mut ex_ent er (& connp) - >conn _l ock); \ 350 #define | CMP_ADDRESS_MASK_REQUEST 17
285 (connp) - >conn_oper _pendi ng_i | | = NULL; \ 351 #define | CVP_ADDRESS_MASK_REPLY 18
286 cv_broadcast (& connp) - >conn_r ef cv) ; \
287 mut ex_exi t (& connp) - >conn_| ock) ; \ 353 /* Evaluates to true if the ICVWP type is an ICWP error */
288 CONN_DEC_REF(connp) ; \ 354 #define | CMP_I S_ERROR(type) (\
289 } 355 (type) == | CMP_DEST_UNREACHABLE | | \
356 (type) | CMP_SOURCE_QUENCH | | \
291 /* 357 (type) | CMP_TI ME_EXCEEDED | | \
292 */Val ues for squeue sw tch: 358 (type) == | CMP_PARAM PROBLEM
293 *
294 #define | P_SQUEUE ENTER NODRAI N 1 360 /* | CMP_TI ME_EXCEEDED codes */
295 #define | P_SQUEUE_ENTER 2 361 #define | CMP_TTL_EXCEEDED 0
296 #define | P_SQUEUE FILL 3 362 #define | CMP_REASSEMBLY_TI ME_EXCEEDED 1
298 extern int ip_squeue_flag; 364 /* | CMP_DEST_UNREACHABLE codes */
365 #define | CMP_NET_UNREACHABLE 0
300 /* | P Fragnentation Reassenbly Header */ 366 #define | CMP_HOST_UNREACHABLE 1
301 typedef struct ipf_s { 367 #define | CMP_PROTOCOL_UNREACHABLE 2
302 struct ipf_s *i pf _hash_next; 368 #define | OMP_PORT_UNREACHABLE 3
303 struct ipf_s **| pf _pt phn; /* Pointer to previous hash next. */ 369 #define | CVP_FRAGVENTATI ON_NEEDED 4
304 ui nt 32_t i pf _i dent; /* ldent to match. */ 370 #define | OMP_SOURCE_ROUTE_FAI LED 5
305 ui nt 8_t i pf _protocol; /* Protocol to match. */ 371 #define | CVP_DEST_NET_UNKNOWN 6
306 uchar _t ipf _last_frag_seen : 1; /* Last fragment seen ? */ 372 #define | CMP_DEST_HOST UNKNOMN 7
307 tine_t ipf _tinestanp; /* Reassenbly start time. */ 373 #define | OMP_SRC HOST T SOLATED 8
308 bl k_t *| pf _np; /[* nblk we live in. */ 374 #define | CMP_DEST_NET_UNREACH ADM N 9
309 bl k_t *ipf_tail _np; /* Frag queue tail pointer. */ 375 #define | CMP_DEST_HOST UNREACH ADM N 10
310 int i pf _hol e_cnt; /* Nunber of holes (hard-case). */ 376 #define | OMP_DEST_NET_UNREACH TOS 11
311 int i pf _end; /* Tail end offset (O -> hard-case). */ 377 #define | OMP_DEST_HOST_UNREACH TOS 12
312 ui nt _t i pf _gen; /* Frag queue generation */
313 size_t i pf _count; /* Count of bytes used by frag */ 379 /* | CWP Header Structure */
314 ui nt _t i pf _nf_hdr_len; /* Length of nonfragmented header */ 380 typedef struct icnph_s {
315 i n6_addr _t i pf _v6src; /* | Pv6 source address */ 381 ui nt8_t i cnph_t ype;
316 i n6_addr _t i pf _v6dst; /* 1 Pv6 dest address */ 382 uint8_t i cnph_code;
317 ui nt _t i pf _prev_nexthdr_offset; /* Offset for nexthdr value */ 383 ui nt16_t i cnph_checksum
318 ui nt 8_t i pf _ecn; /* ECN info for the fragnents */ 384 uni on {
319 uint8_t i pf _num dups; /* Nunber of tines dup frags recvd */ 385 struct { /* ECHO request/response structure */
320 uint16_t i pf _checksum flags; /* Hardware checksum flags */ 386 uint16_t u_echo_i dent ;
321 ui nt 32_t i pf _checksum /* Partial checksum of fragnent data */ 387 ui nt 16_t u_echo_seqnum
322 } ipf_t; 388 } u_echo;
389 struct { /* Destination unreachable structure */
324 | * 390 uint16_t u_du_zero;
325 * | Pv4 Fragnents 391 uint16_t u_du_nt u;

new usr/src/uts/comon/inet/ip.h 7 new usr/src/uts/comon/inet/ip.h
392 } u_du; 458 #define | PH_ ECN_CE 0x3 /* ECN- Congestion Experienced (CE)
393 struct { /* Paraneter problemstructure */
394 ui nt8_t u_pp_ptr; 460 struct ill_s;
395 ui nt 8_t u_pp_rsvd[3];
396 } u_pp; 462 typedef void ip_v6intfid_func_t(struct ill_s *, in6_addr_t *);
397 struct { /* Redirect structure */ 463 typedef void ip_vémapi nfo_func_t(struct ilT_s *, uchar_t *, uchar_t *);
398 i paddr _t u_rd_gatenay; 464 typedef void ip_va4mapinfo_func_t(struct ill_s *, uchar_t *, uchar_t *);
399 } ou_rd;
400 } icnph_u; 466 /* IP Mac info structure */
401 } icnph_t; 467 typedef struct ip_ms {
468 t _uscal ar _t ip_mmac_type; /* From <sys/dlpi.h> */
403 #define icnph_echo_i dent i cnph_u. u_echo. u_echo_i dent 469 int ip_m type /* From<net/if_types.h> */
404 #define icnph_echo_seqgnum i cnph_u. u_echo. u_echo_segnum 470 t _uscal ar _t i p_m.ipv4sap;
405 #define icnph_du_zero i cnph_u. u_du. u_du_zero 471 t _uscal ar _t i p_m.i pv6sap;
406 #define icnph_du_ mu i cmph_u. u_du. u_du_ mu 472 i p_v4mapi nfo_func_t *| p_m_v4nmappi ng;
407 #define icnph_pp i cnph_u. u_pp. u_pp 473 i p_v6émapi nf o_f unc_t *i p_m_v6nmappi ng;
408 #define icnph_rd_ gat eway i cnph_u. u_rd. u_rd_ gat eway 474 ip_veintfid_func_t *ip_myv6intfid;
475 ip_veintfid_func_t *ip_mvédestintfid;
410 #define | CMPH_SI ZE 8 476 } ip_mt;
412 [* 478 [*
413 * Mninmumlength of transport |ayer header included in an | CVP error 479 * The followi ng functions attenpt to reduce the |link |ayer dependency
414 * npessage for it to be considered valid. 480 * of the IP stack. The current set of link specific operations are:
415 */ 481 * a. map from|1Pv4 class D (224.0/4) multicast address range or the
416 #define | CMP_M N_TP_HDR_LEN 8 482 * |Pv6 nulticast address range (ff00::/8) to the link layer nulticast
483 * address.
418 /* Aligned | P header */ 484 * b. derive the default I1Pv6 interface identifier fromthe interface.
419 typedef struct ipha_s { 485 * c. derive the default |1Pv6 destination interface identifier from
420 ui nt 8_t i pha_versi on_and_hdr _| engt h; 486 * the interface (point-to-point only).
421 uint8_t i pha_t ype_of _servi ce; 487 */
422 uint16_t i pha_l engt h; 488 extern void ip_ntast_mapping(struct ill_s *, uchar_t *, uchar_t *);
423 uint16_t i pha_i dent ; 489 /* ip_muv6*intfid return void and are never NULL */
424 ui nt16_t i pha_| fragment of fset _and_f | ags; 490 #define MEDI A VBINTFID(ip_m ill, véptr) (ip_ nj >ip_myveintfid(ill, véptr)
425 ui nt 8_t i pha_ttl; 491 #define MEDI A VBDESTINTFID(ip_m ill, véptr) \
426 uint8_t i pha_pr ot ocol ; 492 (ip_m->ip_mve6destintfid(il I veptr)
427 uint16_t i pha_hdr _checksum
428 i paddr _t i pha_src; 494 /* Router entry types */
429 i paddr _t i pha_dst; 495 #define | RE_BROADCAST 0x0001 /* Route entry for broadcast address */
430 } ipha_t; 496 #define | RE_DEFAULT 0x0002 /* Route entry for default gateway */
497 #define | RE_LOCAL 0x0004 /* Route entry for |ocal address */
432 | * 498 #defi ne | RE_LOOPBACK 0x0008 /* Route entry for |oopback address */
433 * I P Flags 499 #define | RE_PREFI X 0x0010 /* Route entry for prefix routes */
434 * 500 #ifndef _KERNEL
435 * Some of these constant names are copied for the DTrace |P provider in 501 /* Keep so user-level still conpiles */
436 * wusr/src/lib/libdtrace/comon/{ip.d.in, ip.sed.in}, which should be kept 502 #define | RE_CACHE 0x0020 /* Cached Route entry */
437 * in sync. 503 #endi f
438 */ 504 #define | RE_I F_NORESOLVER 0x0040 /* Route entry for local interface */
439 #define | PH DF 0x4000 /* Don’'t fragnent */ 505 /* net without any address mapping. */
440 #define | PH_MF 0x2000 /* More fragnents to cone */ 506 #define | RE_I F_RESOLVER 0x0080 /* Route entry for local interface */
441 #define | PH_OFFSET Ox1FFF /* \Were the offset lives */ 507 /* net with resolver. */
508 #define | RE_HOST 0x0100 /* Host route entry */
443 |* Byte-order specific values */ 509 /* Keep so user-level still conpiles */
444 #ifdef _BI G ENDI AN 510 #define | RE_HOST_REDI RECT 0x0200 /* only used for T_SVR4_OPTMGMI_REQ */
445 #define TPH DF_HTONS 0x4000 /* Don't fragnment */ 511 #define | RE_I F_CLONE 0x0400 /* Per host clone of IRE_IF */
446 #define | PH_MF_HTONS 0x2000 /* More fragnents to conme */ 512 #define | RE_MJLTI CAST 0x0800 /* Special - not in table */
447 #define | PH OFFSET_HTONS Ox1FFF /* \Where the offset lives */ 513 #defi ne | RE_NOROUTE 0x1000 /* Special - not in table */
448 #el se
449 #define | PH DF_HTONS 0x0040 /* Don't fragnment */ 515 #defi ne | RE_I NTERFACE (1 RE_I F_NORESOLVER | | RE_I F_RESOLVER)
450 #define | PH_MF_HTONS 0x0020 /* More fragnents to come */
451 #define | PH_ OFFSET_HTONS OxFF1F /* Wiere the offset |ives */ 517 #define IRE | F_ALL (I RE_I F_NORESOLVER | | RE_| F_RESOLVER | \
452 #endi f 518 TRE_| F_CLONI
519 #define | RE_OFFSUBNET (1 RE_DEFAULT | | RE_PREFI X | | RE_HOST)
454 | * ECN code points for IPv4 TCS byte and I Pv6 traffic class octet. */ 520 #define | RE_OFFLI NK | RE_OFFSUBNET
455 #define | PH_ ECN_NECT 0x0 /* Not ECN- Capabl e Transport */ 521 /*
456 #define | PH ECN_ECT1 0x1 /* ECN- Capabl e Transport, ECT(1) */ 522 * Note that we view | RE_NOROUTE as ONLI NK since we can "send" to them w thout
457 #define | PH_ECN_ECTO 0x2 /* ECN- Capabl e Transport, ECT(0) */ 523 * going through a router; the result of sending will be an error/icnp error.

new usr/src/uts/comon/inet/ip.h

524 *

525 #define | RE_ONLI NK (IRE_IF_ALL| | RE_LOCAL| | RE_LOOPBACK| \

526 T'RE_BROADCAST| | RE_MULTI CAST| | RE_NOROUTE)
528 /* Argunents to ire_flush cache()

529 #define | RE_FLUSH DELETE

530 #define | RE_FLUSH_ADD 1

531 #define | RE_FLUSH GWCHANGE 2

533 /*

534 * Flags to ire_route_recursive

535 */

536 #define | RR_NONE 0

537 #define | RR_ALLOCATE 1 /* OKto allocate I RE_|I F_CLONE */
538 #define | RR_I NCOWLETE 2 /* OK to return inconplete chain */
540 /*

541 * (Open/cl ose synchronization flags.

542 * These are kept in a separate field in the conn and the synchronization
543 */depends on the atomic 32 bit access to that field.

544 *

545 #define CONN_CLOSI NG 0x01 /* ip_close waiting for ip_wsrv */
546 #defi ne CONN_CONDEMNED 0x02 /* conn is closing, no nore refs */
547 #define CONN_I NCI Pl ENT 0x04 /* conn not yet visible, no refs */
548 #defi ne CONN_QUI ESCED 0x08 /* conn is now qui escent */

549 #defi ne CONN_UPDATE_I LL 0x10 /* conn_update_ill in progress */
551 /*

552 * Flags for dce_flags field. Specifies which infornmation has been set.

553 * dce_ident is always present, but the other ones are identified by the flags.
554 */

555 #defi ne DCEF_DEFAULT 0x0001 /* Default DCE - no pntu or uinfo */
556 #defi ne DCEF_PMIU 0x0002 /* Different than interface MU */
557 #defi ne DCEF_Ul NFO 0x0004 /* dce_uinfo set */

558 #define DCEF_TOO SMALL_PMIU 0x0008 /* Smaller than I|Pv4/IPv6 MN */
560 #ifdef _KERNEL

561 /*

562 * Extra structures need for per-src-addr filtering (I GWwv3/ M.Dv2)

563 *

564 #define MAX_FILTER SI ZE 64

566 typedef struct slist_s {

567 int sl _numsrc

568 i n6_addr _t sl _addr[IVAX FI LTER_SI ZE] ;

569 } slist_t;

571 | *

572 * Following struct is used to naintain retransm ssion state for

573 * a nulticast group. One rtx_state_t struct is anin-line field

574 * of the ilmt struct; the slist_ts in the rtx_state_t struct are

575 * alloc’d as needed.

576 *

577 typedef struct rtx_state_s {

578 ui nt _t rtx_tiner; /* retrans timer */

579 int rtx_cnt; /* retrans count */

580 int rtx_frmode_cnt; /* retrans count for fnode change */
581 slist_t *rtx_all ow

582 slist_t *rtx_bl ock;

583 } rtx_state_t;

585 /[*

586 * Used to construct |ist of nulticast address records that will be

587 * sent in a single listener report.

588 */

589 typedef struct nrec_s {

new usr/src/uts/comon/inet/ip.h

590
591
592
593
594
595

597

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

655 typedef struct

struct nrec_s
uint8_t

ui nt 8_t
in6_addr _t
slist_t

*nrec_next;
nT ec_t ype;
nr ec_auxl en;
nT ec_group;
nT ec_srcs;

/* currently unused */

} mrec_t;

/
/

typedef struct

*

H ok kR ok b Sk OF R Ok Rk R ok % Ok %k b ¥ o

*
*

Group nmenbership |ist per upper conn */

We record the nulticast information fromthe socket option in
ilg_ifaddr/ilg_ifindex. This allows rejoining the group in the case when
the ifaddr (or ifindex) disappears and |ater reappears, potentially on

a different ill. The IPv6 nulticast socket options and ioctls all specify
the interface using an ifindex. For |IPv4 sone socket options/ioctls use
the interface address and others use the index. We record here the nethod
that was actually used (and | eave the other of ilg_ifaddr or ilg_ifindex)
at zero so that we can rejoin the way the application intended.

We track the ill on which we will or already have joined an il musing
ilg_ill. Wien we have succeeded joining the il mand have a refhold on it
then we set ilg_ilm Thus intentionally there is a window where ilg_ill is
set and ilg_ilmis not set. This allows clearing ilg_ill as a signal that
the ill is being unplunbed and the il mshould be discarded.

ilg records the state of multicast
ilmrecords the state of multicast
mai ntai ned per interface.

menber shi ps of a socket end point.
menberships with the driver and is

The ilg state is protected by conn_ilg_| ock.
The ilg will not be freed until ilg_refcnt drops to zero.

il
struct il
struct il
struct co Back pointer to get |ock */

r
For sone | Pv4 cases */
| Pv6 and sone other |Pv4 cases */
Wiere ilmis joined. No refhold */
Wth ilmrefhold */
uint_t
ncast _record_t
slist_t
bool ean_t

MODE_| S_| NCLUDE/ MODE_I S_EXCLUDE */
Conceptual |y deleted */

}ilg_t;
/*

® Ok Sk ok bk Ok Ok ok ok k% k% %

Mul ticast address list entry for ill.
ilmill is used by IPv4 and | Pv6

The ilmstate (and other nulticast state on the ill) is protected by
ill_nctast_lock. Operations that change state on both an ilg and ilm

in addition use ill_ntast_serializer to ensure that we can’t have

interl eaving between e.g., add and del ete operations for the same conn_t,
group, and ill. The ill_ntast_serializer is also used to ensure that

mul ticast group joins do not occur on an interface that is in the process
of joining an | PMP group.

The comment bel ow (and for other netstack_t references) refers

to the fact that we only do netstack_hold in particul ar cases,

such as the references from open endpoints (ill_t and conn_t’'s
pointers). Internally within IP we rely on IP's ability to cleanup e.g.
Ire_t’s when an ill goes away.

ilms {

10

new usr/src/uts/common/inet/ip.h 11

656 in6_addr _t i | mv6addr;

657 int ilmrefcnt;

658 ui nt _t ilmtiner; /* 1 GW/ M.D query resp tiner, in nmsec */
659 struct ilms *i | m_next; /* Linked list for each ill */
660 ui nt _t ilmstate /* state of the nmenbership */

661 struct ill_s *ilmill; /* Back pointer to ill - ill_ilment */
662 zonei d_t il mzoneid;

663 int ilmno_lgcnt /* nunber of joins w noilg */
664 ntast _record_t il mfnode; /* MODE_I S_| NCLUDE/ MODE_| S_EXCLUDE */
665 slist_t *ilmfllter /* source filter list *I

666 slist_t *il m_pendsrcs; /* relevant src addrs for pending req */
667 rtx_state_t ilmrtx; /* SCR retransm ssion state */
668 i paddr _t il mifaddr /* For |Pv4 netstat */

669 i p_stack_t *il mipst; /* Does not have a netstack_hold */
670 } ilmt;

672 #define il maddr VA_PART_OF_V6(il m v6addr)

674 | *

675 * Soft reference to an |Psec SA

676 *

677 * On relative terns, conn’s can be persistent (living as long as the
678 * processes which create thenm), while SA's are epheneral (dying when
679 * they hit their tine-based or byte-based lifetines).

680 *

681 * W could hold a hard reference to an SA from an ipsec_|latch_t,

682 * but this would cause expired SA's to linger for a potentially

683 * unbounded ti me.

684 *

685 * Instead, we renenber the hash bucket number and bucket generation

686 * in addition to the pointer. The bucket generation is incremented on
687 * each deletion.

688 */

689 typedef struct ipsa_ref_s

690 {

691 struct ipsa_s *i psr_sa;

692 struct isaf_s *i psr_bucket ;

693 ui nt64_t i psr_gen;

694 } ipsa_ref_t;

696 /*

697 * |Psec "latching" state.

698 *

699 * In the presence of |Psec policy, fully-bound conn’s bind a connection
700 * to nore than just the 5-tuple, but also a specific |Psec action and
701 * identity-pair.

702 * The identity pair is accessed fromboth the receive and transnmit side
703 * hence it is maintained in the ipsec_latch_t structure. conn_latch and
704 * ixa_ipsec_latch points to it.

705 * The policy and actions are stored in conn_latch_in_policy and

706 * conn_latch_in_action for the inbound side, and in ixa_ipsec_policy and
707 * ixa_ipsec_action for the transmt side.

708 *

709 * As an optimzation, we also cache soft references to | Psec SA's in
710 * ip_xmt_attr_t so that we can fast-path around nost of the work needed for
711 * outbound | Psec SA sel ection.

712 */

713 typedef struct ipsec_latch_s

714 {

715 kmut ex_t i pl _I ock;

716 uint 32_t ipl_refcnt;

718 struct ipsid_s *ipl_local _cid;

719 struct ipsid_s *ipl_renote_cid,

720 unsi gned i nt

721 ipl_ids_latched : 1,

new usr/src/uts/comon/inet/ip.h

723 ipl_pad_to_bit_31 : 31;

724 } ipsec_latch_t;

726 #define | PLATCH REFHOLD(ipl) { \

727 at omi c¢_add | 32(&(i pI)->ipl_refcnt, 1); \

728 ASSERT((i pl)->ipl _refcnt T= 0); \

729 }

731 #define | PLATCH REFRELE(i pl) { \

732 ASSERT((ipl)->ipl_refcnt != 0); \
733 menbar _exit(); \
734 if (atomc_ add_32 _nv(&ipl)->ipl_refcnt, -1) == 0) \
735 iplatch _free(ipl); \
736 }

738 [*

739 * peer identity structure.

740 */

741 typedef struct conn_s conn_t;

743 [*

744 * This is used to nmatch an inbound/ out bound datagramw th policy.
745 *

746 typedef struct ipsec_selector {

747 in6_addr _t i ps_| ocal _addr _v6;

748 i n6_addr _t i ps_renot e_addr _v6;

749 ui nt16_t i ps_l ocal _port;

750 uint 16_t i ps_renote_port;

751 ui nt 8_t i ps_i cnp_type;

752 uint8_t i ps_i cnp_code;

753 uint8_t i ps_protocol ;

754 uint8_t ips_lsvd : 1,

755 ips_is_icnp_inv_acq: 1;

756 } ipsec_selector_t;

758 [*

759 * Note that we put v4 addresses in the *first* 32-bit word of the
760 * selector rather than the last to sinplify the prefix match/ mask code
761 * in spd.c

762 */

763 #define ips_|local _addr_v4 ips_|ocal _addr_v6.s6_addr 32[0]

764 #define ips_renote_addr_v4 ips_renote_addr_v6. s6_addr 32[0]

766 /* Val ues used in IP by | PSEC Code */

767 #define | PSEC_OUTBOUND B_TRUE

768 #define | PSEC_| NBOUND B_FALSE

770 |/ *

771 * There are two variants in policy failures. The packet may come in
772 * secure when not needed (IPSEC POLI CY_???_NOT_NEEDED) or it may not
773 * have the desired | evel of protection (IPSEC POLI CY_M SMATCH).

774 *|

775 #define | PSEC_POLI CY_NOT_NEEDED 0

776 #define | PSEC_POLI CY_M SMATCH 1

777 #define | PSEC_PCLI CY_AUTH NOT_NEEDED 2

778 #define | PSEC_POLI CY_ENCR_NOT_NEEDED 3

779 #define | PSEC_POLI CY_SE_NOT_NEEDED 4

780 #define | PSEC_POLI CY_MAX 5 /* Always max + 1. */
782 | *

783 * Check with I PSEC i nbound policy if

784 *

785 * 1) per-socket policy is present - indicated by conn_in_enforce_policy.
786 * 2) O if we have not cached policy on the conn and the global policy is
787 * non-enpty.

12

new usr/src/uts/comon/inet/ip.h

788 */

789 #define CONN_I NBOUND_POLI CY_PRESENT(connp, i pss) \

790 ((connp) ->conn_i n_enforce_policy || \

791 (! ((connp)->conn_pol i cy_cached) && \

792 (i pss)->I psec_i nbound_v4_pol icy_present))

794 #define CONN_I NBOUND_POLI CY_PRESENT_V6(connp, i pss) \

795 ((connp)->conn_i n_enforce_policy || \

796 (! (connp)->conn_pol icy_cached &&

797 (i pss)->i1 psec_i nbound_v6_policy_present))

799 #define CONN_QOUTBOUND_PCLI CY_PRESENT(connp, i pss) \

800 ((connp) ->conn_out _enforce_policy || \

801 (! ((connp) ->conn _policy_ cached) && \

802 (i pss)->1 psec_out bound_v4_policy_present))

804 #defi ne CONN_QOUTBOUND_POLI CY_PRESENT_V6(connp, i pss) \

805 ((connp) - >conn_out _enforce_policy || \

806 (! (connp)->conn_pol i cy_cached &&

807 (i pss)->i psec_out bound_v6_policy_present))

809 /*

810 * Information cached in IRE for upper |ayer protocol (ULP).

811 *

812 typedef struct iulp_s {

813 bool ean_t iul p_set; /* Is any netric set? */

814 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */
815 clock_t iulp_rtt; /* Guestimate in millisecs. */

816 cl ock_t iulp_rtt_sd; /* Cached val ue of RTT variance. */
817 ui nt 32_t i ul p_spi pe; /* Send pipe size. */

818 ui nt 32_t iul p_rpipe; /* Receive pipe size. */

819 ui nt 32_t iul p_rtomax; /* Max round trip tineout. */

820 ui nt32_t i ul p_sack; /* Use SACK option (TCP)? */

821 ui nt 32_t iulp_ntu; /* Setable with routing sockets */
823 ui nt32_t

824 iulp_tstanp_ok : 1, /* Use tinmestanp option (TCP)? */
825 iul p_wscale_ok : 1, /* Use wi ndow scal e option (TCP)? */
826 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */

827 iulp_pnmtud ok : 1, /* Enabl e PMIud? */

829 /* These three are passed out by ip_set_destination */
830 iulp_localnet: 1, /* | RE_ONLINK *T°

831 iul p_l oopback: 1, /* | RE_LOOPBACK */

832 iulp_local: 1, /* | RE_LOCAL */

834 iul p_not_used : 25;

835 } iulp_t;

837 [*

838 * The conn drain list structure (idl_t), protected by idl_lock. Each conn_t
839 * inserted in the list points back at this idl_t using conn_idl, and is
840 * chained by conn_drain_next and conn_drai n_prev, which are also protected by
841 * idl_lock. Wen flow control is relieved, either ip_wsrv() (STREAMS) or
842 * ill_flow enable() (non-STREAMS) will call conn_drain().

843 *

844 * The conn drain list, idl_t, itself is part of tx cookie list structure.
845 * A tx cookle list points to a blocked Tx ring and contains the |ist of
846 * all conn's that are bl ocked due to the flowcontrolled Tx ring (via
847 * the idl drain list). Note that a link can have multiple Tx rings. The
848 * drain list will store the conn’s bl ocked due to Tx ring being flow

849 * controlled.

850 */

852 typedef uintptr_t
853 typedef struct idl

i p_mac_t x_cookie_t;
_s idl _t;

13

854

856
857
858
859
860
861

863
864
865
866
867

869
870
871
872
873
874
875
876
877
878
879 t
880
881
882
883
884
885
886
887
888

new usr/src/uts/comon/inet/ip.h

typedef struct idl_tx_list_s idl _tx_list_t;

struct idl _tx_list_s {
i p_mac_t x_cooki e_t t x| _cooki e;
kmut ex_t txl _l ock; /* Lock for this list */
idl_t *txl _drain_list;
int t x| _drai n_i ndex;

Ik

struct idl_s {
conn_t *jdl _conn; /* Head of drain list */
kmut ex_t idl _I ock; /* Lock for this list */
idl _tx_list_t *idl_itl;

b

/*

* Interface route structure which holds the necessary information to recreate

* routes that are tied to an interface i.e. have ire_ill set.

*

* These routes which were initially created via a routing socket or via the

* S| OCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be

* traditional interface routes. Wen an ill comes back up after being

* down, this information will be used to recreate the routes. These

* are part of an nblk_t chain that hangs off of the ILL (ill_saved_ire_np).

*/

typedef struct ifrt_s {
ushort _t ifrt_type; /* Type of IRE */
in6_addr _t i frt_v6addr; /* Address | RE represents. */
in6_addr _t i frt_v6gat eway_addr; /* Gateway if | RE_OFFLINK */
in6_addr _t ifrt_v6setsrc_addr; /* Src addr if RTF_SETSRC */
i n6_addr _t ifrt_vémask; /* Mask for matching I RE. */
ui nt 32_t ifrt_flags; /* flags related to route */
iulp_t ifrt_metrics; /* Routing socket netrics */
zonei d_t ifrt_zoneid; /* zoneid for route */

}oifrt_t;

#define ifrt_addr V4_PART_OF V6(ifrt_v6addr)

890
891
892

#define ifrt_gateway_addr
#define ifrt_mask

V4_PART_CF _V6(ifrt_v6gat eway_addr)
VA_PART_OF_V6(ifrt_vénask)

893 #define ifrt_setsrc_addr V4_PART_OF_V6(ifrt_v6setsrc_addr)
895 /* Nunber of | P addresses that can be hosted on a physical interface */
896 #define MAX_ADDRS PER | F 8192

897 /*

898 * Nunber of Source addresses to be considered for source address
899 * selection. Used by ipif_select_source_v4/ve6.

900 */

901 #define MAX_IPI F_SELECT_SOURCE 50

903 #i fdef |P_DEBUG

904 /*

905 * Trace refholds and refreles for debugging.

906 *

907 #define TR_STACK DEPTH 14

908
909
910
911
912

914
915
916
917
918
919

typedef struct tr_buf_s {
int tr_depth;

clock_t tr_tineg;
pc_t tr_st ack[TR_STACK_DEPTH] ;
} tr_buf_t;
typedef struct th_trace_s {
int th_refcnt;
uint_t th_trace_| astref;
kt hread_t *th_id;
#defi ne TR_BUF_NMAX 38
tr_buf _t th_trbuf [TR BUF_MAX] ;

14

new usr/src/uts/comon/inet/ip.h 15 new usr/src/uts/comon/inet/ip.h
920 } th_trace_t;
987 [/ *
922 typedef struct th_hash_s { 988 * The following table lists the protection |evels of the various nmenbers
923 list_node_t thh_Il'i nk; 989 * of the ipif_t. The follow ng notation is used.
924 nod_hash_t *t hh_hash; 990 *
925 i p_stack_t *t hh_i pst; 991 * Wite once - Witten to only once at the time of bringing up
926 } th_hash_t; 992 * the interface and can be safely read after the bringup wthout any | ock.
927 #endi f 993 *
994 * ipsq - Need to execute in the ipsq to performthe indicated access.
929 /* The following are ipif_state_flags */ 995 *
930 #define | Pl F_CONDEMNED Ox1 /* The ipif is being renoved */ 996 * ill_lock - Need to hold this nutex to performthe indicated access.
931 #define | Pl F_CHANG NG 0x2 /* Acritcal ipif field is changing */ 997 *
932 #define | Pl F_SET_LI NKLOCAL 0x10 /* transient flag during bringup */ 998 * ill_g_lock - Need to hold this rwlock as reader/witer for read access or
999 * wite access respectively.
934 /* IP interface structure, one per |ocal address */ 1000 *
935 typedef struct ipif_s { 1001 * down ill - Witten to only when the ill is down (i.e all ipifs are down)
936 struct 1pif_s *ipif_next; 1002 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up)
937 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1003 *
938 int ipif_id; /* Logical unit nunber */ 1004 * Tabl e of ipif_t nenbers and their protection
939 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1005 *
940 i n6_addr _t ipif_ “v6subnet ; /* Subnet prefix for this if. */ 1006 * ipif_next i psq + |II _lock + ipsqg ORill_lock OR
941 in6_addr _t i pif_v6net rmsk /* Net mask for this interface. */ 1007 * ill_g_lo ill_g_lock
942 in6_addr _t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1008 * ipif_ill i psq + dovm ipif wite once
943 i n6_addr t i pi f_v6pp_dst addr /* Point-to-point dest address. */ 1009 * ipif_id i psq + down ipif wite once
944 ui nt64_t i pif_flags; /* Interface flags. */ 1010 * ipif_v6lcl _addr i psq + down ipif up ipif
945 uint_t ipif_ire_type; /* | RE_LOCAL or | RE_LOOPBACK */ 1011 * ipif “v6subnet i psq + down ipif up ipif
1012 * ipif_vé6net _mask i psq + down ipif up ipif
947 /* 1013 *
948 * The packet count in the ipif contain the sumof the 1014 * ipif_v6brd_addr
949 * packet counts in dead | RE_LOCAL/ LOOPBACK for this ipif. 1015 * ipif_v6pp_dst_addr
950 */ 1016 * ipif_flags ill_lock ill_lock
951 uint_t ipif_ib_pkt_count; /* 1 nbound packets for our dead | REs */ 1017 * ipif_ire_type ipsq + down ill up ill
1018 *
953 /* Exclusive bit fields, protected by ipsq_t */ 1019 * ipif_ib_pkt_count Appr ox
954 unsi gned i nt 1020 *
955 ipif_was_up : 1, /* ipif was up before */ 1021 * bit fields ill_lock ill_lock
956 i pi f_addr_ready : 1, /* DAD is done */ 1022 *
957 i pi f _was_dup : 1, /* DAD had failed */ 1023 * ipif_allhosts_ilm i psq i psq
958 i pif_added_nce : 1, /* nce added for |ocal address */ 1024 * ipif_solmulti_ilm i psq i psq
1025 *
960 ipif_pad_to_31 : 28; 1026 * ipif_seqid i psq Wite once
1027 *
962 ilmt *ipif_all hosts_ilm /* For all-nodes join */ 1028 * ipif_state_flags ill_lock ill_lock
963 ilmt *ipif_solnulti_ilm /* For I1Pv6 solicited nulticast join */ 1029 * ipif_refcnt ill_lock ill_lock
1030 * ipif_bound_ill i psq + ipnp_lock i psq OR ipnp_| ock
965 uint_t ipif_seqid; /* unique index across all ills */ 1031 * i pif_bound_next i psq i psq
966 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1032 * ipif_bound” i psq i psq
967 uint_t ipif_refcnt; /* active consistent reader cnt */ 1033 *
1034 * ipif_ire_|l ocal ipsq + ips_ill_g_lock ipsq ORips_ill_g_lock
969 zonei d_t ipif_zoneid; /* zone | D nunber */ 1035 * ipif_ire_if ipsq + ips_ill_g_lock ipsq ORips_ill_g_lock
970 timeout _id_t ipif_r ecovery_i d; /* Timer for DAD recovery */ 1036 */
971 bool ean_t ipif_trace_disable; /* True when alloc fails */
972 /* 1038 /*
973 * For an IPWP interface, ipif_bound_ill tracks the ill whose hardware 1039 * Return values fromip_|l addr_verify_{v4, v6}
974 * information this ipif is associated with via ARP/NDP. W can use 1040 */
975 * an ill pointer (rather than an index) because only ills that are 1041 typedef enum{ |PVL_UNI CAST_UP, |PVL_UN CAST_DOW, |PVL_MCAST, |PVL_BCAST,
976 * part of a group will be pointed to, and an ill cannot di sappear 1042 I PVL_BAD} ip_| addr_t;
977 * while it’s in a group.
978 */
979 struct ill_s *ipif_bound_ill; 1045 #define IP_TR HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR HASH MAX - 1))
980 struct ipif_s *ipif_ bound_| next /* bound ipif chain */
981 bool ean_t i pi f_bound; I+ B TRUE if we successfully bound */ 1047 #ifdef DEBUG
1048 #define | Pl F_TRACE_REF(i pif) ipif_trace_ref(ipif)
983 struct ire_s *ipif_ire_local; /* Qur | RE_LOCAL or LOOPBACK */ 1049 #define |LL_TRACE REF(ill) ill trace_ref(ill)
984 struct ire_s *ipif_ire_if; /* Qur | RE_I NTERFACE */ 1050 #define | PIF_UNTRACE REF(ipif) ipif_untrace_ref(ipif)
985 } ipif_t; 1051 #define | LL_UNTRACE_REF(ill) ill_untrace_ref(ill)

new usr/src/uts/common/inet/ip.h 17
1052 #el se

1053 #define | Pl F_TRACE REF(ipif)

1054 #define | LL_TRACE REF(ill)

1055 #define | Pl F_UNTRACE_REF(i pif)

1056 #define | LL_UNTRACE_REF(ill)

1057 #endi f

1059 /* | Pv4 conpatibility macros */

1060 #define ipif_lcl_addr V4_PART_OF_V6(i pi f_v6l cl _addr)

1061 #define ipif_subnet V4_PART_OF_V6(i pi f _v6subnet)

1062 #define ipif_net_mask VA_PART_OF_V6(i pi f _vénet _mask)

1063 #define ipif_brd_addr V4_PART_OF_V6(i pi f _v6brd_addr)

1064 #define ipif_pp_dst_addr V4_PART_OF_V6(i pi f_v6pp_dst_addr)

1066 /* Macros for easy backreferences to the ill. */

1067 #define ipif_isve ipif_ill->ill_isv6

1069 #define S| OCLI FADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */
1071 /*

1072 * node value for ip_ioctl_finish for finishing an ioctl

1073 */

1074 #define CONN_CLOSE 1 /* No m _copy *

1075 #defi ne COPYOUT 2 /* do an m _copyout if needed */

1076 #defi ne NO_COPYOUT 3 /* do an m _copy_done */

1077 #define | Pl 2MODE(i pi) ((ipi)->ipi_flags & | PI_GET_CMD ? COPYQOUT : NO_COPYQOUT)
1079 /*

1080 * The | P-MI design revol ves around the serialization obj ects |psq t (1PSQ
1081 * and ipxop_t (exclusive operation or xop") Becoming "witer" on an | PSQ
1082 * ensures that no other threads can becone "witer" on any |PSQ sharing that
1083 * IPSQ s xop until the witer thread is done.

1084 *

1085 * Each phyint points to one IPSQ that remains fixed over the phyint's life.
1086 * Each IPSQ points to one xop that can change over the IPSQs life. If a
1087 * phyint is *not* in an |PMP group, then its IPSQw Il refer to the IPSQ s
1088 * "own" xop (ipsg_ownxop). If a phyint *is* part of an |PMP group, then its
1089 * IPSQwill refer to the "group" xop, which is shorthand for the xop of the
1090 * IPSQ of the IPMP neta-interface’s phyint. Thus, all phyints that are part
1091 * of the same |IPMP group will have their 1PSQ s point to the group xop, and
1092 * thus becoming "witer” on any phyint in the group will prevent any other
1093 * witer on any other phyint in the group. Al |IPSQ sharing the sane xop
1094 * are chained together through ipsq_next (in the degenerate common case,

1095 * ipsqg_next sinply refers to itself). Note that the group xop is guaranteed
1096 * to exist at least as long as there are nenbers in the group, since the | PW
1097 * neta-interface can only be destroyed if the group is enpty.

1098 *

1099 * Incom ng exclusive operation requests are enqueued on the I PSQ they arrived
1100 * on rather than the xop. This nakes switching xop’'s (as woul d happen when a
1101 * phyint | eaves an | PMP group) sinple, because after the phyint |eaves the
1102 * group, any operations enqueued on its | PSQ can be safely processed with
1103 * respect to its new xop, and any operations enqueued on the |PSQs of its
1104 * former group can be processed with respect to their existing group xop.
1105 * Even so, switching xops is a subtle dance; see ipsq_dq() for details.

1106 *

1107 * An IPSQ s "own" xop is enbedded within the IPSQ itself since they have have
1108 * identical lifetimes, and because doing so sinplifies pointer managenent.
1109 * Wile each phyint and I PSQ point to each other, it is not possible to free
1110 * the I PSQ when the phyint is freed, since we may still *inside* the | PSQ
1111 * when the phyint is being freed. Thus, ipsq_phyint is set to NULL when the
1112 * phyint is freed, and the IPSQ free is later done in ipsqg_exit().

1113 *

1114 * ipsq_t synchronization: read wite

1115 *

1116 * i psg_xopg_nphead i px_l ock i px_| ock

1117 * i psq_xopq_npt ai | i px_| ock i px_I ock

new usr/src/uts/comon/inet/ip.h

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

1180
1181
1182
1183

* i psq_xop_sw tch_np i psq_l ock i psq_l ock

* i psg_phyi nt wite once wite once

* i psq_next RW READER i |l _g_I ock RWWRI TER il _g_I ock

* i psq_xop i psq_l ock or ipsq i psq_l ock + ipsq

* i psq_swxop i psq i psq

* i psg_ownxop see i pxop_t see i pxop_t

* i psq_i pst wite once wite once

*

* jpxop_t synchronization: read wite

*

* ipx_writer i px_| ock i px_| ock

* i px_xop_queued i px_| ock i px_| ock

* i px_nphead i px_| ock i px_| ock

* i px_npt ai | i px_| ock i px_| ock

* i px_i psq wite once wite once

* i ps_i psg_queued i px_I ock i px_| ock

* i px_wai tfor i psq or ipx_|lock ipsq + ipx_|ock

* i px_reentry_cnt i psq or ipx_|lock ipsg + ipx_|ock

* i px_current_done i psq i psq

* i px_current _ioctl i psq i psq

* ipx_current_ipif i psq or ipx_|lock ipsq + ipx_|ock

* i px_pendi ng_i pi f i psq or ipx_|ock ipsg + ipx_|ock

* i px_pendi ng_np i psq or ipx_lock ipsg + ipx_|lock

* i px_forced i psq i psq

* i px_depth i psq i psq

* i px_stack i psq i psq

*

/
typedef struct ipxop_s {
kmut ex_t i px_| ock; /* see above */
kt hr ead_t *Ipx_witer; /* current owner */
bl k_t *i px_nphead; /* nmessages tied to this op */
bl k_t *ipx_nptail;
struct ipsq_s *i px_i psq; /* associated ipsq */
bool ean_t i px_i psq_queued; /* ipsq using xop has queued op */
int i px_wai tfor; /* waiting; values encoded bel ow */
int i px_reentry_cnt;
bool ean_t i px_current done /* is the current operation done? */
int i px_current_i octI /* current ioctl, or O if no ioctl */
ipif_t *ipx_current_ipif; /* ipif for current op */
ipif_t *ipx_pending_ipif; /* ipif for ipx_pending_np */
bl k_t *i px_pendi ng_np; /* current ioctl np while waiting */
bool ean_t i px_forced; /* debugging aid */
#i f def DEBUG

#defi ne
#endi f

} ipxop_|

typedef

int i px_dept h;
| PX_STACK_DEPTH 15

pc_t i px_stack[| PX_STACK_DEPTH| ;

t,

struct ipsq_s {

kmut ex_t i psq_| ock; /*
mbl k_t *ipsqg_sw tch_np; /*
nbl k_t *i psg_xopq_nphead; /*
nbl k_t *ipsqg_xopqg_nptail;

struct phyint *i psqg_phyi nt; /*
struct 1psq_s *i psq_next; /*
struct ipxop_s *ipsq_xop; I *
struct ipxop_s *ipsg_swxop; /*
struct ipxop_s ipsq_ownxop; /*
i p_stack_t *I psq_i pst; /*

} ipsq_t;

/*

* jipx_waitfor val ues:
*/

enum {

/* debugging aid */
/* debugging aid */

see above */
op to handle right after switch */
list of excl ops (nostly ioctls) */

associ ated phyint */

next ipsq sharing ipsqg_xop */
current xop synchronization info */
switch xop to on ipsqg_exit() */

our own xop (may not be in-use)
does not have a netstack_hold */

new usr/src/uts/common/inet/ip.h 19

1184
1185
1186
1187
1188

1190
1191
1192
1193

1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

1227
1228
1229
1230
1231
1232
1233

1235
1236
1237
1238

1240
1241

1243
1244
1245
1246
1247
1248
1249

IPIF_DOMW = 1, /* ipif_down() waiting for refcnts to drop */

I LL_DOWN, /* ill_down() waiting for refcnts to drop */

| Pl F_FREE, /* ipif_free() waiting for refcnts to drop */
) | LL_FREE /* i1l unplunb waiting for refcnts to drop */
/* Qaeratlontypesfor ipsq_try_enter() */
#define CUR OP 0 /* request witer within current operation */
#define NEWOP 1 /* request witer for a new operation */
#define SWTCH OP 2 /* request writer once | PSQ XOP sw tches */
/*

* Kstats tracked on each IPMP neta-interface. Order here nust natch
* jpnp_kstats[] in ip/ipnp.c.
*

/

enum {
| PMP_KSTAT_OBYTES, | PMP_KSTAT_OBYTES64, | PMP_KSTAT_RBYTES,
| PMP_KSTAT_RBYTES64, | PMP_KSTAT_OPACKETS, | PMP_KSTAT_OPACKETS64,
| PMP_KSTAT_CERRORS, | PMP_KSTAT_| PACKETS, | PMP_KSTAT_| PACKETS64,
| PMP_KSTAT_| ERRORS, | PMP_KSTAT_MULTI RCV, | PMP_KSTAT_MULTI XMT
| PMP_KSTAT_BRDCSTRCV, | PMP_KSTAT_BRDCSTXMT, | PMP_KSTAT_LI NK_UP,
| PMP_KSTAT_MAX /* keep last */

be

/ *

* phyint represents state that is conmon to both IPv4 and I Pv6 interfaces.
* There is a separate ill_t representing |IPv4 and | Pv6 which has a

* backpointer to the phyint structure for accessing conmon state.

