new usr/ src/ cnd/ mdb/ comon/ ndb/ ndb_proc. c

R R R R

146669 Wed Jan 23 13:19:01 2013
new usr/ src/ cnd/ mdb/ common/ ndb/ ndb_proc. c
XXX AVX procfs

R R R R

__unchanged_portion_onitted_
4723 #ifdef _ sparc

4723 | * ARGSUSED* /
4724 static int

4725 ?t_l wp_get xregs(ndb_tgt _t *t, void *tap, ndb_tgt_tid_t tid, prxregset_t *xregs)
4726

4727 if (t->t_pshandle !'= NULL) {

4728 return (ptl_err (Pl wp_getxregs(t->t_pshandle,

4729 (lwpid_t)tid, xregs)));

4730 }

4731 return (set_errno(EMDB_NOPRCC)) ;

4732 }

__unchanged_portion_onitted_
4748 #endif [* __sparc */

4746 | * ARGSUSED*/
4747 static int

4748 pt_lwp_getfpregs(ndb_tgt_t *t,

void *tap, ndb_tgt_tid_t tid,

4749 prfpregset_t *fpregs)

4750 {

4751 if (t->t_pshandle !'= NULL) {

4752 return (ptl_err (Pl wp_getfpregs(t->t_pshandle,
4753 (lwpid_t)tid, fpregs)));

4754 1

4755 return (set_errno(EMDB_NOPROQ)) ;

4756 }

__unchanged_portion_onitted_

4770 static const pt_ptl_ops_t proc_lw_ops = {
4771 int (*)()) mdb_tgt_nop,
4772 (void (*)()) mdb_tgt_nop,
4773 pt_lwp_tid,

4774 pt_lwp_iter,

4775 pt _| wp_getregs,

4776 pt _| wp_setregs,

4781 #ifdef __sparc

4777 pt _| wp_get xr egs,

4778 pt _| wp_set xr egs,

4784 #endi f

4779 pt _| wp_get f pregs,

4780 pt _l wp_set f pregs

4781 };

__unchanged_portion_omtted_

new usr/ src/ cnd/ mdb/ conmon/ ndb/ mdb_pr oc. h

R R R R

8639 Wed Jan 23 13:19:01 2013

new usr/ src/ cnd/ mdb/ conmon/ ndb/ mdb_pr oc. h
XXX AVX procfs

R R R R

1/*
CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License, Version 1.0 only

(the "License"). You may not use this file except in conpliance
with the License.
9 You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE

10 or http://ww. opensol aris.org/os/licensing.
See the License for the specific |anguage governing pernissions

12 and linmtations under the License.

13

14 When distributing Covered Code, include this CDDL HEADER i n each

15 file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

=
[N
* Ok kR ok Rk R R Rk OF % b % Ok

16 If applicable, add the follow ng bel ow this CDDL HEADER, with the
17 fields enclosed by brackets "[]" replaced with your own identifying
18 information: Portions Copyright [yyyy]l [nane of copyright owner]

19

20 CDDL HEADER END

21 */

22 /*

23 * Copyright 2004 Sun Mcrosystens, Inc. Al
24 * Use is subject to license terns.

rights reserved.

25 */

27 #ifndef _NMDB_PROC H

28 #define _MDB_PROC H

30 #pragne ident " %YW % % %E% SM "
30 #i nclude <ndb/ ndb_t arget _i npl . h>

31 #include <ndb/ ndb_i o_i npl . h>
32 #include <ndb/ndb_addrvec. h>
33 #i ncl ude <mdb/ ndb_nodapi .

34 #include <ndb/ ndb_gel f. h>

35 #incl ude <ndb/ ndb_t db. h>

37 #include <sys/param h>
38 #include <libproc. h>

40 #ifdef __cplusplus

41 extern "C' {

42 #endi f

44 #ifdef _MDB

46 /*

47 * The proc target nust provide support for examining nulti-threaded processes
48 * that use the raw LWP interface, as well as those that use either of the

49 * existing libthread.so inplenentations. W nust also support nultiple active
50 * instances of the proc target, as well as the notion that a cl ean process
51 * can dlopen() libthread after startup, at which point we need to switch to
52 * using libthread_db interfaces to properly debug it. To satisfy these

53 * constraints, we declare an ops vector of functions for obtaining the

54 * register sets of each thread. The proc target will define two versions

55 * of this vector, one for the LW node and one for the |ibthread_db node,

56 * and then switch the ops vector pointer as appropriate during debuggi ng.

57 * The nmacros defined bel ow expand to calls to the appropriate entry point.

58 */

59 typedef struct pt_ptl_ops {

new usr/ src/ cnd/ mdb/ common/ ndb/ mdb_pr oc. h

101

103
104
105

107
108
109

111
112
113

115
116
117
118
119

#i f def

#endi f

} pt_ptl
#defi ne

#defi ne

#def i ne

#def i ne

#def i ne

#def i ne

#i f def
#defi ne

#defi ne

#endi f
#defi ne

#defi ne

* Ok Ok k%

int (*ptl_ctor)(ndb_tgt_t *)

void (*ptl_dtor)(mlb_tgt_t *, void *);

ndb_tgt_tid_t (*ptl_tid)(ndb_tgt_t *, void *);

int (*ptl_iter)(mdb_tgt_t *, void *, ndb_addrvec_t *);

int (*ptl “getregs) (nmdb_tgt_t *, void *, mdb_tgt_tid_t, prgregset_t);

int (*ptl_setregs)(mib_tgt_t *, void *, ndb_tgt _tid_t, prgregset_t);

__sparc

int (*ptl getxregs)(ndb tgt_t *, void *, mdb_tgt_tid_t,
prxregset _t *

int (*ptl setxregs)(ndb tgt_t *, void *, mdb_tgt_tid_t,
const prxregset_t *);

int (*ptl getfpregs)(ndb tgt_t *, void *, ndb_tgt_tid_t,
prfpregset t)

int (*ptl setfpregs)(mib tgt_t *, void *, ndb_tgt_tid_t,
const prfpregset_t *);

_ops_t;

PTL_CTOR(t) \

(((pt_data_t *)(t)->t_data)->p_ptl_ops->ptl_ctor(t))

PTL_DTOR(t) \

(((pt_data_t *)(t)->t_data)->p_ptl_ops->ptl_dtor((t), \

((pt_data_t *)((t)->t_data))->p_ptl_hdl))

PTL_TID(t) \

(((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_tid((t), \

((pt_data_t *)(t)->t_data)->p_ptl_hdl))

PTL_I TER(t, ap) \

(((pt_data_t *)(t)->t_data)->p_ptl_ops->ptl_iter((t), \

((pt_data_t *)((t)->t_data))->p_ptl_hdl, (ap)))

PTL_GETREGS(t, tid, gregs) \

(((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl _getregs((t), \

((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (gregs)))

PTL_SETREGS(t, tid, gregs) \

(((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_setregs((t), \

((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (gregs)))

__sparc

PTL_GETXREGS(t, tid, xregs) \

(((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_getxregs((t), \

((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (xregs)))

PTL_SETXREGS(t, tid, xregs) \

(((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_setxregs((t), \

((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (xregs)))

/* __sparc */

PTL_GETFPREGS(t, tid, fpregs) \

(((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_getfpregs((t), \

((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (fpregs)))

PTL_SETFPREGS(t, tid, fpregs) \

(((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_setfpregs((t), \

((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (fpregs)))

When we are followi ng children and a vfork(2) occurs,
handl e for the parent to a list of vfork parents.
this handle so that when the child subsequently execs or dies,
our breakpoints before rel easing the parent.

we append the |ibproc
We need to keep track of
we clear out

new usr/ src/ cnd/ mdb/ conmon/ ndb/ mdb_pr oc. h 3

120 */

121 typedef struct pt_vforkp {

122 mdb_list_t p_list; /* List forward/back pointers */
123 struct ps_prochandl e *p_pshandl e; /* libproc handle */

124 } pt_vforkp_t;
____unchanged_portion_onitted_

new usr/src/ cnd/ mdb/ i nt el / ndb/ proc_and64dep. c

R R R R

15428 Wed Jan 23 13:19: 02 2013
new usr/src/ cnd/ mdb/ i nt el / ndb/ proc_and64dep. c
XXX AVX procfs

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the ternms of the

5 * Common Devel opnent and Distribution License, Version 1.0 only

6 * (the "License"). You may not use this file except in conpliance
7 * with the License.

8 *

9 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
10 * or http://ww. opensol aris.org/os/licensing.

11 * See the License for the specific |anguage governing perm ssions
12 * and limtations under the License.

13 =

14 * Wen distributing Covered Code, include this CDDL HEADER i n each
15 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 * |f applicable, add the follow ng below this CODL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy]l [nane of copyright owner]
19 =
20 * CDDL HEADER END
21 */
22 /*

23 * Copyright 2004 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.

25 */

27 #pragma i dent " %98 % Y% YE% SM "

27 |*

28 * User Process Target Intel 32-bit conponent
29 *

30 * This file provides the | SA-dependent portion of the user process target.

31 * For nore details on the inplenentation refer to midb_proc.c.
*/

34 #incl ude <ndb/ ndb_proc. h>

35 #i ncl ude <ndb/ ndb_kreg. h>

36 #i nclude <ndb/ ndb_err. h>

37 #include <ndb/ndb_and64util . h>
38 #i ncl ude <ndb/ ndb. h>

40 #include <sys/frane. h>
41 #include <libproc. h>
42 #include <sys/fp.h>

43 #incl ude <i eeefp. h>

new usr/src/ cnd/ mdb/ i nt el / ndb/ proc_and64dep. c

60 "rax", REG_RAX, MDB_TGT_R_EXPORT },
61 "trapno”, REG_TRAPNO, MDB_TGT_R_EXPORT },
62 “err", REG ERR, MDB_TGT_R_EXPORT },
63 "rip", REG RI P, MDB_TGT_R_EXPORT 1},
64 "cs", REG _CS, MDB_TGT_R_EXPORT 1},
65 "rflags", REG_RFL, MDB_TGT_R_EXPORT },
66 "rsp", REG RSP, MDB_TGT_R_EXPORT },
67 "ss", REG_SS, MDB_TGT_R_EXPORT },
68 "fs", REG FS, MDB_TGT_R_EXPORT 1},
69 " gs " REG_GS, MDB_TGT_R_EXPORT },
70 REG ES, MDB_TGT_R_EXPORT },
71 " ds" REG DS, MDB_TGT_R_EXPORT },
72 "f shase” REG_FSBASE, MDB_TGT_R_EXPORT 1},
73 "gsbase" REG_GSBASE, MDB_TGT_R_EXPORT },
74 NULL, O, "0 }

75

b
__unchanged_portion_omtted_

92 /* ARGSUSED*/

93 int

94 pt_regs(uintptr_t addr, uint_t flags, int
95 {

45 const ndb_t gt regdesct pt _regdesc[] = {
REG

46 "r15" , MDB_TGT_R EXPORT },
47 "r14“ REG R14, MDB_TGT_R_EXPORT },
48 "rige, REG RI3, MDB_TGT_R_EXPORT },
49 "rize, REG R12, MDB_TGT_R_EXPORT },
50 "ri1e, REG R11, MDB_TGT_R_EXPORT },
51 "rio", REG RI0, MDB_TGT_R_EXPORT 1},
52 "ro", REG_R9, MDB_TGT_R_EXPORT },
53 "rg" REG RS, MDB_TGT_R_EXPORT },
54 “rdit, REG RDI , MDB_TGT_R_EXPORT },
55 "rsit REG RS | MDB_TGT_R_EXPORT 1},
56 "rbp REG_RBP, MDB_TGT_R_EXPORT },
57 "I bx REG_RBX, MDB_TGT_R_EXPORT },
58 "rdx REG_RDX, MDB_TGT_R_EXPORT },
59 "rex REG_RCX, MDB_TGT_R_EXPORT 1},

argc, const ndb_arg_t *argv)

96 mdb_tgt_t *t = ndb. mtarget;

97 ndb_tgt_tid_t tid;

98 prgregset_t grs;

99 prgreg_t rflags;

101 if (argc !'= 0)

102 return (DCMD_USAGCE) ;

104 if (t->t_pshandle == NULL || Pstate(t->t_pshandle) == PS_UNDEAD) {
105 nmdb_war n("no process active\n");

106 return (DCVD_ERR);

107 }

109 if (Pstate(t->t pshandl e) == PS_LOST)

110 mdb_war n(" debugger has Tost control of process\n");
111 return (DCMD_ERR);

112 }

114 if (flags & DCMD_ADDRSPEC)

115 tid = (nmdb_tgt_tid_t)addr;

116 el se

117 tid = PTL_TID(t);

119 if (PTL_GETREGS(t, tid, grs) !=0)

120 mdb_warn("failed to get current register set");
121 return (DCVD_ERR);

122 1

124 rflags = grs[REG RFL];

126 mdb_printf ("% ax = Ox%0?p\t%Ws8 = Ox%O?p\n",
127 grs[REG_RAX] , 9rs[REG R8]);

128 ndb_printf ("% bx = 0x%)’>p\t°/l%9 = 0x%07?p\ n",
129 gr s[REG RBX], gr s[REG R9]);

130 mdb_printf (" 986 cx 0x%)’>p\t°/% 10 = 0x%®0?p\n",
131 grs[REG_RCX] grs[REG R10]) ;

132 mdb_printf (" 096 dx = 0x9%®?p\ t 984 11 = 0x%®?p\ n",
133 gr s[REG RDX], gr s[REG R11]);

134 mdb_printf (" Wisi = 0X°/0'7p\t°/9/612 = 0x%0?p\n",
135 grs[REG RSI], gr s[REG R12]);

136 mdb_printf (" Togsdi = 0x9%®?p\ t 984 13 = 0x%®?p\ n",
137 grs[REG RDI], grs[REG R13]);

138 mdb_printf (" o®Ps\t %8s 14 = 0x%0?p\ n",
139 """, grs[REG R14]);

new usr/src/ cnd/ mdb/ i nt el / ndb/ proc_and64dep. c

140 mdb_printf(" %®s\t %4 15 = Ox%0?p\n”,

141 " grs[REG R15]);

143 ndb_printf("\n");

145 mdb_printf("%Wes = Ox%W4x\t Wb s = Ox%4x\t %®gs = 0x%04x\ n",
146 grs[REG CS], grs[REG FS], grs[REG GS]);

147 ndb_printf("%@s = 0x%04x\t Wes = 0x%04x\t Wss = Ox¥04x\n",
148 grs[REG DS], grs[REG ES], grs[REG SS]);

150 mdb_printf("\n");

152 mdb_printf("%W6ip = 0x%0?p YA\ n", grs[REG RIP], grs[REG R P]);
153 mdb_printf("%sbp = 0x%®?p\n", grs[REG RBP], grs[REG RBP]);
154 mdb_printf("%sp = 0x%®?p\n", grs[REG RSP], grs[REG RSP]);
156 mdb_printf("\n");

158 mdb_printf("%4flags = 0x%®8x\n", rflags);

160 mdb_printf(" id=% vip=% vif=% ac=% vnr% rf=%5 nt=% iopl=0x%\n",
161 (rflags & KREG EFLAGS | D MASK) >> KREG EFLAGS | D SHIFT,
162 (rflags & KREG EFLAGS VI P_MASK) >> KREG EFLAGS VI P_SHI FT,
163 (rflags & KREG EFLAGS_VI F_NASK) >> KREG EFLAGS_VI F_SHI FT,
164 (rflags & KREG EFLAGS_AC MASK) >> KREG EFLAGS_AC SHI FT,
165 (rflags & KREG EFLAGS VM MASK) >> KREG EFLAGS_VM SHI FT,
166 (rflags & KREG EFLAGS RF_MASK) >> KREG EFLAGS RF_SHI FT,
167 (rflags & KREG EFLAGS_NT_MASK) >> KREG EFLAGS_NT_SHI FT,
168 (rflags & KREG EFLAGS_| OPL_MASK) >> KREG EFLAGS_| OPL_SHI FT);
170 mdb_printf (" status=<%, %, %, %, %, %6, %5, %6, %>\ n",

171 (rflags & KREG EFLAGS OF MASK) ? "OF" : "of",

172 (rflags & KREG EFLAGS DF_MASK) ? " DF" tdf,

173 (rflags & KREG EFLAGS_ | F_MASK) ? "IF" "ifr,

174 (rflags & KREG EFLAGS TF_MASK) ? " TF" "t

175 (rflags & KREG EFLAGS SF_MASK) ? "SF" : "sf",

176 (rflags & KREG EFLAGS_ZF_MASK) ? "ZF" : "zf",

177 (rflags & KREG EFLAGS_AF_MASK) ? "AF" "af",

178 (rflags & KREG EFLAGS PF_MASK) ? "PF" : "pf",

179 (rflags & KREG EFLAGS CF_MASK) ? "CF" : "cf");

181 mdb_printf("\n");

183 mdb_printf (" %@gsbase = 0x%?p\n", grs[REG GSBASE]);

184 mdb_printf("%46 sbase = 0x%?p\n", grs[REG FSBASE]);

185 ndb_printf("%4Grapno = Ox%\n", grs[REG TRAPNQ);

186 mdb_printf(" Werr = 0x%\n", grs[REG ERR]);

188 return (DCVD_OK);

190 return (set_errno(ENOTSUP));

189 }

__unchanged_portion_onitted_

new usr/src/lib/libc_db/comron/thread_db.c

R R R R

80862 Wed Jan 23 13:19:02 2013
new usr/src/lib/libc_db/common/thread_db.c
XXX AVX procfs

R R R R

__unchanged_portion_onitted_

1957 /*

1958 * Get the size of the extra state register set for this architecture.
1959 * Currently unused by dbx.

1960 */

1961 #pragnma weak td_thr_getxregsize = _ td_thr_getxregsize

1962 /* ARGSUSED */

1963 td_err_e

1964 _ td_thr_getxregsize(td_thrhandle_t *th_p, int *xregsize)

1965 {

1966 #if defined(__sparc)

1966 struct ps_prochandl e *ph_p;

1967 td_err_e return_val;

1969 if ((ph_p = ph_lock_th(th_p, &eturn_val)) == NULL)
1970 return (return_val);

1971 if (ps_pstop(ph_p) !'= PS_OK) {

1972 ph_unl ock(th_p->th_ta_p);

1973 return (TD_DBERR);

1974 }

1976 if (ps_|lgetxregsize(ph_p, thr_to_lwid(th_p), xregsize) != PS_CK)
1977 return_val = TD _DBERR;

1979 (voi d) ps_pcontinue(ph_p);

1980 ph_unl ock(th_p->th_ta_p);

1981 return (return_val);

1983 #else [/* __sparc */

1984 return (TD_NOXREGS);

1985 #endif /[/* _ _sparc */

1982 }

1984 /*

1985 * Get a thread’s extra state register set.

1986 */

1987 #pragma weak td_thr_getxregs = __td_thr_getxregs

1988 /* ARGSUSED */
1989 td_err_e
1990 _ td_thr_getxregs(td_thrhandle_t *th_p, void *xregset)

1991 {

1996 #if defined(__sparc)

1992 struct ps_prochandl e *ph_p;

1993 td_err_e return_val;

1995 if ((ph_p = ph_lock_th(th_p, &eturn_val)) == NULL)
1996 return (return_val);

1997 if (ps_pstop(ph_p) !'= PS_OK) {

1998 ph_unl ock(th_p->th_ta_p);

1999 return (TD_DBERR);

2000 }

2002 if (ps_|lgetxregs(ph_p, thr_to_lwpid(th_p), (caddr_t)xregset) != PS_OK)
2003 return_val = TD DBERR;

2005 (void) ps_pcontinue(ph_p);

2006 ph_unl ock(th_p->th_ta_p);

2007 return (return_val);

2013 #el se /* __sparc */

2014 return (TD_NOXREGS);

2015 #endif [/* __sparc */

new usr/src/lib/libc_db/comron/thread_db.c

2008 }

2010 /*

2011 * Set a thread’s extra state register set.

2012 */

2013 #pragnma weak td_thr_setxregs = _ td_thr_setxregs

2014 /* ARGSUSED */
2015 td_err_e
2016 __td_thr_setxregs(td_thrhandle_t *th_p, const void *xregset)

2017 {

2026 #if defined(__sparc)

2018 struct ps_prochandl e *ph_p;

2019 td_err_e return_val;

2021 if ((ph_p = ph_lock_th(th_p, &eturn_val)) == NULL)
2022 return (return_val);

2023 if (ps_pstop(ph_p) != PS_ {

2024 ph_unl ock(th_p->th_ta_p);

2025 return (TD_DBERR);

2026 }

2028 if (ps_lsetxregs(ph_p, thr_to_lwid(th_p), (caddr_t)xregset)
2029 return_val = TD _DBERR;

2031 (voi d) ps_pcontinue(ph_p);

2032 ph_unl ock(th_p->th_ta_p);

2033 return (return_val);

2043 #else [/* __sparc */

2044 return (TD_NOXREGS);

2045 #endif [/* __sparc */

2034 }

__unchanged_portion_onitted_

= PS_OK)

new usr/src/lib/libproc/comon/Pcontrol.h 1

R R R R

12690 Wed Jan 23 13:19: 03 2013
new usr/src/lib/libproc/comon/Pcontrol.h
XXX AVX procfs

R R R R

__unchanged_portion_onitted_

130 typedef struct Iwp_info { /* per-lwp information fromcore file */
131 plist_t Iwp_list; /* linked list *

132 lwpid_t Iwp_id; /* Iwp identifier */

133 Iwpsinfo_t Iwp_psinfo; [/* /proc/<pid>/|wp/<lwpid>/|wpsinfo data */
134 Iwpstatus_t |wp_status; /* /proc/<pid>/|wp/<lwpid>/|wpstatus data */
135 prxregset _t *lwp_xregs; /* /proc/<pid>/|wp/<lwid> xregs data */
136 #endif /* ! codereview */

137 #if defined(sparc) || defined(__sparc)

138 gw ndows_t *lwp_gwins; /* /proc/<pid>/|wp/<lwpid>/gw ndows data */
135 prxregset _t *lwp_xregs; /* /proc/<pid>/|wp/<lwid>/ xregs data */
139 Int64_t *lwp_asrs; [* [proc/<pid>/1wp/<lwid>asrs data */

140 #endi f

141 } Iwp_info_t;
__unchanged_portion_omtted_

new usr/src/lib/libproc/comron/Pcore.c

R R R R

58499 Wed Jan 23 13:19:03 2013
new usr/src/lib/libproc/common/Pcore.c
XXX AVX procfs

R R R R

__unchanged_portion_onitted_

590 #ifdef __sparc

590 static int

591 note_xreg(struct ps_prochandle *P, size_t nbytes)

592 {

593 I'wp_i nfo_t *pr=P->core >core_| wp;

594 size_t xbytes = sizeof (prxregset_t);

595 prxregset _t *xregs;

597 if (Iwp == NULL || Iwp->lwp_xregs != NULL || nbytes < xbytes)

598 return (0); /* No Iwp yet, already seen, or bad size */
600 if ((xregs = malloc(xbytes)) == NULL)

601 return (-1);

602 #ifdef __sparc

603 if (read(P->asfd, xregs, xbytes) != xbytes) {

604 #el se

605 panic("port me");

606 #endi f

607 #endif /* ! codereview */

608 dprintf("Pgrab_core: failed to read NT_PRXREG n");

609 free(xregs);

610 return (-1);

611 }

612 I wp- >l wp_xregs = xregs;

613 return (0);

614 }

616 #ifdef __sparc

617 #endif /* | codereview */

618 static int

619 note_gw ndows(struct ps_prochandle *P, size_t nbytes)

620 {

621 Iwp_info_t *lwp = P->core->core_| wp;

623 if (lwp == NULL || I\Ap>lv\4t)gwns|:NULL|| nbytes == 0)

624 return (0); 0% Iwp yet or already seen or no data */
626 if ((lw->lwp_gwins = nalloc(sizeof (gw ndows_t))) == NULL)

627 return (-1);

629 /*

630 * Since the ampunt of gwi ndows data varies with how many wi ndows were
631 * actually saved, we just read up to the mninmum of the note size
632 * and the size of the gwindows_t type. It doesn’t natter if the read
633 * fails since we have to zero out gw ndows first anyway.

634 */

635 #ifdef _LP64

636 “if (P->core->core_dnodel == PR _MODEL_ILP32) {

637 gwi ndows32_t g32;

639 (void) menset (&g32, 0, sizeof (g32));

640 (void) read(P->asfd, &332, M N(nbytes, sizeof (g32)));

641 gwi ndows_32_to_n(&g32, | wp->lwp_gwi ns);

643 } else {

644 #endi f

645 (void) menset (I wp->l wp_gwi ns, 0, sizeof (gwi ndows_t));

new usr/src/lib/libproc/common/Pcore.c

646 (void) read(P->asfd, |wp->lwp_gw ns,

647 M N(nbyt es, sizeof (gw ndows_t)));

648 #ifdef _LP64

649

650 #endi f

651 return (0);

652 }

654 #ifdef __sparcv9

655 static int

656 note_asrs(struct ps_prochandle *P, size_t nbytes)

657 {

658 Iwp_info_t *lwp = P->core->core_| wp;

659 int64_t *asrs;

661 if (Iwp == NULL || Iwp->Iwp_asrs != NULL || nbytes < sizeof (asrset_t))
662 return (0); /* No Iwp yet, already seen, or bad size */
664 if ((asrs = malloc(sizeof (asrset_t))) == NULL)

665 return (-1);

667 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset _t)) {
668 dprintf("Pgrab_core: failed to read NT_ASRS\n");
669 free(asrs);

670 return (-1);

671 }

673 I wp->l wp_asrs = asrs;

674 return (0);

675 }

676 #endif [* __sparcv9 */

677 #endif [* __sparc */

679 /* ARGSUSED*/

680 static int

681 note_notsup(struct ps_prochandle *P, size_t nbytes)

682 {

683 dprintf("skipping unsupported note type\n");

684 return (0);

685 }

687 [*

688 * Popul ate a table of function pointers indexed by Note type with our
689 * functions to process each type of core file note:

690 */

691 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {

692 not e_not sup, I* 0 unassi gned */
693 not e_not sup, /* 1 NT_PRSTATUS (ol d) */
694 not e_not sup, /* 2 NT_PRFPREG (ol d) */
695 not e_not sup, /* 3 NT_PRPSI NFO (ol d) */
610 #ifdef __sparc

696 not e_xr eg, /* 4 NT_PRXREG */
612 #el se

613 not e_not sup, /* 4 NT_PRXREG */
614 #endif

697 note_platform /* 5 NT_PLATFORM */
698 not e_auxv, /* 6 NT_AUXV */
699 #ifdef __sparc

700 not e_gw ndows, /* 7 NT_GW NDOWS */
701 #ifdef __sparcv9

702 not e_asrs, /* 8 NT_ASRS */
703 tel se

704 not e_not sup, /* 8 NT_ASRS */
705 #endi f

706 #el se

707 not e_not sup, /* 7 NT_GW NDOWS */

new usr/src/lib/libproc/comron/Pcore.c

708

709 #endif
710 #if defi
711

712 tel se
713

714 #endi f
715

716

717

718

719

720

721

722

723

724

725

726

727

728 };

____unchanged_portion_onitted_

not e_not sup,

ned(__i386) ||
note_| dt,

not e_not sup,

not e_pst at us,
not e_not sup,
not e_not sup,
not e_psi nf o,
note_cred,

not e_ut snane,
not e_| wpst at us,
not e_| wpsi nf o,
note_priv,
note_priv_info,
not e_content,
not e_zonenane,
not e_f di nfo,

/

/

~ e e e e — e ————

*

*

* Ok ok ok ok R k ok kb % b ¥

8

def i ned(__and64)
7* 9

NT_ASRS

NT_LDT
NT_LDT

NT_PSTATUS
unassi gned
unassi gned
NT_PSI NFO
NT_PRCRED
NT_UTSNAVE
NT_LWPSTATUS
NT_LWPSI NFO
NT_PRPRI V
NT_PRPRI VI NFO
NT_CONTENT
NT_ZONENAVE
NT_FDI NFO

new usr/src/lib/libproc/comon/ Pl wpregs.c

R R R R

10935 Wed Jan 23 13:19: 04 2013
new usr/src/lib/libproc/comon/Plwpregs.c
XXX AVX procfs

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.

23 * Use is subject to license terns.

24 */

26 #pragna ident " %YW % % %E% SM "

26 #include <sys/types. h>
27 #include <sys/uio. h>
28 #include <string. h>

29 #include <errno. h>

30 #include <limts.h>

32 #include "Pcontrol.h"
33 #include "P32ton. h"

35 /*

36 * This file inplenents the routines to read and wite per-lw register

37 * information fromeither a live process or core file opened with |ibproc.
38 * Wa build up a few comon routines for reading and witing register

39 * information, and then the public functions are all trivial calls to these.
40 */

42 | *

43 * Wility function to return a pointer to the structure of cached infornation
44 * about an Iwp in the core file, given its |wpid.
45 */
46 static Iwp_info_t *
47 getlwpcore(struct ps_prochandle *P, |wpid_t |wpid)
{

48

49 Iwp_info_t *Iwp = list_next(&P->core->core_|w_head);

50 uint_t i;

52 for (i =0; i < P->core->core_nlwp; i++, I|w = list_next(lwp)) {
53 if (Iwp->lwp_id == | wpid)

54 return (1wp);

55 }

57 errno = ElI NVAL;

58 return (NULL);

59

__unchanged_portion_omtted_

new usr/src/lib/libproc/comon/Plwpregs.c

222 #if defined(sparc) || defined(__sparc)

220 int

221 Pl wp_get xregs(struct ps_prochandle *P,

222 {
223

225
226
227
228

230
231
232
233
234

236
237
238

240
241
242
243

245
246
247
248 }

Iwp_info_t *lwp;

if (P->state == PS_IDLE) {
errno = ENCDATA;
return (-1);

}
if (P->state !'= PS

I'wpid_t |wpid, prxregset_t *xregs)

> DEAD) {
if (P->state = PS_STOP) {

errno = EBUSY;
return (-1);
}

return (getlwpfile(P, lwid, "xregs",
xregs, sizeof (prxregset_t)));

}
if ((lwp = getlwpcore(P, lwpid))

= NULL && |wp->Iwp_xregs != NULL) {

(voi d) mem:py(xr egs, |wp->lwp_xregs, sizeof (prxregset_t));

return (0

}

if (Iwp !'= NULL)
errno = ENCDATA;
return (-1);

__unchanged_portion_onitted_

256 #if defined(sparc) || defined(__sparc)
257 #endif /* | codereview */

258 int

260
261

263
264
265
266

268
269
270
271
272

274
275
276

278
279
280
281

283
284
285
286 }

259 Pl wp_get gwi ndows(struct ps_prochandl e *P,
{

Iwp_info_t *lwp;

if (P->state == PS_IDLE) {
errno = ENCDATA;
return (-1);

}
if (P->state ! = PS_DEAD)

Iwpid_t |wid, gw ndows_t *gwi ns)

{
if (P->state != PS STOP) {

errno = EBUSY;
return (-1);

}

return (getlwpfile(P, |wpid, "gw ndows",
gwi ns, sizeof (gwi ndows_t)));

}

if ((pr getlwpcore(P | wpi d))
*gwi ns = *| wp->l wp_gwi ns;

) return(O)

if (lwp !'= NULL)
errno = ENCDATA;
return (-1);

288 #if defined(__sparcv9)

I'= NULL && |wp->Iwp_gwins != NULL) {

new usr/src/lib/libproc/comon/ Pl wpregs.c

289 int

290 Pl wp_getasrs(struct ps_prochandle *P, Iwpid_t |wpid, asrset_t asrs)

291 {

292 Iwp_info_t *Ilwp;

294 if (P->state == PS_|DLE) {

295 errno = ENCDATA;

296 return (-1);

297 }

299 if (P->state != PS_DEAD) {

300 if (P->state !|= PS_STOP) {

301 errno = EBUSY;

302 return (-1);

303 }

305 return (getlwpfile(P, Iwdid, "asrs", asrs, sizeof (asrset_t)));
306 }

308 if ((lw = getlwpcore(P Iwpid)) '= NULL && I wp->lwp_asrs != NULL) {
309 (voi d) mannpy(asrs | wp- >l wp_asrs, sizeof (asrset_t));
310 return (0);

311 1

313 if (Iwp !'= NULL)

314 errno = ENCDATA;

315 return (-1);

317 }

319 int

320 Pl wp_setasrs(struct ps_prochandle *P, Iwpid_t |Iwid, const asrset_t asrs)
321 {

322 return (setlwpregs(P, |wdid, PCSASRS, asrs, sizeof (asrset_t)));
323 }

324 #endif [* __sparcv9 */

325 #endif [* __sparc */

327 int

328 Pl wp_get psi nfo(struct ps_prochandle *P, Iwpid_t Iwid, Iwsinfo_t *Ips)
329 {

330 Iwp_info_t *Ilwp;

332 if (P->state == PS_IDLE) {

333 errno = ENCDATA;

334 return (-1);

335 }

337 if (P->state != PS_DEAD) {

338 return (getlwpfile(P, Iwid, "lIwpsinfo",

339 I ps, sizeof (lwpsinfo_t)));

340 }

342 if ((Iwp = getlwpcore(P, lwpid)) !'= NULL) {

343 (void) mencpy(lps, & wp->lwp_psinfo, sizeof (lwpsinfo_t));
344 return (0);

345 1

347 return (-1);

348 }

350 int

351 Plwp_stack(struct ps_prochandle *P, Iwpid_t |wpid, stack_t *stkp)

352 {

353 uintptr_t addr;

new usr/src/lib/libproc/comon/Plwpregs.c

355 if (P->state == PS_IDLE) {

356 errno = ENODATA,

357 return (-1);

358 }

360 if (P->state != PS_DEAD) {

361 Iwpstatus_t Is;

362 if (getlwpfile(P, Iwid, "lwpstatus", & s, sizeof (Is)) !=0)
363 return (-1);

364 addr = | s. pr_ustack;

365 } else {

366 Iwp_info_t *lwp;

367 if ((pr—getlwpcore(P I'wpi d)) == NULL)

368 return (-1);

369 addr = | wp- >l wp_st at us. pr_ust ack;

370 }

373 if (P->status.pr_dnodel == PR_MODEL_NATI VE) {

374 if (Pread(P, stkp, sizeof (*stkp), addr) != sizeof (*stkp))
375 return (-1);

376 #ifdef _LP64

377 } else {

378 stack32_t stk32;

380 if (Pread(P, &stk32, sizeof (stk32), addr) != sizeof (stk32))
381 return (-1);

383 stack_32_to_n(&stk32, stkp);

384 #endi f

385

387 return (0);

388 }

390 int

391 Pl wp_mai n_stack(struct ps_prochandle *P, Iwpid_t |Iwpid, stack_t *stkp)
392 {

393 uintptr_t addr;

394 I wpstatus_t |s;

396 if (P->state == PS_|DLE) {

397 errno = ENCDATA;

398 return (-1);

399 }

401 if (P->state != PS _DEAD) {

402 if (getlwpfile(P, Ilwid, "lwpstatus", & s, sizeof (Is)) != 0)
403 return (-1);

404 } else {

405 pr_infot *| wp;

406 if ((l getl wpcore(P, |wpid)) == NULL)

407 return (-1);

408 I's = | wp->l wp_st atus;

409 }

411 addr = I|s. pr_ustack;

413 /*

414 * Read out the current stack; if the SS ONSTACK flag is set then
415 * this LW is operating on the alternate si gnal stack. W can
416 * recover the original stack from pr_ol dcontext.

