new usr/src/lib/libdhcpagent/comon/ dhcp_stable.c 1 new usr/src/lib/libdhcpagent/comon/ dhcp_stable.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 60 * output uchar t * the wID buffer’ or NULL on error (and errno |S Set)
7280 Sun Feb 16 09:52: 03 2014 61 * note: menory returned is frommalloc; caller nust free.
new usr/src/lib/libdhcpagent/comon/dhcp_stable.c 62 */
4586 dhcpv6 client id nalfornmed
IR RS SR RS E SR SRR SRR R E SRR R R R E R SRR EEEEREEEEEEEEEERSE] 64 uchar t *
1/* 65 read_stabl e_dui d(size_t *duidl en)
2 * CDDL HEADER START 66 {
3 * 67 int fd;
4 * The contents of this file are subject to the terms of the 68 ssize_t retv;
5 * Common Devel opnent and Distribution License (the "License"). 69 struct stat sb;
6 * You may not use this file except in conpliance with the License. 70 uchar _t *duid = NULL;
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 72 if ((fd = open(DUI D_FILE, O RDOWLY)) == -1)
9 * or http://ww. opensol aris.org/os/licensing. 73 return (NULL);
10 * See the License for the specific |anguage governi ng perm ssions 74 if (fstat(fd, &sb) !'= -1 & & S | SREG sb. st _node) &&
11 * and limtations under the License. 75 (duid = malloc(sb st_size)) !'= NULL) {
12 * 76 retv = read(fd, duid, sb.st_size);
13 * When distributing Covered Code, include this CDDL HEADER in each 77 if (retv == sbh.st_si ze) {
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 78 *dui dl en = sb. st_si ze;
15 * |f applicable, add the follow ng below this CODL HEADER, wth the 79 } else {
16 * fields enclosed by brackets "[]" replaced with your own identifying 80 free(duid);
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 81 /*
18 * 82 * Make sure that errno always gets set when sonething
19 * CDDL HEADER END 83 * goes w ong.
20 */ 84 */
85 if (retv >= 0)
22 | * 86 errno = EI NVAL;
23 * Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved. 87 dui d = NULL;
24 * Use is subject to |license terns. 88 }
25 */ 89
90 (void) close(fd);
27 #pragne ident " VYR N Yo %E% SM " 91 return (duid);
92 }
27 [*
28 * This nodule reads and wites the stable identifier values, DU D and | AlD. 94 | *
29 */ 95 * wite_stable_duid(): wite the systenis stable DU D.
96 *
31 #include <stdio. h> 97 * input: const uchar_t *: pointer to the DU D buffer
32 #include <stdlib. h> 98 * size_t: length of the DU D
33 #include <unistd. h> 99 * output: int: O on success, -1 on error. errno is set on error.
34 #include <string.h> 100 */
35 #include <limts.h>
36 #include <fcntl.h> 102 int
37 #include <errno. h> 103 write_stabl e_duid(const uchar_t *duid, size_t duidlen)
38 #include <libdl pi.h> 104 {
39 #include <uuid/uuid. h> 105 int fd;
40 #include <sys/types. h> 106 ssize_t retv;
41 #include <sys/stat.h>
42 #include <net/if.h> 108 (oid) unlink(DU D FILE);
43 #incl ude <neti net/dhcp6. h> 109 if ((fd = open(DUI D_FILE, O WRONLY | O CREAT, 0644)) == -1)
44 #incl ude <dhcp_inittab. h> 110 return (-1);
45 #incl ude <sys/ et hernet. h> 111 retv = wite(fd, duid, duidlen);
46 #endif /* | codereview */ 112 if (retv == duidlen)
113 return (close(fd));
48 #define DU D_FILE "/ etc/ dhcp/ dui d" 114 } else {
49 #define | AID_FILE "/ etc/dhcp/iaid" 115 (void) close(fd);
116 if (retv >=)
51 struct iaid_ent { 117 errno = ENGCSPC,
52 ui nt32_t ie_iaid, 118 return (-1);
53 char ie_| ne[LI FNANVSI Z] ; 119 }
54 }; 120 }
56 /* 122 /*
57 * read_stable_duid(): read the systenis stable DU D, if any 123 * make_stable_duid(): create a new DU D
58 * 124 *
59 * input: size_t *: pointer to a size_t to return the DU D | ength 125 * input: const char *: nane of physical interface for reference

new usr/src/lib/libdhcpagent/comon/dhcp_stable.c

126 * size_t *: pointer to a size_t to return the DUID | ength

127 * output: uchar_t *: the DU D buffer, or NULL on error (and errno is set)
128 * note: menory returned is frommalloc; caller nust free.

