
new/usr/src/lib/libdhcpagent/common/dhcp_stable.c 1

**
 7280 Sun Feb 16 09:52:03 2014
new/usr/src/lib/libdhcpagent/common/dhcp_stable.c
4586 dhcpv6 client id malformed
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

27 /*
28 * This module reads and writes the stable identifier values, DUID and IAID.
29 */

31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <unistd.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <fcntl.h>
37 #include <errno.h>
38 #include <libdlpi.h>
39 #include <uuid/uuid.h>
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <net/if.h>
43 #include <netinet/dhcp6.h>
44 #include <dhcp_inittab.h>
45 #include <sys/ethernet.h>
46 #endif /* ! codereview */

48 #define DUID_FILE "/etc/dhcp/duid"
49 #define IAID_FILE "/etc/dhcp/iaid"

51 struct iaid_ent {
52 uint32_t ie_iaid;
53 char ie_name[LIFNAMSIZ];
54 };

56 /*
57 * read_stable_duid(): read the system’s stable DUID, if any
58 *
59 * input: size_t *: pointer to a size_t to return the DUID length

new/usr/src/lib/libdhcpagent/common/dhcp_stable.c 2

60 * output: uchar_t *: the DUID buffer, or NULL on error (and errno is set)
61 * note: memory returned is from malloc; caller must free.
62 */

64 uchar_t *
65 read_stable_duid(size_t *duidlen)
66 {
67 int fd;
68 ssize_t retv;
69 struct stat sb;
70 uchar_t *duid = NULL;

72 if ((fd = open(DUID_FILE, O_RDONLY)) == -1)
73 return (NULL);
74 if (fstat(fd, &sb) != -1 && S_ISREG(sb.st_mode) &&
75 (duid = malloc(sb.st_size)) != NULL) {
76 retv = read(fd, duid, sb.st_size);
77 if (retv == sb.st_size) {
78 *duidlen = sb.st_size;
79 } else {
80 free(duid);
81 /*
82 * Make sure that errno always gets set when something
83 * goes wrong.
84 */
85 if (retv >= 0)
86 errno = EINVAL;
87 duid = NULL;
88 }
89 }
90 (void) close(fd);
91 return (duid);
92 }

94 /*
95 * write_stable_duid(): write the system’s stable DUID.
96 *
97 * input: const uchar_t *: pointer to the DUID buffer
98 * size_t: length of the DUID
99 * output: int: 0 on success, -1 on error. errno is set on error.
100 */

102 int
103 write_stable_duid(const uchar_t *duid, size_t duidlen)
104 {
105 int fd;
106 ssize_t retv;

108 (void) unlink(DUID_FILE);
109 if ((fd = open(DUID_FILE, O_WRONLY | O_CREAT, 0644)) == -1)
110 return (-1);
111 retv = write(fd, duid, duidlen);
112 if (retv == duidlen) {
113 return (close(fd));
114 } else {
115 (void) close(fd);
116 if (retv >= 0)
117 errno = ENOSPC;
118 return (-1);
119 }
120 }

122 /*
123 * make_stable_duid(): create a new DUID
124 *
125 * input: const char *: name of physical interface for reference

new/usr/src/lib/libdhcpagent/common/dhcp_stable.c 3

126 * size_t *: pointer to a size_t to return the DUID length
127 * output: uchar_t *: the DUID buffer, or NULL on error (and errno is set)
128 * note: memory returned is from malloc; caller must free.
129 */

131 uchar_t *
132 make_stable_duid(const char *physintf, size_t *duidlen)
133 {
134 int len;
135 dlpi_info_t dlinfo;
136 dlpi_handle_t dh = NULL;
137 uint_t arptype;
138 duid_en_t *den;

140 /*
141 * Try to read the MAC layer address for the physical interface
142 * provided as a hint. If that works, we can use a DUID-LLT.
143 */