417 */

418 if (P->status.pr_dnodel == PR_MODEL_NATI VE) {

419 if (Pread(P, stkp, sizeof (¥*stkp), addr) != sizeof (*stkp))
420 return (-1);

new usr/src/lib/libproc/comon/ Pl wpregs.c

422
423
424
425
426

428
429

431
432

434
435
436

438
440

442
443

445
446
447
448
449
450
451

453
454
455

457
458
459

461
462

#i f def

#endi f

if (stkp->ss_flags & SS_ONSTACK)
got o on_al t stack;

_LP64
} else {
stack32_t stk32;
if (Pread(P, &stk32, sizeof (stk32), addr) != sizeof (stk32))
return (-1);
if (stk32.ss_flags & SS_ONSTACK)
got o on_al tstack;
stack_32_to_n(&st k32, stkp);
return (0);

on_al t st ack:

#i f def

#endi f

464 in

465

466 {

467
468
469
470

472
473

475
476

478
479
480
481

483
484
485

if (P->status.pr_dnodel == PR_MODEL_NATI VE) {
ucontext_t *ctxp = (void *)Is.pr_ol dcont ext;

if (Pread(P, stkp, sizeof (*stkp),
(uintptr_t)&ctxp->uc_stack) != sizeof (*stkp))
return (-1);

_LP64

} else {
ucontext32_t *ctxp = (void *)Is.pr_ol dcontext;
stack32_t stk32;
if (Pread(P, &stk32, sizeof (stk32),

(uintptr_t)&ctxp->uc_stack) != sizeof (stk32))
return (-1);

stack_32_to_n(&stk32, stkp);

return (0);

t
Plwp_alt_stack(struct ps_prochandle *P, |lwpid_t Iwpid, stack_t *stkp)

if (P->state == PS_IDLE) {
errno = ENODATA,
return (-1);

}

if (P->state != PS_DEAD) {
Iwpstatus_t Is;
if (getlwpfile(P, Iwpid, "lwpstatus", & s, sizeof (Is)) !=0)
return (-1);

if (Is.pr_altstack.ss_flags & SS DI SABLE) {
errno = ENCDATA,
return (-1);

}

*stkp = | s.pr_al tstack;
} else {
Iwp_info_t *Iwp;

new usr/src/lib/libproc/comon/Plwpregs.c

487
488

490
491
492
493

495
496

498
499 }

if ((pr getl\(/\pc;)re(P I'wpi d)) == NULL)

if (Iwp->wp_status. pr_altstack.ss_flags & SS_DI SABLE) {
errno = ENCDATA,
return(1);

}

*stkp = | wp->l wp_st atus. pr_al tstack;
}
return (0);

new usr/src/lib/libproc/comon/ Pservice.c

R R R R

8963 Wed Jan 23 13:19:04 2013
new usr/src/lib/libproc/comon/Pservice.c
XXX AVX procfs

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.

23 * Use is subject to license terns.

24 */

26 #pragna ident " %YW % % %E% SM "

26 #include <stdarg. h>
27 #include <string.h>
28 #include "Pcontrol.h"

30 /

31 This file inplements the process services declared in <proc_service. h>.
32 This enables libproc to be used in conjunction with |ibc_db and

33 librtid_db. As nost of these facilities are already provided by

(nore elegant) interfaces in <libproc.h> we can just call those.

w
ol
* Ok ok Gk ko k% %

36 NOTE: We explicitly do *not* inplement the functions ps_kill() and

37 ps_lrolltoaddr() in this library. The very existence of these functions
38 causes libc_db to create an "agent thread" in the target process.

39 The only way to turn off this behavior is to omt these functions.

40 */

42 #pragma weak ps_pdread = ps_pread

43 #pragma weak ps_ptread = ps_pread

44 #pragma weak ps_pdwrite = ps_pwite
45 #pragma weak ps_ptwite = ps_pwite

47 ps_err_e
48 ps_pdnodel (struct ps_prochandl e *P, int *nodel p)
{

49

50 *model p = P- >st at us. pr _dnodel ;
51 return (PS_OK

52

__unchanged_portion_onitted_
169 #if defined(sparc) || defined(__sparc)
167 ps_err_e

168 ps_| get xregsi ze(struct ps_prochandl e *P, Iwpid_t Iwpid, int *xrsize)
169 {

new usr/src/lib/libproc/comon/Pservice.c 2
170 char fname[PATH_MAX] ;

171 struct stat statb;

173 if (P->state == PS_DEAD) {

174 I 'wp_ |nfo t *Iwp = |ist_next(&P->core->core_| wp_head);
175 uint_t i;

177 for (i =0; i < P->core->core_nlwp; i++, Iw = list_next(lw)) {
178 if (Iwp->lwp_id == Iwid) {

179 if (1wp->wp_xregs != NULL)

180 *xrsize = sizeof (prxregset_t);
181 el se

182 *xrsize = 0;

183 return (PS_OK);

184 }

185 }

187 return (PS_BADLID);

188 1

190 (void) snprintf(fname, sizeof (fnane), "%/ %l/| Wp/ %1/ Xregs",

191 procfs_path, (int)P->status.pr_pid, (int)lwpid

193 if (stat(fnanme, &statb) != 0)

194 return (PS_BADLID);

196 *xrsize = (int)statb. st_size;

197 return (PS_OK);

198 }

__unchanged_portion_omtted_
230 #endif [* sparc */
226 #if defined(__i386) || defined(__and64)

228 ps_
229 ps_| Iget LDT(struct ps_prochandl e *P, Iwpid_t |wpid, struct ssd *Idt)

231 #if defined(__and64) && defined(_LP64)

232 if (P->status.pr_dnodel !'= PR_MODEL_NATI VE) {
233 #endi f

234 prgregset_t regs;

235 struct ssd *ldtarray;

236 ps_err_e error;

237 uint_t gs;

238 int nldt;

239 int i;

241 if (P->state != PS_STOP && P->state ! = PS_DEAD)
242 return (PS_ERR);

244 /*

245 * W& need to get the Idt entry that matches the
246 * value in the Iwp's GS register.

247 */

248 if ((error = ps_lgetregs(P, Ilwid, regs)) != PS_OK)
249 return (error);

251 gs = regs[GS];

253 if ((nldt = Pldt(P, NULL, 0)) <= 0 |

254 (ldtarray = malloc(nldt * sizeof (struct ssd))) == NULL)
255 return (PS_ERR);

256 if ((nldt = PIdt(P, Idtarray, nldt)) <= 0) {

257 free(ldtarray);

258 return (PS_ERR);

new usr/src/lib/libproc/comon/ Pservice.c
259 }

261 for (i =0; i <nldt; i++) {

262 if (gs == ldtarray[i].sel) {
263 *|dt = |dtarray[i];
264 break;

265 }

266 }

267 free(ldtarray);

269 if (i <nldt)

270 return (PS_OX);

271 #if defined(__and64) && defined(_LP64)
272

273 #endi f

275 return (PS_ERR);
276 }
____unchanged_portion_onmtted_

new usr/src/lib/libproc/comon/libproc.h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
29219 Wed Jan 23 13:19: 05 2013

new usr/src/lib/libproc/comon/libproc.h

XXX AVX procfs

R R R R

__unchanged_portion_onitted_

174 /* values for type */

175 #define AT_BYVAL 1
176 #define AT_BYREF 2
178 /* values for inout */

179 #define Al _I NPUT 1
180 #define Al _QUTPUT 2
181 #define Al _I NOUT 3

183 /* maxi mum nunber of syscall argunments */
184 #define MAXARGS 8

186 /* maxi mum size in bytes of a BYREF argument */
187 #defi ne MAXARGL (4*1024)

189 /*

190 * Function prototypes for routines in the process control package.
191 */

192 extern struct ps_prochandl e *Pcreate(const char *, char *const *,
193 int *, char *, size_t);

194 extern struct ps_| prochandle *Pxcreate(const char *, char *const *,
195 char *const *, int *, char *, size_t);

197 extern const char *Pcreate_error(int);

199 extern struct ps_prochandle *Pgrab(pid_t, int, int *)

200 extern struct ps_prochandl e *Pgrab_core(const char *, const char *, int, int *);
201 extern struct ps_prochandl e *Pfgrab_core(int, const char *, int *);

202 extern struct ps_prochandle *Pgrab_file(const char *, int *);

203 extern const char *Pgrab_error(int);

205 extern int Preopen(struct ps_prochandle *);

206 extern void Prel ease(struct ps_prochandle *, int);

207 extern void Pfree(struct ps_prochandle *);

209 extern int Pasfd(struct ps_prochandle *);

210 extern char *Pbrandnanme(struct ps_prochandle *, char *, size_t);

211 extern int Pctlfd(struct ps_prochandle *);

212 extern int Pcreat e_agent (struct ps_prochandle *);

213 extern void Pdest roy_agent (struct ps_prochandl e *)

214 extern int Pst opstatus(struct ps_prochandle *, long, uint_t);

215 extern int Pwai t (struct ps_prochandle *, uint_t);

216 extern int Pst op(struct ps_prochandle *, uint_t);

217 extern int Pdst op(struct ps_prochandl e *);

218 extern int Pst ate(struct ps_prochandle *);

219 extern const psinfo_t *Ppsinfo(struct ps_prochandle *);

220 extern const pstatus_t *Pstatus(struct ps_prochandl e *),

221 extern int Pcred(struct ps_prochandle *, prcred_t *, int);

222 extern int Pset cred(struct ps_prochandle *, const prcred_t *);

223 extern ssize_t Ppriv(struct ps_prochandle *, prpriv_t *, size_t);

224 extern int Psetpriv(struct ps_prochandle *, prpriv_t *);

225 extern void *Pprivinfo(struct ps_prochandle *);

226 extern int Pset zonei d(struct ps_prochandle *, zoneid_t);

227 extern int Pget areg(struct ps_prochandle *, int, prgreg_t *);

228 extern int Pput areg(struct ps_prochandle *, int, prgreg_t);

229 extern int Psetrun(struct ps_prochandle *, int, int);

230 extern ssize_t Pread(struct ps_prochandle *, void *, size_t, uintptr_t);
231 extern ssize_t Pread_string(struct ps_prochandle *, char *, size_t, uintptr_t);
232 extern ssize_t Pwite(struct ps_prochandl e *, const void *, si ze_t, uintptr_t);

new usr/src/lib/libproc/comon/libproc.h

233 extern int Pcl earsi g(struct ps_prochandle *);

234 extern int Pcl earfaul t (struct ps_prochandl e *);

235 extern int Pset bkpt (struct ps_prochandle *, uintptr_t, ulong_t *);
236 extern int Pdel bkpt (struct ps_prochandle *, uintptr_t, ulong_t);
237 extern int Pxecbkpt (struct ps_prochandl e *, ulong_t);

238 extern int Pset wapt (struct ps_prochandl e *, const prwatch_t *);
239 extern int Pdel wapt (struct ps_prochandle *, const prwatch_t *);
240 extern int Pxecwapt (struct ps_prochandle *, const prwatch_t *);
241 extern int Psetflags(struct ps_prochandle *, |ong);

242 extern int Punset fl ags(struct ps_prochandle *, |ong);

243 extern int Psi gnal (struct ps_prochandle *, int, int);

244 extern int Pfaul t (struct ps_prochandle *, int, int);

245 extern int Psysentry(struct ps_prochandle *, int, int);

246 extern int Psysexit(struct ps_prochandle *, int, int);

247 extern void
248 extern void
249 extern void
250 extern void

Pset si gnal (struct ps_prochandl e *,
Psetfaul t (struct ps_prochandl e *,

const sigset_t *);
const fltset_t *);
Pset sysexit(struct ps_prochandle *, const sysset_t *);
252 extern void Psync(struct ps_prochandle *);

253 extern int Psyscal | (struct ps_prochandle *, sysret_t *,

254 int, uint_t, argdes_t *);

255 extern int Pi sprocdi r(struct ps prochandl e *, const char *);

257 [|*

258 * Function prototypes for |wp-specific operations.

259 */

260 extern struct ps_|lwphandle *Lgrab(struct ps_prochandle *, Iwid_t, int *);
261 extern const char *Lgrab_error(int);

263 extern struct ps_prochandl e *Lprochandl e(struct ps_|wphandle *);

264 extern void Lfree(struct ps_|lwphandle *);

266 extern int Letl fd(struct ps_lwphandle *);

267 extern int Lwai t (struct ps_|lwphandle *, uint_t);

268 extern int Lstop(struct ps_lwphandle *, uint_t);

269 extern int Ldstop(struct ps_|lwphandle *);

270 extern int Lstate(struct ps_|lwphandl e *);

271 extern const |lwpsinfo_t *Lpsinfo(struct ps_|lwhandle *);

272 extern const lwpstatus_t *Lstatus(struct ps_|lwphandle *);

273 extern int Lgetareg(struct ps_lwhandle *, int, prgreg_t *);

274 extern int Lput areg(struct ps_|lwphandle *, int, prgreg_t);

275 extern int Lsetrun(struct ps_lwphandle *, int, int);

276 extern int Lcl earsi g(struct ps_|lwphandle *);

277 extern int Lcl earfaul t (struct ps_|lwphandle *);

278 extern int Lxecbkpt (struct ps_|lwphandl e *, ulong_t);

279 extern int Lxecwapt (struct ps_|wphandle *, const prwatch_t *);

280 extern void Lsync(struct ps_|lwphandle *);

282 extern int Lstack(struct ps_lwhandle *, stack_t *);

283 extern int Lmai n_st ack(struct ps_|lwphandle *, stack_t *);

284 extern int Lal t _stack(struct ps_lwphandle *, stack_t *);

286 /*

287 * Function prototypes for systemcalls forced on the victim process.
288 */

289 extern int pr_open(struct ps_prochandle *, const char *, int, node_t);
290 extern int pr_creat(struct ps_prochandle *, const char *, node_t);
291 extern int pr_cl ose(struct ps_prochandle *, int);

292 extern int pr_access(struct ps_prochandle *, const char *, int);
293 extern int pr_door _info(struct ps_prochandle *, int, struct door _info *);
294 extern void *pr_mmap(struct ps_prochandl e *,

295 void *, size_t, int, int, int, off_t);

296 extern void *pr zmap(struct ps_| prochandl e *,

297 oid *, size_t, int, int);

298 extern int pr_nunr'rap(struct ps_prochandl e *, void *, size_t);

Pset sysentry(struct ps_prochandl e *, const sysset_t *);

new usr/src/lib/libproc/comon/libproc.h 3 new usr/src/lib/libproc/comon/libproc.h
299 extern int pr_mentnt| (struct ps_prochandle *, 365 extern int Plwp_getregs(struct ps_prochandle *, lwpid_t, prgregset_t);
300 caddr _t, size_t, int, caddr_t, int, int); 366 extern int Plwp_setregs(struct ps_prochandle *, Iwpid_t, const prgregset_t);
301 extern int pr _meni nf o(struct ps_pr ochandl e *, Const ui nt 64_t *addrs,
302 int addr_count, const uint_t *info, int info_count, 368 extern int Plwp_getfpregs(struct ps_prochandle *, Iwpid_t, prfpregset_t *);
303 uint64_t *outdata, uint_t *validity); 369 extern int Plwp_setfpregs(struct ps_prochandl e *, |wpid_t,
304 extern int pr_sigaction(struct ps_prochandle *, 370 const prfpregset_t *);
305 int, const struct sigaction *, struct sigaction *);
306 extern int pr_getiti mar(st ruct ps_prochandle *, 372 #if defined(__sparc)
307 int, struct itinmerval *);
308 extern int pr_setiti mer(st ruct ps_prochandl e *, 372 extern int Plwp_getxregs(struct ps_prochandle *, Iwpid_t, prxregset_t *);
309 int, const struct itimerval *, struct itinmerval *); 373 extern int Plwp_setxregs(struct ps_prochandle *, Iwpid_t, const prxregset_t *);
310 extern int pr_ioctl (struct ps_prochandle *, int, int, void *, size_t);
311 extern int pr_fecntl (struct ps_prochandle *, int, int, void *); 375 #if defined(__sparc)
312 extern int pr_stat(struct ps_prochandle *, const char *, struct stat *);
313 extern int pr_lstat(struct ps_prochandle *, const char *, struct stat *); 377 #endif /* | codereview */
314 extern int pr_fstat(struct ps_prochandle *, int, struct stat *); 378 extern int Plwp_getgw ndows(struct ps_prochandle *, Iwpid_t, gw ndows_t *);
315 extern int pr_stat64(struct ps_prochandl e *, const char *,
316 struct stat64 *); 380 #if defined(__sparcv9)
317 extern int pr_l stat64(struct ps_prochandle *, const char *, 381 extern int Plwp_getasrs(struct ps_prochandle *, wp id_t, asrset_t);
318 struct stat64 *); 382 extern int Plwp_setasrs(struct ps_prochandle *, Iwpid_t, const asrset_t);
319 extern int pr_fstat64(struct ps_prochandle *, int, struct stat64 *); 383 #endif [/* __sparcv9 */
320 extern int pr_statvfs(struct ps_prochandle *, const char *, statvfs_t *);
321 extern int pr_fstatvfs(struct ps_prochandl e *, int, statvfs_t *); 385 #endif [* __sparc */
322 extern projid_t pr_getprojid(struct ps_prochandle *Pr);
323 extern taskid_t pr_gettaskid(struct ps_prochandle *Pr); 387 #if defi ned(i386) || defined(__and64)
324 extern taskid_t pr_settaskid(struct ps_prochandle *Pr, projid_t project, 388 extern Pl dt (struct ps_prochandle *, struct ssd *, int);
325 int flags); 389 extern | nt proc_get_ldt(pid_t, struct ssd *, int);
326 extern zoneid_t pr_getzonei d(struct ps_prochandl e *Pr); 390 #endif [/* __i386 || __and64 */
327 extern int pr_getrctl (struct ps_prochandle *,
328 const char *, rctlblk_t *, rctlblk_t *, int); 392 extern int Plwp_getpsinfo(struct ps_prochandle *, Iwpid_t, Iwsinfo_t *);
329 extern int pr_setrctl (struct ps_prochandle *,
330 const char *, rctlblk_t *, rctliblk_t *, int); 394 extern int Plwp_stack(struct ps_prochandle *, Iwpid_t, stack_t *);
331 extern int pr_getrlimt(struct ps_prochandl e *, 395 extern int Plwp_nmain_stack(struct ps_prochandl e *, Twpid_t, stack_t *);
332 int, struct rlimt *); 396 extern int Plwp_alt_stack(struct ps_prochandle *, Iwpid t, stack_t *);
333 extern int pr_setrlimt(struct ps_prochandle *,
334 int, const struct rlimt *); 398 /*
335 extern int pr_set proj retl (struct ps_prochandle *, const char *, 399 * LWP iteration interface; iterate over all active LWPs.
336 rctlblk_t *, size_t, int); 400 */
337 #if defined(_LARGEFI LE64_SCURCE) 401 typedef int proc_|lwp_f(void *, const |lwpstatus_t *);
338 extern int pr_getrlimt64(struct ps_prochandle *, 402 extern int Plwp_iter(struct ps_prochandle *, proc_lw_f *, void *);
339 int, struct rlimt64 *);
340 extern int pr_setrlim t 64(struct ps_prochandl e *, 404 | *
341 int, const struct rlimt64 *); 405 * LWP iteration interface; iterate over all LWPs, active and zonbie.
342 #endif /* _LARGCEFI LE64_SOURCE */ 406 */
343 extern in pr_lwp_exit(struct ps_prochandle *); 407 typedef int proc_lwp_all_f(void *, const Iwpstatus_t *, const |wpsinfo_t *);
344 extern int pr_exit(struct ps_prochandle *, int); 408 extern int Plwp_iter_all (struct ps_prochandle *, proc_lwp_all_f *, void *);
345 extern int pr_wai tid(struct ps_prochandle *,
346 idtype_t, id_t, siginfo_t *, int); 410 /*
347 extern off_t pr_I seek(struct ps_| prochandle *,int, off_t, int); 411 * Process iteration interface; iterate over all non-system processes.
348 extern offset_t pr_|Iseek(struct ps_prochandle *, int, of f set _t, int); 412 */
349 extern int pr renane(struct ps_prochandl e *, const char *, const’ char *); 413 typedef int proc_wal k_f(psinfo_t *, Iwpsinfo_t *, void *);
350 extern int pr_link(struct ps_prochandle *, const char *, const char *); 414 extern int proc_wal k(proc_wal k_f *, void *, int);
351 extern int pr_unlink(struct ps_prochandle *, const char *);
352 extern int pr_get peerucred(struct ps_prochandle *, int, ucred_t **); 416 #define PR_WALK_PROC 0 /* wal k processes only */
353 extern int pr_get peer name(struct ps_prochandle *, 417 #define PR_WALK_LWP 1 /* walk all Iwps */
354 int, struct sockaddr *, socklen_t *);
355 extern int pr_getsockname(struct ps_prochandl e *, 419 /*
356 int, struct sockaddr *, socklen_t *); 420 * Determine if an lwp is in a set as returned from proc_arg_xgrab().
357 extern int pr_get sockopt (struct ps_prochandle * 421 */
358 int, int, int, void *, int *)' 422 extern int proc_|lwp_in_set(const char *, lwid_t);
359 extern int pr processor bi nd(struct ps_prochandl e *, 423 extern int proc_|lwp_range_valid(const char *);
360 idtype_t, id_t, int, int *);
425 [*
362 /* 426 * Synbol table interfaces.
363 * Function prototypes for accessing per-LW register information. 427 */
364 */

new usr/src/lib/libproc/comon/libproc.h

429
430
431
432
433
434
435
436

438
439
440
441
442
443
444
445

447
448
449
450
451
452
453
454

456
457

459
460
461
462
463
464
465

467
468

470
471
472
473

475

477
478
479
480

482
483
484
485
486

488
489
490
491
492

494

/*
* Pseudo- nanes passed to Pl ookup_by_nanme() for well-known | oad objects.
* NOTE: It is required that PR OBJ_EXEC and PR _OBJ_LDSO exactly natch
*/ the definitions of PS_OBJ_EXEC and PS_OBJ_LDSO from <proc_service. h>.
*

#defi ne PR _OBJ_EXEC

#defi ne PR_OBJ_LDSO

#defi ne PR_OBJ_EVERY

((const char *)0)
((const char *)1)
((const char *)-1)

/* search the executable file */
/* search ld.so.1 */
/* search every | oad object */

/*
* Special Lmid_t passed to Plookup_by Imd() to search all link maps. The
* special values LM ID BASE and LM | D LDSO from <l ink.h> nay al so be used.

* |f PR.OBJ_EXEC is used as the object nanme, the Imid nust be PR LM D _EVERY
* or LMIDBASE in order to return a match. |f PR OBJ_LDSO is used as the
*

obj ect name, the Inmid nmust be PR LMD EVERY or LMID LDSO to return a match.

*

#define PR_LM D_EVERY ((Lmid_t)-1UL) /* search every link map */
/*
* 'object_nane’ is the name of a | oad object obtained from an
* iteration over the process’s address space mappi ngs (Pnapping_iter),
* or an iteration over the process’'s mapped objects (Pobject_iter),
* or else it is one of the special PR OBJ_* val ues above.
*
/

extern int Plookup_by_nanme(struct ps_prochandle *,
const char *, const char *, GEIf_Sym~*);

extern int PI ookup_by_addr (struct ps_| prochandle *,
uintptr_t, char *, size_t, GEIf_Sym*);

typedef struct prsym nfo {

const char *prs_object; /* object nane */
const char *prs_nane; /* synbol nane */
Lmd_t prs_I md; /* link map id */
uint_t prs_id; /* synbol i1d */
uint_t prs_ t abl e; /* synbol table id */

} prsyminfo_t;

extern int Pxlookup_by_nane(struct ps_prochandl e *,
Lmd_t, const char *, const char *, CGEIf_Sym*, prsymnfo_t *);

extern int Pxlookup_by_addr(struct ps_prochandl e *,
uintptr_t, char *, size_t, CEIf_Sym*, prsyminfo_t *);

extern int Pxlookup_by_addr_resol ved(struct ps_prochandl e *,
uintptr_t, char *, size_t, _Sym*, prsymnfo_t *);

typedef int proc_map_f(void *, const prmap_t *, const char *);

extern int Pmapping_iter(struct ps_prochandle *, proc_map_f *, void *);
extern int Pmapping_iter_resolved(struct ps_prochandle *, proc_map_f *, void *);
extern int Pobject_iter(struct ps_prochandle *, proc_map_f *, void *);
extern int Pobject_iter_resol ved(struct ps_ prochandl e *, proc_map_f *, void *);

extern const prmap_t *Paddr_to_map(struct ps_prochandle *, uintptr_t);
extern const prmap_t *Paddr_to_text_map(struct ps_prochandle *, uintptr_t);
extern const prmap_t *Pnane_to_nap(struct ps_prochandle *, const char *);
extern const prmap_t *Plmid_to_map(struct ps_prochandl e *,

Lm d_t, const char *);

extern const rd_| oadobj _t

extern const rd_| oadobj _t
const char *);

extern const rd Ioadobj
Lm d_t, const char *)

*Paddr _t o_| oadobj (struct ps_prochandle *, uintptr_t);
*Pnanme_t o_| oadobj (struct ps_prochandl e *,

*Pl mi d_t o_| oadobj (struct ps_prochandl e *,

extern ctf_file_t *Paddr_to_ctf(struct ps_prochandle *, uintptr_t);

new usr/src/lib/libproc/comon/libproc.h

495

497
498
499
500

502
503
504
505
506

508
509
510
511
512

514

516
517
518
519
520
521
522

524
525
526
527
528
529

531
532

534
535

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

558
559
560

extern ctf_file_t *Pnane_to_ctf(struct ps_prochandle *, const char *);

extern char *Pplatforn(struct ps_prochandle *, char *, size_t);

extern int Punane(struct ps_prochandle *, struct utsnane *);

extern char *Pzonenanme(struct ps_prochandle *, char *, size_t);

extern char *Pfindobj (struct ps_prochandl e *, const char *, char *, size_t);

extern char *Pexecname(struct ps_prochandle *, char *, size_t);

extern char *Pobjname(struct ps_prochandle *, uintptr_t, char *, size_t);

extern char *Pobj nane_resol ved(struct ps_prochandle *, uintptr_t, char *,
size_t);

extern int Plmid(struct ps_prochandle *, uintptr_t, Lmd_t *);

typedef int proc_env_f(void *, struct ps_prochandle *,

extern int Penv_iter(struct ps_prochandle *, proc_env_f *,

extern char *Pgetenv(struct ps_prochandl e *, const char *,

extern long Pgetauxval (struct ps_prochandle *, int);

extern const auxv_t *Pgetauxvec(struct ps_ prochandle *);

uintptr_t, const char *);
void *);
char *, size_t);

extern void Pset_procfs_path(const char *);

/*

* Synbol table iteration interface. The special Imd constants LM | D_BASE,
* LM ID_LDSO, and PR_LM D _EVERY may be used with Psynbol _iter_by_I md.

*/

typedef int proc_symf(void *, const GEIf_Sym*, const char *);

typedef int proc_xsymf(void *, const GElf_Sym*
const prsyminfo_t *);

const char *,

extern int Psynbol _iter(struct ps_prochandle *,
const char *, int, int, proc_symf *, void *);
extern int Psynbol _| iter _by_addr (struct ps_| prochandle *,
const char *, int, int, proc_symf *, void *);
extern int Psynbol _| iter _by_nane(struct ps_pr ochandl e *,
const char *, int, int, proc_symf *, “void *);

extern int Psymbol _iter_by_|md(struct ps_prochandle *,
Lm d_t, const char *, int, int, proc_symf *, void *);

extern int Pxsynbol _iter(struct ps_prochandle *,

Lmid_t, const char *, int, int, proc_xsymf *, void *);

/*

* "which’ selects which synbol table and can be one of the follow ng.

*

/
#defi ne PR_SYMIAB 1
#def i ne PR_DYNSYM 2
/*

* 'type’ selects the synbols of interest by binding and type. It is a bit-
* mask of one or nore of the follow ng flags, whose order MJUST natch the
* order of STB and STT constants in <sys/elf.h>.

*

/
#def i ne Bl ND_LOCAL 0x0001
#def i ne Bl ND_GLOBAL 0x0002
#defi ne Bl ND_WEAK 0x0004

#def i ne BI ND_ANY (Bl ND_LOCAL| Bl ND_GLOBAL| Bl ND_WEAK)
#def i ne TYPE_NOTYPE 0x0100

#defi ne TYPE_OBJECT 0x0200
#defi ne TYPE_FUNC 0x0400
#def i ne TYPE_SECTI ON 0x0800
#define TYPE_FILE 0x1000

#def i ne TYPE_ANY (TYPE_NOTYPE| TYPE_OBJECT| TYPE_FUNC| TYPE_SECTI ON| TYPE_FI LE)

/*
* This returns the rtld_db agent handle for the process.
* The handle will becone invalid at the next successful exec() and

new usr/src/lib/libproc/comon/libproc.h

561
562
563

565
566
567
568
569
570
571
572

574
Br®
576
577
578
579
580
581
582
583
584
585
586

588
589
590
591
592
593

595
596
597
598

600
601
602
603

605
606

608
609
610
611
612
613
614
615
616
617
618
619
620
621

623
624
625
626

* must not be used beyond that point (see Preset_maps(), bel ow).
&/

extern rd_agent _t *Prd_agent(struct ps_prochandle *);

/*

* This should be called when an RD DLACTIVITY event with the

* RD_CONSI STENT state occurs via librtld_db’ s event mechanism

* This makes |ibproc’s address space nmappi ngs and synbol tables current.
*

The variant Pupdate_syns() can be used to preload all synbol tables as well.

*/
extern voi d Pupdate_maps(struct ps_prochandle *);
extern voi d Pupdate_syns(struct ps_prochandle *);

/
This nust be called after the victimprocess perfornms a successful
exec() if any of the synmbol table interface functions have been called
prior to that point. This is essential because an exec() invalidates
al | previous synbol table and address space mapping information.

It is always safe to call, but if it is called other than after an
exec() by the victim process it just causes unnecessary over head.

The rtld_db agent handl e obtained froma previous call to Prd_agent() is
made invalid by Preset_maps() and Prd_agent () nust be called again to get
the new handl e.

* Ok Ok ok kR % Ok ok ok 3k

*/

extern void Preset_maps(struct ps_prochandle *);

/
G ven an address, Ppltdest() determines if this is part of a PLT, and if
so returns a pointer to the synbol nane that will be used for resol ution.
If the specified address is not part of a PLT, the function returns NULL.

* Ok Ok Ok
-~

extern const char *Ppltdest(struct ps_prochandle *, uintptr_t);

/*
* See comments for Pissyscall (),

*/

extern int Pissyscall_prev(struct ps_prochandle *, uintptr_t,

in Pisadep.h
uintptr_t *);

/*
* Stack frane iteration interface.
*/
typedef int proc_stack_f(void *, prgregset_t, uint_t, const long *);
extern int Pstack_iter(struct ps_prochandle *,
const prgregset_t, proc_stack_f *, void *);

default, enpty definitions that are called internally. If a client wishes
to override these definitions, it can sinply provide its own version with
the sane signature that interposes on the |ibproc definition.

If the client programwi shes to report additional error information, it
can provide its own version of Perror_printf.

R B

If the client programw shes to receive a callback after Pcreate forks

* but before it execs, it can provide its own version of Pcreate_callback.
*/

extern void Perror_printf(struct ps_prochandle *P, const char *format, ...);
extern void Pcreate_cal |l back(struct ps_prochandle *);

/*

* Renove unprintable characters from psinfo.pr_psargs and replace with
* whitespace characters so it is safe for printing.

*/

The following functions define a set of passive interfaces: |ibproc provides

new usr/src/lib/libproc/comon/libproc.h

627

629
630
631
632
633
634
635

637

639
640
641
642
643
644

646
647
648
649
650
651
652
653
654

656
657
658
659
660

extern void proc_unctrl _psinfo(psinfo_t *);

/*

* Utility functions for processing argunments which should be /proc files,
* pids, and/or core files. The returned error code can be passed to

* grab error() in order to convert it to an error string.

#defi ne PR_ARG Pl DS 0x1 /* Allow pid and /proc file argunents */
#defi ne PR_ARG_CORES 0x2 /* Allow core file argunments */

#define PR ARG ANY (PR_ARG PIDS | PR ARG CORES)
extern struct ps_prochandl e *proc_arg_grab(const char *, int, int, int *);
extern struct ps_prochandl e *proc_arg_xgrab(const char *, const char *, int,
int, int *, const char **);
extern pid_t proc_arg_psinfo(const char *, int, psinfo_t *, int *);
extern pid_t proc_arg_xpsinfo(const char *, int, psinfo_t *, int *,
const char **);

/*

* Utility functions for obtaining information via /proc without actually
* performing a Pcreate() or Pgrab():

*/

extern int proc_get_auxv(pid_t, auxv_t *, int);

extern int proc_ get _cred(pid_t, prcred_t *, int);

extern prpriv_t *proc_get_priv(pid_t);

extern int proc_get_psinfo(pid_t, psinfo_t *);

extern int proc_get_status(pid_t, pstatus_t *);

/*

* Uility functions for debugging tools to convert numeric fault,
* signal, and systemcall nunbers to synbolic nanes:

*/

#define FLT2STR_ MAX 32 /* max. string length of faults (I

| i ke SI @STR_MAX) */
#define SYS2STR MAX 32 /* max. string length of syscalls (li

661 ke S| @STR MAX) */
663 extern char *proc_fltnanme(int, char *, size_t);

664 extern char *proc_signane(int, char *, size_t);

665 extern char *proc_sysnane(int, char *, size_t);

667 /*

668 * Utility functions for debugging tools to convert fault, signal, and system
669 * call names back to the numeric constants:

670 */

671 extern int proc_str2flt(const char *, int *);

672 extern int proc_str2sig(const char *, int *);

673 extern int proc_str2sys(const char *, int *);

675 /*

676 * Utility functions for debugging tools to convert a fault, signal or system
677 * call set to a string representation (e.g. "BUS, SEG/ or "open,close,read").
678 *

679 #defi ne PRSI GBUFSZ 1024 /* buffer size for proc_sigset2str() */

681 extern char *proc_fltset2str(const fltset_t *, const char *, int,

682 char *, size_t);

683 extern char *proc_sigset2str(const sigset_t *, const char *, int,

684 char *, size_t);

685 extern char *proc_sysset2str(const sysset_t *, const char *, int,

686 char *, size_t);

688 extern int Pgcore(struct ps_prochandle *, const char *, core_content_t);

689 extern int Pfgcore(struct ps_prochandle *, int, core_content_t);

690 extern core_content_t Pcontent(struct ps_prochandle *);

692 /*

new usr/src/lib/libproc/comon/libproc.h

693 * Utility functions for debugging tools to convert a string representation of
694 * a fault, signal or systemcall set back to the numeric value of the

695 * corresponding set type.

696 */

697 extern char *proc_str2fltset(const char *, const char *, int, fltset_t *);
698 extern char *proc_str2sigset(const char *, const char *, int, sigset_t *);
699 extern char *proc_str2sysset(const char *, const char *, int, sysset_t *);

701 /[*
702 * Wility functions for converting between strings and core_content_t.
703 */
704 #define PRCONTENTBUFSZ 80 /* buffer size for proc_content2str() */

706 extern int proc_str2content(const char *, core_content_t *);
707 extern int proc_content2str(core_content_t, char *, size_t);

709 [*

710 * Wility functions for buffering output to stdout, stderr while

711 * process is grabbed. Prevents deadl ocks due to pfiles ‘pgrep xtermni
712 * and other varients.

713 */

714 extern int proc_initstdio(void);

715 extern int proc_flushstdio(void);

716 extern int proc_finistdio(void);

718 [*
719 * Iterate over all open files.
720 */

721 typedef int proc_fdinfo_f(void *, prfdinfo_t *);
722 extern int Pfdinfo_iter(struct ps_prochandle *, proc_fdinfo_f *, void *);

724 #ifdef __cplusplus
725
726 #endif

728 #endif /* _LIBPROC_H */

new usr/src/lib/libproc/comon/llib-Iproc

R R R R

15962 Wed Jan 23 13:19: 05 2013
new usr/src/lib/libproc/comon/llib-Iproc
XXX AVX procfs

R R R R

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END
20 */
21 /* LI NTLI BRARY */
22 /* PROTOLIB1 */
24 [*

25 * Copyright 2009 Sun M crosystens, Inc. Al rights reserved.
26 * Use is subject to license terns.

