
new/usr/src/cmd/mdb/common/mdb/mdb_proc.c 1

**
 146669 Wed Jan 23 13:19:01 2013
new/usr/src/cmd/mdb/common/mdb/mdb_proc.c
XXX AVX procfs
**
______unchanged_portion_omitted_

4723 #ifdef __sparc

4723 /*ARGSUSED*/
4724 static int
4725 pt_lwp_getxregs(mdb_tgt_t *t, void *tap, mdb_tgt_tid_t tid, prxregset_t *xregs)
4726 {
4727 if (t->t_pshandle != NULL) {
4728 return (ptl_err(Plwp_getxregs(t->t_pshandle,
4729 (lwpid_t)tid, xregs)));
4730 }
4731 return (set_errno(EMDB_NOPROC));
4732 }
______unchanged_portion_omitted_

4748 #endif /* __sparc */

4746 /*ARGSUSED*/
4747 static int
4748 pt_lwp_getfpregs(mdb_tgt_t *t, void *tap, mdb_tgt_tid_t tid,
4749 prfpregset_t *fpregs)
4750 {
4751 if (t->t_pshandle != NULL) {
4752 return (ptl_err(Plwp_getfpregs(t->t_pshandle,
4753 (lwpid_t)tid, fpregs)));
4754 }
4755 return (set_errno(EMDB_NOPROC));
4756 }
______unchanged_portion_omitted_

4770 static const pt_ptl_ops_t proc_lwp_ops = {
4771 (int (*)()) mdb_tgt_nop,
4772 (void (*)()) mdb_tgt_nop,
4773 pt_lwp_tid,
4774 pt_lwp_iter,
4775 pt_lwp_getregs,
4776 pt_lwp_setregs,
4781 #ifdef __sparc
4777 pt_lwp_getxregs,
4778 pt_lwp_setxregs,
4784 #endif
4779 pt_lwp_getfpregs,
4780 pt_lwp_setfpregs
4781 };
______unchanged_portion_omitted_

new/usr/src/cmd/mdb/common/mdb/mdb_proc.h 1

**
 8639 Wed Jan 23 13:19:01 2013
new/usr/src/cmd/mdb/common/mdb/mdb_proc.h
XXX AVX procfs
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _MDB_PROC_H
28 #define _MDB_PROC_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

30 #include <mdb/mdb_target_impl.h>
31 #include <mdb/mdb_io_impl.h>
32 #include <mdb/mdb_addrvec.h>
33 #include <mdb/mdb_modapi.h>
34 #include <mdb/mdb_gelf.h>
35 #include <mdb/mdb_tdb.h>

37 #include <sys/param.h>
38 #include <libproc.h>

40 #ifdef __cplusplus
41 extern "C" {
42 #endif

44 #ifdef _MDB

46 /*
47 * The proc target must provide support for examining multi-threaded processes
48 * that use the raw LWP interface, as well as those that use either of the
49 * existing libthread.so implementations. We must also support multiple active
50 * instances of the proc target, as well as the notion that a clean process
51 * can dlopen() libthread after startup, at which point we need to switch to
52 * using libthread_db interfaces to properly debug it. To satisfy these
53 * constraints, we declare an ops vector of functions for obtaining the
54 * register sets of each thread. The proc target will define two versions
55 * of this vector, one for the LWP mode and one for the libthread_db mode,
56 * and then switch the ops vector pointer as appropriate during debugging.
57 * The macros defined below expand to calls to the appropriate entry point.
58 */
59 typedef struct pt_ptl_ops {

new/usr/src/cmd/mdb/common/mdb/mdb_proc.h 2

60 int (*ptl_ctor)(mdb_tgt_t *);
61 void (*ptl_dtor)(mdb_tgt_t *, void *);
62 mdb_tgt_tid_t (*ptl_tid)(mdb_tgt_t *, void *);
63 int (*ptl_iter)(mdb_tgt_t *, void *, mdb_addrvec_t *);
64 int (*ptl_getregs)(mdb_tgt_t *, void *, mdb_tgt_tid_t, prgregset_t);
65 int (*ptl_setregs)(mdb_tgt_t *, void *, mdb_tgt_tid_t, prgregset_t);
68 #ifdef __sparc
66 int (*ptl_getxregs)(mdb_tgt_t *, void *, mdb_tgt_tid_t,
67 prxregset_t *);
68 int (*ptl_setxregs)(mdb_tgt_t *, void *, mdb_tgt_tid_t,
69 const prxregset_t *);
73 #endif
70 int (*ptl_getfpregs)(mdb_tgt_t *, void *, mdb_tgt_tid_t,
71 prfpregset_t *);
72 int (*ptl_setfpregs)(mdb_tgt_t *, void *, mdb_tgt_tid_t,
73 const prfpregset_t *);
74 } pt_ptl_ops_t;

76 #define PTL_CTOR(t) \
77 (((pt_data_t *)(t)->t_data)->p_ptl_ops->ptl_ctor(t))

79 #define PTL_DTOR(t) \
80 (((pt_data_t *)(t)->t_data)->p_ptl_ops->ptl_dtor((t), \
81 ((pt_data_t *)((t)->t_data))->p_ptl_hdl))

83 #define PTL_TID(t) \
84 (((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_tid((t), \
85 ((pt_data_t *)(t)->t_data)->p_ptl_hdl))

87 #define PTL_ITER(t, ap) \
88 (((pt_data_t *)(t)->t_data)->p_ptl_ops->ptl_iter((t), \
89 ((pt_data_t *)((t)->t_data))->p_ptl_hdl, (ap)))

91 #define PTL_GETREGS(t, tid, gregs) \
92 (((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_getregs((t), \
93 ((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (gregs)))

95 #define PTL_SETREGS(t, tid, gregs) \
96 (((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_setregs((t), \
97 ((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (gregs)))

103 #ifdef __sparc

99 #define PTL_GETXREGS(t, tid, xregs) \
100 (((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_getxregs((t), \
101 ((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (xregs)))

103 #define PTL_SETXREGS(t, tid, xregs) \
104 (((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_setxregs((t), \
105 ((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (xregs)))

113 #endif /* __sparc */

107 #define PTL_GETFPREGS(t, tid, fpregs) \
108 (((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_getfpregs((t), \
109 ((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (fpregs)))

111 #define PTL_SETFPREGS(t, tid, fpregs) \
112 (((pt_data_t *)((t)->t_data))->p_ptl_ops->ptl_setfpregs((t), \
113 ((pt_data_t *)((t)->t_data))->p_ptl_hdl, (tid), (fpregs)))

115 /*
116 * When we are following children and a vfork(2) occurs, we append the libproc
117 * handle for the parent to a list of vfork parents. We need to keep track of
118 * this handle so that when the child subsequently execs or dies, we clear out
119 * our breakpoints before releasing the parent.

new/usr/src/cmd/mdb/common/mdb/mdb_proc.h 3

120 */
121 typedef struct pt_vforkp {
122 mdb_list_t p_list; /* List forward/back pointers */
123 struct ps_prochandle *p_pshandle; /* libproc handle */
124 } pt_vforkp_t;

______unchanged_portion_omitted_

new/usr/src/cmd/mdb/intel/mdb/proc_amd64dep.c 1

**
 15428 Wed Jan 23 13:19:02 2013
new/usr/src/cmd/mdb/intel/mdb/proc_amd64dep.c
XXX AVX procfs
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

27 /*
28 * User Process Target Intel 32-bit component
29 *
30 * This file provides the ISA-dependent portion of the user process target.
31 * For more details on the implementation refer to mdb_proc.c.
32 */

34 #include <mdb/mdb_proc.h>
35 #include <mdb/mdb_kreg.h>
36 #include <mdb/mdb_err.h>
37 #include <mdb/mdb_amd64util.h>
38 #include <mdb/mdb.h>

40 #include <sys/frame.h>
41 #include <libproc.h>
42 #include <sys/fp.h>
43 #include <ieeefp.h>

45 const mdb_tgt_regdesc_t pt_regdesc[] = {
46 { "r15", REG_R15, MDB_TGT_R_EXPORT },
47 { "r14", REG_R14, MDB_TGT_R_EXPORT },
48 { "r13", REG_R13, MDB_TGT_R_EXPORT },
49 { "r12", REG_R12, MDB_TGT_R_EXPORT },
50 { "r11", REG_R11, MDB_TGT_R_EXPORT },
51 { "r10", REG_R10, MDB_TGT_R_EXPORT },
52 { "r9", REG_R9, MDB_TGT_R_EXPORT },
53 { "r8", REG_R8, MDB_TGT_R_EXPORT },
54 { "rdi", REG_RDI, MDB_TGT_R_EXPORT },
55 { "rsi", REG_RSI, MDB_TGT_R_EXPORT },
56 { "rbp", REG_RBP, MDB_TGT_R_EXPORT },
57 { "rbx", REG_RBX, MDB_TGT_R_EXPORT },
58 { "rdx", REG_RDX, MDB_TGT_R_EXPORT },
59 { "rcx", REG_RCX, MDB_TGT_R_EXPORT },

new/usr/src/cmd/mdb/intel/mdb/proc_amd64dep.c 2

60 { "rax", REG_RAX, MDB_TGT_R_EXPORT },
61 { "trapno", REG_TRAPNO, MDB_TGT_R_EXPORT },
62 { "err", REG_ERR, MDB_TGT_R_EXPORT },
63 { "rip", REG_RIP, MDB_TGT_R_EXPORT },
64 { "cs", REG_CS, MDB_TGT_R_EXPORT },
65 { "rflags", REG_RFL, MDB_TGT_R_EXPORT },
66 { "rsp", REG_RSP, MDB_TGT_R_EXPORT },
67 { "ss", REG_SS, MDB_TGT_R_EXPORT },
68 { "fs", REG_FS, MDB_TGT_R_EXPORT },
69 { "gs", REG_GS, MDB_TGT_R_EXPORT },
70 { "es", REG_ES, MDB_TGT_R_EXPORT },
71 { "ds", REG_DS, MDB_TGT_R_EXPORT },
72 { "fsbase", REG_FSBASE, MDB_TGT_R_EXPORT },
73 { "gsbase", REG_GSBASE, MDB_TGT_R_EXPORT },
74 { NULL, 0, 0 }
75 };

______unchanged_portion_omitted_

92 /*ARGSUSED*/
93 int
94 pt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
95 {
96 mdb_tgt_t *t = mdb.m_target;
97 mdb_tgt_tid_t tid;
98 prgregset_t grs;
99 prgreg_t rflags;

101 if (argc != 0)
102 return (DCMD_USAGE);

104 if (t->t_pshandle == NULL || Pstate(t->t_pshandle) == PS_UNDEAD) {
105 mdb_warn("no process active\n");
106 return (DCMD_ERR);
107 }

109 if (Pstate(t->t_pshandle) == PS_LOST) {
110 mdb_warn("debugger has lost control of process\n");
111 return (DCMD_ERR);
112 }

114 if (flags & DCMD_ADDRSPEC)
115 tid = (mdb_tgt_tid_t)addr;
116 else
117 tid = PTL_TID(t);

119 if (PTL_GETREGS(t, tid, grs) != 0) {
120 mdb_warn("failed to get current register set");
121 return (DCMD_ERR);
122 }

124 rflags = grs[REG_RFL];

126 mdb_printf("%%rax = 0x%0?p\t%%r8 = 0x%0?p\n",
127 grs[REG_RAX], grs[REG_R8]);
128 mdb_printf("%%rbx = 0x%0?p\t%%r9 = 0x%0?p\n",
129 grs[REG_RBX], grs[REG_R9]);
130 mdb_printf("%%rcx = 0x%0?p\t%%r10 = 0x%0?p\n",
131 grs[REG_RCX], grs[REG_R10]);
132 mdb_printf("%%rdx = 0x%0?p\t%%r11 = 0x%0?p\n",
133 grs[REG_RDX], grs[REG_R11]);
134 mdb_printf("%%rsi = 0x%0?p\t%%r12 = 0x%0?p\n",
135 grs[REG_RSI], grs[REG_R12]);
136 mdb_printf("%%rdi = 0x%0?p\t%%r13 = 0x%0?p\n",
137 grs[REG_RDI], grs[REG_R13]);
138 mdb_printf(" %?s\t%%r14 = 0x%0?p\n",
139 "", grs[REG_R14]);

new/usr/src/cmd/mdb/intel/mdb/proc_amd64dep.c 3

140 mdb_printf(" %?s\t%%r15 = 0x%0?p\n",
141 "", grs[REG_R15]);

143 mdb_printf("\n");

145 mdb_printf("%%cs = 0x%04x\t%%fs = 0x%04x\t%%gs = 0x%04x\n",
146 grs[REG_CS], grs[REG_FS], grs[REG_GS]);
147 mdb_printf("%%ds = 0x%04x\t%%es = 0x%04x\t%%ss = 0x%04x\n",
148 grs[REG_DS], grs[REG_ES], grs[REG_SS]);

150 mdb_printf("\n");

152 mdb_printf("%%rip = 0x%0?p %A\n", grs[REG_RIP], grs[REG_RIP]);
153 mdb_printf("%%rbp = 0x%0?p\n", grs[REG_RBP], grs[REG_RBP]);
154 mdb_printf("%%rsp = 0x%0?p\n", grs[REG_RSP], grs[REG_RSP]);

156 mdb_printf("\n");

158 mdb_printf("%%rflags = 0x%08x\n", rflags);

160 mdb_printf(" id=%u vip=%u vif=%u ac=%u vm=%u rf=%u nt=%u iopl=0x%x\n",
161 (rflags & KREG_EFLAGS_ID_MASK) >> KREG_EFLAGS_ID_SHIFT,
162 (rflags & KREG_EFLAGS_VIP_MASK) >> KREG_EFLAGS_VIP_SHIFT,
163 (rflags & KREG_EFLAGS_VIF_MASK) >> KREG_EFLAGS_VIF_SHIFT,
164 (rflags & KREG_EFLAGS_AC_MASK) >> KREG_EFLAGS_AC_SHIFT,
165 (rflags & KREG_EFLAGS_VM_MASK) >> KREG_EFLAGS_VM_SHIFT,
166 (rflags & KREG_EFLAGS_RF_MASK) >> KREG_EFLAGS_RF_SHIFT,
167 (rflags & KREG_EFLAGS_NT_MASK) >> KREG_EFLAGS_NT_SHIFT,
168 (rflags & KREG_EFLAGS_IOPL_MASK) >> KREG_EFLAGS_IOPL_SHIFT);

170 mdb_printf(" status=<%s,%s,%s,%s,%s,%s,%s,%s,%s>\n",
171 (rflags & KREG_EFLAGS_OF_MASK) ? "OF" : "of",
172 (rflags & KREG_EFLAGS_DF_MASK) ? "DF" : "df",
173 (rflags & KREG_EFLAGS_IF_MASK) ? "IF" : "if",
174 (rflags & KREG_EFLAGS_TF_MASK) ? "TF" : "tf",
175 (rflags & KREG_EFLAGS_SF_MASK) ? "SF" : "sf",
176 (rflags & KREG_EFLAGS_ZF_MASK) ? "ZF" : "zf",
177 (rflags & KREG_EFLAGS_AF_MASK) ? "AF" : "af",
178 (rflags & KREG_EFLAGS_PF_MASK) ? "PF" : "pf",
179 (rflags & KREG_EFLAGS_CF_MASK) ? "CF" : "cf");

181 mdb_printf("\n");

183 mdb_printf("%%gsbase = 0x%0?p\n", grs[REG_GSBASE]);
184 mdb_printf("%%fsbase = 0x%0?p\n", grs[REG_FSBASE]);
185 mdb_printf("%%trapno = 0x%x\n", grs[REG_TRAPNO]);
186 mdb_printf(" %%err = 0x%x\n", grs[REG_ERR]);

188 return (DCMD_OK);
190 return (set_errno(ENOTSUP));
189 }

______unchanged_portion_omitted_

new/usr/src/lib/libc_db/common/thread_db.c 1

**
 80862 Wed Jan 23 13:19:02 2013
new/usr/src/lib/libc_db/common/thread_db.c
XXX AVX procfs
**
______unchanged_portion_omitted_

1957 /*
1958 * Get the size of the extra state register set for this architecture.
1959 * Currently unused by dbx.
1960 */
1961 #pragma weak td_thr_getxregsize = __td_thr_getxregsize
1962 /* ARGSUSED */
1963 td_err_e
1964 __td_thr_getxregsize(td_thrhandle_t *th_p, int *xregsize)
1965 {
1966 #if defined(__sparc)
1966 struct ps_prochandle *ph_p;
1967 td_err_e return_val;

1969 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1970 return (return_val);
1971 if (ps_pstop(ph_p) != PS_OK) {
1972 ph_unlock(th_p->th_ta_p);
1973 return (TD_DBERR);
1974 }

1976 if (ps_lgetxregsize(ph_p, thr_to_lwpid(th_p), xregsize) != PS_OK)
1977 return_val = TD_DBERR;

1979 (void) ps_pcontinue(ph_p);
1980 ph_unlock(th_p->th_ta_p);
1981 return (return_val);
1983 #else /* __sparc */
1984 return (TD_NOXREGS);
1985 #endif /* __sparc */
1982 }

1984 /*
1985 * Get a thread’s extra state register set.
1986 */
1987 #pragma weak td_thr_getxregs = __td_thr_getxregs
1988 /* ARGSUSED */
1989 td_err_e
1990 __td_thr_getxregs(td_thrhandle_t *th_p, void *xregset)
1991 {
1996 #if defined(__sparc)
1992 struct ps_prochandle *ph_p;
1993 td_err_e return_val;

1995 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1996 return (return_val);
1997 if (ps_pstop(ph_p) != PS_OK) {
1998 ph_unlock(th_p->th_ta_p);
1999 return (TD_DBERR);
2000 }

2002 if (ps_lgetxregs(ph_p, thr_to_lwpid(th_p), (caddr_t)xregset) != PS_OK)
2003 return_val = TD_DBERR;

2005 (void) ps_pcontinue(ph_p);
2006 ph_unlock(th_p->th_ta_p);
2007 return (return_val);
2013 #else /* __sparc */
2014 return (TD_NOXREGS);
2015 #endif /* __sparc */

new/usr/src/lib/libc_db/common/thread_db.c 2

2008 }

2010 /*
2011 * Set a thread’s extra state register set.
2012 */
2013 #pragma weak td_thr_setxregs = __td_thr_setxregs
2014 /* ARGSUSED */
2015 td_err_e
2016 __td_thr_setxregs(td_thrhandle_t *th_p, const void *xregset)
2017 {
2026 #if defined(__sparc)
2018 struct ps_prochandle *ph_p;
2019 td_err_e return_val;

2021 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
2022 return (return_val);
2023 if (ps_pstop(ph_p) != PS_OK) {
2024 ph_unlock(th_p->th_ta_p);
2025 return (TD_DBERR);
2026 }

2028 if (ps_lsetxregs(ph_p, thr_to_lwpid(th_p), (caddr_t)xregset) != PS_OK)
2029 return_val = TD_DBERR;

2031 (void) ps_pcontinue(ph_p);
2032 ph_unlock(th_p->th_ta_p);
2033 return (return_val);
2043 #else /* __sparc */
2044 return (TD_NOXREGS);
2045 #endif /* __sparc */
2034 }
______unchanged_portion_omitted_

new/usr/src/lib/libproc/common/Pcontrol.h 1

**
 12690 Wed Jan 23 13:19:03 2013
new/usr/src/lib/libproc/common/Pcontrol.h
XXX AVX procfs
**
______unchanged_portion_omitted_

130 typedef struct lwp_info { /* per-lwp information from core file */
131 plist_t lwp_list; /* linked list */
132 lwpid_t lwp_id; /* lwp identifier */
133 lwpsinfo_t lwp_psinfo; /* /proc/<pid>/lwp/<lwpid>/lwpsinfo data */
134 lwpstatus_t lwp_status; /* /proc/<pid>/lwp/<lwpid>/lwpstatus data */
135 prxregset_t *lwp_xregs; /* /proc/<pid>/lwp/<lwpid>/xregs data */
136 #endif /* ! codereview */
137 #if defined(sparc) || defined(__sparc)
138 gwindows_t *lwp_gwins; /* /proc/<pid>/lwp/<lwpid>/gwindows data */
135 prxregset_t *lwp_xregs; /* /proc/<pid>/lwp/<lwpid>/xregs data */
139 int64_t *lwp_asrs; /* /proc/<pid>/lwp/<lwpid>/asrs data */
140 #endif
141 } lwp_info_t;

______unchanged_portion_omitted_

new/usr/src/lib/libproc/common/Pcore.c 1

**
 58499 Wed Jan 23 13:19:03 2013
new/usr/src/lib/libproc/common/Pcore.c
XXX AVX procfs
**
______unchanged_portion_omitted_

590 #ifdef __sparc
590 static int
591 note_xreg(struct ps_prochandle *P, size_t nbytes)
592 {
593 lwp_info_t *lwp = P->core->core_lwp;
594 size_t xbytes = sizeof (prxregset_t);
595 prxregset_t *xregs;

597 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
598 return (0); /* No lwp yet, already seen, or bad size */

600 if ((xregs = malloc(xbytes)) == NULL)
601 return (-1);
602 #ifdef __sparc

603 if (read(P->asfd, xregs, xbytes) != xbytes) {
604 #else
605 panic("port me");
606 #endif
607 #endif /* ! codereview */
608 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
609 free(xregs);
610 return (-1);
611 }

612 lwp->lwp_xregs = xregs;
613 return (0);
614 }

616 #ifdef __sparc
617 #endif /* ! codereview */
618 static int
619 note_gwindows(struct ps_prochandle *P, size_t nbytes)
620 {
621 lwp_info_t *lwp = P->core->core_lwp;

623 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
624 return (0); /* No lwp yet or already seen or no data */

626 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
627 return (-1);

629 /*
630 * Since the amount of gwindows data varies with how many windows were
631 * actually saved, we just read up to the minimum of the note size
632 * and the size of the gwindows_t type. It doesn’t matter if the read
633 * fails since we have to zero out gwindows first anyway.
634 */
635 #ifdef _LP64
636 if (P->core->core_dmodel == PR_MODEL_ILP32) {
637 gwindows32_t g32;

639 (void) memset(&g32, 0, sizeof (g32));
640 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
641 gwindows_32_to_n(&g32, lwp->lwp_gwins);

643 } else {
644 #endif
645 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));

new/usr/src/lib/libproc/common/Pcore.c 2

646 (void) read(P->asfd, lwp->lwp_gwins,
647 MIN(nbytes, sizeof (gwindows_t)));
648 #ifdef _LP64
649 }
650 #endif
651 return (0);
652 }

654 #ifdef __sparcv9
655 static int
656 note_asrs(struct ps_prochandle *P, size_t nbytes)
657 {
658 lwp_info_t *lwp = P->core->core_lwp;
659 int64_t *asrs;

661 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
662 return (0); /* No lwp yet, already seen, or bad size */

664 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
665 return (-1);

667 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
668 dprintf("Pgrab_core: failed to read NT_ASRS\n");
669 free(asrs);
670 return (-1);
671 }

673 lwp->lwp_asrs = asrs;
674 return (0);
675 }
676 #endif /* __sparcv9 */
677 #endif /* __sparc */

679 /*ARGSUSED*/
680 static int
681 note_notsup(struct ps_prochandle *P, size_t nbytes)
682 {
683 dprintf("skipping unsupported note type\n");
684 return (0);
685 }

687 /*
688 * Populate a table of function pointers indexed by Note type with our
689 * functions to process each type of core file note:
690 */
691 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
692 note_notsup, /* 0 unassigned */
693 note_notsup, /* 1 NT_PRSTATUS (old) */
694 note_notsup, /* 2 NT_PRFPREG (old) */
695 note_notsup, /* 3 NT_PRPSINFO (old) */
610 #ifdef __sparc
696 note_xreg, /* 4 NT_PRXREG */
612 #else
613 note_notsup, /* 4 NT_PRXREG */
614 #endif
697 note_platform, /* 5 NT_PLATFORM */
698 note_auxv, /* 6 NT_AUXV */
699 #ifdef __sparc
700 note_gwindows, /* 7 NT_GWINDOWS */
701 #ifdef __sparcv9
702 note_asrs, /* 8 NT_ASRS */
703 #else
704 note_notsup, /* 8 NT_ASRS */
705 #endif
706 #else
707 note_notsup, /* 7 NT_GWINDOWS */

new/usr/src/lib/libproc/common/Pcore.c 3

708 note_notsup, /* 8 NT_ASRS */
709 #endif
710 #if defined(__i386) || defined(__amd64)
711 note_ldt, /* 9 NT_LDT */
712 #else
713 note_notsup, /* 9 NT_LDT */
714 #endif
715 note_pstatus, /* 10 NT_PSTATUS */
716 note_notsup, /* 11 unassigned */
717 note_notsup, /* 12 unassigned */
718 note_psinfo, /* 13 NT_PSINFO */
719 note_cred, /* 14 NT_PRCRED */
720 note_utsname, /* 15 NT_UTSNAME */
721 note_lwpstatus, /* 16 NT_LWPSTATUS */
722 note_lwpsinfo, /* 17 NT_LWPSINFO */
723 note_priv, /* 18 NT_PRPRIV */
724 note_priv_info, /* 19 NT_PRPRIVINFO */
725 note_content, /* 20 NT_CONTENT */
726 note_zonename, /* 21 NT_ZONENAME */
727 note_fdinfo, /* 22 NT_FDINFO */
728 };

______unchanged_portion_omitted_

new/usr/src/lib/libproc/common/Plwpregs.c 1

**
 10935 Wed Jan 23 13:19:04 2013
new/usr/src/lib/libproc/common/Plwpregs.c
XXX AVX procfs
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

26 #include <sys/types.h>
27 #include <sys/uio.h>
28 #include <string.h>
29 #include <errno.h>
30 #include <limits.h>

32 #include "Pcontrol.h"
33 #include "P32ton.h"

35 /*
36 * This file implements the routines to read and write per-lwp register
37 * information from either a live process or core file opened with libproc.
38 * We build up a few common routines for reading and writing register
39 * information, and then the public functions are all trivial calls to these.
40 */

42 /*
43 * Utility function to return a pointer to the structure of cached information
44 * about an lwp in the core file, given its lwpid.
45 */
46 static lwp_info_t *
47 getlwpcore(struct ps_prochandle *P, lwpid_t lwpid)
48 {
49 lwp_info_t *lwp = list_next(&P->core->core_lwp_head);
50 uint_t i;

52 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) {
53 if (lwp->lwp_id == lwpid)
54 return (lwp);
55 }

57 errno = EINVAL;
58 return (NULL);
59 }

______unchanged_portion_omitted_

new/usr/src/lib/libproc/common/Plwpregs.c 2

222 #if defined(sparc) || defined(__sparc)
220 int
221 Plwp_getxregs(struct ps_prochandle *P, lwpid_t lwpid, prxregset_t *xregs)
222 {
223 lwp_info_t *lwp;

225 if (P->state == PS_IDLE) {
226 errno = ENODATA;
227 return (-1);
228 }

230 if (P->state != PS_DEAD) {
231 if (P->state != PS_STOP) {
232 errno = EBUSY;
233 return (-1);
234 }

236 return (getlwpfile(P, lwpid, "xregs",
237 xregs, sizeof (prxregset_t)));
238 }

240 if ((lwp = getlwpcore(P, lwpid)) != NULL && lwp->lwp_xregs != NULL) {
241 (void) memcpy(xregs, lwp->lwp_xregs, sizeof (prxregset_t));
242 return (0);
243 }

245 if (lwp != NULL)
246 errno = ENODATA;
247 return (-1);
248 }

______unchanged_portion_omitted_

256 #if defined(sparc) || defined(__sparc)
257 #endif /* ! codereview */
258 int
259 Plwp_getgwindows(struct ps_prochandle *P, lwpid_t lwpid, gwindows_t *gwins)
260 {
261 lwp_info_t *lwp;

263 if (P->state == PS_IDLE) {
264 errno = ENODATA;
265 return (-1);
266 }

268 if (P->state != PS_DEAD) {
269 if (P->state != PS_STOP) {
270 errno = EBUSY;
271 return (-1);
272 }

274 return (getlwpfile(P, lwpid, "gwindows",
275 gwins, sizeof (gwindows_t)));
276 }

278 if ((lwp = getlwpcore(P, lwpid)) != NULL && lwp->lwp_gwins != NULL) {
279 *gwins = *lwp->lwp_gwins;
280 return (0);
281 }

283 if (lwp != NULL)
284 errno = ENODATA;
285 return (-1);
286 }

288 #if defined(__sparcv9)

new/usr/src/lib/libproc/common/Plwpregs.c 3

289 int
290 Plwp_getasrs(struct ps_prochandle *P, lwpid_t lwpid, asrset_t asrs)
291 {
292 lwp_info_t *lwp;

294 if (P->state == PS_IDLE) {
295 errno = ENODATA;
296 return (-1);
297 }

299 if (P->state != PS_DEAD) {
300 if (P->state != PS_STOP) {
301 errno = EBUSY;
302 return (-1);
303 }

305 return (getlwpfile(P, lwpid, "asrs", asrs, sizeof (asrset_t)));
306 }

308 if ((lwp = getlwpcore(P, lwpid)) != NULL && lwp->lwp_asrs != NULL) {
309 (void) memcpy(asrs, lwp->lwp_asrs, sizeof (asrset_t));
310 return (0);
311 }

313 if (lwp != NULL)
314 errno = ENODATA;
315 return (-1);

317 }

319 int
320 Plwp_setasrs(struct ps_prochandle *P, lwpid_t lwpid, const asrset_t asrs)
321 {
322 return (setlwpregs(P, lwpid, PCSASRS, asrs, sizeof (asrset_t)));
323 }
324 #endif /* __sparcv9 */
325 #endif /* __sparc */

327 int
328 Plwp_getpsinfo(struct ps_prochandle *P, lwpid_t lwpid, lwpsinfo_t *lps)
329 {
330 lwp_info_t *lwp;

332 if (P->state == PS_IDLE) {
333 errno = ENODATA;
334 return (-1);
335 }

337 if (P->state != PS_DEAD) {
338 return (getlwpfile(P, lwpid, "lwpsinfo",
339 lps, sizeof (lwpsinfo_t)));
340 }

342 if ((lwp = getlwpcore(P, lwpid)) != NULL) {
343 (void) memcpy(lps, &lwp->lwp_psinfo, sizeof (lwpsinfo_t));
344 return (0);
345 }

347 return (-1);
348 }

350 int
351 Plwp_stack(struct ps_prochandle *P, lwpid_t lwpid, stack_t *stkp)
352 {
353 uintptr_t addr;

new/usr/src/lib/libproc/common/Plwpregs.c 4

355 if (P->state == PS_IDLE) {
356 errno = ENODATA;
357 return (-1);
358 }

360 if (P->state != PS_DEAD) {
361 lwpstatus_t ls;
362 if (getlwpfile(P, lwpid, "lwpstatus", &ls, sizeof (ls)) != 0)
363 return (-1);
364 addr = ls.pr_ustack;
365 } else {
366 lwp_info_t *lwp;
367 if ((lwp = getlwpcore(P, lwpid)) == NULL)
368 return (-1);
369 addr = lwp->lwp_status.pr_ustack;
370 }

373 if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
374 if (Pread(P, stkp, sizeof (*stkp), addr) != sizeof (*stkp))
375 return (-1);
376 #ifdef _LP64
377 } else {
378 stack32_t stk32;

380 if (Pread(P, &stk32, sizeof (stk32), addr) != sizeof (stk32))
381 return (-1);

383 stack_32_to_n(&stk32, stkp);
384 #endif
385 }

387 return (0);
388 }

390 int
391 Plwp_main_stack(struct ps_prochandle *P, lwpid_t lwpid, stack_t *stkp)
392 {
393 uintptr_t addr;
394 lwpstatus_t ls;

396 if (P->state == PS_IDLE) {
397 errno = ENODATA;
398 return (-1);
399 }

401 if (P->state != PS_DEAD) {
402 if (getlwpfile(P, lwpid, "lwpstatus", &ls, sizeof (ls)) != 0)
403 return (-1);
404 } else {
405 lwp_info_t *lwp;
406 if ((lwp = getlwpcore(P, lwpid)) == NULL)
407 return (-1);
408 ls = lwp->lwp_status;
409 }

411 addr = ls.pr_ustack;

413 /*
414 * Read out the current stack; if the SS_ONSTACK flag is set then
415 * this LWP is operating on the alternate signal stack. We can
416 * recover the original stack from pr_oldcontext.
417 */
418 if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
419 if (Pread(P, stkp, sizeof (*stkp), addr) != sizeof (*stkp))
420 return (-1);

new/usr/src/lib/libproc/common/Plwpregs.c 5

422 if (stkp->ss_flags & SS_ONSTACK)
423 goto on_altstack;
424 #ifdef _LP64
425 } else {
426 stack32_t stk32;

428 if (Pread(P, &stk32, sizeof (stk32), addr) != sizeof (stk32))
429 return (-1);

431 if (stk32.ss_flags & SS_ONSTACK)
432 goto on_altstack;

434 stack_32_to_n(&stk32, stkp);
435 #endif
436 }

438 return (0);

440 on_altstack:

442 if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
443 ucontext_t *ctxp = (void *)ls.pr_oldcontext;

445 if (Pread(P, stkp, sizeof (*stkp),
446 (uintptr_t)&ctxp->uc_stack) != sizeof (*stkp))
447 return (-1);
448 #ifdef _LP64
449 } else {
450 ucontext32_t *ctxp = (void *)ls.pr_oldcontext;
451 stack32_t stk32;

453 if (Pread(P, &stk32, sizeof (stk32),
454 (uintptr_t)&ctxp->uc_stack) != sizeof (stk32))
455 return (-1);

457 stack_32_to_n(&stk32, stkp);
458 #endif
459 }

461 return (0);
462 }

464 int
465 Plwp_alt_stack(struct ps_prochandle *P, lwpid_t lwpid, stack_t *stkp)
466 {
467 if (P->state == PS_IDLE) {
468 errno = ENODATA;
469 return (-1);
470 }

472 if (P->state != PS_DEAD) {
473 lwpstatus_t ls;

475 if (getlwpfile(P, lwpid, "lwpstatus", &ls, sizeof (ls)) != 0)
476 return (-1);