145 if (dlpi_open(physintf, &dh, 0) == DLPI_SUCCESS &&
146 dlpi_bind(dh, ETHERTYPE_IPV6, NULL) == DLPI_SUCCESS &&
147 #endif /* ! codereview */
148 dlpi_info(dh, &dlinfo, 0) == DLPI_SUCCESS &&
149 (len = dlinfo.di_physaddrlen) > 0 &&
150 (arptype = dlpi_arptype(dlinfo.di_mactype) != 0)) {
151 duid_llt_t *dllt;
152 time_t now;

154 if ((dllt = malloc(sizeof (*dllt) + len)) == NULL) {
155 dlpi_close(dh);
156 return (NULL);
157 }

159 (void) memcpy((dllt + 1), dlinfo.di_physaddr, len);
160 dllt->dllt_dutype = htons(DHCPV6_DUID_LLT);
161 dllt->dllt_hwtype = htons(arptype);
162 now = time(NULL) - DUID_TIME_BASE;
163 dllt->dllt_time = htonl(now);
164 *duidlen = sizeof (*dllt) + len;
165 dlpi_close(dh);
166 return ((uchar_t *)dllt);
167 }
168 if (dh != NULL)
169 dlpi_close(dh);

171 /*
172 * If we weren’t able to create a DUID based on the network interface
173 * in use, then generate one based on a UUID.
174 */
175 den = malloc(sizeof (*den) + UUID_LEN);
176 if (den != NULL) {
177 uuid_t uuid;

179 den->den_dutype = htons(DHCPV6_DUID_EN);
180 DHCPV6_SET_ENTNUM(den, DHCPV6_SUN_ENT);
181 uuid_generate(uuid);
182 (void) memcpy(den + 1, uuid, UUID_LEN);
183 *duidlen = sizeof (*den) + UUID_LEN;
184 }
185 return ((uchar_t *)den);
186 }

188 /*
189 * read_stable_iaid(): read a link’s stable IAID, if any
190 *
191 * input: const char *: interface name

new/usr/src/lib/libdhcpagent/common/dhcp_stable.c 4

192 * output: uint32_t: the IAID, or 0 if none
193 */

195 uint32_t
196 read_stable_iaid(const char *intf)
197 {
198 int fd;
199 struct iaid_ent ie;

201 if ((fd = open(IAID_FILE, O_RDONLY)) == -1)
202 return (0);
203 while (read(fd, &ie, sizeof (ie)) == sizeof (ie)) {
204 if (strcmp(intf, ie.ie_name) == 0) {
205 (void) close(fd);
206 return (ie.ie_iaid);
207 }
208 }
209 (void) close(fd);
210 return (0);
211 }

213 /*
214 * write_stable_iaid(): write out a link’s stable IAID
215 *
216 * input: const char *: interface name
217 * output: uint32_t: the IAID, or 0 if none
218 */

220 int
221 write_stable_iaid(const char *intf, uint32_t iaid)
222 {
223 int fd;
224 struct iaid_ent ie;
225 ssize_t retv;

227 if ((fd = open(IAID_FILE, O_RDWR | O_CREAT, 0644)) == -1)
228 return (0);
229 while (read(fd, &ie, sizeof (ie)) == sizeof (ie)) {
230 if (strcmp(intf, ie.ie_name) == 0) {
231 (void) close(fd);
232 if (iaid == ie.ie_iaid) {
233 return (0);
234 } else {
235 errno = EINVAL;
236 return (-1);
237 }
238 }
239 }
240 (void) memset(&ie, 0, sizeof (ie));
241 ie.ie_iaid = iaid;
242 (void) strlcpy(ie.ie_name, intf, sizeof (ie.ie_name));
243 retv = write(fd, &ie, sizeof (ie));
244 (void) close(fd);
245 if (retv == sizeof (ie)) {
246 return (0);
247 } else {
248 if (retv >= 0)
249 errno = ENOSPC;
250 return (-1);
251 }
252 }

254 /*
255 * make_stable_iaid(): create a stable IAID for a link
256 *
257 * input: const char *: interface name

new/usr/src/lib/libdhcpagent/common/dhcp_stable.c 5

258 * uint32_t: the ifIndex for this link (as a "hint")
259 * output: uint32_t: the new IAID, never zero
260 */