27 */

28 #include "libproc. h"

30 /*

31 * usr/src/lib/libproc

32 */

34 /* Pcontrol.c */

35 int _l'i bproc_debug;

36 struct ps_prochandl e *Pcreate(const char *file, char *const *argv,
37 int *perr, char *path, size_t len);

38 const char *Pcreate_error(int error);

39 void Pcreate_cal | back(struct ps_prochandle *Pr);

40 struct ps_prochandl e *Pgrab(pid_t pid, int gflag, int *perr);
41 const char *Pgrab_error(int error);
42 void Pfree(struct ps_prochandle *Pr);

43 int Pstate(struct ps_prochandle *Pr);
44 int Pasfd(struct ps_prochandle *Pr);
45 int Pctlfd(struct ps_prochandle *Pr);

46 const psinfo_t *Ppsinfo(struct ps_prochandle *Pr);
47 const pstatus_t *Pstatus(struct ps_prochandle *Pr);
48 int Pcred(struct ps_prochandle *Pr, prcred_t *pcrp, int ngroups);
49 ssize_t Ppriv(struct ps_prochandle *Pr, prpriv_t *pprivp, size_t);

50 void Psync(struct ps_prochandle *Pr);

51 int Pcreat e_agent (struct ps_prochandle *Pr);

52 void Pdest roy_agent (struct ps_prochandle *Pr);

53 int Preopen(struct ps_prochandle *Pr);

54 void Prel ease(struct ps_prochandle *Pr, int flags);

55 int Pst opstatus(struct ps_prochandle *Pr, long cnd, uint_t nsec);
56 int Pwait (struct ps_prochandle *Pr, uint_t nsec);

57 int Pst op(struct ps_prochandle *Pr, uint_t nsec);

58 int Pdst op(struct ps_prochandle *Pr);

59 int Pget areg(struct ps_prochandle *Pr, int regno, prgreg_t *preg);
60 int Pput areg(struct ps_prochandle *Pr, int regno, prgreg_t reg);
61 int Psetrun(struct ps_prochandle *Pr, int sig, int flags);

new usr/src/lib/libproc/comon/llib-Iproc

121

123
124
125

ssize_t Pread(struct ps_prochandle *Pr,

void *buf, size_t nbyte, uintptr_t address);
ssize_t Pread_string(struct ps_prochandle *Pr,

char *buf, size_t nbyte, uintptr_t address);
ssize_t Pwite(struct ps_prochandl e *Pr,

const void *buf, size_t nbyte, uintptr_t address);

int Pcl earsi g(struct ps_prochandle *Pr);
i nt Pcl earfaul t (struct ps_prochandle *Pr);
i nt Pset bkpt (struct ps_prochandl e *Pr, uintptr_t address, ulong_t *saved);
i nt Pdel bkpt (struct ps_prochandle *Pr, uintptr_t address, ulong_t saved);
int Pxecbkpt (struct ps_prochandle *Pr, ulong_t saved);
int Pset wapt (struct ps_prochandle *Pr, const prwatch_t *wp);
i nt Pdel wapt (struct ps_prochandl e *Pr, const prwatch_t *wp);
i nt Pxecwapt (struct ps_prochandl e *Pr, const prwatch_t *wp);
int Pset fl ags(struct ps_prochandle *Pr, long flags);
int Punset fl ags(struct ps_prochandle *Pr, long flags);
int Psi gnal (struct ps_prochandle *Pr, int which, int stop);
voi d Pset si gnal (struct ps_prochandle *Pr, const sigset_t *set);
int Pfaul t (struct ps_prochandle *Pr, int which, int stop);
voi d Psetfaul t (struct ps_prochandle *Pr, const fltset_t *set);
int Psysentry(struct ps_prochandle *Pr, int which, int stop);
voi d Pset sysentry(struct ps_prochandle *Pr, const sysset_t *set);
int Psysexit(struct ps_prochandle *Pr, int which, int stop);
voi d Pset sysexi t(struct ps_prochandle *Pr, const sysset_t *set);
i nt Plwp_iter(struct ps_prochandle *Pr, proc_lw_f *func, void *cd);
int Psyscal | (struct ps_prochandl e *Pr, sysret_t *,
int sysindex, uint_t nargs, argdes_t *argp);
struct ps_|lwphandl e *Lgrab(struct ps_prochandle *P, lwpid_t lwpid, int *perr);

const char *Lgrab_error(int error);
struct ps_prochandl e *Lprochandl e(struct ps_| wphandl e *Lwp);
voi d Lfree(struct ps_|l wphandl e *Lwp);

i nt Letl fd(struct ps_|l wphandl e *Lwp);
i nt Lwai t (struct ps_|l wphandl e *Lwp, uint_t nsec);
i nt Lstop(struct ps_lwhandl e *Lwp, uint_t nsec);
int Ldstop(struct ps_|l wphandl e *Lwp);
int Lstate(struct ps_|lwphandl e *Lwp);

const |wpsinfo_t *Lpsinfo(struct ps_|lwphandle *Lwp);
const lwpstatus_t *Lstatus(struct ps_|wphandle *Lwp);

int Lget areg(struct ps_lwphandl e *Lwp, int regno, prgreg_t *preg);
int Lputareg(struct ps_lwphandle *Lwp, int regno, prgreg_t reg);

i nt Lsetrun(struct ps_lwphandle *Lwp, int sig, int flags);

i nt Lcl earsi g(struct ps_|l wphandl e *Lwp);

i nt Lcl earfaul t (struct ps_l wphandl e *Lwp);

int Lxecbkpt (struct ps_|l wphandl e *Lwp, ulong_t saved);

int Lxecwapt (struct ps_|wphandl e *Lwp, const prwatch_t *wp);

voi d Lsync(struct ps_|l wphandl e *Lwp);
/* Plwpregs.c */

int Plwp_getregs(struct ps_prochandle *Pr, |lwpid_t i, prgregset_t gr);

int Plwp_setregs(struct ps_prochandle *Pr, |lwpid_t i, const prgregset_t gr);
int Plwp_getfpregs(struct ps_prochandle *Pr, Iwpid_t i, prfpregset_t *fp);

int Plwp_setfpregs(struct ps_prochandle *Pr, Iwpid_t i, const prfpregset_t *fp);
#if defined(sparc) || defined(__sparc)

int Plwp_getxregs(struct ps_prochandle *Pr, lwpid_t i, prxregset_t *xr);

int Plwp_setxregs(struct ps_prochandle *Pr, Iwpid_t i, const prxregset_t *xr);
#i f defined(__sparcv9)

int Plwp_getasrs(struct ps_prochandle *Pr, |lwpid_t i, asrset_t asrs);

int Plwp_setasrs(struct ps_prochandle *Pr, |lwpid_t i, const asrset_t asrs);
#endif /* __sparcv9 */

#endif /* _ _sparc */

int Plwp_getpsinfo(struct ps_prochandle *Pr, Iwpid_t i, Iwpsinfo_t *Ips);

/* Pcore.c */
struct ps_prochandl e *Pfgrab_core(int fd, const char *aout, int *perr);
struct ps_prochandl e *Pgrab_core(const char *core, const char *aout,

new usr/src/lib/libproc/comon/llib-Iproc
126 int gflag, int *perr);

128 /* Pisprocdir.c */
129 int Pi sprocdir(struct ps_prochandl e *Pr, const char *dir);

131 /* Pservice.c */
132 ps_err_e ps_pdnodel (struct ps_prochandle *Pr, int *nodel p);
133 ps_err_e ps_pread(struct ps_prochandle *Pr,

134 psaddr_t addr, void *buf, size_t size);

135 ps_err_e ps_pwite(struct ps_prochandle *Pr,

136 psaddr _t addr, const void *buf, size_t size);
137 ps_err_e ps_pdread(struct ps_prochandle *Pr,

138 psaddr_t addr, void *buf, size_t size);

139 ps_err_e ps_pdwite(struct ps_prochandle *Pr,

140 psaddr_t addr, const void *buf, size_t size);
141 ps_err_e ps_ptread(struct ps_prochandle *Pr,

142 psaddr_t addr, void *buf, size_t size);

143 ps_err_e ps_ptwite(struct ps_prochandle *Pr,

144 psaddr_t addr, const void *buf, size_t size);

145 ps_err_e ps_pstop(struct ps_prochandle *Pr);
146 ps_err_e ps_pcontinue(struct ps_prochandle *Pr);
147 ps_err_e ps_| stop(struct ps_prochandle *Pr, prl _t Wpl

148 ps_err_e ps_lcontinue(struct ps_prochandle *Pr, |wpid_t Wpl d);
149 ps_err_e ps_lgetregs(struct ps_prochandle *Pr,

150 Iwpid_t |wpid, prgregset_t regs)

151 ps_err_e ps_| setregs(struct ps_prochandl e *Pr,

152 Iwpid_t Iwid, const prgr egset t regs);
153 ps_err_e ps_ Igetfpregs(struct ps_prochandl e *Pr,

154 Iwpid_t |wpid, prfpregset_t *regs)

155 ps_err_e ps_| setfpregs(struct ps_prochandle *Pr,

156 Iwpid_t Iwid, const prfpregset_t *regs);

157 #if defined(sparc) || defi ned(__sparc)
158 ps_err_e ps_| get xregsi ze(struct ps_prochandle *Pr,

159 Iwpid_t Iwpid, int *xrsize);

160 ps_err_e ps_l getxregs(struct ps_prochandle *Pr,
161 Iwpid_t Iwid, caddr_t xregs);
162 ps_err_e ps_| setxregs(struct ps_prochandl e *Pr,
163 Iwpid_t |wpid, caddr_t xregs);

164 #endif /* sparc */

165 #if defined(__i386) || defined(__and64)

166 ps_err_e ps_lgetLDT(struct ps_prochandle *Pr,
167 Iwpid_t Iwpid, struct ssd *ldt);
168 #endif /* i 386 || antd6464 */

169 void ps_plog(const char *fnt, ...);

171 /* Psyntab.c */

172 void Pupdat e_maps(struct ps_prochandle *Pr);

173 void Pupdat e_syns(struct ps_prochandle *Pr);

174 rd_agent _t *Prd_agent (struct ps_prochandle *Pr);

175 const prmap_t *Paddr_to_map(struct ps_prochandle *Pr, uintptr_t addr);

176 const prmap_t *Paddr_to_text_map(struct ps_prochandle *Pr, uintptr_t addr);

177 const prmap_t *Pnanme_to_map(struct ps_prochandle *Pr, const char *nane);
178 const prmap_t *Plm d_to_map(struct ps_prochandle *Pr, Lmid_t Inmd,

179 const char *nane);

180 int Pl ookup_by_addr (struct ps_prochandl e *Pr, uintptr_t addr,

181 char *sym name_buffer, size_t bufsize, GEIf_Sym *synbol p);
182 int Pl ookup_by_nane(struct ps_prochandle *Pr,

183 const char *object_nane, const char *synbol _nane,

184 GEl f _Sym *sym);

185 int Pl ookup_| by I mid(struct ps_prochandle *Pr,

186 md_t Imd, const char *object_nane, const char *synbol _
187 GEIf “Sym* synj

188 const rd_| oadobj _t *Paddr_to_| oadobj (struct ps_prochandle *, uintptr_t);

189 const rd_| oadobj _t *Pnanme_t o_| oadobj (struct ps_prochandl e *, const char *);

190 const rd_l oadobj _t *Plm d_to_| oadobj (struct ps_prochandle *, Lmd_t,
191 const char *);

new usr/src/lib/libproc/comon/llib-Iproc

192 i
193 i

194

195 i
196 i

197
198
199
200
201

202 i
203 i

204
205
206
207
208
209
210
211
212
213
214
215
216

218
219
220

222
223
224

226
227
228

230
231

233
234

236
237
238

240
241

243
244
245
246
247

249
250
251
252
253
254
255

int

char

char
int

char
char

char
voi d

Pmappi ng_i ter(struct ps_prochandle *Pr, proc_map_f *func, void *cd);
Pmappi ng_i ter _resol ved(struct ps_| prochandl e *Pr, proc_map_f *func,
void *cd);
Pobj ect |ter(struct ps_prochandl e *Pr, proc_map_f *func, void *cd);
Pobj ect |ter resol ved(struct ps_| prochandl e *Pr, proc_rmp_f *func,
voi d *cd);
*Pobj name(struct ps_prochandl e *Pr, uintptr_t addr,
char *buffer, size_t bufsize);
*Pobj name_r esol ved(struct ps_prochandl e *Pr, uintptr_t addr,
char *buffer, size_t bufsize);
Pl m d(struct ps_| prochandl e *Pr, uintptr_t addr, Lmid_t *lnidp);
Psynbol _iter(struct ps_prochandle *Pr, const char *object_nane,
int which, int type, proc_symf *func, void *cd);
Psynbol _iter_by_| m d(struct ps_prochandle *Pr, Lnmid_t Imd,
const char *object_nanme, int which, int type,
proc_symf *func, void *cd);
*Pget env(struct ps_prochandle *Pr, const char *nane,
char *buffer, size_t bufsize);
*Ppl atforn(struct ps_prochandl e *Pr, char *s, size_t n);
Punane(struct ps_prochandle *Pr, struct utsnane *u);
*Pzonenanme(struct ps_prochandle *Pr, char *s, size_t n);
*Pfindobj (struct ps_prochandle *Pr, const char *path,
char *s, size_t n);
*Pexecnanme(struct ps_prochandle *Pr, char *buffer, size_t bufsize);
Preset _maps(struct ps_prochandle *Pr);

ps_err_e ps_pgl obal _| ookup(struct ps_prochandle *Pr,

const char *object_nane, const char *sym nane,
psaddr_t *sym addr);

ps_err_e ps_pgl obal _syn(struct ps_prochandle *Pr,

| ong
const

const char *object_nane, const char *sym nane,
ps_symt *synp);

Pget auxval (struct ps_prochandle *Pr, int type);
auxv_t *Pgetauxvec(struct ps_prochandl e *Pr);

ps_err_e ps_pauxv(struct ps_prochandle *Pr, const auxv_t **aux);

/* Putil.c */

voi d

/* pr
int
/* pr
i nt
int

/* pr
int

/* pr
int

int
/* pr
int
int

int

/* pr

Perror_printf(struct ps_prochandle *Pr, const char *format, ...);

_door.c */

pr_door _info(struct ps_prochandle *Pr, int did, door_info_t *di);

_exit.c */

pr_exit(struct ps_prochandle *Pr, int status);
pr_lwp_exit(struct ps_prochandle *Pr);

_fentl.c */

pr_fentl (struct ps_prochandle *Pr, int fd, int cnd, void *argp);

_getitinmer.c */

pr_getitinmer(struct ps_prochandle *Pr,
int which, struct itinerval *itv);
pr_setitinmer(struct ps_prochandle *Pr,
int which, const struct itinerval *itv, struct itinmerval *oitv);

_getrctl.c */

pr_getrctl (struct ps_prochandle *Pr, const char *rnane,
rctiblk_t *old_blk, rctliblk_t *new blk, int rflag);
pr_setrctl (struct ps_prochandle *Pr, const char *rnaneg,
rctlblk_t *old_blk, rctliblk_t *new blk, int rflag);
pr_setprojrctl(struct ps_prochandle *Pr, const char *rnane,
rctlblk_t *new_ bl k, size_t size, int rflag);

_getrlimt.c */

258
259
260
261
262
263
264
265

267
268
269
270
271

273
274
275

277

279
280
281

283
284
285

287
288
289
290
291
292
293

295
296
297
298
299
300

new usr/src/lib/libproc/comon/llib-Iproc
int pr_getrlimt(struct ps_prochandle *Pr,
int resource, struct rlimt *rlp);
int pr_setrlimt(struct ps_prochandle *Pr,
int resource, const struct rlimt *rlp);
int pr_getrlimt64(struct ps_prochandle *Pr,
int resource, struct rlinmté4 *rilp);
int pr_setrlimt64(struct ps_prochandle *Pr,
int resource, const struct rlimté4 *rlp);
/* pr_getsocknane.c */
int pr_get sockname(struct ps_prochandle *Pr,
int sock, struct sockaddr *nane, socklen_t *nanel en);
int pr_get peernama(struct ps_prochandl e *Pr,
int sock, struct sockaddr *nane, socklen_t *nanel en);
/* pr_ioctl.c */
int pr_ioctl (struct ps_prochandl e *Pr,
fd, Int code, void *buf size_t size);
/* pr_lseek.c */
of f _t pr_I seek(struct ps_prochandl e *Pr,
int filedes, off_t offset, int whence);
of fset _t pr_Ilseek(struct ps_prochandl e *Pr,
int filedes, offset_t offset, int whence);
/* pr_mencntl.c */
int pr_mencntl (struct ps_prochandle *Pr,
caddr _t addr, size_t len, int cnd, caddr_t arg, int attr, int nask);
/* pr_mmap.c */
voi d *pr_mmap(struct ps_prochandl e *Pr,
void *addr, size_t len, int prot, int flags, int fd, off_t off);
int pr_munmap(struct ps_prochandl e *Pr,
void *addr, size_t len);
voi d *pr_zmap(struct ps_prochandl e *Pr,
void *addr, size_t len, int prot, int flags);
/* pr_open.c */
int pr_open(struct ps_prochandl e *Pr,
const char *filenane, int flags, node_t node);
int pr_creat (struct ps_prochandle *Pr,
const char *filename, node_t node);
i nt pr_cl ose(struct ps_prochandle *Pr, int fd);
int pr_access(struct ps_prochandl e *Pr, const char *path, int anode);

301

303
304

306
307
308
309

311
312
313

315
316
317
318

319 i

320
321
322
323

/* pr_pbind.c */

int pr_processor_bi nd(struct ps_prochandle *Pr, idtype_t, id_t, int, int *);
/* pr_renane.c */

i nt pr_renane(struct ps_prochandle *Pr, const char *old,
int pr_link(struct ps_prochandle *Pr, const char *exist,

int pr_unlink(struct ps_prochandle *Pr, const char *);

const char *new);
const char *new);

/* pr_sigaction.c */
int pr_si gaction(struct ps_prochandl e *Pr,
int sig, const struct S|gact|on *act, struct sigaction *oact);

/* pr_stat.c */

i nt pr_stat(struct ps_prochandle *Pr, const char *path, struct stat *buf);
i nt pr_lstat(struct ps_prochandle *Pr, const char *path, struct stat *buf);
int pr_fstat(struct ps_prochandle *Pr, int fd, struct stat *buf);
int pr_stat64(struct ps_prochandle *Pr, const char *path,
struct stat64 *buf);
const char *path,

int pr_l stat64(struct ps_prochandle *Pr,
struct stat64 *buf);
int pr_fstat64(struct ps_prochandle *Pr,

int fd, struct stat64 *buf);

new usr/src/lib/libproc/comon/llib-Iproc

325
326
327

329
330
331
332

334
335
336

338
339
340
341
342
343

345
346
347
348

350
351

352 i

354
355
356
357
358
359

361
362
363
364
365
366

368

370
371
372

374
375

377
378

380
381
382

384
385

/* pr_statvfs.c */
int pr_statvfs(struct ps_prochandle *Pr,
int pr_fstatvfs(struct ps_prochandle *Pr,

const char *path, statvfs_t *buf);
int fd, statvfs_t *buf);

/* pr_tasksys.c */

projid_t pr_getprojid(struct ps_prochandle *Pr);

taskid_t pr_gettaskid(struct ps_prochandle *Pr);

taskid_t pr_settaskid(struct ps_prochandle *Pr, projid_t project, int flags);

/* pr_waitid.c */

int pr_waiti d(st ruct ps_prochandle *Pr,
idtype_t idtype, id_t id, siginfo_t *infop, int options);

/* proc_get _info.c */

int proc get _cred(pid_t pid, prcred_t *credp, int ngroups);
prpriv_t *proc_get_priv(pid_t pid);

I nt proc_get_psinfo(pid_t pid, psinfo_t *psp);

int proc_get_status(pid_t pid, pstatus_t *psp);

int proc_get _auxv(pid_t pid, auxv_t *pauxv, Int naux);

/* proc_nanes.c */

char *proc_fltnane(int flt, char *buf, size_t bufsz);

char *proc_signane(int sig, char *buf, size_t bufsz);

char *proc_sysnane(int sys, char *buf, size_t bufsz);

i nt proc_str2flt(const char *str, int *fltnum;

int proc_str2sig(const char *str, int *signum;

int proc_str2sys(const char *str, int *sysnum;

char *proc_fltset2str(const fltset_t *set, const char *delim int nmenbers,
char *buf, size_t nbytes);

char *proc_sigset2str(const sigset_t *set, const char *delim int nenbers,
char *buf, size_t nbytes);

char *proc_sysset 2str(const sysset_t *set, const char *delim int nmenbers,
char *buf, size_t nbytes);

char *proc_str2fltset(const char *str, const char *delim int nenbers,
fltset_t *set);

char *proc_str2sigset(const char *str, const char *delim int nenbers,
sigset_t *set);

char *proc_str2sysset (const char *str, const char *delim int nembers,
sysset _t *set);

int proc_wal k(proc_wal k_f *func, void *arg, int flags);

/* proc_arg.c */

struct ps_prochandl e *proc_arg_ grab(const char *arg,

int oflag, int gflag, int *perr);
pid_t proc_arg_psi nfo(const char *arg, int oflag, psinfo_t *psp, int *perr);
voi d proc_unctrl _psinfo(psinfo_t *psp);
/* proc_set.c */
int Psetcred(struct ps_prochandl e *Pr, const prcred_t *pcred);

/* Pstack.c */
int Pstack_iter(struct ps_prochandle *Pr,

const prgregset_t regs, proc_stack_f *func, void *arg);
/* Pisadep.c */

const char *Ppltdest(struct ps_prochandle *Pr, uintptr_t addr);

new usr/src/uts/comon/fs/proc/prcontrol.c

R R R R

57418 Wed Jan 23 13:19: 05 2013
new usr/src/uts/comon/fs/proc/prcontrol.c
XXX AVX procfs

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright 2010 Sun M crosystens, Inc. Al rights reserved.

24 * Use is subject to license terns.

25 */

27 #i
28 #i
29 #i
30 #i
31 #i
32 #i
33 #i
34 #i
35 #i
36 #i
37 #i
38 #i
39 #i
40 #i
41 #i
42 #i
43 #i
44 #i
45 #i
46 #i
47 #i
48 #i
49 #i
50 #i
51 #i
52 #i
53 #i
54 #i
55 #i
56 #i
57 #i
58 #i

60 st
61 st

ncl ude <sys/types. h>
ncl ude <sys/uio. h>

ncl ude <sys/param h>
ncl ude <sys/cmm_err. h>
ncl ude <sys/cred. h>

ncl ude <sys/policy. h>
ncl ude <sys/debug. h>
ncl ude <sys/errno. h>
ncl ude <sys/file.h>

ncl ude <sys/inline.h>
ncl ude <sys/knem h>

ncl ude <sys/proc. h>

ncl ude <sys/brand. h>
ncl ude <sys/regset.h>
ncl ude <sys/sysnacros. h>
ncl ude <sys/systm h>
ncl ude <sys/vfs. h>

ncl ude <sys/vnode. h>
ncl ude <sys/signal.h>
ncl ude <sys/auxv.h>

ncl ude <sys/user. h>

ncl ude <sys/cl ass. h>
ncl ude <sys/fault.h>
ncl ude <sys/syscall.h>
ncl ude <sys/procfs. h>
ncl ude <sys/zone. h>

ncl ude <sys/copyops. h>
ncl ude <sys/schedct! . h>
ncl ude <vnf as. h>

ncl ude <vni seg. h>

ncl ude <fs/proc/prdata. h>
ncl ude <sys/contract/process_inpl.h>

atic void
atic int

pr_settrace(proc_t *, sigset_t *);
pr_setfpregs(prnode_t *, prfpregset_t *);

new usr/src/uts/comon/fs/proc/prcontrol.c

110

112
113
114
115
116
117
118
119
120
121
122
123
124
125

static int pr setxregs(pr node_t *, prxregset_t *);
#endif /* ! codereview *
#i f defi ned(__sparc)
static in pr_setxregs(prnode_t *, prxregset_t *);
static i nt pr_setasrs(prnode_t *, asrset_t);
#endi f
static int pr_setvaddr (prnode_t *, caddr_t);
static int pr_cl earsi g(prnode_t *);
static int pr_clearflt(prnode_t *);
static int pr_wat ch(prnode_t *, prwatch_t *, int *);
static int pr_agent (prnode_t *, prgregset_t, int *);
static int pr_rdw (proc_t *, enumuio_rw, priovec_t
static int pr_scred(proc_t *, prcred_t *, cred_t *,
static int pr_spriv(proc_t *, prpriv_t *, cred_t *);
static int pr_szonei d(proc_t *, zoneid_t, cred_t *);
static void pausel wps(proc_t *);
static void unpausel wps(proc_t *);
typedef union {
| ong sig; /* PCKILL, PCUNKILL */
| ong ni ce; /* PCNI CE */
| ong tineo; /* PCTWBTOP */
ul ong_t fl ags; /* PCRUN, PCSET, PCUNSET */
caddr _t vaddr ; /* PCSVADDR */
siginfo_t si gi nf o; /* PCSSIG */
si gset _t si gset; /* PCSTRACE, PCSHOLD */
fltset _t fltset; /* PCSFAULT */
sysset _t sysset; /* PCSENTRY, PCSEXIT */
prgregset _t prgregset; /* PCSREG, PCAGENT */
prfpregset_t prfpregset; /* PCSFPREG */
pr xregset _t pr xregset ; /* PCSXREG */
#endif /* | codereview */
#i f defined(__sparc)
prxregset _t pr xr egset ; /* PCSXREG */
asrset _t asrset ; /* PCSASRS */
#endi f
prwat ch_t prwat ch; /* PCWATCH */
priovec_t priovec; /* PCREAD, PCWRI TE */
prcred_t prcred; /* PCSCRED */
prprlvt prpriv; /* PCSPRIV */
I ong przonei d; /* PCSZONE */
} arg_t;
static int pr_control (long, arg_t *, prnode_t *, cred_t *);
static size_t

ctlsize(long cnd,
{

size_t resid,

arg_t *argp)

size_t size = sizeof (long);

size_t rnd;
int ngrp;

swtch (cmd) {
case PCNULL:
case PCSTOD
case PCDSTOP:
case PCWBTOP:
case PCCSI G
case PCCFAULT:
br eak;
case PCSSI G
size += sizeof (si
br eak;
case PCTWSTOP:

ginfo_t);

size += sizeof (long);

br eak;

*) -
bool ean_t);

new usr/src/uts/comon/fs/proc/prcontrol.c 3 new usr/src/uts/comon/fs/proc/prcontrol.c 4
126 case PCKILL: 191 case PCSPRIV:
127 case PCUNKI LL: 192 if (resid >= size + sizeof (prpriv_t))
128 case PCNI CE: 193 size += priv_prgetprivsize(&argp->prpriv);
129 size += sizeof (long); 194 el se
130 br eak; 195 return (0);
131 case PCRUN: 196 br eak;
132 case PCSET: 197 case PCSZONE:
133 case PCUNSET: 198 size += sizeof (long);
134 size += sizeof (ulong_t); 199 br eak;
135 break; 200 defaul t:
136 case PCSVADDR: 201 return (0);
137 size += sizeof (caddr_t); 202 }
138 br eak;
139 case PCSTRACE: 204 /* Round up to a multiple of long, unless exact anobunt witten */
140 case PCSHOLD: 205 if (size < resid)
141 size += sizeof (sigset_t); 206 rnd = size & (sizeof (long) - 1);
142 br eak;
143 case PCSFAULT: 208 if (rnd !'= 0)
144 size += sizeof (fltset_t); 209 size += sizeof (long) - rnd;
145 br eak; 210 }
146 case PCSENTRY:
147 case PCSEXIT: 212 if (size > resid)
148 size += sizeof (sysset_t); 213 return (0);
149 br eak; 214 return (size);
150 case PCSREG 215 }
151 case PCAGENT:
152 size += sizeof (prgregset_t); 217 |*
153 br eak; 218 * Control operations (lots).
154 case PCSFPREG 219 */
155 size += sizeof (prfpregset_t); 220 int
156 br eak; 221 prwitectl (vnode_t *vp, uio_t *uiop, cred_t *cr)
153 #i f defined(__sparc) 222 {
157 case PCSXREG 223 #define MY_BUFFER SI ZE \
158 size += sizeof (prxregset_t); 224 100 > 1 + sizeof (arg_t) / sizeof (long) ?\
159 br eak; 225 100 : 1 + sizeof (arg_t) si zeof (Il ong)
160 #i f defined(__sparc) 226 I ong buf[MY_BUFFER_SI ZE] ;
161 #endif /* ! codereview */ 227 I ong *buf p;
162 case PCSASRS: 228 size_t resid =
163 size += sizeof (asrset_t); 229 size_t size;
164 br eak; 230 prnode_t *pnp = VTOP(vp);
165 #endi f 231 int error;
166 case PCWATCH: 232 int |ocked =
167 size += sizeof (prwatch_t);
168 br eak; 234 whil e (uiop->uio_resid) {
169 case PCREAD: 235 /*
170 case PCWRI TE: 236 * Read several conmands in one gul p.
171 size += sizeof (priovec_t); 237 */
172 br eak; 238 bufp = buf;
173 case PCSCRED: 239 if (resid) { /* move inconplete command to front of buffer */
174 size += sizeof (prcred_t); 240 long *tail;
175 br eak;
176 case PCSCREDX: 242 if (resid >= sizeof (buf))
177 /* 243 reak;
178 * We cannot derefence the pr_ngroups fields if it 244 tail = (long *)((char *)buf + sizeof (buf) - resid);
179 * we don’t have enough data. 245 do {
180 */ 246 *buf p++ = *tail ++;
181 if (resid < size + sizeof (prcred_t) - sizeof (gid_t)) 247 } while ((resid -= sizeof (long)) != 0);
182 return (0); 248 }
183 ngrp = argp->prcred. pr_ngroups; 249 resid = sizeof (buf) - ((char *)Ybufp - (char *)buf);
184 if (ngrp <0 || ngrp > ngroups_nax) 250 if (resid > ui op- >ul o_resid)
185 return (0); 251 resid = uiop->uio_resid;
252 if (error = uionove((caddr_t)bufp, resid, U O WRITE, uiop))
187 /* The result can be smaller than sizeof (prcred_t) */ 253 return (error);
188 size += sizeof (prcred_t) - sizeof (gid_t); 254 resid +- (char *)bufp - (char *)buf;
189 size += ngrp * sizeof (gid_t); 255 bufp = buf;
190 br eak;

new usr/src/uts/comon/fs/proc/prcontrol.c 5 new usr/src/uts/comon/fs/proc/prcontrol.c
257 do { /* 1 oop over commands in buffer */ 323 /*
258 long cmd = bufp[0]; 324 * Can't apply to a system process.
259 arg_t *argp = (arg_t *)&bufp[1]; 325 */
326 if (p->p_as == &kas) {
261 size = ctlsize(cnd, resid, argp); 327 error = EBUSY;
262 if (size == 0) /* inconplete or invalid command */ 328 br eak;
263 br eak; 329 }
264 /*
265 * Performthe specified control operation. 331 if (cmd == PCSTCP || cnd == PCDSTOP)
266 */ 332 pr_stop(pnp);
267 if (!locked) {
268 if ((error = prlock(pnp, ZNO) != 0) 334 if (cmd == PCDSTOP)
269 return (error); 335 br eak;
270 | ocked = 1;
271 } 337 /*
272 if (error = pr control(cnd argp, pnp, cr)) { 338 * |f an lwp is waiting for itself or its process,
273 if (error == - /* -1 1is timeout */ 339 * don't walt. The stopped |wp woul d never see the
274 Iocked = 0; 340 * fact that it is stopped.
275 el se 341 */
276 return (error); 342 f ((pcp->prc_flags & PRC > LWP) ?
277 } 343 (pcp >prc thread == curthread) D(p == curproc)) {
278 bufp = (long *)((char *)bufp + size); 344 (cmd == PCWSTCP || cnd == PCTWSTOP)
279 } while ((resid -= size) !'= 0); 345 error :EBUSY
346 br eak;
281 if (locked) { 347 }
282 prunl ock(pnp);
283 | ocked = 0; 349 tineo = (cnd == PCTWSTOP)? (time_t)argp->tinmeo : O;
284 } 350 if ((error = pr_wait_stop(pnp, tineo)) != 0)
285 } 351 return (error);
286 return (resid? EINVAL : 0);
287 } 353 break;
354 }
289 static int
290 pr_control (long cnd, arg_t *argp, prnode_t *pnp, cred_t *cr) 356 case PCRUN: /* make |wp or process runnable */
291 { 357 error = pr_setrun(pnp, argp->flags);
292 prcommon_t *pcp; 358 br eak;
293 proc_t *p;
294 I nt unl ocked; 360 case PCSTRACE: /* set signal trace nmask */
295 int error = 0; 361 pr_settrace(p, &argp->sigset);
362 br eak;
297 if (cnd == PCNULL)
298 return (0); 364 case PCSSI G /* set current signal */
365 error = pr_setsig(pnp, &argp->siginfo);
300 pcp = pnp->pr_conmmon; 366 if (argp->siginfo.si_signo == SIKILL & error == 0) {
301 p = pcp->prc_proc; 367 prunl ock(pnp);
302 ASSERT(p != NULL); 368 pr_wait_die(pnp);
369 return (-1);
304 /* System processes defy control. */ 370 1
305 if (p->p_flag & SSYS) { 371 br eak;
306 prunl ock(pnp);
307 return (EBUSY); 373 case PCKILL: /* send signal */
308 } 374 error = pr_kill (pnp, (int)argp->sig, cr);
375 if (error == 0 & argp->sig == SIKILL) {
310 switch (crmd) { 376 prunl ock(pnp) ;
377 pr_wait_di e(pnp)
312 defaul t: 378 return (-
313 error = ElI NVAL; 379 1
314 br eak; 380 br eak;
316 case PCSTOP: /* direct process or Iwp to stop and wait for stop */ 382 case PCUNKILL: /* delete a pending signal */
317 case PCDSTOP: /* direct process or Iwp to stop, don’t wait */ 383 error = pr_unkill (pnp, (int)argp->sig);
318 case PCWBTOP: /* wait for process or Iwp to stop */ 384 br eak;
319 case PCTWSTOP: /* wait for process or |lwp to stop, with tinmeout */
320 { 386 case PCNI CE: /* set nice priority */
321 tine_t tineo; 387 error = pr_nice(p, (int)argp->nice, cr);
388 br eak;

new usr/src/uts/comon/fs/proc/prcontrol.c 7 new usr/src/uts/comon/fs/proc/prcontrol.c
451 br eak;
390 case PCSENTRY: /* set syscall entry bit mask */
391 case PCSEXIT: /* set syscall exit bit mask */ 453 case PCWATCH: /* set or clear watched areas */
392 pr_setentryexit(p, &argp->sysset, cnd == PCSENTRY); 454 error = pr_watch(pnp, &argp->prwatch, &unlocked);
393 br eak; 455 if (error && unl ocked)
456 return (error);
395 case PCSET: /* set process flags */ 457 br eak;
396 error = pr_set(p, argp->flags);
397 br eak; 459 case PCAGENT: /* create the /proc agent Iwp in the target process */
460 error = pr_agent(pnp, argp->prgregset, &unlocked);
399 case PCUNSET: /* unset process flags */ 461 if (error &% unl ocked)
400 error = pr_unset(p, argp->flags); 462 return (error);
401 br eak; 463 br eak;
403 case PCSREG /* set general registers */ 465 case PCREAD: /* read fromthe address space */
404 { 466 error = pr_rdw (p, U O READ, &argp->priovec);
405 kthread_t *t = pr_thread(pnp); 467 br eak;
407 if (!1STOPPED(t) && !VSTOPPED(t) && ! DSTOPPED(t)) ({ 469 case PCWRI TE: /* wite to the address space */
408 t hread_unl ock(t); 470 error = pr_rdw(p, U OWITE, &argp->priovec);
409 error = EBUSY; 471 br eak;
410 } else {
411 t hread_unl ock(t); 473 case PCSCRED: /* set the process credentials */
412 mut ex_exi t (&p->p_l ock); 474 case PCSCREDX:
413 prsetprregs(ttol wp(t), argp->prgregset, 0); 475 error = pr_scred(p, &argp->prcred, cr, cnd == PCSCREDX);
414 mut ex_ent er (&p->p_| ock); 476 br eak;
415 }
416 br eak; 478 case PCSPRIV: /* set the process privileges */
417 } 479 error = pr_spriv(p, &argp->prpriv, cr);
480 br eak;
419 case PCSFPREG /* set floating-point registers */ 481 case PCSZONE: /* set the process’s zoneid credentials */
420 error = pr_setfpregs(pnp, &argp->prfpregset); 482 error = pr_szoneid(p, (zoneid_t)argp->przoneid, cr);
421 br eak; 483 br eak;
484 }
423 case PCSXREG /* set extra registers */
157 #if defined(__sparc) 486 if (error)
424 error = pr_setxregs(pnp, &argp->prxregset); 487 prunl ock(pnp);
159 #el se 488 return (error);
160 error = EI NVAL; 489 }
161 #endif
425 br eak; 491 #ifdef _SYSCALL32_| MPL
427 #if defined(__sparc) 493 typedef union {
428 case PCSASRS: /* set ancillary state registers */ 494 int32_t sig; /* PCKILL, PCUNKILL */
429 error = pr_setasrs(pnp, argp->asrset); 495 int32_t ni ce; /* PCN CE */
430 br eak; 496 int32_t ti neo; /* PCTWSTOP */
431 #endif 497 uint 32_t flags; /* PCRUN, PCSET, PCUNSET */
498 caddr 32_t vaddr ; /* PCSVADDR */
433 case PCSVADDR: /* set virtual address at which to resume */ 499 si gi nfo32_t si gi nfo; /* PCSSIG */
434 error = pr_setvaddr(pnp, argp->vaddr); 500 si gset _t si gset; /* PCSTRACE, PCSHOLD */
435 break; 501 fltset_t fltset; /* PCSFAULT */
502 sysset _t sysset ; /* PCSENTRY, PCSEXIT */
437 case PCSHOLD: /* set signal-hold mask */ 503 prgregset 32_t prgregset; /* PCSREG PCAGENT */
438 pr_set hol d(pnp, &argp->sigset); 504 prfpregset32_t prfpregset; /* PCSFPREG */
439 br eak; 242 #if defined(__sparc)
505 pr xregset _t pr xregset ; /* PCSXREG */
441 case PCSFAULT: /* set mask of traced faults */ 244 #endi f
442 pr_setfault(p, &argp->fltset); 506 prwat ch32_t prwat ch; [* PCWATCH */
443 br eak; 507 priovec32_t priovec; /* PCREAD, PCWRI TE */
508 prcred32_t prcred; /* PCSCRED */
445 case PCCSI G /* clear current signal */ 509 prpriv_t prpriv; /* PCSPRIV */
446 error = pr_clearsig(pnp); 510 int32_t przonei d; /* PCSZONE */
447 br eak; 511 } arg32_t;
449 case PCCFAULT: /* clear current fault */ 513 static int pr_control 32(int32_t, arg32_t *, prnode_t *, cred_t *);
450 error = pr_clearflt(pnp); 514 static int pr_setfpregs32(prnode_t *, prfpregset32_t *);

new usr/src/uts/comon/fs/proc/prcontrol.c

516 /*

517 * Note that while ctlsize32() can use argp, it nmust do so only in a way
518 * that assunes 32-bit rather than 64-bit alignment as argp is a pointer
519 * to an array of 32-bit values and only 32-bit alignment is ensured.
520 */