129 */

131 uchar_t *
132 make_st abl e_dui d(const char *physintf, size_t *duidlen)

133 {

134 int |en;

135 dl pi _| |nfo t dlinfo;

136 dl pi _handl'e_t dh = NULL;

137 uint _t arptype;

138 dui d_en_t *den;

140 I*

141 * Try to read the MAC | ayer address for the physical interface
142 * provided as a hint. |f that works, we can use a DUl D LLT.
143 */

145 if (dlpi_open(physintf, &h, 0) == DLPI SU(I:ESS &&

146 dl pi _bi nd(dh, ETHERTYPE IPV6 NULL) == DLPI _SUCCESS &&
147 #endif /* | codereview */

148 di pi _info(dh, &dlinfo, 0) == DLPI SUCCESS &&

149 (len = dlinfo.di _physaddrlen) > 0 &&

150 (arptype = dl pi _arptype(dlinfo.di _nactype) != 0)) {

151 durd_ITt_t *dllt;

152 time_t now,

154 if ((dllt = rralloc(5|zeof (*dlIt) + len)) == NULL) {
155 dl pi _cl ose(dh);

156 return (NULL);

157 }

159 (void) mencpy((dllt + 1), dlinfo.di_physaddr, len);
160 dl1t->dllt_dutype = htons(DHCPV6_DU D _LLT);

161 di1t->dllt_hwtype = htons(arptype);

162 now = time(NULL) - DU D _TI ME_BASE;

163 dilt->dlIt_time = htonl (now);

164 *duidlen = sizeof (*dlIt) + len;

165 dl pi _cl ose(d)

166 return ((uchar_t *)dllt);

167 }

168 if (dh !'= NULL)

169 dl pi _cl ose(dh);

171 /*

172 * |f we weren't able to create a DU D based on the network interface
173 * in use, then generate one based on a UU D.

174 *

175 den = mal | oc(sizeof (*den) + UU D_LEN);

176 if (den !'= NULL) {

177 uui d_t uui d;

179 den->den_dut ype = htons(DHCPV6_DU D _EN);

180 DHCPV6_SET_ENTNUM den, DHCPV6_SUN_ENT) ;

181 uui d_gener at e(uui d);

182 (voi d) rrem:py(den + 1, uuid, UU D LEN);

183 *dui dl en = sizeof (* den) + Ll D_LEN;

184 }

185 return ((uchar_t *)den);

186 }

188 /*

189 * read_stable_iaid(): read a link’s stable IAID, if any
190 *
191 * input: const char *: interface name

new usr/src/lib/libdhcpagent/comon/dhcp_stable.c

192 * output: uint32_t: the AID, or 0 if none
193 */

195 uint32_t

196 read_stabl e_i aid(const char *intf)
197 {

198 int fd;

199 struct iaid_ent ie;

201 if ((fd = open(l AID_FILE, O RDONLY)) == -1)

202 return (0);

203 while (read(fd, & e, sizeof (ie)) == sizeof (ie)) {
204 if (strenp(intf, ie.ie_name) == 0) {

205 (void) close(fd);

206 return (ie.ie_iaid);

207 }

208

209 (void) close(fd);

210 return (0);

211 }

213 /
214
215
216
217
218

wite_stable_iaid(): wite out a link’s stable | AID

input: const char *: interface name
output: uint32_t: the IAID, or O if none
/

* ok kb F o

220 int

221 wite_stable_iaid(const char *intf, uint32_t iaid)
222 {

223 int fd;

224 struct iaid_ent ie;

225 ssize_t retv;

227 if ((fd = open(1AID_FILE, O RDWR | O CREAT, 0644)) == -1)

228 return (0);

229 while (read(fd, & e, sizeof (ie)) == sizeof (ie)) {
230 if (strenp(intf, ie.ie_nane) == 0) {

231 (voi d) cl ose(fd);

232 if (|a|d——|e|e|a|d){

233 return (0);

234 } else {

235 errno = ElI NVAL;

236 return (-1);