*

typedef struct phyint {

struct 1ll_s *phyint _illv4;
struct ill_s *phyint _illv6;
uint_t phyi nt _i fi ndex; /* SI OCSLI FI NDEX */
ui nt64_t phyi nt _fl ags;
avl _node_t phyi nt _avl _by_i ndex; /* avl tree by index */
avl _node_t phyi nt _avl _by_nane; /* avl tree by nanme */
kmut ex_t phyi nt _| ock;
struct ipsq_s *phyi nt _i psq; /* back pointer to ipsq */
struct ipnp_grp_s *phyint_grp; /* associated | PMP group */
char phyi nt _nane[LI FNAMSI Z]; /* physical interface nane */
ui nt 64_t phyi nt _kstat sO[| PMP_KSTAT_MAX] ; /* baseline kstats */
} phyint_t;
#def i ne CACHE_ALI G_SI ZE 64
#define CACHE_ALI GN(al i gn_struct) P2ROUNDUP(si zeof (struct align_struct),\

CACHE_ALI G_SI ZE)
struct _phyint_list_s_ {

avl _tree_t phyint _|ist_avl_by_index; /* avl tree by index */
avl _tree_t phyint _list_avl _by_nane; /* avl tree by name */
b5
typedef union phyint_|ist_u {
struct _phyint_list_s_ phyint_list_s;
char phyint _Tist_fiTller[CACHE ALIG%K _phyint_list_s_)]
} phyint_list_t;
#define phyint_list_avl_by_index phyint _list_s.phyint_list_avl_by_index
#define phyint_list_avl _by name phyint _|i st_s. phyint_list_avl _by_nane
/*
* Fragnentation hash bucket
*
/
typedef struct p s {
struct ipf_ *ipfb_ipf; /* List of . */
size_t i pf b_count; /* Count of byt es used by frag(s) */
kmut ex_t i pf b_l ock; /* Protect all ipf inlist */

new usr/src/uts/comon/inet/ip.h

1250
1251

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293

1295

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

1311
1312

1314
1315

ui nt _t ipfb_frag_pkts; /* num of distinct fragnented pkts */
} ipfb_t;

/
| RE bucket structure. Usually there is an array of such structures,

each pointing to a linked list of ires. irb_refcnt counts the nunber

of wal kers of a given hash bucket. Usually the reference count is
bunped up if the wal ker wants no | RES to be DELETED while wal king the
list. Bunping up does not PREVENT ADDI TION. This allows wal king a given
hash bucket w thout stunmbling up on a free pointer.

irb_t structures in ip_ftable are dynam cally allocated and freed.
In order to identify the irb_t structures that can be safely knmemfree'd
we need to ensure that
the irb_refcnt is quiescent, indicating no other wal kers,
no other threads or ire’s are holding references to the irb,
i.e., irb_nire == 0,
* - there are no active ire’'s in the bucket, i.e., irb_ire_cnt == 0
*
/
typedef struct irb {
struct ire_s *irb_ire;

O T T

/* First ire in this bucket */

/* Should be first in this struct */
krw ock_t irb_|ock; /* Protect this bucket */
ui nt _t |rb_refcnt; /* Protected by irb_lock */
uchar _t irb_ ; /* CONDEMNED ires in this bucket ? */

#def i ne | RB_MARK_CONDEMNED 0x0001 /* Contains sone | RE_| S_CONDEMNED */

#defi ne | RB_VARK_DYNAM C 0x0002 /* Dynanmically allocated */

Once I Pv6 uses radix then | RB_VMARK DYNAM C wi || be al ways be set */

int_t irb_ire_cnt; 7* Num of active IRE in this bucket */

t irb_nire; /* Numof ftable ire’'s that ref irb */

_stack_t *irb_ipst; /* Does not have a netstack_hold */
} irb_t;

/*
* This is the structure used to store the multicast physical addresses
* that an interface has joined.
* The refcnt keeps track of the nunber of multicast |P addresses mapping
* to a physical nulticast address.
*
/

typedef struct nultiphysaddr_s {

struct nultiphysaddr_s *npa_next;

char nmpa_addr [| P_MAX_HW LEN] ;

int mpa_refcnt;
} mul tiphysaddr _t;
#define | RB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb))
/* Forward decl arations */

struct dce_s;

typedef struct dce_s dce_t;

struct ire_s;

typedef struct ire_s ire_t;

struct ncec_s;

typedef struct ncec_s ncec_t;

struct nce_s;

typedef struct nce_s nce_t;

struct ip_recv _attr_s

typedef struct ip_recv_attr_s ip_recv_attr_t;
struct ip_xmt_attr_s;

typedef struct ip_xmit_attr_s ip_xmit_attr_t;

struct tsol _ire_gw secattr_s;
typedef struct tsol _ire_gw secattr_s tsol _ire_gw secattr_t;
/*
* This is a structure for a one-el enent route cache that is passed

new usr/src/uts/comon/inet/ip.h

1316 * by reference between ip_input and ill
1317
1318 typedef struct {

1319 ire *rtc_ire;
1320 i paddr t rtc_i paddr;
1321 i n6_addr _t rtc_i p6addr;
1322 } rtc_t;

1324 /*

1325 * Note: Tenporarily use 64 bits, and wil
1326 * nore cleanup work is done.

1327 *

1328 typedef uint64_t iaflags_t;

1330 /* The ill input function pointer type */

_inputfn.

| probably go back to 32 bits after

1331 typedef void (*pfillinput_t)(nmblk_t *, void *, void *, ip_recv_attr_t *,
*);

1332 rtc_t

1334 /* The ire receive function pointer type

*/

1335 typedef void (*pfirerecv_t)(ire_t *, nblk_t *, void *, ip_recv_attr_t *);

1337 /* The ire send and postfrag function poi
1338 typedef int (*pfiresend_t)(ire_t *,
* .

1339 ip_xmt_attr_t *, uint32_t *);

1340 typedef int (*pfirepostfrag_t)(mblk_t *, nce_t *, iaflags_t, uint_t, uint32_t,
1341 zoneid_t, zoneid_t, uintptr_t *);

1344 #define | P_V4_G HEAD 0

1345 #define | P_V6_G HEAD 1

1347 #define MAX_G HEADS 2

1349 /*

1350 * unpadded ill_if structure

1351 */

1352 struct _ill_if_s_ {

1353 union ill_if_u *illif_next

1354 union ill_if_u *illif_prev;

1355 avl _tree_t illif_avl_by_ ppa; /* AVL tree sorted on ppa */
1356 vmem t *i1lif_ppa_arena; /* ppa index space */

1357 uint16_t illif_ncast_vi1; /* hints for =]
1358 uint16_t il f_rmast_vz, /* [ignp|mMd]_slowtinp */
1359 int illif_name_|en; /* nane length */

1360 char illif_name[LlI FNAVSI Z]; /* nane of interface type */
1361 };

1363 /* cache aligned ill_if structure */

1364 typedef union il _if_u{

1365 struct _ill_if_s_ill_if_s;

1366 char illif_filler[CACHE_ALIGN(_ill _if_s_)]

1367 } ill_if_t;

1369 #define illif_next ill_if_s.illif_next

1370 #define illif_prev ill_if_s.illif_prev

1371 #define illif_avl _by_ppa ill_if_s.illif_avl_by_ppa

1372 #define illif_ppa_arena ill_if_s.illif_ppa_arena

1373 #define illif_nctast_vl ill_if_s.illif_ncast_vl

1374 #define illif _ncast_v2 illZif s.illif _ncast_v2

1375 #define illif_nanme ill_if_s.illif_name

1376 #define illif_name_|len ill_if_s.illif_name_len

1378 typedef struct ill_walk_context_s {

1379 int ctx_current_list; /* current |list being searched */

1380 int ctx_last_list; /* last list to search */

1381 } ill_wal k_context_t;

mblk t *,

nter types */
void *,

21

new usr/src/uts/comon/inet/ip.h

1383 /*

1384 * ill_g_heads structure, one for |1PV4 and one for |PV6

1385 */

1386 struct _ill_g_head_s_ {

1387 il _if_t *ill_g_list_head;

1388 i ift *ill_g_list_tail;

1389 };

1391 typedef union ill _g_head_u {

1392 struct _ill_g head_s_ ill_g_head_s;

1393 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)];
1394 } ill_g_head_t;

1396 #define ill_g_list_head ill_g_head_s.ill_g_list_head

1397 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail

1399 #define IP_VA_ILL_G LIST(ipst) \

1400 (ipst)->ips_ill_g_heads[IP_V4_G HEAD].ill_g_list_head
1401 #define IP_V6_ILL_G LIST(ipst) \

1402 (ipst)->ips_ill_g_heads[|P_V6_G HEAD]. _g_list_head
1403 #define |P_VX ILL_G LIST(i, ipst) \

1404 (ipst)->ips_ill _g_heads[1].ill_g_list_head

1406 #define | LL_START_WALK VA(ctx_ptr, ipst) \

1407 ill first(I1P_V4_G HEAD, |P_V4_G HEAD, ctx_ptr, ipst)
1408 #define | LL_START WALK V6(ctx_ptr, ipst) \

1409 il _first(1P_V6_G HEAD, |P_V6_G HEAD, ctx_ptr, ipst)
1410 #define | LL_START_WALK ALL(ctx_ptr, | pst) \

1411 i1l _first(MAX_G HEADS, MAX_G HEADS, ctx_ptr, ipst)
1413 /*

1414 * Capabilities, possible flags for ill_capabilities.

1415 */

1416 #define |LL_CAPAB_LSO 0x04 /* Large Send O fload */
1417 #define | LL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */
1418 #define | LL_CAPAB_ZEROCOPY 0x10 | * Zero-copy *
1419 #define | LL_CAPAB DLD 0x20 /* DLD capabilities */
1420 #define | LL_CAPAB DLD POLL 0x40 /* Polling */
1421 #define | LL_CAPAB DLD DI RECT 0x80 /* Direct function call
1423 /*

1424 * Per-ill Hardware Checksummi ng capbilities.

1425 */

1426 typedef struct ill_hcksumcapab_s ill_hcksum capab_t;

1428 /*

1429 * Per-ill Zero-copy capabilities.

1430 *

1431 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t;

1433 /*

1434 * DLD capbilities.

1435 */

1436 typedef struct ill_dld_capab_s ill_dld_capab_t;

1438 /*

1439 * Per-ill polling resource nap.

1440 */

1441 typedef struct ill_rx_ring ill_rx_ring_t;

1443 | *

1444 * Per-ill Large Send O fl oad capabilities.

1445 */

1446 typedef struct ill_lso_capab_s ill_lso_capab_t;

22

new usr/src/uts/comon/inet/ip.h

1448 /* The following are ill_state_flags */

1449 #define |LL_LL_SUBNET_PENDI NG

1450 #define | LL_CONDEMNED

1451 #define | LL_DL_UNBI ND_I N_PROGRESS

1452 /*

1453 * |LL_DOMN I N PROGRESS is set to ensure the follow ng:
1454 *

1455 * - no |longstanding references wll

1456 * brought down.

1457

1458 #define |LL_DOAN_| N PROGRESS

1460 /* Is this an |LL whose source address

1461 #define | S_USESRC_I LL(| 1)

1462 ((C(Cill)->i11_usesrc_ifindex

1463 ((ill)->ill_usesrc_grp_next

1465 /* |s this a client/consumer of the

1466 #define IS_USESRC_CLI ILL(ill)

1467 ((Cill)->11_usesrc_ifindex !=

1468 ((ill)->ill_usesrc_grp_next

1470 /* |Is this an virtual network interface (vni)
1471 #define 1S VNI (ill)

1472 ((Cill)->ill_phyint->phyint_flags & (PHYI
1473 PHY! _VI RTUAL)

1475 /* |s this a | oopback ILL’> */

1476 #define 1S LC[PBACKUII)

1477 ((ill)->i 'l _phyint->phyint_flags & PHYI
1479 /* Is this an | PP neta-interface ILL? */

1480 #define 1S_| PMP(ill

1481 ((T11)->i11_phyint->phyint_flags & PHYl _
1483 /* Is this ILL under an | PMP neta-interface? (aka
1484 #define |'S_UNDER | PMP(il)

1485 (Cill)->i1l_grp !'= NULL && 'IS_IPMP(ill))
1487 /* Is illl in the same illgrp as ill2? */

1488 #define IS IN SAVE I LLGRP(ill1, i

1489 (Cill1)->iTl_grp !'= NULL && ((ill21)->ill
1491 /* Is ill1l on the same LAN as

1492 #define IS_O\I_SAIVE LANCGI 112, i

1493 ((il11) (ilr2) || 1

1495 #define I LL_OTHER(i 1)

1496 (CiTl)->ill_isve 2 (ill)->ill

1497 (111)->i11_phyint->phyint_

1499 /*

1500 * IPMP group ILL state structure --

1501 *

1502 *

1503 *

1504 *

1505 *

1506 * synchronization:

1507 *

1508 * igif

1509 * ig_actif

1510 * ig_nactif

1511 * ig_next_ill

1512 * ig_ipnmp_ill

1513 * ig_cast_ill

/* Waiting for DL_INFO ACK fromdrv */
No nore new ref’s to the ILL */
UNBIND_REQ i s sent */

- no packets are sent to the driver after the DL_UNBIND REQ is sent,

is used by other
\

usesrc ILL ? */

_LOOPBACK| PHYI

_phyi nt - >phyi nt

up to two per

be acquired on objects that are being

ILL's ? */

_LOOPBACK)

"in a group?") */

\
_grp == (ill2)->ill_grp))

i112)

_illva : \

| PMP group (V4 and V6).
Created when the V4 and/or V6 IPMP neta-interface is | _PLINKd. It is
guaranteed to persist while there are interfaces of that type in the group.
I'n general, nost fields are accessed outside of the IPSQ (e.g., in the
dat apath), and thus use locks in addition to the |1 PSQ for protection.

wite

ipsg and ill_g_l ock

i psq and i pnp_l ock
i psq and i pnp_| ock
i psg and ipnp_l ock
wite once

i psq and ipnp_l ock

\
_VIRTUAL)) ==\

new usr/src/uts/comon/inet/ip.h

1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569

1571
1572
1573
1574
1575
1576
1577
1578
1579

* ok kb ok kb 3k

—~——— e — — — —

one per

24

i psq
i psq
i psq

list of all interfaces */

list of active interfaces */

nunber of active interfaces */

next active interface to use */
backpointer to | PMP neta-interface */

nom nated ill for multi/broadcast */
list of ARP entries */
ig_ipmp_ill->i1l_mtu */
ig_ipmp_ill->1l_pmc_mu */

| PMP group. Created when the
is guaranteed to persist while there

read wite

i pnp_| ock i pnp_| ock

wite once wite once

i pnp_| ock i pnp_| ock

wite once wite once

i pnp_| ock i pnp_I ock

psq 1 psq

i pnp_| ock i pnp_| ock
mp_| ock i pmp_| ock
mp_| ock i prp_| ock
np_l ock i prp_I ock
mp_| ock i pnp_| ock
mp_| ock i pmp_| ock
sq i psq
mp_I| ock i pnp_| ock

mc atom c

“gr_nane[LI FGRNAMSI Z] ; /* group name */

gr _i f name[LI FNAMSI Z] ; /* interface name */

DLPI mactype of group */

| PMP group phyint */

nunber of interfaces in group */
nunmber of active interfaces */

V4 group information */

V6 group information */

nunber of ills in V4 group */

nunber of ills in V6 group */

nunber of pending ills in V4 group */
nunber of pending ills in V6 group */
message used to bring link down */

sp; * group kstat pointer */
gr_ kst at sO[| PMP_KSTAT_MAX] ; /* baseline group kstats */

* | PMP ARP entry -- one per SIOCS*ARP entry tied to the group. Used to keep

i paddr _t
bool ean_t
bool ean_t
list_node_t

* i g_ar pent i psq
* ig_ntu i psq
* ig_nc_ntu i psq
*
typedef struct ipnp_illgrp_s {
list_t ig_if;
list_t ig_actif;
uint_t ig_| nactlf,
struct _s *ig_next_ill;
struct _s *ig_ipnp_ill;
struct _s *ig_cast_ill;
list_t ig_ ar pent ;
uint _t ig_ntu;
uint_t ig_mc_ntu;
ipmp_illgrp_t;
/*
* | PMP group state structure --
* |PMP neta-interface is plunbed; it
* are interfaces init.
*
* jipnp_grp_t synchronization:
*
* gr _nane
* gr_i fname
* gr _mactype
* gr _phyi nt
* gr_nif
* gr_nactif
* gr_vé4
* gr_vé
* gr_nv4
* gr_nvé
* gr_pendv4
* gr_pendv6é
* gr _| i nkdownnp
u gr_ksp
* gr_kstatsO
*/
typedef struct ipnp_grp_s {
char
char
t_uscal ar _t gr _mact ype;
phy| nt_t *gr _phyint;
ui nt _t gr_nif;
uint _t gr_nactif;
i pnp_i *gr_v4;
i pp_i *gr_ve6;
ui nt _t gr_nvé4;
ui nt _t gr_nve;
ui nt _t gr _pendv4;
uint_t gr_pendvG;
bl k_t *gr_| I i nkdownnp;
kstat _t *gr_
ui nt 64
I pnp_grp_t;
/*
* ARP up-to-date as the active set of
*
/
typedef struct ipnp_arpent_s {

i a_i paddr;

i a_proxyarp;
ia_notified;
i a_node;

* ok ok ok

—~———

interfaces in the group changes.

| P address for this entry */
proxy ARP entry? */

ARP notified about this entry? */
next ARP entry in list */

new usr/src/uts/comon/inet/ip.h

1580
1581
1582
1583

1585

1587
1588
1589
1590
1591
1592
1593

1595
1596
1597
1598

1600
1601
1602
1603

1605
1606
1607
1608
1609 t
1610
1611
1612
1613

1615
1617

1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642

1644
1645

25

ui nt16_t ia_flags; /* nce_flags for the address */
size_t ia_lladdr_len;
uchar _t *ia_lladdr;

} ipnp_arpent_t;

struct arl_s;

/*

* Per-ill capabilities.

*/

struct ill_hcksum capab_s {
uint_t ill_hcksumversion; /* interface version */
uint_t ill_hcksumtxfl ags; /* capabilities on transmt */

b

struct ill_zerocopy_capab_s {
uint_t ill_zerocopy_version; [* interface version */
uint_t ill_zerocopy_flags; /* capabilities */

e

struct ill_|lso_capab_s {
uint_t ill_Iso_flags; /* capabilities */
uint_t ill_lso_max; /* maxi mum si ze of payload */

}

/*

* | P Lower level Structure.

* |nstance data structure in i p_open when there is a device bel ow us.

*

typedef struct ill_s {
pfillinput_t il1l_i nputfn /* Fast input function selector */
P _if_t *ill_ifptr /* pointer to interface type */
queue_t *ill_rq; /* Read queue. */
queue_t *ill_wg; /* Wite queue. */
int ill_error; /* Error value sent up by device. */
ipif_t =*ill_ipif; /* Interface chain for this ILL. */
uint_t ill_ipif_up_count; /* Nunber of IPIFs currently up. */
uint_t ill_max_frag; /* Max IDU fromDLPI. */
uint_t ill_current_frag; /* Current IDU fromDLPI. */
uint_t ill_ntu; /* User-specified MIU, SIOCSLIFMIU */
uint_t ill_nc_ntu; /* MIU for nulti/broadcast */
uint_t ill_metric; /* BSD if netric, for conpatibility. */
char *ill_nane; /* Qur nanme. */
uint_t ill_ipif_dup_count; /* Nunber of duplicate addresses. */
uint_t ill_name_| ength; /* Nane length, incl. termnator. */
uint_t ill_net_type; /* | RE_| F_RESOLVER/ | RE_I F_NORESOLVER. */
/*
* Physical Point of Attachment num |f DLPI style 1 provider
* then this is derived fromthe devnane.
*/
uint_t ill_ppa;
t _uscal ar _t ill_sap;
t _scalar_t ill_sap_length; /* Including sign (for position) */
uint _t |II_phys_addr _length; /* Excluding the sap. */
uint_t ill_bcast_addr_|length; /* Only set when the DL provider */

/* supports broadcast. */

t _uscal ar _t ill mictype
uint8_t *ill_frag_ptr /* Reassenbly state. */
timeout _id_t ill frag timer_id; /* timeout id for the frag tinmer */
ipfb_t *ill_frag_hash_tbl; /* Fragment hash |ist head. */
krw ock_t ill_nctast_| ock; /* Protects nulticast state */
knmutex_t ill_ntast serlallzer /* Serialize across ilg and ilmstate */

new usr/src/uts/comon/inet/ip.h

1646
1647
1648
1649
1650
1651
1652
1653

1655
1656

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

1673
1674
1675

1677

1679
1680
1681
1682
1683
1684

1686
1687
1688
1689

1691
1692
1693
1694

1696
1697
1698

1700

1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

#def i ne

#def i ne

ilmt *Ill_ilm /* Ml ticast menbership for ill */
uint_t ill_global_tinmer; /* for |1 GWv3/ M.Dv2 general queries */
int ill_nctast_type; /* type of router which is querier */
[* on this interface */

uint16_t ill_ncast_vi1_tine; /* # slow tinmeouts since last vl qry */
uint16_t ill _ncast_v2_tinme; /* # slow tineouts since last v2 qry */
uint8 t ill_ntast_vl_tset; /[* 1 =>tinmer is set; 0 => not set */
uint8_t ill_ntast_v2_tset; /* 1 =>tiner is set; 0 => not set */
uint8_t ill_nctast_rv; /* 1 GWv3/ MLDv2 robustness variable */
int ill_ncast_qi; /* 1 GWv3/ M.Dv2 query interval var */
/*

* Al non-NULL cells between ‘iII_first_npt ree’ and

* "ill_last_np_to_free' are freed in ill_dele

*

/
ill _first_np_to_free ill_bcast_np
mbl k_t *ill_bcast_np; /* DLPI header for broadcasts. */
mbl k_t *ill_unbi nd_np; /* unbind np fromill _dl _up() */
mbl k_t *ill prOWISCOff _np; [* for ill_leave_allmulti() */
mbl k_t *ill_dl pi _deferred; /* b_next chain of control messages */
mbl k_t *ill _dest_addr_np; /* nbl k which holds ill_dest_addr */
mbl k_t *ill_repl unb_np; /* replunb np fromill _replunb() */
nbl k_t *ill_phys_addr_np; /* nbl k which holds ilT_phys_addr */
mbl k_t *ill _ntast_deferred; /* b_next chain of | GW/ M.D packets */
ill Tast_np_to_free ill_ncast_deferred
cred_t *ill_credp; /* opener’s credentials */
uint8_t *ill_phys_addr; /* ill_phys_addr_np->b_rptr + off */
uint8_t *ill_dest_addr; /* ill_dest_addr_np->b_rptr + off */
uint_t ill_state_flags; /* see ILL_* flags above */

/* Following bit fields protected by ipsq_t */

uint_t

uint_t

_needs_attach : 1,
_reserved : 1,
_isve : 1,

_dlpi _style_set : 1,
ill_ifnane_pending : 1
ill_logical _down : 1,
ill_dl _up : 1,

ill _up_ipifs : 1,

/* supports link-up notification */
/* capability renegotiation to be done */

—dl d_capab_ |npro§ : 1, /* direct dld capab call in prog */
“need_recover_nuiticast : 1,

ill_replunbing : 1,

ill_arl_dlpi_pending : 1,

ill _grp_pending : 1,

ill_pad_to_bit_31: 17;

/* Following bit fields protected by ill_lock */

ill_fragtinmer_executing : 1,

ill_fragtimer_needrestart : 1,

i1l _manual _token : 1, /* systemwon’t override ill_token */

/*

* il _manual _l i nkl ocal : systemw || not change the

* |inkl ocal whenever ill_token changes.

*/

ill_manual _linklocal : 1

26

new usr/src/uts/common/inet/ip.h 27
1713 ill_manual _dst_linklocal : 1, /* sane for pt-pt dst |inklocal */
1715 ill_pad_bit_31: 27

1717 /*

1718 * Used in SIOCSIFMUXID and SI OCE FMUXID for 'ifconfig unplunb’.

1719 */

1720 int ill_muxid; /* muxid returned from plink */

1722 /* Used for IP frag reassenbly throttling on a per ILL basis. */

1723 uint_t ill_ipf_gen; /* Generation of next fragment queue */
1724 uint_t ill_frag_count; /* Count of all reassenbly nblk bytes */
1725 uint_t ill_frag_free_numpkts; /* numof fragnented packets to free */
1726 clock_t ill~l st frag “clean_tine; /* time when frag’s were pruned */
1727 int ill_ty I* From <net/if _types. h> */

1728 uint_t ill dlp rTuItlcast _state; /* See below I DS_* */

1729 uint_t ill_dlpi_fastpath_state; /* See below I DS_* */

1731 *

1732 * Capabilities related fields.

1733 */

1734 uint_t ill_dlpi_capab_state; /* State of capability query, 1DCS * */
1735 uint_t ill_capab_ pendi ng_cnt ;

1736 uint64_t ill_capabilities; /* Enabl ed capabilities, |ILL_CAPAB_ * */
1737 i1l _hcksum capab_t *ill hcksum_capab; /* H Wcksunmi ng capabilities */
1738 i1l _zerocopy capab_t *iTl_zerocopy_capab; /* Zero-copy capabilities */
1739 ill_dld_capab_t *iTl_dld_capab; /* DLD capabilities */

1740 ill_Iso_capab_t *ill_lso_capab; /* Large Segment O fload capabilities */
1741 nbl k_t *ill_capab_reset_np; /* Preallocated nbl k for capab reset */
1743 uint8_t ill_max_hops /* Maxi mum hops for any logical interface */
1744 uint_t ill_user_ntu; /* User-specified MU via SI OCSLI FLNKI NFO */
1745 uint32_t ilT_reachable_tine; /* Value for ND algorithmin nsec */
1746 uint32_t ill _reachable retrans_tinme; /* Value for ND al gorithm nsec */
1747 uint_t ill_max_buf; /* Max # of req to buffer for ND */
1748 in6_addr _t ill_token; /* 1 Pv6 interface id */

1749 in6_addr _t ill _dest_token; /* Destination IPv6 interface id */

1750 uint_t ill_token_length;

1751 ui nt 32_t ill_xmt_count; /* ndp max nulticast xmts */
1752 m b2 |prStatsEntry_t *ill_ip_mb; /* ver indep. interface mb */
1753 m b2_i pv6l flcnpEntry_t *ill _icnp6_mb; /* Per interface mb */

1755 phyint _t *ill_phyint;

1756 ui nt 64_t ill_flags;

1758 kmut ex_t ill_lock; /* Pl ease see table below */

1759 *

1760 * The ill_nd_lla* fields handle the link |layer address option

1761 * from nei ghbor discovery. This is used for external |Pv6

1762 * address resol ution.

1763 */

1764 nbl k_t *ill_nd_lla_np; /* nblk which holds ill_nd_lla */

1765 ui nt 8_t *ill_nd_|1a; /* Link Layer Address */

1766 ui nt _t ill_nd_Ila_len; /* Link Layer Address length */

1767 /*

1768 * W have 4 phys_addr_req s sent down. This field keeps track

1769 * of which one is pending

1770 */

1771 t _uscal ar _t | _phys_addr_pend; /* which dl _phys_addr_req pending */
1772 I*

1773 * Used to save errors that occur during plunbing

1774 */

1775 uint_t ill_ifname_pending_err;

1776 avl _node_t i1l _avl _byppa; /* avl node based on ppa */

1777 list_t ill_nce; /* pointer to nce_s list */

new usr/src/uts/comon/inet/ip.h

1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802

1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824

1826
1827
1828

1830
1831
1832

1834
1835
1836
1837
1838
1839
1840

1842
1843

ui nt _t ill_refcnt; /* active refcnt by threads */
uint_t ill_ire_cnt; /* ires associated with this ill */
kcondvar _t ill_cv;
uint_t ill_ncec_cnt; /* ncecs associated with this ill
ui nt _t ill_nce_cnt; /* nces associated with this ill */
uint_t ill_waiters /* threads waiting in ipsq_enter */
/*
* Contains the upper read queue pointer of the nodule imediately
* beneath IP. This field allows IP to validate sub-capability
* acknow edgnents coming up from downstream
*
/
queue_t *ill_Inod_rq; /* read queue pointer of nodul e bel ow */
uint_t ill _Trmod_cnt; /* nunber of nodul es beneath I P */
ip_mt *i I T_medi a; /* media specific parans/functions */
t_uscal ar _t ill_dlpi_pending; /* Last DLPI primtive issued */
uint _t ill _usesrc_ifindex; /* use src addr fromthis ILL */
struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */
bool ean_t ill_trace_disable; /* True when alloc fails */
zonei d_t i1l zoneid,;
i p_stack_t *ill_ipst; /* Corresponds to a netstack_hold */
uint32_t il _dhcpinit; /* IP_DHCPINIT_IFs for ill */
voi d *ill _flownotify_mh; /* Tx flow ctl, mac cb handle */
uint_t ill_ilment; /*|Im;referencingthisi|| */
ui nt _t ill_ipallmulti_cnt; /* ip_join_allnulti() calls */
ilmt *ill _ipallmlti_ilm
mbl k_t *ill_saved_ire_np; /* Allocated for each extra IRE */
/* with ire_ill set so they can */
/* survive the ill going down and up.
kmut ex_t ill_saved_ire_lock; /* Protects ill_saved_ire_np,
ui nt _t il _saved_ire_cnt; /* # entries */
struct arl_ill_conmon_s 2 7 commn
ire_t *ill _ire_multicast; /* IRE_MJULTICAST for ill */
cl ock_t ill_defend_start; /* start of 1 hour period */
uint_t i1l _defend_count; /* # of announce/defends per ill
/*
* |PMWP fields
*/
ipp_illgrp_t *ill_grp; /* | PMP group information */
I'1st_node_t ill_actnode /* next active ill in group */
|'i st_node_t il _grpnode; /* next ill in group */
i pif_t *ill_src_ipif; /* source address selection rotor
ipif_t *ill _nove_ipif; /* ipif awaiting nove to newill */
bool ean ill_nom cast; /* nom nated for ntast/bcast */
uint_t ill_bound_cnt; /* # of data addresses bound to ill
ipif_t *ill_bound_ipif; /* ipif chain bound to ill */
timeout _id_t ill _refresh_tid; /* ill refresh retry tineout id */
ui nt 32_t ill _nrouter_cnt; /* nrouter allmulti joins */
ui nt 32_t ill_allowed_ips_cnt;
in6_addr _t *ill_all owed_i ps;
/* list of multicast physical addresses joined on this ill */
Y mul ti physaddr_t *ill_nphysaddr_list;
i t;
/*
* | LL_FREE_OK() neans that there are no incom ng pointer references
* to the ill.
*/

#define I LL_FREE OK(ill) \
(CiTl)y->i1l_ire_cnt == 0 && (ill)->ill_ilmecnt == 0 && \
(ill)y->i1l_ncec_cnt == 0 && (ill)->ill_nce_cnt == 0)

/*

* An ipif/ill can be marked down only when the ire and ncec references

new usr/src/uts/comon/inet/ip.h 29 new usr/src/uts/comon/inet/ip.h
1844 * to that ipif/ill goes to zero. |ILL_DOAN OK() is a necessary condition 1910 * ill _frag_count atomics atomics
1845 * qui escence checks. See comments above |PIF_DOW OK for details 1911 * ill_type ipsq + down ill only when ill is up
1846 * on why ires and nces are selectively considered for this macro. 1912 * ill_dlpi_multicast_state ill_lock ill_lock
1847 */ 1913 * ill _dl pi _fastpath_state ill_lock ill_lock
1848 #define |LL_DOWN_OK(ill) \ 1914 * ill_dl pi _capab_state i psq i psq
1849 (ilT->iIT _ire_cnt == 0 & ill->ill_ncec_cnt == 0 && \ 1915 * ill_max_hops i psq Not atom c
1850 ill->i11_nce_cnt == 0) 1916 *
1917 * ill_mtu ill_lock None
1852 /* 1918 * ill_nmc_ntu ill_lock None
1853 * The following table lists the protection |evels of the various nenbers 1919 *
1854 * of the ill_t. Same notation as that used for ipif_t above is used. 1920 * ill _user_ntu ipsqg + ill_lock ill_lock
1855 * 1921 * ill _reachabl e_tine ipsq + ill_lock ill_lock
1856 * Wite Read 1922 * ill _reachabl e_retrans_tine ipsq + ill_lock ill_lock
1857 * 1923 * ill| _max_buf ipsg + ill_lock ill_lock
1858 * ill_ifptr ill_g_lock + s Wite once 1924 *
1859 * ill_rq i psq Wite once 1925 * Next 2 fields need ill_lock because of the get ioctls. They should not
1860 * ill_wg i psq Wite once 1926 * report partially updat ed results without executing in the ipsq.
1861 * 1927 * ill_token ipsg + ill_lock ill_lock
1862 * ill_error i psq None 1928 * ill_token_l ength ipsqg + ill_lock il1l”1ock
1863 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 1929 * il _dest_token ipsq + down ill only when ill is up
1864 * ill_ipif_up_count ill Iock+|psq ill_lock OR ipsq 1930 * ill_xmt_count ipsq + down ill wite once
1865 * ill_max_frag ill_lock ill_lock 1931 * ill_ip6_mb ipsq + down ill only when ill is up
1866 * ill_current_frag ill_lock ill_lock 1932 * ill_icnp6_mib ipsq + down ill only when ill is up
1867 * 1933 *
1868 * ill_nane ill_g_lock + ipsq Wite once 1934 * ill _phyint ipsq, ill_g_lock, ill_lock Any of them
1869 * ill _name_length ill_g_lock + ipsq Wite once 1935 * ill_flags ill_lock ill_lock
1870 * ill_ndd_nane i psq Wite once 1936 * ill_nd_lla_np ipsq + down ill only when ill is up
1871 * ill_net_type i psq Wite once 1937 * ill_nd_lla ipsq + down ill only when ill is up
1872 * ill_pp ill_g_lock + ipsq Wite once 1938 * ill_nd_Ila_len ipsq + down ill only when ill is up
1873 * ill_sap ipsq + down ill Wite once 1939 * ill| _phys_addr_pend ipsq + down ill only when ill is up
1874 * ill_sap_length ipsq + down ill Wite once 1940 * ill_ifname_pending_err i psq i psq
1875 * ill_phys_addr_l ength ipsq + down ill Wite once 1941 * ill_avl _byppa ipsq, ill_g_lock wite once
1876 * 1942 *
1877 * ill_bcast_addr_I| ength i psq i psq 1943 * il _fastpath_list ill_lock ill_lock
1878 * ill_mactype i psq i psq 1944 * ill_refcnt ill_lock ill_lock
1879 * ill _frag_ptr i psq i psq 1945 * ill_ire_cnt ill_lock ill_lock
1880 * 1946 * ill_cv ill_lock ill_lock
1881 * ill_frag_timer_id ill_lock ill_lock 1947 * ill_ncec_cnt ill_lock ill_lock
1882 * ill_frag_hash_tbl i psq up 111 1948 * ill_nce_cnt ill_lock ill_lock
1883 * ill_ilm ill_ncast_| ock(WRITER) ill_ntast_| ock(READER) 1949 * ill_ilment ill_lock ill_lock
1884 * ill_global _timer i1l _ncast_| ock(\WRI TER) i || _ntast_| ock(READER) 1950 * ill _src_ipif ill_g_lock ill_g_lock
1885 * ill _ntast_type ill_ncast_| ock(WRITER) ill_ntast_| ock(READER) 1951 * ill_trace ill_lock ill_lock
1886 * ill_nctast_vil_tine i1l _ntast_| ock(\WRI TER) ill_ntast_| ock(READER) 1952 * ill_usesrc_grp_next ill_g_usesrc_| ock ill_g_usesrc_| ock
1887 * ill _ncast_v2 tine ill_ncast_| ock(WRITER) ill_ntast_| ock(READER) 1953 * ill _dhcpinit atom cs atom cs
1888 * ill _ntast_v1_tset ill_ncast_| ock(WRITER) ill_ntast_| ock(READER) 1954 * ill_flownotify_mh wite once wite once
1889 * ill _ntast_v2_tset ill_ncast_| ock(WRITER) ill_ntast_| ock(READER) 1955 * ill|_capab_pending_cnt i psq i psq
1890 * ill_ntast_rv i1l _ntast_| ock(\WRI TER) ill_ntast_| ock(READER) 1956 * ill_ipallmlti_cnt ill_lock ill_lock
1891 * ill _ncast_qi i1l _ncast_| ock(WRI TER) i |l _ntast_| ock(READER) 1957 * ill_ipallmulti_ilm ill_lock ill_lock
1892 * 1958 * ill_saved_ire_np i1l _saved_ire_|l ock i1l _saved_ire_|l ock
1893 * ill_down_np i psq i psq 1959 * ill_saved_ire_cnt ill_saved_ire_| ock ill_saved_ire_| ock
1894 * jll_dl pi _deferred ill_lock ill_lock 1960 * ill_arl 22?7 ?2??
1895 * ill_dl pi _pending ipsqg + ill_lock ipsqg or ill_lock or 1961 * ill_ire_multicast i psq + qui escent none
1896 * absence of ipsq witer. 1962 * ill_bound_ipif i psq i psq
1897 * ill _phys_addr_np ipsq + down ill only when ill is up 1963 * ill_actnode ipsq + ipnp_l ock ipsq OR ipnp_l ock
1898 * ill_ntast_deferred ill_lock ill_lock 1964 * ill_grpnode ipsq + ill_g_lock ipsq ORill_g_lock
1899 * ill_phys_addr ipsq + down ill only when ill is up 1965 * ill_src_ipif ill_g_lock ill_g_lock
1900 * ill_dest_addr_np ipsq + down ill only when ill is up 1966 * ill_nove_ipif i psq i psq
1901 * ill _dest_addr ipsq + down ill only when ill is up 1967 * ill_nom cast i psq i psq OR advi sory
1902 * 1968 * ill _refresh tid ill_lock ill_lock
1903 * ill_state_flags ill_lock ill_lock 1969 * ill_grp (for IPWP ill) wite once wite once
1904 * exclusive bit flags i psq_t i psq_t 1970 * ill_grp (for underlying ill) ipsq + ill_g_|lock ipsq ORill_g_lock
1905 * shared bit flags ill_lock ill_lock 1971 * ill _grp_pending ill_ncast_serializer i1l _ncast_serializer
1906 * 1972 * ill_nrouter_cnt atomi cs atomi cs
1907 * ill_muxid i psq Not atom c 1973 * ill _nphysaddr _|ist ill_lock ill_lock
1908 * 1974 *
1909 * ill_ipf_gen Not atomic 1975 * NOTE: It’s OK to make heuristic decisions on an underlying interface

new usr/src/uts/common/inet/ip.h 31
1976 * by using |'S_UNDER | PMP() or conparing ill_grp’s raw pointer val ue.
1977 */

1979 /*

1980 * For ioctl restart mechani smsee ip_reprocess_ioctl ()

1981 */

1982 struct ip_ioctl_cnd_s;

1984 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, nmblk_t *,
1985 struct ip_ioctl_cnd_s *, void *);

1987 typedef struct ip_ioctl_cmi_s {

1988 int 1 pi _ cnd;

1989 size_t ipi_copyin_size;

1990 uint_t ipi_flags;

1991 uint_t ipi_cnd_type;

1992 ifunc_t ipi_func;

1993 ifunc_t ipi_func_restart;

1994 } ip_ioctl_cnd_t;

1996 /*

1997 * ipi_cnd_type:

1998 *

1999 * |F_CVMD 1 old style ifreq cnd

2000 * LIF_CMD 2 new style lifreq cnd

2001 * ARP_CMD 3 arpreq cnd

2002 * XARP_CMD 4 xar preq cnd

2003 * MSFILT_CMD 5 mul ticast source filter cnd

2004 * M SC_CMD 6 msc cnmd (not a nore specific one above)
2005 */

2007 enum{ IF_ CMD = 1, LIF_CVD, ARP_CMD, XARP_CMD, NSFILT CMD, M SC CMD };
2009 #define | Pl _DONTCARE 0 /* For ioctl encoded values that don't matter */
2011 /* Flag values in ipi_flags */

2012 #define | Pl _PRIV 0x1 /* Root only command */

2013 #define | Pl _MODOK 0x2 /* Permitted on nod instance of IP */

2014 #define IPI_WR 0x4 /* Need to grab writer access */

2015 #define | PI_CGET_CMD 0x8 /* branch to m _copyout on success */

2016 /* unused 0x10 */

2017 #define | PI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */
2019 extern ip_ioctl_cnd_t i p_ndx_ioctl_table[];

2020 extern ip_ioctl _cnd_t ip_misc_ioctl _table[];

2021 extern int ip_ndx_ioctl_count;

2022 extern int ip_msc_ioctl_count;

2024 /* Passed down by ARP to IP during | _PLINK/ | _PUNLI NK */

2025 typedef struct ipmx_s {

2026 char I pnx_nane[LI FNAMVSI Z] ; /* if name */

2027 uint_t

2028 i pnx_ar pdev_stream: 1, /* This is the arp stream*/
2029 i pnx_notused : 31;

2030 } ipmx_t;

2032 /*

2033 * State for detecting if a driver supports certain features.

2034 * Support for DL_ENABMULTI _REQ uses i1l _dlpi _nulticast_state.

2035 * Support for DLPI M DATA fastpath uses ill _dlpi_fastpath_state.