521 static size_t

522 ctlsize32(int32_t cnd, size_t resid, arg32_t *argp)

523 {

524 size_t size = sizeof (int32_t);

525 size_t rnd;

526 int ngrp;

528 switch (cnd)

529 case PCNULL:

530 case PCSTOP:

531 case PCDSTOP:

532 case PCWBTOP:

533 case PCCSI G

534 case PCCFAULT:

535 br eak;

536 case PCSSI G

537 size += sizeof (siginfo32_t);
538 br eak;

539 case PCTWSTOP:

540 size += sizeof (int32_t);
541 br eak;

542 case PCKILL:

543 case PCUNKI LL:

544 case PCNI CE:

545 size += sizeof (int32_t);
546 break;

547 case PCRUN:

548 case PCSET:

549 case PCUNSET:

550 size += sizeof (uint32_t);
551 br eak;

552 case PCSVADDR:

553 size += sizeof (caddr32_t);
554 br eak;

555 case PCSTRACE:

556 case PCSHOLD:

557 size += sizeof (sigset_t);
558 br eak;

559 case PCSFAULT:

560 size += sizeof (fltset_t);
561 br eak;

562 case PCSENTRY:

563 case PCSEXIT:

564 size += sizeof (sysset_t);
565 br eak;

566 case PCSREG

567 case PCAGENT:

568 size += sizeof (prgregset32_t);
569 br eak;

570 case PCSFPREG

571 size += sizeof (prfpregset32_t);
572 br eak;

312 #if defined(__sparc)

573 case PCSXREG

574 size += sizeof (prxregset_t);
575 br eak;

316 #endi f

576 case PCWATCH:

577 size += sizeof (prwatch32_t);
578 br eak;

new usr/src/uts/comon/fs/proc/prcontrol.c
579 case PCREAD:
580 case PCWRI TE:
581 size += sizeof (priovec32_t);
582 br eak;
583 case PCSCRED:
584 size += sizeof (prcred32_t);
585 br eak;
586 case PCSCREDX:
587 /*
588 * We cannot derefence the pr_ngroups fields if it
589 * we don’t have enough data.
590 */
591 if (resid < size + sizeof (prcred32_t) - sizeof (gid32_t))
592 return (0);
593 ngrp = argp->prcred. pr_ngroups;
594 if (ngrp <0 || ngrp > ngroups_max)
595 return (0);
597 /* The result can be smaller than sizeof (prcred32_t) */
598 size += sizeof (prcred32_t) - sizeof (gid32_t);
599 size += ngrp * sizeof (gid32_t);
600 br eak;
601 case PCSPRIV:
602 if (resid >= size + sizeof (prpriv_t))
603 size += priv_prgetprivsize(&argp->prpriv);
604 el se
605 return (0);
606 br eak;
607 case PCSZONE:
608 size += sizeof (int32_t);
609 break;
610 defaul t:
611 return (0);
612 }
614 /* Round up to a multiple of int32_t */
615 rnd = size & (sizeof (int32_t) - 1);
617 if (rnd = 0)
618 size += sizeof (int32_t) - rnd;
620 if (size > resid)
621 return (0);
622 return (size);
623 }
__unchanged_portion_omtted_
711 static int
712 pr_control 32(int32_t cmd, arg32_t *argp, prnode_t *pnp, cred_t *cr)
713 {
714 prconmon_t *pcp;
715 proc_t *p;
716 I nt unl ocked;
717 int error = 0;
719 if (cmd == PCNULL)
720 return (0);
722 pcp = pnp->pr_conmon;
723 p = pcp->prc_proc;
724 ASSERT(p != NULL);
726 if (p->p_flag & SSYS) {
727 prunl ock(pnp);
728 return (EBUSY);
729 }

10

new usr/src/uts/comon/fs/proc/prcontrol.c 11 new usr/src/uts/comon/fs/proc/prcontrol.c
796 prunl ock(pnp);
731 switch (cnd) { 797 pr_wait_di e(pnp);
798 return (-1);
733 defaul t: 799 }
734 error = EI NVAL; 800 }
735 br eak; 801 br eak;
737 case PCSTOP: /* direct process or Ilwp to stop and wait for stop */ 803 case PCKILL: /* send signal */
738 case PCDSTOP: /* direct process or |lwp to stop, don't wait */ 804 error = pr_kill(pnp, (i nt)argp >S|g, cr);
739 case PCWSTOP: /* wait for process or Iwp to stop */ 805 if (error == 0 & argp->sig == SICGKILL) {
740 case PCTWSTOP: /* wait for process or Iwp to stop, with tinmeout */ 806 prunl ock(pnp);
741 { 807 pr_wait_di e(pnp)
742 time_t tinmeo; 808 return (-1);
809 }
744 /* 810 break;
745 * Can't apply to a system process.
746 */ 812 case PCUNKILL: /* delete a pending signal */
747 if (p->p_as == &kas) { 813 error = pr_unkill (pnp, (int)argp->sig);
748 error = EBUSY; 814 br eak;
749 br eak;
750 } 816 case PCN CE: /* set nice priority */
817 error = pr_nice(p, (int)argp->nice, cr);
752 if (cmd == PCSTOP || cnd == PCDSTOP) 818 br eak;
753 pr_stop(pnp);
820 case PCSENTRY: /* set syscall entry bit mask */
755 if (cmd == PCDSTOP) 821 case PCSEXIT: /* set syscall exit bit mask */
756 br eak; 822 pr_setentryexit(p, &argp->sysset, c == PCSENTRY) ;
823 br eak;
758 /*
759 * |f an lwp is waiting for itself or its process, 825 case PCSET: /* set process flags */
760 * don't wait. The Iwp will never see the fact that 826 error = pr_set(p, (long)argp->flags);
761 * itself is stopped. 827 br eak;
762 */
763 if ((pcp->prc_flags & PRC_LWP)? 829 case PCUNSET: /* unset process flags */
764 (pcp->prc_ thread == curthread) : (p == curproc)) { 830 error = pr_unset(p, (long)argp->flags);
765 if (cnd == POASTOP || cnmid == PCTWSTOP) 831 br eak;
766 error = EBUSY;
767 br eak; 833 case PCSREG /* set general registers */
768 } 834 if (PROCESS_NOT_32BI T(p))
835 error = EOVERFLOW
770 tims0:(cnd == PCTWSTOP) ? (time_t)argp->timeo : O; 836 el se {
771 if ((error = pr_wait_stop(pnp, tineo)) != 0) 837 kthread_t *t = pr_thread(pnp);
772 return (error);
839 if (!ISTOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t)) {
774 br eak; 840 thread_unl ock(t);
775 } 841 error = EBUSY;
842 } else {
777 case PCRUN: /* make |wp or process runnable */ 843 prgregset t pragregset;
778 error = pr_setrun(pnp, (ulong_t)argp->flags); 844 klwp_t *Iwp = ttol wp(t)
779 br eak;
846 thread_unl ock(t);
781 case PCSTRACE: /* set signal trace mask */ 847 mut ex_exi t (&p->p_|l ock);
782 pr_settrace(p, &argp->sigset); 848 prgregset_32ton(lwp, argp->prgregset,
783 br eak; 849 prgregset);
850 prsetprregs(lwp, prgregset, 0);
785 case PCSSI G /* set current signal */ 851 mut ex_ent er (&p- >p_l ock) ;
786 i f (PROCESS_NOT_32BI T(p)) 852 }
787 error = EOVERFLOW 853 }
788 el se { 854 br eak;
789 int sig = (int)a p >si gi nf o. si _signo;
790 si gi nf _t siginf 856 case PCSFPREG /* set floating-point registers */
857 if (PROCESS NOT_32BI T(p))
792 bzero(&siginfo, sizeof (siginfo)); 858 error = EOVERFLOW
793 si gi nfo 32t ok(&ar gp->si ginfo, (k_siginfo_t *)&siginfo); 859 el se
794 error = pr _setsig(pnp, &sigi nfo); 860 error = pr_setfpregs32(pnp, &argp->prfpregset);
795 if (sig == SIKILL & error == 0) { 861 br eak;

new usr/src/uts/comon/fs/proc/prcontrol.c

863
605
864
865
866
867
610
611
612
868

870
871
872
873
874
875
876

878
879
880

882
883
884

886
887
888

890
891
892

894
895
896
897
898

900
901
902
903
904
905
906
907
908

910
911
912
913
914
915
916
917
918
919
920
921
922
923

case

#i f defined(

#el se

#endi f

case

case

case

case

case

case

case

PCSXREG /* set extra registers */
__sparc)
if (PROCESS_NOT_32BI T(p))
error = EOVERFLOW
el se
error = pr_setxregs(pnp, &argp->prxregset);
error = ElI NVAL;
break;
PCSVADDR: /* set virtual address at which to resume */
if (PROCESS_NOT_32BI T(p))
error = EOVERFLOW
el se
error = pr_setvaddr(pnp,
(caddr_t) (uintptr_t)argp->vaddr);
br eak;
PCSHOLD: /* set signal-hold mask */
pr_sethol d(pnp, &argp->sigset);
br eak;
PCSFAULT: /* set mask of traced faults */
pr_setfault(p, &argp->fltset);
br eak;
PCCSI G /* clear current signal */
error = pr_clearsig(pnp);
br eak;
PCCFAULT: /* clear current fault */
error = pr_clearflt(pnp);
br eak;
PCWATCH: /* set or clear watched areas */
if (PROCESS_NOT_32BI T(p))
error = EOVERFLOW
el se {
prwat ch_t prwatch;
prwat ch. pr_vaddr = argp->prwatch. pr_vaddr;
prwat ch. pr_si ze = argp->prwat ch. pr_si ze;
prwat ch. pr_wf |l ags = argp->prwat ch. pr_wf | ags;
prwat ch. pr_pad = argp->prwat ch. pr_pad;
error = pr_watch(pnp, &prwatch, &unl ocked);
if (error &% unlocked)
return (error);
}
br eak;
PCAGENT: /* create the /proc agent Iwp in the target process */

i f (PROCESS_NOT_32BI T(p))
error = EOVERFLOW

el se {
prgregset _t prgregset;
kt hread_t *t pr_thread(pnp);
Klwp_t *lwp = ttolwp(t)
thread_unl ock(t);
mut ex_exi t (&p->p_l ock);

prgregset _32ton(lwp, argp->prgregset, prgregset);
nut ex_ent er (&p->p_I ock) ;
error = pr_agent(pnp, prgregset, &unlocked);

if (error && unl ocked)
return (error);

13

14

new usr/src/uts/comon/fs/proc/prcontrol.c
924
925 br eak;
927 case PCREAD: /* read fromthe address space */
928 case PCWRI TE: /* write to the address space */
929 if (PROCESS_NOT_32BI T(p))
930 error = EOVERFLOW
931 el se {
932 enumuio_rwrw = (cnmd == PCREAD)? U O READ : U O WRI TE;
933 priovec_t priovec;
935 priovec. pi o_base =
936 (void *)(uintptr_t)argp- >pri ovec. pi o_base;
937 priovec. pio_len —(S|zet)argp >priovec. pi o_| en;
938 priovec. pi o_of f set (of f_t)
939 (UI nt 32 t)argp >priovec. pi o_of f set;
940 error = pr_rdw (p, rw, &priovec);
941
942 br eak;
944 case PCSCRED: /* set the process credentials */
945 case PCSCREDX:
946 {
947 /*
948 * Al the fields in these structures are exactly the
949 * same and so the structures are conpatible. In case
950 * this ever changes, we catch this wth the ASSERT
951 * bel ow.
952 */
953 prcred_t *prcred = (prcred_t *)&argp->prcred;
955 #ifndef __lint
956 ASSERT(si zeof (prcred_t) == sizeof (prcred32_t));
957 #endi f
959 error = pr_scred(p, prcred, cr, cnd == PCSCREDX);
960 br eak;
961 }
963 case PCSPRIV: /* set the process privileges */
964 error = pr_spriv(p, &argp->prpriv, cr);
965 br eak;
967 case PCSZONE: /* set the process’s zoneid */
968 error = pr_szoneid(p, (zoneid_t)argp->przoneid, cr);
969 br eak;
970 }
972 if (error)
973 prunl ock(pnp);
974 return (error);
975 }
__unchanged_portion_om tted
1698 #endi f /* _SYSCALL32_| MPL */
1445 #if defi ned(sparc)
1700 /* ARGSUSED
1701 static int
1702 pr_setxregs(prnode_t *pnp, prxregset_t *prxregset)
1703 {
1704 proc_t *p = pnp >pr_comon- >pr c_proc;
1705 kthread_t *t = pr_thread(pnp); /* returns locked thread */
1707 if (!ISTOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t)) {
1708 t hread_unl ock(t);
1709 return (EBUSY);

new usr/src/uts/comon/fs/proc/prcontrol.c 15 new usr/src/uts/comon/fs/proc/prcontrol.c

1710 } 1776 (fsig(&p->p_ S|g, t) || fsig(&->t_sig, t)))
1711 t hread_unl ock(t); 1777 setrun_| I ocked(t);
1778 t->t_sig_check = 1; /* so thread will see new hol dmask */
1713 if (!prhasx(p)) 1779 thread_unl ock(t);
1714 return (EINVAL); /* No extra register support */ 1780 }
1716 /* drop p_l ock Wm I e touching the Iwp’'s stack */ 1782 void
1717 mut ex_exi t (&p->p ck); 1783 pr_setfault(proc_t *p, fltset_t *fltp)
1718 prset prxr egs(ttol wp(t) (caddr _t)prxregset); 1784 {
1719 mut ex_ent er (&p- >p_| ock 1785 prassi gnset (&->p_fltmask, fltp);
1786 1f (!prisenpty(&->p_fltmask))
1721 return (0); 1787 p->p_proc_flag | = P_PR TRACE;
1722 } 1788 else if (sigi serrpty(&p >p_si gmask)) {
1789 user_t *up = QJ(p),
1724 #if defined(__sparc) 1790 if (up->u_systrap == 0)
1725 #endif /* ! codereview */ 1791 p->p_proc_flag & ~P_PR_TRACE;
1726 static int 1792 }
1727 pr_setasrs(prnode_t *pnp, asrset_t asrset) 1793 }
1728 {
1729 proc_t *p = pnp- >pr _conmmon- >pr c_pr oc; 1795 static int
1730 kthread |t *t = pr_thread(pnp); /* returns |locked thread */ 1796 pr_cl earsi g(prnode_t *pnp)
1797 {
1732 if (!'1STOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t)) { 1798 kthread_t *t = pr_thread(pnp); /* returns |ocked thread */
1733 t hread_unl ock(t); 1799 klwp_t *lwp = ttol wp(t);
1734 return (EBUSY);
1735 } 1801 thread_unl ock(t);
1736 t hread_unl ock(t); 1802 if (lwp->wp_cursig == SIGKILL)
1803 return (EBUSY);
1738 /* drop p_lock while touching the Iw's stack */
1739 mut ex_exi t (&p->p_| ock) ; 1805 /*
1740 prsetasregs(ttolwp(t), asrset); 1806 * Discard current siginfo_t, if any.
1741 mut ex_ent er (&p- >p_I ock) ; 1807 */
1808 | 'wp- >l wp_cursig = 0;
1743 return (0); 1809 | wp- >l wp_extsig = 0;
1744 } 1810 if (lwp->lwp_curinfo) {
1745 #endi f 1811 si gi nfofree(lwp->l wp_curinfo);
1812 I wp- >l wp_curinfo = NULL;
1747 static int 1813 }
1748 pr_setvaddr(prnode_t *pnp, caddr_t vaddr)
1749 { 1815 return (0);
1750 proc_t *p = pnp->pr_comon- >prc_proc; 1816 }
1751 kthread_t *t = pr_thread(pnp); /* returns |ocked thread */
1818 static int
1753 if (!'1STOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t)) { 1819 pr_clearflt(prnode_t *pnp)
1754 t hread_unl ock(t); 1820 {
1755) return (EBUSY); 1821 kthread_t *t = pr_thread(pnp); /* returns |ocked thread */
1756
1823 t hread_unl ock(t);
1758 /* drop p_lock while touching the Iwp’'s stack */ 1824 ttolwp(t)->lwp_curflt = 0;
1759 thread_unl ock(t);
1760 mut ex_exi t (&p->p_l ock) ; 1826 return (0);
1761 prsvaddr (tt ol wp(t) vaddr); 1827 }
1762 mut ex_ent er (&p->p_| Iock);
1829 static int
1764 return (0); 1830 pr_watch(prnode_t *pnp, prwatch_t *pwp, int *unl ocked)
1765 } 1831 {
1832 proc_t *p = pnp->pr_combn- >prc_proc;
1767 void 1833 struct as *as = p->p_as;
1768 pr_sethol d(prnode_t *pnp, sigset_t *sp) 1834 uintptr_t vaddr = pwp->pr_vaddr;
1769 { 1835 size_t size = pwp->pr_size;
1770 proc_t *p = pnp >pr _conmmon- >pr c_pr oc; 1836 int wlags = pwp->pr_wfl ags;
1771 kthread_t *t = pr_thread(pnp); /* returns |ocked thread */ 1837 ul ong_t newpage = 0;
1838 struct watched_area *pwe;
1773 schedct | _fini sh_si gbl ock(t); 1839 int error;
1774 si gut ok(sp, & ->t_hol d);

1775 i f (I SWAKEABLE(t) && 1841 *unl ocked =

new usr/src/uts/comon/fs/proc/prcontrol.c 17 new usr/src/uts/comon/fs/proc/prcontrol.c
1908 */
1843 /* 1909 p = pr_p_l ock(pnp);
1844 * Can’'t apply to a system process. 1910 mut ex_exi t (&pr _pi dl ock);
1845 */ 1911 if (p!= NULL)
1846 if ((p->p_flag & SSYS) || p->p_as == &kas) 1912 unpausel wps(p) ;
1847 return (EBUSY); 1913 prunl ock(pnp);
1914 }
1849 /* 1915 *unl ocked = 1;
1850 * Verify that the address range does not w ap 1916 return (error);
1851 * and that only the proper flags were specified. 1917 }
1852 */ 1918 }
1853 if ((wlags & ~WA TRAPAFTER) == 0) 1919 1
1854 size = 0;
1855 if (vaddr + size < vaddr || 1921 /*
1856 (Wl ags & ~(WA_READ| WA_WRI TE| WA_| EXEC|V\A TRAPAFTER)) =0 || 1922 * Drop p->p_lock in order to performthe rest of this.
1857 ((W1lags & ~WA TRAPAFTER) != 0 && size == 0)) 1923 * The process is still locked with the P_PR_LOCK fl ag.
1858 return (EINVAL); 1924 */
1925 mut ex_exi t (&p->p_| ock);
1860 /*
1861 * Don't let the address range go above as->a_userlimt. 1927 pwa = knem al | oc(si zeof (struct watched_area), KM SLEEP);
1862 * There is no error here, just a limtation. 1928 pwa- >wa_vaddr = (caddr_t)vaddr;
1863 */ 1929 pwa- >wa_eaddr = (caddr_t)vaddr + size;
1864 if (vaddr >= (uintptr_t)as->a_userlinit) 1930 pwa->wa_flags = (ul ong_t)wf | ags;
1865 return (0);
1866 if (vaddr + size > (uintptr_t)as->a_userlimt) 1932 error = ((pwa->wa_flags & ~WA TRAPAFTER) == 0)?
1867 size = (uintptr_t)as->a_userlinit - vaddr; 1933 cl ear _wat ched_area(p, pwa) : set_watched_area(p, pwa);
1869 I* 1935 if (p == curproc) {
1870 * Conput e maxi mum nunber of pages this will add. 1936 setal [wat ch();
1871 */ 1937 mut ex_ent er (&p- >p_| ock) ;
1872 if ((WMlags & ~WA_TRAPAFTER) != 0) { 1938 conti nuel wps(p);
1873 ul ong_t pagespan = (vaddr + size) - (vaddr & PAGEMASK); 1939 } else {
1874 newpage = bt opr(pagespan); 1940 nmut ex_ent er (&p- >p_| ock) ;
1875 if (newpage > 2 * prnwatch) 1941 unpausel wps(p) ;
1876 return (E2BI G ; 1942 }
1877 1
1944 return (error);
1879 /* 1945 }
1880 * Force the process to be fully stopped.
1881 */ 1947 /* jobcontrol stopped, but with a /proc directed stop in effect */
1882 if (p == curproc) { 1948 #define JDSTOPPED(t) \
1883 prunl ock(pnp); 1949 ((t)->t_state == TS _STOPPED && \
1884 whi | e (hol dwatch() != 0) 1950 (t)->t_whystop == PR_JOBCONTROL && \
1885 conti nue; 1951 ((t)->t_proc_flag & TP_PRSTCOP))
1886 if ((error = prlock(pnp, ZNO) !=0) {
1887 conti nuel wps(p); 1953 /*
1888 *unl ocked = 1; 1954 * pr_agent() creates the agent Iwp. If the process is exiting while
1889 return (error); 1955 * we are creating an agent |wp, then exitlwps() waits until the
1890 } 1956 * agent has been created using prbarrier().
1891 } else { 1957 */
1892 pausel wps(p) ; 1958 static int
1893 while (pr_ al | st opped(p, 0) > 0) { 1959 pr_agent (prnode_t *pnp, prgregset_t prgregset, int *unl ocked)
1894 /* 1960 {
1895 * This cv/nutex pair is persistent even 1961 proc_t *p = pnp->pr_conmon- >prc_proc;
1896 * if the process disappears after we 1962 prcommon_t *pcp;
1897 * unmark it and drop p->p_| ock. 1963 kt hread_t *t;
1898 &/ 1964 kt hread_t *ct;
1899 kcondvar _t *cv = &pr_pid_cv[p->p_slot]; 1965 klwp_t *cl wp;
1900 knmutex_t *mp = &p->p_I ock; 1966 k_si gset _t smask;
1967 int cid;
1902 prunmar k(p); 1968 voi d *bufp = NULL;
1903 (void) cv_wait(cv, np); 1969 int error;
1904 nut ex_exi t (nmp);
1905 if ((error = prlock(pnp, ZNO) != 0) { 1971 *unl ocked = O;
1906 /*
1907 * Unpause the process if it exists. 1973 0%

new usr/src/uts/comon/fs/proc/prcontrol.c 19 new usr/src/uts/comon/fs/proc/prcontrol.c 20
1974 * Cannot create the /proc agent Iwp if :-
1975 * - the process is not fully stopped or directed to stop. 2041 | wp_create_done(ct);
1976 * - there is an agent |wp already.
1977 * - the process has been killed. 2043 /*
1978 * - the process is exiting. 2044 * Don't return until the agent is stopped on PR_REQUESTED.
1979 * - it's a vfork(2) parent. 2045 */
1980 */
1981 t = prchoose(p); /* returns |ocked thread */ 2047 for (;;) {
1982 ASSERT(t != NULL); 2048 prunl ock(pnp)
2049 *unl ocked =
1984 if ((!1STOPPED(t) && !VSTOPPED(t) && ! SUSPENDED(t) && ! JDSTOPPED(t)) ||
1985 p->p_agenttp != NULL || 2051 =
1986 (p->p_flag & (SKILLED | SEXITING | SVFWAIT))) { 2052 * Wait for the agent to stop and notify us.
1987 t hread_unl ock(t); 2053 * If we’ve been interrupted, return that information.
1988 return (EBUSY); 2054 *f
1989 } 2055 error = pr V\ﬂlt(pcp, NULL, 0);
2056 if (error == EI NTR) {
1991 t hread_unl ock(t); 2057 error = 0;
1992 mut ex_exi t (&p->p_l ock); 2058 br eak;
2059 }
1994 sigfillset(&mask);
1995 si gdi f f set (&nask, &cant mask); 2061 l*
1996 clwp = Iwp_create(lwp_rtt, MJLL, 0, p, TS_STOPPED, 2062 * Confirmthat the agent LWP has stopped.
1997 t->t_pri, &smask, NOCLASS, 0); 2063 */
1998 if (clwp == NULL) {
1999 mut ex_ent er (&p- >p_| ock) ; 2065 if ((error = prlock(pnp, ZNO) != 0)
2000 return (ENOVEM ; 2066 break;
2001 } 2067 *unl ocked = 0;
2002 prsetprregs(clwp, prgregset, 1);
2003 retry: 2069 1=
2004 cid =t->t_cid; 2070 * Since we dropped the |ock on the process, the agent
2005 (void) CL_ALLOC(&bufp, cid, KM SLEEP); 2071 * may have di sappeared or changed. Grab the current
2006 nut ex_ent er (&p- >p_I ock) ; 2072 * agent and check fail if it has disappeared.
2007 if (cid!=1t->t_cid) { 2073 *
2008 /* 2074 if ((ct = p->p_agenttp) == NULL) {
2009 * Sonmeone just changed this thread s scheduling class, 2075 error = ENCENT;
2010 * so try pre-allocating the buffer again. Hopefully we 2076 br eak;
2011 * don't hit this often. 2077 }
2012 */
2013 mut ex_exi t (&p->p_l ock); 2079 mut ex_ent er (&cp- >prc_nut ex) ;
2014 CL_FREE(ci d, bufp); 2080 thread_Il ock(ct);
2015 goto retry;
2016 } 2082 if (1STOPPED(ct)) {
2083 t hread_unl ock(ct);
2018 clwp->lwp_ap = clwp->lwp_arag; 2084 mut ex_exi t (&pcp- >pr c_nut ex) ;
2019 cl wp- >l wp_eosys = NORMALRETURN, 2085 br eak;
2020 ct = lwptot(clw); 2086 }
2021 ct->t_clfuncs = t->t_cl funcs;
2022 CL_FORK(t, ct, bufp); 2088 t hread_unl ock(ct);
2023 ct->t_cid = t->t_cid; 2089 }
2024 ct->t _proc_flag [= TP_PRSTOP,
2025 /* 2091 return (error ? error : -1);
2026 * Setting t_sysnumto zero causes post_syscall () 2092 }
2027 * to bypass all syscall checks and go directly to
2028 * i1f (issig()) psig(); 2094 static int
2029 * so that the agent Iwp wll stop in issig_forreal () 2095 pr_rdw (proc_t *p, enumuio_rw rw, priovec_t *pio)
2030 * showi ng PR_REQUESTED. 2096 {
2031 */ 2097 caddr _t base = (caddr_t) pi o->pi o_base;
2032 ct->t_sysnum = 0; 2098 size_t cnt = pio->pio_len;
2033 ct->t_post_sys = 1; 2099 uintptr_t offset = (uintptr_t)pio->pio_offset;
2034 ct->t_sig_check = 1; 2100 struct uio auio;
2035 p->p_agenttp = ct; 2101 struct iovec aiov;
2036 ct->t_proc_flag & ~TP_HOLDLWP; 2102 int error = 0;
2038 pcp = pnp->pr_pcommmon; 2104 if ((p->p_flag & SSYS) || p->p_as == &kas)
2039 mut ex_ent er (&pcp- >pr c_nut ex) ; 2105 error = EIQ

new usr/src/uts/comon/fs/proc/prcontrol.c 21 new usr/src/uts/comon/fs/proc/prcontrol.c
2106 else if ((base + cnt) < base || (offset + cnt) < offset)
2107 error = ElI NVAL; 2173 if (error == 0 & prcred->pr_suid != prcred->pr_euid &&
2108 else if (cnt = 0) { 2174 prcred->pr_suid != prcred->pr_ruid)
2109 ai ov. i ov_base = base; 2175 error = secpolicy_allow setid(cr, prcred->pr_suid, B_FALSE);
2110 aiov.iov_len = cnt;
2177 if (error)
2112 aui 0. ui o_| of fset = offset; 2178 return (error);
2113 auio.uio_iov = &ai ov;
2114 aui o.uio_iovent = 1; 2180 mut ex_exi t (&p->p_| ock);
2115 auio.uio_resid = cnt;
2116 aui 0. uio_segflg = U o) USERSPACE; 2182 /* hold old cred so it doesn’t disappear while we dup it */
2117 auio.uio_llinmit = (longlong_t t)MAX(IFSET T; 2183 mut ex_ent er (&p->p_crl ock);
2118 aui 0. ui o_f node = FREAD| FWRI TE; 2184 crhol d(ol dcred = p->p_cred);
2119 auio.uio_extflg = U O_CCPY_DEFAULT 2185 mut ex_exi t (&p->p_crl ock);
2186 newcred = crdup(ol dcred);
2121 nmut ex eX| t (&p->p_l ock); 2187 oldruid = crgetruid(ol dcred);
2122 error = prusrio(p, rw &aw o, 0); 2188 crfree(ol dcred);
2123 mut ex_enter (&->p_l o
2190 /* Error checking done above */
2125 /* 2191 (void) crsetresui d(newcred prcred->pr_ruid, prcred->pr_euid,
2126 * We have no way to return the i/o count, 2192 prcred->pr_suid
2127 * I ke read() or wite() would do, so we 2193 (void) crsetresgi d(newcred, prcred->pr_rgid, prcred->pr_egid,
2128 * return an error if the i/o was truncat ed. 2194 prcred->pr_sgid);
2129 */
2130 if (auio.uio_resid != 0 & error == 0) 2196 if (dogrps) {
2131 error = EIQ 2197 (voi d) crsetgroups(newcred, prcred->pr_ngroups,
2132 } 2198 prcred->pr_groups);
2134 return (error); 2200 }
2135 }
2202 mut ex_ent er (&p->p_crl ock);
2137 static int 2203 ol dcred = p- >p_cred;
2138 pr_scred(proc_t *p, prcred_t *prcred, cred_t *cr, bool ean_t dogrps) 2204 p->p_cred = newcred;
2139 { 2205 mut ex_exi t (&p->p_ cri ock);
2140 kthread_t *t; 2206 crfree(ol dcred);
2141 cred_t *ol dcred;
2142 cred_t *newcred; 2208 /*
2143 uid_t oldruid; 2209 * Keep count of processes per uid consistent.
2144 int error; 2210 B
2145 zone_t *zone = crgetzone(cr); 2211 if (oldruid != prcred->pr_ruid)
2212 zonei d_t zoneid = crgetzonei d(newcred);
2147 if (!'VALID U D(prcred->pr_euid, zone) ||
2148 !'VALI D_Ul D(prcred->pr_ruid, zone) || 2214 mut ex_ent er (&pi dl ock) ;
2149 !'VALI D_Ul D(prcred->pr_suid, zone) || 2215 upcount _dec(ol drui d, zoneid);
2150 I'VALI D_d D(prcred->pr_egid, zone) || 2216 upcount _i nc(prcred->pr_ruid, zoneid);
2151 I'VALI D d D(prcred->pr_rgid, zone) || 2217 mut ex_exi t (&pi dl ock) ;
2152 I'VALI D_ G D(prcred->pr_sgid, zone)) 2218 }
2153 return (EINVAL);
2220 /*
2155 if (dogrps) { 2221 * Broadcast the cred change to the threads.
2156 int ngrp = prcred->pr_ngroups; 2222 */
2157 int i; 2223 mut ex_ent er (&p- >p_|l ock) ;
2224 t = p->p_tlist;
2159 if (ngrp <0 || ngrp > ngroups_max) 2225 do {
2160 return (EINVAL); 2226 t->t_pre_sys = 1; /* so syscall will get newcred */
2227 } while ((t =t->t_forw) != p->p_tlist);
2162 for (i =0; i <ngrp; i++) {
2163 if (!VALID G D(prcred->pr_groups[i], zone)) 2229 return (0);
2164 return (EINVAL); 2230 }
2165 }
2166 } 2232 | *
2233 * Change process credentials to specified zone. Used to tenporarily
2168 error = secpolicy_allow setid(cr, prcred->pr_euid, B_FALSE); 2234 * set a process to run in the global zone; only transitions between
2235 * the process’s actual zone and the global zone are all owed.
2170 if (error == 0 & prcred->pr_ruid != prcred->pr_euid) 2236 */
2171 error = secpolicy_allow setid(cr, prcred->pr_ruid, B FALSE); 2237 static int

new usr/src/uts/comon/fs/proc/prcontrol.c

2238 pr_szoneid(proc_t *p, zoneid_t zoneid, cred_t *cr)
2239 {

2240 kt hread_t *t;

2241 cred_t *ol dcred;

2242 cred_t *newcred;

2243 zone_t *zptr;

2244 zoneid_t ol dzonei d;

2246 if (secpolicy_zone_config(cr) !'=0)

2247 return (EPERM;

2248 if (zoneid !'= GLOBAL ZONEI D && zoneid != p- >p_zone- >zone_i d)
2249 return (EINVAL);

2250 if ((zptr = zone_find by id(zoneid)) == NULL)
2251 return (EINVAL);

2252 mut ex_exi t (&p->p_l ock);

2253 nmut ex_ent er (&p->p_crl ock);

2254 ol dcred = p->p_cred;

2255 crhol d(ol dcred);

2256 mut ex_exi t (&p->p_crl ock);

2257 newcred = crdup(ol dcred);

2258 ol dzonei d = crgetzonei d(ol dcred);

2259 crfree(ol dcred);

2261 crsetzone(newcred, zptr);

2262 zone_rel e(zptr);

2264 mut ex_ent er (&p->p_crl ock);

2265 ol dcred = p- >p_cred;

2266 p->p_cred = newcred;

2267 mut ex_exi t (&p->p_ cri ock);

2268 crfree(ol dcred);

2270 *

2271 * The target process is changing zones (according to its cred), so
2272 * update the per-zone upcounts, which are based on process creds.
2273 *

2274 if (oldzoneid != zoneid) {

2275 uid_t ruid = crgetruid(newcred);

2277 mut ex_ent er (&pi dl ock) ;

2278 upcount _dec(rui d, ol dzoneid);

2279 upcount _i nc(ruid, zoneid);

2280 mut ex_exi t (&pi dl ock) ;

2281 1

2282 /*

2283 * Broadcast the cred change to the threads.
2284 */

2285 mut ex_ent er (&p- >p_|l ock) ;

2286 t = p->p_tlist;

2287 do {

2288 t->t_pre_sys = 1; /* so syscall will get new cred */
2289 } while ((t =t->t_forw) != p->p_tlist);
2291 return (0);

2292 }

2294 static int

2295 pr_spriv(proc_t *p, prpriv_t *prpriv, cred_t *cr)
2296 {

2297 kt hread_t *t;

2298 int err;

2300 ASSERT(MUTEX_HELD(&p- >p_| ock)) ;

2302 priv_pr_spriv(p, prpriv, cr)) == 0) {

2303

if ((err =
/*

new usr/src/uts/comon/fs/proc/prcontrol.c

2304
2305
2306
2307
2308
2309
2310

2312
2313

2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326

* Broadcast the cred change to the threads.
&/

t = p->p_tlist;
do {
t->t _pre_sys = 1; /* so syscall will get new cred */
} while ((t =t->t_forw) != p->p_tlist);
}

return (err);

-

R T
-~

Return -1 if the process is the parent of a vfork(1l) whose child has yet to
ternminate or perform an exec(2).