237 }

238 }

239 }

240 (void) nenset (&
241 ie.ie_iaid =iai
242 (void) strlcpy(i
243 retv = wite(fd,
244 (void) close(fd);
245 if (retv == si zeof (ie)) {

246 return (0);

247 } else {

248 if (retv >= 0)

249 errno = ENGSPC;
250 return (-1);

251 }

252 }

, 0, sizeof (ie));

.ie_nane, intf, sizeof (ie.ie_nane));
&Je sizeof (ie));

254 [*

255 * make_stable_iaid(): create a stable I1AID for a Iink
256 *

257 * input: const char *: interface name

new usr/src/lib/libdhcpagent/comon/dhcp_stable.c

258 * uint32_t: the iflndex for this link (as a "hint")
259 * output: uint32_t: the new | AID, never zero
260 */

262 /* ARGSUSED */

263 uint32_t

264 make_stabl e_i ai d(const char *intf, uint32_t hint)
265 {

266 int fd;

267 struct iaid_ent ie;

268 uint32_t maxid, mnunused;

269 bool ean_t recheck;

271 if ((fd = open(I AID_FILE, O RDONLY)) == -1)
272 return (hint);

273 maxid = 0;

274 m nunused = 1;

275 /*

276
277
278
279
280
281
282 */

283 do {

284 recheck = B_FALSE;

285 while (read(fd, & e, sizeof (ie)) == sizeof (ie)) {
286 if (ie.ie_iaid > maxid)

287 maxid = ie.ie_laid;

288 if (ie.ie_iaid == mnunused) {

289 recheck = B_TRUE;

290 m nunused++;

291 }

292 if (ie.ie_iaid == hint)

293 hint = 0;

294 }

295 if (recheck)

296 (void) |seek(fd, 0, SEEK SET);

297 } while (recheck);

298 (void) close(fd);

299 if (hint 1= 0)

300 return (hint);

301 else if (maxid !'= U NT32_MAX)

302 return (maxid + 1);

303 el se

304 return (m nunused);

305 }

This logic is deliberately unoptimzed. The reason is that it
essentially just once per interface for the life of the system
Once the IAID is established, there’'s no reason to generate it

* kK ok ko

not nornmally run nore than tw ce.

again, and all we care about here is correctness. Also, |ADs tend
to get added in a |ogical sequence order, so the outer |oop should

new usr/src/lib/libdhcputil/common/dhcp_inittab.c

R R R R

47819 Sun Feb 16 09:52:04 2014
new usr/src/lib/libdhcputil/common/dhcp_inittab.c
4586 dhcpv6 client id nalfornmed

R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
*
*/
*
*
*

Copyright 2008 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.
/

26 #include <sys/types. h>

27 #include <string. h>

28 #include <stdlib. h>

29 #include <stdio. h>

30 #include <errno. h>

31 #include <stdarg. h>

32 #include <limts.h>

33 #include <ctype. h>

34 #include <libgen. h>

35 #include <sys/isa_defs. h>
36 #include <sys/socket. h>

37 #include <net/if_arp. h>

38 #include <netinet/in.h>

39 #include <arpal/inet.h>

40 #i ncl ude <sys/sysnmacros. h>
41 #include <l ibinetutil.h>
42 #include <Iibdl pi.h>

43 #incl ude <netinet/dhcp6. h>
44 #incl ude <sys/ethernet.h>
45 #endif /* | codereview */

47 #include "dhcp_synbol . h
48 #include "dhcp_inittab. h"

50 static void
51 static uchar_t
52 static bool ean_t

inittab_nsg(const char * .
category_t o_code(const char’ *);
encode_nunber (uint8_t, uint8_t, boolean_t, uint8_t,

53 const char *, uint8_t *, i nt *);

54 static bool ean_t decode_nunber (uint8_t, uint8_t, boolean_t, uint8_t,
55 const uint8_t *, char *, i nt *);

56 static dhcp_synbol _t *inittab_|l ookup(uchar_t, char, const char *, int32_t,
57 size_t *);

58 static dsymcategory_t itabcode_to_dsyntode(uchar_t);
59 static bool ean_t parse_entry(char *, char **);