478 if (ls.pr_altstack.ss_flags & SS_DISABLE) {
479 errno = ENODATA;
480 return (-1);
481 }

483 *stkp = ls.pr_altstack;
484 } else {
485 lwp_info_t *lwp;

new/usr/src/lib/libproc/common/Plwpregs.c 6

487 if ((lwp = getlwpcore(P, lwpid)) == NULL)
488 return (-1);

490 if (lwp->lwp_status.pr_altstack.ss_flags & SS_DISABLE) {
491 errno = ENODATA;
492 return (-1);
493 }

495 *stkp = lwp->lwp_status.pr_altstack;
496 }

498 return (0);
499 }

new/usr/src/lib/libproc/common/Pservice.c 1

**
 8963 Wed Jan 23 13:19:04 2013
new/usr/src/lib/libproc/common/Pservice.c
XXX AVX procfs
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

26 #include <stdarg.h>
27 #include <string.h>
28 #include "Pcontrol.h"

30 /*
31 * This file implements the process services declared in <proc_service.h>.
32 * This enables libproc to be used in conjunction with libc_db and
33 * librtld_db. As most of these facilities are already provided by
34 * (more elegant) interfaces in <libproc.h>, we can just call those.
35 *
36 * NOTE: We explicitly do *not* implement the functions ps_kill() and
37 * ps_lrolltoaddr() in this library. The very existence of these functions
38 * causes libc_db to create an "agent thread" in the target process.
39 * The only way to turn off this behavior is to omit these functions.
40 */

42 #pragma weak ps_pdread = ps_pread
43 #pragma weak ps_ptread = ps_pread
44 #pragma weak ps_pdwrite = ps_pwrite
45 #pragma weak ps_ptwrite = ps_pwrite

47 ps_err_e
48 ps_pdmodel(struct ps_prochandle *P, int *modelp)
49 {
50 *modelp = P->status.pr_dmodel;
51 return (PS_OK);
52 }

______unchanged_portion_omitted_

169 #if defined(sparc) || defined(__sparc)

167 ps_err_e
168 ps_lgetxregsize(struct ps_prochandle *P, lwpid_t lwpid, int *xrsize)
169 {

new/usr/src/lib/libproc/common/Pservice.c 2

170 char fname[PATH_MAX];
171 struct stat statb;

173 if (P->state == PS_DEAD) {
174 lwp_info_t *lwp = list_next(&P->core->core_lwp_head);
175 uint_t i;

177 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) {
178 if (lwp->lwp_id == lwpid) {
179 if (lwp->lwp_xregs != NULL)
180 *xrsize = sizeof (prxregset_t);
181 else
182 *xrsize = 0;
183 return (PS_OK);
184 }
185 }

187 return (PS_BADLID);
188 }

190 (void) snprintf(fname, sizeof (fname), "%s/%d/lwp/%d/xregs",
191 procfs_path, (int)P->status.pr_pid, (int)lwpid);

193 if (stat(fname, &statb) != 0)
194 return (PS_BADLID);

196 *xrsize = (int)statb.st_size;
197 return (PS_OK);
198 }

______unchanged_portion_omitted_

230 #endif /* sparc */

226 #if defined(__i386) || defined(__amd64)

228 ps_err_e
229 ps_lgetLDT(struct ps_prochandle *P, lwpid_t lwpid, struct ssd *ldt)
230 {
231 #if defined(__amd64) && defined(_LP64)
232 if (P->status.pr_dmodel != PR_MODEL_NATIVE) {
233 #endif
234 prgregset_t regs;
235 struct ssd *ldtarray;
236 ps_err_e error;
237 uint_t gs;
238 int nldt;
239 int i;

241 if (P->state != PS_STOP && P->state != PS_DEAD)
242 return (PS_ERR);

244 /*
245 * We need to get the ldt entry that matches the
246 * value in the lwp’s GS register.
247 */
248 if ((error = ps_lgetregs(P, lwpid, regs)) != PS_OK)
249 return (error);

251 gs = regs[GS];

253 if ((nldt = Pldt(P, NULL, 0)) <= 0 ||
254 (ldtarray = malloc(nldt * sizeof (struct ssd))) == NULL)
255 return (PS_ERR);
256 if ((nldt = Pldt(P, ldtarray, nldt)) <= 0) {
257 free(ldtarray);
258 return (PS_ERR);

new/usr/src/lib/libproc/common/Pservice.c 3

259 }

261 for (i = 0; i < nldt; i++) {
262 if (gs == ldtarray[i].sel) {
263 *ldt = ldtarray[i];
264 break;
265 }
266 }
267 free(ldtarray);

269 if (i < nldt)
270 return (PS_OK);
271 #if defined(__amd64) && defined(_LP64)
272 }
273 #endif

275 return (PS_ERR);
276 }

______unchanged_portion_omitted_

new/usr/src/lib/libproc/common/libproc.h 1

**
 29219 Wed Jan 23 13:19:05 2013
new/usr/src/lib/libproc/common/libproc.h
XXX AVX procfs
**
______unchanged_portion_omitted_

174 /* values for type */
175 #define AT_BYVAL 1
176 #define AT_BYREF 2

178 /* values for inout */
179 #define AI_INPUT 1
180 #define AI_OUTPUT 2
181 #define AI_INOUT 3

183 /* maximum number of syscall arguments */
184 #define MAXARGS 8

186 /* maximum size in bytes of a BYREF argument */
187 #define MAXARGL (4*1024)

189 /*
190 * Function prototypes for routines in the process control package.
191 */
192 extern struct ps_prochandle *Pcreate(const char *, char *const *,
193 int *, char *, size_t);
194 extern struct ps_prochandle *Pxcreate(const char *, char *const *,
195 char *const *, int *, char *, size_t);

197 extern const char *Pcreate_error(int);

199 extern struct ps_prochandle *Pgrab(pid_t, int, int *);
200 extern struct ps_prochandle *Pgrab_core(const char *, const char *, int, int *);
201 extern struct ps_prochandle *Pfgrab_core(int, const char *, int *);
202 extern struct ps_prochandle *Pgrab_file(const char *, int *);
203 extern const char *Pgrab_error(int);

205 extern int Preopen(struct ps_prochandle *);
206 extern void Prelease(struct ps_prochandle *, int);
207 extern void Pfree(struct ps_prochandle *);

209 extern int Pasfd(struct ps_prochandle *);
210 extern char *Pbrandname(struct ps_prochandle *, char *, size_t);
211 extern int Pctlfd(struct ps_prochandle *);
212 extern int Pcreate_agent(struct ps_prochandle *);
213 extern void Pdestroy_agent(struct ps_prochandle *);
214 extern int Pstopstatus(struct ps_prochandle *, long, uint_t);
215 extern int Pwait(struct ps_prochandle *, uint_t);
216 extern int Pstop(struct ps_prochandle *, uint_t);
217 extern int Pdstop(struct ps_prochandle *);
218 extern int Pstate(struct ps_prochandle *);
219 extern const psinfo_t *Ppsinfo(struct ps_prochandle *);
220 extern const pstatus_t *Pstatus(struct ps_prochandle *);
221 extern int Pcred(struct ps_prochandle *, prcred_t *, int);
222 extern int Psetcred(struct ps_prochandle *, const prcred_t *);
223 extern ssize_t Ppriv(struct ps_prochandle *, prpriv_t *, size_t);
224 extern int Psetpriv(struct ps_prochandle *, prpriv_t *);
225 extern void *Pprivinfo(struct ps_prochandle *);
226 extern int Psetzoneid(struct ps_prochandle *, zoneid_t);
227 extern int Pgetareg(struct ps_prochandle *, int, prgreg_t *);
228 extern int Pputareg(struct ps_prochandle *, int, prgreg_t);
229 extern int Psetrun(struct ps_prochandle *, int, int);
230 extern ssize_t Pread(struct ps_prochandle *, void *, size_t, uintptr_t);
231 extern ssize_t Pread_string(struct ps_prochandle *, char *, size_t, uintptr_t);
232 extern ssize_t Pwrite(struct ps_prochandle *, const void *, size_t, uintptr_t);

new/usr/src/lib/libproc/common/libproc.h 2

233 extern int Pclearsig(struct ps_prochandle *);
234 extern int Pclearfault(struct ps_prochandle *);
235 extern int Psetbkpt(struct ps_prochandle *, uintptr_t, ulong_t *);
236 extern int Pdelbkpt(struct ps_prochandle *, uintptr_t, ulong_t);
237 extern int Pxecbkpt(struct ps_prochandle *, ulong_t);
238 extern int Psetwapt(struct ps_prochandle *, const prwatch_t *);
239 extern int Pdelwapt(struct ps_prochandle *, const prwatch_t *);
240 extern int Pxecwapt(struct ps_prochandle *, const prwatch_t *);
241 extern int Psetflags(struct ps_prochandle *, long);
242 extern int Punsetflags(struct ps_prochandle *, long);
243 extern int Psignal(struct ps_prochandle *, int, int);
244 extern int Pfault(struct ps_prochandle *, int, int);
245 extern int Psysentry(struct ps_prochandle *, int, int);
246 extern int Psysexit(struct ps_prochandle *, int, int);
247 extern void Psetsignal(struct ps_prochandle *, const sigset_t *);
248 extern void Psetfault(struct ps_prochandle *, const fltset_t *);
249 extern void Psetsysentry(struct ps_prochandle *, const sysset_t *);
250 extern void Psetsysexit(struct ps_prochandle *, const sysset_t *);

252 extern void Psync(struct ps_prochandle *);
253 extern int Psyscall(struct ps_prochandle *, sysret_t *,
254 int, uint_t, argdes_t *);
255 extern int Pisprocdir(struct ps_prochandle *, const char *);

257 /*
258 * Function prototypes for lwp-specific operations.
259 */
260 extern struct ps_lwphandle *Lgrab(struct ps_prochandle *, lwpid_t, int *);
261 extern const char *Lgrab_error(int);

263 extern struct ps_prochandle *Lprochandle(struct ps_lwphandle *);
264 extern void Lfree(struct ps_lwphandle *);

266 extern int Lctlfd(struct ps_lwphandle *);
267 extern int Lwait(struct ps_lwphandle *, uint_t);
268 extern int Lstop(struct ps_lwphandle *, uint_t);
269 extern int Ldstop(struct ps_lwphandle *);
270 extern int Lstate(struct ps_lwphandle *);
271 extern const lwpsinfo_t *Lpsinfo(struct ps_lwphandle *);
272 extern const lwpstatus_t *Lstatus(struct ps_lwphandle *);
273 extern int Lgetareg(struct ps_lwphandle *, int, prgreg_t *);
274 extern int Lputareg(struct ps_lwphandle *, int, prgreg_t);
275 extern int Lsetrun(struct ps_lwphandle *, int, int);
276 extern int Lclearsig(struct ps_lwphandle *);
277 extern int Lclearfault(struct ps_lwphandle *);
278 extern int Lxecbkpt(struct ps_lwphandle *, ulong_t);
279 extern int Lxecwapt(struct ps_lwphandle *, const prwatch_t *);
280 extern void Lsync(struct ps_lwphandle *);

282 extern int Lstack(struct ps_lwphandle *, stack_t *);
283 extern int Lmain_stack(struct ps_lwphandle *, stack_t *);
284 extern int Lalt_stack(struct ps_lwphandle *, stack_t *);

286 /*
287 * Function prototypes for system calls forced on the victim process.
288 */
289 extern int pr_open(struct ps_prochandle *, const char *, int, mode_t);
290 extern int pr_creat(struct ps_prochandle *, const char *, mode_t);
291 extern int pr_close(struct ps_prochandle *, int);
292 extern int pr_access(struct ps_prochandle *, const char *, int);
293 extern int pr_door_info(struct ps_prochandle *, int, struct door_info *);
294 extern void *pr_mmap(struct ps_prochandle *,
295 void *, size_t, int, int, int, off_t);
296 extern void *pr_zmap(struct ps_prochandle *,
297 void *, size_t, int, int);
298 extern int pr_munmap(struct ps_prochandle *, void *, size_t);

new/usr/src/lib/libproc/common/libproc.h 3

299 extern int pr_memcntl(struct ps_prochandle *,
300 caddr_t, size_t, int, caddr_t, int, int);
301 extern int pr_meminfo(struct ps_prochandle *, const uint64_t *addrs,
302 int addr_count, const uint_t *info, int info_count,
303 uint64_t *outdata, uint_t *validity);
304 extern int pr_sigaction(struct ps_prochandle *,
305 int, const struct sigaction *, struct sigaction *);
306 extern int pr_getitimer(struct ps_prochandle *,
307 int, struct itimerval *);
308 extern int pr_setitimer(struct ps_prochandle *,
309 int, const struct itimerval *, struct itimerval *);
310 extern int pr_ioctl(struct ps_prochandle *, int, int, void *, size_t);
311 extern int pr_fcntl(struct ps_prochandle *, int, int, void *);
312 extern int pr_stat(struct ps_prochandle *, const char *, struct stat *);
313 extern int pr_lstat(struct ps_prochandle *, const char *, struct stat *);
314 extern int pr_fstat(struct ps_prochandle *, int, struct stat *);
315 extern int pr_stat64(struct ps_prochandle *, const char *,
316 struct stat64 *);
317 extern int pr_lstat64(struct ps_prochandle *, const char *,
318 struct stat64 *);
319 extern int pr_fstat64(struct ps_prochandle *, int, struct stat64 *);
320 extern int pr_statvfs(struct ps_prochandle *, const char *, statvfs_t *);
321 extern int pr_fstatvfs(struct ps_prochandle *, int, statvfs_t *);
322 extern projid_t pr_getprojid(struct ps_prochandle *Pr);
323 extern taskid_t pr_gettaskid(struct ps_prochandle *Pr);
324 extern taskid_t pr_settaskid(struct ps_prochandle *Pr, projid_t project,
325 int flags);
326 extern zoneid_t pr_getzoneid(struct ps_prochandle *Pr);
327 extern int pr_getrctl(struct ps_prochandle *,
328 const char *, rctlblk_t *, rctlblk_t *, int);
329 extern int pr_setrctl(struct ps_prochandle *,
330 const char *, rctlblk_t *, rctlblk_t *, int);
331 extern int pr_getrlimit(struct ps_prochandle *,
332 int, struct rlimit *);
333 extern int pr_setrlimit(struct ps_prochandle *,
334 int, const struct rlimit *);
335 extern int pr_setprojrctl(struct ps_prochandle *, const char *,
336 rctlblk_t *, size_t, int);
337 #if defined(_LARGEFILE64_SOURCE)
338 extern int pr_getrlimit64(struct ps_prochandle *,
339 int, struct rlimit64 *);
340 extern int pr_setrlimit64(struct ps_prochandle *,
341 int, const struct rlimit64 *);
342 #endif /* _LARGEFILE64_SOURCE */
343 extern int pr_lwp_exit(struct ps_prochandle *);
344 extern int pr_exit(struct ps_prochandle *, int);
345 extern int pr_waitid(struct ps_prochandle *,
346 idtype_t, id_t, siginfo_t *, int);
347 extern off_t pr_lseek(struct ps_prochandle *, int, off_t, int);
348 extern offset_t pr_llseek(struct ps_prochandle *, int, offset_t, int);
349 extern int pr_rename(struct ps_prochandle *, const char *, const char *);
350 extern int pr_link(struct ps_prochandle *, const char *, const char *);
351 extern int pr_unlink(struct ps_prochandle *, const char *);
352 extern int pr_getpeerucred(struct ps_prochandle *, int, ucred_t **);
353 extern int pr_getpeername(struct ps_prochandle *,
354 int, struct sockaddr *, socklen_t *);
355 extern int pr_getsockname(struct ps_prochandle *,
356 int, struct sockaddr *, socklen_t *);
357 extern int pr_getsockopt(struct ps_prochandle *,
358 int, int, int, void *, int *);
359 extern int pr_processor_bind(struct ps_prochandle *,
360 idtype_t, id_t, int, int *);

362 /*
363 * Function prototypes for accessing per-LWP register information.
364 */

new/usr/src/lib/libproc/common/libproc.h 4

365 extern int Plwp_getregs(struct ps_prochandle *, lwpid_t, prgregset_t);
366 extern int Plwp_setregs(struct ps_prochandle *, lwpid_t, const prgregset_t);

368 extern int Plwp_getfpregs(struct ps_prochandle *, lwpid_t, prfpregset_t *);
369 extern int Plwp_setfpregs(struct ps_prochandle *, lwpid_t,
370 const prfpregset_t *);

372 #if defined(__sparc)

372 extern int Plwp_getxregs(struct ps_prochandle *, lwpid_t, prxregset_t *);
373 extern int Plwp_setxregs(struct ps_prochandle *, lwpid_t, const prxregset_t *);

375 #if defined(__sparc)

377 #endif /* ! codereview */
378 extern int Plwp_getgwindows(struct ps_prochandle *, lwpid_t, gwindows_t *);

380 #if defined(__sparcv9)
381 extern int Plwp_getasrs(struct ps_prochandle *, lwpid_t, asrset_t);
382 extern int Plwp_setasrs(struct ps_prochandle *, lwpid_t, const asrset_t);
383 #endif /* __sparcv9 */

385 #endif /* __sparc */

387 #if defined(__i386) || defined(__amd64)
388 extern int Pldt(struct ps_prochandle *, struct ssd *, int);
389 extern int proc_get_ldt(pid_t, struct ssd *, int);
390 #endif /* __i386 || __amd64 */

392 extern int Plwp_getpsinfo(struct ps_prochandle *, lwpid_t, lwpsinfo_t *);

394 extern int Plwp_stack(struct ps_prochandle *, lwpid_t, stack_t *);
395 extern int Plwp_main_stack(struct ps_prochandle *, lwpid_t, stack_t *);
396 extern int Plwp_alt_stack(struct ps_prochandle *, lwpid_t, stack_t *);

398 /*
399 * LWP iteration interface; iterate over all active LWPs.
400 */
401 typedef int proc_lwp_f(void *, const lwpstatus_t *);
402 extern int Plwp_iter(struct ps_prochandle *, proc_lwp_f *, void *);

404 /*
405 * LWP iteration interface; iterate over all LWPs, active and zombie.
406 */
407 typedef int proc_lwp_all_f(void *, const lwpstatus_t *, const lwpsinfo_t *);
408 extern int Plwp_iter_all(struct ps_prochandle *, proc_lwp_all_f *, void *);

410 /*
411 * Process iteration interface; iterate over all non-system processes.
412 */
413 typedef int proc_walk_f(psinfo_t *, lwpsinfo_t *, void *);
414 extern int proc_walk(proc_walk_f *, void *, int);

416 #define PR_WALK_PROC 0 /* walk processes only */
417 #define PR_WALK_LWP 1 /* walk all lwps */

419 /*
420 * Determine if an lwp is in a set as returned from proc_arg_xgrab().
421 */
422 extern int proc_lwp_in_set(const char *, lwpid_t);
423 extern int proc_lwp_range_valid(const char *);

425 /*
426 * Symbol table interfaces.
427 */

new/usr/src/lib/libproc/common/libproc.h 5

429 /*
430 * Pseudo-names passed to Plookup_by_name() for well-known load objects.
431 * NOTE: It is required that PR_OBJ_EXEC and PR_OBJ_LDSO exactly match
432 * the definitions of PS_OBJ_EXEC and PS_OBJ_LDSO from <proc_service.h>.
433 */
434 #define PR_OBJ_EXEC ((const char *)0) /* search the executable file */
435 #define PR_OBJ_LDSO ((const char *)1) /* search ld.so.1 */
436 #define PR_OBJ_EVERY ((const char *)-1) /* search every load object */

438 /*
439 * Special Lmid_t passed to Plookup_by_lmid() to search all link maps. The
440 * special values LM_ID_BASE and LM_ID_LDSO from <link.h> may also be used.
441 * If PR_OBJ_EXEC is used as the object name, the lmid must be PR_LMID_EVERY
442 * or LM_ID_BASE in order to return a match. If PR_OBJ_LDSO is used as the
443 * object name, the lmid must be PR_LMID_EVERY or LM_ID_LDSO to return a match.
444 */
445 #define PR_LMID_EVERY ((Lmid_t)-1UL) /* search every link map */

447 /*
448 * ’object_name’ is the name of a load object obtained from an
449 * iteration over the process’s address space mappings (Pmapping_iter),
450 * or an iteration over the process’s mapped objects (Pobject_iter),
451 * or else it is one of the special PR_OBJ_* values above.
452 */
453 extern int Plookup_by_name(struct ps_prochandle *,
454 const char *, const char *, GElf_Sym *);

456 extern int Plookup_by_addr(struct ps_prochandle *,
457 uintptr_t, char *, size_t, GElf_Sym *);

459 typedef struct prsyminfo {
460 const char *prs_object; /* object name */
461 const char *prs_name; /* symbol name */
462 Lmid_t prs_lmid; /* link map id */
463 uint_t prs_id; /* symbol id */
464 uint_t prs_table; /* symbol table id */
465 } prsyminfo_t;

467 extern int Pxlookup_by_name(struct ps_prochandle *,
468 Lmid_t, const char *, const char *, GElf_Sym *, prsyminfo_t *);

470 extern int Pxlookup_by_addr(struct ps_prochandle *,
471 uintptr_t, char *, size_t, GElf_Sym *, prsyminfo_t *);
472 extern int Pxlookup_by_addr_resolved(struct ps_prochandle *,
473 uintptr_t, char *, size_t, GElf_Sym *, prsyminfo_t *);

475 typedef int proc_map_f(void *, const prmap_t *, const char *);

477 extern int Pmapping_iter(struct ps_prochandle *, proc_map_f *, void *);
478 extern int Pmapping_iter_resolved(struct ps_prochandle *, proc_map_f *, void *);
479 extern int Pobject_iter(struct ps_prochandle *, proc_map_f *, void *);
480 extern int Pobject_iter_resolved(struct ps_prochandle *, proc_map_f *, void *);

482 extern const prmap_t *Paddr_to_map(struct ps_prochandle *, uintptr_t);
483 extern const prmap_t *Paddr_to_text_map(struct ps_prochandle *, uintptr_t);
484 extern const prmap_t *Pname_to_map(struct ps_prochandle *, const char *);
485 extern const prmap_t *Plmid_to_map(struct ps_prochandle *,
486 Lmid_t, const char *);

488 extern const rd_loadobj_t *Paddr_to_loadobj(struct ps_prochandle *, uintptr_t);
489 extern const rd_loadobj_t *Pname_to_loadobj(struct ps_prochandle *,
490 const char *);
491 extern const rd_loadobj_t *Plmid_to_loadobj(struct ps_prochandle *,
492 Lmid_t, const char *);

494 extern ctf_file_t *Paddr_to_ctf(struct ps_prochandle *, uintptr_t);

new/usr/src/lib/libproc/common/libproc.h 6

495 extern ctf_file_t *Pname_to_ctf(struct ps_prochandle *, const char *);

497 extern char *Pplatform(struct ps_prochandle *, char *, size_t);
498 extern int Puname(struct ps_prochandle *, struct utsname *);
499 extern char *Pzonename(struct ps_prochandle *, char *, size_t);
500 extern char *Pfindobj(struct ps_prochandle *, const char *, char *, size_t);

502 extern char *Pexecname(struct ps_prochandle *, char *, size_t);
503 extern char *Pobjname(struct ps_prochandle *, uintptr_t, char *, size_t);
504 extern char *Pobjname_resolved(struct ps_prochandle *, uintptr_t, char *,
505 size_t);
506 extern int Plmid(struct ps_prochandle *, uintptr_t, Lmid_t *);

508 typedef int proc_env_f(void *, struct ps_prochandle *, uintptr_t, const char *);
509 extern int Penv_iter(struct ps_prochandle *, proc_env_f *, void *);
510 extern char *Pgetenv(struct ps_prochandle *, const char *, char *, size_t);
511 extern long Pgetauxval(struct ps_prochandle *, int);
512 extern const auxv_t *Pgetauxvec(struct ps_prochandle *);

514 extern void Pset_procfs_path(const char *);

516 /*
517 * Symbol table iteration interface. The special lmid constants LM_ID_BASE,
518 * LM_ID_LDSO, and PR_LMID_EVERY may be used with Psymbol_iter_by_lmid.
519 */
520 typedef int proc_sym_f(void *, const GElf_Sym *, const char *);
521 typedef int proc_xsym_f(void *, const GElf_Sym *, const char *,
522 const prsyminfo_t *);

524 extern int Psymbol_iter(struct ps_prochandle *,
525 const char *, int, int, proc_sym_f *, void *);
526 extern int Psymbol_iter_by_addr(struct ps_prochandle *,
527 const char *, int, int, proc_sym_f *, void *);
528 extern int Psymbol_iter_by_name(struct ps_prochandle *,
529 const char *, int, int, proc_sym_f *, void *);

531 extern int Psymbol_iter_by_lmid(struct ps_prochandle *,
532 Lmid_t, const char *, int, int, proc_sym_f *, void *);

534 extern int Pxsymbol_iter(struct ps_prochandle *,
535 Lmid_t, const char *, int, int, proc_xsym_f *, void *);

537 /*
538 * ’which’ selects which symbol table and can be one of the following.
539 */
540 #define PR_SYMTAB 1
541 #define PR_DYNSYM 2
542 /*
543 * ’type’ selects the symbols of interest by binding and type. It is a bit-
544 * mask of one or more of the following flags, whose order MUST match the
545 * order of STB and STT constants in <sys/elf.h>.
546 */
547 #define BIND_LOCAL 0x0001
548 #define BIND_GLOBAL 0x0002
549 #define BIND_WEAK 0x0004
550 #define BIND_ANY (BIND_LOCAL|BIND_GLOBAL|BIND_WEAK)
551 #define TYPE_NOTYPE 0x0100
552 #define TYPE_OBJECT 0x0200
553 #define TYPE_FUNC 0x0400
554 #define TYPE_SECTION 0x0800
555 #define TYPE_FILE 0x1000
556 #define TYPE_ANY (TYPE_NOTYPE|TYPE_OBJECT|TYPE_FUNC|TYPE_SECTION|TYPE_FILE)

558 /*
559 * This returns the rtld_db agent handle for the process.
560 * The handle will become invalid at the next successful exec() and

new/usr/src/lib/libproc/common/libproc.h 7

561 * must not be used beyond that point (see Preset_maps(), below).
562 */
563 extern rd_agent_t *Prd_agent(struct ps_prochandle *);

565 /*
566 * This should be called when an RD_DLACTIVITY event with the
567 * RD_CONSISTENT state occurs via librtld_db’s event mechanism.
568 * This makes libproc’s address space mappings and symbol tables current.
569 * The variant Pupdate_syms() can be used to preload all symbol tables as well.
570 */
571 extern void Pupdate_maps(struct ps_prochandle *);
572 extern void Pupdate_syms(struct ps_prochandle *);

574 /*
575 * This must be called after the victim process performs a successful
576 * exec() if any of the symbol table interface functions have been called
577 * prior to that point. This is essential because an exec() invalidates
578 * all previous symbol table and address space mapping information.
579 * It is always safe to call, but if it is called other than after an
580 * exec() by the victim process it just causes unnecessary overhead.
581 *
582 * The rtld_db agent handle obtained from a previous call to Prd_agent() is
583 * made invalid by Preset_maps() and Prd_agent() must be called again to get
584 * the new handle.
585 */
586 extern void Preset_maps(struct ps_prochandle *);

588 /*
589 * Given an address, Ppltdest() determines if this is part of a PLT, and if
590 * so returns a pointer to the symbol name that will be used for resolution.
591 * If the specified address is not part of a PLT, the function returns NULL.
592 */
593 extern const char *Ppltdest(struct ps_prochandle *, uintptr_t);

595 /*
596 * See comments for Pissyscall(), in Pisadep.h
597 */
598 extern int Pissyscall_prev(struct ps_prochandle *, uintptr_t, uintptr_t *);

600 /*
601 * Stack frame iteration interface.
602 */
603 typedef int proc_stack_f(void *, prgregset_t, uint_t, const long *);

605 extern int Pstack_iter(struct ps_prochandle *,
606 const prgregset_t, proc_stack_f *, void *);

608 /*
609 * The following functions define a set of passive interfaces: libproc provides
610 * default, empty definitions that are called internally. If a client wishes
611 * to override these definitions, it can simply provide its own version with
612 * the same signature that interposes on the libproc definition.
613 *
614 * If the client program wishes to report additional error information, it
615 * can provide its own version of Perror_printf.
616 *
617 * If the client program wishes to receive a callback after Pcreate forks
618 * but before it execs, it can provide its own version of Pcreate_callback.
619 */
620 extern void Perror_printf(struct ps_prochandle *P, const char *format, ...);
621 extern void Pcreate_callback(struct ps_prochandle *);

623 /*
624 * Remove unprintable characters from psinfo.pr_psargs and replace with
625 * whitespace characters so it is safe for printing.
626 */

new/usr/src/lib/libproc/common/libproc.h 8

627 extern void proc_unctrl_psinfo(psinfo_t *);

629 /*
630 * Utility functions for processing arguments which should be /proc files,
631 * pids, and/or core files. The returned error code can be passed to
632 * Pgrab_error() in order to convert it to an error string.
633 */
634 #define PR_ARG_PIDS 0x1 /* Allow pid and /proc file arguments */
635 #define PR_ARG_CORES 0x2 /* Allow core file arguments */

637 #define PR_ARG_ANY (PR_ARG_PIDS | PR_ARG_CORES)

639 extern struct ps_prochandle *proc_arg_grab(const char *, int, int, int *);
640 extern struct ps_prochandle *proc_arg_xgrab(const char *, const char *, int,
641 int, int *, const char **);
642 extern pid_t proc_arg_psinfo(const char *, int, psinfo_t *, int *);
643 extern pid_t proc_arg_xpsinfo(const char *, int, psinfo_t *, int *,
644 const char **);

646 /*
647 * Utility functions for obtaining information via /proc without actually
648 * performing a Pcreate() or Pgrab():
649 */
650 extern int proc_get_auxv(pid_t, auxv_t *, int);
651 extern int proc_get_cred(pid_t, prcred_t *, int);
652 extern prpriv_t *proc_get_priv(pid_t);
653 extern int proc_get_psinfo(pid_t, psinfo_t *);
654 extern int proc_get_status(pid_t, pstatus_t *);

656 /*
657 * Utility functions for debugging tools to convert numeric fault,
658 * signal, and system call numbers to symbolic names:
659 */
660 #define FLT2STR_MAX 32 /* max. string length of faults (like SIG2STR_MAX) */
661 #define SYS2STR_MAX 32 /* max. string length of syscalls (like SIG2STR_MAX) */

663 extern char *proc_fltname(int, char *, size_t);
664 extern char *proc_signame(int, char *, size_t);
665 extern char *proc_sysname(int, char *, size_t);

667 /*
668 * Utility functions for debugging tools to convert fault, signal, and system
669 * call names back to the numeric constants:
670 */
671 extern int proc_str2flt(const char *, int *);
672 extern int proc_str2sig(const char *, int *);
673 extern int proc_str2sys(const char *, int *);

675 /*
676 * Utility functions for debugging tools to convert a fault, signal or system
677 * call set to a string representation (e.g. "BUS,SEGV" or "open,close,read").
678 */
679 #define PRSIGBUFSZ 1024 /* buffer size for proc_sigset2str() */

681 extern char *proc_fltset2str(const fltset_t *, const char *, int,
682 char *, size_t);
683 extern char *proc_sigset2str(const sigset_t *, const char *, int,
684 char *, size_t);
685 extern char *proc_sysset2str(const sysset_t *, const char *, int,
686 char *, size_t);

688 extern int Pgcore(struct ps_prochandle *, const char *, core_content_t);
689 extern int Pfgcore(struct ps_prochandle *, int, core_content_t);
690 extern core_content_t Pcontent(struct ps_prochandle *);

692 /*

new/usr/src/lib/libproc/common/libproc.h 9

693 * Utility functions for debugging tools to convert a string representation of
694 * a fault, signal or system call set back to the numeric value of the
695 * corresponding set type.
696 */
697 extern char *proc_str2fltset(const char *, const char *, int, fltset_t *);
698 extern char *proc_str2sigset(const char *, const char *, int, sigset_t *);
699 extern char *proc_str2sysset(const char *, const char *, int, sysset_t *);

701 /*
702 * Utility functions for converting between strings and core_content_t.
703 */
704 #define PRCONTENTBUFSZ 80 /* buffer size for proc_content2str() */

706 extern int proc_str2content(const char *, core_content_t *);
707 extern int proc_content2str(core_content_t, char *, size_t);

709 /*
710 * Utility functions for buffering output to stdout, stderr while
711 * process is grabbed. Prevents deadlocks due to pfiles ‘pgrep xterm‘
712 * and other varients.
713 */
714 extern int proc_initstdio(void);
715 extern int proc_flushstdio(void);
716 extern int proc_finistdio(void);

718 /*
719 * Iterate over all open files.
720 */
721 typedef int proc_fdinfo_f(void *, prfdinfo_t *);
722 extern int Pfdinfo_iter(struct ps_prochandle *, proc_fdinfo_f *, void *);

724 #ifdef __cplusplus
725 }
726 #endif

728 #endif /* _LIBPROC_H */

new/usr/src/lib/libproc/common/llib-lproc 1

**
 15962 Wed Jan 23 13:19:05 2013
new/usr/src/lib/libproc/common/llib-lproc
XXX AVX procfs
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* LINTLIBRARY */
22 /* PROTOLIB1 */

24 /*
25 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */
28 #include "libproc.h"