Returns 0 if the process is fully stopped except for the current thread (if
we are operating on our own process), 1 otherw se.

If the watchstop flag is set, then we ignore threads with TP_WATCHSTOP set .
See hol dwatch() for details.

t
pr_al |l stopped(proc_t *p, int watchstop)

2327 {

2328
2329

2331

2333
2334

2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357

2359
2360

2362
2363
2364
2365
2366

kthread_t *t;
int rv = 0;

ASSERT(MUTEX_HELD(&p- >p_| ock)) ;

if (p->p_flag & SVFWAIT)
return (-1);

/* waiting for vfork’d child to exec */

if ((t =p->p_tlist) I'= NULL) {
do {

if (t == curthread || VSTOPPED(t) ||
(wat chstop && (t->t_proc_flag & TP_WATCHSTOP)))
conti nue;
thread_| ock(t);
switch (t->t state) {
case TS_ZOVB:
case TS _STOPPED:
br eak;
case TS_SLEEP:
if (!(t->t_flag & T_WAKEABLE) ||
t->t_wchan0 == NULL)
rv = 1;
br eak;
defaul t:
rv = 1;
br eak;

}
t hread_unl ock(t);
} while (rv == 0 & (t =t->t_forw) != p->p_tlist);
}

return (rv);

}

/*

* Cause all Iwps in the process to pause (for watchpoint operations).
*/

static void

pausel wps(proc_t *p)

2367 {

2368

kt hread_t *t;

24

new usr/src/uts/ comon/fs/proc/prcontrol.c 25

2370 ASSERT(MUTEX_HELD(&p- >p_| ock)) ;

2371 ASSERT(p != curproc);

2373 if ((t = p->p_tlist) !'= NULL) {

2374 do {

2375 thread_| ock(t);

2376 t->t_proc_flag | = TP_PAUSE;

2377 aston(t);

2378 if ((I SWAKEABLE(t) && (t->t_wchan0 == NULL)) ||
2379 I SWAI TI NG(t))

2380 setrun_| ocked(t);

2381 }

2382 pr poket hread(t);

2383 t hread_unl ock(t);

2384 } while ((t =t->t_forw) != p->p_tlist);
2385 }

2386 }

2388 /*

2389 * undo the effects of pausel wps()

2390 */

2391 static void
2392 unpausel wps(proc_t *p)

2393 {

2394 kthread_t *t;

2396 ASSERT(MUTEX_HELD(&p- >p_| ock)) ;

2397 ASSERT(p != curproc);

2399 if ((t = p->p_tlist) !'= NULL) {

2400 do {

2401 thread_Il ock(t);

2402 t->t_proc_flag & ~TP_PAUSE;
2403 if (t->t_state == TS_STOPPED) {
2404 t->t_schedflag | = TS_UNPAUSE;
2405 t->t_dtrace_stop = 0;
2406 setrun_| ocked(t);

2407 }

2408 t hread_unl ock(t);

2409 } while ((t =t->t_forw) != p->p_tlist);
2410 }

2411 }

2413 | *

2414 */ Cancel all watched areas. Called fromprclose().
2415

2416 proc_t *
2417 pr_cancel _wat ch(prnode_t *pnp)

2418 {

2419 proc_t *p = pnp->pr_pconmmon- >prc_proc;

2420 struct as *as;

2421 kt hread_t *t;

2423 ASSERT(MUTEX_HELD(&p- >p_l ock) && (p->p_proc_flag & P_PR _LOCK));
2425 if (!pr_ \Aatch active(p))

2426 return (p);

2428 /*

2429 * Pause the process before dealing with the watchpoints.
2430 */

2431 if (p == curproc) {

2432 prunl ock(pnp);

2433 whi | e (hol dwatch() != 0)

2434 cont i nue;

2435 p = pr_p_l ock(pnp);

new usr/src/uts/comon/fs/proc/prcontrol.c

2436 mut ex_exi t (&pr _pi dl ock);

2437 ASSERT(p == curproc);

2438 } else {

2439 pausel wps(p);

2440 le (p l- NULL && pr_al | stopped(p, 0) > 0) {
2441

2442 * This cv/mutex pair is persistent even
2443 * if the process disappears after we
2444 * unmark 1t and drop p->p_| ock.

2445 */

2446 kcondvar _t *cv = &pr_pid_cv[p->p_slot];
2447 knutex_t *mp = &p->p_I ock;

2449 prunmar k(p);

2450 (void) cv_wait(cv, np);

2451 mut ex_exit(np);

2452 p = pr_p_lock(pnp); /* NULL if process disappeared */
2453 mut ex_exi t (&pr_pi dl ock) ;

2454 }

2455 }

2457 if (p == NULL) /* the process di sappeared */
2458 return (NULL);

2460 ASSERT(p == pnp->pr_pconmon- >pr c_proc);

2461 ASSERT(MUTEX_HELD(&p- >p_| ock) && (p->p_proc_flag & P_PR LOCK));
2463 if (pr_watch_active(p))

2464 pr_free_ V\atchpm s(p);

2465 fo((t -p>pt|) 1= NULL) {

2466 o {

2467 wat ch_di sabl e(t);

2469 } while ((t =t->t_forw) != p->p_tlist);
2470

2471 1

2473 if ((as = p->p_as) != NULL) {

2474 avl _tree_t *tree;

2475 struct watched_page *pwp;

2477 /*

2478 * If this is the parent of a vfork, the watched page
2479 * list has been noved tenporarily to p->p_wpage.
2480 */

2481 if (avl_numodes(&p->p_wpage) != 0)

2482 tree = &p->p_wpage;

2483 el se

2484 tree = &as->a_wpage;

2486 mut ex_exi t (&p->p_I ock);

2487 AS_LOCK_ENTER(as, &as->a_|l ock, RWWRI TER);

2489 for (pwp = avl _first(tree); pwp != NULL;

2490 pwp = AVL_NEXT(tree, pwp))

2491 pwp- >wp_read = 0;

2492 pwp->wp_wite = 0;

2493 pwp- >wp_exec = 0;

2494 i f ((pwp->wp_flags & WP_SETPROT) == 0) {
2495 pwp- >wp_fl ags | = WP_SETPROT;
2496 pwp- >Wp_prot = pwp->wWp_opr ot ;
2497 pwp->wWp_list = p->p_wprot;

2498 p->p_wprot = pwp;

2499 }

2500 }

new usr/src/uts/ comon/fs/proc/prcontrol.c 27

2502 AS_LOCK_EXI T(as, &as->a_|l ock);
2503 mut ex_ent er (&p->p_I ock) ;
2504 }

2506 /*

2507 * Unpause the process now.

2508 */

2509 if (p == curproc)

2510 cont i nuel wps(p);

2511 el se

2512 unpausel wps(p) ;

2514 return (p);

2515 }

new usr/src/uts/comon/fs/proc/prioctl.c

R R R R

9

3855 Wed Jan 23 13:19: 06 2013

new usr/src/uts/comon/fs/proc/prioctl.c

XXX

R R R R

AVX procfs

__unchanged_portion_onitted_

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

/*
* Control operations (lots).
*
/
| * ARGSUSED* /
#i f def _SYSCALL32_| MPL
static int
prioctl 64(
struct vnode *vp,
int cnd,
intptr_t arg,
int flag,
cred_t *cr,
int *rvalp,
cal l er_context_t *ct)
#el se
int
prioctl (
struct vnode *vp,
int cnd,
intptr_t arg,
int flag,
cred_t *cr,
int *rvalp,

cal l er_context _t *ct)
#endi f /* _SYSCALL32_| MPL */
{

int nsig = PROC_| S_BRANDED(cur proc)? BROP(curproc)->b_nsig :

caddr_t cmaddr = (caddr_t)arg;

proc_t *p;
user_t *up;
kthread_t *t;
klwp_t *1 wp;

prnode_t *php = VTOP(vp);

prcommon_t *pcp;
prnode_t *xpnp = NULL;
int error;

int zdisp;

void *thing = NULL;
size_t thingsize = 0;

| *

*/ For copyin()/copyout ().

uni on {
caddr _t
int
int
uint_t
| ong
prstatus_t
prrun_t
sigset _t
siginfo_t
sysset _t
prgregset _t
prfpregset _t
prpsinfo_t
sigset _t

prps;
hol dmask;

NSI G

new usr/src/uts/comon/fs/proc/prioctl.c

190
191
192
193
194
195

197
198

200
201
202
203
204
205
206
207
208

210
211

213
214
215
216
217
218

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

fltset_t fltmask;

prcred_t prcred;

prhusage_t pr husage;

prmap_t pr map;

auxv_t auxv[__KERN_NAUXV_| MPL] ;

} ounm;

if (pnp->pr_type == PR_TMPL)
return (prctioctl(pnp, cnd, arg, flag, cr));

/*
* Support for old /proc interface.
*

if (pnp->pr_pidfile !'= NULL) {
ASSERT(pnp->pr _type == PR _PIDDI R);
vp = pnp->pr_pidfile;
pnp = VTOP(vp);
ASSERT(pnp->pr _type == PR_PI DFI LE);
}

if (pnp->pr_type != PR PIDFILE && pnp->pr_type != PR _LWPI DFI LE)
return (ENOTTY);

/*
* Fail ioctls which are logically "wite" requests unless
* the user has write permssion.
*/
if ((flag & FMRITE) == 0 & isprwioctl(cnd))
return (EBADF);
/*
* Perform any necessary copyin() operations before
* locking the process. Helps avoid deadl ocks and
* inproves perfornance.
*
* Also, detect invalid ioctl codes here to avoid
* | ocking a process unnnecessarily.
*
* Also, prepare to allocate space that will be needed bel ow,
* case by case.
*/
error = 0;

switch (cnd) {
case Pl OCGETPR:
t hi ngsi ze = sizeof (proc_t);
br eak;
case Pl OCCETU:
t hi ngsi ze = sizeof (user_t);
br eak;
case Pl OCSTOP:
case Pl OCWSTOP:
case Pl OCLWPI DS:
case Pl OCGTRACE:
case Pl OCGENTRY:
case Pl OCCEXI T:
case PI OCSRLC:
case PI OCRRLC:
case Pl OCSFORK:
case Pl OCRFORK:
case Pl OCCREG
case Pl OCGFPREG
case Pl OCSTATUS:
case Pl OCLSTATUS:
case PI OCPSI NFO
case PI OCMAXSI G
case Pl OCGXREGSI ZE:

new usr/src/uts/comon/fs/proc/prioctl.c 3 new usr/src/uts/comon/fs/proc/prioctl.c
256 br eak; 318 error = EFAULT;
257 case Pl OCSXREG /* set extra registers */ 319 break;
258 case Pl OCGXREG /* get extra registers */
259 #if defined(__sparc) 321 case PIOCSsSI G /* set current signal */
259 thingsize = sizeof (prxregset_t); 322 if (cmaddr == NULL)
261 #el se 323 un.info.si_signo = 0;
262 thingsize = 0O; 324 else if (copyin(cmaddr, &un.info, sizeof (un.info)))
263 #endi f 325 error = EFAULT;
260 br eak; 326 br eak;
261 case Pl OCACTI O\
262 thingsize = (nsig-1) * sizeof (struct sigaction); 328 case PI OCKI LL: /* send signal */
263 br eak; 329 case Pl OCUNKI LL: /* delete a signal */
264 case Pl OCGHOLD: 330 if (copyin(cmaddr, &un.signo, sizeof (un.signo)))
265 case Pl OCNVAP: 331 error = EFAULT,;
266 case Pl OCVAP: 332 br eak;
267 case Pl OCGFAULT:
268 case PI OCCFAULT: 334 case PI OCNI CE: /* set nice priority */
269 case Pl OCCRED: 335 if (copyin(cmaddr, &un.nice, sizeof (un.nice)))
270 case Pl OCGROUPS: 336 error = EFAULT,
271 case Pl OCUSAGE: 337 br eak;
272 case Pl OCLUSAGE:
273 br eak; 339 case Pl OCSENTRY: /* set syscall entry bit mask */
274 case Pl OCOPENPD: 340 case PI OCSEXIT: /* set syscall exit bit mask */
275 /* 341 if (copyin(cmaddr, &un.prmask, sizeof (un.prmask)))
276 * We will need this bel ow 342 error = EFAULT;
277 * Allocate it now, before |ocking the process. 343 br eak;
278 */
279 xpnp = prgetnode(vp, PR_OPAGEDATA); 345 case Pl OCSET: /* set process flags */
280 br eak; 346 case Pl OCRESET: /* reset process flags */
281 case Pl OCNAUXV: 347 if (copyin(crmaddr, &un.flags, sizeof (un.flags)))
282 case Pl OCAUXV: 348 error = EFAULT,;
283 br eak; 349 br eak;
285 #if defined(__i386) || defined(__and64) 351 case Pl OCSREG /* set general registers */
286 case Pl OCNLDT: 352 if (copyin(cmaddr, un.regs, sizeof (un.regs)))
287 case PI OCLDT: 353 error = EFAULT,
288 br eak; 354 br eak;
289 #endif [/* __i386 || __amd64 */
356 case Pl OCSFPREG /* set floating-point registers */
291 #if defined(__sparc) 357 if (copyin(crmaddr, &un.fpregs, sizeof (un.fpregs)))
292 case Pl OCGW N: 358 error = EFAULT;
293 thingsize = sizeof (gw ndows_t); 359 br eak;
294 br eak;
295 #endif [* __sparc */ 361 case Pl OCSHOLD: /* set signal-hold mask */
362 if (copyin(crmaddr, &un.hol dmask, sizeof (un.holdmask)))
297 case Pl OCOPENM /* open mapped object for reading */ 363 error = EFAULT;
298 if (cmaddr == NULL) 364 br eak;
299 un.va = NULL;
300 else if (copyin(crmaddr, &un.va, sizeof (un.va))) 366 case Pl OCSFAULT: /* set mask of traced faults */
301 error = EFAULT; 367 if (copyin(crmaddr, &un.fltmask, sizeof (un.fltmask)))
302 br eak; 368 error = EFAULT;
369 br eak;
304 case Pl OCRUN: /* make |wp or process runnable */
305 if (cmaddr == NULL) 371 defaul t:
306 un. prrun. pr_flags = 0; 372 error = EI NVAL;
307 else if (copyin(crmaddr, &un.prrun, sizeof (un.prrun))) 373 br eak;
308 error = EFAULT,; 374 }
309 br eak;
376 if (error)
311 case Pl OCOPENLWP: /* return /proc Iwp file descriptor */ 377 return (error);
312 if (copyin(crmaddr, &un.lwpid, sizeof (un.lwpid)))
313 error = EFAULT; 379 startover:
314 br eak; 380 /*
381 * |If we need knem alloc()d space then we allocate it now, before
316 case Pl OCSTRACE: /* set signal trace mask */ 382 * grabbing the process lock. Using kmem all oc(KM SLEEP) while
317 if (copyin(cmaddr, &un.smask, sizeof (un.snask))) 383 * hol ding the process |ock | eads to deadl ock with the clock thread.

new usr/src/uts/comon/fs/proc/prioctl.c

384
385
386
387
388
389
390
391

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

416
417
418
419
420
421
422

424
425
426

428
429
430
431
432
433
434
435
436
437
438
439
440
441

443
444

446
447
448

* (The clock thread wakes up the pageout daenopn to free up space.
* If the clock thread bl ocks behind us and we are sl eeping waiting
* for space, then space may never becone available.)

*

if (thingsize)

ASSERT(t hi ng == NULL);

thing = kmem al | oc(thingsize, KM SLEEP);
}

switch (cnd) {

case PI OCPSI NFO

case Pl OCCETPR:

case Pl OCUSACE:

case Pl OCLUSAGCE:
zdi sp = ZYES;
br eak;

case Pl OCSXREG /* set extra registers */
/'k

* perform copyin before grabbing the process |ock
*

if (thing) {
i f (copyin(cmaddr, thing, thingsize)) {
kmem free(thing, thingsize);
return (EFAULT);

}
/* fall through... */
defaul t:
zdi sp = ZNO
br eak;
}

if ((error = prlock(pnp, zdisp)) !'=0) {
if (thing !'= NULL)
kmem free(thing, thingsize);
if (xpnp)
prfreenode(xpnp);
return (error);

}

pcp = pnp->pr_conmmon;
P = pCcp->prc_proc,
ASSERT(p = NULL);

/*
* Choose a thread/lwp for the operation.
*/
if (zdisp == ZNO && cnd ! = PI OCSTOP && cnd != Pl OOWSTOP) {
if (pnp->pr_type == PR_LWPI DFI LE && cnd ! = Pl OCLSTATUS) {
t = pcp->prc_thread;
ASSERT(t !'= NULL);
} else {
t = prchoose(p);
ASSERT(t !'= NULL);
thread_unl ock(t);

/* returns | ocked thread */

}

lwp = ttolwp(t);
error = 0;
switch (cnd) {
case Pl OCGETPR: /* read struct proc */
{

proc_t *prp = thing;

new usr/src/uts/comon/fs/proc/prioctl.c

450
451
452
453
454
455
456
457

459
460
461

463
464
465
466
467
468
469
470
471

473
474
475
476

478
479
480
481
482
483
484
485
486
487

489
490

492
493
494
495
496
497
498
499
500
501
502

504
505

507
508
509
510
511
512
513
514
515

}

case Pl OCCETU:
{

}

case Pl OCOPENM

case Pl OCSTOP:
case Pl OCWSTOP:

*prp = *p;

prunl ock(pnp);

1 f (copyout(prp, crmaddr, sizeof (proc_t)))
error = EFAULT,

knmem free(prp, sizeof (proc_t));

thing = NULL;

br eak;

/* read u-area */
user_t *userp = thing;

up = PTQU(p);

*userp = *up;

prunl ock(pnp);

i f (copyout(userp, cmaddr, sizeof (user_t)))
error = EFAULT,

kmem free(userp, sizeof (user_t));

thing = NULL;

br eak;

/* open nmapped object for reading */
error = propenn(pnp, cneddr, un.va, rvalp, cr);

/* propenm() called prunlock(pnp) */

break;

/* stop process or Iwp fromrunning */
/* wait for process or lwp to stop */
/*

* Can't apply to a system process.

*

if ((p->p_flag & SSYS) || p->p_as == &kas) {
prunl ock(pnp);
error = EBUSY;
br eak;

}

if (cmd == Pl OCSTOP)
pr_stop(pnp);

/*
* If an lwp is waiting for itself or its process, don't wait.
* The stopped |wp would never see the fact that it is stopped.
*/

if ((pnp->pr_type == PR_LWPI DFI LE) ?
(pcp->prc_thread == curthread) : (p == curproc)) {
if (cmd == Pl OCWSTOP)
error = EBUSY;
prunl ock(pnp);
br eak;

}

if ((error = pr_wait_stop(pnp, (tine_t)0)) != 0)
break; /* pr_wait_stop() unlocked the process */

if (cmaddr == NULL)
prunl ock(pnp);
el se {
/*
* Return process/|Iwp status information.
*/
t = pr_thread(pnp); /* returns | ocked thread */
thread_unl ock(t);
oprgetstatus(t, &un.prstat, VIOZONE(vp));

new usr/src/uts/comon/fs/proc/prioctl.c

516
517
518
519
520

522
523
524

526
527
528
529
530
531
532
533
534
535
536
537
538

540
541

543

545
546
547

549
550
551
552
553
554

556

558
559
560
561
562
563
564
565
566
567
568
569

571
572
573
574
575
576
577
578
579
580
581

prunl ock(pnp);
i f (copyout (&un. prstat, crmaddr, sizeof (un.prstat)))
error = EFAULT;

}

br eak;
case Pl OCRUN: /* make |wp or process runnable */
{
long flags = un.prrun.pr_flags;
/
Cannot set an Ilwp running is it is not stopped.

Al'so, no Ilwp other than the /proc agent |wp can
be set running so long as the /proc agent |wp exists.

* ok kb
-

if ((! | STOPPED(t) && !VSTOPPED(t) &&
I(t->t_proc_flag & TP PRSTCP)) |
(p >p_agenttp !'= NULL
(t !'= p->p_agenttp || pnp >pr_type !'= PR_LWPIDFILE))) {
prunl ock(pnp) ;
error EBUSY;
br eak;

}

if (flags & (PRSHOLD| PRSTRACE| PRSFAULT| PRSVADDR))
prsetrun(t, &un.prrun);

error = pr_setrun(pnp, prmaprunflags(flags));

prunI ock(pnp);

br eak;
}
case Pl OCLWPI DS: /* get array of Iwp identifiers */
{

int nlwp;

int N wp;

id_t *idp;

id_t *Bidp;

Nlwp = nlwp = p->p_| wpent;

if (thing & thingsize != (N wp+l) * sizeof (id_t)) {
kmem free(thing, thingsize);
thing = NULL;

}

if (thing == NULL) {
t hi ng5|ze (Nlwp+1) * sizeof (id_t);
thing = kmem al I oc(thi ngsi ze, KM NOSLEEP);

}

if (thing == NULL) {
prunl ock(pnp);
goto startover;

}
idp = thing;
thing = NULL;
Bidp = |dp
if ((t = p >p_tlist) !'= NULL) {
o {
ASSERT(! (t->t_proc_flag & TP_LWPEXIT));
ASSERT(nlwp > 0);
--nlwp;
*idp++ = t->t_tid;
} while ((t =t->t_forw) != p->p_tlist);
}

new usr/src/uts/comon/fs/proc/prioctl.c

582
583
584
585
586
587
588
589

591
592
593
594

596
597
598
599
600
601
602
603
604

606
607
608
609
610

612
613
614
615
616

618
619
620
621
622
623

625
626

628
629
630
631
632

634
635
636

638
639
640
641
642
643

645
646
647

*idp =

ASSERT(nI wp == 0);

prunl ock(pnp);

i f (copyout(Bl dp, cmaddr (N wp+1) * sizeof (id_t)))
error = EFAULT

kmem f ree(Bi dp, (N Wp+l) * sizeof (id_t));

br eak;

}

case Pl OCOPENLWP: /* return /proc Iwp file descriptor */
{

vnode_t *xvp;

int n;

prunl ock(pnp)

1f ((xvp = prlwpnode(pnp, un. I'wpi d)) == NULL)
error = ENCENT

else if (error = fassi gn(&xvp, flag & (FREAD| FWRI TE), &n)) {
VN_RELE(xvp) ;

} else
*rvalp =

br eak;

}

case Pl OCOPENPD: /* return /proc page data file descriptor */
{

vhode_t *xvp = PTOV(xpnp);

vnode_t *dp = pnp->pr_parent;

int n;

if (pnp- >pr _type == PR_LWPI DFI LE) {
dp = VIOP(dp)->pr_parent;
dp = VTOP(dp) - >pr_parent;

}
ASSERT(VTOP(dp) - >pr_type == PR PIDDIR);

VN_HOLD(dp) ;

pcp = pnp->pr pcormon

Xpnp->pr_i no = ptoi (pcp->prc_pid);
Xpnp- >pr_conmon = pcp;

Xpnp- >pr_pconmon = pcp;
Xpnp->pr_parent = dp;

Xpnp->pr_next = p->p_plist;
p->p_plist = xvp;
prunl ock(pnp);

1f (error = fassign(&vp, FREAD, &n)) {
VN_RELE(xvp) ;

} else

*rvalp =
xpnp = NULL;
br eak;

}

case Pl OCGTRACE: /* get signal trace mask */
prassi gnset (&un. smask, &p->p_si gmask) ;
prunl ock(pnp)
1 f (copyout (&n. smask, cnmaddr, sizeof (un.smask)))
error = EFAULT,
br eak;

case Pl OCSTRACE: /* set signal trace mask */
prdel set (&un. smask, SIGKILL);
prassi gnset (&- >p_si gmask, &un. snask) ;

new usr/src/uts/comon/fs/proc/prioctl.c

648
649
650
651
652
653
654
655
656

658
659
660
661
662
663

665
666
667

669
670
671
672
673
674

676
677
678
679

681
682
683
684

686
687
688
689
690
691
692
693
694
695
696
697

699
700
701
702
703

705
706
707
708

710
711
712
713

case

case

case

case

case
case

case
case

case

case

if (!sigisenmpty(&p->p_sigmask))
p->p_proc_flag | = P_PR_TRACE;
else if (pnsenpty(&p >p_fltmsk)) {
up = PTOU(p);
if (up->u_systrap == 0)
p- >p_proc_| flag &= ~P_PR_TRACE;

}
prunl ock(pnp);
br eak;
Pl OCSSI G /* set current signal */
error = pr_setsig(pnp, &un.info);
prunI ock(pnp);
(un.info.si_signo == SIGKILL && error == 0)
pr_wait_die(pnp);
br eak;
Pl OCKI LL: /* send signal */
int sig = (int)un.signo;
error = pr_kill(pnp, sig, cr);
prunl ock(pnp);
i1f (sig == SIGKILL & error == 0)
pr_wait_die(pnp);
break;
Pl OCUNKI LL: /* delete a signal */
error = pr_unkill(pnp, (int)un.signo);
prunl ock(pnp);
br eak;
PI OCNI CE: /* set nice priority */
error = pr_nice(p, (int)un.nice, cr);
prunl ock(pnp);
br eak;
Pl OCGENTRY: /* get syscall entry bit mask */
Pl OCGEXI T: /* get syscall exit bit mask */
up = PTOY(p);
if (cmd == Pi OCGENTRY) {
prassi gnset (&un. prmask, &up->u_entrynask);
} else {
prassi gnset (&un. prmask, &up->u_exit mask);
}
prunl ock(pnp);
1 f (copyout (&un. prmask, cnaddr, sizeof (un.prmask)))
error = EFAULT;
br eak;
Pl OCSENTRY: /* set syscall entry bit mask */
Pl OCSEXI T: /* set syscall exit bit mask */
pr_setentryexit(p, &un.prmask, cmd == Pl| OCSENTRY);
prunl ock(pnp);
br eak;
Pl OCSRLC: /* obsolete: set running on |ast /proc close */
error = pr_set(p, prmapsetflags(PR RLC));
prunl ock(pnp);
reak;
PI OCRRLC: /* obsol ete: reset run-on-last-close flag */

error = pr_unset(p, prmapsetflags(PR_RLC));
prunl ock(pnp);
br eak;

new usr/src/uts/comon/fs/proc/prioctl.c

715
716
717
718

720
721
722
723

725
726
727
728

730
731
732
733

735
736
737
738
739
740
741
742
743
744
745
746
747

749
750
751
752
753
754
755
756
757
758
759

761
762
763
764
765
766

768
769
770
771
772
773
774
775
776
777
778
779

case Pl OCSFORK: /* obsolete: set inherit-on-fork flag */
error = pr_set(p, prmapsetflags(PR_FORK));
prunl ock(pnp);
br eak;

case Pl OCRF(RK: /* obsolete: reset inherit-on-fork flag */
error pr_unset (p, prnmapsetflags(PR_FORK));
prunI ock(pnp)
reak;

case Pl OCSET: /* set process flags */
error = pr_set(p, prmapsetflags(un.flags));
prunl ock(pnp);
br eak;

case Pl OCRESET: /* reset process flags */
error = pr_unset(p, prmapsetflags(un.flags));
prunl ock(pnp);
br eak;

case Pl OCCREG /* get general registers */

if (t->t_state != TS _STOPPED && ! VSTOPPED(t))
bzero(un.regs, sizeof (un.regs));

el se {
/* drop p_lock while touching the Iw's stack */
mut ex_exi t (&p->p_|l ock);
prgetprregs(lwp, un.regs);
nut ex_ent er (&p->p_| ock);

}

prunl ock(pnp);

1 f (copyout(un.regs, crmaddr, sizeof (un.regs)))
error = EFAULT;

br eak;

case Pl OCSREG /* set general registers */

if (IISTODPED(t) &% ! VSTOPPED(t) && ! DSTOPPED(t))
error = EBUSY;

el se {
/* drop p_lock while touching the Iwp’'s stack */
mut ex_exi t (&p->p_|l ock);
prsetprregs(lwp, un.regs, 0);
nmut ex_ent er (&p- >p_| ock) ;

}
prunl ock(pnp);
br eak;

case Pl OCGFPREG /* get floating-point registers */
if (Iprhasfp()) {
prunl ock(pnp);
error = EINVAL; /* No FP support */
break;

}

if (t->t_state != TS STOPPED && ! VSTOPPED(t))
bzero(&un. fpregs, sizeof (un.fpregs));
el se {
/* drop p_lock while touching the Iw’'s stack */
nut ex_exi t (&p->p_| ock);
prget prfpregs(lwp, &un f pregs);
mut ex_ent er (&p- >p_I ock) ;

}

prunl ock(pnp);

1 f (copyout (&un. fpregs, cnaddr, sizeof (un.fpregs)))
error = EFAULT,

br eak;

10

new usr/src/uts/comon/fs/proc/prioctl.c

781
782
783
784
785
786
787
788
789
790
791
792
793

795
796
797

799
800
801
802
803
804
805
806
807
808
809

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

833
834
835
836
837
838
839
840
841
842
843
844
845

case Pl OCSFPREG
if (!'prhasfp())
error = EINVAL; /* No FP support */
else if (!ISTOPPED(t) && !VSTOPPED(t) && ! DSTOPPED(t))
error = EBUSY;

/* set floating-point registers */

el se {
/* drop p_lock while touching the Iw's stack */
nut ex_exi t (&p->p_| ock);
prsetprfpregs(lwp, &un.fpregs);
mut ex_ent er (&p- >p_l ock) ;
}
prunl ock(pnp);
break;

case Pl OCGXREGSI ZE: /* get the size of the extra registers */
{

int xregsize;

if (prhasx(p)) {
Xregsi ze = prgetprxregsize(p);
prunl ock(pnp);
i f (copyout (&xregsize, crmaddr, sizeof (xregsize)))
error = EFAULT;
} else {
prunl ock(pnp);
error = EINVAL; /* No extra register support */
}
br eak;

}

case Pl OCGXREG
if (prhasx(p))

bzero(thing, thingsize);

if (t->t_state == TS_STOPPED || VSTOPPED(t)) {
/* drop p_lock to touch the stack */
mut ex_exit (&p->p_l ock);
prget prxregs(lwp, thing);
mut ex_ent er (&p- >p_| ock) ;

/* get extra registers */

}
prunl ock(pnp) ;
i f (copyout (thing, cnaddr, thingsize))
error = EFAULT,
} else {
prunl ock(pnp) ;
error = EINVAL; /* No extra register support */

}

if (thing) {
kmem free(thing, thingsize);
thing = NULL;

break;

case Pl OCSXREG /* set extra registers */
if (!1STOPPED(t) && !VSTOPPED(t) && ! DSTOPPED(t))
error = EBUSY;
else if (!prhasx(p))
error = EINVAL; /* No extra register support */
else if (thing) {
/* drop p_lock while touching the Iwp’'s stack */
mut ex_exi t (&p->p_|l ock);
prset prxregs(lwp, thing);
nut ex_ent er (&p->p_| ock) ;

E)runl ock(pnp);
i1f (thing) {

11

new usr/src/uts/comon/fs/proc/prioctl.c

846
847
848
849

851
852
853
854
855
856

858
859
860
861
862
863

865

867
868
869
870
871
872
873
874
875
876
877
878

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894

896
897
898

900
901
902

904
905

907
908
909
910
911

kmem free(thing, thingsize);
thing = NULL;

br eak;

case Pl OCSTATUS: /* get process/|wp status */
oprgetstatus(t, &un.prstat, VIOZONE(vp));
prunl ock(pnp);
i f (copyout(&un.prstat, crmaddr, sizeof (un.prstat)))
error = EFAULT,
br eak;

case Pl OCLSTATUS:
{
int N wp;
int nlwp;
prstatus_t *Bprsp;
prstatus_t *prsp;

nlwp = Nwp = p->p_|l wpent;

/* get status for process & all |wps */

if (thing & thingsize != (N wp+l) * sizeof (prstatus_t)) {

kmem free(thing, thingsize);
thing = NULL;

}

if (thing == NULL) {
thingsize = (N wp+l) * sizeof (prstatus_t);
thing = kmem al | oc(t hi ngsize, KM NOSLEEP);

}

if (thing == NULL) {
prunl ock(pnp);
goto startover;

}

Bprsp = thing;
thing = NULL;
prsp = Bprsp;

oprgetstatus(t, prsp, VIQZONE(vp));
t = p->p_tlist;
do {
ASSERT(! (t->t_proc_flag & TP_LWPEXIT));
ASSERT(nlwp > 0);
--nlwp;
oprgetstatus(t, ++prsp, VTQZONE(vp));
} while ((t =t->t_forw) !'= p->p_tlist);
ASSERT(nlwp == 0);
prunl ock(pnp);

1 f (copyout(Bprsp, crmaddr, (N wp+1l) * sizeof (prstatus_t)))

error = EFAULT;
kmem free(Bprsp, (N wp+l) * sizeof (prstatus_t));
break;

}

case PI OCPSI NFO /* get ps(1) information */
{

prpsinfo_t *psp = &un. prps;

oprget psi nfo(p, ps

P,
(pnp->pr_type == PR_LWPI DFI LE) ? pcp->prc_thread :

prunl ock(pnp);

i f (copyout(&un.prps, crmaddr, sizeof (un.prps)))
error = EFAULT,

br eak;

NULL) ;

12

new usr/src/uts/comon/fs/proc/prioctl.c 13

913
914
915

917
918
919
920
921

923
924
925
926

928
929
930
931
932
933
934
935
936
937

939
940
941
942
943
944
945

947
948
949
950

952
953
954
955

957
958
959
960
961
962
963
964
965
966
967
968
969
970

972
973
974
975

case Pl OCMAXSI G
{

}

case Pl OCACTI ON:
{

/* get maxi mum signal nunber */
int n=nsig-1;

prunl ock(pnp);

1f (copyout (&, crmaddr, sizeof (n)))
error = EFAULT;

br eak;

/* get signal action structures */

uint_t sig;
struct sigaction *sap = thing;

up = p

for (S|g = l sig < nsig; sigt+t)
prget action(p, up, sig, &sap[sig-1]);

prunl ock(pnp);

I f (copyout(sap, cmaddr, (nsig-1) * sizeof (struct sigaction)))
error = EFAULT,

kmamfree(sap, (n5|g 1) * sizeof (struct sigaction));

thing = NULL;
br eak;
}
case Pl OCGHOLD: /* get signal-hold nmask */

case Pl OCSHOLD:

case Pl OCNVAP:
{

}

case Pl OCVAP:
{

schedct | _fini sh_sigbl ock(t);

si gkt ou(& ->t_hol d, &un. hol dmask)

prunl ock(pnp);

i1 f (copyout (&un. hol dmask, cmaddr, sizeof (un.hol dnask)))
error = EFAULT;

br eak;

/* set signal-hold mask */
pr_set hol d(pnp, &un. hol dnmask) ;

prunl ock(pnp);

break;

/* get nunmber of menory mappings */

int n;
struct as *as = p->p_as;

if ((p->p_flag & SSYS) || as == &kas)
n = 0;

el se {
nut ex_exi t (&p->p_l ock);
AS_LOCK_ENTER(as, &as->a_|l ock, RWWR TER);
n = prnsegs(as, 0);
AS_LOCK_EXI T(as, &as->a _l ock);
mut ex_ent er (&p->p_| ock);

}
prunl ock(pnp);
1 f (copyout (&, crmaddr, sizeof (int)))
error = EFAULT,
br eak;
/* get nenory map information */

list_t iolhead;
struct as *as = p->p_as;

if ((p->p_flag & SSYS) || as == &kas) {

new usr/src/uts/comon/fs/proc/prioctl.c

978
979
980
981
982
983
984
985
986

988
989
990
991
992
993
994
995
996
997
998

1000
1001

1003
1004
1005
1006
1007
1008

1010
1011
1012
1013

1015
1016
1017
1018

1020
1021
1022

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

1035
1036
1037
1038
1039

1041
1042
1043

case

case

case

case

}

case

error = 0;
prunl ock(pnp);
} else {
nut ex_exi t (&p->p_| ock);
AS_LOCK_ENTER(as, &as->a_|l ock, RWWR TER);
error = oprgetmap(p, & ol head);
AS_LOCK_EXI T(as, &as->a_| ock);
nut ex_ent er (&p->p_l ock) ;
prunl ock(pnp);

error = pr_iol_copyout_and_free(& ol head,
&cmaddr, error);

;*
* The procfs PIOCVAP ioctl returns an all-zero buffer
* to indicate the end of the prmap[] array.
* Append it to whatever has already been copied out.
*
bzero(&un. prmap, sizeof (un.prnap));
if (lerror && copyout(&un prmap, craddr, sizeof (un.prnmap)))
error = EFAULT
br eak;
Pl OCGFAULT: /* get mask of traced faults */

prassignset (&un. f | t mask, &p->p_fltnmask);

prunl ock(pnp);

i f (copyout(&un fltmask cmaddr, sizeof (un.fltmask)))
error = EFAULT

br eak;

Pl OCSFAULT: /* set mask of traced faults */
pr_setfaul t(p, &un.fltnmask);
prunl ock(pnp);
bre

Pl OCCFAULT: /* clear current fault */
I wp->lwp_curflt = 0;
prunl ock(pnp);
br eak;

Pl OCCRED: /* get process credentials */

cred_t *cp;

mut ex_ent er (&->p_crl ock);
cp = p->p_cred;
un. prcred. pr_euid
un. prcred. pr_ruid
un. prcred. pr_suid
un. prcred. pr_egid
un.prcred.pr_rgid = crgetrgi d(cp);

un. prcred. pr_sgid crgetsgid(cp);

un. prcred. pr_ngroups = crget ngroups(cp);
mut ex_exi t (&p->p_crl ock)

crgetuid(cp);
crgetruid(cp);
crgetsuid(cp);
crgetgid(cp);

prunl ock(pnp);

i f (copyout(&un.prcred, crmaddr, sizeof (un.prcred)))
error = EFAULT,

break;

Pl OCGROUPS: /* get supplenmentary groups */

cred_t *cp;

14

new usr/src/uts/comon/fs/proc/prioctl.c

1045
1046
1047
1048

1050
1051
1052
1053
1054
1055
1056

1058
1059
1060
1061
1062
1063
1064
1065
1066

1068
1069

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

1107
1108
1109

}

case Pl OCUSAGE:
{

mut ex_ent er (&->p_crl ock);
cp = p->p_cred;

crhol d(cp);

mut ex_exi t (&p->p_crl ock);

prunl ock(pnp);
1 f (copyout(crgetgroups(cp) cnmaddr
MAX(cr get ngroups(cp), 1) * si zeof (gid_t)))
error = EFAULT;
crfree(cp);
br eak;

/* get usage info */

| *

* For an Ilwp file descriptor, return just the |wp usage.