2036 */

2037 #define | DS_UNKNOWN 0 /* No DLPI request sent */

2038 #define | DS | NPROGRESS 1 /* DLPI request sent */

2039 #define | DS_ 2 /* DLPI request conpleted successfully */
2040 #define | DS_FAI LED 3 /* DLPI request failed */

2042
2043
2044
2045
2046
2047
2048
2049
2050

new usr/src/uts/comon/inet/ip.h
/* Support for DL_CAPABI LI TY_REQ uses ill_dl pi _capab_state. */
enum {
| DCS_UNKNOWN,
| DCS_PROBE_SENT,
| DCS_CX,
| DCS_RESET_SENT,
| DCS_RENEG,
| DCS_FAI LED
B
/* Extended NDP Managenent Structure */

2052
2053
2054
2055
2056
2057
2058

2060
2061
2062
2063
2064
2065

2067

2069
2070

2072
2073
2074
2075
2076
2077
2078
2079

2081

2083
2084
2085
2086
2087
2088
2089

2091
2092

2094
2095
2096
2097
2098
2099
2100

2102
2103
2104
2105
2106
2107

typedef struct ipndp_s {

ndget f _t i p_ndp_getf;

ndset f _t i p_ndp_setf;

caddr _t i p_ndp_dat a;

char *I p_ndp_nane;
} ipndp_t;

/* 1 XA Notification types */
typedef enum {

| XAN_LSO, /* LSO capability change */
| XAN_PMTU, /* PMIU change */
| XAN_ZCOPY | * ZEROCOPY capabl lity change */

} ixa_notify type_t;

typedef uint_t ixa_notify_arg_t;

typedef void (*i xa notlfy t)(void *, ip_xmt_attr_t *ixa, ixa_notify_type_t,
ixa_notify_arg_t
/*
* Attribute flags that are coombn to the transmt and receive attributes
*/
#define | AF_I S_| PV4 0x80000000 I* ipsec_*_v4 */
#def i ne | AF_TRUSTED | CMP 0x40000000 /* ipsec_*_icnp_| oopback */
#define | AF_NO LOOP_ZONEI D_SET 0x20000000 /* Zone that shouldn’t have */
/* a copy */
#defi ne | AF_LOOPBACK_ COPY 0x10000000 /* For mJIti and broadcast */
#defi ne | AF_MASK 0xf 0000000 /* Flags that are common */
/*
* Transnmit side attributes used between the transport protocols and IP as
* well as inside IP. It is also used to cache information in the conn_t i.e.
* replaces conn_ire and the | Psec caching in the conn_t.
*/
struct ip_xmt_attr_s {
I afl ags_t i xa_fl ags; /* | XAF_*. See bel ow */
ui nt 32_t ixa_free_flags; /* | XA_FREE_*. See bel ow */
ui nt32_t i xa_refcnt; /* Using atomics */
/*

* Always initialized independently of ixa_flags settings.
* Used by ip_xmt so we keep themup front for cache locality.
S

ui nt 32_t ixa_xmt_hint; /* For ECMP and GLD TX ring fanout */
ui nt _t i xa_pkt|en; /* Always set. For frag and stats */
zonei d_t i xa_zonei d; /* Assunmed al ways set */

/* Always set for conn_ip_output();
/*

* Since TCP keeps the conn_t around past the process going away
we need to use the "notr" (e.g, ire_refhold_notr) for ixa_ire,
i xa_nce, and ixa_dce.

m ght be stale */

* %

*/

32

new usr/src/uts/comon/inet/ip.h 33

2108
2109
2110
2111
2112
2113

2115
2116

2118
2119

2121
2123

2125
2126 #define

2128
2130
2132

2134
2135
2136

2138
2140

2142
2143
2144
2145
2146

2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172

ire_t *ixa_ire; /* Forwarding table entry */

uint_t i xa_i re_generation;

nce_t *i xa_nce; /* Nei ghbor cache entry */

dce_t *i xa_dce; /* Destination cache entry */

ui nt _t i xa_dce_gener ati on;

uint_t i xa_src_generation; /* 1f | XAF_VERI FY_SOURCE */

ui nt32_t i xa_src_preferences; /* prefs for src addr select */
ui nt 32_t i xa_pnt u; /* | XAF_VERI FY_PMIU */

/* Set by ULP if |XAF_VER FY_PMIU; otherw se set by IP */

ui nt32_t i xa_fragsi ze;

int8_t i xa_use_m n_nt u; /* | XAF_USE_M N_MTU val ues */
pfirepostfrag_t ixa_postfragfn; /* Set internally in IP */

i n6_addr _t i xa_next hop_v6; /* | XAF_NEXTHOP_SET */

i xa_nexthop_v4 V4_PART_COF V6(| xa_next hop_v6)

zonei d_t i xa_no_| oop_zonei d; /* 1 XAF_NO_LOOP_ZONEI D_SET */
uint_t i xa_scopei d; /* For 1Pv6 link-1ocals */
uint_t i xa_broadcast _ttl; /* | XAF_BROACAST_TTL_SET */
uint_t ixa_multicast_ttl; /* Assuned set for nulticast */
ui nt _t ixa_multicast_ifindex; /* Assumed set for multicast */
i paddr _t ixa_multicast_ifaddr; /* Assunmed set for nmulticast */
int i xa_raw_cksum of f set ; /* 1f | XAF_SET_RAW CKSUM */

ui nt32_t i xa_i dent; /* For |Pv6 fragment header */
ui*nt 64_t i xa_conn_i d; /* Used by DTrace */

* Cached LSO i nformation.
*/

ill_lso_capab_t ixa_l so_capab; /* Valid when | XAF_LSO CAPAB */

ui nt 64_t i xa_i psec_policy_gen; /* Generation fromiph_gen */
/*

* The following I Psec fields are only initialized when
* | XAF_I PSEC SECURE is set. Ctherw se they contain garbage.

*

i psec_latch_t *i xa_i psec_| atch; /* Just the ids */

struct ipsa_s *ixa_i psec_ah_sa; /* Hard reference SA for AH */
struct ipsa_s *i xa_i psec_ esp sa; /* Hard reference SA for ESP */
struct ipsec_policy_s *ixa_l psec_policy; /* why are we here? */
struct ipsec_action_s *ixa_i psec_action; /* For reflected packets */
i psa_ref_t i xa_i psec_ref[2]; /* Soft reference to SA */

/* 0: ESP, 1. AH */
/*
* The selectors here are potentially different than the SPD rule’s
* selectors, and we need to have both available for |KEv2.
*
* NOTE: "Source" and "Dest" are w.r.t. outbound datagrams. Ports can
* be zero, and the protocol nunber is needed to nake the ports
* significant.
*/
uint16_t ixa_ipsec_src_port; /* Source port nunber of d-gram */
uint16_t ixa_ipsec_dst_port; /* Destination port nunber of d-gram */
uint8_t ixa_ipsec_icnp_type; /* | CWP type of d-gram */
uint8_t ixa_ipsec_icnp_code; /* 1 CWP code of d-gram */

new usr/src/uts/common/inet/ip.h 34
2174 sa_famly_t ixa |psec i naf ; /* Inner address famly */

2175 #define | XA_MAX_ADDRLEN 4 /* Max addr len. (in 32-bit words) */

2176 uint32_t ixa _i psec_insrc[| XA_MAX_ADDRLEN] ; /* Inner src address */
2177 uint32_t ixa _i psec_indst [XA_ NAX_ADDRLEN] /* Inner dest address */
2178 uint8 i xa_i psec_i nsrcpf x; /* Inner source prefix */

2179 uint8_t ixa_ipsec_indstpfx; /* Inner destination prefix */

2181 uint8_t ixa_ipsec_proto; /* 1P protocol nunber for d-gram */
2183 /* Always initialized independently of ixa_flags settings */

2184 uint_t i xa_i findex; /* Assuned al ways set */

2185 uint16_t ixa_ip_hdr_length; /* Points to ULP header */

2186 uint8_t i xa_protocol ; /* Protocol nunmber for ULP cksum */
2187 ts_|l abel _t *ixa_tsl; /* Always set. NULL if not TX */

2188 ip_ “stack_t *jxa_i pst; /* Al ways set */

2189 uint 32_t ixa_extra_ident; /* Set if LSO */

2190 cred_t *ixa_cred; /* For getpeerucred */

2191 pid_t i xa_cpi d; /* For getpeerucred */

2193 #ifdef DEBUG

2194 kt hread_t *ixa_curthread; /* For serialization assert */

2195 #endi f

2196 squeue_t *i xa_sqp; /* Set fromconn_sqp as a hint */

2197 uintptr_t i xa_cooki e; /* cookie to use for tx flow control */
2199 /*

2200 * Must be set by ULP if any of |XAF_VERI FY_LSO, | XAF_VERI FY_PMIU,
2201 * or | XAF_VERI FY_ZCOPY is set.

2202 */

2203 ixa_notify_t i xa_notify; /* Registered upcall notify function */
2204 voi d *ixa_notify_cookie; /* ULP cookie for ixa_notify */
2205 };

2207 I*

2208 * Flags to indicate which transmt attributes are set.

2209 * Split into "xxx_SET" ones which indicate that the "xxx" field it set, and
2210 * single flags.

2211 */

2212 #define | XAF_REACH CONF 0x00000001 /* Reachability confirmation */
2213 #define | XAF_BROADCAST TTL_SET 0x00000002 /* ixa_broadcast _ttl valid */
2214 #define | XAF_SET_SOURCE 0x00000004 /* Replace if broadcast */

2215 #define | XAF_USE_M N_MrU 0x00000008 /* 1 PV6_USE_M N_MrU */

2217 #define | XAF_DONTFRAG 0x00000010 /* | P*_DONTFRAG */

2218 #define | XAF_VERI FY_PMIU 0x00000020 /* ixa_pntu/ixa_fragsize set */
2219 #define | XAF_PMIU_DI SCOVERY 0x00000040 /* Create/use PMIU state */
2220 #define | XAF_MJLTI CAST_LCOOP 0x00000080 /* | P_MJLTI CAST_LCOP */

2222 #define | XAF_| PSEC_SECURE 0x00000100 /* Need | Psec processing */
2223 #define | XAF_UCRED_TSL 0x00000200 /* ixa_tsl from SCM UCRED */
2224 #define | XAF_DONTROUTE 0x00000400 /* SO _DONTROUTE */

2225 #define | XAF_NO_| PSEC 0x00000800 /* lgnore policy */

2227 #define | XAF_PMIU_TOO_SMALL 0x00001000 /* PMIU too small */

2228 #define | XAF_SET_ULP_CKSUM 0x00002000 /* Cal cul ate ULP checksum */
2229 #define | XAF_VERI FY_SOURCE 0x00004000 /* Check that source is ok */
2230 #define | XAF_NEXTHOP_SET 0x00008000 /* i xa_next hop set */

2232 #define | XAF_PMIU_| PV4_DF 0x00010000 /* Set |Pv4 DF */

2233 #define | XAF_NO _DEV_FLOW CTL 0x00020000 /* Protocol needs no flow ctl */
2234 #define | XAF_NO_TTL_CHANGE 0x00040000 /* Internal to IP */

2235 #define | XAF_| PV6_ADD FRAGHDR 0x00080000 /* Add fragnent header */

2237 #define | XAF_| PSEC_TUNNEL 0x00100000 /* Tunnel node */

2238 #define | XAF_NO PFHOOK 0x00200000 /* Skip xmit pfhook */

2239 #define | XAF_NO_TRACE 0x00400000 /* WWhen back from ARP/ ND */

new usr/src/uts/comon/inet/ip.h 35 new usr/src/uts/comon/inet/ip.h 36
2240 #define | XAF_SCOPEI D_SET 0x00800000 /* ixa_scopeid set */ 2306 */
2307 struct ip_recv_attr_s {
2242 #define | XAF_MJULTI RT_MULTI CAST 0x01000000 /* MUTIRT for nulticast */ 2308 i afl ags_t ira_flags; /* See bel ow */
2243 #define | XAF_NO_HW CKSUM 0x02000000 /* Force software cksum */
2244 #define | XAF_SET_RAW CKSUM 0x04000000 /* Use ixa_raw_cksum of fset */ 2310 ui nt32_t ira_free_flags; /* | RA_FREE_*. See bel ow */
2245 #define | XAF_| PSEC_GLOBAL_POLI CY 0x08000000 /* Policy cane from gl obal */
2312 /*
2247 /* Note the follow ng uses bits 0x10000000 through 0x80000000 */ 2313 * This is a hint for TCP SYN packets.
2248 #define | XAF_I S_| PV4 | AF_I S_| PV4 2314 * Always initialized independently of ira_flags settings
2249 #define | XAF_TRUSTED | CVP | AF_TRUSTED | CVP 2315 */
2250 #define | XAF_NO LOOP_ZONEI D_SET | AF_NO LOOP_ZONEI D_SET 2316 squeue_t *ira_sqp;
2251 #define | XAF_LOOPBACK_ COPY | AF_LOOPBACK_COPY 2317 ill_rx_ring_t *ira_ring; /* Internal to IP */
2253 /* Note: use the upper 32 bits */ 2319 /* For ip_accept_tcp when | RAF_TARCGET_SQP is set */
2254 #define | XAF_VERI FY_LSO 0x100000000 /* Check LSO capability */ 2320 squeue_t *ira_target_sqp;
2255 #define | XAF_LSO CAPAB 0x200000000 /* Capabl e of LSO */ 2321 bl k_t *ira_target_sqp_np;
2256 #define | XAF_VERI FY_ZCOPY 0x400000000 /* Check Zero Copy capabl lity */
2257 #define | XAF_ZCOPY_CAPAB 0x800000000 /* Capabl e of ZEROCOPY 2323 /* Always initialized independently of ira flags settings */
2324 uint 32_t ira_xmt_hint; /* For ECMP and GLD TX ring fanout */
2259 /* 2325 zonei d_t ira_zoneid; /* ALL_ZONES unl ess | ocal delivery */
2260 * The normal flags for sending packets e.g., icnp errors 2326 ui nt _t ira_pktlen; /* Always set. For frag and stats */
2261 */ 2327 uint16_t ira_Ip_hdr_length; /* Points to ULP header */
2262 #define | XAF_BASI C_SI MPLE_V4 \ 2328 uint8_t i ra_protocol ; /* Protocol nunber for ULP cksum */
2263 (I XAF_SET_ULP_CKSUM | | XAF_I'S | PV4 | | XAF_VERI FY_SOURCE) 2329 ui nt _t ira_rifindex; /* Received ifindex */
2264 #define | XAF_BASI C_SI MPLE_V6 (I XAF_SET_ULP_CKSUM | | XAF_VERI FY_SOURCE) 2330 ui nt _t ira_ruifindex; /* Received upper ifindex */
2331 ts_|l abel _t *ira_tsl; /* Always set. NULL if not TX */
2266 /* 2332 /*
2267 * Nornally these fields do not have a hold. But in sone cases they do, for 2333 * jra_rill and ira_ill is set inside IP, but not when conn_recv is
2268 * instance when we’ve gone through ip_*_attr_to/fromnblk. 2334 * called; ULPs should use ira_ruifindex instead.
2269 * W use ixa_free_flags to indicate that they have a hold and need to be 2335 */
2270 * rel eased on cl eanup. 2336 ill_t *ira_rill; /* ill where packet cane */
2271 */ 2337 ill_t *ira_ill; /* ill where |IP address hosted */
2272 #define | XA _FREE_CRED 0x00000001 /* ixa_cred needs to be rele */ 2338 cred_t *ira_cred,; /* For getpeerucred */
2273 #define | XA _FREE _TSL 0x00000002 /* ixa_tsl needs to be rele */ 2339 pid_t ira_cpid,; /* For getpeerucred */
2275 | * 2341 /* Used when | RAF_VERI FIED SRC is set; this source was ok */
2276 * Sinplistic way to set the ixa xmt_hint for locally generated traffic 2342 i paddr _t ira_verified_src;
2277 * and forwarded traffic. The shift amunt are based on the size of the
2278 * structs to discard the | ow order bits which don’t have nmuch if any variation 2344 /*
2279 * (coloring in knemcache_alloc m ght provide sone variation). 2345 * The following IPsec fields are only initialized when
2280 * 2346 * | RAF_I PSEC SECURE is set. Otherw se they contain garbage.
2281 * Basing the locally generated hint on the address of the conn_t neans that 2347 */
2282 * the packets fromthe sane socket/connection do not get reordered. 2348 struct ipsec_action_s *ira_ipsec_action; /* how we nmade it in.. */
2283 * Basing the hint for forwarded traffic on the ill_ring_t nmeans that 2349 struct ipsa_s *|ra|psec ah_sa; /* SA for AH */
2284 * packets fromthe sane NIC+ring are likely to use the same outbound ring 2350 struct ipsa_s *ira_i psec_esp_sa; /* SA for ESP */
2285 * hence we get |low contention on the ring in the transnmitting driver.
2286 */ 2352 i paddr _t ira_nroute_tunnel; /* | RAF_MROUTE_TUNNEL_SET */
2287 #define CONN_TO XM T_HI NT(connp) ((uint32_t)(((uintptr_t)connp) >> 11))
2288 #define ILL_RI NG TO XM T_HI NT(ri ng) ((uint32_t)(((uintptr_t)ring) >> 7)) 2354 zonei d_t ira_no_| oop_zonei d; /* | RAF_NO _LOOP_ZONEI D_SET */
2290 /* 2356 ui nt32_t ira_esp_udp_ports; /* | RAF_ESP_UDP_PORTS */
2291 * |P set Destination Flags used by function ip_set_destination,
2292 * ip_attr_connect, and conn_connect. 2358 /*
2293 */ 2359 * For | P_RECVSLLA and ip_ndp_conflict/find_solicitation.
2294 #define | PDF_ALLOW MCBC Ox1 /* Allow multi/broadcast */ 2360 * Sane size as max for sockaddr_dl
2295 #define | PDF_VERI FY_DST 0x2 /* Verify destination addr */ 2361 */
2296 #define | PDF_SELECT_SRC 0x4 /* Sel ect source address */ 2362 #define | RA_L2SRC SIZE 244
2297 #define | PDF_LSO 0x8 /* Try LSO */ 2363 uint8_t ira_l 2src[| RA_L2SRC _SI ZE] ; /* 1f | RAF_L2SRC SET */
2298 #define | PDF_I PSEC 0x10 /* Set |Psec policy */
2299 #define | PDF_ZONE | S GLOBAL 0x20 /* From conn_zone_i s_gl obal */ 2365 /*
2300 #define | PDF_ZCOPY 0x40 /* Try ZEROCOPY */ 2366 * Local handle that we use to do |lazy setting of ira_l2src.
2301 #define | PDF_UNI QUE_DCE 0x80 /* Get a per-destination DCE */ 2367 * We defer setting |2src until needed but we do before any
2368 * ip_input pullupnsg or copynsg.
2303 /* 2369 *
2304 * Receive side attributes used between the transport protocols and IP as 2370 struct mac_header _i nfo_s *ira_nhip; /* Could be NULL */
2305 * well as inside IP. 2371 };

new usr/src/uts/comon/inet/ip.h 37 new usr/src/uts/comon/inet/ip.h 38
2373 | * 2439 struct dce_s *dce_next;
2374 * Flags to indicate which receive attributes are set. 2440 struct dce_s **dce_pt pn;
2375 */ 2441 struct dcb_s *dce_bucket ;
2376 #define | RAF_SYSTEM LABELED 0x00000001 /* is_system|abel ed() *
2377 #define | RAF_I PV4_OPTI ONS 0x00000002 /* Performance */ 2443 uni on {
2378 #define | RAF_MULTI CAST 0x00000004 /* Was nulticast at L3 */ 2444 in6_addr _t dceu_v6addr;
2379 #define | RAF_BROADCAST 0x00000008 /* Was broadcast at L3 */ 2445 i paddr _t dceu_v4addr;
2380 #define | RAF_MJLTI BROADCAST (1 RAF_MULTI CAST| | RAF_BRQOADCAST) 2446 } dce_u;
2447 #define dce v4addr dce_u. dceu_v4addr
2382 #define | RAF_LOOPBACK 0x00000010 /* Looped back by IP */ 2448 #define dce_v6addr dce_u. dceu_v6addr
2383 #define | RAF_VERI FY_| P_CKSUM 0x00000020 /* Need to verify IP */ 2449 /* Note that for |Pv6+l PMP we use the ifindex for the upper interface */
2384 #define | RAF_VERI FY_ULP_CKSUM 0x00000040 /* Need to verify TCP, UDP,etc */ 2450 uint_t dce_i fi ndex; /* For IPv6 link-locals *
2385 #define | RAF_SCTP_CSUM ERR 0x00000080 /* sctp pkt has failed chksum */
2452 kmut ex_t dce_l ock;
2387 #define | RAF_I PSEC_SECURE 0x00000100 /* Passed AH and/or ESP */ 2453 uint_t dce_refcnt;
2388 #defi ne | RAF_DHCP_UNI CAST 0x00000200 2454 ui nt64_t dce_| ast _change_ti ne; /* Path MIU. In seconds */
2389 #define | RAF_I PSEC_DECAPS 0x00000400 /* Was packet decapsul ated */
2390 /* froma nmatching inner packet? */ 2456 i p_stack_t *dce_i pst; /* Does not have a netstack_hold */
2391 #define | RAF_TARGET_SQP 0x00000800 /* ira_target_sqp is set */ 2457 };
2392 #define | RAF_VERI FI ED_SRC 0x00001000 /* ira_verified_src set */
2393 #define | RAF_RSVP 0x00002000 /* RSVP packet for rsvpd */ 2459 [*
2394 #define | RAF_MROUTE_TUNNEL_SET 0x00004000 /* From i p_nroute_decap */ 2460 * Val ues for dce_generation.
2395 #define | RAF_PI M REG STER 0x00008000 /* Fromregister_nforward */ 2461 *
2462 * If a DCE has DCE_GENERATI ON_CONDEMNED, the |ast dce_refrele should delete
2397 #define | RAF_TX_MAC_EXEMPTABLE 0x00010000 /* Al ow MAC_EXEMPT readdown */ 2463 * it.
2398 #define | RAF_TX_SHARED ADDR 0x00020000 /* Arrived on ALL_ZONES addr */ 2464 *
2399 #define | RAF_ESP_UDP_PORTS 0x00040000 /* NAT-traversal packet */ 2465 * DCE_GENERATI ON_VERIFY is never stored in dce_generation but it is
2400 #define | RAF_NO _HW CKSUM 0x00080000 /* Force software cksum */ 2466 * stored in places that cache DCE (such as ixa_dce_generation).
2467 * It is used as a signal that the cache is stale and needs to be reverified.
2402 #define | RAF_I CMP_ERROR 0x00100000 /* Send to conn_recvicnp */ 2468
2403 #define | RAF_ROUTER ALERT 0x00200000 /* 1Pv6 router alert */ 2469 #defi ne DCE_GENERATI ON_CONDEMNED 0
2404 #define | RAF_L2SRC SET 0x00400000 /* ira_l 2src has been set */ 2470 #define DCE_GENERATI ON_VERI FY 1
2405 #define | RAF_L2SRC_LOOPBACK 0x00800000 /* Cane fromus */ 2471 #define DCE_GENERATI ON_I NI TI AL 2
2472 #define DCE_|I S CONDEMNED(dce) \
2407 #define | RAF_L2DST_MJLTI CAST 0x01000000 /* Multicast at L2 */ 2473 ((dce) ->dce_generati on == DCE_GENERATI ON_CONDENMNED)
2408 #define | RAF_L2DST_BROADCAST 0x02000000 /* Broadcast at L2 */
2409 /* Unused 0x04000000 */
2410 /* Unused 0x08000000 */ 2476 [*
2477 * Values for ips_src_generation.
2412 /* Below starts w th 0x10000000 * 2478 *
2413 #define | RAF_IS | PV4 I AF_I S | PV4 2479 * SRC_GENERATION_VERIFY is never stored in ips_src_generation but it is
2414 #define | RAF_TRUSTED | CVP | AF_TRUSTED | CWP 2480 * stored in places that cache | REs (ixa_src_generation). It is used as a
2415 #define | RAF_NO LOOP_ZONEI D_SET | AF_NO LOOP_ZONEI D_SET 2481 * signal that the cache is stale and needs to be reverified.
2416 #define | RAF_LOOPBACK _COPY | AF_LOOPBACK_COPY 2482 */
2483 #define SRC_GENERATI ON_VERI FY 0
2418 | * 2484 #define SRC_GENERATI ON_I NI TI AL 1
2419 * Nornally these fields do not have a hold. But in sone cases they do, for
2420 * instance when we’ve gone through ip_*_attr_to/fromnblk. 2486 /*
2421 * W use ira_free_flags to indicate that they have a hold and need to be 2487 * The kernel stores security attributes of all gateways in a database nade
2422 * rel eased on cl eanup. 2488 * up of one or nore tsol _gcdb_t el ements. Each tsol _gcdb_t contains the
2423 */ 2489 * security-related credentials of the gateway. Mre than one gateways may
2424 #define | RA_FREE CRED 0x00000001 /* ira_cred needs to be rele */ 2490 * share entries in the database.
2425 #define | RA_FREE TSL 0x00000002 /* ira_tsl needs to be rele */ 2491 *
2492 * The tsol _gc_t structure represents the gateway to credential association,
2427 | * 2493 * and refers to an entry in the database. One or nore tsol_gc_t entities are
2428 * Optional destination cache entry for path MIU information, 2494 * grouped together to formone or nore tsol _gcgrp_t, each representing the
2429 * and ULP netrics. 2495 * |ist of security attributes specific to the gateway. A gateway may be
2430 */ 2496 * associated with at nobst one credentials group.
2431 struct dce_s { 2497 */
2432 uint_t dce_generation; /* Changed since cached? */ 2498 struct tsol _gcgrp_s;
2433 uint_t dce_f 1l ags; /* See bel ow */
2434 uint_t dce_i pversion; [/* IPv4/1Pv6 version */ 2500 extern uchar_t ip6opt_Is; /* TX | Pv6 enabl er */
2435 ui nt 32_t dce_pnt u; /* Path MIU i f DCEF_PMIU */
2436 ui nt 32_t dce_i dent; /* Per destination IP ident. */ 2502 /*
2437 iulp_t dce_ui nf o; /* Metrics if DCEF_U NFO */ 2503 * Gateway security credential record.

new usr/src/uts/comon/inet/ip.h 39 new usr/src/uts/comon/inet/ip.h 40

2504 */ 2570 }

2505 typedef struct tsol _gcdb_s {

2506 uint_t gcdb_refent; /* reference count */ 2572 | *

2507 struct rtsa_s gcdb_attr; /* security attributes */ 2573 * | RE gateway security attributes structure, pointed to by tsol _ire_gw secattr

2508 #define gcdb_mask gcdb_attr.rtsa_mask 2574 */

2509 #define gcdb_doi gcdb_attr.rtsa_doi 2575 struct tsol _tnrhc;

2510 #define gcdb_slrange gcdb_attr.rtsa_slrange

2511 } tsol _gcdb_t; 2577 struct tsol _ire_gw._ secattr s {
2578 knmutex_t i gsa_l ock; /* lock to protect follow ng */

2513 /* 2579 struct tsol _tnrhc *igsa_r hc; /* host entry for gateway */

2514 * CGateway to credential association. 2580 tsol _gc_t *igsa_gc; /* for prefix IREs */

2515 */ 2581 };

2516 typedef struct tsol _gc_s {

2517 uint_t gc_refcent; /* reference count */ 2583 void irb_refrele_ftable(irb_t *);

2518 struct tsol _gcgrp_s *gc_grp; /* pointer to group */

2519 struct tsol _gc_s *gc_prev; /* previous in list */ 2585 extern struct kmem.cache *rt_entry_cache;

2520 struct tsol _gc_s *gc next ; /* next in list */

2521 tsol _gcdb_t *gc_db; /* pointer to actual credentials */ 2587 typedef struct ire4 {

2522 } tsol _gc_t; 2588 i paddr _t ire4_mask; /* Mask for matching this IRE. */
2589 i paddr_t ired_addr; /* Address this | RE represents. */

2524 | * 2590 i paddr _t ire4_gateway_addr; /* Gateway incl ud| ng for | RE_ONLINK */

2525 * Cateway credentials group address. 2591 i paddr_t ire4d_setsrc_addr; /* RTF_SETSRC *

2526 */ 2592 } ire4 t;

2527 typedef struct tsol _gcgrp_addr_s {

2528 int ga_af; /* address famly */ 2594 typedef struct ireé {

2529 in6_addr _t ga_ addr /* 1 Pv4 mapped or |Pv6 address */ 2595 6_addr_t ire6_nask; /* Mask for matching this IRE */

2530 } tsol _gcgrp_addr_t; 2596 |n6 addr_t ire6_addr; /* Address this |IRE represents. */
2597 in6_addr_t ire6_gateway_addr; /* Gateway including for | RE_ONLINK */

2532 /* 2598 in6_addr_t ire6_setsrc_addr; /* RTF_SETSRC */

2533 * Gateway credentials group. 2599 } ire6_t;

2534 */

2535 typedef struct tsol _gcgrp_s { 2601 typedef union ire_addr {

2536 uint _t gcgrp_refent; [* reference count */ 2602 ire6_t ire6_u;

2537 krw ock_t gcgr p_rw ock; /* lock to protect follow ng */ 2603 ired_t ired_u;

2538 uint_t gcgrp_count; /* nunber of credentials */ 2604 } ire_addr_u_t;

2539 tsol _gc_t *gcgr p_head; /* first credential in list */

2540 tsol _gc_t *gcgrp_tail; /* last credential in list */ 2606 /*

2541 tsol _gcgrp_addr _t gcgrp_addr; /* next-hop gateway address */ 2607 * Internet Routing Entry

2542 } tsol _gcgrp_t; 2608 * When we have nultiple identical IREs we |ogically add them by mani pul ati ng
2609 * ire_identical _ref and ire_delete first decrenents

2544 extern knutex_t gcgrp_| ock; 2610 * that and when it reaches 1 we know it is the last |RE
2611 * "identical" is defined as being the same for:

2546 #define GC_REFRELE(p) { \ 2612 * ire_addr, ire_netmask, ire_gateway, ire_ill, ire_zoneid, and ire_type

2547 ASSERT((p)->gc_grp != NULL); \ 2613 * For instance, nultiple | RE_BROADCASTs for the same subnet nunber are

2548 rw_enter (& p)->gc_grp->gcgrp_rw ock, RWWRI TER); \ 2614 * viewed as identical, and so are the | RE | NTERFACEsS when there are

2549 ASSERT((p)->gc_refcnt > 0); \ 2615 * multiple logical interfaces (on the same ill) with the same subnet prefix.

2550 if (--((p)->gc_refcnt) == 0) \ 2616 */

2551 gc_inactive(p); \ 2617 struct ire_s {

2552 el se \ 2618 struct ire_s *ire_next; /* The hash chain nust be first. */

2553 rw_exit (& p)->gc_grp->gcgrp_rw ock); \ 2619 struct ire_s **ire_ptpn; /* Pointer to previous next. */

2554 } 2620 ui nt32_t ire_refcnt; /* Nunber of references */
2621 ill_t *ire_ill;

2556 #define GCGRP_REFHOLD(p) { \ 2622 ui nt32_t ire_identical _ref; /* | RE_| NTERFACE, | RE_BROADCAST */

2557 nut ex_ent er (&gcgr p_| ock) ; \ 2623 uchar _t ire_ipversion; [/* |Pv4/IPv6 version */

2558 ++((p)->gcgrp_refcnt); \ 2624 ushort _t ire_type; /* Type of IRE */

2559 ASSERT((p) ->gcgrp_refcnt !'= 0); \ 2625 uint_t ire_generation; /* Generation including CONDEMNED */

2560 mut ex_exi t (&gcgr p_l ock); \ 2626 uint_t ire_ib_pkt_count; /* 1 nbound packets for ire_addr */

2561 } 2627 uint_t ire_ob_pkt_count; /* CQutbound packets to ire_addr */
2628 time_t ire create tine; /* Time (in secs) |IRE was created. */

2563 #defi ne GCGRP_REFRELE(p) { \ 2629 ui nt 32_t ire_flags; /* flags related to route (RTF_*) */

2564 mut ex_ent er (&gcgr p_| ock) ; \ 2630 /*

2565 ASSERT((p) - >gcgrp_refcnt > 0) \ 2631 * jre_testhidden is TRUE for | NTERFACE | REs of |'S_UNDER I PMP(ill)

2566 if (--((p)->gcgrp_refcnt) == 0) \ 2632 * interfaces

2567 gegrp_i nactive(p); \ 2633

2568 ASSERT(MUTEX_HELD(&gcgr p_| ock)) ; \ 2634 bool ean_t i re_testhidden;

2569 mut ex_exi t (&gcgr p_l ock); \ 2635 pfirerecv_t ire_recvfn; /* Receive side handling */

new usr/src/uts/comon/inet/ip.h

2636
2637

2639
2640

2642
2643
2644
2645
2646

2648
2649
2650
2651
2652
2653
2654
2655
2656
2657

2659
2660
2661
2662
2663
2664

2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686

2688
2689

2691
2692
2693

2695
2696
2697
2698
2699
2700
2701

41
pfiresend_t i re_sendfn; /* Send side handling */
pfirepostfrag_t ire_postfragfn; /* Bottomend of send handling */
ui nt _t i re_maskl en; [* # bits in ire_mask{, v6} */
ire_addr_u_t ire_u; /* I Pv4l1Pv6 address info. */
irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */
kmut ex_t ire_|l ock;
clock_t ire_| ast_used_time; /* For | RE_LOCAL reception */
tsol ire_gw secattr_t *ire_gw secattr; /* gateway security attributes */
zonei d_t ire_zoneid,

/*

* Cached information of where to send packets that match this route.
* The ire_dep_* information is used to determ ne when ire_nce_cache
* needs to be updated.

* ire_nce_cache is the fastpath for the Nei ghbor Cache Entry

* for 1Pv6; arp info for |Pv4

* Since this is a cache setup and torn down independently of

* applications we need to use nce_ref{rele, hold}_notr for it.

*/

nce_t *ire_nce_cache;

/*

* Quick check whether the ire_type and ire_naskl en indicates
* that the I RE can have ire_nce_cache set i.e., whether it is
IRE_ONLINK and for a single destination.

*

*

/

bool ean_t i re_nce_capabl e;
/
Dependency tracking so we can safely cache | RE and NCE pointers
in offlink and onlink | REs

These are | ocked under the ips_ire_dep_lock rw ock. Wite held
when nodi fying the |inkage.

i re_dep_parent (Also chain towards | RE for nexthop)

i re_dep_parent_generation: ire_generation of ire_dep_parent
ire_dep_children (Fromparent to first child)

i re_dep_sib_next (linked |ist of siblings)

ire_dep_sib_ptpn (linked list of siblings)

The parent has a ire_refhold on each child, and each child has

an ire_refhold on its parent.

Since ire_dep_parent is a cache setup and torn down independently of
applications we need to use ire_ref{rele, hold}_notr for it.

IR EE R e
-

ire_t *ire_dep_parent;

ire_t *ire_dep_children;

ire_t *ire_dep_sib_next;

ire_t **jre_dep_si b_ptpn; /* Pointer to previous next */
ui nt _t i re_dep_parent _generation;

ui nt _t i re_badcnt; /* Nunber of times ND_UNREACHABLE */
ui nt 64_t ire_last_badcnt; /* In seconds */

/* ire_defense* and ire_last_used_time are only used on | RE_LOCALs */
uint_t i re_def ense_count; /* nunber of ARP conflicts */

ui nt _t i re_defense_tine; /* last time defended (secs) *
bool ean_t ire_trace_disabl e; /* True when alloc fails */
i p_stack_t *ire_ipst; /* Does not have a netst ack_hol d */
iulp_t ire_metrics;

/*

* default and prefix routes that are added wi thout explicitly
* specifying the interface are termed "unbound" routes, and will
* have ire_unbound set to true.

new usr/src/uts/comon/inet/ip.h

2702
2703
2704

2706
2707
2708
2709
2710

2712
2713
2714
2715

2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732

2734
2735
2736

2738
2739
2740
2741
2742

2744
2745

2747
2748
2749
2750
2751
2752
2753
2754
2755
2756

2758
2759
2760
2761

2763
2764
2765
2766
2767

*/
bool ean_t i re_unbound;
e
/* | Pv4 conpatibility macros */
#define ire_mask ire_u.ired_u.ired_mask
#define ire_addr ire_u.ired_u.ired_addr
#define ire_gateway_addr ire_u.ire4_u.ired_gateway_addr
#define ire_setsrc_addr ire_u.ired_u.ired_setsrc_addr
#define ire_mask_v6 ire_u.ire6_u.ire6_mask
#define ire_addr_v6 ire_u.ire6_u.ire6_addr
#define ire_gateway_addr_v6é ire_u.ire6_u.ire6_gateway_addr
#define ire_setsrc_addr_v6 ire_u.ire6_u.ire6_setsrc_addr
/*
* Val ues for ire_generation.
*
* |f an IREis marked with | RE_IS_CONDEMNED, the |ast wal ker of
* the bucket should delete this IRE fromthis bucket.
*
* | RE_GENERATI ON_VERI FY is never stored in ire_generation but it is
* stored in places that cache | REs (such as ixa_ire_generation and
* ire_dep_parent_generation). It is used as a signal that the cache is
* stale and needs to be reverified.
*/
#def i ne | RE_GENERATI ON_CONDEMNED 0
#def i ne | RE_GENERATI ON_VERI FY 1
#def i ne | RE_GENERATI ONLI NI TI AL 2
#def i ne IRE IS OO\IDEM\IED(l re) \
((ire)->ire_generati on == | RE_GENERATI ON_CONDEMN\ED)
/* Conveni ent typedefs for sockaddrs */
typedef struct sockaddr_in sin_t;
typedef struct sockaddr_in6 sin6_t;
/* Nane/ Val ue Descriptor. */

typedef struct nv_s {
uint64_t nv_val ue;
char *nv_nane;
} nv_t;

#define | LL_FRAG HASH(s, i) \
N ((i) >> 8))) %I LL_FRAG HASH TBL_COUNT)

((ntohl (5) ~ ((i)
/*
* The MAX nunber of allowed fragmented packets per hash bucket
* calculation is based on the npst common ntu size of 1500. This limt
*will work well for other ntu sizes as well.
*/
#defi ne COMMON_I P_MTU 1500

#defi ne MAX_FRAG M N 10

#defi ne MAX_FRAG_PKTS(i pst) \
(i

MAX(MAX_FRAG M N, (2 * (ipst->ips_ip_reass_queue_bytes / \
(COVMMON_I P_MTU * | LL_FRAG HASH TBL_CQUNT))))
/*
* Maxi mum dups al | oned per packet.
*/
extern uint_t ip_max_frag_dups;

/
Per - packet information for received packets and transmitted.

Used by the transport protocols when converting between the packet
and ancillary data and socket options.

* Ok Ok Ok %

new usr/src/uts/comon/inet/ip.h

2768 * Note: This private data structure and related | PPF_* constant

2769 * definitions are exposed to enable conpilation of some debugging tools
2770 * like |Isof which use struct tcp_t in <inet/tcp.h> This is intended to be
2771 * a tenporary hack and long termalternate interfaces should be defined
2772 * to support the needs of such tools and private definitions noved to

2773 * private headers.

2774 */

2775 struct ip_pkt_s {

2776 ui nt _t i pp_fields; /* Wich fields are valid */
2777 i n6_addr _t i pp_addr; /* pktinfo src/dst addr */
2778 #define ipp_ _addr _v4 V4_PART_OF_V6(i pp_addr)

2779 uint_t i pp_uni cast _hops; /* 1 PV6_UNI CAST_HOPS, |P_TTL */
2780 uint _t i pp_hoplimt; /* | PV6_HOPLIM T */

2781 uint_t i pp_hopopt sl en;

2782 uint_t i pp_rthdrdstoptsl en;

2783 ui nt _t i pp_rthdrlen;

2784 ui nt _t i pp_dst opt sl en;

2785 uint_t i pp_fraghdrlen;

2786 i p6_hbh_t *I pp_hopopt s;

2787 i p6_dest _t *j pp_rthdrdstopts;

2788 i p6_rthdr_t *ipp_rthdr;

2789 i p6_dest T *i pp_dst opts;

2790 i p6_ frag_t *i pp_fraghdr;

2791 uint8_t i pp_tclass; /* 1 PV6_TCLASS */

2792 uint8_t i pp_type_of _service; /* 1P_TCS */

2793 ui nt _t i pp_i pv4_options_| en; /* Len of |Pv4 options */
2794 uint8_t *| pp_i pv4_options; /* Ptr to |IPv4 options */
2795 ui nt _t i pp_l abel _| en_v4; /* Len of TX label for |Pv4 */
2796 ui nt 8_t *1 pp_| abel _v4; /* TX | abel for |Pv4 */

2797 ui nt _t i pp_l'abel _Ten_v6; /* Len of TX label for |Pv6 */
2798 uint8_t *| pp_| abel _v6; /* TX | abel for IPv6 */

2799 };

2800 typedef struct ip_pkt_s ip_pkt_t;

2802 extern void ip_pkt_free(ip_pkt_t *); /* free storage inside ip_pkt_t */
2803 extern ipaddr_t ip_pkt_source route_v4(const ip_pkt_t *);

2804 extern in6_addr_t *ip_pkt_source_route_v6(const Ip_pkt t *);

2805 extern int ip_pkt_copy(ip_pkt_t *, ip_pkt_t *, int)

2806 extern void ip_pkt_source_route_reverse_v4(ip_pkt_t *);

2808 /* ipp_fields values */

2809 #define | PPF_ADDR 0x0001 /* Part of in6_pktinfo: src/dst addr */
2810 #define | PPF_HOPLIM T 0x0002 /* COverrides unicast and nulticast */
2811 #define | PPF_TCLASS 0x0004 /* Overrides class in sin6_flow nfo */
2813 #defi ne | PPF_HOPOPTS 0x0010 /* ipp_hopopts set */

2814 #define | PPF_RTHDR 0x0020 /* ipp_rthdr set */

2815 #define | PPF_RTHDRDSTOPTS 0x0040 /* ipp_rthdrdstopts set */

2816 #define | PPF_DSTOPTS 0x0080 /* ipp_dstopts set */

2818 #define | PPF_| PV4_OPTI ONS 0x0100 /* ipp_ipv4_options set */

2819 #define | PPF_LABEL_V4 0x0200 /* ipp_label _v4 set */

2820 #define | PPF_LABEL_V6 0x0400 /* ipp_label _v6 set */

2822 #define | PPF_FRAGHDR 0x0800 /* Used for |Psec receive side */
2824 | *

2825 * Data structure which is passed to conn_opt_get/set.

2826 * The conn_t is included even though it can be inferred from queue_t.

2827 * setsockopt and getsockopt use conn_ixa and conn_xnit_ipp. However,

2828 * when handling ancillary data we use separate ixa and ipps.

2829 */

2830 typedef struct conn_opt_arg_s {

2831 conn_t *coa_connp;

2832 ip_xmt_attr_t *coa_ixa;

2833 i p_pkt_t *coa_i pp;

43

new usr/src/uts/comon/inet/ip.h 44
2834 bool ean_t coa_ancillary; [/* Ancillary data and not setsockopt */
2835 uint_t coa_changed; /* See bel ow */

2836 } conn_opt_arg_t;

2838 [*

2839 * Flags for what changed.

2840 * |If we want to be nore efficient in the future we can have nore fine
2841 * grained flags e.g., a flag for just |IP_TOS changi ng.

2842 * For now we either call ip_set_destination (for "route changed")

2843 * and/or conn_buil d_hdr_tenpl ate/ conn_prepend_hdr (for "header changed").
2844 */

2845 #define COA _HEADER CHANGED 0x0001

2846 #define COA_ROUTE_CHANGED 0x0002

2847 #define COA_RCVBUF_CHANGED 0x0004 /* SO RCVBUF */

2848 #defi ne COA_SNDBUF_CHANGED 0x0008 /* SO SNDBUF */

2849 #defi ne COA WROFF_CHANGED 0x0010 /* Header size changed */

2850 #define COA_| CVP_BI ND_NEEDED 0x0020

2851 #define COA_OOBI NLI NE_CHANGED 0x0040

2853 #define TCP_PORTS_OFFSET 0

2854 #define UDP_PORTS_OFFSET 0

2856 /*

2857 * lookups return the ill/ipif only if the flags are clear OR lamwiter.
2858 * ill / ipif lookup functions increment the refcnt on the ill / ipif only
2859 * after calling these macros. This ensures that the refcnt on the ipif or
2860 * ill will eventually drop down to zero.

2861 */

2862 #define |LL_LOOKUP_FAI LED 1 [* Used as error code */

2863 #define | Pl F_LOOKUP_FAI LED 2 /* Used as error code */

2865 #define ILL_O—\ | LOOKUP(il1) \
2866 (Y(Cill)y->ill_state flags & | LL_CONDEMNED) | | \
2867 I AMWRI TER I LL(ill))

2869 #define ILL IS CONDEMNED(ill) \

2870 ((ill)->ill_state_flags & | LL_CONDEMNED)

2872 #define | Pl F_CAN_LOOKUP(i pif) \

2873 ('((ipif)->ipif_state_flags & | PIF_CONDEMNED) || \

2874 I AM VR TER | PI F(i pi f))

2876 #define |PIF_|'S CONDEMNED(i pi f) \

2877 ((ipif)->ipif_state _flags & | Pl F_CONDEMNED)

2879 #define IPIF_IS CHANG NG(ipif) \

2880 ((ipif)->ipif_state_flags & | Pl F_CHANG NG

2882 /* Macros used to assert that this thread is a witer */

2883 #define | AMWRI TER | PSQ(i psq) ((ipsq)->i psg_xop->i px_witer == curthread)
2884 #define |AMWRI TER ILL(i11) I AMVMRI TER | PSQ((il 1)->i11_phyint->phyint_i psq)
2885 #define |AMWRITER IPIF(ipif) |TAMWRI TER ILL((ipif)->ipif_iil)

2887 [*

2888 * Grab ill locks in the proper order. The order is highest addressed
2889 * ill is locked first.