30 /*
31 * usr/src/lib/libproc
32 */

34 /* Pcontrol.c */
35 int _libproc_debug;
36 struct ps_prochandle *Pcreate(const char *file, char *const *argv,
37 int *perr, char *path, size_t len);
38 const char *Pcreate_error(int error);
39 void Pcreate_callback(struct ps_prochandle *Pr);
40 struct ps_prochandle *Pgrab(pid_t pid, int gflag, int *perr);
41 const char *Pgrab_error(int error);
42 void Pfree(struct ps_prochandle *Pr);
43 int Pstate(struct ps_prochandle *Pr);
44 int Pasfd(struct ps_prochandle *Pr);
45 int Pctlfd(struct ps_prochandle *Pr);
46 const psinfo_t *Ppsinfo(struct ps_prochandle *Pr);
47 const pstatus_t *Pstatus(struct ps_prochandle *Pr);
48 int Pcred(struct ps_prochandle *Pr, prcred_t *pcrp, int ngroups);
49 ssize_t Ppriv(struct ps_prochandle *Pr, prpriv_t *pprivp, size_t);
50 void Psync(struct ps_prochandle *Pr);
51 int Pcreate_agent(struct ps_prochandle *Pr);
52 void Pdestroy_agent(struct ps_prochandle *Pr);
53 int Preopen(struct ps_prochandle *Pr);
54 void Prelease(struct ps_prochandle *Pr, int flags);
55 int Pstopstatus(struct ps_prochandle *Pr, long cmd, uint_t msec);
56 int Pwait(struct ps_prochandle *Pr, uint_t msec);
57 int Pstop(struct ps_prochandle *Pr, uint_t msec);
58 int Pdstop(struct ps_prochandle *Pr);
59 int Pgetareg(struct ps_prochandle *Pr, int regno, prgreg_t *preg);
60 int Pputareg(struct ps_prochandle *Pr, int regno, prgreg_t reg);
61 int Psetrun(struct ps_prochandle *Pr, int sig, int flags);

new/usr/src/lib/libproc/common/llib-lproc 2

62 ssize_t Pread(struct ps_prochandle *Pr,
63 void *buf, size_t nbyte, uintptr_t address);
64 ssize_t Pread_string(struct ps_prochandle *Pr,
65 char *buf, size_t nbyte, uintptr_t address);
66 ssize_t Pwrite(struct ps_prochandle *Pr,
67 const void *buf, size_t nbyte, uintptr_t address);
68 int Pclearsig(struct ps_prochandle *Pr);
69 int Pclearfault(struct ps_prochandle *Pr);
70 int Psetbkpt(struct ps_prochandle *Pr, uintptr_t address, ulong_t *saved);
71 int Pdelbkpt(struct ps_prochandle *Pr, uintptr_t address, ulong_t saved);
72 int Pxecbkpt(struct ps_prochandle *Pr, ulong_t saved);
73 int Psetwapt(struct ps_prochandle *Pr, const prwatch_t *wp);
74 int Pdelwapt(struct ps_prochandle *Pr, const prwatch_t *wp);
75 int Pxecwapt(struct ps_prochandle *Pr, const prwatch_t *wp);
76 int Psetflags(struct ps_prochandle *Pr, long flags);
77 int Punsetflags(struct ps_prochandle *Pr, long flags);
78 int Psignal(struct ps_prochandle *Pr, int which, int stop);
79 void Psetsignal(struct ps_prochandle *Pr, const sigset_t *set);
80 int Pfault(struct ps_prochandle *Pr, int which, int stop);
81 void Psetfault(struct ps_prochandle *Pr, const fltset_t *set);
82 int Psysentry(struct ps_prochandle *Pr, int which, int stop);
83 void Psetsysentry(struct ps_prochandle *Pr, const sysset_t *set);
84 int Psysexit(struct ps_prochandle *Pr, int which, int stop);
85 void Psetsysexit(struct ps_prochandle *Pr, const sysset_t *set);
86 int Plwp_iter(struct ps_prochandle *Pr, proc_lwp_f *func, void *cd);
87 int Psyscall(struct ps_prochandle *Pr, sysret_t *,
88 int sysindex, uint_t nargs, argdes_t *argp);

90 struct ps_lwphandle *Lgrab(struct ps_prochandle *P, lwpid_t lwpid, int *perr);
91 const char *Lgrab_error(int error);
92 struct ps_prochandle *Lprochandle(struct ps_lwphandle *Lwp);
93 void Lfree(struct ps_lwphandle *Lwp);
94 int Lctlfd(struct ps_lwphandle *Lwp);
95 int Lwait(struct ps_lwphandle *Lwp, uint_t msec);
96 int Lstop(struct ps_lwphandle *Lwp, uint_t msec);
97 int Ldstop(struct ps_lwphandle *Lwp);
98 int Lstate(struct ps_lwphandle *Lwp);
99 const lwpsinfo_t *Lpsinfo(struct ps_lwphandle *Lwp);
100 const lwpstatus_t *Lstatus(struct ps_lwphandle *Lwp);
101 int Lgetareg(struct ps_lwphandle *Lwp, int regno, prgreg_t *preg);
102 int Lputareg(struct ps_lwphandle *Lwp, int regno, prgreg_t reg);
103 int Lsetrun(struct ps_lwphandle *Lwp, int sig, int flags);
104 int Lclearsig(struct ps_lwphandle *Lwp);
105 int Lclearfault(struct ps_lwphandle *Lwp);
106 int Lxecbkpt(struct ps_lwphandle *Lwp, ulong_t saved);
107 int Lxecwapt(struct ps_lwphandle *Lwp, const prwatch_t *wp);
108 void Lsync(struct ps_lwphandle *Lwp);

110 /* Plwpregs.c */
111 int Plwp_getregs(struct ps_prochandle *Pr, lwpid_t i, prgregset_t gr);
112 int Plwp_setregs(struct ps_prochandle *Pr, lwpid_t i, const prgregset_t gr);
113 int Plwp_getfpregs(struct ps_prochandle *Pr, lwpid_t i, prfpregset_t *fp);
114 int Plwp_setfpregs(struct ps_prochandle *Pr, lwpid_t i, const prfpregset_t *fp);
115 #if defined(sparc) || defined(__sparc)
115 int Plwp_getxregs(struct ps_prochandle *Pr, lwpid_t i, prxregset_t *xr);
116 int Plwp_setxregs(struct ps_prochandle *Pr, lwpid_t i, const prxregset_t *xr);
117 #if defined(__sparcv9)
118 int Plwp_getasrs(struct ps_prochandle *Pr, lwpid_t i, asrset_t asrs);
119 int Plwp_setasrs(struct ps_prochandle *Pr, lwpid_t i, const asrset_t asrs);
120 #endif /* __sparcv9 */
122 #endif /* __sparc */
121 int Plwp_getpsinfo(struct ps_prochandle *Pr, lwpid_t i, lwpsinfo_t *lps);

123 /* Pcore.c */
124 struct ps_prochandle *Pfgrab_core(int fd, const char *aout, int *perr);
125 struct ps_prochandle *Pgrab_core(const char *core, const char *aout,

new/usr/src/lib/libproc/common/llib-lproc 3

126 int gflag, int *perr);

128 /* Pisprocdir.c */
129 int Pisprocdir(struct ps_prochandle *Pr, const char *dir);

131 /* Pservice.c */
132 ps_err_e ps_pdmodel(struct ps_prochandle *Pr, int *modelp);
133 ps_err_e ps_pread(struct ps_prochandle *Pr,
134 psaddr_t addr, void *buf, size_t size);
135 ps_err_e ps_pwrite(struct ps_prochandle *Pr,
136 psaddr_t addr, const void *buf, size_t size);
137 ps_err_e ps_pdread(struct ps_prochandle *Pr,
138 psaddr_t addr, void *buf, size_t size);
139 ps_err_e ps_pdwrite(struct ps_prochandle *Pr,
140 psaddr_t addr, const void *buf, size_t size);
141 ps_err_e ps_ptread(struct ps_prochandle *Pr,
142 psaddr_t addr, void *buf, size_t size);
143 ps_err_e ps_ptwrite(struct ps_prochandle *Pr,
144 psaddr_t addr, const void *buf, size_t size);
145 ps_err_e ps_pstop(struct ps_prochandle *Pr);
146 ps_err_e ps_pcontinue(struct ps_prochandle *Pr);
147 ps_err_e ps_lstop(struct ps_prochandle *Pr, lwpid_t lwpid);
148 ps_err_e ps_lcontinue(struct ps_prochandle *Pr, lwpid_t lwpid);
149 ps_err_e ps_lgetregs(struct ps_prochandle *Pr,
150 lwpid_t lwpid, prgregset_t regs);
151 ps_err_e ps_lsetregs(struct ps_prochandle *Pr,
152 lwpid_t lwpid, const prgregset_t regs);
153 ps_err_e ps_lgetfpregs(struct ps_prochandle *Pr,
154 lwpid_t lwpid, prfpregset_t *regs);
155 ps_err_e ps_lsetfpregs(struct ps_prochandle *Pr,
156 lwpid_t lwpid, const prfpregset_t *regs);
157 #if defined(sparc) || defined(__sparc)
158 ps_err_e ps_lgetxregsize(struct ps_prochandle *Pr,
159 lwpid_t lwpid, int *xrsize);
160 ps_err_e ps_lgetxregs(struct ps_prochandle *Pr,
161 lwpid_t lwpid, caddr_t xregs);
162 ps_err_e ps_lsetxregs(struct ps_prochandle *Pr,
163 lwpid_t lwpid, caddr_t xregs);
164 #endif /* sparc */
165 #if defined(__i386) || defined(__amd64)
166 ps_err_e ps_lgetLDT(struct ps_prochandle *Pr,
167 lwpid_t lwpid, struct ssd *ldt);
168 #endif /* __i386 || __amd6464 */
169 void ps_plog(const char *fmt, ...);

171 /* Psymtab.c */
172 void Pupdate_maps(struct ps_prochandle *Pr);
173 void Pupdate_syms(struct ps_prochandle *Pr);
174 rd_agent_t *Prd_agent(struct ps_prochandle *Pr);
175 const prmap_t *Paddr_to_map(struct ps_prochandle *Pr, uintptr_t addr);
176 const prmap_t *Paddr_to_text_map(struct ps_prochandle *Pr, uintptr_t addr);
177 const prmap_t *Pname_to_map(struct ps_prochandle *Pr, const char *name);
178 const prmap_t *Plmid_to_map(struct ps_prochandle *Pr, Lmid_t lmid,
179 const char *name);
180 int Plookup_by_addr(struct ps_prochandle *Pr, uintptr_t addr,
181 char *sym_name_buffer, size_t bufsize, GElf_Sym *symbolp);
182 int Plookup_by_name(struct ps_prochandle *Pr,
183 const char *object_name, const char *symbol_name,
184 GElf_Sym *sym);
185 int Plookup_by_lmid(struct ps_prochandle *Pr,
186 Lmid_t lmid, const char *object_name, const char *symbol_name,
187 GElf_Sym *sym);
188 const rd_loadobj_t *Paddr_to_loadobj(struct ps_prochandle *, uintptr_t);
189 const rd_loadobj_t *Pname_to_loadobj(struct ps_prochandle *, const char *);
190 const rd_loadobj_t *Plmid_to_loadobj(struct ps_prochandle *, Lmid_t,
191 const char *);

new/usr/src/lib/libproc/common/llib-lproc 4

192 int Pmapping_iter(struct ps_prochandle *Pr, proc_map_f *func, void *cd);
193 int Pmapping_iter_resolved(struct ps_prochandle *Pr, proc_map_f *func,
194 void *cd);
195 int Pobject_iter(struct ps_prochandle *Pr, proc_map_f *func, void *cd);
196 int Pobject_iter_resolved(struct ps_prochandle *Pr, proc_map_f *func,
197 void *cd);
198 char *Pobjname(struct ps_prochandle *Pr, uintptr_t addr,
199 char *buffer, size_t bufsize);
200 char *Pobjname_resolved(struct ps_prochandle *Pr, uintptr_t addr,
201 char *buffer, size_t bufsize);
202 int Plmid(struct ps_prochandle *Pr, uintptr_t addr, Lmid_t *lmidp);
203 int Psymbol_iter(struct ps_prochandle *Pr, const char *object_name,
204 int which, int type, proc_sym_f *func, void *cd);
205 int Psymbol_iter_by_lmid(struct ps_prochandle *Pr, Lmid_t lmid,
206 const char *object_name, int which, int type,
207 proc_sym_f *func, void *cd);
208 char *Pgetenv(struct ps_prochandle *Pr, const char *name,
209 char *buffer, size_t bufsize);
210 char *Pplatform(struct ps_prochandle *Pr, char *s, size_t n);
211 int Puname(struct ps_prochandle *Pr, struct utsname *u);
212 char *Pzonename(struct ps_prochandle *Pr, char *s, size_t n);
213 char *Pfindobj(struct ps_prochandle *Pr, const char *path,
214 char *s, size_t n);
215 char *Pexecname(struct ps_prochandle *Pr, char *buffer, size_t bufsize);
216 void Preset_maps(struct ps_prochandle *Pr);

218 ps_err_e ps_pglobal_lookup(struct ps_prochandle *Pr,
219 const char *object_name, const char *sym_name,
220 psaddr_t *sym_addr);

222 ps_err_e ps_pglobal_sym(struct ps_prochandle *Pr,
223 const char *object_name, const char *sym_name,
224 ps_sym_t *symp);

226 long Pgetauxval(struct ps_prochandle *Pr, int type);
227 const auxv_t *Pgetauxvec(struct ps_prochandle *Pr);
228 ps_err_e ps_pauxv(struct ps_prochandle *Pr, const auxv_t **aux);

230 /* Putil.c */
231 void Perror_printf(struct ps_prochandle *Pr, const char *format, ...);

233 /* pr_door.c */
234 int pr_door_info(struct ps_prochandle *Pr, int did, door_info_t *di);

236 /* pr_exit.c */
237 int pr_exit(struct ps_prochandle *Pr, int status);
238 int pr_lwp_exit(struct ps_prochandle *Pr);

240 /* pr_fcntl.c */
241 int pr_fcntl(struct ps_prochandle *Pr, int fd, int cmd, void *argp);

243 /* pr_getitimer.c */
244 int pr_getitimer(struct ps_prochandle *Pr,
245 int which, struct itimerval *itv);
246 int pr_setitimer(struct ps_prochandle *Pr,
247 int which, const struct itimerval *itv, struct itimerval *oitv);

249 /* pr_getrctl.c */
250 int pr_getrctl(struct ps_prochandle *Pr, const char *rname,
251 rctlblk_t *old_blk, rctlblk_t *new_blk, int rflag);
252 int pr_setrctl(struct ps_prochandle *Pr, const char *rname,
253 rctlblk_t *old_blk, rctlblk_t *new_blk, int rflag);
254 int pr_setprojrctl(struct ps_prochandle *Pr, const char *rname,
255 rctlblk_t *new_blk, size_t size, int rflag);

257 /* pr_getrlimit.c */

new/usr/src/lib/libproc/common/llib-lproc 5

258 int pr_getrlimit(struct ps_prochandle *Pr,
259 int resource, struct rlimit *rlp);
260 int pr_setrlimit(struct ps_prochandle *Pr,
261 int resource, const struct rlimit *rlp);
262 int pr_getrlimit64(struct ps_prochandle *Pr,
263 int resource, struct rlimit64 *rlp);
264 int pr_setrlimit64(struct ps_prochandle *Pr,
265 int resource, const struct rlimit64 *rlp);

267 /* pr_getsockname.c */
268 int pr_getsockname(struct ps_prochandle *Pr,
269 int sock, struct sockaddr *name, socklen_t *namelen);
270 int pr_getpeername(struct ps_prochandle *Pr,
271 int sock, struct sockaddr *name, socklen_t *namelen);

273 /* pr_ioctl.c */
274 int pr_ioctl(struct ps_prochandle *Pr,
275 int fd, int code, void *buf, size_t size);

277 /* pr_lseek.c */
278 off_t pr_lseek(struct ps_prochandle *Pr,
279 int filedes, off_t offset, int whence);
280 offset_t pr_llseek(struct ps_prochandle *Pr,
281 int filedes, offset_t offset, int whence);

283 /* pr_memcntl.c */
284 int pr_memcntl(struct ps_prochandle *Pr,
285 caddr_t addr, size_t len, int cmd, caddr_t arg, int attr, int mask);

287 /* pr_mmap.c */
288 void *pr_mmap(struct ps_prochandle *Pr,
289 void *addr, size_t len, int prot, int flags, int fd, off_t off);
290 int pr_munmap(struct ps_prochandle *Pr,
291 void *addr, size_t len);
292 void *pr_zmap(struct ps_prochandle *Pr,
293 void *addr, size_t len, int prot, int flags);

295 /* pr_open.c */
296 int pr_open(struct ps_prochandle *Pr,
297 const char *filename, int flags, mode_t mode);
298 int pr_creat(struct ps_prochandle *Pr,
299 const char *filename, mode_t mode);
300 int pr_close(struct ps_prochandle *Pr, int fd);
301 int pr_access(struct ps_prochandle *Pr, const char *path, int amode);

303 /* pr_pbind.c */
304 int pr_processor_bind(struct ps_prochandle *Pr, idtype_t, id_t, int, int *);

306 /* pr_rename.c */
307 int pr_rename(struct ps_prochandle *Pr, const char *old, const char *new);
308 int pr_link(struct ps_prochandle *Pr, const char *exist, const char *new);
309 int pr_unlink(struct ps_prochandle *Pr, const char *);

311 /* pr_sigaction.c */
312 int pr_sigaction(struct ps_prochandle *Pr,
313 int sig, const struct sigaction *act, struct sigaction *oact);

315 /* pr_stat.c */
316 int pr_stat(struct ps_prochandle *Pr, const char *path, struct stat *buf);
317 int pr_lstat(struct ps_prochandle *Pr, const char *path, struct stat *buf);
318 int pr_fstat(struct ps_prochandle *Pr, int fd, struct stat *buf);
319 int pr_stat64(struct ps_prochandle *Pr, const char *path,
320 struct stat64 *buf);
321 int pr_lstat64(struct ps_prochandle *Pr, const char *path,
322 struct stat64 *buf);
323 int pr_fstat64(struct ps_prochandle *Pr, int fd, struct stat64 *buf);

new/usr/src/lib/libproc/common/llib-lproc 6

325 /* pr_statvfs.c */
326 int pr_statvfs(struct ps_prochandle *Pr, const char *path, statvfs_t *buf);
327 int pr_fstatvfs(struct ps_prochandle *Pr, int fd, statvfs_t *buf);

329 /* pr_tasksys.c */
330 projid_t pr_getprojid(struct ps_prochandle *Pr);
331 taskid_t pr_gettaskid(struct ps_prochandle *Pr);
332 taskid_t pr_settaskid(struct ps_prochandle *Pr, projid_t project, int flags);

334 /* pr_waitid.c */
335 int pr_waitid(struct ps_prochandle *Pr,
336 idtype_t idtype, id_t id, siginfo_t *infop, int options);

338 /* proc_get_info.c */
339 int proc_get_cred(pid_t pid, prcred_t *credp, int ngroups);
340 prpriv_t *proc_get_priv(pid_t pid);
341 int proc_get_psinfo(pid_t pid, psinfo_t *psp);
342 int proc_get_status(pid_t pid, pstatus_t *psp);
343 int proc_get_auxv(pid_t pid, auxv_t *pauxv, int naux);

345 /* proc_names.c */
346 char *proc_fltname(int flt, char *buf, size_t bufsz);
347 char *proc_signame(int sig, char *buf, size_t bufsz);
348 char *proc_sysname(int sys, char *buf, size_t bufsz);

350 int proc_str2flt(const char *str, int *fltnum);
351 int proc_str2sig(const char *str, int *signum);
352 int proc_str2sys(const char *str, int *sysnum);

354 char *proc_fltset2str(const fltset_t *set, const char *delim, int members,
355 char *buf, size_t nbytes);
356 char *proc_sigset2str(const sigset_t *set, const char *delim, int members,
357 char *buf, size_t nbytes);
358 char *proc_sysset2str(const sysset_t *set, const char *delim, int members,
359 char *buf, size_t nbytes);

361 char *proc_str2fltset(const char *str, const char *delim, int members,
362 fltset_t *set);
363 char *proc_str2sigset(const char *str, const char *delim, int members,
364 sigset_t *set);
365 char *proc_str2sysset(const char *str, const char *delim, int members,
366 sysset_t *set);

368 int proc_walk(proc_walk_f *func, void *arg, int flags);

370 /* proc_arg.c */
371 struct ps_prochandle *proc_arg_grab(const char *arg,
372 int oflag, int gflag, int *perr);

374 pid_t proc_arg_psinfo(const char *arg, int oflag, psinfo_t *psp, int *perr);
375 void proc_unctrl_psinfo(psinfo_t *psp);

377 /* proc_set.c */
378 int Psetcred(struct ps_prochandle *Pr, const prcred_t *pcred);

380 /* Pstack.c */
381 int Pstack_iter(struct ps_prochandle *Pr,
382 const prgregset_t regs, proc_stack_f *func, void *arg);

384 /* Pisadep.c */
385 const char *Ppltdest(struct ps_prochandle *Pr, uintptr_t addr);

new/usr/src/uts/common/fs/proc/prcontrol.c 1

**
 57418 Wed Jan 23 13:19:05 2013
new/usr/src/uts/common/fs/proc/prcontrol.c
XXX AVX procfs
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <sys/types.h>
28 #include <sys/uio.h>
29 #include <sys/param.h>
30 #include <sys/cmn_err.h>
31 #include <sys/cred.h>
32 #include <sys/policy.h>
33 #include <sys/debug.h>
34 #include <sys/errno.h>
35 #include <sys/file.h>
36 #include <sys/inline.h>
37 #include <sys/kmem.h>
38 #include <sys/proc.h>
39 #include <sys/brand.h>
40 #include <sys/regset.h>
41 #include <sys/sysmacros.h>
42 #include <sys/systm.h>
43 #include <sys/vfs.h>
44 #include <sys/vnode.h>
45 #include <sys/signal.h>
46 #include <sys/auxv.h>
47 #include <sys/user.h>
48 #include <sys/class.h>
49 #include <sys/fault.h>
50 #include <sys/syscall.h>
51 #include <sys/procfs.h>
52 #include <sys/zone.h>
53 #include <sys/copyops.h>
54 #include <sys/schedctl.h>
55 #include <vm/as.h>
56 #include <vm/seg.h>
57 #include <fs/proc/prdata.h>
58 #include <sys/contract/process_impl.h>

60 static void pr_settrace(proc_t *, sigset_t *);
61 static int pr_setfpregs(prnode_t *, prfpregset_t *);

new/usr/src/uts/common/fs/proc/prcontrol.c 2

62 static int pr_setxregs(prnode_t *, prxregset_t *);
63 #endif /* ! codereview */
64 #if defined(__sparc)
62 static int pr_setxregs(prnode_t *, prxregset_t *);
65 static int pr_setasrs(prnode_t *, asrset_t);
66 #endif
67 static int pr_setvaddr(prnode_t *, caddr_t);
68 static int pr_clearsig(prnode_t *);
69 static int pr_clearflt(prnode_t *);
70 static int pr_watch(prnode_t *, prwatch_t *, int *);
71 static int pr_agent(prnode_t *, prgregset_t, int *);
72 static int pr_rdwr(proc_t *, enum uio_rw, priovec_t *);
73 static int pr_scred(proc_t *, prcred_t *, cred_t *, boolean_t);
74 static int pr_spriv(proc_t *, prpriv_t *, cred_t *);
75 static int pr_szoneid(proc_t *, zoneid_t, cred_t *);
76 static void pauselwps(proc_t *);
77 static void unpauselwps(proc_t *);

79 typedef union {
80 long sig; /* PCKILL, PCUNKILL */
81 long nice; /* PCNICE */
82 long timeo; /* PCTWSTOP */
83 ulong_t flags; /* PCRUN, PCSET, PCUNSET */
84 caddr_t vaddr; /* PCSVADDR */
85 siginfo_t siginfo; /* PCSSIG */
86 sigset_t sigset; /* PCSTRACE, PCSHOLD */
87 fltset_t fltset; /* PCSFAULT */
88 sysset_t sysset; /* PCSENTRY, PCSEXIT */
89 prgregset_t prgregset; /* PCSREG, PCAGENT */
90 prfpregset_t prfpregset; /* PCSFPREG */
91 prxregset_t prxregset; /* PCSXREG */
92 #endif /* ! codereview */
93 #if defined(__sparc)
89 prxregset_t prxregset; /* PCSXREG */
94 asrset_t asrset; /* PCSASRS */
95 #endif
96 prwatch_t prwatch; /* PCWATCH */
97 priovec_t priovec; /* PCREAD, PCWRITE */
98 prcred_t prcred; /* PCSCRED */
99 prpriv_t prpriv; /* PCSPRIV */
100 long przoneid; /* PCSZONE */
101 } arg_t;

103 static int pr_control(long, arg_t *, prnode_t *, cred_t *);

105 static size_t
106 ctlsize(long cmd, size_t resid, arg_t *argp)
107 {
108 size_t size = sizeof (long);
109 size_t rnd;
110 int ngrp;

112 switch (cmd) {
113 case PCNULL:
114 case PCSTOP:
115 case PCDSTOP:
116 case PCWSTOP:
117 case PCCSIG:
118 case PCCFAULT:
119 break;
120 case PCSSIG:
121 size += sizeof (siginfo_t);
122 break;
123 case PCTWSTOP:
124 size += sizeof (long);
125 break;

new/usr/src/uts/common/fs/proc/prcontrol.c 3

126 case PCKILL:
127 case PCUNKILL:
128 case PCNICE:
129 size += sizeof (long);
130 break;
131 case PCRUN:
132 case PCSET:
133 case PCUNSET:
134 size += sizeof (ulong_t);
135 break;
136 case PCSVADDR:
137 size += sizeof (caddr_t);
138 break;
139 case PCSTRACE:
140 case PCSHOLD:
141 size += sizeof (sigset_t);
142 break;
143 case PCSFAULT:
144 size += sizeof (fltset_t);
145 break;
146 case PCSENTRY:
147 case PCSEXIT:
148 size += sizeof (sysset_t);
149 break;
150 case PCSREG:
151 case PCAGENT:
152 size += sizeof (prgregset_t);
153 break;
154 case PCSFPREG:
155 size += sizeof (prfpregset_t);
156 break;
153 #if defined(__sparc)
157 case PCSXREG:
158 size += sizeof (prxregset_t);
159 break;
160 #if defined(__sparc)
161 #endif /* ! codereview */
162 case PCSASRS:
163 size += sizeof (asrset_t);
164 break;
165 #endif
166 case PCWATCH:
167 size += sizeof (prwatch_t);
168 break;
169 case PCREAD:
170 case PCWRITE:
171 size += sizeof (priovec_t);
172 break;
173 case PCSCRED:
174 size += sizeof (prcred_t);
175 break;
176 case PCSCREDX:
177 /*
178 * We cannot derefence the pr_ngroups fields if it
179 * we don’t have enough data.
180 */
181 if (resid < size + sizeof (prcred_t) - sizeof (gid_t))
182 return (0);
183 ngrp = argp->prcred.pr_ngroups;
184 if (ngrp < 0 || ngrp > ngroups_max)
185 return (0);

187 /* The result can be smaller than sizeof (prcred_t) */
188 size += sizeof (prcred_t) - sizeof (gid_t);
189 size += ngrp * sizeof (gid_t);
190 break;

new/usr/src/uts/common/fs/proc/prcontrol.c 4

191 case PCSPRIV:
192 if (resid >= size + sizeof (prpriv_t))
193 size += priv_prgetprivsize(&argp->prpriv);
194 else
195 return (0);
196 break;
197 case PCSZONE:
198 size += sizeof (long);
199 break;
200 default:
201 return (0);
202 }

204 /* Round up to a multiple of long, unless exact amount written */
205 if (size < resid) {
206 rnd = size & (sizeof (long) - 1);

208 if (rnd != 0)
209 size += sizeof (long) - rnd;
210 }

212 if (size > resid)
213 return (0);
214 return (size);
215 }

217 /*
218 * Control operations (lots).
219 */
220 int
221 prwritectl(vnode_t *vp, uio_t *uiop, cred_t *cr)
222 {
223 #define MY_BUFFER_SIZE \
224 100 > 1 + sizeof (arg_t) / sizeof (long) ? \
225 100 : 1 + sizeof (arg_t) / sizeof (long)
226 long buf[MY_BUFFER_SIZE];
227 long *bufp;
228 size_t resid = 0;
229 size_t size;
230 prnode_t *pnp = VTOP(vp);
231 int error;
232 int locked = 0;

234 while (uiop->uio_resid) {
235 /*
236 * Read several commands in one gulp.
237 */
238 bufp = buf;
239 if (resid) { /* move incomplete command to front of buffer */
240 long *tail;

242 if (resid >= sizeof (buf))
243 break;
244 tail = (long *)((char *)buf + sizeof (buf) - resid);
245 do {
246 *bufp++ = *tail++;
247 } while ((resid -= sizeof (long)) != 0);
248 }
249 resid = sizeof (buf) - ((char *)bufp - (char *)buf);
250 if (resid > uiop->uio_resid)
251 resid = uiop->uio_resid;
252 if (error = uiomove((caddr_t)bufp, resid, UIO_WRITE, uiop))
253 return (error);
254 resid += (char *)bufp - (char *)buf;
255 bufp = buf;

new/usr/src/uts/common/fs/proc/prcontrol.c 5

257 do { /* loop over commands in buffer */
258 long cmd = bufp[0];
259 arg_t *argp = (arg_t *)&bufp[1];

261 size = ctlsize(cmd, resid, argp);
262 if (size == 0) /* incomplete or invalid command */
263 break;
264 /*
265 * Perform the specified control operation.
266 */
267 if (!locked) {
268 if ((error = prlock(pnp, ZNO)) != 0)
269 return (error);
270 locked = 1;
271 }
272 if (error = pr_control(cmd, argp, pnp, cr)) {
273 if (error == -1) /* -1 is timeout */
274 locked = 0;
275 else
276 return (error);
277 }
278 bufp = (long *)((char *)bufp + size);
279 } while ((resid -= size) != 0);

281 if (locked) {
282 prunlock(pnp);
283 locked = 0;
284 }
285 }
286 return (resid? EINVAL : 0);
287 }

289 static int
290 pr_control(long cmd, arg_t *argp, prnode_t *pnp, cred_t *cr)
291 {
292 prcommon_t *pcp;
293 proc_t *p;
294 int unlocked;
295 int error = 0;

297 if (cmd == PCNULL)
298 return (0);

300 pcp = pnp->pr_common;
301 p = pcp->prc_proc;
302 ASSERT(p != NULL);

304 /* System processes defy control. */
305 if (p->p_flag & SSYS) {
306 prunlock(pnp);
307 return (EBUSY);
308 }

310 switch (cmd) {

312 default:
313 error = EINVAL;
314 break;

316 case PCSTOP: /* direct process or lwp to stop and wait for stop */
317 case PCDSTOP: /* direct process or lwp to stop, don’t wait */
318 case PCWSTOP: /* wait for process or lwp to stop */
319 case PCTWSTOP: /* wait for process or lwp to stop, with timeout */
320 {
321 time_t timeo;

new/usr/src/uts/common/fs/proc/prcontrol.c 6

323 /*
324 * Can’t apply to a system process.
325 */
326 if (p->p_as == &kas) {
327 error = EBUSY;
328 break;
329 }

331 if (cmd == PCSTOP || cmd == PCDSTOP)
332 pr_stop(pnp);

334 if (cmd == PCDSTOP)
335 break;

337 /*
338 * If an lwp is waiting for itself or its process,
339 * don’t wait. The stopped lwp would never see the
340 * fact that it is stopped.
341 */
342 if ((pcp->prc_flags & PRC_LWP)?
343 (pcp->prc_thread == curthread) : (p == curproc)) {
344 if (cmd == PCWSTOP || cmd == PCTWSTOP)
345 error = EBUSY;
346 break;
347 }

349 timeo = (cmd == PCTWSTOP)? (time_t)argp->timeo : 0;
350 if ((error = pr_wait_stop(pnp, timeo)) != 0)
351 return (error);

353 break;
354 }

356 case PCRUN: /* make lwp or process runnable */
357 error = pr_setrun(pnp, argp->flags);
358 break;

360 case PCSTRACE: /* set signal trace mask */
361 pr_settrace(p, &argp->sigset);
362 break;

364 case PCSSIG: /* set current signal */
365 error = pr_setsig(pnp, &argp->siginfo);
366 if (argp->siginfo.si_signo == SIGKILL && error == 0) {
367 prunlock(pnp);
368 pr_wait_die(pnp);
369 return (-1);
370 }
371 break;

373 case PCKILL: /* send signal */
374 error = pr_kill(pnp, (int)argp->sig, cr);
375 if (error == 0 && argp->sig == SIGKILL) {
376 prunlock(pnp);
377 pr_wait_die(pnp);
378 return (-1);
379 }
380 break;

382 case PCUNKILL: /* delete a pending signal */
383 error = pr_unkill(pnp, (int)argp->sig);
384 break;

386 case PCNICE: /* set nice priority */
387 error = pr_nice(p, (int)argp->nice, cr);
388 break;

new/usr/src/uts/common/fs/proc/prcontrol.c 7

390 case PCSENTRY: /* set syscall entry bit mask */
391 case PCSEXIT: /* set syscall exit bit mask */
392 pr_setentryexit(p, &argp->sysset, cmd == PCSENTRY);
393 break;

395 case PCSET: /* set process flags */
396 error = pr_set(p, argp->flags);
397 break;

399 case PCUNSET: /* unset process flags */
400 error = pr_unset(p, argp->flags);
401 break;

403 case PCSREG: /* set general registers */
404 {
405 kthread_t *t = pr_thread(pnp);

407 if (!ISTOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t)) {
408 thread_unlock(t);
409 error = EBUSY;
410 } else {
411 thread_unlock(t);
412 mutex_exit(&p->p_lock);
413 prsetprregs(ttolwp(t), argp->prgregset, 0);
414 mutex_enter(&p->p_lock);
415 }
416 break;
417 }

419 case PCSFPREG: /* set floating-point registers */
420 error = pr_setfpregs(pnp, &argp->prfpregset);
421 break;

423 case PCSXREG: /* set extra registers */
157 #if defined(__sparc)
424 error = pr_setxregs(pnp, &argp->prxregset);
159 #else
160 error = EINVAL;
161 #endif
425 break;

427 #if defined(__sparc)
428 case PCSASRS: /* set ancillary state registers */
429 error = pr_setasrs(pnp, argp->asrset);
430 break;
431 #endif

433 case PCSVADDR: /* set virtual address at which to resume */
434 error = pr_setvaddr(pnp, argp->vaddr);
435 break;

437 case PCSHOLD: /* set signal-hold mask */
438 pr_sethold(pnp, &argp->sigset);
439 break;