* For a process file descriptor, return total usage,
* all current lwps plus all defunct |wps.
*/

prhusage_t *pup = &un. prhusage;
prusage_t *upup;

bzero(pup, sizeof (*pup));
pup->pr_tstanp = gethrtlne()

if (pnp- >pr _type == PR_LWPI DFI LE) {
t pcp- >prc t hr ead;
if (t I'= NULL)
prget usage(t, pup);

error = ENCENT;

el se

} else {
pup- >pr _count
pup->pr_create
pup->pr_term

p- >p_def unct;

i n
=]
T
A\
©
2
Q
=
-

pup->pr_rtime
pup->pr_utinme
pup->pr_stinme

= p->p_mreal;

= p->p_. acct[LNB USER] ;

= p->p_acct [LM5_ SYSTEM
pup->pr _ttinme = p->p_acct[LM5_TRAP];
pup->pr_tftime = p->p_acct] LNS_TFAULT] ;
pup->pr_dftime = p->p_acct[LMS_DFAULT];
pup->pr_kftime = p->p_acct [LMS_KFAULT] ;
pup->pr _ltinme = p->p_acct [LM5_USER LGJK]
pup->pr_slptime = p->p_acct[LMS_SLEEP];
pup->pr_wti me = p->p_acct[LM5_WAI T CPU]
pup- >pr_stoptime = p->p_acct [LMS_STOPPED] ;

pup- >pr _mi nf
pup- >pr _naj f
pup- >pr _nswap
pup- >pr _i nbl k
pup- >pr _oubl k
pup- >pr _nmsnd
pup- >pr_nrcv
pup->pr_si gs
pup- >pr _vctx
pup->pr_i ctx
pup- >pr _sysc
pup- >pr _i och

p->p_ru.mnflt;
p->p_ru.mgjflt;
p->p_ru. nswap;
p->p_ru.inblock;
p- >p_r u. oubl ock;
. negsnd;
p->p_ru. msgrcv;
p->p_ru.nsignals
p->p_ru. nvcsw,
p->p_ru. nivesw,
p->p_ru. sysc;
p->p_ru.ioch;

L L L VO O VO L (O T I A1
7
\
h=]
I—‘
c

*

* Add the usage information for each active |wp.

*/

15

new usr/src/uts/comon/fs/proc/prioctl.c

1110
1111
1112
1113
1114
1115
1116
1117
1118

1120

1122
1123
1124
1125
1126

1128
1129

1131
1132
1133
1134
1135
1136
1137
1138

1140

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

1157
1158

1160
1162

1164
1165
1166
1167
1168
1169
1170
1171

1173
1174
1175

}

case Pl OCLUSACE:
{

p_tlist) !'= NULL &&
rc_flags & PRC_DESTROY)) {

16

ASSERT(! (t->t _proc_flag & TP_LWPEXIT));

pup- >pr _count ++;
praddusage(t, pup);
} while ((t =t->t_forw) != p->p_tlist);

}
prunl ock(pnp);

upup = knem zal | oc(si zeof (*upup), KM SLEEP);

prcvtusage(&un. prhusage, upup);

1 f (copyout (upup, crmaddr, sizeof (*upup)))
error = EFAULT;

kmem free(upup, sizeof (*upup));

br eak;

/* get detailed usage info */

int N wp;

int nlwp;
prusage_t *upup;
prusage_t *Bupup;
prhusage_t *pup;
hrtime_t curtine;

nlwp = Nwp = (pcp->prc_flags & PRC_DESTROY)? 0 : p->p_lwpcnt;

if (thing & thingsize !=
si zeof (prhusage_t) + (N wp+1l) * sizeof (prusage_t)) {
kmem free(thing, thingsize);
thing = NULL;

}
if (thing == NULL) {
t hi ngsi ze = sizeof (prhusage_t) +
(Nwp+1) * sizeof (prusage_t);
thing = kmem.al | oc(t hi ngsize, KM h[BLEER

}

1f (thing == NULL) {
prunl ock(pnp);
goto startover;

}

pup = thing;
upup = Bupup = (prusage_t *)(pup + 1);

ASSERT(p == pcp->prc_proc);
curtime = gethrtinme();

/*
* First the summation over defunct |wps.
*
/
bzer o(pup, S|zeof (*pup));

pup->pr_count = p->p_ def unct ;
pup->pr_tstanp = curtinme;

pup->pr_create = p->p_nstart;
pup->pr_term = p->p_nterm
pup->pr_rtine p->p_mreal;

pup->pr_utinme
pup- >pr_stinme

p->p_acct[LM > USER] ;
p->p_acct [LM5_ SYSTEI\/]

new usr/src/uts/comon/fs/proc/prioctl.c

1176
1177
1178
1179
1180
1181
1182
1183

1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

1198

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

1216
1217
1218
1219
1220
1221
1222

1224
1225
1226

1228
1229
1230
1231
1232

1234
1235
1236
1237
1238
1239
1240
1241

pup->pr_ttinme
pup->pr_tftime
pup->pr_dftinme
pup->pr_kftime
pup->pr_Itime

pup->pr_sl ptinme

pup->pr_wtinme

pup->pr_stoptine

pup- >pr _m nf
pup->pr_mgj f
pup- >pr _nswap
pup->pr _i nbl k
pup- >pr _oubl k
pup- >pr_nmsnd
pup- >pr_nrcv
pup- >pr _si gs
pup- >pr _vct x
pup->pr_i ctx
pup- >pr _sysc
pup->pr _i och

prcvt usage(pup,

* Fill
*/
i

= p->p_acct [LM5_TRAP];

= p->p_acct [LMS_TFAULT] ;

= p->p_acct [LM5_DFAULT] ;

= p->p_acct [LM5_KFAULT] ;

= p->p_acct [LM5_USER LOCK] ;
= p->p_acct[LMS_SLEEP] ;

= p->p_acct[LM5S_WAI T CPU]

= p->p_acct [LMS_STOPPED] ;

p->p_ru.mnflt;
p->p_ru.mjflt;
p->p_ru. nswap;
p->p_ru.inbl ock;
p- >p_r u. oubl ock;
p- >p_ru. megsnd;
p->p_ru. msgrcy;
p->p_ru.nsignal s;
p->p_ru. nvcsw,
p- >p_ru. ni vesw,
p->p_ru. sysc;
p->p_ru.ioch;

upup)

one prusage struct for each active |wp.

= p->p_tlist) !'= NULL &&

(pcp >prc_flags & PRC_DESTROY)) {

do {

ASSERT(! (t->t_proc_flag & TP_LWPEXIT));
ASSERT(nlwp > 0);

--nlwp

upup++

prgetusage(t, pup);

prcvtusage(pup, upup);

} while ((f =t->t forw) != p->p tlist);

}
ASSERT(nlwp ==

prunl ock(pnp)

i f (copyout (Bupup,

0);

cmaddr, (N wp+1l) * sizeof (prusage_t)))

error = EFAULT;

kmem free(thin
thing = NULL;
br eak;

}
case Pl OCNAUXV:
{

9

t hi ngsi ze) ;

/* get nunber of aux vector entries */

int n = _ KERN_NAUXV_| MPL;

prunl ock(pnp);

i1 f (copyout (&n,
error = EFAULT;

br eak;
}
case Pl OCAUXV:
{
up = PTOU(p);

bcopy(up- >u_auxv,

cmaddr, sizeof (int)))

/* get aux vector (see sys/auxv.h)

un. auxv,

KERN_NAUXV_| MPL * si zeof (auxv_t));

prunl ock(pnp);

1 f (copyout(un auxv,

crmaddr

~ KERN_NAUXV_| MPL * sizeof (auxv_t)))

17

new usr/src/uts/comon/fs/proc/prioctl.c

1242
1243
1244

1246
1247
1248
1249

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

1262
1263
1264
1265

1267
1268
1269

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

1286
1287
1288
1289
1290
1291
1292

1294
1295
1296
1297
1298
1299
1300
1301

1303
1304
1305
1306

error = EFAULT;

br eak;
}
#if defined(__i386) || defined(__and64)
case Pl OCNLDT: /* get nunber of LDT entries */
{
int n;
mut ex_exi t (&p->p I ock) ;
mut ex_ent er (&->p_l dtl ock)
n = prnldt(p);
mut ex_exi t (&p->p_I dtl ock);
mut ex_ent er (&p- >p_I ock) ;
prunl ock(pnp);
1 f (copyout (&, craddr, sizeof (n)))
error = EFAULT,
break;
}

case PI OCLDT: /* get LDT entries */
{

struct ssd *ssd;

int n;

mut ex_exi t (&p->p_I ock);

mut ex_ent er (&p->p_| dt | ock);
= prnldt(p);

if (thing & thingsize != (n+l) * sizeof (*ssd)) {

kmem free(thing, thingsize);
thing = NULL;
}
if (thing == NULL) {
thingsize = (n+l) * sizeof (*ssd);
thing = knem al | oc(thingsi ze, KM NOSLEEP);
}
if (thing == NULL) {
mut ex_exi t (&p->p_I dtl ock);
mut ex_ent er (&p- >p_Il ock) ;
prunl ock(pnp)
goto startover;
}
ssd = thing;
thing = NULL
if (n!=0)
prgetldt(p, ssd);
mut ex_exit (&->p_I dtl ock);
mut ex_ent er (&p- >p_| ock) ;
prunl ock(pnp);
/* mark the end of the list with a null entry */

bzero(&ssd[n], sizeof (*ssd));

if (copyout(ssd, cmaddr, (n+l) * sizeof (*ssd)))
error = EFAULT,

kmem free(ssd, (n+l) * sizeof (*ssd));

br eak;
#endi f }* _ 1386 || __and64 */
#i f defined(__sparc)
case Pl OCGW N: /* get gw ndows_t (see sys/reg.h)
{ gw ndows_t *gwp = thing;

*/

new usr/src/uts/comon/fs/proc/prioctl.c 19

1308 /* drop p->p_l ock while touching the stack */
1309 mut ex_exi t (&p->p_l ock);

1310 bzero(gwp, sizeof (*gwp));

1311 prgetw ndows(|wp, gwp);

1312 mut ex_ent er (&p- >p_| ock) ;

1313 prunl ock(pnp);

1314 1 f (copyout (gwp, crmaddr, sizeof (*gwp)))
1315 error = EFAULT;

1316 kmem f ree(gwp, si zeof (gw ndows_t));
1317 thing = NULL

1318 br eak;

1319 }

1320 #endif /* __sparc */

1322 defaul t:

1323 prunl ock(pnp)

1324 error = EINVAL

1325 br eak;

1327 }

1329 ASSERT(thing == NULL);

1330 ASSERT(xpnp == NULL);

1331 return (error);

1332 }

__unchanged_portion_omtted_

new usr/src/uts/comon/ fs/ proc/prvnops. c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
141047 Wed Jan 23 13:19: 06 2013

new usr/src/uts/comon/fs/ proc/prvnops.c

XXX AVX procfs

R R R R

__unchanged_portion_onitted_

1523 /* ARGSUSED */
1524 static int
1525 pr_read_xregs(prnode_t *pnp, uio_t *uiop)

1526 {

1527 #if defined(__sparc)

1527 proc_t *p;

1528 kthread_t *t;

1529 int error;

1530 char *xreg;

1531 size_t size;

1533 ASSERT(pnp->pr _type == PR_XREGS);
1535 xreg = kmem zal | oc(si zeof (prxregset_t), KM SLEEP);
1537 if ((error = prlock(pnp, ZNO)) !'=0)
1538 goto out;

1540 p = pnp->pr_conmmon- >prc_proc;

1541 t = pnp->pr_conmmon->prc_t hread;

1543 size = prhasx(p)? prget prxre95|ze(p) :0;
1544 if (UI op->ui o_of f set >= size) {

1545 prunl ock(pnp) ;

1546 goto out;

1547 }

1549 /* drop p->p_lock while (possibly) touching the stack */
1550 mut ex_exi t (&p->p_l ock);

1551 prget prxregs(ttol wp(t), xreg);

1552 nmut ex_ent er (&p->p_|I ock)

1553 prunl ock(pnp);

1555 error = pr_uioread(xreg, size, uiop);
1556 out:

1557 kmem free(xreg, sizeof (prxregset_t));
1558 return (error);

1560 #el se

1561 return (0);

1562 #endi f

1559 }

__unchanged_portion_onitted_

new usr/src/uts/intel/Mkefile.files new usr/src/uts/intel/Mkefile.files
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 #
6490 Wed Jan 23 13:19: 07 2013
new usr/src/uts/intel/Makefile.files 64 SPECI AL_OBJS 32 += \
XXX AVX procfs 65 mul div. o
LEEE R R R R EE SRR EEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREREEEEEEEEESE]

1# 67 #

2 # CDDL HEADER START 68 # Generi c-uni x Mdul e

3 # 69 #

4 # The contents of this file are subject to the terns of the 70 GENUNI X_OBJS += \

5 # Common Devel opnent and Distribution License (the "License"). 71 archdep. o \

6 # You may not use this file except in conpliance with the License. 72 getcontext.o \

7 # 73 install _utrap.o \

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 Iwp_private.o \

9 # or http://ww. opensol aris.org/os/licensing. 75 promenter.o \
10 # See the License for the specific |anguage governing perni ssions 76 promexit.o \
11 # and limtations under the License. 77 prom panic. o \
12 # 78 sendsi g. o \
13 # Wen distributing Covered Code, include this CDDL HEADER in each 79 syscall.o \
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 Xregs. o
15 # |f applicable, add the follow ng below this CDDL HEADER, with the 79 syscall.o
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]

18 # 83 #
19 # CDDL HEADER END 84 # PROM Rout i nes
20 # 85 #
86 CENUNI X_OBJS += \
22 # 87 prom env. o \
23 # Copyright (c) 1999, 2010, Oracle and/or its affiliates. Al rights reserved. 88 promenul .o \
24 # Copyright (c) 2012, Joyent, Inc. Al rights reserved. 89 promgetchar.o \
25 # 90 prominit.o \
91 prom node. o \
27 # 92 promprintf.o \
28 # This Makefile defines all file nodules and build rules for the 93 prom prop. o \
29 # directory uts/intel and its children. These are the source files which 94 prom putchar.o \
30 # are specific to x86 processor architectures. 95 prom reboot. o \
31 # 96 prom.version. o
33 # 98 #
34 # Core (unix) objects 99 # file system nodul es
35 # 100 #
36 CORE_OBJS += \ 101 CORE_OBJS += \
37 arch_kdi .o \ 102 pr machdep. o
38 copy. o \
39 copy_subr. o \ 104 #
40 cpc_subr.o \ 105 # ZFS file system nodul e
41 ddi _arch. o \ 106 #
42 ddi _i 86.0 \ 107 ZFS_OBJS += \
43 ddi _i 86_asm o \ 108 spa_boot. o
44 desctbls.o \
45 desctbls_asmo \ 110 #
46 exception. o \ 111 # Deconpr essi on code
47 float.o \ 112 #
48 fnenb. o \ 113 CORE_OBJS += deconpress. o
49 fpu.o \
50 i 86_subr.o \ 115 #
51 lock_primo \ 116 # M crocode utilities
52 ovbcopy. o \ 117 #
53 polled_io.o \ 118 CORE_OBJS += ucode_utils.o
54 ssebl k. o \
55 sundep. o \ 120 #
56 swtch. o \ 121 # Driver nodul es
57 sysi 86. 0 122 #
123 AGPGART_OBJS += agpgart.o agp_kstat.o
59 # 124 AGPTARGET_OBJS += agptarget.o
60 # 64-bit multiply/divide conpiler hel per routines 125 AVMD64GART_OBJS += and64_gart.o
61 # used only for 1a32 126 ARCMBR_OBJS += arcmsr.o

new usr/src/uts/intel/Makefile.files

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

156
157
158
159
160
161

163
164
165

167
168
169
170
171
172
173
174
175
176
177
178
179

181
182
183
184
185
186
187
188
189
190
191
192

ATA_OBJS += $(GHD_OBJS) ata_bl acklist.o ata_comon.o ata_disk.o \
ata_dnma. o atapi.o atapi _fsmo ata_debug.o \
si | 3xxx. o

BSCBUS_0OBJS += bschus. o

BSCV_OBJS += bscv. o

CVDK_OBJS += cndk. o

CMLB_OBJS += cm b.o

CPUNEX_OBJS += cpunex. o

DADK_OBJS += dadk. o

DCOPY_OBJS += dcopy. 0

DNET_OBJS += dnet.o dnet_mii.o

FD CBJS += fd.o

GDA_OBJS += gda.o

GHD_OBJS += ghd. o ghd_debug. o ghd_dnma. o ghd_queue. o ghd_scsa.o \
ghd_scsi.o ghd_tiner.o ghd_waitqg.o ghd_gcnd. o

1915_0BJS += i915_dma. o i915 drv.o i915_irq.o0 i 915 nemo \
i 915_gem o i 915_gem debug. o i 915_gem tiling. o

NSKERN_OBJS += nsc_asm o

PCl CFG_OBJS += pcicfg.o

PCl _PCI NEXUS_OBJS += pci _pci .o

PCl EB_OBJS += pci eb_x86.0

Pl T_BEEP_OBJS += pit_beep. o

PONER_OBJS += power.o

PCl _AUTOCONFI G OBJS += pci _autoconfig. o pci _boot. o pcie_nvidia. o \

pci _menlist.o pci_resource.o
RADEON_OBJS += r300_cndbuf.o radeon_cp.o radeon_drv.o \
radeon_state.o radeon_irg.o radeon_mem o
SD_OBJS += sd.o sd_xbuf.o

HECI _OBJS += \
heci _init.o \
heci _intr.o \
heci _interface. o \
heci _main. o

STRATEGY_OBJS += strategy.o
UCODE_OBJS += ucode_drv. o
VGATEXT_OBJS += vgatext.o vgasubr.o

#

Kernel 1inker

#

KRTLD_OBJS += \
bootrd. o \
uf sops. o \
hsfs. o \
dorel oc. o \
kobj _boot . o \
kobj _convrel str.o \
kobj _crt.o
kobj _i sa. o \
kobj _reloc. o

#

m sc. nodul es

#

ACPI CA_OBJS += dbcmds. o dbdisply.o \

dbexec. o dbfileio.o dbhistry.o dbinput.o dbstats.o \
dbutils.o dbxface.o evevent.o evgpe.o evgpebl k.o \
evmi sc. 0 evregion.o evrgnini.o evsci.o evxface.o \
evxfevnt.o evxfregn.o hwacpi.o hwgpe.o hwegs.o \
hwsl eep.o hwtiner.o dsfield.o dsinit.o dsnethod.o \

dsnt hdat. o dsobj ect.o dsopcode.o dsutils.o dswexec.o \

dsw oad. o dswscope. o dswstate.o exconfig.o exconvrt.
excreate.o exdunp.o exfield.o exfldio.o exmsc.o \

o\

new usr/src/uts/intel/Makefile.files

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

218
219
220

222
223

exmut ex. o exnames. o exopargl. o exoparg2.0 exoparg3.o \
exopar g6. 0 exprep.o exregion.o exresnte.o exresolv.o \
exresop. o exstore.o exstoren.o exstorob.o exsystemo \
exutils.o psargs.o psopcode.o psparse.o psscope.o \
pstree.o psutils.o pswal k.o psxface.o nsaccess.o \
nsal | oc. 0 nsdunp. o nsdunpdv. o nseval.o nsinit.o \

nsl oad. o nsnanes. o nsobj ect.o nsparse.o nssearch.o \
nsutils.o nswal k. o nsxfeval .o nsxfname.o nsxfobj.o \
rsaddr.o rscalc.o rscreate.o rsdunp.o \

rsinfo.o rsio.orsirgq.o rslist.o rsnenory.o rsmsc.o \
rsutils.o rsxface.o tbfadt.o tbfind.o tbinstal.o \
tbutils.o tbxface.o tbhxfroot.o \

utalloc.o utclib.o utcopy.o utdebug.o utdelete.o \
uteval .o utglobal.o utinit.o utmath.o utnmisc.o \
utobject.o utresrc.o utxface.o acpica.o acpi_enumo \
master_ops.o osl.o osl_nl .o acpica_ec.o utcache.o \
utnutex.o utstate.o dnbuffer.o dnmanes.o dnobject.o \
drmopcode. o dnresrc.o dnresrcl.o dnresrcs.o dnmutils.o \
dmral k. 0 psl oop. o nspredef.o hwxface.o hwalid.o \
utlock.o utids.o nsrepair.o nsrepair2.o \

dbnet hod. o dbnanes. o dsargs. o dscontrol.o dsw oad2.0 \
evgl ock. o evgpeinit.o evgpeutil.o evxfgpe.o exdebug.o \
hwpci . o utdecode. o utosi.o utxferror.o

AGP_0OBJS += agprraster
FBT_OBJS += fbt.
SDT_OBJS += sdt.

#
AVDB111 NI C driver nodul e

224 #

225

227
228

AMDB111S _OBJS += anu81lls_mmain.o and81llls_hw. o

#
Penti um Performance Counter BackEnd nodul e

229 #

230

232
233

P123_PCBE_OBJS = p123_pche. o

#
Pentium 4 Performance Counter BackEnd nodul e

234 #

235

237
238

P4_PCBE_OBJS = p4_pche. o

#
AMD Opt er on/ At hl on64 Performance Counter BackEnd nodul e

239 #

240

242
243

OPTERON_PCBE_OBJS = opt eron_pcbhe. o

#
Intel Core Architecture Performance Counter BackEnd nodul e

244 #

245

247
248
249
250

CORE_PCBE_OBJS = core_pche. o

#

AMR nodul e
#

AVMR_OBJS = anr.o

252 #

253
254

256
257
258

I PM nodul e
| PM _OBJS += ipmi _main.o ipm.o ipm_kcs.o

I OWULI B nodul e

3 H

new usr/src/uts/intel/Makefile.files

259

261
262
263
264
265

267

290

| OMMULI B_OBJS = iomulib.o

#
Brand nodul es
#

SN1_BRAND_OBJS
S10_BRAND_OBJS

#
special files
#
MODSTUB_OBJ += \
nodst ubs. o
BOOTDEV_(OBJS += \
boot dev. o
| NC_PATH += -1 $(UTSBASE) /i nt el
CPR_I NTEL_OBJS += cpr_intel.o
#

AVMD fam |y Oxf nenory controller nodule

MCAMD_OBJS += \
$(MCAMD_CWN_OBJS) \
ncanmd_drv. o \
ncand_di mefg.o \
ncand_subr. o \
ncand_pcicfg. o

#
i ncl ude $(SRC)/ common/ nt/ nt- and/ Makefi |l e. ntand

snl_brand.o snl_brand_asm o
s10_brand. o s10_brand_asm o

new usr/src/uts/intel/and64/sys/privregs.h

R R R R

8493 Wed Jan 23 13:19:07 2013
new usr/src/uts/intel/and64/sys/privregs.h
XXX AVX procfs

R R R R

____unchanged_portion_onitted_

104 #define r_r0 r_rax /* r0 for portability */

105 #define r_r1 r_rdx /* rl for portability */

106 #define r_fp r_rbp /* kernel franme pointer */

107 #define r_sp r_rsp /* user stack pointer */

108 #define r_pc r_rip /* user’s instruction pointer */
109 #define r_ps r_rfl /* user’s RFLAGS */

111 #ifdef _KERNEL

112 #define Iwptoregs(lw) ((struct regs *)((lwp)->lwp_regs))
113 #define | wptof pu(l wp) ((kfpu_t *)((Iwp)->lwp_fpu))
114 #endif /* | codereview */

115 #endif /* _KERNEL */

117 #else [* | _ASM*/

119 #i f defined(_MACHDEP)

121 #include <sys/ machprivregs. h>
122 #incl ude <sys/pcbh. h>

124 |

We can not safely sanple {fs, gs}base on the hypervisor. The rdnsr
instruction triggers a #gp fault which is enulated in the hypervisor
on behal f of the guest. This is nornally ok but if the guest is in
the special failsafe handler it nust not fault again or the hypervisor
will kill the domain. We could use sonething different than | NTR_PUSH
in xen_failsafe_call back but for now we will not sanple them

i
N
~
LR

131 */
132 #i f defined(DEBUG) && !defined(__xpv)

133 #define __SAVE BASES \
134 nov| $MSR_AMD_FSBASE, %ecx; \
135 rdmnsr; \
136 mov! Y%ax, REGOFF_FSBASE(% sp) ; \
137 nov| Y%edx, REGOFF_FSBASE+4(% sp); \
138 nov| $MSR_AMD_GSBASE, %ecx; \
139 rdmnsr; \
140 mov! Y%ax, REGOFF_GSBASE(% sp) ; \
141 nov| %edx, REGOFF_GSBASE+4(% sp)

142 #el se

143 #define _ SAVE BASES

144 #endi f

146 /*

147 * Create a struct regs on the stack suitable for an
148 * interrupt trap.

149 *

150 * Assumes that the trap handl er has already pushed an
151 * appropriate r_err and r_trapno

152 */

153 #define __ SAVE REGS \
154 novq 9% 15, REGOFF_R15(% sp); \
155 novq % 14, REGOFF_R14(% sp); \
156 nmovq % 13, REGOFF_R13(% sp); \
157 movq 9% 12, REGOFF_R12(% sp) ; \
158 novq o% 11, REGOFF_R11(% sp); \
159 novq % 10, REGOFF_R10(% sp); \
160 nmovq % bp, REGOFF_RBP(% sp) ; \
161 novq % bx, REGOFF_RBX(% sp) ; \
162 novq % ax, REGOFF_RAX(% sp); \

new usr/src/uts/intel/anmd64/sys/privregs.h

163 novq % 9, REGOFF_RI(% sp); \
164 nmovq % 8, REGOFF_R8(% sp); \
165 novq % cx, REGOFF_RCX(% sp); \
166 novq % dx, REGOFF_RDX(% sp) ; \
167 novq % si, REGOFF_RSI (% sp); \
168 nmovq % di , REGOFF_RDI (% sp) ; \
169 novq % bp, REGOFF_SAVFP(% sp) ; \
170 novq REGOFF_RI P(% sp), % cx; \
171 novq % cx, REGOFF_SAVPC(% sp) ; \
172 xor | %ecx, %ecx; \
173 nmovw %s, %X; \
174 novq % cx, REGOFF_GS(% sp); \
175 novw % s, Y%x; \
176 nmovq % cx, REGOFF_FS(% sp); \
177 nmovw %s, Y%€X; \
178 novq % cx, REGOFF_ES(% sp); \
179 novw %ls, %x; \
180 nmovq % cx, REGOFF_DS(% sp) ; \
181 __SAVE_BASES

183 #define __RESTORE_REGS \
184 nmovq REGOFF_RDI (% sp) , % di ; \
185 nmovq REGOFF_RSI (% sp) , % si ; \
186 novq REGOFF_RDX(% sp) , % dx; \
187 novq REGOFF_RCX(% sp) , % cx; \
188 novq REGOFF_R8(% sp) , % 8; \
189 nmovq REGOFF_R9(% sp) , % 9; \
190 novq REGOFF_RAX(% sp) , % ax \
191 novq REGOFF_RBX(% sp) , % bx; \
192 novq REGOFF_RBP(% sp) , % bp \
193 nmovq REGOFF_R10(% sp) , % 10 \
194 movq REGOFF_R11(% sp) , % 11 \
195 novq REGOFF_R12(% sp), % 12; \
196 novq REGOFF_R13(% sp) , % 13 \
197 nmovq REGOFF_R14(% sp) , % 14; \
198 movq REGOFF_R15(% sp) , % 15

200 /*

201 * Push register state onto the stack. If we' ve
202 * interrupted userland, do a swapgs as well.

203 */

204 #define | NTR_PUSH \
205 subq $REGOFF_TRAPNO, 9% sp; \
206 __SAVE_REGS; \
207 cnmpw $KCS_SEL, REGOFF_CS(% sp) ; \
208 je 6f ; \
209 novq $0, REGOFF_SAVFP(% sp) ; \
210 SWAPGS; \
211 6: CLEAN_CS

213 #define | NTR_POP \

214 | eaq sys_lcall 32(%ip), % 11;\

215 cnpq % 11, REGOFF_RIP(%sp); \

216 __RESTORE_REGS; \

217 je 5f; \

218 cnpw $KCS_SEL, REGOFF_CS(% sp);\

219 je 8f; \

220 5: SWAPGS; \

221 8: addq $REGOFF_RI P, % sp

223 #defi ne USER_POP \

224 __RESTORE_REGS; \

225 SWAPGS; \

226 addq $REGOFF_RI P, % sp /* Adj ust
228 #defi ne USER32_POP \

% sp to prepare for

iretq */

new usr/src/uts/intel/and64/sys/privregs.h 3 new usr/src/uts/intel/and64/sys/privregs.h

229 nov| REGOFF_RDI (% sp), %di; \ 295 #defi ne CREG CRO 0x30
230 nmovl REGOFF_RSI (% sp), %esi; \ 296 #define CREG CR2 0x38
231 novl REGOFF_RDX(% sp), %edx; \ 297 #define CREG CR3 0x40
232 nov| REGOFF_RCX(% sp), %cx; \ 298 #defi ne CREG CR4 0x48
233 nov| REGOFF_RAX(% sp), Y%ax; \ 299 #define CREG CR8 0x50
234 nmovl REGOFF_RBX(% sp), %ebx; \ 300 #define CREG_KGSBASE 0x58
235 mov REGOFF_RBP(% sp), Y%ebp; \ 301 #define CREG EFER 0x60
236 SWAPGS; \
237 addq $REGOFF_RI P, % sp /* Adjust % sp to prepare for iretq */ 303 #if !defined(_ASM && defined(_I NT64_TYPE)
239 #defi ne DFTRAP_PUSH \ 305 typedef uint64_t cregb4_t;
240 subq $REGOFF_TRAPNO, % sp; \ 306 typedef upadl28_t cregl28_t;
241 __SAVE_REGS
308 struct cregs {
243 #endif /* _MACHDEP */ 309 cregl28_t cr_gdt;
310 cregl28_t cr_idt;
245 | * 311 creg64_t cr_ldt;
246 * Used to set rflags to known values at the head of an 312 creg64_t cr_task;
247 * interrupt gate handler, i.e. interrupts are -already- disabled. 313 creg64_t cr_cr0;
248 * 314 creg64_t cr_cr2;
249 #define | NTGATE_ I NI T_KERNEL_FLAGS \ 315 creg64_t cr_cr3;
250 pushq $F_OFF; \ 316 creg64_t cr_cré;
251 popf q 317 creg64_t cr_cr8;
318 creg64_t cr_kgsbhase;
253 #endif [/* | _ASM */ 319) creg64_t cr_efer;
320 };
255 #include <sys/controlregs. h>
322 #if defined(_KERNEL)
257 #if defined(_KERNEL) && !defined(_ASM 323 extern void getcregs(struct cregs *);
258 #if !defined(__lint) && defined(__GNUC) 324 #endif /* _KERNEL */
260 extern __ GNU I NLI NE ul ong_t 326 #endif /* | _ASM && _| NT64_TYPE */
261 getcr8(void)
262 { 328 #ifdef __cplusplus
263 uint64_t val ue; 329 }
330 #endi f
265 _asm_ __volatile__(
266 "novq %Wers8, %" 332 #endif [/* !|_AMD64_SYS PRI VREGS_H */
267 o "=r" (value));
268 return (val ue);
269 }

271 extern __GNU_I NLI NE void
272 setcr8(ul ong_t val ue)

273 {

274 _asm_ __volatile__(
275 "movq %, %er8"
276 : /* no output */
277 "r" (value));
278 }

280 #el se

282 extern ulong_t getcr8(void);
283 extern void setcr8(ulong_t);

285 #endif [/* !defined(__lint) && defined(__GNUC) */
286 #endif /* _KERNEL && ! _ASM */

288 /* Control register layout for panic dunp */

290 #define CREGSZ 0x68
291 #define CREG GDT 0

292 #define CREG. | DT 0x10
293 #define CREG LDT 0x20

294 #define CREG TASKR 0x28

new usr/src/uts/intel/fs/proc/prmachdep.c 1

R R R R

12721 Wed Jan 23 13:19: 08 2013

new usr/src/uts/intel/fs/proc/prmachdep.c

XXX AVX procfs

LEEE R R R R EE SRR EEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREREEEEEEEEESE]
__unchanged_portion_onitted_

236 #endif /* _SYSCALL32_|I MPL */

238 [/ *

239 * Does the system support extra register state?
240 */

241 | * ARGSUSED */

241 int

242 prhasx(proc_t *p)

243 {

244 [* XXX */

245 return (1);

245 return (0);

246 }

248 | *

249 * Get the size of the extra registers.
250 */

251 /* ARGSUSED */

251 int

252 prgetprxregsize(proc_t *p)

253 {

254 return (xregs_getsize(p));

255 return (0);

255 }

257 |*

258 * Get extra registers.