262 /* ARGSUSED */
263 uint32_t
264 make_stable_iaid(const char *intf, uint32_t hint)
265 {
266 int fd;
267 struct iaid_ent ie;
268 uint32_t maxid, minunused;
269 boolean_t recheck;

271 if ((fd = open(IAID_FILE, O_RDONLY)) == -1)
272 return (hint);
273 maxid = 0;
274 minunused = 1;
275 /*
276 * This logic is deliberately unoptimized. The reason is that it runs
277 * essentially just once per interface for the life of the system.
278 * Once the IAID is established, there’s no reason to generate it
279 * again, and all we care about here is correctness. Also, IAIDs tend
280 * to get added in a logical sequence order, so the outer loop should
281 * not normally run more than twice.
282 */
283 do {
284 recheck = B_FALSE;
285 while (read(fd, &ie, sizeof (ie)) == sizeof (ie)) {
286 if (ie.ie_iaid > maxid)
287 maxid = ie.ie_iaid;
288 if (ie.ie_iaid == minunused) {
289 recheck = B_TRUE;
290 minunused++;
291 }
292 if (ie.ie_iaid == hint)
293 hint = 0;
294 }
295 if (recheck)
296 (void) lseek(fd, 0, SEEK_SET);
297 } while (recheck);
298 (void) close(fd);
299 if (hint != 0)
300 return (hint);
301 else if (maxid != UINT32_MAX)
302 return (maxid + 1);
303 else
304 return (minunused);
305 }

new/usr/src/lib/libdhcputil/common/dhcp_inittab.c 1

**
 47819 Sun Feb 16 09:52:04 2014
new/usr/src/lib/libdhcputil/common/dhcp_inittab.c
4586 dhcpv6 client id malformed
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <sys/types.h>
27 #include <string.h>
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <errno.h>
31 #include <stdarg.h>
32 #include <limits.h>
33 #include <ctype.h>
34 #include <libgen.h>
35 #include <sys/isa_defs.h>
36 #include <sys/socket.h>
37 #include <net/if_arp.h>
38 #include <netinet/in.h>
39 #include <arpa/inet.h>
40 #include <sys/sysmacros.h>
41 #include <libinetutil.h>
42 #include <libdlpi.h>
43 #include <netinet/dhcp6.h>
44 #include <sys/ethernet.h>
45 #endif /* ! codereview */

47 #include "dhcp_symbol.h"
48 #include "dhcp_inittab.h"

50 static void inittab_msg(const char *, ...);
51 static uchar_t category_to_code(const char *);
52 static boolean_t encode_number(uint8_t, uint8_t, boolean_t, uint8_t,
53 const char *, uint8_t *, int *);
54 static boolean_t decode_number(uint8_t, uint8_t, boolean_t, uint8_t,
55 const uint8_t *, char *, int *);
56 static dhcp_symbol_t *inittab_lookup(uchar_t, char, const char *, int32_t,
57 size_t *);
58 static dsym_category_t itabcode_to_dsymcode(uchar_t);
59 static boolean_t parse_entry(char *, char **);

61 /*

new/usr/src/lib/libdhcputil/common/dhcp_inittab.c 2

62 * forward declaration of our internal inittab_table[]. too bulky to put
63 * up front -- check the end of this file for its definition.
64 *
65 * Note: we have only an IPv4 version here. The inittab_verify() function is
66 * used by the DHCP server and manager. We’ll need a new function if the
67 * server is extended to DHCPv6.
68 */
69 static dhcp_symbol_t inittab_table[];

71 /*
72 * the number of fields in the inittab and names for the fields. note that
73 * this order is meaningful to parse_entry(); other functions should just
74 * use them as indexes into the array returned from parse_entry().
75 */
76 #define ITAB_FIELDS 7
77 enum { ITAB_NAME, ITAB_CODE, ITAB_TYPE, ITAB_GRAN, ITAB_MAX, ITAB_CONS,
78 ITAB_CAT };