441 case PCSFAULT: /* set mask of traced faults */
442 pr_setfault(p, &argp->fltset);
443 break;

445 case PCCSIG: /* clear current signal */
446 error = pr_clearsig(pnp);
447 break;

449 case PCCFAULT: /* clear current fault */
450 error = pr_clearflt(pnp);

new/usr/src/uts/common/fs/proc/prcontrol.c 8

451 break;

453 case PCWATCH: /* set or clear watched areas */
454 error = pr_watch(pnp, &argp->prwatch, &unlocked);
455 if (error && unlocked)
456 return (error);
457 break;

459 case PCAGENT: /* create the /proc agent lwp in the target process */
460 error = pr_agent(pnp, argp->prgregset, &unlocked);
461 if (error && unlocked)
462 return (error);
463 break;

465 case PCREAD: /* read from the address space */
466 error = pr_rdwr(p, UIO_READ, &argp->priovec);
467 break;

469 case PCWRITE: /* write to the address space */
470 error = pr_rdwr(p, UIO_WRITE, &argp->priovec);
471 break;

473 case PCSCRED: /* set the process credentials */
474 case PCSCREDX:
475 error = pr_scred(p, &argp->prcred, cr, cmd == PCSCREDX);
476 break;

478 case PCSPRIV: /* set the process privileges */
479 error = pr_spriv(p, &argp->prpriv, cr);
480 break;
481 case PCSZONE: /* set the process’s zoneid credentials */
482 error = pr_szoneid(p, (zoneid_t)argp->przoneid, cr);
483 break;
484 }

486 if (error)
487 prunlock(pnp);
488 return (error);
489 }

491 #ifdef _SYSCALL32_IMPL

493 typedef union {
494 int32_t sig; /* PCKILL, PCUNKILL */
495 int32_t nice; /* PCNICE */
496 int32_t timeo; /* PCTWSTOP */
497 uint32_t flags; /* PCRUN, PCSET, PCUNSET */
498 caddr32_t vaddr; /* PCSVADDR */
499 siginfo32_t siginfo; /* PCSSIG */
500 sigset_t sigset; /* PCSTRACE, PCSHOLD */
501 fltset_t fltset; /* PCSFAULT */
502 sysset_t sysset; /* PCSENTRY, PCSEXIT */
503 prgregset32_t prgregset; /* PCSREG, PCAGENT */
504 prfpregset32_t prfpregset; /* PCSFPREG */
242 #if defined(__sparc)
505 prxregset_t prxregset; /* PCSXREG */
244 #endif
506 prwatch32_t prwatch; /* PCWATCH */
507 priovec32_t priovec; /* PCREAD, PCWRITE */
508 prcred32_t prcred; /* PCSCRED */
509 prpriv_t prpriv; /* PCSPRIV */
510 int32_t przoneid; /* PCSZONE */
511 } arg32_t;

513 static int pr_control32(int32_t, arg32_t *, prnode_t *, cred_t *);
514 static int pr_setfpregs32(prnode_t *, prfpregset32_t *);

new/usr/src/uts/common/fs/proc/prcontrol.c 9

516 /*
517 * Note that while ctlsize32() can use argp, it must do so only in a way
518 * that assumes 32-bit rather than 64-bit alignment as argp is a pointer
519 * to an array of 32-bit values and only 32-bit alignment is ensured.
520 */
521 static size_t
522 ctlsize32(int32_t cmd, size_t resid, arg32_t *argp)
523 {
524 size_t size = sizeof (int32_t);
525 size_t rnd;
526 int ngrp;

528 switch (cmd) {
529 case PCNULL:
530 case PCSTOP:
531 case PCDSTOP:
532 case PCWSTOP:
533 case PCCSIG:
534 case PCCFAULT:
535 break;
536 case PCSSIG:
537 size += sizeof (siginfo32_t);
538 break;
539 case PCTWSTOP:
540 size += sizeof (int32_t);
541 break;
542 case PCKILL:
543 case PCUNKILL:
544 case PCNICE:
545 size += sizeof (int32_t);
546 break;
547 case PCRUN:
548 case PCSET:
549 case PCUNSET:
550 size += sizeof (uint32_t);
551 break;
552 case PCSVADDR:
553 size += sizeof (caddr32_t);
554 break;
555 case PCSTRACE:
556 case PCSHOLD:
557 size += sizeof (sigset_t);
558 break;
559 case PCSFAULT:
560 size += sizeof (fltset_t);
561 break;
562 case PCSENTRY:
563 case PCSEXIT:
564 size += sizeof (sysset_t);
565 break;
566 case PCSREG:
567 case PCAGENT:
568 size += sizeof (prgregset32_t);
569 break;
570 case PCSFPREG:
571 size += sizeof (prfpregset32_t);
572 break;
312 #if defined(__sparc)
573 case PCSXREG:
574 size += sizeof (prxregset_t);
575 break;
316 #endif
576 case PCWATCH:
577 size += sizeof (prwatch32_t);
578 break;

new/usr/src/uts/common/fs/proc/prcontrol.c 10

579 case PCREAD:
580 case PCWRITE:
581 size += sizeof (priovec32_t);
582 break;
583 case PCSCRED:
584 size += sizeof (prcred32_t);
585 break;
586 case PCSCREDX:
587 /*
588 * We cannot derefence the pr_ngroups fields if it
589 * we don’t have enough data.
590 */
591 if (resid < size + sizeof (prcred32_t) - sizeof (gid32_t))
592 return (0);
593 ngrp = argp->prcred.pr_ngroups;
594 if (ngrp < 0 || ngrp > ngroups_max)
595 return (0);

597 /* The result can be smaller than sizeof (prcred32_t) */
598 size += sizeof (prcred32_t) - sizeof (gid32_t);
599 size += ngrp * sizeof (gid32_t);
600 break;
601 case PCSPRIV:
602 if (resid >= size + sizeof (prpriv_t))
603 size += priv_prgetprivsize(&argp->prpriv);
604 else
605 return (0);
606 break;
607 case PCSZONE:
608 size += sizeof (int32_t);
609 break;
610 default:
611 return (0);
612 }

614 /* Round up to a multiple of int32_t */
615 rnd = size & (sizeof (int32_t) - 1);

617 if (rnd != 0)
618 size += sizeof (int32_t) - rnd;

620 if (size > resid)
621 return (0);
622 return (size);
623 }

______unchanged_portion_omitted_

711 static int
712 pr_control32(int32_t cmd, arg32_t *argp, prnode_t *pnp, cred_t *cr)
713 {
714 prcommon_t *pcp;
715 proc_t *p;
716 int unlocked;
717 int error = 0;

719 if (cmd == PCNULL)
720 return (0);

722 pcp = pnp->pr_common;
723 p = pcp->prc_proc;
724 ASSERT(p != NULL);

726 if (p->p_flag & SSYS) {
727 prunlock(pnp);
728 return (EBUSY);
729 }

new/usr/src/uts/common/fs/proc/prcontrol.c 11

731 switch (cmd) {

733 default:
734 error = EINVAL;
735 break;

737 case PCSTOP: /* direct process or lwp to stop and wait for stop */
738 case PCDSTOP: /* direct process or lwp to stop, don’t wait */
739 case PCWSTOP: /* wait for process or lwp to stop */
740 case PCTWSTOP: /* wait for process or lwp to stop, with timeout */
741 {
742 time_t timeo;

744 /*
745 * Can’t apply to a system process.
746 */
747 if (p->p_as == &kas) {
748 error = EBUSY;
749 break;
750 }

752 if (cmd == PCSTOP || cmd == PCDSTOP)
753 pr_stop(pnp);

755 if (cmd == PCDSTOP)
756 break;

758 /*
759 * If an lwp is waiting for itself or its process,
760 * don’t wait. The lwp will never see the fact that
761 * itself is stopped.
762 */
763 if ((pcp->prc_flags & PRC_LWP)?
764 (pcp->prc_thread == curthread) : (p == curproc)) {
765 if (cmd == PCWSTOP || cmd == PCTWSTOP)
766 error = EBUSY;
767 break;
768 }

770 timeo = (cmd == PCTWSTOP)? (time_t)argp->timeo : 0;
771 if ((error = pr_wait_stop(pnp, timeo)) != 0)
772 return (error);

774 break;
775 }

777 case PCRUN: /* make lwp or process runnable */
778 error = pr_setrun(pnp, (ulong_t)argp->flags);
779 break;

781 case PCSTRACE: /* set signal trace mask */
782 pr_settrace(p, &argp->sigset);
783 break;

785 case PCSSIG: /* set current signal */
786 if (PROCESS_NOT_32BIT(p))
787 error = EOVERFLOW;
788 else {
789 int sig = (int)argp->siginfo.si_signo;
790 siginfo_t siginfo;

792 bzero(&siginfo, sizeof (siginfo));
793 siginfo_32tok(&argp->siginfo, (k_siginfo_t *)&siginfo);
794 error = pr_setsig(pnp, &siginfo);
795 if (sig == SIGKILL && error == 0) {

new/usr/src/uts/common/fs/proc/prcontrol.c 12

796 prunlock(pnp);
797 pr_wait_die(pnp);
798 return (-1);
799 }
800 }
801 break;

803 case PCKILL: /* send signal */
804 error = pr_kill(pnp, (int)argp->sig, cr);
805 if (error == 0 && argp->sig == SIGKILL) {
806 prunlock(pnp);
807 pr_wait_die(pnp);
808 return (-1);
809 }
810 break;

812 case PCUNKILL: /* delete a pending signal */
813 error = pr_unkill(pnp, (int)argp->sig);
814 break;

816 case PCNICE: /* set nice priority */
817 error = pr_nice(p, (int)argp->nice, cr);
818 break;

820 case PCSENTRY: /* set syscall entry bit mask */
821 case PCSEXIT: /* set syscall exit bit mask */
822 pr_setentryexit(p, &argp->sysset, cmd == PCSENTRY);
823 break;

825 case PCSET: /* set process flags */
826 error = pr_set(p, (long)argp->flags);
827 break;

829 case PCUNSET: /* unset process flags */
830 error = pr_unset(p, (long)argp->flags);
831 break;

833 case PCSREG: /* set general registers */
834 if (PROCESS_NOT_32BIT(p))
835 error = EOVERFLOW;
836 else {
837 kthread_t *t = pr_thread(pnp);

839 if (!ISTOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t)) {
840 thread_unlock(t);
841 error = EBUSY;
842 } else {
843 prgregset_t prgregset;
844 klwp_t *lwp = ttolwp(t);

846 thread_unlock(t);
847 mutex_exit(&p->p_lock);
848 prgregset_32ton(lwp, argp->prgregset,
849 prgregset);
850 prsetprregs(lwp, prgregset, 0);
851 mutex_enter(&p->p_lock);
852 }
853 }
854 break;

856 case PCSFPREG: /* set floating-point registers */
857 if (PROCESS_NOT_32BIT(p))
858 error = EOVERFLOW;
859 else
860 error = pr_setfpregs32(pnp, &argp->prfpregset);
861 break;

new/usr/src/uts/common/fs/proc/prcontrol.c 13

863 case PCSXREG: /* set extra registers */
605 #if defined(__sparc)
864 if (PROCESS_NOT_32BIT(p))
865 error = EOVERFLOW;
866 else
867 error = pr_setxregs(pnp, &argp->prxregset);
610 #else
611 error = EINVAL;
612 #endif
868 break;

870 case PCSVADDR: /* set virtual address at which to resume */
871 if (PROCESS_NOT_32BIT(p))
872 error = EOVERFLOW;
873 else
874 error = pr_setvaddr(pnp,
875 (caddr_t)(uintptr_t)argp->vaddr);
876 break;

878 case PCSHOLD: /* set signal-hold mask */
879 pr_sethold(pnp, &argp->sigset);
880 break;

882 case PCSFAULT: /* set mask of traced faults */
883 pr_setfault(p, &argp->fltset);
884 break;

886 case PCCSIG: /* clear current signal */
887 error = pr_clearsig(pnp);
888 break;

890 case PCCFAULT: /* clear current fault */
891 error = pr_clearflt(pnp);
892 break;

894 case PCWATCH: /* set or clear watched areas */
895 if (PROCESS_NOT_32BIT(p))
896 error = EOVERFLOW;
897 else {
898 prwatch_t prwatch;

900 prwatch.pr_vaddr = argp->prwatch.pr_vaddr;
901 prwatch.pr_size = argp->prwatch.pr_size;
902 prwatch.pr_wflags = argp->prwatch.pr_wflags;
903 prwatch.pr_pad = argp->prwatch.pr_pad;
904 error = pr_watch(pnp, &prwatch, &unlocked);
905 if (error && unlocked)
906 return (error);
907 }
908 break;

910 case PCAGENT: /* create the /proc agent lwp in the target process */
911 if (PROCESS_NOT_32BIT(p))
912 error = EOVERFLOW;
913 else {
914 prgregset_t prgregset;
915 kthread_t *t = pr_thread(pnp);
916 klwp_t *lwp = ttolwp(t);
917 thread_unlock(t);
918 mutex_exit(&p->p_lock);
919 prgregset_32ton(lwp, argp->prgregset, prgregset);
920 mutex_enter(&p->p_lock);
921 error = pr_agent(pnp, prgregset, &unlocked);
922 if (error && unlocked)
923 return (error);

new/usr/src/uts/common/fs/proc/prcontrol.c 14

924 }
925 break;

927 case PCREAD: /* read from the address space */
928 case PCWRITE: /* write to the address space */
929 if (PROCESS_NOT_32BIT(p))
930 error = EOVERFLOW;
931 else {
932 enum uio_rw rw = (cmd == PCREAD)? UIO_READ : UIO_WRITE;
933 priovec_t priovec;

935 priovec.pio_base =
936 (void *)(uintptr_t)argp->priovec.pio_base;
937 priovec.pio_len = (size_t)argp->priovec.pio_len;
938 priovec.pio_offset = (off_t)
939 (uint32_t)argp->priovec.pio_offset;
940 error = pr_rdwr(p, rw, &priovec);
941 }
942 break;

944 case PCSCRED: /* set the process credentials */
945 case PCSCREDX:
946 {
947 /*
948 * All the fields in these structures are exactly the
949 * same and so the structures are compatible. In case
950 * this ever changes, we catch this with the ASSERT
951 * below.
952 */
953 prcred_t *prcred = (prcred_t *)&argp->prcred;

955 #ifndef __lint
956 ASSERT(sizeof (prcred_t) == sizeof (prcred32_t));
957 #endif

959 error = pr_scred(p, prcred, cr, cmd == PCSCREDX);
960 break;
961 }

963 case PCSPRIV: /* set the process privileges */
964 error = pr_spriv(p, &argp->prpriv, cr);
965 break;

967 case PCSZONE: /* set the process’s zoneid */
968 error = pr_szoneid(p, (zoneid_t)argp->przoneid, cr);
969 break;
970 }

972 if (error)
973 prunlock(pnp);
974 return (error);
975 }

______unchanged_portion_omitted_
1698 #endif /* _SYSCALL32_IMPL */

1445 #if defined(__sparc)
1700 /* ARGSUSED */
1701 static int
1702 pr_setxregs(prnode_t *pnp, prxregset_t *prxregset)
1703 {
1704 proc_t *p = pnp->pr_common->prc_proc;
1705 kthread_t *t = pr_thread(pnp); /* returns locked thread */

1707 if (!ISTOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t)) {
1708 thread_unlock(t);
1709 return (EBUSY);

new/usr/src/uts/common/fs/proc/prcontrol.c 15

1710 }
1711 thread_unlock(t);

1713 if (!prhasx(p))
1714 return (EINVAL); /* No extra register support */

1716 /* drop p_lock while touching the lwp’s stack */
1717 mutex_exit(&p->p_lock);
1718 prsetprxregs(ttolwp(t), (caddr_t)prxregset);
1719 mutex_enter(&p->p_lock);

1721 return (0);
1722 }

1724 #if defined(__sparc)
1725 #endif /* ! codereview */
1726 static int
1727 pr_setasrs(prnode_t *pnp, asrset_t asrset)
1728 {
1729 proc_t *p = pnp->pr_common->prc_proc;
1730 kthread_t *t = pr_thread(pnp); /* returns locked thread */

1732 if (!ISTOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t)) {
1733 thread_unlock(t);
1734 return (EBUSY);
1735 }
1736 thread_unlock(t);

1738 /* drop p_lock while touching the lwp’s stack */
1739 mutex_exit(&p->p_lock);
1740 prsetasregs(ttolwp(t), asrset);
1741 mutex_enter(&p->p_lock);

1743 return (0);
1744 }
1745 #endif

1747 static int
1748 pr_setvaddr(prnode_t *pnp, caddr_t vaddr)
1749 {
1750 proc_t *p = pnp->pr_common->prc_proc;
1751 kthread_t *t = pr_thread(pnp); /* returns locked thread */

1753 if (!ISTOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t)) {
1754 thread_unlock(t);
1755 return (EBUSY);
1756 }

1758 /* drop p_lock while touching the lwp’s stack */
1759 thread_unlock(t);
1760 mutex_exit(&p->p_lock);
1761 prsvaddr(ttolwp(t), vaddr);
1762 mutex_enter(&p->p_lock);

1764 return (0);
1765 }

1767 void
1768 pr_sethold(prnode_t *pnp, sigset_t *sp)
1769 {
1770 proc_t *p = pnp->pr_common->prc_proc;
1771 kthread_t *t = pr_thread(pnp); /* returns locked thread */

1773 schedctl_finish_sigblock(t);
1774 sigutok(sp, &t->t_hold);
1775 if (ISWAKEABLE(t) &&

new/usr/src/uts/common/fs/proc/prcontrol.c 16

1776 (fsig(&p->p_sig, t) || fsig(&t->t_sig, t)))
1777 setrun_locked(t);
1778 t->t_sig_check = 1; /* so thread will see new holdmask */
1779 thread_unlock(t);
1780 }

1782 void
1783 pr_setfault(proc_t *p, fltset_t *fltp)
1784 {
1785 prassignset(&p->p_fltmask, fltp);
1786 if (!prisempty(&p->p_fltmask))
1787 p->p_proc_flag |= P_PR_TRACE;
1788 else if (sigisempty(&p->p_sigmask)) {
1789 user_t *up = PTOU(p);
1790 if (up->u_systrap == 0)
1791 p->p_proc_flag &= ~P_PR_TRACE;
1792 }
1793 }

1795 static int
1796 pr_clearsig(prnode_t *pnp)
1797 {
1798 kthread_t *t = pr_thread(pnp); /* returns locked thread */
1799 klwp_t *lwp = ttolwp(t);

1801 thread_unlock(t);
1802 if (lwp->lwp_cursig == SIGKILL)
1803 return (EBUSY);

1805 /*
1806 * Discard current siginfo_t, if any.
1807 */
1808 lwp->lwp_cursig = 0;
1809 lwp->lwp_extsig = 0;
1810 if (lwp->lwp_curinfo) {
1811 siginfofree(lwp->lwp_curinfo);
1812 lwp->lwp_curinfo = NULL;
1813 }

1815 return (0);
1816 }

1818 static int
1819 pr_clearflt(prnode_t *pnp)
1820 {
1821 kthread_t *t = pr_thread(pnp); /* returns locked thread */

1823 thread_unlock(t);
1824 ttolwp(t)->lwp_curflt = 0;

1826 return (0);
1827 }

1829 static int
1830 pr_watch(prnode_t *pnp, prwatch_t *pwp, int *unlocked)
1831 {
1832 proc_t *p = pnp->pr_common->prc_proc;
1833 struct as *as = p->p_as;
1834 uintptr_t vaddr = pwp->pr_vaddr;
1835 size_t size = pwp->pr_size;
1836 int wflags = pwp->pr_wflags;
1837 ulong_t newpage = 0;
1838 struct watched_area *pwa;
1839 int error;

1841 *unlocked = 0;

new/usr/src/uts/common/fs/proc/prcontrol.c 17

1843 /*
1844 * Can’t apply to a system process.
1845 */
1846 if ((p->p_flag & SSYS) || p->p_as == &kas)
1847 return (EBUSY);

1849 /*
1850 * Verify that the address range does not wrap
1851 * and that only the proper flags were specified.
1852 */
1853 if ((wflags & ~WA_TRAPAFTER) == 0)
1854 size = 0;
1855 if (vaddr + size < vaddr ||
1856 (wflags & ~(WA_READ|WA_WRITE|WA_EXEC|WA_TRAPAFTER)) != 0 ||
1857 ((wflags & ~WA_TRAPAFTER) != 0 && size == 0))
1858 return (EINVAL);

1860 /*
1861 * Don’t let the address range go above as->a_userlimit.
1862 * There is no error here, just a limitation.
1863 */
1864 if (vaddr >= (uintptr_t)as->a_userlimit)
1865 return (0);
1866 if (vaddr + size > (uintptr_t)as->a_userlimit)
1867 size = (uintptr_t)as->a_userlimit - vaddr;

1869 /*
1870 * Compute maximum number of pages this will add.
1871 */
1872 if ((wflags & ~WA_TRAPAFTER) != 0) {
1873 ulong_t pagespan = (vaddr + size) - (vaddr & PAGEMASK);
1874 newpage = btopr(pagespan);
1875 if (newpage > 2 * prnwatch)
1876 return (E2BIG);
1877 }

1879 /*
1880 * Force the process to be fully stopped.
1881 */
1882 if (p == curproc) {
1883 prunlock(pnp);
1884 while (holdwatch() != 0)
1885 continue;
1886 if ((error = prlock(pnp, ZNO)) != 0) {
1887 continuelwps(p);
1888 *unlocked = 1;
1889 return (error);
1890 }
1891 } else {
1892 pauselwps(p);
1893 while (pr_allstopped(p, 0) > 0) {
1894 /*
1895 * This cv/mutex pair is persistent even
1896 * if the process disappears after we
1897 * unmark it and drop p->p_lock.
1898 */
1899 kcondvar_t *cv = &pr_pid_cv[p->p_slot];
1900 kmutex_t *mp = &p->p_lock;

1902 prunmark(p);
1903 (void) cv_wait(cv, mp);
1904 mutex_exit(mp);
1905 if ((error = prlock(pnp, ZNO)) != 0) {
1906 /*
1907 * Unpause the process if it exists.

new/usr/src/uts/common/fs/proc/prcontrol.c 18

1908 */
1909 p = pr_p_lock(pnp);
1910 mutex_exit(&pr_pidlock);
1911 if (p != NULL) {
1912 unpauselwps(p);
1913 prunlock(pnp);
1914 }
1915 *unlocked = 1;
1916 return (error);
1917 }
1918 }
1919 }

1921 /*
1922 * Drop p->p_lock in order to perform the rest of this.
1923 * The process is still locked with the P_PR_LOCK flag.
1924 */
1925 mutex_exit(&p->p_lock);

1927 pwa = kmem_alloc(sizeof (struct watched_area), KM_SLEEP);
1928 pwa->wa_vaddr = (caddr_t)vaddr;
1929 pwa->wa_eaddr = (caddr_t)vaddr + size;
1930 pwa->wa_flags = (ulong_t)wflags;

1932 error = ((pwa->wa_flags & ~WA_TRAPAFTER) == 0)?
1933 clear_watched_area(p, pwa) : set_watched_area(p, pwa);

1935 if (p == curproc) {
1936 setallwatch();
1937 mutex_enter(&p->p_lock);
1938 continuelwps(p);
1939 } else {
1940 mutex_enter(&p->p_lock);
1941 unpauselwps(p);
1942 }

1944 return (error);
1945 }

1947 /* jobcontrol stopped, but with a /proc directed stop in effect */
1948 #define JDSTOPPED(t) \
1949 ((t)->t_state == TS_STOPPED && \
1950 (t)->t_whystop == PR_JOBCONTROL && \
1951 ((t)->t_proc_flag & TP_PRSTOP))

1953 /*
1954 * pr_agent() creates the agent lwp. If the process is exiting while
1955 * we are creating an agent lwp, then exitlwps() waits until the
1956 * agent has been created using prbarrier().
1957 */
1958 static int
1959 pr_agent(prnode_t *pnp, prgregset_t prgregset, int *unlocked)
1960 {
1961 proc_t *p = pnp->pr_common->prc_proc;
1962 prcommon_t *pcp;
1963 kthread_t *t;
1964 kthread_t *ct;
1965 klwp_t *clwp;
1966 k_sigset_t smask;
1967 int cid;
1968 void *bufp = NULL;
1969 int error;

1971 *unlocked = 0;

1973 /*

new/usr/src/uts/common/fs/proc/prcontrol.c 19

1974 * Cannot create the /proc agent lwp if :-
1975 * - the process is not fully stopped or directed to stop.
1976 * - there is an agent lwp already.
1977 * - the process has been killed.
1978 * - the process is exiting.
1979 * - it’s a vfork(2) parent.
1980 */
1981 t = prchoose(p); /* returns locked thread */
1982 ASSERT(t != NULL);

1984 if ((!ISTOPPED(t) && !VSTOPPED(t) && !SUSPENDED(t) && !JDSTOPPED(t)) ||
1985 p->p_agenttp != NULL ||
1986 (p->p_flag & (SKILLED | SEXITING | SVFWAIT))) {
1987 thread_unlock(t);
1988 return (EBUSY);
1989 }

1991 thread_unlock(t);
1992 mutex_exit(&p->p_lock);

1994 sigfillset(&smask);
1995 sigdiffset(&smask, &cantmask);
1996 clwp = lwp_create(lwp_rtt, NULL, 0, p, TS_STOPPED,
1997 t->t_pri, &smask, NOCLASS, 0);
1998 if (clwp == NULL) {
1999 mutex_enter(&p->p_lock);
2000 return (ENOMEM);
2001 }
2002 prsetprregs(clwp, prgregset, 1);
2003 retry:
2004 cid = t->t_cid;
2005 (void) CL_ALLOC(&bufp, cid, KM_SLEEP);
2006 mutex_enter(&p->p_lock);
2007 if (cid != t->t_cid) {
2008 /*
2009 * Someone just changed this thread’s scheduling class,
2010 * so try pre-allocating the buffer again. Hopefully we
2011 * don’t hit this often.
2012 */
2013 mutex_exit(&p->p_lock);
2014 CL_FREE(cid, bufp);
2015 goto retry;
2016 }

2018 clwp->lwp_ap = clwp->lwp_arg;
2019 clwp->lwp_eosys = NORMALRETURN;
2020 ct = lwptot(clwp);
2021 ct->t_clfuncs = t->t_clfuncs;
2022 CL_FORK(t, ct, bufp);
2023 ct->t_cid = t->t_cid;
2024 ct->t_proc_flag |= TP_PRSTOP;
2025 /*
2026 * Setting t_sysnum to zero causes post_syscall()
2027 * to bypass all syscall checks and go directly to
2028 * if (issig()) psig();
2029 * so that the agent lwp will stop in issig_forreal()
2030 * showing PR_REQUESTED.
2031 */
2032 ct->t_sysnum = 0;
2033 ct->t_post_sys = 1;
2034 ct->t_sig_check = 1;
2035 p->p_agenttp = ct;
2036 ct->t_proc_flag &= ~TP_HOLDLWP;

2038 pcp = pnp->pr_pcommon;
2039 mutex_enter(&pcp->prc_mutex);

new/usr/src/uts/common/fs/proc/prcontrol.c 20

2041 lwp_create_done(ct);

2043 /*
2044 * Don’t return until the agent is stopped on PR_REQUESTED.
2045 */

2047 for (;;) {
2048 prunlock(pnp);
2049 *unlocked = 1;

2051 /*
2052 * Wait for the agent to stop and notify us.
2053 * If we’ve been interrupted, return that information.
2054 */
2055 error = pr_wait(pcp, NULL, 0);
2056 if (error == EINTR) {
2057 error = 0;
2058 break;
2059 }

2061 /*
2062 * Confirm that the agent LWP has stopped.
2063 */

2065 if ((error = prlock(pnp, ZNO)) != 0)
2066 break;
2067 *unlocked = 0;

2069 /*
2070 * Since we dropped the lock on the process, the agent
2071 * may have disappeared or changed. Grab the current
2072 * agent and check fail if it has disappeared.
2073 */
2074 if ((ct = p->p_agenttp) == NULL) {
2075 error = ENOENT;
2076 break;
2077 }

2079 mutex_enter(&pcp->prc_mutex);
2080 thread_lock(ct);

2082 if (ISTOPPED(ct)) {
2083 thread_unlock(ct);
2084 mutex_exit(&pcp->prc_mutex);
2085 break;
2086 }

2088 thread_unlock(ct);
2089 }

2091 return (error ? error : -1);
2092 }

2094 static int
2095 pr_rdwr(proc_t *p, enum uio_rw rw, priovec_t *pio)
2096 {
2097 caddr_t base = (caddr_t)pio->pio_base;
2098 size_t cnt = pio->pio_len;
2099 uintptr_t offset = (uintptr_t)pio->pio_offset;
2100 struct uio auio;
2101 struct iovec aiov;
2102 int error = 0;

2104 if ((p->p_flag & SSYS) || p->p_as == &kas)
2105 error = EIO;

new/usr/src/uts/common/fs/proc/prcontrol.c 21

2106 else if ((base + cnt) < base || (offset + cnt) < offset)
2107 error = EINVAL;
2108 else if (cnt != 0) {
2109 aiov.iov_base = base;
2110 aiov.iov_len = cnt;

2112 auio.uio_loffset = offset;
2113 auio.uio_iov = &aiov;
2114 auio.uio_iovcnt = 1;
2115 auio.uio_resid = cnt;
2116 auio.uio_segflg = UIO_USERSPACE;
2117 auio.uio_llimit = (longlong_t)MAXOFFSET_T;
2118 auio.uio_fmode = FREAD|FWRITE;
2119 auio.uio_extflg = UIO_COPY_DEFAULT;

2121 mutex_exit(&p->p_lock);
2122 error = prusrio(p, rw, &auio, 0);
2123 mutex_enter(&p->p_lock);

2125 /*
2126 * We have no way to return the i/o count,
2127 * like read() or write() would do, so we
2128 * return an error if the i/o was truncated.
2129 */
2130 if (auio.uio_resid != 0 && error == 0)
2131 error = EIO;
2132 }

2134 return (error);
2135 }

2137 static int
2138 pr_scred(proc_t *p, prcred_t *prcred, cred_t *cr, boolean_t dogrps)
2139 {
2140 kthread_t *t;
2141 cred_t *oldcred;
2142 cred_t *newcred;
2143 uid_t oldruid;
2144 int error;
2145 zone_t *zone = crgetzone(cr);

2147 if (!VALID_UID(prcred->pr_euid, zone) ||
2148 !VALID_UID(prcred->pr_ruid, zone) ||
2149 !VALID_UID(prcred->pr_suid, zone) ||
2150 !VALID_GID(prcred->pr_egid, zone) ||
2151 !VALID_GID(prcred->pr_rgid, zone) ||
2152 !VALID_GID(prcred->pr_sgid, zone))
2153 return (EINVAL);

2155 if (dogrps) {
2156 int ngrp = prcred->pr_ngroups;
2157 int i;

2159 if (ngrp < 0 || ngrp > ngroups_max)
2160 return (EINVAL);

2162 for (i = 0; i < ngrp; i++) {
2163 if (!VALID_GID(prcred->pr_groups[i], zone))
2164 return (EINVAL);
2165 }
2166 }

2168 error = secpolicy_allow_setid(cr, prcred->pr_euid, B_FALSE);

2170 if (error == 0 && prcred->pr_ruid != prcred->pr_euid)
2171 error = secpolicy_allow_setid(cr, prcred->pr_ruid, B_FALSE);

new/usr/src/uts/common/fs/proc/prcontrol.c 22

2173 if (error == 0 && prcred->pr_suid != prcred->pr_euid &&
2174 prcred->pr_suid != prcred->pr_ruid)
2175 error = secpolicy_allow_setid(cr, prcred->pr_suid, B_FALSE);

2177 if (error)
2178 return (error);

2180 mutex_exit(&p->p_lock);

2182 /* hold old cred so it doesn’t disappear while we dup it */
2183 mutex_enter(&p->p_crlock);
2184 crhold(oldcred = p->p_cred);
2185 mutex_exit(&p->p_crlock);
2186 newcred = crdup(oldcred);
2187 oldruid = crgetruid(oldcred);
2188 crfree(oldcred);

2190 /* Error checking done above */
2191 (void) crsetresuid(newcred, prcred->pr_ruid, prcred->pr_euid,
2192 prcred->pr_suid);
2193 (void) crsetresgid(newcred, prcred->pr_rgid, prcred->pr_egid,
2194 prcred->pr_sgid);

2196 if (dogrps) {
2197 (void) crsetgroups(newcred, prcred->pr_ngroups,
2198 prcred->pr_groups);

2200 }

2202 mutex_enter(&p->p_crlock);
2203 oldcred = p->p_cred;
2204 p->p_cred = newcred;
2205 mutex_exit(&p->p_crlock);
2206 crfree(oldcred);

2208 /*
2209 * Keep count of processes per uid consistent.
2210 */
2211 if (oldruid != prcred->pr_ruid) {
2212 zoneid_t zoneid = crgetzoneid(newcred);

2214 mutex_enter(&pidlock);
2215 upcount_dec(oldruid, zoneid);
2216 upcount_inc(prcred->pr_ruid, zoneid);
2217 mutex_exit(&pidlock);
2218 }

2220 /*
2221 * Broadcast the cred change to the threads.
2222 */
2223 mutex_enter(&p->p_lock);
2224 t = p->p_tlist;
2225 do {
2226 t->t_pre_sys = 1; /* so syscall will get new cred */
2227 } while ((t = t->t_forw) != p->p_tlist);

2229 return (0);
2230 }

2232 /*
2233 * Change process credentials to specified zone. Used to temporarily
2234 * set a process to run in the global zone; only transitions between
2235 * the process’s actual zone and the global zone are allowed.
2236 */
2237 static int

new/usr/src/uts/common/fs/proc/prcontrol.c 23

2238 pr_szoneid(proc_t *p, zoneid_t zoneid, cred_t *cr)
2239 {
2240 kthread_t *t;
2241 cred_t *oldcred;
2242 cred_t *newcred;
2243 zone_t *zptr;
2244 zoneid_t oldzoneid;