259 */

261 /* ARGSUSED*/

260 void

261 ?rget prxregs(klwp_t *lwp, caddr_t prx)
262

263 extern void xregs_get(struct _klwp *, caddr_t);
265 xregs_get (I wp, prx);

265 /* no extra registers */

266 }

268 /*

269 * Set extra registers.

270 */

271 | * ARGSUSED*/

271 void

272 ?rset prxregs(klwp_t *Iwp, caddr_t prx)
273

274 extern void xregs_set(struct _klwp *, caddr_t);
276 xregs_set (I wp, prx);

275 /* no extra registers */

277 }

__unchanged_portion_onitted_

new usr/src/uts/intel/ia32/os/sendsig.c

R R R R

22655 Wed Jan 23 13:19: 08 2013
new usr/src/uts/intel/ia32/os/sendsig.c
XXX AVX procfs

R R R R

____unchanged_portion_onitted_

126 int

127 sendsig(int sig, k_siginfo_t *sip, void (*hdlr)())
128 {

129 volatile int mnstacksz;

130 i nt newst ack;

131 | abel _t Ijb;

132 vol atile caddr_t sp;

133 caddr _t fp;

134 vol atile struct regs *rp;

135 vol atile greg_t upc;

136 proc_t *volatile p = ttoproc(curthread);
136 vol atile proc_t *p = ttoproc(curthread);
137 struct as *as = p->p_as;

138 klwp_t *Iwp = ttol wp(curthread);

139 ucontext_t *volatile tuc = NULL;

140 ucont ext _t *uc;

141 siginfo_t *sip_addr;

142 volatile int watched;

143 char *volatile xregs = NULL;

144 vol atile size_t xregs_size = 0;

145 #endif /* ! codereview */

147 /*

148 * This routine is utterly dependent upon STACK ALI GN bei ng
149 * 16 and STACK_ENTRY_ALI GN being 8. Let’s just acknow edge
150 * that and require it.

151 */

153 #if STACK ALIGN != 16 || STACK ENTRY ALIGN != 8
154 #error "sendsig() and64 did not find the expected stack alignnents”
155 #endi f

157 rp = lwptoregs(lw);

158 upc = rp->r_pc;

160 /*

161 * Since we're setting up to run the signal handl er we have to

162 * arrange that the stack at entry to the handler is (only)

163 * STACK_ENTRY_ALIGN (i.e. 8) byte aligned so that when the handl er
164 * executes its push of % bp, the stack realigns to STACK ALI GN
165 * (i.e. 16) correctly.

166 *

167 * The new sp will point to the sigfrane and the ucontext_t.

168 * above neans that sp (and thus sigfrane) will be 8-byte aligned,
169 * but not 16-byte aligned. ucontext_t, however, contalns %mmregs
170 * which nust be 16-byte aligned. Because of this, for correct

171 * alignment, sigfrane nmust be a nultiple of 8-bytes in length, but
172 * not 16-bytes. This will place ucontext_t at a nice 16-byte boundary.
173 */

175 /* LINTED: |ogical expression always true: op "||" */

176 ASSERT((si zeof (struct sigframe) % 16) == 8);

178 m nstacksz = sizeof (struct sigfranme) + SA(sizeof (*uc));

179 if (sip != NULL)

180 m nstacksz += SA(sizeof (siginfo_t));

182 /*

183 * Extra registers, if supported by this platform may be of arbitrary

new usr/src/uts/intel/ia32/os/sendsig.c

184
185
186
187

189
190

192
193
194
195
196
197
198
199

201
202
203
204
205
206
207
208
209
210

212
213
214
215
216

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

235
236
237
238
239
240
241
242
243
244
245
246
247

249

* |length. Size them now so we know how big the signal frane has to be.
*
/

Xregs_size = xregs_getsize(p);
m nstacksz += SA(xregs_size);

#endif /* | codereview */

ASSERT((i nstacksz & (STACK_ENTRY_ALIGN - 1ul)) == 0);

/*

* Figure out whether we will be handling this signal on

* an alternate stack specified by the user. Then allocate

* and val idate the stack requirenents for the signal handler

* context. on_fault will catch any faults.

*/

newst ack = sigi smenber (&PTOY(cur proc) - >u_si gonstack, sig) &&
V(Iwp->l wp_si gal t stack. ss_flags & (SS_ONSTACK| SS_DI SABLE)) ;

if (newstack) {
fp = (caddr_t) (SA((uintptr_t)Iwp->lw_sigaltstack.ss_sp) +
SA(l wp- >l wp_si gal t st ack. ss_si ze) - STACK ALIGN);
} else {
/*

Drop bel ow the 128-byte reserved region of the stack frane
we're interrupting.

fp = (caddr_t)rp->r_sp - STACK RESERVE;

/*
* Force proper stack pointer alignment, even in the face of a
* misaligned stack pointer fromuser-|level before the signal.
*/
fp = (caddr_t)((uintptr_t)fp & ~(STACK_ENTRY_ALIGN - 1ul));
/*
* Mbst of the tine during normal execution, the stack pointer
* is aligned on a STACK ALIGN (i.e. 16 byte) boundary. However,
* (for exanple) just after a call instruction (which pushes
* the return address), the callers stack misaligns until the
* "push % bp’ happens in the callee prolog. So while we should
* expect the stack pointer to be always at | east STACK ENTRY_ALI GN
* aligned, we should -not- expect it to always be STACK ALIGN aligned.
* W now adjust to ensure that the new sp is aligned to
* STACK_ENTRY_ALI GN but not to STACK ALI GN\.
*/
sp = fp - minstacksz;
if (((uintptr_t)sp & (STACK ALIGN - 1ul)) == 0) {
sp -= STACK ENTRY_ALI G\;
m nstacksz = fp - sp;
}
/*

* Now, make sure the resulting signal frame address is sane
<]
if (sp > as->a_userlimt || fp >= as->a_userlimt) {

#i f def DEBUG

#endi f

printf("sendsig: bad signal stack cnd=%, pid=%, sig=%\n",
PTOU(p) - >u_conm p->p_pid, sig);

printf("sigsp = Ox%, action = Ox%, upc = 0x% x\n",
(void *)sp, (void *)hdlr, (uintptr_t)upc);

printf("sp above USERLIM T\n");

return (0);

}
wat ched = wat ch_di sabl e_addr ((caddr_t)sp, mnstacksz, S WRITE);

new usr/src/uts/intel/ia32/os/sendsig.c

251
252

254
255

257
258
259
260
261
262

264
265
266
267
268
269
270
271

273
274
275
276
277
278
279
280
281
282

284
285
286
287
288
289
290
291
292
293

295
296
297
298
299
300
301
302
303

305
306
307
308
309
310
311
312
313
314
315

if (on_fault(&jb))
got o badst ack;

if (sip != NULL)
zonei d_t zonei d;

fp -= SA(sizeof (siginfo_t));
uzero(fp, sizeof (siginfo_t)
if (SI_FROMUSER(sip) &%
(zoneid = p->p_zone->zone_id) != GLOBAL_ZONEI D &&
zoneid ! = sip->si_zoneid) {
k_siginfo_t sani_sip = *sip;

~-

sani _si p.si_pid
sani_sip.5| ui d
sani _sip. si _ “ctid = —1

sani _si p. si _zoneid = zonei d;

copyout _noerr (&sani _sip, fp, sizeof (sani_sip));

p- >p_zone- >zone_zsched- >p_pi d;

} else
copyout _noerr(sip, fp, sizeof (*sip));
sip_addr = (siginfo_t *)fp;

if (sig == SIGPROF &&
curthread->t _rprof != NULL &&
curthread->t _rprof->rp_anystate) {
/*

* W& stand on our head to deal with
* the real time profiling signal.

* Fill in the stuff that doesn't fit
* in a normal k_siginfo structure.
*/

int i = sip->si_nsysarg;

while (--i >= 0)
sul wor d_noerr

(ul ong_t *(*)&(S| p_addr->5|) _sysarg[i]),

(ulong_t) I wp->lwp_arg[i]
copyout _noerr(curthread->t_rprof->rp_state,
si p_addr->si _nstate,
sizeof (curthread->t _rprof->rp_state));

} else
si p_addr = NULL;

save the current context on the user stack directly after the
sigframe. Since sigfrane is 8-byte-but-not-16-byte aligned,
and since sizeof (struct sigframe) is 24, this guarantees
16-byte alignnent for ucontext_t and its %nmmregisters.

* %k ok

*

/

uc = (ucontext_t *)(sp + sizeof (struct sigfrane));
tuc = knem al | oc(sizeof (*tuc), KM SLEEP);

savecont ext (tuc, & wp->l wp_si gol dmask) ;

/*

* Save extra register state if it exists.
*/

if (xregs_size != 0)

Xregs_ setptr(lwp tuc, sp);

xregs = knem al | oc(xregs_size, KM SLEEP);
xregs_get (I wp, xregs);

copyout _noerr (xregs, Sp, Xregs_size);
kmem free(xregs, xregs_size);

Xregs = NULL;

sp += SA(Xxregs_size);

new usr/src/uts/intel/ia32/os/sendsig.c

316

318
319
320
321

323

325
326
327
328
329
330

332
333
334
335
336

338
339
340
341
342
343
344
345

347
348
349

351
352
353
354
355
356

358
359
360

362
363
364
365
366
367
368
369

371
372
373
374
375
376

378
379
380
381

#endi f /

badst ack:

}

* | codereview */
copyout _noerr(tuc, uc, sizeof (*tuc));
kmem free(tuc, si zeof (*tuc));
tuc = NULL;
I wp- >l wp_ol dcontext = (uintptr_t)uc;
if (newstack) {
| wp- >l wp_si gal t stack. ss_flags | = SS_ONSTACK;
if (1wp->lwp_ustack)
copyout _noerr (& wp- >l wp_si gal t st ack,
(stack_t *)Ilwp->l wp_ustack, sizeof (stack_t));

}
/*
* Set up signal handler return and stack |inkage
*
/
{ :
struct sigframe frane;
/*
* ensure we never return "nornally"
*
frame.retaddr = (caddr_t)(uintptr_t)-1L;
frane. signo = sig;
frane.sip = sip_addr;
copyout _noerr (& rame, sp, sizeof (frame));
}
no_fault();
if (watched)
wat ch_enabl e_addr ((caddr _t)sp, mnstacksz, S WRI TE);
/*
* Set up user registers for execution of signal handler.
*
rp->r_sp = (greg_t)sp;
rp->r_pc = (greg_t)hdlr;
rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);
rp->r_rdi = sig;
rp->r_rsi = (uintptr_t)sip_addr;
rp->r_rdx = (uintptr_t)uc;

if ((rp->r_cs & Oxffff) !'= UCS_SEL ||
(rp->r_ss & Oxffff) I'= UDS_SEL) {
/*

* Try our best to deliver the signal.
*/

rp->r_c

S UCS SEL;
rp->r_ss

UDS_SEL;

}

/*

* Don't set |wp_eosys here. sendsig() is called via psig() after
* |wp_eosys is handled, so setting it here would affect the next
* systemcall.

*/

return (1);

no_fault();
if (watched)
wat ch_enabl e_addr ((caddr_t)sp, mnstacksz, S WRITE);

new usr/src/uts/intel/ia32/os/sendsig.c 5 new usr/src/uts/intel/ia32/os/sendsig.c

382 if (tuc) 447 Xregs_si ze = xregs_getsize(p);
383 kmem free(tuc, sizeof (*tuc)); 448 m nstacksz += SA32(xregs_si ze)
384 if (xregs)
385 kmem free(xregs, xregs_size); 450 #endif /* | codereview */
386 #endif /* ! codereview */ 451 ASSERT((m nstacksz & (STACK_ALIGN32 - 1)) == 0);
387 #ifdef DEBUG
388 printf("sendsig: bad signal stack cnd=%, pid=%l, sig=%l\n", 453 /*
389 PTOU(p) - >u_conm p->p_pid, sig); 454 * Figure out whether we will be handling this signal on
390 printf("on fault, sigsp = Ox%, action = Ox%), upc = 0x% x\n", 455 * an alternate stack specified by the user. Then allocate
391 (void *)sp, (void *)hdlr, (uintptr_t)upc); 456 * and validate the stack requirements for the signal handler
392 #endif 457 * context. on_fault will catch any faults.
393 return (0); 458 “f
394 } 459 newst ack = si gi smenber (&PTOU(cur proc) - >u_si gonstack, sig) &&
460 I(I'wp->l wp_si gal tstack. ss_flags & (SS_ONSTACK| SS_DI SABLE)) ;
396 #ifdef _SYSCALL32_|MPL
462 if (newstack
398 /* 463 p—(caddr _t) (SA32((uintptr_t)lwp->lwp_sigal tstack.ss_sp) +
399 * An i386 SVR4/ABI signal frane |ooks like this on the stack: 464 SA32(| wp- >l wp_si gal t st ack. ss_si ze) - STACK_ALI G\32);
400 * 465 } else if ((rp->_ss & Oxffff) != UDS_SEL) {
401 * old %esp: 466 user_desc_t *ldt;
402 * <a siginfo32_t [optional]> 467 /*
403 * <a ucontext32_t> 468 * |f the stack segnent selector is -not- pointing at
404 * <pointer to that ucontext32_t> 469 * the UDS_SEL descriptor and we have an LDT entry for
405 * <pointer to that siginfo32_t> 470 * it instead, add the base address to find the effective va.
406 * <si gno> 471 *
407 * new %esp: <return address (deliberately invalid)> 472 if ((ldt = P->p_ Idt) !'= NULL)
408 */ 473 fp = (caddr_t)rp->r_sp +
409 struct sigfranme32 { 474 USEGD GETBASE(& dt [SELTO DX(rp->r_ss)]);
410 caddr32_t retaddr; 475 el se
411 ui nt32_t si gno; 476 fp = (caddr_t)rp->r_sp;
412 caddr 32_t si p; 477 } else
413 caddr32_t ucp; 478 fp = (caddr_t)rp->r_sp;
414 };
480 /*
416 int 481 * Force proper stack pointer alignment, even in the face of a
417 sendsig32(int sig, k_siginfo_t *sip, void (*hdlr)()) 482 * msaligned stack pointer fromuser-level before the signal.
418 { 483 * Don't use the SA32() macro because that rounds up, not down.
419 volatile int mnstacksz; 484 */
420 int newstack; 485 fp = (caddr_t)((uintptr_t)fp & ~(STACK_ALIGN32 - 1));
421 | abel _t 1jb; 486 sp = fp - mnstacksz;
422 volatile caddr_t sp;
423 caddr _t fp; 488 /*
424 vol atile struct regs *rp; 489 * Make sure Iwp hasn't trashed its stack
425 vol atile greg_t upc; 490 */
426 proc_t *volatil e p = ttoproc(curthread); 491 if (sp >= (caddr_t)(uintptr_t)USERLIM T32 ||
143 volatile proc_t *p = ttoproc(curthread); 492 fp >= (caddr_t) (uintptr_t)USERLIM T32) {
427 klwp_t *lwp = ttolwp(curthread); 493 #i f def DEBUG
428 ucontext32_t *volatile tuc = NULL; 494 pri ntf(sendsi g32: bad signal stack cnd=%, pid=%, sig=%\n",
429 ucont ext 32"t *uc; 495 (11(p)->u_conm p->p_| p|d sig);
430 siginfo32_t *sip_addr; 496 printf("sigsp = Ox%, action = Ox%, upc = O0x% x\n",
431 vol atile int watched; 497 (void *)sp, (void *)hdlr, (ui ntptr_t)upc);
432 char *volatile xregs = NULL; 498 printf("sp above USERLIM T\n");
433 vol atile size_t xregs_size = 0; 499 #endi f
434 #endif /* | codereview */ 500) return (0);
501
436 rp = lwptoregs(lw);
437 upc = rp->r_pc; 503 wat ched = wat ch_di sabl e_addr ((caddr _t)sp, mnstacksz, S_WRITE);
439 m nstacksz = SA32(sizeof (struct sigframe32)) + SA32(sizeof (*uc)); 505 if (on_fault(&jb))
440 if (sip !'= NULL) 506 got o badst ack;
441 m nstacksz += SA32(sizeof (siginfo32_t));
508 if (sip != NULL)
443 /* 509 siginfo32_t si32;
444 * Extra registers, if supported by this platform may be of arbitrary 510 zonei d_t zonei d;
445 * length. Size them now so we know how big the signal frame has to be.

446 */ 512 si gi nfo_kto32(sip, &si32);

new usr/src/uts/intel/ia32/os/sendsig.c

513 if (Sl FRO\/USER(Sl p) &&

514 (zone| d = p->p_zone->zone_id) != GLOBAL_ZONEI D &&
515 zoneid ! = SI p->si _zoneid) {

516 si32.si_pid = p >p_zone- >zone_zsched- >p_pi d;
517 si 32. SI uid =

518 si 32. si ctld——l;

519 si 32.si_zoneid = zonei d;

520 }

521 fp -= SA32(sizeof (si32));

522 uzero(fp, sizeof (si32));

523 copyout _noerr (&si 32, fp, sizeof (si32));

524 sip_addr = (siginfo32_t *)fp;

526 if (sig == SI GPROF &&

527 curthread->t _rprof != NULL &&

528 curthread->t _rprof->rp_anystate) {

529 /*

530 * We stand on our head to deal with

531 * the real-tine profiling signal.

532 * Fill in the stuff that doesn't fit

533 * in a nornal k_siginfo structure.

534 */

535 int i = sip->si_nsysarg;

537 while (--i >= 0)

538 suwor d32_noerr (&(si p_addr->si _sysarg[i]),
539 (uint32_t)Iwp->wp_arg[i]);
540 copyout _noerr (curthread->t_rprof->rp_state,
541 si p_addr->si _nstate,

542 si zeof (curthread- >t_rpr0f—>r p_state));
543

544 } else

545 si p_addr = NULL;

547 /* save the current context on the user stack */

548 fp -= SA32(sizeof (*tuc));

549 uc = (ucont ext32_t *)fp;

550 tuc = knmem al | oc(si zeof (*tuc), KM SLEEP);

551 savecont ext 32(tuc, & wp->l wp_si gol dnask) ;

553 /*

554 * Save extra register state if it exists.

555 */

556 if (xregs_size !=10) {

557 Xregs_ setptr32(|wp, tuc, (caddr32_ t)(w ntptr_t)sp);
558 xregs = kmem al | oc(xregs_size, KM SLEEP);

559 xregs_get (I wp, xregs);

560 copyout _noerr (xregs, sp, Xregs_size);

561 kmemfree(xregs Xregs_si ze);

562 xregs = NULL;

563 sp += SA32(xregs_size);

564 }

566 #endif /* ! codereview */

567 copyout _noerr(tuc, uc, sizeof (*tuc));

568 kmem free(tuc, sizeof (*tuc));

569 tuc = NULL;

571 | wp- >l wp_ol dcontext = (uintptr_t)uc;

573 if (newstack) {

574 | wp- >l wp_si gal t stack. ss_flags | = SS_ONSTACK;

575 if (Iw->l wp_ustack) {

576 stack32_t stk32;

578 stk32.ss_sp = (caddr32_t)(uintptr_t)

new usr/src/uts/intel/ia32/ os/sendsig.c

579 | wp- >l wp_si gal t st ack. ss_sp;

580 stk32.ss_size = (size32_t)

581 I wp- >l wp_si gal t st ack. ss_si ze;

582 stk32.ss_flags = (int32_t)

583 | wp- >l wp_si gal t st ack. ss_f | ags;

584 copyout _noerr (&t k32,

585 (stack32_t *)lwp->l wp_ustack, sizeof (stk32));
586 }

587 }

589 /*

590 * Set up signal handl er argunents

591 */

592 {

593 struct sigframe32 frane32;

595 frame32.sip = (caddr32_t)(uintptr_t)sip_addr;

596 frame32. ucp = (caddr32_t) (uintptr_t)uc;

597 frane32.signo = ig;

598 frame32. ret addr Oxffffffff; /* never return! */
599 copyout_noerr(&frane32, sp, sizeof (frame32));

600 }

602 no_fault();

603 if (V\atched)

604 wat ch_enabl e_addr ((caddr _t)sp, mnstacksz, S WRI TE);
606 rp->r_sp = (greg_t)(uintptr_t)sp;

607 rp->r_pc=(gregt)(u ntptr_t)hdlr;

608 rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);

610 if ((rp->r_cs & Oxffff) 1= U32CS SEL ||

611 (rp->r_ss & Oxffff) != UDS_SEL) {

612 /*

613 * Try our best to deliver the signal.

614 */

615 rp->r_cs = U32CS_SEL;

616 rp->r_ss = UDS_SEL;

617 }

619 /*

620 * Don't set |wp_eosys here. sendsig() is called via psig() after
621 * | wp_eosys is handled, so setting it here would affect the next
622 * systemcall.

623 *

624 return (1);

626 badst ack:

627 no_fault();

628 if (watched)

629 wat ch_enabl e_addr ((caddr _t)sp, mnstacksz, S WRI TE);
630 if (tuc)

631 kmem free(tuc, sizeof (*tuc));

632 if (xregs_size)

633 knmem free(xregs, xregs_size);

634 #endif /* | codereview */

635 #ifdef DEBUG

636 printf("sendsi g32: bad signal stack cmd=% pid=%, sig=%l\n",
637 PTOU(p) - >u_conm p->p_pid, sig);

638 printf("on fault, sigsp = Ox%, action = Ox%, upc = Ox% x\n",
639 (void *)sp, (void *)hdlr, (uintptr_t)upc);

640 #endif

641 return (0);

642 }

644 #endif /* _SYSCALL32 |MPL */

new usr/src/uts/intel/ia32/os/sendsig.c

646 #elif defined(__i386)

648 [*

649 * An i386 SVR4/ABI signal frane |ooks like this on the stack:

650 *

651 * old %esp:

652 * <a siginfo32_t [optional]>

653 * <a ucontext32_t>

654 * <pointer to that ucontext32_t>

655 * <pointer to that siginfo32_t>

656 * <si gno>

657 * new %esp: <return address (deliberately invalid)>

658 *

659 struct sigframe {

660 voi d (*retaddr)();

661 ui nt _t si gno;

662 siginfo_t *sip;

663 ucont ext _t *ucp;

664 };

666 int

667 sendsig(int sig, k_siginfo_t *sip, void (*hdlr)())

668 {

669 volatile int mnstacksz;

670 int newstack;

671 | abel _t |jb;

672 vol atile caddr _t sp;

673 caddr _t fp;

674 struct regs *rp;

675 vol atile greg_t upc;

676 vol atile proc_ t *p = ttoproc(curthread);

677 klwp_t *Iwp = ttol wp(curthread)

678 ucontext _t *volatile tuc = L;

679 ucontext_t *uc;

680 siginfo_t *si p_addr;

681 vol atile int watched;

683 rp = lwptoregs(lw);

684 upc = rp->r_pc;

686 m nstacksz = SA(sizeof (struct sigframe)) + SA(sizeof (*uc));
687 if (sip!= NULL)

688 m nstacksz += SA(sizeof (siginfo t))

689 ASSERT((m nstacksz & (STACK_ALIGN - 1ul)) 0);

691 /*

692 * Figure out whether we will be handling this signal

693 * an alternate stack specified by the user. Then allocate
694 * and val idate the stack requirenents for the signal

695 * context. on_fault will catch any faults.

696 */

697 newst ack = si gi smenber (&PTOU(cur proc) - >u_si gonst ack,

698 I(Iwp->l wp_si gal t stack. ss_flags & (SS_ONSTACK| SS_DI SABLE)) ;
700 if (newstack) {

701 fp = (caddr_t) (SA((uintptr_t)Iwp->lwp_sigaltstack.ss_sp) +
702 SA(I wp- >l wp_si gal t st ack. ss_si ze) - STACK ALIGN);
703 } else if ((rp->r_ss & Oxffff) != UDS _SEL) {

704 user_desc_t *|dt;

705 /*

706 * |f the stack segnent selector is -not- pointing at
707 * the UDS_SEL descriptor and we have an LDT entry for
708 * it instead, add the base address to find the effective va.
709 */

710 if ((Idt = p->p_ldt) !'= NULL)

new usr/src/uts/intel/ia32/os/sendsig.c

711 = (caddr_t)rp->r_sp +

712 " USEGD) GETBASE(& dt [SELTO DX(rp->r_ss)]);
713 el se

714 fp = (caddr_t)rp->r_sp;

715 } else

716 fp = (caddr_t)rp->r_sp;

718 /*

719 * Force proper stack pointer alignment, even in the face of a
720 * misaligned stack pointer fromuser-|level before the signal.
721 * Don't use the SA() macro because that rounds up, not down.
722 */

723 fp = (caddr _t)((uintptr_t)fp & ~(STACK_ALIGN - 1ul));

724 sp = fp - mnstacksz;

726 /*

727 * Make sure Iwp hasn’'t trashed its stack.

728 */

729 if (sp >= (caddr_t)USERLIMT || fp >= (caddr_t)USERLIMT) {
730 #ifdef DEBUG

731 printf("sendsig: bad signal stack cnd=%, pid=%, sig=%l\n",
732 PTOU(p) - >u_comm p->p_pid, sig);

733 printf("sigsp = Ox%, action = Ox%, upc = Ox% x\n",
734 (void *)sp, (void *)hdlr, (w ntptr_t)upc);

735 printf("sp above USERLIM T\ n");

736 #endi f

737 return (0);

738 }

740 wat ched = wat ch_di sabl e_addr ((caddr _t)sp, mnstacksz, S _WRITE);
742 if (on_fault(&jb))

743 got o badst ack;

745 if (sip != NULL)

746 zonei d_t zonei d;

748 fp -= SA(sizeof (siginfo_t));

749 uzero(fp, sizeof (siginfo_t));

750 if (SI_FROMUSER(sip) &&

751 (zonei d = p->p_zone->zone_id) != GLOBAL_ZONEID &&
752 zoneid ! = sip->si_zoneid) {

753 k_siginfo_t sani_sip = *sip;

755 sani _si p. si _pid = p->p_zone->zone_zsched->p_pi d;
756 sani _sip.si_uid = O

757 sani _si p. si “ctid =

758 sani _si p.si_zoneid = zonei d;

759 copyout _noerr (&sani _sip, fp, sizeof (sani_sip));
760 } else

761 copyout _noerr(sip, fp, sizeof (*sip));

762 sip_addr = (siginfo_t *)fp;

764 if (sig == SI GPROF &&

765 curthread->t _rprof != NULL &&

766 curthread->t _rprof->rp_anystate) {

767 /*

768 * We stand on our head to deal with

769 * the real time profiling signal.

770 * Fill in the stuff that doesn't fit

771 * in a nornmal k_siginfo structure.

772 */

773 int i = sip->si_nsysarg;

775 while (--i >= 0)

776 suwor d32_noerr (&(si p_addr->si _sysarg[i]),

10

new usr/src/uts/intel/ia32/os/sendsig.c

777 (uint32_t)lwp->lwp_arg[i]);

778 copyout _noerr (curthread->t_rprof->rp_state,
779 si p_addr->si _nst at e,

780 sizeof (curthread->t_rprof->rp_state));
781

782 } else

783 si p_addr = NULL;

785 /* save the current context on the user stack */

786 fp -= SA(si zeof (*tuc));

787 uc = (ucont ext_t *)fp

788 tuc kmem al | oc(si zeof (*tuc), KM SLEEP);

789 savecont ext (tuc, & wp->lwp_si gol dnmask) ;

790 copyout noerr(tuc, uc, sizeof (*tuc));

791 kmem free(tuc, sizeof (*tuc));

792 tuc = NULL;

794 I wp- >l wp_ol dcontext = (uintptr_t)uc;

796 if (newstack) {

797 | wp- >l wp_si gal t stack. ss_flags | = SS_ONSTACK;

798 if (1wp->l wp_ustack)

799 copyout _noerr (& wp- >l wp_si gal t st ack,

800 (stack_t *)Ilwp->l wp_ustack, sizeof (stack_t));
801 }

803 /*

804 * Set up signal handl er argunents

805 */

806 {

807 struct sigfrane frane;

809 frane.sip = si p_addr;

810 frame.ucp =

811 frane.signo =

812 frane.retaddr = (v0|d (*)())oxffffffff; /* never return!
813 copyout _noerr (& ranme, sp, sizeof (frarre))

814 }

816 no_fault();

817 if (watched)

818 wat ch_enabl e_addr ((caddr_t)sp, mnstacksz, S WRITE);
820 rp->r_sp = (greg_t)sp;

821 rp->r_pc = (greg_t)hdlr;

822 rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);

824 if ((rp->r_cs & Oxffff) I'= UCS_SEL ||

825 (rp->r_ss & Oxffff) !'= UDS _SEL) {

826 rp->r_cs = UCS_SEL;

827 rp->r_ss = UDS_SEL;

828 }

830 /*

831 * Don't set |wp_eosys here. sendsig() is called via psig() after
832 * | wp_eosys is handled, so setting it here would affect the next
833 * systemcall.

834 */

835 return (1);

837 badst ack:

838 no_fault();

839 if (watched)

840 wat ch_enabl e_addr ((caddr _t)sp, mnstacksz, S WRITE);
841 if (tuc)

842 kmem free(tuc, sizeof (*tuc));

11

new usr/src/uts/intel/ia32/os/sendsig.c

843 #i fdef DEBUG

844 printf("sendsig: bad signal stack cnd=%, pid=%, sig=%\n",
845 PTOY(p) - >u_conm p->p_pid, sig);

846 printf("on fault, sigsp = Ox%, action = Ox%, upc = 0x% x\n",
847 (void *)sp, (void *)hdlr, (uintptr_t)upc);

848 #endi f

849 return (0);

850 }

852 #endif /* __i386 */

12

new

* ok kK

new
XXX

* ok kK

1

usr/src/uts/intel/ia32/ os/xregs.c

B R

4681 Wed Jan 23 13:19:09 2013

usr/src/uts/intel/ia32/ os/xregs.c

AVX procfs

IR R SRR SRS RS RS R R SRR R R R R R R R ER R R R EEREEREEEEEESE]
/*

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmmon Devel opment and Di stribution License, Version 1.0 only
(the "License"). You may not use this file except in conpliance
with the License.

or http://ww. opensol aris.org/os/licensing.
See the License for the specific |anguage governing pernissions
and linmtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
If applicable, add the follow ng bel ow this CDDL HEADER, with the

information: Portions Copyright [yyyy]l [nane of copyright owner]

* Ok ok R ok Rk Rk O % Ok ok bk k% 3k

CDDL HEADER END
*
/ */

* Copyright 1994-1998, 2003 Sun M crosystens, Inc. Al rights reserved.
N !

Use is subject to license terms.
*/

/*
* Copyright 2013 David Hoeppner. Al rights reserved.
*/

#i ncl ude <sys/types. h>

#i ncl ude <sys/t_l ock. h>
#i ncl ude <sys/kl wp. h>

#i ncl ude <sys/ proc. h>

#i ncl ude <sys/ucontext.h>
#i ncl ude <sys/procfs. h>
#i ncl ude <sys/privregs. h>
#i ncl ude <sys/fp.h>

#i ncl ude <sys/cpuvar. h>
#i ncl ude <sys/cmm_err. h>
#i ncl ude <sys/di sp. h>

#i ncl ude <sys/systm h>

#i ncl ude <sys/archsystm h>
#i ncl ude <sys/note. h>

/*
* Clear the struct ucontext extra register state pointer.

*/

voi d
xregs_clrptr(klwp_id_t Iwp, ucontext_t *uc)
{
uc->uc_xrs.xrs_id = 0;
uc->uc_xrs. xrs_ptr = NULL;
}
/*

* | ndicate whether or not an extra register state
* pointer is associated with a struct ucontext.
*/

i nt

xregs_hasptr(klwp_id_t |wp, ucontext_t *uc)

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE

fields enclosed by brackets "[]" replaced with your own identifying

new usr/src/uts/intel/ia32/ os/xregs.c

caddr32_t xrp)

62 {

63 _ NOTE(ARGUNUSED(| wp)) ;

65 return (uc->uc_xrs.xrs_id == XRS_ID);
66 }

68 /*

69 * Get the struct ucontext extra register state pointer field.
70 */

71 caddr_t

72 xregs_getptr(klwp_id_t |wp, ucontext_t *uc)

73 {

74 _NOTE(ARGUNUSED(| wp)) ;

76 if (uc->uc_xrs.xrs_id == XRS_I D)

77 return (uc->uc_xrs.xrs_ptr);

79 return (NULL);

80 }

82 /*

83 * Set the struct ucontext extra register state pointer field.
84 */

85 voi d

86 xregs_setptr(klwp_id_t |wp, ucontext_t *uc, caddr_t xrp)
87

88 _NOTE(ARGUNUSED(| wp)) ;

90 uc->uc_xrs.xrs_id = XRS_ID;

91 uc- >UC_Xrs. xrs_ptr = xrp;

92 }

94 #if defined(_SYSCALL32_I MPL)

96 void

97 xregs_clrptr32(klwp_id_t Iwp, ucontext32_t *uc)
98 {

99 _NOTE(ARGUNUSED(| wp)) ;

101 uc->uc_xrs.xrs_id = 0;

102 uc->uc_xrs. xrs_ptr = NULL;

103 }

105 int

106 xregs_hasptr32(klwp_id_t |Iwp, ucontext32_t *uc)
107

108 _NOTE(ARGUNUSED(| wp)) ;

110 return (uc->uc_xrs.xrs_id == XRS_ID);
111 }

113 caddr32_t

114 xregs_getptr32(klwp_id_t |Iwp, ucontext32_t *uc)
115 {

116 _ NOTE(ARGUNUSED(| wp)) ;

118 if (uc->uc_xrs.xrs_id == XRS_I D)

119 return (uc->uc_xrs.xrs_ptr);
121 return (0);

122 }

124 void

125 xregs_setptr32(klwp_id_t |Iwp, ucontext32_t *uc,
126 {

127 _NOTE(ARGUNUSED(| wp)) ;

new usr/src/uts/intel/ia32/ os/xregs.c

129 uc->uc_xrs.xrs_id = XRS_ID;

130 uc->UcC_Xrs. xrs_ptr = xrp;

131 }

133 #endif /* _SYSCALL32_|MPL */

135 /*

136 * Fill in the extra register state area specified with the
137 * specified Ilw’'s floating point extra register state infornmation.
138 */

139 void

140 xregs_getfpregs(klwp_id_t |lwp, caddr_t xrp)

141 {

142 prxregset _t *xregs = (prxregset_t *)xrp;

143 kfpu_t *fp = | wpt of pu(l wp);

145 if (xregs == NULL)

146 return;

148 kpr eenpt _di sabl e();

150 Xregs->pr_type = XR TYPE_XSAVE;

152 kpreenpt _enabl e();

153 }

155 /*

156 * Fill in the extra register state area specified with
157 * the specified kwp’s extra register state information.
158 */

159 void

160 xregs_get (klwp_id_t lwp, caddr_t xrp)

161 {

163 if (xrp !'= NULL) {

164 bzero(xrp, sizeof (prxregset_t));

165 xregs_getfpregs(lwp, xrp);

166 }

167 }

169 /*

170 * Set the specified Iwp's floating-point extra

171 * register state based on the specified input.