80 /*
81 * the category_map_entry_t is used to map the inittab category codes to
82 * the dsym codes. the reason the codes are different is that the inittab
83 * needs to have the codes be ORable such that queries can retrieve more
84 * than one category at a time. this map is also used to map the inittab
85 * string representation of a category to its numerical code.
86 */
87 typedef struct category_map_entry {
88 dsym_category_t cme_dsymcode;
89 char *cme_name;
90 uchar_t cme_itabcode;
91 } category_map_entry_t;

93 static category_map_entry_t category_map[] = {
94 { DSYM_STANDARD, "STANDARD", ITAB_CAT_STANDARD },
95 { DSYM_FIELD, "FIELD", ITAB_CAT_FIELD },
96 { DSYM_INTERNAL, "INTERNAL", ITAB_CAT_INTERNAL },
97 { DSYM_VENDOR, "VENDOR", ITAB_CAT_VENDOR },
98 { DSYM_SITE, "SITE", ITAB_CAT_SITE }
99 };

101 /*
102 * inittab_load(): returns all inittab entries with the specified criteria
103 *
104 * input: uchar_t: the categories the consumer is interested in
105 * char: the consumer type of the caller
106 * size_t *: set to the number of entries returned
107 * output: dhcp_symbol_t *: an array of dynamically allocated entries
108 * on success, NULL upon failure
109 */

111 dhcp_symbol_t *
112 inittab_load(uchar_t categories, char consumer, size_t *n_entries)
113 {
114 return (inittab_lookup(categories, consumer, NULL, -1, n_entries));
115 }

117 /*
118 * inittab_getbyname(): returns an inittab entry with the specified criteria
119 *
120 * input: int: the categories the consumer is interested in
121 * char: the consumer type of the caller
122 * char *: the name of the inittab entry the consumer wants
123 * output: dhcp_symbol_t *: a dynamically allocated dhcp_symbol structure
124 * on success, NULL upon failure
125 */

127 dhcp_symbol_t *

new/usr/src/lib/libdhcputil/common/dhcp_inittab.c 3

128 inittab_getbyname(uchar_t categories, char consumer, const char *name)
129 {
130 return (inittab_lookup(categories, consumer, name, -1, NULL));
131 }

133 /*
134 * inittab_getbycode(): returns an inittab entry with the specified criteria
135 *
136 * input: uchar_t: the categories the consumer is interested in
137 * char: the consumer type of the caller
138 * uint16_t: the code of the inittab entry the consumer wants
139 * output: dhcp_symbol_t *: a dynamically allocated dhcp_symbol structure
140 * on success, NULL upon failure
141 */

143 dhcp_symbol_t *
144 inittab_getbycode(uchar_t categories, char consumer, uint16_t code)
145 {
146 return (inittab_lookup(categories, consumer, NULL, code, NULL));
147 }

149 /*
150 * inittab_lookup(): returns inittab entries with the specified criteria
151 *
152 * input: uchar_t: the categories the consumer is interested in
153 * char: the consumer type of the caller
154 * const char *: the name of the entry the caller is interested
155 * in, or NULL if the caller doesn’t care
156 * int32_t: the code the caller is interested in, or -1 if the
157 * caller doesn’t care
158 * size_t *: set to the number of entries returned
159 * output: dhcp_symbol_t *: dynamically allocated dhcp_symbol structures
160 * on success, NULL upon failure
161 */

163 static dhcp_symbol_t *
164 inittab_lookup(uchar_t categories, char consumer, const char *name,
165 int32_t code, size_t *n_entriesp)
166 {
167 FILE *inittab_fp;
168 dhcp_symbol_t *new_entries, *entries = NULL;
169 dhcp_symbol_t entry;
170 char buffer[ITAB_MAX_LINE_LEN];
171 char *fields[ITAB_FIELDS];
172 unsigned long line = 0;
173 size_t i, n_entries = 0;
174 const char *inittab_path;
175 uchar_t category_code;
176 dsym_cdtype_t type;

178 if (categories & ITAB_CAT_V6) {
179 inittab_path = getenv("DHCP_INITTAB6_PATH");
180 if (inittab_path == NULL)
181 inittab_path = ITAB_INITTAB6_PATH;
182 } else {
183 inittab_path = getenv("DHCP_INITTAB_PATH");
184 if (inittab_path == NULL)
185 inittab_path = ITAB_INITTAB_PATH;
186 }