2890 */

2891 #define GRAB_ILL_LOCKS(ill _1, ill_2) \

2892 { \

2893 |f((||| 1)>(|II _2)) { \

2894 (il T= NULL) \

2895 r'rut ex_enter (& ill_1)->ill_lock); \

2896 if (ill_2 !'= NULL) \

2897 mutex_enter (&(il1_2)->ill_l ock); \

2898 } else { \

2899 if (ill_2 1= NULL) \

new usr/src/uts/common/inet/ip.h 45
2900 nmut ex_enter (&(ill 2)—>i||_| ock) ; \

2901 if (il1_1!=NULL & ill_1 !=1ill_2) \

2902 nutex_enter (&(ill_1)->ill_lock); \

2903 } \

2904 }

2906 #define RELEASE | LL_LOCKS(ill _1, ill_2) \

2907 { \

2908 if (ill_1!'= NULL) \

2909 mutex_exit(&il1_1)->ill_lock); \

2910 if (ill_21=NUL & ill_21=ilT 1) \

2911 mutex_exit (& ill_2)->il1l_lock); \

2912 }

2914 /* Get the other protocol instance ill */

2915 #define | LL_OTHER(|| \

2916 (Cithy->ill_isve 2 (ill)->ill phylnt >phyint_illv4 : \

2917 (111)->111_phyint->phyint_illv6)

2919 /* ioctl command info: loctl properties extracted and stored in here */
2920 typedef struct cmd_info_s

2921 {

2922 ipif_t *ci_ipif; /* ipif associated with [I]ifreq ioctl’s */
2923 sin_t *ci_sin; /* the sin struct passed down */

2924 sin6_t *ci_sin6; /* the sin6_t struct passed down */

2925 struct lifreq *ci_lifr; /* the lifreq struct passed down */

2926 } cnd_info_t;

2928 extern struct knmem cache *ire_cache;

2930 extern ipaddr_t ip_g_all_ones;

2932 extern uint_t i p_| oopback_nt u; /* |etc/system*/

2933 extern uint_t i p_| oopback_nt upl us;

2934 extern uint_t i p_l oopback_ntu v6p| us;

2936 extern vmemt *ip_m nor_arena_sa;

2937 extern vmemt *ip_minor_arena_l a;

2939 /*

2940 * ip_g_forward controls IP forwarding. It takes two val ues:

2941 * 0: | P_FORWARD_NEVER Don’t forward packets ever.

2942 * 1: | P_FORWARD_ALWAYS Forward packets for el sewhere.

2943 *

2944 * RFCl1122 says there nust be a configuration switch to control forwarding,
2945 * but that the default MJUST be to not forward packets ever. Inplicit
2946 * control based on configuration of nultiple interfaces MIJST NOT be

2947 * inplenented (Section 3.1). SunCS 4.1 did provide the "automatic" capability
2948 * and, in fact, it was the default. That capability is now provided in the
2949 * [etc/rc2.d/S69inet script.

2950 */

2952 #define ips_ip_respond_to_address_mask_broadcast \

2953 i ps_propinfo_tbl[0].prop_cur_bval
2954 #define ips_ip_g_resp_to_echo_bcast i ps_propi nf o_thl[1]. prop_cur_bval
2955 #define ips_ip_g_resp_to_echo_ntast i ps_propinfo_tbl[2].prop_cur_bval
2956 #define ips_ip_g_resp_to_tinestanp i ps_propinfo_tbl[3].prop_cur_bval
2957 #define ips_ip_g_resp_to_timestanp_bcast | ps_propinfo_tbl[4].prop_ cur_bval
2958 #define ips_ip_g_send_redirects i ps_propi nf o_thl[5]. prop_cur_bval
2959 #define ips_ip_g_ forward_directed_bcast i ps_propinfo_tbl[6]. prop_cur_bval
2960 #define ips_i p_nrtdebug i ps_propinfo_tbl[7].prop_cur_uval
2961 #define ips_ip_ire_reclaimfraction i ps_propinfo_tbhl[8].prop_cur_uval
2962 #define ips_ip_nce_reclaimfraction i ps_propinfo_thl[9].prop_cur_uval
2963 #define ips_ip_dce_reclaimfraction i ps_propinfo_tbl[10].prop_cur_uval
2964 #define ips_i p_def “ttl i ps_propinfo_tbl[11].prop_cur “uval
2965 #define ips_ip_forward_src_routed i ps_propinfo_thl[12]. prop_cur_bval

new usr/src/uts/comon/inet/ip.h

2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981

2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998

3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

/* 1 Pv6

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/* M
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

SC
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ips_i p_wroff_extra

i ps_ip_| pathmu interval
|ps |p icnp_return

i ps_i p_pat h_nt u_di scovery
i ps_i p_pmtu_min

i ps_i p_i gnore_redirect

i ps_i p_arp_i cnp_error

i ps_i p_broadcast _ttl
i ps_i p_i cnp_err_interval
i ps_i p_i cnp_err_bur st

i ps_i p_reass _queue_bytes

i ps_ip_strict_dst_nultihom ng

i ps_i p_addrs_per_| if

i ps_i psec_overri de_persocket _pol
i ps_i cnp_accept _cl ear _nessages

i ps_i gnp_accept _cl ear_nessages

configuration knobs */

i ps_del ay_first_probe_tine

i ps_max_uni cast_solicit

ips_ |pv6 def _hops

i ps_i pv6_icnp_return

i ps_i pv6_f orward_src_routed

i ps_i pv6_r esp_echo_ntast

i ps_i pv6_send_redirects

i ps_i pv6_i gnore_redirect

i ps_i pv6_strict_dst_mul ti hom ng
i ps_src_check

i ps_i psec_policy_|l og_interval

i ps_pi m accept _cl ear_nmessages

i ps_i p_ndp_unsol i ci t_i nterval

i ps_i p_ndp_unsol i cit_count

i ps_i pv6_i gnor e_home_addr ess_opt

I P configuration knobs */

i ps_i p_pol i cy_nask

i ps_i p_ecnp_behavi or
ips_ip_multirt_ttl
ips_ip_ire_badcnt_lifetine
ips_ip_max_tenp_idle

i ps_i p_max_t enp_def end

i ps_i p_max_def end

i ps_i p_def end_i nterval

i ps_i p_dup_ recovery
ips_ip_restrict
i ps_i p_I so_out bound

i ps_i gnp_nax_ver si on

i ps_m d_max_ver si on

i ps_i p_forwarding

i ps_i pv6_f orwar di ng

i ps_i p_reassenbl y_ti neout

i ps_i pv6_reassenbl y_ti meout
ips_ip_cgtp_filter

i ps_ar p_pr obe_del ay

i ps_arp_fast pr robe_del ay

i ps_ar p_probe_| i nterval

i ps_ar p_f ast probe_i nterval

i ps_ar p_probe_count

i ps_ar p_fast pr robe_count

i ps_i pv4_dad_announce_i nt er val
i ps_i pv6_ dad_announce_i nt er val
i ps_arp_ def end_i nterval
ips_arp_ defend_rate

i ps_ndp_| def end_i nt erval

i ps_ndp_ defend rate

i ps_ar p_def end_peri od

i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi

nfo_tbl
nfo_tbl
nf o_t bl
nfo_tbl
nfo_thl
nfo_tbl
nf o_t bl
nfo_t bl
nfo_tbl
nfo_tbl
nf o_t bl
nfo_t bl
nfo_tbl

icy i ps_propinfo_tb
i ps_propi nfo_tbl[27].prop_cur
i ps_propinfo_tbl[28].prop_cur

i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi

I ps_propinfo_tb

i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
i ps_pr opi
|ps pr opi
i ropi

i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_pr opi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi
i ps_propi

nfo_tbl
nfo_tbl
nfo_tbl
nfo_tbl
nfo_tbl
nf o_t bl
nfo_tbl
nfo_tbl
nfo_tbl
nf o_t bl
nfo_tbl
nfo_tbl
nfo_tbl
nf o_t bl

nfo_tbl
nfo_tbl
nfo_tbl
nfo_tbl
nf o_tbl
nfo_tbl
nfo_tbl
nfo_tbl
nfo_t bl

i nterzone_| oopback ips_ propi nfo

nfo_tbl
nfo_tbl
nfo_tbl
nf o_t bl
nfo_tbl
nfo_thl
nf o_tbl
nf o_t bl
nf o_t bl
nfo_tbl
nfo_tbl
nf o_t bl
nf o_t bl
nfo_tbl
nfo_tbl
nf o_t bl
nf o_t bl
nfo_tbl
nfo_tbl
nfo_tbl
nfo_tbl

. prop_cur
. prop_cur
. prop_cur
. prop_cur
. prop_cur
. prop_cur
. prop_cur

. prop_cur
[26] prop_

. prop_cur
. prop_cur
. prop_cur _
. prop_cur
. prop_cur
. prop_cur
. prop_cur
. prop_cur
. prop_cur
. prop_cur

. prop_cur
. prop_cur.

. prop_cur _
. prop_cur
. prop_cur
. prop_cur _
. prop_cur _
. prop_cur _
. prop_cur _
. prop_cur
. prop_cur _
53] . prop_c
. prop_cur
. prop_cur _
. prop_cur _
. prop_cur_|
. prop_cur _|
. prop_cur
. prop_cur
. prop_cur
. prop_cur
. prop_cur _
. prop_cur _
. prop_cur_
. prop_cur _
. prop_cur
. prop_cur
. prop_cur
. prop_cur
. prop_cur
. prop_cur _
. prop_cur
. prop_cur

uval
uval
uval
bval
uval
bval
bval
uval

cur _bval
bval

“bval

_uval
_uval

uval
uval
bval
bval
bval
bval
uval
uval
uval
bval
“uval
“uval
_bval

uval
uval

“uval

uval
uval
uval
uval

_uval

uval
ur _bval

_bval

uval
uval
bval
bval
uval
uval
bval
uval
uval
uval
uval
uval

_uval

uval
uval
uval
uval
uval
uval

“uval

46

new usr/src/uts/common/inet/ip.h 47
3032 #define ips_ndp_defend_period i ps_propinfo_tbl[75].prop_cur_uval
3033 #define ips_ipva_icnp_return_pntu i ps_propinfo_tbhl[76].prop_cur_bval
3034 #define ips_ipv6_icnp_return_pntu i ps_propinfo_tbl[77].prop_cur_bval
3035 #define ips_ip_arp_publish_count i ps_propinfo_thl[78].prop_cur_uval
3036 #define ips_ip_arp_publish_interval i ps_propinfo_thl[79].prop_cur_uval
3037 #define ips_ip_strict_src_nultihom ng i ps_propinfo_tbl[80].prop_cur_uval
3038 #define ips_ipv6_strict_src_multihom ng i ps_propinfo_tbl[81].prop_cur_uval
3039 #define ips_i pv6_drop_i nbound_i cnpv6 i ps_propinfo_tbl [82].prop_cur_bval
3041 extern int dohwcksum /* use h/w cksumif supported by the h/w */
3042 #ifdef ZC TEST

3043 extern int noswcksum

3044 #endi f

3046 extern char i pi f_| oopback_nane[];

3048 extern nv_t *ire_nv_tbhl;

3050 extern struct nodul e_info ip_nod_info;

3052 #define HOOKS4_| NTERESTED_PHYSI CAL_I N(i pst) \

3053 ((ipst)->ips_i p4_physical _in_event.he_interested)

3054 #define HOOKS6_| NTERESTED PHYSI CAL | N(i pst) \

3055 ((ipst)->ips_i p6_physical _in_event.he_interested)

3056 #define HOOKS4_| NTERESTED PHYSI CAL_OUT(i pst)

3057 ((ipst)->i ps_i p4_physi cal _out_event. he_i nt er est ed)

3058 #define HOOKS6_| NTERESTED PHYSI CAL_OUT(i pst) \

3059 ((ipst)->ips_i p6_physical out_event.he_interested)

3060 #define HOOKS4_| NTERESTED_FORWARDI NG(i pst) \

3061 ((ipst)->ips_i p4_forwardi ng_event. he_i nterest ed)

3062 #define HOOKS6_| NTERESTED FORWARDI NG(i pst) \

3063 ((ipst)->ips_i p6_forwardi ng_event. he_i nt er est ed)

3064 #define HOOKS4_| NTERESTED LOOPBACK_I N(i pst)

3065 ((ipst)->i ps_i p4_Toopback_i n_event. he_i nterest ed)

3066 #define HOOKS6_| NTERESTED LOOPBACK_ | N(i pst) \

3067 ((ipst)->ips_i p6_Toopback_in_event.he_interested)

3068 #define HOOKS4_| NTERESTED LOOPBACK_OUT(i pst)

3069 ((ipst)->ips_i p4_l oopback_out _event. he_i nterested)

3070 #define HOOKS6_| NTERESTED LOOPBACK_OUT(i pst) \

3071 ((ipst)->ips_ip6_| oopback_out _event. he_i nt erest ed)

3072 /*

3073 * Hooks marcos used inside of ip

3074 * The callers use the above | NTERESTED macros first, hence

3075 * the he_interested check is superflous.

3076 *

3077 #define FWHOOKS(_hook, _event, _ilp, _olp, _iph, _fm _m _lIlm ipst, _err) \
3078 if ((_hook).he_interested) { \
3079 hook_pkt _event _t info \
3080 \
3081 _NOTE(CONSTCOND) \
3082 ASSERT((_ilp !'= NULL) || (_olp !'= NULL)); \
3083 \
3084 FW SET_I LL_I NDEX(i nfo.hpe_ifp, (ill_t *)_ilp); \
3085 FW SET_I LL _I NDEX(i nfo.hpe_ofp, (ill_t *)_olp); \
3086 i nfo. hpe_protocol = ipst->ips_i pv4_net_dat a; \
3087 info.hpe_hdr = _i ph \
3088 info.hpe_nmp = & _f \
3089 info.hpe_nb = _m \
3090 info. hpeflags- _Ilm \
3091 _err = hook_run(ipst->ips_i pv4_net_dat a- >net d_hooks, \
3092 event (hook_data_t) & nfo); \
3093 if (_err I—0) { \
3094 i p2dbg(("% hook dropped nbl k chain % hdr %\n",
3095 (_hook) . he_name, (void *)_fm (void *)_m); \
3096 if (_Fm1= NULL) { \
3097 freensg(_fm; \

new usr/src/uts/comon/inet/ip.h

3098 _fm = NULL,;

3099 }

3100 _iph = NULL;

3101 _m = NULL;

3102 } else {

3103 _iph = info. hpe_hdr;

3104 _m = info. hpe_nb;

3105 }

3106 }

3108 #define FW HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm _m _lIIm ipst,
3109 if ((_hook).he_interested) {

3110 hook_pkt _event _t i nfo;

3111

3112 _NOTE(CONSTCOND)

3113 ASSERT((_ilp !'= NULL) || (_olp !'= NULL))
3114

3115 FW SET_| LL_I NDEX(i nfo. hpe_ifp, (ill_t *)_ilp);
3116 FW SET_I LL_I NDEX(i nfo. hpe_ofp, (ill_t *)_olp);
3117 i nfo. hpe_pr ot ocol = ipst->i ps_i pv6_net _dat a;
3118 info.hpe_hdr = _i ph,

3119 i nfo. hpe_| np = &(_f

3120 info.hpe_nmb = _m

3121 info. hpe flags = _Ilm

3122 _err = hook_run(ipst- >| ps_i pv6_net _dat a- >net d_hooks,
3123 event, (hook_data_t)& nfo);

3124 if (_err 1= 0) {

3125 |p2dbg((%s hook dropped nbl k chain % hdr %\n"
3126 (_hook) . he_nane, (void *)_fm (void *)_m);
3127 if (_fm!= NULL) {

3128 freensg(_fm;

3129 _fm = NULL;

3130 }

3131 _iph = NULL;

3132 _m = NULL;

3133 } else {

3134 _iph = info.hpe_hdr;

3135 _m = info. hpe_nb;

3136 }

3137 }

3139 #define FWSET_ILL_I NDEX(fp, ill)

3140 _NOTE(CO\ISTOO\ID)

3141 if ((ill) == NULL|| (il1)->i11_phyint == NULL) {
3142 (fp) = 0;

3143 _NOTE(CO\ISTOCND)

3144 } else if (I'S_UNDER IPMP(ill)) {

3145 (fp) = ipnp_ill_get_ipnp_ifindex(ill);

3146 } else {

3147 (fp) = (ill)->i1l_phyint->phyint_ifindex;
3148 }

3150 /*

3151 * Network byte order macros

3152 */

3153 #ifdef Bl G ENDI AN

3154 #define N | N CLASSA NET I N_CLASSA NET

3155 #define N_| N_CLASSD_NET | N_CLASSD_NET

3156 #define N_| NADDR_UNSPEC GROUP | NADDR_UNSPEC_GROUP

3157 #define N_| N LOOPBACK_NET (i paddr _t) 0x7f 000000U

3158 #else /* _BI G_ENDI AN */

3159 #define N_I N CLASSA NET (i paddr _t) 0x000000f f U

3160 #define N_IN CLASSD NET (i paddr _t) 0x000000f OU

3161 #define N_| NADDR UNSPEC GROUP (i paddr_t)0x000000e0U

3162 #define N_| N LOOPBACK NET (i paddr _t) 0x0000007f U

3163 #endif /* _BIG ENDI AN */

e e ////////////////I e e

e e

48

err) \

—

new usr/src/uts/comon/inet/ip.h

3164 #define CLASSD(addr) (((addr) & N_IN_CLASSD NET) == N_| NADDR_UNSPEC GROUP)
3165 #define CLASSE(addr) (((addr) & N_IN_CLASSD NET) == N_| N_CLASSD NET)
3166 #define | P_LOOPBACK_ADDR(addr) \

3167 (((addr) & N_IN_CLASSA NET == N_| N_LOOPBACK_NET))

3169 extern int i p_debug;

3170 extern uint_t i p_thread_data;

3171 extern krw ock_t ip_thread_rw ock;

3172 extern list_t ip_thread_list;

3174 #ifdef |P_DEBUG

3175 #include <sys/debug. h>

3176 #include <sys/promf.h>

3178 #define ipOdbg(a) printf a

3179 #define ipldbg(a) i1f (ip_debug > 2) printf a

3180 #define ip2dbg(a) if (ip_debug > 3) printf a

3181 #define ip3dbg(a) if (ip_debug > 4) printf a

3182 #el se

3183 #define i p0Odbg(a) [* *]

3184 #define ipldbg(a) /[* *]

3185 #define ip2dbg(a) [* *]

3186 #define ip3dbg(a) [* *]

3187 #endif /* | P_DEBUG */

3189 /* Default MAC- | ayer address string length for mac_col on_addr */

3190 #define MAC_STR LEN 128

3192 struct mac_header _info_s;

3194 extern void ill _frag_timer(void *)

3195 extern ill _t *ill _first(int, int, ill_walk_context_t *, ip_stack_t *);
3196 extern ill _t *i 1l _next(ill_wal k_contex Xt _t %, Qill_t *);

3197 extern void ill _frag_timer start(ill t*);

3198 extern void i1l _nic_event_dispatch(il Tl_t *, lif_if_t, nic_event_t,
3199 nic_event_data_t, size_t);

3200 extern nbl k_t *ip_carve_np(nbl k_t **, ssize_t);

3201 extern nbl k_t *ip_dlpi _alloc(size_t, t_uscalar_t);

3202 extern nbl k_t *ip_dl notify_all oc(ui nt T, uint_t);

3203 extern nbl k_t *i p_dl notify _alloc2(uint t uint_t, uint_t);

3204 extern char *i p_dot _addr (i paddr _t, char)5

3205 extern const char *nmac_col on addr(const ui nt 8_t *, size_t, char *, size_t);
3206 extern void |plwput(queuet *, onblk_t *);

3207 extern boolean_t icnp_err_rate Ilmt(|p stack_t *);

3208 extern void icnp_frag _needed(mbl k_t *, int, ip_recv_attr_t *);

3209 extern nbl k_t *i cnp_i nbound_v4(nbl k_t *, ip_recv_attr_ *);

3210 extern void icnp_time_ exceeded(nblk_t *, uint8t, ip_recv_attr *);
3211 extern void i cnp_unreachabl e(nbl k_t *, uint8 b, |p recv_attr_t *);
3212 extern bool ean_t ip_i psec_policy_inherit(conn_t * conn_t *, ip_recv_attr_t *);
3213 extern void *ip_pul lup(nbl k_t *, ssize_t, ip_recv_attr_t *);

3214 extern void i p_setl 2src(nbl k_t *, |p_recv_attr_t * il _t *);

3215 extern nbl k_t *I p_check_and_al i gn_header (nbl k_t *, uint_t, ip_recv_attr_t *);
3216 extern nbl k_t *i p_check_l ength(mbl k_t *, uchar_t *, ssize_t, uint_t, uint_t,
3217 ip_recv_attr_t *);

3218 extern nbl k_t 5 @ check _optlen(mbl k_t *, ipha_t *, uint_t, uint_t,
3219 ip_recv_attr_t *

3220 extern nbl k_t *ip_ fix _dbref(nmbl k_t *, ip_recv_attr_t *);

3221 extern uint_t i p_cksum(nmbl k_t *, int, uint32_t);

3222 extern int ip_cl ose(queue_t *, int);

3223 extern uint16_t ip_csum hdr(ipha_t *);

3224 extern void ip_forward_xmt v4(nce t *, ill_t * nblk_t *, ipha_t *,
3225 ip_recv_attr_t *, uint32_t, uint32_t);

3226 extern boolean_t ip_forwar d_optl ons(nbl k_t *, ipha_t *, ill_t *,

3227 ip_recv_att r_t *);

3228 extern int ip_fragment _v4(mblk_t *, nce_t *, iaflags_t, uint_t, uint32_t,
3229 uint32_t, zoneid_t, zoneid_t, pfirepostfrag_t postfragfn,

49

new usr/src/uts/comon/inet/ip.h

3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281

3283
3284
3285
3286

3288
3289
3290
3291
3292
3293
3294
3295

uintptr_t *cookie);
extern void i p_proto_not _sup(nblk_t *, ip_recv_attr_t *);
extern void ip_ire_g_fini(void);
extern void ip_ire_g_init(voi d);
extern void ip_ire_fini(ip_stack_t *);
extern void ip_ire_init(ip_stack_t *);
extern void ip_ndata_to_mhi (ill_t *, mblk_t *, struct nac_header_info_s *);
extern int i p_openv4(queue_t *qg, dev_t *devp, int flag, int sflag,
cred_t *credp);
extern int i p_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp);
extern |nt) ip_reassenble(nbl k_t *, ipf_t *, uint_t, boolean_t, ill_t *,
size_t
extern void ip_rput(queue_t *, mblk_t *);
extern void ip_input(ill_t *, ill_rx_ring_t *, nblk_t *,
struct mac_header _info_s *);
extern void ip_input_vB(ill_t *, ill_rx_ring_t *, nmblk_t *,
struct mac_header _info_s *);
extern mbl k_t *i p_input_common_v4(ill _t *, ill_rx_ring_t *, mblk_t *,
struct mac_header _info_s *, squeue_t *, nblk_t **, uint_t *);
extern mbl k_t *ip_input_common_v6(ill_t *, ill_rx_ring_t *, mblk_t *,
struct mac_header _info_s *, squeue_t *, mblk_t ** uint_t *);
extern void ill_input_full _v4(nmblk_t *, void *, void *,
ip_recv_attr_t *, rtc_t *);
extern void i1l _i nput_ “short _v4(mblk_t *, void *, void *,
ip_recv_attr_t *, rtc_t *);
extern void P11 _input_full v6(nb|kt * void *, void *,
ip_recv_attr_t *, rtc_t *
extern void i1l _i nput_ short _ve(mblk_t *, void *, void *,
ip_recv_attr_t *, rtc_t *);
extern ipaddr_t ip_input optlons(lphat *, ipaddr_t, nblk_t *,
ip_recv_attr_t *, int
extern bool ean_t |p| nput _| | ocal _options(nmbl k_t *, |phat *, ip_recv_attr_t *);
extern mbl k_t |p| nput _fragnent (nbl k_t *, ipha_t *, ip_recv_attr_t *);
extern mbl k_t *i p_input_fragment _v6(nbl k_t *, ip6_t *, ip6_frag t *, uint_t,
ip_recv_attr_t *);
extern void i p_i nput _post _i psec(nbl k_t *, ip_recv_attr_t *);
extern void ip_ fanout_v4(nmbl k_t *, ipha_t *, ip_recv_attr_t *);
extern void i p_fanout _v6(nblk_t *, ip6_t *, ip_recv_attr_t *);
extern void i p_fanout_proto_conn(conn_t *, nblk_t *, ipha_t *, ip6_t *,
ip_recv_attr_t *);
extern void i p_fanout _proto_v4(mblk_t *, ipha_t *, ip_recv_attr_t *);
extern void i p_fanout _send_i cnp_v4(nbl k_t *, uint_t, uint_t,
ip_recv_attr_t *);
extern void ip_ f anout _udp_conn(conn_t *, nblk_t *, ipha_t *, ip6_t *,
ip_recv_attr_t *);
extern void i p_fanout _udp_mul ti_v4(nbl k_t *, ipha_t *, uint16_t, uint16_t,
ip_recv_attr_t *);
extern nbl k_t *zero_spi _check(nmbl k_t *, ip_recv_attr_t *);
extern void i p_build_hdrs_v4(uchar_t *, uint_t, const Ip_pkt_t *, uint8_t);
extern int ip_ find_hdr_v4(ipha_t *, ip_pkt_t *, boolean_t);
extern int ip_total _hdrs_|l en_v4(const ip_pkt_t *);
extern mbl k_t *ip_accept _tcp(ill_t *, ill_rx_ring_t *, squeue_t *,
mblk_t *, mblk_t **, uint_t *cnt);
extern void ip_| “rput_dlpi (T11_t *, mblk_t *);
extern void ip_rput_notdata(ill_t *, nblk_t *);
extern void ip_mb2_add_i p_stats(m b2_iplfStatsEntry_t *,
mb2_iplfStatsEntry t *);
extern void i p_mi b2_add_i cnp6_stats(mi b2_i pv6l flcmpEntry t *,
m b2_i pv6l flcnpEntry_t *);
extern void i p_rput_ot her (ipsq_t queue_t *, nmblk_t *, void *)
extern ire_t *I p_check_nul ti hone(void *, |re_t , it *);
extern void ip_send_potential _redirect_v4(nblk_t *, ipha_t *, ire_t *,
ip_recv_attr_t *);

new usr/src/uts/common/inet/ip.h 51
3296 extern int i p_set_destination_v4(ipaddr_t *, ipaddr_t, ipaddr_t,
3297 ip_xmt_attr t *, Tulp_t *, uint32_t, uint_t);

3298 extern int ip_set_destination_v6(i n6_addr t *, const in6_addr_t *,
3299 const in6_addr_t *, ip_xmit_attr_t * “iulp_t *, uint32_t, uint_t);
3301 extern int ip_output_sinple(mblk_t *, ip_xmt_attr_t *);

3302 extern int ip_output_sinmple_v4(nmbl k_t *, ip_xmt_attr_t *);

3303 extern int i p_out put _sinple_v6(nbl k_t *, ip_xmt_attr_t *);

3304 extern int i p_output_options(nmblk_t *, ipha_t *, ip_xmt_attr_t *,
3305 ill_t *);

3306 extern void i p_output_l ocal _options(ipha_t *, ip_stack_t *);

3308 extern ip_xmit_attr_t *conn_get_ixa(conn_t *, boolean_t);

3309 extern ip_xmt_attr_t *conn_get _ixa_tryhard(conn_t *, boolean_t);

3310 extern ip_xnit “attr_t *conn_replace_ixa(conn_t * ip_xmt_attr_t *);
3311 extern ip_xmit “attr_t *conn_get i xa_excl usive(conn_t *);

3312 extern ip_xmt attr_t *ip_xmt_attr_duplicate(ip_xmt_attr_t *);

3313 extern void ip_ xmit_attr_replace_tsl(ip xmit_attr_t * "ts | abel _t *);
3314 extern void ip_xmt_attr_restore_tsl (ip_xmt_attr_t *, cred_t *);
3315 bool ean_t ip_recv_attr_replace_| abel (ip_recv_attr_t *, ts Iabel _t*);
3316 extern void |xa|nact|ve(|p xmt_attr_t *);

3317 extern void ixa_refrel e(i p_xm t_attr_t *);

3318 extern bool ean_t ixa_check_drain_insert(conn_t *, ip_xmt_attr_t *);
3319 extern void i xa_cl eanup(i p_xmit_attr_t *);

3320 extern void ira_cleanup(ip_recv_attr_t *, boolean_t);

3321 extern void i xa_safe_copy(ip_xmt_attr_t *, ip_xmt_attr_t *);

3323 extern int conn_i p_out put (mbl k_t *, ip_xmt_attr_t *);

3324 extern bool ean_t ip_output_verify local (ip_xmit_attr_t *);

3325 extern nbl k_t *i p_out put _process_l ocal (mbl k_t *, ip_xmt_attr_t *, boolean_t,
3326 bool ean_t, conn_t *);

3328 extern int conn_opt _get (conn_opt_arg_t *, t_scalar_t, t_scalar_t,
3329 uchar_t *);

3330 extern int conn_opt _set(conn_opt __arg_t *, t_scalar_t, t_scalar_t, uint_t,
3331 uchar_t *, boolean_t, cred_t *);

3332 extern bool ean_t conn_sarre_as_l ast_v4(conn_t *, sin_t *);

3333 extern bool ean_t conn_sane_as_| ast _v6(conn_t *, sin6_t *)

3334 extern int conn_updat e_| abel (const conn_t *, const ip_xmt_attr_t *,
3335 const in6_addr_t *, ip_pkt_t *);

3337 extern int i p_opt_set_multicast_group(conn_t *, t_scalar_t,

3338 uchar_t *, bool ean_t, boolean_t);

3339 extern int ip_opt_set_multicast_sources(conn_t *, t_scalar_t,

3340 uchar_t *, boolean_t, boolean_t);

3341 extern int conn_get socknane(conn_t *, struct sockaddr *, uint_t *);
3342 extern int conn_get peernane(conn_t *, struct sockaddr *, uint_t *);
3344 extern int conn_bui I d_hdr_tenplate(conn_t *, uint_t, uint_t,

3345 const in6_addr_t *, const in6_addr_t *, uint32_t);

3346 extern nbl k_t *conn_prepend_hdr (i p_xmt_attr_t *, const ip_pkt_t *,
3347 const in6_addr_t *, const in6_addr_t *, uint8_t, uint32_t, uint_t,
3348 mblk_t *, uint_t, uint_t, uint32_t *, int *)

3349 extern void ip_attr_newdst(ip_xmt_attr_t *);

3350 extern void ip_attr_nexthop(const ip_pkt_t *, const ip_xmt_attr_t *,
3351 const in6_addr_t *, in6_addr_t *);

3352 extern int conn_connect (conn_t *, iulp_t *, uint32_t);

3353 extern int ip_attr_connect(const conn_t *, ip_xmt_attr_t *,

3354 const in6_addr_t *, const in6_addr_t *, const in6_addr_t *, in_port_t,
3355 in6_addr_t *, iulp_t *, uint32_t);

3356 extern int conn_i nherit_parent(conn_t *, conn_t *);

3358 extern void conn_i xa_cl eanup(conn_t *connp, void *arg);

3360 extern bool ean_t conn_want packet (conn_t *, ip_recv_attr_t *, ipha_t *);
3361 extern uint_t ip_type_v4(ipaddr_t, ip_stack_t *);

new usr/src/uts/comon/inet/ip.h

3362

3364
3365
3366
3367
3368
3369
3370
3371
3372

3374

3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418

3420
3421
3422
3423
3424
3425
3426
3427

extern

extern
extern
extern
extern
extern
extern
extern
extern
extern

extern

extern
extern
extern
extern
extern
extern
extern
extern

extern i

extern
extern
extern
extern
extern
extern
extern
extern
extern

extern

extern
extern
extern
extern
extern
extern
extern
extern

uint _t

voi d
voi d
char
bool ean
bool ean
i paddr _

i paddr _
voi d
voi d

struct

voi d
voi d

i PI’TP gr
voi d

voi d
int

5
i

i pp_ar
voi d
voi d
ill_t
voi d
int
uint_t
voi d
voi d
ill_t
ill_t
bool ean
voi d
voi d
voi d
voi d
ill_t
ill_t
bool ean
bool ean
bool ean
voi d
voi d

voi d
voi d
voi d
int

i paddr
uint _t
uint _t
bl k_t

i p_type_v6(const in6_addr_t *, ip_stack_t *);

i p_wput _nondat a(queue t *, nblk_t *);

i p_wsrv(queue_t

*1 p_nv_I ookup(nv_t *, int);
_t ip_local_addr_ok_v6(const in6_addr_t *, const
—t ip_renote_addr_ok_v6(const in6_addr_t *, const

t i p_nmassage_options(ipha_t *, netstack_t *);
t ip_net_mask(i paddr_t);
arp_bringup_done(ill _t
arp_replunb_done(ill_t *

ginit iprinitve;
i pnp_init(ip_stack_t *);
i prp_destroy(i p_stack_t *);

p_t *ipmp_grp_creat e(const char *,
i prp_grp_destroy(ipmp_grp_t *);

phyint_t *);

i pnp_gr p_i nf o(const |pnp grp_ *, lifgroupinfo_t
i pp_gr p_renane(i pnp_g const char *);

p_t *ipnp_grp_ Iookup(const char *, ip_stack_t *);
i pmp_grp_vet _phyint(ipnp_grp_t *, phyint_t *);

Igrp_t *ipnp_illgrp_ create(ill_t *);
ipnp_illgrp_destroy(ipnp_illgrp_t *);
*Ipnp_illgrp_add_ipif(ipnp_illgrp_t *, ipif_t *);
ipnp_illgrp_del _ipif(ipnp_illgrp_t *, ipif_t *);
*Ipnp_illgrp_next _ill(ipnp_illgrp_t *);
*ipnp_illgrp_hold_next_ill(ipmp_illgrp_t *);
*ipnp_illgrp_hold_cast_ill(ipnmp_illgrp_t *);
*ipnp_illgrp_ipmp_ill(ipnp_illgrp_t *);
ipmp_illgrp_refresh_mu(ipnp_illgrp_t *);

pent_t *ipnp_illgrp_create_arpent (ipnp_illgrp_t *,
i paddr _t, uchar_t *, size_t, uintl6_t);
i pnp_illgrp_destroy_arpent (ipnp_ilTgrp_t *,

pent _t *ipnp_illgrp_|l ookup_arpent (i pnp_illgrp_t *,
i pnp_i |l I grp_refresh_arpent (ipnp_illgrp_t *);
ipnp_illgrp_mark_arpent (ipnmp_illgrp_t *,
*Ipnp_illgrp_find_ill(ipnp 'Ilgrp_t *, uchar_t *,
ipmp_illgrp_l'ink_grp(ipnp_illgrp_t *, ipnp_grp_t
ipnp_illgrp_unlink_grp(i prrp_| Ilgrp_t *);
ipnp_ill_get_ipnp_ifindex(const ill_t *)
ipnp_ill _join_illgrp(ill_t *, ipmp_illgrp_t *)
ipmp_ill_leave_illgrp(ill_t *);
*ipp_il I _hold_ipnp_ill(ill_t *);
*ipnp_ill _hold_xmit_ill(ill_t *, boolean_t)

_t ipnp_ill_is_active(ill_t *);
ipnp_ill_refresh_active(ill _t Vs
i pnp_phyint _j oi n_grp(phyint_t *, ipnp_grp_t *);
i pnp_phyi nt _| eave_gr p(phyint _t *);
i pnp_phyi nt “refresh_active(phyint_t *);
*i pnp_i pi f_bound_i IT(const ipif_t *);
*i pnp_i pi f _hol d_bound_i || (const ipif_t *);

_t ipnmp_ipif_is_dataaddr(const ipif_t ¥);

_t ipmp_ipif_is_stubaddr(const ipif_t *);

"t ipnp_packet _is_probe(mblk_t *, ill_t *);
i pmp_ncec _delete_nce(ncec_t *);
i pmp_ncec_refresh_nce(ncec_t *);
conn_drain_insert(conn_t *, idl_tx_list_t *);
conn_setqgfull (conn_t *, boolean_t *);
conn_clrgful I (conn_t *, boolean_t *);
conn_i psec_l ength(conn_t *);
_t ip_get_dst(ipha_t *);

ip_get_pntu(ip_xmt_attr_t *);
ip_get _base mtu(ill_t * “ire_t *);

*i p_out put _attach_policy(nblk_t *, ipha_t *, ip6_t

DE

*
f

i n6_addr _t
in6_addr _

i pnp_arpent _t *);
paddr _t

pnp_ar pent _t
al uint_t);

“)5

new usr/src/uts/comon/inet/ip.h

3428
3429
3430
3431
3432
3433

3435
3436
3437
3438

3440
3441
3442
3443
3444
3445
3446

3448
3449
3450
3451

3453
3454
3455
3456
3457
3458
3459
3460
3461
3462

3464
3465
3466
3467
3468

3470
3471

3473

3475
3476

3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493

const conn_t *, ip_xmt_attr_t *);

extern int i psec_out _extra_length(ip_xmt_attr_t *);

extern int |psec_out_process(mol k_t *, ip_xmt_attr_t *);
extern int i p_out put _post |psec(nb| k_t *, ip_xmt_attr_t *);
extern void ipsec_out_to_in(ip_xmt_attr_t *, ill_t *ill,

ip_recv_attr_t *);

extern void ire_cleanup(ire_t *);
extern void ire_inactive(ire_t *);
extern boolean_t irb_inactive(irb_t *);
extern ire_t *ire_unlink(irb_t *);

#i f def DEBUG

extern boolean_t th_trace_ref(const void *, ip_stack_t *);
extern void th_trace_unref(const void *);
extern void th_trace_cl eanup(const void *,
extern void ire_trace_ref(ire_t *);
extern void ire_untrace_ref(ire_t *);
#endi f

bool ean_t);

extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *);
extern int i p_srcid_renmove(const in6 —addr_t *, zoneid_t, ip_stack_t *);
extern void ip_srcid_find_id(uint_t, in6_addr _t *, zoneid_ t, netstack_t *);
extern uint_t ip_srcid_fi nd_addr(const in6_addr_t *, zoneid_t, netstack_t *);

extern uint8_t ipoptp_next(ipoptp_t *);

extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *);

extern int i p_opt_get _user(conn_t *, uchar_t *);

extern int i psec_req_fromconn(conn_t *, i psec_r eq_t *, int);

extern int i p_snnp_get (queue_t *q, nmblk_t *nctl, int |evel, boolean_t);
extern int i p_snnp_set (queue_t *q, int, int, uchar_t *, int);

extern void ip_process_ioctl (ipsq_t *, queue_t * nblk_t *, void *);

i
i *
extern void i p_qui esce_conn(conn_t *);
extern void i p_reprocess_ioctl (ipsq_t
ip to*

*, queue_t *, nmblk_t *, void *);
extern void _ioctl _finish(queue_ in

, mblk_t *, int, t_ ipsq_t *);

extern bool ean_t i p_cnpbuf(const void *, uint_t, boolean_t, const void *,
uint_t);

extern bool ean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *,
uint_t);

extern void i p_savebuf (void **, uint_t *, boolean_t, const void *, uint_t);

extern bool ean_t
extern void

i psg_pendi ng_np_cl eanup(ill_t *, conn_t *);
conn_i octl _cl eanup(conn_t *);
extern void i p_unbi nd(conn_t *);
extern void tnet_init(void);
extern void tnet _fini(void);

/*

* Hook functions to enable cluster networkin

*/01 non-cl ustered systens these vectors nust always be NULL.

*

extern int (*cl_inet_isclusterw de)(netstackid_t stack_id,
sa_famly_t “addr famly uint8_t *laddrp, void *args);

extern uint32_t (*cl_inet_ipi dent)(netstackld t stack_id, uint8_t protocol,
sa_famly_t addr_fanmilTy, uint8_t *laddrp, uint8_t *faddrp,
voi d *args)

extern int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
bool ean_t i's_out g0| ng, sa famly t addr_fanmily, uint8_ t *laddrp,
in_port_t lport, uint8_t *faddrp, in_port_t fport, void *args);

extern void (*cl _i net_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
void *);

extern void (*cl _inet_getspi)(netstackid_t stack_id,
uint8_t *ptr, size_t len, void *args);

uint8_t protocol,

uint8_t protocol,

53

new usr/src/uts/comon/inet/ip.h

3494 extern int (*cl_inet_checkspi)(netstackid_t stack_id, uint8_t protocol,
3495 uint32_t spi, void *args);

3496 extern void (*cl _inet_del etespi)(netstackid_t stack_id, uint8_t protocol,
3497 uint32_t spi, void *args);

3498 extern void (*cl_inet_idl esa)(net stackid_t, uint8_t, uint32_t,

3499 sa_family_t, in6_addr_t, in6_addr_t, void *);

3502 /* Hooks for CGIP (nultirt routes) filtering nodule */

3503 #define CGTP_FILTER REV_1 1

3504 #define CGTP_FILTER REV 2 2

3505 #define CGTP_FI LTER REV_3 3

3506 #define CGIP_FILTER REV CGTP_FI LTER_REV_3

3508 /* cfo_filter and cfo_filter_v6 hooks return values */

3509 #define CGTP_I P_PKT_NOT_CGIP 0

3510 #define CGTP_| P_PKT_PREM UM 1

3511 #define CGTP_I P_PKT_DUPLI CATE 2

3513 /* Version 3 of the filter interface */

3514 typedef struct cgtp_filter_ops {

3515 int cfo_filter_rev; /* CGTP_FI LTER REV_3 */
3516 int (*cf o_change_st ate) (netstackid_t, int);

3517 int (*cf o_add_dest _v4)(netstackid_t, ipaddr_t, ipaddr_t,

3518 i paddr _t, ipaddr_t);

3519 int (*cfo_del dest _v4)(netstackid_t, ipaddr_t, ipaddr_t);
3520 int (*cfo_add_dest _v6) (netstackid_t, in6_addr_t *, in6_addr_t *,
3521 in6_addr_t *, in6_addr_t *);

3522 int (*cfo_del _dest _v6) (net st acki d_t, in6_addr_t *, in6_addr_t *);
3523 int (*cfo_filter)(netstackid_t, uint_t, mblk_t *);

3524 int (*cfo_filter v6)(netstack|dt, uint _t, |p6_t *,

3525 ip6_frag_t *);

3526 } cgtp_filter_ops_t;

3528 #define CGTP_MCAST_SUCCESS 1

3530 /*

3531 * The separate CGIP nodul e needs this global synmbol so that it

3532 * can check the version and determ ne whether to use the old or the new
3533 * version of the filtering interface.

3534 */

3535 extern int ip_cgtp_filter_rev;

3537 extern int ip_cgtp_filter_supported(void);

3538 extern int ip_cgtp_filter_register(netstackid_ t, cgtp_filter_ops_t *);
3539 extern int ip_cgtp_filter_unregister(netstackid_t);

3540 extern int ip_cgtp_filter_is_registered(netstackid_t);

3542 /| *

3543 * rr_ring_state cycles in the order shown bel ow from RR_FREE t hrough
3544 * RR_FREE_IN_PROG and back to RR_FREE.

3545 *

3546 typedef enum {

3547 RR_FREE, /* Free slot */

3548 RR_SQUEUE_UNBOUND, /* Ring s squeue is unbound */
3549 RR_SQUEUE_BI ND_I NPROG, /* Ring’s squeue bind in progress */
3550 RR_SQUEUE_BOUND, /* Ring’s squeue bound to cpu */
3551 RR_FREE_| NPROG /* Ring is being freed */

3552 } ip_ring_state_t;

3554 #define | LL_MAX_RI NGS 256 /* Max num of rx rings we can nanage */
3555 #define |LL_POLLI NG 0x01 /* Polling in use */

3557 [*

3558 * These functions pointer types are exported by the mac/dls |ayer.

3559 * we need to duplicate the definitions here because we cannot

54

new usr/src/uts/comon/inet/ip.h

3560
3561
3562 typedef bool ean_t

3563 typedef void

3564 typedef ip_mac_tx_cookie_t
3565 uint64_t, uintl6_t);
3566 typedef void

3567 typedef voi d

3568 ip_flow enable_t,
3569 typedef bool ean_t
3570 typedef int

* include nmac/dls header fi
S

void *

3571 void *, uint_t);

3573 /*

3574 * POLLI NG READMVE

3575 * sq_get_pkts() is called t
3576 * calls rr_rx to get the ch
3577 * rr_rx = mac_soft_ring_pol
3578 * rr_ip_accept = ip_accept

3579 */

3581 /*

3582 * XXX: Wth protocol, servi
3583 * specific acceptor functio
3584 */

3585 typedef nmblk_t *(*ip_mac_rx
3586 typedef nblk_t *(*ip_accept

3587 squeue_t *, nblk_t *, nb
3589 /*

3590 * rr_intr_enable, rr_intr_di
3591 * May be accessed while in
3592 * is set.