172 */

173 voi d

174 xregs_setfpregs(klwp_id_t |lwp, caddr_t xrp)

175 {

176 prxregset _t *xregs = (prxregset_t *)xrp;

177 kfpu_t *fp = | wptof pu(lw);

178 fpu_ctx_t *fpu = & wp->l wp_pch. pcb_f pu;

180 if (xregs == NULL)

181 return;

183 #if defi ned(DEBUG)

184 if (xregs->pr_type != XR TYPE_XSAVE) {

185 cmm_err (CE_WARN,

186 "xregs_setfpregs: pr_type is % and should be %",
187 Xregs->pr_type, XR TYPE_XSAVE);

188 1

189 #endif /* DEBUG */

191 if (fpu->fpu_flags & FPU EN) {

192 kpreenpt _di sabl e() ;

193 (voi d) kcopy(&xregs->pr_un. pr_xsave. pr_ynmm

new usr/src/uts/intel/ia32/ os/xregs.c

194
195

197
198
199
200
201
202
203
204

206
207

209
210
211

213
214
215
216
217
218

&f p- >kf pu_u. kf pu_xs. xs_ymm
si zeof (&xregs->pr_un. pr_xsave.pr_ym));
/*
* |f not the current Iwp then resume() will handle it.
*/
if (lwp !'=ttolwp(curthread)) {
/* Force resune to reload fp regs */
kpr eenpt _enabl e();
return;

}
i}f (fpu_exists) {

kpr eenpt _enabl e();

}

/*

* Set the specified |wp's extra register
* state based on the specified input.

*/

voi d
xregs_set (klwp_id_t Iwp, caddr_t xrp)

219 {

220
221
222
223

225
226
227
228
229

if (xrp !'= NULL) {
} xregs_setfpregs(lwp, xrp);

}

/*

* Return the size of the extra register state.
*/

int

Xregs_getsize(proc_t *p)

230 {

231

return (sizeof (prxregset_t));

232 }

233

#endi f /* | codereview */

new usr/src/uts/intel/ia32/sys/privregs.h 1 new usr/src/uts/intel/ia32/sys/privregs.h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 60 greg t r fS
5772 Wed Jan 23 13:19:09 2013 61 greg t r_es;
new usr/src/uts/intel/ia32/sys/privregs.h 62 greg_t r_ds;
XXX AVX procfs 63 greg_t r_edi;
LEEE R R R R EE SRR EEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREREEEEEEEEESE] 64 greg_t r_esi;
1/* 65 greg_t r_ebp;
2 * CDDL HEADER START 66 greg_t r_esp;
3 * 67 greg_t r_ebx;
4 * The contents of this file are subject to the terms of the 68 greg_t r_edx;
5 * Common Devel opnent and Distribution License (the "License"). 69 greg_t r_ecx;
6 * You may not use this file except in conpliance with the License. 70 greg_t r_eax;
7 * 71 greg_t r_trapno;
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 72 greg_t r_err;
9 * or http://ww. opensol aris.org/os/licensing. 73 greg_t r_eip;
10 * See the License for the specific |anguage governi ng perm ssions 74 greg_t r_cs;
11 * and limtations under the License. 75 greg_t r_efl;
12 = 76 greg_t r_uesp;
13 * When distributing Covered Code, include this CDDL HEADER in each 77 greg_t r_ss;
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 78 };
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying 80 #define r_r0 r_eax /* r0 for portability */
17 * information: Portions Copyright [yyyy] [name of copyright owner] 81 #define r_r1 r_edx /* rl for portability */
18 * 82 #define r_fp r_ebp /* system frame pointer */
19 * CDDL HEADER END 83 #define r_sp r_uesp /* user stack pointer */
20 */ 84 #define r_pc r_eip /* user’s instruction pointer */
85 #define r_ps r_efl /* user’s EFLAGS */
22 /*
23 * Copyright 2007 Sun M crosystens, Inc. Al rights reserved. 87 #define GREG_NUM 8 /* Nunber of regs between %di and %ax */
24 * Use is subject to license terns.
25 */ 89 #ifdef _KERNEL
90 #define Iwptoregs(lwp) ((struct regs *)((lwp)->lwp_regs))
27 #ifndef _I A32_SYS PRI VREGS H 91 #define | wptof pu(l wp) ((kfpu_t *)((lw)->lw_fpu))
28 #define _I A32_SYS_PRI VREGS_H 92 #endif /* | codereview */
93 #endif /* _KERNEL */
30 #pragne ident " %YW % % %E% SM "

95 #el se /* 1 _ASM */
30 #ifdef __cplusplus

31 extern "C' { 97 #if defi ned(_MACHDEP)
32 #endif
99 #include <sys/machprivregs. h>
34 /*
35 * This file describes the cpu’s privileged register set, and 101 /*
36 * how the nachine state is saved on the stack when a trap occurs. 102 * Save current frame on the stack. Uses % ax.
37 */ 103 */
104 #define __ FRAME PUSH \
39 #if !defined(__i386) 105 subl $8, Y%esp; \
40 #error "non-i 386 code depends on i386 privileged header!" 106 nov| REGOFF_EI P(%esp), Y%eax; \
41 #endif 107 nmovl %ax, REGOFF SAVPC(%esp) \
108 nmovl %ebp, REGOFF_SAVFP(%esp) ;
43 #ifndef _ASM
110 /*
45 [* 111 * Save segnent registers on the stack.
46 * This is NOT the structure to use for general purpose debugging; 112 *
47 * see /proc for that. This is NOT the structure to use to decode 113 #define __ SEGREGS PUSH \
48 * the ucontext or grovel about in a core file; see <sys/regset.h>. 114 subl $16, %esp; \
49 */ 115 novw Y%ls, 12(%sp); \
116 mvw %s, 8(%sp); \
51 struct regs { 117 nmovw % s, 4(%sp); \
52 /* 118 novw %s, O(%esp);
53 * Extra frane for nmdb to follow through high |level interrupts and
54 * systemtraps. Set themto O to terminate stacktrace. 120 /*
55 */ 121 * Load segnent register with kernel selectors.
56 greg_t r_savfp; /* a copy of %bp */ 122 * 9%gs nmust be the |last one to be set to nake the
57 greg_t r_savpc; /* a copy of %ip */ 123 * check in cmint valid.
124 */

59 greg_t r_gs; 125 #define __ SEGREGS_LOAD_KERNEL \

new usr/src/uts/intel/ia32/sys/privregs.h

126 nmovw $KDS_SEL, %x; \

127 nmovw %x, Y%s; \

128 novw %X, %€s; \

129 nmovw $KFS_SEL, %x; \

130 novw $KGS_SEL, %lx; \

131 nmovw %x, %s; \

132 mvw %ix, %gs;

134 /*

135 * Restore segnment registers off the stack.

136 *

137 * NOTE THE ORDER | S VI TAL!

138 *

139 * Also note the subtle interdependency with kern_gpfault()
140 * that needs to disassenble these instructions to di agnose
141 * what happened when things (like bad segnment register
142 * values) go horribly wong.

143 */

144 #define __ SEGREGS PCP \

145 nmovw 0(%esp), %s; \

146 nmovw 4(%esp), % s; \

147 nmvw 8(%esp), %es; \

148 nmvw 12(%esp), %s; \

149 addl $16, %esp;

151 /*

152 * Macros for saving all registers necessary on interrupt entry,
153 * and restoring themon exit.
*

154

155 #define | NTR_PUSH \

156 cld; \

157 pusha; \

158 __SEGREGS_PUSH \

159 __FRAME_PUSH \

160 cmpw $KGS_SEL, REGOFF_GS(%sp); \

161 je 8f; \

162 movl $0, REGOFF_SAVFP(%esp); \

163 __SEGREGS_LOAD_KERNEL \

164 8: CLEAN_CS

166 #define __ | NTR_POP \

167 popa; \

168 addl $8, %esp; /* get TRAPNO and ERR off the stack */
170 #define | NTR_POP_USER \

171 add! $8, Y%esp; /* get extra frame off the stack */ \
172 __SEGREGS_POP \

173 " INTR_POP

175 #define | NTR_POP_KERNEL \

176 add| $24, Y%esp; /* skip extra frame and segnent registers */ \
177 __INTR_POP

178 /*

179 * Macros for saving all registers necessary on systemcall entry,
180 * and restoring themon exit.
*

181
182 #define SYSCALL_PUSH \
183 cld; \
184 pusha; \
185 ~ SEGREGS_PUSH \
186 subl $8, Y%esp; \
187 pushfl; \
188 popl %ecx; \
189 orl $PS_| E, %ecx; \
190 nov| %cX, REGOFF_EFL(%sp); \
\

191 movl $0, REGOFF_SAVPC(%esp) ;

new usr/src/uts/intel/ia32/sys/privregs.h

192 mov| $0, REGOFF_SAVFP(%sp); \
193 __ SEGREGS_LOAD_KERNEL; \
195 #define SYSENTER PUSH \
196 cld; \
197 pusha; \
198 __ SEGREGS_PUSH \
199 subl $8, %esp; \
200 mov| $0, REGOFF_SAVPC(%esp); \
201 mov| $0, REGOFF_SAVFP(%esp); \
202 _ SEGREGS_LOAD_KERNEL

204 #define SYSCALL_POP \
205 I NTR_POP_USER

207 #endif /* _MACHDEP */

209 /*

210 * This is used to set eflags to known values at the head of an
211 * interrupt gate handler, i.e. interrupts are -already- disabled.
212 *

213 #define | NTGATE | NI T_KERNEL_FLAGS \

214 pushl $F_OFF; \

215 popf |

217 #endif [/* ! _ASM */
219 #include <sys/controlregs. h>

221 /* Control register |ayout for panic dunp */

223 #defi ne CREGSZ 36

224 #define CREG GDT 0

225 #define CREG | DT 8

226 #define CREG LDT 16

227 #define CREG TASKR 18

228 #define CREG CRO 20

229 #define CREG CR2 24

230 #define CREG CR3 28

231 #define CREG CR4 32

233 #if !defined(_ASM && defined(_I NT64_TYPE)
235 typedef uint64_t cregb64_t;
237 struct cregs {

238 creg64_t cr_gdt;
239 creg64_t cr_idt;
240 ui nt16_t cr_ldt;
241 uint16_t cr_task;
242 ui nt 32_t cr_crO;
243 ui nt 32_t cr_cr2;
244 ui nt 32_t cr_cr3;
245 ui nt 32_t cr_cr4;
246 };

248 #if defined(KERNEL)
249 extern void getcregs(struct cregs *);
250 #endif /* _KERNEL */

252 #endif /* | _ASM && _I NT64_TYPE */
254 #ifdef __cplusplus

255 }
256 #endi f

new usr/src/uts/intel/ia32/sys/privregs.h

258 #endif /* |_| A32_SYS PRI VREGS H */

new usr/src/uts/intel/ia32/syscall/getcontext.c 1 new usr/src/uts/intel/ia32/syscall/getcontext.c 2

R R R R

10393 Wed Jan 23 13:19:09 2013 239 #endif /* ! codereview */
new usr/src/uts/intel/ia32/syscall/getcontext.c 240 restorecont ext (&uc) ;
XXX AVX procfs
B R R 242 if ((uc.uc_flags & LD_STACK) && (|V\p->| Wp_ustack 1= 0))
____unchanged_portion_onitted_ 243 (voi d) copyout (&uc.uc_stack, (stack_t *)I|wp->lwp_ustack,
244 si zeof (uc.uc_stack));
180 int 246 /*
181 getsetcontext(int flag, void *arg) 247 * Free extra register state.
182 { 248 */
183 ucontext _t uc; 249 if (xregs_size)
184 ucont ext _t *ucp; 250 kmem free(xregs, xregs_size);
185 klwp_t *Iwp = ttolwp(curthread);
186 stack_t dummy_stKk; 252 #endif /* | codereview */
187 caddr _t xregs = NULL; 253 return (0);
188 int xregs_size = 0;
189 #endif /* ! codereview */ 255 case CGETUSTACK:
256 if (copyout (& wp->l wp_ustack, arg, sizeof (caddr_t)))
191 /* 257 return (set_errno(EFAULT));
192 * |In future rel eases, when the ucontext structure grows, 258 return (0);
193 * getcontext should be nodified to only return the fields
194 * specified in the uc_flags. That way, the structure can grow 260 case SETUSTACK:
195 * and still be binary conpatible will all .0's which will only 261 if (copyin(arg, &Jummy_stk, sizeof (dummy_stk)))
196 * have old fields defined in uc_flags 262 return (set_errno(EFAULT));
197 */ 263 I wp->l wp_ustack = (uintptr_t)arg;
264 return (0);
199 switch (flag) { 265 }
200 defaul t: 266 }
201 return (set_errno(ElNVAL));
268 #ifdef _SYSCALL32_IMPL
203 case CETCONTEXT:
204 schedct | _fini sh_si gbl ock(curthread); 270 | *
205 savecont ext (&uc, &curthread->t_hol d); 271 * Save user context for 32-bit processes.
206 if (uc.uc_flags & UC_SI GVASK) 272 */
207 ST GSET_NATI VE_TO BRAND(&uc. uc_si gnask) ; 273 voi d
208 if (copyout(&uc, arg, sizeof (uc))) 274 savecont ext 32(ucontext32_t *ucp, const k_sigset_t *nask)
209 return (set_errno(EFAULT)); 275
210 return (0); 276 proc_t *p = ttoproc(curthread);
277 klwp_t *lwp = ttol wp(curthread);
212 case SETCONTEXT: 278 struct regs *rp = | wptoregs(lwp);
213 ucp = arg;
214 if (ucp == NULL) 280 bzer o(&ucp->uc_nctont ext. fpregs, sizeof (ucontext32_t) -
215 exi t (CLD_EXI TED, 0); 281 of f set of (ucont ext 32_t, uc_ntontext.fpregs));
216 /*
217 * Don't copyin filler or floating state unless we need it. 283 ucp->uc_flags = UC ALL;
218 * The ucontext_t struct and fields are specified in the ABI. 284 ucp->uc_link = (caddr32_t) | wp->l wp_ol dcont ext ;
219 */
220 if (copyin(ucp, &uc, sizeof (ucontext_t) - 286 if (Iwp->wp_ustack == NULL ||
221 si zeof (uc.uc_filler) - 287 copyin((void *)lwp->l wp_ustack, &ucp->uc_stack,
222 si zeof (uc.uc_ntontext.fpregs))) { 288 si zeof (ucp->uc_stack)) !'=0 ||
223 return (set_errno(EFAULT)); 289 ucp- >uc_st ack. ss_si ze == 0)
224 }
225 1f (uc.uc_flags & UC_SI GVASK) 291 if (Iwp->lwp_sigaltstack.ss_flags == SS_ONSTACK) {
226 S| GSET_BRAND_TO_NATI VE(&uc. uc_si gmask) ; 292 ucp- >uc_stack.ss_sp =
293 (caddr32_t) (uintptr_t)lwp->l wp_si gal tstack. ss_sp;
228 if ((uc.uc_flags & UC FPU) && 294 ucp->uc_st ack. ss_si ze =
229 copyi n(&ucp- >uc_ntont ext . f pregs, &uc.uc_ntontext. fpregs, 295 (size32_t) | wp->l wp_si gal t stack. ss_si ze;
230 si zeof (uc.uc_ntontext.fpregs))) { 296 ucp- >uc_stack. ss_flags = SS_ONSTACK;
231 return (set_errno(EFAULT)); 297 } else {
232 } 298 ucp->uc_stack.ss_sp = (caddr32_t)(uintptr_t)
299 (p->p_usrstack - p->p_stksize);
234 /* 300 ucp- >uc_stack. ss_size = (size32_t)p->p_stksize;
235 * Cet extra register state. 301 ucp->uc_stack. ss_flags = 0;
236 */ 302 }

237 xregs_clrptr(lw, &uc); 303 }

new usr/src/uts/intel/ia32/syscall/getcontext.c

305 /*

306 * |f either the trace flag or REQUEST_STEP is set, arrange
307 */for singl e-stepping and turn off the trace flag.

308 *

309 if ((rp->r_ps & PS.T) || (lIwp->Iwp_pcbh.pcb_flags & REQUEST_STEP)) {
310 /*

311 * Clear PS_ T so that saved user context won't have trace
312 * flag set.

313 */

314 rp->r_ps & ~PS_T;

316 if (!(lwp->lwp_pcb. pcb_flags & REQUEST_NOSTEP)) {
317 I wp- >l wp_pch. pcb_fl ags | = DEBUG_PENDI NG
318 /*

319 * See comments in savecontext ().

320 */

321 aston(curthread);

322 }

323 }

325 get gregs32(| wp, ucp->uc_ntont ext.gregs);

326 if (1wp->lwp_pch. pcb_fpu.fpu_flags & FPU EN)

327 get f pregs32(l wp, &ucp->uc_ntontext. fpregs);

328 el se

329 ucp->uc_flags & ~UC_FPy;

&8l si gkt ou(mask, &ucp->uc_si gnask) ;

332 }

334 int

335 getsetcontext32(int flag, void *arg)

336 {

337 ucont ext 32_t uc;

338 ucontext_t ucnat;

339 ucont ext 32_t *ucp;

340 klwp_t *Iwp = ttolwp(curthread);

341 caddr 32_t ustack32;

342 stack32_t dummy_st k32;

344 switch (flag) {

345 defaul t:

346 return (set_errno(El NVAL));

348 case CGETCONTEXT:

349 schedct | _fini sh_si gbl ock(curthread);

350 savecont ext 32(&c, &curthread->t _hol d);

351 if (uc.uc_flags & UC_SI GVASK)

352 S| GSET_NATI VE_TO_BRAND(&uc. uc_si gmask) ;
353 if (copyout(&uc, arg, sizeof (uc)))

354 return (set_errno(EFAULT));

355 return (0);

357 case SETCONTEXT:

358 ucp = arg;

359 if (ucp == NULL)

360 exit (CLD_EXI TED, 0);

361 if (copyin(ucp, &uc, sizeof (uc) -

362 si zeof (uc.uc_filler) -

363 si zeof (uc.uc_nctontext.fpregs))) {

364 return (set_errno(EFAULT));

365 }

366 if (uc.uc_flags & UC_SI GVASK)

367 SI GSET_BRAND_TO_NATI VE(&uc. uc_si gnask) ;
368 if ((uc.uc_flags & UC_FPU) &&

369 copyi n(&icp- >uc_ntont ext . f pregs,

&uc. uc_ncont ext . f pregs,

new usr/src/uts/intel/ia32/syscall/getcontext.c
370 si zeof (uc.uc_ntontext.fpregs))) {
371 return (set_errno(EFAULT));
372 }
374 ucont ext _32t on(&uc, &ucnat);
375 rest orecont ext (&cnat);
377 if ((uc.uc_flags & UC_STACK) && (Il wp->lwp_ustack != 0))
378 (voi d) copyout (&uc. uc_st ack,
379 (stack32_t *)Ilwp->l wp_ustack, sizeof (uc.uc_stack));
380 return (0);
382 case CGETUSTACK:
383 ustack32 = (caddr32_t) | wp->l wp_ust ack;
384 if (copyout(&ustack32, arg, sizeof (ustack32)))
385 return (set_errno(EFAULT));
386 return (0);
388 case SETUSTACK:
389 if (copyin(arg, & Jumy_stk32, sizeof (dummy_stk32)))
390 return (set_errno(EFAULT));
391 | wp- >l wp_ustack = (uintptr_t)arg;
392 return (0);
393
394 }

396 #endif /* _SYSCALL32_|MPL */

new usr/src/uts/intel/sys/archsystmh

R R R R

6429 Wed Jan 23 13:19:10 2013
new usr/src/uts/intel/sys/archsystmh
XXX AVX procfs

R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 =
*

CDDL HEADER END
/

26 #ifndef _SYS ARCHSYSTM H
27 #define _SYS_ARCHSYSTM H

29 /*
30 * A selection of |SA-dependent interfaces
31 */

33 #include <vnl seg_enum h>
34 #include <vm page. h>

36 #ifdef
37 extern
38 #endi f

__cplusplus
"

40 #ifdef _KERNEL

42 extern greg_t getfp(void);
43 extern int getpil (void);

45 extern ulong_t getcrO(void);

46 extern void setcrO(ulong_t);

47 extern ulong_t getcr8(void);

48 extern void setcr8(ulong_t);

49 extern ulong_t getcr2(void);

50 extern void clflush_insn(caddr_t addr);
51 extern void nfence_insn(void);

53 #if defined(__i386)
54 extern uint16_t getgs(void);
55 extern void setgs(uintl6_t);

57 extern void patch_sse(void);
58 extern void patch_sse2(void);
59 #endif

61 extern void patch_xsave(void);

23 * Copyright (c) 1993, 2010, Oacle and/or its affiliates. Al rights reserved.
*
/

new usr/src/uts/intel/sys/archsystmh

63
64

103
104
105
106

108
109
110
111

113
114
115
116

118
119
120
121
122

124
125
126
127

extern
extern

extern

extern
extern
extern
extern
extern
extern

extern
extern
extern
extern

void cli(void);
void sti(void);

voi d tenm crosec(void);

void restore_int_flag(ulong_t);
void intr_restore(ulong_t);
ulong_t clear_int_flag(void);
ulong_t intr_clear(void);

ul ong_t getflags(void);

int interrupts_enabl ed(void);

void int3(void);

voi d int18(voi d)
voi d int20(void);
void int_cnti (v0| d);

#i f defined(__and64)

extern
extern
extern
extern
extern
extern
extern
extern
extern

void sys_syscal |l ();
voi d sys_syscal | 32();
void sys_|cal | 32();
void sys_syscall _i nt()
void brand_sys_syscal |
voi d brand_sys_syscal |
voi d brand_sys_syscal | _
int update_sregs();

voi d reset_sregs();

#el if defined(__i386)

extern
extern
#endi f
extern
extern
extern
extern

extern
extern

extern
extern
extern
extern

extern
extern
extern
extern

extern
extern
extern
extern

void sys_call();
void brand_sys_ cal | 0

voi d sys_sysenter();

void _sys_sysenter_post_swapgs();

void brand_sys_sysenter();

void _brand_sys_sysenter_post_swapgs();

voi d dosyscal | (void);
voi d bi nd_hwcap(void);
uint1l6_t inwint port);
ui nt32_t inl (int port);

voi d out w(l nt port, uintl6_t value);
void outl (int port, uint32_t value);

void pc_reset(void) __ NORETURN,
void efi_reset(void) _ NORETURN,
void reset (void) __ NORETURN,

int goany(void);

void setgregs(klwp_t *, gregset_t);
void getgregs(klw_t *, gregset_t);
voi d setfpregs(k wp_t *, fpregset_t *);
void getfpregs(klwp_t *, fpregset_t *);

#if defined(_SYSCALL32_| MPL)

extern
extern
extern
#endi f

struct

extern
extern
extern

void getgregsSZ(kpr t *, gregset32_t);
voi d setfpregs32(kl Wp t *, fpregset32_t *);
void getfpregs32(klw_t *, fpregset32_t *);

ucont ext ;

void xregs_clrptr(struct _klwp *
int xregs_hasptr(struct _klwp *, struct ucontext *);
caddr _t xregs_getptr(struct _klwp *, struct ucontext

struct ucontext *);

*)s

new usr/src/uts/intel/sys/archsystmh

128

130
131
132
133
134
135

169

171
172

174

192

extern void xregs_setptr(struct _klwp *, struct ucontext
#if defined(_SYSCALL32_| MPL)

struct ucontext 32;

extern void xregs_clrptr32(struct _klwp *,
extern int xregs_hasptr32(struct _klwp *
extern caddr32_t xregs_getptr32(struct _klwp *
extern void xregs_setptr32(struct _klwp *

#endi f /* _SYSCALL32_IMPL *
extern void xregs_get(struct _klwp *, caddr_t);
extern void xregs_set(struct _klwp *, caddr_t);

extern int xregs_getsize(struct proc *);

#endi f /* | codereview */
struct fpu_ctx;

extern void fp_free(struct fpu_ctx *,
extern void fp_save(struct fpu_ctx *);
extern void fp_restore(struct fpu_ctx *);

int);

extern int fpu_pentiumfdivbug;

extern void sep_save(void *);
extern void sep_restore(void *);

extern void brand_i nterpositioning_enabl e(void);
extern void brand_interpositioning_disable(void);

struct regs;

extern int instr_size(struct regs *, caddr_t *,

extern int enable_cbcp; /* patchable in /etc/system*/
extern uint_t cpu_hwcap_fl ags;

extern uint_t cpu_freq;

extern uint64_t cpu_freq_hz;

extern int use_sse_pagecopy;
extern int use_sse_pagezero;
extern int use_sse_copy;

extern caddr_t i86devmap(pfn_t, pgcnt_t, uint_t);
extern page_t *page_nuntopp_al l oc(pfn_t pfnum;

extern void hwbl kclr(void *, size_t);

extern voi d hwbl kpagecopy(const void *, void *);
extern voi d page_copy_no_xmm(void *dst, void *src);
extern void bl ock_zero_no_xm{void *dst, int |en);
#def i ne BLOCKZEROALIGN (4 * sizeof (void *))

extern void (*kcpc_hw enabl e_cpc_intr)(void);
extern void init_desctbls(void);
extern user_desc_t *cpu_get _gdt (void);

extern void switch_sp_and_call(void *,
uint_t);

extern hrtime_t (*gethrtirref)(voi d);

extern hrtime_t (*gethrtineunscal edf) (void);

extern void (*scal ehrtinmef)(hrtinme_t *);

extern uint64_t (*unscal ehrtinef)(hrtinme_t);

extern void (*gethrestinef)(tinmestruc_t *);

void (*)(uint_t,

*, caddr_t);

struct ucontext32 *);
struct ucontext32 *);
struct ucontext32 *);

struct ucontext32 *, caddr32_t);

enum seg_rw);

uint_t),

uint_t,

new usr/src/uts/intel/sys/archsystmh

194
195
196
197
198
199

201

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

222
224

extern void av_di spatch_softvect(uint_t);
extern void av_di spat ch_aut ovect (uint_t);
extern uint_t atomc_btr32(uint32_t *,
extern uint_t bsrw.insn(uint16_t);
extern int sys rtt_conmon(struct regs *);
extern void fakesoftint(void);

extern void *plat_traceback(void *);

#i f defined(__xpv)
extern void xen_init_call backs(voi d)

extern voi d xen_set_cal | back(void (*)(v0|) d),

extern void xen_pri ntf(const char *,
#define cpr_dprintf xen_printf

extern int xpv_panicking;

#define | N_XPV_PANI C() (xpv_panicking > 0)
#el se

extern void setup_nta(void);
extern void pat_sync(void);

extern void patch_tsc read(l nt)
#if defined(__and64) && !defi ned(__Xpv)
extern voi d patch_menops(uint_t);

#endif /* defined(__and64) && 1 defi ned(
extern void setup_xfen(void);

#define cpr_dprintf promprintf

#define N XPV_PANIC() (__lintzero)
#endi f

#endi f /* _KERNEL */

#i f defined(_KERNEL) || defined(_BOOT)

225 extern uint8_t inb(int port);

226 extern void outb(int port, uint8_t value);
227 #endif

229 #ifdef __cplusplus

230 }

231 #endif

233 #endif /* _SYS ARCHSYSTM H */

uint_t);

__Xpv)

uint_t,

*/

uint_t);

new usr/src/uts/intel/sys/procfs_isa.h

R R R R

3979 Wed Jan 23 13:19:10 2013
new usr/src/uts/intel/sys/procfs_isa.h
XXX AVX procfs

R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the ternms of the

5 * Common Devel opnent and Distribution License, Version 1.0 only

6 * (the "License"). You may not use this file except in conpliance
7 * with the License.

8 *

9 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
10 * or http://ww. opensol aris.org/os/licensing.

11 * See the License for the specific |anguage governing perm ssions
12 * and limtations under the License.

13 =

14 * Wen distributing Covered Code, include this CDDL HEADER i n each
15 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 * |f applicable, add the follow ng below this CODL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy]l [nane of copyright owner]
19 =
20 * CDDL HEADER END
21 */
22 /*

23 * Copyright 2005 Sun M crosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.
25 */

27 #ifndef _SYS PROCFS | SA H
28 #define _SYS_PROCFS_|I SA H
30 #pragne ident " %YW % % %E% SM "

30 /*

31 * Instruction Set Architecture specific conponent of <sys/procfs.h>
32 * 386 version

33 */

35 #include <sys/regset. h>

37 #ifdef __cplusplus
38 extern "C' {
39 #endif

41 | *

42 * Possi bl e val ues of pr_dnodel .

43 * This isn't isa-specific, but it needs to be defined here for other reasons.
*/

45 #defi ne PR_MODEL_UNKNOW 0O
46 #define PR_MODEL_ILP32 1 /* process data nodel is |LP32 */
47 #define PR_MODEL_LP64 2 /* process data nodel is LP64 */

49 /*
50 * To determ ne whether application is running native.
*/

52 #if defined(_LP64)

53 #define PR_MODEL_NATI VE PR_MODEL_LP64
54 #elif defined(_ILP32)

55 #define PR_MODEL_NATI VE PR _MCODEL_| LP32

56 #el se
57 #error "No DATAMODEL_NATI VE specified"
58 #endif /* _LP64 || _ILP32 */

new usr/src/uts/intel/sys/procfs_isa.h

125

#if defined(__i386) || defined(__and64)
/*
* Hol ds one i386 or amd64 instruction

*

typedef uchar_t instr_t;

#endi f

#def i ne NPRGREG _NGREG
#define prgreg_t greg_t
#define prgregset _t gregset _t
#define prfpregset fpu
#define prfpregset_t f pregset _t

#if defined(_SYSCALL32)

/*

* kernel view of the ia32 register set
*/

typedef uchar _t instr32_t;
#i f defined(__and64)

#def i ne NPRGREG32 _NGREG32
#define prgreg32_t greg32_t

#def i ne prgregset32_t gregset 32_t
#define prfpregset 32 f pu32
#define prfpregset32_t fpregset32_t

#el se

#def i ne NPRGREG32 _NGREG
#define prgreg32_t greg_t
#define prgregset 32_t gregset _t

#defi ne prfpregset 32 fpu
#define prfpregset32_t fpregset_t
#endi f

#endi f /* _SYSCALL32 */

#if defined(__and64)
/*

* The following defines are for portability (see <sys/regset.h>).
*
/

#define R_PC REG RI P
#define R_PS REG_RFL
#define R_SP REG_RSP
#define R_FP REG_RBP
#defi ne R_RO REG_RAX
#define R_RL REG_RDX

#elif defined(__i386)
*
* The followi ng defines are for portability (see <sys/regset.h>).
*
/
#define R_PC El P

#define R_PS EFL
#defi ne R_SP UESP

#define R_FP EBP

#define R_RO EAX

#define R_RL EDX

#endi f

#define XR TYPE_XSAVE 0x101

typedef struct prxregset {
ui nt32_t pr_type;
ui nt 32_t pr_align;
ui nt 32_t pr_xsi ze;
ui nt 32_t pr_pad;
uni on {

struct pr_xsave {
uint16_t pr_fcw

ui nt 16_t pr_fsw

new usr/src/uts/intel/sys/procfs_isa.h

126 uint16_t pr_fctw,

127 uint16_t pr_fop;

128 #if defined(__and64)

129 ui nt 64_t pr_rip;

130 ui nt 64_t pr_rdp;

131 #el se

132 ui nt 32_t pr_eip;

133 uint16_t pr_cs;

134 ui nt16_t __pr_ign0

135 ui nt 32_t pr_dp;

136 uint16_t pr_ds;

137 uint16_t __pr_igni;

138 #endi f

139 ui nt 32_t pr_nxcsr;

140 ui nt 32_t pr_nxcsr _mask;

141 uni on {

142 ui nt16_t pr_fpr_16[5];
143 u_l ongl ong_t pr_f pr_mmx;
144 ui nt 32_t __pr_fpr_pad[4];
145 } pr_st[8];

146 #if defined(__and64)

147 upadl128_t pr_xmi 16] ;

148 upadl128_t __pr_ign2[3];

149 #el se

150 upad128_t pr_xmi 8] ;

151 upad128_t __pr_ign2[11];

152 #endi f

153 uni on {

154 struct {

155 ui nt 64_t pr_xcr0;
156 ui nt 64_t pr_nbz[2] ;
157 } pr_xsave_info;

158 upad128_t __pr_pad[3];
159 } pr_sw avail;

160 ui nt 64_t pr_xstate_bv;

161 ui nt 64_t pr_rsv_nbz[2];

162 ui nt64_t pr_reserved[5] ;

163 #if defined(__and64)

164 upadl128_t pr_ymmi 16] ;

165 #el se

166 upadl128_t pr_ym 8] ;

167 upad128_t __pr_ign3[8];

168 #endi f

169 } pr_xsave;

170 } pr_un;

171 } prxregset_t;

173 #endif /* | codereview */
174 #ifdef _ cplusplus

175 }

176 #endif

178 #endif /* _SYS PROCFS_ISA H */

new usr/src/uts/intel/sys/ucontext.h 1

R R R R

3907 Wed Jan 23 13:19:11 2013
new usr/src/uts/intel/sys/ucontext.h
XXX AVX procfs
LEEE R R R R EE SRR EEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREREEEEEEEEESE]
_____unchanged_portion_onitted_
66 #endif /* _STACK T */
67 #endif /* defined(_XP&_2) &% !defined(__EXTENSIONS_) *

69 #if !defined(_XP&4_2) || defined(__EXTENSI ONS_)

70 typedef struct ucontext ucontext_t;

71 #el se

72 typedef struct ucont ext ucontext _t;

73 #endif /* !defined(_XP&_2) || defi ned(EXTENSI ONS__)

75 #define XRS_ID 0x00737278 /* the string "xrs" */
77 typedef struct {

78 unsi gned | ong Xrs_id;

79 caddr _t Xrs_ptr;

80 } xrs_t;

82 #endif /* 1 codereview */
83 #if !defined(_XP&4_2) || defined(__EXTENSI ONS_)
84 struct ucontext {

85 f#el se

86 struct __ucontext {

87 #endif

88 unsi gned | ong uc_f 1l ags;

89 ucont ext _t *uc_l i nk;

90 sigset _t uc_si gmask;

91 stack_t uc_st ack;

92 ncont ext _t uc_ntont ext ;

93 Xrs_t Uuc_Xrs;

94 | ong uc_filler[3]; /* see ABI spec for Intel 386 */
75 | ong uc_filler[5]; /* see ABI spec for Intel 386 */
95 };

97 #if defined(_SYSCALL32)

99 typedef struct {

100 uint32_t xrs_id;
101 caddr 32_t Xrs_ptr;
102 } xrs32_t;

104 #endif /* ! codereview */
105 /* Kernel view of user |LP32 ucontext structure */

107 typedef struct ucontext32 {

108 uint32_t uc_f 1| ags;
109 caddr 32_t uc_link;

110 sigset _t uc_si gmask;
111 stack32_t uc_st ack;
112 ncont ext 32_t uc_ntont ext ;
113 Xxrs32_t uc_xrs;

114 int32_t uc_filler[3];
80 int32_t uc_filler[5];

115 } ucontext32_t;

117 #if defined(_ KERNEL)

118 extern void ucontext_nto32(const ucontext_t *src, ucontext32_t *dest);
119 extern voi d ucontext_32ton(const ucontext32_t *src ucontext _t *dest);
120 #endif

122 #endif /* _SYSCALL32 */

new usr/src/uts/intel/sys/ucontext.h

124 #if !defined(_XPAA_2) || defined(__EXTENSIONS_)
125 #define GETCONTEXT 0
126 #define SETCONTEXT 1
127 #define GETUSTACK 2
128 #defi ne SETUSTACK 3

130 /*

131 * values for uc_flags

132 * these are inplenentation dependent flags, that should be hidden
133 * fromthe user interface, defining which elenments of ucontext
134 * are valid, and should be restored on call to setcontext

135 */

137 #define UC_SI GVASK 0x01

138 #define UC_STACK 0x02

139 #define UC_CPU 0x04

140 #define UC_MAU 0x08

141 #define UC_XREGS 0x10

142 #endif /* ! codereview */

143 #define UC_FPU UC_NMAU

145 #defi ne UC_MCONTEXT (UC_CPUY| UC_FPU)

147 | *

148 * UC_ALL specifies the default context

149 */

151 #define UC_ALL (UC_SI GVASK| UC_STACK| UC_MCONTEXT)
152 #endif /* Tdefined(_XPG4_2) || defined(__EXTENSIONS) */

154 #ifdef _KERNEL
155 voi d savecont ext (ucontext_t *, const k_sigset_t *);
156 void restorecontext(ucontext_t *);

158 #ifdef _SYSCALL32

159 extern void savecont ext32(ucontext32_t *, const k_sigset_t *);
160 #endif

161 #endif

163 #i fdef __ cplusplus
164 }
165 #endi f

167 #endif /* _SYS UCONTEXT_H */