188 inittab_fp = fopen(inittab_path, "r");
189 if (inittab_fp == NULL) {
190 inittab_msg("inittab_lookup: fopen: %s: %s",
191 inittab_path, strerror(errno));
192 return (NULL);
193 }

new/usr/src/lib/libdhcputil/common/dhcp_inittab.c 4

195 (void) bufsplit(",\n", 0, NULL);
196 while (fgets(buffer, sizeof (buffer), inittab_fp) != NULL) {

198 line++;

200 /*
201 * make sure the string didn’t overflow our buffer
202 */
203 if (strchr(buffer, ’\n’) == NULL) {
204 inittab_msg("inittab_lookup: line %li: too long, "
205 "skipping", line);
206 continue;
207 }

209 /*
210 * skip ‘pure comment’ lines
211 */
212 for (i = 0; buffer[i] != ’\0’; i++)
213 if (isspace(buffer[i]) == 0)
214 break;

216 if (buffer[i] == ITAB_COMMENT_CHAR || buffer[i] == ’\0’)
217 continue;

219 /*
220 * parse the entry out into fields.
221 */
222 if (parse_entry(buffer, fields) == B_FALSE) {
223 inittab_msg("inittab_lookup: line %li: syntax error, "
224 "skipping", line);
225 continue;
226 }

228 /*
229 * validate the values in the entries; skip if invalid.
230 */
231 if (atoi(fields[ITAB_GRAN]) > ITAB_GRAN_MAX) {
232 inittab_msg("inittab_lookup: line %li: granularity ‘%s’"
233 " out of range, skipping", line, fields[ITAB_GRAN]);
234 continue;
235 }

237 if (atoi(fields[ITAB_MAX]) > ITAB_MAX_MAX) {
238 inittab_msg("inittab_lookup: line %li: maximum ‘%s’ "
239 "out of range, skipping", line, fields[ITAB_MAX]);
240 continue;
241 }

243 if (dsym_get_type_id(fields[ITAB_TYPE], &type, B_FALSE) !=
244 DSYM_SUCCESS) {
245 inittab_msg("inittab_lookup: line %li: type ‘%s’ "
246 "is invalid, skipping", line, fields[ITAB_TYPE]);
247 continue;
248 }

250 /*
251 * find out whether this entry of interest to our consumer,
252 * and if so, throw it onto the set of entries we’ll return.
253 * check categories last since it’s the most expensive check.
254 */
255 if (strchr(fields[ITAB_CONS], consumer) == NULL)
256 continue;

258 if (code != -1 && atoi(fields[ITAB_CODE]) != code)
259 continue;

new/usr/src/lib/libdhcputil/common/dhcp_inittab.c 5

261 if (name != NULL && strcasecmp(fields[ITAB_NAME], name) != 0)
262 continue;

264 category_code = category_to_code(fields[ITAB_CAT]);
265 if ((category_code & categories) == 0)
266 continue;

268 /*
269 * looks like a match. allocate an entry and fill it in
270 */
271 new_entries = realloc(entries, (n_entries + 1) *
272 sizeof (dhcp_symbol_t));

274 /*
275 * if we run out of memory, might as well return what we can
276 */
277 if (new_entries == NULL) {
278 inittab_msg("inittab_lookup: ran out of memory "
279 "allocating dhcp_symbol_t’s");
280 break;
281 }

283 entry.ds_max = atoi(fields[ITAB_MAX]);
284 entry.ds_code = atoi(fields[ITAB_CODE]);
285 entry.ds_type = type;
286 entry.ds_gran = atoi(fields[ITAB_GRAN]);
287 entry.ds_category = itabcode_to_dsymcode(category_code);
288 entry.ds_classes.dc_cnt = 0;
289 entry.ds_classes.dc_names = NULL;
290 (void) strlcpy(entry.ds_name, fields[ITAB_NAME],
291 sizeof (entry.ds_name));
292 entry.ds_dhcpv6 = (categories & ITAB_CAT_V6) ? 1 : 0;