2246 if (secpolicy_zone_config(cr) != 0)
2247 return (EPERM);
2248 if (zoneid != GLOBAL_ZONEID && zoneid != p->p_zone->zone_id)
2249 return (EINVAL);
2250 if ((zptr = zone_find_by_id(zoneid)) == NULL)
2251 return (EINVAL);
2252 mutex_exit(&p->p_lock);
2253 mutex_enter(&p->p_crlock);
2254 oldcred = p->p_cred;
2255 crhold(oldcred);
2256 mutex_exit(&p->p_crlock);
2257 newcred = crdup(oldcred);
2258 oldzoneid = crgetzoneid(oldcred);
2259 crfree(oldcred);

2261 crsetzone(newcred, zptr);
2262 zone_rele(zptr);

2264 mutex_enter(&p->p_crlock);
2265 oldcred = p->p_cred;
2266 p->p_cred = newcred;
2267 mutex_exit(&p->p_crlock);
2268 crfree(oldcred);

2270 /*
2271 * The target process is changing zones (according to its cred), so
2272 * update the per-zone upcounts, which are based on process creds.
2273 */
2274 if (oldzoneid != zoneid) {
2275 uid_t ruid = crgetruid(newcred);

2277 mutex_enter(&pidlock);
2278 upcount_dec(ruid, oldzoneid);
2279 upcount_inc(ruid, zoneid);
2280 mutex_exit(&pidlock);
2281 }
2282 /*
2283 * Broadcast the cred change to the threads.
2284 */
2285 mutex_enter(&p->p_lock);
2286 t = p->p_tlist;
2287 do {
2288 t->t_pre_sys = 1; /* so syscall will get new cred */
2289 } while ((t = t->t_forw) != p->p_tlist);

2291 return (0);
2292 }

2294 static int
2295 pr_spriv(proc_t *p, prpriv_t *prpriv, cred_t *cr)
2296 {
2297 kthread_t *t;
2298 int err;

2300 ASSERT(MUTEX_HELD(&p->p_lock));

2302 if ((err = priv_pr_spriv(p, prpriv, cr)) == 0) {
2303 /*

new/usr/src/uts/common/fs/proc/prcontrol.c 24

2304 * Broadcast the cred change to the threads.
2305 */
2306 t = p->p_tlist;
2307 do {
2308 t->t_pre_sys = 1; /* so syscall will get new cred */
2309 } while ((t = t->t_forw) != p->p_tlist);
2310 }

2312 return (err);
2313 }

2315 /*
2316 * Return -1 if the process is the parent of a vfork(1) whose child has yet to
2317 * terminate or perform an exec(2).
2318 *
2319 * Returns 0 if the process is fully stopped except for the current thread (if
2320 * we are operating on our own process), 1 otherwise.
2321 *
2322 * If the watchstop flag is set, then we ignore threads with TP_WATCHSTOP set.
2323 * See holdwatch() for details.
2324 */
2325 int
2326 pr_allstopped(proc_t *p, int watchstop)
2327 {
2328 kthread_t *t;
2329 int rv = 0;

2331 ASSERT(MUTEX_HELD(&p->p_lock));

2333 if (p->p_flag & SVFWAIT) /* waiting for vfork’d child to exec */
2334 return (-1);

2336 if ((t = p->p_tlist) != NULL) {
2337 do {
2338 if (t == curthread || VSTOPPED(t) ||
2339 (watchstop && (t->t_proc_flag & TP_WATCHSTOP)))
2340 continue;
2341 thread_lock(t);
2342 switch (t->t_state) {
2343 case TS_ZOMB:
2344 case TS_STOPPED:
2345 break;
2346 case TS_SLEEP:
2347 if (!(t->t_flag & T_WAKEABLE) ||
2348 t->t_wchan0 == NULL)
2349 rv = 1;
2350 break;
2351 default:
2352 rv = 1;
2353 break;
2354 }
2355 thread_unlock(t);
2356 } while (rv == 0 && (t = t->t_forw) != p->p_tlist);
2357 }

2359 return (rv);
2360 }

2362 /*
2363 * Cause all lwps in the process to pause (for watchpoint operations).
2364 */
2365 static void
2366 pauselwps(proc_t *p)
2367 {
2368 kthread_t *t;

new/usr/src/uts/common/fs/proc/prcontrol.c 25

2370 ASSERT(MUTEX_HELD(&p->p_lock));
2371 ASSERT(p != curproc);

2373 if ((t = p->p_tlist) != NULL) {
2374 do {
2375 thread_lock(t);
2376 t->t_proc_flag |= TP_PAUSE;
2377 aston(t);
2378 if ((ISWAKEABLE(t) && (t->t_wchan0 == NULL)) ||
2379 ISWAITING(t)) {
2380 setrun_locked(t);
2381 }
2382 prpokethread(t);
2383 thread_unlock(t);
2384 } while ((t = t->t_forw) != p->p_tlist);
2385 }
2386 }

2388 /*
2389 * undo the effects of pauselwps()
2390 */
2391 static void
2392 unpauselwps(proc_t *p)
2393 {
2394 kthread_t *t;

2396 ASSERT(MUTEX_HELD(&p->p_lock));
2397 ASSERT(p != curproc);

2399 if ((t = p->p_tlist) != NULL) {
2400 do {
2401 thread_lock(t);
2402 t->t_proc_flag &= ~TP_PAUSE;
2403 if (t->t_state == TS_STOPPED) {
2404 t->t_schedflag |= TS_UNPAUSE;
2405 t->t_dtrace_stop = 0;
2406 setrun_locked(t);
2407 }
2408 thread_unlock(t);
2409 } while ((t = t->t_forw) != p->p_tlist);
2410 }
2411 }

2413 /*
2414 * Cancel all watched areas. Called from prclose().
2415 */
2416 proc_t *
2417 pr_cancel_watch(prnode_t *pnp)
2418 {
2419 proc_t *p = pnp->pr_pcommon->prc_proc;
2420 struct as *as;
2421 kthread_t *t;

2423 ASSERT(MUTEX_HELD(&p->p_lock) && (p->p_proc_flag & P_PR_LOCK));

2425 if (!pr_watch_active(p))
2426 return (p);

2428 /*
2429 * Pause the process before dealing with the watchpoints.
2430 */
2431 if (p == curproc) {
2432 prunlock(pnp);
2433 while (holdwatch() != 0)
2434 continue;
2435 p = pr_p_lock(pnp);

new/usr/src/uts/common/fs/proc/prcontrol.c 26

2436 mutex_exit(&pr_pidlock);
2437 ASSERT(p == curproc);
2438 } else {
2439 pauselwps(p);
2440 while (p != NULL && pr_allstopped(p, 0) > 0) {
2441 /*
2442 * This cv/mutex pair is persistent even
2443 * if the process disappears after we
2444 * unmark it and drop p->p_lock.
2445 */
2446 kcondvar_t *cv = &pr_pid_cv[p->p_slot];
2447 kmutex_t *mp = &p->p_lock;

2449 prunmark(p);
2450 (void) cv_wait(cv, mp);
2451 mutex_exit(mp);
2452 p = pr_p_lock(pnp); /* NULL if process disappeared */
2453 mutex_exit(&pr_pidlock);
2454 }
2455 }

2457 if (p == NULL) /* the process disappeared */
2458 return (NULL);

2460 ASSERT(p == pnp->pr_pcommon->prc_proc);
2461 ASSERT(MUTEX_HELD(&p->p_lock) && (p->p_proc_flag & P_PR_LOCK));

2463 if (pr_watch_active(p)) {
2464 pr_free_watchpoints(p);
2465 if ((t = p->p_tlist) != NULL) {
2466 do {
2467 watch_disable(t);

2469 } while ((t = t->t_forw) != p->p_tlist);
2470 }
2471 }

2473 if ((as = p->p_as) != NULL) {
2474 avl_tree_t *tree;
2475 struct watched_page *pwp;

2477 /*
2478 * If this is the parent of a vfork, the watched page
2479 * list has been moved temporarily to p->p_wpage.
2480 */
2481 if (avl_numnodes(&p->p_wpage) != 0)
2482 tree = &p->p_wpage;
2483 else
2484 tree = &as->a_wpage;

2486 mutex_exit(&p->p_lock);
2487 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);

2489 for (pwp = avl_first(tree); pwp != NULL;
2490 pwp = AVL_NEXT(tree, pwp)) {
2491 pwp->wp_read = 0;
2492 pwp->wp_write = 0;
2493 pwp->wp_exec = 0;
2494 if ((pwp->wp_flags & WP_SETPROT) == 0) {
2495 pwp->wp_flags |= WP_SETPROT;
2496 pwp->wp_prot = pwp->wp_oprot;
2497 pwp->wp_list = p->p_wprot;
2498 p->p_wprot = pwp;
2499 }
2500 }

new/usr/src/uts/common/fs/proc/prcontrol.c 27

2502 AS_LOCK_EXIT(as, &as->a_lock);
2503 mutex_enter(&p->p_lock);
2504 }

2506 /*
2507 * Unpause the process now.
2508 */
2509 if (p == curproc)
2510 continuelwps(p);
2511 else
2512 unpauselwps(p);

2514 return (p);
2515 }

new/usr/src/uts/common/fs/proc/prioctl.c 1

**
 93855 Wed Jan 23 13:19:06 2013
new/usr/src/uts/common/fs/proc/prioctl.c
XXX AVX procfs
**
______unchanged_portion_omitted_

132 /*
133 * Control operations (lots).
134 */
135 /*ARGSUSED*/
136 #ifdef _SYSCALL32_IMPL
137 static int
138 prioctl64(
139 struct vnode *vp,
140 int cmd,
141 intptr_t arg,
142 int flag,
143 cred_t *cr,
144 int *rvalp,
145 caller_context_t *ct)
146 #else
147 int
148 prioctl(
149 struct vnode *vp,
150 int cmd,
151 intptr_t arg,
152 int flag,
153 cred_t *cr,
154 int *rvalp,
155 caller_context_t *ct)
156 #endif /* _SYSCALL32_IMPL */
157 {
158 int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG;
159 caddr_t cmaddr = (caddr_t)arg;
160 proc_t *p;
161 user_t *up;
162 kthread_t *t;
163 klwp_t *lwp;
164 prnode_t *pnp = VTOP(vp);
165 prcommon_t *pcp;
166 prnode_t *xpnp = NULL;
167 int error;
168 int zdisp;
169 void *thing = NULL;
170 size_t thingsize = 0;

172 /*
173 * For copyin()/copyout().
174 */
175 union {
176 caddr_t va;
177 int signo;
178 int nice;
179 uint_t lwpid;
180 long flags;
181 prstatus_t prstat;
182 prrun_t prrun;
183 sigset_t smask;
184 siginfo_t info;
185 sysset_t prmask;
186 prgregset_t regs;
187 prfpregset_t fpregs;
188 prpsinfo_t prps;
189 sigset_t holdmask;

new/usr/src/uts/common/fs/proc/prioctl.c 2

190 fltset_t fltmask;
191 prcred_t prcred;
192 prhusage_t prhusage;
193 prmap_t prmap;
194 auxv_t auxv[__KERN_NAUXV_IMPL];
195 } un;

197 if (pnp->pr_type == PR_TMPL)
198 return (prctioctl(pnp, cmd, arg, flag, cr));

200 /*
201 * Support for old /proc interface.
202 */
203 if (pnp->pr_pidfile != NULL) {
204 ASSERT(pnp->pr_type == PR_PIDDIR);
205 vp = pnp->pr_pidfile;
206 pnp = VTOP(vp);
207 ASSERT(pnp->pr_type == PR_PIDFILE);
208 }

210 if (pnp->pr_type != PR_PIDFILE && pnp->pr_type != PR_LWPIDFILE)
211 return (ENOTTY);

213 /*
214 * Fail ioctls which are logically "write" requests unless
215 * the user has write permission.
216 */
217 if ((flag & FWRITE) == 0 && isprwrioctl(cmd))
218 return (EBADF);

220 /*
221 * Perform any necessary copyin() operations before
222 * locking the process. Helps avoid deadlocks and
223 * improves performance.
224 *
225 * Also, detect invalid ioctl codes here to avoid
226 * locking a process unnnecessarily.
227 *
228 * Also, prepare to allocate space that will be needed below,
229 * case by case.
230 */
231 error = 0;
232 switch (cmd) {
233 case PIOCGETPR:
234 thingsize = sizeof (proc_t);
235 break;
236 case PIOCGETU:
237 thingsize = sizeof (user_t);
238 break;
239 case PIOCSTOP:
240 case PIOCWSTOP:
241 case PIOCLWPIDS:
242 case PIOCGTRACE:
243 case PIOCGENTRY:
244 case PIOCGEXIT:
245 case PIOCSRLC:
246 case PIOCRRLC:
247 case PIOCSFORK:
248 case PIOCRFORK:
249 case PIOCGREG:
250 case PIOCGFPREG:
251 case PIOCSTATUS:
252 case PIOCLSTATUS:
253 case PIOCPSINFO:
254 case PIOCMAXSIG:
255 case PIOCGXREGSIZE:

new/usr/src/uts/common/fs/proc/prioctl.c 3

256 break;
257 case PIOCSXREG: /* set extra registers */
258 case PIOCGXREG: /* get extra registers */
259 #if defined(__sparc)
259 thingsize = sizeof (prxregset_t);
261 #else
262 thingsize = 0;
263 #endif
260 break;
261 case PIOCACTION:
262 thingsize = (nsig-1) * sizeof (struct sigaction);
263 break;
264 case PIOCGHOLD:
265 case PIOCNMAP:
266 case PIOCMAP:
267 case PIOCGFAULT:
268 case PIOCCFAULT:
269 case PIOCCRED:
270 case PIOCGROUPS:
271 case PIOCUSAGE:
272 case PIOCLUSAGE:
273 break;
274 case PIOCOPENPD:
275 /*
276 * We will need this below.
277 * Allocate it now, before locking the process.
278 */
279 xpnp = prgetnode(vp, PR_OPAGEDATA);
280 break;
281 case PIOCNAUXV:
282 case PIOCAUXV:
283 break;

285 #if defined(__i386) || defined(__amd64)
286 case PIOCNLDT:
287 case PIOCLDT:
288 break;
289 #endif /* __i386 || __amd64 */

291 #if defined(__sparc)
292 case PIOCGWIN:
293 thingsize = sizeof (gwindows_t);
294 break;
295 #endif /* __sparc */

297 case PIOCOPENM: /* open mapped object for reading */
298 if (cmaddr == NULL)
299 un.va = NULL;
300 else if (copyin(cmaddr, &un.va, sizeof (un.va)))
301 error = EFAULT;
302 break;

304 case PIOCRUN: /* make lwp or process runnable */
305 if (cmaddr == NULL)
306 un.prrun.pr_flags = 0;
307 else if (copyin(cmaddr, &un.prrun, sizeof (un.prrun)))
308 error = EFAULT;
309 break;

311 case PIOCOPENLWP: /* return /proc lwp file descriptor */
312 if (copyin(cmaddr, &un.lwpid, sizeof (un.lwpid)))
313 error = EFAULT;
314 break;

316 case PIOCSTRACE: /* set signal trace mask */
317 if (copyin(cmaddr, &un.smask, sizeof (un.smask)))

new/usr/src/uts/common/fs/proc/prioctl.c 4

318 error = EFAULT;
319 break;

321 case PIOCSSIG: /* set current signal */
322 if (cmaddr == NULL)
323 un.info.si_signo = 0;
324 else if (copyin(cmaddr, &un.info, sizeof (un.info)))
325 error = EFAULT;
326 break;

328 case PIOCKILL: /* send signal */
329 case PIOCUNKILL: /* delete a signal */
330 if (copyin(cmaddr, &un.signo, sizeof (un.signo)))
331 error = EFAULT;
332 break;

334 case PIOCNICE: /* set nice priority */
335 if (copyin(cmaddr, &un.nice, sizeof (un.nice)))
336 error = EFAULT;
337 break;

339 case PIOCSENTRY: /* set syscall entry bit mask */
340 case PIOCSEXIT: /* set syscall exit bit mask */
341 if (copyin(cmaddr, &un.prmask, sizeof (un.prmask)))
342 error = EFAULT;
343 break;

345 case PIOCSET: /* set process flags */
346 case PIOCRESET: /* reset process flags */
347 if (copyin(cmaddr, &un.flags, sizeof (un.flags)))
348 error = EFAULT;
349 break;

351 case PIOCSREG: /* set general registers */
352 if (copyin(cmaddr, un.regs, sizeof (un.regs)))
353 error = EFAULT;
354 break;

356 case PIOCSFPREG: /* set floating-point registers */
357 if (copyin(cmaddr, &un.fpregs, sizeof (un.fpregs)))
358 error = EFAULT;
359 break;

361 case PIOCSHOLD: /* set signal-hold mask */
362 if (copyin(cmaddr, &un.holdmask, sizeof (un.holdmask)))
363 error = EFAULT;
364 break;

366 case PIOCSFAULT: /* set mask of traced faults */
367 if (copyin(cmaddr, &un.fltmask, sizeof (un.fltmask)))
368 error = EFAULT;
369 break;

371 default:
372 error = EINVAL;
373 break;
374 }

376 if (error)
377 return (error);

379 startover:
380 /*
381 * If we need kmem_alloc()d space then we allocate it now, before
382 * grabbing the process lock. Using kmem_alloc(KM_SLEEP) while
383 * holding the process lock leads to deadlock with the clock thread.

new/usr/src/uts/common/fs/proc/prioctl.c 5

384 * (The clock thread wakes up the pageout daemon to free up space.
385 * If the clock thread blocks behind us and we are sleeping waiting
386 * for space, then space may never become available.)
387 */
388 if (thingsize) {
389 ASSERT(thing == NULL);
390 thing = kmem_alloc(thingsize, KM_SLEEP);
391 }

393 switch (cmd) {
394 case PIOCPSINFO:
395 case PIOCGETPR:
396 case PIOCUSAGE:
397 case PIOCLUSAGE:
398 zdisp = ZYES;
399 break;
400 case PIOCSXREG: /* set extra registers */
401 /*
402 * perform copyin before grabbing the process lock
403 */
404 if (thing) {
405 if (copyin(cmaddr, thing, thingsize)) {
406 kmem_free(thing, thingsize);
407 return (EFAULT);
408 }
409 }
410 /* fall through... */
411 default:
412 zdisp = ZNO;
413 break;
414 }

416 if ((error = prlock(pnp, zdisp)) != 0) {
417 if (thing != NULL)
418 kmem_free(thing, thingsize);
419 if (xpnp)
420 prfreenode(xpnp);
421 return (error);
422 }

424 pcp = pnp->pr_common;
425 p = pcp->prc_proc;
426 ASSERT(p != NULL);

428 /*
429 * Choose a thread/lwp for the operation.
430 */
431 if (zdisp == ZNO && cmd != PIOCSTOP && cmd != PIOCWSTOP) {
432 if (pnp->pr_type == PR_LWPIDFILE && cmd != PIOCLSTATUS) {
433 t = pcp->prc_thread;
434 ASSERT(t != NULL);
435 } else {
436 t = prchoose(p); /* returns locked thread */
437 ASSERT(t != NULL);
438 thread_unlock(t);
439 }
440 lwp = ttolwp(t);
441 }

443 error = 0;
444 switch (cmd) {

446 case PIOCGETPR: /* read struct proc */
447 {
448 proc_t *prp = thing;

new/usr/src/uts/common/fs/proc/prioctl.c 6

450 *prp = *p;
451 prunlock(pnp);
452 if (copyout(prp, cmaddr, sizeof (proc_t)))
453 error = EFAULT;
454 kmem_free(prp, sizeof (proc_t));
455 thing = NULL;
456 break;
457 }

459 case PIOCGETU: /* read u-area */
460 {
461 user_t *userp = thing;

463 up = PTOU(p);
464 *userp = *up;
465 prunlock(pnp);
466 if (copyout(userp, cmaddr, sizeof (user_t)))
467 error = EFAULT;
468 kmem_free(userp, sizeof (user_t));
469 thing = NULL;
470 break;
471 }

473 case PIOCOPENM: /* open mapped object for reading */
474 error = propenm(pnp, cmaddr, un.va, rvalp, cr);
475 /* propenm() called prunlock(pnp) */
476 break;

478 case PIOCSTOP: /* stop process or lwp from running */
479 case PIOCWSTOP: /* wait for process or lwp to stop */
480 /*
481 * Can’t apply to a system process.
482 */
483 if ((p->p_flag & SSYS) || p->p_as == &kas) {
484 prunlock(pnp);
485 error = EBUSY;
486 break;
487 }

489 if (cmd == PIOCSTOP)
490 pr_stop(pnp);

492 /*
493 * If an lwp is waiting for itself or its process, don’t wait.
494 * The stopped lwp would never see the fact that it is stopped.
495 */
496 if ((pnp->pr_type == PR_LWPIDFILE)?
497 (pcp->prc_thread == curthread) : (p == curproc)) {
498 if (cmd == PIOCWSTOP)
499 error = EBUSY;
500 prunlock(pnp);
501 break;
502 }

504 if ((error = pr_wait_stop(pnp, (time_t)0)) != 0)
505 break; /* pr_wait_stop() unlocked the process */

507 if (cmaddr == NULL)
508 prunlock(pnp);
509 else {
510 /*
511 * Return process/lwp status information.
512 */
513 t = pr_thread(pnp); /* returns locked thread */
514 thread_unlock(t);
515 oprgetstatus(t, &un.prstat, VTOZONE(vp));

new/usr/src/uts/common/fs/proc/prioctl.c 7

516 prunlock(pnp);
517 if (copyout(&un.prstat, cmaddr, sizeof (un.prstat)))
518 error = EFAULT;
519 }
520 break;

522 case PIOCRUN: /* make lwp or process runnable */
523 {
524 long flags = un.prrun.pr_flags;

526 /*
527 * Cannot set an lwp running is it is not stopped.
528 * Also, no lwp other than the /proc agent lwp can
529 * be set running so long as the /proc agent lwp exists.
530 */
531 if ((!ISTOPPED(t) && !VSTOPPED(t) &&
532 !(t->t_proc_flag & TP_PRSTOP)) ||
533 (p->p_agenttp != NULL &&
534 (t != p->p_agenttp || pnp->pr_type != PR_LWPIDFILE))) {
535 prunlock(pnp);
536 error = EBUSY;
537 break;
538 }

540 if (flags & (PRSHOLD|PRSTRACE|PRSFAULT|PRSVADDR))
541 prsetrun(t, &un.prrun);

543 error = pr_setrun(pnp, prmaprunflags(flags));

545 prunlock(pnp);
546 break;
547 }

549 case PIOCLWPIDS: /* get array of lwp identifiers */
550 {
551 int nlwp;
552 int Nlwp;
553 id_t *idp;
554 id_t *Bidp;

556 Nlwp = nlwp = p->p_lwpcnt;

558 if (thing && thingsize != (Nlwp+1) * sizeof (id_t)) {
559 kmem_free(thing, thingsize);
560 thing = NULL;
561 }
562 if (thing == NULL) {
563 thingsize = (Nlwp+1) * sizeof (id_t);
564 thing = kmem_alloc(thingsize, KM_NOSLEEP);
565 }
566 if (thing == NULL) {
567 prunlock(pnp);
568 goto startover;
569 }

571 idp = thing;
572 thing = NULL;
573 Bidp = idp;
574 if ((t = p->p_tlist) != NULL) {
575 do {
576 ASSERT(!(t->t_proc_flag & TP_LWPEXIT));
577 ASSERT(nlwp > 0);
578 --nlwp;
579 *idp++ = t->t_tid;
580 } while ((t = t->t_forw) != p->p_tlist);
581 }

new/usr/src/uts/common/fs/proc/prioctl.c 8

582 *idp = 0;
583 ASSERT(nlwp == 0);
584 prunlock(pnp);
585 if (copyout(Bidp, cmaddr, (Nlwp+1) * sizeof (id_t)))
586 error = EFAULT;
587 kmem_free(Bidp, (Nlwp+1) * sizeof (id_t));
588 break;
589 }

591 case PIOCOPENLWP: /* return /proc lwp file descriptor */
592 {
593 vnode_t *xvp;
594 int n;

596 prunlock(pnp);
597 if ((xvp = prlwpnode(pnp, un.lwpid)) == NULL)
598 error = ENOENT;
599 else if (error = fassign(&xvp, flag & (FREAD|FWRITE), &n)) {
600 VN_RELE(xvp);
601 } else
602 *rvalp = n;
603 break;
604 }

606 case PIOCOPENPD: /* return /proc page data file descriptor */
607 {
608 vnode_t *xvp = PTOV(xpnp);
609 vnode_t *dp = pnp->pr_parent;
610 int n;

612 if (pnp->pr_type == PR_LWPIDFILE) {
613 dp = VTOP(dp)->pr_parent;
614 dp = VTOP(dp)->pr_parent;
615 }
616 ASSERT(VTOP(dp)->pr_type == PR_PIDDIR);

618 VN_HOLD(dp);
619 pcp = pnp->pr_pcommon;
620 xpnp->pr_ino = ptoi(pcp->prc_pid);
621 xpnp->pr_common = pcp;
622 xpnp->pr_pcommon = pcp;
623 xpnp->pr_parent = dp;

625 xpnp->pr_next = p->p_plist;
626 p->p_plist = xvp;

628 prunlock(pnp);
629 if (error = fassign(&xvp, FREAD, &n)) {
630 VN_RELE(xvp);
631 } else
632 *rvalp = n;

634 xpnp = NULL;
635 break;
636 }

638 case PIOCGTRACE: /* get signal trace mask */
639 prassignset(&un.smask, &p->p_sigmask);
640 prunlock(pnp);
641 if (copyout(&un.smask, cmaddr, sizeof (un.smask)))
642 error = EFAULT;
643 break;

645 case PIOCSTRACE: /* set signal trace mask */
646 prdelset(&un.smask, SIGKILL);
647 prassignset(&p->p_sigmask, &un.smask);

new/usr/src/uts/common/fs/proc/prioctl.c 9

648 if (!sigisempty(&p->p_sigmask))
649 p->p_proc_flag |= P_PR_TRACE;
650 else if (prisempty(&p->p_fltmask)) {
651 up = PTOU(p);
652 if (up->u_systrap == 0)
653 p->p_proc_flag &= ~P_PR_TRACE;
654 }
655 prunlock(pnp);
656 break;

658 case PIOCSSIG: /* set current signal */
659 error = pr_setsig(pnp, &un.info);
660 prunlock(pnp);
661 if (un.info.si_signo == SIGKILL && error == 0)
662 pr_wait_die(pnp);
663 break;

665 case PIOCKILL: /* send signal */
666 {
667 int sig = (int)un.signo;

669 error = pr_kill(pnp, sig, cr);
670 prunlock(pnp);
671 if (sig == SIGKILL && error == 0)
672 pr_wait_die(pnp);
673 break;
674 }

676 case PIOCUNKILL: /* delete a signal */
677 error = pr_unkill(pnp, (int)un.signo);
678 prunlock(pnp);
679 break;

681 case PIOCNICE: /* set nice priority */
682 error = pr_nice(p, (int)un.nice, cr);
683 prunlock(pnp);
684 break;

686 case PIOCGENTRY: /* get syscall entry bit mask */
687 case PIOCGEXIT: /* get syscall exit bit mask */
688 up = PTOU(p);
689 if (cmd == PIOCGENTRY) {
690 prassignset(&un.prmask, &up->u_entrymask);
691 } else {
692 prassignset(&un.prmask, &up->u_exitmask);
693 }
694 prunlock(pnp);
695 if (copyout(&un.prmask, cmaddr, sizeof (un.prmask)))
696 error = EFAULT;
697 break;

699 case PIOCSENTRY: /* set syscall entry bit mask */
700 case PIOCSEXIT: /* set syscall exit bit mask */
701 pr_setentryexit(p, &un.prmask, cmd == PIOCSENTRY);
702 prunlock(pnp);
703 break;

705 case PIOCSRLC: /* obsolete: set running on last /proc close */
706 error = pr_set(p, prmapsetflags(PR_RLC));
707 prunlock(pnp);
708 break;

710 case PIOCRRLC: /* obsolete: reset run-on-last-close flag */
711 error = pr_unset(p, prmapsetflags(PR_RLC));
712 prunlock(pnp);
713 break;

new/usr/src/uts/common/fs/proc/prioctl.c 10

715 case PIOCSFORK: /* obsolete: set inherit-on-fork flag */
716 error = pr_set(p, prmapsetflags(PR_FORK));
717 prunlock(pnp);
718 break;

720 case PIOCRFORK: /* obsolete: reset inherit-on-fork flag */
721 error = pr_unset(p, prmapsetflags(PR_FORK));
722 prunlock(pnp);
723 break;

725 case PIOCSET: /* set process flags */
726 error = pr_set(p, prmapsetflags(un.flags));
727 prunlock(pnp);
728 break;

730 case PIOCRESET: /* reset process flags */
731 error = pr_unset(p, prmapsetflags(un.flags));
732 prunlock(pnp);
733 break;

735 case PIOCGREG: /* get general registers */
736 if (t->t_state != TS_STOPPED && !VSTOPPED(t))
737 bzero(un.regs, sizeof (un.regs));
738 else {
739 /* drop p_lock while touching the lwp’s stack */
740 mutex_exit(&p->p_lock);
741 prgetprregs(lwp, un.regs);
742 mutex_enter(&p->p_lock);
743 }
744 prunlock(pnp);
745 if (copyout(un.regs, cmaddr, sizeof (un.regs)))
746 error = EFAULT;
747 break;

749 case PIOCSREG: /* set general registers */
750 if (!ISTOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t))
751 error = EBUSY;
752 else {
753 /* drop p_lock while touching the lwp’s stack */
754 mutex_exit(&p->p_lock);
755 prsetprregs(lwp, un.regs, 0);
756 mutex_enter(&p->p_lock);
757 }
758 prunlock(pnp);
759 break;

761 case PIOCGFPREG: /* get floating-point registers */
762 if (!prhasfp()) {
763 prunlock(pnp);
764 error = EINVAL; /* No FP support */
765 break;
766 }

768 if (t->t_state != TS_STOPPED && !VSTOPPED(t))
769 bzero(&un.fpregs, sizeof (un.fpregs));
770 else {
771 /* drop p_lock while touching the lwp’s stack */
772 mutex_exit(&p->p_lock);
773 prgetprfpregs(lwp, &un.fpregs);
774 mutex_enter(&p->p_lock);
775 }
776 prunlock(pnp);
777 if (copyout(&un.fpregs, cmaddr, sizeof (un.fpregs)))
778 error = EFAULT;
779 break;

new/usr/src/uts/common/fs/proc/prioctl.c 11

781 case PIOCSFPREG: /* set floating-point registers */
782 if (!prhasfp())
783 error = EINVAL; /* No FP support */
784 else if (!ISTOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t))
785 error = EBUSY;
786 else {
787 /* drop p_lock while touching the lwp’s stack */
788 mutex_exit(&p->p_lock);
789 prsetprfpregs(lwp, &un.fpregs);
790 mutex_enter(&p->p_lock);
791 }
792 prunlock(pnp);
793 break;

795 case PIOCGXREGSIZE: /* get the size of the extra registers */
796 {
797 int xregsize;

799 if (prhasx(p)) {
800 xregsize = prgetprxregsize(p);
801 prunlock(pnp);
802 if (copyout(&xregsize, cmaddr, sizeof (xregsize)))
803 error = EFAULT;
804 } else {
805 prunlock(pnp);
806 error = EINVAL; /* No extra register support */
807 }
808 break;
809 }

811 case PIOCGXREG: /* get extra registers */
812 if (prhasx(p)) {
813 bzero(thing, thingsize);
814 if (t->t_state == TS_STOPPED || VSTOPPED(t)) {
815 /* drop p_lock to touch the stack */
816 mutex_exit(&p->p_lock);
817 prgetprxregs(lwp, thing);
818 mutex_enter(&p->p_lock);
819 }
820 prunlock(pnp);
821 if (copyout(thing, cmaddr, thingsize))
822 error = EFAULT;
823 } else {
824 prunlock(pnp);
825 error = EINVAL; /* No extra register support */
826 }
827 if (thing) {
828 kmem_free(thing, thingsize);
829 thing = NULL;
830 }
831 break;

833 case PIOCSXREG: /* set extra registers */
834 if (!ISTOPPED(t) && !VSTOPPED(t) && !DSTOPPED(t))
835 error = EBUSY;
836 else if (!prhasx(p))
837 error = EINVAL; /* No extra register support */
838 else if (thing) {
839 /* drop p_lock while touching the lwp’s stack */
840 mutex_exit(&p->p_lock);
841 prsetprxregs(lwp, thing);
842 mutex_enter(&p->p_lock);
843 }
844 prunlock(pnp);
845 if (thing) {

new/usr/src/uts/common/fs/proc/prioctl.c 12

846 kmem_free(thing, thingsize);
847 thing = NULL;
848 }
849 break;

851 case PIOCSTATUS: /* get process/lwp status */
852 oprgetstatus(t, &un.prstat, VTOZONE(vp));
853 prunlock(pnp);
854 if (copyout(&un.prstat, cmaddr, sizeof (un.prstat)))
855 error = EFAULT;
856 break;

858 case PIOCLSTATUS: /* get status for process & all lwps */
859 {
860 int Nlwp;
861 int nlwp;
862 prstatus_t *Bprsp;
863 prstatus_t *prsp;

865 nlwp = Nlwp = p->p_lwpcnt;

867 if (thing && thingsize != (Nlwp+1) * sizeof (prstatus_t)) {
868 kmem_free(thing, thingsize);
869 thing = NULL;
870 }
871 if (thing == NULL) {
872 thingsize = (Nlwp+1) * sizeof (prstatus_t);
873 thing = kmem_alloc(thingsize, KM_NOSLEEP);
874 }
875 if (thing == NULL) {
876 prunlock(pnp);
877 goto startover;
878 }

880 Bprsp = thing;
881 thing = NULL;
882 prsp = Bprsp;
883 oprgetstatus(t, prsp, VTOZONE(vp));
884 t = p->p_tlist;
885 do {
886 ASSERT(!(t->t_proc_flag & TP_LWPEXIT));
887 ASSERT(nlwp > 0);
888 --nlwp;
889 oprgetstatus(t, ++prsp, VTOZONE(vp));
890 } while ((t = t->t_forw) != p->p_tlist);
891 ASSERT(nlwp == 0);
892 prunlock(pnp);
893 if (copyout(Bprsp, cmaddr, (Nlwp+1) * sizeof (prstatus_t)))
894 error = EFAULT;