61 /*

new usr/src/lib/libdhcputil/common/dhcp_inittab.c

62 * forward declaration of our internal initt bt able[]. too bulky to put
63 * up front -- check the end of this file for its definition.
64 *
65 * Note: we have only an | Pv4 version here. The inittab_verify() function is
66 * used by the DHCP server and nanager. We'll need a new function if the
67 * server is extended to DHCPv6.
68 */
t

static dhcp_synbol _t inittab_table[];

71 | *
72 * the nunber of fields in the inittab and nanes for the fields. note that
73 * this order is neaningful to parse_entry(); other functions should just
74 * use themas indexes into the array returned from parse_entry()

S

76 #define | TAB_FI ELDS 7
77 enum { | TAB_NAVE, | TAB CODE, |TAB_TYPE, |TAB GRAN, |TAB_MAX, | TAB CONS,
78 | TAB_CAT };

80 /*

81 * the category _map_entry_t is used to map the inittab category codes to
82 * the dsymcodes. the reason the codes are different is that the inittab
83 * needs to have the codes be ORable such that queries can retrieve nore
84 * than one category at a tine. this map is also used to map the inittab
85 * string representation of a category to its nunerical code.

86 *

87 typedef struct category_map_entry {

88 dsym category_t cne_dsyntode;

89 char *cne_nane;

90 uchar _t cnme_i t abcode;

91 } category_map_entry_t;

93 static category_map_entry_t cat egory map[] = {
94 { DSYM_STANDARD, ANDARD" , | TAB_CAT_STANDARD },
95 { DSYM FI ELD, " FI ELD', | TAB_CAT_FIELD },

96 { DSYM_| NTERNAL, "l NTERNAL", | TAB_CAT_| NTERNAL },

97 { DSYM VENDOR, " VENDOR" | TAB_CAT_VENDCR },

98 { DSYM SI TE, "SI TE", | TAB_CAT_SI TE }

99 }

101 /*

102 * inittab_load(): returns all inittab entries with the specified criteria
103 *

104 * input: uchar_t: the categories the consuner is interested in

105 * char: the consuner type of the caller

106 * size_t *: set to the nunber of entries returned

107 * output: dhcp_synbol _t *: an array of dynamcally allocated entries

108 * on success, NULL upon failure

109 */

111 dhcp_synbol _t *

112 inittab_| oad(uchar _t categories, char consuner, size_t *n_entries)

113 {

114 return (inittab_l ookup(categories, consuner, NULL, -1, n_entries));
115 }

117 /*

118 * inittab_getbynanme(): returns an inittab entry with the specified criteria
119 *

120 * input: int: the categories the consuner is interested in

121 * char: the consuner type of the caller

122 * char *: the nane of the inittab entry the consunmer wants

123 * output: dhcp_synbol _t *: a dynamically allocated dhcp_synbol structure
124 * on success, NULL upon failure

125 */

127 dhcp_synbol _t *

new usr/src/lib/libdhcputil/common/dhcp_inittab.c

128 inittab_get bynane(uchar_t categories, char consuner, const char *nane)
129 {

130 return (inittab_|l ookup(categories, consuner, nane, -1, NULL));

131 }

133 /*

134 * inittab_getbycode(): returns an inittab entry with the specified criteria
135 *

136 * input: uchar_t: the categories the consuner is interested in

137 * char: the consuner type of the caller

138 * uintl6_t: the code of the inittab entry the consuner wants

139 * output: dhcp_synbol _t *: a dynamically allocated dhcp_synbol structure
140 * on success, NULL upon failure

141 */

143 dhcp_synbol _t *
144 |n|ttab _getbycode(uchar _t categories, char consumer, uint16_t code)

145 {

146 return (inittab_| ookup(categories, consuner, NULL, code, NULL));
147 }

149 /*

150 * inittab_l ookup(): returns inittab entries with the specified criteria
151 *

152 * input: uchar_t: the categories the consuner is interested in

153 * char: the consunmer type of the caller

154 * const char *: the nane of the entry the caller is interested
155 * in, or NULL if the caller doesn’t care

156 * int32_t: the code the caller is interested in, or -1 if the
157 * caller doesn’t care

158 * size_t *: set to the nunber of entries returned

159 * output: dhcp_synbol _t *: dynamically allocated dhcp_synbol structures
160 * on success, NULL upon failure

161 */

163 static dhcp_synbol _t *
164 inittab Iookup(uchar t categories, char consuner, const char *nane,

165 int32_t code, size_t *n_entriesp)