3593 *

3594 * rr_ring_state: Protected
3595 *

3596 struct ill_rx_ring {

3597 i p_mac_i ntr_di sabl e_
3598 i p_mac_intr_enabl e_t
3599 voi d

3600 i p_mac_rx_t

3601 i p_accept _t

3602 voi d

3603 squeue_t

3604 ill_t

3605 ip_ring_state_t

3606 };

3608 /*

3609 * |P - DLD direct function

3610 * sSuffixes, df - dld functi
3611 * cf - client (I1P) function,
3612 */
3613 typedef struct ill_dld_direc
3614 ip dld_tx_t
3615 oi d
3616 |pd|dcallbt
3617 voi d
3618 ip_dd_fctl_t
3619 voi d
3620 } ill_dld_direct_t;
3622 /* IP - DLD polling capabili
3623 typedef struct ill_dld_poll
3624 ill_rx_ring_t

_t;

3625 } ill_did_poll

55
I es here.
(*i p_mac_i ntr_disabl e _t)(v0|d *);
(*i p_mac_i ntr_enabl e t)(vo *);
(*ip_dld_tx_t)(void *, nblk_t *,
(*ip_flow enable_t)(d , ip_mac_tx_cookie_t);
*(*ip_did_callb_t)(v

Vo
oi
) _ .

d *, ip_mac_tx_cookie_t);
oid *, uint_t,

0 pick packets fromsoftring in poll node. It
ain and process it with rr_ip_accept.

I () to pick packets

_tcp() to process packets

ce specific squeues, have

ns.

they will

_t)(void *, size_t);
_t)(ill_t *, il _rx_ring_t *,
Ik t ** uint_t *);

sable, rr_rx_handle, rr_rx:
the squeue AND after checking that SQS_POLL_CAPAB

by ill_lock.

t rr_intr_disable;
rr_intr_enabl e;

/* Interrupt disabling func */

/* Interrupt enabling func */

rr_| ntr handle / Handl e interrupt funcs */

rr _rX; /* Driver receive function */
_ip_accept; /* | P accept function */

rr _rX_ handle / Handle for Rx ring */

rr sqp, / Squeue the ring is bound to */

rr_il / back pointer to ill */

rr_rlng_state; /* State of this ring */

call capability
on, dh - dld handle,

ch - client handle

t_s { /* DLD provided driver Tx */
idd_tx_df; /* str_ndata_fastpath_put */
idd_t x_dh; / dld_str_t *dsp */
idd_tx_cb_df; /* mac_tx_srs_notify */
idd_tx_cb_dh; / mac_client_handle_t *mch */
idd_tx fctl _df; /* mac_tx_is_flow bl ocked */
idd_tx_fctl_dh; / mac_client_handl e */

ty */

s {
idp_ring_tbl[ILL_MAX_RI NGS];

new usr/src/uts/comon/inet/ip.h

3627 /* Describes ill->ill_dld_capab */

3628 struct ill_dld_capab_s {

3629 i p_capab_func_t i dc_capab_df; /* dl d_capab_func */
3630 voi d *jidc_capab_dh; /* dld_str_t *dsp */
3631 ill_dld_direct_t idc_direct;

3632 i1l _dld_poll _t idc_pol | ;

3633 };

3635 /*

3636 * | P squeues exports

3637 */

3638 extern bool ean_t i p_squeue_f anout ;

3640 #define | P_SQUEUE_GET(hint) ip_squeue_randon(hint)

3642 extern void ip_squeue_init(void (*)(squeue_t *));
3643 extern squeue_t *ip_squeue_random(uint_t);
3644 extern squeue_t *ip_squeue_get(ill_rx_ring_t *);
3645 extern squeue_t *ip_squeue_getfree(pri_t);
3646 extern int ip_squeue_cpu_nove(squeue_t *, processorid_t);
3647 extern void *ip_squeue_add_ring(ill_t *, void *);
t

3648 extern void ip_squeue_bind_ring(ill i1l _rx_ring_t *, processorid_t);

3649 extern void ip_squeue_clean_ring(ill_t *, |II_rx ring_t *).;

3650 extern void ip_squeue_quiesce_ring(ill_t *, iTl_rx _ring_t *);
3651 extern void ip_squeue_restart Tring(ill—t *, ill_rx_ring_t *);
3652 extern void i p_squeue_clean_all (ill_t *);

3653 extern bool ean_t i p_source_routed(ipha_t *, ip_stack_t *);
3655 extern void tcp_wput (queue_t *, nblk_t *)

3657 extern int
3658

ip_fill_muinfo(conn_t *,
struct ip6_ntuinfo *);

ip_xmt_attr_t *,

3659 extern hook_t *ipobs_regi ster_hook(netstack_t *, pfv_t);

3660 extern void ipobs_unregister_hook(netstack_t *, " hook _t *)

3661 extern void i pobs_hook(nblk_t *, int, zoneid_t, zoneid_ t, const ill_t *,
3662 ip_stack_t *);

3663 typedef void (*| psq_func_t)(ipsq_t *, queue_t *, nblk_t *, void *);
3665 extern void dce_g_init(void);

3666 extern void dce_g_destroy(void);

3667 extern void dce_stack_init(ip_stack_t *);

3668 extern void dce_stack_destroy(ip_stack_t *);

3669 extern void dce_cl eanup(uint _t, ip_stack_t *);

3670 extern dce_t *dce_get _defaul t (i p_stack_t *);

3671 extern dce_t *dce_| ookup_pkt (nmbl k_t *, ip_xmt_attr_t *, uint_t *);
3672 extern dce_t *dce_| ookup_v4(ipaddr _t, ip_stack_t *, uint_t *);

3673 extern dce_t *dce_| ookup_v6(const in6_addr_t *, uint_t, ip_stack_ t *,
3674 uint_t *);

3675 extern dce_t *dce_| ookup_and_add_v4(i paddr _t, ip_stack_t *);

3676 extern dce_t *dce_| ookup_and_add_v6(const in6_addr_t *, uint_t,

3677 ip_stack_t *);

3678 extern int dce_update_ui nfo_v4(ipaddr_t, iulp_t *, ip_stack_t *);

3679 extern int dce_update_ui nfo_v6(const in6_addr_t *, uint_t, iulp_t *,
3680 ip_stack_t *);

3681 extern int dce_updat e_ui nfo(const in6_addr_t *, uint_t, iulp_t *,
3682 ip_stack_t *);

3683 extern void dce_i ncrenent _generation(dce_t *);

3684 extern void dce_i ncrenent _al | _generati ons(bool ean_t, ip_stack_t *);
3685 extern void dce_refrel e(dce_t *);

3686 extern void dce_refhol d(dce_t *);

3687 extern void dce_refrele_notr(dce_t *);

3688 extern void dce_refhol d _notr(dce_t *);

3689 nbl k_t *i p_snmp_get _mi b2_i p_dce(queue_t *, mblk_t *, ip_stack_t

3691 extern ip_laddr_t ip_laddr_verify_v4(ipaddr_t, zoneid_t,

56

*ipst);

new usr/src/uts/comon/inet/ip.h

3692
3693
3694
3695

3697
3698

3700
3701
3702
3703
3704
3705
3706

3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757

ip_

extern ip_laddr_t

stack_t *, boolean_t);

i p_l addr_verify_v6(const

in6_addr_t *, zoneid_t,

i p_stack_t *, boolean_t, uint_t);
extern int i p_laddr_fanout _insert(conn_t *);
extern boolean_t ip_verify_src(nblk_t *, ip_xmt_attr_t *, uint_t *);
extern int ip_verify_ire(nblk_t *, ip_xmt_attr_t *);
extern nmbl k_t *ip_xmit_attr_to_mbl k(ip_x ttr_t *);
extern boolean_t ip_xmt_attr_fromnbl k(b *oolp_xmt_attr_t *);
extern nmbl k_t *ip_xmt_attr_free_nbl k(nb *);
extern nmbl k_t *ip_recv_attr_to_mbl k(ip_r ttr_t *);
extern bool ean_t ip_recv_attr_fromnbl k(nb *, ip_recv_attr_t *);
extern mbl k_t *ip_recv_attr_free_nbl k(nb *);
extern boolean_t ip_recv_attr_is_nbl k(nblk)
/*

* Squeue tags.

* conveni ence anyway.
*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

SQTAG | P_I NPUT
SQTAG_TCP_| NPUT_| CMP_ERR
SQTAG TCP6_| NPUT | CMP_ERR
SQTAG_| P_TCP_| NPUT
SQTAG_| P6_TCP_I NPUT
SQTAG | P_TCP_CLOSE

SQTAG TCP_QUTPUT
SQTAG_TCP_TI MER
SQTAG_TCP_TI MEWAI T
SQTAG_TCP_ACCEPT_FI NI SH
SQTAG_TCP_AGCCEPT_FI Nl SH Q0
SQTAG_TCP_ACCEPT_PENDI NG
SQTAG_TCP_LI STEN_DI SCON
SQTAG_TCP_CONN_REQ 1
SQTAG_TCP_EAGER BLONOFF
SQTAG TCP_EAGER_CLEANUP
SQTAG_TCP_EAGER_CLEANUP_Q0
SQTAG_TCP_CONN_[ND
SQTAG_TCP_RSRV
SQTAG_TCP_ABORT_BUCKET
SQTAG_TCP_REI NPUT
SQTAG_TCP_REl NPUT_EAGER
SQTAG_TCP_I NPUT_NETL
SQTAG TCP_RPUTGTHER
SQTAG_| P_PROTO AGAI N
SQTAG_| P_FANOUT_TCP
SQTAG_| PSQ CLEAN RI NG
SQTAG TCP_WPUT_OTHER
SQTAG_TCP_CONN_REQ_UNBOUND
SQTAG_TCP_SEND_PENDI NG
SQTAG Bl ND_RETRY
SQTAG_UDP_FANOUT
SQTAG_UDP_| NPUT
SQTAG_UDP_WPUT
SQTAG_UDP_OUTPUT
SQTAG_TCP_KSSL_I NPUT
SQTAG_TCP_DROP_QO
SQTAG_TCP_CONN_REQ 2
SQTAG_| P_TNPUT_RX_RI NG
SQTAG_SQUEUE_CHANGE
SQTAG_CONNECT_FI NI SH
SQTAG_SYNCHRONOUS_OP
SQTAG_TCP_SHUTDOWN_OUTPUT
SQTAG_TCP_I XA_CLEANUP
SQTAG TCP_SEND_SYNACK

©CO~NOUTRWNE

Tags only need to be uni que when the callback function is the
* sane to distinguish between different calls,

but we use unique tags for

new usr/src/uts/comon/inet/ip.h 58

3758
3759
3760

3762
3763

3765
3767

#def i ne SQTAG_| P_DCCP_| NPUT 46
#def i ne SQTAG_ DCCP_CONN | REQ UNBOUND 47
#endif /* | codereview */

extern sin_t
extern sin6_t

sin_null;
sin6_nul I ;

/* Zero address for quick clears */
/* Zero address for quick clears */
#endi f /* _KERNEL */

#i fdef __ cpl usplus

3768 }

3769
3771

#endi f

#endif /* _INET_IP_H */

new usr/src/uts/comon/inet/ip/ip.c

R R R R

448519 Wed Jun 13 12:04:45 2012
new usr/src/uts/comon/inet/ip/ip.c

9B

R R R R R

1/*

NRERRRRRRRRER
COONOUITAWNROW©O~NOUTDWN

23 *
24 *

28 #i
29 #i
30 #i
31 #i
32 #i
33 #i
34 #i
35 #i
36 #i

25 *
*/

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License")
You nmay not use this file except in conpliance with the License

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing

See the License for the specific | anguage governing perm ssions

and |limtations under the License

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 1991, 2010, Oracle and/or
Copyright (c) 1990 Mentat Inc
Copyright (c) 2011 Joyent, Inc. Al rights reserved

its affiliates. Al

ncl ude <sys/types. h>

ncl ude <sys/stream h>
ncl ude <sys/dl pi.h>

ncl ude <sys/stropts. h>
ncl ude <sys/sysnacros. h>
ncl ude <sys/strsubr. h>
ncl ude <sys/strl og. h>
ncl ude <sys/strsun. h>
ncl ude <sys/zone. h>

37 #define _SUN TPl _VERSI ON 2

38 #i
39 #i
40 #i
41 #i
42 #i
43 #i
44 #i
45 #i
46 #i
47 #i
48 #i
49 #i

51 #i
52 #i
53 #i
54 #i
55 #i
56 #i
57 #i
58 #i
59 #i
60 #i
61 #i

ncl ude <sys/tihdr. h>
ncl ude <sys/xti_inet.h>
ncl ude <sys/ddi. h>

ncl ude <sys/suntpi.h>
ncl ude <sys/cmm_err. h>
ncl ude <sys/debug. h>
ncl ude <sys/kobj . h>
ncl ude <sys/nodctl . h>
ncl ude <sys/atomic. h>
ncl ude <sys/policy. h>
ncl ude <sys/priv.h>
ncl ude <sys/taskq. h>

ncl ude <sys/systm h>
ncl ude <sys/param h>
ncl ude <sys/knem h>
ncl ude <sys/sdt. h>
ncl ude <sys/socket.h>
ncl ude <sys/vtrace. h>
ncl ude <sys/isa_defs. h>
ncl ude <sys/ mac. h>
ncl ude <net/if.h>

ncl ude <net/if_arp. h>
ncl ude <net/route. h>

rights reserved

new usr/src/uts/comon/inet/ip/ip.c

62
63
64

111

113
114
115
116
117
118
119
120
121
122

124
125

#
#
#

#
#
#
#
#
#
#i
#i

#
#
#
#

#
#
#
#
#
#
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

#
#
#
#
#
#
#i

#
#
#

#
#
#
#

#
#

#endi f /*

#
#
#
#
#
#

#
#

#

ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude
ncl ude

ncl ude

<sys/ socki o. h>
<netinet/in.h>
<net/if_dl.h>

<i net/ common. h>
<inet/m.h>

<i net/m b2. h>

<i net/nd. h>

<i net/arp. h>

<i net/snnpcom h>
<i net/ optcom h>
<i net/ kst atcom h>

<netinet/ignmp_var.h>
<netinet/ip6. h>
<netinet/icnp6. h>
<netinet/sctp. h>

<inet/ip.h>
<inet/ip_inpl.h>
<inet/ip6. h>
<inet/ip6_asp. h>
<inet/tcp. h>
<inet/tcp_inpl.h>
<inet/ip_nulti.h>
<inet/ip_if.h>
<inet/ip_ire.h>
<inet/ip_ftable.h>
<inet/ip_rts.h>
<inet/ip_ndp. h>
<inet/ip_listutils.h>
<netinet/ignp. h>
<netinet/ip_nroute. h>
<i net/i pp_common. h>

<net/ pf keyv2. h>

<i net/sadb. h>
<inet/ipsec_i npl.h>
<inet/iptun/iptun_inpl.h>
<i net/ipdrop. h>
<inet/ip_netinfo.h>
<inet/ilb_ip.h>

<sys/ et hernet. h>
<net/if_types. h>
<sys/ cpuvar. h>

<i pp/ipp. h>
<i pp/ i pp_i npl . h>
<i pp/ i pgpc/ i pgpc. h>

<sys/pattr.h>
<i net/dccp/dccp_i p. h>
<i net/dccp/ dccp_i npl . h>
| codereview */
<inet/ipclassifier.h>
<inet/sctp_ip.h>
<inet/sctp/sctp_inpl.h>
<i net/udp_i npl . h>
<inet/raw p_i npl . h>
<inet/rts_inpl.h>

<sys/tsol /| abel . h>
<sys/tsol/tnet. h>

<sys/squeue_i npl . h>

new usr/src/uts/comon/inet/ip/ip.c

128
130

132
133
134
135
136
137
138

140

142
143
144
145
146
147

149
150
151
152
153
154
155
156

158
159
160

162
163
164
165

169
170
171
172
173
174
175
176
177
178
179

181
182

184
185
186

188
189
190
191
192
193

#include <inet/ip_arp.h>
#i ncl ude <sys/cl ock_i npl . h> /* For LBOLT_FASTPATH{, 64} */

/ *
* Val ues for squeue switch:
* | P_SQUEUE_ENTER NCDRAI N: SQ NCDRAI N
* | P_SQUEUE_ENTER: SQ PROCESS
* | P_SQUEUE_FI LL: SQ FILL
*

/

nt ip_squeue_enter = | P_SQUEUE_ENTER, /* Setable in /etc/system*/

int ip_squeue_flag;

/
Setable in /etc/system
/

t ip_poll_normal _ms = 100;
t ip_poll _normal _ticks = 0;
t

*
*
*
n
n
nt i p_nodcl ose_ackwait_nms = 3000;

/*

* It would be nice to have these present only in DEBUG systens, but the
* current design of the global synmbol checking logic requires themto be
* unconditionally present.

*/

uint_t ip_thread_data;
krw ock_t ip_thread_rw ock;
list_t ip_thread_list;

/* TSD key for debug support */

/*
* Structure to represent a linked Iist of msgbl ks. Used by ip_snnp_ functions.
*/

pointer to the head of the list */

struct |ist
| /*
| ail; /* pointer to the tail of the list */

B

typedef struct listptr_s listptr_t;

/*
* This is used by ip_snnp_get_nib2_ip_route_nedia and
* ip_snnp_get_mi b2_ip6_route_nedia to carry the lists of return data.
*

typedef struct iproutedata_s {

ui nt _t ird_idx;

uint_t ird_flags; /* see bel ow */

listptr_t ird_route; /* i pRout eEntryTabl e */
listptr_t ird_netnedi a; /* i pNet ToMedi aEntryTabl e */
listptr_t ird_attrs /* ipRouteAttributeTable */

} iproutedata_t;

/* Include ire_testhidden and | RE_ | F_CLONE routes */
#define | RD_REPORT_ALL 0x01

/*
* Cluster specific hooks. These should be NULL when booted as a non-cluster
*/

Hook functions to enabl e cluster networking
On non-clustered systens these vectors nust al ways be NULL.

* Ok Ok k% %

Hook function to Check ip specified ip address is a shared ip address
in the cluster

new usr/src/uts/comon/inet/ip/ip.c

194
195
196
197

199
200
201
202
203
204

206
207
208
209
210

212
213
214

218
219
220

224
225
226

228
229

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

*
*
/
int (*cl_inet_isclusterw de)(netstackid_t stack_id, uint8_t protocol,
sa_famly_t addr_famly, uint8_t *laddrp, void *args) = NULL;

/*
* Hook function to generate cluster wide ip fragment identifier
*/
uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
sa_famly_t addr_famly, uint8_t *laddrp, uint8_t *faddrp,

void *args) = NULL;
/*
* Hook function to generate cluster wi de SPI.
*/

void (*cl _inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,

void *) = NULL
/*
* Hook function to verify if the SPI is already utlized.
*/
int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
/*
* Hook function to delete the SPI fromthe cluster wi de repository.
*/
void (*cl_inet_del etespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;

/*

* Hook function to informthe cluster when packet received on an |IDLE SA
*/

void (*cl _inet_idlesa)(netstackid uint8 t, uint32_t, sa famly_t,

t,
in6_addr_t, in6_addr_t, void *) = NULL;

Synchroni zati on notes:

IPis a fully D MP STREAMS nodul e/driver. Thus it does not depend on any
MI | evel protection given by STREAMS. | P uses a conbination of its own
internal serialization mechanismand standard Sol ari s | ocking techni ques.
The internal serialization is per phyint. This is used to serialize

pl unbi ng operations, |PMP operations, nost set ioctls, etc.

Pl umbing is a | ong sequence of operations involving nessage

exchanges between I P, ARP and device drivers. Many set ioctls are typically
invol ved in plunbing operations. A natural nodel is to serialize these
ioctls one per ill. For exanple plunbing of hmeO and gfe0 can go on in
paral l el without any interference. But various set ioctls on hne0O are best
serialized, along with | PMP operations and processing of DLPI control
nmessages received fromdrivers on a per phyint basis. This serialization is
provided by the ipsg_t and prinmitives operating on this. Details can

be found in ip_if.c above the core primtives operating on ipsq_t.

Lookups of an ipif or ill by a thread return a refheld ipif / ill.
Simarly |ookup of an ire by a thread also returns a refheld ire.

In addition ipif's and ill’s referenced by the ire are also indirectly
refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
directly or indirectly. For exanple an SI OCSLI FADDR ioctl that changes the
address of an ipif has to go through the ipsq_t. This ensures that only
one such excl usive operation proceeds at any tine on the ipif. It then
waits for all refcnts

associated with this ipif to cone down to zero. The address is changed
only after the ipif has been quiesced. Then the ipif is brought up again.

® Ok ok ok ok Rk Ok Ok b Sk OF 3k R R b Sk ok Sk % Rk OF % b % O

new usr/src/uts/comon/inet/ip/ip.c

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

B I I T T T 2

More details are described above the conment

inip_sioctl_flags.

Packet processing is based nostly on IREs and are fully nulti-threaded
usi ng standard Sol aris Ml techni ques.

There are explicit

Changi ng <ill - phyint>,

To change the <ill-phyint> association,
as witer,

locks in IP to handle:
The ip_g_head |ist maintained by m _open_link() and friends.

The reassenbly data structures (one |ock per hash bucket)

conn_l ock is meant to protect conn_t fields. The fields actually
protected by conn_l ock are docunented in the conn_t definition.

ire_lock to protect sone of the fields of the ire, |RE tables
(one | ock per hash bucket). Refer to ip_ire.c for details.

ndp_g_l ock and ncec_l ock for protecting NCEs.

ill_lock protects fields of the ill and ipif. Details in ip.h
ill_g_lock: This is a global reader/witer |ock. Protects the follow ng
* The AVL tree based global nmulti list of all ills
* The linked list of all ipifs of an ill

* The <i psq-xop> nappi ng

* <j|l-phyint> association
Insertion/deletion of an ill in the system insertion/deletion of an ipif
into an ill, changing the <ipsq-xop> nmapping of an ill, changing the

<ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
witer for the actual duration of the insertion/deletion/change.
ill_lock: This is a per ill nutex.
It protects sonme nenbers of the ill_t struct;
It also protects the <ill-phyint> assoc.
It also protects the list of ipifs hanging off the ill.

see ip.h for details.

psqg_l ock: This is a per ipsq_t nutex |ock.
This protects sone nenbers of the ipsq_t struct;
It also protects the <ipsqg-ipxop> mappi ng

see ip.h for details.

i px Iock This is a per ipxop_t nutex |ock.

This protects sone nenbers of the ipxop_t struct; see ip.h for details.
phyint _l ock: This is a per
phyi nt _fl ags

phyint nmutex |ock. Protects just the

i p_addr_avai |
This lock is held in ipif_up_done and the ipif
uni queness check al so done atonically.

_lock: This is used to ensure the uni queness of |P addresses.
is marked IPIF_UP and the

i _usesrc_lock: This readers/witer |ock protects the usesrc
g

Il _g

roup list linked by ill_usesrc_grp_next. It also protects the

11l _usesrc_ifindex field. It is taken as a witer when a nmenber of the
group is being added or deleted. This lock is taken as a reader when

wal king the |ist/group(eg:
Note, It is only necessary to take this lock if the ill_usesrc_grp_next
field is changing state i.e from NULL to non-NULL or vice-versa. For
exanple, it is not necessary to take this lock in the initial portion
of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these

operations are executed exclusively and that ensures that the "usesrc
group state" cannot change. The "usesrc group state" change can happen
only in the latter part of ip_sioctl_slifusesrc and in ill_delete.

<i psg- xop> associ cati ons:

the ill_g_lock must be held

and the ili_locks of both the v4 and v6 instance of the ill

to get the nunber of nembers in a usesrc group).

new usr/src/uts/comon/inet/ip/ip.c

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

B I I I T N R R

must be hel d.

To change the <ipsq-xop> association, the ill_g_l ock nust be held as
witer, the ipsq_lock nmust be held, and one nust be witer on the ipsq.
This is only done when ills are added or renpved from | PMP groups.

To add or delete an ipif fromthe list of ipifs hanging off the ill,
ill_g lock (witer) and ill _lock nust be held and the thread nust be
a witer on the associated ipsq.

To add or delete an ill to the system the ill_g_l ock nust be held as
witer and the thread nust be a witer on the associated ipsq.

To add or delete an ilmto an ill, the ill
must be a witer on the associated ipsq.

_lock nust be held and the thread

Lock hi erarchy

Sonme | ock hierarchy scenarios are listed bel ow

ill_g_lock -> conn_lock -> ill_lock ->ipsq_lock -> ipx_|ock
ill_g_lock ->ill_lock(s) -> phyint_Iock

ill_g_lock -> ndp_g_l ock -> ill_lock -> ncec_l ock

ill_g_lock -> ip_addr_avail _|ock

conn_lock -> irb _lock -> ilT_lock -> ire_lock

ill_g_lock -> ip_g_nd_| ock

ill_g_lock ->ips_ipnp_lock ->ill_lock -> nce_l ock
ill_g_lock -> ndp_g_lock ->ill_lock -> ncec_lock -> nce_l ock
arl _lock ->ill_lock

ips_ire_dep_lock -> irb_|l ock

When nore than 1 ill lock is needed to be held, all ill |ock addresses
are sorted on address and | ocked starting from hi ghest addressed |ock
downwar d

Mil ti cast scenari os

ips_ill_g_lock ->ill_ntast_|ock

conn_ilg_lock -> ips_ill _g_l ock -> ill_lock

ill _ntast_serializer -> ill_ntast_|lock -> ips_ipnp_lock -> ill_lock
ill_nctast_serializer ->ill_ntast_|lock -> connf_lock -> conn_| ock
i1l _ncast_serializer ->ill_ntast_|ock -> conn_ilg_l ock

i1l _ntast_serializer -> ill_ntast_|ock -> ips_ignp_timer_| ock

| Psec scenarios

ipsa_lock ->ill_g_lock ->ill_lock

ill_g_usesrc_lock ->ill_g_lock ->ill_lock

Trusted Sol aris scenari os

igsa_l ock -> gcgrp_rw ock -> gcgrp_| ock

igsa_l ock -> gcdb_| ock

gcgrp_rw ock -> ire_lock

gcgrp_rw ock -> gcdb_| ock

squeue(sq_l ock), flowrelated (ft_|lock, fe_lock) |ocking

cpu_lock -->ill_lock --> sqgset_lock --> sq_| ock
sg_l ock -> conn_l ock -> QLOCK(Qq)
ill_lock -> ft_lock -> fe_l ock

Rout i ng/ f orwar di ng tabl e | ocki ng notes:
Lock acqui sition order:

Requi renent s:
i. Wl ker rmust not hold any |ocks during the wal ker call back.

Radi x tree |ock, irb_lock.

new usr/src/uts/comon/inet/ipl/ip.c 7

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

B I I T T T 2

ii Wl ker must not see a truncated tree during the wal k because of any node
del eti on.

iii Existing code assunes ire_bucket is valid if it is non-null and is used
in many places in the code to walk the irb list. Thus even if all the
ires in a bucket have been deleted, we still can't free the radi x node
until the ires have actually been inactive' d (freed).

Tree traversal - Need to hold the global tree |ock in read node.
Bef ore dropping the global tree |ock, need to either increnent the ire_refcnt
to ensure that the radix node can’t be del eted.

Tree add - Need to hold the global tree lock in wite node to add a
radi x node. To prevent the node from being del eted, increment the
irb refcnt, after the node is added to the tree. The ire itself is

added later while holding the irb_lock, but not the tree | ock.
Tree delete - Need to hold the gl obal
Al'l associated ires nust be inactive (i.e.
nmust be zero.

tree lock and irb_lock in wite node.
i freed), and irb_refcnt

val ker -
gl obal

Increnent irb_refcnt before calling the wal ker callback. Hold the

tree lock (read node) for traversal.

| RE dependencies - In sonme cases we hold ips_ire_dep_lock across ire_refrele
hence we will acquire irb_lock while holding ips_ire_dep_| ock.

| Psec notes :

IPinteracts with the I Psec code (AH ESP) by storing | Psec attributes
inthe ip_xmt_attr_t ip_recv_attr_t. For outbound datagrans, the
ip_xmt_attr_t has the

information used by the I Psec code for applyi ng the right level of
protection. The information initialized by I[P in the ip_xmt_attr_t
I's determ ned by the per-socket policy or global policy in the system
For i nbound datagranms, the ip_recv_attr_t

starts out with nothing init. It gets filled

with the right information if it goes through the AH ESP code, which
happens if the incoming packet is secure. The information initialized

by AHESP, is later used by IP (during fanouts to ULP) to see whether
the policy requirenents needed by per-socket policy or global policy
is nmet or not.

For fully connected sockets i.e dst, src [addr, port] is known,

conn_pol 1 cy_cached is set indicating that policy has been cached.

conn_i n_enforce_policy nmay or nmay not be set dependi ng on whet her

there is a global policy match or per-socket policy match.

Policy inheriting happpens in ip_policy_set once the destination is known.
Once the right policy Is set on the conn_t, policy cannot change for
this socket. This nakes life sinpler for TCP (UDP ?) where
re-transmissions go out with the sane policy. For symmetry, policy

is cached for fully connected UDP sockets also. Thus if policy is cached,
it also inplies that policy is latched i.e policy cannot change

on these sockets. As we have the right policy on the conn, we don’t

have to | ookup global policy for every outbound and inbound datagram

and thus serving as an optimzation. Note that a gl obal policy change
does not affect fully connected sockets if they have policy. If fully
connect ed sockets did not have any policy associated with it, global
policy change may affect them

IP Flow control notes:

Non- TCP streans are flow controlled by IP. The way this is acconplished
differs when | LL_CAPAB DLD DI RECT is enabled for that |P instance. \Wen
I LL_DI RECT_CAPABLE(i 1) is TRUE, IP can do direct function calls into
G.Dv3. Otherwi se packets are sent down to | ower |ayers using STREAMS
functions.

new usr/src/uts/comon/inet/ip/ip.c

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

B I I I T N R R

Per Tx ring udp flow control:
This is applicable only when | LL_CAPAB DLD DI RECT capability is set in
the ill (i.e. ILL_DI RECT_CAPABLE(ill) is true).

The underlying link can expose multiple Tx rings to the GLDv3 nmac | ayer.

To achi eve best performance, outgoing traffic need to be fanned out anpng
these Tx ring. mac_tx() is called (via str_ndata_fastpath_put()) to send
traffic out of the NIC and it takes a fanout hint. UDP connections pass
the address of connp as fanout hint to mac_tx(). Under flow controlled
condition, mac_tx() returns a non-NULL cookie (ip_nac_tx_cookie_t). This
cooki e points to a specific Tx ring that is blocked. The cookie is used to
hash into an idl _tx_li st[] entry inid _tx_list[] array. Each idl _tx_list_t
point to drain_lists (id "s). These drain list will store the bl ocked UDP
connp’s. The drain |ist |s not a single list but a configurable nunber of
lists.

The di agram bel ow shows idl _tx_list_t’'s and their drain_lists. ip_stack_t
has an array of idl _tx_ list_t. The size of the array is TX_FANOUT_SI ZE
which is equal to 128. This array in turn contains a pointer to idl _t[],
the ip drain list. The idl_t[] array size is MN(nmax_ncpus, 8). The drain
list will point to the list of connp’s that are flow controll ed.

lidl _tx_list[O0]]->] --------------2 ------- oo oo
———————————————— >|drain_list[2]]|-->|connp|-->|connp|-->|connp|-->
| cccocococcccoos cmsccos coscoes soocoos
| ->|drain_list[n]]|-->|connp|-->|connp|-->|connp|-->
| ->|drain_list[0]]|-->|connp|-->|connp|-->|connp|-->
| ____________________________________
| ____________________________________
---------------- | ->] drain_list[1]|-->| connp|-->| connp|-->|connp| -->
Jidl _tx_list[1]]->] =-------------mc —-----o oo oo

When nmac_t x() returns a cookie, the cookie is hashed into an index into
ips_idl _tx_list[], and conn_drain_insert() is called with the idl _tx_Ilist
to insert the conn onto. conn_drain_insert() asserts flow control for the
sockets via su_txqg_full () (non-STREAMS) or QFULL on conn_wg (STREAMS).
Further, conn_bl ocked is set to indicate that the conn is bl ocked.

GLDv3 calls ill_flow enable() when flow control is relieved. The cookie
passed in the call to ill_flow enable() identifies the blocked Tx ring and
I's again hashed to | ocate the appropriate idl _tx_list, which is then
drained via conn_wal k_drain(). conn_wal k_drain() goes through each conn in
the drain list and calls conn_drain_renove() to clear flow control (via
calling su_txg_full() or clearing QFULL), and renpbve the conn fromthe
drain list.

Note that the drain list is not a single list but a (configurable) array of

new usr/src/uts/comon/inet/ip/ip.c

524 * |ists (8 elenments by default). Synchronization between drain insertion and
525 * flow control wakeup is handled by using idl _txl->txl_lock, and only

526 * conn_drain_insert() and conn_drain_renove() manipulate the drain list.

527 *

528 * Flow control via STREAMS is used when |LL_DI RECT_CAPABLE() returns FALSE.
529 * On the send side, if the packet cannot be sent down to the driver by IP
530 * (canput() fails), ip_xmt() drops the packet and returns EWOULDBLOCK to the
531 * caller, who may then i nvoke i xa_check _drain_insert() to insert the conn on
532 * the 0'th drain list. When ip_wsrv() runs on the ill_wg because flow

533 * control has been relieved, the blocked conns in the 0'th drain list are
534 * drained as in the non- STREAMB case.

535 *

536 * In both the STREAMS and non- STREAMS cases, the sockfs upcall to set QFULL
537 * is done when the conn is inserted into the drain Iist (conn_drain_insert())
538 * and cl eared when the conn is renoved fromthe it (conn_drain_remove()).

539 *

540 * | PQOS notes:

541 *

542 * |PQoS Policies are applied to packets using |PPF (IP Policy framework)

543 * and | PQoS nodul es. |PPF includes hooks in IP at different control points
544 * (callout positions) which direct packets to | PQdS nodul es for policy

545 * processing. Policies, if present, are global.

546 *

547 * The callout positions are located in the follow ng paths:

548 * o local _in (packets destined for this host)

549 * o local _out (packets orginating fromthis host)

550 * o fwd_in (packets forwarded by this mc - inbound)

551 * o fwd_out (packets forwarded by this mc - outbound)

552 * Hooks at these callout points can be enabl ed/ di sabl ed using the ndd variable
553 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
554 * By default all the callout positions are enabl ed.

555 *

556 * CQutbound (Il ocal _out)

557 * Hooks are placed in ire_send_wire_v4 and ire_send_w re_v6.

558 *

559 * Inbound (local _in)

560 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.

561 *

562 * Forwarding (in and out)

563 * Hooks are placed in ire_recv_forward_v4/v6.

564 *

565 * | P Policy Framework processing (|PPF processing)

566 * Policy processing for a packet is initiated by ip_process, which ascertains
567 * that the classifier (ipgpc) is |oaded and configured, failing which the

568 * packet resunes nornmal processing in IP. If the clasifier is present, the
569 * packet is acted upon by one or nore | PQ0S nodul es (action instances), per
570 * filters configured in ipgpc and resunmes normal | P processing thereafter.
571 * An action instance can drop a packet in course of 1ts processing.

572 *

573 * Zones notes:

574 *

575 * The partitioning rules for networking are as follows:

576 * 1) Packets coming froma zone nust have a source address belonging to that
577 * zone.

578 * 2) Packets coming froma zone can only be sent on a physical interface on
579 * which the zone has an | P address.

580 * 3) Between two zones on the sane nmachi ne, packet delivery is only allowed if
581 * there’s a matching route for the destination and zone in the forwarding

582 * table.

583 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in

584 * different zones can bind to the sane port with the wildcard address

ggg : (1 NADDR_ANY) .

587 * The granularity of interface partitioning is at the |ogical interface |evel.
588 * Therefore, every zone has its own | P addresses, and inconing packets can be
589 * attributed to a zone unanbi guously. A | ogical interface is placed into a zone

new usr/src/uts/comon/inet/ip/ip.c

10

590 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
591 * structure. Rule (1) is inplenented by nodi fying the source address sel ection
592 * algorithmso that the list of eligible addresses is filtered based on the
593 * sending process zone.

594 *

595 * The Internet Routing Entries (IRES) are either exclusive to a zone or shared
596 * across all zones, depending on their type. Here is the break-up:

597 *

598 * | RE type Shar ed/ excl usi ve

599 * -------- e

600 * | RE_BROADCAST Excl usi ve

601 * | RE_DEFAULT (default routes) Shared (*)

602 * | RE_LOCAL Excl usi ve (x)

603 * | RE_LOOPBACK Excl usi ve

604 * | RE_PREFI X (net routes) Shared (*)

605 * | RE_IF_NORESOLVER (interface routes) Exclusive

606 * |RE_IF_RESOLVER (interface routes) Excl usi ve

607 * IRE_IF_CLONE (interface routes) Excl usi ve

608 * | RE_HOST (host routes) Shared (*)

609 *

610 * (*) A zone can only use a default or off-subnet route if the gateway is
611 * directly reachable fromthe zone, that is, if the gateway’ s address matches
612 * one of the zone's logical interfaces.

613 *

614 * (x) IRE_LOCCAL are handled a bit differently.

615 * \Wen ip_restrict_interzone_| oopback is set (the default),

616 * ire_route_recursive restricts |oopback using an |RE LOCAL

617 * between zone to the case when L2 woul d have conceptual |y | ooped the packet
618 * back, i.e. the | oopback which is required since neither Ethernet drivers
619 * nor Ethernet hardware | oops them back. This is the case when the nornal

620 * routes (ignoring IREs with different zoneids) woul d send out the packet on
621 * the same ill as the ill with which is IRE_LOCAL is associ ated.

622 *

623 * Miltiple zones can share a common broadcast address; typically all zones
624 * share the 255.255. 255. 255 address. Inconming as well as locally originated
625 * broadcast packets nust be dispatched to all the zones on the broadcast

626 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
627 * since sone zones may not be on the 10.16.72/24 network. To handle this, each
628 * zone has its own set of | RE_BROADCAST entries; then, broadcast packets are
629 * sent to every zone that has an | RE_BROADCAST entry for the destination

630 * address on the input ill, see ip_input_broadcast().

631 *

632 * Applications in different zones can join the same nulticast group address.
633 * The sanme logic applies for nulticast as for broadcast. ip_input_mnulticast
634 * dispatches packets to all zones that have nenbers on the physical interface.
635 */

637 /*

638 * Squeue Fanout fl ags:

639 0: No fanout.

640 * 1: Fanout across all squeues

641 */

642 bool ean_t i p_squeue_fanout = 0;

644 [*

645 * Maxi mum dups al | owed per packet.