896 kmem_free(Bprsp, (Nlwp+1) * sizeof (prstatus_t));
897 break;
898 }

900 case PIOCPSINFO: /* get ps(1) information */
901 {
902 prpsinfo_t *psp = &un.prps;

904 oprgetpsinfo(p, psp,
905 (pnp->pr_type == PR_LWPIDFILE)? pcp->prc_thread : NULL);

907 prunlock(pnp);
908 if (copyout(&un.prps, cmaddr, sizeof (un.prps)))
909 error = EFAULT;
910 break;
911 }

new/usr/src/uts/common/fs/proc/prioctl.c 13

913 case PIOCMAXSIG: /* get maximum signal number */
914 {
915 int n = nsig-1;

917 prunlock(pnp);
918 if (copyout(&n, cmaddr, sizeof (n)))
919 error = EFAULT;
920 break;
921 }

923 case PIOCACTION: /* get signal action structures */
924 {
925 uint_t sig;
926 struct sigaction *sap = thing;

928 up = PTOU(p);
929 for (sig = 1; sig < nsig; sig++)
930 prgetaction(p, up, sig, &sap[sig-1]);
931 prunlock(pnp);
932 if (copyout(sap, cmaddr, (nsig-1) * sizeof (struct sigaction)))
933 error = EFAULT;
934 kmem_free(sap, (nsig-1) * sizeof (struct sigaction));
935 thing = NULL;
936 break;
937 }

939 case PIOCGHOLD: /* get signal-hold mask */
940 schedctl_finish_sigblock(t);
941 sigktou(&t->t_hold, &un.holdmask);
942 prunlock(pnp);
943 if (copyout(&un.holdmask, cmaddr, sizeof (un.holdmask)))
944 error = EFAULT;
945 break;

947 case PIOCSHOLD: /* set signal-hold mask */
948 pr_sethold(pnp, &un.holdmask);
949 prunlock(pnp);
950 break;

952 case PIOCNMAP: /* get number of memory mappings */
953 {
954 int n;
955 struct as *as = p->p_as;

957 if ((p->p_flag & SSYS) || as == &kas)
958 n = 0;
959 else {
960 mutex_exit(&p->p_lock);
961 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
962 n = prnsegs(as, 0);
963 AS_LOCK_EXIT(as, &as->a_lock);
964 mutex_enter(&p->p_lock);
965 }
966 prunlock(pnp);
967 if (copyout(&n, cmaddr, sizeof (int)))
968 error = EFAULT;
969 break;
970 }

972 case PIOCMAP: /* get memory map information */
973 {
974 list_t iolhead;
975 struct as *as = p->p_as;

977 if ((p->p_flag & SSYS) || as == &kas) {

new/usr/src/uts/common/fs/proc/prioctl.c 14

978 error = 0;
979 prunlock(pnp);
980 } else {
981 mutex_exit(&p->p_lock);
982 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
983 error = oprgetmap(p, &iolhead);
984 AS_LOCK_EXIT(as, &as->a_lock);
985 mutex_enter(&p->p_lock);
986 prunlock(pnp);

988 error = pr_iol_copyout_and_free(&iolhead,
989 &cmaddr, error);
990 }
991 /*
992 * The procfs PIOCMAP ioctl returns an all-zero buffer
993 * to indicate the end of the prmap[] array.
994 * Append it to whatever has already been copied out.
995 */
996 bzero(&un.prmap, sizeof (un.prmap));
997 if (!error && copyout(&un.prmap, cmaddr, sizeof (un.prmap)))
998 error = EFAULT;

1000 break;
1001 }

1003 case PIOCGFAULT: /* get mask of traced faults */
1004 prassignset(&un.fltmask, &p->p_fltmask);
1005 prunlock(pnp);
1006 if (copyout(&un.fltmask, cmaddr, sizeof (un.fltmask)))
1007 error = EFAULT;
1008 break;

1010 case PIOCSFAULT: /* set mask of traced faults */
1011 pr_setfault(p, &un.fltmask);
1012 prunlock(pnp);
1013 break;

1015 case PIOCCFAULT: /* clear current fault */
1016 lwp->lwp_curflt = 0;
1017 prunlock(pnp);
1018 break;

1020 case PIOCCRED: /* get process credentials */
1021 {
1022 cred_t *cp;

1024 mutex_enter(&p->p_crlock);
1025 cp = p->p_cred;
1026 un.prcred.pr_euid = crgetuid(cp);
1027 un.prcred.pr_ruid = crgetruid(cp);
1028 un.prcred.pr_suid = crgetsuid(cp);
1029 un.prcred.pr_egid = crgetgid(cp);
1030 un.prcred.pr_rgid = crgetrgid(cp);
1031 un.prcred.pr_sgid = crgetsgid(cp);
1032 un.prcred.pr_ngroups = crgetngroups(cp);
1033 mutex_exit(&p->p_crlock);

1035 prunlock(pnp);
1036 if (copyout(&un.prcred, cmaddr, sizeof (un.prcred)))
1037 error = EFAULT;
1038 break;
1039 }

1041 case PIOCGROUPS: /* get supplementary groups */
1042 {
1043 cred_t *cp;

new/usr/src/uts/common/fs/proc/prioctl.c 15

1045 mutex_enter(&p->p_crlock);
1046 cp = p->p_cred;
1047 crhold(cp);
1048 mutex_exit(&p->p_crlock);

1050 prunlock(pnp);
1051 if (copyout(crgetgroups(cp), cmaddr,
1052 MAX(crgetngroups(cp), 1) * sizeof (gid_t)))
1053 error = EFAULT;
1054 crfree(cp);
1055 break;
1056 }

1058 case PIOCUSAGE: /* get usage info */
1059 {
1060 /*
1061 * For an lwp file descriptor, return just the lwp usage.
1062 * For a process file descriptor, return total usage,
1063 * all current lwps plus all defunct lwps.
1064 */
1065 prhusage_t *pup = &un.prhusage;
1066 prusage_t *upup;

1068 bzero(pup, sizeof (*pup));
1069 pup->pr_tstamp = gethrtime();

1071 if (pnp->pr_type == PR_LWPIDFILE) {
1072 t = pcp->prc_thread;
1073 if (t != NULL)
1074 prgetusage(t, pup);
1075 else
1076 error = ENOENT;
1077 } else {
1078 pup->pr_count = p->p_defunct;
1079 pup->pr_create = p->p_mstart;
1080 pup->pr_term = p->p_mterm;

1082 pup->pr_rtime = p->p_mlreal;
1083 pup->pr_utime = p->p_acct[LMS_USER];
1084 pup->pr_stime = p->p_acct[LMS_SYSTEM];
1085 pup->pr_ttime = p->p_acct[LMS_TRAP];
1086 pup->pr_tftime = p->p_acct[LMS_TFAULT];
1087 pup->pr_dftime = p->p_acct[LMS_DFAULT];
1088 pup->pr_kftime = p->p_acct[LMS_KFAULT];
1089 pup->pr_ltime = p->p_acct[LMS_USER_LOCK];
1090 pup->pr_slptime = p->p_acct[LMS_SLEEP];
1091 pup->pr_wtime = p->p_acct[LMS_WAIT_CPU];
1092 pup->pr_stoptime = p->p_acct[LMS_STOPPED];

1094 pup->pr_minf = p->p_ru.minflt;
1095 pup->pr_majf = p->p_ru.majflt;
1096 pup->pr_nswap = p->p_ru.nswap;
1097 pup->pr_inblk = p->p_ru.inblock;
1098 pup->pr_oublk = p->p_ru.oublock;
1099 pup->pr_msnd = p->p_ru.msgsnd;
1100 pup->pr_mrcv = p->p_ru.msgrcv;
1101 pup->pr_sigs = p->p_ru.nsignals;
1102 pup->pr_vctx = p->p_ru.nvcsw;
1103 pup->pr_ictx = p->p_ru.nivcsw;
1104 pup->pr_sysc = p->p_ru.sysc;
1105 pup->pr_ioch = p->p_ru.ioch;

1107 /*
1108 * Add the usage information for each active lwp.
1109 */

new/usr/src/uts/common/fs/proc/prioctl.c 16

1110 if ((t = p->p_tlist) != NULL &&
1111 !(pcp->prc_flags & PRC_DESTROY)) {
1112 do {
1113 ASSERT(!(t->t_proc_flag & TP_LWPEXIT));
1114 pup->pr_count++;
1115 praddusage(t, pup);
1116 } while ((t = t->t_forw) != p->p_tlist);
1117 }
1118 }

1120 prunlock(pnp);

1122 upup = kmem_zalloc(sizeof (*upup), KM_SLEEP);
1123 prcvtusage(&un.prhusage, upup);
1124 if (copyout(upup, cmaddr, sizeof (*upup)))
1125 error = EFAULT;
1126 kmem_free(upup, sizeof (*upup));

1128 break;
1129 }

1131 case PIOCLUSAGE: /* get detailed usage info */
1132 {
1133 int Nlwp;
1134 int nlwp;
1135 prusage_t *upup;
1136 prusage_t *Bupup;
1137 prhusage_t *pup;
1138 hrtime_t curtime;

1140 nlwp = Nlwp = (pcp->prc_flags & PRC_DESTROY)? 0 : p->p_lwpcnt;

1142 if (thing && thingsize !=
1143 sizeof (prhusage_t) + (Nlwp+1) * sizeof (prusage_t)) {
1144 kmem_free(thing, thingsize);
1145 thing = NULL;
1146 }
1147 if (thing == NULL) {
1148 thingsize = sizeof (prhusage_t) +
1149 (Nlwp+1) * sizeof (prusage_t);
1150 thing = kmem_alloc(thingsize, KM_NOSLEEP);
1151 }
1152 if (thing == NULL) {
1153 prunlock(pnp);
1154 goto startover;
1155 }

1157 pup = thing;
1158 upup = Bupup = (prusage_t *)(pup + 1);

1160 ASSERT(p == pcp->prc_proc);

1162 curtime = gethrtime();

1164 /*
1165 * First the summation over defunct lwps.
1166 */
1167 bzero(pup, sizeof (*pup));
1168 pup->pr_count = p->p_defunct;
1169 pup->pr_tstamp = curtime;
1170 pup->pr_create = p->p_mstart;
1171 pup->pr_term = p->p_mterm;

1173 pup->pr_rtime = p->p_mlreal;
1174 pup->pr_utime = p->p_acct[LMS_USER];
1175 pup->pr_stime = p->p_acct[LMS_SYSTEM];

new/usr/src/uts/common/fs/proc/prioctl.c 17

1176 pup->pr_ttime = p->p_acct[LMS_TRAP];
1177 pup->pr_tftime = p->p_acct[LMS_TFAULT];
1178 pup->pr_dftime = p->p_acct[LMS_DFAULT];
1179 pup->pr_kftime = p->p_acct[LMS_KFAULT];
1180 pup->pr_ltime = p->p_acct[LMS_USER_LOCK];
1181 pup->pr_slptime = p->p_acct[LMS_SLEEP];
1182 pup->pr_wtime = p->p_acct[LMS_WAIT_CPU];
1183 pup->pr_stoptime = p->p_acct[LMS_STOPPED];

1185 pup->pr_minf = p->p_ru.minflt;
1186 pup->pr_majf = p->p_ru.majflt;
1187 pup->pr_nswap = p->p_ru.nswap;
1188 pup->pr_inblk = p->p_ru.inblock;
1189 pup->pr_oublk = p->p_ru.oublock;
1190 pup->pr_msnd = p->p_ru.msgsnd;
1191 pup->pr_mrcv = p->p_ru.msgrcv;
1192 pup->pr_sigs = p->p_ru.nsignals;
1193 pup->pr_vctx = p->p_ru.nvcsw;
1194 pup->pr_ictx = p->p_ru.nivcsw;
1195 pup->pr_sysc = p->p_ru.sysc;
1196 pup->pr_ioch = p->p_ru.ioch;

1198 prcvtusage(pup, upup);

1200 /*
1201 * Fill one prusage struct for each active lwp.
1202 */
1203 if ((t = p->p_tlist) != NULL &&
1204 !(pcp->prc_flags & PRC_DESTROY)) {
1205 do {
1206 ASSERT(!(t->t_proc_flag & TP_LWPEXIT));
1207 ASSERT(nlwp > 0);
1208 --nlwp;
1209 upup++;
1210 prgetusage(t, pup);
1211 prcvtusage(pup, upup);
1212 } while ((t = t->t_forw) != p->p_tlist);
1213 }
1214 ASSERT(nlwp == 0);

1216 prunlock(pnp);
1217 if (copyout(Bupup, cmaddr, (Nlwp+1) * sizeof (prusage_t)))
1218 error = EFAULT;
1219 kmem_free(thing, thingsize);
1220 thing = NULL;
1221 break;
1222 }

1224 case PIOCNAUXV: /* get number of aux vector entries */
1225 {
1226 int n = __KERN_NAUXV_IMPL;

1228 prunlock(pnp);
1229 if (copyout(&n, cmaddr, sizeof (int)))
1230 error = EFAULT;
1231 break;
1232 }

1234 case PIOCAUXV: /* get aux vector (see sys/auxv.h) */
1235 {
1236 up = PTOU(p);
1237 bcopy(up->u_auxv, un.auxv,
1238 __KERN_NAUXV_IMPL * sizeof (auxv_t));
1239 prunlock(pnp);
1240 if (copyout(un.auxv, cmaddr,
1241 __KERN_NAUXV_IMPL * sizeof (auxv_t)))

new/usr/src/uts/common/fs/proc/prioctl.c 18

1242 error = EFAULT;
1243 break;
1244 }

1246 #if defined(__i386) || defined(__amd64)
1247 case PIOCNLDT: /* get number of LDT entries */
1248 {
1249 int n;

1251 mutex_exit(&p->p_lock);
1252 mutex_enter(&p->p_ldtlock);
1253 n = prnldt(p);
1254 mutex_exit(&p->p_ldtlock);
1255 mutex_enter(&p->p_lock);
1256 prunlock(pnp);
1257 if (copyout(&n, cmaddr, sizeof (n)))
1258 error = EFAULT;
1259 break;
1260 }

1262 case PIOCLDT: /* get LDT entries */
1263 {
1264 struct ssd *ssd;
1265 int n;

1267 mutex_exit(&p->p_lock);
1268 mutex_enter(&p->p_ldtlock);
1269 n = prnldt(p);

1271 if (thing && thingsize != (n+1) * sizeof (*ssd)) {
1272 kmem_free(thing, thingsize);
1273 thing = NULL;
1274 }
1275 if (thing == NULL) {
1276 thingsize = (n+1) * sizeof (*ssd);
1277 thing = kmem_alloc(thingsize, KM_NOSLEEP);
1278 }
1279 if (thing == NULL) {
1280 mutex_exit(&p->p_ldtlock);
1281 mutex_enter(&p->p_lock);
1282 prunlock(pnp);
1283 goto startover;
1284 }

1286 ssd = thing;
1287 thing = NULL;
1288 if (n != 0)
1289 prgetldt(p, ssd);
1290 mutex_exit(&p->p_ldtlock);
1291 mutex_enter(&p->p_lock);
1292 prunlock(pnp);

1294 /* mark the end of the list with a null entry */
1295 bzero(&ssd[n], sizeof (*ssd));
1296 if (copyout(ssd, cmaddr, (n+1) * sizeof (*ssd)))
1297 error = EFAULT;
1298 kmem_free(ssd, (n+1) * sizeof (*ssd));
1299 break;
1300 }
1301 #endif /* __i386 || __amd64 */

1303 #if defined(__sparc)
1304 case PIOCGWIN: /* get gwindows_t (see sys/reg.h) */
1305 {
1306 gwindows_t *gwp = thing;

new/usr/src/uts/common/fs/proc/prioctl.c 19

1308 /* drop p->p_lock while touching the stack */
1309 mutex_exit(&p->p_lock);
1310 bzero(gwp, sizeof (*gwp));
1311 prgetwindows(lwp, gwp);
1312 mutex_enter(&p->p_lock);
1313 prunlock(pnp);
1314 if (copyout(gwp, cmaddr, sizeof (*gwp)))
1315 error = EFAULT;
1316 kmem_free(gwp, sizeof (gwindows_t));
1317 thing = NULL;
1318 break;
1319 }
1320 #endif /* __sparc */

1322 default:
1323 prunlock(pnp);
1324 error = EINVAL;
1325 break;

1327 }

1329 ASSERT(thing == NULL);
1330 ASSERT(xpnp == NULL);
1331 return (error);
1332 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/proc/prvnops.c 1

**
 141047 Wed Jan 23 13:19:06 2013
new/usr/src/uts/common/fs/proc/prvnops.c
XXX AVX procfs
**
______unchanged_portion_omitted_

1523 /* ARGSUSED */
1524 static int
1525 pr_read_xregs(prnode_t *pnp, uio_t *uiop)
1526 {
1527 #if defined(__sparc)
1527 proc_t *p;
1528 kthread_t *t;
1529 int error;
1530 char *xreg;
1531 size_t size;

1533 ASSERT(pnp->pr_type == PR_XREGS);

1535 xreg = kmem_zalloc(sizeof (prxregset_t), KM_SLEEP);

1537 if ((error = prlock(pnp, ZNO)) != 0)
1538 goto out;

1540 p = pnp->pr_common->prc_proc;
1541 t = pnp->pr_common->prc_thread;

1543 size = prhasx(p)? prgetprxregsize(p) : 0;
1544 if (uiop->uio_offset >= size) {
1545 prunlock(pnp);
1546 goto out;
1547 }

1549 /* drop p->p_lock while (possibly) touching the stack */
1550 mutex_exit(&p->p_lock);
1551 prgetprxregs(ttolwp(t), xreg);
1552 mutex_enter(&p->p_lock);
1553 prunlock(pnp);

1555 error = pr_uioread(xreg, size, uiop);
1556 out:
1557 kmem_free(xreg, sizeof (prxregset_t));
1558 return (error);
1560 #else
1561 return (0);
1562 #endif
1559 }
______unchanged_portion_omitted_

new/usr/src/uts/intel/Makefile.files 1

**
 6490 Wed Jan 23 13:19:07 2013
new/usr/src/uts/intel/Makefile.files
XXX AVX procfs
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
25 #

27 #
28 # This Makefile defines all file modules and build rules for the
29 # directory uts/intel and its children. These are the source files which
30 # are specific to x86 processor architectures.
31 #

33 #
34 # Core (unix) objects
35 #
36 CORE_OBJS += \
37 arch_kdi.o \
38 copy.o \
39 copy_subr.o \
40 cpc_subr.o \
41 ddi_arch.o \
42 ddi_i86.o \
43 ddi_i86_asm.o \
44 desctbls.o \
45 desctbls_asm.o \
46 exception.o \
47 float.o \
48 fmsmb.o \
49 fpu.o \
50 i86_subr.o \
51 lock_prim.o \
52 ovbcopy.o \
53 polled_io.o \
54 sseblk.o \
55 sundep.o \
56 swtch.o \
57 sysi86.o

59 #
60 # 64-bit multiply/divide compiler helper routines
61 # used only for ia32

new/usr/src/uts/intel/Makefile.files 2

62 #

64 SPECIAL_OBJS_32 += \
65 muldiv.o

67 #
68 # Generic-unix Module
69 #
70 GENUNIX_OBJS += \
71 archdep.o \
72 getcontext.o \
73 install_utrap.o \
74 lwp_private.o \
75 prom_enter.o \
76 prom_exit.o \
77 prom_panic.o \
78 sendsig.o \
79 syscall.o \
80 xregs.o
79 syscall.o

83 #
84 # PROM Routines
85 #
86 GENUNIX_OBJS += \
87 prom_env.o \
88 prom_emul.o \
89 prom_getchar.o \
90 prom_init.o \
91 prom_node.o \
92 prom_printf.o \
93 prom_prop.o \
94 prom_putchar.o \
95 prom_reboot.o \
96 prom_version.o

98 #
99 # file system modules
100 #
101 CORE_OBJS += \
102 prmachdep.o

104 #
105 # ZFS file system module
106 #
107 ZFS_OBJS += \
108 spa_boot.o

110 #
111 # Decompression code
112 #
113 CORE_OBJS += decompress.o

115 #
116 # Microcode utilities
117 #
118 CORE_OBJS += ucode_utils.o

120 #
121 # Driver modules
122 #
123 AGPGART_OBJS += agpgart.o agp_kstat.o
124 AGPTARGET_OBJS += agptarget.o
125 AMD64GART_OBJS += amd64_gart.o
126 ARCMSR_OBJS += arcmsr.o

new/usr/src/uts/intel/Makefile.files 3

127 ATA_OBJS += $(GHD_OBJS) ata_blacklist.o ata_common.o ata_disk.o \
128 ata_dma.o atapi.o atapi_fsm.o ata_debug.o \
129 sil3xxx.o
130 BSCBUS_OBJS += bscbus.o
131 BSCV_OBJS += bscv.o
132 CMDK_OBJS += cmdk.o
133 CMLB_OBJS += cmlb.o
134 CPUNEX_OBJS += cpunex.o
135 DADK_OBJS += dadk.o
136 DCOPY_OBJS += dcopy.o
137 DNET_OBJS += dnet.o dnet_mii.o
138 FD_OBJS += fd.o
139 GDA_OBJS += gda.o
140 GHD_OBJS += ghd.o ghd_debug.o ghd_dma.o ghd_queue.o ghd_scsa.o \
141 ghd_scsi.o ghd_timer.o ghd_waitq.o ghd_gcmd.o
142 I915_OBJS += i915_dma.o i915_drv.o i915_irq.o i915_mem.o \
143 i915_gem.o i915_gem_debug.o i915_gem_tiling.o
144 NSKERN_OBJS += nsc_asm.o
145 PCICFG_OBJS += pcicfg.o
146 PCI_PCINEXUS_OBJS += pci_pci.o
147 PCIEB_OBJS += pcieb_x86.o
148 PIT_BEEP_OBJS += pit_beep.o
149 POWER_OBJS += power.o
150 PCI_AUTOCONFIG_OBJS += pci_autoconfig.o pci_boot.o pcie_nvidia.o \
151 pci_memlist.o pci_resource.o
152 RADEON_OBJS += r300_cmdbuf.o radeon_cp.o radeon_drv.o \
153 radeon_state.o radeon_irq.o radeon_mem.o
154 SD_OBJS += sd.o sd_xbuf.o

156 HECI_OBJS += \
157 heci_init.o \
158 heci_intr.o \
159 heci_interface.o \
160 io_heci.o \
161 heci_main.o

163 STRATEGY_OBJS += strategy.o
164 UCODE_OBJS += ucode_drv.o
165 VGATEXT_OBJS += vgatext.o vgasubr.o

167 #
168 # Kernel linker
169 #
170 KRTLD_OBJS += \
171 bootrd.o \
172 ufsops.o \
173 hsfs.o \
174 doreloc.o \
175 kobj_boot.o \
176 kobj_convrelstr.o \
177 kobj_crt.o \
178 kobj_isa.o \
179 kobj_reloc.o

181 #
182 # misc. modules
183 #
184 ACPICA_OBJS += dbcmds.o dbdisply.o \
185 dbexec.o dbfileio.o dbhistry.o dbinput.o dbstats.o \
186 dbutils.o dbxface.o evevent.o evgpe.o evgpeblk.o \
187 evmisc.o evregion.o evrgnini.o evsci.o evxface.o \
188 evxfevnt.o evxfregn.o hwacpi.o hwgpe.o hwregs.o \
189 hwsleep.o hwtimer.o dsfield.o dsinit.o dsmethod.o \
190 dsmthdat.o dsobject.o dsopcode.o dsutils.o dswexec.o \
191 dswload.o dswscope.o dswstate.o exconfig.o exconvrt.o \
192 excreate.o exdump.o exfield.o exfldio.o exmisc.o \

new/usr/src/uts/intel/Makefile.files 4

193 exmutex.o exnames.o exoparg1.o exoparg2.o exoparg3.o \
194 exoparg6.o exprep.o exregion.o exresnte.o exresolv.o \
195 exresop.o exstore.o exstoren.o exstorob.o exsystem.o \
196 exutils.o psargs.o psopcode.o psparse.o psscope.o \
197 pstree.o psutils.o pswalk.o psxface.o nsaccess.o \
198 nsalloc.o nsdump.o nsdumpdv.o nseval.o nsinit.o \
199 nsload.o nsnames.o nsobject.o nsparse.o nssearch.o \
200 nsutils.o nswalk.o nsxfeval.o nsxfname.o nsxfobj.o \
201 rsaddr.o rscalc.o rscreate.o rsdump.o \
202 rsinfo.o rsio.o rsirq.o rslist.o rsmemory.o rsmisc.o \
203 rsutils.o rsxface.o tbfadt.o tbfind.o tbinstal.o \
204 tbutils.o tbxface.o tbxfroot.o \
205 utalloc.o utclib.o utcopy.o utdebug.o utdelete.o \
206 uteval.o utglobal.o utinit.o utmath.o utmisc.o \
207 utobject.o utresrc.o utxface.o acpica.o acpi_enum.o \
208 master_ops.o osl.o osl_ml.o acpica_ec.o utcache.o \
209 utmutex.o utstate.o dmbuffer.o dmnames.o dmobject.o \
210 dmopcode.o dmresrc.o dmresrcl.o dmresrcs.o dmutils.o \
211 dmwalk.o psloop.o nspredef.o hwxface.o hwvalid.o \
212 utlock.o utids.o nsrepair.o nsrepair2.o \
213 dbmethod.o dbnames.o dsargs.o dscontrol.o dswload2.o \
214 evglock.o evgpeinit.o evgpeutil.o evxfgpe.o exdebug.o \
215 hwpci.o utdecode.o utosi.o utxferror.o

218 AGP_OBJS += agpmaster.o
219 FBT_OBJS += fbt.o
220 SDT_OBJS += sdt.o

222 #
223 # AMD8111 NIC driver module
224 #
225 AMD8111S_OBJS += amd8111s_main.o amd8111s_hw.o

227 #
228 # Pentium Performance Counter BackEnd module
229 #
230 P123_PCBE_OBJS = p123_pcbe.o

232 #
233 # Pentium 4 Performance Counter BackEnd module
234 #
235 P4_PCBE_OBJS = p4_pcbe.o

237 #
238 # AMD Opteron/Athlon64 Performance Counter BackEnd module
239 #
240 OPTERON_PCBE_OBJS = opteron_pcbe.o

242 #
243 # Intel Core Architecture Performance Counter BackEnd module
244 #
245 CORE_PCBE_OBJS = core_pcbe.o

247 #
248 # AMR module
249 #
250 AMR_OBJS = amr.o

252 #
253 # IPMI module
254 IPMI_OBJS += ipmi_main.o ipmi.o ipmi_kcs.o

256 #
257 # IOMMULIB module
258 #

new/usr/src/uts/intel/Makefile.files 5

259 IOMMULIB_OBJS = iommulib.o

261 #
262 # Brand modules
263 #
264 SN1_BRAND_OBJS = sn1_brand.o sn1_brand_asm.o
265 S10_BRAND_OBJS = s10_brand.o s10_brand_asm.o

267 #
268 # special files
269 #
270 MODSTUB_OBJ += \
271 modstubs.o

273 BOOTDEV_OBJS += \
274 bootdev.o

276 INC_PATH += -I$(UTSBASE)/intel

279 CPR_INTEL_OBJS += cpr_intel.o

281 #
282 # AMD family 0xf memory controller module
283 #
284 include $(SRC)/common/mc/mc-amd/Makefile.mcamd
285 MCAMD_OBJS += \
286 $(MCAMD_CMN_OBJS) \
287 mcamd_drv.o \
288 mcamd_dimmcfg.o \
289 mcamd_subr.o \
290 mcamd_pcicfg.o

new/usr/src/uts/intel/amd64/sys/privregs.h 1

**
 8493 Wed Jan 23 13:19:07 2013
new/usr/src/uts/intel/amd64/sys/privregs.h
XXX AVX procfs
**
______unchanged_portion_omitted_

104 #define r_r0 r_rax /* r0 for portability */
105 #define r_r1 r_rdx /* r1 for portability */
106 #define r_fp r_rbp /* kernel frame pointer */
107 #define r_sp r_rsp /* user stack pointer */
108 #define r_pc r_rip /* user’s instruction pointer */
109 #define r_ps r_rfl /* user’s RFLAGS */

111 #ifdef _KERNEL
112 #define lwptoregs(lwp) ((struct regs *)((lwp)->lwp_regs))
113 #define lwptofpu(lwp) ((kfpu_t *)((lwp)->lwp_fpu))
114 #endif /* ! codereview */
115 #endif /* _KERNEL */

117 #else /* !_ASM */

119 #if defined(_MACHDEP)

121 #include <sys/machprivregs.h>
122 #include <sys/pcb.h>

124 /*
125 * We can not safely sample {fs,gs}base on the hypervisor. The rdmsr
126 * instruction triggers a #gp fault which is emulated in the hypervisor
127 * on behalf of the guest. This is normally ok but if the guest is in
128 * the special failsafe handler it must not fault again or the hypervisor
129 * will kill the domain. We could use something different than INTR_PUSH
130 * in xen_failsafe_callback but for now we will not sample them.
131 */
132 #if defined(DEBUG) && !defined(__xpv)
133 #define __SAVE_BASES \
134 movl $MSR_AMD_FSBASE, %ecx; \
135 rdmsr; \
136 movl %eax, REGOFF_FSBASE(%rsp); \
137 movl %edx, REGOFF_FSBASE+4(%rsp); \
138 movl $MSR_AMD_GSBASE, %ecx; \
139 rdmsr; \
140 movl %eax, REGOFF_GSBASE(%rsp); \
141 movl %edx, REGOFF_GSBASE+4(%rsp)
142 #else
143 #define __SAVE_BASES
144 #endif

146 /*
147 * Create a struct regs on the stack suitable for an
148 * interrupt trap.
149 *
150 * Assumes that the trap handler has already pushed an
151 * appropriate r_err and r_trapno
152 */
153 #define __SAVE_REGS \
154 movq %r15, REGOFF_R15(%rsp); \
155 movq %r14, REGOFF_R14(%rsp); \
156 movq %r13, REGOFF_R13(%rsp); \
157 movq %r12, REGOFF_R12(%rsp); \
158 movq %r11, REGOFF_R11(%rsp); \
159 movq %r10, REGOFF_R10(%rsp); \
160 movq %rbp, REGOFF_RBP(%rsp); \
161 movq %rbx, REGOFF_RBX(%rsp); \
162 movq %rax, REGOFF_RAX(%rsp); \

new/usr/src/uts/intel/amd64/sys/privregs.h 2

163 movq %r9, REGOFF_R9(%rsp); \
164 movq %r8, REGOFF_R8(%rsp); \
165 movq %rcx, REGOFF_RCX(%rsp); \
166 movq %rdx, REGOFF_RDX(%rsp); \
167 movq %rsi, REGOFF_RSI(%rsp); \
168 movq %rdi, REGOFF_RDI(%rsp); \
169 movq %rbp, REGOFF_SAVFP(%rsp); \
170 movq REGOFF_RIP(%rsp), %rcx; \
171 movq %rcx, REGOFF_SAVPC(%rsp); \
172 xorl %ecx, %ecx; \
173 movw %gs, %cx; \
174 movq %rcx, REGOFF_GS(%rsp); \
175 movw %fs, %cx; \
176 movq %rcx, REGOFF_FS(%rsp); \
177 movw %es, %cx; \
178 movq %rcx, REGOFF_ES(%rsp); \
179 movw %ds, %cx; \
180 movq %rcx, REGOFF_DS(%rsp); \
181 __SAVE_BASES

183 #define __RESTORE_REGS \
184 movq REGOFF_RDI(%rsp), %rdi; \
185 movq REGOFF_RSI(%rsp), %rsi; \
186 movq REGOFF_RDX(%rsp), %rdx; \
187 movq REGOFF_RCX(%rsp), %rcx; \
188 movq REGOFF_R8(%rsp), %r8; \
189 movq REGOFF_R9(%rsp), %r9; \
190 movq REGOFF_RAX(%rsp), %rax; \
191 movq REGOFF_RBX(%rsp), %rbx; \
192 movq REGOFF_RBP(%rsp), %rbp; \
193 movq REGOFF_R10(%rsp), %r10; \
194 movq REGOFF_R11(%rsp), %r11; \
195 movq REGOFF_R12(%rsp), %r12; \
196 movq REGOFF_R13(%rsp), %r13; \
197 movq REGOFF_R14(%rsp), %r14; \
198 movq REGOFF_R15(%rsp), %r15

200 /*
201 * Push register state onto the stack. If we’ve
202 * interrupted userland, do a swapgs as well.
203 */
204 #define INTR_PUSH \
205 subq $REGOFF_TRAPNO, %rsp; \
206 __SAVE_REGS; \
207 cmpw $KCS_SEL, REGOFF_CS(%rsp); \
208 je 6f; \
209 movq $0, REGOFF_SAVFP(%rsp); \
210 SWAPGS; \
211 6: CLEAN_CS

213 #define INTR_POP \
214 leaq sys_lcall32(%rip), %r11;\
215 cmpq %r11, REGOFF_RIP(%rsp); \
216 __RESTORE_REGS; \
217 je 5f; \
218 cmpw $KCS_SEL, REGOFF_CS(%rsp);\
219 je 8f; \
220 5: SWAPGS; \
221 8: addq $REGOFF_RIP, %rsp

223 #define USER_POP \
224 __RESTORE_REGS; \
225 SWAPGS; \
226 addq $REGOFF_RIP, %rsp /* Adjust %rsp to prepare for iretq */

228 #define USER32_POP \

new/usr/src/uts/intel/amd64/sys/privregs.h 3

229 movl REGOFF_RDI(%rsp), %edi; \
230 movl REGOFF_RSI(%rsp), %esi; \
231 movl REGOFF_RDX(%rsp), %edx; \
232 movl REGOFF_RCX(%rsp), %ecx; \
233 movl REGOFF_RAX(%rsp), %eax; \
234 movl REGOFF_RBX(%rsp), %ebx; \
235 movl REGOFF_RBP(%rsp), %ebp; \
236 SWAPGS; \
237 addq $REGOFF_RIP, %rsp /* Adjust %rsp to prepare for iretq */