166 {

167 FI LE *inittab_fp;

168 dhcp_synbol _t *new_entries, *entries = NULL;
169 dhcp_synbol _t entry;

170 char buffer[| TAB_MAX_LI NE_LEN];
171 char *fiel ds[| TAB_FI ELDS];

172 unsi gned | ong line = 0;

173 size_t i, n_entri es = 0;

174 const char *inittab_path;

175 uchar _t cat egory_code;

176 dsym cdt ype_t type;

178 if (categories & ITAB CAT_V6) {

179 inittab_path getenv(DHCP_I Nl TTAB6_PATH") ;
180 if (ini ttab_pat h == NULL)

181 inittab_path = | TAB | NIl TTAB6_PATH;
182 } else {

183 inittab_path = getenv("DHCP_I Nl TTAB_PATH");
184 if (|n|ttab path—— NULL

185 inittab_path = I TAB_| Nl TTAB_PATH;
186 }

188 inittab_fp = fopen(inittab_path, "r");

189 if (inittab_fp == NUL) {

190 inittab_nsg("inittab_| ookup: fopen: %: %",
191 inittab_path, strerror(errno));

192 return (NULL);

193 }

new usr/src/lib/libdhcputil/common/dhcp_inittab.c

195 (voi d) bufsplit(",\n", 0, NULL);

196 whil e (fgets(buffer, sizeof (buffer), inittab_fp) != NULL) {

198 i ne++;

200 /*

201 * make sure the string didn't overflow our buffer

202 */

203 if (strchr(buffer, *\'n’) == NULL)

204 inittab_msg("inittab_|l ookup: line %i: too |ong,

205 "ski ppi ng", line);

206 conti nue;

207 }

209 /*

210 * skip ‘pure comment’ |ines

211 */

212 for (i = 0; buffer[i] !="\0"; i++)

213 if (isspace(buffer[i]) == 0)

214 br eak;

216 if (buffer[i] == | TAB_COMVENT_CHAR || buffer[i] == "\0")
217 conti nue;

219 /*

220 * parse the entry out into fields.

221 *

222 if (parse_ entry(buffer fields) == B_FALSE)

223 i ni ttab _msg(" i nittab Iookup line %i: syntax error,
224 "ski ppi ng", line

225 cont i nue;

226 }

228 /*

229 * validate the values in the entries; skip if invalid.

230 *

231 if (atoi(fields[ITAB_GRAN]) > | TAB_GRAN MAX) {

232 inittab_msg("inittab_|l ookup: line %i: granularity *
233 " out of range, skipping", line, fields[lITAB GRAN]);
234 conti nue;

235 }

237 if (atoi(fields[ITAB MAX]) >ITABNAXNAX){

238 ini ttab _nmeg("inittab Iookup line %i: maximum"*‘%’ "
239 "out of range, skipping", line, fields[ITAB MAX]);
240 conti nue;

241 }

243 if (dsymget_type_id(fields[ITAB_TYPE], & ype, B FALSE) !=
244 DSYM_SUCCESS)

245 |n|ttab _nmeg("inittab_|l ookup: line %i: ty ‘s’

246 "is invalid, skipping", line, f|elds[|TABTYPE])
247 conti nue;

248 }

250 /*

251 * find out whether this entry of interest to our consuner,
252 * and if so, throwit onto the set of entries we'll return.
253 * check categories last since it’s the npbst expensive check.
254 */

255 if (strchr(fields[ITAB_CONS], consumer) == NULL)

256 conti nue;

258 if (code = -1 && atoi(fields[| TAB_CODE]) != code)

259 conti nue;

new usr/src/lib/libdhcputil/common/dhcp_inittab.c

261 if (name !'= NULL && strcasecnp(fields[|TAB_NAME], nane) != 0)
262 conti nue;

264 category_code = category_to_code(fiel ds[|TAB_CAT]);

265 if ((category_code & categories) == 0)

266 conti nue;

268 *

269 * |ooks like a nmatch. allocate an entry and fill it in
270 */

271 new entries = realloc(en ries, (n_entries + 1) *

272 si zeof (dhcp_synbol _t));

274 /*

275 * if we run out of nenory, might as well return what we can
276 */

277 if (new_entries == NULL)

278 inittab_msg("inittab_| ookup: ran out of nenory "
279 "al l ocating dhcp_synbol _t’s");

280 br eak;