646 */

647 uint_t ip_max_frag_dups = 10;

649 static int i p_open(queue_t *q, dev_t *devp, int flag, int sflag,
650 cred_t *credp, boolean_t isv6);
651 static nbl k_t *ip_xmt_attach_|l hdr(nblk_t *, nce_t *);

653 static bool ean_t icnp_inbound_verify_v4(mblk_t *, icnph_t *, ip_recv_attr_t
654 static void i cnp_i nbound_t oo_bi g_ v4(|crrpht * ip_recv_attr_t *);
655 static void i cnp_i nbound_error_fanout _v4(mbl k_t *, icnph_t *,

“)5

11

new usr/src/uts/comon/inet/ip/ip.c
656 ip_recv_attr_t *);
657 static void i cnp_opti ons_updat e(i pha_t *);
658 static void i cnp_par am probl en(nmbl k_t *, uint8_t, ip_recv_attr_t *);
659 static void i cnp_pkt (nbl k_t *, void *, size_t, ip_ recv _attr_t *);
660 static nmblk_t *icmp_pkt _err_ok(mbl k_t *, |precv attr *);
661 static void icnp_redirect_v4(mbl k_t *np, ipha_t *, |cnph t o,
662 ip_recv_attr_t *);
663 static void icnp_: send redirect(nmbl k_t *, ipaddr_t, ip_recv_attr_t *);
664 static void i cnp_send_reply_v4(nbl k_t *, ipha_t *, icmph_t *,
665 ip_recv_attr_t *);
667 nbl k_t *ip_dl pi _alloc(size_t, t_uscalar_t);
668 char *i p_dot _addr (i paddr_t, char *);
669 nbl k_t *ip_carve_np(nbl k_t **, ssize_t);
670 int ip_close(queue_t *, int);
671 static char *| p_dot saddr(uchar_t char *);
672 static void ip_Irput(queue_t *, nblk_t *);
673 i paddr_t i p_net _mask(i paddr_t);
674 char *I p_nv_l ookup(nv_t *, int);
675 void i p_rput(queue_t *, mblk_t *);
676 static void ip_rput_dlpi _witer(ipsq_t *dummy_sq, queue_t *qg, nblk_t *np,
677 void *dummy_arg);
678 int i p_snnp_get (queue_t *, mbl k_t *, int, boolean_t);
679 static nbl k_t *Ip_snnp_get _mi b2_i p(queue_t *, nmblk_t *,
680 mb2_iplfStatsEntry_t *, ip_stack_t *, boolean_t);
681 static nmbl k_t *ip_snnp_get_mb2_ip_traffic_stats(queue_t *, nmblk_t *,
682 ip_stack_t *, boolean_t);
683 static nbl k_t *i p_snnp_get _m b2_i p6(queue_t *, nmblk_t *, ip_stack_t *,
684 bool ean_t);
685 static mbl k_t *ip_snnp_get _m b2_icnp(queue_t *, nmblk_t *, ip_stack_t *ipst);
686 static nmbl k_t *ip_snnp_get _m b2_i cnp6(queue_t *, nblk_t *, 1p_stack_t *ipst);
687 static nbl k_t *ip_snnp_get _m b2_i gnp(queue_t *, nblk_t *, ip_stack_t *ipst);
688 static nmbl k_t *ip_snnp_get _m b2_nul ti (queue_t *, nmblk_t *, ip_stack_t *ipst);
689 static nmbl k_t *i p_snmp_get _mi b2_i p_addr (queue_t *, nblk_t *,
690 ip_stack_t *ipst, boolean_t);
691 static nbl k_t *ip_snnp_get _m b2_i p6_addr (queue_t *, nblk_t *,
692 ip_stack_t *ipst, boolean_t);
693 static nbl k_t *i p_snnp_get _m b2_i p_group_src(queue_t *, nblk_t *,
694 ip_stack_t *ipst);
695 static nbl k_t *ip_snnmp_get _ “mib2_ip6_group_src(queue_t *, nblk_t *,
696 i p_stack_t *ipst);
697 static nmbl k_t *i p_snnp_get _m b2_i p_group_nen{queue_t *, nblk_t *,
698 ip_stack_t *ipst);
699 static nbl k_t *ip_snnmp_get _ “mib2_i p6_group_nem(queue_t *, nblk_t *,
700 i p_stack_t *ipst);
701 static nbl k_t *i p_snnp_get _m b2_vi rt_nul ti(queue_t *, nmblk_t *,
702 ip_stack_t *ipst);
703 static nmbl k_t *ip_snnp_get _m b2_nulti_rtabl e(queue_t *, nmblk_t *,
704 ip_stack_t *ipst);
705 static nbl k_t *ip_snnp_get _m b2_i p_route_nedi a(queue_t *, nblk_t *, int,
706 ip_stack_t *ipst);
707 static nbl k_t *ip_snnmp_get _ “mib2_ip6_route_nedia(queue_t *, nblk_t *, int,
708 i p_stack_t *ipst);
709 static void i p_snnp_get2_v4(ire_t *, iproutedata_t *);
710 static void i p_snnp_get2_v6_route(ire_t *, iproutedata_t *);
711 static int i p_snnp_get2_v4_nedi a(ncec_t *, iproutedata_t *),
712 static int i p_snnp_get 2_v6_nedi a(ncec_t *, iproutedata_ t *);
713 int i p_snnp_set(queue_t *, int, int, uchar_t *, int);
715 static nbl k_t *i p_fragnent _copyhdr (uchar_t *, int, int, ip_stack_t *,
716 mbl k_t *);
718 static void conn_drain_i nit(ip_stack_t *);
719 static void conn_drain_fini(ip_stack_t *);
720 static void conn_dr ai n(conn_t *connp, bool ean_t cl osing);

722
723

725
726
727

729
730
731
732

734

736
737
738
739
740
741
742
743

745
746

748

752
753

55,
756

760
761
762
763

765
766
767

new usr/src/uts/comon/inet/ipl/ip.c 12
static void conn_wal k_drain(ip_stack_t *, idl_tx_list_t *);
static void conn_wal k_sctp(pfv_t, void *, zoneid_t, netstack_t *);
static void *ip_stack_init(netstackid_t stackid, netstack_t *ns);
static void i p_stack_shut down(netstackid_t stackid, void *arg);
static void i p_stack_fini(netstackid_t stackid, void *arg);
static int ip_multirt_apply_nenbership(int (*fn)(conn_t *, bool ean_t,
const in6_addr_t *, ipaddr_t, uint_t, nctast_record_t, const in6_addr_t *),
ire_t *, conn_t *, boolean_t, const i n6_addr_t *, ntast_record_t,
const in6_addr_t *);
static int i p_squeue_sw tch(int);
static void *ip_kstat _init(netstackid_t, ip_stack_ t *);
static void ip_kstat_fini(netstackid_t, kstat_t *);
static int i p_kstat_update(kstat_t *kp, int rw;
static void *Icnp_kstat _init(netstackid_t);
static void icnp_kstat_fini(netstackid_t, kstat_t *);
static int icnp_kstat_update(kstat _t *kp, int rw;
static void *ip_kstat2_init(netstackid_t, ip_stat_t *);
static void ip_kstat2_fini(netstackid_t, kstat_t *);
static void ipobs_init(ip_stack_t *);
static void i pobs_fini(ip_stack_t *);
static int i p_tp_cpu_update(cpu_setup_t, int, void *);
i paddr _t ip_g_all_ones = | P_HOST_MASK;
static long ip_rput_pullups;
int dohwcksum = 1; /* use h/w cksumif supported by the hardware */
vemt *ip_minor_arena_sa; /* for mnor nos. fromI|NET_M N _DEV+2 thru 2A718-1 */
vmemt *ip_minor_arena_la; /* for mnor nos. from2”"18 thru 2/"32-1 */
int i p_debug;
/*
* Mul tirouting/CGIP stuff
*/
int ip_cgtp_filter_rev = CGTP_FI LTER REV; /* CGTP hooks version */
/*
* | P tunables related declarations. Definitions are in ip_tunables.c
*/
extern nmod_prop_info_t ip_propinfo_thl[];

768
769

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

extern int

/

i p_propi nfo_count;

Tabl e of
i ndexed based on the last byte of the ioctl
is a clash, and there is nore than 1 ioctl
In such a case 1 ioctl
ioctls are encoded in the misc table.
retrieved by indexing on the |ast byte of the ioctl
the ioctl command with the value in the ndx table. |
m smatch the misc table is then searched sequentiall
ioctl conmand.

comrand.
with the

Entry:

* Ok kR ok ok Ok Sk % b % b %
-~

ip_ioctl_cnd_t ip_ndx_ioctl_table[]
/* 000 */ { 1PlI_DONTCARE, 0
/* 001 */ { |PlI_DONTCARE, O

0

/* 002 */ { | Pl _DONTCARE,

0, 0, NULL, NULL }
0, 0, NULL, NULL }
0, 0, NULL, NULL }

IP ioctls encoding the various properties of the ioctl

and
Cccasionally there
sane | ast byte.

is encoded in the ndx table and the remaini ng
An entry in the ndx table is

command and conpari ng
n the event of a
y for the desired

<conmmand> <copyi n_si ze> <fl ags> <cnd_t ype> <function> <restart_func>

new usr/src/uts/comon/inet/ip/ip.c

788 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

789 /* 004 */ { |PI_DONTCARE, 0, 0, 0O, NULL, NULL },

790 /* 005 */ { |PI_DONTCARE, O, 0, O, NULL, NULL },

791 /* 006 */ { IPI_DONTCARE, O, O, O, NULL, NULL },

792 /* 007 */ { IPI_DONTCARE, O, O, O, NULL, NULL },

793 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },

794 /* 009 */ { IPI_DONTCARE, 0, 0, O, NULL, NULL },

796 /* 010 */ { SI OCADDRT, sizeof (struct rtentry), IPI_PRYV,

797 M SC CMD, ip_siocaddrt, NULL },

798 /* 011 */ { SI OCDELRT, sizeof (struct rtentry) I Pl _PRIV,

799 M SC CMD, ip_siocdelrt, NULL },

801 /* 012 */ { SIOCSl FADDR, sizeof (struct ifreq), IPI_PRIV | IPl_WR
802 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
803 /* 013 */ { SIOCG FADDR, sizeof (struct ifreq), |Pl_GET_CMD,

804 | F_CMVD, ip_sioctl_get_addr, NULL },

806 /* 014 */ { S| OCSI FDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPl_WR
807 IF_CMD, ip_sioctl _dstaddr, ip_sioctl_dstaddr_restart },
808 /* 015 */ { S| OCGA FDSTADDR, sizeof (struct ifreq),

809 | PI_GET_CMD, |F_CMD, ip_sioctl_get_dstaddr, NULL },
811 /* 016 */ { SIOCSl FFLAGS, sizeof (struct ifreq),

812 IPI_PRIV | IPI_WR

813 IF_CVMD, ip_sioctl_flags, ip_sioctl _flags_restart },
814 /* 017 */ { SI OCG FFLAGS, sizeof (struct ifreq),

815 IPINDDO(|IPIGE|’CND

816 |F_CVD, ip_sioctl_get_flags, NULL },

818 /* 018 */ { |PI_DONTCARE, 0, 0, 0, NULL, NULL },

819 /* 019 */ { | PI_DONTCARE, 0, 0, 0, NULL, NULL },

821 /* copyin size cannot be coded for S| OCGE FCONF */

822 /* 020 */ { O SIOCA FCONF, 0, |PI_GET_CM,

823 M SC CWD, ip_sioctl_get_ifconf, NULL },

825 /* 021 */ { SICCSI FMIU, sizeof (struct ifreq), IPI_PRIV | |IPI_WR
826 I|F_CVD, ip_sioctl_mtu, NULL },

827 /* 022 *| { SIOCGIFMI’U, si zeof (struct ifreq), |Pl_GET_CWMD,

828 F_CVD, ip_sioctl_get_ntu, NULL },

829 /* 023 */ { SIOCGIFBRDADDR si zeof (struct ifreq),

830 I PI_GET_CMD, |F_CMD, ip_sioctl_get_brdaddr, NULL },
831 /* 024 */ { S OCS| FBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPl_WR
832 F_CWVD, ip_sioctl_brdaddr, NULL },

833 /* 025 */ { SIG:GIFNETMASK si zeof (struct ifreq),

834 |PI_GET_CMD, |F_CMD, ip_sioctl_get_netmask, NULL },
835 /* 026 */ { SIOCSI FNETMASK, sizeof (struct ifreq), IPI_PRIV | IPlI_WR
836 I|F_CVD, ip_sioctl_netnask, ip_sioctl_netnmask_restart },
837 /* 027 */ { SIOCGE FMETRIC, si zeof (struct ifreq),

838 |PI_GET_CMD, |F_CMD, ip_sioctl_get_netric, NULL },
839 /* 028 */ { SICOCSIFMETRIC, sizeof (struct ifreq), TPI_PRIYV,

840 IF_CVD, ip_sioctl_metric, NULL },

841 /* 029 */ { IPI_DONTCARE, 0, O, 0, NULL, NULL },

843 /* See 166-168 bel ow for extended SI OC*XARP ioctls */

844 /* 030 */ { SICCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR
845 ARP_CMD, ip_sioctl_arp, NULL

846 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPIfGETicND,

847 ARP_CMD, ip_sioctl_arp, NULL },

848 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV [IPI_WR
849 ARP_CMD, ip_sioctl_arp, NULL },

851 /* 033 */ { | PI_DONTCARE, 0, 0, 0O, NULL, NULL },

852 /* 034 */ { | PI_DONTCARE, 0, 0, 0, NULL, NULL },

853 /* 035 */ { IPI_DONTCARE, 0, 0, O, NULL, NULL },

13

new usr/src/uts/comon/inet/ip/ip.c

854 /* 036 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
855 /* 037 */ | Pl _DONTCARE, 0, 0O, O, NULL, NULL },
856 /* 038 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
857 /* 039 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
858 /* 040 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
859 /* 041 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
860 [* 042 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
861 /* 043 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
862 /* 044 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
863 /* 045 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
864 /* 046 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
865 [* 047 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
866 /* 048 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
867 /* 049 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
868 /* 050 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
869 /* 051 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
870 /* 052 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
871 /* 053 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
873 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV| IPI_WR| IPI
874 M SC CWVD, if_unitsel, if_unitsel _restart },
876 /* 055 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
877 /* 056 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
878 /* 057 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
879 /* 058 */ | Pl _DONT! , 0, 0, 0, NULL, NULL },
880 /* 059 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
881 /* 060 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
882 /* 061 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
883 /* 062 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
884 /* 063 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
885 /* 064 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
886 /* 065 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
887 /* 066 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
888 /* 067 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
889 /* 068 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
890 /* 069 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
891 /* 070 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
892 /[* 071 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
893 /* 072 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
895 /* 073 */ { SICCSI FNAME, sizeof (struct ifreq),

896 IPl_PRIV | IPI_WR| IPl_MDX,

897 I F_CVD, ip_sioctl_sifname, NULL },
899 /* 074 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
900 [* 075 */ | Pl _DONTCARE, 0, 0, 0O, NULL, NULL },
901 /* 076 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
902 [* 077 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
903 /* 078 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
904 /* 079 */ | Pl _DONTCARE, 0, 0, 0O, NULL, NULL

905 /* 080 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
906 /* 081 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
907 /* 082 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
908 /* 083 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL },
909 /* 084 */ | Pl _DONTCARE, 0, 0, 0, NULL, NULL },
910 /* 085 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
911 /* 086 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL },
913 /* 087 */ { SIOCA FNUM sizeof (int), |IPl_GET_CM,
914 M SC C\D, ip_sioctl_get_ifnum NULL },
915 /* 088 */ { SIOCG FMIXID, sizeof (struct ifreq), |Pl_GET_CMD,
916 | F_CMD, ip_sioctl_get_nuxid, NULL },
917 /* 089 */ SI OCSI FMUXI D, si zeof (struct i freq)

918 IPI_PRIV | IPI_WR IF_CMD, ip_sioctl

_MODCK,

_muxid, NULL },

14

new usr/src/uts/comon/inet/ip/ip.c 15 new usr/src/uts/comon/inet/ip/ip.c 16
920 /* Both if and |if variants share same func */ 986 LI F_CMVD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
921 /* 090 */ { SIOCA FI NDEX, sizeof (struct ifreq), |PI_CGET_CMD, 987 /* 127 */ { SI OCGLI FNETRI C, " si zeof (struct lifreq),

922 | F_CVD, ip_sioctl_get_lifindex, NULL }, 988 | PI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
923 /* Both if and |if variants share same func */ 989 /* 128 */ { SIOCSLI FMETRIC, si zeof (struct lifreq), IPI_PRIV | IPI_WR
924 /* 091 */ { SICCSI FI NDEX, sizeof (struct ifreq), 990 LIF_CVD, ip_sioctl_netric, NULL },
925 IPI_PRIV]| IPI_WR |F_CVMD, ip_sioctl_slifindex, NULL }, 991 /* 129 */ { SIOCSLI FNAME, sizeof (struct i ifreq),
992 IPI_PRIV | IPI_WR | |Pl_MDC,
927 /* copyin size cannot be coded for S| OCA FCONF */ 993 LI F_CVD, 1p_sioctl_slifnane,
928 /* 092 */ { SIOCGA FCONF, 0, IPI_GET_CMD, 994 ip_sioctl_slifname_restart },
929 M SC CMD, ip_sioctl _get_ifconf, NULL },
930 /* 093 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL }, 996 /* 130 */ { SIOCGEIFNUM sizeof (struct lifnum, |PlI_GET_CMD,
931 /* 094 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL }. 997 M SC CMD, ip_sioctl_get_lifnum NULL },
932 /* 095 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL }, 998 /* 131 */ { SIOCGLIFMUXI D, sizeof (struct lifreq),
933 /* 096 */ { IPI_DONTCARE, 0, 0, 0O, NULL, NULL }, 999 IPl_GET_CVMD, LIF CWD, ip_sioctl_get muxid, NULL },
934 /* 097 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL }, 1000 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
935 /* 098 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL }, 1001 IPI_PRIV | IPI_WR LIF CMVMD, ip_sioctl_muxid, NULL },
936 /* 099 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL }, 1002 /* 133 */ { SI OCGLI FI NDEX, sizeof (struct lifreq),
937 /* 100 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL }, 1003 |Pl_GET_CMD, LIF_CVD, ip_sioctl_get_lifindex, 0},
938 /* 101 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL }, 1004 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
939 /* 102 */ | PI _DONTCARE, 0, 0, 0O, NULL, NULL }, 1005 IPI_PRIV | IPI_WR LIF_CVD, ip_sioctl_slifindex, 0},
940 /* 103 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL }, 1006 /* 135 */ { SIOCSLI FTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR
941 [* 104 */ | Pl _DONTCARE, 0, 0, 0O, NULL, NULL }, 1007 LI F_CVD, ip_sioctl_token, NULL },
942 /* 105 */ | Pl _DONTCARE, 0, 0, O, NULL, NULL }, 1008 /* 136 */ { SI OCGLI FTOKEN, si zeof (struct lifreq),
943 /* 106 */ | Pl _DONTCARE, 0, 0, 0O, NULL, NULL }, 1009 | PI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
944 /* 107 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL }, 1010 /* 137 */ { SIOCSLI FSUBNET, sizeof (struct lifreq), IPI_PRIV | IPl_WR
945 /* 108 */ | PI_DONTCARE, 0, 0, O, NULL, NULL }, 1011 LI F_CVD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
946 /* 109 */ I Pl _DONTCARE, 0, 0, O, NULL, NULL }, 1012 /* 138 */ { S| OCGLI FSUBNET, ~si zeof (struct lifreq),
1013 | PI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
948 /* 110 */ { SI OCLI FREMOVEIF, sizeof (struct lifreq), 1014 /* 139 */ { SIOCSLI FLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPl_WR
949 IPI_PRIV | IPI_WR LIF_CVD, ip_sioctl_renoveif, 1015 LI F_CVD, ip_sioctl_Inkinfo, NULL },
950 i p_sioctl_renoveif_restart },
951 /* 111 */ { SIOCLI FADDIF, “si zeof (struct lifreq), 1017 /* 140 */ { SI OCGLI FLNKINFO, sizeof (struct lifreq),
952 | PI _GET_CND | ITPI_PRIV | IPI_WR 1018 | PI_GET_CMD, LIF_CMD, ip_sioctl_get_|nkinfo, NULL },
953 LI F_CVD, ip_sioctl_addif, NULL }, 1019 /* 141 */ { SIOCLI FDELND, sizeof (struct lifreq), IPl_PRV,
954 #define SI OCLI FADDR NDX 112 1020 LI F_CVD, ip_siocdel ndp_v6, NULL }
955 /* 112 */ { SI OCSLI FADDR, sizeof (struct lifreq), IPI_PRIV | IPl_WR 1021 /* 142 */ { S| OCLIFGETND, sizeof (struct Iifreq), |Pl_GET_CMD,
956 LIF_CVD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1022 LI F_CVD, ip_siocqueryndp_v6, NULL },
957 /* 113 */ { S| OCGLI FADDR, si zeof (struct lifreq), 1023 /* 143 */ { SIOCLI FSETND, sizeof (struct i freq) I Pl _PRIV,
958 | Pl _GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1024 LI F_CVD, ip_siocsetndp_v6, NULL },
959 /* 114 */ { Sl OCSLI FDSTADDR sizeof (struct lifreq), IPI_PRIV | IPl_WR 1025 /* 144 *| { SI OCTMYADDR, sizeof (struct sioc_addrreq), |PI_GET_CMD,
960 LIF_CVMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1026 M SC CMVD, ip_sioctl_tmyaddr, NULL },
961 /* 115 */ { S| OCGLI FDSTADDR, si zeof (struct lifreq), 1027 /* 145 */ { SIOCTONLI NK, sizeof (struct sioc_addrreq), |PlI_CGET_CMD,
962 | Pl _GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1028 M SC CMD, ip_sioctl_tonlink, NULL },
963 /* 116 */ { SI OCSLI FFLAGS, sizeof (struct lifreq), 1029 /* 146 */ { SIOCTMYSI TE, sizeof (struct sioc_addrreq), O,
964 IPl_PRIV | IPl_WR 1030 M SC CMD, ip_sioctl _tnysite, NULL },
965 LIF_CVMD, ip_sioctl _flags, ip_sioctl_flags restart }, 1031 /* 147 */ { |1 PI_DONTCARE, O, 0, O, NULL, NULL },
966 /* 117 */ { S| OCGLI FFLAGS, sizeof (struct lifreq), 1032 /* 148 */ { | PI_DONTCARE, 0, 0, O, NULL, NULL },
967 | Pl _GET_CMD | | Pl _MODCK, 1033 /* 1 PSECi octls handled in ip_sioctl_copyin_setup itself */
968 LI F_CMD, ip_sioctl_get_flags, NULL }, 1034 /* 149 */ { SI OCFI PSECONFIG 0, IPI_PRIV, M SC CVD, NULL, NULL },
1035 /* 150 */ { SIOCSIPSECONFIG O, IPI_PRIV, MSC CVD, NULL, NULL },
970 /* 118 */ { I Pl _DONTCARE, 0, 0, 0O, NULL, NULL }, 1036 /* 151 */ { SI OCDI PSECONFIG, 0, IPI_PRIV, MSC CVMD, NULL, NULL }
971 /* 119 */ { | PI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 152 */ { SIOCLI PSECONFIG 0, IPI_PRIV, MSC CVD, NULL, NULL },
973 /* 120 */ { O_SIOCGLI FCONF, 0, |PI_CGET_CMD, M SC_CMD, 1039 /* 153 */ { IPI_DONTCARE, 0, O, O, NULL, NuULL },
974 ip_sioctl_get_lifconf, NULL },
975 /* 121 */ { SIOCSLI FMIU, sizeof (struct lifreq), IPI_PRIV | IPI_WR 1041 /* 154 */ { SIOCGI FBI NDI NG sizeof (struct lifreq), |PI_GET_CMD,
976 LIF_CVMD, ip_sioctl _nmtu, NULL }, 1042 LI F_CVD, ip_sioctl_get_binding, NULL },
977 /* 122 */ { SIOCG.I FMIU, sizeof (struct | |freq) | PI _GET_CMD, 1043 /* 155 */ { S| OCSLI FGROUPNAME, sizeof (struct lifreq),
978 LIF_CMVD, ip_sioctl_get_ntu, NULL }, 1044 IPl_PRIV | |Pl_WR
979 /* 123 */ { S| OCGLI FBRDADDR, si zeof (st ruct lifreq), 1045 LI F_CVD, 1 p_sioctl_groupnane, ip_sioctl_groupnane },
980 | Pl _GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1046 /* 156 */ { S| OCGLI FGROUPNAME, si zeof (struct lifreq),
981 /* 124 */ { S| OCSLI FBRDADDR, sizeof (struct lifreq), IPI_PRIV | |Pl_WR 1047 | PI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
982 LI F_CVD, ip_sioctl_brdaddr, NULL }, 1048 /* 157 */ { Sl OCGLI FGROUPI NFO, si zeof (lifgroupinfo_t),
983 /* 125 */ { SI OCGLI FNETMASK, sizeof (struct lifreq), 1049 | Pl _GET_CMD, M SC CMD, ip_sioctl_groupinfo, NULL },
984 | Pl _GET_CMD, LIF_CMD, ip_sioctl_get_netnmask, NULL },
985 /* 126 */ { SIOCSLI FNETMASK, sizeof (struct lifreq), IPI_PRIV | IPl_WR 1051 /* Leave 158-160 unused; used to be SIOC*I FARP ioctls */

new usr/src/uts/comon/inet/ip/ip.c 17 new usr/src/uts/comon/inet/ip/ip.c
1052 /* 158 */ { |PI_DONTCARE, O, 0, O, NULL, NULL }, 1118 LIF_CVD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1053 /* 159 */ { I PI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 192 */ { S| OCGLI FHWADDR, si zeof (struct lifreq), TPl _GET_CWD,
1054 /* 160 */ { IPI_DONTCARE, 0, 0, O, NULL, NULL }, 1120 LI F_CMD, ip_sioctl_get_lifhwaddr, NULL }
1121 };
1056 /* 161 */ { IPI_DONTCARE, O, O, O, NULL, NULL },
1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cnd_t);
1058 /* These are handled in ip_sioctl_copyin_setup itself */
1059 /* 162 */ { SI OCGE P6ADDRPOLI CY, 0, |PI_NULL_BCONT, 1125 ip_i octl_cnﬂ t ip_msc_ioctl_table[] = {
1060 M SC CMD, NULL, NULL }, 1126 { LI NK, 0, IPI_PRIV | IPI_WR 0, NULL, NULL },
1061 /* 163 */ { SI OCSI P6ADDRPOLICY, 0, IPl_PRIV | |Pl_NULL_BCONT, 1127 { I_UNLI NK, 0, IPPI_PRIV | IPI_WR 0, NULL, NULL },
1062 M SC_CMD, NULL, NULL }, 1128 { 1ZPLINK, 0, IPPI_PRIV | IPI_WR 0, NULL, NULL },
1063 /* 164 */ { SIOCGDSTINFO, O, I|PI_CGET_CMD, M SC CMD, NULL, NULL }, 1129 { 1 _PUNLI NK, 0, IPI_PRIV | IPI_WR 0, NULL, NULL },
1130 { ND_GCET, 0, 0, 0, NULL, NULL },
1065 /* 165 */ { SI OCGLI FCONF, 0, |PI_GET_CMD, M SC CMD, 1131 { ND_SET, 0, IPI_PRIV | IPI_WR 0, NULL, NULL },
1066 ip_sioctl _get Iifconf, NULL }, 1132 { IP_ICOCTL, 0, 0, 0, NULL, NULL },
1133 { sl OOGETVI FCNT, sizeof (struct sioc_vif_req), |PlI_GET_CM,
1068 /* 166 */ { SI OCSXARP, sizeof (struct xarpreq), IPI_PRIV | |IPI_WR 1134 M SC CMD, nrt_ioctl},
1069 XARP_CMD, ip_sioctl _arp, NULL }, 1135 { SI OCGETSGCNT, sizeof (struct sioc_sg_req), |PlI_CGET_CMD,
1070 /* 167 */ { SI OCGXARP, sizeof (struct xarpreq), |Pl_GET_CMD, 1136 M SC CMD, nrt_ioctl},
1071 XARP_CMD, ip_sioctl_arp, NULL }, 1137 { SI OCGETLSGCNT, si zeof (struct sioc_lsg_req), |PlI_CGET_CM,
1072 /* 168 */ { SI OCDXARP, sizeof (struct xarpreq), IPI_PRIV | |IPI_WR 1138 M SC CVMD, nrt_ioctl}
1073 XARP_CMD, ip_sioctl_arp, NULL }, 1139 };
1075 /* S| OCPOPSOCKFS is not handled by IP */ 1141 int ip_msc_ioctl_count =
1076 /* 169 */ { | PI_DONTCARE /* S| OCPOPSOCKFS */, 0, 0, O, NULL, NULL }, 1142 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cnmd_t);
1078 /* 170 */ { SI OCGLI FZONE, sizeof (struct lifreq), 1144 int conn_dr ai n_nt hr eads; /* Nunber of drainers reqd. */
1079 | PI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1145 /* Settable in /etc/system*/
1080 /* 171 */ { SI OCSLI FZONE, sizeof (struct lifreq), 1146 /* Defined in ip_ire.c */
1081 IPI_PRIV | IPI_WR LIF_CVD, ip_sioctl_slifzone, 1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket _cnt;
1082 i p_sioctl_slifzone restart }, 1148 extern uint32_t ip_ire_nmin_bucket_cnt, ip6_ire_m n_bucket _cnt;
1083 /* 172-174 are SCIP ioctls and not handl ed by IP */ 1149 extern uint32_t ip_ire_nmemratio, |p_| re_cpu_ratio;
1084 /* 172 */ { 1 PI_DONTCARE, 0, 0, O, NULL, NULL },
1085 /* 173 */ { I PI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 static nv_t ire_nv arr[] = {
1086 [* 174 */ { | PI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 | RE_ BRO‘-\DCAST ' BROADCAST" },
1087 /* 175 */ { SI OCGLI FUSESRC, si zeof (struct | |freq), 1153 | RE_LOCAL, "LOCAL" },
1088 | PI _GET_CMD, LIF_CMD, 1154 | RE_ LCIPBACK " LOOPBACK" 1},
1089 ip_sioctl_get_lifusesrc, 0}, 1155 | RE_DEFAULT, "DEFAULT" },
1090 /* 176 */ { S| OCSLTFUSESRC, sizeof (struct lifreq), 1156 | RE_PREFI X, "PREFI X" },
1091 IPl_PRIV | |Pl_WR 1157 | RE_| F_NORESOLVER, "IF_NORESOL" },
1092 LIF_CVMD, ip_sioctl_slifusesrc, 1158 | RE_| F_RESOLVER, "IF_RESOLV" },
1093 NULL }, 1159 I RE_I F_ CLONE, "I F_CLONE" 1,
1094 /* 177 */ { SI OCGLI FSRCOF, 0, |PI_GET_CMD, M SC_CMD, 1160 | RE_HOST, " HOST" T,
1095 |p_S|octI_get lifsrcof, NULL }, 1161 | RE_MULTI CAST, "MULTI CAST" },
1096 /* 178 */ { S| OCGVBFI LTER, si zeof (struct group_filter), IPl_GET_CMD, 1162 | RE_NOROUTE, "NOROUTE" 1},
1097 MSFI LT _CMD, ip_sioctl_msfilter, NULL }, 1163 0}
1098 /* 179 */ { S| OCSMSFI LTER, sizeof (struct group_ fllter) 0, 1164 };
1099 MSFI LT_CVD, ip_sioctl_msfilter, NULL },
1100 /* 180 */ { SI OCGE PMBFILTER, sizeof (struct ip_msfil ter), | PI _GET_CMD, 1166 nv_t *ire_nv_tbl = ire_nv_arr;
1101 MBFI LT_CMD, ip_sioctl _nsfilter, NULL },
1102 /* 181 */ { SI OCSI PMSFILTER, sizeof (struct Ip_mei Iter), O, 1168 /* Sinple Cl\/P | P Header Tenplate */
1103 MSFI LT_CMD, ip_sioctl_msfilter, NULL }, 1169 statiC|p icnp_ipha = {
1104 /* 182 */ { I Pl_DONTCARE, 0, 0, 0, NULL, NULL } 1170 1P NPLE HDR_VERSION, 0, 0, 0, 0, O, |PPROTO_ICW
1105 /* S| OCSENABLESDP i s handl ed by SDP */ 1171 };
1106 /* 183 */ { |Pl_DONTCARE /* SI OCSENABLESDP */, 0, 0, 0, NULL, NULL },
1107 /* 184 */ { | PI_DONTCARE /* S| OCSQPTR */, 0, 0O, O, NULL, NULL }, 1173 struct nmodule_info ip_nmod_info = {
1108 /* 185 */ { SI OCG FHWADDR, sizeof (struct ifreq), |PI_GET_CMD, 1174 IP_MD_ID, | P_MOD NAME, |P_MOD M NPSZ, | P_MOD MAXPSZ, | P_MOD Hi WAT,
1109 IF_CMVD, ip_sioctl_get_ifhwaddr, NULL }, 1175 | P_MOD_LOWAT
1110 /* 186 */ { | Pl _DONTCARE /* S| OCGSTAMP */, O, 0, 0, NULL, NULL 1, 1176 };
1111 /* 187 */ { SIOILB, O, IPI_PRIV | IPl_GET_CVD, M SC_CMD,
1112 ip_sioctl iTh cmd, NULL }, 1178 /*
1113 /* 188 */ { SIOCGETPROP, 0, |PI_GET_CMD, 0, NULL, NULL }, 1179 * Duplicate static synbols within a nodul e confuses ndb; so we avoid the
1114 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR 0, NULL, NULL}, 1180 * problem by making the synbols here distinct fromthose in udp.c.
1115 /* 190 */ { S| OCGLI FDADSTATE, si zeof (struct lifreq), 1181 */
1116 | PI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1117 /* 191 */ { SIOCSLIFPREFI X, sizeof (struct lifreq), IPI_PRIV | IPI_WR 1183 /*

new usr/src/uts/comon/inet/ip/ip.c

1184 * Entry points for |IP as a device and as a nodul e

1185 * W have separate open functions for the /dev/i p and /dev/ip6 devices.
1186 */

1187 static struct ginit iprinitvd = {

1188 fi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1189 p_rmd_i nfo

1190 };

1192 struct qginit iprinitve = {

1193 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1194 & p_nod_i nfo

1195 };

1197 static struct ginit ipwinit = {

1198 (pfi_t)i p_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1199 & p_nod_i nfo

1200 };

1202 static struct ginit iplrinit = {

1203 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL
1204 & p_nod_i nfo

1205 };

1207 static struct ginit iplwinit = {

1208 (pfi_t)ip_lwout, NULL, NULL, NULL, NULL,

1209 & p_nmod_i nfo

1210 };

1212 /* For AF_I NET aka /dev/ip */

1213 struct streantab ipinfovd = {

1214 & prinitv4, & pwinit, &plrinit, & plwnit

1215 };

1217 /* For AF_I NET6 aka /dev/ip6 */

1218 struct streantab ipinfove = {

1219 & prinitve, & pwinit, &plrinit, & plwnit

1220 };

1222 #ifdef DEBUG

1223 bool ean_t ski p_sctp_cksum = B_FALSE;

1224 #endi f

1226 /*

1227 * Generate an | CWP fragnentation needed message.

1228 * Wen called fromip_output side a mininal ip_recv_attr_t needs to be
1229 * constructed by the caller.

1230 */

1231 void

1232 icnp_frag_needed(nbl k_t *np, int ntu, ip_recv_attr_t *ira)
1233 {

1234 i cnph_t i cnph;

1235 i p_stack_t *ipst = ira->ira_ill->i1l_ipst;
1237 m = |cnp pkt err_ok(mp, ira)

1238 if (ULL)

1239 ret urn;

1241 bzero(& cnph, sizeof (icnph_t));

1242 i cnph. i cnph_type = | CMP_DEST_UNREACHABLE;

1243 i cnph. i cnph_code = | CMP_FRAGVENTATI ON_NEEDED;

1244 i cnph. i cnph_du mu-htons((wntht)mu)

1245 BUMP_M B(& pst->i ps_i cnp_mi b, i cnpQut Fr agNeeded);
1246 BUWMP_M B(& pst->i ps_i cnp_mi b, i cnpQut Dest Unr eachs) ;
1248 i cnp_pkt (np, & cnph, sizeof (icnph_t), ira);

1249 }

19

new usr/src/uts/comon/inet/ip/ip.c

1251 /
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

I T T T T

i cnp_i nbound_v4 deals with | CWP nessages that are handl ed by |P.

If the |CMP nessage is consunmed by IP, i.e., it should not be delivered
to any | PPROTO_| CMP raw sockets, then it returns NULL.

Li kewise, if the ICW error is msformed (too short, etc), then it
returns NULL. The caller uses this to determ ne whether or not to send
to raw sockets.

Al'l error nessages are passed to the matching transport stream
The foll owi ng cases are handl ed by icnp_i nbound:

1) It needs to send a reply back and possibly delivering it
to the "interested" upper clients.

2) Return the nblk so that the caller can pass it to the RAWsocket clients.

3) It needs to change sonme values in IP only.
4) It needs to change sone values in | P and upper |ayers e.g TCP
by delivering an error to the upper |ayers.

W handl e the above three cases in the context of IPsec in the
followi ng way :

1) Send the reply back in the same way as the request cane in.

If it cane in encrypted, it goes out encrypted. If it cane in
clear, it goes out in clear. Thus, this will prevent chosen
plain text attack.

2) The client may or may not expect things to cone in secure.

If it comes in secure, the policy constraints are checked
before delivering it to the upper layers. If it comes in

clear, ipsec_inbound_accept_clear wll decide whether to

accept this in clear or not. In both the cases, if the returned
message (I P header + 8 bytes) that caused the icnp nessage has
AH ESP headers, it is sent up to AHESP for validation before
sending up. If there are only 8 bytes of returned nessage, then
upper client will not be notified.

3) Check with global policy to see whether it nmatches the constaints.
But this will be done only if icnp_accept_nessages_in_clear is
zero.

4) If we need to change both in I P and ULP, then the decision taken
while affecting the values in IP and while delivering up to TCP
shoul d be the sane.

There are two cases.

a) If we reject data at the I P |ayer (ipsec_check_global _policy()
failed), we will not deliver it to the ULP, even though they
are *wlling* to accept in *clear*. This is fine as our gl obal
di sposition to icnp nessages asks us reject the datagram

b) If we accept data at the IP layer (ipsec_check_global _policy()
succeeded or icnp_accept_nessages_in_clear is 1), and not able
to deliver it to ULP (policy failed), it can lead to
consi stency probl ens. The cases known at this tine are
| C|NP_DESTI NATI ON_UNREACHABLE nessages with foll owi ng code
val ues :

- | CMP_FRAGMVENTATI ON_NEEDED : | P adapts to the new val ue
and Upper |ayer rejects. Then the conmunication will
cone to a stop. This is solved by making simlar decisions
at both levels. Currently, when we are unable to deliver
to the Upper Layer (due to policy failures) while IP has
adj usted dce_pntu, the next outbound datagram woul d
generate a | ocal | CMP_FRAGVENTATI ON_NEEDED nessage - which
will be with the rlght | evel of protection. Thus the right
value will be comunicated even if we are not able to
communi cate when we get fromthe wire initially. But this

new usr/src/uts/comon/inet/ipl/ip.c 21

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

1330 i

1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

1346
1348

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

1367
1368
1369
1370

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

g-x-x-x-x-x-x-x-x-x—x-x-x-:&

assunes there would be at | east one outbound datagram after
I P has adjusted its dce_pntu value. To nake things

sinpler, we accept in clear after the validation of

AH ESP headers.

- Oher ICWP ERRORS : W nay not be able to deliver it to the
upper | ayer depending on the |evel of protection the upper
| ayer expects and the disposition in ipsec_inbound_accept_clear().
i psec_i nbound_accept _cl ear () deci des whether a given |CMP error
shoul d be accepted in clear when the Upper |ayer expects secure.
Thus the communi cati on may get aborted by sonme bad | CWP
packet s.

i nbound_v4(nbl k_t *np, ip_recv_attr_t *ira)

i cnph_t *i cnph;

i pha_t *i pha; /* Quter header */
int ip_hdr_length; /* Quter header length */
bool ean_t i nterested,

ipif_t *ipif;

ui nt 32_t ts;

ui nt 32_t *tsp;

tinmestruc_t now,

ill_t *ill =ira->ira.ill;

i p_stack_t *ipst = ill->ill_ipst;

zonei d_t zoneid = ira->ira_zoneid;

int I en_| needed'

bl k_t *mp_ret = NULL;

ipha = (ipha_t *)nmp->b_rptr;

BUMP_M B(& pst->i ps_i cnp_ni b, icnplnMsgs);

ip_hdr_length = ira->ira_ip_hdr_| ength;
if ((nmp->b_wptr - np->b_rptr) < (|p hdr _I ength + | CWPH_SI ZE)) {
if (ira->ira_pktlen < (ip_hdr Iength + | CWPH_SI ZE)) {

BUMP MB(lII—>|II ip_mb, iplfStatslnTruncatedPkts);
i p_drop_input("iplfStatslnTruncatedPkts", np, ill);
freensg(np);

return (NULL);

}
/* Last chance to get real. */
ipha = ip_pullup(np, ip_hdr_length + ICMPH SIZE, ira);
if (ipha == NULL) {
BUMP_M B(& pst->i ps_icnp_nm b,
freemsg(np);
return (NULL);

icnplnErrors);

}

/* The |1 P header will always be a nmultiple of four bytes */

icnph = (icnph_t *)&mp->b_rptr[ip_hdr_length

i p2dbg(("i crp_i nbound_v4: type %l code %\ n",
i cnph->i cnph_code)) ;

N cnph->i cnph_t ype,

/*

* W will set "interested" to "true" if we should pass a copy to
* the transport or if we handl e the packet |ocally.

&/

interested = B_FALSE;

switch (icnph->icnph_type) {

case | CMP_ECHO REPLY:
BUVP_M B(& pst->i ps_i cnp_ni b,
br eak;

case | CVP_| DEST UNREACHABLE:

i cnpl nEchoReps) ;

new usr/src/uts/comon/inet/ipl/ip.c 22
1382 if (icnph->i cnph_code == | CMP_FRAGVENTATI ON_NEEDED)
1383 BUMP_M B(& pst->i ps_i cnp_mi b, i cnpl nFragNeeded) ;
1384 interested = B_TRUE; /* Pass up to transport */
1385 BUMP_M B(& pst->i ps_icnp_m b, icnpl nDest Unreachs);

1386 br eak;

1387 case | CWP_ SOURCE QJENCH:

1388 interested = B_TRUE, /* Pass up to transport */
1389 BUMP_M B(& pst->i ps_icnp_m b, icnplnSrcQuenchs);

1390 br eak;

1391 case | CMP_REDI RECT:

1392 if (lipst->ips_ip_ignore_redirect)

1393 interested = B_TRUE;

1394 BUMP_M B(& pst->i ps_icnp_m b, icnplnRedirects);

1395 br eak;

1396 case | CNP_ECHO REQUEST:

1397 /*

1398 * \Wether to respond to echo requests that come in as IP
1399 * broadcasts or as IP nulticast is subject to debate
1400 * (what isn't?). W aimto please, you pick it.

1401 * Default is doit.

1402 */

1403 if (ira->ira_flags & | RAF_MJLTI CAST) {

1404 /* multicast: respond based on tunable */

1405 interested = ipst->ips_ip_g_resp_to_echo_ntast;
1406 } else if (ira->ra_flags & | RAF_BROADCAST)

1407 /* broadcast: respond based on tunable */

1408 interested = ipst->ips_ip_g_resp_to_echo_bcast;
1409 } else {

1410 /* unicast: al V\ays respond */

1411 interested = RUE;

1412 }

1413 BUMP_M B(& pst->i ps_i cnp_mi b, i cnpl nEchos);

1414 if (Tinterested)

1415 /* We never pass these to RAWsockets */

1416 freensg(np);

1417 return (NULL);

1418 }

1420 /* Check db_ref to nmake sure we can nodify the packet. */
1421 if (nmp->b_datap->db_ref > 1) {

1422 nbl k_t *nmpl;

1424 mpl = copymsg(r’rp)

1425 freensg(np);

1426 if (!npl)

1427 BUWP_M B(& pst->i ps_icnp_mi b, icnpQutDrops);
1428 return (NULL);

1429

1430 mp = npil;

1431 i pha = (ipha_t *)nmp->b_rptr;

1432 icnph = (icnmph_t *)&np->b_rptr[ip_hdr_length];
1433 }

1434 1 cnph->i cnph_type = | CWP_ECHO_REPLY;

1435 BUMP_M B(& pst->i ps_icnp_m b, icnpQut EchoReps);

1436 icnp_send_reply_v4(np, ipha, icnph, ira);

1437 return (NULL);

1439 case | CMP_ROUTER _ADVERTI SEMENT:

1440 case | CMP_ROUTER_SOLI Cl TATI ON:

1441 break;

1442 case ICNP_TINE_EXCEEDED

1443 interested = B_TRUE; /* Pass up to transport */
1444 BUMP_M B(& pst->i ps_icnp_m b, icnplnTi neExcds);

1445 br eak;

1446 case | CVP_| PARAM PROBLEM

1447 interested = B _TRUE; /* Pass up to transport */

new usr/src/uts/comon/inet/ipl/ip.c 23

1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463

1465
1466
1467

1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507

1509
1510
1511
1512
1513

BUMP_M B(& pst->i ps_i cnp_m b, icnpl nParnProbs);
br eak;
case | CMP_TI ME_STAVP_REQUEST:
/* Response to Time Stanp Requests is |ocal policy. */
if (i pst—>| ps_ip_g_resp_to_tinestanp) {
(ira->ra_flags & | RAF_MJLTI BROADCAST)
interested =
ipst->ips_ip_g_resp_to_timestanp_bcast;
el se
interested = B_TRUE;

}

if (linterested) {
/* We never pass these to RAWsockets */
freemsg(np);
return (NULL);

}

/* Make sure we have enough of the packet */
I en_needed = ip_hdr_length + | CMPH_SI ZE +
3 * sizeof (uint32_t);

if (mp->b_wptr - np->b_rptr < | en_needed) {
ipha = ip_pullup(np, |len_needed, ira);
if (i) {

BUWP MB(lII—>|II |p m b, iplfStatslnDiscards);
ip_ droplnput(ip fStatslnDi scards - ip_ puIIup,
mp, ill);
freenmsg(np);
return (NULL);

}
/* Refresh followi ng the pullup. */
icnph = (icnph_t *)&p->b_rptr[ip_hdr_length];

BUMP_M B(& pst->i ps_icnp_m b, icnplnTi nestanps);
/* Check db_ref to nmake sure we can nodify the packet. */
if (mp->b_datap->db_ref > 1) {

nbl k_t *npl;

mpl = copynsg(np);

BUWMP_M B(& pst->i ps_i cnp_mni b, icnmpQut Drops);
return (NULL);

mp = mpl;
i pha = (ipha_t *)nmp->b_rptr;
icnph = (icnph_t *)&np->b_rptr[ip_hdr_length];

}
i cnph->i cnph_type = | CVP_TI ME_STAMP_REPLY;
tsp = (uint32_t *)& cnph[1];
tsp++; /* Skip past 'originate tinme' */
/* Conpute # of milliseconds since mdnight */
gethrestl me(&now) ;
ts = (now tv_sec %(24 * 60 * 60)) * 1000 +

now. tv_nsec / (NANCSEC / M LLI SEC);
tsp++ = htonl (ts); / Lay in "receive time' */
tsp++ = htonl (ts); / Lay in 'send tine’ */
BUMP_M B(& pst->i ps_icnp_m b, icnpQut Ti nest anpReps) ;
icnp_send_reply_v4(np, ipha, icnph, ira);
return (NULL);

case | CVP_TI ME_STAMP_REPLY:
BUMP_M B(& pst->i ps_icnp_m b, icnplnTi nestanpReps);
br eak;

case | CVP_I NFO) REQUEST:
/* Per RFC 1122 3.2.2.7, ignore this. */

new usr/src/uts/comon/inet/ip/ip.c

1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545

1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

1579

case | CMP_I NFO_REPLY:
break;
case | CMP_ADDRESS_MASK_REQUEST:
if (ira->ira_flags & | RAF_MJULTI BROADCAST) {
interested =
i pst->i ps_i p_respond_t o_addr ess_mask_br oadcast ;
} else {
interested = B_TRUE;

}

1f (linterested) {
/* W never pass these to RAWsockets */
freensg(np);
return (NULL)

| en_needed = ip_hdr_length + | CVWH_SI ZE + | P_ADDR LEN;
if (mp->b_wptr - nmp->b_rptr < | en_needed) {
ipha = ip_| pul | up(np, | en_needed, ira);
if (ipha == NULL) {
BUNP_M B(ill->ill_ip_mib,

i plfStatslnTruncat edPkts);
i p_drop_input("iplfStatslnTruncatedPkts", np,
ill);

freemsg(np);
return (NULL);

}
/* Refresh follow ng the pullup. */
icnmph = (icnph_t *)&m->b_rptr[ip_hdr_length];

}

BUMP_M B(& pst->i ps_icnp_m b, icnpl nAddr Masks) ;

/* Check db_ref to nake sure we can nodify the packet. */
if (nmp->b_datap->db_ref > 1) {

nblk t *npi;

npl = copynsg(np);

freemsg(np);

if (!npl)
BUMP_M B(& pst->i ps_i cnp_mi b, i cnpQut Drops) ;
return (NULL);

}

np =
i pha = (|pha t *)np->b_rpt
icnph = (icnmph_t *)&np->b rptr[lp hdr _I engt h];

——

—h-cx-x-afx»x-x-

Need the ipif with the mask be the sane as the source
address of the mask reply. For unicast we have a specific
ipif. For multicast/broadcast we only handl e onlink
senders, and use the source address to pick an ipif.