294 entries = new_entries;
295 entries[n_entries++] = entry;
296 }

298 if (ferror(inittab_fp) != 0) {
299 inittab_msg("inittab_lookup: error on inittab stream");
300 clearerr(inittab_fp);
301 }

303 (void) fclose(inittab_fp);

305 if (n_entriesp != NULL)
306 *n_entriesp = n_entries;

308 return (entries);
309 }

311 /*
312 * parse_entry(): parses an entry out into its constituent fields
313 *
314 * input: char *: the entry
315 * char **: an array of ITAB_FIELDS length which contains
316 * pointers into the entry on upon return
317 * output: boolean_t: B_TRUE on success, B_FALSE on failure
318 */

320 static boolean_t
321 parse_entry(char *entry, char **fields)
322 {
323 char *category, *spacep;
324 size_t n_fields, i;

new/usr/src/lib/libdhcputil/common/dhcp_inittab.c 6

326 /*
327 * due to a mistake made long ago, the first and second fields of
328 * each entry are not separated by a comma, but rather by
329 * whitespace -- have bufsplit() treat the two fields as one, then
330 * pull them apart afterwards.
331 */
332 n_fields = bufsplit(entry, ITAB_FIELDS - 1, fields);
333 if (n_fields != (ITAB_FIELDS - 1))
334 return (B_FALSE);

336 /*
337 * pull the first and second fields apart. this is complicated
338 * since the first field can contain embedded whitespace (so we
339 * must separate the two fields by the last span of whitespace).
340 *
341 * first, find the initial span of whitespace. if there isn’t one,
342 * then the entry is malformed.
343 */
344 category = strpbrk(fields[ITAB_NAME], " \t");
345 if (category == NULL)
346 return (B_FALSE);

348 /*
349 * find the last span of whitespace.
350 */
351 do {
352 while (isspace(*category))
353 category++;

355 spacep = strpbrk(category, " \t");
356 if (spacep != NULL)
357 category = spacep;
358 } while (spacep != NULL);

360 /*
361 * NUL-terminate the first byte of the last span of whitespace, so
362 * that the first field doesn’t have any residual trailing
363 * whitespace.
364 */
365 spacep = category - 1;
366 while (isspace(*spacep))
367 spacep--;

369 if (spacep <= fields[0])
370 return (B_FALSE);

372 *++spacep = ’\0’;

374 /*
375 * remove any whitespace from the fields.
376 */
377 for (i = 0; i < n_fields; i++) {
378 while (isspace(*fields[i]))
379 fields[i]++;
380 }
381 fields[ITAB_CAT] = category;

383 return (B_TRUE);
384 }

386 /*
387 * inittab_verify(): verifies that a given inittab entry matches an internal
388 * definition
389 *
390 * input: dhcp_symbol_t *: the inittab entry to verify
391 * dhcp_symbol_t *: if non-NULL, a place to store the internal

new/usr/src/lib/libdhcputil/common/dhcp_inittab.c 7

392 * inittab entry upon return
393 * output: int: ITAB_FAILURE, ITAB_SUCCESS, or ITAB_UNKNOWN
394 *
395 * notes: IPv4 only
396 */

398 int
399 inittab_verify(const dhcp_symbol_t *inittab_ent, dhcp_symbol_t *internal_ent)
400 {
401 unsigned int i;

403 for (i = 0; inittab_table[i].ds_name[0] != ’\0’; i++) {

405 if (inittab_ent->ds_category != inittab_table[i].ds_category)
406 continue;

408 if (inittab_ent->ds_code == inittab_table[i].ds_code) {
409 if (internal_ent != NULL)
410 *internal_ent = inittab_table[i];

412 if (inittab_table[i].ds_type != inittab_ent->ds_type ||
413 inittab_table[i].ds_gran != inittab_ent->ds_gran ||
414 inittab_table[i].ds_max != inittab_ent->ds_max)
415 return (ITAB_FAILURE);