281 }

283 entry. ds_nmax = atoi (fields[I TAB_MAX]);

284 entry. ds_code = atoi (fields[|TAB_CODE]);

285 entry.ds_type = type;

286 entry. ds_gran = atoi (fields[| TAB_GRAN]);

287 entry.ds_category = |tabcode to dsym:ode(cat egory_code);
288 entry. ds_cl asses. dc_cnt = 0;

289 entry.ds_cl asses. dc_names = NULL;

290 (void) strlcpy(entry.ds_nanme, fields[lTAB_NAVE],

291 si zeof (entry.ds_nane));

292 entry. ds_dhcpv6 = (categories & I TAB_ CAT_V6) ? 1 : O;
294 entries = new_entries;

295 entries[n_entries++] = entry;

296 }

298 if (ferror(lmttabfp) 1= 0)

299 inittab_msg("inittab_|l ookup: error on inittab streant);
300 clearerr(inittab_fp);

301 }

303 (void) fclose(inittab_fp);

305 if (n_entriesp != NULL)

306 *n_entriesp = n_entries;

308 return (entries);

309 }

311 /*

312 * parse_entry(): parses an entry out into its constituent fields

313 *

314 * input: char *: the entry

315 * char **: an array of |TAB_FIELDS |ength which contains

316 * pointers into the entry on upon return

317 * output: boolean_t: B TRUE on success, B FALSE on failure

318 */

320 static bool ean_t

321 parse_entry(char *entry, char **fields)

322 {

323 char *cat egory *spacep;

324 size_t n_fields, i;

new usr/src/lib/libdhcputil/common/dhcp_inittab.c

326
327
328
329
330
331
332
333
334

336
337
338
339
340
341
342
343
344
345
346

348
349
350
351
352
353

355
356
357
358

360
361
362
363
364
365
366
367

369
370

372

374
375
376
377
378
379
380
381

383
384

386
387
388
389
390
391

* Ok Ok ok k%

inittab_verify():

/*
* due to a mi stake made | ong ago, the first and second fields of
* each entry are not separated by a comma, but rather by

* whitespace -- have bufsplit() treat the two fields as one, then
*

~k

pul | them apart afterwards.

_fields = bufsplit(entry, ITAB_FIELDS - 1, fields);
f (n flelds' (I TAB_FI ELDS - 1))
return (B_FALSE);

pull the first and second fields apart. this is conplicated
since the first field can contain enbedded whitespace (so we

nmust separate the two fields by the |ast span of whitespace).

*
*
*
*
*
* first, find the initial span of whitespace. if there isn’t one,
* then the entry is nalforned.
*
/
category = strpbrk(fields[|TAB_NAMVE], " \t");
if (category == NULL)

return (B_FALSE);

/*
* find the | ast span of whitespace.
*

do {
whi l e (isspace(*category))
cat egor y++;

spacep = strpbrk(category, " \t");
if (spacep != NULL)
category = spacep;
} while (spacep != NULL);

/*
* NUL-terminate the first byte of the |last span of whitespace, so
* that the first field doesn’t have any residual trailing
* whi t espace.
*/
spacep = cat egory -
whil e (isspace(* spacep))
spacep- - ;

if (spacep <= fields[0])
return (B_FALSE);

*++spacep = '\0’;
/*
* renpve any whitespace fromthe fields.
*
/
for (i =0; i <n_fields; i++

whil e (isspace(*fiel d)s[i{]))
fields[i]++;

}
fields[|I TAB_CAT] = category;
return (B_TRUE);

verifies that a given inittab entry matches an internal
definition

input: dhcp_synbol _t *:
dhcp_synbol _t *:

the inittab entry to verify
if non-NULL, a place to store the internal

new usr/src/lib/libdhcputil/common/dhcp_inittab.c

392
393
394
395
396

* ok k ok 3k

398 i
399 |
400 {
401

403

405
406

408
409
410

412
413
414
415

417
418
419

421
422 }
424 |
425
426
427
428
429
430
431
432

* Ok kR H Rk b ¥

get _hw type(): interpret

ittab entry upon return

in
output: int: |TAB_FAI LURE, |TAB_SUCCESS, or | TAB_UNKNOMN

notes: |Pv4 only

nt
nittab_verify(const dhcp_synbol _t *inittab_ent, dhcp_synbol _t *internal _ent)

unsi gned i nt i;
for (i =0; inittab_table[i].ds_name[0] !="'\0"; i++) {

if (inittab_ent->ds_category != inittab_table[i].ds_category)
cont i nue;

if (inittab_ent->ds_code == inittab_table[i].ds_code) {
if (internal_ent != NULL)
*internal _ent = inittab_table[il];

if (inittab_table[i].ds_type
inittab_table[i].
inittab_table[i].ds_max
return (1 TAB_FAI LURE);

ttab_ent - >ds_nmax)

return (1 TAB_SUCCESS);