/
i

f = ipif_l ookup_addr (i pha->ipha_dst, ill, zoneid, ipst);
(ipif == NULL) {
/* Broadcast or multicast */
ipif = ipif_lookup_renote(ill, ipha->ipha_src, zoneid);
if (ipif == NULL) {
freemsg(np);
return (NULL)
}

I cnph->i cnph_type = | CMP_ADDRESS_MASK_REPLY;

bcopy (& pif->ipif_net_mask, & cnph[1], |P_ADDR LEN);
ipif_refrele(i plf)

BUMP_M B(& pst->i ps_i cnp_mi b, i cnpQut Addr MaskReps) ;
i cnp_send_reply_v4(nmp, ipha, icnph, ira);

return (NULL);

case | CMP_ADDRESS MASK_REPLY:

new usr/src/uts/comon/inet/ipl/ip.c 25

1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607

1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622

1624
1625

1627
1628
1629
1630
1631
1632
1633
1634
1635
1636

1638
1639
1640
1641
1642
1643
1644
1645

BUMP_M B(& pst->i ps_i cnmp_m b, icnpl nAddr MaskReps) ;

br eak;
defaul t:
interested = B_TRUE; /* Pass up to transport */
BUMP_M B(& pst->i ps_i cnmp_m b, icnpl nUnknowns);
br eak;
}
/

*

* See if there is an ICVWP client to avoid an extra copynsg/freensg
* if there isn’t one.

*/

if (ipst- >|ps i pcl _proto_fanout _v4[| PPROTO_| CWP] . connf _head != NULL) {
/* If there is an ICVWP client and we want one too, copy it. */

if (linterested) {
/* Caller will deliver to RAWsockets */

return (nmp);

}

mp_ret = COPY”BQ(”D)

if (nmp_ret == NULL) {
BUNP > M B(ill->i II ip_mb, iplfStatslnbDiscards);
ip_drop_input("iplfStatslnD scards - copynsg", np, ill);

}
} else if (!interested)
/* Neither we nor raw sockets are interested. Drop packet now */

freensg(np);
return (MJLL);

}
/*
* |CWP error or redirect packet. Make sure we have enough of
* the header and that db_ref == 1 since we m ght end up nodifying
* the packet.
*

if (mp->b_cont !'= NULL) {

if (ip_| puIIup(np, -1, ira) == LL) {
(|I|->|II _ip_l mb 1 pl fStatslnDiscards);
|p drop |nput(iprStatsInD scards - ip_pul lup",
LD
freensg(np);
) return (np_| ret);
}
if (np->b_dat ap- >db ref > 1) {
nbl k_t *npl
mpl = copymsg(np)
if (mpl == NULL) {
BUMP MB(lII->|II ip_mb, iplfStatslnbDi scards);
i p_drop_i nput ("iplfStatslnD scards - copynmsg", np, ill);
freensg(np);
return (np_ret);
}
freensg(nmp);
m = npl;
/*
* In case np has changed, verify the nmessage before any further
* processes.
*/
|pha = (|pha t *)rrp >b_rptr;
icmph = (ic t *)&mp->b_rptr[ip_hdr_I ength];
if (licnp_i nbound _verify v4(np, icnph, ira)) {
fr

eensg(np);

new usr/src/uts/comon/inet/ip/ip.c

1646
1647

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664

1666
1667
1668
1669
1670
1671
1672
1673
1674

*
*
*
*
*

*/

}

return (np_re

t);

switch (icnph->i crrph type) {
case | CVMP_REDI RECT

icnp_redi rect
br eak;

case | CMP_DEST_UNREACHABLE:
i ¥ (i cnph->i cnph_code == | CMP_FRAGVENTATI ON_NEEDED) {
/* Updat e DCE and adjust MU is icnp header if needed */
i cnp_i nbound_t oo_bi g_v4(icnph, ira);

}
I* FALLTHRU *

defaul t:

/

26

_v4(np, ipha, icnph, ira);

i cnp_i nbound_error_fanout _v4(np, icnph, ira);

br eak;

}
return (np_ret);

Send an | CMP echo,

tinestanp or address mask reply.

The cal l er has already updated the payl oad part of the packet.

We handl e the | CVWP checksum

the packet

static void
icnp_send_reply_v4(nbl k_t *np, ipha_t *ipha, icnph_t *icnph,
ip_recv_attr_t *ira)

1675 {

1676
1677
1678
1679

1681
1682
1683
1684
1685
1686
1687
1688

1690
1691
1692
1693
1694
1695
1696

1698
1699
1700
1701
1702
1703
1704
1705
1706

1708
1709
1710
1711

uint_t

ill_t

into i p_output

i p_hd
Tl

i p_stack_t *i pst
ip_xmt_attr_t ixas;

/* Send out an | CVP p
i cnph- >i cnph_checksum = 0;
i cnph- >i cnph_checksum = | P_CSUM np, ip_hdr_|l ength, 0);

| P source address selection and feed
_sinple.

ira->ra_ip_hdr_| ength;
ill;
i

= il1->iIT_ipst;

r_length =
=ira->ra
acket */

/* Reset tinme to live. */
i pha->i pha_ttl = ipst->ips_ip_def_ttl;
{
/* Swap source and destination addresses */
i paddr_t tnp;
tnmp = ipha->ipha_src;
i pha- >i pha_src = i pha->i pha_dst;
i pha- >i pha_dst = tnp;

}

i pha- >i pha_i dent = 0;
it ('1S_SIMPLE_I PH(i pha))
i cnp_opti ons_updat e(i pha);

bzero(& xas, sizeof (
Xa, flags = | XAF_| BASIC S| MPLE_V4,
xa_zoneid = ira->ira_zoneid;

i xas.
!xas.

xa_tsl = |ra->|
xa_i findex = 0;
Xxa_i pst = ipst;

Xa_| rmltlcast _tt

* Thi s packe
* cane ini.

i xas));

i xa_cred = kcred;

i
i
| =

.ixa_cpid = NOPI D,

i
i
i
i

ra_tsl;

/* Behave as a nulti-level responder */

| = I P_DEFAULT MULTI CAST_TTL;
if (!(ira->ira_flags & | RAF_| PSEC SECURE)) {
/ *

t should go out the sane way as it

e in clear,

i ndependent of the IPsec policy

new usr/src/uts/comon/inet/ip/ip.c

1712 * for transmtting packets.

1713 */

1714 ixas.ixa_flags | = | XAF_NO_| PSEC;

1715 } else {

1716 if ('lpsecmto out(ira, & xas, np, ipha, NULL))

1717 BUVP_M B(ill->ill |p_mb I pl f St at sl nDi scards);
1718 /* Note: np already consumed and i p_drop_packet done */
1719 return;

1720 }

1721

1722 If (ira->ira_flags & | RAF_MILTI BROADCAST) {

1723 /*

1724 * Not one or our addresses (| RE_LOCALs), thus we |et
1725 * | p_output_sinple pick the source.

1726 */

1727 i pha- >i pha_src = | NADDR_ANY;

1728 i xas.ixa_flags |— | XAF_SET_SOURCE;

1729 }

1730 /* Should we send with DF and use dce_pnmtu? */

1731 if (ipst->ips_ipv4d_icnp_return_pntu) {

1732 i xas.ixa_flags | = | XAF_PMru_DI SCOVERY;

1733 i pha- >i pha_fragment _of fset _and_flags | = | PH_DF_HTONS;
1734 1

1736 BUMP_M B(& pst->i ps_icnp_mni b, icnpQut Msgs);

1738 (void) ip_output_sinple(np, & xas);

1739 i xa_cl eanup(& xas) ;

1740 }

1742 | *

1743 * Verify the | CWMP nessages for either for I1CVP error or redirect packet.
1744 * The caller should have fully pulled up the message. If it’s a redirect
1745 * packet, only basic checks on | P header will be done; otherwise, verify
1746 * the packet by |ooking at the included ULP header.

1747 *

1748 * Called before icnp_i nbound_error_fanout_v4 is call ed.

1749 */

1750 static bool ean_t

1751 i cnp_i nbound_verify v4(nbl k_t *np, icnph_t *icnph, ip_recv_attr_t *ira)
1752 {

1753 ill_t *ill =ira->ira_ill;

1754 int hdr _| engt h;

1755 i p_stack_t *ipst = ira->ira_ill->i11_ipst;

1756 conn_t *connp;

1757 i pha_t *ipha; /* Inner |P header */

1759 ipha = (ipha_t *)& cnph[1];

1760 if ((uchar_t *)ipha + IP_ Si MPLE_HDR_LENGTH > np->b_wptr)

1761 goto truncated;

1763 hdr _l ength = | PH_HDR_LENGTH(i pha) ;

1765 i f ((1PH HDR VERSI ON(i pha) != | PV4_VERSI QN))

1766 goto di scard_pkt;

1768 if (hdr_length < sizeof (ipha_t))

1769 goto truncated;

1771 if ((uchar_t *)ipha + hdr_length > np->b_wptr)

1772 goto truncated;

1774 /*

1775 * Stop here for | CVP_REDI RECT.

1776 */

1777 if (icnph->icnph_type == | CMP_REDI RECT)

27

new usr/src/uts/comon/inet/ip/ip.c

1778

1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

1796
1797
1798
1799
1800
1801
1802

1804
1805
1806
1807
1808

1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837

1839
1841

1842
1843

return (B_TRUE);

/*
* |CWP errors only.
*/
swi tch (i pha->i pha_protocol) {
case | PPROTO_UDP:
/*
* Verify we have at |least |CMP_M N _TP_HDR LEN bytes of
* transport header.
*/

if ((uchar_t *)i pha + hdr_length + | CVP_M N_TP_HDR LEN >
np- >b_wpt r
goto truncated;
br eak;

case | PPROTO_TCP:
tcpha_t *t cpha;

/*

* Verify we have at least |1CVWP_M N_TP_HDR LEN bytes of

* transport header.

*/

if ((uchar_t *)ipha + hdr_length + ICVW_M N_TP_HDR LEN >
np- >b_wpt r
goto truncated;

t cpha
connp
1pst);
if (connp == NULL)
got o di scard_pkt;

(tcpha_t *)((uchar_t *)ipha + hdr_|l ength);
i pcl _tcp_l ookup_reversed_i pv4(i pha, tcpha, TCPS_LI STEN,

if ((connp->conn_verifyicnp != NULL) &&
I connp->conn_veri fyi cnp(connp, tcpha,
CONN_DEC_REF(connp) ;
got o di scard_pkt;

icnph, NULL, ira)) {

CONN_DEC_REF(connp) ;
br eak;

}
case | PPROTO_SCTP:
/ *

* Verify we have at |east |CVP_M N_TP_HDR LEN byt es of
* transport header.
*

if ((uchar_t *)ipha + hdr_length + |CMP_M N_TP_HDR LEN >
np- >b_wpt r
goto truncated;
br eak;
case | PPROTO_ESP:
case | PPROTO_AH:
br eak;
case | PPROTO_ENCAP:
if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
np- >b_wpt r
goto truncated;
br eak;
defaul t:
br eak;
}

return (B_TRUE);

di scard_pkt:
/* Bogus |ICWP error. */

BUW_M B(ill->ill_ip_mb, iplfStatslnbi scards);

28

new usr/src/uts/comon/inet/ip/ip.c

1844

1846
1847
1848
1849
1850
1851

1853
1854
1855

1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873

tr

}
/| *
st

{
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
st

ic

1874 {

1875
1876
1877
1878
1879
1880
1881
1882
1883

1885
1886
1887
1888
1889

1891

1893
1894
1895
1896
1897

1899
1900
1901
1902
1903
1904
1905

1907
1908
1909

return (B_FALSE);

uncat ed:
/* We pulled up everthing aI ready. Miust be truncated */
BUWP MB(lII—>|II _ip_mb, prStatsInTruncatedets)
i p_drop_input ("i plfStatslnTruncatedPkts", nmp, ill);
return (B_FALSE);

Table from RFC 1191 */
atic int icnp_frag_size_table[] =
32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }

Process received | CVP Packet too big.
Just handl es the DCE create/update, including using the above table of
PMIU guesses. The caller is responsible for validating the packet before
passing it in and also to fanout the I1CWP error to any matching transport
conns. Assunes the nmessage has been fully pulled up and verified.
Before getting here, the caller has called icnp_inbound_verify_v4()
that should have verified with ULP to prevent undoing the changes we're
going to make to DCE. For exanple, TCP might have verified that the packet
whi ch generated error is in the send w ndow.
In some cases nodified this MU in the | CMP header packet; the caller
shoul d pass to the nmatching ULP after this returns.
/
atic void
np_i nbound_t oo_bi g_v4(icnph_t *icnph, ip_recv_attr_t *ira)
dce_t *dce;
int ol d_nt u;
int ntu, orig_ntu;
i paddr _t dst;
bool ean_t di sabl e __pnt ud;
ill_t *Ill =ira->ira_ill;
i p_stack_t *i pst =|II—>|II_|pst;
uint_t hdr _| engt h;
i pha_t *i pha;

/* Caller already pulled up everything. */
ipha = (ipha_t *)& cnph[1];

ASSERT(lcnph >i ciph_t ype == | CMP_DEST_UNREACHABLE &&
cnph- >i cnph_code == | CMP_FRAGVENTATI ON_NEEDED) ;
ASSERT(l Il 1= NULL);

hdr _l ength = | PH_HDR_LENGTH(i pha) ;
/

* ok %

We handl e path MIU for source routed packets since the DCE
is |ooked up using the final destination.
*
/
dst = ip_get_dst(ipha);

dce = dce_| ookup_and_add_v4(dst, ipst);
if (dce == NULL) {
/* Couldn’t add a uni que one - ENOVEM */
i pldbg(("i cnp_i nbound_t oo_bi g_v4: no dce for O0x%\n",
ntohl (dst)));
return;

}

/* Check for MIU di scovery advice as described in RFC 1191 */
ntu = ntohs(icnph->i cnph_du_ntu);
orig_mu = ntu;

new usr/src/uts/comon/inet/ip/ip.c

1910

1912
1913
1914
1915
1916

1918
1919
1920

1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964

1966
1967
1968
1969
1970
1971

1973
1974
1975

di sabl e_pntud = B_FALSE;
mut ex_ent er (&dce- >dce_| ock) ;
if (dce->dce flags & DCEF PMTU)
old_ntu = dce->dce_pnt u;
el se
old_mu =ill->Il_ntu;

if (icnmph->icnph_du_zero !'= 0 || nmtu < ipst->ips_ip_pntu_mn) {
uint32_t | ength;
int i;

/*

* Use the table from RFC 1191 to figure out
* the next "plateau" based on the length in
* the original |IP packet

*/

I ength = ntohs(ipha->i pha_l ength);
DTRACE_PROBE2(i p4__pntu__guess, dce_t *, dce,
uint32_t, length);
if (old_ntu <= length &&
old_mu >= length - hdr_length) {
/*
* Handl e broken BSD 4.2 systens that
* return the wong ipha_length in | CW
* errors.
*/
i pldbg(("Wong ntu: sent %l, dce %\ n",
length, old_ntu));
I ength -= hdr_| ength;

}
for (i =0; i < A CNT(icnp_frag_size_table); i++) {
if (Ienth >k|cnp _frag_size_table[i])
rea

}
1f (i == A CNT(icnp_frag_size_table)) {
/* Smaller than TP_M N MU~ */
i pldbg(("Too big for packet size %\n",
I ength));
di sabl e_pnmtud = B_TRUE;
ntu = ipst->ips_ip_pntu_mnn;
} else {
ntu = icnp_frag_size_table[i];
i pldbg(("Cal cul ated ntu %l, packet size %l,
"before %\ n", ntu, | ength old_ntu));
if (mu < ipst->ips_ip_pntu_nin)
ntu = ipst->ips_ip_pntu_mn;
di sabl e_pntud = B_TRUE;

}

}
if (disable_pntud)

dce->dce_flags | = DCEF_TOO _SWVALL_PMTU;
el se

dce->dce_fl ags & ~DCEF_TQOO SMALL_PMTY;

dce->dce_pntu = M N(old_ntu, ntu);

/* Prepare to send the new nax frag size for the ULP. */

i cnph- >i cnph_du_zero = 0;

i cnph->i cnph_du_ntu = htons((uint16 t)dce >dce_pntu);

DTRACE_PROBE4(i p4__pntu__change, icnph_t *, icnph, dcet *,
dce, int, orig ntu, int, ntu);

/* We now have a PMIU for sure */

dce->dce_fl ags | = DCEF_ PMTU
dce->dce_| ast_change_time = TI CK_TO SEC(ddi _get | bol t64());

new usr/src/uts/comon/inet/ip/ip.c

1976
1977
1978
1979
1980
1981
1982
1983
1984

1986
1987
1988
1989
1990
1991

1993
1995

1997
1998

2000
2001
2002
2003
2004

2006
2007
2008
2009
2010

2012
2013
2014
2015

2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041

}
/*

*
*
*

nmut ex_exi t (&dce->dce_| ock);

/*

* After dropping the lock the new value is visible to everyone.

* Then we bunp the generation nunber so any cached val ues rei nspect
* the dce_t.

*/

dce_i ncrenent _generation(dce);
dce_refrel e(dce);

If the packet in error is Self-Encapsul ated, icnp_inbound_error_fanout_v4

calls this function.
/

static nmbl k_t *
i cnp_i nbound_sel f _encap_error_v4(nbl k_t *np, ipha_t *ipha, ipha_t *in_ipha)
1992 {

® Ok ok ok R O Sk O Sk b R b 3k ok Rk Rk OF % b % O

int |ength;
ASSERT(np- >b_dat ap- >db_t ype == M DATA);

/* icnp_i nbound_v4 has already pulled up the whole error packet */
ASSERT(np->b_cont == NULL);

/*

* The length that we want to overlay is the inner header
* and what follows it.

*/

length = nsgdsize(np) - ((uchar_t *)in_ipha - np->b_rptr);

/*

* Qverlay the inner header and whatever follows it over the
* outer header.

*/

bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, |ength);

/* Adjust for what we renoved */
np->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
return (nmp);

Try to pass the | CVP nessage upstreamin case the ULP cares.

If the packet that caused the |CMP error is secure, we send
it to AHESP to neke sure that the attached packet has a
val id association. ipha in the code bel ow points to the

| P header of the packet that caused the error.

For | Psec cases, we |let the next-layer-up (which has access to
cached policy on the conn_t, or can query the SPD directly)
subtract out any |IPsec overhead if they must. We therefore make no
adj ustments here for |Psec overhead.

I FN coul d have been generated locally or by sone router.

LOCAL : ire_send_wire (before calling ipsec_out_process) can call
icnp_frag_needed/i cnp_pkt2big_v6 to generated a |ocal |FN.
Thi s happens because | P adjusted its value of MIU on an
earlier |IFN nessage and could not tell the upper |ayer,
the new adj usted val ue of MIU e.g. Packet was encrypted
or there was not enough information to fanout to upper
| ayers. Thus on the next outbound datagram ire_send_wire
generates the IFN, where | Psec processing has *not* been
done.

new usr/src/uts/comon/inet/ipl/ip.c 32

2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070

® Ok ok ok ok ok ok Ok F b S b ok b 3k R R b Sk Ok Sk R % b % b % o

Note that we retain ixa_fragsize across |Psec thus once

we have picking ixa_fragsize and entered i psec_out_process we do
no change the fragsize even if the path MU changes before

we reach ip_output_post_ipsec.

In the | ocal case, | RAF_LOOPBACK will be set indicating
that | FN was generated |ocally.

RQUTER : | FN coul d be secure or non-secure.

* SECURE : We use the IPSEC IN to fanout to AHHESP if the
packet in error has AH ESP headers to validate the AH ESP
headers. AH ESP will verify whether there is a valid SA or
not and send it back. W w Il fanout again if we have nore
data in the packet.

If the packet in error does not have AH ESP, we handle it
|i ke any other case.

* NON_SECURE : If the packet in error has AH ESP headers, we send it
up to AHESP for validation. AHHESP will verify whether there is a
valid SA or not and send it back. We will fanout again if
we have nore data in the packet.

If the packet in error does not have AH ESP, we handle it
l'i ke any other case.

The call er nust have called icnp_i nbound_verify_v4.

2071 static void
2072 icnp_i nbound_error _fanout _v4(nbl k_t *np, icnph_t *icnph, ip_recv_attr_t *ira)

2073 {
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084

2086
2087
2088
2089

2091
2092

2094
2095
2096
2097
2098
2099
2100
2101
2102

2104
2105
2106
2107

ui nt16_t *up; /* Pointer to ports in ULP header */
ui nt 32_t ports; /* reversed ports for fanout */

i pha_t ripha; /* Wth reversed addresses */

i pha_t *ipha; /* Inner |IP header */

ui nt _t hdr_l ength; /* Inner |IP header length */
tcpha_t *t cpha

conn_t *connp;

ill_t *ill =ira->raiill;

i p_stack_t *ipst = ill->ill_ipst;

i psec_stack_t *ipss = ipst->i ps_netstack->netstack_i psec;
ill_t *rill =ira->ira_rill;

/* Caller already pulled up everything. */
ipha = (ipha_t *)& cnph[1];
ASSERT((uchar _t *) & pha[1] <= np->b_wptr);
ASSERT(np- >b_cont == NULL);

hdr_l ength = | PH_HDR LENGTH(i pha) ;
ira->ira_protocol = ipha->i pha_protocol;

/*
* We need a separate |P header with the source and destination
* addresses reversed to do fanout/classification because the ipha in
* the ICWP error is in the formwe sent it out.
*
/
ri pha.ipha_src = ipha->i pha_dst;
ri pha.ipha_dst = ipha->i pha_src;
ri pha.ipha_protocol = ipha->i pha_protocol;
ri pha. i pha_versi on_and_hdr_| ength = i pha->i pha_versi on_and_hdr _I| engt h;

i p2dbg(("i cnp_i nbound_error_v4: proto % % to %: %/ %\n",
ripha.ipha_protocol, ntohl(ipha->ipha_src),
nt ohl (i pha->i pha_dst),
i cnph->i cnph_t ype, icnph->i cnph_code));

new usr/src/uts/comon/inet/ipl/ip.c 33

2109
2110
2111

2113
2114
2115

2117
2118
2119
2120
2121

2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133

2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146

2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162

2164
2165
2166
2167
2168

2170
2171
2172
2173

swi tch (i pha->i pha_protocol) {
case | PPROTO_UDP:

= (ui nt 16_t *)((uchar_t *)ipha + hdr_|length);

/* Attenpt to find a client stream based on port. */
i p2dbg(("i cnp_i nbound_error_v4: UDP ports %l to %d\n",
ntohs(up[0]), ntohs(up[1])));

/* Note that we send error to all matches. */
ira->ra_flags | = | RAF_I CVMP_ERROR;

i p_fanout _udp_nul ti_v4(np, &ripha, up[0], up[l], ira);
ira->ira_flags & ~I RAF_I CVP_ERROR;

return;

case | PPROTO_TCP:
/ *

* Find a TCP client stream for this packet.

* Note that we do a reverse | ookup since the header is
* in the formwe sent it out.

*/

tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
connp = ipcl _tcp_l ookup_reversed_i pv4(ipha, tcpha, TCPS_ LI STEN,

i pst);
if (connp == NULL)
goto di scard_pkt;

if (CONN_I NBOUND_PQOLI CY_PRESENT(connp, ipss) ||
(ira->ira_flags & | RAF_|I PSEC_SECURE))
mp = ipsec_check_i nbound_pol i cy(np, connp,
|pha NULL, |ra)
if (np == NULL)

BUWP MB(|II->|II _ip_mb, iplfStatslnbDi scards);
/* Note that np is NULL */
ip_drop_input("iplfStatslnDiscards", np, ill);
CONN_DEC_REF(connp) ;
return;
}

}

ira->ira_flags |= | RAF_I CMP_ERROR,

ira->ira_ill = ira->ira_rill = NULL;

if (1PCL_I'S TCP(connp))
SQUEUE_ENTER _ONE(connp->conn_sqp, np,
connp->conn_recvi cnp, connp, ira, SQFILL,
SQTAG_TCP_I NPUT_I CMP_ERR) ;
} else {

/* Not TCP; must be SOCK RAW | PPROTO TCP */
(connp->conn_recv) (connp, np, NULL, ira);
CONN_DEC_REF(connp) ;

ira->ira_il
ira->ra_ri
ira->ira_fl
return;

I =ill;
I o=riil;
ags & ~| RAF_| CMP_ERROR;

case | PPROTO_SCTP:

up = (uintl16_t *)((uchar_t *)ipha + hdr_length);
/* Find a SCTP client streamfor this packet. */
((uint16_t *)&ports)[0] = up[1];
((uint16_t *)&ports)[1] up[0] ;

ira->ira_flags | = | RAF_| CMP_ERROR;

i p_fanout_sctp(np, &ipha, NULL, ports, ira);
ira->ra_flags &—~IRAFIC|VPERROR

return;

new usr/src/uts/comon/inet/ip/ip.c

2175
2176
2177
2178
2179
2180

2182
2183
2184
2185
2186
2187

2189
2190
2191
2192
2193

2195
2196
2197
2198
2199
2200
2201
2202
2203
2204

2206
2207
2208
2209
2210
2211
2212
2213

2215
2216

2218
2219
2220

2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239

case | PPROTO_ESP
case | PPROTO_AH:

if ('|psec | oaded(ipss)) {
i p_proto_not_sup(np, ira);

return;
}
if (ipha->ipha_protocol == | PPROTO_ESP)
np = ipsecesp_icnp_ error(np, ira);
el se

np = i psecah_icnp_error(np, ira);
if (np == NULL)
return;

/* Just in case ipsec didn't preserve the NULL b_cont */
if (nmp->b_cont != NULL)
if (!pullupmsg(nmp, -1))
got o di scard_pkt;

Note that ira_pktlen and ira_ip_hdr_length are no | onger
correct, but we don’t use themany nore here.

*
*
*
*
* |f succesful, the np has been nodified to not include
* the ESP/ AH header so we can fanout to the ULP's icnp
* error handl er.
*
f (mp->b_wptr - mp->b_rptr < | P_SI MPLE_HDR_LENGTH)

goto truncated;

/* Verlfy the nodified nessage before any further processes.
ipha = (ipha_t *)np->b_rptr;

hdr _| ength =1 PH_HDR_LENGTH(i pha) ;

i cmph =" (icnph_t *)&p->b rptr[hdr _length];

if (!icnp_inbound_verify_v4(np, icnph, ira)) {

freensg(np);

return;
}
i cnp_i nbound_error _fanout _v4(np, icnph, ira);
return;

case | PPROTO_ENCAP: {

/* Look for self-encapsul ated packets that caused an error */
ipha_t *in_ipha;

*

* Caller has verified that length has to be
* at least the size of |P header.
*

/
ASSERT(hdr _I ength >= sizeof (ipha_t));
/*

* Check the sanity of the inner IP header |ike

we did for the outer header.

/

_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);

((1' PH_HDR_VERSI ON(i n_i pha) != | PVA_VERSITON)) {
got o di scard_pkt;

*

*
in

f

}
if (IPH_HDR_LENGTH(i n_i pha) < sizeof (ipha_t)) {
goto di scard_pkt;

/* Check for Self-encapsul ated tunnels */
if (in_ipha->ipha_src == ipha->ipha_src &&

34

*/

new usr/src/uts/comon/inet/ip/ip.c 35 new usr/src/uts/comon/inet/ip/ip.c

2240 i n_i pha->i pha_dst == i pha->i pha_dst) { 2306 return;
2307 }

2242 mp = icnp_i nbound_sel f _encap_error_v4(np, ipha, 2308 /* NOTREACHED */

2243 in_i pha); 2309 di scard_pkt:

2244 if (mp == NULL) 2310 UVPMB(lll > || _ip_mb, iplfStatslnDiscards);

2245 goto di scard_pkt; 2311 i pldbg(("icnp_i nbound_error _fanout_v4: drop pkt\n));
2312 i p_drop_i nput ("i pl f Statsl nDi scards™, np, ill);

2247 /* 2313 freenmsg(np);

2248 * Just in case self_encap didn't preserve the NULL 2314 return;

2249 * b_cont

2250 */ 2316 truncated:

2251 if (mp->b_cont != NULL) { 2317 /* We pulled up everthing aI ready. Miust be truncated */

2252 it (!pullupmsg(nmp, -1)) 2318 BUWP MB(lII—>|II _ip_mb, prStatsInTruncatedets)

2253 got o di scard_pkt; 2319 ip_drop_input("iplfStatslnTruncatedPkts", np, ill);

2254 } 2320 freensg(np);

2255] 2321 }

2256 * Note that ira_pktlen and ira_ip_hdr_length are no

2257 * | onger correct, but we don't use them any nore here. 2323 | *

2258 */ 2324 * Common | P options parser.

2259 if (np->b_wptr - np->b_rptr < | P_SI MPLE_HDR LENGTH) 2325

2260 goto truncated; 2326 * Setup routine: fill in *optp with options-parsing state, then
2327 * tail-call ipoptp_next to return the first option.

2262 /* 2328 */

2263 * Verify the nodified nessage before any further 2329 uint8_t

2264 * processes. 2330 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)

2265 */ 2331 {

2266 i pha :(|phat *)np->b_rptr; 2332 uint32_t totallen; /* total length of all options */

2267 hdr_| ength = | PH HDR LENGTH(i p

2268 i cnph = (i cnph_t “*) &mp->b rptr[hdr _length]; 2334 totallen = i pha->i pha_version_and_hdr_| ength -

2269 if (!icnp_inbound_verify_v4(np, icnph, |ra)) { 2335 (uint8_t)((1P_VERSION << 4) + |P_SI MPLE_HDR_LENGTH_| N_WORDS) ;

2270 freensg(np); 2336 totallen <<= 2;

2271 return; 2337 opt p->i popt p_next = (uint8_t *)(& pha[1]);

2272 } 2338 opt p->i poptp_end = optp >i popt p_next + totallen;
2339 opt p->i poptp_flags =

2274 /* 2340 return (ipoptp_next (opt p));

2275 * The packet in error is self-encapsualted. 2341 }

2276 * And we are finding it further encapsul ated

2277 * which we could not have possibly generated. 2343 /* Li ke above but without an ipha_t */

2278 */ 2344 uint8_t

2279 i f (ipha->i pha_protocol == | PPROTO_ENCAP) ({ 2345 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)

2280 got o di scard_pkt; 2346 {

2281 } 2347 opt p- >i popt p_next = opt;

2282 i cnp_i nbound_error_fanout_v4(np, icnph, ira); 2348 opt p- >i popt p_end = opt p- >i popt p_next + totallen;

2283 return; 2349 opt p->i poptp_flags = O;

2284 } 2350 return (ipoptp_next (opt p));

2285 /* No sel f-encapsul ated */ 2351 }

2286 /* FALLTHRU */

2287 } 2353 [*

2288 case | PPROTO | PV6: 2354 * Conmon | P options parser: extract next option.

2289 if ((connp = ipcl_iptun_classify_v4(&ipha.ipha_src, 2355 */

2290 &ripha.ipha_dst, ipst)) != NULL) { 2356 uint8_t

2291 ira->ra_flags | = | RAF_I CMP_ERROR; 2357 i popt p_next (i poptp_t *optp)

2292 connp->conn_recvi cnp(connp, np, NULL, ira); 2358 {

2293 CONN_DEC_REF(connp) ; 2359 uint8_t *end = optp->i popt p_end;

2294 ira->ra_flags & ~l RAF_I CMP_ERROR 2360 uint8_t *cur = optp->i poptp_next;

2295 return; 2361 uint8_t opt, len, pointer;

2296 }

2297 [2363 /*

2298 * No IP tunnel is interested, fallthrough and see 2364 * |f cur > end already, then the ipoptp_end or ipoptp_next pointer

2299 * if a raw socket will want it. 2365 * has been corrupted.

2300 */ 2366 */

2301 /* FALLTHRU */ 2367 ASSERT(cur <= end);

2302 defaul t:

2303 ira->ra_flags |= | RAF_I CMP_ERROR, 2369 if (cur == end)

2304 i p_fanout _proto_v4(np, &ri pha ira); 2370 return (I POPT_EQL);

2305 ira->ira_flags & ~I RAF_I CMP_ERROR;

new usr/src/uts/comon/inet/ip/ip.c

2372

2374
2375
2376
2377
2378
2379
2380
2381
2382

2384
2385

2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405

2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427

2429
2430
2431
2432
2433
2434
2435
2436
2437

opt = cur[| POPT_OPTVAL];

/*
* Skip any NOP options.
*/
while (opt == | POPT_NOP) {
cur ++;
if (cur == end)

return (I POPT_EQL);
opt = cur[| POPT_OPTVAL];
}

if (opt == | POPT_EQL)
return (TPOPT_EQL);

/*
* Option requiring a | ength.
S

if ((cur + 1) >= end) {
opt p- >i popt p_fl ags | = | POPTP_ERROR,
return (1 POPT_EQL);

}

len = cur[| POPT_OLEN] ;

if (len <2) {
opt p- >i popt p_fl ags | = | POPTP_ERROR;
return (1 POPT_EQL);

opt p->i poptp_cur = cur;

opt p->i poptp_len = | en;

opt p->i popt p_next = cur + |en;

if (cur +len > end) {
opt p- >i popt p_fl ags | = | POPTP_ERROR;
return (1 POPT_EQL);

*

* For the options which require a pointer field, nmake sure
* its there, and nake sure it points to either sonething

* inside this option, or the end of the option.

SW tch (opt) {
case OPT_RI
case I PODT_TS
case | POPT_LSRR:
case | POPT_SSRR:
if (len <= | POPT_OFFSET) {
opt p->i popt p_flags | = | POPTP_ERROR;
return (opt);

}

poi nter = cur[| POPT_OFFSET];

if (pointer - 1 > len) {
opt p->i popt p_fl ags | = | POPTP_ERROR,
return (opt);

}
br eak;
}

/*

* Sanity check the pointer field based on the type of the
* option.

*/

switch (opt) {
case | POPT_RR
case | POPT_SSRR
case | POPT_LSRR
if (pointer < | POPT_M NOFF_SR)

new usr/src/uts/comon/inet/ipl/ip.c 38
2438 opt p->i popt p_flags | = | POPTP_ERROR;

2439 br eak;

2440 case | POPT_TS:

2441 if (pointer < | POPT_M NOFF_IT)

2442 opt p->i popt p_flags | = | POPTP_ERROR;

2443 /*

2444 * Note that the Internet Timestanp option also

2445 * contains two four bit fields (the Overflow field,
2446 * and the Flag field), which follow the pointer

2447 * field. W don't need to check that these fields
2448 * fall within the Iength of the option because this
2449 * was inplicitely done above. W' ve checked that the
2450 * pointer value is at |east | POPT_M NOFF_I T, and that
2451 * it falls within the option. Since |POPT_MNOFF_IT >
2452 * | POPT_POS_OV_FLG we don’'t need the explicit check.
2453 */

2454 ASSERT(l en > | POPT_PCS_OV_FLG);

2455 br eak;

2456 1

2458 return (opt);

2459 }

2461 /*

2462 * Use the outgoing I P header to create an | P_OPTIONS option the way
2463 * it was passed down fromthe application.

2464 *

2465 * This is conpatible with BSDin that it returns

2466 * the reverse source route with the final destination

2467 * as the last entry. The first 4 bytes of the option

2468 * will contain the final destination.

2469 */

2470 int

2471 ip_opt_get_user(conn_t *connp, uchar_t *buf)

2472 {

2473 i popt p_t opts;

2474 uchar _t *opt ;

2475 ui nt 8_t optval ;

2476 uint8_t opt | en;

2477 ui nt 32_t len = 0'

2478 uchar _t *buf 1 = buf;

2479 ui nt 32_t totallen;

2480 i paddr _t dst;

2481 i p_pkt_t *ipp = &connp->conn_xmt _i pp;

2483 if (!(ipp->ipp_fields & |IPPF_IPV4_OPTI ONS))

2484 return (0);

2486 totallen = ipp->i pp_i pv4_options_| en;

2487 if (totallen & 0x3)

2488 return (0);

2490 buf += | P_ADDR LEN; /* Leave roomfor final destination */
2491 len += | P_ADDR_LEN;

2492 bzero(bufI, | P_ADDR LEN);

2494 dst = connp->conn_f addr _v4;

2496 (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2497 optval != | POPT_ECL;

2498 optval = ipoptp next(&opts)) {

2499 int of f

2501 opt = opts.ipoptp_cu

2502 if ((opts. |p0ptpflags&IPCPTP ERROR) != 0) {

2503 br eak;

new usr/src/uts/comon/inet/ip/ip.c

2504 }

2505 optlen = opts.ipoptp_len;

2507 switch (optval) {

2508 case | POPT_SSRR:

2509 case | POPT_LSRR

2511 /*

2512 * |Insert destination as the first entry in the source
2513 * route and nove down the entries on step.
2514 * The last entry gets placed at buf1.
2515 */

2516 buf [| POPT_OPTVAL] = optval;

2517 buf [1 POPT_OLEN] = optl en;

2518 buf [| POPT_OFFSET] = optl en;

2520 off = optlen - | P_ADDR LEN;

2521 if (off <0) {

2522 /* No entries in source route */
2523 br eak;

2524 }

2525 /* Last entry in source route if not already set
2526 if (dst == | NADDR _ANY)

2527 bcopy(opt + off, bufl, |P_ADDR LEN);
2528 of f -= | P_ADDR_LEN

2530 while (off > 0)

2531 bcopy(opt + of f,

2532 + of f + | P_ADDR LEN,

2533 IP ADDR_LEN) ;

2534 of f -=1P_ADDR_ LEN

2535 }

2536 /* ipha_dst into first slot */

2537 bcopy(&dst, buf + off + | P_ADDR_LEN,

2538 | P_ADDR_LEN) ;

2539 buf += optlen;

2540 I en += optlen;

2541 br eak;

2543 defaul t:

2544 bcopy(opt, buf, optlen);

2545 buf += optlen;

2546 len += optlen;

2547 break;

2548 }

2549

2550 done:

2551 /* Pad the resulting options */

2552 while (len & 0x3)

2553 *puf ++ = | POPT_EQL;

2554 | en++;

2555 1

2556 return (len);

2557 }

2559 /*

2560 * Update any record route or tinmestanp options to include this host.
2561 * Reverse any source route option.

2562 * This routine assunmes that the options are well formed i.e. that they
2563 * have al ready been checked.

2564 */

2565 static void

2566 icnp_options_update(ipha_t *ipha)

2567 {

2568 i popt p_t opts;

2569 uchar _t *opt ;

*/

2570
2571
2572

2574
2575
2576

2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604

new usr/src/uts/comon/inet/ip/ip.c
ui nt 8_t optval ;
i paddr _t src; /* Qur |ocal address */
i paddr _t dst;
i p2dbg(("i cnp_ optl ons_update\n"));
src = ipha->i pha_src;
dst = i pha->i pha_dst;
(optval = ipoptp_first(&opts, ipha);
optval != | POPT_ECL;
optval = ipoptp_next(&opts)) {
ASSERT((opts. i poptp_flags & | POPTP_ERROR) == 0);
opt = opts.ipoptp_cur;
i p2dbg(("i cmp_opti ons_update: opt %, len %\ n",
optval, opts.ipoptp_len));
switch (optval) {
int offl, off2;
case | POPT_SSRR:
case | POPT_LSRR
/*
* Reverse the source route. The first entry
* should be the next to last one in the current
* source route (the last entry is our address).
*/The last entry should be the final destination.
*
off1 = | POPT_M NOFF_SR - 1;
of f2 = opt[I POPT_OFFSET] - |P_ADDR LEN - 1;
if (off2 < 0)
/* No entries in source route */
i pldbg((
"l cnp_options_update: bad src route\n"));
br eak;
}
bcopy((char *)opt + off2, &dst, |P_ADDR LEN);
bcopy(& pha- > pha_dst, (char *)opt + off2, 1P_ADDR LEN);
bcopy(&dst, & pha->i pha_dst, |P_ADDR LEN);

2605
2606

2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620

2622
2623
2624
2625
2626
2627
2628

2630
2631
2632
2633
2634

}

/*

* Process received | CMP Redirect nmessages.

* Assunes the caller has verified that the headers are in the pulled up nblk.
* Consunes np.

*/

off2 -= I P_ADDR LEN;

while (offl < off2)
bcopy((char *)opt + offl, &src, |P_ADDR LEN);
bcopy((char *)opt + off2, (char *)opt + off1,
| P_ADDR_LEN);

bcopy(&src, (char *)opt + off2, |P_ADDR LEN);
off1 += | P_ADDR LEN;
off2 -= | P_ADDR LEN;

}
opt [| POPT_OFFSET] = | POPT_M NOFF_SR;
break;

static void
icnp_redirect_v4(nmblk_t *np, ipha_t *ipha, icnph_t *icnph, ip_recv_attr_t *ira)
2629 {

ire_t *ire, *nire;

ire_t *prev_ire;

i paddr _t src, dst, gateway;

i p_stack_t *ipst = ira->ira_ill->i11_ipst;

i pha_t *i nner _i pha; T* Inner TP header */

40

new usr/src/uts/comon/inet/ip/ip.c

2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670

2672
2673

2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701

/* Caller already pulled up everything. */

|nner _ipha = (ipha_t *)& cnph[1];

src = i pha->i pha_src;

dst = inner_i pha->i pha_dst;

gateway = icnph->i cnph_rd_gat eway;

/* Make sure the new gateway is reachabl e sonehow. */

ire = ire_ftabl e_|l ookup_v4(gateway, O, 0, | RE _ONLINK, NULL,
ALL_ZONES, NULL, MATCH IRE_TYPE, 0, ipst, NULL)

*
* Make sure we had a route for the dest in question and that
* that route was pointing to the old gateway (the source of the
* redirect packet.)
* We do | ongest match and then conpare ire_gateway_addr bel ow.
*
/
-

prev_ire = ire_ftable_|l ookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
NULL, MATCH | RE_DSTONLY, O, ipst, NULL);
/

*
* Check that
* the redirect was not from ourselves
*/ the new gateway and the old gateway are directly reachable
*
if (prev_ire == NULL || ire == NULL ||
(prev_ire->ire_type & (I RE_LOCAL| | RE_LOOPBACK)) ||
(prev_ire->ire_flags & (RTF_REJECT| RTF_BLACKHOLE)) ||
I(ire->ire_type & IRE_IF_ALL) ||
prev_ire->ire_gateway_addr != src)
BUVP_M B(& pst->| ps_icnp_m b, icnplnBadRedirects);
i p_drop_i nput (" |cn'pInBadRed|rects - ire", np, ira->ira_ill);
freensg(np);
if (ire!= NULL)
ire_refrele(ire);
if (prev_ire !'= NULL)
ire_refrele(prev_ire);
return;

}

ire_refrele(prev_ire)

ire_refrele(ire);

/*

* TODO nore precise handling for cases 0, 2, 3, the latter two
* require TOS routing

*/

switch (icnph->icnph_code) {

case O:
case 1:
/* TODO TGOS specificity for cases 2 and 3 */
case 2:
case 3:
br eak;
defaul t:
BUVP_M B(& pst->i ps_i cnp_mi b, icnplnBadRedirects);
i p_drop_i nput ("i cnpl nBadRedi rects - code", np, ira->ira_ill);
freensg(np);
return;
}
/*
* Create a Route Association. This will allow us to remenber that
* soneone we believe told us to use the particul ar gateway.
*
/
ire = ire_create(
(uchar_t *)&dst, /* dest addr */
(uchar_t *)& p_g_al |l _ones, /* mask */
(uchar_t *)&gat enay, /* gateway addr */
| RE_HCST
NULL, [* il ox/

new usr/src/uts/comon/inet/ip/ip.c

2702
2703
2704
2705

2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721

2723
2724
2725
2726
2727

2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740

2742
2743 }

2745 | *

42

ALL_ZONES

(RTF_DYNAM C | RTF_GATEWAY | RTF_HOST)

NULL, /* tsol _gc_t */
ipst);

if (ire == NULL) {
freemsg(np)
return;

nire = ire_add(ire);

/* Check if it was a duplicate entry */

if (nire!= NULL & nire !'=ire) {
ASSERT(nire->ire_identical _ref > 1);
ire_delete(nire);
ire_refrele(nire);

nire = NULL;
ire = nire;
if (ire !'= NULL)
ire_refrele(ire); /* Held in ire_add */

/* tell routing sockets that we received a redirect */
i p_rts_change(RTM REDI RECT, dst, gateway, |P_HOST_MASK, 0, src,
(RTF_DYNAM C | RTF_GATEWAY | RTF_HOST), 0,
) (RTA_DST | RTA _GATEWAY | RTA NETMASK | RTA _AUTHOR), ipst);

/*
* Del ete any existing | RE_HOST type redirect ires for this destination.
* This together with the added I RE has the effect of
* nodi fying an existing redirect.
*
/

prev_ire = ire_ftable_|l ookup_v4(dst, 0, src, |RE HOST, NULL
ALL ZCNES NULL, (MATCH_TRE GN| MATCH_| RE_TYPE), 0, ipst, NULL);
if (prev_ire != NULL)
if (prev_ire ->ire_flags & RTF_DYNAM C)
ire_delete(prev_ire);
ire_refrele(prev_ire);

}
freemsg(np);

2746 * Cenerate an | CMP parameter probl em nessage.
2747 * \Wen called fromip_output side a mnimal ip_recv_attr_t needs to be
2748 * constructed by the caller.

o/

2749

2750 static void
2751 icnp_param probl en{nbl k_t *nmp, uint8_t ptr, ip_recv_attr_t *ira)

2752 {
2753
2754

2756
2757
2758

2760
2761
2762
2763
2764
2765 }

2767 | *

i cnph_t i cnph;
i p_stack_t *ipst = ira->ira_ill->i1l_ipst;

np = icnp_pkt_err_ok(np, ira);
if (nmp == NULL)
return;

bzero(& cnph, sizeof (icnph_t));

i cnph. i cnph_type = | CMP_PARAM PR(BLEM

i cnph. i cnph_pp_ptr = ptr;

BUMP_M B(& pst - >i ps_i cnp_m' b, i cnpQut Par nProbs) ;
i cnp_pkt (np, & cnph, sizeof (icnph_t), ira);

new usr/src/uts/comon/inet/ipl/ip.c 43

2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

2778 {

2779
2780
2781
2782
2783
2784
2785
2786
2787
2788

2790

2792
2793
2794
2795
2796
2797
2798
2799
2800

2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822

2824
2825

2827
2828
2829
2830
2831
2832
2833

* Build and ship an | Pv4 | CWP nessage u5|ng the packet data in nmp, and
* the | CWP header pointed to by "stuff" (May be called as witer.)