239 #define DFTRAP_PUSH \
240 subq $REGOFF_TRAPNO, %rsp; \
241 __SAVE_REGS

243 #endif /* _MACHDEP */

245 /*
246 * Used to set rflags to known values at the head of an
247 * interrupt gate handler, i.e. interrupts are -already- disabled.
248 */
249 #define INTGATE_INIT_KERNEL_FLAGS \
250 pushq $F_OFF; \
251 popfq

253 #endif /* !_ASM */

255 #include <sys/controlregs.h>

257 #if defined(_KERNEL) && !defined(_ASM)
258 #if !defined(__lint) && defined(__GNUC__)

260 extern __GNU_INLINE ulong_t
261 getcr8(void)
262 {
263 uint64_t value;

265 __asm__ __volatile__(
266 "movq %%cr8, %0"
267 : "=r" (value));
268 return (value);
269 }

271 extern __GNU_INLINE void
272 setcr8(ulong_t value)
273 {
274 __asm__ __volatile__(
275 "movq %0, %%cr8"
276 : /* no output */
277 : "r" (value));
278 }

280 #else

282 extern ulong_t getcr8(void);
283 extern void setcr8(ulong_t);

285 #endif /* !defined(__lint) && defined(__GNUC__) */
286 #endif /* _KERNEL && !_ASM */

288 /* Control register layout for panic dump */

290 #define CREGSZ 0x68
291 #define CREG_GDT 0
292 #define CREG_IDT 0x10
293 #define CREG_LDT 0x20
294 #define CREG_TASKR 0x28

new/usr/src/uts/intel/amd64/sys/privregs.h 4

295 #define CREG_CR0 0x30
296 #define CREG_CR2 0x38
297 #define CREG_CR3 0x40
298 #define CREG_CR4 0x48
299 #define CREG_CR8 0x50
300 #define CREG_KGSBASE 0x58
301 #define CREG_EFER 0x60

303 #if !defined(_ASM) && defined(_INT64_TYPE)

305 typedef uint64_t creg64_t;
306 typedef upad128_t creg128_t;

308 struct cregs {
309 creg128_t cr_gdt;
310 creg128_t cr_idt;
311 creg64_t cr_ldt;
312 creg64_t cr_task;
313 creg64_t cr_cr0;
314 creg64_t cr_cr2;
315 creg64_t cr_cr3;
316 creg64_t cr_cr4;
317 creg64_t cr_cr8;
318 creg64_t cr_kgsbase;
319 creg64_t cr_efer;
320 };

322 #if defined(_KERNEL)
323 extern void getcregs(struct cregs *);
324 #endif /* _KERNEL */

326 #endif /* !_ASM && _INT64_TYPE */

328 #ifdef __cplusplus
329 }
330 #endif

332 #endif /* !_AMD64_SYS_PRIVREGS_H */

new/usr/src/uts/intel/fs/proc/prmachdep.c 1

**
 12721 Wed Jan 23 13:19:08 2013
new/usr/src/uts/intel/fs/proc/prmachdep.c
XXX AVX procfs
**
______unchanged_portion_omitted_
236 #endif /* _SYSCALL32_IMPL */

238 /*
239 * Does the system support extra register state?
240 */
241 /* ARGSUSED */
241 int
242 prhasx(proc_t *p)
243 {
244 /* XXX */
245 return (1);
245 return (0);
246 }

248 /*
249 * Get the size of the extra registers.
250 */
251 /* ARGSUSED */
251 int
252 prgetprxregsize(proc_t *p)
253 {
254 return (xregs_getsize(p));
255 return (0);
255 }

257 /*
258 * Get extra registers.
259 */
261 /*ARGSUSED*/
260 void
261 prgetprxregs(klwp_t *lwp, caddr_t prx)
262 {
263 extern void xregs_get(struct _klwp *, caddr_t);

265 xregs_get(lwp, prx);
265 /* no extra registers */
266 }

268 /*
269 * Set extra registers.
270 */
271 /*ARGSUSED*/
271 void
272 prsetprxregs(klwp_t *lwp, caddr_t prx)
273 {
274 extern void xregs_set(struct _klwp *, caddr_t);

276 xregs_set(lwp, prx);
275 /* no extra registers */
277 }

______unchanged_portion_omitted_

new/usr/src/uts/intel/ia32/os/sendsig.c 1

**
 22655 Wed Jan 23 13:19:08 2013
new/usr/src/uts/intel/ia32/os/sendsig.c
XXX AVX procfs
**
______unchanged_portion_omitted_

126 int
127 sendsig(int sig, k_siginfo_t *sip, void (*hdlr)())
128 {
129 volatile int minstacksz;
130 int newstack;
131 label_t ljb;
132 volatile caddr_t sp;
133 caddr_t fp;
134 volatile struct regs *rp;
135 volatile greg_t upc;
136 proc_t *volatile p = ttoproc(curthread);
136 volatile proc_t *p = ttoproc(curthread);
137 struct as *as = p->p_as;
138 klwp_t *lwp = ttolwp(curthread);
139 ucontext_t *volatile tuc = NULL;
140 ucontext_t *uc;
141 siginfo_t *sip_addr;
142 volatile int watched;
143 char *volatile xregs = NULL;
144 volatile size_t xregs_size = 0;
145 #endif /* ! codereview */

147 /*
148 * This routine is utterly dependent upon STACK_ALIGN being
149 * 16 and STACK_ENTRY_ALIGN being 8. Let’s just acknowledge
150 * that and require it.
151 */

153 #if STACK_ALIGN != 16 || STACK_ENTRY_ALIGN != 8
154 #error "sendsig() amd64 did not find the expected stack alignments"
155 #endif

157 rp = lwptoregs(lwp);
158 upc = rp->r_pc;

160 /*
161 * Since we’re setting up to run the signal handler we have to
162 * arrange that the stack at entry to the handler is (only)
163 * STACK_ENTRY_ALIGN (i.e. 8) byte aligned so that when the handler
164 * executes its push of %rbp, the stack realigns to STACK_ALIGN
165 * (i.e. 16) correctly.
166 *
167 * The new sp will point to the sigframe and the ucontext_t. The
168 * above means that sp (and thus sigframe) will be 8-byte aligned,
169 * but not 16-byte aligned. ucontext_t, however, contains %xmm regs
170 * which must be 16-byte aligned. Because of this, for correct
171 * alignment, sigframe must be a multiple of 8-bytes in length, but
172 * not 16-bytes. This will place ucontext_t at a nice 16-byte boundary.
173 */

175 /* LINTED: logical expression always true: op "||" */
176 ASSERT((sizeof (struct sigframe) % 16) == 8);

178 minstacksz = sizeof (struct sigframe) + SA(sizeof (*uc));
179 if (sip != NULL)
180 minstacksz += SA(sizeof (siginfo_t));

182 /*
183 * Extra registers, if supported by this platform, may be of arbitrary

new/usr/src/uts/intel/ia32/os/sendsig.c 2

184 * length. Size them now so we know how big the signal frame has to be.
185 */
186 xregs_size = xregs_getsize(p);
187 minstacksz += SA(xregs_size);

189 #endif /* ! codereview */
190 ASSERT((minstacksz & (STACK_ENTRY_ALIGN - 1ul)) == 0);

192 /*
193 * Figure out whether we will be handling this signal on
194 * an alternate stack specified by the user. Then allocate
195 * and validate the stack requirements for the signal handler
196 * context. on_fault will catch any faults.
197 */
198 newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
199 !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));

201 if (newstack) {
202 fp = (caddr_t)(SA((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
203 SA(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN);
204 } else {
205 /*
206 * Drop below the 128-byte reserved region of the stack frame
207 * we’re interrupting.
208 */
209 fp = (caddr_t)rp->r_sp - STACK_RESERVE;
210 }

212 /*
213 * Force proper stack pointer alignment, even in the face of a
214 * misaligned stack pointer from user-level before the signal.
215 */
216 fp = (caddr_t)((uintptr_t)fp & ~(STACK_ENTRY_ALIGN - 1ul));

218 /*
219 * Most of the time during normal execution, the stack pointer
220 * is aligned on a STACK_ALIGN (i.e. 16 byte) boundary. However,
221 * (for example) just after a call instruction (which pushes
222 * the return address), the callers stack misaligns until the
223 * ’push %rbp’ happens in the callee prolog. So while we should
224 * expect the stack pointer to be always at least STACK_ENTRY_ALIGN
225 * aligned, we should -not- expect it to always be STACK_ALIGN aligned.
226 * We now adjust to ensure that the new sp is aligned to
227 * STACK_ENTRY_ALIGN but not to STACK_ALIGN.
228 */
229 sp = fp - minstacksz;
230 if (((uintptr_t)sp & (STACK_ALIGN - 1ul)) == 0) {
231 sp -= STACK_ENTRY_ALIGN;
232 minstacksz = fp - sp;
233 }

235 /*
236 * Now, make sure the resulting signal frame address is sane
237 */
238 if (sp >= as->a_userlimit || fp >= as->a_userlimit) {
239 #ifdef DEBUG
240 printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
241 PTOU(p)->u_comm, p->p_pid, sig);
242 printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
243 (void *)sp, (void *)hdlr, (uintptr_t)upc);
244 printf("sp above USERLIMIT\n");
245 #endif
246 return (0);
247 }

249 watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);

new/usr/src/uts/intel/ia32/os/sendsig.c 3

251 if (on_fault(&ljb))
252 goto badstack;

254 if (sip != NULL) {
255 zoneid_t zoneid;

257 fp -= SA(sizeof (siginfo_t));
258 uzero(fp, sizeof (siginfo_t));
259 if (SI_FROMUSER(sip) &&
260 (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
261 zoneid != sip->si_zoneid) {
262 k_siginfo_t sani_sip = *sip;

264 sani_sip.si_pid = p->p_zone->zone_zsched->p_pid;
265 sani_sip.si_uid = 0;
266 sani_sip.si_ctid = -1;
267 sani_sip.si_zoneid = zoneid;
268 copyout_noerr(&sani_sip, fp, sizeof (sani_sip));
269 } else
270 copyout_noerr(sip, fp, sizeof (*sip));
271 sip_addr = (siginfo_t *)fp;

273 if (sig == SIGPROF &&
274 curthread->t_rprof != NULL &&
275 curthread->t_rprof->rp_anystate) {
276 /*
277 * We stand on our head to deal with
278 * the real time profiling signal.
279 * Fill in the stuff that doesn’t fit
280 * in a normal k_siginfo structure.
281 */
282 int i = sip->si_nsysarg;

284 while (--i >= 0)
285 sulword_noerr(
286 (ulong_t *)&(sip_addr->si_sysarg[i]),
287 (ulong_t)lwp->lwp_arg[i]);
288 copyout_noerr(curthread->t_rprof->rp_state,
289 sip_addr->si_mstate,
290 sizeof (curthread->t_rprof->rp_state));
291 }
292 } else
293 sip_addr = NULL;

295 /*
296 * save the current context on the user stack directly after the
297 * sigframe. Since sigframe is 8-byte-but-not-16-byte aligned,
298 * and since sizeof (struct sigframe) is 24, this guarantees
299 * 16-byte alignment for ucontext_t and its %xmm registers.
300 */
301 uc = (ucontext_t *)(sp + sizeof (struct sigframe));
302 tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
303 savecontext(tuc, &lwp->lwp_sigoldmask);

305 /*
306 * Save extra register state if it exists.
307 */
308 if (xregs_size != 0) {
309 xregs_setptr(lwp, tuc, sp);
310 xregs = kmem_alloc(xregs_size, KM_SLEEP);
311 xregs_get(lwp, xregs);
312 copyout_noerr(xregs, sp, xregs_size);
313 kmem_free(xregs, xregs_size);
314 xregs = NULL;
315 sp += SA(xregs_size);

new/usr/src/uts/intel/ia32/os/sendsig.c 4

316 }

318 #endif /* ! codereview */
319 copyout_noerr(tuc, uc, sizeof (*tuc));
320 kmem_free(tuc, sizeof (*tuc));
321 tuc = NULL;

323 lwp->lwp_oldcontext = (uintptr_t)uc;

325 if (newstack) {
326 lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
327 if (lwp->lwp_ustack)
328 copyout_noerr(&lwp->lwp_sigaltstack,
329 (stack_t *)lwp->lwp_ustack, sizeof (stack_t));
330 }

332 /*
333 * Set up signal handler return and stack linkage
334 */
335 {
336 struct sigframe frame;

338 /*
339 * ensure we never return "normally"
340 */
341 frame.retaddr = (caddr_t)(uintptr_t)-1L;
342 frame.signo = sig;
343 frame.sip = sip_addr;
344 copyout_noerr(&frame, sp, sizeof (frame));
345 }

347 no_fault();
348 if (watched)
349 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);

351 /*
352 * Set up user registers for execution of signal handler.
353 */
354 rp->r_sp = (greg_t)sp;
355 rp->r_pc = (greg_t)hdlr;
356 rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);

358 rp->r_rdi = sig;
359 rp->r_rsi = (uintptr_t)sip_addr;
360 rp->r_rdx = (uintptr_t)uc;

362 if ((rp->r_cs & 0xffff) != UCS_SEL ||
363 (rp->r_ss & 0xffff) != UDS_SEL) {
364 /*
365 * Try our best to deliver the signal.
366 */
367 rp->r_cs = UCS_SEL;
368 rp->r_ss = UDS_SEL;
369 }

371 /*
372 * Don’t set lwp_eosys here. sendsig() is called via psig() after
373 * lwp_eosys is handled, so setting it here would affect the next
374 * system call.
375 */
376 return (1);

378 badstack:
379 no_fault();
380 if (watched)
381 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);

new/usr/src/uts/intel/ia32/os/sendsig.c 5

382 if (tuc)
383 kmem_free(tuc, sizeof (*tuc));
384 if (xregs)
385 kmem_free(xregs, xregs_size);
386 #endif /* ! codereview */
387 #ifdef DEBUG
388 printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
389 PTOU(p)->u_comm, p->p_pid, sig);
390 printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
391 (void *)sp, (void *)hdlr, (uintptr_t)upc);
392 #endif
393 return (0);
394 }

396 #ifdef _SYSCALL32_IMPL

398 /*
399 * An i386 SVR4/ABI signal frame looks like this on the stack:
400 *
401 * old %esp:
402 * <a siginfo32_t [optional]>
403 * <a ucontext32_t>
404 * <pointer to that ucontext32_t>
405 * <pointer to that siginfo32_t>
406 * <signo>
407 * new %esp: <return address (deliberately invalid)>
408 */
409 struct sigframe32 {
410 caddr32_t retaddr;
411 uint32_t signo;
412 caddr32_t sip;
413 caddr32_t ucp;
414 };

416 int
417 sendsig32(int sig, k_siginfo_t *sip, void (*hdlr)())
418 {
419 volatile int minstacksz;
420 int newstack;
421 label_t ljb;
422 volatile caddr_t sp;
423 caddr_t fp;
424 volatile struct regs *rp;
425 volatile greg_t upc;
426 proc_t *volatile p = ttoproc(curthread);
143 volatile proc_t *p = ttoproc(curthread);
427 klwp_t *lwp = ttolwp(curthread);
428 ucontext32_t *volatile tuc = NULL;
429 ucontext32_t *uc;
430 siginfo32_t *sip_addr;
431 volatile int watched;
432 char *volatile xregs = NULL;
433 volatile size_t xregs_size = 0;
434 #endif /* ! codereview */

436 rp = lwptoregs(lwp);
437 upc = rp->r_pc;

439 minstacksz = SA32(sizeof (struct sigframe32)) + SA32(sizeof (*uc));
440 if (sip != NULL)
441 minstacksz += SA32(sizeof (siginfo32_t));

443 /*
444 * Extra registers, if supported by this platform, may be of arbitrary
445 * length. Size them now so we know how big the signal frame has to be.
446 */

new/usr/src/uts/intel/ia32/os/sendsig.c 6

447 xregs_size = xregs_getsize(p);
448 minstacksz += SA32(xregs_size);

450 #endif /* ! codereview */
451 ASSERT((minstacksz & (STACK_ALIGN32 - 1)) == 0);

453 /*
454 * Figure out whether we will be handling this signal on
455 * an alternate stack specified by the user. Then allocate
456 * and validate the stack requirements for the signal handler
457 * context. on_fault will catch any faults.
458 */
459 newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
460 !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));

462 if (newstack) {
463 fp = (caddr_t)(SA32((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
464 SA32(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN32);
465 } else if ((rp->r_ss & 0xffff) != UDS_SEL) {
466 user_desc_t *ldt;
467 /*
468 * If the stack segment selector is -not- pointing at
469 * the UDS_SEL descriptor and we have an LDT entry for
470 * it instead, add the base address to find the effective va.
471 */
472 if ((ldt = p->p_ldt) != NULL)
473 fp = (caddr_t)rp->r_sp +
474 USEGD_GETBASE(&ldt[SELTOIDX(rp->r_ss)]);
475 else
476 fp = (caddr_t)rp->r_sp;
477 } else
478 fp = (caddr_t)rp->r_sp;

480 /*
481 * Force proper stack pointer alignment, even in the face of a
482 * misaligned stack pointer from user-level before the signal.
483 * Don’t use the SA32() macro because that rounds up, not down.
484 */
485 fp = (caddr_t)((uintptr_t)fp & ~(STACK_ALIGN32 - 1));
486 sp = fp - minstacksz;

488 /*
489 * Make sure lwp hasn’t trashed its stack
490 */
491 if (sp >= (caddr_t)(uintptr_t)USERLIMIT32 ||
492 fp >= (caddr_t)(uintptr_t)USERLIMIT32) {
493 #ifdef DEBUG
494 printf("sendsig32: bad signal stack cmd=%s, pid=%d, sig=%d\n",
495 PTOU(p)->u_comm, p->p_pid, sig);
496 printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
497 (void *)sp, (void *)hdlr, (uintptr_t)upc);
498 printf("sp above USERLIMIT\n");
499 #endif
500 return (0);
501 }

503 watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);

505 if (on_fault(&ljb))
506 goto badstack;

508 if (sip != NULL) {
509 siginfo32_t si32;
510 zoneid_t zoneid;

512 siginfo_kto32(sip, &si32);

new/usr/src/uts/intel/ia32/os/sendsig.c 7

513 if (SI_FROMUSER(sip) &&
514 (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
515 zoneid != sip->si_zoneid) {
516 si32.si_pid = p->p_zone->zone_zsched->p_pid;
517 si32.si_uid = 0;
518 si32.si_ctid = -1;
519 si32.si_zoneid = zoneid;
520 }
521 fp -= SA32(sizeof (si32));
522 uzero(fp, sizeof (si32));
523 copyout_noerr(&si32, fp, sizeof (si32));
524 sip_addr = (siginfo32_t *)fp;

526 if (sig == SIGPROF &&
527 curthread->t_rprof != NULL &&
528 curthread->t_rprof->rp_anystate) {
529 /*
530 * We stand on our head to deal with
531 * the real-time profiling signal.
532 * Fill in the stuff that doesn’t fit
533 * in a normal k_siginfo structure.
534 */
535 int i = sip->si_nsysarg;

537 while (--i >= 0)
538 suword32_noerr(&(sip_addr->si_sysarg[i]),
539 (uint32_t)lwp->lwp_arg[i]);
540 copyout_noerr(curthread->t_rprof->rp_state,
541 sip_addr->si_mstate,
542 sizeof (curthread->t_rprof->rp_state));
543 }
544 } else
545 sip_addr = NULL;

547 /* save the current context on the user stack */
548 fp -= SA32(sizeof (*tuc));
549 uc = (ucontext32_t *)fp;
550 tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
551 savecontext32(tuc, &lwp->lwp_sigoldmask);

553 /*
554 * Save extra register state if it exists.
555 */
556 if (xregs_size != 0) {
557 xregs_setptr32(lwp, tuc, (caddr32_t)(uintptr_t)sp);
558 xregs = kmem_alloc(xregs_size, KM_SLEEP);
559 xregs_get(lwp, xregs);
560 copyout_noerr(xregs, sp, xregs_size);
561 kmem_free(xregs, xregs_size);
562 xregs = NULL;
563 sp += SA32(xregs_size);
564 }

566 #endif /* ! codereview */
567 copyout_noerr(tuc, uc, sizeof (*tuc));
568 kmem_free(tuc, sizeof (*tuc));
569 tuc = NULL;

571 lwp->lwp_oldcontext = (uintptr_t)uc;

573 if (newstack) {
574 lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
575 if (lwp->lwp_ustack) {
576 stack32_t stk32;

578 stk32.ss_sp = (caddr32_t)(uintptr_t)

new/usr/src/uts/intel/ia32/os/sendsig.c 8

579 lwp->lwp_sigaltstack.ss_sp;
580 stk32.ss_size = (size32_t)
581 lwp->lwp_sigaltstack.ss_size;
582 stk32.ss_flags = (int32_t)
583 lwp->lwp_sigaltstack.ss_flags;
584 copyout_noerr(&stk32,
585 (stack32_t *)lwp->lwp_ustack, sizeof (stk32));
586 }
587 }

589 /*
590 * Set up signal handler arguments
591 */
592 {
593 struct sigframe32 frame32;

595 frame32.sip = (caddr32_t)(uintptr_t)sip_addr;
596 frame32.ucp = (caddr32_t)(uintptr_t)uc;
597 frame32.signo = sig;
598 frame32.retaddr = 0xffffffff; /* never return! */
599 copyout_noerr(&frame32, sp, sizeof (frame32));
600 }

602 no_fault();
603 if (watched)
604 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);

606 rp->r_sp = (greg_t)(uintptr_t)sp;
607 rp->r_pc = (greg_t)(uintptr_t)hdlr;
608 rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);

610 if ((rp->r_cs & 0xffff) != U32CS_SEL ||
611 (rp->r_ss & 0xffff) != UDS_SEL) {
612 /*
613 * Try our best to deliver the signal.
614 */
615 rp->r_cs = U32CS_SEL;
616 rp->r_ss = UDS_SEL;
617 }

619 /*
620 * Don’t set lwp_eosys here. sendsig() is called via psig() after
621 * lwp_eosys is handled, so setting it here would affect the next
622 * system call.
623 */
624 return (1);

626 badstack:
627 no_fault();
628 if (watched)
629 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
630 if (tuc)
631 kmem_free(tuc, sizeof (*tuc));
632 if (xregs_size)
633 kmem_free(xregs, xregs_size);
634 #endif /* ! codereview */
635 #ifdef DEBUG
636 printf("sendsig32: bad signal stack cmd=%s pid=%d, sig=%d\n",
637 PTOU(p)->u_comm, p->p_pid, sig);
638 printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
639 (void *)sp, (void *)hdlr, (uintptr_t)upc);
640 #endif
641 return (0);
642 }

644 #endif /* _SYSCALL32_IMPL */

new/usr/src/uts/intel/ia32/os/sendsig.c 9

646 #elif defined(__i386)

648 /*
649 * An i386 SVR4/ABI signal frame looks like this on the stack:
650 *
651 * old %esp:
652 * <a siginfo32_t [optional]>
653 * <a ucontext32_t>
654 * <pointer to that ucontext32_t>
655 * <pointer to that siginfo32_t>
656 * <signo>
657 * new %esp: <return address (deliberately invalid)>
658 */
659 struct sigframe {
660 void (*retaddr)();
661 uint_t signo;
662 siginfo_t *sip;
663 ucontext_t *ucp;
664 };

666 int
667 sendsig(int sig, k_siginfo_t *sip, void (*hdlr)())
668 {
669 volatile int minstacksz;
670 int newstack;
671 label_t ljb;
672 volatile caddr_t sp;
673 caddr_t fp;
674 struct regs *rp;
675 volatile greg_t upc;
676 volatile proc_t *p = ttoproc(curthread);
677 klwp_t *lwp = ttolwp(curthread);
678 ucontext_t *volatile tuc = NULL;
679 ucontext_t *uc;
680 siginfo_t *sip_addr;
681 volatile int watched;

683 rp = lwptoregs(lwp);
684 upc = rp->r_pc;

686 minstacksz = SA(sizeof (struct sigframe)) + SA(sizeof (*uc));
687 if (sip != NULL)
688 minstacksz += SA(sizeof (siginfo_t));
689 ASSERT((minstacksz & (STACK_ALIGN - 1ul)) == 0);

691 /*
692 * Figure out whether we will be handling this signal on
693 * an alternate stack specified by the user. Then allocate
694 * and validate the stack requirements for the signal handler
695 * context. on_fault will catch any faults.
696 */
697 newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
698 !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));

700 if (newstack) {
701 fp = (caddr_t)(SA((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
702 SA(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN);
703 } else if ((rp->r_ss & 0xffff) != UDS_SEL) {
704 user_desc_t *ldt;
705 /*
706 * If the stack segment selector is -not- pointing at
707 * the UDS_SEL descriptor and we have an LDT entry for
708 * it instead, add the base address to find the effective va.
709 */
710 if ((ldt = p->p_ldt) != NULL)

new/usr/src/uts/intel/ia32/os/sendsig.c 10

711 fp = (caddr_t)rp->r_sp +
712 USEGD_GETBASE(&ldt[SELTOIDX(rp->r_ss)]);
713 else
714 fp = (caddr_t)rp->r_sp;
715 } else
716 fp = (caddr_t)rp->r_sp;

718 /*
719 * Force proper stack pointer alignment, even in the face of a
720 * misaligned stack pointer from user-level before the signal.
721 * Don’t use the SA() macro because that rounds up, not down.
722 */
723 fp = (caddr_t)((uintptr_t)fp & ~(STACK_ALIGN - 1ul));
724 sp = fp - minstacksz;

726 /*
727 * Make sure lwp hasn’t trashed its stack.
728 */
729 if (sp >= (caddr_t)USERLIMIT || fp >= (caddr_t)USERLIMIT) {
730 #ifdef DEBUG
731 printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
732 PTOU(p)->u_comm, p->p_pid, sig);
733 printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
734 (void *)sp, (void *)hdlr, (uintptr_t)upc);
735 printf("sp above USERLIMIT\n");
736 #endif
737 return (0);
738 }

740 watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);

742 if (on_fault(&ljb))
743 goto badstack;

745 if (sip != NULL) {
746 zoneid_t zoneid;

748 fp -= SA(sizeof (siginfo_t));
749 uzero(fp, sizeof (siginfo_t));
750 if (SI_FROMUSER(sip) &&
751 (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
752 zoneid != sip->si_zoneid) {
753 k_siginfo_t sani_sip = *sip;

755 sani_sip.si_pid = p->p_zone->zone_zsched->p_pid;
756 sani_sip.si_uid = 0;
757 sani_sip.si_ctid = -1;
758 sani_sip.si_zoneid = zoneid;
759 copyout_noerr(&sani_sip, fp, sizeof (sani_sip));
760 } else
761 copyout_noerr(sip, fp, sizeof (*sip));
762 sip_addr = (siginfo_t *)fp;

764 if (sig == SIGPROF &&
765 curthread->t_rprof != NULL &&
766 curthread->t_rprof->rp_anystate) {
767 /*
768 * We stand on our head to deal with
769 * the real time profiling signal.
770 * Fill in the stuff that doesn’t fit
771 * in a normal k_siginfo structure.
772 */
773 int i = sip->si_nsysarg;

775 while (--i >= 0)
776 suword32_noerr(&(sip_addr->si_sysarg[i]),

new/usr/src/uts/intel/ia32/os/sendsig.c 11

777 (uint32_t)lwp->lwp_arg[i]);
778 copyout_noerr(curthread->t_rprof->rp_state,
779 sip_addr->si_mstate,
780 sizeof (curthread->t_rprof->rp_state));
781 }
782 } else
783 sip_addr = NULL;

785 /* save the current context on the user stack */
786 fp -= SA(sizeof (*tuc));
787 uc = (ucontext_t *)fp;
788 tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
789 savecontext(tuc, &lwp->lwp_sigoldmask);
790 copyout_noerr(tuc, uc, sizeof (*tuc));
791 kmem_free(tuc, sizeof (*tuc));
792 tuc = NULL;

794 lwp->lwp_oldcontext = (uintptr_t)uc;

796 if (newstack) {
797 lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
798 if (lwp->lwp_ustack)
799 copyout_noerr(&lwp->lwp_sigaltstack,
800 (stack_t *)lwp->lwp_ustack, sizeof (stack_t));
801 }

803 /*
804 * Set up signal handler arguments
805 */
806 {
807 struct sigframe frame;

809 frame.sip = sip_addr;
810 frame.ucp = uc;
811 frame.signo = sig;
812 frame.retaddr = (void (*)())0xffffffff; /* never return! */
813 copyout_noerr(&frame, sp, sizeof (frame));
814 }

816 no_fault();
817 if (watched)
818 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);

820 rp->r_sp = (greg_t)sp;
821 rp->r_pc = (greg_t)hdlr;
822 rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);

824 if ((rp->r_cs & 0xffff) != UCS_SEL ||
825 (rp->r_ss & 0xffff) != UDS_SEL) {
826 rp->r_cs = UCS_SEL;
827 rp->r_ss = UDS_SEL;
828 }

830 /*
831 * Don’t set lwp_eosys here. sendsig() is called via psig() after
832 * lwp_eosys is handled, so setting it here would affect the next
833 * system call.
834 */
835 return (1);

837 badstack:
838 no_fault();
839 if (watched)
840 watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
841 if (tuc)
842 kmem_free(tuc, sizeof (*tuc));

new/usr/src/uts/intel/ia32/os/sendsig.c 12

843 #ifdef DEBUG
844 printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
845 PTOU(p)->u_comm, p->p_pid, sig);
846 printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
847 (void *)sp, (void *)hdlr, (uintptr_t)upc);
848 #endif
849 return (0);
850 }

852 #endif /* __i386 */

new/usr/src/uts/intel/ia32/os/xregs.c 1

**
 4681 Wed Jan 23 13:19:09 2013
new/usr/src/uts/intel/ia32/os/xregs.c
XXX AVX procfs
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 1994-1998,2003 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2013 David Hoeppner. All rights reserved.
29 */

31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/klwp.h>
34 #include <sys/proc.h>
35 #include <sys/ucontext.h>
36 #include <sys/procfs.h>
37 #include <sys/privregs.h>
38 #include <sys/fp.h>
39 #include <sys/cpuvar.h>
40 #include <sys/cmn_err.h>
41 #include <sys/disp.h>
42 #include <sys/systm.h>
43 #include <sys/archsystm.h>
44 #include <sys/note.h>

46 /*
47 * Clear the struct ucontext extra register state pointer.
48 */
49 void
50 xregs_clrptr(klwp_id_t lwp, ucontext_t *uc)
51 {
52 uc->uc_xrs.xrs_id = 0;
53 uc->uc_xrs.xrs_ptr = NULL;
54 }

56 /*
57 * Indicate whether or not an extra register state
58 * pointer is associated with a struct ucontext.
59 */
60 int
61 xregs_hasptr(klwp_id_t lwp, ucontext_t *uc)

new/usr/src/uts/intel/ia32/os/xregs.c 2

62 {
63 _NOTE(ARGUNUSED(lwp));

65 return (uc->uc_xrs.xrs_id == XRS_ID);
66 }

68 /*
69 * Get the struct ucontext extra register state pointer field.
70 */
71 caddr_t
72 xregs_getptr(klwp_id_t lwp, ucontext_t *uc)
73 {
74 _NOTE(ARGUNUSED(lwp));

76 if (uc->uc_xrs.xrs_id == XRS_ID)
77 return (uc->uc_xrs.xrs_ptr);

79 return (NULL);
80 }

82 /*
83 * Set the struct ucontext extra register state pointer field.
84 */
85 void
86 xregs_setptr(klwp_id_t lwp, ucontext_t *uc, caddr_t xrp)
87 {
88 _NOTE(ARGUNUSED(lwp));

90 uc->uc_xrs.xrs_id = XRS_ID;
91 uc->uc_xrs.xrs_ptr = xrp;
92 }

94 #if defined(_SYSCALL32_IMPL)

96 void
97 xregs_clrptr32(klwp_id_t lwp, ucontext32_t *uc)
98 {
99 _NOTE(ARGUNUSED(lwp));

101 uc->uc_xrs.xrs_id = 0;
102 uc->uc_xrs.xrs_ptr = NULL;
103 }

105 int
106 xregs_hasptr32(klwp_id_t lwp, ucontext32_t *uc)
107 {
108 _NOTE(ARGUNUSED(lwp));

110 return (uc->uc_xrs.xrs_id == XRS_ID);
111 }

113 caddr32_t
114 xregs_getptr32(klwp_id_t lwp, ucontext32_t *uc)
115 {
116 _NOTE(ARGUNUSED(lwp));

118 if (uc->uc_xrs.xrs_id == XRS_ID)
119 return (uc->uc_xrs.xrs_ptr);

121 return (0);
122 }

124 void
125 xregs_setptr32(klwp_id_t lwp, ucontext32_t *uc, caddr32_t xrp)
126 {
127 _NOTE(ARGUNUSED(lwp));

new/usr/src/uts/intel/ia32/os/xregs.c 3

129 uc->uc_xrs.xrs_id = XRS_ID;
130 uc->uc_xrs.xrs_ptr = xrp;
131 }

133 #endif /* _SYSCALL32_IMPL */

135 /*
136 * Fill in the extra register state area specified with the
137 * specified lwp’s floating point extra register state information.
138 */
139 void
140 xregs_getfpregs(klwp_id_t lwp, caddr_t xrp)
141 {
142 prxregset_t *xregs = (prxregset_t *)xrp;
143 kfpu_t *fp = lwptofpu(lwp);

145 if (xregs == NULL)
146 return;

148 kpreempt_disable();

150 xregs->pr_type = XR_TYPE_XSAVE;

152 kpreempt_enable();
153 }

155 /*
156 * Fill in the extra register state area specified with
157 * the specified kwp’s extra register state information.
158 */
159 void
160 xregs_get(klwp_id_t lwp, caddr_t xrp)
161 {

163 if (xrp != NULL) {
164 bzero(xrp, sizeof (prxregset_t));
165 xregs_getfpregs(lwp, xrp);
166 }
167 }