417 return (ITAB_SUCCESS);
418 }
419 }

421 return (ITAB_UNKNOWN);
422 }

424 /*
425 * get_hw_type(): interpret ",hwtype" in the input string, as part of a DUID.
426 * The hwtype string is optional, and must be 0-65535 if
427 * present.
428 *
429 * input: char **: pointer to string pointer
430 * int *: error return value
431 * output: int: hardware type, or -1 for empty, or -2 for error.
432 */

434 static int
435 get_hw_type(char **strp, int *ierrnop)
436 {
437 char *str = *strp;
438 ulong_t hwtype;

440 if (*str++ != ’,’) {
441 *ierrnop = ITAB_BAD_NUMBER;
442 return (-2);
443 }
444 if (*str == ’,’ || *str == ’\0’) {
445 *strp = str;
446 return (-1);
447 }
448 hwtype = strtoul(str, strp, 0);
449 if (errno != 0 || *strp == str || hwtype > 65535) {
450 *ierrnop = ITAB_BAD_NUMBER;
451 return (-2);
452 } else {
453 return ((int)hwtype);
454 }
455 }

457 /*

new/usr/src/lib/libdhcputil/common/dhcp_inittab.c 8

458 * get_mac_addr(): interpret ",macaddr" in the input string, as part of a DUID.
459 * The ’macaddr’ may be a hex string (in any standard format),
460 * or the name of a physical interface. If an interface name
461 * is given, then the interface type is extracted as well.
462 *
463 * input: const char *: input string
464 * int *: error return value
465 * uint16_t *: hardware type output (network byte order)
466 * int: hardware type input; -1 for empty
467 * uchar_t *: output buffer for MAC address
468 * output: int: length of MAC address, or -1 for error
469 */

471 static int
472 get_mac_addr(const char *str, int *ierrnop, uint16_t *hwret, int hwtype,
473 uchar_t *outbuf)
474 {
475 int maclen;
476 int dig, val;
477 dlpi_handle_t dh;
478 dlpi_info_t dlinfo;
479 char chr;

481 if (*str != ’\0’) {
482 if (*str++ != ’,’)
483 goto failed;
484 if (dlpi_open(str, &dh, 0) != DLPI_SUCCESS) {
485 maclen = 0;
486 dig = val = 0;
487 /*
488 * Allow MAC addresses with separators matching regexp
489 * (:|-| *).
490 */
491 while ((chr = *str++) != ’\0’) {
492 if (isdigit(chr)) {
493 val = (val << 4) + chr - ’0’;
494 } else if (isxdigit(chr)) {
495 val = (val << 4) + chr -
496 (isupper(chr) ? ’A’ : ’a’) + 10;
497 } else if (isspace(chr) && dig == 0) {
498 continue;
499 } else if (chr == ’:’ || chr == ’-’ ||
500 isspace(chr)) {
501 dig = 1;
502 } else {
503 goto failed;
504 }
505 if (++dig == 2) {
506 *outbuf++ = val;
507 maclen++;
508 dig = val = 0;
509 }
510 }
511 } else {
512 if (dlpi_bind(dh, ETHERTYPE_IPV6, NULL) !=
513 DLPI_SUCCESS || dlpi_info(dh, &dlinfo, 0) !=
514 DLPI_SUCCESS) {
44 if (dlpi_info(dh, &dlinfo, 0) != DLPI_SUCCESS) {
515 dlpi_close(dh);
516 goto failed;
517 }
518 maclen = dlinfo.di_physaddrlen;
519 (void) memcpy(outbuf, dlinfo.di_physaddr, maclen);
520 dlpi_close(dh);
521 if (hwtype == -1)
522 hwtype = dlpi_arptype(dlinfo.di_mactype);

new/usr/src/lib/libdhcputil/common/dhcp_inittab.c 9

523 }
524 }
525 if (hwtype == -1)
526 goto failed;
527 *hwret = htons(hwtype);
528 return (maclen);

530 failed:
531 *ierrnop = ITAB_BAD_NUMBER;
532 return (-1);
533 }

______unchanged_portion_omitted_