}
return (1 TAB_UNKNOWW) ;

", hwtype" in the input string, as part of a DU D.
The hwtype string is optional, and nust be 0-65535 if
present.

input: char **: pointer to string pointer

int *: error return value

output: int: hardware type, or -1 for enpty, or -2 for error.

434 static int

437
438

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455 }

457 [*

435 get _hw type(char **strp, int *ierrnop)
{

char *str = *strp;
ul ong_t hwt ype;

if (*str++ 1=",") {
*ierrnop = | TAB_BAD NUMBER;
return (-2);

}

if (*str =="'," || *str =='\0") {

*strp = str;
return (-1);

= strtoul (str, strp, 0);
rno !=0 || *strp == str || hwtype > 65535) {
*ierrnop = | TAB_BAD NUMBER;
return (-2);
} else {
) return ((int)hwype);

}
hwt ype
if (er

= inittab_ent->ds_type ||
ds_gran != inittab_ent->ds_gran ||
I'=ini

new usr/src/lib/libdhcputil/common/dhcp_inittab.c

458
459
460
461
462
463
464
465
466
467
468
469

471
472
473

get _mac_addr(): interpret ",macaddr" in the input string, as part of a DU D.
The 1

int

"macaddr’ may be a hex string (in any standard fornat),
or the nane of a physical interface. If an interface nane
is given, then the interface type is extracted as well.

*: error return val ue

uint16_t *: hardware type output (network byte order)

int:

hardware type input; -1 for enpty

uchar_t *: output buffer for MAC address

output: int:
/

static int

*
*
*
*
*
* input: const char *: input string
*
*
*
*
*
*

length of MAC address, or -1 for error

get _mac_addr (const char *str, int *ierrnop, uintl6_t *hwet, int hwype,
uchar_t *out buf)

474 {

475
476
477
478
479

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

515
516
517
518
519
520
521
522

int macl
int dig,

en;
val ;

dl pi _handl e_t dh;
dl pi _info_t dlinfo;
char chr;

if (*str 1="\0)

if (*str++ 1=
goto failed;
if (dlpi_open(str, &h, 0) != DLPI_SUCCESS) {
macl en = 0;
dig = val = 0;
/*
ow MAC addresses with separators matching regexp

|
[-1).

*/
while ((chr = *str++) I="\0") {
if (isdigit(chr)) {
val = (val << 4) + chr - '0";
} else if (isxdigit(chr)) {
val = (val << 4) + chr -
(isupper(chr) 2 "A : "a') + 10;
} else if (isspace(chr) && dig == 0) {
conti nue;
} else if (chr ==":" || chr =="-" []
i sspace(chr)) {
dig = 1;

Al
(:

} else {
goto failed;

}

if (+#+dig == 2) {
*out buf ++ = val ;
macl en++;
dig = val = 0;

} else {
i f (dl pi _bind(dh, ETHERTYPE_I PV6, NULL) !=
DLPI _SUCCESS || dlIpi _info(dh, &dlinfo, 0) !=
DLPI _SUCCESS) {
if (dlpi_info(dh, &dlinfo, 0) != DLPI_SUCCESS) {
dl pi _cl ose(dh);
goto failed;

nmacl en = dlinfo.di _physaddrlen;
(voi d) nencpy(outbuf, dlinfo.di_physaddr, maclen);
dl pi _cl ose(dh);
if (hwtype == -1)
hwt ype = dl pi _arptype(dlinfo.di_mactype);

new usr/src/lib/libdhcputil/common/dhcp_inittab.c

523 }

524

525 if (hwtype == -1)

526 goto failed;

527 *hwret = htons(hwtype);

528 return (maclen);

530 failed:

531 *ierrnop = | TAB_BAD_NUMBER;
532 return (-1);

533 }

____unchanged_portion_onitted_