169 /*
170 * Set the specified lwp’s floating-point extra
171 * register state based on the specified input.
172 */
173 void
174 xregs_setfpregs(klwp_id_t lwp, caddr_t xrp)
175 {
176 prxregset_t *xregs = (prxregset_t *)xrp;
177 kfpu_t *fp = lwptofpu(lwp);
178 fpu_ctx_t *fpu = &lwp->lwp_pcb.pcb_fpu;

180 if (xregs == NULL)
181 return;

183 #if defined(DEBUG)
184 if (xregs->pr_type != XR_TYPE_XSAVE) {
185 cmn_err(CE_WARN,
186 "xregs_setfpregs: pr_type is %d and should be %d",
187 xregs->pr_type, XR_TYPE_XSAVE);
188 }
189 #endif /* DEBUG */

191 if (fpu->fpu_flags & FPU_EN) {
192 kpreempt_disable();
193 (void) kcopy(&xregs->pr_un.pr_xsave.pr_ymm,

new/usr/src/uts/intel/ia32/os/xregs.c 4

194 &fp->kfpu_u.kfpu_xs.xs_ymm,
195 sizeof (&xregs->pr_un.pr_xsave.pr_ymm));

197 /*
198 * If not the current lwp then resume() will handle it.
199 */
200 if (lwp != ttolwp(curthread)) {
201 /* Force resume to reload fp regs */
202 kpreempt_enable();
203 return;
204 }

206 if (fpu_exists) {
207 }

209 kpreempt_enable();
210 }
211 }

213 /*
214 * Set the specified lwp’s extra register
215 * state based on the specified input.
216 */
217 void
218 xregs_set(klwp_id_t lwp, caddr_t xrp)
219 {
220 if (xrp != NULL) {
221 xregs_setfpregs(lwp, xrp);
222 }
223 }

225 /*
226 * Return the size of the extra register state.
227 */
228 int
229 xregs_getsize(proc_t *p)
230 {
231 return (sizeof (prxregset_t));
232 }
233 #endif /* ! codereview */

new/usr/src/uts/intel/ia32/sys/privregs.h 1

**
 5772 Wed Jan 23 13:19:09 2013
new/usr/src/uts/intel/ia32/sys/privregs.h
XXX AVX procfs
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _IA32_SYS_PRIVREGS_H
28 #define _IA32_SYS_PRIVREGS_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

30 #ifdef __cplusplus
31 extern "C" {
32 #endif

34 /*
35 * This file describes the cpu’s privileged register set, and
36 * how the machine state is saved on the stack when a trap occurs.
37 */

39 #if !defined(__i386)
40 #error "non-i386 code depends on i386 privileged header!"
41 #endif

43 #ifndef _ASM

45 /*
46 * This is NOT the structure to use for general purpose debugging;
47 * see /proc for that. This is NOT the structure to use to decode
48 * the ucontext or grovel about in a core file; see <sys/regset.h>.
49 */

51 struct regs {
52 /*
53 * Extra frame for mdb to follow through high level interrupts and
54 * system traps. Set them to 0 to terminate stacktrace.
55 */
56 greg_t r_savfp; /* a copy of %ebp */
57 greg_t r_savpc; /* a copy of %eip */

59 greg_t r_gs;

new/usr/src/uts/intel/ia32/sys/privregs.h 2

60 greg_t r_fs;
61 greg_t r_es;
62 greg_t r_ds;
63 greg_t r_edi;
64 greg_t r_esi;
65 greg_t r_ebp;
66 greg_t r_esp;
67 greg_t r_ebx;
68 greg_t r_edx;
69 greg_t r_ecx;
70 greg_t r_eax;
71 greg_t r_trapno;
72 greg_t r_err;
73 greg_t r_eip;
74 greg_t r_cs;
75 greg_t r_efl;
76 greg_t r_uesp;
77 greg_t r_ss;
78 };

80 #define r_r0 r_eax /* r0 for portability */
81 #define r_r1 r_edx /* r1 for portability */
82 #define r_fp r_ebp /* system frame pointer */
83 #define r_sp r_uesp /* user stack pointer */
84 #define r_pc r_eip /* user’s instruction pointer */
85 #define r_ps r_efl /* user’s EFLAGS */

87 #define GREG_NUM 8 /* Number of regs between %edi and %eax */

89 #ifdef _KERNEL
90 #define lwptoregs(lwp) ((struct regs *)((lwp)->lwp_regs))
91 #define lwptofpu(lwp) ((kfpu_t *)((lwp)->lwp_fpu))
92 #endif /* ! codereview */
93 #endif /* _KERNEL */

95 #else /* !_ASM */

97 #if defined(_MACHDEP)

99 #include <sys/machprivregs.h>

101 /*
102 * Save current frame on the stack. Uses %eax.
103 */
104 #define __FRAME_PUSH \
105 subl $8, %esp; \
106 movl REGOFF_EIP(%esp), %eax; \
107 movl %eax, REGOFF_SAVPC(%esp); \
108 movl %ebp, REGOFF_SAVFP(%esp);

110 /*
111 * Save segment registers on the stack.
112 */
113 #define __SEGREGS_PUSH \
114 subl $16, %esp; \
115 movw %ds, 12(%esp); \
116 movw %es, 8(%esp); \
117 movw %fs, 4(%esp); \
118 movw %gs, 0(%esp);

120 /*
121 * Load segment register with kernel selectors.
122 * %gs must be the last one to be set to make the
123 * check in cmnint valid.
124 */
125 #define __SEGREGS_LOAD_KERNEL \

new/usr/src/uts/intel/ia32/sys/privregs.h 3

126 movw $KDS_SEL, %cx; \
127 movw %cx, %ds; \
128 movw %cx, %es; \
129 movw $KFS_SEL, %cx; \
130 movw $KGS_SEL, %dx; \
131 movw %cx, %fs; \
132 movw %dx, %gs;

134 /*
135 * Restore segment registers off the stack.
136 *
137 * NOTE THE ORDER IS VITAL!
138 *
139 * Also note the subtle interdependency with kern_gpfault()
140 * that needs to disassemble these instructions to diagnose
141 * what happened when things (like bad segment register
142 * values) go horribly wrong.
143 */
144 #define __SEGREGS_POP \
145 movw 0(%esp), %gs; \
146 movw 4(%esp), %fs; \
147 movw 8(%esp), %es; \
148 movw 12(%esp), %ds; \
149 addl $16, %esp;

151 /*
152 * Macros for saving all registers necessary on interrupt entry,
153 * and restoring them on exit.
154 */
155 #define INTR_PUSH \
156 cld; \
157 pusha; \
158 __SEGREGS_PUSH \
159 __FRAME_PUSH \
160 cmpw $KGS_SEL, REGOFF_GS(%esp); \
161 je 8f; \
162 movl $0, REGOFF_SAVFP(%esp); \
163 __SEGREGS_LOAD_KERNEL \
164 8: CLEAN_CS

166 #define __INTR_POP \
167 popa; \
168 addl $8, %esp; /* get TRAPNO and ERR off the stack */

170 #define INTR_POP_USER \
171 addl $8, %esp; /* get extra frame off the stack */ \
172 __SEGREGS_POP \
173 __INTR_POP

175 #define INTR_POP_KERNEL \
176 addl $24, %esp; /* skip extra frame and segment registers */ \
177 __INTR_POP
178 /*
179 * Macros for saving all registers necessary on system call entry,
180 * and restoring them on exit.
181 */
182 #define SYSCALL_PUSH \
183 cld; \
184 pusha; \
185 __SEGREGS_PUSH \
186 subl $8, %esp; \
187 pushfl; \
188 popl %ecx; \
189 orl $PS_IE, %ecx; \
190 movl %ecx, REGOFF_EFL(%esp); \
191 movl $0, REGOFF_SAVPC(%esp); \

new/usr/src/uts/intel/ia32/sys/privregs.h 4

192 movl $0, REGOFF_SAVFP(%esp); \
193 __SEGREGS_LOAD_KERNEL; \

195 #define SYSENTER_PUSH \
196 cld; \
197 pusha; \
198 __SEGREGS_PUSH \
199 subl $8, %esp; \
200 movl $0, REGOFF_SAVPC(%esp); \
201 movl $0, REGOFF_SAVFP(%esp); \
202 __SEGREGS_LOAD_KERNEL

204 #define SYSCALL_POP \
205 INTR_POP_USER

207 #endif /* _MACHDEP */

209 /*
210 * This is used to set eflags to known values at the head of an
211 * interrupt gate handler, i.e. interrupts are -already- disabled.
212 */
213 #define INTGATE_INIT_KERNEL_FLAGS \
214 pushl $F_OFF; \
215 popfl

217 #endif /* !_ASM */

219 #include <sys/controlregs.h>

221 /* Control register layout for panic dump */

223 #define CREGSZ 36
224 #define CREG_GDT 0
225 #define CREG_IDT 8
226 #define CREG_LDT 16
227 #define CREG_TASKR 18
228 #define CREG_CR0 20
229 #define CREG_CR2 24
230 #define CREG_CR3 28
231 #define CREG_CR4 32

233 #if !defined(_ASM) && defined(_INT64_TYPE)

235 typedef uint64_t creg64_t;

237 struct cregs {
238 creg64_t cr_gdt;
239 creg64_t cr_idt;
240 uint16_t cr_ldt;
241 uint16_t cr_task;
242 uint32_t cr_cr0;
243 uint32_t cr_cr2;
244 uint32_t cr_cr3;
245 uint32_t cr_cr4;
246 };

248 #if defined(_KERNEL)
249 extern void getcregs(struct cregs *);
250 #endif /* _KERNEL */

252 #endif /* !_ASM && _INT64_TYPE */

254 #ifdef __cplusplus
255 }
256 #endif

new/usr/src/uts/intel/ia32/sys/privregs.h 5

258 #endif /* !_IA32_SYS_PRIVREGS_H */

new/usr/src/uts/intel/ia32/syscall/getcontext.c 1

**
 10393 Wed Jan 23 13:19:09 2013
new/usr/src/uts/intel/ia32/syscall/getcontext.c
XXX AVX procfs
**
______unchanged_portion_omitted_

180 int
181 getsetcontext(int flag, void *arg)
182 {
183 ucontext_t uc;
184 ucontext_t *ucp;
185 klwp_t *lwp = ttolwp(curthread);
186 stack_t dummy_stk;
187 caddr_t xregs = NULL;
188 int xregs_size = 0;
189 #endif /* ! codereview */

191 /*
192 * In future releases, when the ucontext structure grows,
193 * getcontext should be modified to only return the fields
194 * specified in the uc_flags. That way, the structure can grow
195 * and still be binary compatible will all .o’s which will only
196 * have old fields defined in uc_flags
197 */

199 switch (flag) {
200 default:
201 return (set_errno(EINVAL));

203 case GETCONTEXT:
204 schedctl_finish_sigblock(curthread);
205 savecontext(&uc, &curthread->t_hold);
206 if (uc.uc_flags & UC_SIGMASK)
207 SIGSET_NATIVE_TO_BRAND(&uc.uc_sigmask);
208 if (copyout(&uc, arg, sizeof (uc)))
209 return (set_errno(EFAULT));
210 return (0);

212 case SETCONTEXT:
213 ucp = arg;
214 if (ucp == NULL)
215 exit(CLD_EXITED, 0);
216 /*
217 * Don’t copyin filler or floating state unless we need it.
218 * The ucontext_t struct and fields are specified in the ABI.
219 */
220 if (copyin(ucp, &uc, sizeof (ucontext_t) -
221 sizeof (uc.uc_filler) -
222 sizeof (uc.uc_mcontext.fpregs))) {
223 return (set_errno(EFAULT));
224 }
225 if (uc.uc_flags & UC_SIGMASK)
226 SIGSET_BRAND_TO_NATIVE(&uc.uc_sigmask);

228 if ((uc.uc_flags & UC_FPU) &&
229 copyin(&ucp->uc_mcontext.fpregs, &uc.uc_mcontext.fpregs,
230 sizeof (uc.uc_mcontext.fpregs))) {
231 return (set_errno(EFAULT));
232 }

234 /*
235 * Get extra register state.
236 */
237 xregs_clrptr(lwp, &uc);

new/usr/src/uts/intel/ia32/syscall/getcontext.c 2

239 #endif /* ! codereview */
240 restorecontext(&uc);

242 if ((uc.uc_flags & UC_STACK) && (lwp->lwp_ustack != 0))
243 (void) copyout(&uc.uc_stack, (stack_t *)lwp->lwp_ustack,
244 sizeof (uc.uc_stack));

246 /*
247 * Free extra register state.
248 */
249 if (xregs_size)
250 kmem_free(xregs, xregs_size);

252 #endif /* ! codereview */
253 return (0);

255 case GETUSTACK:
256 if (copyout(&lwp->lwp_ustack, arg, sizeof (caddr_t)))
257 return (set_errno(EFAULT));
258 return (0);

260 case SETUSTACK:
261 if (copyin(arg, &dummy_stk, sizeof (dummy_stk)))
262 return (set_errno(EFAULT));
263 lwp->lwp_ustack = (uintptr_t)arg;
264 return (0);
265 }
266 }

268 #ifdef _SYSCALL32_IMPL

270 /*
271 * Save user context for 32-bit processes.
272 */
273 void
274 savecontext32(ucontext32_t *ucp, const k_sigset_t *mask)
275 {
276 proc_t *p = ttoproc(curthread);
277 klwp_t *lwp = ttolwp(curthread);
278 struct regs *rp = lwptoregs(lwp);

280 bzero(&ucp->uc_mcontext.fpregs, sizeof (ucontext32_t) -
281 offsetof(ucontext32_t, uc_mcontext.fpregs));

283 ucp->uc_flags = UC_ALL;
284 ucp->uc_link = (caddr32_t)lwp->lwp_oldcontext;

286 if (lwp->lwp_ustack == NULL ||
287 copyin((void *)lwp->lwp_ustack, &ucp->uc_stack,
288 sizeof (ucp->uc_stack)) != 0 ||
289 ucp->uc_stack.ss_size == 0) {

291 if (lwp->lwp_sigaltstack.ss_flags == SS_ONSTACK) {
292 ucp->uc_stack.ss_sp =
293 (caddr32_t)(uintptr_t)lwp->lwp_sigaltstack.ss_sp;
294 ucp->uc_stack.ss_size =
295 (size32_t)lwp->lwp_sigaltstack.ss_size;
296 ucp->uc_stack.ss_flags = SS_ONSTACK;
297 } else {
298 ucp->uc_stack.ss_sp = (caddr32_t)(uintptr_t)
299 (p->p_usrstack - p->p_stksize);
300 ucp->uc_stack.ss_size = (size32_t)p->p_stksize;
301 ucp->uc_stack.ss_flags = 0;
302 }
303 }

new/usr/src/uts/intel/ia32/syscall/getcontext.c 3

305 /*
306 * If either the trace flag or REQUEST_STEP is set, arrange
307 * for single-stepping and turn off the trace flag.
308 */
309 if ((rp->r_ps & PS_T) || (lwp->lwp_pcb.pcb_flags & REQUEST_STEP)) {
310 /*
311 * Clear PS_T so that saved user context won’t have trace
312 * flag set.
313 */
314 rp->r_ps &= ~PS_T;

316 if (!(lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP)) {
317 lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
318 /*
319 * See comments in savecontext().
320 */
321 aston(curthread);
322 }
323 }

325 getgregs32(lwp, ucp->uc_mcontext.gregs);
326 if (lwp->lwp_pcb.pcb_fpu.fpu_flags & FPU_EN)
327 getfpregs32(lwp, &ucp->uc_mcontext.fpregs);
328 else
329 ucp->uc_flags &= ~UC_FPU;

331 sigktou(mask, &ucp->uc_sigmask);
332 }

334 int
335 getsetcontext32(int flag, void *arg)
336 {
337 ucontext32_t uc;
338 ucontext_t ucnat;
339 ucontext32_t *ucp;
340 klwp_t *lwp = ttolwp(curthread);
341 caddr32_t ustack32;
342 stack32_t dummy_stk32;

344 switch (flag) {
345 default:
346 return (set_errno(EINVAL));

348 case GETCONTEXT:
349 schedctl_finish_sigblock(curthread);
350 savecontext32(&uc, &curthread->t_hold);
351 if (uc.uc_flags & UC_SIGMASK)
352 SIGSET_NATIVE_TO_BRAND(&uc.uc_sigmask);
353 if (copyout(&uc, arg, sizeof (uc)))
354 return (set_errno(EFAULT));
355 return (0);

357 case SETCONTEXT:
358 ucp = arg;
359 if (ucp == NULL)
360 exit(CLD_EXITED, 0);
361 if (copyin(ucp, &uc, sizeof (uc) -
362 sizeof (uc.uc_filler) -
363 sizeof (uc.uc_mcontext.fpregs))) {
364 return (set_errno(EFAULT));
365 }
366 if (uc.uc_flags & UC_SIGMASK)
367 SIGSET_BRAND_TO_NATIVE(&uc.uc_sigmask);
368 if ((uc.uc_flags & UC_FPU) &&
369 copyin(&ucp->uc_mcontext.fpregs, &uc.uc_mcontext.fpregs,

new/usr/src/uts/intel/ia32/syscall/getcontext.c 4

370 sizeof (uc.uc_mcontext.fpregs))) {
371 return (set_errno(EFAULT));
372 }

374 ucontext_32ton(&uc, &ucnat);
375 restorecontext(&ucnat);

377 if ((uc.uc_flags & UC_STACK) && (lwp->lwp_ustack != 0))
378 (void) copyout(&uc.uc_stack,
379 (stack32_t *)lwp->lwp_ustack, sizeof (uc.uc_stack));
380 return (0);

382 case GETUSTACK:
383 ustack32 = (caddr32_t)lwp->lwp_ustack;
384 if (copyout(&ustack32, arg, sizeof (ustack32)))
385 return (set_errno(EFAULT));
386 return (0);

388 case SETUSTACK:
389 if (copyin(arg, &dummy_stk32, sizeof (dummy_stk32)))
390 return (set_errno(EFAULT));
391 lwp->lwp_ustack = (uintptr_t)arg;
392 return (0);
393 }
394 }

396 #endif /* _SYSCALL32_IMPL */

new/usr/src/uts/intel/sys/archsystm.h 1

**
 6429 Wed Jan 23 13:19:10 2013
new/usr/src/uts/intel/sys/archsystm.h
XXX AVX procfs
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 #ifndef _SYS_ARCHSYSTM_H
27 #define _SYS_ARCHSYSTM_H

29 /*
30 * A selection of ISA-dependent interfaces
31 */

33 #include <vm/seg_enum.h>
34 #include <vm/page.h>

36 #ifdef __cplusplus
37 extern "C" {
38 #endif

40 #ifdef _KERNEL

42 extern greg_t getfp(void);
43 extern int getpil(void);

45 extern ulong_t getcr0(void);
46 extern void setcr0(ulong_t);
47 extern ulong_t getcr8(void);
48 extern void setcr8(ulong_t);
49 extern ulong_t getcr2(void);
50 extern void clflush_insn(caddr_t addr);
51 extern void mfence_insn(void);

53 #if defined(__i386)
54 extern uint16_t getgs(void);
55 extern void setgs(uint16_t);

57 extern void patch_sse(void);
58 extern void patch_sse2(void);
59 #endif

61 extern void patch_xsave(void);

new/usr/src/uts/intel/sys/archsystm.h 2

63 extern void cli(void);
64 extern void sti(void);

66 extern void tenmicrosec(void);

68 extern void restore_int_flag(ulong_t);
69 extern void intr_restore(ulong_t);
70 extern ulong_t clear_int_flag(void);
71 extern ulong_t intr_clear(void);
72 extern ulong_t getflags(void);
73 extern int interrupts_enabled(void);

75 extern void int3(void);
76 extern void int18(void);
77 extern void int20(void);
78 extern void int_cmci(void);

80 #if defined(__amd64)
81 extern void sys_syscall();
82 extern void sys_syscall32();
83 extern void sys_lcall32();
84 extern void sys_syscall_int();
85 extern void brand_sys_syscall();
86 extern void brand_sys_syscall32();
87 extern void brand_sys_syscall_int();
88 extern int update_sregs();
89 extern void reset_sregs();
90 #elif defined(__i386)
91 extern void sys_call();
92 extern void brand_sys_call();
93 #endif
94 extern void sys_sysenter();
95 extern void _sys_sysenter_post_swapgs();
96 extern void brand_sys_sysenter();
97 extern void _brand_sys_sysenter_post_swapgs();

99 extern void dosyscall(void);

101 extern void bind_hwcap(void);

103 extern uint16_t inw(int port);
104 extern uint32_t inl(int port);
105 extern void outw(int port, uint16_t value);
106 extern void outl(int port, uint32_t value);

108 extern void pc_reset(void) __NORETURN;
109 extern void efi_reset(void) __NORETURN;
110 extern void reset(void) __NORETURN;
111 extern int goany(void);

113 extern void setgregs(klwp_t *, gregset_t);
114 extern void getgregs(klwp_t *, gregset_t);
115 extern void setfpregs(klwp_t *, fpregset_t *);
116 extern void getfpregs(klwp_t *, fpregset_t *);

118 #if defined(_SYSCALL32_IMPL)
119 extern void getgregs32(klwp_t *, gregset32_t);
120 extern void setfpregs32(klwp_t *, fpregset32_t *);
121 extern void getfpregs32(klwp_t *, fpregset32_t *);
122 #endif

124 struct ucontext;
125 extern void xregs_clrptr(struct _klwp *, struct ucontext *);
126 extern int xregs_hasptr(struct _klwp *, struct ucontext *);
127 extern caddr_t xregs_getptr(struct _klwp *, struct ucontext *);

new/usr/src/uts/intel/sys/archsystm.h 3

128 extern void xregs_setptr(struct _klwp *, struct ucontext *, caddr_t);

130 #if defined(_SYSCALL32_IMPL)
131 struct ucontext32;
132 extern void xregs_clrptr32(struct _klwp *, struct ucontext32 *);
133 extern int xregs_hasptr32(struct _klwp *, struct ucontext32 *);
134 extern caddr32_t xregs_getptr32(struct _klwp *, struct ucontext32 *);
135 extern void xregs_setptr32(struct _klwp *, struct ucontext32 *, caddr32_t);
136 #endif /* _SYSCALL32_IMPL */

138 extern void xregs_get(struct _klwp *, caddr_t);
139 extern void xregs_set(struct _klwp *, caddr_t);
140 extern int xregs_getsize(struct proc *);

142 #endif /* ! codereview */
143 struct fpu_ctx;

145 extern void fp_free(struct fpu_ctx *, int);
146 extern void fp_save(struct fpu_ctx *);
147 extern void fp_restore(struct fpu_ctx *);

149 extern int fpu_pentium_fdivbug;

151 extern void sep_save(void *);
152 extern void sep_restore(void *);

154 extern void brand_interpositioning_enable(void);
155 extern void brand_interpositioning_disable(void);

157 struct regs;

159 extern int instr_size(struct regs *, caddr_t *, enum seg_rw);

161 extern int enable_cbcp; /* patchable in /etc/system */

163 extern uint_t cpu_hwcap_flags;
164 extern uint_t cpu_freq;
165 extern uint64_t cpu_freq_hz;

167 extern int use_sse_pagecopy;
168 extern int use_sse_pagezero;
169 extern int use_sse_copy;

171 extern caddr_t i86devmap(pfn_t, pgcnt_t, uint_t);
172 extern page_t *page_numtopp_alloc(pfn_t pfnum);

174 extern void hwblkclr(void *, size_t);
175 extern void hwblkpagecopy(const void *, void *);
176 extern void page_copy_no_xmm(void *dst, void *src);
177 extern void block_zero_no_xmm(void *dst, int len);
178 #define BLOCKZEROALIGN (4 * sizeof (void *))

180 extern void (*kcpc_hw_enable_cpc_intr)(void);

182 extern void init_desctbls(void);

184 extern user_desc_t *cpu_get_gdt(void);

186 extern void switch_sp_and_call(void *, void (*)(uint_t, uint_t), uint_t,
187 uint_t);
188 extern hrtime_t (*gethrtimef)(void);
189 extern hrtime_t (*gethrtimeunscaledf)(void);
190 extern void (*scalehrtimef)(hrtime_t *);
191 extern uint64_t (*unscalehrtimef)(hrtime_t);
192 extern void (*gethrestimef)(timestruc_t *);

new/usr/src/uts/intel/sys/archsystm.h 4

194 extern void av_dispatch_softvect(uint_t);
195 extern void av_dispatch_autovect(uint_t);
196 extern uint_t atomic_btr32(uint32_t *, uint_t);
197 extern uint_t bsrw_insn(uint16_t);
198 extern int sys_rtt_common(struct regs *);
199 extern void fakesoftint(void);

201 extern void *plat_traceback(void *);

203 #if defined(__xpv)
204 extern void xen_init_callbacks(void);
205 extern void xen_set_callback(void (*)(void), uint_t, uint_t);
206 extern void xen_printf(const char *, ...);
207 #define cpr_dprintf xen_printf
208 extern int xpv_panicking;
209 #define IN_XPV_PANIC() (xpv_panicking > 0)
210 #else
211 extern void setup_mca(void);
212 extern void pat_sync(void);
213 extern void patch_tsc_read(int);
214 #if defined(__amd64) && !defined(__xpv)
215 extern void patch_memops(uint_t);
216 #endif /* defined(__amd64) && !defined(__xpv) */
217 extern void setup_xfem(void);
218 #define cpr_dprintf prom_printf
219 #define IN_XPV_PANIC() (__lintzero)
220 #endif

222 #endif /* _KERNEL */

224 #if defined(_KERNEL) || defined(_BOOT)
225 extern uint8_t inb(int port);
226 extern void outb(int port, uint8_t value);
227 #endif

229 #ifdef __cplusplus
230 }
231 #endif

233 #endif /* _SYS_ARCHSYSTM_H */

new/usr/src/uts/intel/sys/procfs_isa.h 1

**
 3979 Wed Jan 23 13:19:10 2013
new/usr/src/uts/intel/sys/procfs_isa.h
XXX AVX procfs
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _SYS_PROCFS_ISA_H
28 #define _SYS_PROCFS_ISA_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

30 /*
31 * Instruction Set Architecture specific component of <sys/procfs.h>
32 * i386 version
33 */

35 #include <sys/regset.h>

37 #ifdef __cplusplus
38 extern "C" {
39 #endif

41 /*
42 * Possible values of pr_dmodel.
43 * This isn’t isa-specific, but it needs to be defined here for other reasons.
44 */
45 #define PR_MODEL_UNKNOWN 0
46 #define PR_MODEL_ILP32 1 /* process data model is ILP32 */
47 #define PR_MODEL_LP64 2 /* process data model is LP64 */

49 /*
50 * To determine whether application is running native.
51 */
52 #if defined(_LP64)
53 #define PR_MODEL_NATIVE PR_MODEL_LP64
54 #elif defined(_ILP32)
55 #define PR_MODEL_NATIVE PR_MODEL_ILP32
56 #else
57 #error "No DATAMODEL_NATIVE specified"
58 #endif /* _LP64 || _ILP32 */

new/usr/src/uts/intel/sys/procfs_isa.h 2

60 #if defined(__i386) || defined(__amd64)
61 /*
62 * Holds one i386 or amd64 instruction
63 */
64 typedef uchar_t instr_t;
65 #endif

67 #define NPRGREG _NGREG
68 #define prgreg_t greg_t
69 #define prgregset_t gregset_t
70 #define prfpregset fpu
71 #define prfpregset_t fpregset_t

73 #if defined(_SYSCALL32)
74 /*
75 * kernel view of the ia32 register set
76 */
77 typedef uchar_t instr32_t;
78 #if defined(__amd64)
79 #define NPRGREG32 _NGREG32
80 #define prgreg32_t greg32_t
81 #define prgregset32_t gregset32_t
82 #define prfpregset32 fpu32
83 #define prfpregset32_t fpregset32_t
84 #else
85 #define NPRGREG32 _NGREG
86 #define prgreg32_t greg_t
87 #define prgregset32_t gregset_t
88 #define prfpregset32 fpu
89 #define prfpregset32_t fpregset_t
90 #endif
91 #endif /* _SYSCALL32 */

93 #if defined(__amd64)
94 /*
95 * The following defines are for portability (see <sys/regset.h>).
96 */
97 #define R_PC REG_RIP
98 #define R_PS REG_RFL
99 #define R_SP REG_RSP
100 #define R_FP REG_RBP
101 #define R_R0 REG_RAX
102 #define R_R1 REG_RDX
103 #elif defined(__i386)
104 /*
105 * The following defines are for portability (see <sys/regset.h>).
106 */
107 #define R_PC EIP
108 #define R_PS EFL
109 #define R_SP UESP
110 #define R_FP EBP
111 #define R_R0 EAX
112 #define R_R1 EDX
113 #endif

115 #define XR_TYPE_XSAVE 0x101

117 typedef struct prxregset {
118 uint32_t pr_type;
119 uint32_t pr_align;
120 uint32_t pr_xsize;
121 uint32_t pr_pad;
122 union {
123 struct pr_xsave {
124 uint16_t pr_fcw;
125 uint16_t pr_fsw;

new/usr/src/uts/intel/sys/procfs_isa.h 3

126 uint16_t pr_fctw;
127 uint16_t pr_fop;
128 #if defined(__amd64)
129 uint64_t pr_rip;
130 uint64_t pr_rdp;
131 #else
132 uint32_t pr_eip;
133 uint16_t pr_cs;
134 uint16_t __pr_ign0;
135 uint32_t pr_dp;
136 uint16_t pr_ds;
137 uint16_t __pr_ign1;
138 #endif
139 uint32_t pr_mxcsr;
140 uint32_t pr_mxcsr_mask;
141 union {
142 uint16_t pr_fpr_16[5];
143 u_longlong_t pr_fpr_mmx;
144 uint32_t __pr_fpr_pad[4];
145 } pr_st[8];
146 #if defined(__amd64)
147 upad128_t pr_xmm[16];
148 upad128_t __pr_ign2[3];
149 #else
150 upad128_t pr_xmm[8];
151 upad128_t __pr_ign2[11];
152 #endif
153 union {
154 struct {
155 uint64_t pr_xcr0;
156 uint64_t pr_mbz[2];
157 } pr_xsave_info;
158 upad128_t __pr_pad[3];
159 } pr_sw_avail;
160 uint64_t pr_xstate_bv;
161 uint64_t pr_rsv_mbz[2];
162 uint64_t pr_reserved[5];
163 #if defined(__amd64)
164 upad128_t pr_ymm[16];
165 #else
166 upad128_t pr_ymm[8];
167 upad128_t __pr_ign3[8];
168 #endif
169 } pr_xsave;
170 } pr_un;
171 } prxregset_t;

173 #endif /* ! codereview */
174 #ifdef __cplusplus
175 }
176 #endif

178 #endif /* _SYS_PROCFS_ISA_H */

new/usr/src/uts/intel/sys/ucontext.h 1

**
 3907 Wed Jan 23 13:19:11 2013
new/usr/src/uts/intel/sys/ucontext.h
XXX AVX procfs
**
______unchanged_portion_omitted_
66 #endif /* _STACK_T */
67 #endif /* defined(_XPG4_2) && !defined(__EXTENSIONS__) */

69 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
70 typedef struct ucontext ucontext_t;
71 #else
72 typedef struct __ucontext ucontext_t;
73 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

75 #define XRS_ID 0x00737278 /* the string "xrs" */

77 typedef struct {
78 unsigned long xrs_id;
79 caddr_t xrs_ptr;
80 } xrs_t;

82 #endif /* ! codereview */
83 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
84 struct ucontext {
85 #else
86 struct __ucontext {
87 #endif
88 unsigned long uc_flags;
89 ucontext_t *uc_link;
90 sigset_t uc_sigmask;
91 stack_t uc_stack;
92 mcontext_t uc_mcontext;
93 xrs_t uc_xrs;
94 long uc_filler[3]; /* see ABI spec for Intel386 */
75 long uc_filler[5]; /* see ABI spec for Intel386 */
95 };

97 #if defined(_SYSCALL32)

99 typedef struct {
100 uint32_t xrs_id;
101 caddr32_t xrs_ptr;
102 } xrs32_t;

104 #endif /* ! codereview */
105 /* Kernel view of user ILP32 ucontext structure */

107 typedef struct ucontext32 {
108 uint32_t uc_flags;
109 caddr32_t uc_link;
110 sigset_t uc_sigmask;
111 stack32_t uc_stack;
112 mcontext32_t uc_mcontext;
113 xrs32_t uc_xrs;
114 int32_t uc_filler[3];
80 int32_t uc_filler[5];
115 } ucontext32_t;

117 #if defined(_KERNEL)
118 extern void ucontext_nto32(const ucontext_t *src, ucontext32_t *dest);
119 extern void ucontext_32ton(const ucontext32_t *src, ucontext_t *dest);
120 #endif

122 #endif /* _SYSCALL32 */

new/usr/src/uts/intel/sys/ucontext.h 2

124 #if !defined(_XPG4_2) || defined(__EXTENSIONS__)
125 #define GETCONTEXT 0
126 #define SETCONTEXT 1
127 #define GETUSTACK 2
128 #define SETUSTACK 3

130 /*
131 * values for uc_flags
132 * these are implementation dependent flags, that should be hidden
133 * from the user interface, defining which elements of ucontext
134 * are valid, and should be restored on call to setcontext
135 */

137 #define UC_SIGMASK 0x01
138 #define UC_STACK 0x02
139 #define UC_CPU 0x04
140 #define UC_MAU 0x08
141 #define UC_XREGS 0x10
142 #endif /* ! codereview */
143 #define UC_FPU UC_MAU

145 #define UC_MCONTEXT (UC_CPU|UC_FPU)

147 /*
148 * UC_ALL specifies the default context
149 */

151 #define UC_ALL (UC_SIGMASK|UC_STACK|UC_MCONTEXT)
152 #endif /* !defined(_XPG4_2) || defined(__EXTENSIONS__) */

154 #ifdef _KERNEL
155 void savecontext(ucontext_t *, const k_sigset_t *);
156 void restorecontext(ucontext_t *);

158 #ifdef _SYSCALL32
159 extern void savecontext32(ucontext32_t *, const k_sigset_t *);
160 #endif
161 #endif

163 #ifdef __cplusplus
164 }
165 #endif

167 #endif /* _SYS_UCONTEXT_H */