* Note: assunes that icnp_pkt_err_ok has been called to verify that

* an icnp error packet can be sent.

* Assigns an appropriate source address to the packet. If ipha_dst is
* one of our addresses use it for source. Qtherw se |let ip_output_sinple
* pick the source address.

*

/

st

i cnp

atic void
_pkt (bl k_t *np, void *stuff, size_t len, ip_recv_attr_t *ira)

i paddr _t dst;

i cnph_t *i cnph

ipha_t *ipha;

uint_t |en_needed;

size_t msg_len;

nbl k_t *npl;

i paddr _t src;

ire_t *ire,;

|pxmt attr_t ixas;

ip_stack_t *ipst = ira->ira_ill->ill_ipst;

ipha = (ipha_t *)nmp->b_rptr;

bzero(&l xas si zeof (ixas));
Iags = | XAF_| BASIC S| MPLE_V4;

i xas.ix
ixas.i xa zoneid = ira->ira_zoneid,

i xas.ixa_ifindex = 0;

i xas.ixa_ipst = ipst;

i xas.ixa_cred = kcred

i xas.ixa_cpid = NOPID;

ixas.ixa_tsl = ira->ra_tsl; /* Behave as a nmulti-Ilevel responder */
i xas.ixa_nulticast_ttl = IP_DEFAULT_NULTICAST_TTL

if (ira->ra_flags & | RAF_I PSEC_SECURE) ({
/ *

Apply | Psec based on how | Psec was applied to
the packet that had the error.

*
*
*
* If it was an out bound packet that caused the | CWP
* error, then the caller will have setup the IRA

* appropriately.

*/

f

('ipsec_in_to_out(ira, & xas, np, ipha, NULL))
BUMP_M B(& pst->ips_i p_m b, iplfStatsCutDiscards);
/* Note: np already consuned and i p_drop_packet done */
return;

}
} else {
/*

* This is in clear. The icnp nessage we are building
* here should go out in clear, independent of our policy.
*

ixas.ixa_flags | = | XAF_NO_| PSEC;
}
/* Renenber our eventual destination */
dst = ipha->i pha_src;

*

* |f the packet was for one of our unicast addresses, make
* sure we respond with that as the source. O herw se

* have i p_output_sinple pick the source address.

*/

ire = ire_ftabl e_|l ookup_v4(i pha->i pha_dst, 0, O,
(1 RE_LOCAL| | RE_LOOPBACK), NULL, ira->ira_zoneid, NULL,

new usr/src/uts/comon/inet/ip/ip.c

2834
2835
2836
2837
2838
2839
2840
2841

2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857

2859
2860
2861
2862
2863

2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882

2884
2885
2886
2887
2888
2889
2890
2891

2893
2894
2895
2896
2897
2898
2899

MATCH | RE TYPE|NATCH | RE_ZONEONLY, O, ipst, NULL)
if (ire !'= NULL)
|re_refrele(|re)
src = ipha->i pha_dst;

} else {
src = | NADDR_ANY;
i xas. i xa_flags |— | XAF_SET_ SOURCE;
}
/*
* Check if we can send back nore then 8 bytes in addition to
* the IP header. W try to send 64 bytes of data and the internal
* header in the special cases of ipv4 encapsul ated ipv4 or ipv6.
*
Ie needed = | PH_HDR_LENGTH(i pha) ;
if (ipha- >i pha_| protocol == | PPROTO ENCAP | |
i pha- >i pha_protocol == | PPROTO_| PV6) {

if (!pullupmsg(np, -1)) {
BUMP_M B(& pst - >|ps ip_mb, iplfStatsQutD scards);
i p_drop_out put (" |prStatsOJtD|scards" mp, NULL);
freensg(np);
return;

}
1 pha = (ipha_t *)np->b_rptr;

if (ipha->ipha_protocol == | PPROTO_ENCAP)
| en_needed += | PH_HDR_LENGTH(((uchar_t *)ipha +
"l en_needed));
} else {
ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + | en_needed);

ASSERT(i pha->i pha_protocol == |PPROTO_| PV6);
| en_needed += ip_hdr_l ength_v6(np, ip6h);
}

}
I en_needed += ipst->ips_ip_icnp_return;
msg_l en = nsgdsi ze(np);
if (msg_len > | en_needed) {
(void) adjmsg(np, |en_needed - nsg_|en);

msg_l en = | en_needed;
mpl = all ocb(5| zeof (icnp_ipha) + len, BPRI _MED);
if (nmpl == NULL)
BUVP_M B(& pst->ips_icnp_mb, icnpQutErrors);
freensg(np);
return;

}
mpl->b_cont = np;
m = npl;

/*

* Set | XAF_TRUSTED | CWP so we can let the | CMP nessages this

* node generates be accepted in peace by all on-host destinations.
* |f we do NOT assune that all on-host destinations trust

* sel f-generated | CVP nessages, then rework here, ip6.c, and spd.c.
* (Look for |XAF_TRUSTED | CVP).

*

/

i xas.ixa_flags | = | XAF_TRUSTED_| CVP;

ipha = (ipha_t *)nmp->b_rptr;

mpl->b_wptr = (uchar_t *)|pha + (sizeof (icnp_ipha) + len);
*1 pha = 1 cnp_i pha

i pha- >i pha_src = src;

i pha- >i pha_dst = dst;

i pha->i pha_ttl :|pst >i ps_i p_def _ttl;

meg_l en += sizeof (icnp_ipha) + len;

new usr/src/uts/comon/inet/ipl/ip.c 45

2900 if (msg_len > | P_MAXPACKET) {

2901 (voi d) ad] msg(np, | P_MAXPACKET - msg_l en);

2902 msg_l en = | P_MAXPACKET;

2903 }

2904 i pha- >i pha_l ength = htons((uint16_t)nmsg_|en);

2905 icnmph = (icnph_t *)& pha[1l];

2906 bcopy(stuff, icnph, len);

2907 i cph- >i cnph_checksum = 0;

2908 i cnph- >i cnph_checksum = | P_CSUM np, (int32_t)sizeof (ipha_t), 0);
2909 BUMP_M B(& pst->i ps_i cnp_m b, icnpQut Msgs) ;

2911 (void) ip_output_sinple(np, & xas);

2912 i xa_cl eanup(& xas) ;

2913 }

2915 /*

2916 * Determine if an ICWP error packet can be sent given the rate limt.
2917 * The limt consists of an average frequency (icnp_pkt_err_interval neasured
2918 * in mlliseconds) and a burst size. Burst size nunber of packets can
2919 * be sent arbitrarely closely spaced.

2920 * The state is tracked using two variables to inplenent an approxi mate
2921 * token bucket filter:

2922 * icnp_pkt_err_last - |lbolt value when the | ast burst started
2923 */ i cnp_pkt _err_sent - nunber of packets sent in current burst
2924 *

2925 bool ean_t
2926 icnp_err_rate_limt(ip_stack_t *ipst)

2927 {

2928 clock_t now = TI CK_TO MSEC(ddi _get_lbolt());

2929 uint_t refilled; /* Nunber of packets refilied in tbf since last */
2930 /* Quard agai nst changes by |oading into | ocal variable */

2931 uint_t err_interval = ipst->ips_ip_icnp_err_interval;

2933 if (err_interval == 0)

2934 return (B_FALSE);

2936 if (ipst->ips_icnp_pkt_err_last > now) {

2937 /* 100HZ Ibolt in ns for 32bit arch waps every 49.7 days */
2938 i pst->ips_icnp_pkt_err_last = 0;

2939 i pst->ips_i cnp_pkt_err_sent = O;

2940 }

2941 /*

2942 * |If we are in a burst update the token bucket filter.

2943 * Update the "last" tinme to be close to "now' but make sure

2944 * we don’'t | oose precision.

2945 */

2946 if (ipst->ips_icnp_pkt_err_sent !=0) {

2947 refilled = (now - ipst->ips_icnp_pkt_err_last)/err_interval;
2948 if (refilled > ipst->ips_icnp_pkt_err_sent)

2949 i pst->i ps_i cnp_pkt_err_sent = 0;

2950 } else {

2951 i pst->ips_icnp_pkt_err_sent -=refilled;

2952 i pst->ips_icnp_pkt_err_last += refilled * err_interval;
2953 }

2954 }

2955 if (ipst->ips_icnp_pkt_err_sent == 0) {

2956 /* Start of new burst */

2957 i pst->ips_icnp_pkt_err_last = now,

2958 }

2959 1f (ipst->ips_icnp_pkt_err_sent < ipst->ips_ip_icnp_err_burst) {
2960 i pst - >i ps_i cnp_pkt_err_sent ++;

2961 |p1dbg(("i cnp_err_rate_| “limt: %l sent in burst\n",

2962 i pst->ips_icnp_pkt_err_sent));

2963 return (B_FALSE);

2964

}
2965 i pldbg(("icnp_err_rate_limt: dropped\n"));

new usr/src/uts/comon/inet/ipl/ip.c 46
2966 return (B_TRUE);

2967 }

2969 /*

2970 * Check if it is ok to send an IPv4 |CWP error packet in

2971 * response to the |Pv4 packet in np.

2972 * Free the nessage and return null if no

2973 * | CWP error packet should be sent.

2974 */
2975 static nblk_t *
2976 icnp_pkt_err_ok(nblk_t *np, ip_recv_attr_t *ira)

2977 {

2978 i p_stack_t *ipst = ira->ira_ill->ill_ipst;

2979 i cnph_t *i cnph;

2980 ipha_t *ipha;

2981 uint_t |en_needed;

2983 if (!mp)

2984 return (NULL) ;

2985 i pha = (ipha_t *)np- >b _rptr;

2986 if (ip_csum hdr(l pha)) {

2987 BUMP_M B(& pst - >i ps_| p i pl f StatslnCksunErrs);
2988 i p_drop_i nput ("i pl fStat CksurrErrs mp, NULL);
2989 freensg(np);

2990 return (NULL) ;

2991 }

2992 if (ip_type_v4(ipha->ipha_dst, ipst) == | RE_BROADCAST | |
2993 i p_type_v4(ipha->ipha_src, ipst) == | RE_BROADCAST | |
2994 CLASSD(i pha- >i pha_dst) ||

2995 CLASSD(i pha- >i pha_src) ||

2996 (ntohs(i pha->i pha_fragnent _of fset _and_fl ags) & | PH OFFSET)) {
2997 /* Note: only errors to the fragment with offset 0 */
2998 BUMP_M B(& pst->i ps_icnp_m b, icnpQutDrops);

2999 freensg(np);

3000 return (NULL);

3001 1

3002 if (ipha->ipha_protocol == | PPROTO | CWP) {

3003 /*

3004 * Check the ICWP type. RFC 1122 sez: don't send | CWP
3005 * errors in response to any |ICVP errors.

3006 */

3007 | en_needed = | PH_HDR LENGTH(i pha) + | CMPH_SI ZE;
3008 if (mp->b_wptr - np->b_rptr < | en_needed) {

3009 i (!pullupnsg(np, |en_needed)) {

3010 BUMP_M B(& pst->i ps_icnp_m b, icnplnErrors);
3011 freemsg(np);

3012 return (NULL);

3013 }

3014 i pha = (ipha_t *)np->b_rptr;

3015 }

3016 icnph = (icnph_t *)

3017 (& (char *)ipha)[| PH HDR LENGTH(i pha)]);

3018 switch (icnph->i cnph_type) {

3019 case | CVMP_DEST_UNREACHABLE:

3020 case | CMP_SOURCE_QUENCH:

3021 case | CMP_TI ME_EXCEEDED:

3022 case | CVP_PARAM PROBLEM

3023 case | CVMP_REDI RECT:

3024 BUMP_M B(& pst->i ps_i cnp_ni b, icnpQut Drops);
3025 freemsg(np);

3026 return (NULL)

3027 defaul t:

3028 br eak;

3029 }

3030

3031 /*

new usr/src/uts/comon/inet/ip/ip.c

3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051

3053
3054
3055
3056
3057 v
3058
3059

}
/

*
*
*
*
VOi
ip_

3060 {

3061
3062
3063
3064

3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085

3087
3088
3089
3091

3093
3094

3096
3097

* |f this is a |labeled system then check to see if we’'re allowed to
* send a response to this particular sender. |If not, then just
*
/
if (is_ systemlabel ed() & !'tsol _can_reply_error(np, ira)) {
|p2 bg(("icrmp_pkt _err ok: can’'t respond to packet\n"));
IMP_M B(& pst->i ps_i cnp_ni b, i cnpQut Dr ops) ;
ffeeﬁﬁg(ﬁp)
return (NULL);
}
if (icp_err_rate_limt(ipst)) {
/*
* Only send | CWP error packets every so often.
* This shoul d be done on a per port/source basis,
* pbut for nowthis will suffice.
*
/
freensg(np);
return (NULL);

%eturn (m);

Cal | ed when a packet was sent out the sane link that it arrived on.
Check if it is ok to send a redirect and then send it.
/
id
send_potential _redirect_v4(nblk_t *np, ipha_t *ipha, ire_t *ire,
ip_recv_attr_t *ira)
i p_stack_t *ipst = ira->ira_ill->ill_ipst;
i paddr _t src, nhop;
nbl k_t *mpl;
ire_t *nhop_ire;
/*

Check the source address to see if it originated

on the same | ogical subnet it is going back out on.

If so, we should be able to send it a redirect.

Avoi d sending a redirect if the destination

is directly connected (i.e., we matched an | RE_ONLI NK),
or if the packet was source routed out this interface.

*
*
*
*
*
*
*
* W avoid sending a redirect if the
* destination is directly connected
* because it is possible that nultiple
* | P subnets may have been configured on
* the link, and the source may not

* be on the sane subnet as ip destination,
* even though they are on the sane

* physical |ink.

*/

if ((ire->ire_type & | RE_ONLINK) ||
i p_source_routed(ipha, ipst))
return;

nhop_ire = ire nexthop(lre)

if (nhop_ire == LL)
return;

nhop = nhop_ire->ire_addr;

if (nhop_ire->ir type & IRE_IF_CLONE) {
ire_t re2;

/* Follow ire_dep_parent to find non-clone | RE_| NTERFACE */
mut ex_ent er (&hop_ire->ire_| ock);

dr op.

47

new usr/src/uts/comon/inet/ip/ip.c

3098
3099
3100
3101
3102
3103
3104
3105
3106

3108
3110

3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127

3129
3130
3131
3132

ire2 = nhop_ire->ire_dep_parent;
if (ire2 I'= NULL)
ire_refhold(ire2);
nut ex_exi t (&hop_ire->ire_| ock);
ire_refrel e(nhop ire);
nhop_ire = ire2;
}
if (nhop_ire == NULL)
return;
ASSERT(! (nhop_ire->ire_type & IRE | F_CLONE));
src = i pha->i pha_src;
/*
* W look at the interface ire for the nexthop,
* to see if ipha_src is in the same subnet
* as the nexthop.
*
/
if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
/*
* The source is directly connected.
*
/
npl = copymsg(np);
if (npl !'= NULL)
i cnp_send_redirect (npl, nhop, ira);
}
}
ire_refrele(nhop_ire);
}
/*
* Generate an | CMP redirect message.
*/
static void

3133 icnp_send_redirect (nbl k_t *np, ipaddr_t gateway, ip_recv_attr_t *ira)
3134 {

3135 i cnph_t i cnph;

3136 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3138 mp = icnp_pkt_err_ok(nmp, ira);

3139 if (mp == NULL)

3140 return;

3142 bzero(& cnph, sizeof (icnph_t));

3143 i cnph. i cnph_type = | CVP_REDI RECT;

3144 i cnph. i cnph_code = 1;

3145 i cnph.icnph_rd_gateway = gateway;

3146 BUMP_M B(& pst ->i ps_i cnp_ni b, i cnpQut Redirects);
3147 i cnp_pkt (np, & cnph, sizeof (| cnph_t), ira);
3148 }

3150 /*

3151 * Generate an |CMP tinme exceeded message.

3152 */

3153 void

3154 icnp_tinme_exceeded(nbl k_t *np, uint8_t code, ip_recv_attr_t *ira)
3155 {

3156 i cnph_t i cnph;

3157 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3159 mp = icnp_pkt_err_ok(nmp, ira);

3160 if (mp == NULL

3161 return

3163 bzero(& cnph, sizeof (icnph_t));

new usr/src/uts/comon/inet/ipl/ip.c 49

3164 i cnph. i cnph_type = | CMP_TI ME_EXCEEDED;

3165 i cnph. i cnph_code = code;

3166 BUMP_M B(& pst->i ps_i cnp_mi b, icnpQut Ti neExcds) ;

3167 i cnp_pkt (np, & cnph, sizeof (icnph_t), ira);

3168 }

3170 /*

3171 * Generate an | CMP unreachabl e nessage.

3172 * \Wen called fromip_output side a mniml ip_recv_attr_t needs to be
3173 * constructed by the caller.

3174 */

3175 void

3176 i cnp_unreachabl e(nbl k_t *np, uint8_t code, ip_recv_attr_t *ira)
3177 {

3178 i cnph_t i cnph;

3179 ip_stack_t *ipst = ira->ira_ill->ill_ipst;

3181 mp = icnp_pkt_err_ok(nmp, ira);

3182 if (np == NULL)

3183 return;

3185 bzero(& cnph, sizeof (icnph_t));

3186 i cnph. i cph_t ype = | CMP_DEST_UNREACHABLE;

3187 i cnph. i cnph_code = code;

3188 BUMP_M B(& pst ->i ps_i cnp_ni b, i cnpQut Dest Unr eachs) ;
3189 i cnp_pkt (np, & cnph, sizeof (| cnph_t), ira);

3190 }

3192 /*

3193 * Latch in the | Psec state for a stream based the policy in the listener
3194 * and the actions in the ip_recv_attr_t.

3195 * Called directly from TCP and SCTP.

3196 *

3197 bool ean_t

3198 i p_i psec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3199 {

3200 ASSERT(| connp->conn_policy != NULL)

3201 ASSERT(connp->conn_pol i cy == NULL);

3203 | PPH_REFHOLD(| connp- >conn_pol i cy) ;

3204 connp->conn_pol i cy = | connp->conn_policy

3206 if (ira->ra_ipsec_action !'= NULL)

3207 if (connp->conn_latch == NULL) {

3208 connp->conn_l atch = iplatch_create();
3209 if (connp->conn_| atch == NULL)

3210 return (B_FALSE);

3211 }

3212 i psec_l at ch_i nbound(connp, ira);

3213 }

3214 return (B_TRUE);

3215 }

3217 /*

3218 * Verify whether or not the |P address is a valid |ocal address.
3219 * Could be a unicast, including one for a down interface.
3220 * If allow_ntbc then a nulticast or broadcast address is also
3221 * acceptable.

3222 *

3223 * In the case of a broadcast/nulticast address, however, the
3224 * upper protocol is expected to reset the src address

3225 * to zero when we return | PVL_MCAST/ | PVL_BCAST so that

3226 * no packets are emitted with broadcast/nulticast address as
3227 * source address (that violates hosts requirenments RFC 1122)
3228 * The addresses valid for bind are:

3229 * (1) - 1 NADDR_ANY (0)

new usr/src/uts/comon/inet/ip/ip.c

3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249

3251

3253
3254

3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280

3282
3283
3284
3285
3286
3287

3289
3290
3291
3292
3293
3294
3295

qu-x-x—x—x-x-x—x—x—x-x—x—x—x-:&

-~

/

50
2) - IP address of an UP interface
) - IP address of a DOMW interface

) - valid local |IP broadcast addresses. In this case
e conn will only receive packets destined to
e specified broadcast address.

) - a nulticast address. In this case

e conn will only receive packets destined to
e specified nulticast address. Note: the
plication still has to issue an

(
(
(
t
t
(
t
t
a
| P_ADD_MEMBERSHI P socket opti on.

3
4
h
h
5
h
h
p

In all the above cases, the bound address nust be valid in the current zone.
When the address is Ioopback nmul ticast or broadcast, there m ght be nany
mat ching | REs so bind has to | ook up based on the zone.

addr _t

|
| addr _verify_v4(ipaddr_t src_addr, zoneid_t zoneid,

i p_stack_t *ipst, boolean_t allow nthc)
ire_t *src_ire;
ASSERT(src_addr != | NADDR_ANY) ;
src_ire = ire_ftable_l ookup_v4(src_addr, 0, 0, O,
NULL, zoneid, NULL, MATCH | RE_ZONEONLY, O, ipst, NULL)
/*
* |f an address other than in6addr_any is requested,
* we verify that it is a valid address for bind
* Note: Following code is in if-else-if formfor
* readability conpared to a condition check.
*
/

if (src_ire !'= NULL && (src_ire->ire_type & (I RE_LOCAL| | RE_LOOPBACK))) {
/*

* (2) Bind to address of |local UP interface
|re refrele(src_ire);
return (1 PVL_UNI CAST_UP);

} else if (src_ire !'= NULL && src_i re->ire_type & | RE_BROADCAST) {
/*
* (4) Bind to broadcast address
*
/

ire_refrele(src_ire);
if (allow_nthc
return (1 PVL_BCAST)
el se
return (1 PVL_BAD);
(CLASSD(src_addr)) {
* (5) bind to nulticast address. */
if (src_ire !'= NULL)
ire_refrele(src_ire);

} elseif
/

if (allow_nthc)

return (1 PVL_MCAST) ;
el se

return (I PVL_BAD);

(3) Bind to address of |ocal DOM interface?
(i pif_lookup_addr() I|ooks up all interfaces
but we do not get here for UP interfaces

- case (2) above)

if (src_ire !'= NULL)

new usr/src/uts/comon/inet/ipl/ip.c 51

3296

3298
3299
3300

3302
3303
3304
3305
3306
3307
3308
3309
3310

3312
3313
3314
3315
3316
3317
3318
3319
3320

3322
3323
3324
3325
3326
3327
3328

3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340

3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361

B I I N SR

ire_refrele(src_ire);

f = | p|f _l ookup_addr (src_addr,
(ipif NULL
ret urn (I PVL_BAD);

ipi NULL, zoneid, ipst);
if

/* Not a useful source? */

if (ipif->ipif_flags & (1Pl F_NOLOCAL |
ipif_refrele(ipif);
return (1 PVL_BAD);

I Pl F_ANYCAST)) {

}
ipif_refrele(ipif);
return (1 PVL_UNI CAST_DOW) ;

Insert in the bind fanout for |Pv4 and |Pv6.
The cal l er should already have used ip_laddr_verify_v*() before calling
this.

_l addr _fanout _i nsert (conn_t *connp)
int error;

/*
* Allow setting new policies. For exanple, disconnects result
* in us being called. As we would have set conn_policy_cached
* to B_TRUE before, we should set it to B_FALSE, so that policy
* can change after the disconnect.
*
/
connp->conn_pol i cy_cached = B_FALSE;
error = ipcl_bind_insert(connp);
if (error 1= 0)
if (connp->conn_anon_port) {
(void) tsol _m p_anon(crgetzone(connp->conn_cred),
connp->conn_m p_type, connp->conn_prot o,
nt ohs(connp- >conn_I port), B_FALSE);

}
connp->conn_m p_type = nl ptSingle;

}
return (error);

Verify that both the source and destination addresses are valid. If

| PDF_VERI FY_DST is not set, then the destination address may be unreachabl e,
i.e. have no route to it. Protocols |ike TCP want to verify destination
reachability, while tunnels do not.

Determ ne the route, the interface,
to use to reach a given destination.
Note that we allow connect to broadcast and nulticast addresses when

| PDF_ALLOW MCBC i s set.

first_hop and dst_addr are normally the same, but if source routing
they will differ; in that case the first_hop is what we’'ll use for the
routing | ookup but the dce and | abel checks will be done on dst_addr,

and (optionally) the source address

If uinfo is set, then we fill in the best available information

we have for the destination. This is based on (in priority order) any
nmetrics and path MU stored in a dce_t, route netrics, and finally the
il _mu/ill_nc_ntu.

Tsol note: If we have a source route then dst_addr != firsthop. But we

new usr/src/uts/comon/inet/ipl/ip.c 52
3362 * always do the |abel check on dst_addr.

3363 */

3364 int

3365 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3366 ip_xmt_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_node)
3367

3368 ire_t *ire = NULL;

3369 int error = 0;

3370 i paddr _t setsrc; /* RTF_SETSRC */
3371 zonei d_t zonei d = i xa->i xa_zonei d; /* Honors SO ALLZONES */
3372 i p_stack_t *jpst = ixa->ixa_ipst;

3373 dce_t *dce;

3374 ui nt _t pnt u;

3375 uint_t generati on;

3376 nce_t *nce;

3377 ill_t *ill = NULL;

3378 bool ean_t multirt = B_FALSE;

3380 ASSERT(i xa->i xa_flags & | XAF_IS_| PV4);

3382 I

3383 * W never send to zero; the ULPs map it to the | oopback address.
3384 * We can’t allow it since we use zero to nmean unitialized in sone
3385 * pl aces.

3386 *

3387 ASSERT(dst_addr != | NADDR_ANY);

3389 if (is_systemlabeled()) {

3390 ts_label _t *tsl = NULL;

3392 error = tsol _check_dest (i xa->i xa_tsl, &dst_addr, |PV4_VERS| ON,
3393 mac_node, (flags & | PDF_ZONE IS GLCBAL) I= 0 &t sl);
3394 if (error 1= 0)

3395 return (error);

3396 if (tsl !'= NULL)

3397 /* Update the |abel */

3398 ip_xmt_attr_replace_tsl(ixa, tsl);

3399 }

3400 }

3402 setsrc = | NADDR_ANY;

3403 /*

3404 * Select a route; For |PWP interfaces, we would only sel ect

3405 * a "hidden" route (i.e., going through a specific under_ill)
3406 * if ixa_ifindex has been specified.

3407 */

3408 ire = ip_select_route_v4(firsthop, *src_addrp, ixa,

3409 &generation, &setsrc, &error, &multirt);

3410 ASSERT(ire != NULL); /* | RE_NOROUTE i f none found */

3411 if (error = 0)

3412 goto bad_addr;

3414 /*

3415 * ire can't be a broadcast or nmulticast unless |PDF_ALLONMCBC is set.
3416 * |f |PDF_VERI FY_DST is set, the destination nust be reachabl e;
3417 * Otherw se the destination needn’t be reachable.

3418 *

3419 * |f we match on a reject or black hole, then we’ve got a

3420 * local failure. My as well fail out the connect() attenpt,
3421 * since it’s never going to succeed.

3422 */

3423 if (ire->re_flags & (RTF_REJECT| RTF_BLACKHOLE)) {

3424 /*

3425 * If we're verifying destination reachability, we always want
3426 * to conplain here.

3427 *

new usr/src/uts/comon/inet/ipl/ip.c 53

3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451

3453
3454
3455
3456
3457
3458
3459

3461
3462
3463
3464
3465
3466
3467
3468
3469

3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493

If we're not verifying destination reachability but the
destination has a route, we still want to fail on the
tenporary address and broadcast address tests.

*

*

*

*

* In both cases do we | et the code continue so sone reasonabl e
* information is returned to the caller. That enables the

* caller to use (and even cache) the IRE. conn_ip_ouput will

* use the generation msnmatch path to check for the unreachabl e
* case thereby avoi ding any specific check in the nmain path.

*

/

S

ASSERT(gener ati on == | RE_GENERATI ON_VERI FY) ;
if (flags & | PDF_VERI FY_DST) {
/

the RTF_REJECT| RTF_BLACKHOLE | RE.
That allows callers to use ip_output to get an
* | CMP error back.
*/
if (!(ire->re_type & | RE_HOST))
error = ENETUNREACH,

*
* Set errno but continue to set up ixa_ire to be
*
*

el se
error = EHOSTUNREACH;
}
}
if ((ire->ire_type & (| RE_BROADCAST| | RE_MILTI CAST)) &&
I (flags & | PDF_ALLOW MCBC)) {
ire_refrele(ire);
ire=ire reject(lpst B
generation = | RE GENERATIO\I VERI FY;
error = ENEl'UNREACH,
}

/* Cache things */
if (ixa->xa_lre !'= NULL)
ire_refrele_notr(ixa->ixa_ire);

#i f def DEBUG

#endi f

ire_refhold_notr(ire);
ire_refrele(ire);

ixa->xa_ire =ire;

i xa->i xa_ire_generation = generation;

/*

* Ensure that ixa_dce is always set any tinme that ixa_ire is set,
* since sone callers will send a packet to conn_ip_output() even if
* there's an error.

*/
if (flags & | PDF_UNI QUE_DCE) {
/* Fallback to the default dce if allocation fails */
dce = dce_| ookup_and_add_v4(dst_addr, ipst);
if (dce !'= NULL)
generation = dce->dce_generati on;
el se
dce = dce_| ookup_v4(dst_addr, ipst, &generation);
} else {
= dce_l ookup_v4(dst_addr, ipst, &generation);

}
ASSERT(dce != NULL);
if (ixa->ixa_dce != NULL)
dce_refrel e_notr (ixa->i xa_dce);

#i f def DEBUG

#endi f

dce_refhol d_notr(dce);
dce_refrel e(dce);

i xa->i xa_dce = dce;

new usr/src/uts/comon/inet/ipl/ip.c 54
3494 i xa- > xa_dce_generati on = generation;

3496 /*

3497 * For nulticast with multirt we have a flag passed back from
3498 * ire_lookup_multi_ill_v4 since we don’t have an I RE for each
3499 * possible multicast address.

3500 * W& also need a flag for nulticast since we can’t check
3501 * whether RTF_MULTIRT is set inixa_ire for nulticast

3502 */

3503 if (multirt) {

3504 i xa->i xa_postfragfn = ip_postfrag_nultirt_v4,;

3505 i xa->i xa_flags | = | XAF_MILTI RT_MUJLTI CAST;

3506 } else {

3507 i xa->i xa_postfragfn = ire->ire_postfragfn;

3508 i xa->i xa_flags & ~I XAF_MULTI RT_MJLTI CAST;

3509 }

3510 i f ('(lre >ire_flags & (RTF_REJECT| RTF_BLACKHOLE))) {

3511 Get an nce to cache. */

3512 nce =ire_to_nce(ire, fi rst hop, NULL);

3513 if (nce == NULL) {

3514 /* Allocation failure? */

3515 i xa->i xa_i re_generati on = | RE_CGENERATI ON_VERI FY;
3516 } else {

3517 if (ixa->ixa_nce != NULL)

3518 nce_refrel e(i xa->i xa_nce);

3519 i xa->i xa_nce = nce;

3520 }

3521 }

3523 /*

3524 * |f the source address is a | oopback address, the

3525 * destination had best be local or nulticast.

3526 * |f we are sending to an | RE_LOCAL using a | oopback source then
3527 * it had better be the sane zoneid.

3528 */

3529 if (*src_addrp == htonl (| NADDR_LOOPBACK))

3530 if ((|re >ire_type & |RE_LOCAL) && ire->ire_zoneid != zoneid) {
3531 ire = NULL; /* Stored inixa_ire */

3532 error = EADDRNOTAVAIL;

3533 got o bad_addr;

3534 }

3535 if (!(ire->ire_type & (I RE_LOOPBACK| | RE_LOCAL| | RE_MULTI CAST))) {
3536 ire = NULL; /* Stored in ixa_ire */

3537 error = EADDRNOTAVAI L;

3538 got o bad_addr;

3539 }

3540 }

3541 if (ire->re_type & | RE_BROADCAST) ({

3542 /*

3543 * |f the ULP didn't have a specified source, then we
3544 * make sure we resel ect the source when sending

3545 * broadcasts out different interfaces.

3546 *

3547 f (flags & | PDF_SELECT_SRC)

3548 i xa->i xa_flags | = | XAF_SET_SOURCE;

3549 el se

3550 i xa->i xa_flags & ~I XAF_SET_SOURCE;

3551 }

3553 /*

3554 * Does the caller want us to pick a source address?

3555 */

3556 if (flags & IPDF SELECT_SRC) {

3557 i padd src_addr;

3559 /*

new usr/src/uts/comon/inet/ip/ip.c

3560
3561
3562
3563
3564
3565
3566

3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581

3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594

3596
3597
3598

3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610

3612
3613
3614
3615
3616
3617

3619
3620
3621
3622
3623
3624
3625

W use use ire_nexthop_ill to avoid the under ipnp

interface for source address selection. Note that for ipnp

*

*

* probe packets, ixa_ifindex woul d have been specified, and
* the ip_select_route() invocation would have picked an ire
*
*
il

will ire_ill pointing at an under interface.

/

I = ire_nexthop_ill(ire);
/* |f unreachable we have no ill but need sone source */
if (ill == NULL)

src_addr = htonl (1 NADDR_LOOPBACK) ;
/* Make sure we look for a better source address */
generation = SRC_CGENERATI ON_VERI FY;
} else {
error = ip_select_source_v4(ill, setsrc, dst_addr,
i xa- > xa_nmul ticast_ifaddr, zoneid,
i pst, &src_addr, &generation, NULL);
if (error !'=0)
ire = NULL;
got o bad_addr;

/* Stored in ixa_ire */

W allow the source address to to down.
However, we check that we don't use the | oopback address
as a source when sending out on the wire.

if ((src_addr == htonl (1 NADDR _LOOPBACK))

* ok ok ok %

¥ &&
I(ire->re_type & (| RE_LOCAL| | RE_LOOPBACK| | RE_MULTI CAST)) &&

I(ire->re_flags & (RTF_REJECT| RTF_BLACKHOLE))) {
ire = NULL; /* Stored in ixa_ire */
error = EADDRNOTAVAI L;
goto bad_addr;
}

*src_addrp = src_addr;)
i xa- >i xa_src_generation = generation;

}

*

* Make sure we don’t |eave an unreachabl e ixa_nce in place

* since ip_select_route is used when we unplunb i.e., renove
* references on ixa_ire, ixa_nce, and ixa_dce.

*
/
nce = ixa->i xa_nce;
if (nce !'= NULL && nce->nce_i s_condemed) {
nce_refrel e(nce);
i xa->i xa_nce = NULL;
) i xa->i xa_ire_generation = | RE_GENERATI ON_VERI FY;

*

* The call er has set | XAF_PMIU DI SCOVERY if path MIU is desired.
* However, we can't do it for IPv4 nmulticast or broadcast.
*/
if (ire->re_type & (I RE_BROADCAST| | RE_MULTI CAST))
i xa->i xa_flags &= ~I XAF_PMIU_DI SCOVERY;

/*
* Set initial value for fragnentation limt. Either conn_ip_out put
* or ULP might updates it when there are routing changes.
* Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
*/

pntu = ip_get_pntu(ixa);

I xa->i xa_fragsize = pntu;

new usr/src/uts/comon/inet/ip/ip.c

3626 /* Make sure ixa_fragsize and ixa_pntu remain identical */
3627 if (ixa->ixa_flags & | XAF_VERI FY_PMIU)

3628 i xa->i xa_pntu = pntu;

3630 /*

3631 * Extract information useful for some transports.

3632 * First we look for DCE netrics. Then we take what we have in
3633 * the netrics in the route, where the offlink is used if we have
3634 * one.

3635 */

3636 if (uinfo !'= NULL)

3637 bzero(ui nfo, sizeof (*uinfo));

3639 if (dce->dce_flags & DCEF_U NFO)

3640 *ui nfo = dce->dce_ui nfo;

3642 rts_merge_netrics(uinfo, & re->ire_netrics);

3644 /* Allow ire_netrics to decrease the path MU from above */
3645 if (uinfo->iulp_nmu == 0 || uinfo->ulp_ntu > pntu)
3646 uinfo->ulp_ntu = pntu;

3648 uinfo->ulp_localnet = (ire->ire_type & | RE_ ONLINK) != O;
3649 ui nf o->i ul p_| oopback = (ire->ire_type & | RE_LOOPBACK) != 0;
3650 uinfo->ulp_local = (ire->re_type & IRE_LOCAL) != 0;
3651 }

3653 if (ill !'= NULL)

3654 ill_refrele(ill);

3656 return (error);

3658 bad_addr:

3659 if (ire !'= NULL)

3660 ire_refrele(ire);

3662 if (ill !'= NULL)

3663 ill_refrele(ill);

3665 /*

3666 * Make sure we don’'t |eave an unreachable ixa_nce in place
3667 * since ip_select_route is used when we unplunb i.e., renove
3668 * references on ixa_ire, ixa_nce, and ixa_dce.

3669 */

3670 nce = ixa->i xa_nce;

3671 if (nce !'= NULL && nce->nce_i s_condemed) {

3672 nce_refrel e(nce);

3673 i xa->i xa_nce = NULL;

3674 i xa->i xa_ire_generation = | RE_GENERATI ON_VERI FY;

3675 }

3677 return (error);

3678 }

3681 /*

3682 * Get the base MIU for the case when path MIU di scovery is not used.
3683 * Takes the MIU of the IRE into account.

3684 */

3685 uint_t

3686 ip_get_base_ntu(ill_t *ill, ire_t *ire)

3687 {

3688 uint_t ntu;

3689 uint_t iremtu =ire->ire_nmetrics.iulp_ntu;

3691 if (ire->ire_type & (I RE_MILTI CAST| | RE_BROADCAST))

new usr/src/uts/comon/inet/ip/ip.c

3692
3693
3694

3696
3697

3699
3700

3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713

3714 i

3715
3716
3717
3718
3719
3720

3722
3723
3724

3726
3727
3728
3729
3730
3731

3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744

3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757

The cal l er has set

nmu=ill->ll_nc_ntu;
el se
mu=ill->1l_ntu;
if (iremu!=0 & irentu < ntu)
mu = irentu;

return (ntu);

Get the PMIU for the attributes. Handles both | Pv4 and | Pv6.
Assunes that ixa_ire, dce, and nce have al ready been set up.

NOTE: We also used to turn it off for source routed packets. That
is no longer required since the dce is per final destination.

_pntu(ip_xmt_attr_t *ixa)

i p_stack_t *ipst = ixa->ixa_ipst;
dce_t *dce;

nce_t *nce;

ire_t *ire;

ui nt _t pnt u;

ire i xa->ixa_ire;

dce = ixa->i xa_dce;
= i xa->i xa_nce;

/*

* |f path MIU di scovery has been turned off by ndd, then we ignore

* any dce_pntu and for 1Pv4 we will not set DF.
*/

if (lipst->ips_ip_path_ntu_discovery)
i xa- >i xa_flags & ~I XAF_PMIU_DI SCOVERY;

pmtu = | P_MAXPACKET,
*
/‘k
*

Deci de whet her whether |Pv4 sets DF
For 1Pv6 "no DF" neans to use the 1280 ntu
*/

if (ixa->ixa_flags & | XAF_PMIU_DI SCOVERY) {
i xa->i xa_flags | = | XAF_PMIU_| PV4_DF;
} else {
i xa->i xa_flags & ~I XAF_PMIU_| PV4_DF;
if (!(ixa->ixa_flags & IXAF_TS IPV4))
pmtu = | PV6_M N _MIU;
}

/* Check if the PMIU is to old before we use it */
if ((dce->dce_flags & DCEF_PMIU) &&
TI CK_TO SEC(ddi _get _| bol t64()) - dce->dce_l ast_change_time >
i pst;>i ps_i p_pathntu_interval) {
*

* O der than 20 minutes. Drop the path MIU information.
*/

nmut ex_ent er (&dce->dce_| ock) ;

dce->dce_flags & ~(DCEF PMTU| DCEF_TOO_SMALL_PMIU) ;
dce->dce_| ast_change_tinme = TI CK_TO SEC(ddi _get | bol t 64());
mut ex_exi t (&Jce->dce_| ock) ;

dce_i ncrenment _generation(dce);

| XAF_PMIU_DI SCOVERY if path MU di scovery is desired.
We avoid path MIU discovery if it is disabled with ndd.
Furternore, if the path MU is too small, then we don't set DF for |Pv4.

new usr/src/uts/comon/inet/ip/ip.c

3758

3760
3761
3762
3763

3765
3766
3767
3768
3769
3770
3771
3772
3773

3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786

3788
3789
3790
3791
3792
3793
3794

3796
3797

3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823

58
}

/* The netrics on the route can | ower the path MIU */
if (ire->ire_nmetrics.iulp_nmu!=0 &&
ire->ire_metrics.iulp_ntu < pntu)
pntu = ire->ire_netrics.iulp_ntu;
/*
* |f the path MU is smaller than some mninum we still use dce_pntu
* above (would be 576 for |Pv4 and 1280 for |Pv6), but we clear
* | XAF_PMTU_| PV4_DF so that we avoid setting DF for |Pv4.
*/
if (ixa->ixa_flags & | XAF_PMIU DISCOJERY) {
if (dce->dce_flags & DCEF_PMIU) {
if (dce->dce_pntu < pntu)
pntu = dce->dce_pnt u;

if (dce->dce_flags & DCEF_TOO SMALL_PMIU) {
i xa->i xa_flags | = | XAF_PMIU_TOO SMALL;
i xa->i xa_f | ags & ~I XAF_PMTU_| PV4_DF;
} else {
i xa->i xa_flags & ~| XAF_PMIU_TOO SMALL;
i xa->i xa_flags | = | XAF_PMIU_I PV4_DF,;

} else {
i xa->i xa_flags &= ~I XAF_PMIU_TQOO SMALL;
i xa->i xa_flags | = | XAF_PMIU_I PV4_DF,;

*
* |If we have an | RE_LOCAL we use the | oopback ntu instead of

* the ill for going out the wire i.e., IRE LOCAL gets the same
* mtu as | RE_LOOPBACK

*/

if (ire->re_type & (I RE_LOCAL| | RE_LOOPBACK)) ({
uint _t | oopback_ntu;

| oopback_ntu = (ire->ire_ipversion == | PV6_VERSI ON) ?
ip_l oopback mu_véplus : ip_l oopback_ntuplus;

if (loopback_ntu < pntu)
pntu = | oopback_nt u;
} else if (nce !'= NULL) {
/*

* Make sure we don’'t exceed the interface MIU.

* In the case of RTF_REJECT or RTF_BLACKHOLE we m ght not have
* an ill. W' d use t